IBM RT PC Advanced Interactive Operating System Version 2.1

AIX Operating System
Technical Reference

Volume 2

Programming Family

1'

Personal
Computer
Software $C23-0809-0

IBM RT PC Advanced Interactive Operating System Version 2.1

AIX Operating System
Technical Reference

Volume 2

Programming Family

Personal
Computer
Software SC23-0809-0

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 of the Advanced Interactive Executive Operating System, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual “as is,” without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader’s comment form is providedBat the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984, 1987
©Copyright AT&T Technologies 1984

TECHNICAL NEWSLETTER

for the

RT Personal Computer

AIX Operating System Technical Reference
Volume 2

© Copyright International Business Machines Corporation 1985, 1986, 1987

—OVER—

Order Numbers:

08F3407

SN20-9881

September 25, 1987 TB 08F3407
© Copyright IBM Corp. 1987 Printed in U.S.A.

Summary of Changes

This technical newsletter contains updates to the Version 2.1.1 publication to include changes made
for Version 2.1.2. File the Version 2.1.1 TNL (SN20-9869) first, then apply the enclosed update to
those pages.

A vertical bar in the left margin of this TNL indicates material that has been updated or added for
Version 2.1.2.

Perform the following:

Remove Pages Insert Update Pages
iii and iv iii and iv

5-59 to 5-68 5-58.1 to 5-68.6

None Chapter 8

None A-9 to A-12

Index Index

Note: Please file this cover letter at the back of the manual to provide a record of changes.

September 25, 1987

=5 TECHNICAL NEWSLETTER

for the

RT Personal Computer

AIX Operating System Technical Reference
Volume 2

© Copyright International Business Machines Corporation 1985, 1986, 1987

—OVER—

Order Numbers:
92X1321
SN20-9869

June 26, 1987

TB92X1270
© Copyright IBM Corp. 1987

Printed in U.S.A.

Summary of Changes

This technical newsletter contains updates to the Version 2.1 publication to include changes made
for Version 2.1.1.

Perform the following:

—

Remove Pages Insert Update Pages
4-43 and 4-44 4-43 and 4-44

4-53 to 4-56 4-53 to 4-56

4-65 to 4-74 4-65 to 4-74

4-93 to 4-112 4-93 to 4-112

4-123 and 4-124
4-139 and 4-140
4-153 to 4-158
5-55 to 5-58

6-11 to 6-14
6-121 and 6-122
All of Chapter 7
A-7 and A-8
C-23 and C-24
The Index

Note: Please file this cover letter at the back of the manual to provide a record of changes.

4-123 and 4-124
4-139 and 4-140
4-153 to 4-158
5-55 to 5-58

6-11 to 6-14
6-121 and 6-122
All of Chapter 7
A-T and A-8
C-23 to C-24.2
The Index

June 26, 1987

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Contents
Volume 1. System Calls and Subroutines
Chapter 1. AIX Operating Systemttt eeneenas 1-1
Chapter 2. System Callsttt nneennens 2-1
Chapter 3. SubroutInesttt entteneresneosennsoeens 3-1
Index ..o i it e e e i e e X-1
Volume 2. Files and Device Drivers
Chapter 4. File Formats0ttt eneennasanns 4-1
Chapter 5. Miscellaneous Facilities 5-1
Chapter 6. Special Files ittt enneennann 6-1
Chapter 7. Advanced Display Graphics Support Library 7-1
Chapter 8. Socketsttt tieinneeenennnns 8-1
Appendix A. Error Codesttt nennnceans A-1
Appendix B. Writing a Queuing System Backend B-1
Appendix C. Writing Device Drivers00t C-1
Appendix D. Porting DOS 3.0 Applications D-1
Appendix E. Component Cross Reference E-1
Appendix F. Glossary ittt ititientneneannns F-1

Contents iii

TNL SN20-9881 (25 September 1987) to SC23-0809-0

iv AIX Operating System Technical Reference

Figures

Floating-Point Trap Handler Structures 3-189
The fpfp Register Mappingttt 3-190
Default Error-Handling Procedures 0 iiiirnn... 3-240
Example of Font Storage, 4-72
Information Record Format iiiieunn... 4-90
Octal ASCII Character Sett 5-3
Hexadecimal ASCII Character Set 5-4
Code Page PO e 5-6
Code Page Pl 5-7
Code Page P2 e 5-8
Code Page PO i i 5-25
Code Page Pl e 5-33
Code Page P2 i i e e 5-40
EBCDIC Character Setttt 5-45
The egnchar Characters it eiinnnnnnnnn. 5-54
Greek Characters ittt e e i 5-58
Bit Positions of ASCII Controls in EchoMap 6-35
Screen Manager Ring Examples 6-51
Position Codes for Remapping a Keyboard 6-78
Default Attribute Values e 7-9
Extended Services Subroutines, E-1
Multi-User Services Subroutinesc.oiiiiimneeennnnaan. E-1

Figures v

vi AIX Operating System Technical Reference

Volume 2. Files and Device Drivers

Volume 2. Files and Device Drivers

AIX Operating System Technical Reference

Chapter 4. File Formats

File Formats 4-1

About This Chapter

This chapter outlines the formats of various files. The C language struct declarations for
the file formats are given where applicable. These structures are usually found in header
files located in the /usr/include or /usr/include/sys directories, although they can be
located in any directory in the file system.

Many of the files described in this chapter contain magic numbers at predefined offsets.
Magic numbers provide programs with a way to verify the format of an input file before
attempting to process it. The values used for magic numbers are chosen because they are
not likely to occur as a random pattern in normal input.

4-2 AIX Operating System Technical Reference

.init.state

.Init.state

Purpose

Specifies the initial state for the AIX Operating System.

Description

The /ete/.init.state file specifies the initial state in which the init process is to start up
the AIX Operating System. This file contains a single line that specifies one of the
following initial states:

m

e file

Maintenance mode (single-user mode). When maintenance mode is entered, no
devices have been configured, no file systems have been mounted, and no daemon
processess have been started. These operations are normally performed by the
Jete/re shell procedure, which is not run when entering maintenance mode. See
the /ete/re file on your system for the commands that perform these operations.

Automatic multi-user mode. Enters multi-user mode, passing an a to /ete/rc as
the first parameter, $1.

“Clean” multi-user mode. Enters multi-user mode, passing a C to fetc/re as the
first parameter, $1. By convention, the C indicates that the file systems are
probably in good condition, or “clean.” You can customize the /etc/rc file on your
system to skip running fsck in order to shorten the system-startup procedure.
Note, however, that “clean” mode does not guarantee that any file systems are in
good condition.

“Dirty” multi-user mode. Enters multi-user mode, passing a d to /etc/rc as the
first parameter, $1. By convention, the d indicates that one or more file systems
may have been damaged. /ete/re should run the fsck command to check all file
systems.

Exec mode. Executes the shell procedure named filee. When the shell procedure
terminates, the system asks the operator whether to enter maintenance mode or
multi-user mode.

Operator mode. Asks the operator whether to enter maintenance mode or
multi-user mode. The system waits until a response is given.

Unknown mode. Asks the operator whether to enter maintenance mode or
multi-user mode. If no response is given within a period of time (approximately a
minute), the system enters automatic multi-user mode.

File Formats 4-3

.nit.state

If the operator selects multi-user mode in response to a prompt, then init asks whether to
check the file systems. The response to this question determines whether a C or a d is
passed to fetc/rc.

The /etc/.init.state file can also contain comment lines, which are indicated by a #
character in the first column.

File
/ete/.init.state

Related Information

In this book: “Creation and Execution” on page 1-16, “iplvm, waitvm” on page 2-58, and
“reboot” on page 2-109.

The init and r¢ commands in AIX Operating System Commands Reference.

4-4 AIX Operating System Technical Reference

a.out

a.out

Purpose

Provides common assembler and link editor output.

Synopsis

#include <a.out.h>

Description

The as (assembler) and 1d (link editor) programs produce an output file (the a.out file by
default) in the following format. The a.out file is executable if the assembler and the link
editor do not find any unresolved external references or errors in the source.

This file can have the following sections: a header, the text segment, data segment,
relocation information, a symbol table, a line number section, a string table, and a shared
library identifer (in that order). The last five sections may be missing if the program was
linked with the -s flag of the 1d command or if they were removed by the strip command.
The shared library identifier exists only for object modules related to a shared library
image. Note the relocation information is not present if there are not external references
to be resolved after linking.

Loading an a.out file into memory for execution causes the creation of three logical
segments: the text segment, the data segment (initialized data followed by data that is not
initialized, the latter actually being initialized to all zeros) and a stack.

Segment 1 occupies a low memory address in the process image and its size is static.
Segment 2 follows segment 1 in memory. The size of this segment can be extended using
the brk system call. The stack segment begins near the highest locations in segment 3 and
grows toward segment 2 as required.

Header
The format of the a.out header is:

struct exec {
unsigned char a-magic[2]}; /* magic number */
unsigned char a_flags; /* flags */
unsigned char a-cpu; /* CPU-ID */
unsigned char a-hdrlen; /* length of header */
unsigned char a_unused; /* reserved for future use */

File Formats 4-5

a.out

unsigned short a_version; /* version stamp */

long a-text; /* size of text segment */

long a-data; /* size of data segment */

long a-bss; /* size of bss segment */

long a-entry; /* entry point */

long a-misc; /* misc., e.g. initial stack pointer */
long a_syms; /* symbol table size */

/* SHORT FORM ENDS HERE */

long a-trsize; /* text relocation size */

long a-drsize; /* data relocation size */

long a—_tbase; /* text relocation base */

long a-dbase; /* data relocation base */

long a-lnums; /* size of line number section */

lTong a-toffs; /* offset of text from start of file */

+s
The fields in the header are as follows:
a-magic A 2-byte number that has a value of 0x0103.

a_flags A byte with various options that apply to the a.out file. Bits that are not
used are set to 0. Options supported are:

A_TOFF Text offset is specified by a—toffs
A_STRS String table is present
A_HDREXT Extended header is present
A_EXEC File is executable
A_SEP Instruction and data spaces are separate
A_PURE Pure text
A_SHLIB Shared library identifier is present
a_cpu A coded entry describing the system unit and the byte order it expects. The

coded entry for RT PC is 0x13.

a_hdrlen The length of the header. The size of the header is variable, but it must be at
least 32 bytes to include all of the fields in the structure through a-syms. If
the size of the header is such that a field is not included, the default value is
assumed.

a-misc The maximum size in bytes the user stack is allowed to grow.

4-6 AIX Operating System Technical Reference

a.out

Extended Header

The presence of an extended header is indicated by the A_HDREXT bit being set in
a_flags. The format of the extended header is:

struct exthdr {

unsigned short ax_size; /* total size of extension */
unsigned short ax-_type; /* type of extension */
unsigned short ax-flags; /* e.g., execution model */
unsigned short ax-_nsegs; /* number of segment entries */

s
The size of the extension (in bytes) is ax—size, which includes the length of exthdr plus
any auxiliary entries which comprise this extended header type, indicated by ax—type.
The value of ax—flags is also dependent on ax_type. In the event that the following
auxiliary entries contain per-segment information, ax_nsegs is the number of segments
(and thus the number of auxiliary entries) present.

Legal values for ax-type are:

AXT_INTEL 1
AXT-SHLIB 2

The legal values for ax_flags when ax_type is AX_INTEL are:

AXF_SSS Separate stack segment
AXF_MCS Multiple code segments
AXF_MDS Multiple data segments
AXF_HDS Huge data present

AXF_OVLY Code overlay

AXF_FPH Floating-point hardware required
AXF_ABS Absolute addresses present

When ax_type is AXT_INTEL, exthdr is followed by ax_néegs entries of the form:

struct segent {

unsigned short as-_type; /* segment type */

unsigned short as_flags; /* segment attributes */
unsigned short as_num; /* segment number */

unsigned short as_ninno; /* # lineno entries */

long as—filep; /* position (offset) in file */
long as-_psize; /* size of segment in file */
long as_vsize; /* virtual size */

long as—rsvdl; /* reserved */

long as-rsvd2; /* reserved */

long as-Tnptr; /* position of lineno entries */

File Formats 4-7

a.out

s
Each segent describes a segment of the a.out file. Legal values for the type of segment,
as-type, are:

AST_NULL
AST_TEXT Code segment
AST_DATA Data segment

Various characteristics of the segment are described by as_flags. Possible values are:

ASF_HUGE Segment contains huge model data
ASF_BSS Segment contains implicit bss
ASF_SHARE Segment is sharable
ASF_EXPDOWN Segment expands downward
ASF_SEG Always on for segments

When ax_type is AXT_SHLIB, exthdr is followed by a table describing the ax-nsegs
shared libraries required by this program. Each element of the table has the format:

struct slent {
long sl_off; /* offset from table start of 1ib key */
long as-addr; /* address where library to be mapped */
¥
The table is terminated by an element with an sl-off member of zero. Following the table
are the shared library keys associated with the libraries mentioned. Each shared library
key is preceded by a string recognizable to the what command, and is terminated with an

ASCII NUL character. (Each sl-off entry points past the what string to the real start of
the key.)

Text and Data Sections
The text and data sections are indicated in the fields as follows:

a-text The size of the text segment in bytes. This segment begins immediately after
the header or at the offset specified in the a_toffs field if the A_TOFF flag is
set. The A_TEXTPOS macro defined in the a.out.h header file gives the
offset of this segment in either case.

a-data The size of the data segment in bytes. This segment begins immediately
following the text segment. The A_DATAPOS macro gives the offset of this
segment.

a-bss The size of the bss segment in bytes. This segment represents data that is not

initialized. It does not appear in the file.

The text, data, and bss segments must each be a multiple of full words in size.

4-8 AIX Operating System Technical Reference

a.out

a—entry The text address where the program should start to run. The default is the
a—tbase value.

a-tbase The virtual address of the first byte of the text segment. The default value for
this field is 0.

a-dbase The virtual address of the first byte of the data segment. The default value for
this field is a_tbase + a_text, rounded to the next segment boundary.

Relocation
The fields in the relocation information are as follows:

a-drsize The size of the data relocation information in bytes. The A_DRELPOS macro
defines where the data relocation information entries begin.

a_trsize The size of the text relocation information in bytes. The A_TRELPOS macro
defines where the text relocation entries begin.

A word in the text or data segment of memory contains either an actual value or the value
of an offset. If a word in the text or data segment references an undefined external symbol,
its value is an offset from the associated external symbol. During processing, the link
editor defines the external symbol and adds the value of the symbol to the word in the file.

When relocation information is present, each item that can be relocated is 8 bytes long.
The format of the relocation information is:

struct reloc {

long r_vaddr; /* virtual address of reference */
unsigned short r_symndx; /* internal segnum or extern
symbol number */
unsigned short r_type; /* relocation type */
s
The r_vaddr field gives the location of the relocatable reference relative to the beginning
of the segment in which it is defined.

The r—_symndx field contains a symbol number in the case of an external. Otherwise, it
contains a segment number code:

S_ABS 0xFFFF /* absolute */
S_TEXT 0xFFFE [* text segment */
S_DATA O0xFFFD [* data segment */
S_BSS 0xFFFC /* bss segment */

File Formats 4-9

a.out

The r_type field indicates the type of relocation. The relocation types are:

R-ABS 0 /* absolute */
R-_RELBYTE 2 [* byte */
R-PCRBYTE 3 [* byte (pc relative) */
R-RELWORD 4 [* word */
R-PCRWORD 5 [* word (pc relative) */
R_RELLONG 6 /* long */
R_PCRLONG 7 [* long (pc relative) */
R-REL3BYTE 8 /* 3 bytes ¥/
R_KBRANCH 9 [* 20-bit 1-shifted */
R-SEG86 10 /* segmented PC-XT */
R_SEG286 11 /* segmented PC-AT */
R_KCALL 12 /* 20-bit 1-shifted or fix up */
Symbol Table

The a_syms field in the header indicates the size of the symbol table in bytes. The
A_SYMPOS macro defines the offset where the symbol table begins.

The symbol table consists of the following entries:

struct syment {
union {
char _n_name [8];
struct {
long —n_zeroes;
long _n_offset;
}-n_n;
char *_n_n_ptr[2];
}-n;

long n_value;

unsigned char n_sclass;
unsigned char n_numaux;
unsigned short n_type;

s

#define SYMENT struct syment

/*

/*
/*

/*

/*
/*
/*
/*

non-flex version */

flexname == 0 */
offset into string table */

allows for overlaying */

symbol value */

storage class */

number of auxiliary entries */
language base and derived type */

#define SYMESZ sizeof(struct syment)

4-10 AIX Operating System Technical Reference

a.out

#define n-name —n._-n_name

#define n_nptr _n._n_nptr[1]

#define n-zeroes _n._n_n._n-zeroes
#define n_offset _n_n._n_n._n_offset

The low-order 3 bits of n_seclass indicate the section information:

N_UNDF 00 /* undefined */
N_ABS 01 [* absolute */
N_TEXT 02 [* text */
N_DATA 03 /¥ data */

N_BSS 04 [* bss */
N_COMM 05 /¥ common */
N_SECT 07 [* section mask */

The high-order bits indicate the storage class. The following storage classes are
implemented:

C_NULL 0000 /* undefined symbol */
C-AUTO 0010 /* (0x08) automatic variable */
C_EXT 0020 /* (0x010) external symbol */
C_STAT 0030 /* (0x18) static */

C-REG 0040 [* (0x20) register variable */
C_EXTDEF 0050 [* (0x28) external definition */
C_LABEL 0060 /* (0x30) label */

C_ULABEL 0070 /* (0x38) undefined label */
C_MOS 0100 /* (0x40) member of structure */
C_ARG 0110 /* (0x48) function argument */
C_STRTAG 0120 [* (0x50) structure tag */
C_MOU 0130 /* (0x58) member of union */
C_UNTAG 0140 /* (0x60) union tag '*[
C_TPDEF 0150 [* (0x68) type definition */
C_USTATIC 0160 /* (0x70) undefined static */
C_ENTAG 0170 [* (0x78) enumeration tag */
C-MOE 0200 /* (0x80) member of enumeration */
C_REGPARM 0210 [* (0x88) register parameter */
C_FIELD 0220 [* (0x90) bit field */
C_BLOCK 0300 /* (0xc0) .bb or .eb */

C_FCN 0310 [* (0xc8) .bf or .ef */

C-EQOS 0320 /* (0xd0) end of structure */
C-FILE 0330 /[* (0xd8) file name */
N_CLASS 0370 [* (0xff) storage class mask */

If a symbol section and class is undefined external and the value field is a value other
than 0, the link editor interprets the symbol as the name of a common region in which the
size is indicated by the value of the symbol.

File Formats 4-11

a.out

The n-type field is primarily for use by a symbol debugger. The low-order 4 bits form the

base type with values defined as follows:

T_-NULL
T-ARG
T_-CHAR
T_-SHORT
T_INT
T_-LONG
T-FLOAT
T-DOUBLE
T_STRUCT
T_UNION
T-ENUM
T-MOE
T_-UCHAR
T_USHORT
T_UINT
T-ULONG

0

Lo ~JC ULk W=

/* undefined symbol */

/¥ used internally by compiler */
/* character */

/* short integer */

[* integer */

/* long integer */

[* floating point */

/* double */

[* structure */

/* union */

/* enumeration */

/* member of enumeration */
/* unsigned character */

/¥ unsigned short */

/* unsigned integer */

[* unsigned long */

The high-order bits form the derived type. The following values are repeated up to six
times to form the derived type:

DT-NON 0 /* no derived type */
DT-PTR 1 [* pointer */
DT_FCN 2 [* function */
DT-ARY 3 [* array */

The n—_numaux field contains the number of auxiliary entries associated with this symbol
table entry. Currently, a symbol table entry can have at most one auxiliary entry. The
auxiliary entry provides additional information, and has this form:

union auxent {

struct {
long x-tagndx; /* str, union, or enum tag index */
union {
struct {
ushort x-inno; /* declaration line number */
ushort x-size; /* str, union, array size */
Ix-1Insz;
long x_fsize; /* size of function */
} x-misc;

4-12 AIX Operating System Technical Reference

a.out

union {
struct { /* if ISFCN, tag, or .bb */
long x_Tnnoptr; /* ptr to fcn line # */
Tong x—endndx; /* entry index past block end */
} x—fcn;
struct { /* if ISARY, up to 4 dimen. */
ushort x-dimen[DIMNUM];
} x_ary;
}x_fcnary;
Fx—sym;
struct {
char x—fname[FILNMLEN];
Ix_file;
s
#define FILNMLEN 14
#define DIMNUM 4

The information in an auxiliary entry cannot be correctly interpreted without the symbol
table entry to which it belongs. The order of entries within the symbol table is significant.

Line

Number Section

The a_-Ilnums field contains the size in bytes of the line number section. The line number
section starts at the location in the file defined by the A_LINEPOS macro.

Line number entries are used by the symbolic debugger to debug code at the source level.
Entries within the line number section are grouped by function. The format of a line .
number entry is:

struct Tineno {

s

union {
Tong 1_symndx; /* symbol table index of function name
if and only if 1_Tnno == 0 */
long 1_paddr; /* physical address of line number */
} 1-addr;
unsigned short 1_Tnno; /* line number */

File Formats 4-13

a.out

String Table

The string table contains the names of symbols that are longer than 8 characters. It is
present only if the A_STRS flag is set. If present, the first 4 bytes contain the length, in
bytes, of the string table, including the count. The remainder of the table is a sequence of
null-terminated strings. If the n_zeroes field in a symbol entry is 0, the n—offset field
gives the offset into the string table of the name for the symbol.

Shared Library Identifier

The shared library identifier names the shared library image to which this object module is
related. It is present only if the A_SHLIB flag is set. If present, the first byte contains the
length of the identifier section including the count byte. The identifier itself is a string
terminated with an ASCII NUL.

Related Information

The as, cc, dump, ld, nm, sdb, size, and strip commands in AIX Operating System
Commands Reference.

The config program and the what command in AIX Operating System Commands
Reference.

4-14 AIX Operating System Technical Reference

acct

acct

Purpose

Provides the accounting file format for each process.

Synopsis

#include <sys/acct.h>

Description

The accounting files provide a means to monitor the use of the system. These files also
serve as a method for billing each process for processor usage, materials, and services. The
acct system call produces accounting files. The <sys/acct.h > file defines the records in
these files. The content of the records are:

/* Accounting structures */
typedef ushort comp-t; /* floating point */
/* 13-bit fraction, 3-bit exponent */

struct acct

{
char ac-flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac-uid; /* Accounting user-ID */
ushort ac-gid; /* Accounting group-ID */
dev_t ac-tty; /* control typewriter */
time—-t ac-btime; /* Beginning time */
comp-t ac_utime; /* accounting user time in clock ticks */
comp_t ac_stime; /* accounting system time in clock ticks */
comp-t ac_etime; /* accounting elapsed time in clock ticks */
comp-t ac-_mem; /* memory usage */
comp-t ac-io; /* chars transferred */
comp_t ac-rw; /* blocks read or written */
char ac-comm{8]; /* command name */
s

File Formats 4-15

acct

extern struct acct acctbuf;
extern struct 1inode *acctp; /* i-node of accounting file */

#define AFORK 01
#define ASU 02
#define ACCTF 0300

The fields are as follows:

/* has executed fork, but no exec */
/* used superuser authority */
/* record type: 00 = acct */

ac—comm This field contains the command name. A child process, created by a fork
system call, receives this information from the parent process. An exec system
call resets this field.

ac—flag This field indicates whether the process used superuser authority, or it was
created using a fork command but not yet followed by an exec system call. The
fork command turns the AFORK flag in this field on and the exec system call

turns the AFORK flag off.

ac_mem This field contains memory usage. For each clock tick, the system updates this
field with the current process size and charges usage time to the process. This
is computed as ((data size) + (text size)) — (number of in-memory processes
using text)

The following structure (not part of acct.h) represents the total accounting format used by

the various accounting commands:

/* Float arrays below contain prime time and non-prime time
components */

struct tacct {

uid-t
char

float
float
float
float
float
float
long

float
long

ta_uid;
ta_name[8];
ta_cpul2];
ta-kcore[2];
ta—io[2];
ta_rw[2];
ta_con[2];
ta_du;
ta_gsys;
ta_fee;
ta_pc;

unsigned short ta-sc;
unsigned short ta-dc;

s

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

user-ID */

login name */

cum. CPU time, p/np (mins) */
cum. kcore-mins, p/np */

cum. chars xferred (512s) */
cum. blocks read/written */

cum. connect time, p/np, mins */
cum. disk usage */

queuing sys charges (pgs) */

fee for special services */
count of processes */

count of login sessions */
count of disk samples */

4-16 AIX Operating System Technical Reference

acct

File
/usr/include/sys/acct.h

Related Information

In this book: “acct” on page 2-11 and “utmp, wtmp, .ilog” on page 4-170.
The acctcom command in AIX Operating System Commands Reference.

The acct, acctems, acctcon, acectmerg, acctpre, acctsh, diskusg, and runacct
procedures in AIX Operating System Commands Reference.

File Formats 4-17

ar

ar

Purpose

Describes common archive file format.

Synopsis

#include <ar.h>

Description

The ar (archive) command is used to combine several files into one. The ar command
creates an ar file. The 1d (link editor) searches archive files to resolve program linkage.

Each archive begins with the archive magic string:

#define ARMAG "!<arch>\n" /* magic string */

#define SARMAG 8 /* length of magic string */
Each archive that contains common object files includes an archive symbol table. See
“a.out” on page 4-5 for the format of an object file. ld uses this symbol table to determine
the archive members to load during the link edit process. The archive symbol table, if it

exists, is always the first file in the archive. It is never listed, but ar automatically creates
and updates it.

The archive file members follow the archive header and symbol table. A file member
follows each file member header. The format of a file member header is:

#define ARFMAG "\n" /* header trailer string */

struct ar—hdr { /* file member header */
char ar-name[16]; /* file member name - terminated by '/'*/
char ar-date[12]; /* file member date */
char ar-uid[6]; /* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar-mode[8]; /* file member mode */
char ar-size[10]; /* file member size */
char ar-fmag[2]; /* ARFMAG - string to end header */

35

4-18 AIX Operating System Technical Reference

ar

All information in the file member header is in printable ASCII. The numeric information
contained in the headers is stored as decimal numbers, except ar—_mode, which is stored in
octal. Thus, if the archive contains printable files, you can print the archive.

The ar_name field is blank-padded and terminated by a / (slash). The ar_date field
indicates the date the file was last modified prior to archive. The ar command allows
archives to move from system to system.

Each archive file member begins on an even-byte boundary. ar inserts null bytes for
padding and a new-line character between files, if necessary. The ar-_size field is the size
of the file without padding. An archive file contains no empty areas.

If the archive symbol table exists, the first file in the archive has a zero-length name, for
example, ar_namef[0] = = ’/". The contents of the symbol table are as follows:

The number of symbols. This is 4 bytes long.

The array of offsets into the archive file. The length is determined by 4 bytes times the
number of symbols.

The name string table. The size is determined by ar_size minus (4 bytes times (the
number of symbols plus 1)).

The sgetl and sputl functions manage the number of symbols and the array of offsets. The
string table contains an equal number of null-terminated strings and elements in the
offsets array. Each offset from the array associates with the corresponding name from the
string table, in order. The string table names all the defined global symbols found in the
object files contained in the archive. Each offset locates the archive header for the
associated symbol.

Related Information

In this book: “sgetl, sputl” on page 3-334 and “a.out” on page 4-5.

The ar, 1d, and strip commands in AIX Operating System Commands Reference.

File Formats 4-19

attributes

attributes

Purpose

Describes an attribute file format.

Description

ASCII files are used to control some RT PC utilities in order to simplify installing,
customizing, and maintaining RT PC. A text editor can be used to examine or change
these files. These files share an attribute-structured format.

An attribute-structured file consists of one or more named stanzas, separated by blank
lines. Each stanza begins with a name followed by a colon, and contains assignments to
keyword attributes. The values assigned can be alphanumeric strings or arbitrary
character strings enclosed in double quotes. The assignments can associate either a single
value or a succession of values with each attribute.

Typically, the stanza name is the name of a device or service. The attributes describe the
properties or handling of the named device or service. The meanings of the stanza names,
attribute names, and values are specific to an application. Examples of this file type
distributed with the system are /ete/filesystems, /etc/ports, and /etc/qconfig.

The stanza name default can be used to specify default values for any attributes. These
default assignments are implicitly included in every stanza that follows. A specified value
overrides the default value. A new default stanza automatically cancels all previously
specified default values. The syntax of a file of this type is:

<file> 1= <stanza>
::= <file> <blank line> <stanza>
{stanza> 1= <name>:
::= <name>:<assignments>
<name> ::= file name or information similar in syntax

<assignments> ::= <assignment>
::= <assignments> <assignment>
<assignment> ::= <attribute>=<values>

attribute> ::= string of alphanumeric characters
<values> 1:= <value>
1= <values>,<value>
<value> ::= string of alphanumeric characters
::= rarbitrary characters”

4-20 AIX Operating System Technical Reference

attributes

Lines beginning with an * (asterisk) are considered to be comments and are ignored.

Note: Make sure that the values assigned to attribute keywords do not contain blanks
unless they are enclosed in double quotes.

Related Information
In this book: “cc.cfg” on page 4-29, “connect.con” on page 4-33, “filesystems” on

page 4-64, “master” on page 4-98, “ports” on page 4-117, “qconfig” on page 4-129, “rasconf”
on page 4-133, and “system” on page 4-139.

File Formats 4-21

autolog

autolog

Purpose

Performs login function automatically.

Description
The optional autolog file causes the RT PC system to perform a login sequence
automatically when it contains a valid user name. When power is applied to the system
and the login port is the console, login searches for this file. If this file is found, login
creates a session for a specific user automatically. The autolog file is an ASCII file
containing a valid user name. A user can create this file while customizing the system.

After it is created, this file can be edited using any editor. If this file does not exist, login
causes the user to login as usual.

File
Jete/autolog

Related Information

The login command in AIX Operating System Commands Reference.

4-22 AIX Operating System Technical Reference

backup

backup

Purpose

Copies file system onto temporary storage media.

Synopsis

#include <backup.h>

Description

A backup of the file system provides protection against substantial data loss due to
accidents or error. The backup command writes file system backups and conversely, the
restore command reads file system backups. The following text describes the format of a
file system backup.

Header Types

The backup contains several different types of header records along with the data in each
file that is backed up. The type of header records are:

FS_VOLUME The volume label. This header exists on every volume.

FS_FINDEX An index of files on this volume. Multiple headers of this type can
appear on a volume if there are too many i-nodes for the initial index.
This header is followed by data.

FS_CLRI A bit map of i-nodes on the file system. A zero bit indicates the i-node is
not in use. This header exists only on the first volume. If the backup is
a level-zero backup, this header is omitted.

FS_BITS Another bit map of i-nodes. A one bit indicates the i-node is present on
this volume or a subsequent volume. This header may not appear on all
volumes.

FS_VOLEND Indicates the end of the current volume. This header may not appear on
all volumes. This header is used to indicate that all index entries on
this volume are used.

FS_END Indicates the end of the backup. This header appears on every volume.
FS_INODE Describes a single i-node. This header is followed by data that consists

of directories then followed by the other files within the directories.
FS_NAME A description of a file that is backed up by name.

File Formats 4-23

backup

4-24

Header Sequence

The header sequence varies depending on whether the files are backed up by i-node or by
name and on the type of backup device used.

Volume 1 of i-node backups to direct access volumes have the following sequence,
assuming that more than one volume is required for backup:

FS_VOLUME

FS_CLRI

FS_BITS

FS_FINDEX, followed by data
FS_FINDEX (if applicable), followed by data
FS_END

Subsequent volumes have the following sequence:

FS_VOLUME, followed by data
FS_FINDEX, followed by data
FS_FINDEX (if applicable), followed by data
FS_END

I-node backups to tapes have the same format as previously described, except there are no
FS_FINDEX headers and the FS_BITS header appears on every volume.

The format of backups by name does not depend on the output device. These backups have
a simple format:

FS_VOLUME Appears on each volume.

FS_NAME Precedes the data for each file. The files are copied in the order they were
named.

FS_END Concludes the backup.

Header Format

The location and size of the headers are independent of any blocking for either the file
system or the backup device. Each header begins on an 8-byte boundary. The length of a
header depends on its type, but is always padded to a multiple of 8 bytes. Data from a file
is similarly padded. Some headers contain addresses of other headers that are the offset in
8-byte units from the beginning of the backup volume.

Each field in a header is written in low-order bytes first for portability. I-node numbers
within directories also follow this order. The header begins with the following structure:

AIX Operating System Technical Reference

backup

struct hdr {
unsigned char len;
unsigned char type;

ushort magic;
ushort checksum;
s
The fields in this header indicate the following information:
len The length of the header in 8-byte units.
type The type of the header.
magic The magic number, which identifies this file as a file system backup. The

magic number is one of the following values:
MAGIC Identifies this as a regular file system backup.

PACKED_MAGIC Identifies this as a packed, or compressed, file system
backup. Each data file within it is compressed using
the same algorithm that 1s used by the pack
command. Header information is not compressed.

checksum A checksum.

Volume Headers
FS_VOLUME headers have the following structure:

struct {
struct hdr h;
ushort volnum;
time-t date;
time_t budate;
daddr_t numwds ;
char disk[16];
char fsname[16];
char user[16];
short incno;

s

File Formats 4-25

backup

The fields contain the following information:

volnum Contains the volume number.

date Indicates the date the backup was made.

budate Indicates that all files changed since this date are backed up.

numwds Indicates the number of 8-byte words in this backup.

disk Identifies the device that was backed up.

fsname Identifies the logical name of the backed-up device, for example, /a.
user Identifies the user that made the backup.

incno Shows the level number of the backup.

For backups by name, budate, disk, and fsname have no meaning, and incno is 100.

Index Headers
FS_FINDEX records are as follows:

struct {
struct hdr h;
ushort dummy ;
ino-t ino[80];

daddr_t addr[80];
daddr_t link;

s
The fields are:
ino I-numbers of files indexed
addr Addresses of file indexed

link Address of next index on this volume, or 0 if this is the last.

Bit Maps
FS_CLRI and FS_-BITS headers have the same structure:
struct {

struct hdr h;
ushort nwds;

¥

In both cases, the bit map follows the header, and nwds gives the length of the map in
8-byte units. To save space, some zero bits at the end of the map are not backed up.

4-26 AIX Operating System Technical Reference

backup

File Heade

rs

FS_INODE and FS_NAME headers have similar formats:

struct {
struct hdr h;
ushort ino;
ushort mode;
ushort nlink;
ushort uid;
ushort gid;
off_t size;
time-t atime;
time-t mtime;
time_t ctime;
ushort devmaj;
ushort devmin;
ushort rdevmaj;
ushort rdevmin;
off_t dsize;
char name[4];

33

The fields mo

de through ctime are copied from the i-node on disk.

Other fields are:

ino
devmayj
devmin
rdevmaj
rdevmin

dsize

name

I-number of file.

Major device number of file system containing this file.

Minor device number of file system containing this file.

Major device number of this file (character- and block-special files only).
Minor device number of this file (character- and block-special files only).

Size of the file after backup. This differs from size if the file was compressed
during backup.

The null-terminated name of the file that is supplied by the user. This field
is absent from FS_INODE headers.

File Formats 4-27

backup

End of Volume or Backup
FS_VOLEND and FS_END headers contain only the hdr structure.

Backup History

A backup history is kept in the /ete/budate file. The entries are in no particular order.
Each entry has the following format:

struct {
char id-name[16];
char id-incno;
time_-t id-budate;

¥
The fields of each entry are:
id_—name Name of the file system
id_incno Incremental level number (0-9)

id-budate Date of most recent backup of the file system at that level.

Related Information

In this book: “filesystems” on page 4-64.

The backup, pack, and restore commands in AIX Operating System Commands Reference.

4-28 AIX Operating System Technical Reference

cc.cfg

cc.cfg

Purpose

Defines values used by the C compiler.

Description

The cc.cfg file defines values used by the cc program to run compilers. Normally, the
cc.cfg file contains entries only for the C compiler provided with the system. Entries are
made to this file to support C compilers for other systems as they are added.

This file is an attribute file. The name you specify when you run the ce program (it can be
linked to several difference names) determines which stanza of the cc.cfg file is used.
Normally, the e¢c program runs as ce; therefore, the first stanza is almost always selected.
If the sece program (standalone C compiler) is run, then the sce stanza is selected. If the
fce program (floating point) is selected, then the fee stanza is selected. If the vee program
(a.out-to-toc conversion) is selected, then the vee stanza is selected.

You can specify the following attributes:

as
asflags

asopt
ccom
ccomflags
ccomopt
cgen
cgenflags

cgenopt

The path name to be used for the assembler.
A string of values, separated by commas, to be passed to the assembler.

A string naming optional flags that, if encountered on the ¢e¢ command line,
should be passed to the assembler. See description of the eppopt field.

The path name to be used for the compiler. For a one-program compiler,
this is the only compiler program provided. For a two-program compiler,
this is the parser for the front end (also known as ¢0).

A string of values, separated by commas, to be passed to the compiler.

A string naming optional flags that, if encountered on the cc command line,
should be passed to the compiler. See oppopt.

The path name to be used for the code generator of a two-program compiler
(also known as cl).

A string of values, separated by commas, to be passed to the code generator.
If a one-program compiler is used, these are appended to ccomflags.

A string naming optional flags that, if encountered on the ¢c commands
line, should be passed to the code generator. See cppopt.

File Formats 4-29

cc.cfg

copt
coptflags
coptopt

cpp
cppflags
cppopt

crt, mert

csuffix
hsuffix

id
ldflags
ldopt
libraries

osuffix
ssuffix

use

The path name to be used for the peephole optimizer of a compiler with an
explicit peephole program (also known as ¢2).

A string of values, separated by commas, to be passed to the peephole
optimizer.

A string naming optional flags that, if encountered on the cec command line,
should be passed to the peephole optimizer. See cppopt.

The path name to be used for the preprocessor.
A string of flags, separated by commas, to be passed to the preprocessor.

A string naming optional flags that, if encountered on the ¢c command line,
should be passed to the preprocessor. The string is formatted for getopt()
subroutine, as a concatenation of flag letters, with a letter followed by a :
(colon) if the corresponding flag takes a parameter.

The path name of the object file passed as the first parameter to the link
editor. In the presence of the —p flag to cc, the mert value is used;
otherwise the crt value 1s used. The defaults are /lib/crt0.0 and
/lib/mert0.0.

The suffix for C source programs, default c.

A second suffix for C source (enabled by using the —h flag to the cc
command), default h.

The path name to be used for the link editor.

A string of values, separated by commas, to be passed to the link editor.
These are in addition to those implicitly provided as described in the cc
command.

A string naming optional flags that, when encountered on the cc command
line, to be passed to the link editor. See cppopt.

Flags, separated by commas, to be passed as the last parameters to the link
editor as the the default is libraries, the default is —Irts, —lec.

The suffix for object files, the default is o.
The suffix for assembler programs, the default is s.

Values for attributes are taken from the named stanza in addition to the
local stanza. For single-valued attributes, values in the use stanza apply if
no value is provided in the local stanza (or default stanza). For
comma-separated lists, the values from the use stanza are added to the
values from the local stanza.

4-30 AIX Operating System Technical Reference

cc.cfg

Example

* CC configuration file:

default:
cpp = /1ib/cpp
* standard cc
cc:
use = DEFLT
crt = /1ib/crt0.0
mcrt = /Tib/mcrt0.o
libraries = -1rts,-1c
1dflags = -n,-T0x10000000,-K
* direct floating point accelerator cc
fcc:
use = DEFLT
crt = /1ib/crt0.0
mcrt = /1ib/mert0.0
libraries = -1Irts,-1fm,-1fc
ccomflags = -f
1dflags = -n,-T0x10000000,-K
* standard standalone cc
scc:
use = DEFLT
crt = /1ib/crt2.o0
cppflags = -DSTANDALONE
libraries = -12
1dflags = -H4,-Y4
* atoc
vece:
ccom = /1ib/ccom
ccomopt = -0
copt = /1ib/copt
as = /bin/as

File Formats 4-31

cc.cfg

1d = /bin/1d

cppflags = -Daiws,-DAIX

ldflags = -r,-X,-R4,-H4,-Y4,-TOx60
crt = Jusr/lib/vrmcrt.o

* common definitions

DEFLT:
ccom = /1ib/ccom
ccomopt = Of
copt = /1ib/copt
as = /bin/as
1d = /bin/1d
cppflags = -Daiws,-DAIX
ldflags = -e,start,-X
File
Jete/ce.cfg

Related Information

In this book: “getopt” on page 3-214 and “attributes” on page 4-20.

The as, ce, ccp, and 1d commands in AIX Operating System Commands Reference.

4-32 AIX Operating System Technical Reference

connect.con

connect.con

Purpose

Controls communication connections and data transfer.

Description

The connection configuration file, /usr/lib/INnet/connect.con or
$HOME/bin/connect.con, controls the setup of connections for the connect program and
for certain optional communications programs. It provides a very general, flexible
mechanism to specify how connections are made and how data is transferred after making
a connection.

The connect.con files are attribute files. The following attributes may appear in the
connection control file.

Connection Options

The connection options and their descriptions are:

prefix, address, suffix

connect

The telephone number to dial or the network address to contact. The actual
number is constructed by concatenating the prefix (if any), the address, and
the suffix (if any). Usually the prefix and suffix are defined in /etc/ports
because they depend on the peculiarities of the dialer, and the address is
defined in connect.con.

Multiple addresses can be specified by consecutive address assignment lines
or by multiple address values separated by commas. The addresses are tried
in the order given. To specify a comma as part of the command that is sent to
the modem, enclose the entire address value in quotation marks.

Type of connection to make. This option is specified in /etc/ports since it is
usually associated with the hardware configuration of the outgoing line.
Permissible values are:

permanent The connection is hard-wired. No dialing or other special
attention is needed.

manual The connection must be completed manually. This generally
implies a modem that does not dial, for example, an acoustic
coupler,

hayes_1200 The line has a Hayes Stack Smartmodem 1200.

File Formats 4-33

connect.con

hayes_2400 The line has a Hayes Stack Smartmodem 2400.
vadic The line has a Racal-Vadic 3451P autodialer.
ventel The line has a Ventel MD212+ autodialer.

other_name The line is associated with a dialer program, which is not built
into the connect program. This option allows you to augment
the capabilities of the connect program and other
communications programs when dealing with new types of
communications lines and dialers. The program searches for
the named dialer program in /usr/lib/INnet/dialers or
$HOME/bin.

The assumptions made for dialer programs you supply are: the
port to be used can be opened prior to dialing and the file will
be opened as descriptor 3. Two parameters are passed: number
to dial as parameter 1, and dialer hardware to use or value of
the dialer option, if any as parameter 2. Any code exit from
the dialer except O indicates the dialer failed. The failure code
returned by the dialer determines the message printed by the
programs.

linetype Type of communication line protocols, either synchronous or asynchronous.
Different protocols are used on different line types, so the talker programs may
differ. The default linetype is asynchronous.

type The name invoked with the connect program that determines the kind of
connection attempted. Only those stanzas with the proper type are processed.
Currently, the connect program itself uses only terminal type stanzas. The
default type is terminal.

use This option directs the connect program to read the named stanza and follow
the instructions there.

Line Options and Parameters
Line options and parameters used are:

min The minimum value to use in kernel buffering. Min value characters must be
received before a call to the read system call returns, unless value specified in
time elapses.

parity The line is checked for the indicated parity: even, odd, any, or none.
speed The transmission speed, generally 110, 300, 1200, 2400, 9600, and so on.
time The value to use in kernel buffering. Time in tenths of a second to receive a

character before a call to the read system call returns unless min characters
are received. See the discussion of ICANON in “termio” on page 6-114.
Setting these parameters can result in improved performance.

4-34 AIX Operating System Technical Reference

connect.con

timeout

The time limit to complete the connection in seconds. When the time limit
expires, the connection is aborted. This attribute is not needed for devices

with a built-in timeout.

System Options

The system options are:

The name of the special file to use to make the connection. The device must
appear in [etc/ports (see “ports” on page 4-117) and the information in the ports
file entry that is made available to the connect program. Note that this
attribute can appear only in the last of the list of stanzas associated with
making the connection on this device, and that the use option must not appear.

This option specifies the dialer hardware to be used in dialing the number. It is
normally in /etc/ports file, associated with the device to be used. It may also be
specified in a connection file, so that its value can be passed to a user-specified

device
dialer

dialer program.
Diagnostics

The following diagnostics are displayed, based on the return value from system- or
user-supplied dialer programs. The values 8 through 14 are treated as fatal errors.

Code

L WIANTR WD

Message

Connected

Cannot open dialer

Busy or no answer

Not able to fork
Terminated attempts
Communication failure
Busy

No answer

Dead phone

Bad phone number
Cannot open device specified
Address not specified
Bad connect.con format
Cannot run dialer

No autodialer specified.

File Formats 4-35

connect.con

Login Script

A login script is file with the given name that is interpreted prior to notifying you that the
connection is complete. Script files are located either in the $HOME/bin file or in the
jusr/lib/INnet/scripts file.

script

A script file is organized into a group of states. In each state, the script file
optionally sends a string to the remote system, then waits for a response. Several
possible responses can be listed for each state along with an action to be
performed if the response is received. A time limit can also be set in each state,
along with an action to be performed if the time expires without an expected
string arriving. The actions are to terminate script interpretations, with either a
success or failure indication, or to move to another state. A sample script is
shown under “Example” on page 4-37.

DONE
A successful termination of script interpretation.

ERROR string
An unsuccessful termination of script interpretation. The last message
received from the remote site is reported to you.

GOTO n
Continues processing in state n.

RECV string action
This action is performed if the given string is received.

SEND siring
Sends the given string to the remote system. Any name enclosed in braces in
the string is taken to be an option reference and is replaced by the value of
that option. If that option is not present in the list of stanzas, you are
prompted for its value using the option name as the prompt. If a — (dash)
precedes the name within the braces, the typed characters are not echoed.
This is handy for including passwords as parameters in the script file without
having them stored on the system. Thus, script files can be given parameters
so that they can be used in different connection stanzas and by different
users.

STATE n
Declares the beginning of state n.

TIMER n action
This action is performed if no expected string is received in n seconds.

4-36 AIX Operating System Technical Reference

connect.con

Talker Program

A talker program handles the work of moving data across a connection. This program
runs after a connection is established. The default talker for the connect program is
atalk. You can override this and specify your own talker program.

talker This is name of the program to run when the connection is made. The
conventions observed between the connect program and the talker are not
complex: the connection is opened by the program as file descriptor 3. The only
flag passed by connect to the talker program is:

-llockfile

Note: If the -1 flag is present, the talker must remove the named lockfile to
make the port available to other users.

flags This option passes flags (other than the above) to the talker program. This
option is valid with both default or user-specified talkers.

Example

A typical script might be:

STATE 0 RECV User: GOTO 1
TIMER 10 ERROR "No Togin"
STATE 1 SEND "{myname}\n"
RECV Password: GOTO 2
RECV "Unknown:" ERROR "Name unknown"
TIMER 10 ERROR "No password msg"
STATE 2 SEND "{-mypass}\n"
RECV "§" DONE
RECV Invalid ERROR "Wrong password"
TIMER 20 ERROR "No prompt"

This script could be used for login to a remote RT PC system. In this file, connect waits
up to 10 seconds for a User: prompt. When received, it sends the value of the myname
option from the control file or by prompt, as the user name. It then waits for 10 seconds
for the Password: prompt, then it sends the value of mypass as the password. The
password is not echoed. It then waits another 20 seconds for another prompt. At each
stage, it looks for messages that could occur if the given user name or password is invalid.
With more states, you can write a script that tries several different user names and types
the necessary information to dial through a port selector.

File Formats 4-37

connect.con

Files

fusr/lib/INnet/connect.con
$HOME/bin/connect.con

Related Information

In this book: “attributes” on page 4-20, “ports” on page 4-117, and “termio” on page 6-114.
The connect and uucp commands in AIX Operating System Commands Reference.
INmail/{INnet/ FTP.

4-38 AIX Operating System Technical Reference

core

core
Purpose
Contains an image of memory at the time of an error.
Synopsis
#include <core.h>
#include <sys/param.h>
#include <sys/reg.h>
#include <sys/user.h>
Description

The system writes a memory image of a terminated process when various errors occur in a
core file in the current directory. See the signal system call for the list of errors. The
most common are memory address violations, illegal instructions, bus errors, and
user-generated quit signals. The memory image, called core, is written in the process
working directory. A process with an effective user ID that is different from the real user
ID does not produce a memory image.

The first section of the memory image is a copy of the system data per user process,
including the contents of the registers as they exist at the time of the fault. The size of
this section depends on the usize parameter defined in fusr/include/sys/param.h. The
first section contains two parts. The first part is the user structure defined in
Jusr/include/sys/user.h. The second part is the process kernel stack. Note that RT PC
stores the user process registers at the beginning of the user stack, instead of the end of
the process kernel stack where they are normally stored on machines with stack push and
pop instructions. The fusr/include/sys/reg.h structure outlines the long word offsets of
the registers from the beginning of the user structure. The second section represents the
actual contents of the user area when the image was written. If the text segment is
separated from data space, it is not dumped.

File Formats 4-39

core

File
core

Related Information

In this book: “setuid, setgid” on page 2-129 and “signal” on page 2-145.

The erash and sdb commands in AIX Operating System Commands Reference.

4-40 AIX Operating System Technical Reference

cpio

cpio

Purpose

Describes copy in and out (cpio) archive file.

Description

When the -c flag of the epio command is not used, the header structure is:

struct {

short
h_magic,
h_dev;

unsigned short
h_ino,
h_mode,
h_uid,
h_gid;

short
h-nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char
h_name[n]; /* described below */
} Hdr;
When the cpio command is used with the -c flag, the header for the cpio structure may be
read as:

sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%1110%6ho%1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h-ino, &Hdr.h_mode,

&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,

&Longtime, &Hdr.h_namesize, &Longfile, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively.
The contents of each file together with other items describing the file are recorded in an

File Formats 4-41

cpio

element of the array of varying length structures. The member h-magic contains the
constant octal 070707 (or 0x71c7). The stat system call explains the meaning of structure
members h_dev through h-mtime. The length of the null-terminated path name, h_name,
including the null byte is indicated by n, where n = (h_namesize % 2) + h_namesize. In
other words, n is equal to h—_namesize if h_namesize is even. If h_namesize is odd, n is
equal to A_namesize + 1.

The last record of the archive always contains the name TRAILER!!! Special files,
directories, and the trailer are recorded with h_filesize equal to 0.

Related Information

In this book: “stat, fstat” on page 2-159 and “scanf, fscanf, sscanf, NLscanf, NLfscanf,
NLsscanf” on page 3-325.

The cpio and find commands in AIX Operating System Commands Reference.

4-42 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

ddi

Purpose

Contains device-dependent information (ddi).

Description

A ddi file contains information for customizing classes (or types) of hardware adapters or
devices supported by the system. The information in this file may be modified using the
devices command or an editor program. The ddi files are attribute files that are located in
the /ete/ddi directory. See “attributes” on page 4-20 for the format of attribute files.

The equivalent of a ddi file can be created and added to the system. Customize helper
programs convert the parameters in the files into a corresponding Define_Device
structure, which is used by the VRM device driver. A ddi file contains the following
information:

o Device-dependent information. This is a series of keywords whose values the user
supplies when the device is defined.

e Instructions to the customize helper program for processing input parameters
e Mapping information for the ddi structure.
e Bit field mapping information.

The use of extended characters in ddi files is not supported.

Keywords

The following keywords are used in the stanzas of device-dependent information files.
These keywords describe attributes and settings for a particular device that may be
changed to suit your device.

Key Possible
Word Description Choices
aa Automatic Answering: Does the printer support true, false

communication auto answering?

ae Automatic Enable: Do you want the port to be enabled true, false
automatically?

File Formats 4-43

TNL SN20-9869 (26 June 1987) to SC23-0809-0

ddi

Key

Word

alf

ami

appt

ars

at

backs

bigs

biopa

bm

bpc

brea

brsa

bs

Description

Automatic Line Feed: Does the printer have automatic line
feed with carriage return.

Adapter Microcode IOCN: The IOCN of the microcode
module for an adapter that requires an IPL.

Application Type: The type of application that runs on the
link.

Aspect Ratio Support: Does the printer have a set aspect
ratio control?

Adapter Type: Refers to the last two digits of the service
request humber.

Backspace Support: Does the printer have the ability to
backspace (move print head backward while printing a line)?

Bit-Image Graphics Support: Does the printer have bit
image graphics controls?

First I/O Port Address: Refers to the hardware adapter
address.

Bottom Margin (last line): Refers to the number of the last
writing line.
Bits Per Character: Refers to the character length in bits.

Bus RAM End Address: If not zero, refers to the adapter’s
end RAM address on the I/O bus.

Bus RAM Start Address: If not zero, refers to the adapter’s
start RAM address on the I/O bus.

Block Size: Refers to the size of sectors of storage on the
fixed disk; changes in number of blocks on minidisks may
affect system performance.

4-44 AIX Operating System Technical Reference

Possible
Choices

true, false

3280, rje

yes, no

yes, no

yes, no

1-
[length(@in.) x
lines/in.]

5,6,7,8

512, 1024,
2048

ddi

Key
Word

bsess

cdp

cdpg

cn

colp

cps

cpl - cp8

cr

Cs

cus

ddbw

dmao

dmas

dnec

Possible
Description Choices
Base Session: Indicates the base session number for the link.
Condensed Print: Does the printer support printing in yes, no
condensed characters?
Code Page: Specifies the code page loaded into the printer. 437 (PC), 850
(MLP)
DMA Channel Number: Refers to DMA channel number. 0-9
Color Printer: Refers to whether the printer is capable of yes, no

printing in color.

Condensed Print Support: Can the printer print in condensed yes, no
characters?

Code Page 1 through Code Page 8: Specifies the code pages PC, A, B, C,

loaded into the printer. The IBM 5201 Printer and 4201 D, PO, P1, P2,
Proprinter use only epl and ep2. MLP
Color Ribbon: Does the printer have color ribbon? yes, no

Character Set: Refers to complete groups of characters thata 1,2
printer can support.

Continuous Underscore Support: Supports the escape - yes, no
(minus) control.

Device Data Bus Width: Is the I/O adapter an 8-bit or 16-bit 8, 16
device.

Uses DMA Support Only: Use only DMA transfers. true, false

DMA Support: Refers to whether hardware adapter supports true, false
DMA.

Do Not Enable DMA Channel: The channel is not enabled if true, false
the value is true.

File Formats 4-45

ddi

Key
Word

dpc

dsp

dsps

dvam

dwp

dwps

ei

eil - eid

ep

eps

fd

fi
fid

Description

Default Print Color: Refers to the color to use for printing
when a file does not contain codes that specify a color: usually
black, blue, red, or yellow.

Double Strike Print: Should double-strike be turned on?

Double Strike Print Support: Does the printer have a
control double-strike characters and provide boldface?

Device Attachment Method: Is your device attached locally
with a cable or is it attached through a modem?

Double Width Print: Should a file be printed with a
double-width character set?

Double Width Print Support: Does the printer have the
ability to print with a double-width character set?

Enable Adapter Interrupts.

Enable First through Fourth Interrupt Level: Refers to
conditions allowing the printer to stop when an error occurs or
when assistance is needed to complete I/O on interrupts levels
1, 2, 3, or 4.

Emphasized Print: Should emphasized print be turned on?
Every character is overstruck with a second pass of the print
head.

Emphasized Print Support: Does the printer have a control
to do emphasized print?

Fixed Disk: Refers to one of up to three circular plates used
for storing data.
Frequency Input: Refers to clock frequency to USART chips.

Font ID: ID of the font used by the printer.

4-46 AIX Operating System Technical Reference

Possible
Choices

black, blue,
red, yellow

yes, no

yes, no

0=local,
1=remote
{(modem)
yes, no

yes, no

true, false

yes, no

yes, no

hdisk0,
hdisk1,
hdisk2

11

ddi

Key
Word

fntl -
fnt8

fp

fw

hsi

hts

htvi

icl - ic4

in - il4

iobd

ioech

iofl - iof8

Description

Form (page) Length: Refers to the length of the paper in
terms of the number of lines per page. The value is determined
by multiplying the length of paper (in inches) by the number of
lines printed per inch.

Font 1 through Font 8: Specifies the printer fonts, such as
letter gothic or prestige elite. This keyword is used for the
IBM 3812 Pageprinter.

First Party DMA: Refers to whether hardware adapter has
own DMA controller.

Form Width (right margin): Refers to the width of paper in
terms of the number of characters per line. The value is
determined by multiplying the width of the paper (in inches) by
the number of characters printed per inch.

Horizontal Spacing Increment: What horizontal increment
is used in the ESC K control?

Horizontal Tab Support: Does the printer have horizontal
tab controls?

Text Vertical Increment: The vertical index increment used
by subsequent CUU (ESC A) multi-byte controls. (See
“Multi-Byte Controls” on page 5-13.)

Service class of First through Fourth Interrupt: Refers to
interrupt priority, where 0 is the highest.

Interrupt Level Number of First through Fourth
Interrupt: Refers to hardware adapter interrupt levels 1
through 4.

Input/Output Bus Device.

Using DMA Four-Byte Buffering.

Read/Write Flag for I/O Operation 1 through 8 : Is a read

or write required to the corresponding I/O port address (pal -
pa8)?

Possible
Choices

1 - [(in.) x
lines/in.]

true, false

1 [{width(in.)
x pitch]

60, 70, 120

yes, no

72

0,1,2,0r3

true, false
true, false

0 = Input, 1
= QOutput

File Formats 4-47

ddi

Key
Word

iopar

iowl -
iow8

ip

ixp

js

kpoe

llo

Im

lobibp

logger

Ipi

Irme

lun

4-48 AIX Operating System Technical Reference

Description

Number of I/O Port Addresses: Refers to hardware adapter

address range.

I/O Width for I/O Operation 1 through 8: Refers to the
number of bits to be written to or read from the port address

(pal-pa8).

Initialize Printer: Refers to the initial state of the printer
after power is applied.

Include Xon/Xoff Protocol: Refers to whether
communication protocol is included.

Justification Support: Refers to printing with the right

margin even.

Keep Printing on Error: Should the printer complete the
print job despite errors (without sending an error message to

the user)?

Leave DTR and RTS Lines On.

Left Margin: Refers to the area on a page between the left
edge and the leftmost character position on the page.

Length of Buffers in Buffer Pool: The length in bytes of
each buffer in the buffer pool of the Block I/O Communication
Area (BIOCA).

PTY supports a login shell.

Lines Per Inch: Refers to the number of print lines per inch,
to line spacing density, and to the distance paper moves during

a line feed.

Left/Right Margin Controls: Does the printer have the
ability to change left and right margins (does it have left and
right margin control codes)?

Logical Unit Number: Number associated with an
addressable physical or logical device.

Possible
Choices

= 8 bit, 1

= 16 bit

true, false

true, false

yes, no

yes, no

true, false

0 - [width(in.)
x pitch]

true, false

6,8

yes, no

—

ddi

Key
Word

mask

mcces

mnoal

mnonid

nidd

nidl
noabb

nob

nobibp

nobod

nobodr

nobub

Possible
Description Choices

Mask: Refers to the mask that indicates defaults overridden F1FC
by corresponding field in the Define_Device structure.

Modem Controls: Refers to whether or not to enable modem true, false
controls.

Multibyte Control Code Support: If yes, then the printer yes, no
supports IBMOEM multi-byte controls. If no, then the printer

is assumed to function like an IBM 5152 printer.

Maximum Number of Attached LCCs: The maximum

number of LCCs that can be attached to the device driver

using the Block I/O Communication Area (BIOCA).

Maximum Number of Net IDs: The maximum number of
network IDs that the device driver can support.

Net ID Displacement: The offset (in bytes) into the receive
data of the network ID.

Net ID Length: The length in bytes of a network ID.
Number of Allowed Bad Blocks.

Number of Blocks: Refers to the number of blocks in a
minidisk.

Number of Buffers in Buffer Pool: The number of buffers to
be allocated in the buffer pool of the Block I/O Communication
Area (BIOCA).

Number of Blocks on Device.

Number of Buffers on a Device Ring: The number of buffers
to be allocated for each device ring queue in the Block I/O
Communication Area (BIOCA).

Number of 256-Byte Units/Block: Number of 256-byte units
on each block.

File Formats 4-49

ddi

Key
Word

noi
nops
norl -

nor$

norbosr

nosb

nospt
now
nr

nsess

odl - od8

pal - pa8

pacs

pdt

Description

Number of Interrupt Levels Used: Refers to the number of
hardware interrupt levels.

Number of I/O Operations.

Number of Repetitions for I/O Operation 1 through 8:
Refers to the number of times the same I/O operation is
performed to the corresponding port address (pal - pa8).

Number of Receive Buffers on SLIH Ring queue.

Number of Stop Bits: Refers to the number of stop bits in a
communication character.

Number of Sectors per Track.
Number of DMA Sub-Channels.
No Read-Only Memory.

Maximum Number of Sessions: The maximum number of
sessions that can be run on the link.

Output Data for I/O Operation 1 through 8: Refers to the
data to be written to the corresponding port address (pal - pa8)
if the corresponding flag (iofl - i0f8) is set for output.

Operation Mode: Refers to whether communications
operation mode is set.

Port Address for I/O Operation 1 through 8: Refers to the

adapter port address being written to or read from to disable
the adapter.

Print All Characters Support: Does the printer support
ESC * and ESC \ controls?

Periphéral Device Type.

4-50 AIX Operating System Technical Reference

Possible
Choices

1,15,2

0
true, false

]" 27 37 4’ 57 67
7,8

0000 - FFFF

tx, rx, full,
half

0000 - FFFF

yes, no

ddi

Key
Word

rh

pinit

pitchil -
pitch8

plot

pn

pa

prin

pro
psd

pss

pt

rdto

Description

Paper Handling: Refers to the way the printer handles
different types of paper. The manual-feed printer stops at the
end of each page and waits for the user to insert another sheet
and press the start button. A printer with an automatic
sheet-feed mechanism feeds paper to the printer.

User-Supplied Sequence: Refers to the control sequence the
co-processor to reset the printers whose fonts can be changed.

Character Pitch 1 through Character Pitch 8: Refers to the
number of characters per linear inch, for instance, 10-pitch
type has 10 characters per inch.

Pass Data Directly to Device Without Modification.

Port Number on Adapter: Refers to the hardware adapter
port.

Print Quality: May select (on some printers) degrees of print
quality: dp (for fast, low quality), text (for better draft
quality), letter (for high-quality final text).

Printer Type: 0 = unspecified (functionally 5152); 1 = IBM
5152; 2 = IBM 5182; 3 = reserved; 4 = IBM 5201 Printer; 5 =
IBM 4201 Proprinter; 6 = IBM 4202; 7 = IBM 3852.

Protocol: Refers to communication protocol.

Paper Source Drawer: Refers to the location of the paper
drawer from which paper is drawn for printing.

Proportional Spacing Support: Does the printer support
proportionally spaced printing?

Parity Type: Refers to communication character parity.

Receive Data Transfer Offset: The device driver using block
I/O transfers the receive packet beginning at this offset into
the buffer.

File Formats

Possible
Choices

0 = manual;
1=
automatic; 2

= continous
form paper.

10, 12, 15

yes, no
0-4

dp, text,
letter

dtr, cdstl, dc

1 =top;2 =
bottom

yes, no

even, odd,
mark, space,
none

4-51

ddi

4-52

Key
Word
rea

rl

rifs
roffv
ronv

rsa

rtrig

rts

rxt

sa

sdmac

Description

Bus ROM End Address: If not zero, refers to the adapter’s
start ROM address on the I/O bus.

RAS Length: The length in words of the RAS section of the
Define Device structure.

Reverse Line Feed Support: Does the printer support the
ESC] control?

Receive Xoff Value: Refers to character to transmit in order
to inform a remote device to stop sending data.

Receive Xon Value: Refers to character to transmit in order
to inform a remote device to resume sending data.

Bus ROM Start Address: If not zero, refers to the adapter’s
end ROM address on the I/O bus.

Receive Buffer Trigger: If the adapter has receive data
buffering capability, then this value selects the number of
bytes that trigger a received data interrupt.

Receive/Transmit Speed: Refers to communication baud
rate.

Receive Xoff Threshold: Refers to threshold for full
communication buffer detection.

Strobe Active.

Shared DMA Channel: Refers to whether a hardware adapter
can share DMA channel.

AIX Operating System Technical Reference

Possible
Choices

yes, no

00 - FF

00 - FF

1, 4,8, 14

50, 75, 110,
134.5, 150,
300, 600,
1200, 1800,
2000, 2400,
3600, 4800,
7200, 9600,
19200

20

true, false

true, false

S~

TNL SN20-9869 (26 June 1987) to SC23-0809-0

ddi

Key
Word
sg

sil - si4

sid

slap

slow

sn

sns

sp

sppt

srbt

SSS

sysadd

Description

DMA Scatter/Gather Support: Refers to DMA support the
ability of hardware to scatter and gather I/O data.

Share First through Fourth Interrupt Levels: Refers to
whether interrupt levels 1, 2, 3, or 4 are able to be shared.

SCSI ID: Refers to the SCSI ID number.

Skip Lines at Perforation: Refers to the number of lines
skipped at page breaks. The number is divided by 2, so that
half the blank lines appear at the bottom of one page and half
at the top of the next.

Slow Device Support: Refers to whether DFT slow device
support is enabled.

Slot Number: Refers to the slot in which an adapter is
installed.

Switched/Nonswitched: Refers to the state of the
communication line connection.

Select Printer.

Serial/Parallel Printer Type: Refers to whether the printer
is a serial or parallel type.

SLIH Ring Buffer Threshold: The number of SLIH ring
queue buffers that the device driver can use before requesting
additional buffers from the block I/O device manager.

Superscript/Subscript Support: Does the printer have the
ability to print in superscript and subscript mode?

Specifies the action that the devices command takes after
adding the device. The valid choices are:

a Rebuilds the kernel and IPLs the system
v Runs the vrmconfig command
none Takes no special action.

Possible
Choices

true, false
true, false
0-6

0-[length(in.)
x lines/in.]

0 =
Disabled,
1 = Enabled

1-8
true, false
true, false

1 = Parallel,
2 = Serial

yes, no

a, v, none

File Formats 4-53

TNL SN20-9869 (26 June 1987) to SC23-0809-0

ddi

Key
Word

sysdel

thc

tm

toffv

tonv

tt

typel -
type8

urpim

vhs

vpgs

vsi

Description

Specifies the action that the devices takes after deleting the
device. The valid choices are:

a Rebuilds the kernel and IPLs the system
v Runs the vrmconfig command
none Takes no special action.

Transmit Buffer Count: Number of bytes to buffer for
transmitter.

Top Margin: Refers to the number of lines to be skipped at
the top of a page before printing begins. If the user specifies 6
lines, the first print line will be line 7. The value is
determined by the length of paper (in inches) multiplied by the
number of lines per inch.

Transmit Xoff Value: Refers to the communication character
to transmit in order to inform a remote device to cease sending
data.

Transmit Xon Value: Refers to the communication character
to transmit in order to inform a remote device to resume
sending data.

Terminal Type: Refers to the type of the terminal being used.

Typestyle 1 through Typestyle 8: Refers to a typestyle such
as bold or italic.

User to Receive Printer Intervention Messages: Refers to
whether printer intervention messages are sent to any valid
user or to the user who queued the print job.

Variable Horizontal Spacing: Does the printer have ESC d
and ESC e controls?

Variable Print Quality Support: Does the printer have the
ability to print different degrees of quality?

Vertical Spacing Increment: Refers to parts of inch
supported in ESC 3 and ESC J controls.

4-54 AIX Operating System Technical Reference

Possible
Choices

a, v, none

0-
[length(in.) x
lines/in.]

00 - FF

0-FF

Any user ID,
pjo = Print
Job Owner

yes, no

yes, no

216, 144

PIEN

TNL SN20-9869 (26 June 1987) to SC23-0809-0

ddi
Key Possible
Word Description Choices
vts Vertical Tab Support: Does the printer support vertical tabs? yes, no
wil Wrap Long Lines: Does the printer “wrap” lines? That is, yes, no

will it break lines longer than the specified form width at the
right margin and print the remainder on the next line?

12ps 12 Pitch Support: Does the printer support 12 pitch? yes, no

Files

[etc/ddi/diskette
/etc/ddi/enet
[etc/ddi/float
/ete/ddi/font
/etc/ddi/opprinter
/etc/ddi/plotter
/etc/ddi/pprinter
[etc/ddi/sprinter
Jetc/ddi/tty

and possibly others.

Related Information
In this book: “attributes” on page 4-20, “master” on page 4-98, “system” on page 4-139,

“descriptions” on page 4-56, “kaf” on page 4-94, “options” on page 4-110, and “predefined”
on page 4-124.

File Formats 4-55

TNL SN20-9869 (26 June 1987) to SC23-0809-0
descriptions

descriptions

Purpose

Describes the meaning of ddi file keywords.

Description

File

The /etc/ddi/descriptions file contains a sorted list of descriptions for each of the
keywords used in ddi files. The devices command uses this file to explain the meanings of
the keywords during the add, change, and showdev subcommands.

The /etc/ddi/descriptions file must be sorted by keyword, and each line must follow the
following format:

keyworddescription
where:
keyword Names a keyword that is used in a ddi file. This field is exactly 10

characters long, is padded on the right with spaces, and contains no tabs.

description Describes the meaning of the keyword. This field is exactly 28 characters
long, is padded on the right with spaces, and contains no tab characters.

Note: The /etc/ddi/descriptions file must be sorted alphabetically by the keyword field.
If it is not sorted, then the devices commands displays incorrect information about the
meanings of keywords.

The use of extended characters in the /etc/ddi/descriptions file is not supported.

/etc/ddi/descriptions

Related Information

4-56

In this book: “ddi” on page 4-43 and “options” on page 4-110.

AIX Operating System Technical Reference

devinfo

devinfo

Purpose

Contains device characteristics.
Synopsis

#include <sys/devinfo.h>

Description

The devinfo structure is defined for each device. The IOCINFO operation of the ioctl
system call fills in this structure. The information returned by a device varies. Most
devices, other than disk devices, return a devtype value and the remainder of this
structure contains zeros. This structure provides information about the capabilities of a
device, rather than its current status or settings. For example, types of information
provided are the number of characters a printer handles per line or the diskette capacity in

number of blocks.

The maximum size of this structure is 12 bytes (no longer than the disk version), so that
programs can use the ioctl system call without concern of overrun due to increasing size.

struct devinfo
{ char devtype;
char flags;
union
{
struct
{ short bytpsec;
short secptrk;
short trkpcyl;
long numblks;
} dk;
struct
{
char capab;
char mode;

/*
/*
/*
/*
/*

/*

/*
/*

for disks */

bytes per sector */
sectors per track */
tracks per cylinder */
blocks this minidisk */

for memory mapped displays */

capabilities */
current mode */

File Formats 4-57

devinfo

3}t
} un;

}’

short hres; /* horizontal resolution */
short vres; /* vertical resolution */
t;

The following flags specify some generic capabilities (see DD_DISK):

Constant
DF_FIXED
DF_RAND
DF_FAST

Value Function

01
02
04

Not removable
Random access possible
A relative term

The devinfo structures are defined for the following devices (specified in the devtype

field):
DD_DISK

DD_LP

DD_PSEU
DD_RTC
DD_-TAPE
DD_TTY

DT_-STREAM
DT_STRTSTP

Indicates a disk. This devtype is R. The driver determines the
values. The fixed disk has flags DF_.RAND | DF_-FIXED | DF_FAST,
while the diskette has flags DF_RAND (see “fd” on page 6-17 and
“hd” on page 6-20).

The number of the bytes per sector, sectors per track, and tracks per
cylinder for the fixed disk are predetermined. The minidisk table
determines the number of blocks. For the diskette, the minor device
driver or the physical media determines this information when the
device is opened.

Indicates a line printer. The devtype is 1. This fills in the devtype
field and returns zeros for the rest of the structure.

Indicates a pseudo-device. This devtype is Z.
Indicates a real-time (calendar) clock. This devtype is c.
Indicates a magnetic tape. This devtype is M.

Indicates a terminal. This returns a devtype of T and zeros for the
rest of the structure.

Indicates a streaming tape drive. The devtype is 2.

Indicates a start-stop tape drive. The devtype is 2.

4-58 AIX Operating System Technical Reference

devinfo

Related Information

In this book: “ioctl” on page 2-56, “fd” on page 6-17, and “hd” on page 6-20.

File Formats 4-59

dir

dir

Purpose

Describes the format of a directory.

Synopsis

#include <sys/dir.h >

Description

A directory is a file that a user is not allowed to write into directly. A directory file
contains a 16-byte entry for each file in it. A bit in the flag word of the i-node entry
indicates that the corresponding file should be treated as a directory. For additional
information about a system volume format, see the “fs” on page 4-74. The structure of a
directory entry as given in the include file is:

#include <sys/types.h>
#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino—t d-ino;

char d_name[DIRSIZ];
¥

By convention, the first two entries in each directory are . (dot) and .. (dot dot). The first .
(dot) is an entry for the directory itself. The .. (dot dot) entry is for the parent directory.
The meaning of the .. (dot dot) entry for the root directory of the master file system is
modified. There is no parent, directory, therefore, the .. (dot dot) entry has the same
meaning as . (dot).

4-60 AIX Operating System Technical Reference

dir

Related Information

In this book: “fs” on page 4-74 and “inode” on page 4-92.

File Formats 4-61

errfile

errfile

Purpose

Contains system event log.

Synopsis

#include <sys/erec.h>

Description

Files

When a system event occurs and logging is active, it generates an event record and passes
the record to the event-logging daemon to be recorded in the event log. The /etc/rasconf
file specifies the files where the events are to be logged. The default event log file is
[usr/adm/ras/errfile.

Every record has a header. See “error” on page 6-15 for the structure of a header. Each
type of event record has its own format. The fusr/include/sys/erec.h file shows the
format of the events currently logged. The error daemon process gathers the records from
memory and writes them in the files on disk. The event log file is opened (if existing) or
created. Next, the process opens the /dev/error special file, formats and writes the
non-volatile random access memory (NVRAM), which can contain up to 16 bytes of
information, and reads the events logged in memory. An analysis routine is called before
an event is written to the errfile. For an error, this routine returns a buffer of probable
cause information to aid in problem determination. This buffer is appended to the error
entry, the length of the entry is adjusted, and then the entire entry is written to the file.

Some records in the event file are administrative. These include the startup record entered
when logging is activated, the stop record written if the daemon is terminated gracefully,
and the time-change record that accounts for changes in the system time of day.

Jusr/adm/errfile
/dev/error
[ete/rasconf

4-62 AIX Operating System Technical Reference

errfile

Related Information

In this book: “error” on page 6-15 and “rasconf” on page 4-133.

The errdemon in AIX Operating System Commands Reference.

File Formats 4-63

filesystems

filesystems

Purpose

Centralizes file system characteristics.

Description

A file system is a complete directory structure, including a root directory and any
directories and files beneath it. A file system is confined to a single partition. All of the
information about the file system is centralized in the filesystems file. Most of the file
system maintenance commands take their defaults from this file. The file is organized into
stanzas whose names are file system names and whose contents are attribute-value pairs
specifying characteristics of the file system.

The filesystems file serves two purposes:
e It documents the layout characteristics of the file systems.

o [t frees the person who sets up the file system from having to enter and remember
items such as the device where the file system resides because this information is
defined in the file.

File System Attributes

Each stanza names the directory where the file system is normally mounted. The
attributes specify all of the parameters of the file system. See “attributes” on page 4-20 for
the format of an attribute file. The attributes currently used are:

account Used by the dodisk command to determine the file systems to be processed
by the accounting system. This value can be either true or false.

backupdev Used by the backup and restore commands to determine the default output
device associated with each file system. The value of this keyword is
usually the name of a diskette or magnetic tape special file.

backuplen Used by the backup command to determine the size of the default backup
device associated with each file system. The size of a tape is measured in
tracks times feet. For example, the backuplen for a 300-foot 9-track tape is
2700. This parameter is ignored for diskettes.

backuplev Used by the backup command to determine the default backup level to take
for each file system. Backup levels are discussed in the backup command.

4-64 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

boot

check

cluster

cyl

dev

free

mount

Used by the mkfs command to initialize the boot block of a new file system.
This specifies the name of the load module to be placed into the first block
of the file system.

Used by the fsck command to determine the default file systems to be
checked. true enables checking while false disables checking. If a
number, rather than true is specified, the file system is checked in the
specified pass of checking. Multiple pass checking, described in fsck
command in AIX Operating System Commands Reference, permits multiple
file systems to be checked in parallel when multiple drives exist.

Specifies the number of 512-byte disk blocks that the system treats as a
unit. Only one or two values are supported. The RT PC default values are
4 for non-removable disks and 1 for removable disks.

Used by the mkfs command to initialize the free list and superblock of a
new file system. The value is the number of blocks in one cylinder. It
defines the size of an interleave cluster.

Identifies, for local mounts, either the block special file where the file
system resides or the file or directory to be mounted. System management
utilities use this attribute to map file system names to the corresponding
device names. For remote mounts, identifies the file or directory to be
mounted.

Used by the df command to determine which file systems are to have their
free space displayed by default. This value is either true or false.

Used by the mount command to determine whether or not this file system
should be mounted by default. If mount=true, then the mount all
command mounts this file system. If mount="~false, the file system is not
mounted by default. When the optional second value readonly is specified,
the file system is normally mounted read-only.

Another optional value is inherit. When a remote file system is mounted
with mount =inherit, any additional file systems contained in the specified
file system are also mounted. This allows the local node to duplicate the
file system structure of the server node, starting at the specified mount
point.

In the sample file, notice the line for the root file system that reads
mount=automatic. The operating system automatically mounts this file
system when it is rebooted. The true value is not used so that mount all
will not try to mount it. Also, it is not false, because certain utilities, such
as ncheck normally avoid file systems with mount =false.

If mount =true,removable, a diskette file system is automatically
mounted when its files are opened and unmounted when the opened files
are closed. Also notice that in the example, this file is shipped designating
two removable file systems, one having asterisks. The asterisks indicate

File Formats 4-65

TNL SN20-9869 (26 June 1987) to SC23-0809-0

filesystems

nodename

size

skip

type

vcheck

vol

Example

*

commented lines in the file. The mkdir command must be used to create a
directory in order to mount file system /dev/fdl.

Used by the mount command to determine which node contains the remote
file system. If this attribute is not present, the mount is a local mount. The
value of nodename can be either a valid node nickname or a valid node ID.

Used by the mkfs command for reference and to build the file system. The
value is the number of blocks in the file system.

Used by the mkfs command to initialize the free list and superblock of a
new file system. The value is the number of blocks to skip when the free
list is interleaved. This number is processor- and device-specific.

Used by the mount command to determine whether or not this file system
should be mounted. When the command mount -t string is issued, all of
the currently unmounted file systems with a type equal to string are
mounted.

Used by the varyon command to determine which file systems to check.
true enables checking while false disables checking. This keyword should
only be set to true for filesystems that reside on IBM 9332 Direct Access
Storage Devices.

Used by the mkfs command when initializing the label on a new file
system. The value is a volume or pack label using a maximum of six
characters. The file system label is always the stanza name.

* File system information

*

default:

vol

mount

“RT PC»
= false

check = false

free
backupdev
backuplen

dev
vol

= false
/dev/rfd0
2400

/dev/hd0
= "root"

4-66 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

*

*
*

mount
check
free

Ju:
dev
vol
mount
check
free

/u/joe/1:
dev
mount
nodename

Jusr:
dev
vol
mount
check
free

/tmp:
dev
vol
mount
check
free

/disketteO:
dev
mount

/diskettel:
dev
mount

automatic
true
true

/dev/hd1l
n/un
true
true
true

/u/joe/1
inherit
vance

/dev/hd2
m/usr®
true
true
true

/dev/hd2
n/tmpn
true
true
true

/dev/fd0

true,removable

/dev/fdl

true,removable

File Formats

4-66.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

File
[ete/filesystems

Related Information

In this book: “attributes” on page 4-20 and “fs” on page 4-74.

The backup, df, fsck, mkfs, mount, restore, and umount commands in AIX Operating
System Commands Reference.

4-66.2 AIX Operating System Technical Reference

N~

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

File Formats 4-67

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

fonts

Purpose

| Defines annotated and geometric character fonts for an HFT display device.

| Description

The AIX operating system can supply font definitions to the VRM. This can be done either
by configuring new font files into the VRM or by dynamically installing font modules into
the VRM and issuing an HFRCONTF operation with the ioctl system call to inform the
VRM that they exist.

IBM supplies two sets of precompiled annotated text fonts with the AIX Operating System.
One set of fonts is for the IBM 5081 Display Adapter and the other set is for all other GSL
supported devices. The fonts for the IBM 5081 Display Adapter cannot be used on other
devices and fonts for other devices cannot be used on the 5081 Display.

Some of these annotated text fonts are automatically installed with the VRM, and others
can be configured into the system by modifying the /etc/master file. Also, you can use
the display command to select the active display font.

|

|

l

|

|

|

|

I

|

l

|

| GSL supported devices also recognize one geometric text font format that allows you to
| design your own set of characters. A geometric text font is also known as a programmable
| character set (PCS) font. The PCS font can be used on all GSL supported devices
| including the IBM 5081 Display.

|

|

|

|

J

l

|

I

I

|

|

|

In addition to the precompiled fonts, IBM supplies the source for each non5081 font, which
you can copy and modify to create new font definitions.

Since the precompiled source files must be linked to the VRM at run-time, these font files
must be compiled and converted to table of contents (TOC) format using the vee and
vrmfmt commands. See Virtual Resource Manager Technical Reference for details about
the TOC object module format.

An annotated text font definition file has three major parts in the following sequence:
e A header that describes the font. The header is the same for all annotated text fonts.
e A set of character descriptions:

— 5081 fonts — A set of expanded character bit arrays that describes each character in
the font.

— Nonb081 fonts — A set of condensed raster mosaics that describes each character in
the font.

4-68 AIX Operating System Technical Reference

£\

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

e A look-up table that has an index entry to find each character representation in the
font.

— 5081 fonts — look-up table entries are 16 bits.

— Non5081 fonts — look-up table entries are 32 bits and each describes the start of its
raster mosaics entry, its width, and the white space compressed from the top and
bottom of its raster mosaics entry.

Annotated Text Font Header

The annotated text font header is a fixed-length structure common to all annotated text
fonts for all displays. The VRM run-time binder uses the DDDFSIZE field in the header to
link the font to the virtual terminal resource manager. The information in header fields
are:

Offset Length

in Bytes |in Bytes | Field Description

0x00 4 DDDFSIZE The size in bytes of the area containing the
font and the look-up table.

0x04 2 fntclass A number that uniquely identifies the format

of the look-up table that follows:
0x01 = not a 5081 font
0x02 = a 5081 font

0x06 2 fntid The name an application uses to identify a
font. This must be a value within the range of
0 to 1024.

0x08 4 fntstyle Font style.

0x0C 4 fntattr Identifies the attributes of the font. Possible
values are:

0x0000 - no special values

0x0001 - bold version of this font

0x0002 - italic version of this font.

0x10 4 fnttotch The total number of characters in the font.
This is used to determine whether a specified
character code is valid for this font.

In

0x14 4 fnttblsz Total number of words in the font table.

0x18 2 fntbasln The scan line within a character box of the
baseline for characters in this font (zero
origin).

File Formats 4-69

TNL SN20-9869 (26 June 1987) to SC23-0809-0

fonts

Offset Length

in Bytes |in Bytes | Field Description

Ox1A 2 fntcapln The scan line within a character box of the
caps line for characters in this font (zero
origin).

0x1C 2 fntcolmn Width of character box in pels.

0x1E 2 fntrows Height of character box in pels.

0x20 2 fntchrbt Total number of bits per character.

0x22 2 fntultop The scan line within the character box of the
top line in the underscore (zero origin).

0x24 2 fntulbot The scan line within the character box of the
bottom line in the underscore (zero origin).

0x26 1 fatmonpt Mono pitch flag in leftmost bit of this byte.

0x28 4 fntlkup Byte offset from the beginning of this structure
to the beginning of the font look-up table.

Annotated text Font Raster Mosaics (non5081)

This contains a definition for each character in the font. Each character is entered in this
area with the horizontal slices bit-packed one right after the other. The first bit of the first
character slice is forced to begin in the most significant bit of a byte. The raster mosaics
start immediately after the header (0x2C from the start address of the font structure). See
Annotated Text Example One (non5081) on 4-71.

Annotated Text Character Bit Array (5081)

This contains a definition for each character in the 5081 font. Each character in the
character bit array must be a multiple of 4 pels wide and a multiple of 4 pels high. Zeros
are padded to the right and padded to the bottom of the character as needed to accomplish
this.

Each 4x4 pel array is then stored in a 16-bit word with the first four bits of the array
leftmost in the word and proceeding to the right.

The 4x4 arrays are stored beginning with the bottom left array in the character and is
repeated across the bottom of the character. The process then continues at the left of the
next higher horizontal row of 4x4 arrays and so on until the 4x4 array representing the top
right corner of the character is stored in a 16-bit word. See Annotated Text Example Two
(5081) on 4-72.2.

4-70 AIX Operating System Technical Reference

£\

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Annotated Text Font Look-up Table (non5081)

The look-up table immediately follows the raster mosiac. There is one 32-bit look-up table
entry for each character in the font. The look-up table can be found by adding the value
fntlkup given in the header to the starting address of the font structure. The table entry
for any given character is found by using the font position number as an index into the
table. (See “display symbols” on page 5-24 for a list of the font position numbers.) Each
look-up table entry contains the following fields:

Offset Length

in Bits in Bits Field Description

0 5 lkup—top The number of blank scan lines that have been
eliminated from the top of this character raster
image (white space).

5 5 Ikup_bot The number of blank scan lines that have been
eliminated from the bottom of this character
raster image (white space).

10 6 lkup-width Contains the width in pels of this particular
character.

16 16 lkup_ref Byte offset from the start of the the raster
mosaics of the first scanline of the character’s
raster image.

Annotated Text Font Look-up Table (5081)

The character look-up table for IBM 5081 fonts contains an entry for each character or
possible character in the font.

Each entry is 16 bits and contains the offset from the start of the character bit array to the
first byte of the bit array for the corresponding character. That is,this offset is kept as a
16-bit word offset from the start of the bit array section. The character look-up table entry
for any given character is found by concatenating an offset to the start of the code page in
the character look-up table with the ASCII (or EBCDIC) character code and adding the
result to the starting address of the character look-up table found in the font header.

| Annotated Text Example One (non5081)

See Figure 4-1 on page 4-72.1 for this example. The character chosen is a capital A. This
is shown as it would appear on the display and how it would be stored in the raster
mosaics. Also shown is the font look-up table entry for this character. Note that the data
associated with the top and bottom two scan lines of the character image do not appear in
the raster mosaics since they consist of zeros.

File Formats 4-71

TNL SN20-9869 (26 June 1987) to SC23-0809-0

fonts

To reconstruct the character image from the raster mosaics, it is necessary to use the font
look-up table. The display symbol code associated with the character that is to be
displayed is used to access its corresponding 4-byte entry in the font look-up table. The
information contained in a font look-up table entry is shown. The capital T's represents
the bits containing the number of top blank scan lines that were compressed from the
character image. The capital B’s represents the bits containing the number of bottom
blank scan lines that were compressed from the character image. The capital W’s
represents the bits containing the width in pels of this character. Capital O’s represent
the bits containing the offset of the compressed portion of this character image data in the
raster mosaics. For this example, the value associated with T is 2, the value associated
with B is 2, and the width (W) is 5. The value associated with O is the offset of the yth
byte of the raster mosaics.

4-72 AIX Operating System Technical Reference

~—

TNL SN20-9869 (26 June 1987) to SC23-0809-0

fonts

Columns

0 j00O0O0O

R 100000
o 2 {00100
w 3101010
s 4 [10001
5111111

6 |1000 1

7 |1t0001

8 10001

9 00000

10 00000

5x11 Character Box

Font Look-up Table

01234567 Bits

bits from

preceding

character
boxes

Bytes

O—=—==0
QO—==00
Y o YN
T O—-=00
TOoO-+,00
T =000
T 2O -
T OO0O—0O

<<
+ o+ o+ o+

BUWN =

bits from the
next character
box in the
font

storage of the Character Imoge
in the Raster Mosaics

P = padding to next character image
(images start on a byte boundary)

0 = pel off ; 1 = pel on

01234567 <« bits

bytes

v

ocoow-
ocow-
coo=x-
[eN e
oo=E—
oo=EwW
[eXeolvi]
coO=Ew

y
y+1
y+2
y+3

Font Look-Up Table Entry

Preceding character entry

current character entry

next character entry

Figure 4-1. Example of Annotated Text Font Storage (non5081)

If this font is defined in a file named /usr/1ib/vtm/nrml.9x20s, then compile it and
convert the a.out file to TOC format using the following commands:

vce
vrmfmt

Jusr/1ib/vtm/nrml1.9x20.s

nrml.9x20.0

-0 nrml1.9x20.0
nrml.9x20

File Formats 4-72.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

| Annotated Text Example Two (5081)

| See Figure 4-2 on page 4-72.3 for this example. The character chosen is a capital A, and is
| shown as a 5x11 character box which is then padded with zeros to the right and bottom to

| make the rows and columns a multiple of 4. The 4x4 arrays are then stored in 16-bit words
| beginning at the bottom left array in the box and continuing horizontally to the top right

| array in the character.

4-72.2 AIX Operating System Technical Reference

£\

TNL SN20-9869 (26 June 1987) to SC23-0809-0

S~

N

fonts
5 X 11 Character Box Expanded to 8 X 12 Character Box
Co lumns Columns
01234 01234567
0 00000 00000000
R 1 00000 A 1 j0000i0000O0 2
0 2 00100 R 00100000
W 3 01010 R 01010000
s 4 10001 A
5 11111 Y 100011000 .
6 {10001 3 111111000 4 Array Bit
7 10001 17000!1000 Assignments
8 10001 10001000
9 00000
10 0000CO 10001000 012 3
5 |0o0o000000O0 6 4 56 7
00000000 8 910 11
00000000 1213 14 15
Reorganization in Character Bit Array Section

Word O (Array 5)

0 314 7|8 1112 15 —— Array Bit
Assignment
1 0 0 0flo 0 o 0|0 0 0 0fl0o 0 0 O |

Word 1 (Array 6)
l 1 0 0 0J|0 0O O O0JO O 0 O lo 0 0 0 I

Word 2 (Array 3)
’1000|1111|1ooo[1ooo|

Word 3 (Array 4)
l1ooo|1oool1oool1ooo]

Word 4 (Array 1)
|oooo10000|oo10|01o1|

Word 5 (Array 2)
[oooomoooloooomoool

Figure 4-2. Example of Annotated Text Font Storage (5081)

File Formats 4-72.3

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Annotated Text Font Files (non5081)

[ete/vim/nrm1.9x20
Jete/vim/bld1.9x20
Jete/vtm/it]1.9x20
[ete/vtm/nrm1.8x14
[etc/vtm/nrm1.4x8
[ete/vtm/nrm1.18x40

Normal 9 by 20 font, compiled

Bold 9 by 20 font, compiled

Italic 9 by 20 font, compiled

Normal 8 by 14 font, compiled

Normal 4 by 8 microfont font, compiled
Normal 18 by 40 title font font, compiled
Jete/vtm/nrm1.12x30 Normal 12 by 30 font, compiled
[ete/vitm/ergl.9x20 Ergonomic 9 by 20 font, compiled
Jusr/lib/vtm/nrm1.9x20.s Normal 9 by 20 font, source
Jusr/lib/vtm/bld1.9x20.s Bold 9 by 20 font, source
fusr/lib/vtm/it]1.9x20.s Italic 9 by 20 font, source
Jusr/lib/vtm/nrm1.8x14.s Normal 8 by 14 font, source
[usr/lib/vtm/nrm1l.4x8.s Normal 4 by 8 microfont font, source
Jusr/lib/vtm/nrm1.18x40.s Normal 18 by 40 title font font, source
Jusr/lib/vtm/nrm1.12x30.s Normal 12 by 30 font, source
[usr/lib/vtm/erg1.9x20.s Ergonomic 9 by 20 font, source.

Annotated Text Font Files (5081)

[ete/vtm/nrmMP1.9x20
[ete/vitm/bldMP1.9x20
[ete/vtm/itIMP1.9x20
[ete/vtm/nrmMP1.8x14
[etc/vtm/nrmMP1.4x8
Jete/vtm/nrmMP1.18x40
[ete/vtm/nrmMP1.12x30
[ete/vim/ergMP1.9x20

Normal 9 by 20 font, compiled

Bold 9 by 20 font, compiled

Italic 9 by 20 font, compiled

Normal 8 by 14 font, compiled

Normal 4 by 8 microfont font, compiled
Normal 18 by 40 title font font, compiled
Normal 12 by 30 font, compiled
Ergonomic 9 by 20 font, compiled

Geometric Text Fonts

Geometric text fonts are also known as programmable character set (PCS) fonts and they
can be used on all GSL supported devices including the IBM 5081 Display. Each character
is defined as a series of moves or draws that define the shape of the character. The moves
and draws are specified as X-Y pairs of signed relative values (relative to the previous
‘ending point, or to the bottom left of the character box for the first X-Y pair). The range of
the incremental values for the X and Y coordinates is -64 to +63.

Each character definition in the font consists of a 2-byte length field for the character

VRN

definition followed by 2-byte X-Y entries:

4-72.4 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

~—

Length of definition 2 bytes
SXXXXXX 1 sYYYYYY b 2 bytes
SXXXXXX 1 sYYYYYY b 2 bytes
SXXXXXX 1 sYYYYYY b 2 bytes
SXXXXXX 1 sYYYYYY b 2 bytes
SXXXXXX 1 sYYYYYY b 2 bytes

s is the sign bit (0 = positive, 1 = negative). Negative values are
in twos complement notation.

b is the blanking bit. If b = 1, the primitive is blanked causing
movement without display.

1 is the low order bit of the X coordinate field and must always be a 1.

If the first X-Y pair is a draw rather than a move, the line is drawn from the bottom left
corner of the character box. A move is specified by the low-order bit of the Y coordinate
being on. A draw is specified by the low-order bit being off. The last X-Y pair in the series
for the character is defined by the length field.

Geometric Text Font Definition File
The PCS font definition file consists of:

e A header that contains identifier and control information
e A table of index values used to find each character definition

The character definitions.

File Formats

4-72.5

TNL SN20-9869 (26 June 1987) to SC23-0809-0

fonts
Offset Length
in Bytes | in Bytes | Field Description
0x00 2 length The length of the PCS descriptor record
including the length field.
0x02 4 Reserved 0x00000000
0x06 1 Bit 1 = 0-EBCDIC
= 1- ASCII
Bits 1-2 = Reserved
Bits 3-7 = (Type) specifies the data format
definition for programmable
characters. One is defined:
“00001’'B = Type 1
0x07 1 Reserved (must be zero)
0x08 2 fontid This field identifies the programmable
character set. Font IDs within the range of
1025 to 3267 are reserved for one-byte character
sets. Ids within the range of 32768 to 65535 are
reserved for two-byte character sets.
0x0A 1 segmentid For two-byte character sets, this byte contains
the first byte of the 2-byte character code.
0x0B 1 Reserved (must be zero)
0x0C 2 P Range of X (between 0 and P)
0x0E 2 Q Range of Y (between 0 and Q)
0x10 1 CPO Starting character code within PCS (within the
range of 0x21 to 0xFE.)
0x11 1 CPn The last character code within this PCS. If
CPn is zero, 0XFE is assumed. CPn must not
be less than CPO.
0x12 2 font The value of the font baseline in pixels in the
baseline Y direction from the bottom line of the
character. This value is used in conjunction
with the text alignment function.

4-72.6 AIX Operating System Technical Reference

£

TNL SN20-9869 (26 June 1987) to SC23-0809-0

fonts
Offset Length
in Bytes |in Bytes | Field Description
0x14 2 font capline | The value of the font capline in pixels in the Y

direction from the bottom line of the character.
This value is used in conjunction with the text
alignment function.

0x16 1 Reserved
0x17 1 Default This is the character code within this PCS font
error code that specifies the character to be displayed
point when an invalid code is encountered or the
character code does not exist.
0x24 var Character This field contains two-byte offsets to each
Index character description. Each offset is from the
beginning of the descriptor record.
var var Character This field contains the character definitions
Description | beginning with code point CP0, in ascending

order.

P and Q together define the character box within which a normal character will fit. The
values of P and Q are defined in device coordinate space (pixels) and control spacing
between characters and new line spacing. The bottom left corner of the box is 0,0 and the
top right corner is P,Q. Characters can extend outside this box as P and Q control only
the intercharacter spacing. You can override the value of P specified in the header by
specifying a character inline spacing value greater than zero. Undefined character codes
(outside the range CP0-CPn, or those with an index value of zero) are displayed as the
default code point character.

Each character index value is the offset from the start of the header record to the actual
character definition. The index must always be represented in its entirety, even if not all
of the characters in the code range are defined. For example, the maximum length of the
index, if CPO is specified as 0x41 and CPn as 0xFF, is 191 times 2 bytes. For undefined
characters, the index value should contain an offset to the default code definition.

Each character definition begins with a 2-byte length field which specifies the length of the
character definition including the length field.

File Formats 4-72.7

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

| Related Information

In this book: “master” on page 4-98, “data stream” on page 5-5, “display symbols” on
page 5-24, “Reconfigure (HFRCONF)” on page 6-31, “gsgtat” on page 7-73, “gsgtxt” on
page T7-78, “gstatt” on page 7-128, and “gstext” on page 7-132.

The discussion of the TOC object module format in Virtual Resource Manager Technical

|
|
|
l The display command in AIX Operating System Commands Reference.
|
| Reference.

4-72.8 AIX Operating System Technical Reference

£ N

~

e

N

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

File Formats 4-73

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fs

fs

Purpose

Contains the format of a file system volume.

Synopsis

#include <sys/types.h>
#include <sys/param.h>
#include <sys/filsys.h>

Description

A file system storage volume has a common format for certain vital information. A volume
is divided into a number of logical blocks, 512-byte blocks for diskette and 2048-byte blocks
for disks. The term block here refers to the unit of disk space allocation, which is some
multiple of 512 bytes. The 512-byte unit is used to report or specify file sizes in all
commands and subroutines, but here the term refers to a cluster of one or more such units.
RT PC supports two similar but distinct file system formats, both of which are described by
the following text.

The first format uses the byte order and integer size of the native processing unit. The
second format is compatible with the PC/IX file system format, which is based on the IBM
PC-XT processing unit architecture. There are several differences between the two file
system formats: the block size is 2048 bytes in the native file system format and 512 bytes
in the other, and the definition of the superblock is different between the two. The number
and order of bytes within multi-byte data are different, and the processing units impose
different restrictions on the alignment of 4-byte data. These last two differences affect
fields within the superblock, i-node numbers within directories, and logical block numbers
within i-nodes and indirect blocks.

The mkfs application makes a file system of the second format only when the file system
device is a diskette.

Logical block 0 is unused and available to contain a bootstrap program or other
information. Logical block 1 is the superblock.

The format of a native-format file system superblock follows.

4-74 AIX Operating System Technical Reference

fs

#define

typedef
/* basic file system parameters - initialized when FS is created */

{

char
char
daddr_t
ushort
ushort
short
short
short
short
short
short
char
char
short
short
daddr_t
daddr_t
char

FSfixsz
struct

s-magic[4];
s_flag[4];
s_fsize;
s_bsize;
s—isize;
s—cyl;
s_skip;
s_nicfree;
s_nicino;
s_sicfree;
s—sicino;
s_fname[6];
s—fpack[6];
s-nicfrag;
s_sicfrag;
s_swaplo;
s-nswap;
s-rsvd[36];

112

filsys

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/ * Fixed-format region is 112 bytes Tong */

magic number: FSmagic = Oxdf817eb2 */

flag word (see below) */

size in blocks of entire file system */
block size (in bytes) for this filsys */
size (in blocks) of i-1list and overhead */
number of blocks per cylinder */

block interleaving factor */

number of slots in block free list */
number of slots in free i-node list */

byte offset to start of block free list */
byte offset to start of free i-node list */
name of this file system */

name of this volume *x/

number of slots in fragment table */

byte offset to start of fragment table */
start of swap area (currently unused) */
number of block swap area (currently unused) */
reserved - must be zero */

/* current file system state information, values change over time */

ushort
ushort
short
char
char
daddr_t
char
char
short
ino-t
short
time_t

s_tffrag;
s_tbfrag;
s—findex;
s—fmod;
s_ronly;
s-tfree;
s—flock;
s—ilock;
s-nfree;
s-tinode;
s—ninode;
s_time;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

number of fragmented files (currently unused) */
number of fragmented blocks (currently unused) */
fragment allocation index (currently unused */
superblock modified flag */

mounted read-only flag */

total free blocks */

lock during free list manipulation */

lock during i-Tist manipulation */

number of addresses in s_free */

total free inodes */

number of inodes in s_inode */

time of last superblock update */

File Formats 4-75

fs

TOTAL

union
{ char
struct

} s-u;
} filsys-t;

#define s_free
#define s-inode
#define s_var

#define s-n
#define s-m
#define FSmagic

LENGTH OF FIXED-FORMAT REGION: 112 bytes

A1l variable length fields appear beyond this point, and are

described and pointed to by information in the fixed format
portion of the superblock:

daddr_t s_free[s nicfree];<free block 1ist>
ino-t s—inode[s nicino];<free I-node list>
frag-t s-frag[s—nicfrag];<fragment table>

Macros defined below allow access to these tables.

/* Variable-format */
su-var [BSIZE-FSfixsz];

{ daddr_t su-free[NICFREE];
ino-t su-inode[NICINOD];
} su-ovly;

s_u.su-ovly.su-free
s_u.su-ovly.su_inode
s_var

s—cyl /* for compatibility with old systems */
s-skip
"\337\201\176\262" /* octal magic number for file systems */

/* hex equivalent value for FSmagic number above is \df\81\7e\b2 */

#define s_cpu
#define s_type

#define Fslb 1
#define Fs2b 2
#define Fsdb 3
#define Fs8b 4

s—flag[0] /* Target cpu type code (same as in a.out files) */
s_flag[3] /* File system type code (block size) */

/* 512 byte blocksize file system */
/* 1024 byte blocksize */
/* 2048 byte blocksize */
/* 4096 byte blocksize */

4-76 AIX Operating System Technical Reference

fs

/*
* Notes on s_fmod field:
* This field is intended to be a three state flag with the third
* state being a sticky state. The three states are:
*
* 0 = file system is clean and unmounted
* 1 = file system is mounted
* 2 = file system was mounted when dirty
*
* If you merely mount and unmount the filesystem, the flag
* toggles back and forth between states 0 and 1. If you ever
* mount the filesystem while the flag is in state 1 then it
* goes to state 2 and stays there until you run fsck.
* The only way to clean up a corrupted file system (and change
* the flag from state 2 back to state 0) is to run fsck.
* The bit above this tri-state (i.e. 04, FM_SDIRTY) is only used
* in memory. It is never written to disk.
*
/
#define FM_CLEAN 00 /* File system is clean and unmounted */
#define FM_MOUNT 01 /* File system is mounted cleanly x/
#define FM_MDIRTY 02 /* File system was dirty when last mounted *x/

#define FM_SDIRTY 04 /* Superblock is dirty; this bit is not written */

#define FMOD(x) ((x)
#define FCLEAN(x) ((x)

/*

*

* %

*/

/*
/*

Macros for accessing elements in the variable-format region of the

superblock. "sbp" is a pointer to superblock, and "n" gives
the index of the element to be fetched.

FREEino() -- Finds the nth element in the free I-node list. */
Each element of the free I-node 1list is of type "ino-t". */

#define FREEino(sbp,n) \

(((ino=t *)((char *)(sbp)+(sbp)->s_sicino))[n])

File Formats 4-77

fs

/* FREEblk() -- Finds the nth element in the free block 1list.
element of the free block Tist is of type "daddr_t". */

/*

#define FREEblk(sbp,n) \
(((daddr-t *)((char *)(sbp)+(sbp)~>s_sicfree))[n])

Each */

/* we have a NEW Format superblock */

#define

-S-_NEWF

The format of a PC/IX-format file system superblock is:

/*

* Structure of the superblock

*/
struct

{
ushort
daddr_t
short
daddr-t
short
ino-t
char
char
char
char
time-t
short
daddr_t
ino-t
char
char
long
daddr_t
daddr_t
long
long

filsys

s-isize;
s_fsize;
s_nfree;

s_free[NICFREE];

s—_ninode;

s—inode[NICINOD];

s—flock;
s—ilock;
s_fmod;
s_ronly;
s—time;
s_dinfo[4];
s_tfree;
s_tinode;
s_fname[6];
s_fpack[6];
s_fi11[13];
s_swaplo;
s_nswap;
S_magic;
s-type

size in blocks of i-Tist */

size in blocks of entire volume */
number of address in s_free */
free block list */

number of inodes in s_inode */
free I-node list */

lock during free 1ist manipulation */
lock during i-Tist manipulation */
superblock modified flag */
mounted read-only flag */

last superblock update */

device information */

total free blocks */

total free i-nodes */

file system name */

file system pack name */

fi1l out to 512 bytes */

start of swap area */

number of blocks of swap */

magic number for file systems */
file system type - cluster size */

4-78 AIX Operating System Technical Reference

fs

/*

* macros to give more meaningful names to dinfo fields

*/

#define s_m s_dinfo[0] /* modulo factor in superblock */
#define s.n s_dinfo[1] /* cylinder size in superblock */
#define s_bsize s_dinfo[2] /* block size for this file system */

If the latter superblock structure is compiled into a program, the native compiler adds pad
bytes to force long type data to be aligned on an address that is a multiple of 4. A
program that attempts to manipulate the PC/IX format superblock must redeclare the
values in a manner that does not change the given alignment and then change data.
references appropriately.

The parameters NICFREE and NICINOD, the number of in-core free blocks and free
i-nodes, respectively, are defined in the system include file, <sys/param.h>, as are
BSIZE (the number of bytes in a block), and DIRSIZ (the number of bytes in a simple file
name).

The s_isize field is the number of the first data block after the i-list; the starts just after
the superblock (in block 2); thus the i-list is s—isize minus 2 blocks long. The s_fsize field
is the total number of blocks in the file system. These numbers are used by the system to
check for bad block numbers; if an block number that cannot exist is allocated from the
free list or is freed, a message is sent to the system console. Moreover, the free array is
cleared, to prevent further allocation from a presumably corrupted free list.

The s_bsize field contains the number of bytes in a file system block.

The s_eyl and s _skip fields contain parameters that control the organization of the
free-block list. The s—cyl field contains the number of blocks per cylinder; s—skip is the
interleave factor. Free-list interleaving is described by the mkfs application. In the PC/IX
format file system, these fields are referenced using macros called s—_n and s_m,
respectively.

The s-nicfree and s_nicino fields contain the values of NICFREE and NICINO (sizes of
the s_free and s_inode arrays). The s_sicfree and s_sincino fields contain the byte
offset from the start of the superblock of s_free and s_inode arrays. These numbers are
provided to facilitate the writing of BSIZE independent file system management utilities.
These fields are present only in the native format file system.

The free list for each volume is maintained as follows. The s_free array contains, in
s_free[l], .. ., s_free[s nfree-1], the block numbers of up to NICFREE-1 free-blocks.
The s_free[0] value is the block number of the head of chain of blocks constituting the free
list. The first long in each free-chain block is the number (up to NICFREE) of free-block
numbers listed in the next NICFREE longs of this chain member. The first of these block
numbers is the link to the next member of the chain. To allocate a block: decrement
s_nfree, and the new block is s—free [s—nfree]. If the new block number is 0, there are no
blocks left. This an error condition. If s_nfree became 0, read the block named by the
new block number, replace s—nfree by its first word, and copy the block numbers in the

File Formats 4-79

fs

4-80

next NICFREE longs into the s_free array. To free a block, check whether s_nfree is
NICFREE,; if so, copy s—nfree and the s_free array into it, write it out, and set s_nfree to
0. In any event, set s_free[s—nfree] to the freed block’s number and increment s_nfree.

The value of s—tfree is the total free-blocks available in the file system.

The value s_ninode is the number of free i-numbers in the s_inode array. To allocate an
i-node: if s_ninode is greater than 0, decrement it and return s_inode[s_ninode]. If it
was 0, read the i-list and place the numbers of up to NICINOD free i-nodes into the
s_inode array, then try again. To free an i-node, provided s_ninode is less than
NICINOD, place its number into [s—-ninode] and increment s_ninode. If s_ninode is
already NICINOD, do not bother to enter the freed i-node into any table. This list of
in-nodes serves only to speed up the allocation process. The i-node itself indicates whether
it is free.

The value of s_tinode is the total number of free i-nodes available in the file system.

The s_fmod field is a flag to indicate the ”“cleanliness” of the file system. A value of 0
indicates that the file system has been cleanly unmounted. Whenever a file system is
mounted, this flag is checked and a warning message is printed if the s_fmod flag is
non-zero. When a clean file system is mounted, the s_fmod flag is changed to a value of 1.
When an unclean file system is mounted, s—fmod is set to 2. When a file system is
unmounted, the s_fmod flag is reset to 0 only if it has the value 1. Thus, a file system
whose s_fmod flag is 0 is very likely to be clean, and a file system whose s_fmod flag is 2
is likely to have problems.

The s_ronly field is a flag indicating that the file system has been mounted read only.
This flag is maintained in memory only, its value on disk is not valid.

The value of s—time is the last time the superblock of the file system was changed, (in
seconds since 00:00 Jan. 1, 1970 (GMT)).

s_fname is the name of the file system and s_fpack is the name of the device on which it
resides.

The s—_flock and s-_ilock flags are maintained in the copy of the file system in memory
while it is mounted; their values on disk are not valid.

The s_fill, s—swaplo, and s_nswap fields are not used on this system.

I-numbers begin at 1, and the storage for i-node 1 begins in the first byte of block 2. I-node
1 is reserved for a file without a name. This i-node is used by the mkfs application to put
the numbers of defective blocks (blocks with physical flaws) to prevent them from being
allocated to other files. I-node 2 is reserved for the root directory of the file system. No
other i-number has a built-in meaning. I-nodes are 64 bytes long, so BSIZE + 64 of them
fit into a block. Each i-node represents one file. For the format of an i-node and its flags,
see “inode” on page 4-92.

AIX Operating System Technical Reference

fs

Files

Jusr/include/sys/filsys.h
[usr/include/sys/stat.h

Related Information

In this book: “inode” on page 4-92 and “param.h” on page 5-68.
The fsck, fsdb, and mkfs programs in AIX Operating System Commands Reference.

File Formats 4-81

fspec

fspec

Purpose

Specifies formatting within text files.

Description

A text file format specification normally occurs in the first line of a text file. This format
specifies how tabs expand in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
enclosed by the brackets <: and :>. Each parameter consists of a key-letter, possibly
followed immediately by a value. The following parameters are recognized:

d
e
mmargin

ssize

ttabs

The d parameter takes no additional value. It indicates that the line
containing the format specification is to be deleted from the converted file.

The e parameter takes no additional value. It indicates that the current format
prevails until another format specification is encountered in the file.

The m parameter specifies a number of spaces added to the beginning of each
line. The value of margin must be an integer.

The s parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs are expanded, but before
inserting the margin.

The t parameter specifies the tab settings for the file. The value of tabs must
be one of the following:

e A list of column numbers separated by commas, indicating tabs set at the
specified columns.

e A — (dash) followed immediately by an integer n, indicating tabs at
intervals of n columns.

e A — (dash) followed by the name of a supplied tab specification.

Standard tabs are specified by t-8, or the equivalent t1, 9, 17, 25, and so on.
The tabs command defines the supplied tabs.

Default values assumed for parameters not supplied are t-8 and m0. If the s parameter is
not specified, no size checking is performed. If the first line of a file contains no format
specification, the previous defaults are assumed for the entire file.

The format specification can be entered as a comment. In that case it is not necessary to
code the d parameter.

4-82 AIX Operating System Technical Reference

fspec

Example

The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *

Related Information

The ed, newform, and tabs commands in AIX Operating System Commands Reference.

File Formats 4-83

gps

gps

Purpose

Used as the format for storing graphics file data as graphic primitive strings.

Description

A GPS is a graphic primitive string that is used to store graphical data in a particular
format. The plot and vtoe commands produce GPS output files. Several commands edit
and display GPS files on various devices. A GPS is composed of as many as five types of
graphical data or primitives:

comment

lines

arc

text

hardware

A comment is an integer string included within a GPS file that does not cause
anything to be displayed. All GPS files begin with a comment of zero length.

A lines primitive has a variable number of points from which zero or more
connected line segments are produced. The first point given produces a move
to that location, relocating the graphics cursor without drawing. Successive
points produce line segments from the previous point.

An arc primitive has a variable number of points to which a curve is fit. The
first point produces a move to that point. If only two points are given, a line
connecting the points is the result. If three points are given, a circular arc
through the points is drawn. If more than three points are given, splines are
fitted to connect the points.

The text primitive draws characters beginning at a given point, with the first
character centered on that point.

The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the beginning
location of the hardware string.

Graphic primitive strings are given as 16-bit units called command words. The first
command word determines the primitive type and sets the length of the string. Subsequent
command words contain information in multiples of quid, four bits of data. The following
are the types of GPS and their parameters:

comment

cw [string)

cw is the control word. The first quid identifies the comment primitive and
has the value 0xF. The following bits give the command word count for the
primitive.

4-84 AIX Operating System Technical Reference

gps

lines

arc

[string] is a string of characters terminated by a null character. If the string
does not end on a command word boundary, another null character is added
to align the string with the command word boundary.

cw points sw

cw is the control word. The first quid identifies the lines primitive and has
the value 0x0. The remaining bits give the command word count for the
primitive.

points is one or more pairs of integer coordinates having values within a
Cartesian plane or universe of 65,536 points on each axis (-32,767 to +32,768).

sw is the style command word. The first eight bits hold an integer value for
color information. The next quid contains an integer value for weight to
indicate line thickness:

0 Narrow

1 Bold

2 Medium.

The last quid of sw is an integer value giving line style information:
0 Solid

1 Dotted

2 Dot—dashed

83 Dashed

4 Long dashed.

cw points sw

cw is the control word. The first quid identifies the arc primitive and has the
value 0x3. The next twelve bits contain the command word count for the
primitive.

points is one or more pairs of integer coordinates having values within a
Cartesian plane or universe of 65,536 points on each axis (-32,767 to + 32,768).

sw is the style command word. The first eight bits are an integer value for
color. The next quid contains an integer value for weight to indicate line
thickness:

0 Narrow

1 Bold

2 Medium.

The last quid is an integer value setting line style:
0 Solid

1 Dotted

2 Dot—dashed

File Formats 4-85

gps

text

hardware

3 Dashed
4 Long dashed.

cw point fw so [string]

cw is the control word. The first quid identifies the text primitive and has the
value 0x2. The remaining twelve bits contain the command word count for
the primitive.

point is a pair of integer coordinates that are a value within a Cartesian plane
or universe of 65,536 points per axis (-32,767 to + 32,768).

fw is a font command word. The first eight bits contain an integer value for
color information. The next eight bits contain an integer value for font
information, with a quid qiving a weight (density) value for the font, and a
quid giving a style (typeface) value for the font.

so is a size/orientation command word. Eight bits specify textsize as an
integer value to indicate the size of characters drawn. textsize represents
character height in absolute universe units. The actual character height is
five times the textsize value. The next eight bits are a signed integer value for
textangle, and express the angle and direction of rotation of the character
string around the beginning point. textangle is expressed in degrees from the
positive x —axis. The textangle value is 256/360 of its absolute value.

cw point [string]

cw is the control word. The first quid identifies the hardware primitive and
has the value 0x4. The next twelve bits indicate the command word count for
the primitive.

point is a pair of integer coordinates that are values within a Cartesian plane
or universe of 65,536 points on each axis (-32,767 to +32,768). This point is the
starting point for the string, which is a string of hardware characters or
control commands to a hardware device.

Related Information

In this book: “stat.h” on page 5-69.

The stat and toc commands in AIX Operating System Commands Reference.

4-86 AIX Operating System Technical Reference

group

group

Purpose

Identifies a group.

Description

Users can be assigned to one or more groups, each of which share certain protection
privileges. The person who sets up the system may want to place users in the same group
because they need access to a common set of files. Similarly, a certain group of users can
have access restricted to certain files.

When users log in, they are assigned to the group specified in the password file. In
addition, they are assigned as a member of all groups specified in this file. Users are
allowed to access to any files that the group to which they are assigned has access.
However, any files created by the user can be accessed only by the members of the primary
group of which that user is a member. A user is allowed to change his primary group for
the duration of the terminal session using the newgrp command.

The group file defines to which groups a user has membership. Each line in this file
defines a group and consists of four fields separated by colons. It contains the following
information for each group:

group name A character string of up to 8 characters that references the group.

password This field is optional. If specified, anyone attempting to enter the group
must correctly supply the password to the system.

group ID A number assigned to the group and used in access decisions.

user group list A list that specifies the login names of all users allowed in the group.
User IDs in the list are separated by commas.

In newly distributed systems, there are typically only two groups: the staff group and the
system group. New users can be added to groups and new groups can be added as
necessary.

If several users wish to share the same privileges, including the ability to terminate each
other’s processes as well as to access the files of others, the same numerical user ID can be
assigned to each. This mechanism is sometimes used to give the same person several
accounts on the system, each with potentially different login directories and other
characteristics, such as electronic mailboxes or login programs. For example, the operator
has the same user ID, and therefore superuser authority. However, this operator typically
uses a restricted version of the shell that does not give access to commands that allow
reading the files of others.

File Formats 4-87

group

Example

The following is an example of a group file. This is an ASCII file. Each group is separated
from the next by a new-line character. The fields are separated by colons. This file resides-
in /ete/group. Because the password is encrypted, it can be used to map numerical group
IDs to names without concern of compromise to user security.

system::0:su,bill,jack,gary
staff::1:

bin::2:su,bin
sys::3:su,bin.sys
adm::4:su,bin,adm
mail::6:su

usr::100:guest

File
ete/group

Related Information

In this book: “passwd” on page 4-112.

The newgrp, passwd, and users commands in AIX Operating System Commands
Reference.

4-88 AIX Operating System Technical Reference

history

history

Purpose

Contains the history of an installed licensed program product.

Description

Each licensed program or component of a licensed program that is shipped by IBM
contains a history file. The purpose of a history file is to identify the installed release and
version of a licensed program or component and to provide a record of any updates (level
changes). A history file is replaced when a component is reinstalled. History files for
programs installed on the operating system are named /usr/lpp/pgm-name/lpp.hist, where
pgm-name is the name of the licensed program or component. History files for programs
installed completely on the VRM minidisk are named /vrm/lpp/pgm-name/lpp.hist

The history file consists of a series of 80-character records. The first 2 records contain the
install data and all subsequent records contain update data. There are 3 different formats
of 80-character records:

Record Description

Information Identified by an a, ¢, r, or v character in position 1. The install and
update procedures use information records to identify the licensed program
or component name; the current version, release, and level; the date the
record was added; and the user who initiated the install or update.

Figure 4-2 on page 4-90 shows the format of the fields in the information
records.

Title Identified by a t in character position 1. Contains the descriptive title (up
to 30 characters) for the licensed program or component, starting in
character position 3. The title record must always be the second record in
the history file.

Comment Identified by an * (asterisk) in character position 1. Allows descriptive
comments to be entered into the history file. An * is usually placed in
character position 79 to ensure a full 80-column record.

The last character of each record (character position 80) must be a new-line character.
Unused character positions must be blank-filled. Tab characters are not permitted.

The first record in a history file must be an information record with a ¢ in character
position 1. The second record must be the title record. These two records contain data
about the installation of the program. The remaining records in the file may be any
combination of information and comment records, and they identify updates to the
program.

File Formats 4-89

history

Figure 4-2 shows the format of an information record in the history file. The definitions
for each of the fields other than character position 1 are explained following the figure.

Character Position

13 11 18 29 36 45 80
b b ! 1 1] |
1 | | |] | |
slpgm—nomelllllllvv.RR.LLLLlDDMMYYluser»ncmel ————————— comment field —————_— \n
l — indicates a blank position
\n — indicates a single new-line character.

Figure 4-2. Information Record Format

Field Description
S The type of information record:

a Indicates that the update has been applied.

¢ Indicates that the update or install has been committed (accepted).
r Indicates that the update has been rejected.

v Indicates that the VRM minidisk has been modified.

pgm-name The name assigned to the program (lowercase characters only). If the
name contains less than 8 characters, it must be padded with blanks.

VV. A 2-digit numeric field followed by a period indicating the version number
of the program. The version number indicates the level of the hardware
and operating system with which the program works.

RR. A 2-digit numeric field followed by a period indicating the release number
of the program. The release number tracks changes to external
programming interfaces since the last version change. This number is
generally incremented each time the external interface to the program
changes.

LLLL A 4-digit numeric field indicating the update level of the program. This
field is incremented when the changes to the program do not affect
external programs that may use the documented external interface for the
program. The level, together with the S field, ensures that all changes up
to and including the current change are installed on the system.

The fourth (or units) digit of the level is normally 0. IBM reserves this
digit for future use.

4-90 AIX Operating System Technical Reference

history

DDMMYY These three numeric fields indicate the date the program changed:

DD Day of the month (1 to 31).
MM Month of the year (1 to 12).
YY Year (00 to 99).

username An alphanumeric field that contains the user name of the person who
installed the program. If the user name is shorter than eight characters,
it must be padded with blanks.

comment field A 35-character field for comments. An * (asterisk) is usually placed in
character position 79 to ensure a full 80-column record.

\n A required new-line character, indicating the end of the record.

Files

[usr/lpp/pgm-name/lpp.hist
/vrm/lpp/pgm-name/lpp.hist

Related Information

The installp and updatep commands in AIX Operating System Commands Reference.

File Formats 4-91

inode

inode
Purpose
Describes a file system file or directory entry as it appears on a disk.
Synopsis
#include <sys/types.h>
#include <sys/ino.h>
Description
An inode for an ordinary file or directory in a file system has the following structure
defined by sys/ino.h:
/* Inode structure as it appears on a disk block. */
struct dinode
{
ushort di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */
ushort di_uid; /* owner's user id */
ushort di_gid; /* owner's group id */
off-t di-size; /* number of bytes in file */
char di-addr[40]; /* disk block addresses */
time-t di_atime; /* time last accessed */
time—-t di_-mtime; /* time last modified */
time_t di_ctime; /* time created */
s
/*
*the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*
/
The fields in the structure are as follows:
addr Array of thirteen 3-byte block numbers assigned to this file. The first 10 block

numbers are direct addresses while the last 3 are indirect addresses.

4-92 AIX Operating System Technical Reference

N

TNL SN20-9869 (26 June 1987) to SC23-0809-0

inode
atime Time this file was last accessed.
ctime Time this file was created.
gid Group ID.
mode Type and access permissions of file.
mtime Time this file was last modified.
nlink Number of directories that name this file.
size Number of bytes in file.
uid Owner ID.

See the types file for related information concerning the off_t and time_t define types.

Related Information

In this book: “fs” on page 4-74, “stat.h” on page 5-69, and “types.h” on page 5-75.

File Formats 4-93

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

kaf

Purpose

Specifies how to process ddi keywords and their parameters.

Description

Keyword Attribute Files, also called kaf files, define how the devices command and
customize helpers are to process keywords used in ddi files. The kaf files:

Contain instructions for processing device information

Control whether the devices command displays the associated information
Control whether a user can change the information using the devices command
Specify the input validation that the devices command performs

Determine the action that the customize helper takes.

The kaf information can be included in the ddi file for the device, or it can appear in a
separate file. If it is contained in a separate file, then the stanza for the device in the
system file must name the kaf file as the value of the kaf_file keyword. The kaf_use
keyword (also in the system file) specifies the stanza of the kaf file to use.

The name of each stanza in a kaf file is the name of a keyword that is used in ddi files.
The stanza defines how the devices command and customize helper programs process that
ddi keyword. The following section defines the keywords that can appear in the stanzas of
kaf files.

The use of extended characters in kaf files is not supported.

Directives to the Customize Helper

add Specifies the actions for the customize helper to take during a vrmconfig -a
(add) operation.

delete Specifies the actions for the customize helper to take during a vrmconfig -d
(delete) operation.

startup Specifies the actions for the customize helper to take during a vrmconfig
-startup operation.

shutdown Specifies the actions for the customize helper to take during a vrmconfig
-shutdown operation.

4-94 AIX Operating System Technical Reference

-

~—r

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

The value for each of the preceding keywords has the format x/y, where x and y can be any
of the following:

b

Constructs the Define_Device Structure, including the Block I/O Communication
Area (BIOCA) device characteristics. Appends other device characteristics specified
by the programmer. (See the discussion of customize helpers in AIX Operating System
Programming Tools and Interfaces.) Performs the Define-Device SVC by issuing an
ioctl system call to the config device driver.

Constructs the Define_Device Structure. Appends other device characteristics
specified by the programmer. (See the discussion of customize helpers in AIX
Operating System Programming Tools and Interfaces.) Performs the Define_Device
SVC by issuing an ioctl system call to the config device driver.

Constructs the AIX device driver structure and issues an ioctl system call to the
config device driver to initialize the driver.

Action to Take After Customization

syschg Specifies the action the devices command takes when the user changes a

device characteristic. The valid choices are:
a Rebuilds the kernel and IPLs the system

s Runs the special processing routine specified by the specproc
keyword in the /etc/system stanza.

none Takes no special action.

Control over Display and Modification of the Keyword
display If set to true, then the devices command displays the device characteristic

dsrc

keyword and allows the user to change its value.

Determines whether the devices command displays the adapter
characteristic keyword from the ddi file. The value is a list of adapter
numbers, separated by commas. The devices command displays the keyword
and allows the user to change its value only if the number of the adapter
associated with the device appears in the list.

required If set to true, the devices command displays the keyword and advises the

rsrc

user to make sure that its value matches the system configuration. devices
does not check to see whether the entered value matches the system
configuration.

Determines whether the devices command displays the adapter
characteristic keyword from the ddi file and requires the user to enter a
value. The value is a list of adapter numbers, separated by commas. If the
number of the adapter associated with the device appears in the list, then the
devices command displays the keyword and requires the user to specify its

File Formats 4-95

TNL SN20-9869 (26 June 1987) to SC23-0809-0

kaf

value. devices does not check to see whether the entered value matches the
system configuration.

User Input Validation

vtype

map

opts

range

type

Specifies the type of checking that the devices command performs on values
entered by the user. vtype can be set to one of the following values:

0 No validation.

1 Mapping validation: the input value must be one of the keywords found
in the stanza named by the map keyword.

3 Range validation: The input value must have the data type specified by
the type keyword and must fall in the range specified by the range
keyword.

Names a stanza in the kaf file that contains a list of keyword =value pairs
against which the input value is to be matched. If the input matches a given
keyword, then the corresponding value is substituted in its place.

Specifies the options to search for in the /etc/ddi/options file. opts is one
of the following:

k Keyword only

a Keyword followed by adapter name

¢ Keyword followed by device class

t Keyword followed by device type

s Keyword followed by device stanza name.

If the opts keyword is not specified, its value defaults to k. See “options” on
page 4-110 for details about the /etc/ddi/options file.

Defines the valid range of values for a keyword so that the devices
command can verify values entered by the user. The value of the range
keyword has the format first,last,incr, where first is the first number in the
range, last is the last number, and incr is the increment between values in
the range. For example, range=2,10,2 specifies the values 2, 4, 6, 8, and
10.

Defines the data type for the value of a keyword. The devices comand
ensures that the values entered are the correct data type, specified by one of
the following:

Floating-point (float)
Hexadecimal (int)

Integer (int)

Long integer (long int)

Short integer (short int)
Unsigned integer (unsigned int).

chur=mm

4-96 AIX Operating System Technical Reference

SN

~

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

Files

/etc/ddi/font.kaf
/etc/ddi/opprinter.kf
/etc/ddi/osprinter.kf
/etc/ddi/plotter.kaf
/ete/ddi/pprinter.kaf
/ete/ddi/sprinter.kaf
Jetc/ddi/tty. kaf
/ete/mdkaf

Related Information

In this book: “attributes” on page 4-20 “ddi” on page 4-43, “descriptions” on page 4-56,
“system” on page 4-139, and “config” on page 6-7.

The discussion of customize helpers in AIX Operating System Programming Tools and
Interfaces.

File Formats 4-97

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

master

Purpose

Contains master configuration information.

Description

The master file is an attribute file that contains stanzas that describe all device drivers
defined in the system. There are two kinds of stanzas, AIX device driver stanzas and
Virtual Resource Manager (VRM) driver stanzas. AIX driver stanzas specify drivers to
link into the kernel and the VRM drivers that support them. VRM driver stanzas specify
drivers to be loaded into the VRM at the time the system is loaded.

The use of extended characters in the master file is not supported.

The sysparms Stanza

The first stanza of the /ete/master file, the sysparms stanza, defines the values for many
system parameters and limits. If you need to modify any of these system parameters, first
make the changes in the /etc/master file, then rebuild the kernel. See “Rebuilding the
AIX Kernel” on page C-51 for instructions on rebuilding the kernel.

callouts Specifies the number of callouts the kernel uses for event waiting.
charlists Specifies the number of character lists the terminal driver uses.

drivernkprocs Specifies the maximum number of kernel processes available for a given
device driver. To create this kind of keyword, replace driver with an
abbreviation for the device driver, then follow it with the letters
nkprocs. (For example, tcpipnkprocs.)

Note: A keyword ending with the letters nkprocs should be defined in
the /ete/master file for any device driver that needs to allocate kernel

processes.

dsnkprocs Specifies the maximum number of kernel defined processes available for
use by Distributed Services.

dumpdev Species the target device for kernel dumps.

filetab Specifies the number of entries in the kernel open file table.

4-98 AIX Operating System Technical Reference

&_

~_

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

floating

hashbuffers
hftbuffers
inodetab

iobuffers
kbuffers

kdmabuffers
kmap

kprocs

connections

maxprocs

mountab

msgmap
msgmax
msgqid
msgqmax
msgseg
msgsegsize
msgtql

nflocks

Indicates whether the kernel should attempt to use floating-point
hardware, if it is present. Options in this parameter are hardware and
software. The default, software, means there is no optional
floating-point accelerator hardware.

Specifies the number of hash buffers the kernel uses.

Specifies the number of virtual terminals.

Specifies the number of entries in the kernel i-node table.
Specifies the number of physical I/O buffers the kernel supports.

Specifies the number of disk buffers in the kernel. If kbuffers is not
defined, or if it is set to 0, then the system chooses the number of buffers
based on the processor and the amount of real memory installed in the
system.

Specifies the number of buffer headers used by the exec system call. The
default value is 32.

Specifies the number of elements in resource map array for internal
kernel storage.

Specifies the number of kernel defined processes the kernel supports.

Specifies the maximum number of concurrent network connections
allowed for Distributed Services.

Note: This keyword sets the size of the node table in the kernel.
Specifies the maximum number of processes for each terminal session.

Specifies the number of entries in the mount table used by the kernel for
file system mounting. This value sets the limit of the number of file
systems that can be mounted by the kernel. See “mnttab” on page 4-108
for details.

Specifies the number of entries in message map array.

Specifies the maximum number of bytes allowed in a single message.
Specifies the maximum number of message queue identifiers allowed.
Specifies the maximum number of bytes allowed on a message queue.
Specifies the number of message segments.

Specifies the message segment size (in multiples of word size).
Specifies the text queue length.

Specifies the maximum number of simultaneously locked file regions.

File Formats 4-99

TNL SN20-9869 (26 June 1987) to SC23-0809-0

master

netnoone

netsomeone

nid

nncb

node
pinkbuffers

pipedev

power

procs
pslotkill

pslotpanic

pslotwarn

Specifies the Distributed Services user ID or group ID value to use under
certain ID translation circumstances. This value is used when no user ID
from the local node maps to a remote file’s owner ID. The default value
is 0xFFFE.

Specifies the Distributed Services user ID or group ID value to use under
certain ID translation circumstances. This value is used when more than
one local ID maps to a remote file’s owner ID, and it is difficult to select
one particular ID (perhaps because of wild card mappings). The default
value is 0xFFFF.

Specifies the node ID to generate into the system. This keyword is
currently unused.

Specifies the size of the Distributed Services translate table array. Each
node for which the kernel has user ID or group ID translate information
has an entry in this array of translate headers.

Specifies the node name to generate into the system.

Specifies whether or not the disk buffers should be pinned. The value can
be true or false.

Names the stanza that defines the file system used for FIFO files.

Indicates whether the kernel has power warning code. If this value is
true, power warning code exists. The default is false.

Specifies the total number of simultaneous processes the kernel supports.

Specifies the threshold at which the system begins to kill processes in
order to recover paging space. pslotkill is specified in slots, where a slot
is 2048 bytes (four blocks) of a paging minidisk. The default value is 200
slots.

Specifies the threshold at which to stop AIX and attempt a system dump
because paging space has almost been exhausted. Note that the system
dump itself cannot finish because of the lack of paging space. pslotpanic
is specified in slots, where a slot is 2048 bytes (four blocks) of a paging
minidisk. The default value is 100 slots.

Specifies the threshold at which the system displays a message warning
that paging space is running low. When the system displays this
message, it also:

e Performs a sync to write all changes to disk

e Enters sync mode, in which disk I/O is not buffered

e Sends all processes the SIGDANGER signal to warn them that the
system is likely to “crash” any moment.

pslotwarn is specified in slots, where a slot is 2048 bytes (four blocks) of
a paging minidisk. The default value is 350 slots.

4-100 AIX Operating System Technical Reference

VN

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

ptybuffers

release
rootdev

rsbuffers
semadjmax

semid

semmap

semmax
semopmax

semsetmax
semunmax
semunpmax
semvalmax
shmid

shmmax
shmmin
shmsegs
slice
system

texttab

version

Specifies the number of pseudo-terminals that can be present in the
system (see “pty” on page 6-107). The maximum value for ptybuffers is
16.

Specifies the operating system release number to generate into the
system.

Names the stanza in the /ete/system file that defines the root file system
device.

Specifies the number of buffers allocated for the asy terminal driver.
Specifies the maximum value allowed for semaphore adjust value on exit.

Specifies the number of distinct semaphore identifiers the kernel
supports.

Specifies the number of entries in semaphore map array.

Specifies the maximum number of simultaneous semaphores allowed and
supported by the kernel.

Specifies the maximum number of operations allowed for each semop
system call.

Specifies the maximum number of semaphores allowed in a set.
Specifies the number of semaphore undo structures the kernel supports.
Specifies the maximum number of undo entries for each process.
Specifies the maximum value allowed for each semaphore.

Specifies the number of distinct shared memory identifiers the kernel
supports.

Specifies the maximum number of kilobytes for shared memory allowed
per shared segment.

Specifies the minimum number of kilobytes for shared memory allowed
per shared segment.

Specifies the number of segment registers that may be used to support
shared memory.

Specifies the percentage of time in quante that a process can run before
it must relinquish control of the processor. Each quantum on the RT PC
system is equal to 333 milliseconds.

Specifies the system name to generate into the system.
Specifies the number of shared text segment entries in the the text table.

Specifies the version number of the operating system to generate into the
system.

File Formats 4-101

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

AIX Driver Stanzas

There is a unique set of keywords associated with each type of stanza. It is not necessary,
however, for a stanza to contain all the keywords associated with that type. If a keyword
is omitted from the stanza, the default is used. Mandatory keywords must be supplied and
are not defaulted. The name of each stanza is a logical AIX driver name referenced in
other stanzas.

The lines interpreted by the config and vrmconfig commands are:

config Indicates that this device has a customizaton helper program, which
provides assistance in decoding other options. This value is the name of
the helper program in the /ete directory. See “config” for more
information about customizaton helper programs.

major Identifies the major device number for this driver. This is mandatory.

mandatory Identifies this driver to be included whether or not the system file asks
for it. If this value is true, include this driver.

maxminor States the maximum number of minor devices this driver supports. This
number should agree with the driver code.

mpx Identifies a multiplexed special file when this value is true.

prefix Provides a prefix for the driver routines. For example, if this value is

abc, then the open routine in the driver is abcopen. This keyword is
mandatory. Note that all drivers are assumed to be archived into the
system object libraries.

routines Identifies the routines actually defined for this driver. The possible
routines are open, close, read, write, strategy, ioctl, init, and print.

tty Identifies whether the device is a terminal. If this value is true, the
device is a terminal and terminal structures are defined.

vdriver Names the VRM driver stanzas for the related VRM drivers.

Other lines can be included for interpretation by customizaton helper programs.

VRM Driver Stanzas

The iocn lines identify VRM driver stanzas. The name of each stanza is a logical VRM
driver name referenced in other stanzas.

The lines interpreted by the vrmconfig command are:

code Specifies the full path name of the file containing executable VRM code
that contains the table of contents format of the VRM driver.
copy Names a previously specified VRM driver stanza to be used instead of the

code keyword specification.

4-102 AIX Operating System Technical Reference

£\

TNL SN20-9869 (26 June 1987) to SC23-0809-0

master
ctype Indicates the code type, such as vdrvr. This is an informational keyword
for IBM customization helpers.
iocn Assigns the decimal I/O code number to this driver.
protocol If the value is true, indicates that this stanza describes a protocol
procedure.

Other lines can be included for interpretation by customizaton helper programs.

Miscellaneous System Parameters

Both the master and the system file can have option lines describing miscellaneous
system customizing and tuning options in the sysparms stanzas. Options in the system
file override those in the master file. These options include:

inetlen Specifies the Internet packet length for file transfer. (See the xftp
command in Interface Program for use with TCP[IP.) The default value is
1064 bytes.

level Specifies the level number of the operating system to generate into the
system.

msgheader Specifies the maximum number of system message headers allowed.

Other keywords can be added as needed.

Example

The following sample of a master file entry contains AIX Operating System and VRM
information.

* AIX drivers, identified by "major" keyword

* printer drivers

ub182mp:
major = 6
prefix = 1Ip
routines = open,close,write,ioctl,init
maxminor = 8

vdriver = v5182mp
config = vrcmain

u5182spl:
major = 6

File Formats 4-103

TNL SN20-9869 (26 June 1987) to SC23-0809-0

master
prefix = 1p
routines = open,close,write,ioctl,init
maxminor = 8
vdriver = v5182spl
config = vrcmain
ub182sp2:
major = 6
prefix = 1p
routines = open,close,write,ioctl,init
maxminor = 8

vdriver = v5182sp2
config = vrcmain

* VRM driver entries

v5182mp:
iocn = 2014
code = /vrm/vrmdd/vpptr
ctype = vdrvr
v5182spl:
iocn = 2015
code = /vrm/vrmdd/vpptr
ctype = vdrvr
v5182sp2:
iocn = 2016
code = /vrm/vrmdd/vpptr

ctype = vdrvr

4-104 AIX Operating System Technical Reference

£ ™

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

File
/ete/master

Related Information

In this book: “mount” on page 2-71, “vmount” on page 2-180.5, “mnttab” on page 4-108,
“attributes” on page 4-20, “system” on page 4-139, and “pty” on page 6-107.

The vrmconfig and config commands in AIX Operating System Commands Reference.

File Formats 4-104.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

£

<N

PN

4-104.2 AIX Operating System Technical Reference

S~

TNL SN20-9869 (26 June 1987) to SC23-0809-0
message

message

Purpose

Describes message, insert, and help formats.

Synopsis

include <msgl0.h >

Description

The puttext command is used to convert message, text insert, and help descriptions from
an format that can be edited into a format that can be accessed at run time. The
descriptions in the file can be accessed by using the msgimed, msgqued, msghelp, and
msgrtrv subroutines. The gettext command converts the descriptions back into a format
that can be edited.

The file header contains a unique identifier indicating the type of file, a file format version
number (currently 0), and the number of component entries in the file (currently, only one
component entry per file is supported). The header file has the following form:

struct filehdr { /* FILE HEADER */
char unique[8]; /* unique file identifier "MSGSFILE" */
unsigned short version; /* file format version number */
unsigned short numcomp; /* number of component entries in file */
s
Following the file header is the component index table. Each entry (currently, there is
only one) in the table identifies the component, the national language (EN for English),

the maximum index numbers that have been allocated and the offsets to the message index
table, insert index table and help index table.

struct cmp-indx { /* Component index table entry */
char compid[6]; /* component ID */
char langid{2]; /* language ID */
unsigned short flags; /* reserved for flags (zero) */

unsigned short maxnum[3]; /* max index numbers used for */
/* messages, inserts, and helps */
unsigned long offset[3]; /* offsets to msg, insert, and help */
/* index tables from start of file */

File Formats 4-105

TNL SN20-9869 (26 June 1987) to SC23-0809-0

message

unsigned long reserved; /* reserved */

s

The component index table is followed by the message index table and message text, the
insert index table and insert text, and help index table and help text. The header for each
entry in the message, insert, and help index tables identifies the component ID and index
number where the text actually resides, the offset to the text (and its length) if the text
actually resides in this entry, the version number (used with a common file), and an
indicator of whether the entry is current (can be accessed) or null.

/* Format of header for entries in the */
/* message, insert, and help index tables */
/* (Note that each index table must be */

/* aligned on a Tong integer boundary.) */

#define MSGHEADR
char compid[6];

unsigned short index;
unsigned long offset;
unsigned short textlen;

unsigned short version;
unsigned short flags;

unsigned short reservel;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

component ID for text source */
file ('======' or 'common') */
index # for text source (zero */
indicates same index # */
offset to text from start of */
index table */
text Tength (not incl null term) */
version */
flag definition */
01 off: status = null */

on: status = current */

(other flags reserved (zero)) */
reserved (zero) */

/* flag definitions for MSGHEADR */

#define mih_status 0x0001

/*
/*

null */
current */

off (0): status
on (1): status

Each entry in the insert index table contains only the header information.

struct ins-indx {

MSGHEADR
}s

4-106 AIX Operating System Technical Reference

/*
/*
/*

Insert table entry */
(contains header info. only) */
header information */

V2N

TNL SN20-9869 (26 June 1987) to SC23-0809-0
message

Each entry in the message index table and help index table contains the header
information plus the title length (used for helps), a message/help manual reference, and the
index number for the help associated with a message.

struct mih-indx { /* Entry in message or help index tables. May */
/* also be used as entry in insert index table */
/* if only header information is referenced. */

MSGHEADER /* header information */

unsigned short titlelen; /* title length (not incl null term) */
char dcompid[3]; /* displayed component ID */

char dmsgid[3]; /* displayed message help ID */

short helpindx; /* help index number (zero if no help, */

/* negative if help in common file) */
unsigned short reserved; /* reserved (zero) */
¥

Each index table must be aligned on a long integer boundary:

Related Information

In this book: “msghelp” on page 3-252, “msgimed” on page 3-255, “msgqued” on
page 3-259, and “msgrtrv” on page 3-263.

The gettext and puttext commands in AIX Operating System Commands Reference.

File Formats 4-107

TNL SN20-9869 (26 June 1987) to SC23-0809-0
mnttab

mnttab

Purpose

Provides a table of mounted file systems.

Synopsis

#include <mnttab.h >

Description

The mnttab file contains a table of devices, mounted by the mount command. Each
mnttab file entry has the following structure:

struct mnttab {
char mt_dev[100];
char mt_filsys[100];
short mt_ro-flg;
time_t mt_time;

s
The fields indicate the following:
mt_dev The null-padded name of the mounted special file.
mt_filsys The null-padded name of the mounted-on directory.

mt-ro—flg This flag indicates if the file system is mounted read only. A value other than 0
indicates the file system is mounted read only.

mt_time The time the file system was mounted.

The mountab parameter, which is defined while the system is being customized,
determines the number of simultaneously mounted file systems and therefore the maximum
number of entries in the /etc/mnttab file. This parameter changes when the mountab
parameter in the master file changes.

4-108 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
mnttab

Files
[etc/mnttab

Related Information

In this book: “filesystems” on page 4-64, “master” on page 4-98, and “system” on
page 4-139.

The config, mount, and umount commands in AIX Operating System Commands
Reference.

File Formats 4-109

TNL SN20-9869 (26 June 1987) to SC23-0809-0
options

options

Purpose

Defines the valid choices for each ddi option.

Description

The /etc/ddi/options file contains a sorted list of the valid choices for each keyword used
in ddi files. The devices command uses this file to display the valid choices for the
keywords during the add, change, and showdev subcommands.

Each line must follow the following format:
optionchoices
where:

option This field is exactly 20 characters long, is padded on the right with spaces, and
contains no tab characters. An option is one of the following:

keyword The keyword for which the valid choices are to be specified
keywordadapter ~ The keyword followed by the adapter name

keywordclass The keyword followed by the device class

keywordtype The keyword followed by the device type

keywordstanza The keyword followed by the name of the device stanza in the
system file.

The devices command looks for one of these combinations based on the setting
of the opts keyword in the kaf file for the device. See “kaf” on page 4-94 for
details about the opts keyword.

choices This field is exactly 29 characters long, is padded on the right with spaces, and
contains no tab characters.

Note: The /etc/ddi/options file must be sorted alphabetically by the option field. If it is
not sorted, then the devices command displays incorrect information about the options
available for a given keyword.

The use of extended characters in the ete/ddi/options file is not supported.

4-110 AIX Operating System Technical Reference

P

~

N

TNL SN20-9869 (26 June 1987) to SC23-0809-0
options

File
/ete/ddi/options

Related Information

In this book: “ddi” on page 4-43, “descriptions” on page 4-56, and “kaf” on page 4-94.

File Formats 4-111

TNL SN20-9869 (26 June 1987) to SC23-0809-0

passwd

passwd

Purpose

Contains passwords.

Library

Standard C Library (libc.a)

Synopsis

#finclude (pwd.h)

Description

The passwd file is an ASCII file that contains all the information that defines a user on
the system. It contains the following information:

Login name

Encrypted password
Numerical user ID
Numerical group ID
Additional data for each user
Initial current directory
Program to use as shell.

Each field is separated from the next by a colon. The file has general read permission and
the passwords are encrypted. Therefore, a user can use the file to map numerical user IDs
to names without potentially compromising the security of other users.

The adduser command is used to maintain this file. Programs should use the getpwent
subroutines to extract various fields in this file.

4-112 AIX Operating System Technical Reference

£ ™

passwd

If the user password field is null, the user has no password. If the program field is null,
the shell (/bin/sh) is used. The program field can contain parameters passed when the
exec system call is issued. Parameters are separated by space (such as a space or tab
characters). A \ (backslash) is used for escapement when a parameter contains a space.
The login command accepts the program name and as many as 14 parameters. Any more
than 14 parameters are ignored. A maximum of 4096 characters can be used for the
program name and its parameters. More than 4096 characters causes login to exit.
Parameters in this field can use symbolic escapement for the following special characters:
\n, \r, \v (produces 013), \b, \t, and \f. Additionally, \0 through \7 builds a one-byte octal
number. Anything else that is preceded with a \ (backslash) passes through.

The contents of the additional data for each user has the following format:

full_name | file_limit ; site—info
where:

full_name Contains the name of the user whose 8-character (or fewer) login name is in
the first field.

file_limit Specifies the maximum length file the user can create. See the login
command in AIX Operating System Commands Reference and the ulimit
system call.

site—info Contains any printable character other than a colon. This subfield is unused
by the system software and is available for information for each user as
required by applications specific to the site.

Any or all of the subfields can be omitted. If the file_limit subfield is omitted, the
preceding / (slash) is omitted and the system-wide default limit is used. If the site_info
subfield is omitted, the preceding ; (semi-colon) is also omitted.

Passwords

The encrypted password is 13 characters long. The characters used come from the &ncs.
(code page PO, see “data stream” on page 5-5) and may be uppercase or lowercase
characters, numerals, and the . (period) and / (slash) characters except when the password
is null. In this case, the encrypted password is also null. Password aging affects a
particular user if a comma and a string of characters that are not null follows the user
password in this file. Such a string must be initially introduced by a person with
superuser authority.

The first character of the age, M for example, is the maximum number of weeks a password
is valid. The next character, m for example, is the minimum number of weeks, before the
password can be changed. The remaining characters indicate when the password was last
changed, given as the number of weeks since the beginning of 1970 to the time of the
password change. A null string is equivalent to 0. M and m have numerical values in the
range 0 through 63. If m = M = 0, the user is forced to change the password at the next

File Formats 4-113

passwd

login. This causes the age to disappear from the password file entry. If m > M, only
someone with superuser authority is able to change the password.

File
Jetc/passwd

Related Information

In this book: “ulimit” on page 2-167, “a64l, 164a” on page 3-4, “crypt, encrypt” on
page 3-42, “getpwent, getpwuid, getpwnam, setpwent, endpwent” on page 3-219, “group” on
page 4-87, and “data stream” on page 5-5.

The login and passwd commands in AIX Operating System Commands Reference.

“Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

4-114 AIX Operating System Technical Reference

plot

plot

Purpose

Provides the graphics interface.

Description

The subroutines described in “plot” produce output files of the format outlined in this
section. The tplot commands interpret these graphics files for various devices, performing
the plotting instructions in the order that they appear.

A graphics file consists of a stream of plotting instructions. Each instruction consists of
an ASCII letter usually followed by bytes of binary information. A point is designated by
four bytes representing the x and y values; each value is a two-byte signed integer. The
last designated point in an 1, m, n, or p instruction becomes the current point for the next

instruction.

The following table lists each of the plot instructions and the corresponding plot

subroutines.

Instr Sub Description

a arc Draws the arc described by the following 12 bytes. The first four bytes
describe the center point (x, y) of the arc or circle. The second four
bytes describe the beginning point of the arc. The third four bytes
describe the ending point of the arc. Arcs are drawn counter clockwise.
The results are unpredictable if the three points do not really form an
arc.

c circle Draws a circle whose center point is defined by the first four bytes, and
whose radius is given as an integer in the following two bytes.

e erase Starts another frame of output.

f linemod Uses the following string, terminated by a new-line character, as the
style for drawing further lines. The styles are dotted, solid, long-dashed,
short-dashed, and dot-dashed.

1 line Draws a line from the point designated by the next four bytes to the

point designated by the following four bytes.

File Formats 4-115

plot

Instr Sub Description

m move The next four bytes designate a new current point.

n cont Draws a line from the current point to the point designated by the next
four bytes.

P point Plots the point designated by the next four bytes.

s space The next four bytes designate the lower left corner of the plotting area;

followed by four bytes for the upper right corner. The plot is magnified
or reduced to fit the device as closely as possible.

t label Places the following ASCII string so that its first character falls on the
current point. A new-line character terminates the string.

The space setting
space(0, 0, 480, 432);

exactly fills the plotting area with unity scaling for the IBM Personal Computer Graphics
Printer. The upper limit is immediately outside the plotting area, which is taken to be
square. Points outside the plotting area can be displayed on devices that do not have
square displays.

Related Information

In this book: “plot” on page 3-296 and “TERM” on page 5-72.
The graph and tplot commands in AIX Operating System Commands Reference.

4-116 AIX Operating System Technical Reference

ports

ports

Purpose

Describes the ports.

Description

The ports file contains the names and characteristics of all the system terminal ports. It
provides a convenient means to associate values with named keyword parameters on a
port-by-port basis, with defaults supplied as desired.

The getty process is the principal user of the information in this file. Since programs
using this file look for specific keyword parameters and ignore all others, parameters other
than those discussed here can be added to this file as necessary.

File Format

The ports file consists of one or more named stanzas usually separated by blank lines.
Each stanza begins with its name followed by a colon, and contains assignments of values
to keyword attributes. The values, in turn, may be alphanumeric strings or arbitrary
character strings enclosed in double quotes.

Stanzas headed by the name default specify attribute-value pairs that are associated with
all of the ports following it to the next default stanza. Explicit values within a port stanza
override this association.

Port-Control Parameters

Most of the parameters in the ports file are port controls for login terminals. Because
there are system defaults, specified in the getty process, it is not usually necessary to
specify more than a few attributes in the ports file, as in the example. The port control
parameters and their meanings are as follows:

enabled The init program uses this attribute to determine whether or not to create a
logger on the port. If the port permits a logger, the value is true; otherwise
the value is false. Note that penable, pdisable, and phold commands
override the value specified. See the penable command in AIX Operating
System Commands Reference for more information about these commands.

eof An octal integer specifying the character code that causes an end of file to
be generated from the terminal. The system default is 004 (or 0x04), the
ASCII EOT character, which is generated by Ctrl-D.

File Formats 4-117

ports

eol

erase

herald

imap

intr

kill

lock

log

logger

logmodes

An optional and seldom used alternate line termination character to use in
addition to the ASCII new-line (line-feed) character.

An octal integer specifying the character code that deletes the previously
received character. The system default for the erase character is 010 (or
0x08), Ctrl-h, which is generated by the Backspace key on many terminals.

An arbitrary string, enclosed in double quotes, printed by the getty process
to prompt for login. The C language \(backslash) escapes \r, \n, \t, \b, and
\f are recognized as carriage return, new-line, tab, backspace, and formfeed,
respectively.

This attribute is used by getty to set the terminal input map. If imap is not
specified, getty resets the map to the system default.

An octal integer specifying the character code that interrupts the running
process. The system default is 0177 (or 0x7f), which is usually generated by
a key labeled Del or Rubout.

An octal integer specifying the character code that deletes the input line.
system default for the kill character is 025 (or 0x15), Ctrl-u, which is the
ASCII NAK character.

This attribute is used to request port locking. If the value is true, init
creates a file in [etc/locks when the port is enabled and deletes the lock file
when the port is disabled. Similarly, penable does not enable a port whose
lock attribute is frue when the corresponding lock file exists. Programs
using the port for some other purpose (such as a link between processors)
should check for an outstanding lock (and create a lock file, if necessary)
before opening the port.

This parameter causes logins to be recorded for a port on the console or in
file /usr/adm/sulog. If log=true, all logins are reported, and if log =root,
logins by root (superuser) are recorded. See super parameter on 4-119 for
related information.

A character string giving the names the program to use at login. The
default is /bin/login.

Console modes in effect while prompting for and reading in the user name.
Modes are specified as a series of terminal options separated by a + (plus).
Terminal options are as listed in the stty command. All listed modes not
preceded with - (dash) are recognized. For example, the default logmodes
parameter is specified as:

logmodes = cread+cs8+hupcl+echoe+echok

Because a speed value is not recognized in logmodes under any
circumstances, the baud rate must be set with the speed parameter (see
below).

4-118 AIX Operating System Technical Reference

ports

omap

owner

parity

program

protection

quit

runmodes

speed

super

term

See the discussion of ICANON under “termio” on page 6-114.

This attribute is used by getty to set the terminal output map. If omap is
not specified, getty resets the map to the system default.

Normally, when a port is logged in, the login program sets the logged-in
user to be the owner of that port. Specifying an owner (either a UID or user
name), the system manager forces the getty process to set ownership even
before opening the port.

The values odd, even, and none cause the generation of odd, even, and no
parity, respectively, while inpck, ignpar, and parmrk cause the checking

input for parity errors, ignoring input characters with parity errors, and
“marking” input parity errors as specified under “termio” on page 6-114.
These values can be combined, as in parity=odd+inpck.

If a value is specified, it is taken as the name of a program to run
immediately after setting the logmodes. This feature is useful for
establishing special purpose server ports that respond to a connection with
a special protocol handler. If the special assignment program =HOLD is
specified, no program runs on the port, but the logmodes, ownership, and
protection are set and the port is held open. This is useful to keep the
desired modes associated with a port that is occasionally seized for some
special purpose.

Normally the protection on terminal is set to rw--w--w- (octal 622 or 0x192).
The protection parameter overrides this default. The value can be set to an
octal mask or a string such as rw-rw-rw- (octal 666 or 0x1b6).

An octal integer specifying the character code that causes the running
process to abort. The system default is 026 (or 0x16), which is generated by
pressing Ctrl-V.

Console modes in effect after the user name is read. The mode in which the
port is left, specified similar to logmodes.

A decimal integer from the set {50, 75, 110, 134.5, 150, 300, 600, 1200, 1800,
2000, 2400, 3600, 4800, 7200, 9600, 19200} depending on the hardware
capability.

This parameter is passed on the logger in its environment. If super =false,
then login does not allow root (the superuser) to log in on the port. This is
useful for security on off-site terminal connections such as telephone links.
(See log parameter, on page 4-118.)

This parameter is passed to the logger and shell in their environment
(“environment” on page 5-47) in the variable TERM. Some application
software uses this information to determine the type of terminal the user is
using.

File Formats 4-119

ports

time See the discussion of ICANON under “termio” on page 6-114.

timeout A decimal integer. If a user name is not specified before the given number
of seconds, the getty process advances to the next port setting, or exits if
all settings were exhausted.

Multiple values, separated by commas, can be specified as in the speed = 300,1200 line for
dial-in terminals. This causes the port to be set up according to the first set of values for
each attribute. If a framing error occurs, as a result of a user-generated BREAK on the
line or a speed mismatch between the terminal and the set speed, the getty process
advances to the next value on the list.

If multiple specifications occur for more than one parameter, all are advanced at the same
time. Thus, a specification such as:

speed=300,1200
parity=none,odd+inpck

first tries the line at 300 baud with no parity. If a framing error occurs, it tries 1200 baud
generation and checks for odd parity.

Other Port Parameters

The ports has all the port-specific information, not just information about loggers. The
other parameters in the file are:

loc The location of the terminal connected to the port. This parameter is
presently unused by any RT PC software. Because programs that access
this file ignore keywords they do not use, helpful information can be added
to keep all port-specific information together in one area.

printer The hard copy device used for output from optional word processing
packages.

Example

4-120

The following example of a ports file illustrates some of its features:

default:
enabled = false
speed = 9600

herald = "\033[H\033[J\rRT PC(noname)\r\nlogin:
printer = 1p0

term = dumb
erase = 010
kill = 025
intr = 0177

AIX Operating System Technical Reference

ports

/dev/console:
loc = "console”
term = hft

enabled = true
herald = *\033[H\033[J\rRT PC(/dev/console)\r\nlogin:"

Files

/etc/ports
Jetc/locks

Related Information

In this book: “attributes” on page 4-20, “connect.con” on page 4-33, “environment” on
page 5-47, and “termio” on page 6-114.

The su, penable, getty, login, init, and stty commands in AIX Operating System
Commands Reference.

“Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

File Formats 4-121

portstatus

portstatus

Purpose

Centralizes commands to control ports.

Description

The penable, pdisable, and phold commands communicate with the init command (the
process that controls loggers) through the /etc/portstatus file. See the penable command
in AIX Operating System Commands Reference for more information on these commands.
The format of this file is:

struct portstatus

{ char ps-line[14]; /* device name */
char ps_stat; /* current status */
char ps-_rqgst; /* requested status */
¥
#define ENABLE 01 /* spawn logger */
#define DISABLE 02 /* kill Togger */
#define HOLD 04 /* spawn no new logger */

The fields are explained as follows:

ps_line Names the special file for the port, tty01, for example.

ps-rqst Used by the penable command to request changes in the enabling of a port.
ps-stat Used by the init command to show the current state of the port.

The penable command, with the -i flag specified, automatically initializes this file. If this
file does not exist or is damaged, the init command cannot enable the ports properly.

File

[etc/portstatus

4-122 AIX Operating System Technical Reference

~_7

TNL SN20-9869 (26 June 1987) to SC23-0809-0
portstatus

Related Information

The penable and init commands in AIX Operating System Commands Reference.

File Formats 4-123

TNL SN20-9869 (26 June 1987) to SC23-0809-0
predefined

predefined

Purpose

Provides information for predefined devices.

Description

The predefined file contains information about hardware adapters and devices that is used
by the devices command. Some of these devices may not be present in a particular
configuration, but all of them are supported by the system. The predefined file contains
information needed when adding one of these devices so that you do not have to supply the
information yourself. The size of this file increases with new entries as additional licensed
programs are installed in the system.

The devices command uses the information in this file to set up stanzas in the system and
gconfig files when devices are added to the system. Note that information in this file has
no effect on the system until it is moved to a stanza in the system or gconfig file.

The predefined file is similar in structure and content to the system file, and its stanzas
can contain any of the keywords that are allowed in the system file. See “system” on
page 4-139 for a description of the keywords that can appear in stanzas of these files.

The use of extended characters in the predefined file is not supported.
The predefined file contains several special stanzas:

defqueue Used by the devices command to create the queue stanza in the gconfig file
when a printer or plotter is added.

defdevice Used by the devices command to create the device stanza in the qconfig file
when a printer or plotter is added.

default Contains keywords and their values that are common to all device stanzas.

adpts Contains a list of adapters with the code number and description that the
devices command uses to identify each one.

addrs Contains a list of adapters and their corresponding adapter type and address.

4-124 AIX Operating System Technical Reference

PN

predefined

Example

The following shows sample entries of the predefined file.

defqueue:
argname = none
device = none

defdevice:
file = /dev/none
backend = /usr/1pd/piobe

default:
modes = rw-rw-rw-
owner = root

adpts:
mp = 49

* IBM Mono Disp & Paral Prntr
spl = 23

* IBM Ser/Par Adptr, Primary
sp2 = 23

* IBM Ser/Par Adptr, Secondary
rs232cl = 35

addrs:
2A03BC = mp
2A0378 = splpar
2A0278 = sp2par
2303F8 = spl
2302F8 = sp2
351230 = rs232cl

5182:

* IBM PC Color Printer (5182)
name = 5182
nname = 5182
driver = u5182
crname = true

File Formats 4-125

predefined

minor = ¢
vint = 4
iodn
kaf_file = /etc/ddi/pprinter.kaf
kaf_use = kparallel

file = /etc/ddi/pprinter

use = d5182

noddi = false

dtype = printer
* Printer

switchable = true

* Coprocessor Device
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = 1p
noshow = false
aflag = true

* adapter description
adp = mp,spl,sp2

File
[ete/predefined

Related Information

In this book: “attributes” on page 4-20 and “system” on page 4-139.

4-126 AIX Operating System Technical Reference

profile

profile

Purpose

Sets the user environment at login time.

Description

The profile file contains commands to be executed at login and variable assignments to be
set and exported into the environment. The /ete/profile file contains commands executed
by all users at login.

After the login program adds the LOGNAME (login name) and HOME (login directory)
parameters to the environment, the commands in SHOME/.profile are executed, if it is
present. The .profile file is the individual user profile that overrides the variables set in
the profile file and is used to tailor the user environment variables set in /etc/profile.
The .profile file is often used to set exported environment variables and terminal modes.
The person who customizes the system can use adduser to set default .profile files in each
user home directory. Users can tailor their environment as desired by modifying their
.profile file.

Example

The following example is typical of a /etc/profile file:

Set file creation mask

unmask 022

Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME

* Add my /bin directory to the shell search sequence
rATH=/bin:/usr/bin:/etc::

Set terminal type

TERM=hft

Make some environment variables global

export MAIL PATH TERM

File Formats 4-127

profile

Files
$HOME/.profile

Jetc/profile
[etc/profile.dos

Related Information

In this book: “environment” on page 5-47 and “TERM” on page 5-72.

The env, login, mail, sh, stty, and su commands in AIX Operating System Commands
Reference.

4-128 AIX Operating System Technical Reference

qconfig

qconfig

Purpose

Configures a printer queueing system,

Description

The /etc/gconfig file describes the queues and devices available for use by the print
command, which places requests on a queue, and the qdaemon command, which removes
requests from the queue and processes them. The /ete/qconfig file is an attribute file. See
“attributes” on page 4-20 for details about the format of attribute files.

Some stanzas in this file describe queues, and other stanzas describe devices. Every queue
stanza requires that one or more device stanzas immediately follow it in the file. The first
queue stanza describes the default queue. The print command uses this queue when it
receives no queue parameter.

The name of a queue stanza must be 1 to 3 characters long. The following table shows
some of the field names along with some of the possible values that appear in this file:

acctfile Identifies the file used to save print accounting information. FALSE, the
default, indicates suppress accounting. If the named file does not exist, no
accounting is done.

argname Identifies the queue name identifier that is used in the print command to
specify the queue.

device Identifies the symbolic name that refers to the device stanza.

discipline Defines the queue serving algorithm. fcfs, the default, means first come first
served. sjn means shortest job next.

friend Indicates whether the backend updates the status file and responds to
terminate signals. TRUE is the default. FALSE indicates it does not.
up Defines the state of the queue. TRUE, the default, indicates that it is

running. FALSE indicates that it is not running.

If a field is omitted, its default value is assumed. The default values for a queue stanza

are:
friend = TRUE
discipline = fcfs
up = TRUE
acctfile = FALSE

File Formats 4-129

gconfig

Also, the default argname value is the name of the stanza preceded by a - (dash). The
device field cannot be omitted.

The name of a device stanza is arbitrary. The fields that can appear in it stanza are:

access

align
backend

feed

file

header

trailer

Specifies the type of access the backend has to the file specified by the file
field. The value of access is write if the backend has write access to the file,
or both if it has both read and write access. This field is ignored if the file
field has the value FALSE.

Specifies whether the backend sends a form-feed control before starting the
job if the printer was idle. The default is FALSE.

Specifies the full path name of the backend, optionally followed by flags and
parameters to be passed to it.

Specifies the number of separator pages to print when the device becomes idle,
or the value never, which indicates that the backend is not to print separator

pages.

Identifies the special file where the output of backend is to be redirected.
FALSE, the default, indicates no redirection. In this case, the backend opens
the output file.

Specifies whether a header page prints before each job or group of jobs.
never, the default, indicates no header page at all. always means a header
page before each job. group means a header before each group of jobs for the
same user.

Specifies whether a trailer page prints after each job or group of jobs. never,
the default, means no trailer page at all. always means a trailer page after
each job. group means a trailer page after each group of jobs for the same
user.

The gdaemon places the information contained in the feed, header, trailer, and align
fields into a status file that is sent to the backend. Backends that do not update the status
file do not use the information it contains.

If a field is omitted, its default value is assumed. The backend field cannot be omitted.
The default values in a device stanza are:

file = FALSE
access = write
feed = never
header = never
trailer = never
align = FALSE

4-130 AIX Operating System Technical Reference

qconfig

The print command automatically converts the ASCII geonfig file to binary when the
binary version is missing or older than the ASCII version. The binary version is found in
/etc/qeconfig.bin.

Unlike the format of the ports file, the gconfig file format does not allow default stanzas.

Examples .

1.

The batch queue supplied with the AIX system might contain these stanzas:

bsh:
argname = bsh
friend = FALSE
discipline = fcfs
device = bshdev

bshdev:
backend = /bin/sh

To run a shell procedure called myproc using this batch queue, type:

print bsh myproc

The queuing system runs the files one at a time, in the order submitted. The qdaemon
process redirects standard input, standard output, and standard error to the /dev/null
file.

To allow two batch jobs to run at once:

bsh:
argname = save
friend = FALSE
discipline = fcfs
device = bshl,bsh2
bshl:
backend = /bin/sh
bsh2:
backend = /bin/sh

File Formats 4-131

gconfig

Files

/etc/qconfig
/etc/qconfig.bin
[usr/lpd/digest

Related Information

In this book: “attributes” on page 4-20.

The print, lp, and qdaemon commands in AIX Operating System Commands Reference.

4-132 AIX Operating System Technical Reference

rasconf

rasconf

Purpose

Defines the reliability, availability, and serviceability (RAS) configuration file.

Description

The rasconf file defines attributes of the reliability, availability, and serviceability (RAS)
system. Initially, RAS logging is inactive and must be activated before any RAS data can
be collected.

This attribute file consists of stanzas that govern the actions of daemons associated with
individual RAS devices. Each stanza name is the name of the associated RAS device.

The following attributes are valid:
file = file Specifies the file into which the daemon will write the RAS information.

size = blocks Specifies the maximum size, in 1024-byte blocks, to which the daemon will
allow the file to grow.

Example

A typical rasconf file can contain the following:

/dev/osm:
file = /usr/adm/ras/osm
size = 100

/dev/error:
file = Jusr/adm/ras/errfile
size = 50

/dev/trace:
file = /Jusr/adm/ras/trcfile
size = 80
buffer = 6

File Formats 4-133

rasconf

File
[etc/rasconf

Related Information

In this book: “attributes” on page 4-20, “error” on page 6-15, “osm” on page 6-105, and
“trace” on page 6-128.

The errdemon and trace commands in AIX Operating System Commands Reference.

4-134 AIX Operating System Technical Reference

sccesfile

scesfile

Purpose

Contains the Source Code Control System (SCCS) information.

Description

The SCCS file is an ASCII file consisting of the following six logical parts:
checksum The sum value of all characters, except the characters in the first line.

delta table Information about each delta including type, SCCS identification (SID)
date and time of creation, and comments.

user names Login names and numerical group IDs, or both, of users who are allowed to
add or remove deltas from the SCCS file.

flags Definitions of internal keywords.
comments Descriptive information about the file.
body The actual text lines intermixed with control lines.

There are lines throughout an SCCS file that begin with the ASCII SOH (start of heading)
character (octal 001). This character is called the control character and is represented
graphically as @ (at sign) in the following text. Any line described in the following text
not shown beginning with the control character cannot begin with the control character.

The DDDDD entries represent a 5-digit string (a number from 00000 to 99999).
The following describes each logical part of an SCCS file.

Checksum

The checksum is the first line of an SCCS file. The value of the checksum is the sum of all
characters, except those of the first line. The @h designates a magic number of 064001
octal (or 0x6801). The format of the line is:

@hDDDDD

File Formats 4-135

sccesfile

Delta Table

The delta table consists of a variable number of entries such as:

@sDDDDD/DDDDD/DDDDD

@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD . . .

@x DDDDD . . .

@g DDDDD . . .

@m <MR number >

@c <comments> . . .

(@e
@s The first line which contains the number of lines inserted or deleted or unchanged
respectively.
@d The second line which contains:
e The type of delta. D designates normal delta and R designates removed.
e The SCCS ID (SID) of the delta.
® The date and time the delta was created.

e The login name that corresponds to the real user ID at the time the delta was
created.

e The serial numbers of the delta and its predecessor.
@i Contains the serial numbers of the deltas included. This line is optional.
@x Contains the serial numbers of deltas excluded. This line is optional.
@g Contains the serial numbers of the deltas ignored. This line is optional.

@m Optional lines, each one containing one modification request (MR) number
associated with the delta.

@c Comment lines associated with the delta.
@e Ends the delta table entry.

4-136 AIX Operating System Technical Reference

sccesfile

User Names

The list of login names and numerical group IDs, or both, of users who can add deltas to
the file, separated by new-line characters. The bracketing lines @u and @U surround the
lines containing the list. An empty list allows any user to make a delta.

Flags

Flags are keywords used internally in the system. For more information about their use,
see the admin command in AIX Operating System Commands Reference. The format of
each flag line is:

@f <flag> <optional text >
The following flags are defined:

@ft <type of program >
@fv <program name >
@fi

@fb

@fm <module name >
@ff <floor>

@fc <ceiling>

@fd <default-sid >
@fin

@f

@fl <lock-releases>
@fq <user defined >

The flags are used as follows:

b Allows the use of the -b option on the get command to cause a branch in the delta
tree.

c Defines the highest release number, less than or equal to 9999, which can be
retrieved by a get command for editing. This release number is called the ceiling
release number.

Defines the default SID to be used when one is not specified with a get command.

f Defines the lowest release number between 0 and 9999, which can be retrieved by a
get command for editing. This release number is called the floor release number.

i Controls the error warning message “No ID keywords”. When this flag is not
present, this message is only a warning. When this flag is present, the file is not
used and the delta is not made.

j Causes the get command to allow concurrent edits of the same base SID.

1 Defines a list of releases that cannot be edited with get using the -e flag.

File Formats 4-137

sccesfile

m Defines the first choice for the replacement text of the %M% identification keyword.

Causes the delta command to insert a delta that applies no changes for those skipped
releases when a delta for a new release is made. For example, delta 5.1 is made after
delta 2.1, skipping releases 3 and 4. When this flag is omitted, it causes skipped
releases to be completely empty.

-]

q Defines the replacement for the %Q% identification keyword.
Defines the replacement for the % Y% identification keyword.

v Controls prompting for MR numbers in addition to comments. If optional text is
present, it defines an MR number validity checking program.

Comments

Typically, the comments section contains a description of the purpose of the file.
Bracketing lines @t and @T surrounding text designate the comments section.

Body

The body section consists of control and text lines. Control lines begin with the control
character, text lines do not. There are three kinds of control lines: insert, delete, and
end, represented by:

@I DDDDD
@D DDDDD
@E DDDDD

respectively. The digit string is the serial number corresponding to the delta for the
control line.

Related Information

The admin, delta, get, and.prs commands in AIX Operating System Commands Reference.

4-138 AIX Operating System Technical Reference

S~

TNL SN20-9869 (26 June 1987) to SC23-0809-0
system

system

Purpose

Identifies the system devices.

Description

The system file contains entries for currently configured real devices, virtual devices, and
device managers. Some of this information is used by the Virtual Resource Manager
(VRM) to establish the default running environment.

The system file is an attribute file containing stanzas that generally describe special files
including information about AIX drivers or what non-standard VRM drivers are needed to
support them. See “attributes” on page 4-20 for a description of attribute files. Also
included is data for the Define_Device supervisor calls (SVCs) to the VRM if needed. See
the vrmeconfig program in AIX Operating System Commands Reference for more
information.

Each special file named in the system file refers to a device driver entry in the master
file. The driver entries specify the AIX device drivers to be configured. All drivers needed
for specified special files are included, and those drivers marked as mandatory. Two driver
entries may specify the same major device number where the same driver controls devices
with different I/O code numbers.

The name of each stanza is the simple name of the special file.
The use of extended characters in the system file is not supported.
adp Indicates the valid adapter names for the device described in the stanza.

aflag Is a required keyword that indicates whether both an adapter and an AIX
device driver are associated with the device described in the stanza. If the
value is false, then the device has either an AIX device driver or a VRM
device driver (and, in most cases, an adapter), but not both.

If true, then the devices command constructs the name of the ddi stanza
when adding the device by concatenating the value of the use keyword,
the adapter name that the user choses from the adp list, and a port
number.

If false, then devices constructs the name of the ddi stanza by
concatenating the value of the use keyword and a pseudo port number.
Either a maxminor keyword or a maxdev keyword must be defined if the
value of aflag is false. If the maxminor keyword is defined, which
indicates that this device has only an AIX device driver, then the pseudo

File Formats 4-139

TNL SN20-9869 (26 June 1987) to SC23-0809-0
system

4-140

crname

ddi

dname

driver

dtype

file
iodn

kaf_file

kaf—use

maxdev

minor

modes

port number is the next unused integer between 0 and maxminor - 1. If
the maxdev keyword is defined, which indicates that this device has only
a VRM device driver, then the pseudo port number is the next unused
integer between 0 and maxdev - 1.

The showall subcommand of the devices command displays the comment
line that immediately follows the aflag definition as a description of the
device or adapter.

Is a required keyword that indicates by a value of true or false whether
the devices command should create a new driver name for the device.

Specifies the hexadecimal bytes to be passed to the VRM Define_Device
SVC. If a customize helper program is invoked, it determines the data to
be passed. In that case, this attribute is not used.

Indicates the prefix name that is used to create the name of the device
stanza in the /etc/system file and the special file in the /dev directory.
The devices command uses this value when it creates a stanza name for a
new special file.

Identifies the associated driver in the master file. This is mandatory in
all device stanzas.

Specifies the class of the device. Examples of this are printer and disk.
The devices command displays this value when asking the user to choose
a device class. It also uses this value to construct a list of device classes.

Identifies the file that contains the stanzas included by the use attribute.
This is the /etc/ddi file associated with the device.

Specifies the I/O device number to use. If omitted, no Define_Device SVC
is sent to the VRM.

Indicates the name of the keyword attribute file to be used by the
customization helper programs for the device described in the device
stanza.

Indicates the name of the stanza in the kaf-file that contains information
about the attributes for the device.

Specifies the maximum number of IODNs supported by the VRM device
driver for this adapter. This is equivalent to the maximum number of
adapters that can be installed times the number of ports on each adapter.

Has a value of the form cn, where c is either b to denote a block device, or
c to denote a character device. n is the minor device number.

Sets the protection bits for the special file, specified in the form
rwxrwxrwx. Hyphens replace modes that are turned off, for example,
YW=Y=-=F--.

AIX Operating System Technical Reference

£ ™

P N

system

name

native
nname

nocopy

noddi

nodelete

nodl

noduplicate

noipl

noshow

nospecial

owner

port

protocol

Is a required keyword that identifies the type of the driver or the
four-character name passed to the VRM using the Define_Device SVC.
The default name is the first two and last two characters of the special file
name.

Identifies the model. A value true indicates IBM RT PC 6150, false
indicates IBM RT PC 6151.

Is a required keyword that indicates the name of the device, adapter, and
port number (if applicable).

The value true indicates that the associated VRM device driver stanza in
/ete/master cannot contain the copy keyword, but must specify the code
keyword instead.

Indicates whether any device-dependent information is associated with the
device. The value true indicates there is none. If noddi=true, then the
change subcommand of the devices command does not allow the user to
change device characteristics.

Indicates whether to delete the special file when this driver is removed.
When this value is true, no attempt is made to delete the special file.

Indicates whether the device can be deleted from the system by the
devices command. The value true indicates the device cannot be deleted
using this command.

Indicates whether another device of this type can be added to the system.
The value true indicates another device cannot be added.

Indicates whether this stanza is processed at initial program load (IPL)
time. When this value is true, this stanza is not processed at system initial
program load (IPL) time.

Indicates whether the devices command displays information from the
stanza to the user. If noshow =false, then the showdev subcommand of
the devices command displays all device characteristics and the showall
subcommand displays the device.

When this value is true, no special file (/dev file) is to be created.

Specifies the name of the owner assigned to the /dev special file when it is
created.

Lists the number of ports on each adapter in the adp keyword. There is a
one to one correspondence between each adapter and its number of ports.
If the device being added is the adapter, port is the number of ports on the
adapter. This keyword is required if the aflag keyword is true.

Indicates whether this stanza is used by a protocol procedure. When this
value is true, this stanza is used by a protocol procedure.

File Formats 4-141

system

shared

specproc

switchable

type

uinfo

use

vdmgr

vint

Sets the shared bit for the VRM Define_Device SVC. When this value is
true, the shared bit is set.

Indicates the name of the special processing routine that is to be invoked
when customizing the system for the device. See “cfgadev” on page 3-15
for information about the application program interface to this feature.

Indicates whether the device can be shared by the coprocessor. The value
true indicates that it can be shared. If so, then the devices command
displays this as a device that can be added to the coprocessor.

Defines a device manager rather than a device driver when this value is
manager and used with the Define_Device SVC.

Specifies the hexadecimal bytes to pass to the CFUDRYV type ioctl call to
configure a AIX device driver. If a customization helper program is
invoked, it determines the data to pass. In that case, this attribute is not
used.

Identifies a stanza to be logically included in the current stanza. If a file
attribute is present, the file is searched to find the indicated stanza for
device dependent information. This keyword is required if the file
keyword is present.

Defines device drivers controlled by a manager. Values are the names of
stanzas in the system file, separated by commas. The controlled drivers
should include nospecial = true.

Identifies the virtual interrupt level to use. Level 4 is the only supported
level. If not specified, the default value is vint=4.

Other parameters can be given for special customization helper programs.

Miscellaneous System Parameters

Both the master and the system files can have option lines in the default stanzas
describing miscellaneous system customizing and tuning options. Options in the system
file override those in the master file. See “master” on page 4-98 for a list of these

parameters.

Other lines can be added as needed.

4-142 AIX Operating System Technical Reference

system

Example

The following is an excerpt of the system file entries.

* * gystem - actual devices

default:
modes = rw-rw-rw-
owner = root
native = true

Tpl:

* IBM PC Color Printer
name = 5182
crname = true
minor = cl
vint = 4
iodn = 12003

kaf_file = /etc/ddi/pprinter.kaf
kaf-use = kparallel
file = /etc/ddi/pprinter
noddi = false
dtype = printer
nodelete = true

* Printer
switchable = true
specproc =cfgaqcfg
shared = false
noduplicate = false

dname = 1p
noshow = false
aflag = true

* IBM Mono Disp & Paral Prntr
adp = mp,spl,sp2
use = d5182mp
nname = 5182mp
driver = u5182mp

File Formats 4-143

system

1p2:
* IBM PC Color Printer (5182)
name = 5182
crname = true
minor = c2
vint = 4
iodn = 12004
kaf_-file = /etc/ddi/pprinter.kaf
kaf_use = kparallel
file = /etc/ddi/pprinter
noddi = false
dtype = printer
* Printer

switchable = true
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = 1p
noshow = false
aflag = true

* IBM Ser/Par Adptr, Primary
adp = mp,spq,sp2
use = d5182spl
nname = 5182spl
driver = ub5182spl

1p3:

* IBM PC Color Printer (5182)
name = 5182
crname = true
minor = c3
vint = 4
iodn = 12005
kaf-file = /etc/ddi/pprinter.kaf
kaf_use = /etc/ddi/pprinter
noddi = false
dtype = printer

* Printer

4-144 AIX Operating System Technical Reference

system

switchable = true
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = 1p
noshow = false
aflag = true

* IBM Ser/Par Adptr, Secondary
adp = mp,spl,sp2
use = d5182sp2
nname = 5182sp2
driver = ub182sp?

File
/ete/system

Related Information

In this book: “attributes” on page 4-20, “ddi” on page 4-43, “master” on page 4-98, and

“predefined” on page 4-124.

The config, devices, and vrmconfig commands in AIX Operating System Commands

Reference.

File Formats 4-145

tar

tar

Purpose

Describes the tape archive format.

Description

The tar command reads and writes tapes in tape archive format. A tar tape consists of
several 512-byte logical blocks that can be grouped (on magnetic tape) into records, which
are some constant multiple of 512-byte blocks long. Block in the following description
means logical block.

The following is the format of a file header that precedes each disk file written on the tape:

struct {
char name[100];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[100];
s
All fields, except linkflag, are ASCII null-terminated strings. Numeric fields can contain
leading blanks. The fields have the following meanings:

chksum Contains a byte-by-byte sum of the entire header block assuming that the
chksum field is all blanks.

gid Contains the group identification of the file, in octal.

linkflag Contains a 1 if this file is a link to a previous file on the the tape, otherwise
null.

linkname Contains the name of a file if linkflag has a value of 1. The file named in
this field is linked to the name file.

mode Contains the mode of the file, which includes the protection bits, setuid bits,
setgid bits, and file type, in octal.

4-146 AIX Operating System Technical Reference

tar

mtime Contains the modification time, in octal. This field gives the major/minor
device number for special files.

name Contains the name of the file.

size Contains the size in bytes, in octal. This field is 0 for special files.

uid Contains the user identification of the file, in octal.

Unused bytes are null. Following the file header block are the data blocks of the file. The
last block is null-padded if necessary. Two null blocks designate the end of the tape.

Directories and special files are treated in a slightly different way. A directory size is 0,
meaning no data blocks follow, and its name ends with a / (slash). A special file is also
written with 0 size. Its major/minor device number is in the mtime field.

Related Information

The tar command in AIX Operating System Commands Reference.

File Formats 4-147

terminfo

terminfo

Purpose

Describes terminals by capability.

Description

A terminfo file is a data base that describes terminals, defining their capabilities and their
methods of operation. It is used by various programs, including the Extended Curses
Library (libcur.a) and the vi editor. The information defined includes initialization
sequences, padding requirements, cursor positioning, and other command sequences that
control specific terminals.

This section explains the terminfo source file format. Before a terminfo source file can
be used, it must be compiled using the tic command, which is described in AIX Operating
System Commands Reference. You can edit and modify these source files, such as
Jusr/lib/terminfo/ibm.ti, which describes IBM terminals, and /usr/lib/terminfo/dec.ti,
which describes DEC terminals.

See “TERM” on page 5-72 for a list of some of the terminals supported by predefined
terminfo data base files and the corresponding values for the TERM environment
variable.

Each terminfo entry consists of a number of fields separated by commas, ignoring any
white space between commas. The first field for each terminal gives the various names the
terminal is known separated by | (vertical bar) characters. The first name given should be
the most common abbreviation for the terminal, the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms for the terminal
name. All names except the last should be in lowercase and not contain blanks. The last
name can contain uppercase characters for readability.

Terminal names (except the last) should be chosen using the following conventions. A root
name should be chosen to represent the particular hardware class of the terminal. This
name should not contain hyphens, except to avoid synonyms that conflict with other
names. Possible modes for the hardware or user preferences are indicated by appending a
- (hyphen) and an indicator of the mode to the root name. Thus, a terminal in 132 column
mode would be term-w. The following suffixes should be used where possible:

4-148 AIX Operating System Technical Reference

PN

terminfo

Suffix Meaning Example
-am With automatic margins (usually default) term-am
-c Color mode term-c

-W Wide mode (more than 80 columns) term-w
-nam Without automatic margins term-nam
-n Number of lines on the screen term-60
-na No arrow keys (leave them in local) term-na
-np Number of pages of memory term-4p
v Reverse video term-rv

Types of Capabilities

Capabilities in terminfo are of three types: boolean, numeric, and string. Boolean
capabilities indicate that the terminal has some particular feature. Boolean capabilities
are true if the corresponding name is in the terminal description. Numeric capabilities
give the size of the terminal or the size of particular delays. String capabilities give a
sequence that can be used to perform particular terminal operations.

Entries can continue onto multiple lines by placing white space at the beginning of each
subsequent line. Comments are included on lines beginning with the # (sharp sign)
character.

List of Capabilities

The following table shows VARIABLE, which is the name the programmer uses to access
the terminfo capability. The CAP NAME (capability name) is the short name used in the
text of the data base, and is used by a person updating the database. The I. CODE is the
2-letter internal code used in the compiled data base, and always corresponds to a termcap
capability name.

Capability names have no absolute length limit. An informal limit of five characters is
adopted to keep them short and to allow the tabs in the source file caps to be aligned.
Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64
standard of 1979.

(P) Indicates that padding may be specified.
(G) Indicates that the string is passed through tparm with parameters as given (#i).
(*) Indicates that padding may be based on the number of lines affected.

(#i) Indicates the ith parameter.

File Formats 4-149

terminfo

VARIABLE
Booleans:
auto-left_margin

auto_right_margin
beehive_glitch

ceol-standout_glitch
eat_newline_glitch
erase_overstrike
generic_type

hard-copy
has_meta_key

has_status—line
insert_null_glitch
memory—above
memory—below
move-insert—mode
move—standout—mode
over—_strike
status—line_esc—ok

teleray—_glitch
tilde—glitch
transparent_underline
xon-—xoff

Numbers:

columns

init_tabs

lines

lines-of _memory

CAP
NAME

bw
xsb

xenl

xon

cols
it
lines

Im

I.
CODE DESCRIPTION

xt
hz

ul
X0

co
1t

Im

Indicates eubl wraps from column 0 to last
column.

Indicates terminal has automatic margins.
Indicates a terminal with fl=escape and

2= Ctrl-C.

Indicates standout not erased by overwriting.
Ignores new-line character after 80 columns.
Erases overstrikes with a blank.

Indicates generic line type (such as, dialup,
switch)

Indicates hardcopy terminal.

Indicates terminal has a meta key (shift, sets
parity bit).

Indicates terminal has extra “status line.”
Indicates insert mode distinguishes nulls.
Retains information above display in memory.
Retains information below display in memory.
Indicates safe to move while in insert mode.
Indicates safe to move in standout modes.
Indicates terminal overstrikes.

Indicates escape can be used on the status
line.

Indicates destructive tabs and blanks inserted
while entering standout mode.

Indicates terminal cannot print ~ characters.
Overstrikes with underline character.
Indicates terminal uses xon/xoff handshaking.

Specifies the number of columns in a line.
Provides tabs initially every # spaces.
Specifies the number of lines on screen or
page

Specifies the number of lines of memory if >
lines. A value of 0 indicates variable.

4-150 AIX Operating System Technical Reference

terminfo

VARIABLE
magic_cookie—glitch
padding_baud-rate

virtual_terminal
width_status_lines

Strings:

appl-defined_str
back-tab

bell

box—_chars_1
box-chars_2
box—attr—1
box-attr_2
carriage_return
change_scroll_region

clear—all—tabs
clear_screen

clr_eol

clr_eos

color_bg_0
color_bg_1
color_bg_2
color_bg_3
color_bg_4
color_bg_5
color_bg_6
color-bg-7
color_fg_0
color_fg_1
color_fg_2
color-fg_3
color_fg_4
color_fg_5

CAP
NAME

xme
pb

vt
wsl

apstr
cbt
bel
box1
box2
battl
batt2
cr
csr

tbe
clear

el

ed

colb0
colbl
colb2
colb3
colb4
colb5
colb6
colb7
colf0
colfl
colf2
colf3
colf4
colfs

I

sg
pb

vt
ws

zZa
bt
bl
bx
by
Bx
By
Ccr
CS

CODE DESCRIPTION

Indicates number of blank characters left by
SMSo Oor rmso.

Indicates lowest baud where carriage return
and line return padding is needed.

Indicates virtual terminal number.

Specifies the number of columns in status line.

Application defined terminal string.
Back tab. (P)

Produces an audible signal (bell). (P)
Box characters primary set.

Box characters alternate set.
Attributes for box_chars_1.
Attributes for box_chars-2.
Indicates carriage return. (P*)
Changes scroll region to lines #1 through #2.
PG)

Clears all tab stops. (P)

Clears screen and puts cursor in home
position. (P¥)

Clears to end of line. (P)

Clears to end of the display. (P*)
Background color 0 black.
Background color 1 red.
Background color 2 green.
Background color 3 brown.
Background color 4 blue.
Background color 5 magenta.
Background color 6 cyan.
Background color 7 white.
Foreground color 0 white.
Foreground color 1 red.

Foreground color 2 green.
Foreground color 3 brown.
Foreground color 4 blue.
Foreground color 5 magenta.

File Formats 4-151

terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION
color_fg_6 colf6 c6 Foreground color 6 cyan.
color_fg_7 colf7 c7 Foreground color 7 black.
column-address hpa ch Sets cursor column. (PG)
command-character cmdch CC Indicates terminal command prototype
character can be set.
cursor—address cup cm Indicates screen relative cursor motion row #1
col #2. (PG)
cursor—down cudl do Moves cursor down one line.
cursor—_home home ho Moves cursor to home position (if no cup).
cursor-—invisible civis vi Makes cursor invisible.
cursor_left cubl le Moves cursor left one space.
cursor-mem-address mrecup CM Indicates memory relative cursor addressing.
cursor—normal cnorm ve Makes cursor appear normal (undo vs or vi).
cursor-right cufl nd Indicates nondestructive space (cursor right).
cursor—to-11 11 11 Moves cursor to first column of last line (if no
cup).
cursor-up cuul up Moves cursor up one line (cursor up).
cursor-visible cvvis vs Makes cursor very visible.
delete—character dchl de Deletes character. (P*)
delete_line dli dl Deletes line. (P*)
dis_status_line dsl ds Disables status line.
down-half_line hd hd Indicates subscript (forward 1/2 line feed).
enter—alt_charset_riode smacs as Starts alternate character set. (P)
enter-blink_mode blink mb Enables blinking.
enter—bold—_mode bold md Enables bold (extra bright) mode.
enter_ca_mode smcup ti Begins programs that use cup.
enter_delete_mode smdc dm Starts delete mode.
enter—_dim-mode dim mh Enables half-bright mode.
enter—insert-mode smir im Starts insert mode.
enter_protected—mode prot mp Enables protected mode.
enter_reverse-mode rev mr Enables reverse video mode.
enter_secure_mode nvis mk Enables blank mode (characters invisible).
enter—standout—-mode smso SO Begins standout mode.
enter_underline_mode smul us Starts underscore mode. -
erase—_chars ech ec Erases #1 characters. (PG)’
exit_alt_charset—-mode rmacs ae Ends alternate character set. (P)
exit—attribute_mode sgr0 me Disables all attributes.
exit—ca—mode rmcup te Ends programs that use cup.
exit—delete_mode rmdc ed Ends delete mode.

4-152 AIX Operating System Technical Reference

~

TNL SN20-9869 (26 June 1987) to SC23-0809-0

terminfo

VARIABLE

exit—insert—mode
exit_standout_mode
exit-underline_mode
flash_screen
font_-0

font_1

font_2

font-3

font—4

font_5

font_6

font_7

form_feed
from-status_line
init_1string
init_2string
init—3string
init_file
insert_character
insert_line
insert—padding
key_backspace
key_back—_tab
key_catab
key-clear
key_ctab
key_command
key_command-pane
key-dc

key-dl

key-do
key—down
key—eic

key-end

key—eol

key—eos

key_f0

key-f1

key_f2

CAP
NAME

rmir

rmso
rmul
flash
font0
fontl
font2
font3
font4
fonth
font6
font7

fsl

is1
182
is3

if
ichl
i1

ip
kbs
kbtab
ktbe
kelr
ketab
kemd
kepn
kdchl
kdl1
kdo
keudl
krmir
kend
kel
ked
kfo
kfl
kf2

I

CODE DESCRIPTION

el
se
ue
vb
fo

Ends insert mode.

Ends stand out mode.

Ends underscore mode.

Indicates visible bell (may not move cursor).
Select font 0.

Select font 1.

Select font 2.

Select font 3.

Select font 4.

Select font 5.

Select font 6.

Select font 7.

Ejects page (hardcopy terminal). (P*)
Returns from status line.

Initializes terminal.

Initializes terminal.

Initializes terminal.

Identifies file containing is.

Inserts character. (P)

Adds new blank line. (P¥)

Inserts pad after character inserted. (P¥)
Sent by backspace key.

Sent by backtab key.

Sent by clear-all-tabs key.

Sent by clear-screen or erase key.
Sent by clear-tab key.

Command request key.

Command pane key.

Sent by delete-character key.

Sent by delete-line key.

Do request key.

Sent by terminal down arrow key.
Sent by rmir or smir in insert mode.
End key.

Sent by clear-to-end-of-line key.

Sent by clear-to-end-of-screen key.
Sent by function key FO.

Sent by function key F1.

Sent by function key F2.

File Formats 4-153

TNL SN20-9869 (26 June 1987) to SC23-0809-0

terminfo
CAP 1L
VARIABLE NAME CODE DESCRIPTION
key_f3 kf3 k3 Sent by function key F3.
key-f4 kf4 k4 Sent by function key F4.
key-f5 kf5 kb Sent by function key F5.
key_16 kf6 k6 Sent by function key F6.
key_f7 kf7 k7 Sent by function key F7.
key-18 k{8 k8 Sent by function key F8.
key_19 kf9 k9 Sent by function key F9.
key-f10 kf10 ka Sent by function key F10.
key_fil kfll k< Sent by function key F11.
key_f12 kf12 k> Sent by function key F12.
key_help khlp kq Help key.
key-home khome kh Sent by home key.
key_ic kichl kI Sent by insert character/enter insert mode
key.
key-il kill kA Sent by insert line key.
key_left kcubl kl Sent by terminal left arrow key.
key-11 kil kH Sent by home-down key.
key_newline knl kn New-line key.
key-next_pane knpn kv Next-pane key.
key-npage knp kN Sent by next-page key.
key_ppage kpp kP Sent by previous-page key.
key-prev_cmd kpemd kp Sent by previous-command key.
key_quit kquit kQ Quit key.
key_right kcufl kr Sent by terminal right arrow key.
key_scroll_left kscl kz Scroll left.
key—scroll-right kser kZ Scroll right.
key-select ksel kU Select key.
key_sf kind kF Sent by scroll-forward/down key.
key_smap-_inl kmpfl Kv Input for special mapped key 1.
key-smap_outl kmptl KV Output for mapped key 1.
key_smap_in2 kmpf2 Kw Input for special mapped key 2.
key_smap-out2 kmpt2 KW Output for mapped key 2.
key_smap_in3 kmpf3 Kx Input for special mapped key 3.
key-smap_out3 kmpt3 KX Output for mapped key 3.
key_smap.in4 kmpf4 Ky Input for special mapped key 4.
key_smap_outd kmpt4 KY Output for mapped key 4.
key—smap-in5 kmpfs Kz Input for special mapped key 5.
key_smap-_outh kmpt5 KZ Output for mapped key 5.
key_sr kri kR Sent by scroll-backward/up key.

4-154 AIX Operating System Technical Reference

S~

TNL SN20-9869 (26 June 1987) to SC23-0809-0

terminfo
CAP I.
VARIABLE NAME CODE DESCRIPTION
key_stab khts kT Sent by set-tab key.
key_tab ktab ko Tab key.
key—up kcuul ku Sent by terminal up arrow key.
keypad-_local rmkx ke Ends keypad transmit mode.
keypad_xmit smkx ks Puts terminal in keypad transmit mode.
lab_f0 10 10 Labels function key FO if not FO.
lab-f1 1f1 11 Labels function key F1 if not F1.
lab_f2 1f2 12 Labels function key F2 if not F2.
lab—f3 1f3 13 Labels function key F3 if not F3.
lab-_f4 1f4 14 Labels function key F4 if not F4.
lab-15 1f5 15 Labels function key F5 if not F5.
lab_f6 1f6 16 Labels function key F6 if not F6.
lab_f7 17 17 Labels function key F7 if not F7.
lab_1f8 118 18 Labels function key F8 if not F8.
lab_f9 119 19 Labels function key F9 if not F9.
lab_f10 1f10 la Labels function key F10 if not F10.
meta—on smm mm Enables “meta mode” (8th bit).
meta_off rmm mo Disables “meta mode.”
newline nel nw Performs new-line function (behaves like CR
followed by LF).
pad—char pad pc Pads character (instead of NUL).
parm_dch dch DC Deletes #1 characters. (PG¥)
parm-—delete—_line dl DL Deletes #1 lines. (PG¥)
parm-down-—cursor cud DO Moves cursor down #1 lines. (PG¥)
parm—ich ich IC Inserts #1 blank characters. (PG*)
parm—index indn SF Scrolls forward #1 lines. (PG)
parm-insert-line il AL Adds #1 new blank lines. (PG¥)
parm_left_cursor cub LE Moves cursor left #1 spaces. (PG)
parm-_right_cursor cuf RI Moves cursor right #1 spaces. (PG¥*)
parm-_rindex rin SR Scrolls backward #1 lines. (PG)
parm-_up-cursor cuu UP Moves cursor up #1 lines. (PG¥)
pkey_key pfkey pk Programs function key #1 to type string #2.
pkey-local pfloc pl Programs function key #1 to execute string #2.
pkey_xmit pfx px Programs function key #1 to xmit string #2.
print_screen mcO ps Prints contents of the screen.
prtr—off mc4 pf Disables the printer.
prtr—on mch po Enables the printer.
repeat_char rep rp Repeats character #1 #2 times. (PG*)
reset_lstring rsl rl Resets terminal to known modes.

File Formats 4-155

TNL SN20-9869 (26 June 1987) to SC23-0809-0

terminfo
CAP I

VARIABLE NAME CODE DESCRIPTION

reset_2string rs2 r2 Resets terminal to known modes.

reset_3string rs3 r3 Resets terminal to known modes.

reset_file rf rf Identifies the file containing reset string.

restore_cursor re rc Restores cursor to position of last sc.

row_address vpa cv Positions cursor to an absolute vertical
position (set row). (PG)

save_cursor sc sc Saves cursor position. (P)

scroll _forward ind sf Scrolls text up. (P)

scroll_reverse ri sT Scrolls text down. (P)

set_attributes sgr sa Defines the video attributes. (PG9)

set_tab hts st Sets a tab in all rows, current column.

set_window wind wi Indicates current window is lines #1-#2 cols
#3-#4.

tab ht ta Tabs to next 8-space hardware tab stop.

to—status—line tsl ts Moves to status line, column #1.

underline_char uc uc Underscores one character and moves beyond
it.

up-half_line hu hu Indicates superscript (reverse 1/2 line-feed).

init-prog iprog iP Locates the program for init.

key-al kal K1 Specifies upper left of keypad.

key-a3 ka3 K3 Specifies upper right of keypad.

key_b2 kb2 K2 Specifies center of keypad.

key_cl kel K4 Specifies lower left of keypad.

key-c3 ke3 K5 Specifies lower right of keypad.

prtr_non mc5p pO Enables the printer for #1 bytes.

Terminal capabilities have names. For instance, the fact that a terminal has automatic
margins (such as, an automatic new-line when the end of a line is reached) is indicated by
the capability am. Hence the description of the terminal includes am. Numeric
capabilities are followed by the # (sharp sign) character and then the value. Thus the
cols#80 capability, which indicates the number of columns the terminal has, gives the
value 80 for the terminal.

Finally, string-valued capabilities, such as el (clear to end of line sequence) are given by
the 2-character code, an = (equal sign), and then a string ending at the following ,
(comma). A delay in milliseconds may appear anywhere in a string capability, enclosed
between a $< and a > as in e1=\EK$<3>, and padding characters are supplied by tputs
to provide this delay. The delay can be either a number, such as 20, or a number followed
by an * (asterisk), such as 3*. An asterisk indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert character, the factor is still the
number of lines affected. This is always 1, unless the terminal has xenl and the software
uses it.) When an asterisk is specified, it is sometimes useful to give a delay of the form

4-156 AIX Operating System Technical Reference

£ N

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

a.b, such as, 3.5, to specify a delay per unit to tenths of milliseconds. (Only one decimal
place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy
encoding of characters there. Both \E and \e map to an Escape character, *x maps to a
Ctrl-x for any appropriate x, and the sequences \n, \l, \r, \t, \b, \f, \s give a new-line,
line-feed, return, tab, backspace, form-feed, and space. Other escapes include * (backslash
caret) for a * (caret), \ \ (backslash backslash) for a \ (backslash), \, (backslash comma) for
a , (comma), \: (backslash colon) for a : (colon), and \0 (backslash) for the null character.
(\0 will produce \200, which does not terminate a string but behaves as a null character on
most terminals.) Finally, characters can be given as 3 octal digits after a \ (backslash).

Sometimes, individual capabilities must be commented out. To do this, put a period before
the capability name.

Preparing Descriptions

An effective way to prepare a terminal description is to imitate the description of a similar
terminal in the terminfo file and add to the description gradually, using partial
descriptions with vi to check that they are correct. Be aware that a very unusual terminal
may expose deficiencies in the ability of this file to describe it or bugs in vi. To test a new
terminal description, set the environment variable TERMINFO to a path name of a
directory containing the compiled description you are working on and programs will look
there rather than in /usr/lib/terminfo. A test to get the correct padding (if not known) is
to edit the /etc/passwd file at 9600 baud, delete about 16 lines from the middle of the
screen, then hit the u key several times quickly. If the terminal fails to display the result
properly, more padding is usually needed. A similar test can be used for insert character.

Basic Capabilities
The following describe basic terminal capabilities:

am Indicates that the cursor moves to the beginning of the next line when it
reaches the right margin. This capability also indicates whether the cursor can
move beyond the bottom right corner of the screen.

bel Produces an audible signal (such as a bell or a beep).

bw Indicates that a backspace from the left edge of the terminal moves the cursor to
the last column of the previous row.

clear Clears the screen leaving the cursor in the home position.

cols Specifies the number of columns on each line for the terminal.

cr Moves the cursor to the left edge of the current row. This code is usually

carriage return (Ctrl-M).

cubl Moves the cursor one space to the left, such as backspace.

File Formats 4-157

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

cufl, cuul, and cudl
Moves the cursor to the right, up, and down, respectively.

he Specifies a printing terminal. The os capability should also be specified.
lines Specifies the number of lines on a cathode ray tube (CRT) terminal..
os Indicates that when a character is displayed or printed in a position already

occupied by another character, the terminal overstrikes the existing character,
rather than replacing it with the new character. os applies to storage scope,
printing, and APL terminals.

The terminfo initialization subroutine, setupterm, calls termdef to determine the
number of lines and columns on the display. If termdef cannot supply this information,
then setupterm uses the lines and cols values in the data base.

A point to note here is that the local cursor motions encoded in terminfo are undefined at
the left and top edges of a CRT terminal. Programs should never attempt to backspace
around the left edge, unless bw is given, and never attempt to go up locally off the top. In
order to scroll text up, a program should go to the bottom left corner of the screen and
send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text
is output, but this does not necessarily apply to a cufl from the last column. The only
local motion that is defined from the left edge is if bw is given, then a cubl from the left
edge will move to the right edge of the previous row. If bw is not given, the effect is
undefined. This is useful for drawing a box around the edge of the screen, for example. If
the terminal has switch-selectable automatic margins, the terminfo file usually assumes
that it is on by specifying am. If the terminal has a command that moves to the first
column of the next line, that command can be given as nel (new-line). It does not matter if
the command clears the remainder of the current line, so if the terminal has no cr and If, it
may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe printing terminals and simple CRT terminals. Thus,
the Model 33 Teletype is described as:

33 | tty33 | tty | Model 33 Teletype,
bel=~G, cols#72, cr=~M, cudl=~J, hc, ind=*J, os,

And another terminal is described as:

xxxx | x | xxxxxxxx,
am, bel=~G, clear=~Z, cols#80, cr=~M, cubl=*H, cudl=~Jd,
ind=~J, lines#24,

4-158 AIX Operating System Technical Reference

terminfo

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are described by
a parameterized string capability, with escapes similar to printf %x in it. For example, to
address the cursor, the cup capability is given using two parameters: the row and column
to address to. (Rows and columns are numbered starting with 0 and refer to the physical
screen visible to the user, not to any unseen memory.) If the terminal has memory relative
cursor addressing, that can be indicated by mrecup.

The parameterized capabilties and their descriptions are:
cubl Backspaces the cursor one space.

cup Addresses the cursor using two parameters: the row and column to address.
Rows and columns are numbered starting with 0 and refer to the physical screen
visible to the user, not to memory.

cuul Moves the cursor up one line on the screen.

hpa and vpa
Indicates the cursor has row or column absolute cursor addressing, horizontal
position absolute (hpa) and vertical position absolute (vpa).

Sometimes the hpa and vpa capabilities are shorter than the more general two
parameter sequence and can be used in preference to cup. If there are
parameterized local motions (such as, move n spaces to the right) these can be
given as cud, cub, cuf, and cuu with a single parameter indicating how many
spaces to move. These are primarily useful if the terminal does not have cup.

indn and rin
Scrolls text. These are parameterized versions of the basic capabilities ind and
ri. n is the number of lines.

mrcup Indicates the terminal has memory-relative cursor addressing.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence pushes one of the parameters onto the stack and then prints it in some format.
Often more complex operations are necessary.

The % encodings have the following meanings:

%% Outputs a %. (percent sign).

%d Print pop() as in printf (numeric string from stack).

%2d Print pop() like %2d (minimum 2 digits output from stack).
%3d Print pop() like %3d (minimum 3 digits output from stack).
%02d Prints as in printf (2 digits output).

%03d Prints as in printf (3 digits output).

%c Print pop() gives %¢ (character output from stack).

%S Print pop() gives %s (string output from stack).

File Formats 4-159

terminfo

%plil Pushes the ith parameter onto stack.

%Pla-z] Sets variable [a-z] to pop() (variable ouptput from stack).
%gla-z1 Gets variable [a-z] and pushes it onto the stack.

%c’ Character constant c.

%{nn} Integer constant nn.

%+ %= %* %/ %m
Arithmetic (%m is modulus): push(pop() operation pop())

%& b1 B* Bit operations: push(pop() operation pop())

%= %> %< Logical operations: push(pop() operation pop()).

%L %~ Unary operations push(operation pop())

%i Add 1 to first two parameters (for ANSI terminals).

%? expr %t thenpart %e elsepart %;
If-then-else. The %e elsepart is optional. You can make an else-if
construct as with Algol 68:

%? ¢y %t by %e cy bt by e cg bt by be by %;
In this example, ¢; denote conditions, and b; denote bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get
X - 5 one would use %gx%{5}%-.

Consider a terminal, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here,
and that the row and column are printed as two digits. Thus its cup capability is

cup =6\E&a%p2%2dc%pl%2dY.

Some terminals need the current row and column sent preceded by a *T with the row and
column simply encoded in binary, cup="T%p1%c%p2%c. Terminals which use %c¢ need
to be able to backspace the cursor (cubl), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n, *D, and \r, as the
system may change or discard them. (The library routines dealing with terminfo set
terminal modes so that tabs are not expanded by the operating system; thus \t is safe to
send.)

A final example is a terminal that uses row and column offset by a blank character, thus
cup=\E=%pl1%’ "% + %c%p2%’ "% + %ec. After sending ‘\E =", this pushes the first
parameter, pushes the ASCII value for a space (32), adds them (pushing the sum on the
stack in place of the two previous values) and outputs that value as a character. Then the
same is done for the second parameter. More complex arithmetic is possible using the
stack.

4-160 AIX Operating System Technical Reference

terminfo

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen) then
this can be given as home. Similarly a fast way of getting to the lower left-hand corner
can be given as 1I; this may involve going up with cuul from the home position, but a
program should never do this itself (unless 11 does) because it can make no assumption
about the effect of moving up from the home position. Note that the home position is the
same as addressing (0,0) to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on some terminals cannot be used for home.)

Area Clears
The following areas are used to clear large areas of the terminal:

ed Clears from the current position to the end of the display. This is defined only
from the first column of a line. (Thus, it can be simulated by a request to delete
a large number of lines, if a true ed is not available.)

el Clears from the current cursor postion to the end of the line without moving the
cursor.

Insert/Delete Line

The following describes the insert and delete line capabilities:

csr Indicates the terminal has a scrolling region that can be set. This capability
takes two parameters: the top and bottom lines of the scrolling region.

da Indicates the terminal can retain display memory above what is visible.

db Indicates the display memory can be retained below what is visible.

di1 Indicates the line the cursor is on can be deleted. This done only from the first

position on the line to be deleted. Additionally, the dl capability takes a single
parameter indicating the number of lines to be deleted.

il1 Creates a new blank line before the line where the cursor is currently located
and scrolls the rest of the screen down. This is done only from the first position
of a line. The cursor then appears on the newly blank line. Additionally, the il
capability can take a single parameter indicating the number of lines to insert.

re Restores the cursor. When used after the esr capability, it gives an effect
similar to delete line.

sc Saves the cursor. When used after the csr capability, it gives an effect similar
to insert line.

wind Indicates the terminal has the ability to define a window as part of memory.
This a parameterized string with 4 parameters: the starting and ending lines tn
memory and the stating and ending columns in memory, in that order.

File Formats 4-161

terminfo

4-162

Insert/Delete Character

Generally, there are two kinds of intelligent terminals with respect to insert/delete
character operations which can be described using the terminfo file. The most common
insert/delete character operations affect only the characters on the current line and shift
characters to the right and off the line. Other terminals make a distinction between typed
and untyped blanks on the screen, shifting data displayed to insert or delete at a position
on the screen occupied by an untyped blank, which is either eliminated or expanded to two
untyped blanks. Clearing the screen and then typing text separated by cursor motions
differentiates between the terminal types. You can determine the kind of terminal you
have doing the following:

1. Type abc def using local cursor movements, not spaces, between the abc and the
def.

2. Position the cursor before the abe and place the terminal in insert mode. If typing
characters causes the characters on the line to the right of the cursor to shift and exit
the right side of the display, the terminal does not distinguish between blanks and
untyped positions. If the abe moves to positions to the immediate left of the def and
the characters move to the right on the line, around the end, and to the next line, the
terminal is the second type. This is described by the in capability, which signifies
insert null.

While these are two logically separate attributes (one line vs. multiline insert mode, and
special treatment of untyped spaces) there are no known terminals whose insert mode
cannot be described with the single attribute.

The terminfo file can describe both terminals having an insert mode and terminals that
send a simple sequence to open a blank position on the current line. The following are
used to describe insert or delete character capabilities:

dchl Deletes a single character. dch with one parameter, n deletes n characters.

ech Erases n characters (equivalent to typing n blanks without moving the cursor)
with one parameter.

ichl Precedes the character to be inserted. Most terminals with an insert mode do
not use this. Terminals that send a sequence to open a screen position should
give it. (If the terminal has both, insert mode is usually preferable to ichl. Do
not give both unless the terminal actually requires both to be used in
combination.)

ip Indicates post padding needed. This is given as a number of milliseconds. Any
other sequence that may need to be sent after inserting a single character can
be given in this capability.

mir Allows cursor motion while in insert mode. It is sometimes necessary to move
the cursor while in insert mode to delete characters on the same line. Some
terminals may not have this capability due to their handling of insert mode.

AIX Operating System Technical Reference

terminfo

rmdc Exits delete mode.
rmir Ends insert mode.
smdc Enters delete mode.
smir Begins insert mode.

Note that if your terminal needs both to be placed into an insert mode and a special code
to precede each inserted character, then both smir/rmir and ichl can be given, and both
will be used. The ich capability, with one parameter, n, will repeat the effects of ichl n
times.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes such as highlighting,
underlining, and visible bells, these can be presented in a number of ways. Highlighting,
such as standout mode, presents a good, high contrast, easy-on-the-eyes format to add
emphasis to error messages, and other attention getters. Underlining is another method to
focus attention to a particular portion of the terminal. Visible bells include methods such
as flashing the screen. The following capabilities describe highlighting, underlining, and
visible bells for a terminal:

blink Indicates terminal has blink highlighting mode.
bold Indicates terminal has extra bright highlighting mode.
civis Causes the cursor to be invisible.

cnorm Causes the cursor to display normal. This capability reverses the effects of the
civis and cvvis capabilities.

cvvis Sauses the cursor to be more visible than normal when it is not on the bottom
ine.

dim Indicates the terminal has half-bright highlighting modes.

eo Indicates blanks erase overstrikes.

flash Indicates the terminal has a way of flashing the screen (a bell replacement) for
errors without moving the cursor.

invis Indicates the terminal has blanking or invisible text highlighting modes.

msgr Indicates it is safe to move the cursor while in standout mode. Otherwise,

programs using standout mode should exit standout mode before moving the
cursor or sending a new-line. Some terminals automatically leave standout
mode when they move to a new line or the cursor is addressed.

prot Indicates the terminal has protected highlighting mode.

rev Indicates the terminal has reverse video mode.

File Formats 4-163

terminfo

rmso Exits standout mode.
rmul Ends underlining.
sgr Sets attributes. sgr0 turns off all attributes. Otherwise, if the terminal allows a

sequence to set arbitrary combinations of modes, sgr takes 9 parameters. Each
parameter is either 0 or 1, as the corresponding attribute is on or off. The 9
parameters are in this order: standout, underline, reverse, blink, dim, bold,
blank, protect, and alternate character set. (sgr can only support those modes
for which separate attributes exist on a particular terminal.)

smecup and rmcup
Indicates the terminal needs to be in a special mode when running a program
that uses any of the highlighting, underlining or visible bell capabilities.
smcup enters this mode, while rmcup exits this mode. This need arises, for
example, from terminals with more than one page of memory. If the terminal
has only memory relative cursor addressing, and not screen relative cursor
addressing, a screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used where smcup sets the command
character to be used by the terminfo file.

smso Enters standout mode.

smul Begins underlining.

uc Underlines the current character and moves the cursor one space to the right.
ul Indicates the terminal correctly generates underlined characters (with no

special codes needed) even though it does not overstrike.

xme Indicates the number of blanks left if the capability to enter or exit standout
mode leaves blank spaces on the screen.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Note that it is not possible to handle terminals where the
keypad only works in local mode. If the keypad can be set to transmit or not transmit,
give these codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kcubl, kcufl, kcuul, kcudl, and khome, respectively. If there are function
keys such as F0, F1, . . . , F10, the codes they send can be given as kf0, kf1, . . . , kfl0.
If these keys have labels other than the default FO through F10, the labels can be given as
1fo, If1, . . . , 1f10. The codes transmitted by certain other special keys can be given as:

kbs Indicates the backspace key.
kelr Indicates the clear screen or erase key.

ketab Indicates clear the tab stop in this column.

4-164 AIX Operating System Technical Reference

terminfo

kdchl Indicates the delete character key.

kdll Indicates the delete line key.

ked Indicates clear to end of screen.

kel Indicates clear to end of line.

khts Indicates set a tab stop in this column.

kichl Indicates insert character or enter insert mode.

kill Indicates insert line.

kind Indicates scroll forward and/or down.

kil Indicates home down key (home is the lower left corner of the display, in this
instance).

kmir Indicates exit insert mode.

knp Indicates next page.

kpp Indicates previous page.

kthc Indicates the clear all tabs key.

ri Indicates scroll backward and/or up.

In addition, if the keypad has a 3-by-3 array of keys including the 4 arrow keys, the other 5
keys can be given as kal, ka3, kb2, kel, and ke3. These keys are useful when the effects
of a 3-by-3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be
given as ht (usually Ctrl-I). A “backtab” command which moves left toward the previous
tab stop can be given as cbt. By convention, if the terminal modes indicate that tabs are
being expanded by the operating system rather than being sent to the terminal, programs
should not use ht or cbt even if they are present, since the user may not have the tab stops
properly set. If the terminal has hardware tabs that are initially set every n spaces when
the terminal is powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is normally used by the tset command to determine
whether to set the mode for hardware tab expansion, and whether to set the tab stops. If
the terminal has tab stops that can be saved in nonvolatile memory, the terminfo
description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog,
the path name of a program to be run to initialize the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to set the terminal into
modes consistent with the rest of the terminfo description. They are normally sent to the
terminal, by the tset program, each time the user logs in. They are printed in the
following order: isl, is2, setting tabs using tbe and hts; if; running the program iprog;

File Formats 4-165

terminfo

and finally is3. Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and special cases in
is1 and is3. A pair of sequences that does a harder reset from a totally unknown state can
be analogously given as rsl, rs2, rf, and rs3, analogous to is2 and if. These strings are
output by the reset program, which is used when the terminal starts behaving strangely,
or not responding at all. Commands are normally placed in rs2 and rf only if they produce
annoying effects on the screen and are not necessary when logging in. For example, the
command to set the terminal into 80-column mode would normally be part of is2, but it
causes an annoying screen behavior and is not normally needed since the terminal is
usually already in 80-column mode.

If there are commands to set and clear tab stops, they can be given as the (clear all tab
stops) and hts (set a tab stop in the current column of every row). If a more complex
sequence is needed to set the tabs than can be described by this, the sequence can be
placed in is2 or if.

Certain capabilities control padding in the terminal driver. These are primarily needed by
hard copy terminals, and are used by the tset program to set terminal modes appropriately.
Delays embedded in the capabilities cr, ind, cubl, ff, and tab cause the appropriate delay
bits to be set in the terminal driver. If pb (padding baud rate) is given, these values can be
ignored at baud rates below the value of pb.

Miscellaneous Strings

If the terminal requires other than a null (zero) character as a pad, then this can be given
as pad. Only the first character of the pad string is used.

If the terminal has an extra “status line” that is not normally used by software, this fact
can be indicated. If the status line is viewed as an extra line below the bottom line, into
which one can cursor address normally, the capability hs should be given. Special strings
to go to the beginning of the status line and to return from the status line can be given as
tsl and fsl. (fsl must leave the cursor position in the same place it was before tsl. If
necessary, the sc and re¢ strings can be included in tsl and fsl to get this effect.) The
parameter tsl takes one parameter, which is the column number of the status line the
cursor is to be moved to. If escape sequences and other special commands, such as tab,
work while in the status line, the flag eslok can be given. A string that turns off the
status line (or otherwise erases its contents) should be given as dsl. If the terminal has
commands to save and restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest of the screen, such as,
cols. If the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu (half-line
up) and hd (half-line down). This is primarily useful for superscripts and subscripts on
hardcopy terminals. If a hardcopy terminal can eject to the next page (form-feed), give this
as ff (usually Ctrl-L).

4-166 AIX Operating System Technical Reference

terminfo

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus, tparm(repeat_char,'x',10) is the
same as XXXXXXXXXX.

If the terminal has a “meta key” which acts as a shift key, setting the eighth bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the eighth bit is parity and it will usually be cleared. If strings exist to turn
this “meta mode” on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of
lines of memory can be indicated with Im. A value of Im#0 indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.

Media copy strings that control an auxiliary printer connected to the terminal can be
given in the following ways: mc0 prints the contents of the screen, me4 turns off the
printer, and me5 turns on the printer. When the printer is on, all text sent to the terminal
is sent to the printer. It is undefined whether the text is also displayed on the terminal
screen when the printer is on. A variation mc5p takes one parameter, and leaves the
printer on for as many characters as the value of the parameter, then turns the printer off.
The parameter should not exceed 255. All text, including me4, is transparently passed to
the printer while an me5p is in effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of these
strings takes two parameters: the function key number to program (from 0 to 10) and the
string to program it with. Function key numbers out of this range can program undefined
keys in a terminal-dependent manner. The difference between the capabilities is that
pfkey causes pressing the given key to be the same as the user typing the given string;
pfloc causes the string to be executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer.

Indicating Terminal Problems
Terminals that do not allow ~ (tilde) characters to be displayed should indicate hz.

Terminals that ignore a line-feed character immediately after an am wrap should indicate
xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it),
xhp should be given.

Terminals for which tabs turn all characters moved to blanks should indicate xt
(destructive tabs). This capability is interpreted to mean that it is not possible to position
the cursor on top of the pads inserted for standout mode. Instead, it is necessary to erase
standout mode using delete and insert line.

The terminal that is unable to correctly transmit the ESC (escape) or Ctrl-C characters
has xsb, indicating that the F1 key is used for ESC and F2 for Ctrl-C.

File Formats 4-167

terminfo

Other specific terminal problems can be corrected by adding more capabilities of the form
XX.

Similar Terminals

If two terminals are very similar, one can be defined as being just like the other with
certain exceptions. The string capability use can be given with the name of the similar
terminal. The capabilities given before use override those in the terminal type invoked by
use. A capability can be cancelled by placing xx@ to the left of the capability definition,
where xx is the capability. For example, the entry:

term-nl, smkx@, rmkx@, use=term,

defines a terminal that does not have the smkx or rmkx capabilities, and hence does not
turn on the function key labels when in visual mode. This is useful for different modes for
a terminal, or for different user preferences.

Data Base File Names

Compiled terminfo descriptions are placed in subdirectories under /usr/lib/terminfo in
order to avoid performing linear searches through a single directory containing all of the
terminfo description files. A given description file is stored in /usr/lib/terminfo/c/name,
where name is the name of the terminal, and c is the first letter of the terminal name. For
example, the compiled description for the terminal term4-nl can be found in the file

/usr/1ib/terminfo/t/term4-nl You can create synonyms for the same terminal by
making multiple links to the same compiled file. (See the In command in AIX Operating
System Commands Reference on how to create multiple links to a file.)

Example

The following entry, which describes a terminal, is among the entries in the terminfo file.

hft|High Function Terminal,
cr="M, cudl=\E[B, ind=\E[S, bel=~G, i11=\E[L, am, cubl="H, ed=\E[J,
el=\E[K, clear=\E[H\E[J, cup=\E[%ipl%d;%p2%dH, cols#80, lines=#25,
dchl=\E[P, d11=\E[M, home=\E[H,
ich=\E[%pl1%d@, ichl=\E[@, smir=\E[6, rmir=\E6,
bold=\E[1m, rev=\E[7m, blink=\E[5m, invis=\E[8m, sgr0=\E[Om,
sgr=a\E[%?2%pLl%t7 ;% %2%p2%ta;%;%62%p3%t7 ;%3 %2 %pa%t53%;%2%p6%tl;%;m,
kcuul=\E[A, kcudl=\E[B, kcubl=\E[D,
kcufl=\E[C, khome=\E[H, kbs="H,
cufl=\E[C, ht=~I, cuul=\E[A, xon,
rmul=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
kpp=\E[150q, knp=\E[154q,

4-168 AIX Operating System Technical Reference

terminfo

Files

kf1=\E[001q, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
kf5=\E[005q, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
kf9=\E[009q, kf10=\E[010q,

bw, €o, it#8, ms,

ch=\E%1%p1%dG, ech=\E[%pl5dx,

kdch1=\E[P, kind=\E[151q, kichl=\E[139q, krmir \E[41,
kn="M, ko=~1, ktab=\E[Z, kri=\E[155q,

cub=\E[%pl%dD, cuf=\E[%pl%dC, indn=\E[%p1dS, rin=\E[%pl%dT,
ri=\E[T, cuu=\E[%pl%dA,
box1=\332\304\277\263\331\300\302\264\301\303\305,
box2=\311\315\273\272\274\310\313\271\312\314\316,

batt?2=md,

colf0=\E[30m, colfl=\E[31m, colf2=\E[32m, col1f3=\E[33m,
colfa=\E[34m, colf5=\E[35m, colf6=\E[36m, col1f7=\E[37m,
colb0=\E[40m, colbl=\E[41m, colb2=\E[42m, colb3=\E[43m,
colb4=\E[44m, colb5=\E[45m, colb6=\E[46m, colb7=\E[47m,

Jusr/lib/terminfo/?/* Compiled terminal capability data base.

Related Information

In this book: “curses” on page 3-51, “Terminfo Level Subroutines” on page 3-57, “extended
curses library” on page 3-131, “printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf” on
page 3-300,“termdef” on page 3-352 , and “TERM” on page 5-72.

The display and tic commands in AIX Operating System Commands Reference.

File Formats 4-169

utmp, wtmp, .ilog

utmp, wtmp, .ilog

Purpose

Contains user and accounting information.

Synopsis

#include <utmp.h>

Description

When a user logs in successfully, the login program writes entries in /etc/utmp, the
record of users logged into the system, and in fusr/adm/wtmp (f it exists), for use in
accounting. On invalid login attemps (due to an incorrect login name or password), login
makes entries in the fetc/.ilog file. When you log in as user root or su and the /etc/.ilog
file is not empty, you see a message advising you to check the /ete/.ilog file for a record of
unsuccessful login attempts.

The records in these files follow the utmp structure, which is defined in the utmp.h
header file:

#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE "/usr/adm/wtmp"
#define ILOG-FILE r/etc/.ilog"

#define ut—_name ut_user
#define ut-id ut_line

struct utmp {

char ut_user[8]; /* User login name */

char ut-Tine[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */

short ut-type; /* type of entry */

struct exit-status {
short e_termination; /* Process termination status */
short e_exit; /* Process exit status */
} ut_exit; /* The exit status of a process */
/* marked as DEAD_PROCESS. */

4-170 AIX Operating System Technical Reference

utmp, wtmp, .ilog

time_t ut_time; /* time entry was made */

s
/* Definitions for ut_type */

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_-TIME 2
#define OLD-TIME 3
#define NEW-TIME 4
#define INIT_PROCESS 5
#define LOGIN-PROCESS 6
#define USER_PROCESS 7
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/* Process spawned by "init" */
/* A "getty" process waiting for login */
/* A user process */

/* Special strings or formats used in the "ut-line" field when */
/* accounting for something other than a process. */

/* No string for the ut-line field can be more than 11 chars + */
/* a NULL in length. */

#define RUNLVL_MSG "run-level 2=
#define BOOT-MSG "system boot”
#define OTIME-MSG "old time"
#define NTIME-MSG "new time"
Files

[etc/utmp Record of users logged into the system

Jusr/adm/wtmp Accounting information

[etc/.ilog Record of invalid logins.

File Formats 4-171

utmp, wtmp, .ilog

Related Information

The login, who, and write commands in AIX Operating System Commands Reference.

4-172 AIX Operating System Technical Reference

Chapter 5. Miscellaneous Facilities

Miscellaneous Facilities 5-1

About This Chapter

This chapter describes miscellaneous facilities, such as macro packages and character set
tables.

5-2 AIX Operating System Technical Reference

ascii

ascii

Purpose

Maps the ASCII character set.
Synopsis

cat /usr/pub/ascii
Description

ASCII is a map of the ASCII character set that gives both the octal and hexadecimal
equivalents for each character. This file can be printed as needed.

Note: This is neither the PC ASCII nor the RT ASCII character set. See “data stream”
on page 5-5 for information about these character sets. The contents of this file are:

000 nul{001 soh| 002 stx|003 etx|004 eot{005 enq;006 ack|007 bel
010 bs {011 ht {012 nl [013 vt |014 np {015 cr [016s0 [017 si
020 dle|021 dcl |022 dc2|023 dc3|024 dc4{025 nak|026 syn{027 etb
030 can|031 em | 032 sub|033 esc|034 fs {035 gs |036 rs |037 us
040 sp [0411 |042 " |043 # |044 $ |045% |046 & {047
050 (|051) |052 x |053 + |054 , [055- |0&6 . |057 /
060 O |0611 062 2 |063 3 |064 4 0655 |0666 |067 7
070 8 |07t 9 |072: {073 ; |074 < |075= |076> |077 2
100e@ (101 A |102 B [103 C (104 D [105E (106F |107 G
ToH | t11T 1129 (113 K |[114 L |118M [116N [117 O
120 P 121 Q {122 R {123 S (124 T [125U |126V [127 W
130 X J131Y 132 Z {133 [134 \ {1351 (136" (137 _
140 ' {141 a [142 b {143 c |144 d {145 e |146f (147 g
150 h 1517 [152] |153 k [154 | |155 m {156 n {157 o
160 p |161q |162r {163 s |164 t |165u |166Vv {167 W
170 x 171y 172 z |[173 { [174 | {175} {176 ~ {177 del

Figure 5-1. Octal ASCII Character Set

Miscellaneous Facilities 5-3

ascii

00 nul| 01 soh
08 bs | 09 ht
10 dle| 11 dcl
18 can| 19 em
20sp | 21!
28 (29)
300 311
38 8 39 9
40 @ 41 A
48 H 49 |
50 p 51 Q
58 X 59y
60 * 61 a
68 h 69 i
70 p 71 q
78 x 79y

Figure 5-2.

File
Jusr/pub/ascii

03 etx
0B vt

13 dcJ3|
1B esc]

23 #
2B +
333

3B
43
4B
53
5B
63
6B
73
7B

—_ O —~NXO"

04 eot
0C np
14 dc4
1C fs

24 $

2C »

34
3C
44
4C
54
5C
64
6C
74

~—a "4 OA N

7C 1

05 enq
0D cr
15 nak|
1D gs
25 %
2D -
355
3D =
45 E
4D M
55 U
5D 1
65 e
6D m
75 u

7D}

5-4 AIX Operating System Technical Reference

06
OE
16
1E
26
2E
36
3E
46
4E
56
5E
66
6E
76
7E

Hexadecimal ASCII Character Set

ack
so
syn
rs
&

1< 3 2 <ZMV o

07 bel

OF si

17 etb
1F
27
2F

o
[4]

3F
47
4F
57
5F
67
6F
77
7F

EO O INN

as ouw|

o3

—

data stream

data stream

Purpose

Defines the data stream that an HFT virtual terminal uses in KSR mode.

Description

The IBM RT PC is capable of addressing 1024 distinct displayable characters. To designate
these characters using 8-bit bytes, a code page convention is used. Each code page is an
ordered set of up to 256 characters, which are called code points. The first 32 code points
of each code page are reserved for control codes and are the same for all code pages. The
control codes do not have graphic representations, so each code page can have a maximum
of 224 distinct graphic characters.

The remaining characters are divided into three code pages called P9, P1, and P2. Two
additional code pages called USERI and USER?2 are provided for user-defined symbols.

Code points in the range 32 to 127 (0x20 to 0x7F) of code page PO represent the standard
7-bit US ASCII graphic symbols. PO code points 128 to 255 (0x80 to 0xFF) and code points
in pages P1 and P2 are collectively called extended characters.

The following code page maps show the predefined graphic display symbols and their code
point values within each of the three code pages.

Miscellaneous Facilities 5-5

data stream

First Hexadecimal Digit

N1 [PWIdIPEXSE] PU0IIg

T RE 0 1 [- =]
O |QQ| O] 10 (O || x| D [o] | 1] ¢
O | (88 [|4 | = ot ot ot --H-M
i _ et] Fl_ | I_Ta
D I @ || o 2l e > I
Wi [soBhafZ| S| oo @ [INR[T]--|v |2
Y| 8K |<o|:0|<0l<z| 3|5 O] & |9 Q| x | «
O] 13| 0 ks | 4o | O |<D| 10| Q| 1| <] ¢ =L oL
QT =|w|+| 3| 5| B % > N=~—|——2 |
v | Sl ol ol o.gl-~—|M—E|l=|0o
A (O ||| = D> [X >N —| /| —| <] |
Ql<|mlO|AR || O |—|= M =S| Z|O
O|— NNt (N \O/ ~|00 |\ (VI A
LN R RN
HHEHHEHEEHEHEEAEE
AEHEEHEHEERHEBEEEE
S|l—|N|m |t |n|o|~|w|la]lc|lalo|Q|w]| K
L

Figure 5-3. Code Page PO

5-6 AIX Operating System Technical Reference

E

~

data stream

B|C|D

A

T|G|k|R|Y

9

First Hexadecimal Digit

5-7

Miscellaneous Facilities

VC Eg

© Jo)

< Q> ® X!

anl G| R Y[R V[t | et
AV |zl e|— = T[]] >
.@QVQ.«QEGQ) £
AHEEHEHHEEEHEEBE B
S|l=|N|m|g|lvn|lo|~|o|loa|lc|lajo]|l =

ndiq jewndapexsy puodag

Figure 5-4. Code Page P1

data stream

First Hexadecimal Digit

'8

@l

@)

&)

o

<|LiEl=l [&3>|p|a

NS SR VEINYESEAE

- H [THE P B ™ 8 |2 =[] o

- | o] U ik P

o[0]mE] |~ s [<[>=[u] 2] [+]

[[[[) DAV [] =)

<13 alolalD || Uk x| A =|~| =

) e|4]@|r |[ll||lw|=]|s|~||s |38 |

~ N[> < =N VA HO] ~ [—=[D]U

SEHEHEEHEIEEEBEEEEE

ol=in|lmlg|lvwielrloloje|ajlolo|w]w

_ uBiq [ewdIpexay puoddg —J

Figure 5-5. Code Page P2

5-8 AIX Operating System Technical Reference

data stream

Code Page Switching

Characters from code page PO are represented in a character data stream by a single 8-bit
byte corresponding to their code points.

Characters from other code pages are selected with single-shift controls. A single-shift
control is one of the single-byte control codes SS1 (0x1F), SS2 (0x1E), SS3 (0x1D), and SS4
(0x1C). Each of these codes indicates that the following byte specifies a character from a
code page other than P0. These control codes are called “single shifts” because they shift
to another code page for a single character; that is, they are nonlocking shifts.

The byte that follows a single shift corresponds to the code point for the desired character,
but with the most significant bit set. In other words, SS1, SS2, SS3, and SS4 must be
followed by a byte in the range 0x80 to 0xFF. A single shift followed by 0x00 to 0x7F is not
a valid code sequence. The single shift that is used specifies the upper or lower half of a
code page as follows:

SS1 Lower half of code page P1 (P1 0x20 to 0x7F)
SS2 Upper half of code page P1 (P1 0x80 to O0xFF)
SS3 Lower half of code page P2 (P2 0x20 to 0x7F)
SS2 Upper half of code page P2 (P2 0x80 to 0xFF).

Note that in this scheme, code points in the range 0x00 to 0x7F (7-bit US ASCII) are unique
in the data stream, and that they are never validly preceded by a single-shift control. This

encoding scheme minimizes the changes necessary to existing software that is oriented
toward 7-bit ASCIL

If a single-shift control is followed by a byte with the most significant bit set to zero (that
is, a byte in the range 0x00 to 0x7F), then the single-shift prefix is ignored, and the byte is
processed as an unprefixed character.

On both input and output, graphic character code points that are not prefixed with a
single-shift control select a display symbol from the active graphic display set (GO or G1) to
be echoed or displayed on the screen. By default, both GO and G1 are set to PO, and GO is
the active display set. The active graphic display set can be set to GO or G1 with the SI
and SO single-byte controls, respectively (see “Single-Byte Controls” on page 5-11). The
mapping used for GO and G1 can be set with the SG0O and SG1 control sequences (see
“Multi-Byte Controls” on page 5-13).

On both input and output, valid graphic character code points that are prefixed with SS1,
582, SS3, or SS4 bypass the active graphic display set and echo or display characters
directly from code page P1 or P2.

Miscellaneous Facilities 5-9

data stream

Nonspacing Characters

For convenience when typing diacritical (accented) characters, a nonspacing or “dead”
character facility is provided. A nonspacing character sequence is a two-key sequence
consisting of one of the 13 diacritics followed by an alphabetic character or a space. The
virtual terminal subsystem converts this two-key sequence into a single code point that
may have a single-shift prefix. The resulting character is the alphabetic character with the
specified diacritic mark. A diacritic followed by a space translates to the diacritic
character itself.

The 13 valid diacritics are:

’ Acute Accent or Apostrophe O0xEF or 0x27

‘' Grave Accent 0x60

A Circumflex Accent 0x5E

” Umlaut Accent 0xF9

~ Tilde Accent 0x7E

¥ Caron Accent 0x1FF3

~ Breve Accent 0x1E9D

” Double Acute Accent 0x1E9E

® Overcircle Accent 0x1FFD
Overdot Accent 0x1E85

~ Macron Accent 0x1EA3

-~ Cedilla Accent oxF7

¢ Ogonek Accent 0x1E87

If a nonspacing character and the following character do not combine to form a diacritical
character in the set of predefined graphic symbols, then the diacritic is treated as a

separate character code. For example, ~Q is treated as two characters, ~ and Q.

Note that nonspacing characters apply only to keyboard input and are not a feature of the
data stream used by applications. Also, a diacritic must be explicitly designated as being
nonspacing in the keyboard mapping for this facility to operate. None of the keys on the
standard U.S. keyboard mapping are defined to be nonspacing characters. However,
nonspacing characters can be defined. See “Set Keyboard Map (HFSKBD)” on page 6-36
for details.

Controls

Two types of controls are valid in a character stream data:

e Single-byte controls (also called control characters and control codes), which have
character values from 0 to 31 (0x00 to 0x1F)

e Multi-byte controls, which are also called escape sequences and control sequences.

5-10 AIX Operating System Technical Reference

data stream

Single-Byte Controls

The single-byte controls are common to all code pages. The following list shows the
single-byte controls and their interpretation in KSR coded data. A line introducing each
control gives its mnemonic, its code value, and its function.

e NUL, 0x00, (Null) has no terminal function.

e SOH, 0x01, (Start of Header) has no terminal function.

e STX, 0x02, (Start of Text) has no terminal function.

e ETX, 0x03, (End of Text) has no terminal function.

e EOT, 0x04, (End of Transmission) has no terminal function.
e ENQ, 0x05, (Enquiry) has no terminal function.

e ACK, 0x06, (Acknowledge) has no terminal function.

e BEL, 0x07, (Bell) causes an audible alarm to sound.

e BS, 0x08, (Backspace) moves the cursor position to the left one column, unless the
cursor is at the left boundary of the presentation space. In that case, the cursor
position does not change.

e HT, 0x09, (Horizontal Tab) moves the cursor position forward to the next tab stop. If
the cursor is already in the last column of a line, then the cursor position does not
change. Note that the CHT (cursor horizontal tab) multi-byte control performs a
similar operation, but also performs line wrapping.

e LF, 0x0A, (ine Feed) if the LNM mode is reset, the line feed moves the cursor position
down one line. If the LNM mode is set (default), the line feed is treated as a NEL and
moves the cursor position to the first position of the next line. In either case, if the
cursor is already on the last line of the PS, the PS lines scroll up one line. The top
line of the PS disappears and a blank line is inserted as the new bottom line.

e VT, 0x0B, (Vertical Tab) moves the cursor position down to the next line that is
defined as a vertical tab stop. Tabs stops are always set at the first and last lines of
the PS. If the cursor was already on the last line of the PS and HFWRAP mode is not
set, the cursor stays on the last line in the PS. If HFWRAP mode is set, the cursor
moves to the top line in the PS. The column position does not change in any case.

e FF, 0x0C, (Form Feed) treated as a line end; see NEL.

¢ CR, 0x0D, (Carriage Return) if the CNM mode is reset (default), the carriage return
moves the cursor position to the first character of the line indicated by the cursor. If
the CNM mode is set, the carriage return is treated as an NEL and causes the cursor
position to move to the first position of the next line. In this case, if the cursor is
already on the last line of the PS, the PS lines scroll up one line. The top line of the
PS disappears and a blank line is inserted as the new bottom line.

Miscellaneous Facilities 5-11

data stream

e SO, 0xOE, (Shift Out) maps the subsequently received graphic codes to display symbols
according to the active G1 character set. See “display symbols” on page 5-24 for a list
of the display symbols.

e SI, 0x0F, (Shift In) maps the subsequently received graphic codes to display symbols
according to the active GO character set. See “display symbols” on page 5-24 for a list
of the display symbols.

e DLE, 0x10, (Data Link Escape) has no terminal function.

e DC1, 0x11, (Device Control 1) has no terminal function when output.
e DC2, 0x12, (Device Control 2) has no terminal function.

e DC3, 0x13, (Device Control 3) has no terminal function when output.
e DC4, 0x14, (Device Control 4) has no terminal function.

e NAK, 0x15, (Negative Acknowledgment) has no terminal function.

e SYN, 0x16, (Synchronous) has no terminal function.

e ETB, 0x17, (End of Block) has no terminal function.

e CAN, 0x18, (Cancel) has no terminal function.

e EM, 0x19, (End of Medium) has no terminal function.

e SUB, 0x1A, (Substitute) has no terminal function.

e ESC, 0x1B, (Escape) defines the beginning of a multi-byte control sequence as defined
in “Multi-Byte Controls” on page 5-13.

e S84, 0x1C, (Single Shift 4) causes the following byte is to be interpreted as belonging to
the upper half of code page P2 (see “Code Page Switching” on page 5-9).

e SS3, 0x1D, (Single Shift 3) causes the following byte is to be interpreted as belonging to
the lower half of code page P2.

e SS2, 0x1E, (Single Shift 2) causes the following byte is to be interpreted as belonging to
the upper half of code page P1.

e SS1, 0x1F, (Single Shift 1) causes the following byte is to be interpreted as belonging to
the lower half of code page P1.

¢ DEL, 0x7F, (Delete) has no terminal function.

5-12 AIX Operating System Technical Reference

T

data stream

Multi-Byte Controls

This section defines the code points and effects on the virtual terminal for multi-byte
control sequences that are recognized in KSR mode. All of them begin with the ESC code
(0x1B) followed by a [(0x5B) and include all subsequent bytes up to and including the first
code in the range 0x40—0x7F. Any multi-byte control sequences not defined below are
ignored. Invalid sequences return an error Device Status Report to the program.
Multi-byte control sequences of more than 16 codes are considered invalid on receipt of the
17th code. The next code is not considered a part of that sequence. Also, numeric
parameters in control sequences contain no more than 3 digits. The numeric value of the
parameter may be incorrect if more than three digits are used, and the numeric value
never exceeds 255.

Controls effect a virtual terminal’s presentation space (PS) and its related cursor (pointer
into the PS). The presentation space is a logical array of display symbols, N columns by M
lines.

The following list gives the valid multi-byte control code sequences. A line introducing
each control gives its mnemonic, its code sequence, and its function. The code sequence is
shown in terms of ASCII characters. For example, the sequence ESC A represents two
codes with a value of 0x1B41.

e CBT ESC[PNZ Cursor Back Tab

Moves the cursor back the number of horizontal tab stops specified by PN. Tab stops
are always set at the first and last columns of each line. If the cursor is already in the
first column of a line and HFWRAP mode is set, the cursor moves to the last column.
If AUTONL is also set, the cursor moves to the last column of the previous line. In
this case, if the cursor is already on the first row of the PS, it moves to the last row.

e CHA ESC[PNG Cursor Horizontal Absolute

Moves the cursor to the column specified by PN, unless the column exceeds the PS
width. If the column exceeds the PS width, the cursor moves to the PS column farthest
to the right.

e CHT ESC[PNI Cursor Horizontal Tab

Moves the cursor position forward to the PNtk following tab stop. If the cursor is
already in the last column of a line and HFWRAP mode is set, then the cursor returns
to the first column of the line. If AUTONL mode is also set, then the cursor moves to
the first column of the next line. In this case, if the cursor is already on the last line
of the PS, then the cursor moves to the first column of the first line. Note that the HT
(horizontal tab) single-byte control does not cause wrapping to occur.

e CTC ESC[PSW Cursor Tab Stop Control

0 Set a horizontal tab at cursor.

1 Set a vertical tab at cursor.

2 Clear a horizontal tab at cursor.
3 Clear a vertical tab at cursor.

Miscellaneous Facilities 5-13

data stream

4 Clear all horizontal tabs on line.
5 Clear all horizontal tabs.
6 Clear all vertical tabs.

Sets or clears one or more tabulation stops according to the parameter specified. Tab
stops on the first or last column cannot be cleared. When horizontal tab stops are set
or cleared, the number of lines affected is all (if Tabulation Stop Mode is set) or one (if
Tabulation Stop Mode is reset). This control does not change the position of
characters already in the presentation space.

e CNL ESC[PNE Cursor Next Line

Moves the cursor down the number of lines specified by PN, and over to the first
position of that line. If the cursor was already on the bottom PS line and HFWRAP
mode is not set, it is positioned at the beginning of that line. If HFWRAP mode is set,
the cursor wraps from the bottom line to the top PS line.

e CPL ESC[PNF Cursor Preceding Line

Moves the cursor back the number of lines specified by PN, and over to the first
position of that line. If the cursor was already on the top PS line and HFWRAP mode
is not set, the cursor is positioned at the beginning of that line. If HFWRAP mode is
set, the cursor wraps from the top line to the bottom line of the PS.

e CPR ESC[PN;PNR Cursor Position Report

Reports the current cursor position. The first numeric parameter is the line number,
and the second is the column. Line and column values are sent to the application as
information. However, if the information is received by the virtual terminal, it is
treated as a CUP control. '

e CUB ESC[PND Cursor Backward

Moves the cursor backward on the line the specified number of columns. If this cursor
movement exceeds the left PS boundary and HFWRAP mode is not set, the cursor stops
at the leftmost PS position. If HFWRAP mode is set, the cursor wraps from the
leftmost column to the rightmost column of the preceding PS line. In HFWRAP mode
the cursor also wraps from the home to the rightmost bottom position of the PS.

e CUD ESC[PNB Cursor Down

Moves the cursor down the number of lines specified by PN. If this cursor movement
exceeds the bottom PS boundary and HFWRAP mode is not set, the cursor stops on the
last PS line. If HFWRAP mode is set, the cursor wraps from the bottom line to the top
line of the PS.

e CUF ESC[PNC Cursor Forward

Moves the cursor forward on the line the specified number of columns. If this cursor
movement exceeds the right PS boundary and HFWRAP mode is not set, the cursor
stops at the rightmost PS position. If HFWRAP mode is set, the cursor wraps from the
rightmost column to the leftmost column of the following line in the PS. In HFWRAP

5-14 AIX Operating System Technical Reference

data stream

mode, the cursor also wraps from rightmost bottom position to the home position of the
PS.

CUP ESC[PN;PNH Cursor Position

Moves the cursor to the line specified by the first parameter, and to the column
specified by the second parameter. If this movement crosses a PS boundary, the cursor
stops at the PS boundary.

CUU ESC[PNA Cursor up

Moves the cursor up the specified number of lines. If this cursor movement exceeds
the top PS boundary and HFWRAP mode is not set, the cursor stops on the first PS
line. If HFWRAP mode is set, the cursor wraps from the top line to the bottom line in
the PS. '

CVT ESC[PNY Cursor Vertical Tab

Moves the cursor down the number of vertical tab stops specified. Tab stops are
assumed at the top and bottom PS lines. If there are not enough vertical tab stops in
the PS and HFWRAP mode is not set, the cursor stops on the last line in the PS. If
HFWRAP mode is set, the cursor wraps from the bottom line to the top line of the PS.

DCH ESC[PNP Delete Character

Deletes the cursor character and the following PN-1 characters on the line indicated
by the cursor. The characters following the deleted characters on the line overlay the
deleted character positions. The line is cleared from the end of the line to the edge of
the presentation space. If the number of characters to be deleted exceeds the number
of columns from the cursor to the PS right boundary, then all the characters from the
cursor to the PS boundary are replaced with empty spaces and a DSR control sequence
identifying an error is returned to the application.

DL ESC[PNM Delete Line

Deletes the line and the PN-1 following lines in the PS. The lines following the deleted
lines are scrolled up PN lines and PN blanks lines are placed at the bottom of the PS.
If there are less than PN lines from the line indicated by the cursor to the bottom of
the PS, the line indicated by the cursor and all the following PS lines are replaced with
empty lines.

DSR ESC[PNn Device Status Report Request
6 Request Cursor Position Report
13 Error Report

A request cursor position report (CPR) sends a cursor position report from the virtual
terminal to the application. An error report is sent from the virtual terminal to the
application when the virtual terminal receives an invalid control sequence. Error
reports are private reports which conform to the ANSI standard for private parameters.

Miscellaneous Facilities 5-15

data stream

e DMI ESC°‘ (left quote) Disable Manual Input

This control, when received in an output data stream, causes keyboard input to this
terminal to be ignored. This control is ignored when received from the keyboard.

e EMI ESCb Enable Manual Input

This control, when received in an output data stream, restarts keyboard input
recognition and buffering if previously disabled with a DMI multi-byte control. This
control is ignored when received from the keyboard.

e EA ESC[00 Erase to End of Area
ESC[10 Erase from Start of Area
ESC{20 Erase All of Area.
This control is treated like an EL control sequence.
e ED ESCJ[0J Erase to End of Display
ESC{[1J Erase from Start of Display
ESC[2d Erase All of Display.

Erases certain characters within the PS. Erased characters are replaced with empty
spaces. Erase to end of display erases the character indicated by the cursor and all
following characters in the PS. Erase from start of display erases the first character of
first line and the following characters up to and including the character indicated by
the cursor. Erase all of display erases all the characters on the PS.

e EF ESCI[ON Erase to End of Field
ESC[1N Erase from Start of Field
ESC[2N Erase All of Field.

Erases certain characters between horizontal tab stops. Erased characters are replaced
with empty spaces. Erase to end of field erases the character indicated by the cursor
and all following characters before the next tab stop. Erase from start of field erases
the character at the tab stop preceding the cursor an the following characters up to
and including the character indicated by the cursor. Erase all of field erases the
character at the tab stop preceding the cursor, and the following characters up to and
including the character at the tab stop following the cursor. Tab stops are assumed at
the first and last columns of the PS when executing this control.

e EL ESC[O0K Erase to End of Line
ESC[1K Erase from Start of Line
ESC[2K Erase All of Line.

Erases certain characters within a line. Erased characters are replaced with empty
spaces. Erase to end of line erases the character indicated by the cursor and all

5-16 AIX Operating System Technical Reference

data stream

following characters on the line. Erase from start of line erases the first character of
first line and the following characters up to and including the character indicated by
the cursor. Erase all of line erases all the characters on the line.

ECH ESC[PNX Erase Character

Erases the character indicated by the cursor and the following PN-1 characters on that
line. Erased characters are replaced with empty spaces. If there are less than PN
characters from the cursor to the PS right boundary, then the character indicated by
the cursor and all the following characters on the line are replaced empty spaces.

HTS ESCH Horizontal Tab Stop

Sets a horizontal tab stop at the current horizontal position. If TSM is set, then the
tab stop applies only to this line. If TSM is reset, then the tab stop applies to all PS
lines. This control does not change the positioning of characters already in the
presentation space.

HVP ESC[PN;PN{f Horizontal and Vertical Position

Moves the cursor to the line specified by the first parameter, and to the column
specified by the second parameter. If this movement would cross a PS boundary, the
cursor stops at the current PS boundary.

ICH ESC[PN@ Insert Character

Inserts PN empty spaces before the character indicated by the cursor. The string of
characters starting with the character indicated by the cursor and ending with last
character of the line are shifted PN columns to the right. Characters shifted past the
PS right boundary are lost. The cursor does not move.

IL ESC[PN L Insert Line

Inserts PN empty lines before the line indicated by the cursor. The line indicated by
the cursor is scrolled down. The cursor position on the screen is not affected.

IND ESCD Index

Moves cursor down one line. If the cursor was already on the bottom line of the PS,
then the top line is lost, the other lines move up one line, and a blank line becomes the
new bottom line.

NEL ESCE Next Line

Moves the cursor to the first position of the following line. If the cursor was already
on the bottom line of the PS, then the top line is lost, the other lines move up one, and
a blank line becomes the new bottom line.

KSI ESC[PSp Keyboard Status Information

The virtual terminal generates this control whenever HFHOSTS and HFXLATKBD
are set and the status of the keyboard changes. Each selective parameter is the
character-coded decimal value of a keyboard status byte. For example, if the keyboard

Miscellaneous Facilities 5-17

data stream

has two status bytes, the control sequence is ESC [xxx;yyy p, where xxx is the value of
the high-order byte and yyy is the value of the low-order byte. This is a private control
that conforms to the ANSI standards for private control sequences. The virtual
terminal display handler ignores this sequence whether it is received from the
application or echoed. The values of the status bytes are described in “Untranslated
Key Control” on page 6-56.

¢ PFK ESC[PNgq PF Key Report

The control sequence is sent by the virtual terminal to the application when a program
function key (PFK) code is received from the keyboard. The parameter PN is a PF key
number from 1 to 255. This is a private control that conforms to the ANSI standards
for private control sequences. This sequence is ignored by the virtual terminal display
handler whether received from the application or echoed.

e RCP ESC[u Restore Cursor Position

Moves the cursor to the position saved by the last SCP control. If no SCP has been
received, then the cursor position is set to the first character of the first line. This is a
private control that conforms to the ANSI standards for private controls. This control
has no terminal function when received from the keyboard.

e RI ESCL Reverse Index

Moves the cursor up one line, unless the cursor is already on the PS top line. In that
case, if HFWRAP mode is not set, then the cursor does not move. If HFWRAP mode is
set, the cursor moves to the bottom line of the PS. The column position does not
change.

e RIS ESCe Reset to Initial State

Resets the virtual terminal to the state of a newly-opened virtual terminal: erases all
PS data, places the cursor at the home position, resets graphic rendition to normal,
resets subscripting and superscripting, and sets tab stops, modes, keyboard map,
character maps and echo maps to their default values.

Note: The RIS multi-byte control resets the VRM virtual terminal defaults, which are
not necessarily the same as the defaults of an HFT device.

e RM ESC[PS1 Reset Mode

20 LNM - Line Feed - New Line Mode

4 IRM - Insert Mode ’

12 SRM - Send Receive Mode (set ECHO off)

18 TSM - Tabulation Stop Mode

?21 CNM - Carriage Return - New Liné Mode

Ly AUTONL - Wrap character to following line when end of current line reached

Resets the modes specified in the parameter string. Multiple parameters must be
separated by semicolons. The modes that can be reset are listed above with the
appropriate parameter code. All other mode parameters are ignored.

5-18 AIX Operating System Technical Reference

o

data stream

TSM mode determines whether horizontal tabs apply identically to all line (TSM reset)
or uniquely to each line on which they are set (TSM set).

SCP ESC{s Save Cursor Position

Saves the current cursor position. Any previously saved cursor position is lost. The
cursor can be restored to this position with an RCP control. This is a private control
that conforms to the ANSI standards for private controls. This control has no terminal
function when received from the keyboard.

SD ESC[PNT Scroll Down

Moves all the PS lines down PN lines. The bottom PN lines are lost, and PN empty
lines are put at the top of the presentation space. Physical cursor position does not
change due to the scroll.

SL ESC[PNSP @ Scroll Left

Moves all the PS characters PN column positions to the left. The characters in the PN
leftmost PS columns are lost, and empty spaces are put in the rightmost PN columns of
all lines. Physical cursor position does not change due to the scroll.

SR ESC[PNSPA Scroll Right

Moves all the PS characters PN column positions to the right. The characters in the
PN rightmost PS columns are lost, and empty spaces are put in the leftmost PN
columns of all lines. Physical cursor position does not change due to the scroll.

SU ESC[PNS Scroll Up

Moves all the PS lines up PN lines. The top PN lines are lost, and PN empty lines are
put at the bottom of the presentation space. The physical cursor position does not
change due to the scroll.

SGR ESC[PSm Set Graphic Rendition

0 Normal (none of attributes 1-9)
1 Bold or Bright

4 Underscore

5 Slow Blink

7 Negative (reverse image)

8 Cancelled On (invisible: set to background color)
10 Primary Font

11 First Alternate Font

12 Second Alternate Font

13 Third Alternate Font

14 Fourth Alternate Font

15 Fifth Alternate Font

16 Sixth Alternate Font

17 Seventh Alternate Font

30 Color palette entry 0 foreground

Miscellaneous Facilities 5-19

data stream

5-20

31 Color palette entry 1 foreground
32 Color palette entry 2 foreground
33 Color palette entry 3 foreground
34 Color palette entry 4 foreground
35 Color palette entry 5 foreground
36 Color palette entry 6 foreground
37 Color palette entry 7 foreground
40 Color palette entry 0 background
41 Color palette entry 1 background
42 Color palette entry 2 background
43 Color palette entry 3 background
44 Color palette entry 4 background
45 Color palette entry 5 background
46 Color palette entry 6 background
47 Color palette entry 7 background
90 Color palette entry 8 foreground
91 Color palette entry 9 foreground
92 Color palette entry 10 foreground
93 Color palette entry 11 foreground
94 Color palette entry 12 foreground
95 Color palette entry 13 foreground
96 Color palette entry 14 foreground
97 Color palette entry 15 foreground
100 Color palette entry 8 background
101 Color palette entry 9 background
102 Color palette entry 10 background
103 Color palette entry 11 background
104 Color palette entry 12 background
105 Color palette entry 13 background
106 Color palette entry 14 background
107 Color palette entry 15 background.

Causes the next characters received in the data stream or from the keyboard to have
the display attributes specified by the parameter string. Any parameter not listed
above is ignored.

The attributes corresponding to parameters 1 through 9 are cumulative. For example,
specifying underscore and then specifying blink causes following characters to be
underscored and blink. To reset one of these attributes, specify normal and then
reinstate the desired parameters. Multiple parameters are processed in the order
listed.

Whether the characters really have the requested attributes on the display depends on
the capabilities of the physical display device used by the virtual terminal.

Note that switching between loaded fonts with the SGR sequence causes no data loss,
but loading new fonts does cause data loss. (See “Untranslated Key Control” on
page 6-56 for more information.)

AIX Operating System Technical Reference

data stream

Characters that cannot be displayed do not exist in the system.
SGOA ESC (f Set GO Character Set
SGOB ESC,f Set GO Character Set (Alternate form)

Unique One (User-defined)

Unique Two (User-defined)

Po (Display Symbols 32-255)

P1 (Display Symbols 256-479)
P2 (Display Symbols 480-703)
Userl (Display Symbols 704-927)
User2 (Display Symbols 928-1023)

Designates the set of characters to use as the GO set when the GO set is invoked by SIL
The default GO set is the 224-character code page P0. Unique One and Unique Two
may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to <. See “Character Set Definition” on

page 6-69 about defining Unique One and Unique Two.

SG1A ESC)f Set G1 Character Set
SGiB ESC-f Set G1 Character Set (Alternate)

Unique One (User-defined)
Unique Two (User-defined)

@™ VI AT

PO (Display Symbols 32-255)
P1 (Display Symbols 256-479)
P2 (Display Symbols 480-703)

Userl (Display Symbols 704-927)
User2. (Display Symbols 928-1023)

Designates the set of characters to use as the G1 set when the G1 set is invoked by SO.
The default G1 set is the 224-character code page P0. Unique One and Unique Two
may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to <. See “Character Set Definition” on

page 6-69 about defining Unique One and Unique Two.

@™V I ATT

SM ESC[PSh Set Mode
20 LNM - Line Feed - New Line Mode (default = 1)
4 IRM - Insert Replace Mode (default = 0)

12 SRM - Send Receive Mode (set echo off) (default = 0)

18 TSM - Tabulation Stop Mode (default = 0)

221 CNM - Carriage Return - New Line Mode (default = 0)

217 AUTONL - Wrap to next line when end of line reached (default = 1)

Sets the modes specified in the parameter string. Multiple parameters must be
separated by semicolons. The modes that can be set are listed above with the
appropriate parameter code. All other mode parameters are ignored.

Miscellaneous Facilities 5-21

data stream

SRM mode affects translated keyboard input handling. If SRM mode is set, translated
keyboard input is never echoed by the virtual terminal, but is immediately returned to
the application.

TSM mode determines whether horizontal tabs apply to all lines identically (TSM
reset) or if horizontal tabs apply uniquely to each line on which they are set (TSM set).

e TBC ESC[PSg Tabulation Clear

Horizontal tab at cursor column

Vertical tab at line indicated by the cursor
Horizontal tabs on line

Horizontal tabs in presentation space
Vertical tabs in presentation space.

LN O

Clears tabulation stops specified by the parameters. Horizontal tab changes affect only
the line indicated by the cursor if TSM is set, and horizontal tab changes affect all
lines if TSM is reset. Any parameters not listed above are ignored. This control does
not change the positioning of characters already in the presentation space.

e VTA ESC]|r Virtual Terminal Addressability

This private control sequence precedes a binary header and associated data that
provide status information on the IBM 5081 Display Adapter.

e VID ESC]|x Virtual Terminal Data

This private control sequence precedes a binary header and associated data. The block
of data can be in formats other than character-coded data, such as binary format. See
“Output” on page 6-61 for details about how this control sequence is used.

e VIL ESC|y Virtual Terminal Device Input

This private control sequence precedes binary format input data from a mouse, tablet,
LPFK, or valuator device. See “Input Device Report” on page 6-57 for details about
how this control sequence is used.

e VIR ESC[w Virtual Terminal Raw Keyboard Input

This private control sequence precedes “raw” (untranslated) keyboard input data,
which is in a binary format. See “Untranslated Key Control” on page 6-56 for details
about how this control sequence is used.

e VIS ESCI Vertical Tab Stop

Sets a vertical tab stop at the line indicated by the cursor. This control does not
change the positioning of characters already in the presentation space.

5-22 AIX Operating System Technical Reference

data stream

Related Information

In this book: “display symbols” on page 5-24 and “hft” on page 6-23.
Keyboard Description and Character Reference.

“Overview of International Character Support” in IBM RT PC Managing the AIX
Operating System.

Miscellaneous Facilities 5-23

display symbols

display symbols

Purpose

Defines the set of character symbols that can be displayed on an HFT display device in
KSR mode.

Description

Each character code passed in KSR data is translated into one of 1024 10-bit display symbol
codes. Codes 0 through 703 (0x2bf) are predefined to be common across all virtual
terminals. Codes 704 (0x2c0) through 1023 (0x3ff) are reserved for user-defined extensions
to the display symbol set. Display symbols 0 through 31 (0x1f) represent control functions
and have no graphic representations.

Code pages PO, P1, and P2 contain all of the predefined characters. The first 32 code
points of each are reserved for control characters and are common to all three code pages.
The remaining characters are divided between PO, P1, and P2. Thus, each code page can
have up to 224 distinct graphic characters.

In addition to the predefined code pages PO, P1, and P2, you can define two code pages
called Unique One and Unique Two. See “fonts” on page 4-68, “data stream” on page 5-5,
and “Reconfigure (HFRCONF)” on page 6-31 for information you need to define such
character sets.

The columns of the following tables represent:

Font Position
The position of the graphic display symbol within the font definition.

Code Page/Code Point
The code page of the symbol and the offset within that code page.

char String
The internal hexadecimal representation as a string of type char, including the
single-shift control for characters in code pages other than PO.

NLchar Value
The value of the NLchar data type that corresponds to the character. The values
256—287 and 512—543 are not listed in this table because they correspond to control
codes in code pages P1 and P2. See “NLchar” on page 3-276 for more information
about this data type.

NCesc Esc Seq
The ASCII character or escape sequence that corresponds to the character after being
translated by the NCesc macro. The NLchar values 256—287 and 512543, which

5-24 AIX Operating System Technical Reference

display symbols

correspond to control codes in code pages P1 and P2, translate to \X >, where two
space characters (0x20) appear between the angle brackets. NLchar values outside

the valid range translate to \<??>. See “conv” on page 3-39 and “NLescstr,

NLunescstr, NLflatstr” on page 3-278 for related information.

The first table begins at font position 32 because the first 32 positions are reserved for the
single-byte controls. The IBM PC ASCII graphic symbols for positions 1 through 31 are
located at positions 257 through 287 and are not in any way associated with single-byte

control functions.

Font

Position Character

32 Space

33 ! Exclamation Point
34 " Double Quote

35 # Number Sign

36 $ Dollar Sign

37 % Percent Sign

38 & Ampersand

39 ’ Apostrophe, Acute Accent
40 (Left Parenthesis
41) Right Parenthesis
42 * Asterisk

43 + Plus Sign

44 , Comma

45 - Hyphen, Minus Sign
46 . Period

47 /| Slash

48 0 Zero

49 1 One

50 2 Two

51 3 Three

52 4 Four

53 5 Five

54 6 Six

55 7 Seven

56 8 Eight

Figure 5-6 (Part 1 of 8). Code Page PO

Code Page
Code Point

PO 32 (0x20)
PO 33 (0x21)

PO 34 (0x22)
P0 35 (0x23)
P0 36 (0x24)
PO 37 (0x25)
P0 38 (0x26)
P0 39 (0x27)
PO 40 (0x28)
PO 41 (0x29)
P0 42 (0x2a)
PO 43 (0x2b)
PO 44 (0x2c)
P0 45 (0x2d)
P0 46 (0x2e)
PO 47 (0x2f)
PO 48 (0x30)
PO 49 (0x31)
P0 50 (0x32)
P0 51 (0x33)
P0 52 (0x34)
P0 53 (0x35)
PO 54 (0x36)
P0 55 (0x37)
P0 56 (0x38)

Miscellaneous Facilities

char
String

0x20
0x21

0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2a
0x2b
0x2¢
0x2d
0x2e
0x2f
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38

NLchar NCesc
Esc Seq

Value

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Space
1

' F ok~ - 00 3% A T

ONOTTPEHEWNEE O

5-25

display symbols

Font

Position Character

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

Figure 5-6 (Part 2 of 8). Code Page PO

5-26 AIX Operating System Technical Reference

9

MM E<OH IO OZEN RS~ IQREDSQEPE@ VvV | A~ "

Nine
Colon
Semicolon

Less Than Sign

Equal Sign

Greater Than Sign
Question Mark

At Sign

a Uppercase
b Uppercase
¢ Uppercase
d Uppercase
e Uppercase
f Uppercase

g Uppercase
h Uppercase
i Uppercase

j Uppercase

k Uppercase
1 Uppercase

m Uppercase
n Uppercase
o Uppercase
p Uppercase
q Uppercase
r Uppercase

s Uppercase

t Uppercase

u Uppercase
v Uppercase
w Uppercase
x Uppercase
y Uppercase

Code Page
Code Point

PO 57 (0x39)
PO 58 (0x3a)
PO 59 (0x3b)
PO 60 (0x3c)
PO 61 (0x3d)
PO 62 (0x3e)
PO 63 (0x3f)
PO 64 (0x40)
PO 65 (0x41)
PO 66 (0x42)
PO 67 (0x43)
PO 68 (0x44)
PO 69 (0x45)
PO 70 (0x46)
PO 71 (0x47)
PO 72 (0x48)
PO 73 (0x49)
PO 74 (0x4a)
PO 75 (0x4b)
PO 76 (0x4c)
PO 77 (0x4d)
PO 78 (0x4e)
PO 79 (0x4f)
P0 80 (0x50)
PO 81 (0x51)
PO 82 (0x52)
PO 83 (0x53)
PO 84 (0x54)
PO 85 (0x55)
PO 86 (0x56)
PO 87 (0x57)
PO 88 (0x58)
PO 89 (0x59)

char
String

0x39
0x3a
0x3b
0x3c
0x3d
0x3e
0x3f
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4a
0x4b
Ox4c
0x4d
Ox4e
Ox4f
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59

NLchar NCesc

Value

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Esc Seq
9

<X E<CTONVNTIOUVOZMrRURTITOTMMOO@I @ VOV I Ave -

—

display symbols

Font

Position Character

90
9
92
93
94
95
96
97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Figure 5-6 (Part 3 of 8).

Z

> bt p—

“ 1

NdMgdegarrnRromgopgpg —F"T"EMR SO L0 TR

z Uppercase
Left Bracket
Reverse Slash

Right Bracket

Circumflex Accent, Up Arrow
Underline, Low Line

Grave Accent, Left Single Quote

a Lowercase
b Lowercase
¢ Lowercase
d Lowercase
e Lowercase
f Lowercase
g Lowercase
h Lowercase
i Lowercase
j Lowercase
k Lowercase
1 Lowercase
m Lowercase
n Lowercase
o Lowercase
p Lowercase
q Lowercase
r Lowercase
s Lowercase
t Lowercase
u Lowercase
v Lowercase
w Lowercase
x Lowercase
y Lowercase
z Lowercase

Code Page PO

Code Page
Code Point

P0 90 (0x5a)
P0 91 (0x5b)
P0 92 (0x5¢)
P0 93 (0x5d)
P0 94 (0x5¢)
PO 95 (0x5f)
P0 96 (0x60)
P0 97 (0x61)
P0 98 (0x62)
P0 99 (0x63)
P0 100 (0x64)
P0 101 (0x65)
P0 102 (0x66)
P0 103 (0x67)
P0 104 (0x68)
P0 105 (0x69)
P0 106 (0x6a)
P0 107 (0x6b)
P0 108 (0x6¢)
P0 109 (0x6d)
P0 110 (0x6e)
PO 111 (0x6f)
P0 112 (0x70)
P0 113 (0x71)
P0 114 (0x72)
P0 115 (0x73)
PO 116 (0x74)
P0 117 (0x75)
P0 118 (0x76)
P0 119 (0x77)
P0 120 (0x78)
P0 121 (0x79)
P0 122 (0x7a)

Miscellaneous Facilities

char
String

0x5a
0x5b
0x5c¢
0x5d
0x5e
0x5f
0x60
0x61

0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0Ox6a
0x6b
0x6¢
0x6d
Ox6e
0x6f
0x70 -
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7a

NLchar
Value

90
9
92
93
94
95
96
97
98
99
100
101
102
103
104
106
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

NCesc
Ese Seq

St~ N

“1

NS XS<cCctnWSOTOSII ~wxL-TQ-HhDAao oo

5-27

display symbols

Font
Position

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Figure 5-6 (Part 4 of 8).

5-28 AIX Operating System Technical Reference

Character

® GO £ 000 By B B e O 00 e O Q> T T

Left Brace

Logical OR

Right Brace

Tilde Accent

Del

¢ Cedilla Capital

u Umlaut Small

e Acute Small

a Circumflex Small
a Umlaut Small

a Grave Small

a Overcircle Small
¢ Cedilla Small

e Circumflex Small
e Umlaut Small

e Grave Small

1 Umlaut Small

i Circumflex Small
i Grave Small

a Umlaut Capital

a Overcircle Capital
e Acute Capital

ae Diphthong Small
ae Diphthong Capital
o Circumflex Small
o Umlaut Small

o Grave Small

u Circumflex Small
u Grave Small

y Umlaut Small

o Umlaut Capital
u Umlaut Capital
o Slash Small

Code Page PO

Code Page
Code Point

P0 123 (0x7b)
P0 124 (0x7c)
PO 125 (0x7d)
P0 126 (0x7e)
PO 127 (0x7f)
P0 128 (0x80)
P0 129 (0x81)
P0 130 (0x82)
PO 131 (0x83)
P0 132 (0x84)
P0 133 (0x85)
P0 134 (0x86)
P0 135 (0x87)
P0 136 (0x88)
P0 137 (0x89)
PO 138 (0x8a)
PO 139 (0x8b)
P0 140 (0x8¢c)
PO 141 (0x8d)
PO 142 (0x8e)
PO 143 (0x8f)
PO 144 (0x90)
PO 145 (0x91)
PO 146 (0x92)
PO 147 (0x93)
PO 148 (0x94)
PO 149 (0x95)
PO 150 (0x96)
PO 151 (0x97)
P0 152 (0x98)
PO 153 (0x99)
PO 154 (0x9a)
P0 155 (0x9b)

char
String

0x7b
0x7c
0x7d
0x7e
0x7f
0x80
0x81
0x82
0x83
0x84
0x85
0x86
0x87
0x88
0x89
0x8a
0x8b
0x8c
0x8d
0x8e
0x8f
0x90
0x91
0x92
0x93
0x9%4
0x95
0x96
0x97
0x98
0x99
0x9%a
0x9b

NLchar
Value

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

NCesc
Esc Seq

A
\KC,>
\<u'">
\<e'>
\<a*>
\<a">
\<a*>
\<ao>
\<c,>
\<e*>
\<e">
\<e*>
\<i'"D
A<D
\<i
\<A">
\<Ao>
\<E'>
\<ae>
\<AE>
\<o">
\<o">
\<o*>
\<ur>
\<u>
\<y|1>
\<0">
\<U">
\<o/>

display symbols

Font
Position Character

156 £ English Pound Sign

157 O o Slash Capital

158 x Multiplication Sign

159 f Florin Sign

160 4 a Acute Small

161 i 1 Acute Small

162 6 o Acute Small

163 4 u Acute Small

164 i n Tilde Small

165 N n Tilde Capital

166 a Feminine Sign

167 o Masculine Sign

168 { Inverted Question Mark
169 ® Registered Trademark
170 -1 Logical Not

171 Y% One Half

172 Y% One Quarter

173 i Inverted Exclamation Sign
174 « Left Angle Quotes

175 Right Angle Quotes

176 Quarter Hashed

177 % Half Hashed

178 # Full Hashed

179 | Vertical Bar

180 { Right Side Middle

181 A a Acute Capital

182 A a Circumflex Capital

183 A a Grave Capital

184 © Copyright Symbol

185 4l Double Right Side Middle
186 I Double Vertical Bar

187 = Double Upper Right Corner Box
188 < Double Lower Right Corner Box

Figure 5-6 (Part 5 of 8). Code Page PO

Code Page
Code Point

PO 156 (0x9c)
PO 157 (0x9d)
PO 158 (0x9e)
PO 159 (0x9f)
P0 160 (0xa0)
P0 161 (0xal)
P0 162 (0xa2)
P0 163 (0xa3)
P0 164 (0xad)
PO 165 (0xa5)
P0 166 (0xa6)
P0 167 (0xa7)
PO 168 (0xa8)
P0 169 (0xa9)
P0 170 (0xaa)
P0 171 (0xab)
P0 172 (Oxac)
P0 173 (0xad)
P0 174 (Oxae)
P0 175 (0xaf)
P0 176 (0xb0)
P0 177 (0xb1)
P0 178 (0xb2)
P0 179 (0xb3)
P0 180 (0xb4)
P0 181 (0xb5)
PO 182 (0xb6)
P0 183 (0xb7)
P0 184 (0xb8)
P0 185 (0xb9)
P0 186 (0xba)
P0 187 (0xbb)
P0 188 (0xbc)

char
String

0x9c
0x9d
0x9e
0x9f
Oxa0
Oxal
0Oxa2
0Oxa3
Oxa4
Oxab
0xab
Oxa7
Oxa8
0xa9
Oxaa
Oxab
Oxac
Oxad
Oxae
Oxaf
0xb0
0xbl
0xb2
0xb3
0xb4
0xb5
0xb6
0xb7
0xb8
0xb9
Oxba
0xbb
0xbc

NLchar
Value

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

NCesc
Esc Seq

\<L=>
\K0/>"
\ x>

\ <>

\<a'>
\GD
\<o'>
\<u'>
\<n~>
\<N~>
\<-a>
\<-0>
\ K>

\<ro>
\<=-.>
\<12>
\<14>
\ <1

\<A{{
\<3>
\<#1>
\<#2>
\<#3>
\<S0>
\<S6>
\<A'>
\<A*>
\<AY

\<c0>
\<D6>
\<DO>
\<D9>
\<D3>

Miscellaneous Facilities 5-29

display symbols

Font

Position Character

189 ¢ Cent Sign

190 ¥ Yen Sign

191 7 Upper Right Corner Box

192 L Lower Left Corner Box

193 1+ Bottom Side Middle

194 T Top Side Middle

195 F Left Side Middle

196 — Center Box Bar

197 + Intersection

198 a a Tilde Small

199 A a Tilde Capital

200 .. Double Lower Left Corner Box
201 + Double Upper Left Corner Box
202 4 Double Bottom Side Middle
203 == Double Top Side Middle

204 = Double Left Side Middle

205 = Double Center Box Bar

206 4t Double Intersection

207 o International Currency Symbol
208 3 eth Icelandic Small

209 P eth Icelandic Capital

210 E e Circumflex Capital

211 E e Umlaut Capital

212 E e Grave Capital

213 1 Small i Dotless

214 I i Acute Capital

215 I i Circumflex Capital

216 I i Umlaut Capital

217 4 Lower Right Corner Box

218 r Upper Left Corner Box

219 B Bright Character Cell

220 = Bright Character Cell - Lower Half
221 i Broken Vertical Bar

Figure 5-6 (Part 6 of 8). Code Page P0

5-30 AIX Operating System Technical Reference

Code Page
Code Point

PO 189 (0xbd)
P0 190 (Oxbe)
PO 191 (0xbf)
PO 192 (0xc0)
PO 193 (Oxcl)
PO 194 (0xc2)
PO 195 (0xc3)
P0 196 (0xc4)
PO 197 (0xc5)
PO 198 (0xc6)
PO 199 (0xc7)
P0 200 (0xc8)
PO 201 (0xc9)
PO 202 (Oxca)
PO 203 (0xcb)
P0 204 (0xcc)
PO 205 (0xcd)
P0 206 (0xce)
P0 207 (0xcf)
PO 208 (0xd0)
PO 209 (0xd1)
PO 210 (0xd2)
PO 211 (0xd3)
PO 212 (0xd4)
PO 213 (0xd5)
PO 214 (0xd6)
PO 215 (0xd7)
PO 216 (0xd8)
PO 217 (0xd9)
P0 218 (0xda)
P0 219 (0xdb)
PO 220 (0xdc)
P0 221 (0xdd)

char
String

0xbd
Oxbe
Oxbf
0xc0
Oxcl
Oxc2
Oxc3
Oxc4
Oxch
0xc6
Oxc7
0xc8
0xc9
Oxca
Oxcb
Oxce
Oxcd
Oxce
Oxcf
0xdo
0xd1
0xd2
0xd3
0xd4
0xd5
0xd6
0xd7
0xd8
0xd9
Oxda
0xdb
Oxdc
Oxdd

NLchar NCesc

Value

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

Esc Seq

\<c/>
\<Y=>
\<S9>
\<S1>
\<S2>
\<S8>
\<S4>
\<S.>
\<S5>
\<a~>
\<A~>
\<D1>
\<D7>
\<D2>
\<D8&>
\<D4>
\<D.>
\<D5>
\<o*>
\<d+>
\<D+>
\<E~>
\KE">
\<E®

\<i>

\KI*>
\<I*>
\<I">
\<S3>
\<S7>
\

\<B2>
\<BO>

display symbols

Font

Position Character

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

Il COCTTE QOO I

~

POl A e

3

i Grave Capital

Bright Character Cell - Upper Half
o Acute Capital

s Sharp Small

o Circumflex Capital

o grave capital

o Tilde Small

o Tilde Capital

Mu Small, Micro Symbol
Thorn Icelandic Small
Thorn Icelandic Capital
u Acute Capital

u Circumflex Capital

u Grave Capital

y Acute Small

y Acute Capital

Overbar

Acute Accent

Syllable Hyphen

Plus Or Minus Sign
Double Underscore
Three Fourths
Paragraph Symbol
Section Symbol

Division Sign

Cedilla Accent

Degree Symbol, Overcircle Accent
Umlaut Accent

Middle Dot, Product Dot
Superscript 1
Superscript 3

Figure 5-6 (Part 7 of 8). Code Page P0

Code Page
Code Point

PO 222 (0xde)
PO 223 (0xdf)
PO 224 (0xe0)
PO 225 (Oxel)
P0 226 (0xe2)
PO 227 (0xe3)
P0 228 (0xed)
P0 229 (0xe5)
PO 230 (0xe6)
P0 231 (0xe7)
PO 232 (0xe8)
P0 233 (0xe9)
PO 234 (Oxea)
PO 235 (0Oxeb)
PO 236 (0xec)
P0 237 (Oxed)
P0 238 (Oxee)
PO 239 (Oxef)
P0 240 (0xf0)
PO 241 (0xf1)
PO 242 (0x{2)
P0 243 (0xf3)
PO 244 (0xf4)
PO 245 (0x15)
PO 246 (0x16)
P0 247 (0x{7)
PO 248 (0xf8)
PO 249 (0x{9)
P0 250 (0xfa)
P0 251 (0xfb)
PO 252 (0xfc)

Miscellaneous Facilities

char
String

Oxde
Oxdf
Oxe0
Oxel
Oxe2
Oxe3
Oxed
Oxeb
Oxe6 -
Oxe7
0Oxe8
Oxe9
Oxea
Oxeb
Oxec
Oxed
Oxee
Oxef
0xf0
0xfl
0xf2
0xf3
0xf4
0xf5
0xf6
0xf7
0xf8
0xf9
0xfa
0xfb
Oxfe

NLchar NCesc

Value

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

Esc Seq

\KIYD
\<B8>
\K0'>
\<ss>
\K0*>
\ <O
\<o~>
\<0~>
\<&m>
\<Ip>
\<IP>
\<U'>
\<Ur>
\<U»>
\<y'>
AKY D
\K-=>
\ K="
\<r=>
\<{+=>
\K==>
\<34>
\<|P>
\<IS>
\<:=>
\=,>
\<o>»

\<_II>
\<.>
\<* 1>
\{*3>

5-31

display symbols

Font
Position Character

253 2 Superscript 2
254 I Vertical Solid Rectangle
255 Required Space

Figure 5-6 (Part 8 of 8). Code Page P0

5-32 AIX Operating System Technical Reference

Code Page
Code Point

PO 253 (0xfd)
PO 254 (Oxfe)
PO 255 (0xff)

char
String

Oxfd
Oxfe
0xff

NLchar
Value

253
254
255

NCesc
Esc Seq

\<*2>

\<L]>
\<##>

display symbols

Font
Position Character

256

e Spanish Middle Dot
257 © Smiling Face
258 ® Dark Smiling Face
259 v Heart
260 4 Diamond
261 & Club
262 # Spade
263 e Bullet
264 Bl Reverse Video Bullet
265 O Circle
266 ¥ Reverse Video Circle
267 & Male Symbol
268 ? Female Symbol
269) Eighth Note
270 d Sixteenth Note
271 & Sun
272 > Right Solid Triangle
273 <4 Left Solid Triangle
274 ! Bidirectional Vertical Arrow
275 ' Double Exclamation Point
276 € Paragraph Symbol
277 § Section symbol
278 = Horizontal Solid Rectangle
279 1 Underlined Bidirectional Vertical Arrow
280 T Up Arrow
281 | Down Arrow
282 — Right Arrow
283 « Left Arrow
284 L. Diagonally Flipped Logical Not
285 — Bidirectional Horizontal Arrow
286 A Solid Upward Triangle
287 v Solid Downward Triangle
288 a4 a Tilde Small

Figure 5-7 (Part 1 of 7). Code Page P1

Code Page
Code Point

P1 32 (0x20)
P1 33 (0x21)
P1 34 (0x22)
P1 35 (0x23)
P1 36 (0x24)
P1 37 (0x25)
P1 38 (0x26)
P1 39 (0x27)
P1 40 (0x28)
P1 41 (0x29)
P1 42 (0x2a)
P1 43 (0x2b)
P1 44 (0x2c)
P1 45 (0x2d)
P1 46 (0x2¢)
P1 47 (0x2f)
P1 48 (0x30)
P1 49 (0x31)
P1 50 (0x32)
P1 51 (0x33)
P1 52 (0x34)
P1 53 (0x35)
P1 54 (0x36)
P1 55 (0x37)
P1 56 (0x38)
P1 57 (0x39)
P1 58 (0x3a)
P1 59 (0x3b)
P1 60 (0x3c)
P1 61 (0x3c)
P1 62 (0x3e)
P1 63 (0x3f)
P1 64 (0x40)

char
String

0x1fa0
0x1fal
0x1fa2
0x1fa3
0x1fa4
0x1fab
0x1fa6
Ox1fa7
0x1fa8
0x1fa9
Ox1faa
Ox1fab
Ox1fac
Ox1fad
Ox1fae
Ox1faf
0x1fb0
0x1fbl
0x1fb2
0x1fb3
0x1fb4
0x1fb5
0x1fb6
0x1fb7
0x1fb8
0x1fb9
0x1fba
0x1fbb
Ox1fbe
0x1fbd
0x1fbe
0x1fbf
0x1£c0

NLchar
Value

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

NCesc
Esc Seq

\<=.>
\<:)>
\<(:>
\<SH>
\<SD>
\<SC>
\<SS>
\<@>

\<B#>
\<0>

\<0#>
\<o%>
\<o+>
\<d~>
\<d=>
\<FD>

\<#P>
\<{#>
\ <>
\ <D
\<|P>
\<|S>
\<#]>
\ =12
\<|*>
\<|v>
\<->
\<{->
\ <=
\<()>
\<#»>
\<#v>
\<a~>

Miscellaneous Facilities 5-33

display symbols

Font
Position Character

289 B s Sharp Small

290 A a Circumflex Capital
291 A a Grave Capital

292 A a Acute Capital

293 A a Tilde Capital

294 @ o Slash Small

295 E e Circumflex Capital
296 E e Umlaut Capital

297 E e Grave Capital

298 I i Acute Capital

299 I i Circumflex Capital
300 I i Umlaut Capital

301 1 i Grave Capital

302 @ Slashed o Capital

303 5 eth Icelandic Small

304 ¥ y Acute Small

305 p Thorn Icelandic Small
306 > Cedilla Accent

307 Ci International Currency Symbol
308 D eth Icelandic Capital
309 Y y Acute Capital

310 P Thorn Icelandic Capital
311 ® Registered Trademark Symbol
312 % Three Quarters

313 T Overbar Accent, Macron Accent
314 “ Umlaut Accent

315 ’ Acute Accent

316 = Double Underscore

317 6 o Tilde Small

318 i Small i Dotless

319 0 o Circumflex Capital
320 O o Grave Capital

321 O o Acute Capital

Figure 5-7 (Part 2 of 7). Code Page P1

5-34 AIX Operating System Technical Reference

Code Page
Code Point

P1 65 (0x41)
P1 66 (0x42)
P1 67 (0x43)
P1 68 (0x44)
P1 69 (0x45)
P1 70 (0x46)
P1 71 (0x47)
P1 72 (0x48)
P1 73 (0x49)
P1 74 (0x4a)
P1 75 (0x4b)
P1 76 (0x4c)
P1 77 (0x4d)
P1 78 (Ox4e)
P1 79 (0x4f)
P1 80 (0x50)
P1 81 (0x51)
P1 82 (0x52)
P1 83 (0x53)
P1 84 (0x54)
P1 85 (0x55)
P1 86 (0x56)
P1 87 (0x57)
P1 88 (0x58)
P1 89 (0x59)
P1 90 (0x5a)
P1 91 (0x5b)
P1 92 (0x5c)
P1 93 (0x5d)
P1 94 (0x5e)
P1 95 (0x5f)
P1 96 (0x60)
P1 97 (0x61)

char
String

Ox1fcl
0x1fc2
0x1fc3
Oxlfed
0Ox1fch
0x1fc6
Ox1fe7
0x1fc8
0x1fc9
Oxlfca
Ox1fcb
Oxlfce
Ox1fed
Oxlfce
Ox1fef
0x1£d0
0x1fd1
0x1£fd2
0x1fd3
0x1fd4
0x1fd5
0x1fd6
0x1£d7
0x1fd8
0x1£fd9
Ox1fda
0x1fdb
Ox1fdc
0x1fdd
Ox1fde
Ox1fdf
0x1fe0
Ox1fel

NLchar
Value

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

NCesc
Esc Seq

\<ss>
\<A~>
\<AY

\KA'>
\<A~>
\<o/>
\<E*>
\<E">
\<E»

\<TI'>
\KI*>
\<I"™>
\<I>

\<0/>
\<d+>
\<y'>
\<Ip>
\=,>
\<o*>
\<D+>
\KY'>
\<IP>
\<r0>
\<34>
\<-->
\<_n>
\='>
>
\<o~>
\<i>

\<0~>
\KO%

\<0*'>

display symbols

Font

Position Character

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

Figure 5-7 (Part 3 of 7).

0@ R o BCSIKCHT ¢ OG> RS T O KD S P O

ZRK 3

o Tilde Capital
Superscript 3

u Circumflex Capital
u Grave Capital

u Acute Capital

a Ogonek Small

e Caron Small

¢ Caron Small

¢ Acute Small

e Ogonek Small

u Overcircle Small
d Caron Small

1 Acute Small

a Ogonek Capital
e Caron Capital

¢ Caron Capital

¢ Acute Capital
Caron Accent

e Ogonek Capital
u Overcircle Capital
d Caron Capital

1 Acute Capital

1 Caron Small

n Caron Small

d Stroke Small

r Caron Small

s Acute Small
Overcircle Accent
1 Slash Small

n Acute Small

s Caron Small

1 Caron Capital

n Caron Capital

Code Page P1

Code Page
Code Point

P1 98 (0x62)

P1 99 (0x63)

P1 100 (0x64)
P1 101 (0x65)
P1 102 (0x66)
P1 103 (0x67)
P1 104 (0x68)
P1 105 (0x69)
P1 106 (0x6a)
P1 107 (0x6b)
P1 108 (0x6¢)
P1 109 (0x6d)
P1 110 (0x6e)
P1 111 (0x6f)
P1 112 (0x70)
P1 113 (0x71)
P1 114 (0x72)
P1 115 (0x73)
P1 116 (0x74)
P1 117 (0x75)
P1 118 (0x76)
P1 119 (0x77)
P1 120 (0x78)
P1 121 (0x79)
P1 122 (0x7a)
P1 123 (0x7b)
P1 124 (0x7c)
P1 125 (0x7d)
P1 126 (0x7e)
P1 127 (0x7f)
P1 128 (0x80)
P1 129 (0x81)
P1 130 (0x82)

char
String

Ox1fe2
0x1fe3
Ox1fed
0x1feb
Ox1fe6
Ox1fe7
Ox1fe8
0x1fe9
Ox1fea
Ox1ifeb
Oxlfec
Ox1fed
Ox1fee
Ox1fef
0x1ff0
0x1ff1
0x1ff2
0x1ff3
0x1ff4
0x1ff5
0x1£f6
0x1ff7
0x1ff8
0x1ff9
Ox1ffa
0x1ffb
0x1ffc
0x1ffd
Ox1ffe
Ox1fff
0x1e80
0xle81
0x1e82

NLchar NCesc

Value

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

Esc Seq

\<0~>
\<*3>
\<U»>
\ <UD
\<U'>
\<a,>
\<ev>
\<cv>
\<c'>
\<e,>
\<uo>
\<dv>
\<1'>
\<A,>
\<Ev>
\<Cv>
\KC'>
\<=v>
\<E,>
\<Uo>
\<Dv>
\<L'>
\K1v>
\<nv>
\<d->
\<rv>
\<s'>
\<-0>
\<1->
\<n'>
\<sv>
\<Lv>
\<Nv>

Miscellaneous Facilities 5-35

display symbols

Font

Position Character

355 l\i r Caron Capital

356 S s Acute Capital

357 " Overdot Accent

358 z z Overdot Small

359 > Ogonek Accent

360 Z z Overdot Capital

361 % z Caron Small

362 é z Acute Small

363 Z z Caron Capital

364 7Z z Acute Capital

365 t, 1Slash Capital

366 N n Acute Capital

367 § s Caron Capital

368 t t Caron Small

369 f r Acute Small

370 8 o Double Acute Small
371 g u Double Acute Small
372 T t Caron Capital

373 R r Acute Capital

374 O o Double Acute Capital
375 U u Double Acute Capital
376 2 a Breve Small

377 g g Breve Small

378 L i Overdot Capital

379 A aBreve Capital

380 G g Breve Capital

381 ¥ Breve Accent

382 ” Double Acute Accent
383 g s Cedilla Small

384 £ Liter Symbol

385 'n High Comma n Small
386 S s Cedilla Capital

387 ~ Macron Accent

Figure 5-7 (Part 4 of 7). Code Page P1

5-36 AIX Operating System Technical Reference

Code Page
Code Point

P1 131 (0x83)
P1 132 (0x84)
P1 133 (0x85)
P1 134 (0x86)
P1 135 (0x87)
P1 136 (0x88)
P1 137 (0x89)
P1 138 (0x8a)
P1 139 (0x8b)
P1 140 (0x8c)
P1 141 (0x8d)
P1 142 (0x8e)
P1 143 (0x8f)
P1 144 (0x90)
P1 145 (0x91)
P1 146 (0x92)
P1 147 (0x93)
P1 148 (0x94)
P1 149 (0x95)
P1 150 (0x96)
P1 151 (0x97)
P1 152 (0x98)
P1 153 (0x99)
P1 154 (0x9a)
P1 155 (0x9b)
P1 156 (0x9c)
P1 157 (0x9d)
P1 158 (0x9e)
P1 159 (0x91)
P1 160 (0xa0)
P1 161 (Oxal)
P1 162 (0xa2)
P1 163 (0xa3)

char
String

0Ox1e83
0x1e84
0x1e85
0x1e86
0x1e87
0x1e88
0x1e89
Ox1e8a
0Oxle8b
Oxle8c
Ox1e8d
Oxle8e
Ox1e8f
0x1e90
0x1e91
0x1e92
0x1e93
0x1e94
0x1e95
0x1e96
0x1e97
0x1e98
0x1e99
0x1e9a
0x1e9b
Ox1e9c
0x1e9d
Ox1e9e
Ox1e9f
Oxleal
Oxleal

Oxlea2
Oxlea3

NLchar
Value

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

NCesc
Esc Seq

\<Rv>
\<S'D>
\ <D

\Kz.>
\<sa>
\KZ.>
\<zv>
\<z'>
\KZv>
\KZ'>
\<L->
\<XN'>
\<Sv>
\<tv>
\<r'>
\<o=>
\<u=>
\<Tv>
\<R'>
\<0=>
\<U=>
\<au>
\<qu>
\KI.>
\<AW
\<Gu>
\<ow>
\==>
\<s,>
<1

\<, >
\<S,>
\K==>

display symbols

Font
Position Character

388 t, t Cedilla Small

389 T t Cedilla Capital

390 A a Macron Small

391 A a Macron Capital
392 ¢ c Circumflex Small
393 C ¢ Circumflex Capital
394 Y High Reverse Solidus
395 ¢ ¢ Overdot Small

396 C ¢ Overdot Capital
397 é¢ e Overdot Small

398 E e Overdot Capital
399 € e Macron Small

400 E e Macron Capital
401 ¢ g Acute Small

402 2 g Circumflex Small
403 G g Circumflex Capital
404 ¢ g Overdot Small

405 G g Overdot Capital
406 G g Cedilla Capital
407 & h Circumflex Small
408 H h Circumflex Capital
409 h L Stroke Small

410 H h Stroke Capital

411 1 iTilde Small

412 T i Tilde Capital

413 i iMacron Small

414 I i Macron Capital
415 i 10Ogonek Small

416 I i Ogonek Capital
417 {j ij Ligature Small
418 1IJ 1J Ligature Capital
419 J. 1 Circumflex Small
420 J j Circumflex Capital

Figure 5-7 (Part 5 of 7). Code Page P1

Code Page
Code Point

P1 164 (0xa4)
P1 165 (0xab)
P1 166 (0xa6)
P1 167 (0xaT7)
P1 168 (0xa8)
P1 169 (0xa9)
P1 170 (Oxaa)
P1 171 (Oxab)
P1 172 (0Oxac)
P1 173 (Oxad)
P1 174 (0xae)
P1 175 (0xaf)
P1 176 (0xb0)
P1 177 (0xbl)
P1 178 (0xb2)
P1 179 (0xb3)
P1 180 (0xb4)
P1 181 (0xb5)
P1 182 (0xb6)
P1 183 (0xb7)
P1 184 (0xb8)
P1 185 (0xb9)
P1 186 (0xba)
P1 187 (0xbb)
P1 188 (0xbc)
P1 189 (0xbd)
P1 190 (Oxbe)
P1 191 (0xbf)
P1 192 (0xc0)
P1 193 (0xcl)
P1 194 (0xc2)
P1 195 (0xc3)
P1 196 (0xc4)

char
String

Oxlead
Oxleabd

Oxleab
Oxlea7
Oxlea8
0Ox1lea9
Oxleaa
Oxleab
Oxleac
Oxlead
Oxleae
Oxleaf
0x1eb0
Oxlebl
Oxleb2
0x1eb3
Oxleb4
Oxlebb
Oxleb6
0xleb7
0x1eb8
0x1eb9
Oxleba
Oxlebb
Oxlebc
Oxlebd
Oxlebe
Oxlebf
OxlecO
Oxlecl
Oxlec2
Oxlec3
Oxlec4

NLchar
Value

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

NCesc
Esc Seq

\<t,>
\<T,>
\<a=->
\<A->
\<c*>
\<C*>
\\\>
\<c.>
\KC.>
\<e.>
\KE.>
\Ke-~>
\<E->
\<g'>
\<g*>
\ <G>
\<g.>
\<G.>
\<G,>
\<h*>
\<HA>
\<h->
\<H->
\<i~>
\<I~>
\<i=>
\KI->
\<i,>
\<I,>
\<ij>
\KId>
\<j*>
\<J*>

Miscellaneous Facilities 5-37

display symbols

Font

Position Character

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

Figure 5-7 (Part 6 of 7).

5-38 AIX Operating System Technical Reference

HRID SHBPCE CIS CAECCREE & DRI g g Q10 JO Yz T R R

k Cedilla Small

k Cedilla Capital

k Greenlandic Small
1 Cedilla Small

1 Cedilla Capital

1 Middle Dot Small

1 Middle Dot Capital
n Cedilla Small

n Cedilla Capital

n Eng Lapp Small

n Eng Lapp Capital
o Macron Small

o Macron Capital
oe Ligature Small
oe Ligature Capital
r Cedilla S