

IBM RT PC Advanced Interactive Operating System Version 2.1

AIX Operating System
Technical Reference
Volume 2

Programming Family

-~-~ ----- - --~ ---- - ---- - -,-------------_. -
Personal
Computer
Software SC23-0809-0

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 of the Advanced Interactive Executive Operating System, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided, at the back of this pUblication. If the form has been removed, address comments to IBM
Corporation, Department 997; 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984, 1987
©Copyright AT&T Technologies 1984

--------- ----:: - -~~~ TECHNICAL NEWSLETTER

for the

RT Personal Computer

AIX Operating System Technical Reference
Volume 2

© Copyright International Business Machines Corporation 1985, 1986, 1987

Order Numbers:
08F3407
SN20-9881
September 25, 1987
© Copyright IBM Corp. 1987

-OVER-

TB08F3407
Printed in U.S.A.

Summary of Changes

This technical newsletter contains updates to the Version 2.1.1 publication to include changes made
for Version 2.1.2. File the Version 2.1.1 TNL (SN20-9869) first, then apply the enclosed update to
those pages.

A vertical bar in the left margin of this TNL indicates material that has been updated or added for
Version 2.1.2.

Perform the following:

Remove Pages Insert Update Pages

iii and iv iii and iv

5-59 to 5-68 5-58.1 to 5-68.6

None Chapter 8

None A-9 to A-12

Index Index

Note: Please file this cover letter at the back of the manual to provide a record of changes.

September 25, 1987

)

§ : :i~~ TECHNICAL NEWSLETTER

for the

RT Personal Computer

AIX Operating System Technical Reference
Volume 2

© Copyright International Business Machines Corporation 1985, 1986, 1987

Order Numbers:
92X1321
SN20-9869
June 26, 1987
© Copyright IBM Corp. 1987

-OVER-

TB92X1270
Printed in U.S.A.

Summary of Changes

This technical newsletter contains updates to the Version 2.1 publication to include changes made
for Version 2.1.1.

Perform the following:

Remove Pages Insert Update Pages

4-43 and 4-44 4-43 and 4-44

4-53 to 4-56 4-53 to 4-56

4-65 to 4-74 4-65 to 4-74

4-93 to 4-112 4-93 to 4-112

4-123 and 4-124 4-123 and 4-124

4-139 and 4-140 4-139 and 4-140

4-153 to 4-158 4-153 to 4-158

5-55 to 5-58 5-55 to 5-58

6-11 to 6-14 6-11 to 6-14

6-121 and 6-122 6-121 and 6-122

All of Chapter 7 All of Chapter 7

A-7 and A-8 A-7 and A-8

C-23 and C-24 C-23 to C-24.2

The Index The Index

Note: Please file this cover letter at the back of the manual to provide a record of changes.

June 26, 1987

(

\

(

\

(

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Contents

Volume 1. System Calls and Subroutines

Chapter 1. AIX Operating System 1-1

Chapter 2. System Calls 2-1

Chapter 3. Subroutines 3-1

Index .. X-I

Volume 2. Files and Device Drivers

Chapter 4. File Formats 4-1

Chapter 5. Miscellaneous Facilities 5-1

Chapter 6. Special Files 6-1

Chapter 7. Advanced Display Graphics Support Library 7-1

Chapter 8. Sockets

Appendix A. Error Codes

Appendix B. Writing a Queuing System Backend

Appendix C. Writing Device Drivers

Appendix D. Porting DOS 3.0 Applications

Appendix E. Component Cross Reference

Appendix F. Glossary

8-1

A-I

B-1

C-l

D-l

E-l

F-l

Contents iii

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Index .. X-I

iv AIX Operating System Technical Reference

3-l.
3-2.
3-3.
4-l.
4-2.
5-l.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.

5-10.
5-1l.

6-l.
6-2.
6-3.
7-l.
E-l.
E-2.

Figures

Floating-Point Trap Handler Structures
The fpfp Register Mapping
Default Error-Handling Procedures
Example of Font Storage
Information Record Format
Octal ASCII Character Set
Hexadecimal ASCII Character Set
Code Page PO
Code Page PI
Code Page P2
Code Page PO .. .
Code Page PI .. .
Code Page P2 .. .
EBCDIC Character Set .. .
The eqnchar Characters .. .
Greek Characters ;
Bit Positions of ASCII Controls in Echo Map
Screen Manager Ring Examples
Position Codes for Remapping a Keyboard
Default Attribute Values .. .
Extended Services Subroutines
Multi-User Services Subroutines

3-189
3-190
3-240

4-72
4-90

5-3
5-4
5-6
5-7
5-8

5-25
5-33
5-40
5-45
5-54
5-58
6-35
6-51
6-78

7-9
E-l
E-l

Figures v

vi AIX Operating System Technical Reference

Volume 2. Files and Device Drivers

Volume 2. Files and Device Drivers

AIX Operating System Technical Reference

Chapter 4. File Formats

File Formats 4-1

About This Chapter

This chapter outlines the formats of various files. The C language struct declarations for
the file formats are given where applicable. These structures are usually found in header
files located in the /usr/include or /usr/include/sys directories, although they can be
located in any directory in the file system.

Many of the files described in this chapter contain magic numbers at predefined offsets.
Magic numbers provide programs with a way to verify the format of an input file before
attempting to process it. The values used for magic numbers are chosen because they are
not likely to occur as a random pattern in normal input.

4-2 AIX Operating System Technical Reference

.init.state

.init.state

Purpose

Specifies the initial state for the AIX Operating System.

Description

The /ete/ .init.state file specifies the initial state in which the init process is to start up
the AIX Operating System. This file contains a single line that specifies one of the
following initial states:

m

a

e

d

e file

o

u

Maintenance mode (single-user mode). When maintenance mode is entered, no
devices have been configured, no file systems have been mounted, and no daemon
processess have been started. These operations are normally performed by the
/ete/re shell procedure, which is not run when entering maintenance mode. See
the /ete/re file on your system for the commands that perform these operations.

Automatic multi-user mode. Enters multi-user mode, passing an a to /ete/re as
the first parameter, $1.

"Clean" multi-user mode. Enters multi-user mode, passing a c to /ete/re as the
first parameter, $1. By convention, the c indicates that the file systems are
probably in good condition, or "clean." You can customize the /ete/re file on your
system to skip running fsek in order to shorten the system-startup procedure.
Note, however, that "clean" mode does not guarantee that any file systems are in
good condition.

"Dirty" multi-user mode. Enters multi-user mode, passing a d to /ete/re as the
first parameter, $1. By convention, the d indicates that one or more file systems
may have been damaged. /ete/re should run the fsek command to check all file
systems.

Exec mode. Executes the shell procedure named file. When the shell procedure
terminates, the system asks the operator whether to enter maintenance mode or
multi-user mode.

Operator mode. Asks the operator whether to enter maintenance mode or
multi-user mode. The system waits until a response is given.

Unknown mode. Asks the operator whether to enter maintenance mode or
multi-user mode. If no response is given within a period of time (approximately a
minute), the system enters automatic multi-user mode.

File Formats 4-3

.init.state

File

If the operator selects multi-user mode in response to a prompt, then init asks whether to
check the file systems. The response to this question determines whether a C or a d is
passed to fete/reo

The /ete/ .init.state file can also contain comment lines, which are indicated by a #
character in the first column.

/ete/ .init.state

Related Information

In this book: "Creation and Execution" on page 1-16, "iplvm, waitvm" on page 2-58, and
"reboot" on page 2-109.

The init and re commands in AIX Operating System Commands Reference.

4-4 AIX Operating System Technical Reference

a.out

a.out

Purpose

Provides common assembler and link editor output.

Synopsis

#include < a.out.h >

Description

The as (assembler) and ld (link editor) programs produce an output file (the a.out file by
default) in the following format. The a.out file is executable if the assembler and the link
editor do not find any unresolved external references or errors in the source.

This file can have the following sections: a header, the text segment, data segment,
relocation information, a symbol table, a line number section, a string table, and a shared
library identifer (in that order). The last five sections may be missing if the program was
linked with the -s flag of the ld command or if they were removed by the strip command.
The shared library identifier exists only for object modules related to a shared library
image. Note the relocation information is not present if there are not external references
to be resolved after linking.

Loading an a.out file into memory for execution causes the creation of three logical
segments: the text segment, the data segment (initialized data followed by data that is not
initialized, the latter actually being initialized to all zeros) and a stack.

Segment 1 occupies a low memory address in the process image and its size is static.
Segment 2 follows segment 1 in memory. The size of this segment can be extended using
the brk system call. The stack segment begins near the highest locations in segment 3 and
grows toward segment 2 as required.

Header
The format of the a.out header is:

struct exec {
unsigned char a-mag i c [2J ;
unsigned char a-flags;
unsigned char a-cpu;
unsigned char a-hdrl en;
unsigned char a-unused;

/* magic number */
/* flags */
/* CPU-IO */
/* length of header */
/* reserved for future use */

File Formats 4-5

a.out

};

unsigned short
long a-text;
long a-data;
long a-bss;
long a-entry;
long a-mise;
long a-syms;
/* SHORT FORM
long a-trsize;
long a-drsize;
long o-tbase;
long a-dbase;
long a-lnums;
long a-toffs;

a-version; /* version stamp */

ENDS HERE */

/* size of text se9ment */
/* size of data segment */
/* size of bss segment */
/* entry point */
/* misc., e.g. initial staek pointer */
/* symbol table size */

/* text relocation size */
/* data relocation size */
/* text relocation base */
/* data relocation base */
/* size of line number section */
/* offset of text from start of file */

The fields in the header are as follows:

a-magic A 2-byte number that has a value of OxOl03.

a-flags A byte with various options that apply to the a.out file. Bits that are not
used are set to o. Options supported are:

A_ TOFF Text offset is specified by a-toffs
A-STRS String table is present
A_HDREXT Extended header is present
A-EXEC File is executable
A-SEP Instruction and data spaces are separate
A-PURE Pure text
A-SHLIB Shared library identifier is present

a-cpu A coded entry describing the system unit and the byte order it expects. The
coded entry for RT PC is Ox13.

a-hdrlen The length of the header. The size of the header is variable, but it must be at
least 32 bytes to include all of the fields in the structure through a-syms. If
the size of the header is such that a field is not included, the default value is
assumed.

a-misc The maximum size in bytes the user stack is allowed to grow.

4-6 AIX Operating System Technical Reference

a.out

Extended Header
The presence of an extended header is indicated by the A-HDREXT bit being set in
a-flags. The format of the extended header is:

struct exthdr {

};

unsigned short ax-size;
unsigned short ax-type;
unsigned short ax-flags;
unsigned short ax-nsegs;

/* total size of extension */
/* type of extension */
/* e.g., execution model */
/* number of segment entries */

The size of the extension (in bytes) is ax-size, which includes the length of exthdr plus
any auxiliary entries which comprise this extended header type, indicated by ax-type.
The value of ax-flags is also dependent on ax-type. In the event that the following
auxiliary entries contain per-segment information, ax-nsegs is the number of segments
(and thus the number of auxiliary entries) present.

Legal values for ax-type are:

AXT-INTEL 1
AXT-SHLIB 2

The legal values for ax-flags when ax-type is AX-INTEL are:

AXF -SSS Separate stack segment
AXF-MCS Multiple code segments
AXF-MDS Multiple data segments
AXF-HDS Huge data present
AXF-OVLY Code overlay
AXF -FPH Floating-point hardware required
AXF -ABS Absolute addresses present

When ax-type is AXT _INTEL, exthdr is followed by ax-nsegs entries of the form:

struct segent {
unsigned short as-type; /* segment type */
unsigned short as-flags; /* segment attributes */
unsigned short as-num; /* segment number */
unsigned short as-n1nno; /* # 1ineno entries */
long as-fi1ep; /* position (offset) in file */
long as-psize; /* size of segment in file */
long as-vsize; /* vi rtua 1 size */
long as-rsvdl; /* reserved */
long as-rsvd2; /* reserved */
long as-1nptr; /* position of 1ineno entries */

File Formats 4-7

a.out

};

Each segent describes a segment of the a.out file. Legal values for the type of segment,
as-type, are:

AST-NULL
AST-TEXT
AST-DATA

Code segment
Data segment

Various characteristics of the segment are described by as-flags. Possible values are:

ASF -HUGE Segment contains huge model data
ASF -BSS Segment contains implicit bss
ASF -SHARE Segment is sharable
ASF-EXPDOWN Segment expands downward
ASF -SEG Always on for segments

When ax-type is AXT-SHLIB, exthdr is followed by a table describing the ax-nsegs
shared libraries required bf this program. Each element of the table has the format:

struct slent {
long sl-off;
long as-addr;

/* offset from table start of lib key */
/* address where library to be mapped */

};

The table is terminated by an element with an sl-off member of zero. Following the table
are the shared library keys associated with the libraries mentioned. Each shared library
key is preceded by a string recognizable to the what command, and is terminated with an
ASCII NUL character. (Each sl-off entry points past the what string to the real start of
the key.)

Text and Data Sections
The text and data sections are indicated in the fields as follows:

a-text The size of the text segment in bytes. This segment begins immediately after
the header or at the offset specified in the a-toffs field if the A-TOFF flag is
set. The A-TEXTPOS macro defined in the a.out.h header file gives the
offset of this segment in either case.

The size of the data segment in bytes. This segment begins immediately
following the text segment. The A-DATAPOS macro gives the offset of this
segment.

The size of the bss segment in bytes. This segment represents data that is not
initialized. It does not appear in the file.

The text, data, and bss segments must each be a multiple of full words in size.

4-8 AIX Operating System Technical Reference

a.out

a-entry The text address where the program should start to run. The default is the
a-tbase value.

a-tbase The virtual address of the first byte of the text segment. The default value for
this field is o.

a-dbase The virtual address of the first byte of the data segment. The default value for
this field is a-tbase + a-text, rounded to the next segment boundary.

Relocation
The fields in the relocation information are as follows:

a-drsize

a-trsize

The size of the data relocation information in bytes. The A-DRELPOS macro
defines where the data relocation information entries begin.

The size of the text relocation information in bytes. The A_ TRELPOS macro
defines where the text relocation entries begin.

A word in the text or data segment of memory contains either an actual value or the value
of an offset. If a word in the text or data segm~nt references an undefined external symbol,
its value is an offset from the associated external symbol. During processing, the link
editor defines the external symbol and adds the value of the symbol to the word in the file.

When relocation information is present, each item that can be relocated is 8 bytes long.
The format of the relocation information is:

struct reloc {

long r-vaddr;
unsigned short r-symndx;

/* virtual address of reference */
/* internal segnum or extern

symbol number */
unsigned short r-type; /* relocation type */

};

The r - vaddr field gives the location of the relocatable reference relative to the beginning
of the segment in which it is defined.

The r -symndx field contains a symbol number in the case of an external. Otherwise, it
contains a segment number code:

S-ABS
S-TEXT
S-DATA
S-BSS

OxFFFF
OxFFFE
OxFFFD
OxFFFC

/* absolute * /
/* text segment * /
/* data segment */
/* bss segment * /

File Formats 4-9

a.out

The r -type field indicates the type of relocation. The relocation types are:

R_ABS
R-RELBYTE
R-PCRBYTE
R-RELWORD
R-PCRWORD
R-RELLONG
R-PCRLONG
R-REL3BYTE
R-KBRANCH
R-SEG86
R-SEG286
R-KCALL

o /* absolute * /
2 /* byte */
3 /* byte (pc relative) * /
4 /* word */
5 /* word (pc relative) */
6 /* long */
7 /* long (pc relative) * /
8 /* 3 bytes */
9 /* 20-bit I-shifted * /
10 /* segmented PC-XT */
11 /* segmented PC-AT */
12 /* 20-bit I-shifted or fix up *1

Symbol Table
The a-syms field in the header indicates the size of the symbol table in bytes. The
A-SYMPOS macro defines the offset where the symbol table begins.

The symbol table consists of the following entries:

struct syment {
union {

};

char -n-name [8J;
struct {

long -n-zeroes;
long -n-offset;
}-n-n;

char *-n-n-ptr[2J;
}_n;
long n-value;
unsigned char
unsigned char
unsigned short

n-sclass;
n-numaux;
n-type;

/* non-flex version */

/* flexname -- 0 */
/* offset into string table */

/* allows for overlaying */

/* symbol value */
/* storage class */
/* number of auxiliary entries */
/* language base and derived type */

#define SYMENT struct syment
#define SYMESZ sizeof{struct syment)

4-10 AIX Operating System Technical Reference

#define n-name -n.-n-name
#define n-nptr -n.-n-nptr[lJ
#define n-zeroes -n.-n-n.-n-zeroes
#define n-offset -n-n.-n-n.-n-offset

The low-order 3 bits of n-sclass indicate the section information:

N-UNDF
N-ABS
N-TEXT
N-DATA
N-BSS
N-COMM
N-SECT

00
01
02
03
04
05
07

/* undefined * /
/* absolute * /
/* text * /
/* data */
/* bss */
/* common */
/* section mask * /

The high-order bits indicate the storage class. The following storage classes are
implemented:

C-NULL
C-AUTO
C-EXT
C-STAT
C-REG
C-EXTDEF
C-LABEL
C-ULABEL
C-MOS
C-ARG
C-STRTAG
C-MOU
C-UNTAG
C-TPDEF
C-USTATIC
C-ENTAG
C-MOE
C-REGPARM
C-FIELD
C-BLOCK
C-FCN
C-EOS
C-FILE
N-CLASS

0000 /* undefined symbol */
0010 /* (Ox08) automatic variable * /
0020 /* (Ox010) external symbol * /
0030 /* (Ox18) static * /
0040 /* (Ox20) register variable * /
0050 /* (Ox28) external definition * /
0060 /* (Ox30) label * /
0070 /* (Ox38) undefined label * /
0100 /* (Ox40) member of structure * /
0110 /* (Ox48) function argument * /
0120 /* (Ox50) structure tag * /
0130 /* (Ox58) member of union * /
0140 /* (Ox60) union tag * /
0150 /* (Ox68) type definition * /
0160 /* (Ox70) undefined static * /
0170 /* (Ox78) enumeration tag * /
0200 /* (Ox80) member of enumeration * /
0210 /* (Ox88) register parameter * /
0220 /* (Ox90) bit field * /
0300 /* (Ox cO) .bb or .eb * /
0310 /* (Oxc8) .bf or .ef * /
0320 /* (OxdO) end of structure * /
0330 /* (Oxd8) file name * /
0370 /* (Oxfi) storage class mask * /

a.out

If a symbol section and class is undefined external and the value field is a value other
than 0, the link editor interprets the symbol as the name of a common region in which the
size is indicated by the value of the symbol.

File Formats 4-11

a.out

The D-type field is primarily for use by a symbol debugger. The low-order 4 bits form the
base type with values defined as follows:

o /* undefined symbol * / T-NULL
T-ARG
T-CHAR
T-SHORT
T-INT
T-LONG
T-FLOAT
T-DOUBLE
T_STRUCT
T-UNION
T-ENUM
T-MOE
T-UCHAR
T-USHORT
T-UINT
T-ULONG

1 /* used internally by compiler */
2 /* character * /
3 /* short integer * /
4 /* integer * /
5 /* long integer * /
6 /* floating point * /
7 /* double * /
8 /* structure * /
9 /* union */
10 /* enumeration */
11 /* member of enumeration */
12 /* unsigned character * /
13 /* unsigned short * /
14 /* unsigned integer */
15 /* unsigned long * /

The high-order bits form the derived type. The following values are repeated up to six
times to form the derived type:

DT-NON
DT-PTR
DT-FCN
DT-ARY

o /* no derived type * /
1 /* pointer * /
2 /* function * /
3 /* array */

The D-Dumaux field contains the number of auxiliary entries associated with this symbol
table entry. Currently, a symbol table entry can have at most one auxiliary entry. The
auxiliary entry provides additional information, and has this form:

union auxent {
struct {

long x-tagndx;
union {

struct {
ushort x-lnno;
ushort x-size;

}x_lnsz;
long x-fsize;

} x-misc;

/* str, union, or enum tag index */

/* declaration line number */
/* str, union, array size */

/* size of function */

4-12 AIX Operating System Technical Reference

union {
struct {

long x-lnnoptr;
long x-endndx;

} x-fcn;

/* if ISFCN, tag, or .bb */
/* ptr to fcn line # */

a.out

/* entry index past block end */

struct { /* if ISARY, up to 4 dimen. */
ushort x-dimen[DIMNUM];

} x-ary;
}x-fcnary;

}x-sym;
struct {

char x-fname[FILNMLEN];
}x-file;

};

#define FILNMLEN 14
#define DIMNUM 4

The information in an auxiliary entry cannot be correctly interpreted without the symbol
table entry to which it belongs. The order of entries within the symbol table is significant.

Line Number Section
The a-Inums field contains the size in bytes of the line number section. The line number
section starts at the location in the file defined by the A-LINEPOS macro.

Line number entries are used by the symbolic debugger to debug code at the source level.
Entries within the line number section are grouped by function. The format of a line
number entry is:

struct lineno {
union {

long l_symndx;

long l_paddr;
} l-addr;
unsigned short l_lnno;

};

/* symbol table index of function name
if and only if l-lnno == 0 */

/* physical address of line number */

/* line number */

File Formats 4-13

a.out

String Table
The string table contains the names of symbols that are longer than 8 characters. It is
present only if the A-STRS flag is set. If present, the first 4 bytes contain the length, in
bytes, of the string table, including the count. The remainder of the table is a sequence of
null-terminated strings. If the n-zeroes field in a symbol entry is 0, the n-offset field
gives the offset into the string table of the name for the symbol.

Shared Library Identifier
The shared library identifier names the shared library image to which this object module is
related. It is present only if the A-SHLIB flag is set. If present, the first byte contains the
length of the identifier section including the count byte. The identifier itself is a string
terminated with an ASCII NUL.

Related Information

The as, cc, dump, ld, nm, sdb, size, and strip commands in A/X Operating System
Commands Reference.

The config program and the what command in A/X Operating System Commands
Reference.

4-14 AIX Operating System Technical Reference

acct

acct

Purpose

Provides the accounting file format for each process.

Synopsis

#include < sys/acct.h >

Description

The accounting files provide a means to monitor the use of the system. These files also
serve as a method for billing each process for processor usage, materials, and services. The
acct system call produces accounting files. The < sys/acct.h > file defines the records in
these files. The content of the records are:

/* Accounting structures */
typedef ushort comp-t; /* floating point */

/* I3-bit fraction, 3-bit exponent */

struct acct
{

};

char ac-flag;
char ac-stat;
ushort ac-uid;
ushort ac-gid;
dev-t ac-tty;
time-t ac-btime;
comp-t ac-utime;
comp-t ac-stime;
comp-t ac-etime;
comp-t ac-mem;
comp-t ac-io;
comp-t ac-rw;
char ac-comm[8];

/* Accounting flag */
/* Exit status */
/* Accounting user-ID */
/* Accounting group-ID */
/* control typewriter */
/* Beginning time */
/* accounting user time in clock ticks */
/* accounting system time in clock ticks */
/* accounting elapsed time in clock ticks */
/* memory usage */
/* chars transferred */
/* blocks read or written */
/* command name */

File Formats 4-15

acct

extern struct
extern struct

#define AFORK
#define ASU
#define ACCTF

acct
inode

01
02
0300

The fields are as follows:

acctbuf;
acctp; / i-node of accounting file */

/* has executed fork, 'but no exec */
/* used superuser authority */
/* record type: 00 = acct */

ac-comm This field contains the command name. A child process, created by a fork
system call, receives this information from the parent process. An exec system
call resets this field.

ac-flag This field indicates whether the process used superuser authority, or it was
created using a fork command but not yet followed by an exec system call. The
fork command turns the AFORK flag in this field on and the exec system call
turns the AFORK flag off.

ac-mem This field contains memory usage. For each clock tick, the system updates this
field with the current process size and charges usage time to the process. This
is computed as «data size) + (text size » -;- (number of in-memory processes
using text)

The following structure (not part of acct.h) represents the total accounting format used by
the various accounting commands:

/* Float arrays below contain prime time and non-prime time
components */

struct tacct {

};

uid-t ta-uid;
char ta-name[8];
float ta-cpu[2];
float ta-kcore[2];
float ta-i 0 [2] ;
float ta-rw[2];
float ta-con[2J;
float ta-du;
long ta-qsys;
float ta-fee;
long ta-pc;
unsigned short ta-sc;
unsigned short ta-dc;

/* user-ID */
/* login name */
/* cum. CPU time, p/np (mins) */
/* cum. kcore-mins, p/np */
/* cum. chars xferred (512s) */
/* cum. blocks read/written */
/* cum. connect time, p/np, mins */
/* cum. disk usage */
/* queuing sys charges (pgs) */
/* fee for special services */
/* count of processes */
/* count of login sessions */
/* count of disk samples */

4-16 AIX Operating System Technical Reference

File

/usr/include/sys/acct.h

Related Information

In this book: "acct" on page 2-11 and "utmp, wtmp, .ilog" on page 4-170.

The acctcom command in A/X Operating System Commands Reference.

The acct, acctcms, acctcon, acctmerg, acctprc, acctsh, diskusg, and runacct
procedures in A/X Operating System Commands Reference.

acct

File Formats 4-17

ar

ar

Purpose

Describes common archive file format.

Synopsis

#include < ar.h >

Description

The ar (archive) command is used to combine several files into one. The ar command
creates an ar file. The ld (link editor) searches archive files to resolve program linkage.

Each archive begins with the archive magic string:

#define ARMAG
#define SARMAG

1I!<arch>\n ll
8

/* magic string */
/* length of magic string */

Each archive that contains common object files includes an archive symbol table. See
"a.out" on page 4-5 for the format of an object file. ld uses this symbol table to determine
the archive members to load during the link edit process. The archive symbol table, if it
exists, is always the first file in the archive. It is never listed, but ar automatically creates
and updates it.

The archive file members follow the archive header and symbol table. A file member
follows each file member header. The format of a file member header is:

#define ARFMAG lI\nll /* header trailer string */

struct ar-hdr { /* file member header */
char ar -name [16] ; /* fi 1 e member name - terminated by 1/1*/
char ar-date[12] ; /* fi 1 e member date */
char ar-uid[6] ; /* file member user identification */
char ar-gi d[6]; /* file member group identification */
char a r -mode [8] ; /* file member mode */
char ar -si ze [10] ; /* file member size */
char ar - fmag [2] ; /* ARFMAG - string to end header */

};

4-18 AIX Operating System Technical Reference

ar

All information in the file member header is in printable ASCII. The numeric information
contained in the headers is stored as decimal numbers, except ar-mode, which is stored in
octal. Thus, if the archive contains printable files, you can print the archive.

The ar -name field is blank-padded and terminated by a / (slash). The ar -date field
indicates the date the file was last modified prior to archive. The ar command allows
archives to move from system to system.

Each archive file member begins on an even-byte boundary. ar inserts null bytes for
padding and a new-line character between files, if necessary. The ar-size field is the size
of the file without padding. An archive file contains no empty areas.

If the archive symbol table exists, the first file in the archive has a zero-length name, for
example, ar-name[O] = = 'I'. The contents of the symbol table are as follows:

The number of symbols. This is 4 bytes long.

The array of offsets into the archive file. The length is determined by 4 bytes times the
number of symbols.

The name string table. The size is determined by ar-size minus (4 bytes times (the
number of symbols plus 1)).

The sgetl and sputl functions manage the number of symbols and the array of offsets. The
string table contains an equal number of null-terminated strings and elements in the
offsets array. Each offset from the array associates with the corresponding name from the
string table, in order. The string table names all the defined global symbols found in the
object files contained in the archive. Each offset locates the archive header for the
associated symbol.

Related Information

In this book: "sgetl, sputl" on page 3-334 and "a.out" on page 4-5.

The ar, ld, and strip commands in A/X Operating System Commands Reference.

File Formats 4-19

attributes

attributes

Purpose

Describes an attribute file format.

Description

ASCII files are used to control some RT PC utilities in order to simplify installing,
customizing, and maintaining RT PC. A text editor can be used to examine or change
these files. These files share an attribute-structured format.

An attribute-structured file consists of one or more named stanzas, separated by blank
lines. Each stanza begins with a name followed by a colon, and contains assignments to
keyword attributes. The values assigned can be alphanumeric strings or arbitrary
character strings enclosed in double quotes. The assignments can associate either a single
value or a succession of values with each attribute.

Typically, the stanza name is the name of a device or service. The attributes describe the
properties or handling of the named device or service. The meanings of the stanza names,
attribute names, and values are specific to an application. Examples of this file type
distributed with the system are /ete/filesystems, fete/ports, and /ete/qeonfig.

The stanza name default can be used to specify default values for any attributes. These
default assignments are implicitly included in every stanza that follows. A specified value
overrides the default value. A new default stanza automatically cancels all previously
specified default values. The syntax of a file of this type is:

<file> - <stanza>
- <file> <blank line> <stanza>

<stanza> - <name>:
- <name>:<assignments>

<name> - file name or information similar in syntax
<assignments> - <assignment>

- <assignments> <assignment>
<assignment> - <attribute>=<values>
<attribute> - string of alphanumeric characters
<values> - <value>

- <values>,<value>
<value> - string of alphanumeric characters

- "arbitrary characters"

4-20 AIX Operating System Technical Reference

attributes

Lines beginning with an * (asterisk) are considered to be comments and are ignored.

Note: Make sure that the values assigned to attribute keywords do not contain blanks
unless they are enclosed in double quotes.

Related Information

In this book: "cc.cfg" on page 4-29, "connect. con" on page 4-33, "filesystems" on
page 4-64, "master" on page 4-98, "ports" on page 4-117, "qconfig" on page 4-129, "rasconf'
on page 4-133, and "system" on page 4-139.

File Formats 4-21

autolog

autolog

Purpose

Performs login function automatically.

Description

File

The optional autolog file causes the RT PC system to perform a login sequence
automatically when it contains a valid user name. When power is applied to the system
and the login port is the console, login searches for this file. If this file is found, login
creates a session for a specific user automatically. The autolog file is an ASCII file
containing a valid user name. A user can create this file while customizing the system.
After it is created, this file can be edited using any editor. If this file does not exist, login
causes the user to login as usual.

/etc/autolog

Related Information

The login command in AIX Operating System Commands Reference.

4-22 AIX Operating System Technical Reference

backup

backup

Purpose

Copies file system onto temporary storage media.

Synopsis

#include < backup.h >

Description

A backup of the file system provides protection against substantial data loss due to
accidents or error. The backup command writes file system backups and conversely, the
restore command reads file system backups. The following text describes the format of a
file system backup.

Header Types
The backup contains several different types of header records along with the data in each
file that is backed up. The type of header records are:

FS-VOLUME

FS-FINDEX

FS-CLRI

FS-BITS

FS-VOLEND

FS-END

FS-INODE

FS-NAME

The volume label. This header exists on every volume.

An index of files on this volume. Multiple headers of this type can
appear on a volume if there are too many i-nodes for the initial index.
This header is followed by data.

A bit map of i-nodes on the file system. A zero bit indicates the i-node is
not in use. This header exists only on the first volume. If the backup is
a level-zero backup, this header is omitted.

Another bit map of i-nodes. A one bit indicates the i-node is present on
this volume or a subsequent volume. This header may not appear on all
volumes.

Indicates the end of the current volume. This header may not appear on
all volumes. This header is used to indicate that all index entries on
this volume are used.

Indicates the end of the backup. This header appears on every volume.

Describes a single i-node. This header is followed by data that consists
of directories then followed by the other files within the directories.

A description of a file that is backed up by name.

File Formats 4-23

backup

Header Sequence
The header sequence varies depending on whether the files are backed up by i-node or by
name and on the type of backup device used.

Volume 1 of i-node backups to direct access volumes have the following sequence,
assuming that more than one volume is required for backup:

FS-VOLUME
FS-CLRI
FS-BITS
FS-FINDEX, followed by data
FS-FINDEX (if applicable), followed by data
FS-END

Subsequent volumes have the following sequence:

FS-VOLUME, followed by data
FS-FINDEX, followed by data
FS-FINDEX (if applicable), followed by data
FS-END

I-node backups to tapes have the same format as previously described, except there are no
FS-FINDEX headers and the FS-BITS header appears on every volume.

The format of backups by name does not depend on the output device. These backups have
a simple format:

FS-VOLUME Appears on each volume.

FS-NAME Precedes the data for each file. The files are copied in the order they were
named.

FS-END Concludes the backup.

Header Format
The location and size of the headers are independent of any blocking for either the file
system or the backup device. Each header begins on an 8-byte boundary. The length of a
header depends on its type, but is always padded to a multiple of 8 bytes. Data from a file
is similarly padded. Some headers contain addresses of other headers that are the offset in
8-byte units from the beginning of the backup volume.

Each field in a header is written in low-order bytes first for portability. I-node numbers
within directories also follow this order. The header begins with the following structure:

4-24 AIX Operating System Technical Reference

backup

struct hdr {
unsigned char len;
unsigned char type;
ushort magic;
ushort checksum;

};

The fields in this header indicate the following information:

len The length of the header in 8-byte units.

type

magic

The type of the header.

The magic number, which identifies this file as a file system backup. The
magic number is one of the following values:

MAGIC Identifies this as a regular file system backup.

PACKED-MAGIC Identifies this as a packed, or compressed, file system
backup. Each data file within it is compressed using
the same algorithm that is used by the pack
command. Header information is not compressed.

checksum A checksum.

V olume Headers
FS-VOLUME headers have the following structure:

struct {

};

struct hdr
ushort
time-t
time-t
daddr-t
char
char
char
short

h· ,
volnum;
date;
budate;
numwds;
disk[16J;
fsname [16] ;
user [16J ;
incno;

File Formats 4-25

backup

The fields contain the following information:

volnum Contains the volume number.

date Indicates the date the backup was made.

budate Indicates that all files changed since this date are backed up.

numwds Indicates the number of 8-byte words in this backup.

disk Identifies the device that was backed up.

fsname Identifies the logical name of the backed-up device, for example, / a.

user Identifies the user that made the backup.

incno Shows the level number of the backup.

For backups by name, budate, disk, and fsname have no meaning, and incno is 100.

Index Headers
FS-FINDEX records are as follows:

struct {
struct hdr
ushort
ino-t
daddr-t
daddr-t

};

The fields are:

h· ,
dummy;
i no [80J ;
addr [80J ;
1 ink;

ino I-numbers of files indexed

addr Addresses of file indexed

link Address of next index on this volume, or 0 if this is the last.

Bit Maps
FS-CLRI and FS-BITS headers have the same structure:

struct {
struct hdr h;
ushort nwds;

};

In both cases, the bit map follows the header, and nwds gives the length of the map in
8-byte units. To save space, some zero bits at the end of the map are not backed up.

4-26 AIX Operating System Technical Reference

File Headers
FS-INODE and FS-NAME headers have similar formats:

struct {
struct hdr h;
ushort ino;
ushort mode;
ushort nlink;
ushort ui d;
ushort gid;
off-t size;
time-t atime;
time-t mtime;
time-t ctime;
ushort devmaj;
ushort devmin;
ushort rdevmaj;
ushort rdevmin;
off-t dsize;
char name [4J ;

};

The fields mode through ctime are copied from the i-node on disk.

Other fields are:

ino

devmaj

devmin

I-number of file.

Major device number of file system containing this file.

Minor device number of file system containing this file.

backup

rdevmaj

rdevmin

dsize

Major device number of this file (character- and block-special files only).

Minor device number of this file (character- and block-special files only).

Size of the file after backup. This differs from size if the file was compressed
during backup.

name The null-terminated name of the file that is supplied by the user. This field
is absent from FS-INODE headers.

File Formats 4-27

backup

End of Volume or Backup
FS-VOLEND and FS-END headers contain only the hdr structure.

Backup History
A backup history is kept in the /etc/budate file. The entries are in no particular order.
Each entry has the following format:

struct {
char
char
time_t

};

i d-name [16] ;
id-incno;
id-budate;

The fields of each entry are:

id-name
id-incno
id-budate

N arne of the file system
Incremental level number (0-9)
Date of most recent backup of the file system at that level.

Related Information

In this book: "filesystems" on page 4-64.

The backup, pack, and restore commands in AIX Operating System Commands Reference.

4-28 AIX Operating System Technical Reference

cc.cfg

cc.cfg

Purpose

Defines values used by the C compiler.

Description

The ee.efg file defines values used by the ee program to run compilers. Normally, the
ee.efg file contains entries only for the C compiler provided with the system. Entries are
made to this file to support C compilers for other systems as they are added.

This file is an attribute file. The name you specify when you run the ee program (it can be
linked to several difference names) determines which stanza of the ee.efg file is used.
Normally, the ee program runs as ee; therefore, the first stanza is almost always selected.
If the sec program (standalone C compiler) is run, then the sec stanza is selected. If the
fcc program (floating point) is selected, then the fcc stanza is selected. If the vee program
(a.out-to-toe conversion) is selected, then the vee stanza is selected.

You can specify the following attributes:

as

as flags

asopt

eeom

eeomflags

eeomopt

egen

egenflags

egenopt

The path name to be used for the assembler.

A string of values, separated by commas, to be passed to the assembler.

A string naming optional flags that, if encountered on the ee command line,
should be passed to the assembler. See description of the eppopt field.

The path name to be used for the compiler. For a one-program compiler,
this is the only compiler program provided. For a two-program compiler,
this is the parser for the front end (also known as cO).

A string of values, separated by commas, to be passed to the compiler.

A string naming optional flags that, if encountered on the ec command line,
should be passed to the compiler. See oppopt.

The path name to be used for the code generator of a two-program compiler
(also known as el).

A string of values, separated by commas, to be passed to the code generator.
If a one-program compiler is used, these are appended to ecomflags.

A string naming optional flags that, if encountered on the ec commands
line, should be passed to the code generator. See cppopt.

File Formats 4-29

cc.cfg

copt

coptflags

coptopt

cpp

cppflags

cppopt

crt, mcrt

csuffix

hsuffix

ld

ldflags

ldopt

libraries

osuffix

ssuffix

use

The path name to be used for the peephole optimizer of a compiler with an
explicit peephole program (also known as c2).

A string of values, separated by commas, to be passed to the peephole
optimizer.

A string naming optional flags that, if encountered on the cc command line,
should be passed to the peephole optimizer. See cppopt.

The path name to be used for the preprocessor.

A string of flags, separated by commas, to be passed to the preprocessor.

A string naming optional flags that, if encountered on the cc command line,
should be passed to the preprocessor. The string is formatted for getoptO
subroutine, as a concatenation of flag letters, with a letter followed by a :
(colon) if the corresponding flag takes a parameter.

The path name of the object file passed as the first parameter to the link
editor. In the presence of the - p flag to cc, the mcrt value is used;
otherwise the crt value is used. The defaults are /lib/crtO.o and
/lib/mcrtO.o.

The suffix for C source programs, default c.

A second suffix for C source (enabled by using the - h flag to the cc
command), default h.

The path name to be used for the link editor.

A string of values, separated by commas, to be passed to the link editor.
These are in addition to those implicitly provided as described in the cc
command.

A string naming optional flags that, when encountered on the cc command
line, to be passed to the link editor. See cppopt.

Flags, separated by commas, to be passed as the last parameters to the link
editor as the the default is libraries, the default is -lrts, -lc.

The suffix for object files, the default is O.

The suffix for assembler programs, the default is S.

Values for attributes are taken from the named stanza in addition to the
local stanza. For single-valued attributes, values in the use stanza apply if
no value is provided in the local stanza (or default stanza). For
comma-separated lists, the values from the use stanza are added to the
values from the local stanza.

4-30 AIX Operating System Technical Reference

cc.cfg

Example

* CC configuration file:

default:
cpp = /lib/cpp

* standard cc
cc:

use = DEFLT
crt = /lib/crtO.o
mcrt = /lib/mcrtO.o
libraries = -lrts,-lc
1 dfl ags = -n,-TOxlOOOOOOO,-K

* direct floating point accelerator cc
fcc:

use = DEFLT
crt = /lib/crtO.o
mcrt = /lib/mcrtO.o
libraries = -lrts,-lfm,-lfc
ccomflags = -f
ldflags = -n,-TOxlOOOOOOO,-K

* standard standalone cc
scc:

use = DEFLT
crt = /lib/crt2.o
cppflags = -DSTANDALONE
libraries = -12
1 dfl ags = -H4,-Y4

* atoc
vcc:

ccom = /lib/ccom
ccomopt = -0
copt = /lib/copt
as = /bin/as

File Formats 4-31

cc.cfg

File

ld
Cppflags
ldflags
crt

= /bin/ld
= -Daiws,-DAIX
= -r,-X,-R4,-H4,-Y4,-TOx60
= /usr/lib/vrmcrt.o

* common definitions
DEFLT:

/etc/cc.cfg

ccom
ccomopt
copt
as
ld
cppflags
ldflags

=

=
=
=

=

/lib/ccom
Of
/lib/copt
/bin/as
/bin/ld
-Daiws,-DAIX
-e,start,-X

Related Information

In this book: "getopt" on page 3-214 and "attributes" on page 4-20.

The as, CC, ccp, and ld commands in AIX Operating System Commands Reference.

4-32 AIX Operating System Technical Reference

connect. con

connect.con

Purpose

Controls communication connections and data transfer.

Description

The connection configuration file, /usr/lib/INnet/connect.con or
$HOME/bin/connect.con, controls the setup of connections for the connect program and
for certain optional communications programs. It provides a very general, flexible
mechanism to specify how connections are made and how data is transferred after making
a connection.

The connect.con files are attribute files. The following attributes may appear in the
connection control file.

Connection Options
The connection options and their descriptions are:

prefix,address,suffix

connect

The telephone number to dial or the network address to contact. The actual
number is constructed by concatenating the prefix (if any), the address, and
the suffix (if any). Usually the prefix and suffix are defined in /etc/ports
because they depend on the peculiarities of the dialer, and the address is
defined in connect. con.

Multiple addresses can be specified by consecutive address assignment lines
or by multiple address values separated by commas. The addresses are tried
in the order given. To specify a comma as part of the command that is sent to
the modem, enclose the entire address value in quotation marks.

Type of connection to make. This option is specified in /etc/ports since it is
usually associated with the hardware configuration of the outgoing line.
Permissible values are:

permanent

manual

bayes-1200

The connection is hard-wired. No dialing or other special
attention is needed.

The connection must be completed manually. This generally
implies a modem that does not dial, for example, an acoustic
coupler.

The line has a Hayes Stack Smartmodem 1200.

File Formats 4-33

connect.con

linetype

type

use

hayes-2400

vadic

ventel

other-name

The line has a Hayes Stack Smartmodem 2400.

The line has a Racal-Vadic 3451P autodialer.

The line has a Ventel MD212 + autodialer.

The line is associated with a dialer program, which is not built
into the connect program. This option allows you to augment
the capabilities of the connect program and other
communications programs when dealing with new types of
communications lines and dialers. The program searches for
the named dialer program in /usr/lib/INnet/dialers or
$HOME/bin.

The assumptions made for dialer programs you supply are: the
port to be used can be opened prior to dialing and the file will
be opened as descriptor 3. Two parameters are passed: number
to dial as parameter 1, and dialer hardware to use or value of
the dialer option, if any as parameter 2. Any code exit from
the dialer except 0 indicates the dialer failed. The failure code
returned by the dialer determines the message printed by the
programs.

Type of communication line protocols, either synchronous or asynchronous.
Different protocols are used on different line types, so the talker programs may
differ. The default linetype is asynchronous.

The name invoked with the connect program that determines the kind of
connection attempted. Only those stanzas with the proper type are processed.
Currently, the connect program itself uses only terminal type stanzas. The
default type is terminal.

This option directs the connect program to read the named stanza and follow
the instructions there.

Line Options and Parameters
Line options and parameters used are:

min The minimum value to use in kernel buffering. Min value characters must be
received before a call to the read system call returns, unless value specified in
time elapses.

parity The line is checked for the indicated parity: even, odd, any, or none.

speed The transmission speed, generally 110, 300, 1200,2400,9600, and so on.

time The value to use in kernel buffering. Time in tenths of a second to receive a
character before a call to the read system call returns unless min characters
are received. See the discussion of ICANON in "termio" on page 6-114.
Setting these parameters can result in improved performance.

4-34 AIX Operating System Technical Reference

connect.con

timeout The time limit to complete the connection in seconds. When the time limit
expires, the connection is aborted. This attribute is not needed for devices
with a built-in timeout.

System Options
The system options are:

device The name of the special file to use to make the connection. The device must
appear in /etc/ports (see "ports" on page 4-117) and the information in the ports
file entry that is made available to the connect program. Note that this
attribute can appear only in the last of the list of stanzas associated with
making the connection on this device, and that the use option must not appear.

dialer This option specifies the dialer hardware to be used in dialing the number. It is
normally in /etc/ports file, associated with the device to be used. It may also be
specified in a connection file, so that its value can be passed to a user-specified
dialer program.

Diagnostics
The following diagnostics are displayed, based on the return value from system- or
user-supplied dialer programs. The values 8 through 14 are treated as fatal errors.

Code Message

o Connected
1 Cannot open dialer
2 Busy or no answer
3 Not able to fork
4 Terminated attempts
5 Communication failure
6 Busy
7 No answer
8 Dead phone
9 Bad phone number
10 Cannot open device specified
11 Address not specified
12 Bad connect.con format
13 Cannot run dialer
14 No autodialer specified.

File Formats 4-35

connect.con

Login Script
A login script is file with the given name that is interpreted prior to notifying you that the
connection is complete. Script files are located either in the $HOME/bin file or in the
/usr/lib/INnet/scripts file.

script A script file is organized into a group of states. In each state, the script file
optionally sends a string to the remote system, then waits for a response. Several
possible responses can be listed for each state along with an action to be
performed if the response is received. A time limit can also be set in each state,
along with an action to be performed if the time expires without an expected
string arriving. The actions are to terminate script interpretations, with either a
success or failure indication, or to move to another state. A sample script is
shown under "Example" on page 4-37.

DONE
A successful termination of script interpretation.

ERROR string
An unsuccessful termination of script interpretation. The last message
received from the remote site is reported to you.

GOTOn
Continues processing in state n.

RECV string action
This action is performed if the given string is received.

SEND string
Sends the given string to the remote system. Any name enclosed in braces in
the string is taken to be an option reference and is replaced by the value of
that option. If that option is not present in the list of stanzas, you are
prompted for its value using the option name as the prompt. If a - (dash)
precedes the name within the braces, the typed characters are not echoed.
This is handy for including passwords as parameters in the script file without
having them stored on the system. Thus, script files can be given parameters
so that they can be used in different connection stanzas and by different
users.

STATE n
Declares the beginning of state n.

TIMER n action
This action is performed if no expected string is received in n seconds.

4-36 AIX Operating System Technical Reference

connect.con

Talker Program
A talker program handles the work of moving data across a connection. This program
runs after a connection is established. The default talker for the connect program is
atalk. You can override this and specify your own talker program.

talker This is name of the program to run when the connection is made. The
conventions observed between the connect program and the talker are not
complex: the connection is opened by the program as file descriptor 3. The only
flag passed by connect to the talker program is:

flags

Example

-llockfile

Note: If the -I flag is present, the talker must remove the named lockfile to
make the port available to other users.

This option passes flags (other than the above) to the talker program. This
option is valid with both default or user-specified talkers.

A typical script might be:

STATE 0

STATE 1

STATE 2

RECV User:
TIMER 10

SEND lI{myname}\n"
RECV Password:
RECV IIUnknown:"
TIMER 10

SEND "{-mypass}\n"
RECV 11$"
RECV Invalid
TIMER 20

GOTO 1
ERROR "No login"

GOTO 2
ERROR "Name unknown"
ERROR "No password msg"

DONE
ERROR "Wrong password"
ERROR "No prompt"

This script could be used for login to a remote RT PC system. In this file, connect waits
up to 10 seconds for a User: prompt. When received, it sends the value of the myname
option from the control file or by prompt, as the user name. It then waits for 10 seconds
for the Password: prompt, then it sends the value of my pass as the password. The
password is not echoed. It then waits another 20 seconds for another prompt. At each
stage, it looks for messages that could occur if the given user name or password is invalid.
With more states, you can write a script that tries several different user names and types
the necessary information to dial through a port selector.

File Formats 4-37

connect.con

Files

/usr/lib/INnet/connect.con
$HOME/bin/connect.con

Related Information

In this book: "attributes" on page 4-20, "ports" on page 4-117, and "termio" on page 6-114.

The connect and uucp commands in AIX Operating System Commands Reference.

INmail/ INnet/ FTP.

4-38 AIX Operating System Technical Reference

core

core

Purpose

Contains an image of memory at the time of an error.

Synopsis

#include < core.h >
#include < sys/param.h >
#include < sys/reg.h >
#include < sys/user.h >

Description

The system writes a memory image of a terminated process when various errors occur in a
core file in the current directory. See the signal system call for the list of errors. The
most common are memory address violations, illegal instructions, bus errors, and
user~generated quit signals. The memory image, called core, is written in the process
working directory. A process with an effective user ID that is different from the real user
ID does not produce a memory image.

The first section of the memory image is a copy of the system data per user process,
including the contents of the registers as they exist at the time of the fault. The size of
this section depends on the usize parameter defined in /usr/include/sys/param.h. The
first section contains two parts. The first part is the user structure defined in
/usr/include/sys/user.h. The second part is the process kernel stack. Note that RT PC
stores the user process registers at the beginning of the user stack, instead of the end of
the process kernel stack where they are normally stored on machines with stack push and
pop instructions. The /usr/include/sys/reg.h structure outlines the long word offsets of
the registers from the beginning of the user structure. The second section represents the
actual contents of the user area when the image was written. If the text segment is
separated from data space, it is not dumped.

File Formats 4-39

core

File

core

Related Information

In this book: "setuid, setgid" on page 2-129 and "signal" on page 2-145.

The crash and sdb commands in AIX Operating System Commands Reference.

4-40 AIX Operating System Technical Reference

cpio

cpio

Purpose

Describes copy in and out (cpio) archive file.

Description

When the -c flag of the cpio command is not used, the header structure is:

struct {
short

h-magic,
h-dev;

unsigned short
h_ino,
h-mode,
h_uid,
h_gid;

short
h-nlink,
h-rdev,
h-mtime[2] ,
h-namesize,
h-fi1esize[2] ;

char
h-name [n] ;

} Hdr;
/* described below */

When the cpio command is used with the -c flag, the header for the cpio structure may be
read as:

sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%1110%s",
&Hdr.h-magic, &Hdr.h-dev, &Hdr.h-ino, &Hdr.h-mode,
&Hdr.h-uid, &Hdr.h-gid, &Hdr.h-nlink, &Hdr.h-rdev,
&Longtime, &Hdr.h-namesize, &Longfi1e, &Hdr.h-name);

Longtime and Longfile are equivalent to Hdr.h-mtime and Hdr.h-filesize, respectively.
The contents of each file together with other items describing the file are recorded in an

File Formats 4-41

cpio

element of the array of varying length structures. The member h-magic contains the
constant octal 070707 (or Ox71c7). The stat system call explains the meaning of structure
members h-dev through h-mtime. The length of the null-terminated path name, h-name,
including the null byte is indicated by n, where n = (h-namesize % 2) + h-namesize. In
other words, n is equal to h-namesize if h-namesize is even. If h-namesize is odd, n is
equal to h-namesize + l.

The last record of the archive always contains the name TRAI LER! !! Special files,
directories, and the trailer are recorded with h-filesize equal to o.

Related Information

In this book: "stat, fstat" on page 2-159 and "scanf, fscanf, sscanf, NLscanf, NLfscanf,
NLsscanf' on page 3-325.

The cpio and find commands in A/X Operating System Commands Reference.

4-42 AIX Operating System Technical Reference

)

ddi

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

Purpose

Contains device-dependent information (ddi).

Description

A ddi file contains information for customizing classes (or types) of hardware adapters or
devices supported by the system. The information in this file may be modified using the
devices command or an editor program. The ddi files are attribute files that are located in
the /etc/ddi directory. See "attributes" on page 4-20 for the format of attribute files.

The equivalent of a ddi file can be created and added to the system. Customize helper
programs convert the parameters in the files into a corresponding Define-Device
structure, which is used by the VRM device driver. A ddi file contains the following
information:

• Device-dependent information. This is a series of keywords whose values the user
supplies when the device is defined.

• Instructions to the customize helper program for processing input parameters

• Mapping information for the ddi structure.

• Bit field mapping information.

The use of extended characters in ddi files is not supported.

Keywords
The following keywords are used in the stanzas of device-dependent information files.
These keywords describe attributes and settings for a particular device that may be
changed to suit your device.

Key
Word

aa

ae

Description

Automatic Answering: Does the printer support
communication auto answering?

Automatic Enable: Do you want the port to be enabled
automatically?

Possible
Choices

true, false

true, false

File Formats 4-43

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

Key
Word Description

alf Automatic Line Feed: Does the printer have automatic line
feed with carriage return.

ami Adapter Microcode 10CN: The IOCN of the microcode
module for an adapter that requires an IPL.

appt Application Type: The type of application that runs on the
link.

ars Aspect Ratio Support: Does the printer have a set aspect
ratio control?

at Adapter Type: Refers to the last two digits of the service
request number.

backs Backspace Support: Does the printer have the ability to
backspace (inove print head backward while printing a line)?

bigs Bit-Image Graphics Support: Does the printer have bit
image graphics controls?

biopa First 1/0 Port Address: Refers to the hardware adapter
address.

bm Bottom Margin (last line): Refers to the number of the last
writing line.

bpc Bits Per Character: Refers to the character length in bits.

brea Bus RAM End Address: If not zero, refers to the adapter's
end RAM address on the I/O bus.

brsa Bus RAM Start Address: If not zero, refers to the adapter's
start RAM address on the I/O bus.

bs Block Size: Refers to the size of sectors of storage on the
fixed disk; changes in number of blocks on minidisks may
affect system performance.

4-44 AIX Operating System Technical Reference

Possible
Choices

true, false (

3280, rje

yes, no

yes, no

yes, no (

1 -
[length(in.) x
lines/in.]

5,6,7,8

512,1024,
2048

Key
Word

bsess

cdp

cdpg

cn

colp

cps

cpt - cp8

cr

cs

cus

ddbw

dmao

dmas

dnec

Description

Base Session: Indicates the base session number for the link.

Condensed Print: Does the printer support printing in
condensed characters?

Code Page: Specifies the code page loaded into the printer.

DMA Channel Number: Refers to DMA channel number.

Color Printer: Refers to whether the printer is capable of
printing in color.

Condensed Print Support: Can the printer print in condensed
characters?

Code Page t through Code Page 8: Specifies the code pages
loaded into the printer. The IBM 5201 Printer and 4201
Pro printer use only cpt and cp2.

Color Ribbon: Does the printer have color ribbon?

Character Set: Refers to complete groups of characters that a
printer can support.

Continuous Underscore Support: Supports the escape­
(minus) control.

Device Data Bus Width: Is the I/O adapter an 8-bit or 16-bit
device.

Uses DMA Support Only: Use only DMA transfers.

DMA Support: Refers to whether hardware adapter supports
DMA.

Do Not Enable DMA Channel: The channel is not enabled if
the value is true.

Possible
Choices

yes, no

ddi

437 (PC), 850
(MLP)

0-9

yes, no

yes, no

PC, A, B, C,
D, PO, PI, P2,
MLP

yes, no

1,2

yes, no

8, 16

true, false

true, false

true, false

File Formats 4-45

ddi

Key
Word

dpc

dsp

dsps

dvam

dwp

dwps

ei

eil - ei4

ep

eps

fd

fi

fid

Description

Default Print Color: Refers to the color to use for printing
when a file does not contain codes that specify a color: usually
black, blue, red, or yellow.

Double Strike Print: Should double-strike be turned on?

Double Strike Print Support: Does the printer have a
control double-strike characters and provide boldface?

Device Attachment Method: Is your device attached locally
with a cable or is it attached through a modem?

Double Width Print: Should a file be printed with a
double-width character set?

Double Width Print Support: Does the printer have the
ability to print with a double-width character set?

Enable Adapter Interrupts.

Enable First through Fourth Interrupt Level: Refers to
conditions allowing the printer to stop when an error occurs or
when assistance is needed to complete I/O on interrupts levels
1,2,3, or 4.

Emphasized Print: Should emphasized print be turned on?
Every character is overstruck with a second pass of the print
head.

Emphasized Print Support: Does the printer have a control
to do emphasized print?

Fixed Disk: Refers to one of up to three circular plates used
for storing data.

Frequency Input: Refers to clock frequency to USART chips.

Font ID: ID of the font used by the printer.

4-46 AIX Operating System Technical Reference

Possible
Choices

black, blue,
red, yellow

yes, no

yes, no

0= local,
1 = remote
(modem)

yes, no

yes, no

true, false

yes, no

yes, no

hdiskO,
hdiskl,
hdisk2

11

Key
Word

fl

fnt1-
fnt8

fp

fw

hsi

hts

htvi

ic1 - ic4

ill - il4

iobd

ioccb

Description

Form (page) Length: Refers to the length of the paper in
terms of the number of lines per page. The value is determined
by multiplying the length of paper (in inches) by the number of
lines printed per inch.

Font 1 through Font 8: Specifies the printer fonts, such as
letter gothic or prestige elite. This keyword is used for the
IBM 3812 Pageprinter.

First Party DMA: Refers to whether hardware adapter has
own DMA controller.

Form Width (right margin): Refers to the width of paper in
terms of the number of characters per line. The value is
determined by multiplying the width of the paper (in inches) by
the number of characters printed per inch.

Horizontal Spacing Increment: What horizontal increment
is used in the ESC K control?

Horizontal Tab Support: Does the printer have horizontal
tab controls?

Text Vertical Increment: The vertical index increment used
by subsequent CUU (ESC A) multi-byte controls. (See
"Multi-Byte Controls" on page 5-13.)

Service class of First through Fourth Interrupt: Refers to
interrupt priority, where ° is the highest.

Interrupt Level Number of First through Fourth
Interrupt: Refers to hardware adapter interrupt levels 1
through 4.

Input/Output Bus Device.

Using DMA Four-Byte Buffering.

iofl - iof'8 Read/Write Flag for I/O Operation 1 through 8: Is a read
or write required to the corresponding I/O port address (pal -
pa8)?

Possible
Choices

ddi

1 - [(in.) x

lines/in.]

true, false

1 [width(in.)
x pitch]

60, 70, 120

yes, no

72

0, 1, 2, or 3

true, false

true, false

0- = Input, 1
= Output

File Formats 4-47

ddi

Key
Word

iopar

iowl­
iow8

ip

ixp

js

kpoe

110

1m

lobibp

logger

Ipi

lrmc

lun

Description

Number of I/O Port Addresses: Refers to hardware adapter
address range.

I/O Width for I/O Operation 1 through 8: Refers to the
number of bits to be written to or read from the port address
(pal-pa8).

Initialize Printer: Refers to the initial state of the printer
after power is applied.

Include Xon/Xoff Protocol: Refers to whether
communication protocol is included.

Justification Support: Refers to printing with the right
margin even.

Keep Printing on Error: Should the printer complete the
print job despite errors (without sending an error message to
the user)?

Leave DTR and RTS Lines On.

Left Margin: Refers to the area on a page between the left
edge and the leftmost character position on the page.

Length of Buffers in Buffer Pool: The length in bytes of
each buffer in the buffer pool of the Block I/O Communication
Area (BIOCA).

Possible
Choices

o = 8 bit, 1
= 16 bit

true, false

true, false

yes, no

yes, no

true, false

o - [width(in.)
x pitch]

PTY supports a login shell. true, false

Lines Per Inch: Refers to the number of print lines per inch, 6, 8
to line spacing density, and to the distance paper moves during
a line feed.

Left/Right Margin Controls: Does the printer have the yes, no
ability to change left and right margins (does it have left and
right margin control codes)?

Logical Unit Number: Number associated with an 0 - 7
addressable physical or logical device.

4-48 AIX Operating System Technical Reference

Key
Word

mask

mc

mccs

mnoal

mnonid

nidd

nidI

noabb

nob

nobibp

nobod

nobodr

nobub

ddi

Possible
Description Choices

Mask: Refers to the mask that indicates defaults overridden FIFC
by corresponding field in the Define-Device structure.

Modem Controls: Refers to whether or not to enable modem true, false
controls.

Multibyte Control Code Support: If yes, then the printer yes, no
supports IBMOEM multi-byte controls. If no, then the printer
is assumed to function like an IBM 5152 printer.

Maximum Number of Attached LCCs: The maximum
number of LCCs that can be attached to the device driver
using the Block I/O Communication Area (BIOCA).

Maximum Number of Net IDs: The maximum number of
network IDs that the device driver can support.

Net ID Displacement: The offset (in bytes) into the receive
data of the network ID.

Net ID Length: The length in bytes of a network ID.

Number of Allowed Bad Blocks.

Number of Blocks: Refers to the number of blocks in a
minidisk.

Number of Buffers in Buffer Pool: The number of buffers to
be allocated in the buffer pool of the Block I/O Communication
Area (BIOCA).

N umber of Blocks on Device.

Number of Buffers on a Device Ring: The number of buffers
to be allocated for each device ring queue in the Block I/O
Communication Area (BIOCA).

Number of 256-Byte Units/Block: Number of 256-byte units
on each block.

File Formats 4-49

ddi

Key
Word Description

noi Number of Interrupt Levels Used: Refers to the number of
hardware interrupt levels.

nops

norl­
nor8

norbosr

nosb

nospt

Number of I/O Operations.

Number of Repetitions for I/O Operation I through 8:
Refers to the number of times the same I/O operation is
performed to the corresponding port address (pal - pa8).

Number of Receive Buffers on SLIH Ring queue.

Number of Stop Bits: Refers to the number of stop bits in a
communication character.

Number of Sectors per Track.

now Number of DMA Sub-Channels.

nr No Read-Only Memory.

nsess Maximum Number of Sessions: The maximum number of
sessions that can be run on the link.

odl - od8 Output Data for 1/0 Operation I through 8: Refers to the
data to be written to the corresponding port address (pal - pa8)
if the corresponding flag (iofl - iofB) is set for output.

om Operation Mode: Refers to whether communications
operation mode is set.

pal - pa8 Port Address for I/O Operation I through 8: Refers to the
adapter port address being written to or read from to disable
the adapter.

pacs Print All Characters Support: Does the printer support
ESC A and ESC \ controls?

pdt Peripheral Device Type.

4-50 AIX Operating System Technical Reference

Possible
Choices

1 - 8

1 - 64

1, 1.5, 2

o

true, false

1, 2, 3, 4, 5, 6,
7, 8

0000 - FFFF

tx, rx, full,
half

0000 - FFFF

yes, no

Key
Word

ph

pinit

pitchl -
pitch8

plot

pn

pq

prin

pro

psd

pss

pt

Description

Paper Handling: Refers to the way the printer handles
different types of paper. The manual-feed printer stops at the
end of each page and waits for the user to insert another sheet
and press the start button. A printer with an automatic
sheet-feed mechanism feeds paper to the printer.

User-Supplied Sequence: Refers to the control sequence the
co-processor to reset the printers whose fonts can be changed.

Character Pitch 1 through Character Pitch 8: Refers to the
number of characters per linear inch, for instance, 10-pitch
type has 10 characters per inch.

Pass Data Directly to Device Without Modification.

Port Number on Adapter: Refers to the hardware adapter
port.

Print Quality: May select (on some printers) degrees of print
quality: dp (for fast, low quality), text (for better draft
quality), letter (for high-quality final text).

Printer Type: 0 = unspecified (functionally 5152); 1 = IBM
5152; 2 = IBM 5182; 3 = reserved; 4 = IBM 5201 Printer; 5 =
IBM 4201 Proprinter; 6 = IBM 4202; 7 = IBM 3852.

Protocol: Refers to communication protocol.

Paper Source Drawer: Refers to the location of the paper
drawer from which paper is drawn for printing.

Proportional Spacing Support: Does the printer support
proportionally spaced printing?

Parity Type: Refers to communication character parity.

rdto Receive Data Transfer Offset: The device driver using block
I/O transfers the receive packet beginning at this offset into
the buffer.

Possible
Choices

ddi

o = manual;
1 =
automatic; 2
= continous
form paper.

10,12, 15

yes, no

0-4

dp, text,
letter

0, 1, 2, 3, 4, 5,
6, 7

dtr, cdstl, dc

1 = top; 2 =

bottom

yes, no

even, odd,
mark, space,
none

File Formats 4-51

ddi

Key
Word

rea

rl

rlfs

roffv

ronv

rsa

rtrig

rts

rxt

sa

sdmac

Description

Bus ROM End Address: If not zero, refers to the adapter's
start ROM address on the I/O bus.

RAS Length: The length in words of the RAS section of the
Define Device structure.

Possible
Choices

Reverse Line Feed Support: Does the printer support the yes, no
ESC] control?

Receive Xoff Value: Refers to character to transmit in order 00 - FF
to inform a remote device to stop sending data.

Receive Xon Value: Refers to character to transmit in order 00 - FF
to inform a remote device to resume sending data.

Bus ROM Start Address: If not zero, refers to the adapter's
end ROM address on the I/O bus.

Receive Buffer Trigger: If the adapter has receive data
buffering capability, then this value selects the number of
bytes that trigger a received data interrupt.

Receive/Transmit Speed: Refers to communication baud
rate.

Receive Xoff Threshold: Refers to threshold for full
communication buffer detection.

Strobe Active.

Shared DMA Channel: Refers to whether a hardware adapter
can share DMA channel.

1,4,8,14

50,75, 110,
134.5, 150,
300,600,
1200, 1800,
2000, 2400,
3600,4800,
7200,9600,
19200

20

true, false

true, false

4-52 AIX Operating System Technical Reference

)

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

Key
Word

sg

sil - si4

sid

slap

slow

sn

sns

sp

sppt

Description

DMA Scatter/Gather Support: Refers to DMA support the
ability of hardware to scatter and gather I/O data.

Share First through Fourth Interrupt Levels: Refers to
whether interrupt levels 1, 2, 3, or 4 are able to be shared.

SCSI ID: Refers to the SCSI ID number.

Skip Lines at Perforation: Refers to the number of lines
skipped at page breaks. The number is divided by 2, so that
half the blank lines appear at the bottom of one page and half
at the top of the next.

Slow Device Support: Refers to whether DFT slow device
support is enabled.

Slot Number: Refers to the slot in which an adapter is
installed.

Switched/N onswitched: Refers to the state of the
communication line connection.

Select Printer.

Serial/Parallel Printer Type: Refers to whether the printer
is a serial or parallel type.

srbt SLIH Ring Buffer Threshold: The number of SLIH ring
queue buffers that the device driver can use before requesting
additional buffers from the block I/O device manager.

sss

sysadd

Superscript/Subscript Support: Does the printer have the
ability to print in superscript and subscript mode?

Specifies the action that the devices command takes after
adding the device. The valid choices are:

a Rebuilds the kernel and IPLs the system
v Runs the vrmconfig command
none Takes no special action.

Possible
Choices

true, false

true, false

0-6

0-[length(in.)
x lines/in.]

o =
Disabled,
1 = Enabled

1 - 8

true, false

true, false

1 = Parallel,
2 = Serial

yes, no

a,v,none

File Formats 4-53

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

Key
Word

sysdel

Description

Specifies the action that the devices takes after deleting the
device. The valid choices are:

a Rebuilds the kernel and IPLs the system
v Runs the vrmconfig command
none Takes no special action.

tbc Transmit Buffer Count: Number of bytes to buffer for
transmi tter.

tm Top Margin: Refers to the number of lines to be skipped at
the top of a page before printing begins. If the user specifies 6
lines, the first print line will be line 7. The value is
determined by the length of paper (in inches) multiplied by the
number of lines per inch.

Possible
Choices

a,v, none

o -
[length(in.) x

lines/in.]

toffy Transmit Xoff Value: Refers to the communication character 00 - FF
to transmit in order to inform a remote device to cease sending

tony

tt

typel -
typeS

urpim

vhs

vpqs

vsi

data.

Transmit Xon Value: Refers to the communication character 0 - FF
to transmit in order to inform a remote device to resume
sending data.

Terminal Type: Refers to the type of the terminal being used.

Typestyle 1 through Typestyle S: Refers to a typestyle such
as bold or italic.

User to Receive Printer Intervention Messages: Refers to
whether printer intervention messages are sent to any valid
user or to the user who queued the print job.

Variable Horizontal Spacing: Does the printer have ESC d
and ESC e controls?

Variable Print Quality Support: Does the printer have the
ability to print different degrees of quality?

Vertical Spacing Increment: Refers to parts of inch
supported in ESC 3 and ESC J controls.

Any user ID,
pjo = Print
Job Owner

yes, no

yes, no

216,144

4-54 AIX Operating System Technical Reference

)

)

Files

TNL SN20-9869 (26 June 1987) to SC23-0809-0
ddi

Possible Key
Word Description Choices

vts Vertical Tab Support: Does the printer support vertical tabs? yes, no

wll Wrap Long Lines: Does the printer "wrap" lines? That is, yes, no
will it break lines longer than the specified form width at the
right margin and print the remainder on the next line?

12ps 12 Pitch Support: Does the printer support 12 pitch? yes, no

/ etc/ ddi/ diskette
/ etc/ ddi/ enet
/etc/ddi/float
/ etc/ ddi/font
/ etc/ ddi/ opprinter
/ etc/ ddi/plotter
/ etc/ ddi/pprinter
/ etc/ ddi/ sprinter
/ etc/ ddi/tty

and possibly others.

Related Information

In this book: "attributes" on page 4-20, "master" on page 4-98, "system" on page 4-139,
"descriptions" on page 4-56, "kaf' on page 4-94, "options" on page 4-110, and "predefined"
on page 4-124.

File Formats 4-55

TNL SN20-9869 (26 June 1987) to SC23-0809-0
descriptions

descriptions

Purpose

Describes the meaning of ddi file keywords.

Description

File

The /etc/ddi/descriptions file contains a sorted list of descriptions for each of the
keywords used in ddi files. The devices command uses this file to explain the meanings of
the keywords during the add, change, and showdev subcommands.

The /etc/ddi/descriptions file must be sorted by keyword, and each line must follow the
following format:

keyworddescription

where:

keyword N ames a keyword that is used in a ddi file. This field is exactly 10
characters long, is padded on the right with spaces, and contains no tabs.

description Describes the meaning of the keyword. This field is exactly 28 characters
long, is padded on the right with spaces, and contains no tab characters.

Note: The /etc/ddi/descriptions file must be sorted alphabetically by the keyword field.
If it is not sorted, then the devices commands displays incorrect information about the
meanings of keywords.

The use of extended characters in the /etc/ddi/descriptions file is not supported.

/ etc/ ddi/ descriptions

Related Information

In this book: "ddi" on page 4-43 and "options" on page 4-110.

4-56 AIX Operating System Technical Reference

(

devinfo

devinfo

Purpose

Contains device characteristics.

Synopsis

#include < sys/devinfo.h >

Description

The devinfo structure is defined for each device. The IOCINFO operation of the ioctl
system call fills in this structure. The information returned by a device varies. Most
devices, other than disk devices, return a devtype value and the remainder of this
structure contains zeros. This structure provides information about the capabilities of a
device, rather than its current status or settings. For example, types of information
provided are the number of characters a printer handles per line or the diskette capacity in
number of blocks.

The maximum size of this structure is 12 bytes (no longer than the disk version), so that
programs can use the ioctl system call without concern of overrun due to increasing size.

struct devinfo
{ char devtype;

char flags;
union
{

struct
{ short

short
short
long

} dk;
struct
{

bytpsec;
secptrk;
trkpcYl;
numblks;

char
char

capab;
mode;

/* for disks */
/* bytes per sector */
/* sectors per track */
/* tracks per cylinder */
/* blocks this minidisk */

/* for memory mapped displays */

/* capabilities */
/* current mode */

File Formats 4-57

devinfo

short hres;
short vres;

} tt;

/* horizontal resolution */
/* vertical resolution */

} un;
};

The following flags specify some generic capabilities (see DD-DISK):

Constant
DF-FIXED
DF-RAND
DF-FAST

Value Function
01 Not removable
02 Random access possible
04 A relative term

The devinfo structures are defined for the following devices (specified in the devtype
field):

DD-DISK Indicates a disk. This devtype is R. The driver determines the
values. The fixed disk has flags DF-RAND I DF-FIXED I DF-FAST,
while the diskette has flags DF -RAND (see "fd" on page 6-17 and
"hd" on page 6-20).

DD-PSEU

DD-RTC

DD-TAPE

DD-TTY

DT-STREAM

DT-STRTSTP

The number of the bytes per sector, sectors per track, and tracks per
cylinder for the fixed disk are predetermined. The mini disk table
determines the number of blocks. For the diskette, the minor device
driver or the physical media determines this information when the
device is opened.

Indicates a line printer. The devtype is l. This fills in the devtype
field and returns zeros for the rest of the structure.

Indicates a pseudo-device. This devtype is Z.

Indicates a real-time (calendar) clock. This devtype is c.

Indicates a magnetic tape. This devtype is M.

Indicates a terminal. This returns a devtype of T and zeros for the
rest of the structure.

Indicates a streaming tape drive. The devtype is 2.

Indicates a start-stop tape drive. The devtype is 2.

4-58 AIX Operating System Technical Reference

devinfo

Related Information

In this book: "ioetl" on page 2-56, "fd" on page 6-17, and "hd" on page 6-20.

File Formats 4-59

dir

dir

Purpose

Describes the format of a directory.

Synopsis

#include < sys/dir.h >

Description

A directory is a file that a user is not allowed to write into directly. A directory file
contains a I6-byte entry for each file in it. A bit in the flag word of the i-node entry
indicates that the corresponding file should be treated as a directory. For additional
information about a system volume format, see the "fs" on page 4-74. The structure of a
directory entry as given in the include file is:

#include
#ifndef
#define
#endif
struct
{

};

ino-t
char

<sys/types.h>
DIRSIZ
DIRSIZ 14

direct

d-ino;
d-name[DIRSIZ] ;

By convention, the first two entries in each directory are. (dot) and .. (dot dot). The first.
(dot) is an entry for the directory itself. The .. (dot dot) entry is for the parent directory.
The meaning of the .. (dot dot) entry for the root directory of the master file system is
modified. There is no parent, directory, therefore, the .. (dot dot) entry has the same
meaning as . (dot).

4-60 AIX Operating System Technical Reference

dir

Related Information

In this book: "fs" on page 4-74 and "inode" on page 4-92.

File Formats 4-61

errfile

errfile

Purpose

Contains system event log.

Synopsis

#include < sys/erec.h >

Description

Files

When a system event occurs and logging is active, it generates an event record and passes
the record to the event-logging daemon to be recorded in the event log. The /etc/rasconf
file specifies the files where the events are to be logged. The default event log file is
/usr/adm/ras/errfile.

Every record has a header. See "error" on page 6-15 for the structure of a header. Each
type of event record has its own format. The /usr/include/sys/erec.h file shows the
format of the events currently logged. The error daemon process gathers the records from
memory and writes them in the files on disk. The event log file is opened (if existing) or
created. Next, the process opens the /dev/error special file, formats and writes the
non-volatile random access memory (NVRAM), which can contain up to 16 bytes of
information, and reads the events logged in memory. An analysis routine is called before
an event is written to the errfile. For an error, this routine returns a buffer of probable
cause information to aid in problem determination. This buffer is appended to the error
entry, the length of the entry is adjusted, and then the entire entry is written to the file.

Some records in the event file are administrative. These include the startup record entered
when logging is activated, the stop record written if the daemon is terminated gracefully,
and the time-change record that accounts for changes in the system time of day.

/usr / adm/ errfile
/dev/error
/ etc/rasconf

4-62 AIX Operating System Technical Reference

Related Information

In this book: "error" on page 6-15 and "rasconf" on page 4-133.

The errdemon in A/X Operating System Commands Reference.

err file

File Formats 4-63

file systems

filesystems

Purpose

Centralizes file system characteristics.

Description

A file system is a complete directory structure, including a root directory and any
directories and files beneath it. A file system is confined to a single partition. All of the
information about the file system is centralized in the filesystems file. Most of the file
system maintenance commands take their defaults from this file. The file is organized into
stanzas whose names are file system names and whose contents are attribute-value pairs
specifying characteristics of the file system.

The filesystems file serves two purposes:

• It documents the layout characteristics of the file systems.

• It frees the person who sets up the file system from having to enter and remember
items such as the device where the file system resides because this information is
defined in the file.

File System Attributes
Each stanza names the directory where the file system is normally mounted. The
attributes specify all of the parameters of the file system. See "attributes" on page 4-20 for
the format of an attribute file. The attributes currently used are:

account U sed by the dodisk command to determine the file systems to be processed
by the accounting system. This value can be either true or false.

backupdev Used by the backup and restore commands to determine the default output
device associated with each file system. The value of this keyword is
usually the name of a diskette or magnetic tape special file.

backuplen Used by the backup command to determine the size of the default backup
device associated with each file system. The size of a tape is measured in
tracks times feet. For example, the backup len for a 300-foot 9-track tape is
2700. This parameter is ignored for diskettes.

backuplev Used by the backup command to determine the default backup level to take
for each file system. Backup levels are discussed in the backup command.

4-64 AIX Operating System Technical Reference

boot

check

cluster

cyl

dev

free

mount

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
file systems

U sed by the mkfs command to initialize the boot block of a new file system.
This specifies the name of the load module to be placed into the first block
of the file system.

Used by the fsck command to determine the default file systems to be
checked. true enables checking while false disables checking. If a
number, rather than true is specified, the file system is checked in the
specified pass of checking. Multiple pass checking, described in fsck
command in A/X Operating System Commands Reference, permits multiple
file systems to be checked in parallel when multiple drives exist.

Specifies the number of 512-byte disk blocks that the system treats as a
unit. Only one or two values are supported. The RT PC default values are
4 for non-removable disks and 1 for removable disks.

Used by the mkfs command to initialize the free list and superblock of a
new file system. The value is the number of blocks in one cylinder. It
defines the size of an interleave cluster.

Identifies, for local mounts, either the block special file where the file
system resides or the file or directory to be mounted. System management
utilities use this attribute to map file system names to the corresponding
device names. For remote mounts, identifies the file or directory to be
mounted.

Used by the df command to determine which file systems are to have their
free space displayed by default. This value is either true or false.

Used by the mount command to determine whether or not this file system
should be mounted by default. If mount = true, then the mount all
command mounts this file system. If mount = false, the file system is not
mounted by default. When the optional second value readonly is specified,
the file system is normally mounted read-only.

Another optional value is inherit. When a remote file system is mounted
with mount = inherit, any additional file systems contained in the specified
file system are also mounted. This allows the local node to duplicate the
file system structure of the server node, starting at the specified mount
point.

In the sample file, notice the line for the root file system that reads
mount = automatic. The operating system automatically mounts this file
system when it is rebooted. The true value is not used so that mount all
will not try to mount it. Also, it is not false, because certain utilities, such
as ncheck normally avoid file systems with mount = false.

If mount = true,removable, a diskette file system is automatically
mounted when its files are opened and unmounted when the opened files
are closed. Also notice that in the example, this file is shipped designating
two removable file systems, one having asterisks. The asterisks indicate

File Formats 4-65

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

commented lines in the file. The mkdir command must be used to create a
directory in order to mount file system /dev/fdl.

nodename U sed by the mount command to determine which node contains the remote
file system. If this attribute is not present, the mount is a local mount. The
value of nodename can be either a valid node nickname or a valid node ID.

size

skip

type

vcheck

vol

Example

*

Used by the mkfs command for reference and to build the file system. The
value is the number of blocks in the file system.

Used by the mkfs command to initialize the free list and superblock of a
new file system. The value is the number of blocks to skip when the free
list is interleaved. This number is processor- and device-specific.

Used by the mount command to determine whether or not this file system
should be mounted. When the command mo u n t - t string is issued, all of
the currently unmounted file systems with a type equal to string are
mounted.

Used by the varyon command to determine which file systems to check.
true enables checking while false disables checking. This keyword should
only be set to true for filesystems that reside on IBM 9332 Direct Access
Storage Devices.

Used by the mkfs command when initializing the label on a new file
system. The value is a volume or pack label using a maximum of six
characters. The file system label is always the stanza name.

* File system information
*

default:

/:

vol
mount
check
free
backupdev
backuplen

dey
vol

= "RT PC"
= false
= false
= false
= /dev/rfdO
= 2400

= /dev/hdO
= "root"

4-66 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

mount automatic
check = true

) free = true

/u:
dey = /dev/hdl
vol = "/u"
mount = true
check = true
free = true

/u/joe/l:
dey = /u/joe/l
mount = inherit
nodename = vance

/usr:
dey = /dev/hd2
vol = "/usr"
mount = true
check = true
free = true

/tmp:
dey = /dev/hd2
vol = "/tmp"
mount = true
check = true
free = true

/disketteO:
dey = /dev/fdO
mount = true,removable

)
* /diskettel:
* dey = /dev/fdl

* mount = true,removable

File Formats 4-66.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
file systems

File

/etc/filesystems

Related Information

In this book: "attributes" on page 4-20 and "fs" on page 4-74.

The backup, df, fsck, mkfs, mount, restore, and umount commands in AIX Operating
System Commands Reference.

4-66.2 AIX Operating System Technical Reference

(

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
filesystems

File Formats 4-67

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

fonts

Purpose

Defines annotated and geometric character fonts for an HFT display device.

I Description

The AIX operating system can supply font definitions to the VRM. This can be done either
by configuring new font files into the VRM or by dynamically installing font modules into
the VRM and issuing an HFRCONF operation with the ioetl system call to inform the
VRM that they exist.

IBM supplies two sets of precompiled annotated text fonts with the AIX Operating System.
One set of fonts is for the IBM 5081 Display Adapter and the other set is for all other GSL
supported devices. The fonts for the IBM 5081 Display Adapter cannot be used on other
devices and fonts for other devices cannot be used on the 5081 Display.

(

Some of these annotated text fonts are automatically installed with the VRM, and others (
can be configured into the system by modifying the fete/master file. Also, you can use ~
the display command to select the active display font.

GSL supported devices also recognize one geometric text font format that allows you to
design your own set of characters. A geometric text font is also known as a programmable
character set (PCS) font. The PCS font can be used on all GSL supported devices
including the IBM 5081 Display.

In addition to the precompiled fonts, IBM supplies the source for each non5081 font, which
you can copy and modify to create new font definitions.

Since the precompiled source files must be linked to the VRM at run-time, these font files
must be compiled and converted to table of contents (TOC) format using the vee and
vrmfmt commands. See Virtual Resource Manager Technical Reference for details about
the TOC object module format.

An annotated text font definition file has three major parts in the following sequence:

• A header that describes the font. The header is the same for all annotated text fonts.

• A set of character descriptions:

5081 fonts - A set of expanded character bit arrays that describes each character in
the font.

N on5081 fonts - A set of condensed raster mosaics that describes each character in
the font.

4-68 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

• A look-up table that has an index entry to find each character representation in the
font.

5081 fonts - look-up table entries are 16 bits.

Non5081 fonts - look-up table entries are 32 bits and each describes the start of its
raster mosaics entry, its width, and the white space compressed from the top and
bottom of its raster mosaics entry.

Annotated Text Font Header
The annotated text font header is a fixed-length structure common to all annotated text
fonts for all displays. The VRM run-time binder uses the DDDFSIZE field in the header to
link the font to the virtual terminal resource manager. The information in header fields
are:

Offset Length
in Bytes in Bytes Field Description

OxOO 4 DDDFSIZE The size in bytes of the area containing the
font and the look-up table.

Ox04 2 fntclass A number that uniquely identifies the format
of the look-up table that follows:

OxOl = not a 5081 font
Ox02 = a 5081 font

Ox06 2 fntid The name an application uses to identify a
font. This must be a value within the range of
o to 1024.

Ox08 4 fntstyle Font style.

OxOC 4 fntattr Identifies the attributes of the font. Possible
values are:

OxOOOO - no special values
OxOOOl - bold version of this font
Ox0002 - italic version of this font.

OxlO 4 fnttotch The total number of characters in the font.
This is used to determine whether a specified
character code is valid for this font.

Ox14 4 fnttblsz Total number of words in the font table.

Ox18 2 fntbasln The scan line within a character box of the
baseline for characters in this font (zero
origin).

File Formats 4-69

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Offset Length
in Bytes in Bytes Field

Ox1A 2 fntcapln

OxIC 2 fntcolmn

Ox1E 2 fntrows

Ox20 2 fntchrbt

Ox22 2 fntultop

Ox24 2 fntulbot

Ox26 1 fntmonpt

Ox28 4 fntlkup

Description

The scan line within a character box of the
caps line for characters in this font (zero
origin).

Width of character box in pels.

Height of character box in pels.

Total number of bits per character.

The scan line within the character box of the
top line in the underscore (zero origin).

The scan line within the character box of the
bottom line in the underscore (zero origin).

Mono pitch flag in leftmost bit of this byte.

Byte offset from the beginning of this structure
to the beginning of the font look-up table.

Annotated text Font Raster Mosaics (non5081)
This contains a definition for each character in the font. Each character is entered in this
area with the horizontal slices bit-packed one right after the other. The first bit of the first
character slice is forced to begin in the most significant bit of a byte. The raster mosaics
start immediately after the header (Ox2C from the start address of the font structure). See
Annotated Text Example One (non5081) on 4-71.

Annotated Text Character Bit Array (5081)
This contains a definition for each character in the 5081 font. Each character in the
character bit array must be a multiple of 4 pels wide and a multiple of 4 pels high. Zeros
are padded to the right and padded to the bottom of the character as needed to accomplish
this.

Each 4x4 pel array is then stored in a 16-bit word with the first four bits of the array
leftmost in the word and proceeding to the right.

The 4x4 arrays are stored beginning with the bottom left array in the character and is
repeated across the bottom of the character. The process then continues at the left of the I
next higher horizontal row of 4x4 arrays and so on until the 4x4 array representing the top ~
right corner of the character is stored in a 16-bit word. See Annotated Text Example Two
(5081) on 4-72.2.

4-70 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Annotated Text Font Look-up Table (non5081)
The look-up table immediately follows the raster mosiac. There is one 32-bit look-up table
entry for each character in the font. The look-up table can be found by adding the value
fntlkup given in the header to the starting address of the font structure. The table entry
for any given character is found by using the font position number as an index into the
table. (See "display symbols" on page 5-24 for a list of the font position numbers.) Each
look-up table entry contains the following fields:

Offset Length
in Bits in Bits Field Description

0 5 lkup-top The number of blank scan lines that have been
eliminated from the top of this character raster
image (white space).

5 5 lkup-bot The number of blank scan lines that have been
eliminated from the bottom of this character
raster image (white space).

10 6 lkup-width Contains the width in pels of this particular
character.

16 16 lkup-ref Byte offset from the start of the the raster
mosaics of the first scanline of the character's
raster image.

Annotated Text Font Look-up Table (5081)
The character look-up table for IBM 5081 fonts contains an entry for each character or
possible character in the font.

Each entry is 16 bits and contains the offset from the start of the character bit array to the
first byte of the bit array for the corresponding character. That is,this offset is kept as a
16-bit word offset from the start of the bit array section. The character look-up table entry
for any given character is found by concatenating an offset to the start of the code page in
the character look-up table with the ASCII (or EBCDIC) character code and adding the
result to the starting address of the character look-up table found in the font header.

I Annotated Text Example One (non5081)

See Figure 4-1 on page 4-72.1 for this example. The character chosen is a capital A. This
is shown as it would appear on the display and how it would be stored in the raster
mosaics. Also shown is the font look-up table entry for this character. Note that the data
associated with the top and bottom two scan lines of the character image do not appear in
the raster mosaics since they consist of zeros.

File Formats 4-71

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

To reconstruct the character image from the raster mosaics, it is necessary to use the font
look-up table. The display symbol code associated with the character that is to be
displayed is used to access its corresponding 4-byte entry in the font look-up table. The
information contained in a font look-up table entry is shown. The capital T's represents
the bits containing the number of top blank scan lines that were compressed from the
character image. The capital B's represents the bits containing the number of bottom
blank scan lines that were compressed from the character image. The capital W's
represents the bits containing the width in pels of this character. Capital O's represent
the bits containing the offset of the compressed portion of this character image data in the
raster mosaics. For this example, the value associated with T is 2, the value associated
with B is 2, and the width (W) is 5. The value associated with 0 is the offset of the yth

byte of the raster mosaics.

4-72 AIX Operating System Technical Reference

(

R
a
w
s

Columns

0 o 0 000
1 o 0 000
2 00100
3 o 1 010
4 1 a a 0 1
5 1 1 1 1 1
6 1 a 0 0 1
7 1 a 0 a 1
8 1 a 0 0 1
9 o a 0 a 0

10 a a 0 a 0

5)(11 Character Box

Font Look-up Table

a 1 2 3 4 5 6 7 .-- bits

bytes

+
T T T T T B B B Y
B B W W W W W W y+1
a a 0 0 a 0 a 0 y+2
a a a 0 a 0 a 0 y+3

Font Look-Up Table Entry

Memory

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

a 1 2 345 6 7 Bits

bits from
preceding
character

boxes

a a 1 00010
1 o 1 a a 0 1 1
1 1 1 1 1 000
1 1 0 0 a 1 1 a
001 P P P P P

bits from the
next character

box in the
font

Bytes

y
y + 1
Y + 2
Y + 3
Y + 4

storage of the Character Image
in the Raster Mosaics

P = padding to next character image
(images start on a byte boundary)

o = pel off; 1 = pelon

Preceding character entry

current character entry

next character entry

Figure 4-1. Example of Annotated Text Font Storage (non5081)

If this font is defined in a file named /usr/l; b/vtm/nrml. 9x20s, then compile it and
convert the a.out file to TOe format using the following commands:

vee
vrmfmt

/usr/lib/vtm/nrml.9x20.s
nrml.9x20.0 nrml.9x20

-0 nrml.9x20.0

File Formats 4-72.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

I Annotated Text Example Two (5081)

See Figure 4-2 on page 4-72.3 for this example. The character chosen is a capital A, and is (
shown as a 5xII character box which is then padded with zeros to the right and bottom to
make the rows and columns a multiple of 4. The 4x4 arrays are then stored in I6-bit words
beginning at the bottom left array in the box and continuing horizontally to the top right
array in the character.

4-72.2 AIX Operating System Technical Reference

(

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

5 X 11 Character Box Expanded to 8 X 12 Character Box

R
o
W
S

o
1
2
3
4
5
6
7
8
9

10

Co I umns
o 1234

o 0 000
o 0 000
00100
o 1 010
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 000 1
o 0 0 0 0
o 0 000

Columns

o 1 2 3 4 5 6 7

o 0 0 000 0 0
A 00000000
R 00100000
R 01010000
A
Y 10001000

311111000
1 000 1 000
1 000 1 000

1 000 1 000
500 0 000 0 0

o 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0

Reorganization in Character Bit Array Section

Wo rd 0 (Ar ray 5)

2

4

6

Array Bi t
Assignments

o 1 2 3
4 5 6 7
8 910 11

1213 14 15

o 3 14 71 8 11 112 15 - Array Bit
r-

I
------------'--------------,1 Assignment
1000100001000010 000

Wo rd 1 (Ar ray 6)

11000100001000010 000

Wo rd 2 (Ar ray 3)

I 1 0 0 0 I 1 111000110 a 0

Word 3 (Array 4)

11000110001100011000

Wo r d 4 (A r ray 1)

1000 010 a 0 010 0 o 10 1 0 1

Word 5 (Array 2)

0000100 a 0 100 0 0 100 a 0

Figure 4-2. Example of Annotated Text Font Storage (5081)

File Formats 4-72.3

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Annotated Text Font Files (non5081)
/etc/vtm/nrml.9x20
/etc/vtm/bldl.9x20
/ etc/vtm/itll.9x20
/etc/vtm/nrm1.8x14
/ etc/vtm/nrml.4x8
/etc/vtm/nrm1.18x40
/ etc/vtm/nrm1.12x30
/ etc/vtm/ ergl.9x20
/usr/lib/vtm/nrml.9x20.s
/usr /lib /vtm/bldl.9x20.s
/usr/lib/vtm/itll.9x20.s
/usr /lib/vtm/nrml.8x14.s
/usr /lib/vtm/nrml.4x8.s
/usr/lib/vtm/nrm1.18x40.s
/usr/lib/vtm/nrm1.12x30.s
/usr /lib/vtm/ erg!. 9x20.s

Normal 9 by 20 font, compiled
Bold 9 by 20 font, compiled
Italic 9 by 20 font, compiled
Normal 8 by 14 font, compiled
Normal 4 by 8 microfont font, compiled
Normal 18 by 40 title font font, compiled
Normal 12 by 30 font, compiled
Ergonomic 9 by 20 font, compiled
Normal 9 by 20 font, source
Bold 9 by 20 font, source
Italic 9 by 20 font, source
Normal 8 by 14 font, source
Normal 4 by 8 microfont font, source
Normal 18 by 40 title font font, source
Normal 12 by 30 font, source
Ergonomic 9 by 20 font, source.

Annotated Text Font Files (5081)
/etc/vtm/nrmMPl.9x20
/ etc/vtm/bldMPl.9x20
/ etc/vtm/itIMPl.9x20
/ etc/vtm/nrmMPl.8x14
/etc/vtm/nrmMPl.4x8
/ etc/vtm/nrmMPl.18x40
/ etc/vtm/nrmMPl.12x30
/etc/vtm/ergMPl.9x20

Geometric Text Fonts

Normal 9 by 20 font, compiled
Bold 9 by 20 font, compiled
Italic 9 by 20 font, compiled
Normal 8 by 14 font, compiled
Normal 4 by 8 microfont font, compiled
Normal 18 by 40 title font font, compiled
Normal 12 by 30 font, compiled
Ergonomic 9 by 20 font, compiled

Geometric text fonts are also known as programmable character set (PCS) fonts and they
can be used on all GSL supported devices including the IBM 5081 Display. Each character
is defined as a series of moves or draws that define the shape of the character. The moves
and draws are specified as X-Y pairs of signed relative values (relative to the previous
"ending point, or to the bottom left of the character box for the first X-Y pair). The range of
the incremental values for the X and Y coordinates is -64 to + 63.

Each character definition in the font consists of a 2-byte length field for the character
definition followed by 2-byte X-Y entries:

4-72.4 AIX Operating System Technical Reference

(

\
/

/

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Length of
sXXXXXX 1
sXXXXXX 1
sXXXXXX 1
sXXXXXX 1

sXXXXXX 1

definition
sVVVVVV b
sVVVVVV b
sVVVVVV b
sVVYYYV b

sVVYVYV b

2 bytes
2 bytes
2 bytes
2 bytes
2 bytes

2 bytes

s is the sign bit (0 = positive, 1 = negative). Negative values are
in twos complement notation.

b is the blanking bit. If b = 1, the primitive is blanked causing
movement without display.

1 is the low order bit of the X coordinate field and must always be a 1.

If the first X-Y pair is a draw rather than a move, the line is drawn from the bottom left
corner of the character box. A move is specified by the low-order bit of the Y coordinate
being on. A draw is specified by the low-order bit being off. The last X-Y pair in the series
for the character is defined by the length field.

Geometric Text Font Definition File
The PCS font definition file consists of:

• A header that contains identifier and control information
• A table of index values used to find each character definition
• The character definitions.

File Formats 4-72.5

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Offset Length
in Bytes in Bytes Field

OxOO 2 length

Ox02 4 Reserved

Ox06 1

Ox07 1

Ox08 2 fontid

OxOA 1 segmentid

OxOB 1

OxOC 2 P

OxOE 2 Q

Oxl0 1 CPO

Oxll 1 CPn

Ox12 2 font
baseline

Description

The length of the PCS descriptor record
including the length field.

OxOOOOOOOO

Bit 1 = 0 - EBCDIC
= 1 - ASCII

Bits 1-2 = Reserved
Bits 3-7 = (Type) specifies the data format

definition for programmable
characters. One is defined:

'OOOOI'B = Type 1

Reserved (must be zero)

This field identifies the programmable
character set. Font IDs within the range of
1025 to 3267 are reserved for one-byte character
sets. Ids within the range of 32768 to 65535 are
reserved for two-byte character sets.

For two-byte character sets, this byte contains
the first byte of the 2-byte character code.

Reserved (must be zero)

Range of X (between 0 and P)

Range of Y (between 0 and Q)

Starting character code within PCS (within the
range of Ox21 to OxFE.)

The last character code within this PCS. If
CPn is zero, OxFE is assumed. CPn must not
be less than CPO.

The value of the font baseline in pixels in the
Y direction from the bottom line of the
character. This value is used in conjunction
with the text alignment function.

4-72.6 AIX Operating System Technical Reference

(

)

)

Offset Length
in Bytes in Bytes Field

Ox14 2 font capline

Ox16 1 Reserved

Ox17 1 Default
error code
point

Ox24 var Character
Index

var var Character
Description

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

Description

The value of the font capline in pixels in the Y
direction from the bottom line of the character.
This value is used in conjunction with the text
alignment function.

This is the character code within this PCS font
that specifies the character to be displayed
when an invalid code is encountered or the
character code does not exist.

This field contains two-byte offsets to each
character description. Each offset is from the
beginning of the descriptor record.

This field contains the character definitions
beginning with code point CPO, in ascending
order.

P and Q together define the character box within which a normal character will fit. The
values of P and Q are defined in device coordinate space (pixels) and control spacing
between characters and new line spacing. The bottom left corner of the box is 0,0 and the
top right corner is P,Q. Characters can extend outside this box as P and Q control only
the intercharacter spacing. You can override the value of P specified in the header by
specifying a character inline spacing value greater than zero. Undefined character codes
(outside the range CPO-CPn, or those with an index value of zero) are displayed as the
default code point character.

Each character index value is the offset from the start of the header record to the actual
character definition. The index must always be represented in its entirety, even if not all
of the characters in the code range are defined. For example, the maximum length of the
index, if CPO is specified as Ox41 and CPn as OxFF, is 191 times 2 bytes. For undefined
characters, the index value should contain an offset to the default code definition.

Each character definition begins with a 2-byte length field which specifies the length of the
character definition including the length field.

File Formats 4-72.7

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

I Related Information

In this book: "master" on page 4-98, "data stream" on page 5-5, "display symbols" on
page 5-24, "Reconfigure (HFRCONF)" on page 6-31, "gsgtat" on page 7-73, "gsgtxt" on
page 7-78, "gstatt" on page 7-128, and "gstext" on page 7-132.

The display command in A/X Operating System Commands Reference.

The discussion of the TOC object module format in Virtual Resource Manager Technical
Reference.

4-72.8 AIX Operating System Technical Reference

")

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fonts

File Formats 4-73

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fs

fs

Purpose

Contains the format of a file system volume.

Synopsis

#include < sys/types.h >
#include < sys/param.h >
#include < sys/filsys.h >

Description

A file system storage volume has a common format for certain vital information. A volume
is divided into a number of logical blocks, 512-byte blocks for diskette and 2048-byte blocks
for disks. The term block here refers to the unit of disk space allocation, which is some
multiple of 512 bytes. The 512-byte unit is used to report or specify file sizes in all r:
commands and subroutines, but here the term refers to a cluster of one or more such units. ~
RT PC supports two similar but distinct file system formats, both of which are described by
the following text.

The first format uses the byte order and integer size of the native processing unit. The
second format is compatible with the PC/IX file system format, which is based on the IBM
PC-XT processing unit architecture. There are several differences between the two file
system formats: the block size is 2048 bytes in the native file system format and 512 bytes
in the other, and the definition of the superblock is different between the two. The number
and order of bytes within multi-byte data are different, and the processing units impose
different restrictions on the alignment of 4-byte data. These last two differences affect
fields within the superblock, i-node numbers within directories, and logical block numbers
within i-nodes and indirect blocks.

The mkfs application makes a file system of the second format only when the file system
device is a diskette.

Logical block 0 is unused and available to contain a bootstrap program or other
information. Logical block 1 is the superblock.

The format of a native-format file system superblock follows.

4-74 AIX Operating System Technical Reference

#define

typedef
{ /* basic

char
char
daddr-t
ushort
ushort
short
short
short
short
short
short
char
char
short
short
daddr-t
daddr-t
char

FSfixsz 112 / * Fixed-format region is 112 bytes long */

struct filsys
file system parameters - initialized when FS is created */

s-magic[4]; /* magic number: FSmagic = Oxdf817eb2 */
s-flag[4]; /* flag word (see below) */
s-fsize; /* size in blocks of entire file system */
s-bsize; /* block size (in bytes) for this filsys */
s-isize; /* size (in blocks) of i-list and overhead */
s-cyl; /* number of blocks per cylinder */
s-skip; /* block interleaving factor */
s-nicfree; /* number of slots in block free list */
s-nicino; /* number of slots in free i-node list */
s-sicfree; /* byte offset to start of block free list */
s-sicino; /* byte offset to start of free i-node list */
s-fname[6]; /* name of this file system */
s-fpack[6]; /* name of this volume */
s-nicfrag; /* number of slots in fragment table */
s-sicfrag; /* byte offset to start of fragment table */
s-swaplo; /* start of swap area (currently unused) */

fs

s-nswap; /* number of block swap area (currently unused) */
s-rsvd[36]; /* reserved - must be zero */

/* current file system state information, values change over time */

ushort
ushort
short
char
char
daddr-t
char
char
short
ino-t
short
time-t

s-tffrag;
s-tbfrag;
s-findex;
s-fmod;
s-ronly;
s-tfree;
s-flock;
s-i lock;
s-nfree;
s-tinode;
s-ninode;
s-time;

/* number of fragmented files (currently unused) */
/* number of fragmented blocks (currently unused) */
/* fragment allocation index (currently unused */
/* superblock modified flag */
/* mounted read-only flag */
/* total free blocks */
/* lock during free list manipulation */
/* lock during i-list manipulation */
/* number of addresses in s-free */
/* total free inodes */
/* number of inodes in s-inode */
/* time of last superblock update */

File Formats 4-75

fs

/*
* TOTAL LENGTH OF FIXED-FORMAT REGION: 112 bytes
*
* All variable length fields appear beyond this point, and are
* described and pointed to by information in the fixed format
* portion of the superblock:
*
*
*
*
*

daddr-t
ino-t
frag-t

s-free[s nicfree];<free block list>
s-inode[s nicino];<free I-node list>
s-frag[s-nicfrag];<fragment table>

* Macros defined below allow access to these tables.
*/

union
{ char

struct

} s-u;
} filsys-t;

/* Variable-format */
su-var [BSIZE-FSfixsz];

{

} su-ovly;

daddr-t su-free[NICFREE];
ino-t su-inode[NICINOD];

#define s-free s-u.su-ovly.su-free
#define s-inode s-u.su-ovly.su-inode
#define s-var s-var

#define s-n s-cyl /* for compatibility with old systems */
#define s-m s-skip
#define FSmagic "\337\201\176\262" /* octal magic number for file systems */
/* hex equivalent value for FSmagic number above is \df\81\7e\b2 */
#define s-cpu s-flag[O] /* Target cpu type code (same as in a.out files) */
#define s-type s-flag[3] /* File system type code (block. size) */

#define Fs1b 1
#define Fs2b 2
#define Fs4b 3
#define Fs8b 4

/* 512 byte blocksize file system */
/* 1024 byte blocksize */
/* 2048 byte blocksize */
/* 4096 byte blocksize */

4-76 AIX Operating System Technical Reference

/*
* Notes on s-fmod field:
* This field is intended to be a three state flag with the third
* state being a sticky state. The three states are:
*
* 0 = file system is clean and unmounted
* 1 file system is mounted
* 2 file system was mounted when dirty
*
* If you merely mount and unmount the filesystem, the flag
* toggles back and forth between states 0 and 1. If you ever
* mount the filesystem while the flag is in state 1 then it
* goes to state 2 and stays there until you run fsck.
* The only way to clean up a corrupted file system (and change
* the flag from state 2 back to state 0) is to run fsck.
* The bit above this tri-state (i .e. 04, FM-SDIRTY) is only used
* in memory. It is never written to disk.
*/

#define FM-CLEAN
#define FM-MOUNT
#define FM-MDIRTY
#define FM-SDIRTY

#define FMOD(x)
#define FCLEAN(x)

/*

00 /* File system is clean and unmounted
01 /* Fi 1 e system is mounted cleanly
02 /* File system was dirty when last mounted
04 /* Superblock is dirty; this bit is not written

((x)==0?1:2)
((x)==2?2:0)

* Macros for accessing elements in the variable-format region of the
* superblock. "sbp" is a pointer to superblock, and "nil gives
* the index of the element to be fetched.
*/

/* FREEino() -- Finds the nth element in the free I-node list. */
/* Each element of the free I-node list is of type "ino_t". */

#define FREEino(sbp,n) \
(((ino-t *)((char *)(sbp)+(sbp)->s-sicino))[nJ)

fs

*/
*/
*/
*/

File Formats 4-77

fs

/* FREEblk() -- Finds the nth element in the free block list. Each */
/* element of the free block list is of type "daddr_t". */

#define FREEblk(sbp,n) \
(((daddr-t *)((char *)(sbp)+(sbp)->s-sicfree)) [n])

/* we have a NEW Format superblock */
#define -s-NEWF

The format of a PC/IX-format file system superblock is:
/*
* Structure of the superblock
*/

struct
{

};

ushort
daddr-t
short
daddr-t
short
ino_t
char
char
char
char
time-t
short
daddr-t
ino-t
char
char
long
daddr-t
daddr-t
long
long

filsys

s-isize;
s-fsize;
s-nfree;
s-free[NICFREE] ;
s-ninode;
s-inode[NICINOD];
s-flock;
s-ilock;
s-fmod;
s-ronly;
s-time;
s-di nfo [4] ;
s-tfree;
s-tinode;
s-fname [6] ;
s-fpack[6] ;
s-fi 11 [13];
s-swaplo;
s-nswap;
s-magic;
s-type

/* size in blocks of i-list */
/* size in blocks of entire volume */
/* number of address in s-free */
/* free block list */
/* number of inodes in s-inode */
/* free I-node list */
/* lock during free list manipulation */
/* lock during i-list manipulation */
/* superblock modified flag */
/* mounted read-only flag */
/* last superblock update */
/* device information */
/* total free blocks */
/* total free i-nodes */
/* file system name */
/* file system pack name */
/* fill out to 512 bytes */
/* start of swap area */
/* number of blocks of swap */
/* magic number for file systems */
/* file system type - cluster size */

4-78 AIX Operating System Technical Reference

fs

/*
* macros to give more meaningful names to dinfo fields
*/

#define s-m
#define s-n
#define s-bsize

s-di nfo [OJ
s-di nfo [lJ
s-di nfo [2J

/* modulo factor in superblock */
/* cylinder size in superblock */
/* block size for this file system */

If the latter superblock structure is compiled into a program, the native compiler adds pad
bytes to force long type data to be aligned on an address that is a multiple of 4. A
program that attempts to manipulate the PC/IX format superblock must redeclare the
values in a manner that does not change the given alignment and then change data
references appropriately.

The parameters NICFREE and NICINOD, the number of in-core free blocks and free
i-nodes, respectively, are defined in the system include file, < sys/param.h >, as are
BSIZE (the number of bytes in a block), and DIRSIZ (the number of bytes in a simple file
name).

The s-isize field is the number of the first data block after the i-list; the starts just after
the superblock (in block 2); thus the i-list is s-isize minus 2 blocks long. The s-fsize field
is the total number of blocks in the file system. These numbers are used by the system to
check for bad block numbers; if an block number that cannot exist is allocated from the
free list or is freed, a message is sent to the system console. Moreover, the free array is
cleared, to prevent further allocation from a presumably corrupted free list.

The s-bsize field contains the number of bytes in a file system block.

The s-cyl and s -skip fields contain parameters that control the organization of the
free-block list. The s-cyl field contains the number of blocks per cylinder; s-skip is the
interleave factor. Free-list interleaving is described by the mkfs application. In the PC/IX
format file system, these fields are referenced using macros called s-n and s-m,
respectively.

The s-nicfree and s-nicino fields contain the values of NICFREE and NICINO (sizes of
the s-free and s-inode arrays). The s-sicfree and s-sincino fields contain the byte
offset from the start of the superblock of s-free and s-inode arrays. These numbers are
provided to facilitate the writing of BSIZE independent file system management utilities.
These fields are present only in the native format file system.

The free list for each volume is maintained as follows. The s-free array contains, in
s-free[l], ... , s-free[s nfree-l], the block numbers of up to NICFREE-l free-blocks.
The s-free[O] value is the block number of the head of chain of blocks constituting the free
list. The first long in each free-chain block is the number (up to NICFREE) of free-block
numbers listed in the next NICFREE longs of this chain member. The first of these block
numbers is the link to the next member of the chain. To allocate a block: decrement
s-nfree, and the new block is s-free [s-nfree]. If the new block number is 0, there are no
blocks left. This an error condition. If s-nfree became 0, read the block named by the
new block number, replace s-nfree by its first word, and copy the block numbers in the

File Formats 4-79

fs

next NICFREE longs into the s-free array. To free a block, check whether s-nfree is
NICFREE; if so, copy s-nfree and the s-free array into it, write it out, and set s-nfree to
o. In any event, set s-free[s-nfree] to the freed block's number and increment s-nfree.

The value of s-tfree is the total free-blocks available in the file system.

The value s-ninode is the number of free i-numbers in the s-inode array. To allocate an
i-node: if s-ninode is greater than 0, decrement it and return s-inode[s-ninode]. If it
was 0, read the i-list and place the numbers of up to NICINOD free i-nodes into the
s-inode array, then try again. To free an i-node, provided s-ninode is less than
NICINOD, place its number into [s-ninode] and increment s-ninode. If s-ninode is
already NICINOD, do not bother to enter the freed i-node into any table. This list of
in-nodes serves only to speed up the allocation process. The i-node itself indicates whether
it is free.

The value of s-tinode is the total number of free i-nodes available in the file system.

The s-fmod field is a flag to indicate the" cleanliness" of the file system. A value of 0
indicates that the file system has been cleanly unmounted. Whenever a file system is
mounted, this flag is checked and a warning message is printed if the s-fmod flag is
non-zero. When a clean file system is mounted, the s-fmod flag is changed to a value of 1.
When an unclean file system is mounted, s-fmod is set to 2. When a file system is
unmounted, the s-fmod flag is reset to 0 only if it has the value 1. Thus, a file system
whose s-fmod flag is 0 is very likely to be clean, and a file system whose s-fmod flag is 2
is likely to have problems.

The s-ronly field is a flag indicating that the file system has been mounted read only.
This flag is maintained in memory only, its value on disk is not valid.

The value of s-time is the last time the superblock of the file system was changed, (in
seconds since 00:00 Jan. 1, 1970 (GMT».

s-fname is the name of the file system and s-fpack is the name of the device on which it
resides.

The s-flock and s-ilock flags are maintained in the copy of the file system in memory
while it is mounted; their values on disk are not valid.

The s-fiU, s-swaplo, and s-nswap fields are not used on this system.

I-numbers begin at 1, and the storage for i-node 1 begins in the first byte of block 2. I-node
1 is reserved for a file without a name. This i-node is used by the mkfs application to put
the numbers of defective blocks (blocks with physical flaws) to prevent them from being
allocated to other files. I-node 2 is reserved for the root directory of the file system. No
other i-number has a built-in meaning. I-nodes are 64 bytes long, so BSIZE -;- 64 of them
fit into a block. Each i-node represents one file. For the format of an i-node and its flags,
see "inode" on page 4-92.

4-80 AIX Operating System Technical Reference

Files

/usr/include/sys/filsys.h
/usr /include /sys/stat.h

Related Information

In this book: "inode" on page 4-92 and "param.h" on page 5-68.

fs

The fsck, fsdb, and mkfs programs in AIX Operating System Commands Reference.

File Formats 4-81

fspec

fspec

Purpose

Specifies formatting within text files.

Description

A text file format specification normally occurs in the first line of a text file. This format
specifies how tabs expand in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
enclosed by the brackets <: and: >. Each parameter consists of a key-letter, possibly
followed immediately by a value. The following parameters are recognized:

d The d parameter takes no additional value. It indicates that the line
containing the format specification is to be deleted from the converted file.

e The e parameter takes no additional value. It indicates that the current format
prevails until another format specification is encountered in the file.

mmargin The m parameter specifies a number of spaces added to the beginning of each
line. The value of margin must be an integer.

ssize The s parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs are expanded, but before
inserting the margin.

ttabs The t parameter specifies the tab settings for the file. The value of tabs must
be one of the following:

• A list of column numbers separated by commas, indicating tabs set at the
specified columns.

• A - (dash) followed immediately by an integer n, indicating tabs at
intervals of n columns.

• A - (dash) followed by the name of a supplied tab specification.

Standard tabs are specified by t-8, or the equivalent tl, 9, 17, 25, and so on.
The tabs command defines the supplied tabs.

Default values assumed for parameters not supplied are t-8 and mO. If the s parameter is
not specified, no size checking is performed. If the first line of a file contains no format
specification, the previous defaults are assumed for the entire file.

The format specification can be entered as a comment. In that case it is not necessary to
code the d parameter.

4-82 AIX Operating System Technical Reference

Example

The following is an example of a line containing a format specification:

* <:t5,lO,15 572:> *

Related Information

fspec

The ed, newform, and tabs commands in AIX Operating System Commands Reference.

File Formats 4-83

gps

gps

Purpose

Used as the format for storing graphics file data as graphic primitive strings.

Description

A GPS is a graphic primitive string that is used to store graphical data in a particular
format. The plot and vtoc commands produce GPS output files. Several commands edit
and display GPS files on various devices. A GPS is composed of as many as five types of
graphical data or primitives:

comment

lines

arc

text

hardware

A comment is an integer string included within a GPS file that does not cause
anything to be displayed. All GPS files begin with a comment of zero length.

A lines primitive has a variable number of points from which zero or more
connected line segments are produced. The first point given produces a move
to that location, relocating the graphics cursor without drawing. Successive
points produce line segments from the previous point.

An arc primitive has a variable number of points to which a curve is fit. The
first point produces a move to that point. If only two points are given, a line
connecting the points is the result. If three points are given, a circular arc
through the points is drawn. If more than three points are given, splines are
fitted to connect the points.

The text primitive draws characters beginning at a given point, with the first
character centered on that point.

The hardware primitive draws hardware characters or gives control
commands to a hardware device. A single point locates the beginning
location of the hardware string.

Graphic primitive strings are given as 16-bit units called command words. The first
command word determines the primitive type and sets the length of the string. Subsequent
command words contain information in multiples of quid, four bits of data. The following
are the types of GPS and their parameters:

comment cw [string]

cw is the control word. The first quid identifies the comment primitive and
has the value OxF. The following bits give the command word count for the
primitive.

4-84 AIX Operating System Technical Reference

gps

[string] is a string of characters terminated by a null character. If the string
does not end on a command word boundary, another null character is added
to align the string with the command word boundary.

lines cw·points sw

arc

cw is the control word. The first quid identifies the lines primitive and has
the value OxO. The remaining bits give the command word count for the
primitive.

points is one or more pairs of integer coordinates having values within a
Cartesian plane or universe of 65,536 points on each axis (-32,767 to + 32,768).

sw is the style command word. The first eight bits hold an integer value for
color information. The next quid contains an integer value for weight to
indicate line thickness:

o Narrow
1 Bold
2 Medium.

The last quid of sw is an integer value giving line style information:

o Solid
1 Dotted
2 Dot - dashed
3 Dashed
4 Long dashed.

cw points sw

cw is the control word. The first quid identifies the arc primitive and has the
value Ox3. The next twelve bits contain the command word count for the
primitive.

points is one or more pairs of integer coordinates having values within a
Cartesian plane or universe of 65,536 points on each axis (-32,767 to + 32,768).

sw is the style command word. The first eight bits are an integer value for
color. The next quid contains an integer value for weight to indicate line
thickness:

o Narrow
1 Bold
2 Medium.

The last quid is an integer value setting line style:

o Solid
1 Dotted
2 Dot - dashed

File Formats 4-85

gps

text

hardware

3 Dashed
4 Long dashed.

cw point fw so [string]

cw is the control word. The first quid identifies the text primitive and has the
value Ox2. The remaining twelve bits contain the command word count for
the primitive.

point is a pair of integer coordinates that are a value within a Cartesian plane
or universe of 65,536 points per axis (-32,767 to + 32,768).

fw is a font command word. The first eight bits contain an integer value for
color information. The next eight bits contain an integer value for font
information, with a quid qiving a weight (density) value for the font, and a
quid giving a style (typeface) value for the font.

so is a size/orientation command word. Eight bits specify textsize as an
integer value to indicate the size of characters drawn. textsize represents
character height in absolute universe units. The actual character height is
five times the textsize value. The next eight bits are a signed integer value for
textangle, and express the angle and direction of rotation of the character
string around the beginning point. textangle is expressed in degrees from the
positive x - axis. The textangle value is 256/360 of its absolute value.

cw point [string]

cw is the control word. The first quid identifies the hardware primitive and
has the value Ox4. The next twelve bits indicate the command word count for
the primitive.

point is a pair of integer coordinates that are values within a Cartesian plane
or universe of 65,536 points on each axis (-32,767 to +32,768). This point is the
starting point for the string, which is a string of hardware characters or
control commands to a hardware device.

Related Information

In this book: "stat.h" on page 5-69.

The stat and toe commands in AIX Operating System Commands Reference.

4-86 AIX Operating System Technical Reference

group

group

Purpose

Identifies a group.

Description

Users can be assigned to one or more groups, each of which share certain protection
privileges. The person who sets up the system may want to place users in the same group
because they need access to a common set of files. Similarly, a certain group of users can
have access restricted to certain files.

When users log in, they are assigned to the group specified in the password file. In
addition, they are assigned as a member of all groups specified in this file. Users are
allowed to access to any files that the group to which they are assigned has access.
However, any files created by the user can be accessed only by the members of the primary
group of which that user is a member. A user is allowed to change his primary group for
the duration of the terminal session using the newgrp command.

The group file defines to which groups a user has membership. Each line in this file
defines a group and consists of four fields separated by colons. It contains the following
information for each group:

group name

password

A character string of up to 8 characters that references the group.

This field is optional. If specified, anyone attempting to enter the group
must correctly supply the password to the system.

group ID A number assigned to the group and used in access decisions.

user group list A list that specifies the login names of all users allowed in the group.
User IDs in the list are separated by commas.

In newly distributed systems, there are typically only two groups: the staff group and the
system group. New users can be added to groups and new groups can be added as
necessary.

If several users wish to share the same privileges, including the ability to terminate each
other's processes as well as to access the files of others, the same numerical user ID can be
assigned to each. This mechanism is sometimes used to give the same person several
accounts on the system, each with potentially different login directories and other
characteristics, such as electronic mailboxes or login programs. For example, the operator
has the same user ID, and therefore superuser authority. However, this operator typically
uses a restricted version of the shell that does not give access to commands that allow
reading the files of others.

File Formats 4-87

group

Example

File

The following is an example of a group file. This is an ASCII file. Each group is separated
from the next by a new-line character. The fields are separated by colons. This file resides­
in fete/group. Because the password is encrypted, it can be used to map numerical group
IDs to names without concern of compromise to user security.

systern::O:su,bill,jack,gary
staff: : 1:
bin: :2:su,bin
sys::3:su,bin.sys
adrn::4:su,bin,adrn
rna i 1 : : 6: su
usr::lOO:guest

fetcfgroup

Related Information

In this book: "passwd" on page 4-112.

The newgrp, passwd, and users commands in A/X Operating System Commands
Reference.

4-88 AIX Operating System Technical Reference

history

history

Purpose

Contains the history of an installed licensed program product.

Description

Each licensed program or component of a licensed program that is shipped by IBM
contains a history file. The purpose of a history file is to identify the installed release and
version of a licensed program or component and to provide a record of any updates (level
changes). A history file is replaced when a component is reinstalled. History files for
programs installed on the operating system are named /usr/lpp/pgm-name/lpp.hist, where
pgm-name is the name of the licensed program or component. History files for programs
installed completely on the VRM minidisk are named /vrm/lpp/pgm-name/lpp.hist

The history file consists of a series of SO-character records. The first 2 records contain the
install data and all subsequent records contain update data. There are 3 different formats
of 80-character records:

Record

Information

Title

Description

Identified by an a, c, r, or v character in position 1. The install and
update procedures use information records to identify the licensed program
or component name; the current version, release, and level; the date the
record was added; and the user who initiated the install or update.
Figure 4-2 on page 4-90 shows the format of the fields in the information
records.

Identified by a t in character position 1. Contains the descriptive title (up
to 30 characters) for the licensed program or component, starting in
character position 3. The title record must always be the second record in
the history file.

Comment Identified by an * (asterisk) in character position 1. Allows descriptive
comments to be entered into the history file. An * is usually placed in
character position 79 to ensure a full 80-column record.

The last character of each record (character position 80) must be a new-line character.
Unused character positions must be blank-filled. Tab characters are not permitted.

The first record in a history file must be an information record with a c in character
position 1. The second record must be the title record. These two records contain data
about the installation of the program. The remaining records in the file may be any
combination of information and comment records, and they identify updates to the
program.

File Formats 4-89

history

Figure 4-2 shows the format of an information record in the history file. The definitions
for each of the fields other than character position 1 are explained following the figure.

Character Position

1 3 11 18 29 36 45

I I I I I
80

slpgm-namellllllivv. RR . LLLLI DDMMYY I us e rname 1--------- comment field --------- \n

I - indicates a blank position

\n - indicates a single new-line character.

Figure 4-2. Information Record Format

Field Description

S The type of information record:

a Indicates that the update has been applied.
c Indicates that the update or install has been committed (accepted).
r Indicates that the update has been rejected.
v Indicates that the VRM minidisk has been modified.

pgm-name The name assigned to the program (lowercase characters only). If the
name contains less than 8 characters, it must be padded with blanks.

VV. A 2-digit numeric field followed by a period indicating the version number
of the program. The version number indicates the level of the hardware
and operating system with which the program works.

RR. A 2-digit numeric field followed by a period indicating the release number
of the program. The release number tracks changes to external
programming interfaces since the last version change. This number is
generally incremented each time the external interface to the program
changes.

LLLL A 4-digit numeric field indicating the update level of the program. This
field is incremented when the changes to the program do not affect
external programs that may use the documented external interface for the
program. The level, together with the S field, ensures that all changes up
to and including the current change are installed on the system.

The fourth (or units) digit of the level is normally o. IBM reserves this
digit for future use.

4-90 AIX Operating System Technical Reference

Files

history

DDMMYY These three numeric fields indicate the date the program changed:

DD Day of the month (1 to 31).
MM Month of the year (1 to 12).
YY Year (00 to 99).

username An alphanumeric field that contains the user name of the person who
installed the program. If the user name is shorter than eight characters,
it must be padded with blanks.

comment field A 35-character field for comments. An * (asterisk) is usually placed in
character position 79 to ensure a full 80-column record.

\n A required new-line character, indicating the end of the record.

/usr/lpp/pgm-name/lpp.hist
/vrm/lpp/pgm-name/lpp.hist

Related Information

The installp and updatep commands in AIX Operating System Commands Reference.

File Formats 4 ... 91

inode

inode

Purpose

Describes a file system file or directory entry as it appears on a disk.

Synopsis

#include < sys/types.h >
#include < sys/ino.h >

Description

An inode for an ordinary file or directory in a file system has the following structure
defined by sys/ino.h:

/* Inode structure as it appears on a disk block. */
struct dinode
{

ushort di-mode; /* mode and type of file */
short di-nlink; /* number of links to file */

};
/*

ushort
ushort
off-t
char
time-t
time_t
time-t

di-uid;
di_gid;

di-size;
di -addr [40J ;
di-atime;
di-mtime;
di-ctime;

*the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

/*
/*
/*
/*
/*
/*
/*

The fields in the structure are as follows:

owner's user id */
owner's group id */
number of bytes in file */
disk block addresses */
time last accessed */
time last modified */
time created */

addr Array of thirteen 3-byte block numbers assigned to this file. The first 10 block
numbers are direct addresses while the last 3 are indirect addresses.

4-92 AIX Operating System Technical Reference

atime

ctime

gid

mode

mtime

nUnk

size

uid

TNL SN20-9869 (26 June 1987) to SC23-0809-0
inode

Time this file was last accessed.

Time this file was created.

Group ID.

Type and access permissions of file.

Time this file was last modified.

Number of directories that name this file.

Number of bytes in file.

Owner ID.

See the types file for related information concerning the off-t and time-t define types.

Related Information

In this book: "fs" on page 4-74, "stat.h" on page 5-69, and "types.h" on page 5-75.

File Formats 4-93

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

kaf

Purpose

Specifies how to process ddi keywords and their parameters.

Description

Keyword Attribute Files, also called kaf files, define how the devices command and
customize helpers are to process keywords used in ddi files. The kaf files:

• Contain instructions for processing device information
• Control whether the devices command displays the associated information
• Control whether a user can change the information using the devices command
• Specify the input validation that the devices command performs
• Determine the action that the customize helper takes.

The kaf information can be included in the ddi file for the device, or it can appear in a
separate file. If it is contained in a separate file, then the stanza for the device in the
system file must name the kaf file as the value of the kaf-file keyword. The kaf-use
keyword (also in the system file) specifies the stanza of the kaf file to use.

The name of each stanza in a kaf file is the name of a keyword that is used in ddi files.
The stanza defines how the devices command and customize helper programs process that
ddi keyword. The following section defines the keywords that can appear in the stanzas of
kaf files.

The use of extended characters in kaf files is not supported.

Directives to the Customize Helper
add Specifies the actions for the customize helper to take during a vrmconfig -a

(add) operation.

delete

startup

shutdown

Specifies the actions for the customize helper to take during a vrmconfig -d
(delete) operation.

Specifies the actions for the customize helper to take during a vrmconfig
-startup operation.

Specifies the actions for the customize helper to take during a vrmconfig
-shutdown operation.

4-94 AIX Operating System Technical Reference

(
\~

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

The value for each of the preceding keywords has the format x/y, where x and y can be any
of the following:

b Constructs the Define-Device Structure, including the Block I/O Communication
Area (BIOCA) device characteristics. Appends other device characteristics specified
by the programmer. (See the discussion of customize helpers in AIX Operating System
Programming Tools and Interfaces.) Performs the Define-Device SVC by issuing an
ioctl system call to the config device driver.

n Constructs the Define-Device Structure. Appends other device characteristics
specified by the programmer. (See the discussion of customize helpers in AIX
Operating System Programming Tools and Interfaces.) Performs the Define-Device
SVC by issuing an ioctl system call to the config device driver.

u Constructs the AIX device driver structure and issues an ioctl system call to the
config device driver to initialize the driver.

Action to Take After Customization
syschg Specifies the action the devices command takes when the user changes a

device characteristic. The valid choices are:

a Rebuilds the kernel and IPLs the system

s Runs the special processing routine specified by the specproc
keyword in the fetc/system stanza.

none Takes no special action.

Control over Display and Modification of the Keyword
display

dsrc

required

rsrc

If set to true, then the devices command displays the device characteristic
keyword and allows the user to change its value.

Determines whether the devices command displays the adapter
characteristic keyword from the ddi file. The value is a list of adapter
numbers, separated by commas. The devices command displays the keyword
and allows the user to change its value only if the number of the adapter
associated with the device appears in the list.

If set to true, the devices command displays the keyword and advises the
user to make sure that its value matches the system configuration. devices
does not check to see whether the entered value matches the system
configuration.

Determines whether the devices command displays the adapter
characteristic keyword from the ddi file and requires the user to enter a
value. The value is a list of adapter numbers, separated by commas. If the
number of the adapter associated with the device appears in the list, then the
devices command displays the keyword and requires the user to specify its

File Formats 4-95

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

value. devices does not check to see whether the entered value matches the
system configuration.

User Input Validation
vtype Specifies the type of checking that the devices command performs on values

entered by the user. vtype can be set to one of the following values:

o No validation.
1 Mapping validation: the input value must be one of the keywords found

in the stanza named by the map keyword.
3 Range validation: The input value must have the data type specified by

the type keyword and must fall in the range specified by the range
keyword.

map N ames a stanza in the kaf file that contains a list of keyword = value pairs
against which the input value is to be matched. If the input matches a given
keyword, then the corresponding value is substituted in its place.

opts Specifies the options to search for in the /etc/ddi/options file. opts is one
of the following:

range

type

k Keyword only
a Keyword followed by adapter name /
c Keyword followed by device class ~
t Keyword followed by device type
s Keyword followed by device stanza name.

If the opts keyword is not specified, its value defaults to k. See "options" on
page 4-110 for details about the /etc/ddi/options file.

Defines the valid range of values for a keyword so that the devices
command can verify values entered by the user. The value of the range
keyword has the format first,last,incr, where first is the first number in the
range, last is the last number, and incr is the increment between values in
the range. For example, range=2, 10,2 specifies the values 2, 4, 6, 8, and
10.

Defines the data type for the value of a keyword. The devices comand
ensures that the values entered are the correct data type, specified by one of
the following:

F Floating-point (float)
H Hexadecimal (int)
I Integer (int)
L Long integer (long int)
S Short integer (short int)
U Unsigned integer (unsigned int).

4-96 AIX Operating System Technical Reference

Files

/etc/ddi/font.kaf
/etc/ddi/opprinter .kf
/ etc/ ddi/ osprinter .kf
/ etc/ddi/plotter .kaf
/ etc/ddi/pprinter .kaf
/ etc/ddi/sprinter .kaf
/etc/ddi/tty.kaf
/etc/mdkaf

TNL SN20-9869 (26 June 1987) to SC23-0809-0
kaf

Related Information

In this book: "attributes" on page 4-20 "ddi" on page 4-43, "descriptions" on page 4-56,
"system" on page 4-139, and "config" on page 6-7.

The discussion of customize helpers in AIX Operating System Programming Tools and
Interfaces.

File Formats 4-97

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

master

Purpose

Contains master configuration information.

Description

The master file is an attribute file that contains stanzas that describe all device drivers
defined in the system. There are two kinds of stanzas, AIX device driver stanzas and
Virtual Resource Manager (VRM) driver stanzas. AIX driver stanzas specify drivers to
link into the kernel and the VRM drivers that support them. VRM driver stanzas specify
drivers to be loaded into the VRM at the time the system is loaded.

The use of extended characters in the master file is not supported.

The sysparms Stanza
The first stanza of the fete/master file, the sysparms stanza, defines the values for many (
system parameters and limits. If you need to modify any of these system parameters, first
make the changes in the fete/master file, then rebuild the kernel. See "Rebuilding the
AIX Kernel" on page C-51 for instructions on rebuilding the kernel.

eallouts Specifies the number of callouts the kernel uses for event waiting.

eharlists Specifies the number of character lists the terminal driver uses.

drivernkproes Specifies the maximum number of kernel processes available for a given

dsnkproes

dumpdev

filetab

device driver. To create this kind of keyword, replace driver with an
abbreviation for the device driver, then follow it with the letters
nkproes. (For example, tcpi pnkprocs.)

Note: A keyword ending with the letters nkproes should be defined in
the fete/master file for any device driver that needs to allocate kernel
processes.

Specifies the maximum number of kernel defined processes available for
use by Distributed Services.

Species the target device for kernel dumps.

Specifies the number of entries in the kernel open file table.

4:..98 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

floating Indicates whether the kernel should attempt to use floating-point
hardware, if it is present. Options in this parameter are hardware and
software. The default, software, means there is no optional
floating-point accelerator hardware.

hashbuffers Specifies the number of hash buffers the kernel uses.

hftbuffers Specifies the number of virtual terminals.

inodetab Specifies the number of entries in the kernel i-node table.

iobuffers Specifies the number of physical 1/0 buffers the kernel supports.

kbuffers Specifies the number of disk buffers in the kernel. If kbuffers is not
defined, or if it is set to 0, then the system chooses the number of buffers
based on the processor and the amount of real memory installed in the
system.

kdmabuffers Specifies the number of buffer headers used by the exec system call. The
default value is 32.

kmap Specifies the number of elements in resource map array for internal
kernel storage.

kprocs Specifies the number of kernel defined processes the kernel supports.

connections Specifies the maximum number of concurrent network connections
allowed for Distributed Services.

maxprocs

mountab

msgmap

msgmax

msgqid

msgqmax

msgseg

msgsegsize

msgtqI

nflocks

Note: This keyword sets the size of the node table in the kernel.

Specifies the maximum number of processes for each terminal session.

Specifies the number of entries in the mount table used by the kernel for
file system mounting. This value sets the limit of the number of file
systems that can be mounted by the kernel. See "mnttab" on page 4-108
for details.

Specifies the number of entries in message map array.

Specifies the maximum number of bytes allowed in a single message.

Specifies the maximum number of message queue identifiers allowed.

Specifies the maximum number of bytes allowed on a message queue.

Specifies the number of message segments.

Specifies the message segment size (in multiples of word size).

Specifies the text queue length.

Specifies the maximum number of simultaneously locked file regions.

File Formats 4-99

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

netnoone

netsomeone

nid

nncb

node

pinkbuffers

pipedev

power

procs

pslotkill

pslotpanic

pslotwarn

Specifies the Distributed Services user ID or group ID value to use under
certain ID translation circumstances. This value is used when no user ID
from the local node maps to a remote file's owner ID. The default value
is OxFFFE.

Specifies the Distributed Services user ID or group ID value to use under
certain ID translation circumstances. This value is used when more than
one local ID maps to a remote file's owner ID, and it is difficult to select
one particular ID (perhaps because of wild card mappings). The default
value is OxFFFF.

Specifies the node ID to generate into the system. This keyword is
currently unused.

Specifies the size of the Distributed Services translate table array. Each
node for which the kernel has user ID or group ID translate information
has an entry in this array of translate headers.

Specifies the node name to generate into the system.

Specifies whether or not the disk buffers should be pinned. The value can
be true or false.

N ames the stanza that defines the file system used for FIFO files.

Indicates whether the kernel has power warning code. If this value is
true, power warning code exists. The default is false.

Specifies the total number 0'£ simultaneous processes the kernel supports.

Specifies the threshold at which the system begins to kill processes in
order to recover paging space. pslotkill is specified in slots, where a slot
is 2048 bytes (four blocks) of a paging minidisk. The default value is 200
slots.

Specifies the threshold at which to stop AIX and attempt a system dump
because paging space has almost been exhausted. Note that the system
dump itself cannot finish bec~use of the lack of paging space. pslotpanic
is specified in slots, where a slot is 2048 bytes (four blocks) of a paging
minidisk. The default value is 100 slots.

Specifies the threshold at which the system displays a message warning
that paging space is running low. When the system displays this
message, it also:

• Performs a sync to write all changes to disk
• Enters sync mode, in which disk I/O is not buffered
• Sends all processes the SIGDANGER signal to warn them that the

system is likely to "crash" any moment.

pslotwarn is specified in slots, where a slot is 2048 bytes (four blocks) of
a paging minidisk. The default value is 350 slots.

4-100 AIX Operating System Technical Reference

(
~

ptybuffers

release

rootdev

rsbuffers

semadjmax

semid

semmap

semmax

semopmax

semsetmax

semunmax

semunpmax

semvalmax

shmid

shmmax

shmmin

shmsegs

sliee

system

texttab

version

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

Specifies the number of pseudo-terminals that can be present in the
system (see "pty" on page 6-107). The maximum value for ptybuffers is
16.

Specifies the operating system release number to generate into the
system.

Names the stanza in the fete/system file that defines the root file system
device.

Specifies the number of buffers allocated for the asy terminal driver.

Specifies the maximum value allowed for semaphore adjust value on exit.

Specifies the number of distinct semaphore identifiers the kernel
supports.

Specifies the number of entries in semaphore map array.

Specifies the maximum number of simultaneous semaphores allowed and
supported by the kernel.

Specifies the maximum number of operations allowed for each semop
system call.

Specifies the maximum number of semaphores allowed in a set.

Specifies the number of semaphore undo structures the kernel supports.

Specifies the maximum number of undo entries for each process.

Specifies the maximum value allowed for each semaphore.

Specifies the number of distinct shared memory identifiers the kernel
supports.

Specifies the maximum number of kilobytes for shared memory allowed
per shared segment.

Specifies the minimum number of kilobytes for shared memory allowed
per shared segment.

Specifies the number of segment registers that may be used to support
shared memory.

Specifies the percentage of time in quanta that a process can run before
it must relinquish control of the processor. Each quantum on the RT PC
system is equal to 333 milliseconds.

Specifies the system name to generate into the system.

Specifies the number of shared text segment entries in the the text table.

Specifies the version number of the operating system to generate into the
system.

File Formats 4-101

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

AIX Driver Stanzas
There is a unique set of keywords associated with each type of stanza. It is not necessary,
however, for a stanza to contain all the keywords associated with that type. If a keyword
is omitted from the stanza, the default is used. Mandatory keywords must be supplied and
are not defaulted. The name of each stanza is a logical AIX driver name referenced in
other stanzas.

The lines interpreted by the config and vrmconfig commands are:

config Indicates that this device has a customizaton helper program, which
provides assistance in decoding other options. This value is the name of
the helper program in the fetc directory. See "config" for more
information about customizaton helper programs.

major

mandatory

maxminor

mpx

prefix

routines

tty

vdriver

Identifies the major device number for this driver. This is mandatory.

Identifies this driver to be included whether or not the system file asks
for it. If this value is true, include this driver.

States the maximum number of minor devices this driver supports. This
number should agree with the driver code.

Identifies a multiplexed special file when this value is true.

Provides a prefix for the driver routines. For example, if this value is
abc, then the open routine in the driver is abcopen. This keyword is
mandatory. Note that all drivers are assumed to be archived into the
system object libraries.

Identifies the routines actually defined for this driver. The possible
routines are open, close, read, write, strategy, ioctl, init, and print.

Identifies whether the device is a terminal. If this value is true, the
device is a terminal and terminal structures are defined.

Names the VRM driver stanzas for the related VRM drivers.

Other lines can be included for interpretation by customizaton helper programs.

VRM Driver Stanzas
The iocn lines identify VRM driver stanzas. The name of each stanza is a logical VRM
driver name referenced in other stanzas.

The lines interpreted by the vrmconfig command are:

code Specifies the full path name of the file containing executable VRM code
that contains the table of contents format of the VRM driver.

copy Names a previously specified VRM driver stanza to be used instead of the
code keyword specification.

4-102 AIX Operating System Technical Reference

(

\

(

"

)

ctype

iocn

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

Indicates the code type, such as vdrvr. This is an informational keyword
for IBM customization helpers.

Assigns the decimal I/O code number to this driver.

protocol If the value is true, indicates that this stanza describes a protocol
procedure.

Other lines can be included for interpretation by customizaton helper programs.

Miscellaneous System Parameters
Both the. master and the system file can have option lines describing miscellaneous
system customizing and tuning options in the sysparms stanzas. Options in the system
file override those in the master file. These options include:

inetlen Specifies the Internet packet length for file transfer. (See the xftp
command in Interface Program for use with TCP/IP.) The default value is
1064 bytes.

level Specifies the level number of the operating system to generate into the
system.

msgheader Specifies the maximum number of system message headers allowed.

Other keywords can be added as needed.

Example

The following sample of a master file entry contains AIX Operating System and VRM
information.

* AIX drivers, identified by "major" keyword

* printer drivers

u5182mp:
major = 6
prefix = lp
routines = open,close,write,ioctl,init
maxminor = 8
vdriver = v5182mp
config = vrcmain

u5182spl:
major = 6

File Formats 4-103

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

prefix = lp
routines = open,close,write,ioctl,init
maxminor = 8
vdriver = v5182sp1
config = vrcmain

u5182sp2:
major = 6
prefix = lp
routines = open,close,write,ioctl,init
maxminor = 8
vdriver = v5182sp2
config = vrcmain

* VRM driver entries

v5182mp:
iocn = 2014
code = /vrm/vrmdd/vpptr
ctype = vdrvr

v5182sp1:
iocn = 2015
code = /vrm/vrmdd/vpptr
ctype = vdrvr

v5182sp2:
iocn = 2016
code = /vrm/vrmdd/vpptr
ctype = vdrvr

4-104 AIX Operating System Technical Reference

\
)

File

jete/master

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

Related Information

In this book: "mount" on page 2-71, "vmount" on page 2-180.5, "mnttab" on page 4-108,
"attributes" on page 4-20, "system" on page 4-139, and "pty" on page 6-107.

The vrmeonfig and eonfig commands in A/X Operating System Commands Reference.

File Formats 4-104.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
master

4-104.2 AIX Operating System Technical Reference

~
)

message

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
message

Describes message, insert, and help formats.

Synopsis

include < msglO.h >

Description

The puttext command is used to convert message, text insert, and help descriptions from
an format that can be edited into a format that can be accessed at run time. The
descriptions in the file can be accessed by using the msgimed, msgqued, msghelp, and
msgrtrv subroutines. The gettext command converts the descriptions back into a format
that can be edited.

The file header contains a unique identifier indicating the type of file, a file format version
number (currently 0), and the number of component entries in the file (currently, only one
component entry per file is supported). The header file has the following form:

struct filehdr {
char unique[8J;
unsigned short version;
unsigned short numcomp;
};

/* FILE HEADER */
/* unique file identifier "MSGSFILE" */
/* file format version number */
/* number of component entries in file */

Following the file header is the component index table. Each entry (currently, there is
only one) in the table identifies the component, the national language (EN for English),
the maximum index numbers that have been allocated and the offsets to the message index
table, insert index table and help index table.

struct cmp_indx
char
char
unsigned short
unsigned short

{
compi d [6J ;
1 ang i d [2] ;
flags;
maxnum [3] ;

unsigned long offset[3J;

/* Component index table entry */
/* component 10 */
/* language 10 */
/* reserved for flags (zero) */
/* max index numbers used for */
/* messages, inserts, and helps */
/* offsets to msg, insert, and help */
/* index tables from start of file */

File Formats 4-105

TNL SN20-9869 (26 June 1987) to SC23-0809-0
message

unsigned long reserved;
};

/* reserved */

The component index table is followed by the message index table and message text, the
insert index table and insert text, and help index table and help text. The header for each
entry in the message, insert, and help index tables identifies the component ID and index
number where the text actually resides, the offset to the text (and its length) if the text
actually resides in this entry, the version number (used with a common file), and an
indicator of whether the entry is current (can be accessed) or null.

/* Format of header for entries in the */
/* message, insert, and help index tables */
/* (Note that each index table must be */
/* aligned on a long integer boundary.) */

#define MSGHEAOR
char

unsigned short

unsigned long

unsigned short
unsigned short
unsigned short

compi d [6J ;

index;

offset;

textlen;
version;
flags;

unsigned short reserve1;

/* component 10 for text source */
/* file (1======1 or Icommonl) */
/* index # for text source (zero */
/* indicates same index # */
/* offset to text from start of */
/* index table */
/* text length (not incl null term) */
/* version */
/* flag definition */
/* 01 off: status = null */
/* on: status = current */
/* (other flags reserved (zero)) */
/* reserved (zero) */

/* flag definitions for MSGHEAOR */
#define mih-status Ox0001 /* off (0): status = null */

/* on (1): status = current */
Each entry in the insert index table contains only the header information.

struct ins-indx

MSGHEAOR
};

{ /* Insert table entry */
/* (contains header info. only) */
/* header information */

4-106 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
message

Each entry in the message index table and help index table contains the header
information plus the title length (used for helps), a message/help manual reference, and the
index number for the help associated with a message.

struct mih-indx {/* Entry in message or help index tables. May */
/* also be used as entry in insert index table */

MSGHEAOER
unsigned
char
char
short

unsigned
};

short

short

/* if only header information is referenced. */
/* header information */

titlelen; /* title length (not incl null term */
dcompid[3]; /* displayed component 10 */
dmsgid[3]; /* displayed message help 10 */
helpindx; /* help index number (zero if no help, */

/* negative if help in common file) */
reserved; /* reserved (zero) */

Each index table must be aligned on a long integer boundary;

Related Information

In this book: "msghelp" on page 3-252, "msgimed" on page 3-255, "msgqued" on
page 3-259, and "msgrtrv" on page 3-263.

The gettext and puttext commands in A/X Operating System Commands Reference.

File Formats 4-107

TNL SN20-9869 (26 June 1987) to SC23-0809-0
mnttab

mnttab

Purpose

Provides a table of mounted file systems.

Synopsis

#include < mnttab.h >

Description

The mnttab file contains a table of devices, mounted by the mount command. Each
mnttab file entry has the following structure:

struct mnttab {

};

char mt-dev[lOO];
char mt-filsys[lOO];
short mt-ro-flg;
time-t mt-time;

The fields indicate the following:

mt-dev The null-padded name of the mounted special file.

mt-filsys The null-padded name of the mounted-on directory.

mt-ro-flg This flag indicates if the file system is mounted read only. A value other than 0
indicates the file system is mounted read only.

mt-time The time the file system was mo~nted.

The mountab parameter, which is defined while the system is being customized,
determines the number of simultaneously mounted file systems and therefore the maximum
number of entries in the /etc/mnttab file. This parameter changes when the mountab
parameter in the master file changes.

4-108 AIX Operating System Technical Reference

)

Files

/etc/mnttab

TNL SN20-9869 (26 June 1987) to SC23-0809-0
mnttab

Related Information

In this book: "filesystems" on page 4-64, "master" on page 4-98, and "system" on
page 4-139.

The config, mount, and umount commands in AIX Operating System Commands
Reference.

File Formats 4-109

TNL SN20-9869 (26 June 1987) to SC23-0809-0
options

options

Purpose

Defines the valid choices for each ddi option.

Description

The jetcjddijoptions file contains a sorted list of the valid choices for each keyword used
in ddi files. The devices command uses this file to display the valid choices for the
keywords during the add, change, and showdev subcommands.

Each line must follow the following format:

optionchoices

where:

option This field is exactly 20 characters long, is padded on the right with spaces, and
contains no tab characters. An option is one of the following:

keyword The keyword for which the valid choices are to be specified

keywordadapter

keywordclass

keywordtype

keywordstanza

The keyword followed by the adapter name

The keyword followed by the device class

The keyword followed by the device type

The keyword followed by the name of the device stanza in the
system file.

The devices command looks for one of these combinations based on the setting
of the opts keyword in the kaf file for the device. See "kaf" on page 4-94 for
details about the opts keyword.

choices This field is exactly 29 characters long, is padded on the right with spaces, and
contains no tab characters.

Note: The jetcjddijoptions file must be sorted alphabetically by the option field. If it is
not sorted, then the devices command displays incorrect information about the options
available for a given keyword.

The use of extended characters in the etcjddijoptions file is not supported.

4-110 AIX Operating System Technical Reference

(

(

'\
I

)

File

/etc/ddi/options

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
options

In this book: "ddi" on page 4-43, "descriptions" on page 4-56, and "kaf' on page 4-94.

File Formats 4-111

TNL SN20-9869 (26 June 1987) to SC23-0809-0
passwd

passwd

Purpose

Contains passwords.

Library

Standard C Library (libc.a)

Synopsis

#include (pwd.h)

Description

The passwd file is an ASCII file that contains all the information that defines a user on ;1

the system. It contains the following information: ~

• Login name
• Encrypted password
• Numerical user ID
• Numerical group ID
• Additional data for each user
• Initial current directory
• Program to use as shell.

Each field is separated from the next by a colon. The file has general read permission and
the passwords are encrypted. Therefore, a user can use the file to map numerical user IDs
to names without potentially compromising the security of other users.

The adduser command is used to maintain this file. Programs should use the getpwent
subroutines to extract various fields in this file.

4-112 AIX Operating System Technical Reference

passwd

If the user password field is null, the user has no password. If the program field is null,
the shell (fbin/sh) is used. The program field can contain parameters passed when the
exec system call is issued. Parameters are separated by space (such as a space or tab
characters). A \ (backslash) is used for escapement when a parameter contains a space.
The login command accepts the program name and as many as 14 parameters. Any more
than 14 parameters are ignored. A maximum of 4096 characters can be used for the
program name and its parameters. More than 4096 characters causes login to exit.
Parameters in this field can use symbolic escapement for the following special characters:
\n, \r, \v (produces 013), \b, \t, and \f. Additionally, \0 through \7 builds a one-byte octal
number. Anything else that is preceded with a \ (backslash) passes through.

The contents of the additional data for each user has the following format:

fulZ-name / file-limit; site-info

where:

full-name Contains the name of the user whose 8-character (or fewer) login name is in
the first field.

file-limit Specifies the maximum length file the user can create. See the login
command in AIX Operating System Commands Reference and the ulimit
system call.

site-info Contains any printable character other than a colon. This subfield is unused
by the system software and is available for information for each user as
required by applications specific to the site.

Any or all of the subfields can be omitted. If the file-limit subfield is omitted, the
preceding / (slash) is omitted and the system-wide default limit is used. If the site-info
subfield is omitted, the preceding; (semi-colon) is also omitted.

Passwords
The encrypted password is 13 characters long. The characters used come from the &ncs.
(code page PO, see "data stream" on page 5-5) and may be uppercase or lowercase
characters, numerals, and the. (period) and / (slash) characters except when the password
is null. In this case, the encrypted password is also null. Password aging affects a
particular user if a comma and a string of characters that are not null follows the user
password in this file. Such a string must be initially introduced by a person with
superuser authority.

The first character of the age, M for example, is the maximum number of weeks a password
is valid. The next character, m for example, is the minimum number of weeks, before the
password can be changed. The remaining characters indicate when the password was last
changed, given as the number of weeks since the beginning of 1970 to the time of the
password change. A null string is equivalent to o. M and m have numerical values in the
range 0 through 63. If m = M = 0, the user is forced to change the password at the next

File Formats 4-113

passwd

File

login. This causes the age to disappear from the password file entry. If m > M, only
someone with superuser authority is able to change the password.

/etc/passwd

Related Information

In this book: "ulimit" on page 2-167, "a641, 164a" on page 3-4, "crypt, encrypt" on
page 3-42, "getpwent, getpwuid, getpwnam, setpwent, endpwent" on page 3-219, "group" on
page 4-87, and "data stream" on page 5-5.

The login and passwd commands in AIX Operating System Commands Reference.

"Overview of International Character Support" in IBM RT PC Managing the AIX
Operating System.

4-114 AIX Operating System Technical Reference

plot

plot

Purpose

Provides the graphics interface.

Description

The subroutines described in "plot" produce output files of the format outlined in this
section. The tplot commands interpret these graphics files for various devices, performing
the plotting instructions in the order that they appear.

A graphics file consists of a stream of plotting instructions. Each instruction consists of
an ASCII letter usually followed by bytes of binary information. A point is designated by
four bytes representing the x and y values; each value is a two-byte signed integer. The
last designated point in an I, m, n, or p instruction becomes the current point for the next
instruction.

The following table lists each of the plot instructions and the corresponding plot
subroutines.

Instr Sub

a arc

c circle

e erase

Description

Draws the arc described by the following 12 bytes. The first four bytes
describe the center point (x, y) of the arc or circle. The second four
bytes describe the beginning point of the arc. The third four bytes
describe the ending point of the arc. Arcs are drawn counter clockwise.
The results are unpredictable if the three points do not really form an
arc.

Draws a circle whose center point is defined by the first four bytes, and
whose radius is given as an integer in the following two bytes.

Starts another frame of output.

f linemod Uses the following string, terminated by a new-line character, as the

I line

style for drawing further lines. The styles are dotted, solid, long-dashed,
short-dashed, and dot-dashed.

Draws a line from the point designated by the next four bytes to the
point designated by the following four bytes.

File Formats 4-115

plot

Instr Sub

m move

n cont

p point

s space

t label

The space setting

Description

The next four bytes designate a new current point.

Draws a line from the current point to the point designated by the next
four bytes.

Plots the point designated by the next four bytes.

The next four bytes designate the lower left corner of the plotting area;
followed by four bytes for the upper right corner. The plot is magnified
or reduced to fit the device as closely as possible.

Places the following ASCII string so that its first character falls on the
current point. A new-line character terminates the string.

space(O, 0, 480, 432);
exactly fills the plotting area with unity scaling for the IBM Personal Computer Graphics
Printer. The upper limit is immediately outside the plotting area, which is taken to be
square. Points outside the plotting area can be displayed on devices that do not have
square displays.

Related Information

In this book: "plot" on page 3-296 and "TERM" on page 5-72.

The graph and tplot commands in AIX Operating System Commands Reference.

4-116 AIX Operating System Technical Reference

ports

ports

Purpose

Describes the ports.

Description

The ports file contains the names and characteristics of all the system terminal ports. It
provides a convenient means to associate values with named keyword parameters on a
port-by-port basis, with defaults supplied as desired.

The getty process is the principal user of the information in this file. Since programs
using this file look for specific keyword parameters and ignore all others, parameters other
than those discussed here can be added to this file as necessary.

File Format
The ports file consists of one or more named stanzas usually separated by blank lines.
Each stanza begins with its name followed by a colon, and contains assignments of values
to keyword attributes. The values, in turn, may be alphanumeric strings or arbitrary
character strings enclosed in double quotes.

Stanzas headed by the name default specify attribute-value pairs that are associated with
all of the ports following it to the next default stanza. Explicit values within a port stanza
override this association.

Port-Control Parameters
Most of the parameters in the ports file are port controls for login terminals. Because
there are system defaults, specified in the getty process, it is not usually necessary to
specify more than a few attributes in the ports file, as in the example. The port control
parameters and their meanings are as follows:

enabled The init program uses this attribute to determine whether or not to create a
logger on the port. If the port permits a logger, the value is true; otherwise
the value is false. Note that penable, pdisable, and. phold commands
override the value specified. See the penable command in AIX Operating
System Commands Reference for more information about these commands.

eof An octal integer specifying the character code that causes an end of file to
be generated from the terminal. The system default is 004 (or Ox04), the
ASCII EOT character, which is generated by Ctrl-D.

File Formats 4-117

ports

eol

erase

herald

imap

intr

kill

lock

log

logger

logmodes

An optional and seldom used alternate line termination character to use in
addition to the ASCII new-line (line-feed) character.

An octal integer specifying the character code that deletes the previously
received character. The system default for the erase character is 010 (or
Ox08), Ctrl-h, which is generated by the Backspace key on many terminals.

An arbitrary string, enclosed in double quotes, printed by the getty process
to prompt for login. The C language \(backslash) escapes \r, \n, \t, \b, and
\f are recognized as carriage return, new-line, tab, backspace, and formfeed,
respectively.

This attribute is used by getty to set the terminal input m~p. If imap is not
specified, getty resets the map to the system default.

An octal integer specifying the character code that interrupts the running
process. The system default is 0177 (or Ox7f), which is usually generated by
a key labeled Del or Rubout.

An octal integer specifying the character code that deletes the input line.
system default for the kill character is 025 (or OxI5), Ctrl-u, which is the
ASCII NAK character.

This attribute is used to request port locking. If the value is true, in it
creates a file in /etc/locks when the port is enabled and deletes the lock file
when the port is disabled. Similarly, penable does not enable a port whose
lock attribute is true when the corresponding lock file exists. Programs
using the port for some other purpose (such as a link between processors)
should check for an outstanding lock (and create a lock file, if necessary)
before opening the port.

This parameter causes logins to be recorded for a port on the console or in
file /usr/adm/sulog. If log = true, alliogins are reported, and if log = root,
logins by root (superuser) are recorded. See super parameter on 4-119 for
related information.

A character string giving the names the program to use at login. The
default is /bin/login.

Console modes in effect while prompting for and reading in the user name.
Modes are specified as a series of terminal options separated by a + (plus).
Terminal options are as listed in the stty command. All listed modes not
preceded with - (dash) are recognized. For example, the default logmodes
parameter is specified as:

logmodes = cread+csB+hupcl+echoe+echok
Because a speed value is not recognized in logmodes under any
circumstances, the baud rate must be set with the speed parameter (see
below).

4-118 AIX Operating System Technical Reference

min

omap

owner

parity

program

protection

quit

runmodes

speed

super

term

ports

See the discussion of ICANON under "termio" on page 6-114.

This attribute is used by getty to set the terminal output map. If omap is
not specified, getty resets the map to the system default.

Normally, when a port is logged in, the login program sets the logged-in
user to be the owner of that port. Specifying an owner (either a UIn or user
name), the system manager forces the getty process to set ownership even
before opening the port.

The values odd, even, and none cause the generation of odd, even, and no
parity, respectively, while inpck, ignpar, and parmrk cause the checking
input for parity errors, ignoring input characters with parity errors, and
"marking" input parity errors as specified under "termio" on page 6-114.
These values can be combined, as in pari ty=odd+i npck.

If a value is specified, it is taken as the name of a program to run
immediately after setting the logmodes. This feature is useful for
establishing special purpose server ports that respond to a connection with
a special protocol handler. If the special assignment program = HOLD is
specified, no program runs on the port, but the logmodes, ownership, and
protection are set and the port is held open. This is useful to keep the
desired modes associated with a port that is occasionally seized for some
special purpose.

Normally the protection on terminal is set to rw--w--w- (octal 622 or Ox192).
The protection parameter overrides this default. The value can be set to an
octal mask or a string such as rw-rw-rw- (octal 666 or Oxlb6).

An octal integer specifying the character code that causes the running
process to abort. The system default is 026 (or OxI6), which is generated by
pressing Ctrl-V.

Console modes in effect after the user name is read. The mode in which the
port is left, specified similar to logmodes.

A decimal integer from the set {50, 75, 110, 134.5, 150, 300, 600, 1200, 1800,
2000, 2400, 3600, 4800, 7200, 9600, 19200} depending on the hardware
capability.

This parameter is passed on the logger in its environment. If super = false,
then login does not allow root (the superuser) to log in on the port. This is
useful for security on off-site terminal connections such as telephone links.
(See log parameter, on page 4-118.)

This parameter is passed to the logger and shell in their environment
("environment" on page 5-47) in the variable TERM. Some application
software uses this information to determine the type of terminal the user is
using.

File Formats 4-119

ports

time

timeout

See the discussion of ICANON under "termio" on page 6-114.

A decimal integer. If a user name is not specified before the given number
of seconds, the getty process advances to the next port setting, or exits if
all settings were exhausted.

Multiple values, separated by commas, can be specified as in the speed = 300,1200 line for
dial-in terminals. This causes the port to be set up according to the first set of values for
each attribute. If a framing error occurs, as a result of a user-generated BREAK on the
line or a speed mismatch between the terminal and the set speed, the getty process
advances to the next value on the list.

If multiple specifications occur for more than one parameter, all are advanced at the same
time. Thus, a specification such as:

speed=300,1200
parity=none,odd+inpck

first tries the line at 300 baud with no parity. If a framing error occurs, it tries 1200 baud
generation and checks for odd parity.

Other Port Parameters
The ports has all the port-specific information, not just information about loggers. The
other parameters in the file are:

loc The location of the terminal connected to the port. This parameter is
presently unused by any RT PC software. Because programs that access
this file ignore keywords they do not use, helpful information can be added
to keep all port-specific information together in one area.

printer The hard copy device used for output from optional word processing
packages.

Example

The following example of a ports file illustrates some of its features:

default:
enabled = false
speed = 9600
herald = n\033[H\033[J\rRT PC(noname)\r\nlogin: n
printer = lpO
term = dumb
erase = 010
kill = 025
intr = 0177

4-120 AIX Operating System Technical Reference

Files

/dev/console:
loc = "console"
term = hft
enabled = true
herald = "\033[H\033[J\rRT PC(/dev/console)\r\nlogin:"

/etc/ports
/etc/locks

ports

Related Information

In this book: "attributes" on page 4-20, "connect.con" on page 4-33, "environment" on
page 5-47, and "termio" on page 6-114.

The su, penable, getty, login, init, and stty commands in A/X Operating System
Commands Reference.

"Overview of International Character Support" in IBM RT PC Managing the A/X
Operating System.

File Formats 4-121

portstatus

portstatus

Purpose

Centralizes commands to control ports.

Description

File

The penable, pdisable, and phold commands communicate with the init command (the
process that controls loggers) through the /etc/portstatus file. See the penable command
in A/X Operating System Commands Reference for more information on these commands.
The format of this file is:

struct portstatus

};

{ char ps-line[14];
char ps-stat;
char ps-rqst;

#define ENABLE 01
#define DISABLE 02
#define HOLD 04

The fields are explained as follows:

/* device name */
/* current status */
/* requested status */

/* spawn logger */
/* kill logger */
/* spawn no new logger */

ps-line N ames the special file for the port, ttyOl, for example.

ps-rqst U sed by the penable command to request changes in the enabling of a port.

ps-stat Used by the init command to show the current state of the port.

The penable command, with the -i flag specified, automatically initializes this file. If this
file does not exist or is damaged, the init command cannot enable the ports properly.

/ etc/portstatus

4-122 AIX Operating System Technical Reference

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
portstatus

The penable and init commands in A/X Operating System Commands Reference.

File Formats 4-123

TNL SN20-9869 (26 June 1987) to SC23-0809-0
predefined

predefined

Purpose

Provides information for predefined devices.

Description

The predefined file contains information about hardware adapters and devices that is used
by the devices command. Some of these devices may not be present in a particular
configuration, but all of them are supported by the system. The predefined file contains
information needed when adding one of these devices so that you do not have to supply the
information yourself. The size of this file increases with new entries as additional licensed
programs are installed in the system.

The devices command uses the information in this file to set up stanzas in the system and
qconfig files when devices are added to the system. Note that information in this file has
no effect on the system until it is moved to a stanza in the system or qconfig file.

The predefined file is similar in structure and content to the system file, and its stanzas
can contain any of the keywords that are allowed in the system file. See "system" on
page 4-139 for a description of the keywords that can appear in stanzas of these files.

The use of extended characters in the predefined file is not supported.

The predefined file contains several special stanzas:

~efqueue Used by the devices command to create the queue stanza in the qconfig file
when a printer or plotter is added.

defdevice

default

adpts

addrs

Used by the devices command to create the device stanza in the qconfig file
when a printer or plotter is added.

Contains keywords and their values that are common to all device stanzas.

Contains a list of adapters with the code number and description that the
devices command uses to identify each one.

Contains a list of adapters and their corresponding adapter type and address.

4-124 AIX Operating System.Technical Reference

(

Example

The following shows sample entries of the predefined file.

defqueue:
argname = none
device = none

defdevice:

default:

adpts:

file = /dev/none
backend = /usr/lpd/piobe

modes = rw-rw-rw­
owner root

mp = 49
* IBM Mono Disp & Paral Prntr

sp1 = 23
* IBM Ser/Par Adptr, Primary

sp2 = 23
* IBM Ser/Par Adptr, Secondary

rs232c1 = 35

addrs:

5182:
* IBM

2A03BC = mp
2A0378 sp1par
2A0278 = sp2par
2303F8 = sp1
2302F8 = sp2
351230 = rs232c1

PC Color Printer
name = 5182
nname = 5182
driver = u5182
crname = true

(5182)

predefined

File Formats 4-125

predefined

File

minor = c
vint = 4
iodn =
kaf-file = /etc/ddi/pprinter.kaf
kaf-use = kparallel
file = /etc/ddi/pprinter
use = d5182
noddi = false
dtype = printer

* Printer
switchable = true

* Coprocessor Device
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = lp
noshow = false
aflag = true

* adapter description
adp = mp,spl,sp2

/ etc/predefined

Related Information

In this book: "attributes" on page 4-20 and "system" on page 4-139.

4-126 AIX Operating System Technical Reference

profile

profile

Purpose

Sets the user environment at login time.

Description

The profile file contains commands to be executed at login and variable assignments to be
set and exported into the environment. The fete/profile file contains commands executed
by all users at login.

After the login program adds the LOGNAME (login name) and HOME (login directory)
parameters to the environment, the commands in $HOME/ .profile are executed, if it is
present. The .profile file is the individual user profile that overrides the variables set in
the profile file and is used to tailor the user environment variables set in fete/profile.
The .profile file is often used to set exported environment variables and terminal modes.
The person who customizes the system can use adduser to set default . profile files in each
user home directory. Users can tailor their environment as desired by modifying their
.profile file.

Example

The following example is typical of a Jete/profile file:

Set file creation mask
unmask 022
Tell me when new mail arrives
MAIL=/usr/mai1/$LOGNAME

'. \dd my fbi n di rectory to the she 11 search sequence
rATH=/bin:/usr/bin:/etc::
Set terminal type
TERM=hft
Make some environment variables global
export MAIL PATH TERM

File Formats 4-127

profile

Files

$HOME/.profile
fete/profile
/ ete/profile.dos

Related Information

In this book: "environment" on page 5-47 and "TERM" on page 5-72.

The env, login, mail, sh, stty, and su commands in AIX Operating System Commands
Reference.

4-128 AIX Operating System Technical Reference

qconfig

qconfig

Purpose

Configures a printer queueing system.

Description

The /etc/qconfig file describes the queues and devices available for use by the print
command, which places requests on a queue, and the qdaemon command, which removes
requests from the queue and processes them. The /etc/qconfig file is an attribute file. See
"attributes" on page 4-20 for details about the format of attribute files.

Some stanzas in this file describe queues, and other stanzas describe devices. Every queue
stanza requires that one or more device stanzas immediately follow it in the file. The first
queue stanza describes the default queue. The print command uses this queue when it
receives no queue parameter.

The name of a queue stanza must be 1 to 3 characters long. The following table shows
some of the field names along with some of the possible values that appear in this file:

acctfile Identifies the file used to save print accounting information. FALSE, the
default, indicates suppress accounting. If the named file does not exist, no
accounting is done.

argname Identifies the queue name identifier that is used in the print command to
specify the queue.

device

discipline

friend

Identifies the symbolic name that refers to the device stanza.

Defines the queue serving algorithm. fcfs, the default, means first come first
served. sjn means shortest job next.

Indicates whether the backend updates the status file and responds to
terminate signals. TRUE is the default. FALSE indicates it does not.

up Defines the state of the queue. TRUE, the default, indicates that it is
running. FALSE indicates that it is not running.

If a field is omitted, its default value is assumed. The default values for a queue stanza
are:

friend = TRUE
disCipline = fcfs
up = TRUE
acctfile = FALSE

File Formats 4-129

qconfig

Also, the default argname value is the name of the stanza preceded by a - (dash). The
device field cannot be omitted.

The name of a device stanza is arbitrary. The fields that can appear in it stanza are:

access Specifies the type of access the backend has to the file specified by the file
field. The value of access is write if the backend has write access to the file,
or both if it has both read and write access. This field is ignored if the file
field has the value FALSE.

align Specifies whether the back end sends a form-feed control before starting the
job if the printer was idle. The default is FALSE.

backend Specifies the full path name of the backend, optionally followed by flags and
parameters to be passed to it.

feed Specifies the number of separator pages to print when the device becomes idle,
or the value never, which indicates that the backend is not to print separator
pages.

file Identifies the special file where the output of backend is to be redirected.
FALSE, the default, indicates no redirection. In this case, the backend opens
the output file.

header Specifies whether a header page prints before each job or group of jobs.
never, the default, indicates no header page at all. always means a header
page before each job. group means a header before each group of jobs for the
same user.

trailer Specifies whether a trailer page prints after each job or group of jobs. never,
the default, means no trailer page at all. always means a trailer page after
each job. group means a trailer page after each group of jobs for the same
user.

The qdaemon places the information contained in the feed, header, trailer, and align
fields into a status file that is sent to the backend. Backends that do not update the status
file do not use the information it contains.

If a field is omitted, its default value is assumed. The backend field cannot be omitted.
The default values in a device stanza are:

fi 1 e = FALSE
access = write
feed = never
header = never
trailer = never
align = FALSE

4-130 AIX Operating System Technical Reference

qconflg

The print command automatically converts the ASCII qconfig file to binary when the
binary version is missing or older than the ASCII version. The binary version is found in
/etc/qconfig.bin.

Unlike the format of the ports file, the qconfig file format does not allow default stanzas.

Examples

1. The batch queue supplied with the AIX system might contain these stanzas:

bsh:

2.

argname = bsh
friend = FALSE
discipline = fcfs
device = bshdev

bshdev:
backend = /bin/sh

To run a shell procedure called myproc using this batch queue, type:

print bsh myproc
The queuing system runs the files one at a time, in the order submitted. The qdaemon
process redirects standard input, standard output, and standard error to the /dev/null
file.

To allow two batch jobs to run at once:

bsh:
argname = save
friend = FALSE
discipline = fcfs
device = bshl,bsh2

bshl:
backend = /bin/sh

bsh2:
backend = /bin/sh

File Formats 4-131

qconfig

Files

/etc/qconfig
/etc/qconfig.bin
/usr /lpd/digest

Related Information

In this book: "attributes" on page 4-20.

The print, lp, and qdaemon commands in AIX Operating System Commands Reference.

4-132 AIX Operating System Technical Reference

rasconf

rasconf

Purpose

Defines the reliability, availability, and serviceability (RAS) configuration file.

Description

The rasconf file defines attributes of the reliability, availability, and serviceability (RAS)
system. Initially, RAS logging is inactive and must be activated before any RAS data can
be collected.

This attribute file consists of stanzas that govern the actions of daemons associated with
individual RAS devices. Each stanza name is the name of the associated RAS device.

The following attributes are valid:

file = file Specifies the file into which the daemon will write the RAS information.

size = blocks Specifies the maximum size, in l024-byte blocks, to which the daemon will
allow the file to grow.

Example

A typical rasconf file can contain the following:

/dev/osm:
file = /usr/adm/ras/osm
size = 100

/dev/error:
file = /usr/adm/ras/errfile
size = 50

/dev/trace:
file = /usr/adm/ras/trcfile
size = 80
buffer = 6

File Formats 4-133

rasconf

File

/etc/rasconf

Related Information

In this book: "attributes" on page 4-20, "error" on page 6-15, "osm" on page 6-105, and
"trace" on page 6-128.

The errdemon and trace commands in AIX Operating System Commands Reference.

4-134 AIX Operating System Technical Reference

sccsfile

sccsfile

Purpose

Contains the Source Code Control System (SCCS) information.

Description

The SCCS file is an ASCII file consisting of the following six logical parts:

checksum The sum value of all characters, except the characters in the first line.

delta table Information about each delta including type, SCCS identification (SID)
date and time of creation, and comments.

user names Login names and numerical group IDs, or both, of users who are allowed to
add or remove deltas from the sces file.

flags Definitions of internal keywords.

comments Descriptive information about the file.

body The actual text lines intermixed with control lines.

There are lines throughout an SCCS file that begin with the ASCII SOH (start of heading)
character (octal 001). This character is called the control character and is represented
graphically as @ (at sign) in the following text. Any line described in the following text
not shown beginning with the control character cannot begin with the control character.

The DDDDD entries represent a 5-digit string (a number from 00000 to 99999).

The following describes each logical part of an sees file.

Checksum
The checksum is the first line of an SCCS file. The value of the checksum is the sum of all
characters, except those of the first line. The @h designates a magic number of 064001
octal (or Ox6801). The format of the line is:

@hDDDDD

File Formats 4-135

sccsfile

Delta Table
The delta table consists of a variable number of entries such as:

@sDDDDD/DDDDD/DDDDD
@d < type> < sees ID> yr/mo/da hr:mi:se < pgmr > DDDDD DDDDD
@i DDDDD .. .
@xDDDDD .. .
@gDDDDD .. .
@m < MR number>

@c < comments>

@e

@s The first line which contains the number of lines inserted or deleted or unchanged
respectively.

@d The second line which contains:

• The type of delta. D designates normal delta and R designates removed.

• The SCCS ID (SID) of the delta.

• The date and time the delta was created.

• The login name that corresponds to the real user ID at the time the delta was
created.

• The serial numbers of the delta and its predecessor.

@i Contains the serial numbers of the deltas included. This line is optional.

@x Contains the serial numbers of deltas excluded. This line is optional.

@g Contains the serial numbers of the deltas ignored. This line is optional.

@m Optional lines, each one containing one modification request (MR) number
associated with the delta.

@c Comment lines associated with the delta.

@e Ends the delta table entry_

4-136 AIX Operating System Technical Reference

sccsfile

User Names
The list of login names and numerical group IDs, or both, of users who can add deltas to
the file, separated by new-line characters. The bracketing lines @u and @U surround the
lines containing the list. An empty list allows any user to make a delta.

Flags
Flags are keywords used internally in the system. For more information about their use,
see the admin command in AIX Operating System Commands Reference. The format of
each flag line is:

@f < flag> < optional text>

The following flags are defined:

@ft < type of program>
@fv < program name>
@fi
@fb
@fm < module name>
@ff <floor>
@fc < ceiling>
@fd < default-sid>
@fn
@fj
@f1 < lock-releases>
@fq < user defined>

The flags are used as follows:

b Allows the use of the -b option on the get command to cause a branch in the delta
tree.

c Defines the highest release number, less than or equal to 9999, which can be
retrieved by a get command for editing. This release number is called the ceiling
release number.

d Defines the default SID to be used when one is not specified with a get command.

f Defines the lowest release number between 0 and 9999, which can be retrieved by a
get command for editing. This release number is called the floor release number.

i Controls the error warning message "No ID keywords". When this flag is not
present, this message is only a warning. When this flag is present, the file is not
used and the delta is not made.

j Causes the get command to allow concurrent edits of the same base SID.

1 Defines a list of releases that cannot be edited with get using the -e flag.

File Formats 4-137

sccsfile

m Defines the first choice for the replacement text of the %M% identification keyword.

n Causes the delta command to insert a delta that applies no changes for those skipped
releases when a delta for a new release is made. For example, delta 5.1 is made after
delta 2.1, skipping releases 3 and 4. When this flag is omitted, it causes skipped
releases to be completely empty.

q Defines the replacement for the %Q% identification keyword.

t Defines the replacement for the % Y% identification keyword.

v Controls prompting for MR numbers in addition to comments. If optional text is
present, it defines an MR number validity checking program.

Comments
Typically, the comments section contains a description of the purpose of the file.
Bracketing lines @t and @T surrounding text designate the comments section.

Body
The body section consists of control and text lines. Control lines begin with the control
character, text lines do not. There are three kinds of control lines: insert, delete, and
end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta for the
control line.

Related Information

The admin, delta, get, and prs commands in A/X Operating System Commands Reference.

4-138 AIX Operating Systenl Technical Reference

system

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
system

Identifies the system devices.

Description

The system file contains entries for currently configured real devices, virtual devices, and
device managers. Some of this information is used by the Virtual Resource Manager
(VRM) to establish the default running environment.

The system file is an attribute file containing stanzas that generally describe special files
including information about AIX drivers or what non-standard VRM drivers are needed to
support them. See "attributes" on page 4-20 for a description of attribute files. Also
included is data for the Define-Device supervisor calls (SVCs) to the VRM if needed. See
the vrmconfig program in AIX Operating System Commands Reference for more
information.

Each special file named in the system file refers to a device driver entry in the master
file. The driver entries specify the AIX device drivers to be configured. All drivers needed
for specified special files are included, and those drivers marked as mandatory. Two driver
entries may specify the same major device number where the same driver controls devices
with different I/O code numbers.

The name of each stanza is the simple name of the special file.

The use of extended characters in the system file is not supported.

adp

aflag

Indicates the valid adapter names for the device described in the stanza.

Is a required keyword that indicates whether both an adapter and an AIX
device driver are associated with the device described in the stanza. If the
value is false, then the device has either an AIX device driver or a VRM
device driver (and, in most cases, an adapter), but not both.

If true, then the devices command constructs the name of the ddi stanza
when adding the device by concatenating the value of the use keyword,
the adapter name that the user choses from the adp list, and a port
number.

If false, then devices constructs the name of the ddi stanza by
concatenating the value of the use keyword and a pseudo port number.
Either a maxminor keyword or a maxdev keyword must be defined if the
value of aflag is false. If the maxminor keyword is defined, which
indicates that this device has only an AIX device driver, then the pseudo

File Formats 4-139

TNL SN20-9869 (26 June 1987) to SC23-0809-0
system

crname

ddi

dname

driver

dtype

file

iodn

kaf-file

kaf-use

maxdev

minor

modes

port number is the next unused integer between 0 and maxminor - 1. If
the maxdev keyword is defined, which indicates that this device has only
a VRM device driver, then the pseudo port number is the next unused
integer between 0 and maxdev - 1.

The showall subcommand of the devices command displays the comment
line that immediately follows the aflag definition as a description of the
device or adapter.

Is a required keyword that indicates by a value of true or false whether
the devices command should create a new driver name for the device.

Specifies the hexadecimal bytes to be passed to the VRM Define-Device
SVC. If a customize helper program is invoked, it determines the data to
be passed. In that case, this attribute is not used.

Indicates the prefix name that is used to create the name of the device
stanza in the /etc/system file and the special file in the /dev directory.
The devices command uses this value when it creates a stanza name for a
new special file.

Identifies the associated driver in the master file. This is mandatory in
all device stanzas.

Specifies the class of the device. Examples of this are printer and disk.
The devices command displays this value when asking the user to choose
a device class. It also uses this value to construct a list of device classes.

Identifies the file that contains the stanzas included by the use attribute.
This is the /etc/ddi file associated with the device.

Specifies the I/O device number to use. If omitted, no Define-Device SVC
is sent to the VRM.

Indicates the name of the keyword attribute file to be used by the
customization helper programs for the device described in the device
stanza.

Indicates the name of the stanza in the kaf-file that contains information
about the attributes for the device.

Specifies the maximum number of IODNs supported by the VRM device
driver for this adapter. This is equivalent to the maximum number of
adapters that can be installed times the number of ports on each adapter.

Has a value of the form en, where e is either b to denote a block device, or
c to denote a character device. n is the minor device number.

Sets the protection bits for the special file, specified in the form
rwxrwxrwx. Hyphens replace modes that are turned off, for example,
rw-r--r--.

4-140 AIX Operating System Technical Reference

I
I~

name

native

nname

nocopy

noddi

nodelete

nodI

noduplicate

noipl

nosh ow

nospecial

owner

port

protocol

system

Is a required keyword that identifies the type of the driver or the
four-character name passed to the VRM using the Define-Device SVC.
The default name is the first two and last two characters of the special file
name.

Identifies the model. A value true indicates IBM RT PC 6150, false
indicates IBM RT PC 6151.

Is a required keyword that indicates the name of the device, adapter, and
port number (if applicable).

The value true indicates that the associated VRM device driver stanza in
/etc/master cannot contain the copy keyword, but must specify the code
keyword instead.

Indicates whether any device-dependent information is associated with the
device. The value true indicates there is none. If noddi = true, then the
change subcommand of the devices command does not allow the user to
change device characteristics.

Indicates whether to delete the special file when this driver is removed.
When this value is true, no attempt is made to delete the special file.

Indicates whether the device can be deleted from the system by the
devices command. The value true indicates the device cannot be deleted
using this command.

Indicates whether another device of this type can be added to the system.
The value true indicates another device cannot be added.

Indicates whether this stanza is processed at initial program load (IPL)
time. When this value is true, this stanza is not processed at system initial
program load (IPL) time.

Indicates whether the devices command displays information from the
stanza to the user. If nosh ow = false, then the showdev subcommand of
the devices command displays all device characteristics and the showall
subcommand displays the device.

When this value is true, no special file (fdev file) is to be created.

Specifies the name of the owner assigned to the /dev special file when it is
created.

Lists the number of ports on each adapter in the adp keyword. There is a
one to one correspondence between each adapter and its number of ports.
If the device being added is the adapter, port is the number of ports on the
adapter. This keyword is required if the aflag keyword is true.

Indicates whether this stanza is used by a protocol procedure. When this
value is true, this stanza is used by a protocol procedure.

File Formats 4-141

system

shared

specproc

switchable

type

uinfo

use

vdmgr

vint

Sets the shared bit for the VRM Define-Device SVC. When this value is
true, the shared bit is set.

Indicates the name of the special processing routine that is to be invoked
when customizing the system for the device. See "cfgadev" on page 3-15
for information about the application program interface to this feature.

Indicates whether the device can be shared by the coprocessor. The value
true indicates that it can be shared. If so, then the devices command
displays this as a device that can be added to the coprocessor.

Defines a device manager rather than a device driver when this value is
manager and used with the Define-Device SVC.

Specifies the hexadecimal bytes to pass to the CFUDRV type ioctl call to
configure a AIX device driver. If a customization helper program is
invoked, it determines the data to pass. In that case, this attribute is not
used.

Identifies a stanza to be logically included in the current stanza. If a file
attribute is present, the file is searched to find the indicated stanza for
device dependent information. This keyword is required if the file
keyword is present.

Defines device drivers controlled by a manager. Values are the names of
stanzas in the system file, separated by commas. The controlled drivers
should include nospecial = true.

Identifies the virtual interrupt level to use. Level 4 is the only supported
level. If not specified, the default value is vint = 4.

Other parameters can be given for special customization helper programs.

Miscellaneous System Parameters
Both the master and the system files can have option lines in the default stanzas
describing miscellaneous system customizing and tuning options. Options in the system
file override those in the master file. See "master" on page 4-98 for a list of these
parameters.

Other lines can be added as needed.

4-142 AIX Operating System Technical Reference

Example

The following is an excerpt of the system file entries.

* * system - actual devices

default:

lp1:

modes = rw-rw-rw­
owner = root
native = true

* IBM PC Color Printer
name = 5182
crname = true
minor = c1
vint = 4
iodn = 12003
kaf-file = /etc/ddi/pprinter.kaf
kaf-use = kparallel
file = /etc/ddi/pprinter
noddi = false
dtype = printer
nodelete = true

* Printer
switchable = true
specproc =cfgaqcfg
shared = false
noduplicate = false
dname = lp
noshow = false
aflag = true

* IBM Mono Disp & Paral Prntr
adp = mp,sp1,sp2
use = d5182mp
nname = 5182mp
driver = u5182mp

system

File Formats 4-143

system

lp2:
* IBM PC Color Printer (5182)

name = 5182
crname = true
minor = c2
vint = 4
iodn = 12004
kaf-file = /etc/ddi/pprinter.kaf
kaf-use = kparallel
file = /etc/ddi/pprinter
noddi = false
dtype = printer

* Printer
switchable = true
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = lp
noshow = false
aflag = true

* IBM Ser/Par Adptr, Primary
adp = mp,spq,sp2

lp3:

use = d5182sp1
nname = 5182sp1
driver = u5182sp1

* IBM PC Color Printer (5182)
name = 5182
crname = true
minor = c3
vint = 4
iodn = 12005
kaf-file = /etc/ddi/pprinter.kaf
kaf-use = /etc/ddi/pprinter
noddi = false
dtype = printer

* Printer

4-144 AIX Operating System Technical Reference

File

switchable = true
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = lp
noshow = false
aflag = true

* IBM Ser/Par Adptr, Secondary
adp = mp,spl,sp2
use = d5182sp2
nname = 5182sp2
driver = u5182sp2

/etc/system

system

Related Information

In this book: "attributes" on page 4-20, "ddi" on page 4-43, "master" on page 4-98, and
"predefined" on page 4-124.

The config, devices, and vrmconfig commands in AIX Operating System Commands
Reference.

File Formats 4-145

tar

tar

Purpose

Describes the tape archive format.

Description

The tar command reads and writes tapes in tape archive format. A tar tape consists of
several 512-byte logical blocks that can be grouped (on magnetic tape) into records, which
are some constant multiple of 512-byte blocks long. Block in the following description
means logical block.

The following is the format of a file header that precedes each disk file written on the tape:

struct {

};

char name[100J;
char mode [8J ;
char ui d [8J ;
char gi d [8J ;
char size [12J ;
char mtime[12J;
char chksum[8];
char linkflag;
char linkname[100];

All fields, except linkflag, are ASCII null-terminated strings. Numeric fields can contain
leading blanks. The fields have the following meanings:

chksum Contains a byte-by-byte sum of the entire header block assuming that the
chksum field is all blanks.

gid Contains the group identification of the file, in octal.

linkflag Contains a 1 if this file is a link to a previous file on the the tape, otherwise
null.

linkname Contains the name of a file if linkflag has a value of 1. The file named in
this field is linked to the name file.

mode Contains the mode of the file, which includes the protection bits, setuid bits,
setgid bits, and file type, in octal.

4-146 AIX Operating System Technical Reference

mtime

name

size

uid

tar

Contains the modification time, in octal. This field gives the major/minor
device number for special files.

Contains the name of the file.

Contains the size in bytes, in octal. This field is 0 for special files.

Contains the user identification of the file, in octal.

Unused bytes are null. Following the file header block are the data blocks of the file. The
last block is null-padded if necessary. Two null blocks designate the end of the tape.

Directories and special files are treated in a slightly different way. A directory size is 0,
meaning no data blocks follow, and its name ends with a / (slash). A special file is also
written with 0 size. Its major/minor device number is in the mtime field.

Related Information

The tar command in AIX Operating System Commands Reference.

File Formats 4-147

terminfo

terminfo

Purpose

Describes terminals by capability.

Description

A terminfo file is a data base that describes terminals, defining their capabilities and their
methods of operation. It is used by various programs, including the Extended Curses
Library (libcur.a) and the vi editor. The information defined includes initialization
sequences, padding requirements, cursor positioning, and other command sequences that
control specific terminals.

This section explains the term info source file format. Before a terminfo source file can
be used, it must be compiled using the tic command, which is described in AIX Operating
System Commands Reference. You can edit and modify these source files, such as
/usr/lib/terminfo/ibm.ti, which describes IBM terminals, and /usr/lib/terminfo/dec.ti,
which describes DEC terminals.

See "TERM" on page 5-72 for a list of some of the terminals supported by predefined
terminfo data base files and the corresponding values for the TERM environment
variable.

Each terminfo entry consists of a number of fields separated by commas, ignoring any
white space between commas. The first field for each terminal gives the various names the
terminal is known separated by I (vertical bar) characters. The first name given should be
the most common abbreviation for the terminal, the last name given should be a long name
fully identifying the terminal, and all others are understood as synonyms for the terminal
name. All names except the last should be in lowercase and not contain blanks. The last
name can contain uppercase characters for readability.

Terminal names (except the last) should be chosen using the following conventions. A root
name should be chosen to represent the particular hardware class of the terminal. This
name should not contain hyphens, except to avoid synonyms that conflict with other
names. Possible modes for the hardware or user preferences are indicated by appending a
- (hyphen) and an indicator of the mode to the root name. Thus, a terminal in 132 column
mode would be term-w. The following suffixes should be used where possible:

4-148 AIX Operating System Technical Reference

terminfo

Suffix Meaning Example

-am With automatic margins (usually default) term-am
-c Color mode term-c
-w Wide mode (more than 80 columns) term-w
-nam Without automatic margins term-nam
-n Number of lines on the screen term-60
-na No arrow keys (leave them in local) term-na
-np Number of pages of memory term-4p
-rv Reverse video term-rv

Types of Capabilities
Capabilities in terminfo are of three types: boolean, numeric, and string. Boolean
capabilities indicate that the terminal has some particular feature. Boolean capabilities
are true if the corresponding name is in the terminal description. Numeric capabilities
give the size of the terminal or the size of particular delays. String capabilities give a
sequence that can be used to perform particular terminal operations.

Entries can continue onto multiple lines by placing white space at the beginning of each
subsequent line. Comments are included on lines beginning with the # (sharp sign)
character.

List of Capabilities
The following table shows VARIABLE, which is the name the programmer uses to access
the terminfo capability. The CAP NAME (capability n?me) is the short name used in the
text of the data base, and is used by a person updating the database. The I. CODE is the
2-letter internal code used in the compiled data base, and always corresponds to a termcap
capability name.

Capability names have no absolute length limit. An informal limit of five characters is
adopted to keep them short and to allow the tabs in the source file caps to be aligned.
Whenever possible, names are chosen to be the same as or similar to the ANSI X3.64
standard of 1979.

(P) Indicates that padding may be specified.

(G) Indicates that the string is passed through tparm with parameters as given (#i).

(*) Indicates that padding may be based on the number of lines affected.

(#i) Indicates the ith parameter.

File Formats 4-149

terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

Booleans:

auto-Ieft-margin bw bw Indicates cub! wraps from column 0 to last
column.

auto-right-margin am am Indicates terminal has automatic margins.
beehive-glitch xsb xs Indicates a terminal with fl = escape and

f2=Ctrl-C.
ceol-standout-glitch xhp xs Indicates standout not erased by overwriting.
eat-newline-glitch xenl xn Ignores new-line character after 80 columns.
erase-overstrike eo eo Erases overstrikes with a blank.
generic-type gn gn Indicates generic line type (such as, dialup,

switch)
hard-copy hc hc Indicates hardcopy terminal.
has-meta-key km km Indicates terminal has a meta key (shift, sets

parity bit).
has-status-line hs hs Indicates terminal has extra "status line."
insert-null-gli tch In In Indicates insert mode distinguishes nulls.
memory -above da da Retains information above display in memory.
memory -below db db Retains information below display in memory.
move-insert-mode mIr mI Indicates safe to move while in insert mode.
move-standout-mode msgr ms Indicates safe to move in standout modes.
over -strike os os Indicates terminal overstrikes.
status-line-esc-ok eslok es Indicates escape can be used on the status

line.
teleray -glitch xt xt Indicates destructive tabs and blanks inserted

while entering standout mode.
tilde-glitch hz hz Indicates terminal cannot print - characters.
transparent-under line ul ul Overstrikes with underline character.
xon-xoff xon xo Indicates terminal uses xon/xoff handshaking.

Numbers:

columns cols co Specifies the number of columns in a line.
in it-tabs it it Provides tabs initially every # spaces.
lines lines Ii Specifies the number of lines on screen or

page
lines-of-memory 1m 1m Specifies the number of lines of memory if >

lines. A value of 0 indicates variable.

4-150 AIX Operating System Technical Reference

terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

magic-cookie-g Ii tch xmc sg Indicates number of blank characters left by
smso or rmso.

padding-baud-rate pb pb Indicates lowest baud where carriage return
and line return padding is needed.

virtual-terminal vt vt Indicates virtual terminal number.
width-status-lines wsl ws Specifies the number of columns in status line.

Strings:

a ppl-defined-str apstr za Application defined terminal string.
back-tab cbt bt Back tab. (P)
bell bel bl Produces an audible signal (bell). (P)
box-chars-l boxl bx Box characters primary set.
box-chars-2 box2 by Box characters alternate set.
box-attr-l batt! Bx Attributes for box-chars-I.
box-attr-2 batt2 By Attributes for box-chars-2.
carriage-return cr cr Indicates carriage return. (P*)
change-scroll-region csr cs Changes scroll region to lines #1 through #2.

(PG)
clear -all-tabs tbc ct Clears all tab stops. (P)
clear -screen clear cl Clears screen and puts cursor in home

position. (P*)
clr-eol el ce Clears to end of line. (P)
clr-eos ed cd Clears to end of the display. (P*)
color-bg-O colbO dO Background color 0 black.
color-bg-l colbl dl Background color 1 red.
color-bg-2 colb2 d2 Background color 2 green.
color-bg-3 colb3 d3 Background color 3 brown.
color-bg-4 colb4 d4 Background color 4 blue.
color-bg-5 colb5 d5 Background color 5 magenta.
color-bg-6 colb6 d6 Background color 6 cyan.
color-bg-7 colb7 d7 Background color 7 white.
color-fg-O colfO cO Foreground color 0 white.
color-fg-l coIf! cl Foreground color 1 red.
color-fg-2 colf2 c2 Foreground color 2 green.
color-fg-3 colm c3 Foreground color 3 brown.
color-fg-4 colf4 c4 Foreground color 4 blue.
color-fg-5 coHo c5 Foreground color 5 magenta.

File Formats 4-151

terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

color-fg-6 colf6 c6 Foreground color 6 cyan.
color-fg-7 colf7 c7 Foreground color 7 black.
column-address hpa ch Sets cursor column. (PG)
command-character cmdch CC Indicates terminal command prototype

character can be set.
cursor -address cup cm Indicates screen relative cursor motion row #1

col #2. (PG)
cursor -down cud1 do Moves cursor down one line.
cursor -home home ho Moves cursor to home position (if no cup).
cursor-invisible C1V1S VI Makes cursor invisible.
cursor -left cubl Ie Moves cursor left one space.
cursor -mem-address mrcup CM Indicates memory relative cursor addressing.
cursor -normal cnorm ve Makes cursor appear normal (undo vs or vi).
cursor -right cufl nd Indicates nondestructive space (cursor right).
cursor - to-ll II II Moves cursor to first column of last line (if no

cup).
cursor-up cuu1 up Moves cursor up one line (cursor up).
cursor - visible cvvis vs Makes cursor very visible.
delete-character dch1 dc Deletes character. (P*)
delete-line dll dl Deletes line. (P*)
dis-status-line dsl ds Disables status line.
down-half-line hd hd Indicates subscript (forward 1/2 line feed).
en ter -al t-charset-r.lode smacs as Starts alternate character set. (P)
enter-blink-mode blink mb Enables blinking.
enter-bold-mode bold md Enables bold (extra bright) mode.
enter -ca-mode smcup ti Begins programs that use cup.
enter -delete-mode smdc dm Starts delete mode.
enter -dim-mode dim mh Enables half-bright mode.
enter-insert-mode sm1r 1m Starts insert mode.
enter - protected-mode prot mp Enables protected mode.
enter-reverse-mode rev mr Enables reverse video mode.
enter-secure-mode 1nV1S mk Enables blank mode (characters invisible).
enter -standout-mode smso so Begins standout mode.
enter - under line-mode smul us Starts underscore mode. "-.
erase-chars ech ec Erases #1 characters. (PG) ,
exit-al t-charset-mode rmacs ae Ends alternate character set. (P)
exit-attribute-mode sgrO me Disables all attributes.
exit-ca-mode rmcup te Ends programs that use cup.
exit-delete-mode rmdc ed Ends delete mode.

4-152 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
term info

CAP I.
VARIABLE NAME CODE DESCRIPTION

exi t-insert_mode rmIr el Ends insert mode.
exit-standout-mode rmso se Ends stand out mode.
exit-underline-mode rmul ue Ends underscore mode.
flash-screen flash vb Indicates visible bell (may not move cursor).
font-O fontO fO Select font O.
font-l fontl fl Select font l.
font-2 font2 f2 Select font 2.
font-3 font3 f3 Select font 3.
font-4 font4 f4 Select font 4.
font-5 font5 f5 Select font 5.
font-6 font6 f6 Select font 6.
font-7 font7 f7 Select font 7.
form-feed ff ff Ej ects page (hardcopy terminal). (P*)
from-status-line fsl fs Returns from status line.
init-lstring isl il Initializes terminal.
init-2string is2 i2 Initializes terminal.
init-3string is3 i3 Ini tializes terminal.
init-file if if Identifies file containing is.
insert-character ichl IC Inserts character. (P)
insert-line ill al Adds new blank line. (P*)
insert-padding ip Ip Inserts pad after character inserted. (P*)
key-backspace kbs kb Sent by backspace key.
key-back-tab kbtab kO Sent by backtab key.
key-catab ktbc ka Sent by clear-alI-tabs key.
key-clear kclr kC Sent by clear-screen or erase key.
key-ctab kctab kt Sent by clear-tab key.
key _command kcmd kc Command request key.
key -command-pane kcpn kW Command pane key.
key-dc kdchl kD Sent by delete-character key.
key_dl kdll kL Sent by delete-line key.
key-do kdo ki Do request key.
key-down kcudl kd Sent by terminal down arrow key.
key-eic krmir kM Sent by rmir or smir in insert mode.
key-end kend kw End key.
key_eol kel kE Sent by clear-to-end-of-line key.
key-eos ked kS Sent by clear-to-end-of-screen key.
key-fO kfO kO Sent by function key FO.

) key-fl kfl kl Sent by function key Fl.
key-f2 kf2 k2 Sen t by function key F2.

File Formats 4-153

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

key-f3 kf3 k3 Sent by function key F3. (
key-f4 kf4 k4 Sent by function key F4.
key-f5 kf5 k5 Sent by function key F5.
key-f6 kf6 k6 Sent by function key F6.
key-f7 kf7 k7 Sent by function key F7.
key-f8 kf8 k8 Sent by function key F8.
key-f9 kf9 k9 Sent by function key F9.
key-flO kflO ka Sent by function key FlO.
key-fll kfll k< Sent by function key Fll.
key-fl2 kfl2 k> Sent by function key F12.
key-help khlp kq Help key.
key-home khome kh Sent by home key.
key-ic kichl kI Sent by insert character/enter insert mode

key.
key-il kill kA Sent by insert line key.
key-left kcubl kl Sent by terminal left arrow key.
key-II kll kH Sent by home-down key.
key -new line knl kn New-line key.
key_next_pane knpn kv N ext-pane key. (

key-npage knp kN Sent by next-page key. ~
key-ppage kpp kP Sent by previous-page key.
key - prev -cmd kpcmd kp Sent by previous-command key.
key-quit kquit kQ Quit key.
key-right kcufl kr Sent by terminal right arrow key.
key _scroll_left kscl kz Scroll left.
key -scroll-right kscr kZ Scroll right.
key-select ksel kU Select key.
key-sf kind kF Sent by scroll-forward/down key.
key -smap-inl kmpfl Kv Input for special mapped key l.
key -smap-outl kmptl KV Output for mapped key l.
key -smap-in2 kmp£2 Kw Input for special mapped key 2.
key -smap-out2 kmpt2 KW Output for mapped key 2.
key -smap-in3 kmpf3 Kx Input for special mapped key 3.
key -smap-out3 kmpt3 KX Output for mapped key 3.
key -smap-in4 kmpf4 Ky Input for special mapped key 4.
key _smap_out4 kmpt4 KY Output for mapped key 4.
key -smap-in5 kmpf5 Kz Input for special mapped key 5.

a key -smap-out5 kmpt5 KZ Output for mapped key 5.
key-sr kri kR Sent by scroll-backward/up key.

4-154 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

key_stab khts kT Sent by set-tab key.
key_tab ktab ko Tab key.
key-up kcuul ku Sent by terminal up arrow key.
keypad-local rmkx ke Ends keypad transmit mode.
keypad-xmit smkx ks Puts terminal in keypad transmit mode.
lab_fO lfO 10 Labels function key FO if not FO.
lab-fl 1£1 11 Labels function key Fl if not Flo
lab_f2 If2 12 Labels function key F2 if not F2.
lab-f3 If3 13 Labels function key F3 if not F3.
lab-f4 If4 14 Labels function key F4 if not F4.
lab-f5 If5 15 Labels function key F5 if not F5.
lab-f6 If6 16 Labels function key F6 if not F6.
lab-f7 If7 17 Labels function key F7 if not F7.
lab-fS IfS IS Labels function key FS if not FS.
lab-f9 If9 19 Labels function key F9 if not F9.
lab-flO 1£10 la Labels function key FlO if not FlO.
meta-on smm mm Enables "meta mode" (Sth bit).
meta-off rmm mo Disables "meta mode."
newline nel nw Performs new-line function (behaves like CR

followed by LF).
pad-char pad pc Pads character (instead of NUL).
parm-dch dch DC Deletes #1 characters. (PG*)
parm-delete-line dl DL Deletes #1 lines. (PG*)
parm-down-cursor cud DO Moves cursor down #1 lines. (PG*)
parm-ich ich Ie Inserts #1 blank characters. (PG*)
parm-index indn SF Scrolls forward #1 lines. (PG)
parm-insert-line il AL Adds #1 new blank lines. (PG*)
parm-Ieft-cursor cub LE Moves cursor left #1 spaces. (PG)
parm-right-cursor cuf RI Moves cursor right #1 spaces. (PG*)
parm-rindex rIn SR Scrolls backward #1 lines. (PG)
parm-up-cursor cuu UP Moves cursor up #1 lines. (PG*)
pkey-key pfkey pk Programs function key #1 to type string #2.
pkey-Iocal pfloc pI Programs function key #1 to execute string #2.
pkey-xmit pfx px Programs function key #1 to xmit string #2.
print-screen mcO ps Prints contents of the screen.
prtr-off mc4 pf Disables the printer.

~
prtr-on mc5 po Enables the printer.

/ repeat-char rep rp Repeats character #1 #2 times. (PG*)
reset-1string rsl rl Resets terminal to known modes.

File Formats 4-155

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

CAP I.
VARIABLE NAME CODE DESCRIPTION

reset-2string rs2 r2 Resets terminal to known modes.
reset-3string rs3 r3 Resets terminal to known modes.
reset-file rf rf Identifies the file containing reset string.
restore-cursor rc rc Restores cursor to position of last sc.
row -address vpa cv Positions cursor to an absolute vertical

position (set row). (PG)
save-cursor sc sc Saves cursor position. (P)
scroll-forward ind sf Scrolls text up. (P)
scroll-reverse rl sr Scrolls text down. (P)
set-attributes sgr sa Defines the video attributes. (PG9)
set-tab hts st Sets a tab in all rows, current column.
set-window wind WI Indicates current window is lines #1-#2 cols

#3-#4.
tab ht ta Tabs to next 8-space hardware tab stop.
to-status-line tsl ts Moves to status line, column #l.
under line-char uc uc Underscores one character and moves beyond

it.
up-half-line hu hu Indicates superscript (reverse 1/2 line-feed).
init-prog iprog iP Locates the program for init.
key-a1 ka1 K1 Specifies upper left of keypad.
key-a3 ka3 K3 Specifies upper right of keypad.
key-b2 kb2 K2 Specifies center of keypad.
key-c1 kc1 K4 Specifies lower left of keypad.
key-c3 kc3 K5 Specifies lower right of keypad.
prtr-non mc5p pO Enables the printer for #1 bytes.

Terminal capabilities have names. For instance, the fact that a terminal has automatic
margins (such as, an automatic new-line when the end of a line is reached) is indicated by
the capability am. Hence the description of the terminal includes am. Numeric
capabilities are followed by the # (sharp sign) character and then the value. Thus the
cols#80 capability, which indicates the number of columns the terminal has, gives the
value 80 for the terminal.

(

(

Finally, string-valued capabilities, such as el (clear to end of line sequence) are given by
the 2-character code, an = (equal sign), and then a string ending at the following,
(comma). A delay in milliseconds may appear anywhere in a string capability, enclosed
between a $< and a > as in el =\EK$<3), and padding characters are supplied by tputs
to provide this delay. The delay can be either a number, such as 20, or a number followed ~
by an * (asterisk), such as 3*. An asterisk indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. (In the case of insert character, the factor is still the
number of lines affected. This is always 1, unless the terminal has xenl and the software
uses it.) When an asterisk is specified, it is sometimes useful to give a delay of the form

4-156 AIX Operating System Technical Reference

\
)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
terminfo

a.b, such as, 3.5, to specify a delay per unit to tenths of milliseconds. (Only one decimal
place is allowed.)

A number of escape sequences are provided in the string-valued capabilities for easy
encoding of characters there. Both \E and \e map to an Escape character, "x maps to a
Ctrl-x for any appropriate x, and the sequences \n, \1, \r, \t, \b, \f, \s give a new-line,
line-feed, return, tab, backspace, form-feed, and space. Other escapes include \" (backslash
caret) for a " (caret), \ \ (backslash backslash) for a \ (backslash), \, (backslash comma) for
a , (comma), \: (backslash colon) for a : (colon), and \0 (backslash) for the null character.
(\0 will produce \200, which does not terminate a string but behaves as a null character on
most terminals.) Finally, characters can be given as 3 octal digits after a \ (backslash).

Sometimes, individual capabilities must be commented out. To do this, put a period before
the capability name.

Preparing Descriptions
An effective way to prepare a terminal description is to imitate the description of a similar
terminal in the terminfo file and add to the description gradually, using partial
descriptions with vi to check that they are correct. Be aware that a very unusual terminal
may expose deficiencies in the ability of this file to describe it or bugs in vi. To test a new
terminal description, set the environment variable TERMINFO to a path name of a
directory containing the compiled description you are working on and programs will look
there rather than in /usr/lib/terminfo. A test to get the correct padding (if not known) is
to edit the /etc/passwd file at 9600 baud, delete about 16 lines from the middle of the
screen, then hit the u key several times quickly. If the terminal fails to display the result
properly, more padding is usually needed. A similar test can be used for insert character.

Basic Capabilities
The following describe basic terminal capabilities:

am

bel

bw

clear

cols

cr

cubl

Indicates that the cursor moves to the beginning of the next line when it
reaches the right margin. This capability also indicates whether the cursor can
move beyond the bottom right corner of the screen.

Produces an audible signal (such as a bell or a beep).

Indicates that a backspace from the left edge of the terminal moves the cursor to
the last column of the previous row.

Clears the screen leaving the cursor in the home position.

Specifies the number of columns on each line for the terminal.

Moves the cursor to the left edge of the current row. This code is usually
carriage return (Ctrl-M).

Moves the cursor one space to the left, such as backspace.

File Formats 4-157

TNL SN20-9869 (26 June 1987) tb SC23-0809-0
terminfo

eufl, euul, and eudl
Moves the cursor to the right, up, and down, respectively.

he Specifies a printing terminal. The os capability should also be specified.

lines Specifies the number of lines on a cathode ray tube (CRT) terminal.

os Indicates that when a character is displayed or printed in a position already
occupied by another character, the terminal overstrikes the existing character,
rather than replacing it with the new character. os applies to storage scope,
printing, and APL terminals.

The terminfo initialization subroutine, setupterm, calls termdef to determine the
number of lines and columns on the display. If termdef cannot supply this information,
then setupterm uses the lines and co Is values in the data base.

A point to note here is that the local cursor motions encoded in terminfo are undefined at
the left and top edges of a CRT terminal. Programs should never attempt to backspace
around the left edge, unless bw is given, and never attempt to go up locally off the top. In
order to scroll text up, a program should go to the bottom left corner of the screen and
send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri
(reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text
is output, but this does not necessarily apply to a eufl from the last column. The only
local motion that is defined from the left edge is if bw is given, then a eubl from the left
edge will move to the right edge of the previous row. If bw is not given, the effect is
qndefined. This is useful for drawing a box around the edge of the screen, for example. If
the terminal has switch-selectable automatic margins, the terminfo file usually assumes
that it is on by specifying am. If the terminal has a command that moves to the first
column of the next line, that command can be given as nel (new-line). It does not matter if
the command clears the remainder of the current line, so if the terminal has no er and If, it
may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe printing terminals and simple CRT terminals. Thus,
the Model 33 Teletype is described as:

33 I tty33 I tty I Model 33 Teletype,
bel=AG, eols#72, er=AM, eudl=AJ, he, ind=AJ, os,

And another terminal is described as:

xxxx I X I xxxxxxxx,
am, bel=AG, elear=AZ, eols#80, er=AM, eubl=AH, eudl=AJ,
ind=AJ, lines#24,

4-158 AIX Operating System Technical Reference

(
\,

terminfo

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are described by
a parameterized string capability, with escapes similar to printf %x in it. For example, to
address the cursor, the cup capability is given using two parameters: the row and column
to address to. (Rows and columns are numbered starting with 0 and refer to the physical
screen visible to the user, not to any unseen memory.) If the terminal has memory relative
cursor addressing, that can be indicated by mrcup.

The parameterized capabilties and their descriptions are:

cubl

cup

cuul

Backspaces the cursor one space.

Addresses the cursor using two parameters: the row and column to address.
Rows and columns are numbered starting with 0 and refer to the physical screen
visible to the user, not to memory.

Moves the cursor up one line on the screen.

hpa'and vpa
Indicates the cursor has row or column absolute cursor addressing, horizontal
position absolute (hpa) and vertical position absolute (vpa).

Sometimes the hpa and vpa capabilities are shorter than the more general two
parameter sequence and can be used in preference to cup. If there are
parameterized local motions (such as, move n spaces to the right) these can be
given as cud, cub, cuf, and cuu with a single parameter indicating how many
spaces to move. These are primarily useful if the terminal does not have cup.

indn and rin
Scrolls text. These are parameterized versions of the basic capabilities ind and
rio n is the number of lines.

mrcup Indicates the terminal has memory-relative cursor addressing.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence pushes one of the parameters onto the stack and then prints it in some format.
Often more complex operations are necessary.

The % encodings have the following meanings:

%% Outputs a %. (percent sign).
%d Print popO as in printf (numeric string from stack).
%2d Print popO like %2d (minimum 2 digits output from stack).
%3d Print popO like %3d (minimum 3 digits output from stack).
%02d Prints as in printf (2 digits output).
%03d Prints as in printf (3 digits output).
%c Print popO gives %c (character output from stack).
%8 Print popO gives %8 (string output from stack).

File Formats 4-159

term info

%p[i]
%P[a-z]
%g[a-z]
%'c'
%{nn}

%+ %-

%& %1
%= %>
%! %-
%i

%*

%A

%<

Pushes the ith parameter onto stack.
Sets variable [a-z] to popO (variable ouptput from stack).
Gets variable [a-z] and pushes it onto the stack.
Character constant c.
Integer constant nn.

%/ %m
Arithmetic (%m is modulus): push(popO operation popO)
Bit operations: push(popO operation popO)
Logical operations: push(popO operation popO).
Unary operations push(operation popO)
Add 1 to first two parameters (for ANSI terminals).

%? expr %t thenpart %e elsepart %;
If-then-else. The %e elsepart is optional. You can make an else-if
construct as with Algol 68:

%? Cl %t bl %e C2 %t b2 %e C3 %t b3 %e b4 %;

In this example, ci denote conditions, and b i denote bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get
X - 5 one would use %gx%{5}%-.

Consider a terminal, which, to get to row 3 and column 12, needs to be sent \E&al2c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here,
and that the row and column are printed as two digits. Thus its cup capability is
cup = 6\E&a %p2%2dc%pl %2dY.

Some terminals need the current row and column sent preceded by a AT with the row and
column simply encoded in binary, cup = AT%pl %c%p2%c. Terminals which use %c need
to be able to backspace the cursor (cubl), and to move the cursor up one line on the screen
(cuul). This is necessary because it is not always safe to transmit \n, A D, and \r, as the
system may change or discard them. (The library routines dealing with terminfo set
terminal modes so that tabs are not expanded by the operating system; thus \t is safe to
send.)

A final example is a terminal that uses row and column offset by a blank character, thus
cup = \E = %pl %' '% + %c%p2%' '% + %c. After sending '\E =', this pushes the first
parameter, pushes the ASCII value for a space (32), adds them (pushing the sum on the
stack in place of the two previous values) and outputs that value as a character. Then the
same is done for the second parameter. More complex arithmetic is possible using the
stack.

4-160 AIX Operating System Technical Reference

terminfo

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen) then
this can be given as home. Similarly a fast way of getting to the lower left-hand corner
can be given as 11; this may involve going up with cuul from the home position, but a
program should never do this itself (unless 11 does) because it can make no assumption
about the effect of moving up from the home position. Note that the home position is the
same as addressing (0,0) to the top left corner of the screen, not of memory. (Thus, the \EH
sequence on some terminals cannot be used for home.)

Area Clears
The following areas are used to clear large areas of the terminal:

ed Clears from the current position to the end of the display. This is defined only
from the first column of a line. (Thus, it can be simulated by a request to delete
a large number of lines, if a true ed is not available.)

el Clears from the current cursor postion to the end of the line without moving the
cursor.

Insert/Delete Line
The following describes the insert and delete line capabilities:

csr Indicates the terminal has a scrolling region that can be set. This capability
takes two parameters: the top and bottom lines of the scrolling region.

da

db

dll

ill

rc

sc

wind

Indicates the terminal can retain display memory above what is visible.

Indicates the display memory can be retained below what is visible.

Indicates the line the cursor is on can be deleted. This done only from the first
position on the line to be deleted. Additionally, the dl capability takes a single
parameter indicating the number of lines to be deleted.

Creates a new blank line before the line where the cursor is currently located
and scrolls the rest of the screen down. This is done only from the first position
of a line. The cursor then appears on the newly blank line. Additionally, the il
capability can take a single parameter indicating the number of lines to insert.

Restores the cursor. When used after the csr capability, it gives an effect
similar to delete line.

Saves the cursor. When used after the csr capability, it gives an effect similar
to insert line.

Indicates the terminal has the ability to define a window as part of memory.
This a parameterized string with 4 parameters: the starting and ending lines tn
memory and the stating and ending columns in memory, in that order.

File Formats 4-161

terminfo

Insert/Delete Character
Generally, there are two kinds of intelligent terminals with respect to insert/delete
character operations which can be described using the terminfo file. The most common
insert/delete character operations affect only the characters on the current line and shift
characters to the right and off the line. Other terminals make a distinction between typed
and untyped blanks on the screen, shifting data displayed to insert or delete at a position
on the screen occupied by an untyped blank, which is either eliminated or expanded to two
untyped blanks. Clearing the screen and then typing text separated by cursor motions
differentiates between the terminal types. You can determine the kind of terminal you
have doing the following:

1. Type abc def using local cursor movements, not spaces, between the abc and the
def.

2. Position the cursor before the abc and place the terminal in insert mode. If typing
characters causes the characters on the line to the right of the cursor to shift and exit
the right side of the display, the terminal does not distinguish between blanks and
untyped positions. If the abc moves to positions to the immediate left of the def and
the characters move to the right on the line, around the end, and to the next line, the
terminal is the second type. This is described by the in capability, which signifies
insert null.

While these are two logically separate attributes (one line vs. multiline insert mode, and
special treatment of untyped spaces) there are no known terminals whose insert mode
cannot be described with the single attribute.

The terminfo file can describe both terminals having an insert mode and terminals that
send a simple sequence to open a blank position on the current line. The following are
used to describe insert or delete character capabilities:

dchl

ech

ichl

ip

mir

Deletes a single character. dch with one parameter, n deletes n characters.

Erases n characters (equivalent to typing n blanks without moving the cursor)
with one parameter.

Precedes the character to be inserted. Most terminals with an insert mode do
not use this. Terminals that send a sequence to open a screen position should
give it. (If the terminal has both, insert mode is usually preferable to ichl. Do
not give both unless the terminal actually requires both to be used in
combination.)

Indicates post padding needed. This is given as a number of milliseconds. Any
other sequence that may need to be sent after inserting a single character can
be given in this capability.

Allows cursor motion while in insert mode. It is sometimes necessary to move
the cursor while in insert mode to delete characters on the same line. Some
terminals may not have this capability due to their handling of insert mode.

4-162 AIX Operating System Technical Reference

rmdc

rmir

smdc

Exits delete mode.

Ends insert mode.

Enters delete mode.

terminfo

smir Begins insert mode.

Note that if your terminal needs both to be placed into an insert mode and a special code
to precede each inserted character, then both smir/rmir and ichl can be given, and both
will be used. The ich capability, with one parameter, n, will repeat the effects of ichl n
times.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes such as highlighting,
underlining, and visible bells, these can be presented in a number of ways. Highlighting,
such as standout mode, presents a good, high contrast, easy-on-the-eyes format to add
emphasis to error messages, and other attention getters. Underlining is another method to
focus attention to a particular portion of the terminal. Visible bells include methods such
as flashing the screen. The following capabilities describe highlighting, underlining, and
visible bells for a terminal:

blink

bold

civis

cnorm

cvvis

dim

eo

flash

invis

msgr

prot

rev

Indicates terminal has blink highlighting mode.

Indicates terminal has extra bright highlighting mode.

Causes the cursor to be invisible.

Causes the cursor to display normal. This capability reverses the effects of the
civis and cvvis capabilities.

Causes the cursor to be more visible than normal when it is not on the bottom
line.

Indicates the terminal has half-bright highlighting modes.

Indicates blanks erase overstrikes.

Indicates the terminal has a way of flashing the screen (a bell replacement) for
errors without moving the cursor.

Indicates the terminal has blanking or invisible text highlighting modes.

Indicates it is safe to move the cursor while in standout mode. Otherwise,
programs using standout mode should exit standout mode before moving the
cursor or sending a new-line. Some terminals automatically leave standout
mode when they move to a new line or the cursor is addressed.

Indicates the terminal has protected highlighting mode.

Indicates the terminal has reverse video mode.

File Formats 4-163

terminfo

rmso

rmul

sgr

Exits standout mode.

Ends underlining.

Sets attributes. sgrO turns off all attributes. Otherwise, if the terminal allows a
sequence to set arbitrary combinations of modes, sgr takes 9 parameters. Each
parameter is either 0 or 1, as the corresponding attribute is on or off. The 9
parameters are in this order: standout, underline, reverse, blink, dim, bold,
blank, protect, and alternate character set. (sgr can only support those modes
for which separate attributes exist on a particular terminal.)

smcup and rmcup

smso

smul

uc

ul

xmc

Keypad

Indicates the terminal needs to be in a special mode when running a program
that uses any of the highlighting, underlining or visible bell capabilities.
smcup enters this mode, while rmcup exits this mode. This need arises, for
example, from terminals with more than one page of memory. If the terminal
has only memory relative cursor addressing, and not screen relative cursor
addressing, a screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used where smcup sets the command
character to be used by the terminfo file.

Enters standout mode.

Begins underlining.

Underlines the current character and moves the cursor one space to the right.

Indicates the terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike.

Indicates the number of blanks left if the capability to enter or exit standout
mode leaves blank spaces on the screen.

If the terminal has a keypad that transmits codes when the keys are pressed, this
information can be given. Note that it is not possible to handle terminals where the
keypad only works in local mode. If the keypad can be set to transmit or not transmit,
give these codes as smkx and rmkx. Otherwise the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kcubl, kcufl, kcuul, kcudl, and khome, respectively. If there are function
keys such as FO, Fl, . . . ,FlO, the codes they send can be given as kfO, kfl, . . . ,kflO.
If these keys have labels other than the default FO through FlO, the labels can be given as
lfO, Ifl, . . . ,lflO. The codes transmitted by certain other special keys can be given as:

kbs Indicates the backspace key.

kclr

kctab

Indicates the clear screen or erase key.

Indicates clear the tab stop in this column.

4-164 AIX Operating System Technical Reference

Indicates the delete character key.

Indicates the delete line key.

Indicates clear to end of screen.

Indicates clear to end of line.

Indicates set a tab stop in this column.

Indicates insert character or enter insert mode.

Indicates insert line.

Indicates scroll forward and/or down.

terminfo

kdchl

kdll

ked

kel

khts

kichl

kill

kind

kll Indicates home down key (home is the lower left corner of the display, in this
instance).

kmir

knp

kpp

ktbc

Indicates exit insert mode.

Indicates next page.

Indicates previous page.

Indicates the clear all tabs key.

ri Indicates scroll backward and/or up.

In addition, if the keypad has a 3-by-3 array of keys including the 4 arrow keys, the other 5
keys can be given as kal, ka3, kb2, kcl, and kc3. These keys are useful when the effects
of a 3-by-3 directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next tab stop can be
given as ht (usually Ctrl-I). A "backtab" command which moves left toward the previous
tab stop can be given as cbt. By convention, if the terminal modes indicate that tabs are
being expanded by the operating system rather than being sent to the terminal, programs
should not use ht or cbt even if they are present, since the user may not have the tab stops
properly set. If the terminal has hardware tabs that are initially set every n spaces when
the terminal is powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is normally used by the tset command to determine
whether to set the mode for hardware tab expansion, and whether to set the tab stops. If
the terminal has tab stops that can be saved in nonvolatile memory, the terminfo
description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog,
the path name of a program to be run to initialize the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to set the terminal into
modes consistent with the rest of the terminfo description. They are normally sent to the
terminal, by the tset program, each time the user logs in. They are printed in the
following order: isl, is2, setting tabs using tbc and hts; if; running the program iprog;

File Formats 4-165

terminfo

and finally is3. Most initialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2 and special cases in
isl and is3. A pair of sequences that does a harder reset from a totally unknown state can
be analogously given as rsl, rs2, rf, and rs3, analogous to is2 and if. These strings are
output by the reset program, which is used when the terminal starts behaving strangely,
or not responding at all. Commands are normally placed in rs2 and rf only if they produce
annoying effects on the screen and are not necessary when logging in. For example, the
command to set the terminal into 80-column mode would normally be part of is2, but it
causes an annoying screen behavior and is not normally needed since the terminal is
usually already in 80-column mode.

If there are commands to set and clear tab stops, they can be given as tbc (clear all tab
stops) and hts (set a tab stop in the current column of every row). If a more complex
sequence is needed to set the tabs than can be described by this, the sequence can be
placed in is2 or if.

Certain capabilities control padding in the terminal driver. These are primarily needed by
hard copy terminals, and are used by the tset program to set terminal modes appropriately.
Delays embedded in the capabilities cr, ind, cubl, ff, and tab cause the appropriate delay
bits to be set in the terminal driver. If pb (padding baud rate) is given, these values can be
ignored at baud rates below the value of pb.

Miscellaneous Strings
If the terminal requires other than a null (zero) character as a pad, then this can be given
as pad. Only the first character of the pad string is used.

If the terminal has an extra "status line" that is not normally used by software, this fact
can be indicated. If the status line is viewed as an extra line below the bottom line, into
which one can cursor address normally, the capability hs should be given. Special strings
to go to the beginning of the status line and to return from the status line can be given as
tsl and fsI. (fsl must leave the cursor position in the same place it was before tsI. If
necessary, the sc and rc strings can be included in tsl and fsl to get this effect.) The
parameter tsl takes one parameter, which is the column number of the status line the
cursor is to be moved to. If escape sequences and other special commands, such as tab,
work while in the status line, the flag eslok can be given. A string that turns off the
status line (or otherwise erases its contents) should be given as dsI. If the terminal has
commands to save and restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest of the screen, such as,
cols. If the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be indicated with the numeric
parameter wsI.

If the terminal can move up or down half a line, this can be indicated with hu (half-line
up) and hd (half-line down). This is primarily useful for superscripts and subscripts on
hardcopy terminals. If a hardcopy terminal can eject to the next page (form-feed), give this
as ff (usually Ctrl-L).

4-166 AIX Operating System Technical Reference

terminfo

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus, tparm (repeat-char, I X 1,10) is the
same as xxxxxxxxxx.

If the terminal has a "meta key" which acts as a shift key, setting the eighth bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the eighth bit is parity and it will usually be cleared. If strings exist to turn
this "meta mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of
lines of memory can be indicated with 1m. A value of lm#O indicates that the number of
lines is not fixed, but that there is still more memory than fits on the screen.

Media copy strings that control an auxiliary printer connected to the terminal can be
given in the following ways: meO prints the contents of the screen, me4 turns off the
printer, and me5 turns on the printer. When the printer is on, all text sent to the terminal
is sent to the printer. It is undefined whether the text is also displayed on the terminal
screen when the printer is on. A variation me5p takes one parameter, and leaves the
printer on for as many characters as the value of the parameter, then turns the printer off.
The parameter should not exceed 255. All text, including me4, is transparently passed to
the printer while an me5p is in effect.

Strings to program function keys can be given as pfkey, pfloe, and pfx. Each of these
strings takes two parameters: the function key number to program (from 0 to 10) and the
string to program it with. Function key numbers out of this range can program undefined
keys in a terminal-dependent manner. The difference between the capabilities is that
pfkey causes pressing the given key to be the same as the user typing the given string;
pfloe causes the string to be executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer.

Indicating Terminal Problems
Terminals that do not allow - (tilde) characters to be displayed should indicate hz.

Terminals that ignore a line-feed character immediately after an am wrap should indicate
xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it),
xhp should be given.

Terminals for which tabs turn all characters moved to blanks should indicate xt
(destructive tabs). This capability is interpreted to mean that it is not possible to position
the cursor on top of the pads inserted for standout mode. Instead, it is necessary to erase
standout mode using delete and insert line.

The terminal that is unable to correctly transmit the ESC (escape) or Ctrl-C characters
has xsb, indicating that the Fl key is used for ESC and F2 for Ctrl-C.

File Formats 4-167

term info

Other specific terminal problems can be corrected by adding more capabilities of the form
xx.

Similar Terminals
If two terminals are very similar, one can be defined as being just like the other with
certain exceptions. The string capability use can be given with the name of the similar
terminal. The capabilities given before use override those in the terminal type invoked by
use. A capability can be cancelled by placing xx@ to the left of the capability definition,
where xx is the capability. For example, the entry:

term-nl, smkx@, rmkx@, use=term,

defines a terminal that does not have the smkx or rmkx capabilities, and hence does not
turn on the function key labels when in visual mode. This is useful for different modes for
a terminal, or for different user preferences.

Data Base File Names
Compiled terminfo descriptions are placed in subdirectories under /usr/lib/terminfo in
order to avoid performing linear searches through a single directory containing all of the
terminfo description files. A given description file is stored in /usr/lib/terminfo/c/name,
where name is the name of the terminal, and c is the first letter of the terminal name. For
example, the compiled description for the terminal term4-nl can be found in the file
/usr /1 i b/termi nfo/t/term4-n 1 You can create synonyms for the same terminal by
making multiple links to the same compiled file. (See the In command in AIX Operating
System Commands Reference on how to create multiple links to a file.)

Example

The following entry, which describes a terminal, is among the entries in the term info file.

hftlHigh Function Terminal,
cr=AM, cudl=\E[B, ind=\E[S, bel=AG, ill=\E[L, am, cubl=AH, ed=\E[J,
el=\E[K, clear=\E[H\E[J, cup=\E[%ipl%d;%p2%dH, cols#80, lines=#25,
dchl=\E[P, dll=\E[M, home=\E[H,
ich=\E[%pl%d@, ichl=\E[@, smir=\E[6, rmir=\E6,
bold=\E[lm, rev=\E[7m, blink=\E[5m, invis=\E[8m, sgrO=\E[Om,
sgr=\E[%?%pl%t7;%;%?%p2%t4;%;%?%p3%t7;%;%?%p4%t5;%;%?%p6%tl;%;m,
kcuul=\E[A, kcudl=\E[B, kcubl=\E[D,
kcufl=\E[C, khome=\E[H, kbs=AH,
cufl=\E[C, ht=AI, cuul=\E[A, xon,
rmul=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
kpp=\E[150q, knp=\E[154q,

4-168 AIX Operating System Technical Reference

Files

terminfo

kf1=\E[OOlq, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
kf5=\E[005q, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
kf9=\E[009q, kf10=\E[OlOq,
bw, eo, it#8, ms,
ch=\E%i%p1%dG, ech=\E[%p15dx,
kdch1=\E[P, kind=\E[151q, kich1=\E[139q, krmir \E[41,
kn=AM, kO=AI, ktab=\E[Z, kri=\E[155q,
cub=\E[%p1%dD, cuf=\E[%p1%dC, indn=\E[%p1dS, rin=\E[%p1%dT,
ri=\E[T, cuu=\E[%p1%dA,
box1=\332\304\277\263\331\300\302\264\301\303\305,
box2=\311\315\273\272\274\310\313\271\312\314\316,
batt2=md,
colfO=\E[30m,
colf4=\E[34m,
colbO=\E[40m,
colb4=\E[44m,

col f 1 = \ E [31m,
col f5=\E[35m,
colb1=\E[41m,
colb5=\E[45m,

colf2=\E[32m,
co 1 f6=\ E [36m,
colb2=\E[42m,
colb6=\E[46m,

colf3=\E[33m,
colf7=\E[37m,
colb3=\E[43m,
colb7=\E[47m,

/usr/lib/terminfof?/* Compiled terminal capability data base.

Related Information

In this book: "curses" on page 3-51, "Terminfo Level Subroutines" on page 3-57, "extended
curses library" on page 3-131, "printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf' on
page 3-300, "termdef' on page 3-352 , and "TERM" on page 5-72.

The display and tic commands in AIX Operating System Commands Reference.

File Formats 4-169

utmp, wtmp, .ilog

utmp, wtmp, .ilog

Purpose

Contains user and accounting information.

Synopsis

#inelude < utmp.h >

Description

When a user logs in successfully, the login program writes entries in /ete/utmp, the
record of users logged into the system, and in /usr/adm/wtmp (if it exists), for use in
accounting. On invalid login attemps (due to an incorrect login name or password), login
makes entries in the /ete/.Hog file. When you log in as user root or su and the /ete/.Hog
file is not empty, you see a message advising you to check the /ete/ .Hog file for a record of
unsuccessful login attempts.

The records in these files follow the utmp structure, which is defined in the utmp.h
header file:

#define UTMP-FILE "/etc/utmp"
#define WTMP-FILE "/usr/adm/wtmp"
#define ILOG_FILE "/etc/.ilog"

#define ut-name ut-user
#define ut-id ut-line

struct utmp {
char ut-user [8J ;
char ut-line[12J;
short ut-pid;
short ut-type;
struct exit-status {

short e-termination;
short e-exit;
} ut-exit;

/* User login name */
/* device name (console, lnxx) */
/* process id */
/* type of entry */

/* Process termination status */
/* Process exit status */
/* The exit status of a process */
/* marked as DEAD-PROCESS. */

4-170 AIX Operating System Technical Reference

Files

utmp, wtmp, .ilog

time-t ut_time; /* time entry was made */
};

/* Definitions for ut-type */

#define EMPTY 0
#define RUN-LVL 1
#define BOOT-TIME 2
#define OLD-TIME 3
#define NEW-TIME 4
#define INIT-PROCESS 5
#define LOGIN-PROCESS 6
#define USER-PROCESS 7
#define DEAD-PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING

/* Process spawned by lIinitli */
/* A IIgettyli process waiting for login */
/* A user process */

/* Largest legal value of ut-type */

/* Special strings or formats used in the lIut_lineli field when */
/* accounting for something other than a process. */
/* No string for the ut-line field can be more than 11 chars + */
/* a NULL in length. */

#define RUNLVL-MSG
#define BOOT-MSG
#define OTIME-MSG
#define NTIME-MSG

IIrun-level ?II
IIsystem bootJl
lIold time Jl
IInew time Jl

/ete/utmp
/usr/adm/wtmp
/ete/.Hog

Record of users logged into the system
Accounting information
Record of invalid logins.

File Formats 4-171

utmp, wtmp, .ilog

Related Information

The login, who, and write commands in A/X Operating System Commands Reference.

4-172 AIX Operating System Technical Reference

Chapter 5. Miscellaneous Facilities

Miscellaneous Facilities 5-1

About This Chapter

This chapter describes miscellaneous facilities, such as macro packages and character set
tables.

5-2 AIX Operating System Technical Reference

ascii

ascii

Purpose

Maps the ASCII character set.

Synopsis

cat /usr/pub/ascii

Description

ASCII is a map of the ASCII character set that gives both the octal and hexadecimal
equivalents for each character. This file can be printed as needed.

Note: This is neither the PC ASCII nor the RT ASCII character set. See "data stream"
on page 5-5 for information about these character sets. The contents of this file are:

000 nul 001 soh 002 stx 003 etx 004 eat 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 die 021 del 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041! 042" 043 # 044 $ 045 % 046 & 047 '
050 (051) 052 * 053 + 054, 055 - 056. 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072: 073; 074 < 075 = 076 > 077?
1 00 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115M 116N 117 0
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
1 30 X 131 Y 132 Z 133 [134 \ 135 1 136 A 137_
1 40' 1 41 a 1 42 b 1 43 c 1 44 d 1 45 e 1 46 f 1 47 9
150 h 151 i 152 j 153 k 154 I 155 m 156 n 157 a
1 60 P 1 61 q 1 62 r 1 63 s 1 64 t 1 65 u 1 66 v 1 67 w
170 x 171 Y 172 z 173 { 174 I 175} 176 N 177 del

Figure 5-1. Octal ASCII Character Set

Miscellaneous Facilities 5-3

ascii

00 nul 01 soh 02 stx 03 etx 04 eat 05 enq 06 ack 07 bel
08 bs 09 ht OA nl OB vt OC np 00 cr OE so OF si
10 die 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1A sub 1 B esc 1 C fs 10 gs 1 E rs 1 F us
20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '
28 (29) 2A * 2B + 2C • 20 - 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 0 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 40 M 4E N 4F 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [5C \ 50 1 5E A 5F
60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 9
68 h 69 i 6A j 6B k 6C I 60 m 6E n 6F 0

70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 Y 7A z 7B { 7C I 70) 7E ~ 7F del

Figure 5-2. Hexadecimal ASCII Character Set

File

/usr/pub/ascii

5-4 AIX Operating System Technical Reference

data stream

data stream

Purpose

Defines the data stream that an HFT virtual terminal uses in KSR mode.

Description

The IBM RT PC is capable of addressing 1024 distinct displayable characters. To designate
these characters using 8-bit bytes, a code page convention is used. Each code page is an
ordered set of up to 256 characters, which are called code points. The first 32 code points
of each code page are reserved for control codes and are the same for all code pages. The
control codes do not have graphic representations, so each code page can have a maximum
of 224 distinct graphic characters.

The remaining characters are divided into three code pages called PO, Pl, and P2. Two
additional code pages called USERl and USER2 are provided for user-defined symbols.

Code points in the range 32 to 127 (Ox20 to Ox7F) of code page PO represent the standard
7-bit US ASCII graphic symbols. PO code points 128 to 255 (Ox80 to OxFF) and code points
in pages PI and P2 are collectively called extended characters.

The following code page maps show the predefined graphic display symbols and their code
point values within each of the three code pages.

Miscellaneous Facilities 5-5

data stream

First Hexadecimal Digit

0 I 2 3 4 5 6 7 8 9 A B C 0 E F

0 [NUL DLE BLANK 0 @ p , p ~ E , L 0 6 -(SPACE! a ...
J SOH DCI , 1 A Q q .. ~ ~ -D fJ + a u z
2 STX DC2 II 2 B R b r

,
fE

, E 6 = e 0 >...--,..........

3 ETX DC3 # 3 C S a " , E ...
Y4 c S 0 U r-- 0

$ 4 D T d t
.. .. ""'"

... err 4 EOT DC4 a 0 n - ---- E 0

5 ENQ ~AK 0/0 5 E U " " N A + 6 § e u a 0 1

ACIS: & 6 F V f 0 1\ A
... y 6 SYN V a u a a I -,

7 G W "
...

A P 7 BEL ETB g W ~ U 0 A I ~

8 CAN (8 H X h A .. · l-'= p 0 BS X e y G © I
9 HT EM) 9 I Y

. y .. 0 ® H II W U ..
1 e

A LF SUB * · J Z J " 0 I

~~? · z e •
+ · K [k { .. cp ~ B VT ESC , I fil --, U 1

C FF SS4 < L "- I I " £ ~ ~ ... 3 , I -y
0 CR SS3 M] } " 0 · ¢ I Y 2 - - m 1 • ==== I

E SO SS2 > N /\ n ~ A x « ¥ FH= I - I .
F Sl SSI / ? 0 0 ~ A f » n ~ ~ ... BLANK

· - 'FF'

Figure 5-3. Code Page PO

5-6 AIX Operating System Technical Reference

data stream

First Hexadecimal Digit

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ..- ...
E ~ E 1 NUL OLE • ~ a y 0 S I 0 "Q "

1 SOH DCl ~ ~ \J 6 c l f 'n g 1) 0 l) "

2 STX DC2 -! A 0 C N " ~ IJ oe =
--> 0 g w

• "
...

3 it " G
~ W 3 ETX DC3 A ~ u - J CE ..

+ crT
,

S T . ~ + 4 EaT DC4 A f) U E t g J ~ YJ

• § A Y iJ
0 R 1: G k It y 5 ENQ INAK U . :0

'00

• l> U D 0 " G 6 ACK SYN - I?J z 0 a ~ S Y "1l"
a

! " A Ii I< S © 7 BEL ETB • E ® ~ L .J U A

D 1 E
~

Z 1 1 -+
8 BS CAN ~ e 1 a C H l -,j

9 HT EM 0 ! E - C n i g C -it- ~ T TM J

A LF SUB I+] --+ I .. C d i I \ tt I- II !Is t
cJ I Z A

.
~ 0 Ys B VT ESC +-- ,

~ f c 1 <

9
0 ..- Z G C I ii VB C FF SS4 L I = II S n >

..J

D CR SS3 i-. I 0 a 0 l. '" e -
~ u VB ~ 1

~
..-

N- t E E SO SS2 .. 0 1 t l " E Q iI x

F Sl SSI u- ~ b 6 4- ..-
n S e r) (J ,

~ ! ..

Figure 5-4. Code Page PI

Miscellaneous Facilities 5-7

data stream

First Hexadecimal Digit

0 I 2 3 4 5 6 7 8 9 A B C D E F

0 INUL DLE / ~ w a 6 W- T -r 1

I ISOH DCI " $ v r"L, 7
I I Q 111 2

2 STX DC2 1 L 0 D 8 lL e n
3

3 ETX DC3 -:f ~ P II 9 b n 4

4 EOT DC4 V II ,., (ZJ ¢ F 8 <t 5

5 IENQ N,x /\ - rJ 6 \' Pts r- oo U
6 lACK ISYN

" '"
I 7 L r l- t: cJ> V

7 BEL ETB L £ J
.....

= t=: f= E +" 8 . ..,
8 BS ICAN < A !:::::l ex: -1 n ¢ - 9

9 HT EM > Tl ~ ...L. ~ -
11 --

- X 0 > A LF SUB + t Y ~ oc -
B VT ESC 0 (V \II -- .JJ f3 < - -
C FF SS4 , l r II ~ bd r (
D CR S5, f roo f A 0

1= 1T J
E so SS2 U e \ • " I~ ~ ~ ~
F SI SSI C K b 5 ~ a • 0

Figure 5-5. Code Page P2

5-8 AIX Operating System Technical Reference

data stream

Code Page Switching

Characters from code page PO are represented in a character data stream by a single 8-bit
byte corresponding to their code points.

Characters from other code pages are selected with single-shift controls. A single-shift
control is one of the single-byte control codes SSl (Ox1F), SS2 (Ox1E), SS3 (Ox1D), and SS4
(Ox1 C). Each of these codes indicates that the following byte specifies a character from a
code page other than PO. These control codes are called "single shifts" because they shift
to another code page for a single character; that is, they are nonlocking shifts.

The byte that follows a single shift corresponds to the code point for the desired character,
but with the most significant bit set. In other words, SSl, SS2, SS3, and SS4 must be
followed by a byte in the range Ox80 to OxFF. A single shift followed by OxOO to Ox7F is not
a valid code sequence. The single shift that is used specifies the upper or lower half of a
code page as follows:

SSl Lower half of code page PI (PI Ox20 to Ox7F)
SS2 Upper half of code page PI (PI Ox80 to OxFF)
SS3 Lower half of code page P2 (P2 Ox20 to Ox7F)
SS2 Upper half of code page P2 (P2 Ox80 to OxFF).

Note that in this scheme, code points in the range OxOO to Ox7F (7-bit US ASCII) are unique
in the data stream, and that they are never validly preceded by a single-shift control. This
encoding scheme minimizes the changes necessary to existing software that is oriented
toward 7-bit ASCII.

If a single-shift control is followed by a byte with the most significant bit set to zero (that
is, a byte in the range OxOO to Ox7F), then the single-shift prefix is ignored, and the byte is
processed as an unprefixed character.

On both input and output, graphic character code points that are not prefixed with a
single-shift control select a display symbol from the active graphic display set (GO or G1) to
be echoed or displayed on the screen. By default, both GO and G1 are set to PO, and GO is
the active display set. The active graphic display set can be set to GO or Gl with the SI
and SO single-byte controls, respectively (see "Single-Byte Controls" on page 5-11). The
mapping used for GO and G1 can be set with the SGO and SG1 control sequences (see
"Multi-Byte Controls" on page 5-13).

On both input and output, valid graphic character code points that are prefixed with SSl,
SS2, SS3, or SS4 bypass the active graphic display set and echo or display characters
directly from code page PI or P2.

Miscellaneous Facilities 5-9

data stream

Nonspacing Characters

For convenience when typing diacritical (accented) characters, a nonspacing or "dead"
character facility is provided. A nonspacing character sequence is a two-key sequence
consisting of one of the 13 diacritics followed by an alphabetic character or a space. The
virtual terminal subsystem converts this two-key sequence into a single code point that
may have a single-shift prefix. The resulting character is the alphabetic character with the
specified diacritic mark. A diacritic followed by a space translates to the diacritic
character itself.

The 13 valid diacritics are:

Acute Accent or Apostrophe
Grave Accent

A Circumflex Accent
.. Umlaut Accent
- Tilde Accent
v Caron Accent
" Breve Accent
" Double Acute Accent
o Overcirc1e Accent

Overdot Accent
Macron Accent

- Cedilla Accent
Ogonek Accent

OxEF or Ox27
Ox60
Ox5E
OxF9
Ox7E
Ox1FF3
Ox1E9D
Ox1E9E
Ox1FFD
Ox1E85
Ox1EA3
OxF7
Ox1E87

If a nonspacing character and the following character do not combine to form a diacritical
character in the set of predefined graphic symbols, then the diacritic is treated as a
separate character code. For example, - Q is treated as two characters, -and Q.

Note that nonspacing characters apply only to keyboard input and are not a feature of the
data stream used by applications. Also, a diacritic must be explicitly designated as being
nonspacing in the keyboard mapping for this facility to operate. None of the keys on the
standard U.S. keyboard mapping are defined to be nonspacing characters. However,
nonspacing characters can be defined. See "Set Keyboard Map (HFSKBD)" on page 6-36
for details.

Controls

Two types of controls are valid in a character stream data:

• Single-byte controls (also called control characters and control codes), which have
character values from 0 to 31 (OxOO to OxlF)

• Multi-byte controls, which are also called escape sequences and control sequences.

5-10 AIX Operating System Technical Reference

data stream

Single-Byte Controls
The single-byte controls are common to all code pages. The following list shows the
single-byte controls and their interpretation in KSR coded data. A line introducing each
control gives its mnemonic, its code value, and its function.

• NUL, OxOO, (Null) has no terminal function.

• SOH, OxOl, (Start of Header) has no terminal function.

• STX, Ox02, (Start of Text) has no terminal function.

• ETX, Ox03, (End of Text) has no terminal function.

• EaT, Ox04, (End of Transmission) has no terminal function.

• ENQ, Ox05, (Enquiry) has no terminal function.

• ACK, Ox06, (Acknowledge) has no terminal function.

• BEL, Ox07, (Bell) causes an audible alarm to sound.

• BS, Ox08, (Backspace) moves the cursor position to the left one column, unless the
cursor is at the left boundary of the presentation space. In that case, the cursor
position does not change.

• HT, Ox09, (Horizontal Tab) moves the cursor position forward to the next tab stop. If
the cursor is already in the last column of a line, then the cursor position does not
change. Note that the CHT (cursor horizontal tab) multi-byte control performs a
similar operation, but also performs line wrapping.

• LF, OxOA, (Line Feed) if the LNM mode is reset, the line feed moves the cursor position
down one line. If the LNM mode is set (default), the line feed is treated as a NEL and
moves the cursor position to the first position of the next line. In either case, if the
cursor is already on the last line of the PS, the PS lines scroll up one line. The top
line of the PS disappears and a blank line is inserted as the new bottom line.

• VT, OxOB, (Vertical Tab) moves the cursor position down to the next line that is
defined as a vertical tab stop. Tabs stops are always set at the first and last lines of
the PS. If the cursor was already on the last line of the PS and HFWRAP mode is not
set, the cursor stays on the last line in the PS. If HFWRAP mode is set, the cursor
moves to the top line in the PS. The column position does not change in any case.

• FF, OxOC, (Form Feed) treated as a line end; see NEL.

• CR, OxOD, (Carriage Return) if the CNM mode is reset (default), the carriage return
moves the cursor position to the first character of the line indicated by the cursor. If
the CNM mode is set, the carriage return is treated as an NEL and causes the cursor
position to move to the first position of the next line. In this case, if the cursor is
already on the last line of the PS, the PS lines scroll up one line. The top line of the
PS disappears and a blank line is inserted as the new bottom line.

Miscellaneous Facilities 5-11

data stream

• so, OxOE, (Shift Out) maps the subsequently received graphic codes to display symbols
according to the active Gl character set. See "display symbols" on page 5-24 for a list
of the display symbols.

• SI, OxOF, (Shift In) maps the subsequently received graphic codes to display symbols
according to the active GO character set. See "display symbols" on page 5-24 for a list
of the display symbols.

• DLE, OxlO, (Data Link Escape) has no terminal function.

• DCl, Oxll, (Device Control 1) has no terminal function when output.

• DC2, Ox12, (Device Control 2) has no terminal function.

• DC3, Ox13, (Device Control 3) has no terminal function when output.

• DC4, Ox14, (Device Control 4) has no terminal function.

• NAK, Ox15, (Negative Acknowledgment) has no terminal function.

• SYN, Ox16, (Synchronous) has no terminal function.

• ETB, Ox17, (End of Block) has no terminal function.

• CAN, Ox18, (Cancel) has no terminal function.

• EM, Ox19, (End of Medium) has no terminal function.

• SUB, OxlA, (Substitute) has no terminal function.

• ESC, OxlB, (Escape) defines the beginning of a multi-byte control sequence as defined
in "Multi-Byte Controls" on page 5-13.

• SS4, OxIC, (Single Shift 4) causes the following byte is to be interpreted as belonging to
the upper half of code page P2 (see "Code Page Switching" on page 5-9).

• SS3, Ox1D, (Single Shift 3) causes the following byte is to be interpreted as belonging to
the lower half of code page P2.

• SS2, Ox1E, (Single Shift 2) causes the following byte is to be interpreted as belonging to
the upper half of code page PI.

• SSl, Ox1F, (Single Shift 1) causes the following byte is to be interpreted as belonging to
the lower half of code page PI.

• DEL,Ox7F, (Delete) has no terminal function.

5-12 AIX Operating System Technical Reference

data stream

Multi-Byte Controls
This section defines the code points and effects on the virtual terminal for multi-byte
control sequences that are recognized in KSR mode. All of them begin with the ESC code
(Ox1B) followed by a [(Ox5B) and include all subsequent bytes up to and including the first
code in the range Ox40-Ox7F. Any multi-byte control sequences not defined below are
ignored. Invalid sequences return an error Device Status Report to the program.
Multi-byte control sequences of more than 16 codes are considered invalid on receipt of the
17th code. The next code is not considered a part of that sequence. Also, numeric
parameters in control sequences contain no more than 3 digits. The numeric value of the
parameter may be incorrect if more than three digits are used, and the numeric value
never exceeds 255.

Controls effect a virtual terminal's presentation space (PS) and its related cursor (pointer
into the PS). The presentation space is a logical array of display symbols, N columns by M
lines.

The following list gives the valid multi-byte control code sequences. A line introducing
each control gives its mnemonic, its code sequence, and its function. The code sequence is
shown in terms of ASCII characters. For example, the sequence ESC A represents two
codes with a value of Ox1B41.

• CBT ESC [PN Z Cursor Back Tab

Moves the cursor back the number of horizontal tab stops specified by PN. Tab stops
are always set at the first and last columns of each line. If the cursor is already in the
first column of a line and HFWRAP mode is set, the cursor moves to the last column.
If AUTONL is also set, the cursor moves to the last column of the previous line. In
this case, if the cursor is already on the first row of the PS, it moves to the last row.

• CHA ESC [PN G Cursor Horizontal Absolute

Moves the cursor to the column specified by PN, unless the column exceeds the PS
width. If the column exceeds the PS width, the cursor moves to the PS column farthest
to the right.

• CHT ESC [PN I Cursor Horizontal Tab

Moves the cursor position forward to the PNth following tab stop. If the cursor is
already in the last column of a line and HFWRAP mode is set, then the cursor returns
to the first column of the line. If AUTONL mode is also set, then the cursor moves to
the first column of the next line. In this case, if the cursor is already on the last line
of the PS, then the cursor moves to the first column of the first line. Note that the HT
(horizontal tab) single-byte control does not cause wrapping to occur.

• CTC ESC [PS W Cursor Tab Stop Control

o Set a horizontal tab at cursor.
1 Set a vertical tab at cursor.
2 Clear a horizontal tab at cursor.
3 Clear a vertical tab at cursor.

Miscellaneous Facilities 5-13

data stream

4 Clear all horizontal tabs on line.
5 Clear all horizontal tabs.
6 Clear all vertical tabs.

Sets or clears one or more tabulation stops according to the parameter specified. Tab
stops on the first or last column cannot be cleared. When horizontal tab stops are set
or cleared, the number of lines affected is all (if Tabulation Stop Mode is set) or one (if
Tabulation Stop Mode is reset). This control does not change the position of
characters already in the presentation space.

• CNL ESC [PN E Cursor Next Line

Moves the cursor down the number of lines specified by PN, and over to the first
position of that line. If the cursor was already on the bottom PS line and HFWRAP
mode is not set, it is positioned at the beginning of that line. If HFWRAP mode is set,
the cursor wraps from the bottom line to the top PS line.

• CPL ESC [PN F Cursor Preceding Line

Moves the cursor back the number of lines specified by PN, and over to the first
position of that line. If the cursor was already on the top PS line and HFWRAP mode
is not set, the cursor is positioned at the beginning of that line. If HFWRAP mode is
set, the cursor wraps from the top line to the bottom line of the PS.

• CPR ESC [PN; PN R Cursor Position Report

Reports the current cursor position. The first numeric parameter is the line number,
and the second is the column. Line and column values are sent to the application as
information. However, if the information is received by the virtual terminal, it is
treated as a CUP control.

• CUB ESC [PND Cursor Backward

Moves the cursor backward on the line the specified number of columns. If this cursor
movement exceeds the left PS boundary and HFWRAP mode is not set, the cursor stops
at the leftmost PS position. If HFWRAP mode is set, the cursor wraps from the
leftmost column to the rightmost column of the preceding PS line. In HFWRAP mode
the cursor also wraps from the home to the rightmost bottom position of the PS.

• CUD ESC [PNB Cursor Down

Moves the cursor down the number of lines specified by PN. If this cursor movement
exceeds the bottom PS boundary and HFWRAP mode is not set, the cursor stops on the
last PS line. If HFWRAP mode is set, the cursor wraps from the bottom line to the top
line of the PS.

• CUF ESC [PN C Cursor Forward

Moves the cursor forward on the line the specified number of columns. If this cursor
movement exceeds the right PS boundary and HFWRAP mode is not set, the cursor
stops at the rightmost PS position. If HFWRAP mode is set, the cursor wraps from the
rightmost column to the leftmost column of the following line in the PS. In HFWRAP

5-14 AIX Operating System Technical Reference

data stream

mode, the cursor also wraps from rightmost bottom position to the home position of the
PS.

• CUP ESC [PN ; PN H Cursor Position

Moves the cursor to the line specified by the first parameter, and to the column
specified by the second parameter. If this movement crosses a PS boundary, the cursor
stops at the PS boundary.

• CUU ESC [PN A Cursor up

Moves the cursor up the specified number of lines. If this cursor movement exceeds
the top PS boundary and HFWRAP mode is not set, the cursor stops on the first PS
line. If HFWRAP mode is set, the cursor wraps from the top line to the bottom line in
the PS.

• CVT ESC [PN Y Cursor Vertical Tab

Moves the cursor down the number of vertical tab stops specified. Tab stops are
assumed at the top and bottom PS lines. If there are not enough vertical tab stops in
the PS and HFWRAP mode is not set, the cursor stops on the last line in the PS. If
HFWRAP mode is set, the cursor wraps from the bottom line to the top line of the PS.

• DCH ESC [PN P Delete Character

Deletes the cursor character and the following PN-1 characters on the line indicated
by the cursor. The characters following the deleted characters on the line overlay the
deleted character positions. The line is cleared from the end of the line to the edge of
the presentation space. If the number of characters to be deleted exceeds the number
of columns from the cursor to the PS right boundary, then all the characters from the
cursor to the PS boundary are replaced with empty spaces and a DSR control sequence
identifying an error is returned to the application.

• DL ESC [PN M Delete Line

Deletes the line and the PN-1 following lines in the PS. The lines following the deleted
lines are scrolled up PN lines and PN blanks lines are placed at the bottom of the PS.
If there are less than PN lines from the line indicated by the cursor to the bottom of
the PS, the line indicated by the cursor and all the following PS lines are replaced with
empty lines.

• DSR ESC [PNn Device Status Report Request

6 Request Cursor Position Report

13 Error Report

A request cursor position report (CPR) sends a cursor position report from the virtual
terminal to the application. An error report is sent from the virtual terminal to the
application when the virtual terminal receives an invalid control sequence. Error
reports are private reports which conform to the ANSI standard for private parameters.

Miscellaneous Facilities 5-15

data stream

• DMI ESC' (left quote) Disable Manual Input

This control, when received in an output data stream, causes keyboard input to this
terminal to be ignored. This control is ignored when received from the keyboard.

• EMI ESC b Enable Manual Input

This control, when received in an output data stream, restarts keyboard input
recognition and buffering if previously disabled with a DMI multi-byte control. This
control is ignored when received from the keyboard.

• EA ESC [0 0 Erase to End of Area

ESC [10

ESC [20

Erase from Start of Area

Erase All of Area.

This control is treated like an EL control sequence.

• ED ESC [0 J Erase to End of Display

ESC [1 J

ESC [2 J

Erase from Start of Display

Erase All of Display.

Erases certain characters within the PS. Erased characters are replaced with empty
spaces. Erase to end of display erases the character indicated by the cursor and all
following characters in the PS. Erase from start of display erases the first character of
first line and the following characters up to and including the character indicated by
the cursor. Erase all of display erases all the characters on the PS.

• EF ESC [0 N Erase to End of Field

ESC [1 N

ESC [2 N

Erase from Start of Field

Erase All of Field.

Erases certain characters between horizontal tab stops. Erased characters are replaced
with empty spaces. Erase to end of field erases the character indicated by the cursor
and all following characters before the next tab stop. Erase from start of field erases
the character at the tab stop preceding the cursor an the following characters up to
and including the character indicated by the cursor. Erase all of field erases the
character at the tab stop preceding the cursor, and the following characters up to and
including the character at the tab stop following the cursor. Tab stops are assumed at
the first and last columns of the PS when executing this control.

• EL ESC [0 K Erase to End of Line

ESC [1 K

ESC [2 K

Erase from Start of Line

Erase All of Line.

Erases certain characters within a line. Erased characters are replaced with empty
spaces. Erase to end of line erases the character indicated by the cursor and all

5-16 AIX Operating System Technical Reference

data stream

following characters on the line. Erase from start of line erases the first character of
first line and the following characters up to and including the character indicated by
the cursor. Erase all of line erases all the ch~racters on the line.

• ECH ESC [PN X Erase Character

Erases the character indicated by the cursor and the following PN-l characters on that
line. Erased characters are replaced with empty spaces. If there are less than PN
characters from the cursor to the PS right boundary, then the character indicated by
the cursor and all the following characters on the line are replaced empty spaces.

• HT$ ESC H Horizontal Tab Stop

Sets a horizontal tab stop at the current horizontal position. If TSM is set, then the
tab stop applies only to this line. If TSM is reset, then the. tab stop applies to all PS
lines. This control does not change the positioning of characters already in the
presentation space.

• HVP ESC [PN; PN f Horizontal and Vertical Position

Moves the cursor to the line specified by the first parameter, and to the column
specified by the second parameter. If this movement would cross a PS boundary, the
cursor stops at the current PS boundary.

• ICH ESC [PN @ Insert Character

Inserts PN empty spaces before the character indicated by the cursor. The string of
characters starting with the character indicated by the cursor and ending with last
character of the line are shifted PN columns to the right. Characters shifted past the
PS right boundary are lost. The cursor does not move.

• IL ESC [PNL Insert Line

Inserts PN empty lines before the line indicated by the cursor. The line indicated by
the cursor is scrolled down. The cursor position on the screen is not affected.

• IND ESC D Index

Moves cursor down one line. If the cursor was already on the bottom line of the PS,
then the top line is lost, the other lines move up one line, and·a blank line becomes the
new bottom line.

• NEL ESC E Next Line

Moves the cursor to the first position of the following line. If the cursor was already
on the bottom line of the PS, then the top line is lost, the other lines move up one, and
a blank line becomes the new bottom line.

• KSI ESC [PS p Keyboard Status Information

The virtual terminal generates this control whenever HFHOSTS and HFXLATKBD
are set and the status of the keyboard changes. Each selective parameter is the
character-coded decimal value of a keyboard status byte. For example, if the keyboard

Miscellaneous Facilities 5-17

data stream

has two status bytes, the control sequence is ESC [xxx;yyy p, where xxx is the value of
the high-order byte and yyy is the value of the low-order byte. This is a private control
that conforms to the ANSI standards for private control sequences. The virtual
terminal display handler ignores this sequence. whether it is received from the
application or echoed. The values of the status bytes are described in "Untranslated
Key Control" on page 6-56.

• PFK ESC [PN q PF Key Report

The control sequence is sent by the virtual terminal to the application when a program
function key (PFK) code is received from the keyboard. The parameter PN is a PF key
number from 1 to 255. This is a private control that conforms to the ANSI standards
for private control sequences. This sequence is ignored by the virtual terminal display
handler whether received from the application or echoed.

• RCP ESC [u Restore Cursor Position

Moves the cursor to the position saved by the last SCP control. If no SCP has been
received, then the cursor position is set to the first character of the first line. This is a
private control that conforms to the ANSI standards for private controls. This control
has no terminal function when received from the keyboard.

• RI ESCL Reverse Index

Moves the cursor up one line, unless the cursor is already on the PS top line. In that
case, if HFWRAP mode is not set, then the cursor does not move. If HFWRAP mode is
set, the cursor moves to the bottom line of the PS. The column position does not
change.

• RIS ESC c Reset to Initial State

Resets the virtual terminal to the state of a newly-opened virtual terminal: erases all
PS data, places the cursor at the home position, resets graphic rendition to normal,
resets subscripting and superscripting, and sets tab stops, modes, keyboard map,
character maps and echo maps to their default values.

Note: The RIS multi-byte control resets the VRM virtual terminal defaults, which are
not necessarily the same as the defaults of an HFT device.

• RM ESC [PS I Reset Mode

20 LNM - Line Feed - New Line Mode
4 IRM - Insert Mode
12 SRM - Send Receive Mode (set ECHO off)
18 TSM - Tabulation Stop Mode
?21 CNM - Carriage Return - New Line Mode
?7 AUTONL - Wrap character to following line when end of current line reached

Resets the modes specified in the parameter string. Multiple parameters must be
separated by semicolons. The modes that can be reset are listed above with the
appropriate parameter code. All other mode parameters are ignored.

5-18 AIX Operating System Technical Reference

data stream

TSM mode determines whether horizontal tabs apply identically to all line (TSM reset)
or uniquely to each line on which they are set (TSM set).

• SCP ESC [s Save Cursor Position

Saves the current cursor position. Any previously saved cursor position is lost. The
cursor can be restored to this position with an RCP control. This is a private control
that conforms to the ANSI standards for private controls. This control has no terminal
function when received from the keyboard.

• SD ESC [PN T Scroll Down

Moves all the PS lines down PN lines. The bottom PN lines are lost, and PN empty
lines are put at the top of the presentation space. Physical cursor position does not
chang.e due to the scroll.

• SL ESC [PNSP @ Scroll Left

Moves all the PS characters PN column positions to the left. The characters in the PN
leftmost PS columns are lost, and empty spaces are put in the rightmost PN columns of
all lines. Physical cursor position does not change due to the scroll.

• SR ESC [PN SP A Scroll Right

Moves all the PS characters PN column positions to the right. The characters in the
PN rightmost PS columns are lost, and empty spaces are put in the leftmost PN
columns of all lines. Physical cursor position does not change due to the scroll.

• SU ESC [PN S Scroll Up

Moves all the PS lines up PN lines. The top PN lines are lost, and PN empty lines are
put at the bottom of the presentation space. The physical cursor position does not
change due to the scroll.

• SGR ESC [PS m Set Graphic Rendition

o Normal (none of attributes 1-9)
1 Bold or Bright
4 Underscore
5 Slow Blink
7 Negative (reverse image)
8 Cancelled On (invisible: set to background color)
10 Primary Font
11 First Alternate Font
12 Second Alternate Font
13 Third Alternate Font
14 Fourth Alternate Font
15 Fifth Alternate Font
16 Sixth Alternate Font
17 Seventh Alternate Font
30 Color palette entry 0 foreground

Miscellaneous Facilities 5-19

data stream

31 Color palette entry 1 foreground
32 Color palette entry 2 foreground
33 Color palette entry 3 foreground
34 Color palette entry 4 foreground
35 Color palette entry 5 foreground
36 Color palette entry 6 foreground
37 Color palette entry 7 foreground
40 Color palette entry 0 background
41 Color palette entry 1 background
42 Color palette entry 2 background
43 Color palette entry 3 background
44 Color palette entry 4 background
45 Color palette entry 5 background
46 Color palette entry 6 background
47 Color palette entry 7 background
90 Color palette entry 8 foreground
91 Color palette entry 9 foreground
92 Color palette entry 10 foreground
93 Color palette entry 11 foreground
94 Color palette entry 12 foreground
95 Color palette entry 13 foreground
96 Color palette entry 14 foreground
97 Color palette entry 15 foreground
100 Color palette entry 8 background
101 Color palette entry 9 background
102 Color palette entry 10 background
103 Color palette entry 11 background
104 Color palette entry 12 background
105 Color palette entry 13 background
106 Color palette entry 14 background
107 Color palette entry 15 background.

Causes the next characters received in the data stream or from the keyboard to have
the display attributes specified by the parameter string. Any parameter not listed
above is ignored.

The attributes corresponding to parameters 1 through 9 are cumulative. For example,
specifying underscore and then specifying blink causes following characters to be
underscored and blink. To reset one of these attributes, specify normal and then
reinstate the desired parameters. Multiple parameters are processed in the order
listed.

Whether the characters really have the requested· attributes on the display depends on
the capabilities of the physical display device used by the virtual terminal.

Note that switching between loaded fonts with the SGR sequence causes no data loss,
but loading new fonts does cause data loss. (See "Untranslated Key Control" on
page 6-56 for more information.)

5-20 AIX Operating System Technical Reference

Characters that cannot be displayed do not exist in the system.

• SGOA ESC (f Set GO Character Set

SGOB ESC, f Set GO Character Set (Alternate form)

Unique One (User-defined)
Unique Two (User-defined)

< PO (Display Symbols 32-255)
PI (Display Symbols 256-479)

> P2 (Display Symbols 480-703)
? U serl (Display Symbols 704-927)
@ User2 (Display Symbols 928-1023)

data stream

Designates the set of characters to use as the GO set when the GO set is invoked by SI.
The default GO set is the 224-character code page PO. Unique One and Unique Two
may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to <. See "Character Set Definition" on
page 6-69 about defining Unique One and Unique Two.

• SG lA ESC) f Set G 1 Character Set

SGIB ESC - f Set Gl Character Set (Alternate)

Unique One (User-defined)
Unique Two (User-defined)

< PO (Display Symbols 32-255)
PI (Display Symbols 256-479)

> P2 (Display Symbols 480-703)
? Userl (Display Symbols 704-927)
@ User2 (Display Symbols 928-1023)

Designates the set of characters to use as the Gl set when the Gl set is invoked by SO.
The default Gl set is the 224-character code page PO. Unique One and Unique Two
may have unique definitions for each virtual terminal. When a virtual terminal is
opened, these two sets are equivalent to <. See "Character Set Definition" on
page 6-69 about defining Unique One and Unique Two.

• SM ESC [PS h Set Mode

20 LNM - Line Feed - New Line Mode (default = 1)
4 IRM - Insert Replace Mode (default = 0)
1 2 SRM - Send Receive Mode (set echo off) (default = 0)
1 8 TSM - Tabulation Stop Mode (default = 0)
? 2 1 CNM - Carriage Return - New Line Mode (default = 0)
? 7 AUTONL - Wrap to next line when end of line reached (default = 1)

Sets the modes specified in the parameter string. Multiple parameters must be
separated by semicolons. The modes that can be set are listed above with the
appropriate parameter code. All other mode parameters are ignored.

Miscellaneous· Facilities 5-21

data stream

SRM mode affects translated keyboard input handling. If SRM mode is set, translated
keyboard input is never echoed by the virtual terminal, but is immediately returned to
the application.

TSM mode determines whether horizontal tabs apply to all lines identically (TSM
reset) or if horizontal tabs apply uniquely to each line on which they are set (TSM set).

• TBC ESC [PS g Tabulation Clear

o Horizontal tab at cursor column
1 Vertical tab at line indicated by the cursor
2 Horizontal tabs on line
3 Horizontal tabs in presentation space
4 Vertical tabs in presentation space.

Clears tabulation stops specified by the parameters. Horizontal tab changes affect only
the line indicated by the cursor if TSM is set, and horizontal tab changes affect all
lines if TSM is reset. Any parameters not listed above are ignored. This control does
not change the positioning of characters already in the presentation space.

• VTA ESC [r Virtual Terminal Addressability

This private control sequence precedes a binary header and associated data that
provide status information on the IBM 5081 Display Adapter.

• VTD ESC [x Virtual Terminal Data

This private control sequence precedes a binary header and associated data. The block
of data can be in formats other than character-coded data, such as binary format. See
"Output" on page 6-61 for details about how this control sequence is used.

• VTL ESC [y Virtual Terminal Device Input

This private control sequence precedes binary format input data from a mouse, tablet,
LPFK, or valuator device. See "Input Device Report" on page 6-57 for details about
how this control sequence is used.

• VTR ESC [w Virtual Terminal Raw Keyboard Input

This private control sequence precedes "raw" (untranslated) keyboard input data,
which is in a binary format. See "Untranslated Key Control" on page 6-56 for details
about how this control sequence is used.

• VTS ESC I Vertical Tab Stop

Sets a vertical tab stop at the line indicated by the cursor. This control does not
change the positioning of characters already in the presentation space.

5-22 AIX Operating System Technical Reference

Related Information

In this book: "display symbols" on page 5-24 and "hft" on page 6-23.

Keyboard Description and Character Reference.

data stream

"Overview of International Character Support" in IBM RT PC Managing the AIX
Operating System.

Miscellaneous Facilities 5-23

display symbols

display symbols

Purpose

Defines the set of character symbols that can be displayed on an HFT display device in
KSR mode.

Description

Each character code passed in KSR data is translated into one of 1024 10-bit display symbol
codes. Codes 0 through 703 (Ox2bf) are predefined to be common across all virtual
terminals. Codes 704 (Ox2cO) through 1023 (Ox3ff) are reserved for user-defined extensions
to the display symbol set. Display symbols 0 through 31 (Oxlf) represent control functions
and have no graphic representations.

Code pages PO, PI, and P2 contain all of the predefined characters. The first 32 code
points of each are reserved for control characters and are common to all three code pages.
The remaining characters are divided between PO, PI, and P2. Thus, each code page can
have up to 224 distinct graphic characters.

In addition to the predefined code pages PO, PI, and P2, you can define two code pages
called Unique One and Unique Two. See "fonts" on page 4-68, "data stream" on page 5-5,
and "Reconfigure (HFRCONF)" on page 6-31 for information you need to define such
character sets.

The columns of the following tables represent:

Font Position
The position of the graphic display symbol within the font definition.

Code Page/Code Point
The code page of the symbol and the offset within that code page.

char String
Thejnternal hexadecimal representation as a string of type char, including the
single-shift control for characters in code pages other than PO.

NLehar Value
The value of the NLehar data type that corresponds to the character. The values
256-287 and 512-543 are not listed in this table because they correspond to control
codes in code pages PI and P2. See "NLchar" on page 3-276 for more information
about this data type.

NCese Esc Seq
The ASCII character or escape sequence that corresponds to the character after being
translated by the NCese macro. The NLehar values 256-287 and 512-543, which

5-24 AIX Operating System Technical Reference

display symbols

correspond to control codes in code pages PI and P2, translate to \ < >, where two
space characters (Ox20) appear between the angle brackets. NLchar values outside
the valid range translate to \ <??>. See "conv" on page 3-39 and "NLescstr,
NLunescstr, NLflatstr" on page 3-278 for related information.

The first table begins at font position 32 because the first 32 positions are reserved for the
single-byte controls. The IBM PC ASCII graphic symbols for positions 1 through 31 are
located at positions 257 through 287 and are not in any way associated with single-byte
control functions.

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

32 Space PO 32 (Ox20) Ox20 32 Space
33 ! Exclamation Point PO 33 (Ox21) Ox21 33 !
34 .. Double Quote PO 34 (Ox22) Ox22 34 II

35 # Number Sign PO 35 (Ox23) Ox23 35 #
36 $ Dollar Sign PO 36 (Ox24) Ox24 36 $
37 0/0 Percent Sign PO 37 (Ox25) Ox25 37 %
38 & Ampersand PO 38 (Ox26) Ox26 38 &
39 Apostrophe, Acute Accent PO 39 (Ox27) Ox27 39
40 Left Parenthesis PO 40 (Ox28) Ox28 40 (
41 Right Parenthesis PO 41 (Ox29) Ox29 41)
42 * Asterisk PO 42 (Ox2a) Ox2a 42 *
43 + Plus Sign PO 43 (Ox2b) Ox2b 43 +
44 Comma PO 44 (Ox2c) Ox2c 44
45 Hyphen, Minus Sign PO 45 (Ox2d) Ox2d 45
46 Period PO 46 (Ox2e) Ox2e 46
47 / Slash PO 47 (Ox2f) Ox2f 47 /
48 0 Zero PO 48 (Ox30) Ox30 48 0
49 1 One PO 49 (Ox31) Ox31 49 1
50 2 Two PO 50 (Ox32) Ox32 50 2
51 3 Three PO 51 (Ox33) Ox33 51 3
52 4 Four PO 52 (Ox34) Ox34 52 4
53 5 Five PO 53 (Ox35) Ox35 53 5
54 6 Six PO 54 (Ox36) Ox36 54 6
55 7 Seven PO 55 (Ox37) Ox37 55 7
56 8 Eight PO 56 (Ox38) Ox38 56 8

Figure 5-6 (Part 1 of 8). Code Page PO

Miscellaneous Facilities 5-25

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

57 9 Nine PO 57 (Ox39) Ox39 57 9
58 Colon PO 58 (Ox3a) Ox3a 58
59 Semicolon PO 59 (Ox3b) Ox3b 59 ,
60 < Less Than Sign PO 60 (Ox3c) Ox3c 60 <
61 Equal Sign PO 61 (Ox3d) Ox3d 61 =
62 > Greater Than Sign PO 62 (Ox3e) Ox3e 62 >
63 ? Question Mark PO 63 (Ox3f) Ox3f 63 ?
64 @ At Sign PO 64 (Ox40) Ox40 64 @

65 A a Uppercase PO 65 (Ox41) Ox41 65 A
66 B b Uppercase PO 66 (Ox42) Ox42 66 B
67 C c Uppercase PO 67 (Ox43) Ox43 67 C
68 D d Uppercase PO 68 (Ox44) Ox44 68 D
69 E e Uppercase PO 69 (Ox45) Ox45 69 E
70 F fUppercase PO 70 (Ox46) Ox46 70 F
71 G g Uppercase PO 71 (Ox47) Ox47 71 G
72 H h Uppercase PO 72 (Ox48) Ox48 72 H
73 I i Uppercase PO 73 (Ox49) Ox49 73 I
74 J j Uppercase PO 74 (Ox4a) Ox4a 74 J
75 K k Uppercase PO 75 (Ox4b) Ox4b 75 K
76 L 1 Uppercase PO 76 (Ox4c) Ox4c 76 L
77 M m Uppercase PO 77 (Ox4d) Ox4d 77 M
78 N n Uppercase PO 78 (Ox4e) Ox4e 78 N
79 0 o Uppercase PO 79 (Ox4f) Ox4f 79 0
80 P p Uppercase PO 80 (Ox50) Ox50 80 P
81 Q q Uppercase PO 81 (Ox51) Ox51 81 Q
82 R r Uppercase PO 82 (Ox52) Ox52 82 R
83 S s Uppercase PO 83 (Ox53) Ox53 83 5
84 T t Uppercase PO 84 (Ox54) Ox54 84 T
85 U u Uppercase PO 85 (Ox55) Ox55 85 U
86 V v Uppercase PO 86 (Ox56) Ox56 86 V
87 W w Uppercase PO 87 (Ox57) Ox57 87 W
88 X x Uppercase PO 88 (Ox58) Ox58 88 X
89 Y y Uppercase PO 89 (Ox59) Ox59 89 y

Figure 5-6 (Part 2 of 8). Code Page PO

5-26 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

90 Z z Uppercase PO 90 (Ox5a) Ox5a 90 Z
91 [Left Bracket PO 91 (Ox5b) Ox5b 91 [
92 \ Reverse Slash PO 92 (Ox5c) Ox5c 92 \
93] Right Bracket PO 93 (Ox5d) Ox5d 93]
94 A Circumflex Accent, UpArrow PO 94 (Ox5e) Ox5e 94 A

95 Underline, Low Line PO 95 (Ox5f) Ox5f 95
96 Grave Accent, Left Single Quote PO 96 (Ox60) Ox60 96
97 a a Lowercase PO 97 (Ox61) Ox61 97 a
98 b b Lowercase PO 98 (Ox62) Ox62 98 b
99 c c Lowercase PO 99 (Ox63) Ox63 99 c
100 d d Lowercase PO 100 (Ox64) Ox64 100 d
101 e e Lowercase PO 101 (Ox65) Ox65 101 e
102 f fLowercase PO 102 (Ox66) Ox66 102 f
103 g g Lowercase PO 103 (Ox67) Ox67 103 9
104 h h Lowercase PO 104 (Ox68) Ox68 104 h
105 i i Lowercase PO 105 (Ox69) Ox69 105 ;
106 j j Lowercase PO 106 (Ox6a) Ox6a 106 j
107 k k Lowercase PO 107 (Ox6b) Ox6b 107 k
108 I I Lowercase PO 108 (Ox6c) Ox6c 108 1
109 m m Lowercase PO 109 (Ox6d) Ox6d 109 m
110 n n Lowercase PO 110 (Ox6e) Ox6e 110 n
111 0 o Lowercase PO 111 (Ox6f) Ox6f 111 0
112 p p Lowercase PO 112 (Ox70) Ox70· 112 P
113 q q Lowercase PO 113 (Ox71) Ox71 113 q
114 r r Lowercase PO 114 (Ox72) Ox72 114 r
115 s s Lowercase PO 115 (Ox73) Ox73 115 s
116 t t Lowercase PO 116 (Ox74) Ox74 116 t
117 u u Lowercase PO 117 (Ox75) Ox75 117 u
118 v v Lowercase PO 118 (Ox76) Ox76 118 V
119 w w Lowercase PO 119 (Ox77) Ox77 119 w
120 x x Lowercase PO 120 (Ox78) Ox78 120 X
121 y y Lowercase PO 121 (Ox79) Ox79 121 y
122 z z Lowercase PO 122 (Ox7 a) Ox7a 122 Z

Figure 5-6 (Part 3 of 8). Code Page PO

Miscellaneous Facilities 5-27

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

123 { Left Brace PO 123 (Ox7b) Ox7b 123 {
124 I Logical OR PO 124 (Ox7 c) Ox7c 124 I
125 } Right Brace PO 125 (Ox7 d) Ox7d 125 }
126 Tilde Accent PO 126 (Ox7e) Ox7e 126
127 d Del PO 127 (Ox7f) Ox7f 127 d
128 Q c Cedilla Capital PO 128 (Ox80) Ox80 128 \<C,)
129 ii u Umlaut Small PO 129 (Ox81) Ox81 129 \<u ll

)

130 e e Acute Small PO 130 (Ox82) Ox82 130 \<e l
)

131 a a Circumflex Small PO 131 (Ox83) Ox83 131 \<al\)
132 a a Umlaut Small PO 132 (Ox84) Ox84 132 \<a ll

)

133 it a Grave Small PO 133 (Ox85) Ox85 133 \<a')
134 a a Overcircle Small PO 134 (Ox86) Ox86 134 \<ao)
135 ~ c Cedilla Small PO 135 (Ox87) Ox87 135 \<c,)
136 e e Circumflex Small PO 136 (Ox88) Ox88 136 \<el\)
137 e e Umlaut Small PO 137 (Ox89) Ox89 137 \<e ll

)

138 e e Grave Small PO 138 (Ox8a) Ox8a 138 \<e')
139 1: i Umlaut Small PO 139 (Ox8b) Ox8b 139 \<;")
140 i i Circumflex Small PO 140 (Ox8c) Ox8c 140 \<;1\)
141 i i Grave Small PO 141 (Ox8d) Ox8d 141 \<i')
142 A a Umlaut Capital PO 142 (Ox8e) Ox8e 142 \<AII)
143 A a Overcircle Capital PO 143 (Ox8f) Ox8f 143 \<Ao)
144 E e Acute Capital PO 144 (Ox90) Ox90 144 \<EI)
145 re ae Diphthong Small PO 145 (Ox91) Ox91 145 \<ae)
146 .tE ae Diphthong Capital PO 146 (Ox92) Ox92 146 \<AE)
147 0 o Circumflex Small PO 147 (Ox93) Ox93 147 \<0")
148 0 o Umlaut Small PO 148 (Ox94) Ox94 148 \<0 11

)

149 0 o Grave Small PO 149 (Ox95) Ox95 149 \<0')
150 u u Circumflex Small PO 150 (Ox96) Ox96 150 \<u")
151 u u Grave Small PO 151 (Ox97) Ox97 151 \<u')
152 y y Umlaut Small PO 152 (Ox98) Ox98 152 \<y")
153 0 o Umlaut Capital PO 153 (Ox99) Ox99 153 \<0")
154 U u Umlaut Capital PO 154 (Ox9a) Ox9a 154 \<U")
155 0 o Slash Small PO 155 (Ox9b) Ox9b 155 \<0/)

Figure 5-6 (Part 4 of 8). Code Page PO

5-28 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

156 £ English Pound Sign PO 156 (Ox9c) Ox9c 156 \<L=>
157 0 o Slash Capital PO 157 (Ox9d) Ox9d 157 \<0/> '
158 x Multiplication Sign PO 158 (Oxge) Oxge 158 \<x>
159 f Florin Sign PO 159 (Ox9f) Ox9f 159 \<f>
160 a a Acute Small PO 160 (OxaO) OxaO 160 \<a l >
161 i i Acute Small PO 161 (Oxa1) Oxa1 161 \<i I>
162 6 o Acute Small PO 162 (Oxa2) Oxa2 162 \<0 1 >
163 u u Acute Small PO 163 (Oxa3) Oxa3 163 \<u l >
164 Ii n Tilde Small PO 164 (Oxa4) Oxa4 164 \<n->
165 N n Tilde Capital PO 165 (Oxa5) Oxa5 165 \<N->
166 ~ Feminine Sign PO 166 (Oxa6) Oxa6 166 \<-a>
167 Q Masculine Sign PO 167 (Oxa7) Oxa7 167 \<-0>
168 i.. Inverted Question Mark PO 168 (Oxa8) Oxa8 168 \<?>
169 ® Registered Trademark PO 169 (Oxa9) Oxa9 169 \<rO>
170 -, Logical Not PO 170 (Oxaa) Oxaa 170 \<-.>
171 lh One Half PO 171 (Oxab) Oxab 171 \<12>
172 ~ One Quarter PO 172 (Oxac) Oxac 172 \<14>
173 Inverted Exclamation Sign PO 173 (Oxad) Oxad 173 \<1>
174 « Left Angle Quotes PO 174 (Oxae) Oxae 174 \<{{>
175 » Right Angle Quotes PO 175 (Oxaf) Oxaf 175 \<}}>
176 ... Quarter Hashed PO 176 (OxbO) OxbO 176 \<#1>
177 ~~~~ Half Hashed PO 177 (Oxb1) Oxbl 177 \<#2>
178 HI Full Hashed PO 178 (Oxb2) Oxb2 178 \<#3>
179 I Vertical Bar PO 179 (Oxb3) Oxb3 179 \<SO>
180 ~ Right Side Middle PO 180 (Oxb4) Oxb4 180 \<S6>
181 A a Acute Capital PO 181 (Oxb5) Oxb5 181 \<A I>
182 A a Circumflex Capital PO 182 (Oxb6) Oxb6 182 \<AA>
183 A a Grave Capital PO 183 (Oxb7) Oxb7 183 \<A'>
184 © Copyright Symbol PO 184 (Oxb8) Oxb8 184 \<cO>
185 =\1 Double Right Side Middle PO 185 (Oxb9) Oxb9 185 \<06>
186 II Double Vertical Bar PO 186 (Oxba) Oxba 186 \<00>
187 "'it Double Upper Right Corner Box PO 187 (Oxbb) Oxbb 187 \<09>
188 ::!J Double Lower. Right Corner Box PO 188 (Oxbc) Oxbc 188 \<03>

Figure 5-6 (Part 5 of 8). Code Page PO

Miscellaneous Facilities 5-29

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

189 ¢ Cent Sign PO 189 (Oxbd) Oxbd 189 \<c/>
190 ¥ Yen Sign PO 190 (Oxbe) Oxbe 190 \<y=>
191 , Upper Right Corner Box PO 191 (Oxb£) Oxbf 191 \<S9>
192 L Lower Left Corner Box PO 192 (OxcO) OxcO 192 \<Sl>
193 J.. Bottom Side Middle PO 193 (Oxc1) Oxc1 193 \<S2>
194 T Top Side Middle PO 194 (Oxc2) Oxc2 194 \<S8>
195 ~ Left Side Middle PO 195 (Oxc3) Oxc3 195 \<S4>
196 - Center Box Bar PO 196 (Oxc4) Oxc4 196 \<S.>
197 + Intersection PO 197 (Oxc5) Oxc5 197 \<S5>
198 a a Tilde Small PO 198 (Oxc6) Oxc6 198 \<a->
199 A a Tilde Capital PO 199 (Oxc7) Oxc7 199 \<A->
200 lb Double Lower Left Corner Box PO 200 (Oxc8) Oxc8 200 \<01>
201 IF Double Upper Left Corner Box PO 201 (Oxc9) Oxc9 201 \<07>
202 b Double Bottom Side Middle PO 202 (Oxca) Oxca 202 \<02>
203 Ii Double Top Side Middle PO 203 (Oxcb) Oxcb 203 \<08>
204 IF Double Left Side Middle PO 204 (Oxcc) Oxcc 204 \<04>
205 Double Center Box Bar PO 205 (Ox cd) Oxcd 205 \<0.>
206 ..JL Double Intersection PO 206 (Oxce) Oxce 206 \<05> ,r

207 a International Currency Symbol PO 207 (Oxc£) Oxcf 207 \<0*>
208 ~ eth Icelandic Small PO 208 (OxdO) OxdO 208 \<d+>
209 D eth Icelandic Capital PO 209 (Oxd1) Oxd1 209 \<0+>
210 E e Circumflex Capital PO 210 (Oxd2) Oxd2 210 \<E">
211 E e Umlaut Capital PO 211 (Oxd3) Oxd3 211 \<E">
212 E e Grave Capital PO 212 (Oxd4) Oxd4 212 \<E'>
213 Small i Dotless PO 213 (Oxd5) Oxd5 213 \<i>
214 f i Acute Capital PO 214 (Oxd6) Oxd6 214 \<I I>
215 I i Circumflex Capital PO 215 (Oxd7) Oxd7 215 \<I">
216 r i Umlaut Capital PO 216 (Oxd8) Oxd8 216 \<I">
217 J Lower Right Corner Box PO 217 (Oxd9) Oxd9 217 \<S3>
218 r Upper Left Corner Box PO 218 (Oxda) Oxda 218 \<S7>
219 • Bright Character Cell PO 219 (Oxdb) Oxdb 219 \<8>
220 - Bright Character Cell - Lower Half PO 220 (Oxdc) Oxdc 220 \<82>
221 Broken Vertical Bar PO 221 (Oxdd) Oxdd 221 \<80>

Figure 5-6 (Part 6 of 8). Code Page PO

5-30 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

222 I i Grave Capital PO 222 (Oxde) Oxde 222 \<1'>
223 - Bright Character Cell - Upper Half PO 223 (Oxd£) Oxdf 223 \<B8>
224 0 o Acute Capital PO 224 (OxeO) Ox eO 224 \<0 1>
225 ~ s Sharp Small PO 225 (Oxe1) Oxe1 225 \<55>
226 0 o Circumflex Capital PO 226 (Oxe2) Oxe2 226 \<OA>
227 0 o grave capital PO 227 (Oxe3) Oxe3 227 \<0'>
228 6 o Tilde Small PO 228 (Oxe4) Oxe4 228 \<0->
229 0 o Tilde Capital PO 229 (Oxe5) Oxe5 229 \<0->
230 l! Mu Small, Micro Symbol PO 230 (Oxe6) Oxe6 230 \<&m>
231 p Thorn Icelandic Small PO 231 (Oxe7) Oxe7 231 \<lp>
232 I> Thorn Icelandic Capital PO 232 (Oxe8) Oxe8 232 \<IP>
233 U- u Acute Capital PO 233 (Oxe9) Oxe9 233 \<U I >
234 -0 u Circumflex Capital PO 234 (Oxea) Oxea 234 \<UA>
235 U u Grave Capital PO 235 (Oxeb) Oxeb 235 \<U'>
236 y y Acute Small PO 236 (Oxec) Oxec 236 \<yl>
237 y y Acute Capital PO 237 (Oxed) Oxed 237 \<Y I >
238 Overbar PO 238 (Oxee) Oxee 238 \<-->
239 Acute Accent PO 239 (Oxe£) Oxef 239 \<_1>
240 - Sy Hable Hyphen PO 240 (OxfO) OxfO 240 \<A_>
241 ± Plus Or Minus Sign PO 241 (Oxfl) Oxfl 241 \<+->
242 Double Underscore PO 242 (Oxf2) Oxf2 242 \<-->
243 314 Three Fourths PO 243 (Ox£3) Ox£3 243 \<34>
244 ~ Paragraph Symbol PO 244 (Oxf4) Oxf4 244 \<IP>
245 § Section Symbol PO 245 (Oxf5) Oxf5 245 \<IS>
246 Division Sign PO 246 (Oxf6) Oxf6 246 \<:->
247 ~ Cedilla Accent PO 247 (Oxf7) Oxf7 247 \<-,>
248 0 Degree Symbol, Overcircle Accent PO 248 (OxfB) OxfB 248 \<0>
249 Umlaut Accent PO 249 (Oxf9) Oxf9 249 \<_">
250 Middle Dot, Product Dot PO 250 (Oxfa) Oxfa 250 \< .. >
251 Superscript 1 PO 251 (Oxtb) Oxtb 251 \<AI>
252 3 Superscript 3 PO 252 (Oxfc) Oxfc 252 \<A3>

Figure 5-6 (Part 7 of 8). Code Page PO

Miscellaneous Facilities 5-31

display symbols

Font
Position Character

253
254
255

2

I
Superscript 2
Vertical Solid Rectangle
Required Space

Figure 5-6 (Part 8 of 8). Code Page PO

5-32 AIX Operating System Technical Reference

Code Page
Code Point

PO 253 (Oxfd)
PO 254 (Oxfe)
PO 255 (Oxff)

char NLchar Neesc
String Value Esc Seq

Oxfd 253 \<"2>
Oxfe 254 \< [J >
Oxff 255 \<##>

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

256 • Spanish Middle Dot PI 32 (Ox20) OxlfaO 288 \<-.>
257 <;;) Smiling Face PI 33 (Ox21) Oxlfa1 289 \<: »
258 • Dark Smiling Face PI 34 (Ox22) Ox1fa2 290 \< (: >
259 • Heart PI 35 (Ox23) Ox1fa3 291 \<5H>
260 + Diamond PI 36 (Ox24) Oxlfa4 292 \<50>
261 + Club PI 37 (Ox25) Oxlfa5 293 \<5C>
262 + Spade PI 38 (Ox26) Ox1fa6 294 \<55>
263 • Bullet PI 39 (Ox27) Oxlfa7 295 \<@>
264 a Reverse Video Bullet PI 40 (Ox28) Ox1fa8 296 \<@#>
265 0 Circle PI 41 (Ox29) Ox1fa9 297 \<0>
266 &J Reverse Video Circle PI 42 (Ox2a) Oxlfaa 298 \<0#>
267 d Male Symbol PI 43 (Ox2b) Ox1fab 299 \<0%>
268 ~ Female Symbol PI 44 (Ox2c) Ox1fac 300 \<0+>
269) Eighth Note PI 45 (Ox2d) Ox1fad 301 \<d->
270 ~ Sixteenth Note PI 46 (Ox2e) Oxlfae 302 \<d=>
271 -0- Sun PI 47 (Ox2f) Ox1faf 303 \<*>
272 ~ Right Solid Triangle PI 48 (Ox30) Ox1fbO 304 \<#}>
273 ~ Left Solid Triangle PI 49 (Ox3I) Ox1fbi 305 \<{#>
274 ! Bidirectional Vertical Arrow PI 50 (Ox32) Oxlfb2 306 \<AV>
275 !! Double Exclamation Point PI 51 (Ox33) Ox1fb3 307 \<11>
276 ~ Paragraph Symbol PI 52 (Ox34) Ox1fb4 308 \<IP>
277 § Section symbol PI 53 (Ox35) Oxlfb5 309 \<15>
278 Horizontal Solid Rectangle PI 54 (Ox36) Ox1fb6 310 \<#]>
279 1- Under lined Bidirectional Vertical Arrow PI 55 (Ox37) Oxlfb7 311 \<-1>
280 i Up Arrow PI 56 (Ox38) Ox1fb8 312 \< 1 A>
281 ~ Down Arrow PI 57 (Ox39) Oxlfb9 313 \<Iv>
282 ~ Right Arrow PI 58 (Ox3a) Oxlfba 314 \<-}>
283 ~ Left Arrow PI 59 (Ox3b) Ox1fbb 315 \<{->
284 L Diagonally Flipped Logical Not PI 60 (Ox3c) Ox1fbc 316 \<'->
285 Bidirectional Horizontal Arrow PI 61 (Ox3c) Oxlfbd 317 \<(»
286 A Solid Upward Triangle PI 62 (Ox3e) Oxlfbe 318 \<#A>
287 ~ Solid Downward Triangle PI 63 (Ox3f) Ox1fbf 319 \<#v>
288 a a Tilde Small PI 64 (Ox40) Ox1fcO 320 \<a->
Figure 5-7 (Part 1 of 7). Code Page PI

Miscellaneous Facilities 5-33

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

289 f3 s Sharp Small PI 65 (Ox41) Ox1fc1 321 \<55>
290 A a Circumflex Capital PI 66 (Ox42) Ox1fc2 322 \<A">
291 A a Grave Capital PI 67 (Ox43) Ox1fc3 323 \<A'>
292 A a Acute Capital PI 68 (Ox44) Ox1fc4 324 \<A I>
293 A a Tilde Capital PI 69 (Ox45) Ox1fc5 325 \<A->
294 0 o Slash Small PI 70 (Ox46) Ox1fc6 326 \<0/>
295 E e Circumflex Capital PI 71 (Ox47) Ox1fc7 327 \<E">
296 E e Umlaut Capital PI 72 (Ox48) Ox1fc8 328 \<E">
297 E e Grave Capital PI 73 (Ox49) Ox1fc9 329 \<E'>
298 t i Acute Capital PI 74 (Ox4a) Ox1fca 330 \<1 I>
299 I i Circumflex Capital PI 75 (Ox4b) Ox1fcb 331 \<1">
300 r i Umlaut Capital PI 76 (Ox4c) Ox1fcc 332 \<1">
301 I i Grave Capital PI 77 (Ox4d) Ox1fcd 333 \<1'>
302 0 Slashed 0 Capital PI 78 (Ox4e) Ox1fce 334 \<0/>
303 b eth Icelandic Small PI 79 (Ox4f) Ox1fcf 335 \<d+>
304

,
y Acute Small PI 80 (Ox50) Ox1fdO 336 \<yl> y

305 P Thorn Icelandic Small PI 81 (Ox51) Ox1fd1 337 \<Ip>
306 ~ Cedilla Accent PI 82 (Ox52) Ox1fd2 338 \<-,>
307 ~ International Currency Symbol PI 83 (Ox53) Ox1fd3 339 \<0*>
308 D eth Icelandic Capital PI 84 (Ox54) Ox1fd4 340 \<0+> ,
309 Y y Acute Capital PI 85 (Ox55) Ox1fd5 341 \<V I>
310 I> Thorn Icelandic Capital PI 86 (Ox56) Ox1fd6 342 \<IP>
311 ® Registered Trademark Symbol PI 87 (Ox57) Ox1fd7 343 \<rO>
312 % Three Quarters PI 88 (Ox58) Ox1fd8 344 \<34>
313 Overbar Accent, Macron Accent PI 89 (Ox59) Ox1fd9 345 \<-->
314 Umlaut Accent PI 90 (Ox5a) Ox1fda 346 \<_">
315 Acute Accent PI 91 (Ox5b) Ox1fdb 347 \<_1>
316 - Double Underscore PI 92 (Ox5c) Ox1fdc 348 \<-->
317 0 o Tilde Small P193 (Ox5d) Ox1fdd 349 \<0->
318 i Small i Dotless PI 94 (Ox5e) Ox1fde 350 \<i>
319 () o Circumflex Capital PI 95 (Ox5f) Ox1fdf 351 \<0">
320 () o Grave Capital PI 96 (Ox60) Ox1feO 352 \<0'>
321 6 o Acute Capital PI 97 (Ox61) Ox1fe1 353 \<0 1>

Figure 5-7 (Part 2 of 7). Code Page PI

5-34 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCese
Position Character Code Point String Value Esc Seq

322 0 o Tilde Capital PI 98 (Ox62) Ox1fe2 354 \<0->
323 Superscript 3 PI 99 (Ox63) Ox1fe3 355 \<"3>
324 -0 u Circumflex Capital PI 100 (Ox64) Ox1fe4 356 \<U">
325 -0 u Grave Capital PI 101 (Ox65) Ox1fe5 357 \<U'>
326 U u Acute Capital PI 102 (Ox66) Ox1fe6 358 \<U I>
327 4 a Ogonek Small PI 103 (Ox67) Ox1fe7 359 \<a,>
328 v e Caron Small PI 104 (Ox68) Ox1fe8 360 \<ev> e
329 v c Caron Small PI 105 (Ox69) Ox1fe9 361 \<CV> c
330 C c Acute Small PI 106 (Ox6a) Ox1fea 362 \<c l >
331 It e Ogonek Small PI 107 (Ox6b) Ox1feb 363 \<e,>
332 U u Overcircle Small PI 108 (Ox6c) Ox1fec 364 \<uo> v
333 d d Caron Small PI 109 (Ox6d) Ox1fed 365 \<dv> ,
334 I I Acute Small PI 110 (Ox6e) Ox1fee 366 \<1 I>
335 1 a Ogonek Capital PI 111 (Ox6f) Ox1fef 367 \<A,>
336 E e Caron Capital PI 112 (Ox70) Ox1ffO 368 \<Ev> v

337 C c Caron Capital PI 113 (Ox71) Ox1ffl 369 \<CV> ,
338 C c Acute Capital PI 114 (Ox72) Ox1ff2 370 \<C I>
339 v Caron Accent PI 115 (Ox73) Ox1ff3 371 \<-v>
340

~
e Ogonek Capital PI 116 (Ox74) Ox1ff4 372 \<E,>

341 u Overcircle Capital PI 117 (Ox75) Ox1ff5 373 \<UO>
" 342 D d Caron Capital Pll18 (Ox76) Ox1ff6 374 \<OV> ,

343 L I Acute Capital PI 119 (Ox77) Ox1ff7 375 \<L I> v

344 I I Caron Small PI 120 (Ox78) Ox 1 ffS 376 \<lv>
345 '" n Caron Small PI 121 (Ox79) Ox1ff9 377 \<nv> n
346 <t d Stroke Small PI 122 (Ox7a) Ox1ffa 378 \<d->
347

v
r Caron Small Pl123 (Ox7b) Ox1ffb 379 \<rv> r

348
,

s Acute Small PI 124 (Ox7 c) Ox1ffc 380 \<5 1 > s
349

0

Overcircle Accent PI 125 (Ox7 d) Ox1ffd 381 \<-0>
350 I Slash Small PI 126 (Ox7 e) Ox1ffe 382 \<1->
351

,
n Acute Small PI 127 (Ox7f) Ox1fff 383 \<n l > n

352
v

s Caron Small PI 128 (Ox80) Ox1e80 384 \<5V> s
v

353 L I Caron Capital PI 129 (Ox81) Ox1e81 385 \<Lv>
354 N n Caron Capital PI 130 (Ox82) Ox1e82 386 \<Nv>

Figure 5-7 (Part 3 of 7). Code Page PI

Miscellaneous Facilities 5-35

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

v
355 R r Caron Capital PI 131 (Ox83) Ox1e83 387 \<Rv> ,
356 S s Acute Capital PI 132 (Ox84) Ox1e84 388 \<SI>
357 Overdot Accent PI 133 (Ox85) Ox1e85 389 \<.>
358 Z z Overdot Small PI 134 (Ox86) Ox1e86 390 \<z.>
359 .;) Ogonek Accent PI 135 (Ox87) Ox1e87 391 \ <, , >
360 Z z Overdot Capital PI 136 (Ox88) Ox1e88 392 \<Z.>
361 v z Caron Small PI 137 (Ox89) Ox1e89 393 \<zv> z
362

/
Z Acute Small PI 138 (Ox8a) Ox1e8a 394 \<Zl> z v

363 Z z Caron Capital PI 139 (Ox8b) Ox1e8b 395 \<Zv> ,
364 Z z Acute Capital PI 140 (Ox8c) Ox1e8c 396 \<ZI>
365 L 1 Slash Capital PI 141 (Ox8d) Ox1e8d 397 \<L->

/

366 N n Acute Capital PI 142 (Ox8e) Ox1e8e 398 \<NI> v
367 S s Caron Capital PI 143 (Ox8f) Ox1e8f 399 \<Sv> v
368 t t Caron Small PI 144 (Ox90) Ox1e90 400 \<tv>
369

,
r Acute Small PI 145 (Ox91) Ox1e91 401 \<r l> r

370
H

o Double Acute Small PI 146 (Ox92) Ox1e92 402 \<0=> 0

371 H u Double Acute Small PI 147 (Ox93) Ox1e93 403 \<u=> u
v

372 T t Caron Capital PI 148 (Ox94) Ox1e94 404 \<Tv> /

373 R r Acute Capital PI 149 (Ox95) Ox1e95 405 \<RI>
" 31'4 0 o Double Acute Capital PI 150 (Ox96) Ox1e96 406 \<0=>
" 375 U u Double Acute Capital Pl151 (Ox97) Ox1e97 407 \<U=>

376
..,

a Breve Small PI 152 (Ox98) Ox1e98 408 \<au> a
377 v g Breve Small PI 153 (Ox99) Ox1e99 409 \<gu> g
378 i i Overdot Capital PI 154 (Ox9a) Ox1e9a 410 \<1.>,
379 A a Breve Capital PI 155 (Ox9b) Ox1e9b 411 \<Au> ...,
380 G g Breve Capital Pl156 (Ox9c) Ox1e9c 412 \<Gu>
381 v Breve Accent PI 157 (Ox9d) Ox1e9d 413 \<-u>
382 " Double Acute Accent Pl158 (Oxge) Ox1ege 414 \<-=>
383 ~ s Cedilla Small PI 159 (Ox9f) Ox1e9f 415 \<5,>
384 t Liter Symbol PI 160 (OxaO) Ox1eaO 416 \<1>
385 'n High Comma n Small PI 161 (Oxa1) Oxlea1 417 \<,n>
386 E] s Cedilla Capital PI 162 (Oxa2) Ox1ea2 418 \<S,>
387 Macron Accent Pl163 (Oxa3) Ox1ea3 419 \<-->
Figure 5-7 (Part 4 of 7). Code Page PI

5-36 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

388 t t Cedilla Small Pl164 (Oxa4) Ox1ea4 420 \<t,>
389 ~ t Cedilla Capital PI 165 (Oxa5) Oxlea5 421 \<T,>
390 a a Macron Small PI 166 (Oxa6) Ox1ea6 422 \<a->
391 A a Macron Capital Pl167 (Oxa7) Ox1ea7 423 \<A->
392 C c Circumflex Small PI 168 (Oxa8) Ox1ea8 424 \<C A> ,..
393 C c Circumflex Capital PI 169 (Oxa9) Ox1ea9 425 \<CA>
394

,
High Reverse Solidus PI 170 (Oxaa) Ox1eaa 426 \<\\>

395 c c Overdot Small PI 171 (Oxab) Ox1eab 427 \<C.>
396 C c Overdot Capital Pl172 (Oxac) Ox1eac 428 \<C.>
397 e e Overdot Small PI 173 (Oxad) Ox1ead 429 \<e.>
398 E e Overdot Capital Pl174 (Oxae) Ox1eae 430 \<E.>
399 e e Macron Small PI 175 (Oxaf) Ox1eaf 431 \<e->
400 E e Macron Capital Pl176 (OxbO) Ox1ebO 432 \<E->
401 /

g Acute Small PI 177 (Oxb1) Ox1eb1 433 \<gl> g
402 ~ g Circumflex Small PI 178 (Oxb2) Ox1eb2 434 \<gA>
403 G g Circumflex Capital PI 179 (Oxb3) Ox1eb3 435 \<GA>
404 g g Overdot Small PI 180 (Oxb4) Ox1eb4 436 \<g.>
405 G g Overdot Capital PI 181 (Oxb5) Ox1eb5 437 \<G.>
406 G g Cedilla Capital PI 182 (Oxb6) Ox1eb6 438 \<G,>
407 11 h Circumflex Small PI 183 (Oxb7) Ox1eb7 439 \<h A>
408 H h Circumflex Capital PI 184 (Oxb8) Ox1eb8 440 \<HA>
409 11 h Stroke Small PI 185 (Oxb9) Ox1eb9 441 \<h->
410 if h Stroke Capital PI 186 (Oxba) Ox1eba 442 \<H-> -411 1 i Tilde Small Pl187 (Oxbb) Ox1ebb 443 \<i->
412 I i Tilde Capital PI 188 (Oxbc) Ox1ebc 444 \<1->
413 1 i Macron Small PI 189 (Oxbd) Ox1ebd 445 \<i->
414 I i Macron Capital PI 190 (Oxbe) Ox1ebe 446 \<1->
415 i i Ogonek Small PI 191 (Oxbf) Ox1ebf 447 \<i,>
416 I i Ogonek Capital PI 192 (OxcO) Ox1ecO 448 \<1,>
417 :ij ij Ligature Small PI 193 (Oxc1) Ox1ec1 449 \<ij>
418 LJ IJ Ligature Capital PI 194 (Oxc2) Ox1ec2 450 \<IJ>

'" 419 i j Circumflex Small PI 195 (Oxc3) Ox1ec3 451 \<jA>
420 J j Circumflex Capital PI 196 (Oxc4) Oxlec4 452 \<JA>

Figure 5-7 (Part 5 of 7). Code Page PI

Miscellaneous Facilities 5-37

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

421 Is k Cedilla Small PI 197 (Oxe5) Oxlee5 453 \<k,>
422 J(k Cedilla Capital PI 198 (Oxe6) Oxlee6 454 \<K,>
423 K k Greenlandie Small PI 199 (Oxe7) Oxlee7 455 \<k>
424 1 1 Cedilla Small PI 200 (Oxe8) Oxlee8 456 \<1,>
425 ~ 1 Cedilla Capital PI 201 (Oxe9) Oxlee9 457 \<L,>
426 1· 1 Middle Dot Small PI 202 (Oxea) Oxleea 458 \<1.>
427 b 1 Middle Dot Capital PI 203 (Oxeb) Oxleeb 459 \<L.>
428 11 n Cedilla Small PI 204 (Oxee) Oxleee 460 \<n,>
429 ~ n Cedilla Capital PI 205 (Oxed) Oxleed 461 \<N,>
430 f) n Eng Lapp Small PI 206 (Oxee) Oxleee 462 \<nj>
431 r:> n Eng Lapp Capital PI 207 (Oxe£) Oxleef 463 \<Nj>
432 5 o Macron Small PI 208 (OxdO) OxledO 464 \<0->
433 5 o Macron Capital PI 209 (Oxdl) Oxledl 465 \<0->
434 re oe Ligature Small PI 210 (Oxd2) Oxled2 466 \<oe>
435 (E oe Ligature Capital PI 211 (Oxd3) Oxled3 467 \<OE>
436 r r Cedilla Small PI 212 (Oxd4) Oxled4 468 \<r,>
437 ~ r Cedilla Capital PI 213 (Oxd5) Oxled5 469 \<R,>
438 S s Circumflex Small PI 214 (Oxd6) Oxled6 470 \<S">
439 § s Cireumfl~x Capital PI 215 (Oxd7) Oxled7 471 \<S">
440 -t t Stroke Small PI 216 (Oxd8) Oxled8 472 \<t->
441 ~ t Stroke Capital PI 217 (Oxd9) Oxled9 473 \<T->
442 U u Tilde Small PI 218 (Oxda) Oxleda 474 \<u~>
443 U u Tilde Capital PI 219 (Oxdb) Oxledb 475 \<U~>
444 v u Breve Small PI 220 (Oxde) Oxlede 476 \<UU> u
445 U u Breve Capital PI 221 (Oxdd) Oxledd 477 \<UU>
446 ii u Macron Small PI 222 (Oxde) Oxlede 478 \<u->
447 U u Macron Capital PI 223 (Oxd£) Oxledf 479 \<U->
448 q u Ogonek Small PI 224 (OxeO) OxleeO 480 \<U,>
449 lJ u Ogonek Capital PI 225 (Oxel) Oxleel 481 \<U,>
450

,..
w Circumflex Small PI 226 (Oxe2) Oxlee2 482 \<W"> w ,..

451 W w Circumflex Capital PI 227 (Oxe3) Oxlee3 483 \<W">
452 ~ Y Circumflex Small PI 228 (Oxe4) Oxlee4 484 \<yA>
453 y y Circumflex Capital PI 229 (Oxe5) Oxlee5 485 \<VA>

Figure 5-7 (Part 6 of 7). Code Page PI

5-38 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

454 y y Umlaut Capital PI 230 (Oxe6) Oxlee6 486 \<Y II >
455 © Copyright Symbol PI 231 (Oxe7) Oxlee7 487 \<cO>
456 Superscript One PI 232 (Oxe8) Oxlee8 488 \<Al>
457 TM Trademark Symbol PI 233 (Oxe9) Oxlee9 489 \<tm>
458 Va One Eighth PI 234 (Oxea) Oxleea 490 \<18>
459 % Three Eights PI 235 (Oxeb) Oxleeb 491 \<38>
460 % Five Eighths PI 236 (Oxec) Oxleec 492 \<58>
461 7/8 Seven Eighths PI 237 (Oxed) Oxleed 493 \<78>
462 x Multiplication Sign PI 238 (Oxee) Oxleee 494 \<x>
463 Right Single Quote PI 239 (Oxef) Oxleef 495 \<'>
464 " Left Double Quote PI 240 (OxfO) OxlefO 496 \<">
465 " Right Double Quote PI 241 (Oxfl) Oxlefl 497 \<' '>
466 Equal Sign Superscript PI 242 (Oxf2) Oxlef2 498 \<A=>
467 Minus Sign Superscript PI 243 (Oxf3) Oxlef3 499 \<"->
468 + Plus Sign Superscript PI 244 (Oxf4) Oxlef4 500 \<A+>
469 00 Infinity symbol Superscript PI 245 (Oxf5) Oxlef5 501 \<8 A>
470 II Pi Symbol Superscript PI 246 (Oxf6) Oxlef6 502 \<Ap>
471 A Delta Symbol Superscript PI 247 (Oxf7) Oxlef7 503 \<Ad>
472 Right Arrow Superscript PI 248 (OxfS) OxlefS 504 \<A}>
473 I Slash Superscript PI 249 (Oxf9) Oxlef9 505 \<A/>
474 t Dagger PI 250 (Oxfa) Oxlefa 506 \<1+>
475 < Left Angle Superscript PI 251 (Oxfb) Oxlefb 507 \<A [>
476 > Right Angle Superscript PI 252 (Oxfc) Oxlefc 508 \<A]>
477 ~ Prescription Symbol PI 253 (Oxfd) Oxlefd 509 \<Rx>
478 E 'Is Not An Element' Symbol PI 254 (Oxfe) Oxlefe 510 \<e/>
479 'Therefore' Symbol PI 255 (Oxff) Oxleff 511 \<: . >
Figure 5-7 (Part 7 of 7). Code Page PI

Miscellaneous Facilities 5-39

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

480 /' Increase P2 32 (Ox20) OxldaO 544 \</">
481 ~ Decrease P2 33 (Ox2l) Oxldal 545 \<" v>
482 :I: Double Dagger P2 34 (Ox22) Oxlda2 546 \<++>
483 i:- N ot Equal Symbol P2 35 (Ox23) Oxlda3 547 \</=>
484 v OR Symbol P2 36 (Ox24) Oxlda4 548 \<v>
485 /\ AND Symbol P2 37 (Ox25) Oxlda5 549 \<">
486 II Parallel P2 38 (Ox26) Oxlda6 550 \< II >
487 L Angle Symbol P2 39 (Ox27) Oxlda7 551 \</->
488 < Left Angle Bracket P2 40 (Ox28) Ox1da8 552 \<{>
489 > Right Angle Bracket P2 41 (Ox29) Oxlda9 553 \<}>
490 =F Minus Or Plus Sign P2 42 (Ox2a) Oxldaa 554 \<-+>
491 D Lozenge P2 43 (Ox2b) Oxldab 555 \<{}>
492 Minutes Symbol P2 44 (Ox2c) Oxldac 556 \<1>
493 S Integral Symbol P2 45 (Ox2d) Ox1dad 557 \<S>
494 U Union P2 46 (Ox2e) Ox1dae 558 \<u>
495 c 'Is Included In' Symbol P2 47 (Ox2f) Oxldaf 559 \«->
496 :::) 'Includes' Symbol P2 48 (Ox30) OxldbO 560 \<-»
497 (B Circle Plus, Closed Sum P2 49 (Ox31) Ox1db1 561 \<0+>
498 L Right Angle Symbol P2 50 (Ox32) Oxldb2 562 \<L>
499 ~ Circle Multiply P2 51 (Ox33) Ox1db3 563 \<Ox>
500 II Seconds Symbol P2 52 (Ox34) Oxldb4 564 \<">
501 Double Overline P2 53 (Ox35) Ox1db5 565 \<=">
502 'l' Psi Small P2 54 (Ox36) Oxldb6 566 \<&y>
503 E Epsilon Small P2 55 (Ox37) Ox1db7 567 \<&e>
504 A Lambda Small P2 56 (Ox38) Oxldb8 568 \<&1>
505 11 Eta Small P2 57 (Ox39) Oxldb9 569 \<&h>
506 1 Iota Small P2 58 (Ox3a) Ox1dba 570 \<&i>
507 (Upper Left Parenthesis Section P2 59 (Ox3b) Ox1dbb 571 \<,,(>
508 l Lower Left Parenthesis Section P2 60 (Ox3c) Oxldbc 572 \<v(>
509 0/00 Permille Symbol P2 61 (Ox3d) Ox1dbd 573 \<%%>
510 9 Theta Small P2 62 (Ox3e) Oxldbe 574 \<&&>
511 K Kappa Small P2 63 (Ox3f) Oxldbf 575 \<&k>
512 (0 Omega Small P2 64 (Ox40) OxldcO 576 \<&w>
Figure 5-8 (Part 1 of 5). Code Page P2

5-40 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

513 v Nu Small P265 (Ox41) Ox1dc1 577 \<&n>
514 0 Omicron Small P2 66 (Ox42) Ox1dc2 578 \<&0>
515 p Rho Small P2 67 (Ox43) Ox1dc3 579 \<&r>
516 y Gamma Small P2 68 (Ox44) Ox1dc4 580 \<&g>
517 e Theta Small P2 69 (Ox45) Ox1dc5 581 \<&q>
518 1 Upper Right Parenthesis Section P2 70 (Ox46) Ox1dc6 582 \<,,»
519) Lower Right Parenthesis Section P2 71 (Ox47) Ox1dc7 583 \<v»
520 '" 'Congruent To' Symbol P2 72 (Ox48) Ox1dc8 584 \<~=>
521 ~ Xi Small P2 73 (Ox49) Ox1dc9 585 \<&x>
522 X Chi Small P2 74 (Ox4a) Ox1dca 586 \<&c>
523 u Upsilon Small P2 75 (Ox4b) Ox1dcb 587 \<&u>
524 ~ Zeta Small P2 76 (Ox4c) Ox1dcc 588 \<&z>
525 J Lower Right/Upper Left Brace Section P2 77 (Ox4d) Ox1dcd 589 \< II>
526 1 Upper Right/Lower Left Brace Section P2 78 (Ox4e) Ox1dce 590 \<' I >
527 0 Zero Subscript P2 79 (Ox4f) Ox1dcf 591 \<vO>
528 One Subscript P2 80 (Ox50) Ox1ddO 592 \<vI>
529 2 Two Subscript P2 81 (Ox51) Ox1dd1 593 \<v2>
530 3 Three Subscript P2 82 (Ox52) Ox1dd2 594 \<v3>
531 4 Four Subscript P2 83 (Ox53) Ox1dd3 595 \<v4>
532 5 Five Subscript P2 84 (Ox54) Ox1dd4 596 \<v5>
533 6 Six Subscript P2 85 (Ox55) Ox1dd5 597 \<v6>
534 7 Seven Subscript P2 86 (Ox56) Ox1dd6 598 \<v7>
535 8 Eight Subscript P2 87 (Ox57) Ox1dd7 599 \<v8>
536 9 Nine Subscript P2 88 (Ox58) Ox1dd8 600 \<v9>
537 .1 Perpendicular P2 89 (Ox59) Ox1dd9 601 \<1->
538 Q Total Symbol P2 90 (Ox5a) Ox1dda 602 \<-">
539 '¥ Psi Capital P2 91 (Ox5b) Ox1ddb 603 \<&y>
540 II Pi Capital P2 92 (Ox5c) Ox1ddc 604 \<&P>
541 A Lambda Capital P2 93 (Ox5d) Ox1ddd 60!) \<&L>
542 • Bottle Symbol P2 94 (Ox5e) Ox1dde 606 \<db>
543 n Substitute Blank P2 95 (Ox5f) Ox1ddf 607 \
544 a Partial Differential Symbol P2 96 (Ox60) Ox1deO 608 \<d>
545 \.. Sine Symbol P2 97 (Ox61) Ox1de1 609 \<-->
Figure 5-8 (Part 2 of 5). Code Page P2

Miscellaneous Facilities 5-41

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

546 0 Open Square P2 98 (Ox62) Ox1de2 610 \<[->
547 • Solid Square P2 99 (Ox63) Ox1de3 611 \<[#>
548 0 Slash Square P2 100 (Ox64) Ox1de4 612 \<[/>
549 \" Upper Summation Section P2 101 (Ox65) Ox1de5 613 \<"S>
550 L Lower Summation Section P2 102 (Ox66) Ox1de6 614 \<vS>
551 Xi Capital P2 103 (Ox67) Ox1de7 615 \<&X>
552 ex 'Proportional To' Symbol P2 104 (Ox68) Ox1de8 616 \<0(>
553 A Delta Capital P2 105 (Ox69) Ox1de9 617 \<&0>
554 y Upsilon Capital P2 106 (Ox6a) Ox1dea 618 \<&U>
555 ~ , Approximately Equal To' Symbol P2 107 (Ox6b) Ox1deb 619 \<-->
556 Cycle Symbol, 'Equivalent To' Symbol P2 108 (Ox6c) Ox1dec 620 \<->
557 0 Zero Superscript P2 109 (Ox6d) Ox1ded 621 \<"0>
558 4 Four Superscript P2 110 (Ox6e) Ox1dee 622 \<"4>
559 5 Five Superscript P2 111 (Ox6f) Ox1def 623 \<"5>
560 6 Six Superscript P2 112 (Ox70) Ox1dfD 624 \<"6>
561 Seven Superscript P2 113 (Ox71) Ox1dfl 625 \<"7>
562 8 Eight Superscript P2 114 (Ox72) Ox1df2 626 \<"8>
563 9 Nine Superscript P2 115 (Ox73) Ox1df3 627 \<"9>
564 0 Zero Slash P2 116 (Ox74) Ox1df4 628 \<0/>
565 R Paseta Sign P2 117 (Ox75) Ox1df5 629 \<Pt>
566 r Flipped Logical Not P2 118 (Ox76) Ox1df6 630 \<.->
567 =1 Right Side Middle - Double Horizontal P2 119 (Ox77) Ox1df7 631 \<H6>
568 -11 Right Side Middle - Double Vertical P2 120 (Ox78) Ox1df8 632 \<V6>
569 11 Upper Right Corner - Double Vertical P2 121 (Ox79) Ox1df9 633 \<V9>
570 =, Upper Right Corner - Double Hor. P2 122 (Ox7a) Ox1dfa 634 \<H9>
571 JJ Lower Right Corner - Double Vertical P2 123 (Ox7b) Ox1dfb 635 \<V3>
572 d Lower Right Corner - Double Hor. P2 124 (Ox7c) Ox1dfc 636 \<H3>
573 1= Left Side Middle - Double Horizontal P2 125 (Ox7 d) Ox1dfd 637 \<H4>
574 If- Left Side Middle - Double Vertical P2 126 (Ox7 e) Ox1dfe 638 \<V4>
575 --L Bottom Side Middle - Double Horizontal P2 127 (Ox7f) Ox1dff 639 \<H2>
576 JL Bottom Side Middle - Double Vertical P2 128 (Ox80) Ox1c80 640 \<V2>
577 -,- Top Side Middle - Double Horizontal P2 129 (Ox81) Ox1c81 641 \<H8>
578 lL Lower Left Corner - Double Vertical P2 130 (Ox82) Ox1c82 642 \<VI>

Figure 5-8 (Part 3 of 5). Code Page P2

5-42 AIX Operating System Technical Reference

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

579 b Lower Left Corner - Double Hor. P2 131 (Ox83) Ox1c83 643 \<HI>
580 F Upper Left Corner - Double Hor. P2 132 (Ox84) Ox1c84 644 \<H7>
581 rr Upper Left Corner - Double Vertical P2 133 (Ox85) Ox1c85 645 \<V7>
582 -it- Intersection - Double Vertical P2 134 (Ox86) Ox1c86 646 \<V5>
583 ~ Intersection - Double Horizontal P2 135 (Ox87) Ox1c87 647 \<H5>
584 • Bright Character Cell - Left Half P2 136 (Ox88) Ox1c88 648 \<84>
585 • Bright Character Cell - Right Half P2 137 (Ox89) Ox3c89 649 \<86>
586 a Alpha Small P2 138 (Ox8a) Ox1c8a 650 \<&a>
587 ~ Beta Small P2 139 (Ox8b) Ox1c8b 651 \<&b>
588 r Gamma Capital P2 140 (Ox8c) Ox1c8c 652 \<&G>
589 11: Pi Small P2 141 (Ox8d) Ox1c8d 653 \<&p>
590 L Sigma Capital/Summation Sign P2 142 (Ox8e) Ox1c8e 654 \<&5>
591 IT Sigma Small P2 143 (Ox8f) Ox1c8f 655 \<&5>
592 't Tau Small P2 144 (Ox90) Ox1c90 656 \<&t>
593 <I> Phi Capital P2 145 (Ox91) Ox1c91 657 \<&F>
594 0 Theta Capital P2 146 (Ox92) Ox1c92 658 \<&Q>
595 n Omega Capital/Ohm Sign P2 147 (Ox93) Ox1c93 659 \<&W>
596 8 Delta Small P2 148 (Ox94) Ox1c94 660 \<&d>
597 ro Infinity P2 149 (Ox95) Ox1c95 661 \<8>
598 <p Phi Small P2 150 (Ox96) Ox1c96 662 \<&f>
599 E 'Is An Element or Symbol P2 151 (Ox97) Ox1c97 663 \<e>
600 n Intersection P2 152 (Ox98) Ox1c98 664 \<n>
601 Identity Symbol P2 153 (Ox99) Ox1c99 665 \<==>
602 ~ 'Greater Than or Equal To' Symbol P2 154 (Ox9a) Ox1c9a 666 \<}=>
603 ::; 'Less Than or Equal To' Symbol P2 155 (Ox9b) Ox1c9b 667 \<{=>
604 r Upper Integral Section P2 156 (Ox9c) Ox1c9c 668 \<AI>
605) Lower Integral Section P2 157 (Ox9d) Ox1c9d 669 \<vI>
606 ~ Double Equivalent P2 158 (Oxge) Ox1cge 670 \<=->
607 Solid Overcircle P2 159 (Ox9f) Ox1c9f 671 \<#0>
608 " Radical Symbol, Square Root P2 160 (OxaO) Ox1caO 672 \<v->
609 Ir Top Side Middle - Double Vertical P2 161 (Oxa1) Ox1ca1 673 \<V8>
610 n Superscript n P2 162 (Oxa2) Ox1ca2 674 \<An>
611 Numeric Space P2 163 (Oxa3) Ox1ca3 675 \<0->
Figure 5-8 (Part 4 of 5). Code Page P2

Miscellaneous Facilities 5-43

display symbols

Font Code Page char NLchar NCesc
Position Character Code Point String Value Esc Seq

P2 164 (Oxa4) Oxlca4 676 \<-»
P2 165 (Oxa5) Oxlca5 677 \<-u>

612 <l Center Line
613 U Counter Bore
614 V Counter Sink P2 166 (Oxa6) Oxlca6 678 \<Iv>
615 T Depth P2 167 (Oxa7) Oxlca7 679 \<'v>
616 " Diameter P2 168 (Oxa8) Oxlca8 680 \<-=>
Figure 5-8 (Part 5 of 5). Code Page P2

Related Information

In this book: "conv" on page 3-39, "NLchar" on page 3-276, "NLescstr, NLunescstr,
NLflatstr" on page 3-278, "fonts" on page 4-68, "data stream" on page 5-5, "hft" on
page 6-23, and "keyboard" on page 6-78.

Keyboard Description and Character Reference.

5-44 AIX Operating System Technical Reference

ebcdic

ebcdic

Purpose

Maps the EBCDIC character set.

Synopsis

cat /usr/pub/ebcdic

Description

In the following table columns correspond to the high-order hexadecimal digits and rows
correspond to low-order hexadecimal digits. The cells contain equivalent hexadecimal
ASCII values, the symbols, and mnemonics common to EBCDIC and ASCII. Exceptions are
flagged in the following table by (1) through (8):

0_ 1 _
_ 0 00 nul 10

1 01 soh 11
_2 02 stx 12
_3 03 etx 13
_4 9C pf 9D
_5 09 ht 85
_6 86 Ie 08
_7 7F del 87
_8 97 18
_9 8D 19
_A 8E smm 92
_B OB vt 8F
_C OC ff 1C
_D OD er 1 D
_E OE so 1 E
_F OF si 1 F

die
de1
de2
(1)

2_
80 ds
81 sos
82 fs
83

res 84 byp
nl OA If
bs 17 etb
il 1 B esc
can 88
em 89

sm

3_
90
91
16 syn
93
94 pn
95 rs
96 ue
04 eat
98
99
9A ce

cu1
(2)
(3)
(4)
(5)

8A
8B
8C
05
06
07

cu2 9B cu3
14 dc4

enq 15 nak
aek 9E
bel 1A sub

4_

20 sp
AO
A1
A2
A3
A4
A5
A6
A7
A8
D5
2E .
3C <
28 (
2B +
7C 1(6)

5_ 6_

26 & 2D
A9 2F /
AA B2
AB B3
AC B4
AD B5
AE B6
AF B7
BO B8
B1 B9
21 CB
24 $ 2C ,
2A * 25 %
29 5F
3B ; 3E >
7E ... (7) 3F ?

Figure 5-9 (Part 1 of 2). EBCDIC Character Set

7_
BA
BB
BC
BD
BE
BF
CO
C1
C2
60 '
3A
23 #
40 0

27 '
3D =
22 "

Miscellaneous Facilities 5-45

ebcdic

8_ 9 - A_ B_ C_ D - E_ F_
_0 C3 CA 01 D8 7B { 7D } 5C \ 30 0 _1 61 a 6A j E5 D9 41 A 4A J 9F 31 1
_2 62 b 6B k 73 s DA 42 B 4B K 53 S 32 2
_3 63 c 6C I 74 t DB 43 C 4C L 54 T 33 3
_4 64 d 60 m 75 u DC 44 D 4D M 55 U 34 4
_5 65 e 6E n 76 v DD 45 E 4E N 56 V 35 5
_6 66 f 6F 0 77 w DE 46 F 4F 0 57 W 36 6
_7 67 9 70 P 78 x DF 47 G 50 P 58 X 37 7
_8 68 h 71 q 79 y EO 48 H 51 Q 59 Y 38 8
_9 69 i 72 r 7A z E1 49 I 52 R 5A Z 39 9
_A C4 5E A(8) 02 E2 E8 EE F4 FA
_B C5 CC 03 E3 E9 EF F5 FB
_C C6 CO 04 E4 EA FO F6 FC
_D C7 CE 5B 5D EB F1 F7 FD
_E C8 CF 06 E6 EC F2 F8 FE
_F C9 DO 07 E7 ED F3 F9 FF

Figure 5-9 (Part 2 of 2). EBCDIC Character Set

EBCDIC ASCII
(1) 13 tm 13 dc3
(2) lC ifs lC fs
(3) ID igs ID gs
(4) IE irs IE rs
(5) IF ius IF us
(6) 4F I 7C I
(7) 5F -, 7E -
(8) 9A 5E A

File

/usr/pub/ebcdic

Related Information

The dd command in AIX Operating System Commands Reference.

5-46 AIX Operating System Technical Reference

environment

Purpose

Describes the user environment.

Synopsis

Basic Environment
HOME = path name of home directory
PATH = directory search sequence
TERM = terminal type
TZ = time zone information

International Character Support Environment
NLFILE = path name of environment file
NLCTAB=path name of collating tables
NLLANG = language name

NLCURSYM = currency symbol
NLNUMSEP = triad and decimal separators

NLLDA Y = long day names
NLLMONTH = long month names
NLSDA Y = short day names
NLSMONTH = short month names
NLTMISC = miscellaneous time strings
NLTSTRS = relative time names
NLTUNITS = time unit names

NLDATE=short date format
NLLDATE = long date format
NLTIME = time format

environment

Miscellaneous Facilities 5-47

environment

Description

When a new process begins, the exec system call makes an array of strings available that
have the form name = value. This array of strings is called the environment. Each name
defined by one of the strings is called an environment variable or shell variable.

When using the sh command interpreter, additional names can be placed in the
environment with the export or env command, or by adding a name = value prefix to any
other command. See the sh command in AIX Operating System Commands Reference for
more information about setting environment variables with shell commands.

Within a program, the getenv subroutine can be used to search the environment for the
value of a given variable. The exec system call allows the entire environment to be set at
one time, usually for anew ly started child process.

When creating new environment variables, assure that their names do not conflict with
those of standard variables used by the shell and other programs, such as MAIL, PSI, PS2,
and IFS.

The Basic Environment

When you log in, a number of environment variables are automatically set by the system
before running your login profile, .profile. These variables make up the basic
environment:

HOME

PATH

TERM

TZ

The full path name of the user's login or home directory. The login program
sets this to the name specified in the /etc/passwd file.

The sequence of directories that commands such as sh, time, nice, and nohup
search when looking for a command whose path name is incomplete. The
directory names are separated by colons. PATH is set by the system login
profile, /etc/profile.

The type of terminal for which output is to be prepared. Commands such as
mm and tplot use this information to manipulate special capabilities, if any, of
that terminal. The curses, extended curses, and terminfo subroutines also
use the value of TERM. For asynchronous terminals, TERM is set by the getty
command to a value defined in /etc/ports. For the RT PC console, TERM is
set using the termdef subroutine.

Time zone information. TZ is set in the system login profile, /etc/profile.

The fields of TZ are separated by colons. The first field has three subfields, lel,
n, and dst. If they are not supplied, the defaults for the U .8.A. Eastern
Standard (and Daylight Savings) Time Zone are used.

The additional fields of TZ specify when daylight savings time begins and ends.
If these fields are not supplied, U.S.A. rules for daylight savings time apply.
Daylight savings time specifications apply to all years, and may require

5-48 AIX Operating System Technical Reference

environment

adjustment from year to year in locations where the start of daylight savings
time varies.

TZ is represented in the format:

Ie Indst[: bgn:end :ehgwd :ehg hr:ehgamt]

where

Iel Is the standard local time zone abbreviation. This name must be nine
bytes or fewer, and cannot contain periods, colons, or hyphens. To be
compatibile with other operating systems, this name should be three
bytes.

n Is the difference in local time from GMT in hours (a number from -12
to 12), optionally followed by a period and a number of minutes.
Negative differences are for locations east of Greenwich. To be
compatibile with other operating systems, this difference should not
contain minutes.

dst Is the abbreviation for the local daylight savings time zone, if any.
This name must be nine bytes or fewer, and cannot contain periods,
colons, or hyphens. To be compatibile with other operating systems,
this name should be three bytes long.

bgn Is the beginning day of daylight savings time, if any. This number is
the Julian value, or number of days into the year. The value is
specified for a non-leap year and adjusted as necessary for leap years.

end Is the ending day (Julian) of daylight savings time, if any. If the
value of end is smaller than the value of bgn, daylight savings time
crosses the new year, as is the practice in the Southern Hemisphere.

chgwd Is the weekday of the change to daylight savings time, if any. Values
range from 1 to 7, with 1 representing Monday and 7 representing
Sunday. This value specifies that daylight savings time begins and
ends on the first named weekday before the Julian dates specified by
bgn and end. (For example, you could specify the last Saturday in
October.) If the value of this field is 0 or not entered, the exact
Julian date given is used (corrected for leap year where necessary).

ehghr Is the hour of the change to daylight savings time, if any (number of
elapsed hours in the day, optionally followed by a period and a
number of minutes).

chgamt Is the amount of the change to daylight savings time. This value is
specified by an optionally signed number of minutes, optionally
followed by a period and a number of minutes. That is, [-]hh[.mm].

For example, a TZ string for Lord Howe Island, Australia in 1985-86 might be:

AusLHIst-lO.30AusLHldt:300:60::2:0.30

Miscellaneous Facilities 5-49

environment

International Character Support Environment
A special set of environment variables defines the international character support
configuration. These environment variables locate configuration information and tailor
input and output forms of dates, times, and monetary sums according to "national" or local
requirements. If an environment variable value for international character support
contains blanks, the value appear in quotes and blanks cannot separate the equals sign
from the variable name or the value.

Environment variables for international character support are specified in the process
environment using ordinary shell environment variables, or in the text file whose path
name is specified by the shell environment variable NLFILE. Values specified in the
process environment take precedence over values specified in NLFILE. If a given
environment variable is not set either in the process environment or in NLFILE, or if a
specified value is the null string, a default value is used.

The NLgetenv subroutine provides a program with a method to retrieve a value associated
with an international character support environment variable.

Environment variables that establish the local environment vocabulary specification
consist of a sequence of strings separated by colons. The set of conventions being used is
identified by the value of NLLANG. Each string must be a translation of the U.S. English
name or symbol used in the defaults, in exactly the same order.

The NLDATE, NLLDATE, and NLTIME variables are format strings that can be
specified as simple format strings or as NLstrtime format strings. These strings are
arbitrary, but can not begin with an * (asterisk). When the patterns listed in the following
table appear in a simple format string, NLgetenv substitutes the appropriate part of the
date or time.·

Pattern Meaning

DD
MM
yy
yyyy
mon
month
hh
mm
ss
aa

Numeric day of the month
Numeric month
Numeric year (two digits)
Numeric year (four digits)
Month specified by NL8MONTH
Month specified by NL8MONTH
Numeric hour
Numeric minutes
Numeric seconds
Numeric AM/PM indicator

5-50 AIX Operating System Technical Reference

Replacement

%d
%m
%y
%y
%h
%lh
%H
%M
%8
%p

environment

Characters that are not part of replacement patterns are not translated. These are some
examples of simple format strings:

man DO, YYYY
MM/DD/YY
DD.MM.YY
YYYY-MM-DD

hh.mm
hh:mm:ss
hh:mm aa

DO month YY
Format strings of the style of NLstrtime follow the same form as the format parameter of
NLstrtime, except that the string must be preceded by an asterisk and it cannot contain
the formats %D, %sD, %lD, %T, %sT, or %r. The asterisk is not translated and does not
become part of the result.

The environment variables are described as follows:

NLCTAB

NLCURSYM

NLDATE

NLFILE

NLLANG

NLLDATE

NLLDAY

The path name of the file containing tables that define the current
collating sequence, as produced by the ctab command. The default path
name IS:

/etc/nls/ctab/default
The currency symbol name and placement. The default value is:

. $. L· ...
The environment format string specifying the short form of the date. This
format is used by NLstrtime when the format %D is encountered. The
default is:

MM/DD/YY
The path name of a file containing other environment variable definitions
for international character support. NLFILE cannot be defined within a
file that is identifed by another NLFILE definition. There is no default
path name.

The environment language label for the set of variables and environment
format strings used for language conventions. The default value is:

u.s.english
The environment format string specifying the long form of the date. This
form is used by NLstrtime when the formats %lD or %sD are
encountered. The default long date format string is:

man DO, YYYY
The full (long) names for the days of the week. The default value is:

Sunday:Monday:Tuesday:Wednesday:Thursday:Friday:Saturday

Miscellaneous Facilities 5-51

environment

NLLMONTH The full (long) names for the months of the year. The default value is:

NLNUMSEP

NLSDAY

January:February:March:April:May:June:July:\
August:September:October: November: December
The numeric triad and decimal separators. The first of the two separators
is the triad separator, which is used to separate groups of three digits in
decimal values. The default value for NLNUMSEP is:

. , ...
The short names of the days of the week. N ames should be the same
length, and of 5 or fewer characters. The default short name string is:

Sun:Mon:Tue:Wed:Thu:Fri:Sat
NLSMONTH The short names of the months of the year. Names should be the same

length, and of 5 or fewer characters. The default value is:

NLTIME

NLTMISC

NLTSTRS

NLTUNITS

Jan:Feb:Mar:Apr:May:Jun:Jul:Aug:Sep:Oct:Nov:Dec
The environment format string specifying the format of the time, that is
used by NLstrtime when the formats %T, %sT, or %r are encountered.
The default time format string is:

hh:mm:ss
Miscellaneous strings needed for input and output of date and time
specifications. The default miscellaneous string value is:

at:each:every:on:through:am:pm
The relative or informal names needed for input of date and time
specifications to the remind and at commands (see the remind and at
commands in AIX Operating System Commands Reference). The default
informal time string value is:

now:yesterday:tomorrow:noon:midnight:next:weekdays:weekend
The singular and plural forms for all names of units of time, used for
input of date specifications to the at command. The default string value
for units of time is:

minute:minutes:hour:hours:day:days:week:weeks:month:months:year:years

5-52 AIX Operating System Technical Reference

Files

/etc/environment

/etc/profile

$HOME/.profile

/etc/nls/ctab/default

environment

Sets the basic environment for all processes.

Allows variables to be added to the environment by the shell.

Sets the environment for a specific user's needs.

Sets the international character support environment.

Related Information

In this book: "exec: execl, execv, execle, execve, execlp, execvp" on page 2-34, "getenv,
NLgetenv" on page 3-208, "NLstrtime" on page 3-288, "NLtmtime" on page 3-291,
"termdef' on page 3-352, "passwd" on page 4-112, "profile" on page 4-127, and "TERM" on
page 5-72.

The ctab, env, export, login, and sh commands in AIX Operating System Commands
Reference.

"Overview of International Character Support" in IBM RT PC Managing the AIX
Operating System.

Miscellaneous Facilities 5-53

eqnchar

eqnchar

Purpose

Identifies special character definitions for eqn and neqn formatters.

Synopsis

eqn /usr/pub/eqnchar [files] I troff [options]
neqn /usr/pub/eqnchar [files] I nroff [options]

Description

The eqnchar file contains troff and nroff character definitions used to construct special
scientific symbols. These definitions are primarily intended to be used with the eqn and
neqn formatters. The eqnchar file contains definitions for the following characters:

ciplus lB II II square 0
citimes ~ lang Ie

f circle 0

wig rangle blot • -wig ~ ppd .L bullet •
>wig ~ hbar 1'i prop cr
<wig ~ <-> ~ empty Rf
=wig ~ <=> <=> member €

star * 1< t nomem t
bigstar * I> cup u

=dot - ang L cap n
orsign v rang L incl S.
andsign 1\ 3dot subset c
=del ~ thf .. supset :)

oppA V quarter 1/4 !subset £
oppE 3 3quarter 3/4 !supset ~
angstrom A degree scrL
==< ~ ==> ~

Figure 5-10. The eqnchar Characters

5-54 AIX Operating System Technical Reference

. ~
J

File

/usr/pub/eqnchar

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
eqnchar

The eqn, nroff, and troff commands in AIX Operating System Commands Reference .

Miscellaneous Facilities 5-55

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fcntl.h

fcntl.h

Purpose

Defines file control options.

Synopsis

#include < fcntl.h >

Description

The fcntl.h header file defines the values that can be specified for the cmd and arg
parameters of the fcntl system call, and for the of lag parameter of the open system call.

/* Flag values accessible to open and fcntl */
/* The first three can only be set by open */

/* Non-blocking I/O */

#define O-RDONLY 0
#define O-WRONLY 1
#define O-RDWR 2
#define O_NDELAY 04
#define O-APPEND 010 /* (Ox08) append (writes guaranteed */

/* at the end) */

/* Flag values accessible only to open */
#define O-CREAT 00400 /* (Ox0100) open with

/*
#define O-TRUNC 01000 /* (Ox0200) open with
#define O-EXCL 02000 /* (Ox0400) exclusive

/* fcntl requests */
#define F-DUPFD 0
#define F_GETFD 1
#define F-SETFD 2
#define F_GETFL 3
#define F-SETFL 4

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */

5-56 AIX Operating System Technical Reference

create (uses third */
open arg) */

truncation */
open */

(

/
\

)

File

#define F-GETLK 5
#define F-SETLK 6
#define F-SETLKW 7

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fcntl.h

/* Get file lock */
/* Set file lock */
/* Set file lock and wait */

/* file segment locking set data type - information passed to */
/* system by user */

struct flock {

};

short l-type;
short l-whence;
long l-start;
long l-len; /* len = 0 means until end of file */
unsigned long l-sysid;
short l-pid;

/* file segment locking types */
#define F-RDLCK 01 /* Read lock */
#define F-WRLCK 02 /* Write lock */
#define F-UNLCK 03 /* Remove lock(s) */

/usr /include/fcntl.h

Related Information

In this book: "fentl" on page 2-44 and "open" on page 2-90.

Miscellaneous Facilities 5-56.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fullstat.h

I fullstat.h

I Purpose

Defines the data structure returned by the fullstat system call.

I Synopsis

#include < sys/fullstat.h >

I Description

The fullstat.h header file defines the data structure that is returned by the fullstat and
ffullstat system calls. This file also defines the cmd arguments that are used by fullstat
and ffullstat.

struct fullstat
{

/* Beginning of stat block replica ... */
dev-t st-dev; /* ID of device containing */

ino-t
ushort
short
ushort
ushort
dev-t

time_t
time-t
time-t

st-ino;
st-mode;
st-nlink;
st_uid;
st-gid;
st-rdev;

st-size;
st-atime;
st-mtime;
st-ctime;

/* a directory entry for this file */
/* File serial + device uniquely */
/* identifies the file within the system */
/* File serial number */
/* File mode; see #defines below */
/* Number of links to file */
/* User ID of the owner of the file */
/* Group ID of the file group */
/* ID of this device */
/* This entry is defined only for */
/* character or block special files */
/* File size in bytes */
/* Time of last access */
/* Time of last data modification */
/* Time of last file status change */
/* Time measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

/* ... End of stat block replica */

5-56.2 AIX Operating System Technical Reference

(

'\
)

I File

};

TNL SN20-9869 (26 June 1987) to SC23-0809-0
fullstat.h

ushort fst-uid_raw; /* Untranslated uid of the fi 1 e */
ushort fst-gid-raw; /* Untranslated gid of the fi 1 e */
vtype fst-type; /* Vnode type */
tagtype fst-uid-rev-tag; /* uid translation tag */
tagtype fst-gid_rev-tag; /* gid translation tag */
short * fst-other-gid-list; /* Pointer to first group IO on */

/* alternate concurrent group list */
short fst-other-gid-count; /* Number of group IDs on */

/* alternate concurrent group list */
long fst-vfs; /* Virtual file system IO */
long fst-nid; /* Node id where the file resides */
int fst-flag; /* Indicates whether directory or */

/* file is a virtual mount point */
long fst-i-gen; /* Inode generation number */
long fs t-reserved[8]; /* Reserved */

/* Oefi nes for fullstat or ffullstat cmd argument * /
#define FL-STAT OxO /* Fullstat */
#define FL-STAT_REV Oxl /* Fullstat with uid/gid */

/* reverse mapping */
#define FL-STAT-OTHER Ox2 /* Reverse mapping, "biased" */

/* toward another uid/gid */
/* Defines to tell whether a file or directory is mounted upon */
#define FS-VMP Oxl /* Virtual mount point */

/usr/include/sys/fullstat.h

I Related Information

In this book: "fullstat, ffullstat" on page 2-50.2 and "types.h" on page 5-75.

Miscellaneous Facilities 5-57

TNL SN20-9869 (26 June 1987) to SC23-0809-0
greek

greek

Purpose

Maps Greek characters.

Purpose

cat /usr/pub/greek [I greek -Tterminal]

Description

The /usr/pub/greek file shows the mapping from ASCII characters to the "shift-out"
graphics in effect between SO and SI on TELETYPE Model 37 work stations equipped
with an extended (128) character set. These codes are the default Greek characters
produced by the nroff command. Use the greek command to translate these characters for
display on other work stations. The file contains:

alpha a A beta ~ B gamma 'Y \
GAMMA r G delta 8 D DELTA A W
epsilon E S zeta ~ Q eta 11 N
THETA 0 T theta e 0 lambda A L
LAMBDA A E mu Jl M nu v @

xi ~ X pi 1t J PI IT P
rho p K sigma a y SIGMA L R
tau 't I phi <p U PHI <I> F
psi

'"
V PSI \{I H omega m C

OMEGA n Z nabla v [not I

partial 8] integral J A

Figure 5-2. Greek Characters

5-58 AIX Operating System Technical Reference

File

/usr/pub/greek

TNL SN20-9881 (25 September 1987) to SC23-0809-0
greek

Related Information

The 300, 4014, 450, greek, hp, nroff, tc, and troff commands in A/X Operating System
Commands Reference.

Miscellaneous Facilities 5-58.1

TNL SN20-9881 (25 September 1987) to SC23-0809-0
hosts

I hosts

I Purpose

Defines hostname and associated addresses for hosts in the network.

I Synopsis

/ete/hosts/

I Description

This file contains the hostnames and their addresses for hosts in the network. This file is
used to resolve a name into an address (that is, to translate a hostname into its Internet
address).

This file can contain three additional entries (reserved, well-known host names):

nameserver
timeserver
printserver

If a hostname is not in the hosts file, a request to resolve hostname to an address is sent to
another host, the host associated with the nameserver entry. Generally, most hosts in the
network have a nameserver entry. For example, in a small network, one host can run the
nameserver daemon; the /ete/hosts/ file on that host contains an entry for all hosts in
the network. Each of the other hosts in the network contains an entry for itself and an
entry for the nameserver.

Note: A nameserver entry must point to a foreign host.

The host associated with timeserver responds to seteloek requests (a means for
synchronizing the time among hosts in the network). Each host mayor may not run
timeserver. If network time is to be used on a particular host, that host must have a
timeserver entry in its /ete/hosts/ file. The printserver entry identifies the default host
for receiving print requests.

5-58.2 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
hosts

To tailor the network environment for a particular host, modify its /ete/hosts/ file. Each
entry is of the form:

address hostname hostname host name host name
where address can be specified in decimal or octal and hostname is a string with a
maximum length of 24 characters and no embedded blanks. Multiple hostnames (or aliases)
can be specified as long as the total number of characters does not exceed 100 characters;
the entry must be contained on one line.

!Examples

Following are sample entries in the /ete/hosts/ files for three different hosts in a network:

Host 1

192.9.200.1
192.9.200.2
192.9.200.3
128.114.1.15
128.114.1.14
128.114.2.7
192.9.200.2
192.9.200.3

Host 2

192.9.200.2
192.9.200.1
192.9.200.2
192.9.200.3

Host 3

host1 host1a host1b
host2
host3

timeserver
printserver

host2
nameserver
timeserver
printserver

192.9.200.3 host3
192.9.200.1 nameserver
192.9.200.2 timeserver

In this sample network, the /ete/hosts/ file for ho s t 1 contains address entries for all
hosts in the network; host1 runs the nameserver daemon. (The /ete/hosts/ file of host1
can contain a nameserver entry if the entry specifies some host other than hostl.) The

lVIiscellaneous Facilities 5-58.3

TNL SN20-9881 (25 September 1987) to SC23-0809-0
hosts

File

entries in the hostl /ete/hosts/ file that begin with 128.114 indicate that host1 also
resolves names for hosts on more than one network. host1 is also known (aliased) as
host1a and hast1b.

The /ete/hosts/ file of has t2 contains an address entry only for has t2 itself; host2 runs
the timeserver daemon. The /ete/hosts/ file of has t3 contains an address entry only for
hast3 itself. All three hosts use hast1 to perform the nameserver function and host2 to
perform the timeserver function. host3 runs the printserver daemon and receives
remote print requests from hostl and host2.

fete/hosts host name data base.

I Related Information

In this book: "gethostbyaddr, gethostbyname, sethostent, endhostent" on page 8-13.

5-58.4 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
hosts

Miscellaneous Facilities 5-59

TNL SN20-9881 (25 September 1987) to SC23-0809-0
math.h

math.h

Purpose

Defines math subroutines and constants.

Synopsis

#include < math.h >

Description

This header file contains declarations of all the subroutines in the Math Library (libm.a)
and of various subroutines in the Standard C Library (libc.a) that return floating-point
values.

It defines the structure and constants for the matherr error-handling mechanism used by
the math subroutines. (See "matherr" on page 3-238 for details about this mechanism.)

Among other things, math.h defines the following constant, which is used as an
error-return value:

HUGE The maximum value of a single-precision floating-point number.

If you define the -C-func preprocessor variable before including math.h, then math.h
defines macros that make the names of certain math subroutines appear to the compiler as
-C-xxxx. The following names are redefined to have a -C- prefix:

exp tan
log asin
loglO acos
sqrt atan
sin atan2
cos

These special names instruct the C compiler to generate code that avoids the overhead of
the math library subroutines and issues compatible-mode floating-point calls directly. See
"fpfp" on page 3-170 for information about compatible mode.

The following mathematical constants are also defined for your convenience:

M-E The base of natural logarithms (e)

M-LOG2E The base-2 logarithm of e (log2 e)

5-60 AIX Operating System Technical Reference

Files

M-LOGIOE

M-LN2

M-LNIO

M-PI

M-PI-2

M-PI-4

TNL SN20-9881 (25 September 1987) to SC23-0809-0
math.h

The base-10 logarithm of e (lOglO e)

The natural logarithm of 2 (loge 2)

The natural logarithm of 10 (loge 10)

1t, the ratio of the circumference of a circle to its diameter

The value of 1t

The value of 1t

2

4

M-I-PI The value of 1 --;- 1t

M-2-PI The value of 2 --;- 1t

M-2-SQRTPI The value of 2 divided by the positive square root of 1t

M-SQRT2 The positive square root of 2

M-SQRTI-2 The positive square root of ~.

The math.h file contains an #include statement that imbeds another header file named
values.h. This header file defines a number of machine-dependent constants, and it is
discussed on page 5-77.

/usr/include/math.h
/usr/include/values.h

Related Information

In this book: "matherr" on page 3-238 and "values.h" on page 5-77.

Miscellaneous Facilities 5-61

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mm

mm

Purpose

Provides the mm macro package for formatting documents.

Synopsis

mm [options] [files]
nroff -mm [options] [files]
nroff -em [options] [files]
mmt [options] [files]
troff -mm [options] [files]

Description

Files

This package provides a formatting capability for a very wide variety of documents. How a
document is typed and edited on the system is independent of whether the document is to
be eventually formatted at a terminal or photoset. See the following references for further
details.

/usr/lib/tmac/tmac.m
/usr/lib/tmac/sys.name
/usr/lib/macros/mm[nt]

Related Information

The mm, mmt, nroff, and troff commands in AIX Operating System Commands Reference.

5-62 AIX Operating System Technical Reference

mptx

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mptx

Purpose

Provides the macro package for formatting a permuted index.

Synopsis

nroff -mptx rJlag ...] rJile ...]
troff -mptx rJlag ...] rJile ...]

Description

Files

This package provides a definition for the .xx macro which is used for formatting a
permuted index produced by the ptx program. This package does not provide any other
formatting capabilities such as headers and footers. Use this macro package in
conjunction with the mm macro package for these or other capabilities. In this case, the
-mptx flag must follow the -mm flag. For example:

nroff -mm -mptx file
or

mm -mptx file

/usr/lib/tmac/tmac.ptx
/usr /li b/macros /ptx

Related Information

In this book: "mm" on page 5-62.

The mm, nroff, ptx, troff commands in AIX Operating System Commands Reference.

Miscellaneous Facilities 5-63

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mv

mv

Purpose

Provides a troff macro package for typesetting view graphs and slides.

Synopsis

mvt [-a] [-rwl] fflag ...] ffile ...]
troff [-a] [-rwl] [-rXl] -my fflag ...] ffile ...]

Description

This package makes it easy to typeset view graphs and projection slides in a variety of
sizes. A few macros (briefly described in the following) accomplish most of the formatting
tasks needed in making transparencies. The facilities of troff, cw, eqn, and tbl are
available for more difficult tasks.

The output can be previewed on most terminals. To preview on some devices, specify the
-rXl option (this option is automatically specified by the mvt command, when that
command is invoked with certain options). To preview output on other terminals, specify
the -a option. The -rwl option suppresses the printing of cross-hairs and crop marks.

The available macros are:

.A [x]

. B [m[s]]

Places text that follows at the first indentation level (left margin); the presence
of x suppresses the 1/2 line spacing from the preceding text .

Places text that follows at the second indentation level. Text is preceded by a
mark. m is the mark, the default is a large bullet. s is the increment or
decrement to the point size of the mark with respect to the prevailing point size.
The default is O. If s is 100, it causes the point size of the mark to be the same
as that of the default mark.

.BX str 1 [str2] [f]

. C [m [s]]

. CN [args]

Encloses strl in a box and appends str2 (if any) to it. strl is set in the prevailing
font unless f names a different font .

Same as .B, but for the third indentation level. The default mark is a dash .

Ends a constant-width font display.

5-64 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mv

.CW [args]

.D [m [s]]

Begins a constant-width font display at the current indentation level.

Same as .B, but for the fourth indentation level. The default mark is a small
bullet .

. DF n f [n f ...]
Defines font positions. This may not appear within a foil's input text (for
example, it may only appear after all the input text for a foil, but before the next
foil-start macro). n is the position of font f, up to four "n f' pairs can be
specified. The first font named becomes the prevailing font. The initial setting
is (H is a synonym for G):

.DF 1 H 2 I 3 B 4 S

.DV [a] [b] [c] [d] [e]
Alters the vertical spacing between indentation levels. The a, b, c, and d values
alter the spacing for .A, .B, .C, and .D respectively. The e value is the
pre-spacing and post-spacing for constant-width font displays bracketed by the
.CW and .CN macros. Arguments that are not null must have dimensions. Null
arguments leave the corresponding spacing unaffected. Initial setting is:

.DV .5v .5v .5v Ov .5v

.1 [in] [a [x]]
Changes the current text indent, but does not affect titles. in is the indent in
inches, unless dimensioned. The default is O. If in is signed, it is an increment
or decrement. The presence of a invokes the .A macro and passes x, if any, to it .

. S [P] [l] Sets the point size and line length. p is the point size, the default is previous. If
p is 100, the point size reverts to the initial default for the current foil-start
macro. If p is signed, it is an increment or decrement. The default is 18 for
.VS, .VH, and .SH, and 14 for the other foil-start macros. l is the line length in
inches unless dimensioned. The default is 4.2 inches for. Vh, 3.8 inches for .Sh,
5 inches for .SH, and 6 inches for the other foil-start macros) .

. Sh [n] [i] [d]
Same as . VS, except that foil size is 5 x 7 inches .

. SH [n] [i] [d]
Same as . VS, except that foil size is 7 x 9 inches .

. Sw [n] [i] [d]
Same as . VS, except· that foil size is 7 x 5 inches .

. SW [n] [i] [d]
Same as . VS, except that foils size is 7 x 5.4 inches .

. T string Prints string as an over-size, centered title.

Miscellaneous Facilities 5-65

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mv

.U strl [str2]
Underlines str 1 and concatenates str2 (if any) to it.

· Vh [n] [i] [d]
Same as . VS, except that foil size is 5 x 7 inches .

. VH [n] [i] [d]
Same as . VS, except that foils size is 7 x 9 inches.

· VS [n] [i] [d]
Foil-start macro; foil size is to be 7 x 7 inches. n is the foil number, i is the foil
identification, d is the date. The foil-start macro resets all parameters (indent,
point size, and so on) to initial default values, except for the values of i and d
arguments that came from a previous foil-start macro; it also invokes the .A
macro.

The naming convention for this and the eight other foil-start macros is that the
first character of the name (V or S) distinguishes between view graphs and
slides, respectively, while the second character indicates whether the foil is
square (S), small wide (w), small high (h), big wide (W), or big high (H). Slides
are thinner than the corresponding view graphs. For slides, the ratio of the
longer dimension to the shorter one is larger than for view graphs. As a result,
slide foils can be used for view graphs, but not the opposite. Alternately, view
graphs can accommodate a bit more text.

· Vw [n] [i] [d]
Same as . VS, except that foil size is 7 inches wide x 5 inches high .

. VW [n.] [i] [d]
Same as . VS, except that foil size is 7 x 5.4 inches .

. WS [w] [string]
Reserves w amount of white space. w must have dimensions. If string is
present, prints, in the reserved space, the caption:

Paste Up string here.

The .S, .DF, .DV, . U and .BX macros do not cause a break. The.1 macro causes a break
only if it is invoked with more than one argument. All the other macros cause a break.

The macro package also recognizes the following upper case synonyms for the
corresponding lower case troff requests:

.AD.BR.CE.HY.NA.NH.NX.SO.SP.TA.TI

The Tm string produces the trademark symbol.

The - (tilde) character is translated into a blank on output.

5-66 AIX Operating System Technical Reference

Files

TNL SN20-9881 (25 September 1987) to SC23-0809-0
mv

The following troff symbols are defined:

\ *t The ASCII tab character.

\ *E The ellipsis (. . .). Do not use this symbol within constant-width text.

*u

*(UU

*(UF

*(Tm

The short name of the operating system in small capital letters.

The short name of the operating system with a leading full-cap letter.

The full name of the operating system.

The trademark symbol.

Note: The VW and SW foils are meant to be 9 inches wide by 7 inches high. However,
the typesetter paper is generally only 8 inches wide, so they are printed 7 inches wide by
5.4 inches high. They need to be enlarged by a factor of 9/7 before they can be used as
view graphs.

/usr /lib/tmac/tmac. v
/usr/lib/macros/vmca

Related Information

The CW, eqn, mmt, tbl, troff commands in AIX Operating System Commands Reference.

Miscellaneous Facilities 5-66.1

TNL SN20-9881 (25 September 1987) to SC23-0809-0
networks

I networks

I Purpose

Contains the network name data base.

I Synopsis

/ etc/networks

I Description

I File

The networks file contains information about the known networks that comprise the
DARP A Internet. Each network is represented by a single line in the networks file. The
format for the entries in networks is:

name number aliases
where:

name is the official network name.

number is the network number.

aliases are the unofficial names used for the network.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with the # character, and routines that search networks do not interpret characters from
the beginning of a comment to the end of that line. Network numbers are specified in
Internet dot notation. A network name can contain any printable character except a field
delimiter, new line character, or comment character.

The networks file is normally created from the official network data base maintained at
the Network Information Control Center (NIC). The file may need to be modified locally to
include unofficial aliases or unknown networks.

/ etc/networks Network name data base.

5-66.2 AIX Operating System Technical Reference

I Related Information

TNL SN20-9881 (25 September 1987) to SC23-0809-0
networks

In this book: "getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent" on page 8-20.

Miscellaneous Facilities 5-67

TNL SN20-9881 (25 September 1987) to SC23-0809-0
param.h

param.h

Purpose

Describes system parameters.

Synopsis

#include < sys/param.h >

Description

File

Parameters vary among systems using the AIX operating system. For the RT PC, these
parameters are in this file. The most significant parameters are:

BSIZE

NOFILE

NCARGS

Indicates the kernel buffer size. RT PC has a buffer size of 2048 bytes. This
determines the size of block clusters on a file system. Since the size of a block
is 512 bytes, a cluster is 4 blocks.

Indicates the maximum open file allowed per process. This value is 200.

Indicates the maximum number of characters, including terminating NULs
that may be passed using the exec system call.

/usr lincl udel sys/param.h

5-68 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
protocols

,protocols

,Purpose

Contains the protocol name data base.

, Synopsis

/ etc/protocols

, Description

I File

The protocols file contains information about the known protocols used in the DARPA
Internet. Each protocol is represented by a single line in the protocols file. The format
for the entries in protocols is:

name number aliases
where:

name is the official protocol name.

number is the protocol number.

aliases are the unofficial names used for the protocol.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with the # character, and routines that search protocols do not interpret characters from
the beginning of a comment to the end of that line. A protocol name can contain any
printable character except a field delimiter, new line character, or comment character.

/ etc/protocols Protocol name data base.

Miscellaneous Facilities 5-68.1

TNL SN20-9881 (25 September 1987) to SC23-0809-0
protocols

i Related Information

In this book: "getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent"
on page 8-24.

5-68.2 AIX Operating System Technical Reference

I resolv .conf

[I Purpose

TNL SN20-9881 (25 September 1987) to SC23-0809-0
resolv.conf

Contains name server and domain name information.

ilSynopsis

/ete/resolv.eonf

I Description

The resolver configuration file (resolv.eon£) contains nameserver and domain information.

Generally, the resolv.eonf file is used when the name server resides on a remote system.
Typically, the only name server to be queried is on the local system and the domain name
is retrieved from the system.

If the resolv.eonf file exists, the resolver routines in gethostbyname and gethostbyaddr
use an RFC883 domain name server. If this file does not exist, an IENl16 nameserver,
whose address must be defined in the fete/hosts file under the name nameserver, is used.

The configuration options are:

nameserver address
where address is the Internet address (in dot notation) of a name server the
resolver subroutines should query. The file should contain at least one name
server entry; up to MAXNS name servers may be listed.

If no name servers are listed, the name server on the local system is used. If
more than one name server is listed, the resolver routines query each entry
listed, repeating until the query succeeds or the maximum numbers of attempts
have been made.

domain name
where name is the default domain name to append to names that do not have a
dot in them.

If there are no domain entries, the domain given by the gethostname
subroutine (everything following the first dot) is used. If the host name does not
contain a domain part, the root domain is assumed.

Each line in the resolv.eonf file must start with either nameserver or domain, followed
by blanks or tabs and a corresponding address or name.

Miscellaneous Facilities 5-68.3

TNL SN20-9881 (25 September 1987) to SC23-0809-0
resolv.conf

I File

/etc/resolv.conf Contains name server and domain name information.

I Related Information

In this book: "gethostbyaddr, gethostbyname, sethostent, endhostent" on page 8-13, and
"gethostname, sethostname" on page 8-18

5-68.4 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
services

I services

I Purpose

Contains the service name data base.

I Synopsis

/ etc/ services

I Description

The services file contains information about the known services used in the DARPA
Internet. Each service is represented by a single line in the services file. The format for
the entries in services is:

servname portnum/protname aliases
where:

servname is the official service name.

portnum/protname is the port number of the named service, separated from the name of
the protocol by a / (slash).

aliases are the unofficial names used for the service.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with the # character, and routines that search services do not interpret characters from
the beginning of a comment to the end of that line. A service name can contain any
printable character except a field delimiter, new line character, or comment character.

A sample line in this file might look like:

chargen 19/tcp ttytest source

Miscellaneous Facilities 5-68.5

TNL SN20-9881 (25 September 1987) to SC23-0809-0
services

,File

/ etc/ services Service name data base.

, Related Information

In this book: "getservent, getservbyname, getservbyport, setservent, endservent" on
page 8-26.

5-68.6 AIX Operating System Technical Reference

stat.h

stat.h

Purpose

Defines the data structure returned by the stat system call.

Synopsis

#include < sys/stat.h >

Description

The stat and fstat system calls obtain information about a file that has a name. These
system calls return a data structure defined by this include file. This file also defines
encoding of the st-mode field. Note that in the structure below the octal value is shown.
The hexadecimal equivalent values are also shown in parentheses.

struct stat
{

};

ino-t
ushort
short
ushort
ushort
dev-t

off-t
time-t
time-t
time-t

st-ino;
st-mode;
st-nlink;
st-uid;
st-gid;
st-rdev;

st-size;
st-atime;
st-mtime;
st-ctime;

/* 10 of device containing */
/* a directory entry for this file */
/* File serial + device uniquely */
/* identifies the file within the system */
/* File serial number */
/* File mode; see #defines below */
/* Number of links to file */
/* User 10 of the owner of the file */
/* Group 10 of the file group */
/* 10 of this device */
/* This entry is defined only for */
/* character or block special files */
/* File size in bytes */
/* Time of the last access */
/* Time of the last data modification */
/* Time measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Miscellaneous Facilities 5-69

stat.h

#define S-IFMT 0170000 /* (OxFOOO) type of file */
#define S-IFDIR 0040000 /* (Ox4000) directory */
#define S-ISDIR(m) (((m) & (S-IFMT)) == (S-IFDIR))
#define S-IFCHR 0020000 /* (Ox2000) character special */
#define S-ISCHR(m) (((m) & (S-IFMT)) == (S-IFCHR))
#define S-IFBLK 0060000 /* (Ox6000) block special */
#define S-ISBLK(m) (((m) & (S-IFMT)) == (S-IFBLK))
#define S-IFREG 0100000 /* (Ox8000) regular */
#define S-ISREG(m) (((m) & (S-IFMT)) == (S-IFREG))
#define S-IFIFO 0010000 /* (OxlOOO) fifo */
#define S-ISFIFO(m) (((m) & (S-IFMT)) == (S-IFIFO))
#define S-ISUID 04000 /* (Ox0800) set user id on execution */
#define S-ISGID 02000 /* (Ox0400) set group id on execution */
#define S-ISVTX 01000 /* (Ox0200) save swapped text even after use */
#define S-IRWXU 00700 /* (OxOlCO) owner read,write,execute permission */
#define S-IREAD 00400 /* (OxOlOO) owner read permission */
#define S-IRUSR 00400 /* (OxOlOO) read permission, owner */
#define S-IWRITE 00200 /* (Ox0080) owner write permission */
#define S-IWUSR 00200 /* (Ox0080) owner write permission */
#define S-IEXEC 00100 /* (Ox0040) owner execute/search permission */
#define S-IXUSR 00100 /* (Ox0040) owner execute/search permission */
#define S-IRWXG 00070 /* (Ox0038) group read,write,execute permission */
#define S-IRGRP 00040 /* (Ox0020) group read permission */
#define S-IWGRP 00020 /* (OxOOlO) group write permission */
#define S-IXGRP 00010 /* (Ox0008) group execute/search permission */
#define S-IRWXO 00007 /* (Ox0007) other read,write,execute, permission */
#define S-IROTH 00004 /* (Ox0004) other read permission */
#define S-IWOTH 00002 /* (Ox0002) other write permission */
#define S-IXOTH 00001 /* (OxOOOl) other execute/search permission */
#define S-IFMPX S-IFCHRIS-ISVTX /* multiplex character special file */
#define S-ISMPX(m) (((m) & (S_IFMTIS_ISVTX)) == (S-IFMPX))
#define S-ENFMT S-ISGID /* record locking enforcement flag */

5-70 AIX Operating System Technical Reference

stat.h

Examples

File

The S-IREAD, S-IWRITE, and S-IEXEC masks can be used to test permissions in any
of the three groups (owner, groups, or other) by shifting them. For example, to test for
read access by group, use:

st-mode & (S-IREAD » 3)
To test for global write access, use:

st-mode & (S-IWRITE » 6)

/usr /include/ sys/ stat.h

Related Information

In this book: "stat, fstat" on page 2-159 and "types.h" on page 5-75.

Miscellaneous Facilities 5-71

TERM

TERM

Purpose

Lists conventional names for terminals.

Description

These names are used primarily for commands such as mm and nroff. These names are
maintained as part of the shell environment in the variable TERM. See the sh command
in AIX Operating System Commands Reference for an explanation of the shell. Also see
"profile" on page 4-127 and "environment" on page 5-47 in this book for use of the TERM
environment variable.

TERM

ibm3161
ibm3161
ibm3161-C

ibm3162
ibm5081
ibm5151

ibm5154
ibm5154

ibm5154

ibm6153

ibm6153-40
ibm6153-90
ibm6154
ibm6154-40
ibm6154-90
ibm6155
ibm6155-56
ibm6155-113
vt100

Terminal Description

IBM 3161 ASCII Display
IBM 3163 ASCII Display
IBM 3161 ASCII Display with cartridge (for international character
support)
IBM 3162 ASCII Display (for international character support)
IBM 5081 Color Display
IBM Monochrome Display and Printer Adapter with IBM Personal
Computer Display
IBM PC Enhanced Graphics Adapter with IBM Personal Computer Display
IBM PC Enhanced Graphics Adapter with IBM Personal Computer
Enhanced Color Display
IBM Advanced Color Graphics Display Adapter with IBM Advanced Color
Graphics Display .
IBM RT PC Advanced Monochrome Graphics Display Adapter with IBM
RT PC Advanced Monochrome Graphics Display
IBM 6153 terminal using a 40-column font
IBM 6153 terminal using a 90-column font
IBM 6154 terminal
IBM 6154 terminal using a 40-column font
IBM 6154 terminal using a 90-column font
IBM 6155 terminal
IBM 6155 terminal using a 56-column font
IBM 6155 terminal using a 113-column font
DEC VT100l

Trademark of Digital Equipment Corporation.

5-72 AIX Operating System Technical Reference

File

vt220
dumb

lp
37
42
300
300s
300-12
300s-12
tn300
382
450
450-12
2631
2631-e
2631-c
4000a

TERM

DEC VT220 l

Terminal types with no special features (such as reverse line motion)
(implies -c)
Line Printer (implies -c) (must pipe through lpr or some such filter)
Teletype Model 37 KSR
ADM 42 (implies -c)
DASI (DTC, GSI) 300
DASI300s
DASI 300 at 12-pitch
DASI 300s at 12-pitch
TermiNet 300 (implies -c)
DTC 382
DASI 450 (same as Diablo 1620) DEFAULT
DASI 450 (same as Diablo 1620) 12-pitch
HP 2631 series line printer (implies -c)
HP 2631 series (expanded mode) (implies -c)
HP 2631 series (compressed mode) (implies -c)
Trendata 4000a

Up to eight characters chosen from [-a-zO-g] make up a basic terminal name. Terminal
sub-models and operational modes are distinguished by suffixes beginning with a -
(hyphen). Names should generally be based on original vendors, rather than local
distributors. A terminal acquired from one vendor should not have more than one distinct
basic name.

Commands whose behavior depends on the type of terminal should accept parameters such
as -Tterm where term is one of the names in the preceding list. If the parameter is not in
the list, the commands should obtain the terminal type from the environment variable
TERM, which in turn should contain term. Any unknown terminal is treated as a dumb
terminal.

This list does not include all supported terminals. See "terminfo" on page 4-148 for
additional TERM variables.

/user/lib/h~lp/term

Miscellaneous Facilities 5-73

TERM

Related Information

In this book: "environment" on page 5-47 and "terminfo" on page 4-148.

The mm, sh, stty, tabs, nroff, and environ commands in A/X Operating System
Commands Reference.

5-74 AIX Operating System Technical Reference

types.h

types.h

Purpose

Defines primitive system data types.

Synopsis

#include < sys/types.h >

Description

The data types defined in this include file are used in the RT PC system source code. Some
data of these types are accessible to user code:

typedef struct {int reI];} * physadr;
typedef long level-t
typedef long daddr-t;
typedef char * caddr-t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned long ulong;
typedef ushort ino-t;
typedef short cnt-t;
typedef long time-t;
typedef int label-tell];
typedef int dev-t;
typedef long off-t;
typedef long paddr-t;
typedef long key-t;

Notes:

daddr-t This data type is used for disk addresses, except in i-nodes on disk. See the
"fs" on page 4-74 for the format of disk addresses used in i-nodes.

time-t Times are encoded in seconds since 00:00:00 GMT, January 1,1970.

dev-t The major and minor parts of a device code specify kind of device and unit
number of the device, and they depend on the system cllstomization.

Miscellaneous Facilities 5-75

types.h

File

off-t

label-t

Offsets are measured in bytes from the beginning of a file.

Variables of this type are used to save the processor state while another
process is running.

/usr /include/sys/types.h

Related Information

In this book: "fs" on page 4-74 and "values.h" on page 5-77.

5-76 AIX Operating System Technical Reference

values.h

values.h

Purpose

Defines machine-dependent values.

Synopsis

#include < values.h >

Description

This header file contains a set of manifest constants that are conditionally defined for
particular processor architectures. The model for integers is assumed to be a ones- or
twos-complement binary representation, in which the sign is represented by the value of
the high-order bit.

BITS (type)

HIBITS

HIBITL

The number of bits in the specified data type

A short integer with only the high-order bit set (Ox8000)

A long integer with only the high-order bit set (Ox80000000)

HIBITI A regular integer with only the high-order bit set (the same as
HIBITL)

MAXSHORT The maximum value of a signed short integer (Ox7FFF == 32767)

MAXLONG The maximum value of a signed long integer (Ox7FFFFFFF ==
2147483647)

MAXINT The maximum value of a signed regular integer (the same as
MAXLONG)

MAX FLOAT The maximum value of a single-precision floating-point number

MAXDOUBLE The maximum value of a double-precision floating-point number

LN-MAXDOUBLE The natural logarithm of MAXDOUBLE

MINFLOAT The minimum positive value of a single-precision floating-point
number

MINDOUBLE The minimum positive value of a double-precision floating-point
number

Miscellaneous Facilities 5-77

values.h

File

FSIGNIF

DSIGNIF

FMAXEXP

DMAXEXP

FMINEXP

DMINEXP

FMAXPOWTWO

DMAXPOWTWO

/usr /include/values.h

Related Information

The number of significant bits in the mantissa of a single-precision
floating-point number

The number of significant bits in the mantissa of a double-precision
floating-point number

The maxium exponent of a single-precision floating-point number

The maxium exponent of a double-precision floating-point number

The minimum exponent of a single-precision floating-point number

The minimum exponent of a double-precision floating-point number

The largest power of two that can be exactly represented as a
single-precision floating-point number

The largest power of two that can be exactly represented as a
double-precision floating-point number.

In this book: "math.h" on page 5-60, "types.h" on page 5-75.

5-78 AIX Operating System Technical Reference

Chapter 6. Special Files

Special Files 6-1

About This Chapter

This chapter describes various special files that refer to specific hardware peripherals and
RT PC system device drivers. The names of the entries are generally derived from names
for the hardware as opposed to the names of the special files themselves. Characteristics
of both the hardware device and the corresponding RT PC system device driver are
discussed where applicable.

6-2 AIX Operating System Technical Reference

asy

asy

Purpose

Supports the asynchronous adapter.

Description

Files

The asy driver supports asynchronous ports. If a port is not installed, an attempt to open
it fails. Each port can be individually programmed for speed (50-19.2K baud), character
length, and parity. Output speed is always the same as input speed. The behavior of each
adapter is described in the termio file.

The asynchronous port is a character-at-a-time device for both input and output. This
characteristic limits the bandwidth, which can be achieved over a line and increases the
interrupt loading on the central processor.

If the port was opened with the modem control bit present in the minor device (see the
following text), modem control is enabled. If enabled, the driver waits in the open routine
until data carrier detect is present. Once opened, if data carrier detect drops, the driver
returns errors on any subsequent user read or write attempts of the asynchronous port. If
the port was opened as a controlling teletype, a SIGH UP signal is generated to the process
that performed the open.

Minor Device Numbers
The asynchronous ports are character devices. The low-order bit of the minor device
number corresponds to the primary or secondary asynchronous ports. Bit 6 enables modem
control on the selected port. Thus, minor device 0 corresponds to the first asynchronous
port with modem control disabled, while minor device 65 corresponds to the second
asynchronous port with modem control enabled.

/dev/tty* for remote devices.
/dev/ltty* for local devices.

Special Files 6-3

asy

Related Information

In this book: "termio" on page 6-114 and "signal" on page 2-145.

The config command in AIX Operating System Commands Reference.

6-4 AIX Operating System Technical Reference

bus

bus

Purpose

Supports the hardware bus interface.

Synopsis

#incIude < sys/hwdbus.h >
#include < fcntl.h >

Description

The bus file consists of a pseudo driver in the AIX kernel which allows a user program to
enable the hardware I/O bus such that the address space can be addressed directly by the
program rather than performing I/O through the AIX system calls.

The user program first opens the special file name associated with the device driver. Only
O-RDONLY, 0-WRONLY, and O-RDWR are valid values to be used with the open
system call. Before the open, any addressing of I/O space generates a SIGSEGV signal.

Once the device driver is open, the user program should issue an ioctl system call to
obtain the base addresses of the bus I/O and bus memory spaces. These base addresses are
added to the appropriate address offsets to obtain an absolute I/O address.

ioctlOperations
The ioctl system call is invoked as follows:

i oct 1 (fi 1 des, command, ptr)
i nt fi 1 des;
int command;
struct hwdbase
{

char *hwdio;
char *hwdmem;

} *ptr

/* get addresses */
/* file descriptor */
/* valid value is HWDBASE */
/* contains base addresses */

The hwdio field is the address of the start of I/O memory allocated to the I/O port address.
The hwdmem field is the address of the start of I/O memory allocated to dedicated
memory, such as display refresh memory.

Special Files 6-5

bus

File

/dev/bus

Related Information

In this book: "hft" on page 6-23.

6-6 AIX Operating System Technical Reference

config

Purpose

Configures system device drivers.

Synopsis

#include < sys/types.h >
#include < sys/kcfg.h >
#include < sys/ksvc.h >

Description

config

The config driver is used to customize the Virtual Resource Manager (VRM) and the AIX
kernel. Use of this pseudo-device is restricted to a user with superuser authority. Most
operations are performed via ioctl system calls. The write system calls are accepted only
in certain situations as described.

ioctlOperations
A list of ioctl calls along with the descriptions follows. These calls return a value of 0
upon successful completion. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

If an error occurred while issuing a supervisor call (SVC) to the VRM, errno is set to EIO.
The VRM status code is obtained using the CFRSTAT type ioctl call. In all the following
calls that pass a structure address, the call is aborted if the structure is not entirely within
memory that is addressable by the calling process. In that case, errno is set to EFAULT.

CFBUFF Allocates and initializes the Block I/O Communication Area (BIOCA) in
kernel memory. The arg parameter is a pointer to a defdev structure. (See
CFDDEV, following, for the definition of this structure.)

CFDCODE Issues a Define-Code SVC to the VRM. The parameter is the following
structure:

struct defcode {
i nt i ocn;
int opts;
int ciocn;

};

/* IOCN to define */
/* options word */
/* IOCN to copy */

Special Files 6-7

config

The options available are:

CFDDEV

ADD-IOCN Add IOCN option

DEL-IOCN Delete IOCN option

DUP -IOCN Duplicate IOCN option.

If the option specifies deleting or duplicating a module, the action is
performed immediately. To add a module, a single write system call must
immediately follow with the contents of the a.out module. The VRM uses
the write buffer directly. The write buffer is cleared when it is returned
from a call. The module must be aligned on a 2K page boundary and not
mixed with other data.

Configures a device in the VRM that is not a disk partition. The parameter
is a pointer to the following structure:

struct defdev {
unsigned short
unsigned short
unsigned short
unsigned short
c h a r name [4] ;
int spare;
union {

struct {
int
int
int

} offsets
int ddi[lJ;

} ddi-data;

iodn; /*
iocn; /*
opts; /*
chars; /*
/* device

offhc;
offdc;
offras;

lODN to use */
lOCN to use */
add/delete */
device characteristics */
name */

/* offset to hdw characteristics */
/* offset to dev characteristics */
/*. offset to RAS info */

/* device dependent info */

The options available are:

ADD-IODN Add IODN option

DEL-IODN Delete IODN option.

A Define-Device SVC is issued to the VRM using the given data. The
value is the Virtual Machine Interface (VMI) return code.

6-8 AIX Operating System Technical Reference

CFQDEV

config

Issues a Query -Device SVC to the VRM. The parameter is a pointer to a
structure of the following form:

struct qdev {
unsigned short
unsigned short
int length;
char buffer [] ;

};

iodn; /* IOON to query */
options; /* Query device options */

/* length of the following */
/* info returned here */

The options available are:

CFRSTAT

CFUDRV

Q-HRDW
Q-DEV
Q-RAS

Query hardware information

Query device information

Query RAS information.

After verifying the address and length of the structure, a Query -Device
SVC is issued to the VRM with the structure given. The value returned is
the value returned from the Query-Device SVC to the VRM.

Returns the status code from the last SVC to the VRM issued from this
driver. The parameter is ignored.

Configures a AIX device driver. The parameter is a pointer to the following
structure:

struct unxdrv {

};

dev-t devno; /* major/minor device number */
unsigned short iodn; /* IOON to set */
unsigned short ddilen; /* device dependent info byte length
unsigned short lev; /* interrupt level */
union { /* optional device dependent info */

struct { /* for Send-Command calis */
int rv2,
rv3,
rv4,
rv5,
rv6,

} ddi-sc;
} ddi;

Special Files 6-9

config

CFUVRM

File

/ dev / config

The device initialization routine for the given driver is called with the given
iodn and device-dependent information. Some device drivers may interpret
the lev field as the VMI interrupt level to use. (Sublevels are always
assigned dynamically by the kernel.) The value of the CFUDRV type ioctl
system call is the value returned by the device driver initialization routine.
A successful call returns a value of 0, otherwise it returns a value of -l.

The device driver may modify the device-dependent information that is
copied back into the structure provided by the caller of the config driver.

If both the ddilen and iodn fields are 0, the device initialization routine
turns off the given minor number so that future calls to open that device
will fail. If the iodn field is ° and the ddilen field is a value other than 0,
the device driver may perform various operations not directly relating to
the minor device specified in the devno field. Device drivers associated
with device managers issue a Send-Command SVC to the VRM device
manager with the given values rv2, rv3, rv4, rv5, and rv6 in registers 2, 3,
4,5, and 6. The driver waits for the manager to return a completion or
error interrupt and overwrites the rv2, rv3, and rv4 words in the structure
with data words 1, 2, and 3 returned from the interrupt. The value of the
initialization routine is the status code returned with the interrupt. This
can be obtained by issuing the CFRST AT type ioctl call previously
mentioned.

Updates the VRM. The kernel issues ail Update-VRM SVC to the VRM.
The return value is the return code from the VMI call.

Related Information

In this book: "ioctl" on page 2-56, "hft" on page 6-23, "fd" on page 6-17, and "hd" on
page 6-20.

The vrmconfig command in A/X Operating System Commands Reference.

6-10 AIX Operating System Technical Reference

\
)

/

dft, bsc

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
dft, ...

Provides 3270 Distributed Function Terminal (DFT) and Binary Synchronous
Communications (BSC) capabilities.

Synopsis

#include < sys/3270.h >

Description

The 3270 AIX device driver is a multiplexed device driver that supports an independent
logical 3270 session on each of its channels. It can access multiple VRM device drivers,
depending on the special file name used.

Open

The open system call initializes a path to a host session. The of lag parameter to open
should be set to O-RDWR; all other values are ignored.

The specific adapter and port to be used is specified by the path name that is passed to
open. The special files named /dev/dftn use a 3278/79 Emulation Adapter. The special
files named /dev/bscn use the Logical Link Control from NETWORK 3270-PLUS (BSC),
which uses a Multiprotocol Adapter. To use any /dev/bscn, you must have NETWORK
3270-PLUS (BSC) or NETWORK RJE-PLUS (BSC) installed on your system. More than
one 3278/79 Emulation Adapter or Multiprotocol Adapter can be installed in your system.

A specific session on one of the ports can be addressed by following the special file name
with a slash and the device address. For example, /dev /bsc2/5 identifies device address
5 on a specific port of one of the Multiprotocol Adapters. The path name specified to the
open system call can specify this device address or not; if it is not specified, then an
available device address is used.

The exact correlation between special file names and specific Multiprotocol Adapter ports
is established when NETWORK 3270-PLUS (BSC) is installed.

Device address 0 is used to provide profile information for the NETWORK 3270-PLUS
(BSC) Logical Link Control and to establish the connection. This applies to BSC only.

Special Files 6-11

TNL SN20-9869 (26 June 1987) to SC23-0809-0
dft, .

Reading and Writing

The ext parameter of the readx and writex extended I/O system calls is used as a pointer
to an io3270 structure that contains additional information. However, some simple
applications may not need to supply the ext parameter and can use the read and write
system calls.

The io3270 structure is defined in the sys/3270.h header file, and it contains the following
members:

uint io-flags;
uint status;

/* Information Flags */
/* Status Codes */

The value of io-flags is formed by logically OR-ing values from the following list:

LOCK Lock or unlock: Lock is set when a write or writex system call is issued. It is
reset (unlocked) when ready for the next write operation.

DATA Data is available to be read.

TRANS Transparent: Indicates that this buffer should be sent in transparent mode, or
that it was received in transparent mode. This bit applies only to NETWORK
RJE-PLUS (BSC).

COMM

PROG

MACH

Notes:

Communication check: A communication error was detected.

Program check: A program error was detected.

Machine check: A machine error was detected.

1. The application read and write buffers are formatted as 3270 data streams.

2. A write or writex request fails if the adapter is currently sending outbound data, or if
the host issued anything other than a READ BUFFER 3270 command in response to an
ATTENTION sent by the VRM device driver.

3. Use the SND-STATUS ioctl operation to send status to the host, not write or writex.

select Support

The 3270 device driver supports the select system call in the following manner:

• Read selects are satisfied when input data is available.

• Write selects are always satisfied immediately.

• Exception selects are never satisfied, or hang indefinitely if no timeout value is
specified.

See "select" on page 2-111 for more information about this system call.

6-12 AIX Operating System Technical Reference

(

~

\
)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
dft, ...

ioctl Operations

The 3270 device driver performs the following ioctl operations. See "ioctl" on page 2-56
for a complete description of the ioctl system call.

int ioctl (fildes, IOCTYPE)
int tildes;

Returns a character that identifies the device type. This character is the value
given for the appt keyword in the /etc/system file.

int ioctl (fildes, IOCINFO, arg)
int tildes;
struct devinfo * arg;

Stores information about the device into the devinfo structure, which is defined in
the sys/devinfo.h header file.

int ioctl (fildes, GET-STATUS, arg)
int tildes;
struct io3270 * arg;

Gets the device driver status and stores it in the io3270 structure pointed to by the
arg parameter. See "Reading and Writing" on page 6-12 for a description of the
io3270 structure.

int ioctl (fildes, SND-STATUS, arg)
int tildes;
struct nsddsstat *arg;

Sends status and sense data to the host, as specified in the structure pointed to by
the arg parameter. The nsddsstat structure is defined in the sys/3270.h header
file, and it contains the following members:

struct code co-de
struct status sta-tus

The code structure contains the following members:

unsigned bitO 1-,
unsigned bit1 1-,
unsigned db 1-, /* Device Busy */
unsigned us 1-,
unsigned de 1-, /* Device End */

The status structure contains the following members:

Special Files 6-13

TNL SN20-9869 (26 June 1987) to SC23-0809-0
dft, ...

Files

/dev/dftO
/dev/dftl
/dev/dft2
/dev/dft3
/dev/bscO
/dev/bscl
/dev/bsc2
/dev/bsc3

unsigned bitO 1-,
unsigned bitl 1-,
unsigned er 1-,
unsigned ir 1-, /* Intervention Required */
unsigned ee 1-,
unsigned de 1-,
unsigned oe 1-,

First 3278/79 Emulation Adapter
Second 3278/79 Emulation Adapter
Third 3278/79 Emulation Adapter
Fourth 3278/79 Emulation Adapter
Identifies a Multiprotocol Adapter port to the BSC LLC
Identifies a Multiprotocol Adapter port to the BSC LLC
Identifies a Multiprotocol Adapter port to the BSC LLC
Identifies a Multiprotocol Adapter port to the BSC LLC.

Related Information

In this book: "ioctl" on page 2-56, "read, readx" on page 2-106, "write, writex" on
page 2-184, and "devinfo" on page 4-57.

NETWORK 3270-PLUS (BSC) User Guide.

NETWORK RJE-PLUS (BSC) User Guide.

6-14 AIX Operating System Technical Reference

(
\

I'
\.

error

error

Purpose

Logs system events.

Synopsis

#include < sys/err.h >
#include < sys/erec.h >

Description

The format of an event record depends on the type of event encountered. Each record,
however, has a header with the following format:

struct errhdr {

};

unsigned
time-t
long
char
char
union {

struct
char
char
char

} ex;

e-len;
e-time;
e-timex;
e~ni d [8J ;
e-vmi d [8J ;

{
ex-class;

/* word in record (with header) */
/* time of day */
/* clock ticks */
/* node TO */
/* virtual machine IO */

ex-s ubc 1 as s [2J ;
ex-type; /* record type */

int csmt;
} exx;

The error daemon searches the RAS configuration file /etc/rasconf for a stanza labeled
/dev/error. Minor device 0 of the error driver is the interface between a process and the
routines that collect error-records in the system. This driver can be opened only for
reading by a process (usually the error daemon) with superuser permission. Each read
retrieves an entire error record. A read request of less than the entire record causes the
retrieved record to be truncated. Multiple processes can open the error file to write.

Special Files 6-15

error

File

/dev/error

Related Information

In this book: "errunix" on page 3-126, "rasconf' on page 4-133, and "errsave" on
page C-31.

The errdemon command in A/X Operating System Commands Reference.

6-16 AIX Operating System Technical Reference

fd

fd

Purpose

Supports the diskette device driver.

Synopsis

#include < sys/devinfo.h >

Description

The diskette special file provides block and character (raw) access to diskettes in the
diskette drives, allowing only one process to have a diskette drive open for writing at a
time. The config device driver associates the minor device number with a particular
diskette drive. Normally, the special file /dev/fdn is given the minor device number n.
Removing the diskette from the drive with diskette files still open may cause various I/O
system calls to return errors.

The minor device number specifies both the drive number and the format of the diskette to
be read or written. Assume that /dev/fdn corresponds to a diskette drive with minor
device number n. In this case, fdO, fdl, fd2, and fd3 specify diskette drives 0 through 3,
respectively, without specifying their format.

Using fsO, ... , fs3, which correspond to minor device numbers 4 through 7, forces a
diskette to be treated as a single-sided diskette. Similarly, fdO.8, ... ,fd3.8, which
correspond to minor device numbers 8 through 11, force the diskette to be treated as an
8-sectored diskette. fsO.8, ... , fs3.8, which correspond to minor device numbers 12
through 15, force the diskette to be treated as single-sided and 8-sectored.

Configuration Data
The config device driver is called during system initialization to customize diskettes. This
is accomplished by calling the device driver at its initialization entry. For diskettes, no
device-dependent information is required, so the customize information is the following
structure:

struct {
dev-t devno;
unsigned short
unsigned short
unsigned short

iodn;
ddilen;
lev;

/* major/minor device number */
/* IODN to set */
/* device dependent info length */
/* ignored */

Special Files 6-17

fd

Files

union { /* optional device dependent info */
c h a r d d i - f d [] ;

/* ddi for other devices */
} ddi;

};

ioctlOperations
The IOCTYPE type ioctl system call returns the device type DD-DISK, defined in the
sys/devinfo.h header file.

The IOCINFO type ioctl system call returns the following structure, defined in the
sys/devinfo.h header file:

struct devinfo {
char devtype;
char flags;
union {

/* for disks */ struct {
short
short
short
long

bytpsec; /* bytes per sector */
secptrk; /* sectors per track */
trkpcyl; /* tracks per cylinder */
numblks; /* number of blocks on diskette */

} dk;

} un;
};

/* flags */
#define OF_FIXED 01
#define OF-RAND 02
#define OF-FAST 04

Jdev/fdO, /dev/fdl, .. .
/dev/rfdO, /dev/rfdl, .. .

/* for other devices */

/* non-removable */
/* random access possible */
/* a relative term */

6-18 AIX Operating System Technical Reference

fd

Related Information

In this book: "config" on page 6-7, "fs" on page 4-74, and "ioctl" on page 2-56.

Special Files 6-19

hd

hd

Purpose

Supports the fixed-disk device driver.

Synopsis

#include < sys/devinfo.h >

Description

The fixed-disk device driver provides block and character (raw) access to minidisks on the
fixed-disk drives. The config device driver associates the minor device number to the
minidisk. Normally, the special files /dev/hdn and /dev/rhdn is given the minor device
number n. .

The minidisk with minor device number 0 is always the minidisk used to initially load the
system program.

In raw I/O , the buffer must always begin on a full word boundary, and counts should be a
multiple of 512 bytes (a disk block). Likewise lseek system calls should specify a multiple
of 512 bytes.

Configuration Data
The config device driver is called at its initialization entry point during system
initialization to customize minidisks. The following shows the structure of the customize
information:

struct {
dev-t devno;
unsigned short
unsigned short
short 1 ev;
union {

struct {
int rv2,
rv3,
rv4,
rv5,

iodn;
ddilen;

/* major/minor device number */
/* lOON set */
/* device dependent info length */

/* ignored */
/* optional device dependent info */

/* for Send Command SVC */

6-20 AIX Operating System Technical Reference

hd

rv6;
} ddi-sc;

/* ddi for other devices */
} ddi;

};

If the iodn field is 0, the manager receives a Send-Command supervisor call (SVC) with
values rv2, rv3, rv4, rv5 and rv6 in registers 2, 3, 4, 5, and 6. The driver waits for the
manager to return a completion or error interrupt. The return value is the status code
returned at the interrupt, which can be obtained using an ioctl system call to the config
device driver.

ioctlOperations
The VQUERY type ioctl call queries the disk write-verify status for the minidisk. It uses
the form:

i 0 c t 1 (f i 1 des, co mm and, a r 9)
struct wverify *arg

where arg is a pointer to the one-word structure wverify that contains the write verify
status to be returned. A value of 1 returned indicates enabled and 0 if disabled.

The VCNTRL type ioctl call enables or disables write verify for the minidisk. It uses the
form:

i oct 1 (fi 1 des, command, arg)
int arg;

where an arg value of 0 is used to disable disk write-verify and a value of 1 is used to
enable disk write-verify.

See "mdverify" on page 3-243 for another way to set and query the write-verify status of a
minidisk.

The IOCTYPE type ioctl call returns the value DD-DISK, defined in < sys/devinfo.h > .

The IOCINFO type ioctl call returns the following structure, defined in
< sys/devinfo.h >:

struct devinfo {
char devtype;
char flags;
union {

struct {
short bytpsec;
short secptrk;

/* for disks */
/* bytes per sector */
/* sectors per track */

Special Files 6-21

hd

Files

short trkpcyl;
long numblks;

} dk;

} un;
};

/*flags */

/* tracks per cylinder */
/* blocks this mini-disk */

/* for other devices */

#define OF_FIXED 01 /* non-removable */
#define OF-RAND 02 /* random access possible */
#define OF_FAST 04 /* a relative term */

/dev/hdO, /dev/hdl, ...
/dev/rhdO, /dev/rhdl, .

Related Information

In this book: "config" on page 6-7, "fs" on page 4-74, "ioctl" on page 2-56, and "lseek" on
page 2-67.

6-22 AIX Operating System Technical Reference

hft

hft

Purpose

Implements a high-function virtual terminal device.

Synopsis

#include < sys/hft.h >

Description

The hft device driver supports a virtual terminal concept based on the virtual terminal
subsystem of the Virtual Resource Manager. The following information is intended to
supplement the discussion of the virtual terminal subsystem in Virtual Resource Manager
Technical Reference. Additional information can also be found in the file
/usr/lib/samples/README.hft.

The virtual terminal concept supports the illusion that more devices exist than are
physically present and that these devices have characteristics and features not necessarily
limited by the actual devices. In addition to displays and keyboards, virtual terminals
support locators, valuators, lighted programmable function keys, and sound generators.
Virtual terminals are logically independent of each other but share physical resources over
time. The virtual terminal that can accept physical input or modify the physical screen at
a given time is called the active virtual terminal.

The virtual terminal provides a model of a single terminal that can be in one of the
following modes at a given time:

• Keyboard Send-Receive Mode (KSR)

• Monitor Mode (MOM).

The KSR mode emulates an ASCII terminal using an RT ASCII data stream, which is
described in detail in "data stream" on page 5-5. The monitor mode allows applications to
have a direct output path to the display hardware and shortened path for keyboard and
locator. The form of the data accepted in each mode is unique to that mode. This
optimizes the movement of data between the virtual terminal and the application program
and supports the different functions within each mode. The default mode is KSR, which
supports existing applications expecting an ASCII terminal.

Special Files 6-23

hft

Additional functions supported include:

• Reporting data from input devices such as locators and valuators
• Switching between interactive and non interactive states
• Changing color palette settings
• Controlling the sound hardware
• Switching between the monitor mode and KSR mode.

The virtual terminal supplies default values for keyboard-to-character mapping,
character-to-display mapping, echo/break specification, tab rack, and protocol mode flags
to be used until a definition is received from the application.

This hft facility is the kernel-level support for virtual terminals. Since the association of
virtual terminals to physical terminals is dynamic, this special file, which represents the
physical terminal, is multiplexed across virtual terminals by expanding the open, close,
read, write, and especially the ioctl system calls to the driver. This type of driver is
specified by the S-IMPX bit in the stat.h file. Many extra ioctl system calls are provided
to allow access to advanced features of the hft facility. The facilities described in "termio"
on page 6-114 also apply to the virtual terminal.

The first (or only) hft is minor device 0, and special file /dev/hft is associated with it. The
special file /dev/console is minor device 1. Minor devices 2 and higher are associated
with additional hft physical terminals, if there are any.

Each time /dev/hft is opened, a new hft virtual terminal is created and opened. A
maximum of 16 virtual terminals can be opened due to limits on system resources.

To reopen an existing virtual terminal, open the special file /dev/hft/i, where i is the
number of an open driver channel. The channel number can be determined with the
HFGCHAN ioctl operation. The /dev/console special file is channel number 1.

A process can also communicate with the hft screen manager by opening the
/dev/hft/mgr file. Only the screen manager HFQSMGR and HFCSMGR ioctl operations
can be issued to this file. read and write system calls are not allowed.

The /usr/lib/samples/hft directory contains sample programs that use the hft virtual
terminal subsystem. See the file /usr/lib/samples/README.hft for more information
about these sample programs.

The following list can be used as a reference to locate where specific topics are discussed:

6-24 AIX Operating System Technical Reference

hft

Contents of hft Section

Initial State ... 6-27

termio Support

select Support

6-28

6-28

ioctl Operations .. 6-29
Query I/O Error (HFQEIO) ... 6-29
Query Device (HFQDEV) .. 6-29
Reconfigure (HFRCONF) .. 6-31
Get Channel Number (HFGCHAN) 6-34
Set Echo and Break Maps (HFSECHO) 6-34
Set Keyboard Map (HFSKBD) 6-36
Get Virtual Terminal ID (HFGETID) 6-39
Query (HFQUERY) ... 6-39

Query Device IDs Command .. 6-40
Query Physical Device Command 6-41
Query Locator Command .. 6-44
Query LPFKs Command .. 6-45
Query Dials Command .. 6-46
Query Presentation Space Command 6-46
Query HFT Device Command ... 6-47
Query DMA Command .. 6-48

Enable Sound Signal (HFESOUND) 6-48
Disable Sound Signal (HFDSOUND) 6-49
Enter Monitor Mode (HFSMON) .. 6-49
Exit Monitor Mode (HFCMON) ... 6-49
Query Screen Manager (HFQSMGR) 6-49
Control Screen Manager (HFCSMGR) 6-50
DMA Move (HFMDMA) ... 6-53

Considerations for hft Emulation 6-54

Input .. 6-56
Untranslated Key Control ... 6-56
Input Device Report .. 6-57
Adapter-Generated Input .. 6-59

Output ... 6-61
Protocol Modes .. 6-62
Set Keyboard LEDs .. 6-64
Set Locator Thresholds .. 6-64
Set Tablet Dead Zones .. 6-65

Special Files 6-25

hft

Set LPFKs ... 6-65
Set Dial Granularities ... 6-66
Sound ~ .. 6-66
Cancel Sound ... 6-67
Change Physical Display .. 6-67

Keyboard Send-Receive Mode (KSR) 6-69
Character Set Definition ... 6-69
Set KSR Color Palette .. 6-70
Change Fonts ... 6-71
Cursor Representation .. 6-72

Monitor Mode (MOM) 6-73
Entering Monitor Mode ... 6-73
Screen Request and Input Ring Buffer Definition 6-74
Reading Input Data from the Ring Buffer 6-75
Next Window Function .. 6-76
Exiting Monitor mode ... 6-77
Signals .. 6-77

6-26 AIX Operating System Technical Reference

hft

Initial State

When a new terminal is opened, it is initialized to a known state. This initial state can be
changed, if desired. The initial terminal state is the following:

• Mode: Keyboard Send-Receive (KSR).

• Echo/Break Map: Echo all characters; break for none.

• Tab Rack: The first, every eighth, and the last position of every line.

• ASCII Controls:

LNM
IRM
SRM
TSM
CLM
AUTONL

• Protocol Mode:

Set
Not set
Not set
Not set
Not set
Set.

Set (wrap cursor at boundary)
Not set (do not return locator input)
Set (translate keyboard input)
Not set (do not report keyboard status change)

WRAP
HOSTPC
XLATKBD
HOSTS
LPFKS
DIALS

Not Set (disable lighted programmable function key input)
Not set (disable dial or valuator input).

• Locator Threshold: 2.75 millimeters horizontal, 5.5 millimeters vertical.

• Font: Initially, and whenever the physical display device is changed, this is set to be
the first font in the customized list of fonts that:

- Results in a presentation space of 80 columns by 25 rows, and
- Has a normal appearance (not bold or italic).

If no font meets these criteria, then the first font that can be displayed on the device is
chosen. All alternate fonts are initialized to the selected font.

• Character mode color palette for both foreground and background:

Entry Color

o Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White

Special Files 6-27

hft

8 Gray
9 Light red
10 Light green
11 Brown
12 Light blue
13 Light magenta
14 Light cyan
15 High intensity white.

termio Support

Input modes described in "termio" on page 6-114 supported are INLCR, IGNCR, ICRNL,
IUCLC, IXON, and IXANY. Input modes IGNBRK and BRKINT are not supported because
there is no Break key. Input modes IGNPAR, PARMRK, and INPCK are not supported
because parity is not provided. Input mode IS TRIP is not supported either. ICRNL is
supported by using the keyboard remap facility to change the code sent by the Enter
(Return) and Ctrl-M keys. Also, the implementation of IXON is different. If the user
presses Ctrl-S while output is being performed on the screen, the output does not stop
until the end of the current write system call.

Output modes supported are OPOST, ONLCR, and OCRNL. The delay insertion, parity,
and stop bit modes are not supported.

Line discipline modes supported are ISIG, ICANON, ECHO, ECHOE, ECHOK, ECHONL,
NOFLSH, and Enhanced Edit Mode.

Screen paging is also supported using the TCGLEN and TCSLEN ioctl operations. When
paging is active, the contents of the buffer supplied by the write call are written out in
page-size pieces.

Other ioctl operations supported by hft include TCXONC and TCFLSH. The TCSBRK
operation is not supported.

select Support

The hft device driver supports the select system call in the following manner:

• Read selects are satisfied when input data is available.

• Write selects are always satisfied immediately.

• Exception selects are never satisfied, or hang indefinitely if no timeout value is
specified.

See "select" on page 2-111 for more information about this system call.

6-28 AIX Operating System Technical Reference

hft

ioctl Operations

The hft supports a number of operations issued by the ioctl system call to provide access
to sophisticated features of the hft. See "ioctl" on page 2-56 for details about the syntax of
the system call itself. For information about issuing requests for these operations to an
emulated hft device, see "Considerations for hft Emulation" on page 6-54.

Query I/O Error (HFQEIO)
If an I/O operation or other system call to the hft fails due to hardware error, the system
call returns a nonzero value and sets the errno external variable to the value EIO. The
calling program can get a more detailed device error code by using ioctl to issue an
HFQEIO operation. This is invoked by the following:

int ioctl (fildes, HFQEIO, 0)
i nt fildes;

The return value from the HFQEIO loctl operation is either 0 (indicating that the last I/O
operation was successful), -1 (indica.ting that the HFQEIO operation itself failed), or the
error code for the last hft I/O operation. See Virtual Resource Manager Technical
Reference for an explanation of the individual virtual terminal error codes.

Query Device (HFQDEV)
Obtains detailed device information about the types of devices that are associated with the
virtual terminal. For details about this query operation, see the Query Device SVC in
Virtual Resource Manager Technical Reference. This is invoked by the following:

int ioctl (fildes, HFQDEV, arg)
i nt fildes;
struct hfqdev *arg;

struct hfqdev
{

};

unsigned short hf-qdrsvd;
unsigned short hf-qdopts;
unsigned int hf-qdlen;

This ioctl operation stores information into an hfqdresp structure that overlays the
hfqdev structure in memory. Only one option is recognized: the hf-qdopts field must be
set to the value 2. The hfqdresp structure contains the following members:

Special Files 6-29

hft

Field

hf-vtrmiodn

hf-vtrmiocn

hf-devtype

hf-devname[4]

hf-hwoffset

hf-devoffset

hf-erroffset

Description

The virtual terminal resource manager IODN.

The virtual terminal resource manager IOCN.

The device type. The value in this field is Ox0002 (shared device).

The device name. The value is II VTRM II for "Virtual Terminal Resource
Manager."

The offset to hardware characteristics.

The offset to the device characteristics.

The offset to the error log.

The next eight fields contain information about the last operation that was completed by
the virtual terminal for this virtual machine. For more detailed information about these
fields, see the discussion of the Query Device SVC in Virtual Resource Manager Technical
Reference.

hf-newics

hf-statflags

hf-ovrncnt

hf-opresult

hf-deviodn

hf-datawordl

hf-dataword2

hf-dataword3

hf-ddilen

hf-rc

hf-smiocn

hf-vtmpiocn

hf-keyiodn

hf-Iociodn

hf-spkiodn

New Interrupt Control Status register value.

Status flags.

Overrun count.

Operation result.

Device IODN.

Device-dependent data or command extension segment ID.

Deyice-dependent data or command extension address.

Device-dependent data.

The length (in words) of the device-dependent information.

The return code from IPL or the Define-Device SVC. A value of 0
indicates a successful operation.

The screen manager IOCN.

The virtual terminal mode processor IOCN.

The keyboard IODN.

The locator IODN. This field is set at IPL time. Note that the locator
is optional. If the locator is not used, this field is be set to O.

The speaker IODN. This field is set at IPL time.

6-30 AIX Operating System Technical Reference

hft

hf-numfont The number of fonts. One font is supplied by the VRM; however up to
31 additional fonts can be defined.

hf-fontiocn[i] The font IOCNs. Undefined font IOCN fields are set to O.

hf-numdisp The number of physical displays. This field is completed at IPL time.
The VRM supports as many as 4 physical displays.

The next three fields (hf-devid, hf-deviodn, and hf-deviocn) are repeated four times to
accommodate additional displays. Fields in this array that are not used are set to o.
hf-physd [i] .hf-devid

Contains a value that is a code identifier for a particular physical
device, such as a display adapter or monitor combination, in use.

hf-physd[i] .hf-deviodn
The IODN for the physical display device.

hf-physd[i] .hf-deviocn
The IOCN for the virtual display driver.

hf-keymapiocn The IOCN that defines how key positions map to characters.

hf-chrmapiocn The IOCN that defines how characters map to display codes for the
Unique 1 and Unique 2 character sets.

hf-echomapiocn The IOCN that defines the echo and break maps.

hf-initiocn The IOCN of the virtual terminal mode processor initialization
parameters. Examples of these parameters include protocol modes, tab
rack, and so on.

The IODN of the valuator dial device driver. hf-dialsiodn

hf-Ipfkiodn The IODN of the lighted program function key device driver.

Reconfigure (HFRCONF)
A user program can reconfigure the virtual terminal to include different real devices.
Helpful information about virtual terminal reconfiguration can be found in the file
/usr/lib/samples/README.conf. This operation is invoked by the following:

int ioctl(fildes, HFRCONF, arg)
i nt fildes;
struct hfrconf *arg;

struct hfrconf
{

unsigned hf-op;
unsigned hf-obj;

Special Files 6-31

hft

};

union
{

uint hf-infob;
struct
{

ushort hf-iodn;
ushort hf-iocn;

} hf-info2;
}hf-info;

This command changes the configuration of the physical terminal or the virtual terminal
defaults. For example, there can be up to four display devices, one locator, one speaker,
and up to 32 fonts associated with a real terminal.

The hf-op field contains the requested operation. The valid operations appear in the
following list. These reconfigure operations, with the exception of those followed by an *
(asterisk), take effect only for terminals opened after the reconfiguration. The operations
followed by an asterisk take effect for the terminals that are currently open as well as
those opened after the reconfiguration.

HFADDLOC

HFADDSOUND

HFADDDISPLAY

Adds a real locator. hf-obj contains the real locator device driver
IODN.

Adds a real sound device. hf-obj contains the real sound device
driver IODN.

Adds a real display. The following fields must also be set for this
operation:

hf-obj
hf-iodn
hf-iocn

The real display identifier
The display device driver IODN
The virtual display driver IOCN.

HFDELDISPLA Y Deletes a real display. hf-obj contains the real display identifier.

HFADDFONT Adds a font. hf-obj contains the font IOCN.

HFCHGKBDRATE* Changes the keyboard typematic rate. Bits 24 - 31 of hf-obj
indicate the keyboard typematic rate. For the standard RT PC
keyboard, valid values are between 2 and 40 characters per second
and can be incremented in 1 character-per-second units. The
default value for the RT PC keyboard is 14 characters per second.

HFCHGKBDDEL* Changes the keyboard typematic delay. Bits 16 - 31 of hf-obj
indicate the keyboard typematic delay. For the standard RT PC
keyboard, valid values are between 300 and 600 milliseconds and

6-32 AIX Operating System Technical Reference

hft

can be incremented in 100 millisecond units. The default value for
the RT PC keyboard is 400 milliseconds.

HFCHGLOCRATE* Change locator sample rate. Bits 24 - 31 of hf~obj indicate the
locator sample rate. For the standard RT PC locator, valid values
are 10, 20, 40, 60, 80, and 100 samples per second. The default for
the RT PC locator is 60 samples per second.

HFCHGCLICK* Turns the keyboard click mechanism on or off. Bit 31 of hf-obj
indicates whether the speaker produces a sound when a key is
pressed. Sound is suppressed when bit 31 equals ° and produced
when bit 31 equals 1. The default for the RT PC keyboard is
keyboard click on.

HFCHGVOLUME* Sets the sound volume level. Bits 24 - 31 indicate the volume of
sounds produced by the speaker. For the standard RT PC speaker,
valid values are ° (sound off) and, 1 (low volume), 2 (medium
volume) and 3 (high volume). The default for the RT PC speaker is
medium volume.

HFKEYMAP Replaces the position code map. hf-obj contains the new position
code map IOCN. See the /usr/lib/samples/hft/hftkbdmap.c file.

HFDISPMAP Replaces the character code maps for the Unique 1 and Unique 2
character sets. See the /usr/lib/samples/hft/hftchrmap.c file.
hf-obj contains the new unique character code map IOCN.

HFECHOMAP Replaces the echo/break map. hf-obj contains the new echo/break
map IOCN. See the /usr/lib/samples/hft/hftecbrmap.c file.

HFDEFAULT Replaces miscellaneous default values. hf-obj contains the new
miscellaneous defaults IOCN. See the
/usr/lib/samples/hft/hftmiscdef.c file.

HFSETDD Changes the default display. hf-obj contains the real display
identifier.

HF ADDDIALS Adds a real dial device. hf-obj contains the dial device driver
IODN.

HFADDLPFK Adds a real lighted programmable function key (LPFK) device.
hf-obj contains the LPFK device driver IODN.

HFCHNGDMA Changes the DMA start address and length. hf-obj contains the
new DMA start address, and hf-infob contains the length of the
new DMA area.

Special Files 6-33

hft

Get Channel Number (HFGCHAN)
Returns the current driver channel number as the value of the ioctl system call. This
number can be used to open a specific virtual terminal. The arg parameter is ignored.
This is invoked by the following:

int ioctl (fildes, HFGCHAN, 0)
i nt fildes;

Set Echo and Break Maps (HFSECHO)
Sets the hft echo and break maps. Echoing displays the character associated with a
keystroke on the screen or performs the function associated with a control. Breaking
switches the input path from the monitor mode input buffer to the unsolicited ASCII
datastream flow. Echoing applies only to KSR mode; breaking applies only to MOM mode.
Echoing and breaking can be selectively enabled for each ASCII code point and multi-byte
control sequence. The default is to echo all characters and control sequences, but not to
break on any of them.

The HFSECHO operation is invoked by the following ioctl call:

int ioctl (fildes, HFSECHO, arg)
i nt fildes;
struct hfbuf *arg;

struct hfbuf
{

};

char *hf~bufp;
int hf-buflen;

The hf-bufp field points to an array of 32 integers. The hf-buflen field contains the
value 128 (Ox80), which is the length of the array in bytes. The first sixteen integers
constitute the echo map; the second sixteen integers are the break map.

Each of the two maps is treated as a set of bits. Bit 0 is the most significant bit of the first
integer. Bit 511 is the least significant bit of the sixteenth integer. Each bit corresponds
to an ASCII code point or multi-byte control. Bits 0 through 255 (OxFF) correspond to the
single-byte codes. Bits 256 (Ox100) and higher correspond to multi-byte control sequences,
as illustrated in Figure 6-1 on page 6-35. Bit 511 (Ox1FF) specifies whether to echo or
break on invalid and unsupported multi-byte control sequences. See "data stream" on
page 5-5 for a detailed explanation of each of the multi-byte control sequences.

6-34 AIX Operating System Technical Reference

hft

I
<E---Most Significant Hex Digits 0,1-----71

Hex2 10 1 112 113 114 I ••• 11F

0 CBT DMI RC
1 CHA EMI RI KSI

2 CHT EA VTD

3 CTC ED RIS
4 CNL EF RM

5 CPL EL SD
6 CPR ECH SL

7 CUB GSM SR

8 CUD HTS SU

9 CUF HVP SGR

A CUP ICH SGO

B CUU IL SG1

C CVT INO SM

0 OCH NEL TBC

E OL PFK VTS

F OSR SC INV

Figure 6-1. Bit Positions of ASCII Controls in Echo Map

For the echo map, a bit set to 1 means the character or control sequence is echoed when a
key that is mapped to it is pressed. The echo map is active only in KSR mode and can be
set only from KSR mode.

For the break map, a bit set to 1 means that the character or control sequence is reported
using the read system call instead of being placed in the input ring buffer. Also, the
SIGMSG signal is sent to the process to indicate that input data is available. The break
map is active only in monitor mode. (See "Monitor Mode (MOM)" on page 6-73 for a
description of the input ring buffer.)

The echo and break maps are shared by all code pages. For PO graphic code points (Ox20 to
OxFF), bits 32 to 255 (Ox20 to OxFF) of each map are used. For other code pages, each half
of the code page is associated with bits 128 to 255 (Ox80 to OxFF). For example, bit 160
(OxAO) specifies the echo or break status of code points PO OxAO, PI Ox20, PI OxAO, P2 Ox20,
and P2 OxAO.

Special Files 6-35

hft

Set Keyboard Map (HFSKBD)
Sets the keyboard map. Most keys on the keyboard can be remapped, changing the
character or control sequence each key generates when pressed. See "keyboard" on
page 6-78 for additional details. This is invoked by the following:

int ioctl (fildes, HFSKBD, arg)
i nt fildes;
struct hfbuf *arg;

struct hfbuf
{

};

char *hf-bufp;
int hf-buflen;

The hf-bufp field points to a hfkeymap structure, and hf-buflen contains its length.

struct hfkeymap {
char hf-rsvdl;
char hf -n keys;
struct hfkey {

char hf -kpos;
char hf-kstate;
struct hfkeyasgn
{

/* for single character */
char hf_pagenum; /* Code page */
char hf-character; /* Character to map */

#define nf-page hf-pagenum
#define hf-char hf-character

/* for function id */
#define hf-keyidh hf-pagenum /* high byte of id */
#define hf-keyidl hf-character /* low byte of id */

/* for character string */
#define hf-kstrl hf-character /* length of string */

}hf -keyasn;
} hfkey[HFNKEYS];

};

The hfkeymap structure can remap one or more keys, the number of which is specified by
the hf-nkeys field. This many hfkey structures follow. HFNKEYS, which is used as the

6-36 AIX Operating System Technical Reference

hft

dimension for the hfkey array, is by default defined to be 1, allowing one key to be
remapped. To change HFNKEYS, set its value in a #define statement that comes before
the #include < hft.h > statement.

The hfkey structure contains information for each key being remapped, such as key
position, shift states, and the type of remapping being done. The fields in the hfkey
structure are:

hf-kpos

hf-kstate

The key position number. See "keyboard" on page 6-78.

This field is subdivided into three groups of bits:

HFMAPMASK
Defines the bits that specify the type of mapping to be performed:

HFMAPCHAR
HFMAPNONSP

HFMAPFUNC
HFMAPSTR

HFSHFMASK

Specifies mapping a single character to a key.
Specifies mapping a nonspacing character to a key.
(See "data stream" on page 5-5 for informxtion
about nonspacing characters.)
Specifies mapping a function ID to a key.
Specifies mapping a string of more than one
character to a key.

Defines the bits that specify the shift state that applies to the key being
mapped:

HFSHFNONE
HFSHFSHFT
HFSHFCTRL
HFSHFALT
HFSHFALTGR

HFCAPSL

Specifies the base state (no shift state)
Specifies the shift state
Specifies the Ctrl state
Specifies the Alt state
Specifies the Alt Gr (Alternate Graphics) state.

Specifies whether the Caps Lock state affects the key. If set, then
when Caps Lock mode is on, the base state of a key functions as the
shift state, and the shift states functions as the base state.

The hfkeyasgn structure specifies the key to be remapped and the character codes
generated when the key is pressed or released. The fields of this structure differ depending
on the value of the HFMAPMASK bits in hf-kstate:

HFMAPCHAR, HFMAPNONSP:

hf-page
hf-char

HFMAPSTR:

hf-page
hf-kstrl

Specifies the code page
Specifies a character (also called a code point) in that code page.

Specifies the code page
Specifies (the length of the string in bytes) minus 1.

Special Files 6-37

hft

This is immediately followed by the string.

Note: Due to limitations of the hfkeymap structure, only one key can be assigned a
string value, and it must be the last key specified in the hfkey array. This is because
the structure itself does not contain space for the variable-length string, but the
string must immediately follow the structure in memory. The virtual terminal
subsystem supported by the VRM allows any number of keys to be assigned string
values, and you can you can do so if you set up your own key map buffer instead of
using hfkeymap.

HFMAPFUNC:

hf-keyidh
hf-keyidl

Specifies the high-order byte of the function ID.
Specifies the low-order byte of the function ID.

The following list gives the function IDs for each of the functions that can be assigned to
keys. See "Multi-Byte Controls" on page 5-13 for more details about these functions.

ID Name

OxOOOO - OxOOFE

Ox0101
Ox0102
Ox0103
Ox0104
Ox0105

Ox0106

Ox0107
Ox0108

Ox0109

(PFK) Issues the Programmable Function Key sequence for PF key 1
(ID = OxOOOO) through 255 (ID = OxOOFE).
(CUU) Moves the application cursor up one line.
(CUD) Moves the application cursor down one line.
(CUF) Moves the application cursor forward one character.
(CUB) Moves the application cursor backward one character.
(CBT) Moves the application cursor to the previous horizontal tab stop or
beginning of field.
(CHT) Moves the application cursor to the next horizontal tab stop or beginning
of field.
(CVT) Moves the application cursor down one vertical tab stop.
(HOME) Moves the application cursor to the first line, first character in the
presentation space.
(LL) Moves the application cursor to the last line, first character in the
presentation space.

Ox010A (END) Moves the application cursor to the last line, last character iI;l the

Ox010B
Ox010C
Ox0151
Ox0152
Ox0153
t)x0154
Ox0155
Ox0156
Ox0157

presentation space.
(CPL) Moves the application cursor to the first character of the previous line.
(CNL) Moves the application cursor to the first character of the next line.
(DCH) Deletes the character over the application cursor.
(IL) Inserts one line following the line of the application cursor.
(DL) Deletes the line of the application cursor.
(EEOL) Erases to the end of the line.
(EEOF) Erases to the next tab stop.
(CLEAR) Erases all characters from the presentation space.
(INIT) Restores the initial state of the virtual terminal. (See the description of
RIS in "Multi-Byte Controls" on page 5-13.)

6-38 AIX Operating System Technical Reference

OxOl62
OxOl63
OxlFFF

Note:

(RI) Performs one line reverse index control.
(IND) Performs one line index control.
(IGNORE) Sends no information when the key is pressed.

hft

On the U.S. IOI-key keyboard, the left Alt key produces the Alt shift state, and the right
Alt key produces the Alt Gr shift state. The default keyboard mapping for the Alt and Alt
Gr states is identical for all keys.

If a U.S. IOI-key keyboard is attached, then mapping the Alt state of a key automatically
causes the same mapping to be assigned to the Alt Gr state. This allows the two Alt keys
on the U.S. keyboard to function identically for most applications. If you want to remap
both the Alt and Alt Gr states of a key, you must remap the Alt state first, then the Alt
Gr state. Software written primarily for keyboards other than the U.S. keyboard should
remap the states in this order to assure compatibility.

If the Japanese I06-key keyboard is attached, then access to the Alt Gr shift state is not
possible.

Get Virtual Terminal ID (HFGETID)
Gets identification information for the current hft virtual terminal. This is invoked by the
following:

int ioctl(fildes, HFGETID, arg)
i nt fildes;
struct hfgetid *arg;

struct hfgetid {
unsigned hf-iodn;
unsigned hf-pgrp;
unsigned hf-chan;

};

The hf-iodn field is the I/O device number of the virtual terminal. The hf-pgrp field is
the process group ID; that is, the process ID of the terminal group leader. The hf-chan
field is the channel number that is also returned by the HFGCHAN ioctl operation.

Query (HFQUERY)
This gets information about the current virtual terminal. This is invoked by the following:

int ioctl (fildes, HFQUERY, arg)
i nt fildes;
struct hfquery *arg;

Special Files 6-39

hft

struct hfquery {
char *hf-cmd;
int hf-cmdlen;
char *hf-resp;
int hf-resplen;

};

The first two fields describe a buffer containing the· command. The second two fields
describe a buffer large enough to hold the expected response. Note that each command
and response structure begins with a virtual terminal data (VTD) header. (See "Output"
on page 6-61 for an explanation of the VTD header.) The following query commands use
this ioctl operation.

Query Device IDs Command

This command uses the hfqdevidc structure, which contains the following fields:

Field

hf-intro .hf-typehi

hf-intro.hf-typelo

Value

HFQDEVIDCH

HFQDEVIDCL

This command fills the response buffer with the information about the display devices.
The information is returned in an hfqdevidr structure, which has the following fields:

F~W V~ue

hf-intro.hf-typehi

hf-intro.hf-typelo

HFQDEVIDRH

HFQDEVIDRL

hf-numdev The number of devices for which data is reported.

The following fields are repeated for each physical device:

hf-devid PhysIcal device ID.

The first device ID is the active display device ID, unless the
change physical display command has changed the active display
ID. The following values are possible:

Ox0401mmnn IBM PC Monochrome Adapter and PC
Monochrome Display (5151)

Ox0402mmnn Advanced Monochrome Graphics Adapter and
Display (6153)

Ox0403mmnn Enhanced Graphics Adapter and PC Monochrome
Display (5151)

Ox0404mmnn Enhanced Graphics Adapter and Display (5154)

6-40 AIX Operating System Technical Reference

hf-class

Ox0405mmnn Extended Monochrome Graphics Adapter and
Display (6155)

Ox0406mmnn Advanced Color Graphics Adapter and Display
(6154)

Ox0408mmnn IBM 5081 Graphics Adapter and Display.

hft

Note: The mm value indicates whether the adapter is totally
functional. When this value is OxOO, the adapter is totally
functional. Any other value indicates the adapter is less than
fully functional or not working at all, but is present on the
machine. The nn value can be from Ox01 to Ox04 and differentiates
between multiple instances of the same adapter type.

Display class (Ox44).

Query Physical Device Command

This command returns information about display or locator devices. The hfqphdevc
structure is used to issue this command:

Value

HFQPDEVCH
HFQPDEVCL

Field

hf-intro.hf-typehi

hf-intro.hf-typelo

hf_phdevid Physical device ID. The value 0 specifies the active device that is
currently attached to the virtual terminal.

The response to this command gives the following information:

struct hfqphdevr
{

char hf~intro[HFINTROSZ];
char hf-sublen;
char hf-subtype;
/* locator device */
char hf-scale[4J;
char hf-locattr[lJ;
char hf -rsvd [3J ;
/* display device */
char hf-attrib[4J;
char hf-pwidth[4];
char hf-pheight[4J;
char hf-mwidth[4J;
char hf-mheight[4J;

Special Files 6-41

hft

};

char hf-bperpel [4J;
char hf-phdevid[4J;
/* display font */
char hf-numfont[4J;
/* remainder is of variable length */
/* struct hffont hffont[NJ; where N is value in hf-numfont */
char hf-fontstart;
/* following is one color response */
/* struct hfcolor hfcolor; */

struct hfqfont
{

};

char hf-fontid[4J;
char hf-fontstyle[4J;
char hf-fontattr[4J;
char hf-fontwidth[4J;
char hf-fontheight[4J;

struct hfcolor
{

};

char hf-numcolor[4J;
char hf-numactive[4J;
char hf-numfgrnd[4J;
char hf-numbgrnd[4J;
char hf-actcolor[4J;

These structures are explained in the following sections that have headings beginning with
the word Physical.

Physical Device Information VTD Header

Field

hf-intro.hf-typehi

hf-intro.hf-typelo

Value

HFQPDEVRH
HFQPDEVRL

6-42 AIX Operating System Technical Reference

hft

Physical Locator Information

Field

hf-scale

hf-locattr[O]

Value

Scale factor (millimeters per 100 counts)

Locator attributes:

HFLOCABS If set, then the locator device reports absolute
coordinates (for example, a tablet device). If not set,
then it reports relative coordinates (for example, a
mouse).

Physical Display Device Information

Field

hf-attrib[O]

hf-a ttrib [2]

hf-attrib[3]

hf-pwidth

hf-pheight

hf-mwidth

hf-mheight

hf-bperpel

hf-phdevid

Value

Display device attributes:

HFISAPA All-points-addressable (APA) display.
HFHASBLINK Blink function allowed.

All other values are reserved.

Display device attributes:

HFHACOLOR Color allowed.

All other values are reserved.

Display device attributes:

HFCHGPALET Can change display adapter's color palette.

All other values are reserved.

Displayable width of physical screen, expressed in picture elements (also
called pels or pixels) for all displays.

Displayable height of physical screen, expressed in pels for all displays.

Displayable width (in millimeters).

Displayable height (in millimeters).

Bits per pel (1, 2 or 4).

Display device ID.

Special Files 6-43

hft

Physical Display Font Information

Field

hf-numfont

hf-fontid

hf-fontstyle

hf-fontattr[O]

hf-fontwidth

hf-fontheight

Value

Number of fonts available to this display. The following fields appear
for each available font.

Physical font ID.

Physical font style.

Physical font attribute. This field may have the following values:

HFFNTPLAIN
HFFNTBOLD
HFFNTITALIC

Plain
Bold
Italic.

Physical font width (the width of a character cell in pels).

Physical font height (the height of a character cell in pels).

Physical Display Color Information

Field

hf-numcolor

hf-numactive

hf-numfgrnd

hf-numbgrnd

hf-actcolor

Value

Total number of colors possible

Number of colors that can be active at anyone time

Number of foreground color options

Number of background color options

Active color value. The value of this field can be in the range 0 to the
total number of colors possible (hf-numcolor) minus 1. This field is
repeated for each of the currently active colors.

Query Locator Command

To query the locator, use the hfqgraphdev structure with fields set as follows:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

HFQLOCCH
HFQLOCCL

This command returns a hfqlocr structure with the following fields:

Field Value

hf-intro.hf-typehi HFQLOCRH

6-44 AIX Operating System Technical Reference

hf-intro.hf-typelo

hf-resolu tion

hf-devinfo [0]

hf-horzmax-cnt

hf-vertmax-cnt

hf-horzdead-zone

hf-vertdead-zone

HFQLOCRL
The resolution of the locator (a 4-byte value).

Locator attributes:

hft

HFLOCABS

HFLOCUNKNOWN

HFLOCSTYLUS
HFLOCPUCK

If set, absolute coordinates (tablet). If not
set, relative coordinates (mouse).
Unknown sensor type, or the locator is a
mouse.
The tablet has a stylus sensor.
The tablet has a puck sensor.

Horizontal maximum count (a 2-byte value).

Vertical maximum count (a 2-byte value).

Horizontal tablet dead zone or mouse threshold.

Vertical tablet dead zone or mouse threshold.

Query LPFKs Command

To query the LPFKs, use the hfqgraphdev structure with fields set as follows:

Field Value

hf-intro .hf-typehi

hf-intro.hf-typelo

HFQLPFKSCH
HFQLPFKSCL

This command returns a hfdial-Ipfk structure with the following fields:

F~W V~ue

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-numlpfks

hf-data2.lpfk.flags

HFQLPFKSRH
HFQLPFKSRL
Number of LPFKs on the device.

A set of 32 bits corresponding to each of the LPFKs. Bits that are
set to 1 indicate enabled LPFKs; bits set to 0 indicate disabled
LPFKs.

Special Files 6-45

hft

Query Dials Command

To query the dials, use the hfqgraphdev structure with fields set as follows:

F~W V~ue

hf-intro.hf-typehi

hf-intro .hf-typelo

HFQDIALSCH

HFQDIALSCL

This command returns a hfdial-Ipfk structure with the following fields:

Field Value

hf-intro.hf-typehi HFQDIALSRH

hf-intro.hf-typelo HFQDIALSRL

hf-numdials Number of dials on the device.

hf-data2.granularity An array of sixteen I-byte values giving the granularity of each
dial. Granularity is the number of events per full 3600 revolution
of the dial. The values in the array represent powers of 2.

Query Presentation Space Command

This data determines how to define a block of characters in the presentation space to
query. Attribute and character set information on the queried block are returned. This
query is valid only in KSR mode. (Note that this operation is called "Query ASCII Codes
and Attributes" in Virtual Resource Manager Technical Reference.)

The hfqpresc structure is used for this command, and it contains the following fields:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-sublen

hf-subtype

hf-xuleft

hf-yuleft

'hf-xlright

hf-ylright

HFQPRESCH

HFQPRESCL

2

o
The upper-left X coordinate (first column of the block)

The upper-left Y coordinate (first row in the block)

The lower-right X coordinate (last column in the block)

The lower-right Y coordinate (last row in the block).

The data returned from this command is an ASCII data stream that contains character
codes from the queried block. Character set and attribute changes are indicated with SGR

6-46 AIX Operating System Technical Reference

hft

and SGO control sequences. A line feed control is returned after the last character code in
each line of the queried block.

Note: The returned attributes may be only a subset of the original attributes specified for
query. The subset in this case is those attributes actually supported by the physical
device.

The response is returned in an hfqpresr structure, which contains the following fields:

Field

hf-intro.hf-typehi

hf-intro.hf-typelo

Value

HFQPRESRH
HFQPRESRL

The response contains an ASCII data stream that includes all ASCII data currently
associated with the input buffer.

Query HFT Device Command

This command gets information about the hft device. To issue this command, use the
hfqhftc structure with fields set as follows:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

HFQHFTCH
HFQHFTCL

The command returns an hfqhftr structure with the following fields:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-phdevid

hf-phrow

hf-phcol

hf-phcolor

hf-phfont

hf-phkbdid

HFQHFTRH
HFQHFTRL
Physical display device ID (the same as returned by "Query Device
IDs Command" on page 6-40)

Number of character rows, based on the current font

Number of character columns, based on the current font

Number of colors allowed on the display

Number of fonts defined in the system

Physical keyboard ID:

o 101-key keyboard
1 102-key keyboard
2 106-key keyboard.

Special Files 6-47

hft

Query DMA Command

This command queries the starting address and length of the application's DMA area. To
issue this command, use the hfqdmac structure with fields set as follows:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

HFQDMACH

HFQDMACL

The command returns an hfqdmar structure with the following fields:

F~W V~ue

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-dmaaddr

hf-dmalen

HFQDMARH

HFQDMARL

Starting address of the DMA area

Length of the D MA area.

Enable Sound Signal (HFESOUND)
This command informs the terminal driver of the intent to use sound, enabling the routing
of the sound response signal. This is invoked by the following:

int ioctl (fildes, HFESOUND, arg)
i nt fildes;
struct hfsmon *arg;

struct hfsmon
{

int hf-momflags;
};

The hf-momflags field contains one of the following values:

HFSINGLE Only the process issuing the ioctl system call is to receive a sound
response signal.

HFGROUP All members of the current process group are to receive a sound response
signal.

6-48 AIX Operating System Technical Reference

Disable Sound Signal (HFDSOUND)
This informs the terminal driver of the intent to discontinue the use of sound. Sound
response signals are not sent. This is invoked by the following:

i nt i oct 1 (fildes, H FDSOUND, 0)
i nt fildes;

Enter Monitor Mode (HFSMON)

hft

This requests monitor mode. Monitor mode provides a program with direct control of the
screen and keyboard. This is invoked by the following:

int ioctl (fildes, HFSMON, arg)
i nt fildes;
struct hfsmon *arg;

struct hfsmon
{

int hf-momflags;
};

The hf-momflags field contains one of the following values:

HFSINGLE Only the process issuing the ioctl system call is to receive monitor mode
signals.

HFGROUP All members of the current process group are to receive monitor mode
signals.

Exit Monitor Mode (HFCMON)
Releases monitor mode. This is invoked by the following:

int ioctl(fildes, HFCMON, 0)
int fildes;

Query Screen Manager (HFQSMGR)
Queries the screen manager. The file descriptor must be associated with a screen manager,
that is, /dev/hft/mgr. This is invoked by the following:

int ioctl(fildes, HFQSMGR, arg)
i nt fildes;
struct hfbuf *arg;

Special Files 6-49

hft

struct hfbuf
{

};

char *hf-bufp;
int hf-buflen;

The contents of the following hfqstat structure are stored in the memory area pointed to
by hf-bufp.

struct hfqstat
{

short hf-numvts;
struct hfvtinfo
{

unsigned short hf-vtiodn;
unsigned short hf-vtstate;

} hf-vtinfo[HFNUMVTS];
};

Field

hf-numvts

Description

The number of virtual terminals.

The following fields are repeated for each virtual terminal:

hf-vtiodn The virtual terminal IODN.

hf-vtstate Status:

HFVTHIDDEN
HFVTACTIVE
HFVTCOMMAND

The virtual terminal is hidden.
The virtual terminal is active.
The virtual terminal is the command terminal.

Control Screen Manager (HFCSMGR)
This commands the screen manager. This command controls the status of virtual
terminals. Virtual terminals are linked together in a group called the screen manager
ring. The screen manager places an entry in the ring for each virtual terminal opened.
The terminal that is currently active is called the head of the ring; the last terminal on
the ring is called the tail. When a new terminal is added to the ring, the terminal becomes
the head of the ring.

Two key sequences switching between virtual terminals and control which terminal is
currently active. The active terminal is the terminal that accepts keyboard or locator
input and updates the physical display. Pressing the Alt + Action keys on the active
terminal makes the next virtual terminal active. This relationship is indicated by a in

6-50 AIX Operating System Technical Reference

hft

Figure 6-2 on page 6-51. Pressing the Shift + Action on the active terminal makes the
last virtual terminal active. The b in Figure 6-2 on page 6-51 indicates this relationship.

b t
~a-{3] 3

Head Tail

b

dJ 4 ~a---+Q CI --

Head Tail

Figure 6-2. Screen Manager Ring Examples. In this figure, a indicates the path from the
active virtual terminal to the next and b indicates the path from the active virtual
terminal to the last.

Note that with three entries in the ring, all the terminals can be accessed with a single key
sequence. With four or more entries, terminals can be skipped in some cases to activate a
particular terminal. For example, in the preceding figure with four terminal entries,
terminal #2 cannot be accessed from the active terminal #4 without first skipping to
terminal #1 or terminal #3.

The hide option of this command logically removes terminals from the ring. Hiding a
terminal causes it to be bypassed when its position in the ring ordinarily makes it the
active terminal.

The file descriptor must be associated with a screen manager, that is, /dev/hft/mgr. This
is invoked by the following:

int ioctl (fildes, HFCSMGR, arg)
i nt fildes;
struct hfsmgrcmd *arg;

struct hfsmgrcmd {
int hf-cmd;

};

int hf-vtid;
int hf-vsid;

Special Files 6-51

hft

The hf-vtid and 'hf-vsid fields are set as follows:

hf-vtid

hf-vsid

The IODN of the virtual terminal

o.
The hf-cmd field contains one of the following screen manager commands:

SMACT

SMHIDE

SMSCMD

SMUNHIDE

SMCVTEN

SMCVTDI

Activates the virtual terminal. This command places the virtual terminal
specified by the IODN at the head of the screen manager ring, making it
the active terminal. The terminal's hidden flag is also cleared. The
screen manager cannot activate the virtual terminal if the currently
active virtual terminal cannot be deactivated.

Hides the virtual terminal. This command marks the terminal identified
by the IODN so that the screen manager will not activate it. This does
not affect the terminal's position in the ring. When the hidden flag is set,
the screen manager ignores the terminal's presence in the ring until an
SMUNHIDE command is issued. If the virtual terminal is active when
the hide command is issued, then the screen manager makes the terminal
inactive (if possible), but does not prevent the virtual machine attached to
it from communicating with it. Hiding the active virtual terminal has the
same effect as the last window function. If all virtual terminals are
hidden, then the physical display continues to show the contents of the
last virtual terminal that was hidden.

Sets the command virtual terminal. This command designates a terminal
as the command virtual terminal. The command virtual terminal is the
terminal that is activated by pressing both locator buttons at the same
time, or by pressing the Ctrl-Action key sequence.

Undoes the action performed by SMHIDE. The hf-vtid field contains the
IODN of the virtual terminal where the command should be sent. The
hf-vsid field is reserved.

This command restores the presence of the terminal in the ring, but does
not affect its ring position or make it active. If the virtual terminal
happens to be at the head of the ring when this command is issued, then it
becomes visible and active.

Causes the command virtual terminal to be activated when both locator
buttons are pressed at the same time. This is the default setting. Since all
virtual terminals are affected, programs that change this setting should
restore it as soon as the locator is no longer needed.

Causes input data to be reported when both locator buttons are pressed at
the same time. The data reported is similar to that reported when a single
button is pressed.

6-52 AIX Operating System Technical Reference

hft

DMA Move (HFMDMA)
Specifies the source, destination, and length of a Monitor Mode DMA move data operation.
This is invoked by the following:

int ioctl(fildes, HFMDMA, arg)
int fildes;
struct hfmdma *arg;

struct hfmdma
{

}

uint hf-srcaddr;
uint hf-dmalen;
uint hf-destaddr;

/* Virtual source address of DMA data */
/* Length of data to be moved by DMA */
/* Virtual destination address of DMA data */

This ioctl operation maps an application data area to segment E DMA space or unmaps an
application data area. Mapping occurs when the source address specifies the application
data area and the destination address specifies the segment E space. Unmapping takes
place when the addresses are reversed from mapping. Pages are pinned when mapping
takes place and unpinned during unmapping.

The range of space available for segment E DMA depends on the amount of memory
installed in the system and on the amount of memory allocated to DMA space by the
HFCHNGDMA option of the HFRCONF ioctl operation (see "Reconfigure (HFRCONF)"
on page 6-31).

Warning: Once a data space is mapped onto segment E space with this
ioctl operation, do not attempt to access the data space until after it is
unmapped. Otherwise, loss of data, unpredictable results, and permanent
depletion of system resources may occur.

Special Files 6-53

hft

Considerations for hft Emulation

Communicating with an emulated or remote hft device presents a unique situation because
the ioctl system call cannot be used. This is a result of the fact that ioctl passes data
directly to the virtual terminal subsystem, bypassing the data stream. An hft emulator is
usually connected through a pseudo-tty device, which means that all communication with
it must be done through the data stream. Pseudo-tty devices are discussed under "pty" on
page 6-107.

Therefore, two special multi-byte control sequences can be used in place of invoking the
ioctl system call, allowing applications to request an emulated hft to perform the ioctl
operations. However, the hft device driver, which controls the local console, does not
recognize these control sequences; you must still use ioctl to perform these operations on
an hft device that is not emulated.

Both of these multi-byte control sequences begin with a virtual terminal data (VTD)
header. VTDs are explained under "Output" on page 6-61. .

To perform an hft ioctl operation whether or not the hft is emulated, an application
should do the following:

1. Determine whether the hft device is being emulated. If the call ioctl
(fildes, IOCTYPE, 0) returns the value DD-PSEU, then fildes is a pseudo-tty device,
which means that fildes may be connected to an hft emulator. Otherwise, the hft
device is not emulated.

2. If the hft is not emulated, then issue a regular ioctl system call, as outlined in "ioctl
Operations" on page 6-29.

3. If the hft is emulated, then do the following:

a. Set the pseudo-tty for raw data. That is, disable all input and output processing.
This is necessary because the control sequences can contain binary data that would
be misinterpreted by the pseudo-tty device driver as ASCII control codes. See
"termio" on page 6-114 for details.

b. Use the write system call to send an hfctlreq VTD structure, immediately followed
by the request structure, if any, that would normally be pointed to by the ioctl arg
parameter. The hfctlreq structure contains the following fields:

F~W V~ue

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-request

hf-arg-Ien

HFCTLREQH

HFCTLREQL

The request type.

The length of the argument structure that follows the
hfctlreq VTD, or 0 if none.

6-54 AIX Operating System Technical Reference

hft

hf-rsp-Ien The maximum length of the response data structure that is
to be returned with the hfctlack VTD. This value is 0 if
no response buffer is expected.

c. Read (using the read system call) until an acknowledgement VTD is received. This
acknowledgement takes the form of an hfctlack structure, which is sometimes
followed by a returned data structure, depending on the operation requested. The
hfctlack structure contains the following fields:

F~W V~ue

hf-intro .hf-typehi

hf-intro.hf-typelo

hf-request

hf-ret-code

HFCTLACKH
HFCTLACKL
The type of request that is being acknowledged.

The error code: zero indicates successful completion; a
non-zero value is the value that is normally found in
errno.

The length of the response data structure that follows the
hfctlack VTD, or 0 if none. The length must not exceed
the value of hf-rsp-Ien that was specified in the hfctlreq
structure.

The file' jusrjlibjsamplesjhftjhftctl.c contains a sample program that illustrates how to
implement this procedure.

Special Files 6-55

hft

Input

Data read from an hft device with the read system call can contain not only character
data entered from a keyboard, but also input from other devices, such as a locator, a tablet,
valuators, and lighted programmable function keys. Data from devices other than the
keyboard is passed back from the read system call in the form of special control sequences
that are described in this section.

Note: These control sequences contain binary data. To prevent the binary data from
being misinterpreted as ASCII control codes, Set the terminal's canonical processing off.
See ICANON on page 6-121 for details.

Untranslated Key Control
If keyboard input is received when HFXLATKBD is turned off, this control sequence is
returned. The key position identifies the logical key pressed. The key status bits indicate
Alt, Ctrl, Shift, Caps Lock, and Num Lock key states. The scan code and make/break
keys are dependent upon hardware and require knowledge of the physical keyboard in use.
See "keyboard" on page 6-78 for additional information.

The structure of the untranslated key control is:

struct hfunxlate
{

char hf-esc;
char hf-lbr;
char hf -ww;
char hf -keypos;
char hf-scancode;
char hf -status [2J ;

};

The fields of the structure are:

Field Description

hf-esc ESC (OxlB)

hf-Ibr [(Ox5B)

hf-ww w (Ox77)

hf-keypos Key Position

hf-scancode Scan Code (see "keyboard" on page 6-78)

6-56 AIX Operating System Technical Reference

hf-status[O]

hf-sta tus [1]

Status:

HFUXSHIFT
HFUXCTRL
HFUXALT
HFUXCAPS
HFUXNUM
HFUXMAKE

Status:

HFUXRPT
HFUXLSH
HFUXRSH
HFUXLALT
HFUXRALT

A shift key is pressed.
Ctrl key is pressed.
Alt key is pressed.
Caps Lock mode is in effect.
N urn Lock mode is in effect.
If set, key has been pressed. If not set, key has been
released.

Automatic repeat (typematic) state
Left shift state
Right shift state
Left alternate shift state
Right alternate shift state.

hft

Input Device Report
This control reports input data from the mouse, tablet, LPFKs, or valuator dials. The data
is reported in the form of an hflocator structure, and the following sections describe the
fields of this structure for each type of input device.

Mouse Report

hf-esc

hf-Ibr

hf-why

hf-deltax

hf-deltay

hf-seconds

hf-sixtyths

ESC (OxlB)

[(Ox5B)

y (Ox79)

The X delta, a signed integer that holds the relative X delta accumulations
in counts of 0.25 millimeters of the locator movement in twos-complement
form. This information is sent to the virtual terminal to indicate
horizontal movement since the last locator movement.

The Y delta, a signed integer that holds the relative Y delta accumulations
in counts of 0.25 millimeters of the locator movement in twos-complement'
form. This information is sent to the virtual terminal to indicate vertical
movement since the last locator movement.

Time of the locator report in whole seconds since system startup.

The fractional part of time stamp of the locator report in 1/60th of seconds.

Special Files 6-57

hft

hf-buttons The status of the locator buttons. This information is sent to the virtual
terminal to indicate a change in the status of the buttons since the last
locator movement in the following manner:

HFBUTTONI
HFBUTTON2
HFBUTTON3

Button 1 has been pressed.
Button 2 has been pressed.
Button 3 has been pressed.

hf-stype 0

Tablet Report

hf-Ibr

hf-why

hf--,deltax

hf-deltay

hf-seconds

hf-sixtyths

hf-buttons

hf-stype

ESC (OxlB)

[(Ox5B)

y (Ox79)

The absolute X coordinate of the tablet sensor.

The absolute Y coordinate of the tablet sensor.

Time of the locator report in whole seconds since system startup.

The fractional part of time stamp of the locator report in 1/60th of seconds.

The status of the locator buttons. This information is sent to the virtual
terminal to indicate a change in the status of the buttons since the last
locator movement in the following manner:

HFBUTTONI The left button has been pressed.
HFBUTTON2 The right button has been pressed.

1

LPFK Report

hf-esc ESC (OxlB)

hf-Ibr [(Ox5B)

hf-why y (Ox79)

hf-deltax The LPFK number.

hf-deltay Reserved.

hf-seconds Time of the report in whole seconds since system startup.

hf-sixtyths The fractional part of time stamp of the report in 1/60th of seconds.

6-58 AIX Operating System Technical Reference

hf-buttons

hf-stype

The status of the LPFK.

2

Valuator Dial Report

hf-esc ESC (OxlB)

hf-lbr [(Ox5B)

hf-why y (Ox79)

hf-deltax The dial number.

hft

hf-deltay The dial value delta. This is a signed integer value in the dial's units of
granularity (see "Set Dial Granularities" on page 6-66).

hf-seconds Time of the report in whole seconds since system startup.

hf-sixtyths The fractional part of time stamp of the report in 1/60th of seconds.

hf-buttons The status of the dial.

hf-stype 3

Adapter-Generated Input
Some adapters can return status information to MOM applications by way of a ring buffer.
This status information is placed in the ring buffer with a VT A multi-byte control
(ESe [r). This feature is not available to KSR mode.

The information that immediately follows the control sequence includes a I-byte queue ID
and 20 bytes of data. Note that the hardware returns 16-bit words and that the
bit-numbering conventions are reversed. See IBM RT PC Hardware Technical Reference
for details on the data returned for each adapter status entry.

Status QID Data

FIFO mode entered OxOl Ox03 in first data byte, rest reserved.

PRIGS traversal started OxOl Ox05 in first data byte, rest reserved.

FIFO pick mode set OxOl Ox07 in first data byte, rest reserved.

eGA mode entered OxOl Ox09 in first data byte, rest reserved.

Traversal stopped OxOl OxOB in first data byte, rest reserved.

Single-step mode completed OxOl OxOF in first data byte, rest reserved.

Special Files 6-59

hft

Status QID Data
Echo cursor completed Ox01 Ox11 in first data byte, rest reserved.

Defined pointer echo completed Ox01 Ox13 in first data byte, rest reserved.

Remove cursor completed Ox01 Ox15 in first data byte, rest reserved.

Clear frame buffer completed Ox01 Ox17 in first data byte, rest reserved.

Load look-up table completed Ox01 Ox21 in first data byte, rest reserved.

Set pick window size completed Ox01 Ox27 in first data byte, rest reserved.

Reset FIFO pick mode completed Ox01 Ox29 in first data byte, rest reserved.

Set blink mode completed Ox01 Ox2D in first data byte, rest reserved.

Reset blink mode completed Ox01 Ox2F in first data byte, rest reserved.

Initialization complete Ox02 Ox01 in first data byte, rest reserved.

Traversal complete Ox03 No data, all 20 bytes reserved.

Pick occurred Ox04 Data words 1-5 set to reason extension
words 1-10.

Buffer error Ox05 Data words 1-5 set to reas::>n extension
FIFO overflow words 1-10.
Illegal graphic order
Illegal request code
Invalid page
Stack error
Traversal error

PELPRO task completed Ox06 No data, all 20 bytes reserved.

PELPRO pick Ox07 . Data words 1-5 set to reason extension
words 1-10.

PELPRO vertical synch. Ox08 No data, all 20 bytes reserved.

FIFO half full Ox09 No data, all 20 bytes reserved.

FIFO half empty OxOA No data, all 20 bytes reserved.

Synchronize OxOB Data words 1-5 set to reason extension
codes 1-10.

6-60 AIX Operating System Technical Reference

hft

Output

ASCII data can be sent to the virtual terminal using the write system call along with data
of any length. In addition, virtual terminal control structures are sent to the virtual
terminal using the write system call.

Each control structure is introduced by a virtual terminal data (VTD) character
sequence. The VTD prefix consists of the ASCII codes ESC, [, and x (OxlB5B78). This is
followed by a length and an operation type code. The data that follows this structure
depends on the type of control.

The hfintro structure looks like this:

{
char hf-esc;
char hf-lbr;
char hf-ex;
char hf-len[4] ;
char hf-typehi;
char hf-typelo;

};

The significant fields in the hfintro structure are:

hf-Ien The total number of bytes in the header and associated data, not including
the three-character VTD control sequence. In other words, the length is the
total number of characters in the control sequence minus 3.

hf-typehi The high-order byte of the information type code.
hf-typelo The low-order byte of the information type code.

Note that hf-typehi and hf-typelo are called the major and minor data types in Virtual
Resource Manager Technical Reference. The values of hf-typehi and hf-typelo are
documented with each command.

Because the hfintro structure is an odd number of bytes in length, it is designated as the
character array hf-intro[HFINTROSZ] in the structures that define the various
operation requests. This prevents the C compiler from inserting bytes into the structure to
align the following fields on word boundaries. The hf-typehi and hf-typelo fields are
referred to hf-intro.hf-typehi and hf-intro.hf-typelo in this book, although these
references are not precisely correct.

All reserved and unused fields must be set to o. You can set the entire structure to 0 and
then fill in the appropriate fields.

Special Files 6-61

hft

Protocol Modes
Protocol modes determine how the virtual terminal will interpret coded data, translate and
return input data. Two bits control each mode. The first, in the hf-select field, indicates
whether to use the current mode setting. If this bit is set, then the corresponding bit in
hf-value indicates the new setting for the mode. The mode bits are set to the default
value when the virtual terminal is opened. These defaults may be changed during
configuration with the HFRCONF operation.

The hfprotocol structure gives the protocol definitions:

F~W V~u~

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-sublen

hf-subtype

hf-select

hf-select[O]

hf-select[l]

hf-value[O]

hf-value[1]

HFKSRPROHorHFMOMPROH

HFKSRPROLorHFMOMPROL

2

o
Specifies which modes to change. A bit value of 1 specifies the
mode represented by that bit to change.

Mode selectors:

HFHOSTS
HFXLATKBD

Mode selectors:

HFWRAP
HFLOCATOR
HFLPFKS
HFDIALS
HFDINTR
HFDINTRONL Y

New mode values:

HFHOSTS
HFXLATKBD

New mode values:

HFWRAP
HFLOCATOR
HFLPFKS
HFDIALS
HFDINTR
HFDINTRONLY

6-62 AIX Operating System Technical Reference

hft

When issuing this command, specify a type of either HFKSRPROH, HFKSRPROL or
HFMOMPROH, HFMOMPROL depending on whether you are sending this command
from within Keyboard Send-Receive mode (KSR) or Monitor mode (MOM). Only certain
protocol modes are valid in each of these modes, as shown in the following table. An
attempt to set an invalid protocol mode is ignored.

Protocol
Mode

HFHOSTS

HFXLATKBD

HFWRAP

HFLOCATOR

HFLPFKS

HFDIALS

HFDINTR

When
Valid

KSR

Meaning

A 0 bit (default) means not to report shift key
depressions. A 1 bit means report shift key depressions.

HFHOSTS mode specifies whether to report keyboard
status changes. If HFHOSTS mode is set, the keyboard
status information is returned in the KSI ANSI control
(see "Multi-Byte Controls" on page 5-13).

KSR, MOM A 1 bit (default) specifies that the keyboard input is
translated. A 0 bit indicates send key data as
untranslated key controls. See "Untranslated Key
Control" on page 6-56.

KSR A 1 bit (default) causes the cursor to wrap when the
presentation space boundary is exceeded. A 0 bit
specifies do not wrap the cursor.

KSR, MOM A 0 bit (default) disables the locator from sending data.
A 1 bit enables the locator to send data.

KSR, MOM A 0 bit (default) disables LPFK input. A 1 bit enables
LPFK input.

KSR, MOM A 0 bit (default) disables dial (valuator) input. A 1 bit
enables dial input.

MOM A 0 bit (default) indicates that display adapter status
information is not to be sent to the host. A 1 bit specifies
that the display status is to be sent.

HFDINTRONL Y MOM A 0 bit (default) specifies not to restrict the use of the
MOM input ring buffer. A 1 bit specifies to restrict the
use of the MOM input ring buffer to display adapter
status information only.

Special Files 6-63

hft

Set Keyboard LEDs
The structure for this command is hfkled, and it contains the following fields:

F~W V~ue

hf-intro.hf-typehi HFKLEDCH

hf-intro.hf-typelo HFKLEDCL

hf-sublen 2

hf-subtype 1

hf-Iedselect Indicates which of three LEDs to change:

HFNUMLOCK The Num Lock LED
HFCAPSLOCK The Caps Lock LED
HFSCROLLOCK The Scroll Lock LED.

hf-Iedvalue Indicates the value to which to set the LEDs specified in
hf-Iedselect. LEDs that are specified with a 1 bit are set:

HFNUMLOCK The Num Lock LED
HFCAPSLOCK The Caps Lock LED
HFSCROLLOCK The Scroll Lock LED.

Set Locator Thresholds
The locator device receives notice of horizontal and vertical movement. The delta of these
movement events are monitored by the driver, until the accumulated events exceed either
the horizontal or vertical thresholds, or both. The locator device accumulates
measurements at consecutive samplings. When a threshold is exceeded, the driver queues
the information to the virtual terminal. When the status of the locator buttons change,
the accumulated measurements are returned to the virtual terminal, even if these
measurements do not exceed a threshold. The virtual terminal provides neither echoing
nor positional management functions for the locator.

Each opened virtual terminal has its own threshold values. When a virtual terminal is
opened, the threshold values default to 2.75 millimeters horizontal and 5.5 millimeters
vertical. If the thresholds are 0, each event report is returned to the virtual terminal at
the sampling rate supported by the locator device driver.

Setting the HFLOCATOR bit to 0 in the protocol mode definition or setting both
thresholds to the maximum values completely disables the locator input.

6-64 AIX Operating System Technical Reference

The hfloth structure is used for the locator threshold command, and it contains the
following fields:

Field Value

HFLOTHCH

HFLOTHCL

2

1

hft

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-sublen

hf-subtype

hf-hthresh Specifies the horizontal threshold in values from 0 to 32767 in units
of 0.25 millimeters.

hf-vthresh Specifies the vertical threshold in values from 0 to 32767 in units of
0.25 millimeters.

Set Tablet Dead Zones
Dead zones are areas of the tablet from which no input reports are generated. Each
virtual terminal can set its own dead zones.

Initially, both of the dead zone values are set to 0, making the entire tablet active. Setting
both values to 32767 completely disables tablet input, as does turning off HFLOCATOR in
the protocol mode definition (see "Protocol Modes" on page 6-62).

The hftdzone structure is used for this command, and it contains the following fields:

Field Value

hf-intro.hf-typehi HFTDZCH

hf-intro.hf-typelo HFTDZCL

hf-sublen 2

.hf-subtype 1

hf-horizontal A 2-byte nonnegative value specified in units of 0.25 millimeters.

hf-vertical A 2-byte nonnegative value specified in units of 0.25 millimeters.

Set LPFKs
The hfdial-Ipfk structure is used for this command, and it contains the following fields:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-subler

HFLPFKSCH

HFLPFKSCL

2

Special Files 6-65

hft

hf-subtype 1

hf-mask.keys A 4-byte bit mask numbered 0 to 31. Bits that are set specify LPFK
flag values to change.

hf-data2.lpfk.flags A 4-byte set of bits numbered 0 to 31. For LPFKs selected by
hf-mask.keys, a 0 bit disables the LPFK, and a 1 bit enables the
LPFK.

Set Dial Granularities
The hfdial-Ipfk structure is used for this command, and it contains the following fields:

Field Value

hf-intro.hf-typehi HFDIALSCH

hf-intro.hf-typelo HFDIALSCL

hf-sublen 2

hf-subtype 1

hf-mask.dials A 4-byte bit mask numbered 0 to 31. Bits that are set specify dial
granularity values to change.

hf-data2.granularity An array of sixteen I-byte values giving the granularity of each
dial. Granularity is the number of events per full 3600 revolution
of t!1e dial. The values in the array represent powers of 2, and
they can range from 2 to 8.

Sound
This command sends output to the speaker. The mode byte determines whether to execute
sound commands for the active virtual terminal and whether to interrupt the application
after the sound command executes. No range check is made for the frequency or duration
values. The hfsound structure is used for this command:

Field Value

hf-intro.hf-typehi HFSOUNDCH

hf-intro.hf-typelo HFSOUNDCL

hf-sublen 2

hf-subtype 1

hf-mode Mode:

HFSIGSOUND
If set, causes the SIGSOUND signal to be sent to the process
when this sound command is executed or discarded. If not set,
then no signal is sent.

6-66 AIX Operating System Technical Reference

hft

HFEXECALW A YS
If set, causes this sound command to be executed whether or
not this virtual terminal is active. If not set, then the sound
command is executed only if the terminal is active.

hf-dur

hf-freq

Cancel Sound

Duration in 1/128 seconds.

Frequency in hertz.

The cancel sound command removes all commands from the speaker device that do not
want sound commands executed. Only the commands that have the execute all sound to
this terminal flag are left in the active terminal queue. An inactive terminal ignores this
command.

Sending a cancel and/or enable sound command flushes the speaker driver queue when a
virtual terminal transition occurs. Regardless of whether the sound request is executed or
purged, the virtual terminal receives a response if the response flag is set (bit 0 of sound
command byte 0 is equal to 1).

The hfcansnd structure is used for this command, and it contains the following fields:

F~hl V~ue

hf-intro~hf-typehi HFCANSNDCH

hf-intro.hf-typelo HFCANSNDCL

Change Physical Display
This command changes the default physical display characteristics specified in the virtual
terminal defaults.

The hfchgdsp structure is used for this command:

F~hl V~ue

hf-intro.hf-typehi HFCHGDSPCH

hf-intro.hf-typelo HFCHGDSPCL

hf-sublen 2

hf-subtype 0

hf-mode Bits 0-1 and 3-15 of these bytes are reserved. Bit 2 specifies the
default or another value specified for the physical display.

HFNONDEF If set, uses the identifier specified in bytes 10-13
for the physical display. If not set, uses the
physical screen defaults.

Special Files 6-67

hft

hf-rsvdl

hf-devid

hf-rsvd2

Reserved

Physical display device identifier.

Reserved

Note: If the physical terminal is changed, it may be necessary to change the TERM
environment variable. See "TERM" on page 5-72 and "terminfo" on page 4-148.

6-68 AIX Operating System Technical Reference

hft

Keyboard Send-Receive Mode (KSR)

In KSR mode, each byte written to the virtual terminal is interpreted as an ASCII code,
which can be a displayable character, a single-byte control, or part of an escape or control
sequence. "data stream" on page 5-5 explains the supported ASCII/ANSI data stream in
detail. KSR mode also supports a number of special control sequences specific to the
virtual terminal environment.

A KSR virtual terminal has a presentation space (PS) of a fixed number of columns per
line, and a fixed number of lines. A symbol can be placed at any column on any line in the
presentation space. A pointer into the virtual terminal defines the cursor position with a
column and a line number. Graphics from the KSR data stream are placed in the PS
relative to the cursor position. Keyboard input also relates to the cursor position.

Two common modes for displaying graphics are replace and insert. In replace mode, a
graphic character sent to a KSR terminal is placed above the cursor, replacing the symbol
already there. In insert mode, a graphic character sent to a KSR terminal is also placed
above the cursor, but the symbol above the cursor and all symbols on the same line are
shifted right one column position on the line. Characters shifted from the last column on
the line disappear.

Another mode determines cursor movement after the the last column position of a line.
This mode, automatic new line (AUTONL), determines if the cursor wraps around to the
first column position of the next line or stays at the last column on the current line.

If AUTONL is set, the cursor moves to the first column position of the following line. If
the cursor happens to be on the bottom line of the presentation space, the presentation
space scrolls up one line. If AUTONL is reset, the cursor stays on the last column of the
current line.

Blank lines in the presentation space and erased character positions display in the active
background color with normal attributes.

To set the KSR protocol modes, write a protocol mode control, which is described under
"Protocol Modes" on page 6-62. Specify the type as HFKSRPROH, HFKSRPROL.

The following control sequences are valid only in a KSR-mode data stream.

Character Set Definition
The ASCII character set-to-display code (font) mapping of a virtual terminal can be altered.
For each virtual terminal, the virtual terminal maintains character set mapping tables for
two unique user-definable character sets called Unique One and Unique Two. These sets
contain 256 ten-bit display symbol codes, and are activated by the SGO or SG1 control (see
"Multi-Byte Controls" on page 5-13).

Note: Data is kept in display symbol form in the virtual terminal, and translation back to
ASCII codes is done using the standard character set definitions, not Unique One or Two.

Special Files 6-69

hft

The hfcharset structure is used for character set definition, and it contains the following
fields:

Field Value

hf-intro.hf-typehi HFCHARSETH

hf-intro.hf-typelo HFCHARSETL

hf-sublen 2

hf-subtype 1

hf-setnum User-defined character set

hf-rsvd

hf-code

HFUNIQl
HFUNIQ2

Reserved

Unique One (user-definable set 1)
Unique Two (user-definable set 2)

10-bit display symbol code. This field may be repeated up to 256
times. See "display symbols" on page 5-24 for the values of the
display symbols.

Set KSR Color Palette
This command specifies the color to associate with certain display adapters. The default
color palettes are the ANSI 3.64 palette for character terminals and the PC color palette
for all-points-addressable terminals. If the color specified is not supported by the adapter,
the virtual display driver sets that color to the default for that mode.

The structure for this command is hfcolorpal, and it contains the following fields:

Field Value

hf-intro.hf-typehi HFCOLORPALH

hf-intro.hf-typelo HFCOLORPALL

hf-sublen 2

hf-subtype 1

hf-numcolor Number of entries in the palette

hf-palet Adapter-specific settings of the first entry in the color palette.
These settings must be repeated for each entry of the color palette
corresponding to the display adapter. See IBM RT PC Hardware
Technical Reference for information about the display adapter.

6-70 AIX Operating System Technical Reference

hft

Change Fonts
When a virtual terminal is first opened, and whenever it is changed, this assignment is
made to the first font in the list of configured fonts. The virtual terminal initially tries to
select a font that results in a presentation space of 80 columns by 25 rows. The first font
with a normal appearance (not italics) that meets this criteria is chosen. If no fonts meet
this criteria, the first font that can be displayed on the particular device is selected. All
alternate fonts will be initialized to this chosen ID.

Note that if the font is changed, the data currently in the presentation space is lost, and
the cursor reverts to the double underscore and is placed at the home position (first
column, first row). If it is desirable to control fonts, the fonts should be explicitly set when
opening a terminal or changing a display.

If the change fonts request is accepted and the installed fonts are a different size than the
previous fonts, the presentation space size is adjusted to the number of rows and columns
that fit on the physical display screen for the new font size.

See the /usr/lib/samples/README.font file for information about defining and selecting
fonts.

The hffont structure is used for this request:

Field Value

hf-intro.hf-typehi

hf-intro.hf-typelo

hf-sublen

hf-suhtype

hf-primary

hf-altl

hf-alt2

hf-a1t3

hf-a1t4

hf-alt5

hf-a1t6

hf-alt7

HFFONTH

HFFONTL

2

1

Physical font ID of primary font attribute.

Physical font ID of first alternate font attribute.

Physical font ID of second alternate font attribute.

Physical font ID of third alternate font attribute.

Physical font ID of fourth alternate font attribute.

Physical font ID of fifth alternate font attribute.

Physical font ID of sixth alternate font attribute.

Physical font ID of seventh alternate font attribute.

Special Files 6-71

hft

Cursor Representation
The cursor representation data format determines how the cursor is presented on the
display screen. The hfcursor structure is used for this request:

Field Value

hf-intro.hf-typehi HFCURSORH

hf-intro.hf-typelo HFCURSORL

hf-sublen 2

hf-subtype 0

hf-rsvd Reserved.

hf-shape Cursor shape:

HFNONE
HFSINGLUS
HFDBLUS
HFHALFBLOB
HFMIDLINE
HFFULLBLOB

No cursor.
Single underscore.
Double underscore.
Lower half of illuminated character cell.
Double mid-character line.
Full illuminated character cell.

6-72 AIX Operating System Technical Reference

hft

Monitor Mode (MOM)

Programs that choose to interact more efficiently with a virtual terminal or that must
operate the display in all-points-addressable mode should select the monitor mode of the
virtual terminal. In this mode, the program performs output directly to the display adapter
via a memory mapped I/O bus, thus avoiding write system calls. Such a program can
optionally read data from a circular buffer, thus avoiding read system calls. Some
execution speed is gained by operating in this mode, but portability is sacrificed because
the program depends on specific display adapters.

Notes:

1. Do not leave terminal open in monitor mode.
2. No more than 1 process should be open to a virtual terminal in monitor mode.

In order for a user program to switch from normal KSR mode to monitor mode, it must
perform several mode changes, which are accomplished using system calls. The
display-sharing concept using virtual terminals causes the program in monitor mode to
participate in the next window function by temporarily releasing the display. This is also
accomplished using system calls. While the user program is active to the display, it
performs output operations directly to the display hardware with memory mapped I/O
ports.

Entering Monitor Mode
The first mode change the user program should perform is to request I/O bus access mode
by opening the bus access pseudo device. See "bus" on page 6-5 for more information.

The next mode change that must be performed is to issue the HFSMON ioctl operation to
enable monitor mode signals SIGGRANT and SIGRETRACT, and to specify the method
that processes are to receive the signals. (See "Enter Monitor Mode (HFSMON)" on
page 6-49.)

Next, the program should write a protocol mode control, which is described under
"Protocol Modes" on page 6-62, specifing the type HFMOMPROH,- HFMOMPROL.

The virtual terminal is now in monitor mode.

Only certain controls are valid for the write system call while in monitor mode. All other
ASCII codes and controls are ignored. The valid controls and VTDs are:

• Disable Manual Input (DMI)
• Enable Manual Input (EMI)
• Set Keyboard LEDs
• Set Locator Threshold
• Set Locator Dead Zones
• Set Dials
• Sound
• Cancel Sound
• KSR Protocol

Special Files 6-73

hft

• MOM Protocol
• Screen Request
• Screen Release.

Screen Request and Input Ring Buffer Definition
Although the virtual terminal is in monitor mode, the program can perform direct
operations on the display hardware only when granted permission by the operating system.
The program first writes a screen request control.

This request uses the hfmomscreq structure, which contains the following fields:

Field Value

hf-intro.hf-Ien The length of the request up to and including the ring buffer.

hf-intro.hf-typehi HFMOMREQH

hf-intro.hf-typelo HFMOMREQL

hf-sublen 2

hf-subtype 0

hf-ringlen[2] Shows the Iblgth of the ring in bytes.

hf-ringoffset[4] Shows the offset to the input buffer ring (offset from the
hf-ringlen field).

The hf-ringlen field specifies the size of the structure including the pointers and status
fields. The program can directly access input key, locator, LPFK, and valuator data
contained in the buffer without issuing read system calls.

The ring buffer structure (hfmomring, defined following) can be at any location in
memory aligned on a word boundary. hf-ringoffset is the difference between the ring
buffer address and the address of hf-ringlen, and it must be a positive value. Usually, the
hfmomring ring buffer structure is defined so that it immediately follows the
hfmomscreq structure in memory. Note that the compiler may implicitly insert one or
more filler bytes between the two structures to align them at a memory address boundary.
The value of hf-ringoffset must reflect such filler bytes. See the
/usr/lib/samples/hft/hftmom.c source file for an example of how to calcuate
hf-ringoffset.

If you do not want to specify or use a ring buffer, then set the hf-Ien field of the hf-intro
to the size of only the introducer. In this case, read input with the standard read system
call.

struct hfmomring
{

char hf -rsvd [2J ;
char hf-intreq;

6-74 AIX Operating System Technical Reference

hft

char hf-ovflow;
unsigned hf-source;
unsigned hf-sink;
int hf-unused[5];
char hf-rdata[HFRDATA];

};

The fields in this structure are defined as:

Field

hf-rsvd

hf-intreq

hf-ovflow

hf-source

hf-sink

hf-unused

Value

Reserved.

Interrupt request can be set to OxFF by the application to cause the virtual
terminal subsystem to send a SIGMSG signal each time an input event
occurs. If this flag is set to 0 (the default), then a signal is sent to the
application only when the buffer goes from being empty to nonempty. This
byte is automatically reset to 0 by the virtual terminal each time it stores
input data into the ring buffer. See "Reading Input Data from the Ring
Buffer" for further discussion.

Overflow determines whether the input buffer ring can accommodate more
input information. A value of OxFF indicates an overflow; OxOO indicates
normal operation.

Ring offset for virtual terminal represents the offset into the input ring
where the virtual terminal queues keyboard and locator input. This offset
starts from the beginning of the ring, so the absolute minimum value for the
virtual terminal offset is 32 bytes. Application programs must not alter this
field. If a program attempts to alter it, then the virtual terminal is killed.

Ring offset for application shows the offset into the input ring from which
the application reads keyboard and locator information from the event
queue. This offset also starts from the beginning of the input ring, so the
minimum value for this offset is 32 bytes.

Reserved.

Reading Input Data from the Ring Buffer
The program should start the offsets hf-source and hf-sink to be equal. This indicates
buffer empty condition. The program should then issue the pause system call, waiting for
input. When the buffer goes from being empty to not empty, the program receives a
SIGMSG signal. (Note that sending the hfmomscreq structure and defining the input
ring buffer enables the sending of this signal.) The program should extract characters
from the ring buffer while incrementing the hf-sink offset for each character extracted,
making sure to wrap around after reaching the end of the buffer. Care should be taken to
ensure the buffer empty condition is properly detected. The program should test the
equality of the offsets after it has updated the hf-sink offset. Therefore, the order of

Special Files 6-75

hft

operation is: extract a character, update the offset in its memory location, and test the
equality of offsets; if the offsets are equal, then set hf-intreq to OxFF.

IF hf-source = = hf-sink - 1 (modulo ring size), then the ring buffer is full. If hf-ovflow
= = Oxff, then an overflow condition exists. The overflow condition indicates input data
has been lost. The program resets the overflow condition by clearing hf-ovflow.

Certain keys can be designated so they can be obtained using the read system call. This is
particularly useful when such keys are the Int and Quit keys (see "termio" on page 6-114).
These keys are designated using HFSECHO. Thus, by designating these keys in the break
map, and by setting the ISIG mode of termio, it is possible to asynchronously interrupt a
monitor mode program by pressing one of these keys.

Next Window Function
If a virtual terminal in monitor mode is active, pressing the Nef{t Window key causes a
SIGRETRACT signal to be sent to the process or group of processes specified by the
HFSMON type ioctl system call. Before activating the next virtual terminal, the operating
system allows the program a chance to save the state of the display hardware, such as
registers and refresh memory. After this is done, the program should write a screen
release control to the terminal to inform the operating system the state of the display
hardware can be changed.

The screen release control is given by the hfmomscrel structure:

Field Value

hf-intro.hf-Ien The length of the entire structure, including the ring buffer, minus
3

hf-intro.hf-typehi HFMOMRELH

hf-intro.hf-typelo HFMOMRELL

After the display is released, the next virtual terminal is activated. If this is not done
within 30 seconds of the receipt of the SIGRETRACT signal, all processes in that terminal
group receive a SIGKILL signal. This is a safeguard to prevent disabled programs from
disrupting the next window function.

The program can issue a pause system call if there is no work to do while the display is
not available. When the monitor mode virtual terminal is activated again with the Next
Window key, the program receives a SIGGRANT signal. In other words, the the program
can resume direct output to the display. The display hardware state cannot be assumed to
be the same as when the program released it.

6-76 AIX Operating System Technical Reference

Files

hft

Exiting Monitor mode
When the program has no further use of the monitor mode, it should first write a screen
release control, followed by a KSR protocol control. This is especially important if the
virtual terminal is open by another process, such as the parent process, which is often the
command shell. If the program is certain that no other processes have the terminal open,
it can simply issue a close system call to remove that virtual terminal.

Next, an HFCMON ioctl operation should be issued to make sure that no monitor mode
signals have been sent to this process or other process in the terminal group in error.

Signals
In addition to the standard terminal signals (SIGINT and SIGQUIT), the virtual terminal
generates other unique signals to inform the application program of asynchronous events.
These signals include:

SIGGRANT Informs the user program that the display hardware can be directly
accessed. This signal is sent following a monitor mode screen request
VTD sequence. It is also sent after a monitor mode terminal has been
made active with the next window key.

SIGRETRACT Informs the user program that the display hardware must be released for
use by another program. This signal is sent after a monitor terminal
being made inactive with the next window key.

SIGKILL Sent to all processes in the terminal tty group to enforce the
SIGRETRACT signal. If the user program does not respond with a
screen release VTD sequence within 30 second after receiving a
SIGRETRACT signal, the SIGKILL terminates all processes associated
with that virtual terminal and the terminal is closed.

SIGMSG Informs the user program that data has been placed into a previously
empty input buffer.

/dev/hft/*

Related Information

In this book: "ioctl" on page 2-56, "fonts" on page 4-68, "data stream" on page 5-5,
"config" on page 6-7, and "termio" on page 6-114.

The discussion of the virtual terminal subsystem in Virtual Resource Manager Technical
Reference.

Keyboard Description and Character Reference.

Special Files 6-77

keyboard

keyboard

Purpose

Maps the lOl-Key RT PC keyboard.

Description

A keyboard mapping table is maintained for each virtual terminal. This table relates a key
indicated by its key position along with the shift, control, or alternate keys to a character,
mode processor function or string of characters. Portions or all of this mapping table can
be modified by data passed to the hfbuf structure in the HFSKBD type ioctl system call.
See "hft" on page 6-23 for information about this ioctl system call. See Keyboard
Description and Character Reference for details about other RT PC keyboards.

Each key on the standard RT PC keyboard has a numeric position code that is used for
this field. Figure 6-3 matches the key to its position code.

Figure 6-3. Position Codes for Remapping a Keyboard

6-78 AIX Operating System Technical Reference

keyboard

The following keys are not redefinable because their function is predefined at the VRM
level.

Key
Position Function States that cannot be remapped

30
44
57
58
60
62
64
90

Caps Lock key
Left Shift key
Right Shift key
Control key
Left Alternate key
Right Alternate key
Action key
Num Lock key

All states
All states
All states
All states
All states
All states
Shift, Control, Alternate, and Alternate Graphics states
Base and Shift states

US tOt-Key Keyboard Translate Table
The following table gives this information about the default mapping for the U.S. IOI-key
keyboard:

Key Posn - Keyboard key position.

Shift - The shift state of the position: Base, Shift, Ctrl, or Alt. (Note that the Alt Gr
shift state is always the same as the Alt state.)

Assignment - The character or control assigned to that key.

Keyboard Definition - Provides information that as it would appear as part of a
keyboard definition structure. (See "Set Keyboard Map (HFSKBD)" on page 6-36 for
details.) Within the table, interpret the fields as follows:

nnn - One-byte key position number being defined.

s - Shift state being defined:

b (base) - No Shift key is pressed.

s (shift) - Either left or right Shift key is pressed.

c (control) - Ctrl key is pressed.

a (alt) - Alt key is pressed.

t - Type of definition:

c - Regular character definition, followed by a I-byte code page identifier and
a I-byte code point specification. The code page identifiers are:

> for Code Page PO
= for Code Page PI
> for Code Page P2

Special Files 6-79

keyboard

This identifier is followed by a 1-byte code point identifier, given in the table as
a decimal number.

f - Function specification, followed by a 2-byte function identifier, which is
specified in the table as a hexidecimal value.

s - String specification, followed by a 1-byte code page identifier, a 1-byte
string length and the 1-byte code point identifiers within the specified code
page. No string specifications are included in the default keyboard layouts.

d - Nonspacing or dead character definition, followed by a 1-byte code page
identifier and a 1-byte code point specification. The code page identifiers are as
described for character definition. This is followed by a 1-byte code point
identifier, given in the table as a decimal number.

Returned String - Specifies the data that is returned to the program that is
reading the keyboard.

Notes - Specifies additional information. Entries in this column include:

• CL - This key is affected by Caps Lock.

• DK - This key is a dead character on this key state.

• PI - This key is a character from Code Page PI.

• P2 - This key is a character from Code Page P2.

The Alt key, followed by one or more numbered keys on the numeric pad, will return a
single character which has the value entered on the numeric pad. The value accumulates
while the Alt key is held down and returns when that key is released. Only spacing
character codes and single-byte controls are produced by this method.

6-80 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

1 Base Grave Accent 1 b c < 96 Ox60
1 Shift Tilde Accent 1 s c < 126 Ox7e
1 Ctrl PFK 57 1 c f Ox39 ESC [057 q
1 Alt PFK 115 1 a f Ox73 ESC [115 q

2 Base 1 One 2 b c < 49 Ox31
2 Shift ! Exclamation Point 2 s c < 33 Ox21
2 Ctrl PFK 49 2 c f Ox31 ESC [049 q
2 Alt PFK 58 2 a f Ox3a ESC [058 q

3 Base 2 Two 3 b c < 50 Ox32
3 Shift @ At Sign 3 s c < 64 Ox40
3 Ctrl NUL Null 3 c c < 0 OxOO
3 Alt PFK 59 3 a f Ox3b ESC [059 q

4 Base 3 Three 4 b c < 51 Ox33
4 Shift # Number Sign 4 s c < 35 Ox23
4 Ctrl PFK 50 4 c f Ox32 ESC [050 q
4 Alt PFK 60 4 a f Ox3c ESC [060 q

5 Base 4 Four 5 b c < 52 Ox34
5 Shift $ Dollar Sign 5 s c < 36 Ox24
5 Ctrl PFK 51 5 c f Ox33 ESC [05 1 q
5 Alt PFK 61 5 a f Ox3d ESC [061 q

6 Base 5 Five 6 b c < 53 Ox35
6 Shift 0/0 Percent Sign 6 s c < 37 Ox25
6 Ctrl PFK 52 6 c f Ox34 ESC [052 q
6 Alt PFK 62 6 a f Ox3e ESC [062 q

7 Base 6 Six 7 b c < 54 Ox36
7 Shift A Circumflex Accent 7 s c < 94 Ox5e
7 Ctrl SS2 Single Shift 2 7 c c < 30 Ox1e
7 Alt PFK 63 7 a f Ox3f ESC [063 q

8 Base 7 Seven 8 b c < 55 Ox37
8 Shift & Ampersand 8 s c < 38 Ox26
8 Ctrl PFK 53 8 c f Ox35 ESC [053 q
8 Alt PFK 64 8 a f Ox40 ESC [064 q

Special Files 6-81

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

9 Base 8 Eight 9 b c < 56 Ox38
9 Shift * Asterisk 9 s c < 42 Ox2a
9 Ctrl PFK 54 9 c f Ox36 ESC [054 q
9 Alt PFK 65 9 a f Ox41 ESC [065 q

10 Base 9 Nine 10 b c < 57 Ox39
10 Shift (Left Parenthesis 10 s c < 40 Ox28
10 Ctrl PFK 55 10 c f Ox37 ESC [05 5 q
10 Alt PFK 66 10 a f Ox42 ESC [066 q

11 Base 0 Zero 11 b c < 48 Ox30
11 Shift) Right Parenthesis 11 s c < 41 Ox29
11 Ctrl PFK 56 11 c f Ox38 ESC [056 q
11 Alt PFK 67 11 a f Ox43 ESC [067 q

12 Base Hyphen 12 b c < 45 Ox2d
12 Shift Underscore 12 s c < 95 Ox5f
12 Ctrl SSl Single Shift 1 12 c c < 31 Ox1f
12 Alt PFK 68 12 a f Ox44 ESC [068 q

13 Base Equal Sign 13 b c < 61 Ox3d
13 Shift + Plus Sign 13 s c < 43 Ox2b
13 Ctrl PFK 69 13 c f Ox45 ESC [069 q
13 Alt PFK 70 13 a f Ox46 ESC [070 q

14 Not available on keyboard

15 Base BS Back Space 15 b c < 8 Ox08
15 Shift BS Back Space 15 s c < 8 Ox08
15 Ctrl DEL Delete 15 c c < 127 Ox7f
15 Alt PFK 71 15 a f Ox47 ESC [07 1 q

16 Base HT Horizontal Tab 16 b c < 9 Ox09
16 Shift CBT Cursor Back Tab 16 s f Ox105 ESC [Z
16 Ctrl PFK 72 16 c f Ox48 ESC [072 q
16 Alt PFK 73 16 a f Ox49 ESC [07 3 q

17 Base q Lowercase q 17 b c < 113 Ox71 CL
17 Shift Q Uppercase q 17 s c < 81 Ox51
17 Ctrl DC1 Device Control 1 17 c c < 17 Ox11
17 Alt PFK 74 17 a f Ox4a ESC [074 q

6-82 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

18 Base w Lowercase w 18 b c < 119 Ox77 CL
18 Shift W Uppercase w 18 s c < 87 Ox57
18 Ctrl ETB End Trans Block 18 c c < 23 Ox17
18 Alt PFK 75 18 a f Ox4b ESC [07 5 q

19 Base e Lowercase e 19 b c < 101 Ox65 CL
19 Shift E Uppercase e 19 s c < 69 Ox45
19 Ctrl ENQ Enquiry 19 c c < 5 Ox05
19 Alt PFK 76 19 a f Ox4c ESC [076 q

20 Base r Lowercase r 20 b c < 114 Ox72 CL
20 Shift R Uppercase r 20 s c < 82 Ox52
20 Ctrl DC2 Device Control 2 20 c c < 18 Ox12
20 Alt PFK 77 20 a f Ox4d ESC [077 q

21 Base t Lowercase t 21 b c < 116 Ox74 CL
21 Shift T Uppercase t 21 s c < 84 Ox54
21 Ctrl DC4 Device Control 4 21 c c < 20 Ox14
21 Alt PFK 78 21 a f Ox4e ESC [078 q

22 Base y Lowercase y 22 b c < 121 Ox79 CL
22 Shift y Uppercase y 22 s c < 89 Ox59
22 Ctrl EM End of Media 22 c c < 25 Ox19
22 Alt PFK 79 22 a f Ox4f ESC [079 q

23 Base u Lowercase u 23 b c < 117 Ox75 CL
23 Shift U Uppercase u 23 s c < 85 Ox55
23 Ctrl NAK Not Acknowledge 23 c c < 21 Ox15
23 Alt PFK 80 23 a f Ox50 ESC [080 q

24 Base i Lowercase i 24 b c < 105 Ox69 CL
24 Shift I Uppercase i 24 s c < 73 Ox49
24 Ctrl HT Horizontal Tab 24 c c < 9 Ox09
24 Alt PFK 81 24 a f Ox51 ESC [08 1 q

25 Base 0 Lowercase 0 25 b c < 111 Ox6f CL
25 Shift 0 Uppercase 0 25 s c < 79 Ox4f
25 Ctrl 81 Shift In 25 c c < 15 OxOf
25 Alt PFK 82 25 a f Ox52 ESC [082 q

Special Files 6-83

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

26 Base p Lowercase p 26 b c < 112 Ox70 CL
26 Shift P Uppercase p 26 s c < 80 Ox50
26 Ctrl DLE Data Link Enabl 26 c c < 16 Ox10
26 Alt PFK 83 26 a f Ox53 ESC [083 q

27 Base [Left Bracket 27 b c < 91 Ox5b
27 Shift { Left Brace 27 s c < 123 Ox7b
27 Ctrl ESC Escape 27 c c < 27 Ox1b
27 Alt PFK 84 27 a f Ox54 ESC [084 q

28 Base] Right Bracket 28 b c < 93 Ox5d
28 Shift } Right Brace 28 s c < 125 Ox7d
28 Ctrl SS3 Single Shift 3 28 c c < 29 Ox1d
28 Alt PFK 85 28 a f Ox55 ESC [085 q

29 Base Reverse Slash 29 b c < 92 Ox5c
29 Shift Pipe Symbol 29 s c < 124 Ox7c
29 Ctrl SS4 Single Shift 4 29 c c < 28 OxIc
29 Alt PFK 86 29 a f Ox56 ESC [086 q

30 Base Caps Lock None Not Returned
30 Shift Caps Lock None Not Returned
30 Ctrl Caps Lock None Not Returned
30 Alt Caps Lock None Not Returned

31 Base a Lowercase a 31 b c < 97 Ox61 CL
31 Shift A Uppercase a 31 s c < 65 Ox41
31 Ctrl SOH Start of Header 31 c c < 1 OxOl
31 Alt PFK 87 31 a f Ox57 ESC [087 q

32 Base s Lowercase s 32 b c < 115 Ox73 CL
32 Shift S Uppercase s 32 s c < 83 Ox53
32 Ctrl DC3 Device Control 3 32 c c < 19 Ox13
32 Alt PFK 88 32 a f Ox58 ESC [088 q

33 Base d Lowercase d 33 b c < 100 Ox64 CL
33 Shift D Uppercase d 33 s c < 68 Ox44
33 Ctrl EOT End of Transmission 33 c c < 4 Ox04
33 Alt PFK 89 33 a f Ox59 ESC [089 q

6-84 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

34 Base f Lowercase f 34 b c < 102 Ox66 CL
34 Shift F Uppercase f 34 s c < 70 Ox46
34 Ctrl ACK Acknow ledge 34 c c < 6 Ox06
34 Alt PFK 90 34 a f Ox5a ESC [090 q

35 Base g Lowercase g 35 b c < 103 Ox67 CL
35 Shift G Uppercase g 35 s c < 71 Ox47
35 Ctrl BEL Bell 35 c c < 7 Ox07
35 Alt PFK 91 35 a f Ox5b ESC [09 1 q

36 Base h Lowercase h 36 b c < 104 Ox68 CL
36 Shift H Uppercase h 36 s c < 72 Ox48
36 Ctrl BS Backspace 36 c c < 8 Ox08
36 Alt PFK 92 36 a f Ox5c ESC [092 q

37 Base J Lowercase j 37 b c < 106 Ox6a CL
37 Shift J Uppercase j 37 s c < 74 Ox4a
37 Ctrl LF Line Feed 37 c c < 10 OxOa
37 Alt PFK 93 37 a f Ox5d ESC [093 q

38 Base k Lowercase k 38 b c < 107 Ox6b CL
38 Shift K Uppercase k 38 s c < 75 Ox4b
38 Ctrl VT Vertical Tab 38 c c < 11 OxOb
38 Alt PFK 94 38 a f Ox5e ESC [094 q

39 Base I Lowercase I 39 b c < 108 Ox6c CL
39 Shift L Uppercase I 39 s c < 76 Ox4c
39 Ctrl FF Form Feed 39 c c < 12 OxOc
39 Alt PFK 95 39 a f Ox5f ESC [095 q

40 Base Semicolon 40 b c < 59 Ox3b
40 Shift Colon 40 s c < 58 Ox3a
40 Ctrl PFK 96 40 c f Ox60 ESC [096 q
40 Alt PFK 97 40 a f Ox61 ESC [097 q

41 Base Quote, Apostrophe 41 b c < 39 Ox27
41 Shift " Double Quote 41 s c < 34 Ox22
41 Ctrl PFK 98 41 c f Ox62 ESC [098 q
41 Alt PFK 99 41 a f Ox63 ESC [099 q

Special Files 6-85

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

42 Not available on keyboard

43 Base CR Carriage Return 43 b c < 13 OxOd
43 Shift CR Carriage Return 43 s c < 13 OxOd
43 Ctrl CR Carriage Return 43 c c < 13 OxOd
43 Alt PFK 100 43 a f Ox64 ESC [100 q

44 Base Shift (Left) None Not Returned
44 Shift Shift (Left) None Not Returned
44 Ctrl Shift (Left) None Not Returned
44 Alt Shift (Left) None Reserved for IBM 5080

45 Not available on keyboard

46 Base z Lowercase z 46 b c < 122 Ox7a CL
46 Shift Z Uppercase z 46 s c < 90 Ox5a
46 Ctrl SUB Substitute Char. 46 c c < 26 Ox1a
46 Alt PFK 101 46 a f Ox65 ESC [1 0 1 q

47 Base x Lowercase x 47 b c < 120 Ox78 CL
47 Shift X Uppercase x 47 s c < 88 Ox58
47 Ctrl CAN Cancel 47 c c < 24 Ox18
47 Alt PFK 102 47 a f Ox66 ESC [1 02 q

48 Base c Lowercase c 48 b c < 99 Ox63 CL
48 Shift C Uppercase c 48 s c < 67 Ox43
48 Ctrl ETX End of Text 48 c c < 3 Ox03
48 Alt PFK 103 48 a f Ox67 ESC [1 03 q

49 Base v Lowercase v 49 b c < 118 Ox76 CL
49 Shift V Uppercase v 49 s c < 86 Ox56
49 Ctrl SYN Synch Idle 49 c c < 22 Ox16
49 Alt PFK 104 49 a f Ox68 ESC [104 q

50 Base b Lowercase b 50 b c < 98 Ox62 CL
50 Shift B Uppercase b 50 s c < 66 Ox42
50 Ctrl STX Start of Text 50 c c < 2 Ox02
50 Alt PFK 105 50 a f Ox69 ESC [105 q

51 Base n Lowercase n 51 b c < 110 Ox6e CL
51 Shift N Uppercase n 51 s c < 78 Ox4e

6-86 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

51 Ctrl SO Shift Out 51 c c < 14 OxOe
51 Alt PFK 106 51 a f Ox65 ESC [106 q

52 Base m Lowercase m 52 b c < 109 Ox6d CL
52 Shift M Uppercase m 52 s c < 77 Ox4d
52 Ctrl CR Carriage Return 52 c c < 13 OxOd
52 Alt PFK 107 52 a f Ox66 ESC [1 0 7 q

53 Base Comma 53 b c < 44 Ox2c
53 Shift < Less Than Sign 53 s c < 60 Ox3c
53 Ctrl PFK 108 53 c f Ox6c ESC [1 0 8 q
53 Alt PFK 109 53 a f Ox6d ESC [1 0 9 q

54 Base Period 54 b c < 46 Ox2e
54 Shift > Greater Than Sign 54 s c < 62 Ox3e
54 Ctrl PFK 110 54 c f Ox6e ESC [11 0 q
54 Alt PFK 111 54 a f Ox6f ESC [111 q

55 Base / Slash 55 b c < 47 Ox2f
55 Shift ? Question Mark 55 s c < 63 Ox3f
55 Ctrl PFK 112 55 c f Ox70 ESC [11 2 q
55 Alt PFK 113 55 a f Ox71 ESC [11 3 q

56 Not available on keyboard

57 Base Shift (Right) None Not Returned
57 Shift Shift (Right) None Not Returned
57 Ctrl Shift (Right) None Not Returned
57 Alt Shift (Right) None Reserved for IBM 5080

58 Base Control None Not Returned
58 Shift Control None Not Returned
58 Ctrl Control None Not Returned
58 Alt Control None Not Returned

59 Not available on keyboard

60 Base Alternate Shift None Not Returned
60 Shift Alternate Shift None Not Returned
60 Ctrl Alternate Shift None Not Returned
60 Alt Alternate Shift None Not Returned

Special Files 6-87

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

61 Base SP Space 61 b c < 32 Ox20
61 Shift SP Space 61 s c < 32 Ox20
61 Ctrl SP Space 61 c c < 32 Ox20
61 Alt SP Space 61 a c < 32 Ox20

62 Base Alternate Graphic Shift None Not Returned
62 Shift Alternate Graphic Shift None Not Returned
62 Ctrl Alternate Graphic Shift None Not Returned
62 Alt Alternate Graphic Shift None Not Returned

63 Not available on keyboard

64 Base PFK 114 64 b f Ox72 ESC [11 4 q
64 Shift VTRM Previous Window None VTRM Previous Window
64 Ctrl VTRM Windows Window None VTRM Windows Window
64 Alt VTRM Next Window None VTRM Next Window

65 - 74 Not available on keyboard

75 Base PFK 139 INS Toggle 75 b f Ox8b ESC [1 39 q
75 Shift PFK 139 INS Toggle 75 s f Ox8b ESC [1 3 9 q
75 Ctrl PFK 140 75 c f Ox8c ESC [1 40 q
75 Alt PFK 141 75 a f Ox8d ESC [1 4 1 q

76 Base DCH Delate Character 76 b f Ox151 ESC [P
76 Shift DCH Delate Character 76 s f Ox151 ESC [P
76 Ctrl PFK 142 76 c f Ox8e ESC [1 42 q
76 Alt DL Delete Line 76 a f Ox153 ESC [M

77 Not available on keyboard

78 Not available on keyboard

79 Base CUB Cursor Back 79 b f Oxl04 ESC [D
79 Shift PFK 158 79 s f Oxge ESC [1 5 8 q
79 Ctrl PFK 159 79 c f Ox9f ESC [1 5 9 q
79 Alt PFK 160 79 a f OxaO ESC [1 60 q

80 Base HOME 80 b f Oxl08 ESC [H
80 Shift PFK 143 80 s f Ox8f ESC [1 43 q
80 Ctrl PFK 144 80 c f Ox90 ESC [1 44 q

6-88 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

80 Alt PFK 145 80 a f Ox91 ESC [145 q

81 Base PFK 146 81 b f Ox92 ESC [146 q
81 Shift PFK 147 81 s f Ox93 ESC [1 47 q
81 Ctrl PFK 148 81 c f Ox94 ESC [148 q
81 Alt PFK 149 81 a f Ox95 ESC [149 q

82 Not available on keyboard

83 Base CUU Cursor Up 83 b f Ox101 ESC [A
83 Shift PFK 161 83 s f Oxa1 ESC [16 1 q
83 Ctrl PFK 162 83 c f Oxa2 ESC [162 q
83 Alt PFK 163 83 a f Oxa3 ESC [1 6 3 q

84 Base CUD Cursor Down 84 b f Oxl02 ESC [B
84 Shift PFK 164 84 s f Oxa4 ESC [164 q
84 Ctrl PFK 165 84 c f Oxa5 ESC [165 q
84 Alt PFK 166 84 a f Oxa6 ESC [166 q

85 Base PFK 150 85 b f Ox96 ESC [150 q
85 Shift PFK 151 85 s f Ox97 ESC [151 q
85 Ctrl PFK 152 85 c f Ox98 ESC [1 5 2 q
85 Alt PFK 153 85 a f Ox99 ESC [153 q

86 Base PFK 154 86 b f Ox9a ESC [1 54 q
86 Shift PFK 155 86 s f Ox9b ESC [1 5 5 q
86 Ctrl PFK 156 86 c f Ox9c ESC [156 q
86 Alt PFK 157 86 a f Ox9d ESC [1 5 7 q

87 Not available on keyboard

88 Not available on keyboard

89 Base CUF Cursor Forward 89 b f Oxl03 ESC [C
89 Shift PFK 167 89 s f Oxa7 ESC [1 6 7 q
89 Ctrl PFK 168 89 c f Oxa8 ESC [168 q
89 Alt PFK 169 89 a f Oxa9 ESC [1 6 9 q

90 Base NUMLOCK None Not Returned
90 Shift NUMLOCK None Not Returned
90 Ctrl DC3 Device Control 3 90 c c < 19 Ox13

Special Files 6-89

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

90 Alt PFK 170 90 a f Oxaa ESC [1 70 q

91 Base r Upper Left Corner 91 b c < 218 Oxda
91 Shift 7 Seven 91 s c < 55 Ox37
91 Ctrl PFK 172 91 c f Oxac ESC [1 7 2 q
91 Alt Alt+ Num Entry None Return at Alt Break

92 Base ~ Left Edge Int. 92 b c < 195 Oxc3
92 Shift 4 Four 92 s c < 52 Ox34
92 Ctrl PFK 174 92 c f Oxae ESC [1 74 q
92 Alt Alt+ Num Entry None Return at Alt Break

93 Base L Lower Left Corner 93 b c < 192 Ox cO
93 Shift 1 One 93 s c < 49 Ox31
93 Ctrl PFK 176 93 c f OxbO ESC [1 76 q
93 Alt Alt+ Num Entry None Return at Alt Break

94 Not available on keyboard

95 Base / Slash 95 b c < 47 Ox2f
95 Shift / Slash 95 s c < 47 Ox2f
95 Ctrl PFK 179 95 c f Oxb3 ESC [1 79 q
95 Alt PFK 180 95 a f Oxb4 ESC [1 80 q

96 Base T Top Intersection 96 b c < 194 Oxc2
96 Shift 8 Eight 96 s c < 56 Ox38
96 Ctrl PFK 182 96 c f Oxb6 ESC [1 82 q
96 Alt Alt+ Num Entry None Return at Alt Break

97 Base + Center Intersection 97 b c < 197 Oxc5
97 Shift 5 Five 97 s c < 53 Ox35
97 Ctrl PFK 184 97 c f Oxb8 ESC [1 84 q
97 Alt Alt+ Num Entry None Return at Alt Break

98 Base .L Bottom Junction 98 b c < 193 Oxc1
98 Shift 2 Two 98 s c < 50 Ox32
98 Ctrl PFK 186 98 c f Oxba ESC [1 86 q
98 Alt Alt+ Num Entry None Return at Alt Break

99 Base I Vertical Bar 99 b c < 179 Oxb3
99 Shift 0 Zero 99 s c < 48 Ox30

6-90 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

99 Ctrl PFK 178 99 e f Oxb2 ESC [1 78 q
99 Alt Alt+ Num Entry None Return at Alt Break

100 Base * Asterisk 100 b e < 42 Ox2a
100 Shift * Asterisk 100 s c < 42 Ox2a
100 Ctrl PFK 187 100 e f Oxbb ESC [1 8 7 q
100 Alt PFK 188 100 a f Oxbe ESC [1 88 q

101 Base 1 Upper Right Corner 101 b e < 191 Oxbf
101 Shift 9 Nine 101 s e < 57 Ox39
101 Ctrl PFK 190 101 e f Oxbe ESC [1 90 q
101 Alt Alt+ Num Entry None Return at Alt Break

102 Base ~ Right Edge Int. 102 b e < 180 Oxb4
102 Shift 6 Six 102 s e < 54 Ox36
102 Ctrl PFK 192 102 e f OxeO ESC [1 9 2 q
102 Alt Alt + Num Entry None Return at Alt Break

103 Base J Lower Right Corner 103 b e < 217 Oxd9
103 Shift 3 Three 103 s e < 51 Ox33
103 Ctrl PFK 194 103 e f Oxe2 ESC [1 94 q
103 Alt Alt+ Num Entry None Return at Alt Break

104 Base Horizontal Line 104 b e < 196 Oxe4
104 Shift Period 104 s e < 46 Ox2e
104 Ctrl PFK 196 104 c f Oxe4 ESC [1 96 q
104 Alt PFK 197 104 a f Oxe5 ESC [1 9 7 q

105 Base Hyphen, Minus Sign 105 b e < 45 Ox2d
105 Shift Hyphen, Minus Sign 105 s e < 45 Ox2d
105 Ctrl PFK 198 105 e f Oxe6 ESC [1 98 q
105 Alt PFK 199 105 a f Oxe7 ESC [1 9 9 q

106 Base + Plus Sign 106 b e < 43 Ox2b
106 Shift + Plus Sign 106 s e < 43 Ox2b
106 Ctrl PFK 200 106 e f Oxe8 ESC [200 q
106 Alt PFK 201 106 a f Oxe9 ESC [201 q

107 Not available on keyboard

Special Files 6-91

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

108 Base CR Carriage Return 108 b c < 13 OxOd
108 Shift CR Carriage Return 108 s c < 13 OxOd
108 Ctrl CR Carriage Return 108 c c < 13 OxOd
108 Alt PFK 100 108 a f Ox64 ESC [100 q

109 Not available on keyboard

110 Base ESC Escape 110 b c < 27 Ox1b
110 Shift PFK 120 110 s f Ox78 ESC [1 2 0 q
110 Ctrl PFK 121 110 c f Ox79 ESC [1 2 1 q
110 Alt PFK 122 110 a f Ox7a ESC [1 22 q

111 Not available on keyboard

112 Base PFK 1 112 b f OxOl ESC [00 1 q
112 Shift PFK 13 112 s f OxOd ESC [0 1 3 q
112 Ctrl PFK 25 112 c f Ox19 ESC [025 q
112 Alt PFK 37 112 a f Ox25 ESC [037 q

113 Base PFK 2 113 b f Ox02 ESC [002 q
113 Shift PFK 14 113 s f OxOe ESC [0 1 4 q
113 Ctrl PFK 26 113 c f Ox1a ESC [026 q
113 Alt PFK 38 113 a f Ox26 ESC [038 q

114 Base PFK 3 114 b f Ox03 ESC [003 q
114 Shift PFK 15 114 s f OxOf ESC [0 1 5 q
114 Ctrl PFK 27 114 c f Ox1b ESC [02 7 q
114 Alt PFK 39 114 a f Ox27 ESC [039 q

115 Base PFK 4 115 b f Ox04 ESC [004 q
115 Shift PFK 16 115 s f Ox10 ESC [0 1 6 q
115 Ctrl PFK 28 115 c f OxIc ESC [028 q
115 Alt PFK 40 115 a f Ox28 ESC [040 q

116 Base PFK 5 116 b f Ox05 ESC [005 q
116 Shift PFK 17 116 s f Ox11 ESC [0 1 7 q
116 Ctrl PFK 29 116 c f Oxld ESC [029 q
116 Alt PFK 41 116 a f Ox29 ESC [04 1 q

117 Base PFK 6 117 b f Ox06 ESC [006 q
117 Shift PFK 18 117 s f Ox12 ESC [0 1 8 q

6-92 AIX Operating System Technical Reference

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

117 Ctrl PFK 30 117 c f Ox1e ESC [030 q
117 Alt PFK 42 117 a f Ox2a ESC [042 q

118 Base PFK 7 118 b f Ox07 ESC [007 q
118 Shift PFK 19 118 s f Ox13 ESC [0 1 9 q
118 Ctrl PFK 31 118 c f Ox1f ESC [03 1 q
118 Alt PFK 43 118 a f Ox2b ESC [043 q

119 Base PFK 8 119 b f Ox08 ESC [008 q
119 Shift PFK 20 119 s f Ox14 ESC [020 q
119 Ctrl PFK 32 119 c f Ox20 ESC [032 q
119 Alt PFK 44 119 a f Ox2c ESC [044 q

120 Base PFK 9 120 b f Ox09 ESC [009 q
120 Shift PFK 21 120 s f Ox15 ESC [02 1 q
120 Ctrl PFK 33 120 c f Ox21 ESC [033 q
120 Alt PFK 45 120 a f Ox2d ESC [045 q

121 Base PFK 10 121 b f OxOa ESC [0 1 0 q
121 Shift PFK 22 121 s f Ox16 ESC [022 q
121 Ctrl PFK 34 121 c f Ox22 ESC [034 q
121 Alt PFK 46 121 a f Ox2e ESC [046 q

122 Base PFK 11 122 b f OxOb ESC [0 11 q
122 Shift PFK 23 122 s f Ox17 ESC [023 q
122 Ctrl PFK 35 122 c f Ox23 ESC [035 q
122 Alt PFK 47 122 a f Ox2f ESC [047 q

123 Base PFK 12 123 b f OxOc ESC [0 1 2 q
123 Shift PFK 24 123 s f Ox18 ESC [024 q
123 Ctrl PFK 36 123 c f Ox24 ESC [036 q
123 Alt PFK 48 123 a f Ox30 ESC [048 q

124 Base PFK 209 124 b f Oxdl ESC [209 q
124 Shift PFK 210 124 s f Oxd2 ESC [2 1 0 q
124 Ctrl PFK 211 124 c f Oxd3 ESC [2 11 q
124 Alt PFK 212 124 a f Oxd4 ESC [2 1 2 q

125 Base PFK 213 125 b f Oxd5 ESC [2 1 3 q
125 Shift PFK 214 125 s f Oxd6 ESC [2 1 4 q
125 Ctrl PFK 215 125 c f Oxd7 ESC [2 1 5 q

Special Files 6-93

keyboard

Key Shift Assignment Keyboard Definition Returned String Notes
Posn State nnn s t

125 Alt PFK 216 125 a f Oxd8 ESC [2 16 q

126 Base PFK 217 126 b f Oxd9 ESC [2 1 7 q
126 Shift PFK 218 126 s f Oxda ESC [2 1 8 q
126 Ctrl DEL 126 c c < 127 Ox7f
126 Alt DEL 126 a c < 127 Ox7f

6-94 AIX Operating System Technical Reference

keyboard

Keystroke Control Sequences for System Functions
The following keystroke combinations cause the indicated system functions to be
performed. The notation Padn, where n is a digit, indicates the n key on the numeric
keypad to the right of the main keyboard area.

Note: Unless otherwise noted, the functions initiated by a three-key Ctrl-Alt-key
sequence require the Alt key on the left side of the standard RT PC keyboard. Functions
initiated with Alt-key (or Shift-key) can be selected with either the left or the right Alt
key (or Shift key).

AIX runs on a virtual machine, so all of the following references to "virtual machines"
apply to the AIX Operating System.

AIX System Functions:

Alt-Pause Sends the interrupt signal, SIGINT, to all AIX processes associated
with the terminal (or virtual terminal) from which this key sequence is
entered. This causes most processes to terminate, although a process
can arrange to ignore or take other action on this signal.

Ctrl-V Sends the quit signal, SIGQUIT, to all AIX processes associated with
the terminal (or virtual terminal) from which this key sequence is
entered. This causes most processes to terminate and produce a
process image file in the current directory named core. However, a
process can arrange to ignore or take other action on this signal.

See "termio" on page 6-114 for additional AIX keystroke control sequences.

Virtual Terminal Functions:

Alt-Action

Shift-Action

Ctrl-Action

Changes the active display screen to the next virtual terminal (if any).

Changes the active display screen to the previous virtual terminal (if
any).

Changes the active display screen to the command virtual terminal (if
defined).

Coprocessor Functions:

These functions can be initiated with with either the left or the right Alt key.

Ctrl-Alt-Del Re-IPLs the coprocessor (if configured).

Ctrl-Alt-Action Exits the coprocessor direct mode.

Special Files 6-95

keyboard

IP L (System Restart) Functions:

Ctrl-Alt-Home

Ctrl-Alt-Pause

Ctrl-Alt-Pad6

Terminates all virtual machines and re-IPLs the virtual machines that
are configured to be IPLed automatically. If diskette drive #1 contains
a valid virtual machine IPL diskette, then only that virtual machine is
IPLed.

Performs a soft re-IPL, reloading the VRM as well as the virtual
machines that are configured to be IPLed automatically.

Warning: This IPL function does not terminate the
virtual machines before reloading the system. Data may
be lost if you do not shut down all virtual machines before
pressing this IPL key sequence.
Performs a power-on reset re-IPL. This runs the Power-On Self Test
(POST), then reloads the VRM and the virtual machines that are
configured to be IPLed automatically.

Warning: This IPL function does not terminate the
virtual machines before reloading the system. Data may
be lost if you do not shut down all virtual machines before
pressing this IPL key sequence.

IPL Device Specification Functions:

The following key sequences set a value in NVRAM that identifies the second device to be
read during a VRM IPL. The system first checks diskette drive #1 for a valid IPL record,
then the second device, then each of the fixed disks.

Ctrl-Alt-A

Ctrl-Alt-B

Ctrl-Alt-C

Ctrl-Alt-D

Ctrl-Alt-E

Designates diskette drive #1 as the second device to be read.

Designates diskette drive #2 (if configured) as the second devIce to be
read.

Designates fixed-disk drive #1 as the second device to be read.

Designates fixed-disk drive #2 (if configured) as the second device to be
read.

Designates fixed-disk drive #3 (if configured) as the second device to be
read.

6-96 AIX Operating System Technical Reference

keyboard

System Dump Functions:

Note: Before attempting to use any of the following system dump key sequences, see
Software Problem Determination Guide for more detailed information.

Ctrl-Alt-End Performs a dump of the first virtual machine (usually AIX).

Ctrl-Alt-Pad8 Performs a system dump of selected parts of real memory (mostly
VRM).

Ctrl-Alt-Pad7 Performs a dump of all real memory.

VRM Function:

Ctrl-Alt-Pad4 Invokes the VRM debugger.

Related Information

In this book: "data stream" on page 5-5, "display symbols" on page 5-24, "hft" on
page 6-23, "Set Keyboard Map (HFSKBD)" on page 6-36, and "termio" on page 6-114.

Keyboard Description and Character Reference.

Software Problem Determination Guide.

Special Files 6-97

lp

lp

Purpose

Supports the line printer device driver.

Synopsis

#include < sys/lprio.h >

Description

The lp driver provides an interface to the port used by a printer. If an adapter for a
printer is not installed, an attempt to open fails. The close system call waits until all
output completes before returning to the user. The lp driver allows only one process to
write to a printer adapter at a time. If the printer adapter is busy, the open system call
returns an error. However, the driver allows multiple open system calls to occur if they
are read-only. Thus, the splp command can be run when the printer adapter is currently
In use.

The lp driver interprets carriage returns, backspaces, line feeds, tabs, and form feeds
depending on the modes that are set in the driver (via splp). The number of lines per page,
columns per line, and the indent at tb.e beginning of each line can also be selected. The
defaults are set at 66 lines per page, and 80 columns per line with no indenting.

ioctlOperations
Syntax for the enhanced control function is:

#include <sys/lprio.h>
ioctl (fildes,command,arg)

int fildes;
int command;
struct LPRUDE *arg;

/* file descriptor */
/* command type */

/* pointer to info structure */
The possible command types and their descriptions are:

IOCINFO Returns a structure defined in sys/devinfo.h, which describes the device.

IOCTYPE Returns device LPR (line printer) defined in sys/devinfo.h.

LPRGET Gets page length, width, and indent. This structure is defined in
sys/lprio.h.

6-98 AIX Operating System Technical Reference

LPRGETA

LPRGETV

LPRGMOD

LPRSET

LPRSETA

LPRSETV

LPRSMOD

LPRUFLS

LPRUGES

LPRURES

LPRVRMS

Ip

Gets the RS232 parameters. These are the values for baud rate, character
size, stop bits, and parity. Refer to the LPR232 structure and to the
termio.h structure.

Gets optional line printer modes. See the following LPRMODE structure.

Gets the RT PC optional printer modes. These optional printer modes
support the synchronous versus asynchronous write interface, as well as
the report all errors versus wait until error correction error reporting
mode. Refer to the following OPRMODE structure.

The FONTINIT flag is initially off. It is turned on by an application when
a printer font has been been initialized. It is turned off when an
application wants fonts to be reinitialized and by the lp device driver when
a FATAL printer error occurs.

Sets page length, width, and indent values. This structure is defined in
sys/lprio.h.

Sets the RS232 parameters, These are the values for baud rate, character
size, stop bits, and parity. Refer to the LPR232 structure that follows and
to the termio.h structure.

Sets optional line printer modes. See the following LPRMODE structure.

Sets the RT PC optional printer modes. These optional printer modes
support the synchronous versus asynchronous write interface, as well as
the report all errors versus wait until error correction reporting mode.
Refer to the following OPRMODE structure.

The FONTINIT flag is initially off. It is turned on by an application when
a printer font has been b~en initialized. It is turned off when an
application wants fonts to be reinitialized and by the lp device driver when
a FATAL printer error occurs.

Flushes any data currently in progress and causes the printer to be
initialized. Due to VRM queuing mechanism, printing of the data in the
current queue element may take some time to complete before printing
stops. This can be used during the course of normal print operations, or
following an error indication.

Gets the device driver error structure (LPRUDE). The arg parameter must
be specified to point to the structure.

Resumes printing from the point of interruption following an error. If an
error did not occur, then this control has no effect.

Sets VRM device-dependent parameters. This causes a set device
characteristics Start-I/O SVC to be issued with the device-dependent
parameters.

Special Files 6-99

lp

LPRVRMG Gets Virtual Resource Manager (VRM) device-dependent parameters. This
returns the structure obtained by issuing a Query-Device SVC. The
structure contains status information, hardware characteristics,
device-dependent parameters, and RAS log information.

LPRGTOV Gets the current time-out value and stores it in the lptimer structure
pointed to by the arg parameter. The time-out value is measured in
seconds.

LPRSTOV Sets the time-out value. The arg parameter points to a lptimer structure.
The time-out value must be given in seconds.

Most of these ioctl operations require the arg parameter to point to one of the following
structures:

struct devinfo
{ char devtype; /* devtype for printer is III */

char flags;
};

/* used with LPRGET, LPRSET */
struct LPRIO {

int ind; /* indent value */
int col; /* maximum character count
int line; /* maximum line count */

};

/* used with LPRGET, LPRSET */
struct LPRMODE {

*/

int modes; /* optional line printer modes */
};

for the modes field in LPRMODE */ /* bit definitions
#define PLOT 01
#define NOFF 0400
#define NONL 01000

/* if on, no interpretation of any character */
/* if on, simulate the form-feed function */
/* if on, substitute carriage returns for */
/* any line-feeds */

#define NOTAB 02000 /* if on, donlt expand tabs, else simulate */
/* 8 position tabs with spaces */

#define NOBS
#define NOCR

#define CAPS

04000 /* if on, no backspaces to the printer */
010000 /* if on, substitute line-feeds for any

/* carriage returns */
020000 /* if on, map lower-case alphabetics */

*/

6-100 AIX Operating System Technical Reference

/* to upper case */
#define WRAP 040000 /* if on, print characters beyond the page */

/* width on the next line, instead of */

struct OPRMODE {
int flags;

};
#define SYNC 01

#define ALLERR 02

#define FONTINIT 04
struct LPRUDE
{

};

int status;
int cresult;
int tadapt;
int npio;

/* truncating */

/* optional line printer modes */

/* asynchronous is default. */
/* synchronous if on */
/* wait until error correction is default.*/
/* report all errors if on */
/* file initialization */
/* device error-reporting structure */

/* error reason code */
/* current operation result :PSB */
/* adapter type */
/* number of pending 10 operations */

/* status values - error reason codes */

struct LPR232
{
unsigned c-cflag;
};

/* settings for RS232 */

/* error reason code */

/* used with LPRGTOV and LPRSTOV */
struct lptimer
{

unsigned v-timeout; /* time-out value in seconds */
}

lp

Special Files 6-101

lp

Files

/dev/lp*

Related Information

In this book: "ioctl" on page 2-56 and "devinfo" on page 4-57.

The splp command in AIX Operating System Commands Reference.

6-102 AIX Operating System Technical Reference

mem, ...

mem, kmem, nvram

Purpose

Provides memory, kernel memory, and non-volatile memory images.

Description

Files

The mem, kmem, and nvram files are pseudo-device driver files. These device drivers
are an image of physical memory in the system. These files can be used, for example, to
examine or to patch the system.

The mem file is a special file that is an image of the system-generated virtual memory. It
can be used, for example, to examine, and even to patch the system. You should use the
readx and writex system calls to read or write memo The parameter is the segment ID of
the memory segment to be read or written. The system uses the seek offset as the byte
offset within the segment. The high-order 4 bits of the seek offset are ignored. If there is a
segment ID of 0, or if you use read instead of readx, mem acts like kmem.

The file kmem is similar to mem, except it is used to access kernel and calling program
virtual memory. The seek offset is an address in kernel virtual memory. Seek offsets of
less than Ox1000 0000 address the kernel segment, which contains both text and data. Seek
offsets from Ox1000 0000 to Ox1FFF FFFF address the text segment of current process and
so on.

The nvram file is used to access the system non-volatile memory. It contains an area 16
bytes long to log RT PC errors when the system cannot make a permanent copy of errors
on the disk. Unlike mem and kmem, information written to this device is retained after
power is removed from the system.

An invalid virtual address or segment ID used with mem, kmem, or nvram causes errors
to be returned.

/dev/mem
/dev/kmem
/dev/nvram

Special Files 6-103

\ null

null

Purpose

Provides a null device.

Description

File

The null file is a pseudo-device driver file with no associated hardware. Data written to
this file is discarded. Reads from this file always return 0 bytes. Use this file to read or
write null data as required.

/dev/null

6-104 AIX Operating System Technical Reference

osm

osm

Purpose

Provides the interface to AIX messages.

Description

Files

The osm driver collects system messages provided by the AIX kernel and application
programs. These system messages are available to a daemon reading this file. System
messages have two sources:

• The AIX kernel provides messages by calls to the kernel printf routine.

• Application programs open and write to this file.

Operating system messages are stored in a circular buffer in the system and can be read or
written using the osm * special files. A read from osm * files returns some portion of the
data in the circular buffer. A write to the files adds user data to the current end of the
circular buffer. Any number of users may use osm* files in the same instance of time.

Read operations from the osm file start at the current end of the circular buffer and wait
for new data to be added. Read operations from the file /dev/osm.curr start at the
beginning of the circular buffer and return 0 bytes when the current end of the buffer is
reached. Read operations from the /dev/osm.all file start at the beginning of the circular
buffer, go to the current end of the circular buffer, and wait for new data to be added.

/dev/osm*

Related Information

In this book: "rasconf' on page 4-133.

Special Files 6-105

prf

prf

Purpose

Profiles the kernel.

Description

File

The prf file is a pseudo-device driver file with no associated hardware. This device driver
file provides access to activity information in the operating system.

This file is initialized to contain an array of sorted kernel text addresses. An ioctl system
call issued with command value 3 and parameter value equal to 1 starts monitoring
operations. Each subsequent clock interrupt causes the table of addresses to be searched
and the highest address less than or equal to the program counter at the time of the
interrupt to be located. The counter corresponding to the located address is incremented.
An interrupt that occurs while in user mode, increments a miscellaneous counter. An
ioctl system call issued with command value 3 and parameter value equal to 0 stops the
monitoring.

Reading this file returns the array of addresses and the array of counters. The
miscellaneous counter is returned last. The information is returned in a single read
system call. The buffer supplied must be large enough to hold the information.

You can determine the status of the profiling facility, by issuing an ioctl system call with
command value 1. Bit 1 (the least significant bit) of the return value is set if monitoring is
on. Bit 2 bit is set if a valid list of text addresses was loaded. An ioctl system call issued
with a command value 2 returns the number of loaded text addresses.

/dev/prf

Related Information

The config and profiler commands in A/X Operating System Commands Reference.

6-106 AIX Operating System Technical Reference

pty

pty

Purpose

Implements a pseudo-terminal device.

Synopsis

#include < sys/devinfo.h >
#include < sys/pty.h >
#include < sys/tty.h >

Description

A pty device is a pair of bi-directional character device drivers that implement a
pseudo-terminal. A pseudo-terminal can act as a keyboard and a display to existing
software that uses the standard terminal device interface described in "termio" on
page 6-114. This is useful for a variety of applications such as a remote login facility or a
windowing system.

Each pseudo-terminal (or pty) consists of two device drivers called a controller and a
server. The server or server side of a pty has a standard terminal interface that can
support a login shell or other software that normally communicates with terminals. The
controller or controller side of a pty interfaces with software that generates and receives
data as if it were a user at a terminal. Data written to the controller is passed directly to
the server, which is then read and processed as if entered from a keyboard. Data written
to the server (as if to be displayed on a terminal screen) is passed directly to the controller.

The corresponding special files are named /dev/ptcn for the controller and /dev/ptsn for
the server, where n is a decimal number. A I-to-l correspondence exists between each
controller-server pair with names that end in the same number. For example, /dev/pteO
and / dev /ptsO together form a pty.

The ptybuffers keyword in the fete/master file controls the number of ptys that can be
present in the system. The maximum number of ptys is 16.

For a remote login application such as Telnet, use the devices command to add the server
side of a pty to the system configuration and enable it as a login port. In the case of
Telnet, the telnetd daemon opens the controller side of the pty and passes data sent over
the network to the login shell.

When using a pty for applications other than remote login, a program must take into
account the fact that a logger process may have already issued an open to the server side
of the pty. When a logger opens the server side, the open system call suspends the process

Special Files 6-107

pty

to wait for another process to open the controller side. Use the following strategy to
detect this situation:

1. Open /dev/ptcn.

2. Issue an ioctl system call to perform the PTYST ATUS operation.

3. If the status indicates that the server side has already been opened, then close the pty
controller and try a /dev/ptcn device with a different value for n.

4. If the status indicates that the server side has not been opened, then open the
corresponding /dev/ptsn device.

Note: The server side of a pty can be opened multiple times, but the controller can be
opened only once. Attempting to open the controller side more than once causes an error.

select Support

The pty device driver supports the select system call in the following manner:

• Read selects are satisfied when input data is available.

• Write selects are satisfied when data can be accepted.

• Exception selects are never satisfied, or hang indefinitely if no timeout value is
specified.

See "select" on page 2-111 for more information about this system call.

ioctl Operations

The interface to the server side of the pty device is identical to the standard interface for
terminals, which is described in "termio" on page 6-114.

The controller side of the pty device driver supports the following ioctl operations. (See
"ioctl" on page 2-56 for detailed information about the ioctl system call.)

IOCTYPE Returns the device type DD-PSEU to indicate that this is a
pseudo-terminal device. This operation ignores the arg parameter.

IOCINFO Copies the devinfo structure for the device into the buffer pointed to by
the arg parameter passed to ioctl. See "devinfo" on page 4-57 for details
about this structure.

PTYSTATUS Returns the state of the pty, which is composed of two half-words. The
upper half contains the number of opens currently outstanding against
the controller, and the lower half contains the number of opens currently
outstanding against the server. This operation ignores the arg
parameter.

6-108 AIX Operating System Technical Reference

PTYIOR

PTYIOW

PTYGETM

PTYSETM

PTYADDM

PTYDELM

Diagnostics

Reports the number of characters available to be read. The arg
parameter is a pointer to an integer, into which this value is stored.

Reports the number of characters on the raw and cannonical queues.
The arg parameter is a pointer to an integer, into which this value is
stored.

pty

Gets the current mode of the pty. The arg parameter is a pointer to an
integer, into which the mode is stored. See the description PTYSETM
for an explanation of the possible mode values.

Sets the current mode of the pty. The arg parameter is a pointer to an
integer that contains the mode to be set. The mode is zero or more of the
following values logically OR-ed together:

RAWQINT

OUTQINT

REMOTE

Sends the SIGPTY signal to the process when enough
buffer space is available for writing to the pty.
Sends the SIGPTY signal to the process when data is
available to be read.
Controls the flow of input to the pty, but does not edit the
input. In other words, START and STOP (Ctrl-S and
Ctrl-Q) controls are processed, but no editing is done on
the data stream (such as ERASE, KILL, or ICRNL).

Adds to the current pty mode by logically OR-ing the specified value
with the existing mode. The arg parameter is a pointer to an integer that
contains the mode bits to be set. See the description PTYSETM for an
explanation of the possible mode values.

Deletes from the current pty mode. The arg parameter is a pointer to an
integer. The bits that are set in this integer specify the mode bits to be
turned off. See the description PTYSETM for an explanation of the
possible mode values.

System calls to a pty device fail and set errno to indicate the error if one or more of the
following are true:

EINVAL

ENXIO

EIO

EACCES

An invalid parameter was encountered, such as a negative number of bytes
to be written.

The pty cannot be opened because the pty number is out of range.

A read, write, or ioctl operation was attempted that requires both sides of
the pty to be open, making a complete connection.

An attempt was made to open the controller side of a pty more than once.

Special Files 6-109

pty

Files

/dev/ptcO, /dev/ptcl, ...
/dev/ptsO, /dev/ptsl,

Controller Devices
Server Devices

Related Information

In this book: "ioctl" on page 2-56, "open" on page 2-90, "master" on page 4-98, "ports" on
page 4-117, "system" on page 4-139, and "fcntl.h" on page 5-56.

The tn and telnetd commands in Interface Program for use with TCP/IP.

The devices and init commands in AIX Operating System Commands Reference.

6-110 AIX Operating System Technical Reference

tape

tape

Purpose

Supports the sequential access bulk storage medium device driver.

Description

Magnetic tapes are used primarily for backups, file archives, and other off-line storage.
Tapes are accessed through the special files rmtO, . . . ,rmtlS. The r indicates "raw"
which indicates access through the character special interface. A streaming tape does not
lend itself well to the category of a block device; only these character interface files are
provided. The number following the rmt is the minor device number. The two low-order
bits of the minor device number select the transport. If the third bit (04 octal or Ox04) is
set, the driver does not rewind the tape after it is closed. If the fourth bit (010 octal or
Ox08) is set, the tape is retensioned (wound completely forward and then rewound) after it
is opened and before any other operations.

On a system with a single tape drive, /dev/rmtO does not retension the tape, but does
rewind it on close. /dev/rmt4 (bits = 0100) does not perform any special actions on open
or close. /d.ev /rmtS (bits = 1000) retensions the tape and rewinds it on close; and
/dev/rmt12 (bits = 1100) retensions the tape on open, but does not rewind.

When opened for reading or writing, the tape is assumed to be positioned as desired. When
the tape opens and writes to a file, a single tape mark is written if the file is no rewind on
close, while a double tape mark is written if the tape is to be rewound. If the file is no
rewind and opened read only, the tape is positioned after the end of file (EOF) following
the data just read. Once opened, reading is restricted to between the position when opened
and the next EOF. By specifically choosing rmt files, it is possible to read and write
multiple-file tapes.

Each read or write call reads or writes the next record on the tape. The record written by
write is the same length as the buffer given. During a read, the record size is returned as
the number of bytes read, up to the buffer size specified. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned before the EOF.

A number of ioctl operations are available. In addition to IOCTYPE and IOCINFO types,
the following ioctl calls are defined.

The parameter to the ioctl system call using the STIOCTOP command is the address of a
stop structure, which contains the following members:

short st-op;
daddr-t st-count;

/* Streaming tape operation */
/* Number of times to perform */

Special Files 6-111

tape

The st-op operation is performed st-count times, except where it is not logical to do so,
rewind, as an example. The operations available are:

#define STRESET 5
#define STREW 6
#define STERASE 7
#define STRETEN 8
#define STWEOF 10
#define STFSF 11
#define STFSR 13
#define STRASI 15
#define STRAS2 16
#define STRAS3 17

/* reset device */
/* rewind */
/* erase tape, retension, leave at load point */
/* erase tape, retension, leave at load point */
/* write an end-of-file record */
/* forward space file */
/* forward space record */
/* drive self test 1 */
/* drive self test 2 */
/* drive self test 3 */

/* this test needs an */
/* erased write-protected tape */

The status of a tape drive can be determined by issuing the following STIOCGET type ioctl
system call:

/* structure for STIOCGET - streaming tape get status command */
struct stget {

};

/*

short st-type; /* type of device */
struct dsreg {

unsigned short ds-dstat: /* drive status */
unsigned short ds-soft; /* soft error count */
unsigned short ds-under; /* underrun count */
unsigned char ds-rcom; /* command received by adapter */
unsigned char ds-blk; /* adapter block count */
unsigned char ds-rstat; /* status register */
unsigned char ds-code; /* adapter completion code */
unsigned char ds-lcom; /* last command given to adapter */
unsigned char ds-lstcom; /* last streaming tape device */

/* drive command */
unsigned char ds-res[4] /* reserved */

} st-dsreg;

* Constants for st-type byte - ST-SST streaming tape
*/

6-112 AIX Operating System Technical Reference

Files

tape

In addition to those errors listed in ioetl; open, read, and write, system calls against this
device fail in the following circumstances:

EINV AL O-APPEND is supplied as a mode in which to open.

EINVAL

EINVAL

EIO

ENXIO

A write attempt while the tape is in read mode, or a read attempt while the
tape is in write mode.

A count parameter to read or write is not 0, modulo 512.

A parameter to ioetl is not allowed in the current streaming mode.

The tape is write-protected or there is no tape in the drive.

Note: The streaming tape device driver has a concept of current "streaming mode."
Therefore, many operations are invalid most of the time. In particular, no reads are
allowed after an initial write or writes allowed after an initial read. You must wait until
the device is reset either by closing a rewind-on-close special file, or by the tetl command.

/dev/rmt*

Related Information

In this book: "ioctl" on page 2-56, "open" on page 2-90, "read, readx" on page 2-106, and
"write, writex" on page 2-184.

The tetl command in A/X Operating System Commands Reference.

Special Files 6-113

termio

termio

Purpose

Provides the general terminal interface.

Synopsis

#include < sys/hft.h >
#include < sys/termio.h >
#include < sys/tty.h >

Description

All of the asynchronous communications ports use the same general interface, regardless
of the hardware used. This discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until a connection is
established. In practice, user programs seldom open these files. They are opened by getty
and become standard input, output, and error files for a user. The first terminal file not
already associated with a process group that is opened by the process group leader becomes
the control terminal for that process group. The control terminal plays a special role in
handling quit and interrupt signals as discussed later. During a fork system call, the child
process inherits the control terminal. A process can break the association to the group
using the setpgrp system call.

A terminal associated with on'e of these files ordinarily operates in full-duplex mode.
Characters can be typed at any time, even while output is occurring. These characters can
be lost, however, when the input buffers become completely full or when the user
accumulates the maximum number of input characters allowed that were not read by a
program. Currently, this limit is 256 characters. When theinput limit is reached, all the
saved characters are erased from the input buffer without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a new-line
(ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character.
This means that a program attempting to read is suspended until an entire line is typed.
Also, no matter how many characters are requested in the read call, at most one line is
returned. It is not, however, necessary to read a whole line at once. Any number of
characters can be requested in a read without losing information.

During input, erase and kill processing is performed normally. By default, the Ctrl-H
character erases the last character typed, but does not erase beyond the beginning of the
line. By default, the Ctrl-U character "kills" (deletes) the entire input line, and optionally
outputs a new-line character. Both these characters operate on a keystroke basis

6-114 AIX Operating System Technical Reference

termio

independently of any backspacing or tabbing that was done. Both the erase and kill
characters can be entered literally by preceding them with the \ (backslash) escape
character. In this case, the escape character is not read. The erase and kill characters
can be changed.

Certain characters have special functions on input. These functions and their default
character values are summarized as follows:

EOF

EOL

ERASE

INTR

KILL

NL

QUIT

Ctrl-D or ASCII EOT is used to generate an end-of-file from a terminal. When
received, all the characters waiting to be read are immediately passed to the
program, without waiting for a new-line character, and the EOF is discarded.
Thus, if there are not any characters waiting (indicating the EOF occurred at
the beginning of a line), zero characters are passed back, which is the standard
end-of-file indication.

ASCII NUL is an additional line delimiter, like NL. It is not normally used.

Ctrl-H erases the preceding character. It does not erase beyond the start of a
line, as delimited by an NL, EOF, or EOL character.

Rubout or ASCII DEL (Ctrl-Backspace on the RT PC console keyboard)
generates a SIGINT (interrupt) signal, which is sent to all processes with the
associated control terminal. Normally, each such process is forced to
terminate, but arrangements can be made either to ignore the signal or to
receive a trap to an agreed-upon location. See "signal" on page 2-145.

Ctrl-U deletes the entire line, as delimited by an NL, EOF, or EOL character.

ASCII LF is the normal line delimiter. It cannot be changed or escaped.

Ctrl-V or ACSII SYN generates a quit signal. Its treatment is identical to the
interrupt signal except that, unless a receiving process made other
arrangements, it is not only terminated but a memory file (called core) is
created in the current working directory.

START Ctrl-Q or ASCII DCI is used to resume output that was suspended by a STOP
character. While output is not suspended, START characters are ignored and
not read. The start/stop characters cannot be changed or escaped.

STOP Ctrl-S or ASCII DC3 is used to temporarily suspend output. It is useful with
terminals that have displays to prevent output from disappearing before it can
be read. While output is suspended, STOP characters are ignored and not read.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL can be changed to
suit individual preferences. The ERASE, KILL, and EOF characters can be escaped by a
preceding \ (backslash) character, in which case the special function is not done.

When the carrier signal from the dataset drops, a hangup signal (SIGH UP) is sent to all
processes that have this terminal as the control terminal. Unless other arrangements were
made, this signal causes the process to terminate. If the hangup signal is ignored, any

Special Files 6-115

termio

subsequent read returns with an end-of-file indication. Thus, programs that read a
terminal and test for end-of-file can terminate appropriately.

When one or more characters are written, they are transmitted to the terminal as soon as
previously written characters finish typing. Input characters are usually echoed by
putting them in the output queue as they arrive, but see "Enhanced Edit Mode" on
page 6-122. If a process produces characters more rapidly than they can be typed, it is
suspended when its output queue exceeds some limit. When the output decreases to a
determined threshold, the program is resumed.

Several ioctl system calls apply to terminal files. The primary calls use the following
structures defined in the termio.h header file:

#define Nee 8
struct termio

unsigned
unsigned
unsigned
unsigned
char
unsigned

};

{
short
short
short
short

char

struct tty-page {

c- i fl ag; /*
c-ofl ag; /*
c-cfl ag; /*
c-l fl ag; /*
c-line; /*
c-cc [Nee] ;

char tp-flags;
unsigned char tp-slen;

};

input modes */
output modes */
control modes */
local modes */
line discipline */

/* control chars */

The special control characters are defined by the c-cc array. The relative positions and
initial values for each function are as follows:

c-cc[O]
c-cc[l]
c-cc[2]
c-cc[3]
c-cc[4]
c-cc[5]
c-cc[6]
c-cc[7]

INTR
QUIT
ERASE
KILL
EOF
EOL
reserved
reserved

Ctrl-Backspace (DEL)
Ctrl-V (SYN)
Backspace (BS)
Ctrl-U (NAK)
Ctrl-D (EOT)
Ctrl-@ (NUL)

The c-iflag field describes the basic terminal input control. The initial input control
value is all bits clear. The possible values are:

6-116 AIX Operating System Technical Reference

IGNBRK 0000001
BRKINT 0000002
IGNPAR 0000004
PARMRK 0000010
INPCK 0000020
ISTRIP 0000040
INLCR 0000100

IGNCR 0000200
ICRNL 0000400
IUCLC 0001000
IXON 0002000
IXANY 0004000
IXOFF 0010000
ASCEDIT 0020000

Ignore break condition.
Signal interrupt on break.
Ignore characters with parity errors.
Mark parity errors.
Enable input parity check.
Strip character.

termio

Map new-line character (NL) to carriage return character (CR)
on input.
Ignore carriage return character.
Map carriage return character to new-line character on input.
Maps uppercase to lowercase on input.
Enables start/stop output control.
Enables any character to restart output.
Enables start/stop input control.
Enables· enhanced editing on ASCII terminals.

The values in this field are described as follows:

IGNBRK If set, the break condition (a character framing error with data all zeros) is
ignored. It is not put on the input queue and therefore not read by any
process. Otherwise, if BRKINT is set, the break condition generates an
interrupt signal and flushes both the input and output queues. If IGNP AR is
set, characters with other framing and parity errors are ignored.

P ARMRK If set, a character with a framing or parity error that is not ignored is read
as the 3-character sequence: 0377, 0, x, where x is the data of the character
received in error. If ISTRIP is not set, then a valid character of 0377 is read
as 0377,0377 to avoid ambiguity. If PARMRK is not set, a framing or parity
error that is not ignored is read as the character NUL (0).

INPCK If set, input parity checking is enabled. If not set, input parity checking is
disabled. This allows output parity generation without input parity errors.

ISTRIP If set, valid input characters are first stripped to 7 bits; otherwise all 8 bits
are processed.

INLCR If set, a received new-line character is translated into a carriage-return
character. If IGNCR is set, a received carriage-return character is ignored
(not read). If ICRNL is set, a received carriage-return character is translated
into a new-line character.

IUCLC If set, a received uppercase alphabetic character is translated into the
corresponding lowercase character.

IXON If set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. All
start/stop characters are ignored and not read. If IXANY is set, any input
character restarts output that was suspended.

Special Files 6-117

termio

IXOFF If set, the system transmits START/STOP characters when the input queue is
nearly empty or full.

ASCEDIT If set, ASCII keyboards can be used to enter enhanced edit line discipline
commands.

The c-oflag field specifies how the system treats output. The initial output control value
is all bits clear.

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NL1
CRDLY
CRO
CR1
CR2
CR3
TABDLY
TABO
TAB1
TAB2
TAB3
BSDLY
BSO
BS1
VTDLY
VTO
VT1
FFDLY
FFO
FF1

OPOST

OLCUC

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200
0000400
o
0000400
0003000
o
0001000
0002000
0003000
0014000
o
0004000
0010000
0014000
0020000
o
0020000
0040000
o
0040000
0100000
o
0100000

Postprocess output.
Map lowercase to uppercase on output.
Map new-line character to CR-NL on output.
Map carriage-return to new-line on output.
No carriage-return character output at column O.
Perform carriage return function using new-line character.
Use fill characters for delay.
Fill is DEL or NUL.
Select new-line character delays:

Select carriage-return delays:

Select horizontal-tab delays:

Expand tabs to spaces.
Select backspace delays:

Select vertical-tab delays:

Select form-feed delays:

If set, output characters are post-processed as indicated by the remaining flags;
otherwise characters are transmitted without change.

If set, a lowercase alphabetic character is transmitted as the corresponding
uppercase character. This function is often used in conjunction with IUCLC.

6-118 AIX Operating System Technical Reference

termio

ONLCR If set, the new-line character is transmitted as the carriage-return new-line
character pair.

OCRNL If set, the carriage-return character is transmitted as the new-line character.

ONOCR If set, no carriage-return character is transmitted when at column 0 (first
position).

ONLRET If set, the new-line character is assumed to do the carriage return function.
The column pointer is set to 0 and the delay specified for carriage return is
used. Otherwise the new-line character is assumed to do just the line feed
function; the column pointer remains unchanged. The column pointer is also
set to 0 if the carriage-return character is actually transmitted.

OFILL If set, fill characters are transmitted for delay instead of a timed delay. This is
useful for high baud rate terminals that need only a minimal delay.

o FD EL If set, the fill character is DEL, otherwise NUL.

NLDLY, CRDLY,TABDLY, BSDLY,VTDLY,FFDLY
The delay bits specify how long transmission stops to allow for mechanical or
other movement when certain characters are sent to the terminal. In all cases,
a value of 0 indicates no delay. If ONLRET is set, the carriage return delays
are used instead of the new-line delays.

T AB3 If set, specifies that tabs are to be expanded into spaces.

The c-cflag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
EXTA
EXTB

0000017
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017

Baud rate
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
External A
External B

Special Files 6-119

termio

CSIZE
CS5
CS6
CS7
CSS
CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL

CBAUD

CSIZE

CREAD
PARENB

HUPCL

CLOCAL

0000060
o
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000

Character size:
5 bits
6 bits
7 bits
S bits
Send 2 stop bits, else one.
Enable receiver.
Parity enable.
Odd parity, else even.
Hang up on last close.
Local line, else dial-up.

These bits specify the baud rate. The zero baud rate, BO, is used to hang up
the connection. If BO is specified, the data-terminal-ready signal is not
dropped. Normally, this disconnects the line. For any particular hardware,
impossible speed changes are ignored.

These bits specify the character size in bits for both transmit and receive.
This size does not include the parity bit, if any. If CSTOPB is set, 2 stop bits
are used; otherwise one stop bit is used. For example, at 110 baud, 2 stop bits
are required.

If set, the receiver is enabled. Otherwise characters are not received.

If set, parity generation and detection is enabled and a parity bit is added to
each character. If parity is enabled, the PARODD flag specifies odd parity if
set; otherwise even parity is used.

The initial hardware control value after open is B300, CSS, CREAD, HUPCL.

If set, the line is disconnected when the last process that has the line open,
either closes it or the process terminates. That is, the data-terminal-ready
signal drops.

If set, the line is assumed to be local, direct connection with no modem
control. Otherwise modem control is assumed.

The c-Iflag field of the parameter structure is used by the line discipline to control
terminal functions. The basic line discipline (0) provides the following:

ISIG
ICANON
XCASE
ECHO

0000001
0000002
0000004
0000010

Enable signals.
Canonical input (erase and kill processing).
Canonical upper/lower presentation.
Enable echo.

6-120 AIX Operating System Technical Reference

ECHOE
ECHOK
ECHONL
NOFLSH

ISIG

ICANON

XCASE

ECHO

0000020
0000040
0000100
0000200

TNL SN20-9869 (26 June 1987) to SC23-0809-0
termio

Echo erase character as BS-SP-BS.
Echo new-line character after kill character.
Echo new-line character.
Disable flushing the queue after interrupt or quit.

If set, each input character is checked against the special control characters
INTR and QUIT. If a character matches one of these control characters, the
function associated with that character is performed. If ISIG is not set,
checking is not done. Thus, these special input functions are possible only if
ISIG is set. These functions may be disabled individually by changing the
value of the control character to an unlikely or impossible value (for example,
0377 octal or OxFF).

If set, canonical processing is enabled. Canonical processing enables the
erase and kill edit functions, and the assembly of input characters into lines
delimited by NL, EOF, and EOL. If ICANON is not set, then read requests
are satisfied directly from the input queue. In this case, a read request is not
satisfied until either at least MIN characters have been received, or the
time-out value TIME has expired since the last character was received. This
allows bursts of input to be read, while still allowing single-character input.
The MIN and TIME values are stored in the positions for the EOF and EOL
characters, respectively. The time value represents tenths of seconds.

If set along with ICANON, an uppercase letter (or the uppercase letter
translated to lowercase by IUCLC) is accepted on input by preceding it with a
\ (backslash) character, and is output preceded by a \ (backslash) character.
In this mode, the output generates and the input accepts the following escape
sequences:

For: Use:
\ '
\ !
\A

{ \(
} \)
\ \\
For example, A is input as \a, \n as \ \n, and \N as \ \ \n.
If set, characters are echoed as received. When ICANON is set, the following
echo functions are possible. If ECHO and ECHOE are set, the erase
character is echoed as ASCII BS SP BS, which clears the last character from
a cathode-ray-tube screen. If ECHOE is set and ECHO is not set, the erase
character is echoed as ASCII SP BS. If ECHOK is set, the new-line character
is echoed after the kill character to emphasize that the line is deleted. Note
that an escape character preceding the erase or kill character removes any

Special Files 6-121

TNL SN20-9869 (26 June 1987) to SC23-0809-0
termio

special function. If ECHONL is set, the new-line character will be echoed
even if ECHO is not set. This is useful for terminals set to local echo
(sometimes called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents terminals
that respond to EOT from hanging up.

NOFLSH If set, the normal flushing of the input and output queues associated with the
quit and interrupt characters is not done.

Enhanced Edit Mode

The c-line field describes the line-discipline control value. The initial line-discipline
control value is all bits clear. When c-line is equal to 1, it sets enhanced edit mode. This
terminal line discipline provides a simple, line-oriented editing facility modeled on
DOS Services.

The enhanced edit line discipline supports the same flags in c-Iflag as the basic line
discipline, but has the differences described following. The line discipline itself may be
used from any terminal. To set the terminal to this mode from the shell, use the stty
command. From a program, use the ioctl system call.

In enhanced edit mode, a special character buffer called the template is associated with
the terminal. Using special function keys, the next line entered can be constructed out of
the template and new characters.

Initially the template is blank. When a line is read by a running program, that line
becomes the active template. The template can also be explicitly read and set by the
application program using the ioctl system call and by the user with the F5 key. The
template does not directly appear on the terminal, but can be inspected by use of the
function keys. When Enter is pressed, the old template is stacked and the current line
becomes the active template. Up to eight templates can be stacked. The oldest template is
deleted when a template is added to a full stack. The i (cursor up) and ~ (cursor down)
keys change the active template from current template to the next or previous template
respectively. The user can scroll through the stack, which automatically wraps back to
the beginning when the end is reached.·

Characters typed are not echoed to the terminal until the application program has issued a
read system call to process it. The ERASE character is echoed as follows: when an ASCII
TAB is deleted, the cursor is moved to the position where the TAB was typed, and the
cursor will not be moved to the left of where input began on the current line.

Whenever non-printing characters are directly echoed to the terminal, they appear as A X,
where X is the printable character that is 64 greater in value than the non-printing
character originally entered. Thus Ctrl-A is echoed as A A, and so on. Finally, because
DOS Services itself lacks any convention for escaping special characters, there is no way
to specify literal occurrences of ERASE, KILL, or EOF. The \ (backslash) has no special
meaning when used preceding them, and no escape character is defined.

6-122 AIX Operating System Technical Reference

termio

Both the line buffer and the template can hold at least 128 characters. If the line buffer
fills up, an audible signal sounds upon receipt of further characters, which are otherwise
ignored. Exceptions are the Backspace and +- keys, which delete characters from the line
buffer; and the Esc, F5, and Return (or Enter) keys, which reset the line buffer after
performing their functions.

While this mode is intended primarily for use with the DOS Services commands, it can be
set at any time, although it may be overridden by programs such as editors that change the
terminal characteristics in other ways.

To understand the use of the special functions keys, it is helpful to consider their effect on
the current line buffer, the template index, which points to a character in the template.

To use enhanced edit mode from an ordinary ASCII terminal, a compatibility mode must be
set.

Native ASCII
Keyboard Keyboard Action

Displayable Displayable
Character Character

Return or
Enter

Esc

Del

i

Return or
Enter

Esc Esc

EscD

Esc H

Places the character typed in the line buffer. Advances the
template buffer unless insert mode is on. (When insert mode is
on, characters typed are effectively "inserted" into the line
within the template. When off, characters typed effectively
"overwrite" characters in the template.)

Sends the line buffer (as it appears on the screen) to the
application program and accepts it as the active template. The
line on the screen is advanced and the old template is placed on
the stack. The line buffer is emptied and the template index
reset to the beginning of the template.

Cancels the line currently being edited. A \ (backslash)
character is echoed, then the cursor is moved to the same
column on the next line as it was on the current line. The line
buffer is emptied, and the template index is reset to the
beginning of the template.

Advances the template index by one. There is no effect on the
screen. This, in effect, deletes the next template character,
although Backspace restores it.

Changes the active template to the next one on the stack and
copies the new active template to the line buffer. Advances the
template index to the end of the template.

Special Files 6-123

termio

Native
Keyboard

Ins

ASCII
Keyboard Action

Esc I Sets insert mode on. Insert mode is reset by i, L Fl, F2, F3,
Esc, and Enter. When insert mode is set, inserts typed
characters into the line within the template. When not set,
characters that are typed overwrite characters in the template.

Backspace Backspace Backspaces and removes a character from the screen, moving
the template index back one, but not beyond the column where
text entry began. If insert mode is not set, move the template
index back but beyond the beginning of the template.
Backspacing across a tab character moves the cursor to the
position of the character before the tab character was typed.

or ~ or Esc J

Fl or -+-

F2

F3

F4

F5

F6

F7

EscL

Esc K or
Esc 1

Esc 2

Esc 3

Esc 4

Esc 5

Esc 6

Esc 7

Changes the active template to the previous one in the stack
and copies the new active template to the line buffer. Advances
the template index to the end of the template.

Copies the character indicated by the template index to the line
buffer and displays it. Advances the template index.

Copies characters (as Fl does) up to, but not including, the
next character typed.

Copies to the line buffer, the characters in the template from
the template index to the end of the template. Advances the
template index to the end of the template.

Advances the template index without copying characters (like
Del) up to the next character typed. F4 is to Del what F2 is to
Fl.

Accepts the. current line buffer as a new template. The @
character is echoed, and then the cursor is moved to the next
line at the same column as that at which it started on the
current line. The template index is reset to the beginning of
the template.

Enters a Ctrl-Z character into the line buffer, as if it had been
typed directly from the keyboard.

Enters an ASCII NUL character into the line buffer, as if it had
been typed directly from the keyboard.

6-124 AIX Operating System Technical Reference

termio

Any other character typed is placed in the line buffer, except when ICANON is set. When
ICANON is set, the special characters it provides are not retained in the buffer. The
template index is advanced whenever a character is placed in the line buffer, unless insert
mode is enabled.

The system console has other specific modes that are not valid for general terminal
interfaces. See "hft" on page 6-23 for details.

select Support

The asynchronous terminal device driver supports the select system call in the following
manner:

• Read selects are satisfied when input data is available.

• Write selects are always satisfied immediately.

• Exception selects are never satisfied, or hang indefinitely if no timeout value is
specified.

See "select" on page 2-111 for more information about this system call.

ioctl Operations

The primary ioctl system calls have the format:

i oc t 1 (tildes, command, arg)
int fildes; /* file descriptor */
i nt command; /* command type * /
struct termio *arg;

The commands using this format are:

TCGETA Gets the parameters associated with the terminal and stores them in the
termio structure referenced by argo

TCSETA Sets the parameters associated with the terminal from the structure
referenced by argo The change is immediate.

Note: TCGETA and TCSETA do not get and set a complete record of the state of anHFT
device. See "hft" on page 6-23 for information about high-function terminal devices.

TCSETAF Waits for the output to empty, then flushes the input queue and sets the new
parameters.

TCSETAW Waits for the output to empty before setting the new parameters. This form
should be used when changing parameters that affect output.

Special Files 6-125

termio

The terminal paging ioctl calls have the format:

ioctl (fildes, command, arg)
int fildes; /* file descriptor */
i nt command; /* command type * /
struct tty-page *arg;

The commands using this format are:

TCGLEN Gets the current status of the tty -page structure for the terminal specified as
fildes. If paging is enabled, a value Oxl is set in tp-flags. The tp-slen value
indicates the screen length in lines.

TCSLEN Sets the status of the tty -page structure for this terminal. tp-slen means
the same here as it does in TCGLEN. The tp-flags are:

P AGE-SETL Ox4
PAGE-MSK Ox3
PAGE-ON Oxl
PAGE-OFF Ox2

Set page length using the value in tp-slen.
Command mask.
Enable paging.
Disable paging.

Note that the PAGE_MSK field is interpreted as an encoding, not as separate flags.

Additional ioctl system calls formats are:

i oct 1 (fildes, command, arg)
int fildes; /* file descriptor */
i nt command; /* command type * /
int arg;

The commands using this format are:

TCFLSH If arg is 0, flush the input queue. A value of 1 indicates flush the output
queue. A value of 2 indicates flush both the input and output queues.

TCSBRK Waits for the output to empty. If arg is 0, then sends a break (zero bits for
0.25 seconds).

TCXONC Starts or stops control. Suspends output if arg is O. Restarts suspended
output if arg is a value of 1.

One query ioctl system call has the following format:

ioctl (fildes, command, &arg)
int arg; /* returned value */

6-126 AIX Operating System Technical Reference

Files

termio

The call using this format is:

TIONREAD Gets the summation of the number of characters in the raw and canonical
queues.

Two ioctl system calls specific to the enhanced edit line discipline have the format:

i oct 1 (tildes, command, arg)
struct dostmplt *arg;

The dostmplt structure is defined in the sys/termio.h header file, and it contains the
following members:

char *dt-tbuf
int dt-tlen

The commands using this format are:

LDSETDT Sets the template buffer to contain the first dt-tlen characters of dt-thuf,
if the enhanced edit line discipline has been entered (if c-line equals 1, for
example). At most, DTBISIZE characters are used. If dt-tlen is -1, the
template buffer is not initialized.

LDGETDT Gets the current contents of the template buffer. The characters in the
buffer are written starting at dt-thuf, and dt-tlen is set to the number of
characters written. At most, DTBSIZE characters will be returned. The
characters will not be null-terminated.

/dev/tty*
/usr/include/sys/ttmap.h

Related Information

In this book: "ioctl" on page 2-56 and "hft" on page 6-23.

Special Files 6-127

trace

trace

Purpose

Supports the event-tracing device driver.

Synopsis

#include < sys/trace.h >

Description

The /dev/vrmtrace, /dev/unixtrace, and /dev/appltrace files are special files that allow
event records generated within the VRM, kernel, or application programs to be passed to a
user program so that the activity of a driver or other system routines can be monitored for
debugging purposes.

The VRM passes buffers of trace entries directly to the driver using unsolicited interrupts.

The trace driver supports open, close, read, and ioctl system calls. The ioctl system call
is invoked as follows:

#include <sys/trace.h>
ioctl(fildes, cmd, &arg);
int fildes, cmd;

struct tr-struct
{

unsigned channels;
ushort bufsize;
ushort lengths;
char vmid;
char timer;

} arg;

/* enabled channels */
/* buffer size to use */
/* communication lengths */
/* VM 10 of machine to trace; 0 for current */
/* timer to use, for VRM */

Valid values of the cmd parameter are:

TRCSETC Sets trace parameters. This command instructs the driver to use the
parameters provided in structure arg to set trace parameters. bufsize
indicates the size of the buffer to allocate and cannot be changed once it is

6-128 AIX Operating System Technical Reference

trace

set. The timer field should always be a value of o. The channels field is a
bitmap indicating active and inactive channels. As an example, bit 0
corresponds to channel 31, bit 1 corresponds to channel 30, and bit 31
corresponds to channel o.

TRCGETC Returns the current status of the trace in the structure indicated by argo

The records returned from the trace device are structures with the following format:

struct
{

unsigned stamp; /* time stamp */
unsigned short timeext;
unsigned short seqno[2];
unsigned short hookid;
unsigned pid;

/* time stamp extension */
/* two 16-bit sequence number digits */
/* channel no. and trace event code *:

/* process-id */
unsigned short iodn,iocn;
char data [20J;

/* vrm iodn/iocn or -1 */
/* more data, depending on code */

};

The following subchannels are assigned:

CHANNEL
NUMBER ASSIGNMENT

22 Process system calls (acct, alarm, brk, exec, fork,
fstat, getgid, getgroups, getpid, getuid, kill, lockf,
nice, pause, pipe, plock, profil, ptrace, reboot,
setgid, setgroups, setpgrp, setuid, times, ulimit,
usrinfo, utssys, wait)

23 Directory handling system calls (chdir, chroot,
link, mknod, unlink)

24 I/O system calls (access, chmod, chown, close,
creat, dup, fclear, fcntl, fsync, ftrunc, ioctl, lseek,
open, read, umask, uname, utime, write)

25 File system system calls (mount, stat, sync, us tat,
umount)

Special Files 6-129

trace

Files

CHANNEL
NUMBER ASSIGNMENT

26 Time system calls (stime, time)

27 Signal system calls (signal, sigblock, sigcleanup,
sigpause, sigsetmask, sigstack, sigvec)

28 Semaphore system calls (semctl, semget, semop)

29 Message system calls (msgctl, msgget, msgop)

30 Shared memory system calls (shmctl, shmget,
shmop)

31 User-defined events

/dev/vrmtrace
/dev/unixtrace
/dev/appltrace

Related Information

In this book: "trace-on" on page 3-357, "trcunix" on page 3-362, "rasconf' on page 4-133,
and "Trace Logging" on page C-32.

The trace command in AIX Operating System Commands Reference.

The discussion of '.'trace" in AIX Operating System Programming Tools and Interfaces.

6-130 AIX Operating System Technical Reference

tty

tty

Purpose

Supports the controlling terminal interface.

Synopsis

#inc1ude < sys/hft.h >
#include < sys/termio.h >
#include < sys/tty.h >

Description

Files

For each process the /dev/tty special file is a synonym for the associated control terminal.
This file is useful to programs or shell sequences that wish to ensure writing messages on
the terminal regardless of how output is redirected. It can also be used for programs that
demand the name of a file for output when typed output is desired, and to find out what
terminal is currently in use.

fdevftty
fdevftty*

Related Information

In this book: "hft" on page 6-23.

Special Files 6-131

6-132 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Chapter 7. Advanced Display Graphics Support
Library

Advanced Display Graphics Support Library 7-1

TNL SN20-9869 (26 June 1987) to SC23-0809-0

About This Chapter
/

This chapter describes the Advanced Display Graphics Support Library (GSL), an ~
application programming interface to various output devices.

Subroutines, located in the libgsI.a library, are provided by the GSL. The gslerrno.h
header file must be included with an #include statement to provide return values for the
GSL subroutines.

Note: All GSL parameters are passed by reference, making the subroutines compatible
with FORTRAN, in which parameters are always passed by reference. All parameters are
therefore passed as pointers in C and are declared as VAR parameters in Pascal. The
name of a GSL subroutine is always followed by an - (underscore) in C and Pascal, but not
in FORTRAN.

The /usr/lib/samples directory contains routines that provide clipping and transformation
functions on a normalized device coordinate (NDC) system, as well as routines that provide
additional function. The README.gslext file in this directory provides more
information.

The Extended and Enhanced GSL subroutines that reside in the
/usr/lib/samples directory are merely examples, provided for the sole
purpose of illustrating that the basic GSL subroutines can be used to create
extended or enhanced subroutines. The extended and enhanced GSL
subroutines are each provided "as is" without warranty of any kind, either
express or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of each of the extended or enhanced GSL
subroutines is with you.

The following terms are defined for this chapter:

Frame buffer A display adapter frame buffer is memory storage containing a
representation of a display image.

Geometric text The two types of text supported by the GSL are annotated, or standard,
text and geometric text, which is also referred to as a programmable
character set (PCS) or stroke text. For more information on annotated
text, see "fonts" on page 4-68.

KSRMode KSR (keyboard send-receive) Mode causes a virtual terminal to act like
a standard ASCII terminal, with some RT PC extensions, for both input
and output. See "hft" on page 6-23 for more information about KSR
Mode.

7 -2 AIX Operating System Technical Reference

(
\

Monitor Mode

Pick device

Pixel

Pixel map

Ring Buffer

Overview

TNL SN20-9869 (26 June 1987) to SC23-0809-0

In Monitor Mode, a virtual terminal lets an application directly access
the display adapter without conflict with the standard virtual terminal
output mechanism. Further information about Monitor Mode is found
under "hft" on page 6-23.

Valid only for the IBM 5081 Display Adapter, a pick device is a
hardware-assisted event. An area of the screen around the active
cursor is specified and pick is enabled. The adapter resets a counter to
zero, then counts each graphics primitive command issued. This count
identifies each output function. If a graphics primitive then intersects
the area defined around the cursor, the IBM 5081 Display Adapter
returns the count associated with the primitive to the system. This
information appears on the GSL input ring as a pick event, and helps
an application determine what an operator is selecting on the screen.

A pixel, or picture element, is one point in the frame buffer or on the
display.

Also known as a pixmap, this is an object that defines the
characteristics of a rectangle. See "gsxblt" on page 7-139 for a list of
the elements defined by a pixel map.

A virtual terminal in Monitor Mode can share a ring buffer with an
application and place data from input devices in the buffer. The ring
buffer mechanism dramatically shortens the input data path from the
virtual terminal to the application.

The GSL allows applications to perform graphics operations without the need to directly
manipulate the underlying hardware. TheGSL also supports the display of fixed spaced
characters in text.

The GSL assumes that an application using it runs in its own virtual terminal. A virtual
terminal can operate in either KSR mode (the default) or in Monitor Mode. An application
may use Monitor Mode and the ring buffer to derive its own graphics interface. The GSL
provides an interface that lets a user generate graphics interactively without detailed
knowledge of the display adapter and input data formats. The GSL works only with the
application virtual terminal in Monitor Mode. Part of the GSL initialization is to place
the virtual terminal in Monitor Mode. This forces some restrictions on the use of the
display adapter. The application virtual terminal can be one of several virtual terminals
opened by a user, but only one virtual terminal can be active for input at any time.
Several virtual terminals can be active for output at any time if multiple displays are
attached, with one virtual terminal active for output on each display. All virtual terminals
but one, however, are inactive for input at a given time. The active virtual terminal for
input can write to the display adapter and can receive input from devices. An application

Advanced Display Graphics Support Library 7-3

TNL SN20-9869 (26 June 1987) to SC23-0809-0

must respond to user requests to become active or to release control of the display (become
inactive). The transfer of control of the display occurs with two signals (a release request,
SIGRETRACT, and a grant notification, SIGGRANT) and a write to the HFT device (
driver to acknowledge the release signal. After initialization, the GSL processes these two ~
signals and writes to the device driver so that it can determine when it can and cannot
write to the adapter. Routines that an application supplies that get called by the GSL
signal handlers can be identified by the application during GSL initialization. The
application can therefore respond appropriately to requests to be active or inactive.

The GSL provides a set of graphics output functions. Applications can supply additional
functions that access the display adapter directly. Such an application routine can
function only when the virtual terminal is active, and the virtual terminal must not
become inactive while the routine is operating. The GSL provides a function that
indicates to the application whether its virtual terminal is active or inactive, and if active,
postpones GSL processing of the SIG RETRACT signal until the application has finished
modifying the display. Another function causes the GSL to resume processing of the
signal.

It is possible that one of the GSL output functions or an application-supplied output
function is operating at the time of the SIGRETRACT signal; the function only has 30
seconds (real time) to complete the adapter operation and acknowledge the SIGGRANT
after that signal; after the 30 seconds the HFT device driver sends a SIGKILL signal that (
terminates the virtual terminal. The application should be designed with this \
consideration in mind, or the user should be made aware of the time limit for applications
that involve switching virtual terminals and have lengthy drawing operations.

The virtual terminal subsystem dictates that when a Monitor Mode virtual terminal
becomes inactive and then active, the application must restore the display adapter state.
At initialization the application can direct the GSL to use either of two mechanisms for
restoration.

GSL Control
The GSL saves the frame buffer at the time of the SIGRETRACT and restores it and
the appropriate adapter state, such as the color map, at the time of the SIGGRANT.
Unfortunately, saving and restoring large frame buffers can be relatively expensive in
terms of time and virtual storage space. Under this mechanism, an output operation
initiated while the application virtual terminal is inactive suspends the application
until its virtual terminal becomes active. If the virtual terminal is inactive when the
application requests postponement of SIGRETRACT signal handling, the GSL suspends
the application until the virtual terminal becomes active.

Application Control (111

The GSL saves the adapter state at the time of the SIGRETRACT request and calls an ~
application routine (if provided) at the time of the SIGGRANT. This routine could
process the applications data structure(s) to reconstruct the display adapter state.
Under this mechanism, an output operation initiated while the application virtual
terminal is inactive causes the output routine to return without writing to the display
adapter. The routine returns a code indicating an invalid status in this circumstance.

7-4 AIX Operating System Technical Reference

)

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0

If the virtual terminal is inactive when the application requests postponement of
SIGRETRACT signal handling, the GSL sends a code indicating that the application
cannot access the display.

Regardless of the mechanism chosen, the GSL calls an application routine (if provided) at
the time of the SIGRETRACT request and calls an application routine (if provided) at the
time of the SIGGRANT notification. One or both restoration routines can be chosen for
an application as appropriate.

An application cannot write to standard output (using system write) on a virtual terminal
that is in Monitor Mode. However, at initialization, the GSL accepts a specified file
descriptor as the Monitor Mode virtual terminal from the application, and directs output
to this file descriptor. An application can use more than one virtual terminal, and the
virtual terminals can be mapped to different displays simultaneously. This reserves
standard output for other uses such as sdb, the symbolic debugger.

When the ring buffer mechanism is used for processing input, the virtual terminal places
input from the keyboard, locator, LPFK, valuator, or pick device in a ring buffer shared
between the application and the virtual terminal. The virtual terminal causes the
generation of the SIGMSG signal when it places the data for an input event in an empty
ring buffer. At initialization, an application can select either method. However, the GSL
supports only the ring buffer mechanism to optimize performance. If used, a ring buffer
must be allocated by the application and made available to the GSL at initialization. The
GSL sets up the virtual terminal linkage to the buffer and sets up a signal handler to catch
the SIGMSG signal that it uses to satisfy application requests for input.

The application must then let the GSL process the ring buffer input pointer and parse the
input events by invoking the appropriate input function. Whenever the application has
selected the ring buffer mechanism, the application can use GSL input to enable and
disable input events.

The application can provide a signal handler to catch the SIGMSG signal if all of the
following conditions are met:

1. The signal handler is set up after the GSL is initialized.

2. The signal handler is set up using the SIGVEC enhanced signal function. SIGVEC
returns the address of the GSL signal handler.

3. The signal handler must indirectly call the GSL signal handler before doing anything
else. The indirect call uses the address returned by the SIGVEC signal.

Enhanced signals are used to block further reporting of the signal being processed until
the signal handler returns. When the signal handler returns, the signal is automatically
reset and unblocked.

When keyboard events are enabled, the virtual terminal puts all keystrokes in the ring
buffer, including those that may normally have special meaning to the operating system
(such as break). The application can let the system continue processing certain keystrokes
by setting the virtual terminal break map.

Advanced Display Graphics Support Library 7-5

TNL SN20-9869 (26 June 1987) to SC23-0809-0

For further information on Monitor Mode operation, see the discussion of the virtual
terminal subsystem in the Virtual Resource Manager Technical Reference.

Attributes

A set of attributes that determine how a function works, or determine appearance
characteristics on a display, govern all GSL operations affecting the frame buffer.
Attributes are characteristics that do not change often and and therefore do not need to be
parameters for the output functions. Some common attributes govern all output operations
while others are unique to a particuiar category of output.

Common Attributes
Color display adapters may be considered to have multiple storage planes or layers forming
the frame buffer, with each plane acting like the single frame buffer for a bilevel
monochrome display. When writing a pixel into a multiplane frame buffer, one may write
to all the planes or to a subset. The GSL plane mask attribute identifies which planes of
the frame buffer GSL functions modify.

The color of a pixel on the display is ultimately determined by the color value of the pixel
stored in the frame buffer. There are VLT-based adapters, in which the pixel color value
serves as an index into a video lookup table (VLT). The entry in the VLT for an index
contains a value for each of the red, green, and blue digital-to-analog converters (DACs) on
the adapter, which drive the color guns in the display tube. The actual color resulting
from a particular pixel color value (VLT index) depends on the values loaded into the VLT,
which may be any values. There are also true color adapters in which the pixel color
value actually drives the DACs, without the level of indirection forced by the VLT.

An application can determine the mapping from the color used in operations on the frame
buffer to the actual color shown on a display by using the GSL color map attribute. For
VLT-based adapters, the GSL actually loads the adapter VLT, using color values provided
by the application; the "color" used by the application is really an index into the VLT. For
true color adapters, the color map serves strictly as an internal mapping from the color
value specified to the actual color value loaded into the frame buffer, and the "color" used
by the application is an index into the mapping table.

The application may set the color map by providing an array of color specifications; the
maximum number of specifications is display adapter dependent and is determined by the
number of VLT entries, or by the number of bit planes for true color adapters. The color
specification for each color index comprises three intensity values, one each for the red, rt
green, and blue DACs. Each intensity value must range from 0 - Ox3FFF. For a VLT-based ~
display adapter, the GSL maps the color specification to the nearest available color
produced by the adapter; the GSL truncates the intensity value for a color to produce a
value equal in resolution to the DAC for that color.

7-6 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0

The logical operation attribute determines how the GSL combines the pixels it generates
with the current contents of the frame buffer. Sixteen Boolean combinations exist between
a source (the GSL-produced pixels) and a destination frame buffer, but can only be used
with the IBM 5081 Display Adapter. The GSL does, however, assure support for the most
recognizable and useful Boolean combinations (replace and exclusive-or) regardless of
hardware support.

The following table shows the categories of functions to which the common attributes
apply.

Area Output Pixel Block Cursor

Plane Mask yes yes yes

Color Map yes yes yes

Logical yes no no
Operation

Unique Attributes
Some unique attributes as well as the plane mask, color map, and logical operation
attributes, govern the GSL functions that affect the frame buffer.

Lines
The GSL draws all lines a single pixel thick. These unique attributes that govern
line drawing can be changed:

Line style Determines the pattern appearance of the line. The line style attribute
provides for solid, dashed, dotted, dashed-dotted, and
dashed-dotted-dotted lines, and for line patterns defined by the
application.

Line color Is an index into the color map table (or VLT).

Markers
The marker attributes determine characteristics of symbols used to mark points. The
GSL provides a set of predefined markers for the application to select. A marker can
be custom defined by the application.

The application may change the following unique attributes that govern marker
operations:

Marker color

Marker origin

Marker style

Sets the color of a marker, and is an index into the color map
table (or VLT)

Sets the point in the marker pattern that is placed at the position
indicated by the application for the polymarker subroutine

Selects predefined or custom markers

Advanced Display Graphics Support Library 7-7

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Text

Marker width

Marker height

Marker pattern

Defines the width of the pattern for a custom marker

Defines the height of the pattern for a custom marker

Sets the form of the custom marker, and is a bit array defined by
the application.

The GSL places characters with a transparent background. That is, only the
"strokes" in a character change data in the frame buffer. These unique attributes
govern text operations and can be set by an application:

Text font Sets which of the available fonts is used for the characters

Text color

Codepage

Sets color and brightness of the text and is an index into the color
map table or VLT

Sets the page from which graphic symbols are drawn

Baseline direction
Sets the direction in which characters are written to the baseline for
the text. The baseline for the string is placed at the location given
in the command to write text.

Filled Areas
The edges of an area are treated as part of the area and only define the area to be
filled. The GSL does not treat the edges of an area as lines. The application may
change the following unique attributes that govern fill operations:

Fill color Is an index into the color map table (or VLT)

Fill pattern Is the identifier for the pattern used to fill the area.

Cursor
The GSL provides a single cursor for the application. The application may change
the following unique attributes that govern cursor operations.

Cursor pattern Sets the cursor shape and is a bit array defined by the application.

Cursor color

The minimum and maximum sizes for the cursor pattern are
device-dependent and available to the application.

Sets the cursor color and is an index into the color map table or
VLT.

Cursor origin Sets the point in the cursor pattern that is placed at the position
indicated by the application during cursor movement.

7-8 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0

At GSL initialization, some of the attributes receive default values. The attributes and
their default values are listed in the following table:

Attribute Default value

color map device dependent

plane mask all planes enabled

logical operation 3 (replace)

line style solid

line color (index) 7 (white)

font device dependent

code page PO
baseline direction o (left to right)

text color (index) 7 (white)

fill color (index) 7 (white)

fill pattern o (solid)

cursor pattern undefined

cursor color undefined

cursor origin undefined

Figure 7-1. Default Attribute Values

Cursor Operations

The GSL provides one cursor for applications. The GSL cursor is non-destructive; the
contents of the display adapter frame buffer remain intact when the cursor is already
visible and subsequently moved or made invisible. This is achieved in a device-dependent
manner. The GSL uses any hardware cursor support available.

The application totally controls the placement and visibility of the cursor. The GSL input
functions do not provide cursor movement, and the GSL output routines do not check
whether they are drawing over the cursor and do not automatically erase and restore the
cursor or check for interference. It is therefore possible for the output routines to
overwrite the cursor. When the cursor is moved on a display without hardware cursor
support, any primitives that overwrite the cursor will themselves be overwritten when the
area at the previous cursor position is restored. The application should erase and redraw
the cursor as appropriate to avoid conflict.

Advanced Display Graphics Support Library 7-9

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Coordinate Clipping and Transformation

For simplicity and optimized performance, the base GSL does not perform general clipping (
or transformation on coordinates. Most of the output functions accept coordinates in the ~
first quadrant (0,0 is the lower left corner) and convert them as necessary to the target
quadrant required for the frame buffer of the specific device.

The coordinate system is device dependent, and any point outside the frame buffer range
can result in a write to any address on the I/O bus. For this reason, the GSL checks
coordinates sent as paramet~rs and also coordinates generated internally against the frame
buffer boundaries. Any coordinate outside the frame buffer is invalid and produces an
invalid status return. The display results depend on the function invoked. Invalid
coordinates are handled as follows:

Lines The GSL checks the input coordinates as it draws the lines.
Thus, for polylines and multilines, the part of the sequence up to
the invalid coordinate results in lines on the display. The
functions return an error code upon encountering an invalid
coordinate, drawing no further lines.

Text If the start point of the text string is invalid, the GSL returns
immediately with an error code. Invalid internal coordinates
may be generated if the start point is valid but part of the text
string overflows the frame buffer. If the application places the
baseline such that the characters must be clipped vertically (for
example, the top half of the string is out of the frame buffer), the
GSL writes none of the characters in the string. If the
application places the baseline such that a character in the
string overflows the frame buffer, that entire character and the
rest of the string is truncated.

Filled Areas The GSL checks the coordinates of filled areas before it writes to
the frame buffer. It returns an invalid return code for any
invalid coordinate found before writing to the frame buffer.

Cursor The application may place the cursor origin anywhere within the
cursor pattern. If the cursor origin is placed so that any part of
the cursor falls outside of the frame buffer, an error code is
returned and the cursor is not moved.

Pixel Block Transfer If any portion of the source or destination rectangle lies outside
its pixmap, the GSL returns immediately with an error code.

7-10 AIX Operating System Technical Reference

/
\

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Displays

You can use GSL support for the following all-points-addressable display adapters and
displays:

6153 Display
A monochrome 720 x 512 adapter; a 12-inch display

6154 Display
A 16 of 64 color, 720 x 512 adapter; a 14-inch display

6155 Display
A monochrome 1024 x 768 adapter with significant graphics assist; a 15-inch display

5081 Display
A 256 of 4096 color, 1024 x 1024 adapter; a 16-inch or 19-inch display.

The GSL automatically uses the correct configuration for an installed display adapter at
initialization. It accepts input from any device that conforms to the virtual terminal
interface as described in the Virtual Resource Manager Technical Reference. The GSL
supports one or more of the following input devices in an application:

• Keyboard
• Mouse or tablet
• Lighted Program Function Keyboard (LPFK)
• Valuator
• Pick device (valid for IBM 5081 Display Adapter only).

At least one input device is always available; the virtual terminal subsystem determines
that, at minimum, keyboard input is accepted.

Printers and Plotters

Note: The printer text data stream supports only the ASCII character set.

Before an application can use GSL subroutines to generate graphic output to a printer or
plotter, the Graphics Development Toolkit device drivers must be installed on the system.
See the section about installing additional operating system programs in Installing and
Customizing the A/X Operating System for instructions on how to do this.

Certain information about the device must be defined using AIX environment variables. If
you enter the definitions at the shell command line, then they remain in effect only for the
current login session. If you want these definitions to remain in effect for future login
sessions, add them to the .profile file in your home directory. To define this information
permanently for all users, add it to the /etc/profile file. See the sh command in AIX
Operating System Commands Reference for more information about AIX environment
variables, which are also called shell variables.

Advanced Display Graphics Support Library 7-11

TNL SN20-9869 (26 June 1987) to SC23-0809-0

1. Define the path to the Graphics Development Toolkit devic~ drivers:

VDIPATH = /usr/lpp/vdi/drivers
export VDIPATH

2. Define a logical identifier for the device as an environment variable, and set its value
to indicate the type of printer or plotter device:

devname = vdixxxx
export devname

The name you use in place of devname can be any sequence of up to eleven
alphanumeric characters. This is the name that you specify in the tildes parameter of
the gsinit subroutine.

The value of the environment variable, vdixxxx, is one of the following names:

vdi3812
vdi4201
vdi5152
vdi5182
vdi6180
vdi7371
vdi7372
vdi7375

IBM 3812 Printer
IBM 4201 Printer
IBM 5152 Printer
IBM 5182 Printer
IBM 6180 Plotter
IBM 7371 Plotter
IBM 7372 Plotter
IBM 7374, 7374-1, or 7375-2 Plotter

3. You can specify a printer or plotter as vdixxxx in step 2; vdixxxx must be associated
with an AIX special file:

vdixxxx = /dev /yyyy
export vdixxxx

If you do not need output from a specific printer device, you can pipe the output to a
printer queue:

vdixxxx = III print -plot [queue] II
export vdixxxx

Note: You can only pipe output to a queue for printer devices, not for plotters.

4. If you are using an IBM 3812 Pageprinter, then you should set and export (as in the
examples below) the following additional environment variables:

MARGIN Set to either TRUE or FALSE, indicating whether to leave

(

(

\

1/4-inch margins. If not defined, the default is r1,'"

MARGIN = FALSE. ~

ORIENTATION Set to either LANDSCAPE or PORTRAIT, indicating horizontal
or vertical page orientation, respectively. Landscape orientation
rotates the image 90 degrees so that the horizontal axis of the
image goes down the length of the page. If not defined, the default
is ORIENTATION = PORTRAIT.

7-12 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Examples

• The following example defines GRAPHDEV as the logical name of an IBM 3812
printer that is configured as /dev/ttyl. This configuration specifies portrait
orientation (output frame vertical dimensions are greater than horizontal) and no
margins.

VDIPATH=/usr/lpp/vdi/drivers
GRAPHDEV=vdi3812
vdi3812=/dev/ttyl
MARGIN=FALSE
ORIENTATION=PORTRAIT
export VDIPATH GRAPHDEV vdi3812 MARGIN ORIENTATION

• The next example defines GRAPHDEV as the logical name of an IBM 3812 printer
that is already configured as the device that serves printer queue IpO. This
configuration specifies landscape orientation (output frame horizontal dimensions
are greater than vertical) and 1/4-inch margins.

VDIPATH=/usr/lpp/vdi/drivers
GRAPHDEV=vdi3812
vdi3812="1 print -plot lpO"
MARGIN=TRUE
ORIENTATION=LANDSCAPE
export VDIPATH GRAPHDEV vdi3812 MARGIN ORIENTATION

Note: Only the output subroutines, listed below, are valid for printers and plotters.

Functional Categories of Subroutines

The base GSL is device dependent in that it provides some functions for the IBM 5081
Display that it does not provide for other displays. It also does not scale, clip, or transform
coordinates for any display. Coordinates passed to the base GSL functions are therefore
device dependent, and limited to the device boundaries. The GSL does make device
specific information available through query commands, letting an application perform
appropriate clipping and transformation. It also indicates the logical operations supported
by the hardware.

The base GSL is organized into several major function areas:

• Control
• Output
• Service
• Pixel Block Transfer
• Cursor

Advanced Display Graphics Support Library 7-13

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Control

Output

• Attribute
• Input
• Query.

The following sections provide an overview of the functions in each area.

The base GSL provides functions to initialize and terminate the GSL and to coordinate
direct application access to the display device. At initialization, the GSL sets up its
required environment and establishes Monitor Mode on the application virtual terminal.
Monitor Mode provides the GSL with direct access to the display adapter without
interference from the virtual terminal subsystem. Monitor Mode operation also gives
faster access to input event information. At termination, the GSL cleans up after itself and
returns the application virtual terminal to KSR mode.

These subroutines perform overall control operations of the GSL environment.

gsinit

gslock

gsterm
gsunlk

Initializes the GSL subroutines, establishes Monitor Mode on the application
virtual terminal, and allows specification of application-supplied signal
processing routines.
Locks the virtual terminal so that the application can access the display adapter
directly.
Terminates the GSL, returns the application virtual terminal to KSR mode.
Unlocks the virtual terminal, returning control to the GSL.

The GSL output functions provide an application with capabilities to perform graphics
operations on output devices. The output functions can be divided into these categories:

Drawing lines
The GSL provides functions to draw:

A line between two points
A series of lines connecting a sequence of points
A series of lines connecting alternate pairs in a sequence of points.

GSL lines are a single pixel thick. Specific attributes allow lines of different
colors and patterns.

Drawing polymarkers
The polymarker subroutine in the GSL lets a defined marker be drawn for a
sequence of points. The definition of the marker includes specific attributes
such as color, style, width, height, pattern, and origin. The pattern attribute is
a raster image to be used as a marker. The origin attribute controls the
placement of the polymarker pattern at the points specified by the polymarker
subroutine.

7-14 AIX Operating System Technical Reference

(
\

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Writing annotated text
The GSL provides a function to write a text string to the display adapter at a
given starting position. Character placement is with a transparent background
so that the GSL changes only the character shape (foreground), not the entire
character box. Specific attributes allow text in different fonts, colors, code
pages, and directions.

Writing geometric text
The GSL provides functions to write geometric text strings. This capability is
provided only for use with the IBM 5081 Display, and not for use with other
displays.

Drawing curves
The GSL provides functions to draw circles, arcs, and ellipses. These functions
are used to achieve the best performance and quality possible so that your
programs can realize the full capability of your display.

Filling areas
The GSL provides functions to draw filled rectangles and general polygons,
circles, and ellipses. In addition, the GSL allows curves to be combined with
polylines to fill complex shapes. See "gsbply" on page 7-20, "gseply" on
page 7-50, and "gspcls" on page 7-106. These functions allow applications to use
the higher performance possible with rectangles. The GSL also provides a color
zero function to clear the display to the background color. Specific attributes
allow different colors and patterns. See "Attributes", on page 7-6.

Each category of the output functions is governed by a set of attributes. Some attributes
determine characteristics that are specific to the category, such as color or pattern. These
attributes are common to all categories:

color table
Maps color names or values to the actual color on the display (see "Common
Attributes" on page 7-6)

plane mask
Determines which of the display adapter storage planes are modified by the output
functions

logical operation
Determines how the GSL combines the foreground or background color for each
pixel produced by a primitive with the current color of the destination pixel in the
frame refresh buffer. This attribute is not valid for the IBM 5081 Display Adapter.

These output subroutines write to the display adapter frame buffer, generally producing
output on a display screen:

gsbply
gscarc
gscir

Begins a polygon.
Draws a circular arc of a specified radius between two points.
Draws a circle.

Advanced Display Graphics Support Library 7-15

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Service

gsclrs
gscrca
gseara
gsearc
gsell
gseply
gsfci
gsfell
gsfrec
gsfply
gsgtxt
gsline
gsmult

gspcls
gsplym

gspoly
gstext

Clears the display screen, filling it with the background color.
Draws a circular arc between two angles.
Draws an elliptical arc between two angles.
Draws an elliptical arc of specified axes and angle between two points.
Draws an ellipse.
Ends a polygon.
Fills a circle.
Fills an ellipse.
Draws a filled rectangle.
Draws a filled polygon.
Displays a geometric text string, with NDC transformations supported.
Draws a line between two points.
Draws a multiline, or a set of straight lines that connect alternate pairs of
points in a sequence.
Closes a polygon.
Draws a polymarker, a marker (such as a dot or plus sign) at each of a specified
set of points.
Draws a polyline, or a path of straight lines that connect a sequence of points.
Displays a text string.

The GSL provides functions for defining a circular or elliptical arc. These functions
convert circular or elliptical arc definitions into sets of vertices. The resulting set of
vertices can be drawn, using the gsline subroutine, or combined with other polylines to
draw or fill more complex shapes.

The attributes that can be used for drawing lines or filling areas apply here, including
style, color, logical operation, pattern, and others.

Arcs are specified by beginning and ending points or beginning and ending angles and
follow the counterclockwise direction. If the beginning and ending points are identical,
then the list of vertices corresponding to a full circle or ellipse is returned. This allows
circles or ellipses to be treated as a special case of closed arcs. If off-axis, ellipsis angle is
specified in degrees. There are four levels of precision for the conversion of an arc into a
set of line segments.

These subroutines facilitate the drawing of circular and elliptical arcs.

gsccnv
gsecnv

Converts a circle to a set of vertices (polyline).
Converts an ellipse to a set of vertices (polyline).

7-16 AIX Operating System Technical Reference

(
\

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Pixel Block Transfer

Cursor

The GSL provides functions to move a rectangular block of pixels from either the display
adapter frame buffer or storage to either the display adapter or storage. If the source
rectangle or destination rectangle reside in a color display adapter frame buffer, this
operation is affected by the plane mask attribute. If the destination rectangle resides in a
color display adapter frame buffer, this operation is affected by the color map attribute.

These subroutines allow a program to:

• save a block of pixels from the frame buffer
• restore a block of pixels from the frame buffer
• move a rectangular shape from adapter memory to pixel memory
• move a rectangular shape from adapter memory to system memory
• move a rectangular shape from one area in system memory to another
• move a rectangular shape from one area of adapter memory to another
• move a tile rectangle to any area of visible pixel memory.

gsrrst
gsrsav
gsxblt

gsxcnv
gsxptr

Restores a rectangular block.
Saves a rectangular block.
Moves a rectangular block from one location in memory or display adapter
frame buffer to another location in memory or display adapter frame buffer.
Converts pixel format data to and from plane format data.
Handles FORTRAN addressing of pixel map data.

The GSL provides functions to draw and undraw a non-destructive cursor. The application
is responsible for the placement and visibility of the cursor. The input functions do not
provide for cursor movement, nor do output or pixel block transfer functions check
whether they interfere with the cursor. Anything unintentionally placed over the cursor is
modified when the cursor moves. The color map and plane mask attributes govern the
cursor functions. Cursor pattern and color can be defined by attributes.

These are the cursor subroutines:

gsecur
gsmcur

Erases the cursor and makes it invisible.
Moves the cursor and makes it visible.

Attribute
The GSL provides functions to set the global attributes and all of the output category
specific attributes. The GSL also provides functions to set attributes of some of the input
devices.

These subroutines set attributes for both input and output operations:

gscatt Sets the cursor attributes.

Advanced Display Graphics Support Library 7-17

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Input

gscmap
gsfatt
gsgtat
gslatt
gslcat
gslpat
gslop
gsmask
gsmatt
gspp
gstatt
gsulns
gsvgrn

Sets the color map.
Sets the fill attributes.
Sets the attributes for the geometric text drawing operation, gsgtxt.
Sets the line attributes.
Sets the locator attributes.
Sets the LPFK indicators.
Sets the logical operation used for drawing lines.
Sets the plane mask.
Sets the attributes for the polymarker operation, gsplym.
Sets plotter pen speed as a percentage of the plotter maximum speed.
Sets the attributes for the text output operation, gstext.
Sets the user line pattern.
Sets the valuator granularity.

An application using the GSL can receive input with the standard read system call or
through a faster mechanism available through the virtual terminal. While the GSL allows
an application to use the standard mechanism, it provides no input support for it.

The GSL accepts input from several sources:

(

\~

• The keyboard (
• The locator, which can be a mouse or a tablet \.
• The lighted programmed function keys (LPFKs)
• The valuator dials
• Pick device (valid for IBM 5081 Display Adapter only).

Input from these devices is viewed as discrete events, with input data associated with each
event.

The GSL provides subroutines to enable or disable input from any device, and a subroutine
that lets a program suspend execution until one of the enabled events occurs. The latter
subroutine also parses the raw data generated by the virtual terminal and makes the
parsed information available to the application. In addition, two GSL subroutines allow
you to enable or disable pick events.

The state established (enabled or disabled) remains in effect when the GSL terminates.
Note that for these subroutines to work properly, a valid input ring buffer must have been
specified to the gsinit subroutine.

gsdpik
gsepik
gsevds
gseven

gsevwt

Disables picking.
Enables picking.
Disables the reporting of input events.
Enables the reporting of input events from the keyboard, locator, LPFK, or
valuator.
Waits for an input event and parses the raw data.

7-18 AIX Operating System Technical Reference

Query

TNL SN20-9869 (26 June 1987) to SC23-0809-0

The GSL provides functions for applications to query the active display adapter
characteristics, the currently active annotated or geometric text font, and some input
device characteristics. Through query functions an application can derive the information
necessary to deal with any device dependencies. Note that gsinit must be invoked before
calling any of the query subroutines.

These are subroutines that provide query functions:

gsqdsp

gsqfnt
gsqgtx
gsqloc

Returns device-specific information about the display adapter and display
monitor.
Returns information about the current annotated text font.
Returns information about the current geometric text font.
Returns device-specific information about the locator.

Advanced Display Graphics Support Library 7-19

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsbply

gsbply

Purpose

Defines the beginning of an area to fill.

C Syntax

int gsbply- ()

FORTRAN Syntax

INTEGER function gsbply

Pascal Syntax

FUNCTION gsbply- : INTEGER [PUBLIC];

Description

The gsbply subroutine defines the beginning of a two-dimensional shape or set of shapes to
be filled.

The following output routines are valid between a gsbply call and a gseply call:

• Draw polyline (gspoly)
• Draw circle (gscir)
• Draw ellipse (gsell)
• Draw circular arc (gscarc or gscrca)
• Draw elliptical arc (gseara or gsearc)

Note: Any other subroutines used before the gseply subroutine is called do not become
part of the shape or set of shapes to be filled, and can produce unpredictable results.

Before the fill occurs, the shapes drawn by each routine called between gsbply and gseply
are connected. The first point of each shape is linked to the last point of the previous

(

\

shape, and the last point of the last shape is linked to the first point of the first shape. The r1
shapes may overlap to any degree but must share at least one common point between ~
adj acent shapes.

Processing of the SIGRETRACT signal is postponed until the gseply subroutine, end of
area to fill, is called.

7 -20 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsbply

See "gseply" on page 7-50 and "gspcls" on page 7-106 for related information.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill style
• Logical operation.

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

In this book: "gseply" on page 7-50 and "gspcls" on page 7-106.

Advanced Display Graphics Support Library 7-21

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscarc

gscarc

Purpose

Draws a circular arc between two points.

C Syntax

int gscarc- (ex, ey, er, bx, by, ex, ey)

int *ex, *ey, *er, *bx, *by, *ex, *ey;

FORTRAN Syntax

INTEGER function gscarc (ex, ey, er, bx, by, ex, ey)

INTEGER ex, ey, er, bx, by, ex, ey

Pascal Syntax

FUNCTION gscarc- (

V AR ex, ey, er, bx, by, ex, ey : INTEGER
): INTEGER [PUBLIC];

Description

The gscarc subroutine draws a counterclockwise circular arc of the specified radius from
the beginning point to the ending point. The radius is expressed in number of pixels.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-22 AIX Operating System Technical Reference

Parameters
ex, ey

er

bx, by

ex, ey

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscarc

Define the coordinates of the center of the circle.

For displays, the center is restricted to -2048 to 2048.

For printers and plotters, the center is restricted to screen coordinates.

Defines the radius of the circle.

Define the coordinates of the beginning point on the circle.

Define the coordinates of the ending point on the circle.

If the beginning and ending points are identical, a full circle is drawn.

Return Value

GS-SUCC
GS-CORD
GS_RDUS
GS-INAC
GS-AEND
GS-ASTR

Successful.
Invalid coordinate.
Invalid radius specification.
Virtual terminal inactive.
Invalid end point.
Invalid start point.

Advanced Display Graphics Support Library 7-23

TNLSN20-9869 (26 June 1987) to SC23-0809-0
gscatt

gscatt

Purpose

Sets the cursor attributes.

C Syntax

int gscatt- (color, width, height, pattern, Ox, Oy)

int *color, *width, *height, *pattern, *Ox, *Oy;

FORTRAN Syntax

INTEGER function gscatt (color, width, height, pattern, Ox, Oy)

INTEGER color, width, height, pattern, Ox, Oy

Pascal Syntax

FUNCTION gscatt- (

VAR color, width, height: INTEGER;
pattern: ARRAY [I..k] of INTEGER;
Ox, Oy: INTEGER
): INTEGER [PUBLIC];

Description

The gscatt subroutine defines the cursor for the GSL. The gscmap subroutine must
initialize the color map before gscatt can be called.

Parameters
color

width, height

Refers to an entry in the color map. If the index value is -1, the
a ttri bu te is unchanged.

Define, in pixels, the width and height of the bit pattern to be used as
the cursor. If width or height equals -1, then the pattern remains
unchanged.

7 -24 AIX Operating System Technical Reference

(

~

pattern

OX,Oy

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscatt

Defines the image used as a cursor. The ceiling (width/32) indicates the
number of words per row and height indicates the number of rows. The
cursor data must be supplied in row (scan line) major order. If width
implies partial use of a word, the rest of the word is unused. To fully
define the cursor pattern, pattern should be (ceiling(width/32)xheight)
words in length.

Indicate the origin of the cursor relative to the lower leftmost corner
(0, 0) of the cursor pattern. The origin must be placed within the cursor
pattern: Ox < width and Oy < height. The origin of the cursor is
placed at the position indicated, when the application moves the cursor
using the gsmcur subroutine. If x equals -1, then the origin remains
unchanged.

The maximum size of the cursor is device dependent and can be determined by using the
gsqdsp subroutine.

You cannot change the cursor attributes while the cursor is visible.

There is no default cursor defined, so all cursor parameters must be set before the cursor is
displayed.

For Pascal, the application must declare the array passed as being fixed length and declare
the routine as accepting arrays of that length. The k in the routine declaration must be a
constant.

Return Value

GS_SUCC
GS-COLI
GS-CURS
GS-CURO
GS-CURV

Successful.
Invalid color index.
Cursor size invalid.
Cursor origin invalid.
Cursor visible.

Advanced Display Graphics Support Library 7-25

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsccnv

gsccnv

Purpose

Converts a circular arc or full circle into a polyline.

C Syntax

int gsccnv- (ex, cy, er, bx, by, ex, ey, len, x, y, pre)

int *ex, *cy, *er, *bx, *by, *ex, *ey, *len, *x, *y, *pre;

FORTRAN Syntax

INTEGER function gsccnv (ex, ey, er, bx, by, ex, ey, len, x, y, pre)

INTEGER ex, ey, er, bx, by, ex, ey, len, x(*), y(*), pre

Pascal Syntax

FUNCTION gsccnv - (

VAR ex, ey, er, bx, by, ex, ey, len: INTEGER;
VAR x, y: ARRAY [l..k] of INTEGER;
V AR pre: INTEGER
): INTEGER [PUBLIC];

Description

The gsccnv subroutine converts a counterclockwise circular arc definition into an array
of vertices. The list of vertices can then be used to draw a circular arc with the gspoly
subroutine or to fill a circular arc with the gsfply subroutine. In general, it can be
concatenated with other list(s) of vertices to draw or fill more complex shapes, such as
chord arcs, pie arcs, and rectangles with rounded corners.

When beginning and ending points are identical, the list of vertices contains the full circle, ~
which can then be drawn or filled.

7-26 AIX Operating System Technical Reference

Parameters
ex, ey

er

bx, by

ex, ey

len

x,y

pre

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsccnv

Define the coordinates of the center of the circle.

Defines the radius of the circle, which must not be equal to zero.

If er is negative, it is automatically converted to a positive value for use
by the subroutine.

Define the coordinates of the beginning point of the arc.

Define the coordinates of the ending point of the arc.

Defines the number of points in the coordinate x and y arrays. It must
be numerically at least one greater than the value contained in the
precision parameter, but not less than 65.

Define, as coordinate arrays, the vertices that represent the circular
shape when drawn or filled.

Defines precision level, which specifies the maximum number of line
segments that can be generated for a full circle. The number of line
segments actually generated depends on the size of the circle.

There are four levels of precision that can be requested:

• 64 (65 vertices)

• 128 (129 vertices)

• 256 (257 vertices)

• 512 (513 vertices).

Therefore, len ~ pre + 1.

All other precision values are reserved and must not be used, as their
results are unpredictable. The default value for pre is 64.

The subroutine allows ample leniency toward the accuracy of the specification of the
beginning and ending points. The arc of the specified radius will always start and end
exactly at the specified points.

If the beginning and ending points are identical, a full circle of the specified radius is
generated.

When the subroutine is invoked, the length parameter must contain the maximum number
of entries in the x and y arrays. If erroneous conditions arise, len is set to zero. Under
normal conditions, len specifies the number of vertices returned by the subroutine in the x
and y arrays.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length; the k in the routine declaration
must be a constant.

Advanced Display Graphics Support Library 7-27

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsccnv

Return Value

GS-SUCC
GS-CORD
GS-NCOR

Successful.
Invalid coordinate.
Invalid number of coordinates.

7-28 AIX Operating System Technical Reference

gscir

Purpose

Draws a circle.

C Syntax

int gscir- (ex, ey, er)

int *ex, *ey, *er;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscir

INTEGER function gscir (ex, ey, er)

INTEGER ex, ey, er

Pascal Syntax

FUNCTION gscir- (

V AR ex, ey, er: INTEGER
): INTEGER [PUBLIC];

Description

The gscir subroutine draws a circle of the specified radius. The radius is expressed in
number of pixels.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

Advanced Display Graphics Support Library 7-29

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscir

Parameters
ex, ey

er

Return Value

GS-SUCC
GS-CORD
GS-RDUS
GS-INAC

Define the coordinates of the center of the circle.

Defines the radius of the circle.

If the radius is zero, a single point is drawn at the center.

Successful.
Invalid coordinate.
Invalid radius specification.
Virtual terminal inactive.

7 -30 AIX Operating System Technical Reference

(

(

\

gsclrs

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsclrs

Clears the screen, filling it with the background color.

C Syntax

int gsclrs- ()

FORTRAN Syntax

INTEG ER function gsclrs

Pascal Syntax

FUNCTION gsclrs_: INTEGER [PUBLIC];

Description

The gsclrs subroutine fills the frame buffer with the background color (color index zero).

The relevant attribute is:

• Color map.

For printers, the gsclrs subroutine forces pending graphics to be printed, advances the
paper to a new page, and purges the print buffer.

For plotters, the gsclrs subroutine forces pending graphics to be displayed, and issues a
prompt to the active screen (console) requesting that the paper be changed.

Return Value

GS-SUCC
GS-INAC

Successful.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-31

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscmap

gscmap

Purpose

Specifies the color mapping.

C Syntax

int gscmap- (number, red, green, blue)

int *number, *red, *green, *blue;

FORTRAN Syntax

INTEGER function gscmap (number, red, green, blue)

INTEGER number, red (*), green (*), blue (*)

Pascal Syntax

FUNCTION gscmap- (

VAR number INTEGER;
V AR red, green, blue: ARRAY [O •. h] of INTEGER
): INTEGER [PUBLIC];

Description

The gscmap subroutine specifies the mapping between the color index attribute and the
color it produces on the display.

The default color table mapping for the first 16 colors is the same as the default color map
attributes in KSR mode. The remaining color values are initialized in a hardware
dependent manner.

7-32 AIX Operating System Technical Reference

(

(
\

Parameters

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscmap

number Indicates how many colors the input intensity arrays contain.

red, green, blue Define arrays that contain the intensity levels of the corresponding
color. Each entry in an array specifies the intensity value for the
corresponding color index.

The value in each entry for the red, green, and blue intensity arrays is
between OxOOOO, representing zero intensity, and Ox3FFF, representing
full intensity. The following additional increments of intensity are
possible, depending on the adapter hardware in use:

Ox2000 1/2 intensity
Ox1000 1/4 intensity
Ox0800 1/8 intensity
Ox0400 1/16 intensity
Ox0200 1/32 intensity
Ox0100 1/64 intensity.

Combinations of these values can be used to create intermediate levels of
intensity. For example, OxCOOO gives 3/16 intensity, while Ox3000 gives
3/4 intensity.

The actual number of bits from bit 13 to bit 0 that affect the color on the
display is dependent on the number of bits in the digital-to-analog
converter of the adapter hardware in use. This size information is
available by using the gsqdsp subroutine.

An application cannot change a single arbitrary color entry in the color map (or the VLT).
It must change all the entries for all the colors up to and including the desired entry.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length; the k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-TABL
GS-INAC

Successful.
Invalid table length.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-33

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscrca

gscrca

Purpose

Draws a circular arc between two angles.

C Syntax

int gscrca- (ex, ey, er, ba, ea)

int *ex, *ey, *er, *ba, *ea;

FORTRAN Syntax

INTEGER function gscrca (ex, ey, er, ba, ea)

INTEGER ex, ey, cr, ba, ea

Pascal Syntax

FUNCTION gscrca- (

VAR ex, ey, er, ba, ea : INTEGER
): INTEGER [PUBLIC];

Description

The gscrca subroutine draws a counterclockwise circular arc of the specified radius from
the beginning point as defined by an angle specification to the ending point as defined by
an angle specification.

The angle specifications are given in tenths of degrees, from 0 to 3600. Values outside this
range cause the gscrca subroutine to fail.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-34 AIX Operating System Technical Reference

Parameters
ex, ey

er

ba

ea

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gscrca

Define the coordinates of the center of the circle.

For displays, the center is restricted to ·2048 to 2048.

For printers and plotters, the center is restricted to screen coordinates.

Defines the radius of the circle in device coordinates.

Defines the start point of the circular arc as an angle in tenths of
degrees, from 0 to 3600.

Defines the end point of the circular arc as an angle in tenths of degrees,
from 0 to 3600.

If the beginning and ending angles are identical, a full circle is drawn.

Return Value

GS-SUCC
GS-ANGL
GS-RDUS
GS-CORD
GS-INAC

Successful.
Invalid angle.
Invalid radius specification.
Invalid coordinate.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-35

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsdpik

gsdpik

Purpose

Defines the closing delimiter for a group of GSL output functions.

C Syntax

int gsdpik- ()

FORTRAN Syntax

INTEG ER function gsdpik

Pascal Syntax

FUNCTION gsdpik- : INTEGER [PUBLIC];

Description

The gsdpik subroutine defines the closing delimiter for a group of pickable output
functions. The output function calls that precede this command cause a pick input from
the display adapter if any vertices intersect a pick aperture (window).

The gsdpik subroutine is provided only for use with the IBM 5081 Display, and not for use
with other displays.

See "gsepik" on page 7-48 and the list of GSL output subroutines on page 7-15 for related
information.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill style
• Logical operation.

7 -36 AIX Operating System Technical Reference

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsdpik

In this book: "gsepik" on page 7-48 and the list of GSL output subroutines on page 7-15.

Advanced Display Graphics Support Library 7-37

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseara

gseara

Purpose

Draws an elliptical arc between two angles.

C Syntax

int gseara- (ex, ey, ma, mi, ang, sa, ea)

int *ex, *ey, *ma, *mi, *ang, *sa, *ea;

FORTRAN Syntax

INTEGER function gseara (ex, ey, ma, mi, ang, sa, ea)

INTEGER ex, ey, ma, mi, ang, sa, ea

Pascal Syntax

FUNCTION gseara- (

VAR ex, ey, ma, mi, ang, sa, ea : INTEGER
): INTEGER [PUBLIC];

Description

The gseara subroutine draws a counterclockwise elliptical arc of the specified axes and
angle from the beginning point defined by an angle specification to the ending point
defined by an angle specification. The axes are expressed in number of pixels.

The angle specifications are given in tenths of degrees, from 0 to 3600. Values outside this
range cause the gseara subroutine to fail.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-38 AIX Operating System Technical Reference

(

\

)

Parameters
ex, ey

ma, mi

ang

sa

ea

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseara

Define the coordinates of the center of the ellipse.

For displays, the center is restricted to -2048 to 2048.

For printers and plotters, the center is restricted to screen coordinates.

Define half of the non-zero major and minor axes of the ellipse.

Defines the angle between the major axis and the x-axis. If ang is zero,
the major axis is on the x-axis and the minor axis is on the y-axis. The
angle is expressed in tenths of degrees, from 0 to 3600.

Defines the angle of the starting point of the elliptical arc, measured
counterclockwise from the major axis. The angle is expressed in tenths
of degrees, from 0 to 3600.

Defines the angle of the ending point of the elliptical arc, measured
counterclockwise from the major axis. The angle is expressed in tenths
of degrees, from 0 to 3600.

If the beginning and ending points are identical, a full ellipse is drawn.

Return Value

GS-SUCC
GS-CORD
GS-ELMM
GS-INAC
GS-ANGL
GS-NMEM

Successful.
Invalid coordinate.
Invalid maj or or minor axis.
Virtual terminal inactive.
Invalid angle.
Insufficient resources.

Advanced Display Graphics Support Library 7-39

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsearc

gsearc

Purpose

Draws an elliptical arc between two points.

C Syntax

int gsearc- (ex, ey, ma, mi, ang, bx, by, ex, ey, rot)

int *ex, *ey, *ma, *mi, *ang, *bx, *by, *ex, *ey, *rot;

FORTRAN Syntax

INTEGER function gsearc (ex, ey, ma, mi, ang, bx, by, ex, ey, rot)

INTEGER ex, ey, ma, mi, ang, bx, by, ex, ey, rot

Pascal Syntax

FUNCTION gsearc- (

V AR ex, ey, ma, mi, ang, bx, by, ex, ey, rot: INTEGER
): INTEGER [PUBLIC];

Description

The gsearc subroutine draws a counterclockwise elliptical arc of the specified axes and
angle from the beginning point to the ending point. The axes are expressed in number of
pixels.

The angle specifications are given in tenths of degrees, from 0 to 3600. Values outside this
range cause the gsearc subroutine to fail.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-40 AIX Operating System Technical Reference

Parameters
ex, ey

ma, mi

ang

bx, by

ex, ey

rot

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsearc

Define the coordinates of the center of the ellipse.

For displays, the center is restricted to -2048 to 2048.

For printers and plotters, the center is restricted to screen coordinates.

Define half of the non-zero major and minor axes of the ellipse.

Defines the angle between the major axis and the x-axis. If ang is zero,
the major axis is on the x-axis and the minor axis is on the y-axis. The
angle is expressed in tenths of degrees, from 0 to 3600.

Define the coordinates of the beginning point on the ellipse.

Define the coordinates of the ending point on the ellipse.

Specifies whether the application must perform rotational
transformation. Possible setting are:

o The coordinates of the beginning and ending points passed by the
application correspond to an arc of an orthogonal ellipse. No
rotational transformation is performed, thus improving
performance.

1 The beginning and ending points are transformed by the
application and lie on the off-axis ellipse.

All other values are reserved and must not be used, as they may produce
unpredictable results.

If the beginning and ending points are identical, regardless of whether or not they are on
the ellipse, a full ellipse is drawn.

Return Value

GS-SUCC
GS-CORD
GS-ELMM
GS-INAC
GS-ANGL
GS-NMEM
GS-AEND
GS-ASTR

Successful.
Invalid coordinate.
Invalid maj or or minor axis.
Virtual terminal inactive.
Invalid angle.
Insufficient resources.
Invalid end point.
Invalid start point.

Advanced Display Graphics Support Library 7-41

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsecnv

gsecnv

Purpose

Converts an ellipse to a polyline.

C Syntax

int gsecnv- (ex, cy, ma, mi, ang, bx, by, ex, ey, rot, len, x, y, pre)

int *ex, *ey, *ma, *mi, *ang, *bx, *by, *ex, *ey, *rot, *len, *x, *y, *pre;

FORTRAN Syntax

INTEGER function gsecnv (ex, ey, ma, mi, ang, bx, by, ex, ey, rot, len, x, y, pre)

INTEGER ex, ey, ma, mi, ang, bx, by, ex, ey, rot, len, x(*), y(*), pre

Pascal Syntax

FUNCTION gsecnv - (

VAR ex, ey, ma, mi, ang, bx, by, ex, ey, rot, len: INTEGER;
V AR x, y: ARRAY [l..k] of INTEGER;
V AR pre: INTEGER
): INTEGER [PUBLIC];

Description

The gsecnv subroutine converts a counterclockwise elliptical arc definition into an array
of vertices. The list of vertices can then be used to draw an elliptical arc with the gspoly
subroutine or to fill an elliptical arc with the gsfply subroutine. In general, it can be
concatenated with other list(s) of vertices to draw or fill more complex shapes, such as
chord arcs, pie arcs, or rectangles with round corners.

When the beginning and ending points are identical, the list of vertices contains the full
ellipse, which can then be drawn or filled.

7-42AIX Operating System Technical Reference

(

(

\

Parameters
ex, ey

ma, mi

ang

bx, by

ex, ey

rot

len

x,y

pre

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsecnv

Define the coordinates of the center of the ellipse.

Define half of the non-zero major and minor axes of the ellipse.

Defines the off-axis angle of the ellipse. If ang is zero, the major axis is
the x-axis and the minor axis is the y-axis. A positive value rotates the
ellipse counterclockwise; a negative value rotates it clockwise. All
values are in degrees and modulo 360.

Define the coordinates of the beginning point of the arc.

Define the coordinates of the ending point of the arc.

Specifies whether the application must perform rotational
transformation. Possible setting are:

o The coordinates of the beginning and ending points passed by the
application correspond to an arc of an orthogonal ellipse. No
rotational transformation is performed, thus improving
performance.

1 The beginning and ending points are transformed by the
application and lie on the off-axis ellipse.

All other values are reserved and must not be used, as they may produce
unpredictable results.

Defines the number of points in the coordinate x and y arrays. It must
be numerically at least one greater than the value contained in the
precision parameter and greater than or equal to 65.

Define, as coordinate arrays, the vertices that represent the elliptical
shape when drawn or filled.

Defines precision level, which specifies the maximum number of line
segments that can be generated for a full ellipse. The number of line
segments actually generated depends on the size of the ellipse.

There are four levels of precision that can be requested:

• 64 (65 vertices)

• 128 (129 vertices)

• 256 (257 vertices)

• 512 (513 vertices).

Therefore, len ~ pre + 1.

All other precision values are reserved and must not be used, as their
results are unpredictable. The default value for pre is 64.

"
Advanced Display Graphics Suppo~t Library 7-43

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsecnv

The subroutine allows ample leniency toward the accuracy of the specification of the
beginning and ending points. The arc of the specified angle always starts and ends exactly
at the specified points. If the beginning and ending points are identical, a full ellipse of (
the specified angle is generated. -

When the subroutine is invoked, the length parameter must contain the maximum number
of entries in the x and y arrays. If erroneous conditions arise, len is set to zero. Under
normal conditions, len specifies the number of vertices returned by the subroutine in the x
and y arrays.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length; the k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-CORD
GS-NCOR

Successful.
Invalid coordinate.
Invalid number of coordinates.

7-44 AIX Operating System Technical Reference

(
\

gsecur

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsecur

Erases the cursor, making it invisible.

C Syntax

int gsecur - ()

FORTRAN Syntax

INTEG ER function gsecur

Pascal Syntax

FUNCTION gsecur-: INTEGER [PUBLIC];

Description

The gsecur subroutine makes the cursor invisible.

For adapters with hardware cursor support, gsecur simply turns off the cursor. Otherwise,
gsecur reverses the actions taken to place the cursor in the frame buffer.

Return Value

GS-SUCC
GS-INAC

Successful.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-45

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsell

gsell

Purpose

Draws an ellipse.

C Syntax

int gsell- (ex, ey, ma, mi, ang)

int *ex, *ey, *ma, *mi, *ang;

FORTRAN Syntax

INTEGER function gsell (ex, ey, ma, mi, ang)

INTEG ER ex, ey, ma, mi, ang

Pascal Syntax

FUNCTION gsell- (

V AR ex, ey, ma, mi, ang : INTEGER
): INTEGER [PUBLIC];

Description

The gsell subroutine draws an ellipse of the specified axes and angle. The axes are
expressed in number of pixels.

The angle specifications are given in tenths of degrees, from 0 to 3600. Values outside this
range cause the gsell subroutine to fail.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-46 AIX Operating System Technical Reference

(

1
/

Parameters
ex, ey

ma, mi

ang

Return Value

GS-SUCC
GS-CORD
GS-ELMM
GS-INAC
GS-ANGL
GS-NMEM

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsell

Define the coordinates of the center of the ellipse.

Define half of the non-zero major and minor axes of the ellipse.

Defines the angle between the major axis and the x-axis. If it is zero, the
major axis is on the x-axis and the minor axis is on the y-axis. The
angle is expressed in tenths of degrees, from 0 to 3600.

Successful.
Invalid coordinate.
Invalid major or minor axis.
Virtual terminal inactive.
Invalid angle.
Insufficient resources.

Advanced Display Graphics Support Library 7-47

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsepik

gsepik

Purpose

Defines the beginning delimiter for a group of GSL output primitive functions.

C Syntax

int gsepik- (pickwind)

int *pickwind;

FORTRAN Syntax

INTEG ER function gsepik (pickwind)

INTEGER pickwind

Pascal Syntax

FUNCTION gsepik- (

V AR pickwindow : INTEGER
): INTEGER [PUBLIC];

Description

The gsepik subroutine defines the opening delimiter for a group of output routines. The
GSL output functions that occur after this command cause a pick input from the display
adapter for each intersection of a vertex and the pick aperture window centered about the
current cursor position.

The pick input is placed on the user input ring, indicating the count of output functions
since the start of the pick. The input also indicates the center of the pick window in x,y
coordinates.

The gsepik subroutine is provided only for use with the IBM 5081 Display, and not for use
with other displays.

See "gsdpik" on page 7-36 and the list of GSL output subroutines on page 7-15 for related
information.

7-48 AIX Operating System Technical Reference

(
\

)

Parameters
pickwind

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsepik

Defines a pick window center about the current cursor position. Valid
values are between 1 and the maximum cursor size.

A cursor must be defined and visible for the gsepik function to operate.

Processing of the SIGRETRACT signal is suspended until the completion of the pick
function with the gsdpik subroutine.

Return Value

GS-SUCC
GS-NCOR
GS-CURV
GS-IVWD
GS-USUC

Successful.
D ndefined cursor.
Cursor not visible.
Invalid pick window size.
D nsuccessful.

Related Information

In this book: "gsdpik" on page 7-36 and the list of GSL output subroutines on page 7-15.

Advanced Display Graphics Support Library 7-49

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseply

gseply

Purpose

Defines the end of an area to fill.

C Syntax

int gseply - ()

FORTRAN Syntax

INTEGER function gseply

Pascal Syntax

FUNCTION gseply- : INTEGER [PUBLIC];

Description

The gseply subroutine defines the end of a two-dimensional shape or set of shapes to be
filled, then fills each of the valid primitives drawn since the last gspcls or gsbply
subroutine was called.

See "gsbply" on page 7-20 and "gspcls" on page 7-106 for related information.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill style
• Logical operation.

7-50 AIX Operating System Technical Reference

(

\

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseply

In this book: "gsbply" on page 7-20 and "gspcls" on page 7-106.

Advanced Display Graphics Support Library 7-51

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevds

gsevds

Purpose

Disables the reporting of events.

C Syntax

int gsevds- (event)

int *event;

FORTRAN Syntax

INTEGER function gsevds (event)

INTEGER event

Pascal Syntax

FUNCTION gsevds- (

V AR event: INTEGER
): INTEGER [PUBLIC];

Description

The gsevds subroutine disables the reporting of events of a given type. When the
keyboard event is disabled, the keyboard is locked and no keystroke input is placed in the
input ring buffer. Similarly, for all other devices, if an event is disabled, the device
producing the event is inhibited from placing input into the ring.

A valid input ring must be defined during the GSL initialization.

7-52 AIX Operating System Technical Reference

(

)

Parameters
event

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevds

The recognized events are as follows:

1 Keystroke
3 Locator movement or button
4 Lighted Program Function Key (LPFK)
5 Valuator
6 Key code.

The user can enable the keyboard by keying the sequence ESC b (the ANSI Enable
Manual Input). After this sequence, keystroke events are again reported.

Return Value

GS-SUCC
GS-EVNT
GS-UNSC

Successful.
Invalid event type.
Unsuccessful.

Advanced Display Graphics Support Library 7-53

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseven

gseven

Purpose

Enables the reporting of events.

C Syntax

int gseven- (event)

int *event;

FORTRAN Syntax

INTEGER function gseven (event)

INTEGER event

Pascal Syntax

FUNCTION gseven- (

VAR event: INTEGER
): INTEGER [PUBLIC];

Description

The gseven subroutine enables the reporting of events of a given type. If the device
producing the event is enabled, then gseven lets it put data into the ring buffer. If the
event type is not recognized, no action is taken.

A valid input ring must be defined during the GSL initialization.

7-54 AIX Operating System Technical Reference

(

(
1'Ij

)

Parameters
event

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gseven

The recognized events are as follows:

1 Keystroke
3 Locator movement or button
4 Lighted Program Function Key (LPFK)
5 Valuator
6 Key code.

After GSL initialization, only the keyboard is enabled. If the application wishes the other
input devices enabled, it must explicitly enable them with this command.

Return Value

GS-SUCC
GS-EVNT
GS-UNSC

Successful.
Invalid event type.
Unsuccessful.

Advanced Display Graphics Support Library 7-55

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

gsevwt

Purpose

Waits for an input event.

C Syntax

int gsevwt- (wait, data)

int *wait, data[13];

FORTRAN Syntax

INTEGER function gsevwt (wait, data)

INTEG ER wait, data (13)

Pascal Syntax

FUNCTION gsevwt- (

VAR wait: INTEGER;
VAR data: ARRAY [0 .. 12] of INTEGER
): INTEGER [PUBLIC];

Description

The gsevwt subroutine returns the relevant information for the oldest input event in the
ring buffer.

The function works as follows:

• If an event is in the ring, then gsevwt parses the oldest event in the ring. It returns
the event type and its data in the buffer provided by the application.

• If no event is in the ring and the application requested no wait, gsevwt returns ~
immediately. If the application requested a wait, the process execution is suspended
until an enabled input event occurs; then gsevwt returns the event type and its data in
the buffer provided.

7 -56 AIX Operating System Technical Reference

)
/

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

Warning: gsevwt uses the application buffer passed to it for
temporary storage. If the user has explicitly keyed part of an ANSI
control sequence when the application calls gsevwt with no wait
request, then gsevwt finds a partial event in the ring and leaves part of
the parsed data for the event in the application buffer; however, gsevwt
returns a timeout event class. Unless the application returns the same
unmodified buffer, or a different buffer containing identical information,
the results of the next call to gsevwt will be incorrect.

A valid input ring must be defined during the GSL initialization.

Parameters
wait

data

Determines whether or not to wait for an event. If wait is 0, then
gsevwt does not wait for an event if no event is available.

Specifies the location where GSL is to store the input data (up to 13
words). The data must be word aligned:

The possible events are:

1 Keystroke(s)

This event type occurs when the user types a single graphic
character or a single-byte control character. For these two events,
gsevwt returns a null-terminated byte string representing the
graphic or control character that was typed. This event may also
occur if the user has explicitly keyed an ANSI escape sequence;
gsevwt returns two bytes, the ESC and the next character in the
sequence.

The data consists of a null-terminated ASCII string and is structured
as follows:

B t 0 ye I Byte 1 I B t 2 Y e I B t 3 ye

Event type = 1

Reserved

code I code I code I code

code code o unused I

Advanced Display Graphics Support Library 7-57

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

2 Control sequence

This event type indicates an ANSI control sequence, which is of the
form:

ESC [p ; p; • • • p f
where ESC is the ASCII escape character, p represents a parameter
(one or more ASCII digits), the ellipsis represents additional
parameters separated by semicolons, and f represents the final
character that terminates the sequence (ASCII a-z or A-Z).

The ANSI control sequence occurs when the user presses a program
function key on the keyboard or if the user enters an explicit control
sequence.

The data consists of the parsed control sequence information. The
Final Character is the valid or invalid final character. The Count
indicates the number of parameters in the control sequence, with a
maximum count of 10. These fields are followed by the Parameters.
The data is structured as follows:

B t 0 ye J B t 1 ye -'
Byte 2 1 Byte 3

Event type = 2

Final Character

Count

Parameter [1]

Parameter [Count]

3 Locator

This event indicates the user has moved the locator or pressed a
button on the locator.

The data consists of locator position and status information. The X
value and the Y value field contain a relative movement (delta
x, delta y) for a mouse and an absolute position (x, y) for a tablet.
The Timestamp, which is elapsed time since system startup (IPL), is
in sixtieths of a second.

The Buttons field contains the locator button status. For a mouse,
each bit corresponds to a button, the most significant bit representing
Button 1. A bit set to 1 indicates that the corresponding button is

7-58 AIX Operating System Technical Reference

(

\

~
)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

pressed. For a tablet, the most significant five bits represent the
button pressed, according to the following scheme:

Status Button
o None pressed
1 Cursor upper left, stylus tip
2 Cursor upper right
3 Cursor lower left
4 Cursor lower right

For a tablet, the sixth most significant bit of the Buttons field
indicates that the sensor is on (bit set) or off (bit not set).

The Type field contains a 0 if the locator is a mouse and a 1 if the
locator is a tablet. The data is structured as follows:

B t 0 ye I B t 1 Y e I B t 2 ye I B t 3 ye

Event type = 3

X value

Y value

Type

Buttons

Timestamp

4 LPFK

This event type occurs when the user presses a key on the LPFK.

The data consists of the LPFK information. The LPFK field contains
the decimal number of the LPFK pressed by the user, that is, 0
through 31. The Timestamp (time since system startup) is in sixtieths
of a second. The data is structured as follows:

B t 0 ye I B t 1 ye ! B te 2 y I B t 3 Y e

Event type = 4

LPFK

Timestamp

Advanced Display Graphics Support Library 7-59

TNt SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

5 valuator

This event type occurs when the user turns a valuator dial.

The data consists of the valuator information. The Valuator field ~
contains the decimal number, 0 through 7, of the valuator turned by
the user. The Valuator Delta field contains the difference between
the current valuator value and the last valuator value. The delta for
a full turn is 256 for the IBM Valuator. The delta is positive for
clockwise rotation and negative for counterclockwise rotation. The
Timestamp (time since system startup) is in sixtieths of a second. The
data is structured as follows:

B t a ye I B t 1 ye I B t 2 ye I B t 3 ye

Event type = 5

Valuator

Valuator Delta

Timestamp

6 key code

This event type occurs when the virtual terminal is in non-translated
mode and a keyboard key is pressed, held down, or released. The
data is structured as follows:

B t 0 ye I B t 1 ye I Byte 2 I Byte 3

Event type = 6

Key Position Code

Key Scan Code

Status

Key position codes are found under "keyboard" on page 6-78. Status
bits are found under "Input" on page 6-56.

7-60 AIX Operating System Technical Reference

(

\

7 pick event

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

This event type occurs while the pick operation is enabled and
graphics primitives are being sent to the adapter. The data is
structured as follows:

B t 0 ye I B t 1 ye I B yte 2 I B t 3 ye

Event type = 7

Pick Count

Pick Center x

Pick Center y

A pick event code is generated when a structure traversal occurs.
The pick occurs when pixels are determined to intersect the pick
window (defined by the pick enable window size). The detection mode
is always immediate, so that an event is generated as soon as an
event occurs. The pick event type is provided only for use with the
IBM 5081 Display Adapter, and not for use with other displays.

10 Timeout

No data is returned.

It is important to note that gsevwt does not detect ANSI escape sequences. However, with
the default virtual terminal keyboard mapping, it is not possible to generate an escape
sequence by pressing a single key. Because gsevwt does parse ANSI control sequences,
the routine cannot consider the press of the escape key an event, so the routine waits for
the next character to decide if the escape implies the start of a control sequence. Only if
the next character is not the left bracket does gsevwt return the escape and the next
character.

If the return code indicates overflow, the most recent input events from enabled devices
are lost.

Return Value

GS-SUCC
GS-ROVR
GS-UDRG
GS-PARM
GS-ICTL

Successful.
Ring buffer overflow.
Ring undefined.
Too many control sequence parameters.
Invalid final character.

Advanced Display Graphics Support Library 7-61

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsevwt

Related Information

In this book: "keyboard" on page 6-78 and "Input" on page 6-56.

7-62 AIX Operating System Technical Reference

('
I

~

(
\

gsfatt

Purpose

Sets the fill attributes.

C Syntax

int gsfatt- (color, pattern, reserved)

int *color, *pattern, *reserved;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfatt

INTEGER function gsfatt (color, pattern, reserved)

INTEGER color, pattern, reserved

Pascal Syntax

FUNCTION gsfatt- (

VAR color, pattern, reserved: INTEGER
): INTEGER [PUBLIC];

Description

The gsfatt subroutine defines the attributes for the class of fill functions, which includes
gsfci, gsfell, gsfrec, and gsfply.

Parameters
color Refers to an entry in the color map. If color is -1, the attribute is

unchanged. The default color after initialization is 15.

Advanced Display Graphics Support Library 7-63

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfatt

pattern

reserved

Return Value

GS-SUCC
GS-COLI
GS-SYLI

Contains a value from the following list:

Value Display

-1
o
1
2
3
4
5

6

No change
Solid
Horizontal lines
Vertical lines
135-degree lines
45-degree lines
Cross-hatched (horizontal and
vertical lines)
Cross-hatched (45- and
135-degree lines)

The default pattern is solid (0).

Printer or Plotter

No change
Solid
Narrow right diagonal lines
Medium right diagonal lines
Wide right diagonal lines
N arrow diagonal cross-hatched
Medium diagonal cross-hatched

Wide diagonal cross-hatched

Some printers and plotters support additional fill patterns that can be
selected with a pattern index greater than 6. If the device you are using
does not support additional fill patterns and you specify a pattern index
greater than 6, then the gsfatt subroutine returns the value GS-SYLI.

The fill pattern does not meet the border of the filled area on printers
and plotters.

Represents a parameter that gsfatt ignores.

Successful.
Invalid color index.
Invalid style index.

7 -64 AIX Operating System Technical Reference

)
f

gsfci

Purpose

Fills a circle.

C Syntax

int gsfci- (ex, ey, er)

int *ex, *ey, *er;

FORTRAN Syntax

INTEGER function gsfci (ex, ey, er)

INTEGER ex, ey, er

Pascal Syntax

FUNCTION gsfci- (

VAR ex, ey, er: INTEGER
): INTEGER [PUBLIC];

Description

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfci

The gsfci subroutine fills a circle of the specified radius. The radius is expressed in
number of pixels.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill pattern index
• Logical operation.

Advanced Display Graphics Support Library 7-65

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfci

Parameters
ex, ey

er

Define the coordinates of the center of the circle.

Defines the radius of the circle.

If the radius is zero, a single point is filled at the center.

If the radius is zero, a single point is filled at the center.

The fill pattern does not meet the border of the filled area on printers and plotters.

Return Value

GS-SUCC
GS-CORD
GS-RDUS
GS-INAC

Successful.
Invalid coordinate.
Invalid radius specification.
Virtual terminal inactive.

7-66 AIX Operating System Technical Reference

(

(
~

gsfell

Purpose

Fills an ellipse.

C Syntax

int gsfell- (ex, ey, ma, mi, ang)

int *ex, *ey, *ma, *mi, *ang;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfell

INTEGER function gsfell (ex, ey, ma, mi, ang)

INTEGER ex, ey, ma, mi, ang

Pascal Syntax

FUNCTION gsfell- (

V AR ex, ey, ma, mi, ang : INTEGER
): INTEGER [PUBLIC];

Description

The gsfell subroutine fills an ellipse of the specified axes and angle. The axes are
expressed in number of pixels.

The angle specifications are given in tenths of degrees, from 0 to 3600. Values outside this
range cause the gsfell subroutine to fail.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill pattern index
• Logical operation.

Advanced Display Graphics Support Library 7-67

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfell

Parameters
ex, ey

ma, mi

ang

Define the coordinates of the center of the ellipse.

Define half of the non-zero major and minor axes of the ellipse.

Defines the angle between the major axis and the x-axis. If it is zero, the
major axis is on the x-axis and the minor axis is on the y-axis. The
angle is defined in tenths of degrees, from ° to 3600, specified in a
counterclockwise direction.

The fill pattern does not meet the border of the filled area on printers and plotters.

Return Value

GS-SUCC
GS-CORD
GS-ELMM
GS-INAC
GS-ANGL
GS-NMEM

Successful.
Invalid coordinate.
Invalid major or minor axis.
Virtual terminal inactive.
Invalid angle.
Insufficient resources.

7-68 AIX Operating System Technical Reference

gsfply

Purpose

Draws a filled polygon.

C Syntax

int gsfply- (number, x, y)

int *number, *x, *y;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfply

INTEGER function gsfply (number, x, y)

INTEGER number
INTEGER x (*)
INTEG ER y (*)

Pascal Syntax

FUNCTION gsfply - (

V AR number: INTEGER;
VAR x, y; ARRAY [I..k] of INTEGER
): INTEGER [PUBLIC];

Description

The gsfply subroutine fills an area that is described by the points defined in the number
and x, y parameters, with the color determined by the last call to the gsfatt subroutine.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill pattern index
• Logical operation.

Advanced Display Graphics Support Library 7-69

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfply

Parameters
number Defines the number of points in the coordinate arrays. This value must

be 3 or more.

x, y Define, as coordinate arrays, the points surrounding the polygon to fill.

The edges are treated as part of the area to be filled.

The gsfply subroutine fills a closed polygon with a pattern, generated by creating an edge
between the first and the last points. The first and the last points described by the
parameters may be equal, but it is not required and is actually less efficient.

The fill pattern does not meet the border of the filled area on printers and plotters.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length; that is, the k in the routine
declaration must be a constant.

Return Value

GS-SUCC
GS-CORD
GS-NCOR
GS-NMEM
GS-INAC

Successful.
Invalid coordinate.
Invalid number of coordinates.
Insufficient resources.
Virtual terminal inactive.

7-70 AIX Operating System Technical Reference

(
\

gsfrec

Purpose

Draws a filled rectangle.

C Syntax

int gsfrec- (xl, yl, x2, y2)

int *xl, *yl, *x2, *y2;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfrec

INTEGER function gsfrec (xl, yl, x2, y2)

INTEGER xl, yl, x2, y2

Pascal Syntax

FUNCTION gsfrec- (

VAR xl, yl, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description

The gsfrec subroutine fills the rectangular area defined by the lower leftmost and upper
rightmost coordinate parameters, with the color determined by the last call to the gsfatt
subroutine.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill pattern index
• Logical operation.

Advanced Display Graphics Support Library 7 -71

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsfrec

Parameters
xl, y 1 Define the lower left corner of the rectangular area to fill.

x2, y2 Define the upper right corner of the rectangular area to fill.

The edges of the rectangle are treated as part of the area to be filled.

The fill pattern does not meet the border of the filled area on printers and plotters.

Return Value

GS-SUCC
GS-CORD
GS-INAC

Successful.
Invalid coordinate.
Virtual terminal inactive.

7-72 AIX Operating System Technical Reference

~
/

Igsgtat

I Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtat

Sets the attributes for the geometric text drawing functions.

Ie Syntax

int gsgtat- (color, baseline, pre, expan, spac, height,
upuectx, upuecty, alignhz, alignut, font-ID, font)

int *color, *baseline, *pre, *expan, *spac, *height,
int *upuectx, *upuecty, *alignhz, *alignut, *font-ID;
char *font;

I FORTRAN Syntax

INTEGER function gsgtat (color, baseline, pre, expan, spac, height,
upuectx, upuecty, alignhz, alignut, font-ID, font)

INTEGER color, baseline, pre, expan, spac, height
INTEGER upuectx, upuecty, alignhz, alignut, font-ID
CHARACTER*n font

I Pascal Syntax

FUNCTION gsgtat- (

VAR color, baseline, pre, expan, spac, height: INTEGER;
VAR upuectx, upuecty, alignhz, alignut, font-ID: INTEGER;
V AR font: ARRAY [O .. k] of CHAR
): INTEGER [PUBLIC];

Advanced Display Graphics Support Library 7-73

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtat

I Description

The gsgtat subroutine defines the attributes and fonts for the geometric text drawing
functions.

Note: The attributes defined by this command are applicable only to geometric text.

Parameters
color

baseline

pre

expan

Specifies an entry in the color map for text color. If it is -1, the attribute
is unchanged.

Determines the direction of the geometric text drawing. The valid values
are:

-1 Attribute remains unchanged.

o Specifies 0 degrees, or left to right in the viewer's terms.

1 Specifies 90 degrees, or up in the viewer's terms.

2 Specifies 180 degrees, or right to left in the viewer's terms.

Note: The characters appear upside down.

3 Specifies 270 degrees, or down in the viewer's terms.

Note: The baseline parameter does not change character rotation. Use
the upvectx and upvecty parameters to rotate text.

Specifies the desired text precision used in drawing text primitives. The
valid values are:

-1 Attribute remains unchanged.

1 Character precision

2 Stroke precision.

Defines as a 32-bit fractional integer the deviation of the width/height
ratio of the character from the ratio defined in the font. The expansion
factor only changes the width of the character.

16 1 7 8

I 0 -------- 0 I s I INTEGER FRACTION

In the above figure, the first 16 bits contain zeros, S represents the sign
bit, INTEGER represents the integer portion of the width/height ratio,
and FRACTION represents the fractional portion of the ratio. A 32-bit
integer value of -1 indicates that this attribute is unchanged.

7-74 AIX Operating System Technical Reference

spac

height

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtat

Specifies the character spacing, or additional number of pixels to be
inserted between characters. The value is a I6-bit signed integer. The
preferred value for this parameter varies, based on the display in use.
The maximum value that is allowed is equal to the display width in pixels.
A value of Ox8000000 for this parameter indicates that the attribute is
unchanged.

Specifies the current character height for geometric text in pixels. This
value is defined as a I6-bit signed integer, with the maximum value equal
to the height of the display in pixels. A value of Ox8000000 for this
parameter indicates that the attribute is unchanged.

upuectx, upuecty Specify the x and y coordinates for the up direction of a character or text
string. The valid range for these values is ± the display dimensions in
pixels. A value of Ox8000000 for this parameter indicates that the
attribute is unchanged.

alignhz

alignut

font-ID

The up vector is a two-dimensional vector on the text plane, specified by
the current text draw. (The origin of the vector is defined by the
geometric text command, gsgtxt.) Only the direction, not the length, of
the vector is relevant.

Specifies the horizontal alignment of the text for subsequent text drawing.
Values are as follows:

-1 Attribute is unchanged
1 Normal
2 Left
3 Center
4 Right

Specifies the vertical alignment of the text for subsequent text drawing.
Values are as follows:

-1 Attribute is unchanged
1 Normal
2 Top
3 Cap
4 Half
5 Base
6 Bottom

Specifies the ID of the font as a 32-bit integer, which defines the type of
font to use. This ID is determined by the user while defining each
geometric font. Possible values are:

-1 A font-ID has been defined in a previous call to the
gsgtat subroutine, and this attribute is unchanged.

Advanced Display Graphics Support Library 7-75

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtat

font

1025 to 32767 These values are used to specify I-byte geometric fonts,
and refer to a value defined in each geometric font file.

32768 to 65535 These values are used to specify 2-byte geometric fonts,
and refer to a value defined in each geometric font file.

Only 1 font-ID is active at any time. To change the font-ID, gsgtat
must be called again with new font-ID and font parameters. When a new
font-ID is specified, the previous font-ID is purged from the font table.

For 2-byte geometric text, up to 128 segment IDs can be used per font-ID.
If the font-ID is the same as previously loaded, the current segment ID is
added to the font tables.

When used with the font parameter, the font-ID is associated with the
font used for font selection.

Contains the null-terminated full path name of the file used when the font
attribute is specified as user. If a font-ID is defined, this parameter must
also be defined. A value of -1 for this parameter indicates that the
attribute is unchanged. For information on the format of font files for
geometric text, see "Geometric Text Fonts" on page 4-72.4.

Attributes are only valid for the currently active font.

This subroutine must be called before the gsgtxt subroutine or an error results.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length. The k in the routine declaration
must be a constant.

I Return Value

GS-SUCC
GS-COLI
GS-PREC
GS-EXPN
GS-FNTN
GS-INSV
GS-BASL
GS-HIGH
GS-UPVT
GS-ALGN

Successful.
Invalid color index.
Invalid text precision value.
Invalid character expansion factor.
Invalid file name.
Invalid spacing value.
Invalid baseline direction.
Invalid height value.
Invalid up vector value.
Invalid alignment value.

7-76 AIX Operating System Technical Reference

!

\

I Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtat

In this book: "fonts" on page 4-68, "Geometric Text Fonts" on page 4-72.4, and "gsgtxt" on
page 7-78.

Advanced Display Graphics Support Library 7-77

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtxt

gsgtxt

Purpose

Writes geometric text.

C Syntax

int gsgtxt- (x, y, number, text)

int *x, *y, *number;
char *text;

FORTRAN Syntax

INTEGER function gsgtxt (x, y, number, text)

INTEGER x, y, number
CHARACTER*n text

Pascal Syntax

FUNCTION gsgtxt- (

VAR x, y, number: INTEGER;
V AR text: ARRAY [1..k] of CHAR
): INTEGER [PUBLIC];

Description

The gsgtxt subroutine writes geometric characters starting at the baseline position
defined by the parameters and writes the number of characters indicated by the parameters
according to the relevant attributes.

The relevant attributes are:

• Color map
• Plane mask
• Font
• Text color index
• Character expansion factor

7-78 AIX Operating System Technical Reference

(

(

\

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsgtxt

• Character spacing
• Character height
• Character up vector
• Character alignment
• Baseline direction.

Parameters
x,Y

number

text

Return Value

GS-SUCC
GS-CORD
GS-FBUF
GS-INAC
GS-NOFT

Define the coordinates of the baseline position for writing geometric text.

Indicates the number of bytes to write from the text string. The maximum
number of characters allowed is 1024 for single byte fonts and 512 for
two-byte fonts, which is determined by the display and font in use.

Contains the N-bit ASCII codes for the characters to write, as an array.

Successful.
Invalid coordinate.
Frame buffer overflow.
Virtual terminal inactive.
Font not loaded.

Related Information

In this book: "fonts" on page 4-68 , "Geometric Text Fonts" on page 4-72.4, "gsgtat" on
page 7-73, and "gsqgtx" on page 7-119.

Advanced Display Graphics Support Library 7-79

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsinit

gsinit

Purpose

Initializes the GSL subroutines.

C Syntax

int gsinit- (buffer, size, save-restore, f-grant, f-retract, fildes)

int *buffer, *size, *save-restore;
int (*f -grant) (), (*f -retract) ();
int *fildes;

FORTRAN Syntax

INTEGER function gsinit (buffer, size, save-restore, f-grant, f-retract, fildes)

INTEGER buffer (*), size, save-restore, fildes
EXTERNAL f -grant, f -retract

Pascal Syntax

FUNCTION gsinit- (

V AR buffer: ARRAY [O .. h] of INTEGER;
VAR size, save-restore, f-grant, f-retract, fildes: INTEGER
): INTEGER [PUBLIC];

Description

The gsinit subroutine initializes the GSL. It allocates any private storage required, and
sets attributes to the default values where necessary. It also forces the virtual terminal of
the application to Monitor Mode and sets up the signal processing routines for the
SIGRETRACT and SIGGRANT signals, and optionally, the SIGMSG signal.

7-80 AIX Operating System Technical Reference

Parameters
buffer

size

save-restore

f-grant

f-retract

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsinit

Defines the Monitor Mode input ring buffer to be used by the GSL input
functions. buffer must be word aligned and at least 128 bytes long. For
output to a printer or plotter device, set the buffer parameter to -1. (In C,
buffer is a pointer to an integer containing the value -1. In Pascal, it is a
variable containing the value -1.)

Defines the length of buffer in bytes. Depending on the value of size,
gsinit performs the following actions: .

size = 0 The GSL ignores the buffer parameter and does not provide
input support. The application must provide a means for
receiving input events and can use the read system call or
set up its own ring buffer mechanism.

size < 128

size~128

The IBM 5081 Display Adapter requires a ring buffer for
input events. If you do not define a buffer (that is, if size=O
and buffer is not defined), the GSL defines a buffer to be
used only by GSL for the IBM 5081 Display Adapter. If you
define a ring buffer after this point, the IBM 5081 Display
Adapter GSL will not work.

The gsinit subroutine does not initialize the GSL.

The GSL establishes the virtual terminal linkage to the
input ring buffer provided by the application and provides
input support and sets up a SIGMSG signal catcher.

Determines whether to save the display frame buffer and adapter states.

If save-restore is non-zero, the GSL saves the current contents of the
display frame buffer as well as the current adapter state when the virtual
terminal must become inactive and restores both the frame buffer contents
and adapter state when it becomes active.

If save-restore is zero, the GSL saves only the adapter state and assumes
that the application either saves the frame buffer or reconstructs it in
some fashion.

Sets up processing of the SIGGRANT signal. If f-grant is non-zero, it is
assumed to be the address of an application supplied function, and the
GSL calls the function as part of the SIGGRANT signal handling. If
save-restore is non-zero, the application function is called before the frame
buffer is restored.

Sets up processing of the SIGRETRACT signal. If f-retract is non-zero, it
is assumed to be the address of an application supplied function, and the
GSL calls the function as part of the SIGRETRACT signal handling.

Advanced Display Graphics Support Library 7-81

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsinit

fildes Determines where output is directed. The output device is specified by
one of the following:

• The value -1, which specifies standard output.

• A file descriptor returned by a ere at, open, dup, or fent! system call.

• A null-terminated character string up to 11 characters long, which
names an environment variable defining a printer or plotter device. In
this case, the value of the buffer parameter must be -1. (See "Printers
and Plotters" on page 7-11.)

(In C, fildes is a pointer to a file descriptor, an integer, or a character
string. In Pascal, it is a variable containing one of these values.)

If the initialization process is unsuccessful, the virtual terminal is not placed in Monitor
Mode and invocation of any other GSL routines will cause unpredictable results.

For printers or plotters, if initialization is unsuccessful, the application can either
terminate or re-drive the initialize function with a valid character string as a means of
correcting the problem.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length; that is, the k in the routine
declaration must be a constant.

Pascal cannot directly provide the address of a routine. An assembler function may be used
to derive the address of a routine passed to the GSL.

The f-grant and {-retract routines supplied by the application are called on the signal level
and must return. These application routines must not use either setjmp or longjmp
subroutines.

The GSL supports use of the sdb symbolic debugger by redirection to a supplied file
descriptor. If two virtual terminals are open and the GSL application runs on one, the
application may get the file descriptor for the second and supply that descriptor at GSL
initialization. The GSL directs its output to the second virtual terminal while sdb directs
its output to the first; either is activated in the standard manner.

The user routine called at SIGGRANT can be called before gsinit returns to the
application.

Return Value

GS-SUCC
GS-HBUS
GS-ADPT
GS-FONT
GS-RING
GS-HDCP

Successful.
Cannot access hardware bus.
Invalid display type.
Cannot access default font.
Buffer too small.
Invalid file descriptor for hard copy output.

7 -82 AIX Operating System Technical Reference

)

GS-HDLK
GS-HDIM
GS-HDDB
GS-HDNA
GS-HDMG
GS-HDIF
GS-HDSF
GS-HDGO
GS-HDGN
GS-HDGU

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsinit

Unable to create lock file.
Insufficien t memory.
Device is busy.
Physical device not attached.
Maximum number of graphics devices open.
No system inter process communication buffers left.
The fork system call failed.
Specified graphics device already open.
Specified graphics device does not exist.
Specified graphics device driver is unknown.

Related Information

In this book: "Printers and Plotters" on page 7-11.

Advanced Display Graphics Support Library 7 -83

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslatt

gslatt

Purpose

Sets the line attributes.

C Syntax

int gslatt- (color, style)

int *color, *style;

FORTRAN Syntax

INTEGER function gslatt (color, style)

INTEGER color, style

Pascal Syntax

FUNCTION gslatt- (

V AR color, style: INTEGER
): INTEGER [PUBLIC];

Description

The gslatt subroutine defines the attributes for the class of line drawing functions.

Parameters
color Refers to a line color entry in the color map. If it is -1, the attribute is

unchanged. The default color is 15.

7-84 AIX Operating System Technical Reference

(

\

style

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslatt

Sets or resets the line style pattern. The line style may be one of the
following:

Value

-1
o
1
2
3
4
100
101
102
103
104
150

Display

No change
Solid
Dash
Dot
Dash-dot
Dash-dot-dot
Continuous solid
Continuous dash
Continuous dot
Continuous dash-dot
Continuous dash-dot-dot
Continuous user-supplied

The default style is solid (0).

Printer or Plotter

No change
Solid
Dash
Dot
Dash-dot
Dash-dot-dot
Solid
Dash
Dot
Dash-dot
Dash-dot-dot
Not available

The GSL supplied line style patterns are implemented in a device-dependent fashion. All
line style indices not described above are reserved.

For line styles 1-99, the GSL line drawing functions ensure that a line or line segment
starts and ends with a run of the line color. For example, the GSL does not continue the
pattern from one polyline segment to another.

For line styles 100-150, the GSL continues the pattern across multiple lines or line
segments until the application makes another call to gslatt to reset the line pattern. In
this case, unlike styles 1-99, the GSL does continue the pattern from one polyline segment
to another. Continuous line styles are not available on printers and plotters.

Return Value

GS-SUCC
GS-COLI
GS-SYLI

Successful.
Invalid color index.
Invalid style index.

Advanced Display Graphics Support Library 7-85

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslcat

gslcat

Purpose

Sets the locator attributes.

C Syntax

int gslcat- (hg, vg)

int *hg, *vg;

FORTRAN Syntax

INTEGER function gslcat (hg, vg)

INTEGER hg, vg

Pascal Syntax

FUNCTION gslcat- (

V AR hg, vg: INTEGER
): INTEGER [PUBLIC];

Description

The gslcat subroutine sets the locator attributes. Its effect depends on the type of locator
attached. For a mouse, gslcat sets the thresholds. For a tablet, it sets the dead zone.

Parameters
hg, vg Define the horizontal and vertical values for the locator threshold or dead

zone, in units of 0.25 millimeter.

The mouse thresholds determine the granularity of input events reported, or the amount
of horizontal or vertical mouse movement required before an event occurs.

The tablet dead zone is an area of the tablet in which no event reports occur, even if the
tablet sensor is present. This dead zone allows the application to make the tablet aspect
ratio compatible with the display and allows tablets of different sizes to appear the same
size to an application. The dead zone acts as a border around the tablet. The device driver

7-86 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslcat

reports movement only when the x value is greater than or equal to hg or less than or
equal to (maximum tablet value - hg), and the y value is greater than or equal to ug or less
than or equal to (maximum tablet value - ug).

An attempt to set the locator attributes may fail for a variety of reasons, the most likely of
which is that the device is not attached. The nature of the problem can be determined
with a specific ioctl to the virtual terminal. (See "hft" on page 6-23 for more information.)

Note that the gslcat subroutine allows an application to set the mouse thresholds or the
tablet dead zone such that no events occur even if the device is enabled.

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

In this book: "hft" on page 6-23.

Advanced Display Graphics Support Library 7-87

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsline

gsline

Purpose

Draws a line between two points.

C Syntax

int gsline- (xl, yl, x2, y2)

int *xl, *yl, *x2, *y2;

FORTRAN Syntax

INTEGER function gsline (xl, yl, x2, y2)

INTEGER xl, yl, x2, y2

Pascal Syntax

FUNCTION gsline- (

VAR xl, yl, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description

The gsline subroutine draws a line, as defined by the current relevant attributes, from the
first point to the second point defined by the parameters.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-88 AIX Operating System Technical Reference

(

Parameters
xl,yl

x2,y2

Return Value

GS-SUCC
GS-CORD
GS-INAC

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsline

Defines the coordinates of one end point of the line drawn by gsline.

Defines the coordinates of the second point of the line drawn by gsline.

Successful.
Invalid coordinate.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-89

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslock

gslock

Purpose

Postpones signal processing.

C Syntax

int gslock- ()

FORTRAN Syntax

INTEGER function gslock ()

Pascal Syntax

FUNCTION gslock- (): INTEGER [PUBLIC];

Description

The gslock subroutine causes the GSL not to acknowledge the SIGRETRACT signal, if it
occurs, until the application requests resumption of the signal handling with the gsunlk
subroutine. This permits the application to access the display frame buffer directly.

If the virtual terminal is inactive when the application calls gslock and the GSL has been
instructed to save the frame buffer when the virtual terminal becomes inactive, gslock
suspends the application until the virtual terminal becomes active and then returns a
successful return code. If the GSL has been instructed not to save the frame buffer, gslock
returns the GS-INAC return code immediately. The application must not access the
display frame when GS-INAC is returned.

Note: If SIGRETRACT signal processing is suspended for more than 30 seconds, it is
possible that a generated SIGRETRACT signal may be suspended long enough for the
SIGKILL signal to occur, terminating the application process.

7-90 AIX Operating System Technical Reference

)

Return Value

GS-SUCC
GS-INAC

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslock

Virtual terminal active, safe to write to frame buffer.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-91

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslop

gslop

Purpose

Specifies the logical operation used when drawing lines.

C Syntax

int gslop- (operation)

int *operation;

FORTRAN Syntax

INTEGER function gslop (operation)

INTEG ER operation

Pascal Syntax

FUNCTION gslop- (

V AR operation INTEGER;
): INTEGER [PUBLIC];

Description

The gslop subroutine specifies the logical operation used for drawing the GSL
line-oriented, fill, save/restore, and polymarker primitives. It does not apply to the text
primitives.

Parameters
operation Indicates the logical operation to perform between the primitive being

drawn and the current contents of the frame buffer.

In the following table, please note:

• The source pixels represent bits of data to be merged in some way with
the corresponding bits of data in the destination rectangle.

7-92 AIX Operating System Technical Reference

/
\

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslop

• The first three columns of the table specify the operations you can
perform, and the Code column contains the corresponding value you
should specify for the operation parameter.

• A - (tilde) represents the logical INVERSE.

Type of
Source

Source
Source
Source
Source
Source
Source

-Source
-Source
-Source
-Source
-Source
-Source

Logical
Operation

No operation

REPLACE
AND
AND
EXCLUSIVE-OR
OR
OR
REPLACE
AND
AND
EXCLUSIVE-OR
OR
OR

Type of
Destination

Destination clear
Set Destination
Destination

- Destination
Destination
Destination

- Destination
Destination
Destination

- Destination
Destination
Destination

- Destination
Destination
Destination

- Destination

Replace (3) is the default logical operation.

Code

o
15
5

10
3
1
2
6
7

11
12

4
8
9

13
14

Currently, the GSL provides only replace and exclusive-or (codes 3 and 6 respectively) for
displays other than the IBM 5081 Display. The full set of logical operations is supported
for the IBM 5081 Display.

For printers and plotters, the operations performed are the same as those for displays,
except that a value of 0 turns the color off, and a value of 15 changes the color to white.

The GSL performs each of the boolean operations for each bit of the source and destination
color values enabled by the plane mask. The destination receives the color value that
results from the operation.

The logical operations are performed on the color index rather than the color itself. This
can cause some operations on color displays to produce results that are not expected.

Advanced Display Graphics Support Library 7-93

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslop

Return Value

GS-SUCC
GS-LONS

Successful.
Logical operation not supported.

7-94 AIX Operating System Technical Reference

)

gslpat

Purpose

Sets the LPFK indicators.

C Syntax

int gslpat- (indicators)

int *indicators;

FORTRAN Syntax

INTEGER function gslpat (indicators)

INTEGER indicators

Pascal Syntax

FUNCTION gslpat- (

VAR indicators: INTEGER
): INTEGER [PUBLIC];

Description

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslpat

The gslpat subroutine turns on or off the indicators on the Lighted Program Function
Keyboard.

Parameters
indicators Specifies the state of the LPFK indicators. Each bit of indicators

corresponds to an indicator on the LPFK, with the most significant bit
setting the desired state (1 = on, 0 = off) for the indicator for LPFK 0, the
next most significant bit setting the state for the indicator for LPFK 1,
and so on.

The default state for all indicators is off.

Advanced Display Graphics Support Library 7-95

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gslpat

An attempt to set the LPFK indicators may fail for a variety of reasons, the most likely of
which is that the device is not attached. The nature of the problem can be determined
with a specific ioctl to the virtual terminal. (See "hft" on page 6-23 for more information.)

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

In this book: "hft" on page 6-23.

7-96 AIX Operating System Technical Reference

)

gsmask

Purpose

Defines planes to be modified.

C Syntax

int gsmask- (mask)

int *mask;

FORTRAN Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmask

INTEGER function gsmask (mask)

INTEGER mask

Pascal Syntax

FUNCTION gsmask- (

VAR mask: INTEGER
): INTEGER [PUBLIC];

Description

The gsmask subroutine defines the planes actually modified by the line, text, and fill
functions.

Parameters
mask Indicates which planes of the display adapter frame buffer can be modified

by the output functions. The most significant bits of the input are used to
set the plane mask.

Advanced Display Graphics Support Library 7-97

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmask

Return Value

GS-SUCC
GS-INAC

Successful.
Virtual terminal inactive.

7-98 AIX Operating System Technical Reference

gsmatt

Purpose

Sets the polymarker attribute.

C Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmatt

int gsmatt- (color, style, width, height, pattern, Ox, Oy)

int *color, *style, *width, *height, *pattern, *Ox, *Oy;

FORTRAN Syntax

INTEGER function gsmatt (color, style, width, height, pattern, Ox, Oy)

INTEGER color, width, height, pattern, Ox, Oy

Pascal Syntax

FUNCTION gsmatt- (

VAR color, style, width, height: INTEGER;
pattern: ARRAY [l .. k] of INTEGER;
Ox, Oy: INTEGER
): INTEGER [PUBLIC];

Description

The gsmatt subroutine defines the marker for the GSL.

Parameters
color Refers to a marker color entry in the color map. If it is -1, the attribute is

unchanged. The default value for color is 7, white.

Advanced Display Graphics Support Library 7-99

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmatt

style

width, height

pattern

OX,Oy

Defines the polymarker style as one of the following:

Value Display Printer or Plotter

-1 No change No Change
0 User-defined (by width, Not available

height, pattern, Ox, Oy)
1 Dot (filled circle) Point
2 Plus (+) Plus (+)
3 Asterisk (*) Asterisk (*)
4 Circular shape Square shape
5 Cross (x) Cross (x)
6 Unfilled box Diamond

Define in pixels the width and the height of the bit pattern to be used as
the marker. If width or height equals -1, then the pattern remains
unchanged.

Defines the image used as a marker. The ceiling of (width / 32) indicates
the number of words per row and height indicates the number of rows.
The marker data must be supplied in row (scan line) major order. If width
implies partial use of a word, the rest of the word is unused. To fully
define the marker pattern, pattern should be
«ceiling(width / 32)) x height) words in length.

Indicate the coordinates of the origin of the marker relative to the lower
leftmost corner (0, 0) of the marker pattern. The origin must be placed
inside the marker pattern, so that Ox < width and Oy < height. The
origin of the marker is placed at the position indicated when the
application places a marker with the gsplym subroutine. (See "gsplym"
on page 7-108.) If Ox equals -1, then the origin remains unchanged.

The maximum size of the marker is device dependent. It equals the height and width of the
display, which may be determined by calling the gsqdsp subroutine.

Note: The GSL subroutines do not make a copy of a user-defined polymarker. Changes or
reuse of the storage where a user-defined shape is in use can cause unpredictable results.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length. The k in the routine declaration
must be a constant.

7-100 AIX Operating System Technical Reference

)

Return Value

GS-SUCC
GS-COLI
GS-PMSZ
GS-PMOR
GS-PMSY

Successful.
Invalid color index.
Marker size invalid.
Marker origin invalid.
Marker style invalid.

Related Information

In this book: "gsplym" on page 7-108.

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmatt

Advanced Display Graphics Support Library 7-101

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmcur

gsmcur

Purpose

Moves the cursor and makes it visible.

C Syntax

int gsmcur- (x, y)

int *x, *y;

FORTRAN Syntax

INTEGER function gsmcur (x, y)

INTEGER x, y

Pascal Syntax

FUNCTION gsmcur- (

V AR x, y: INTEGER
): INTEGER [PUBLIC];

Description

The gsmcur subroutine makes the cursor visible (if not already visible) and positions the
cursor origin at the point indicated by the parameters.

The relevant attributes are:

• Color map
• Plane mask
• Cursor pattern
• Cursor color index
• Cursor origin.

7-102 AIX Operating System Technical Reference

~

)

Parameters

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmcur

x, y Indicate the coordinates of the desired position of the cursor origin.

The cursor attributes must be set with the gscatt subroutine before calling gsmcur (see
"gscatt" on page 7-24).

The cursor is non-destructive. This is achieved in a device-dependent manner.

Return Value

GS-SUCC
GS-CORD
GS-UCUR
GS-INAC

Successful.
Invalid coordinate.
Undefined cursor.
Virtual terminal inactive.

Related Information

In this book: "gscatt" on page 7-24.

Advanced Display Graphics Support Library 7-103

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmult

gsmult

Purpose

Draws a multiline, a set of lines that connect alternate pairs of points in a sequence.

C Syntax

int gsmult- (number, x, y)

int *number, *x, *y;

FORTRAN Syntax

INTEGER function gsmult (number, x, y)

INTEGER number, x (*), y (*)

Pascal Syntax

FUNCTION gsmult- (

VAR number: INTEGER;
VAR x, y: ARRAY [I..k] of INTEGER
): INTEGER [PUBLIC];

Description

The gsmult subroutine draws lines, as defined by the current relevant attributes, between
alternate pair of points defined by the parameters.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-104 AIX Operating System Technical Reference

(

\

)

Parameters
number

X,Y

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsmult

Defines the number of points in the coordinate arrays. It must be a
multiple of 2, with 2 as the minimum value.

Define the points for line drawing.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length. The k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-CORD
GS-NCOR
GS-INAC

Successful.
Invalid coordinate.
Invalid number of coordinates.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-105

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspcls

gspcls

Purpose

Defines the end of a shape to fill.

C Syntax

int gspcls- ()

FORTRAN Syntax

INTEG ER function gspcls

Pascal Syntax

FUNCTION gspc1s- : INTEGER [PUBLIC];

Description

The gspcls subroutine defines the end of a particular two dimensional shape to be filled,
then fills the shape.

See "gsbply" on page 7-20 and "gseply~' on page 7-50 for related information.

The relevant attributes are:

• Color map
• Plane mask
• Fill color index
• Fill style
• Logical operation.

7-106 AIX Operating System Technical Reference

1
J

Return Value

GS-SUCC
GS-USUC

Successful.
Unsuccessful.

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspcls

In this book: "gsbply" on page 7-20 and "gseply" on page 7-50.

Advanced Display Graphics Support Library 7-107

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsplym

gsplym

Purpose

Draws a polymarker, a marker at each of a set of specified points.

C Syntax

int gsplym- (number, x, y)

int *number, *x, *y;

FORTRAN Syntax

INTEG ER function gsplym (number, x, y)

INTEGER number, x (*), y (*)

Pascal Syntax

FUNCTION gsplym- (

V AR number: INTEGER;
VAR x, y: ARRAY [l..k] of INTEGER
): INTEGER [PUBLIC];

Description

The gsplym subroutine places a marker, defined by the current relevant attributes, at each
point defined by the parameters.

The relevant attributes are:

• Color map
• Plane mask
• Logical operation (except on IBM 5081 Display)
• Polymarker color index
• Polymarker style index.

7-108 AIX Operating System Technical Reference

Parameters
number

X,Y

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsplym

Defines the number of points in the coordinate arrays. It must be ;;:::: 1.

Define, as coordinate arrays, the location where the origin of each
polymarker is placed.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting .arrays of that length. The k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-CORD
GS-NCOR

Successful.
Invalid coordinate.
Invalid number of coordinates.

Advanced Display Graphics Support Library 7-109

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspoly

gspoly

Purpose

Draws a polyline, a set of lines that connects a sequence of points.

C Syntax

int gspoly- (number, x, y)

int *number, *x, *y;

FORTRAN Syntax

INTEGER function gspoly (number, x, y)

INTEGER number, x (*), y (*)

Pascal Syntax

FUNCTION gspoly - (

V AR number: INTEGER;
VAR x, y: ARRAY [I..k] of INTEGER
): INTEGER [PUBLIC];

Description

The gspoly subroutine draws lines, as defined by the current relevant attributes, between
each pair of points defined by the parameters.

The relevant attributes are:

• Color map
• Plane mask
• Line color index
• Line style
• Logical operation.

7-110 AIX Operating System Technical Reference

)

Parameters
number

X,Y

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspoly

Defines the number of points in the coordinate arrays. It must be z 2.

Define the points for line drawing.

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length. The k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-CORD
GS-NCOR
GS-INAC

Successful.
Invalid coordinate.
Invalid number of coordinates.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-111

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspp

gspp

Purpose

Sets plotter pen speed.

C Syntax

int gspp- (penspd)

int *penspd;

FORTRAN Syntax

INTEG ER function gspp (penspd)

INTEG ER penspd

Pascal Syntax

FUNCTION gspp- (

VARpenspd: INTEGER;
): INTEGER [PUBLIC];

Description

The gspp subroutine sets the plotter pen speed.

Parameters
penspd Specifies the pen speed as a value from 0 to 100, giving a percentage of the

maximum speed of the plotter. The initial pen speed is 100 percent.

7-112 AIX Operating System Technical Reference

/
I

~

Return Value

GS-SUCC
GS-USUC

Successful.

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gspp

Invalid parameter value.

Advanced Display Graphics Support Library 7-113

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqdsp

gsqdsp

Purpose

Returns characteristics of the display monitor and adapter.

C Syntax

void gsqdsp- (display)

int *display;

FORTRAN Syntax

subroutine gsqdsp (display)

INTEGER display (32)

Pascal Syntax

PROCEDURE gsqdsp- (

VAR display: ARRAY [1 .. 32] of INTEGER
): INTEGER [PUBLIC];

Description

The gsqdsp subroutine returns an array containing the display adapter and monitor
characteristics.

Parameters
display Contains, on return, the relevant display/monitor characteristics. The

following table describes the information in the array. Each entry is a
word.

7-114 AIX Operating System Technical Reference

\
)

Entry Description (measure)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqdsp

1 Display/monitor ID. For a printer or plotter, this value is" He", right-justified
in the word.

2 Displayed width of the frame buffer in pixels.
3 Displayed height of the frame buffer in pixels.
4 Physical width of display in millimeters.
5 Physical height of display in millimeters.
6 Number of bit planes or number of bits/pixel.
7 Adapter characteristic flags. (Bit 0 is the most significant bit.) Bits set these

characteristics:

o Color or monochrome; 0 = color, 1 = monochrome
1 By plane or by pixel; 0 = by plane, 1 = by pixel (always 1 for printers and

plotters).
2 Software or hardware cursor; 0 = software, 1 = hardware (always 0 for

printers and plotters).
3-31 Reserved bits.

8 Number of bits for Red digital-to-analog converter (always 2 for printers and
plotters).

9 Number of bits for Green digital-to-analog converter (always 2 for printers and
plotters).

10 Number of bits for Blue digital-to-analog converter (always 2 for printers and
plotters).

11 Minimum cursor width (pixels) (always 0 for printers and plotters).
12 Minimum cursor height (pixels) (always 0 for printers and plotters).
13 Maximum cursor width (pixels) (always 0 for printers and plotters).
14 Maximum cursor height (pixels) (always 0 for printers and plotters).
15 Color table size. For printers and plotters, this specifies the number of colors.
16 Font class:

1 Compressed (always 1 for printers and plotters).
2 Uncompressed.

17 Logical operation capability.

If the value is zero, the adapter supports all 16 two-operand logical operations and
all 256 three-operand logical operations. If non-zero, the most significant bits
represent the two-operand logical operations supported; bit 0 corresponcis to
logical operation 0, bit 1 to logical operation 1, and so on (see "gslop" on
page 7-92).

18-32 Reserved.

Information from this query can be used to scale application coordinates to those of the
frame buffer.

Even if the adapter supports no logical operations, the results of the query indicate that
the adapter supports replace and exclusive-or (logical operations 3 and 6, respectively). The
GSL emulates the latter, if necessary.

Advanced Display Graphics Support Library 7-115

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqdsp

The following display adapter IDs are valid:

Ox0402 IBM 6153 Display Adapter
Ox0405 IBM 6155 Display Adapter
Ox0406 IBM 6154 Display Adapter
Ox0408 IBM 5081 Display Adapter.

Related Information

In this book: "gslop" on page 7-92.

7-116 AIX Operating System Technical Reference

)

gsqfnt

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqfnt

Returns information about the current font.

C Syntax

void gsqfnt- (font)

int *font;

FORTRAN Syntax

subroutine gsqfnt (font)

INTEG ER font (32)

Pascal Syntax

PROCEDURE gsqfnt- (

V AR font: ARRAY [1..32] of INTEGER
): INTEGER [PUBLIC];

Description

The gsqfnt subroutine returns information about the active font.

Parameters
font Contains, on return, the characteristics of the current font. The following

table describes the information in the array. Each entry is a word.
Dimensions are in pixels and the origin is at the lower left corner of the
character box.

Advanced Display Graphics Support Library 7-117

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqfnt

Entry Description

1 Class: 1 = compressed; 2 = uncompressed IBM 5081 Display format (always 1 for
printers and plotters).

2 Font ID.

3 Style.

4 Attribute flags:

bit 31 bold
bit 30 italic
bit 00 proportionally spaced.

(This entry always has all bits set to 0 for printers and plotters.)

5 Number of characters. For printers and plotters, this is the number of fonts x 128.

6 Character baseline. For printers and plotters, no text alignment is allowed and
this value is always -1.

7 Character capsline. For printers and plotters, no text alignment is allowed and
this value is always -1.

8 Character width. For printers and plotters, the character width is given in pixels.
For a proportionally spaced font, the width value represents the maximum width
allowed.

9 Character height. For printers and plotters, the character height is given in
pixels.

10 Underscore top line. For printers and plotters, underscoring is not available and
this value is always -1.

11 Underscore bottom line. For printers and plotters, underscoring is not available
and this value is always -1.

12-32 Reserved.

7-118 AIX Operating System Technical Reference

)

gsqgtx

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqgtx

Returns information about the current geometric font.

C Syntax

void gsqgtx- (font, select)

int *font, *select;

FORTRAN Syntax

subroutine gsqgtx (font, select)

INTEGER font (32), select

Pascal Syntax

PROCEDURE gsqgtx- (

V AR font: ARRAY [1. .32] of INTEGER;
select: INTEGER
): INTEGER [PUBLIC];

Description

The gsqgtx subroutine returns information about the active geometric font.

Parameters
font Contains, on return, the characteristics of the selected PCS descriptor

header. The following table describes the information in the array. Each
entry is a word. Dimensions are in pixels and the origin is at the lower
left corner of the character box.

Advanced Display Graphics Support Library 7-119

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqgtx

select

Entry

1

2

3

4

5

6

7

8

9

10

11-32

Description

FontID.

Segment ID.

o = EBCDIC; 1 = ASCII.

Range of x (P).

Range of y (Q).

Starting character code. Range is Ox21 to OxFE.

Last character code. Range is Ox21 to OxFE.

Font baseline. Value in pixels in the y direction.

Font capline. Value in pixels in the x direction.

Default error code point.

Reserved.

Determines the type of query.

A value of -1 returns the following information in the font parameter
buffer:

Word 1

Word 2

Current active font-ID

Number of PCS descriptor headers (segments for 2-byte text)
loaded at the time of the query.

A value other than -1 returns the PCS descriptor header associated with
that number in the table.

I Related Information

In this book: "fonts" on page 4-68, "Geometric Text Fonts" on page 4-72.4, "gsgtat" on
page 7-73, and "gsgtxt" on page 7-78.

7-120 AIX Operating System Technical Reference

)

gsqloc

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqloc

Returns information about the locator.

C Syntax

void gsqloc- (lac-type, x-res, y-res, kg, vg)

int *loc-type, *x-res, *y-res, *kg, *vg;

FORTRAN Syntax

subroutine gsqloc (lac-type, resolution, kg, vg)

INTEGER loc-type, resolution, kg, vg

Pascal Syntax

PROCEDURE gsqloc- (

VAR lac-type, resolution, kg, vg: INTEGER
): INTEGER [PUBLIC];

Description

The gsqloc subroutine returns the type of the locator, the resolution of the device, and the
current setting of the relative device thresholds or the absolute device dead zone values
(see "gslcat" on page 7-86).

Parameters
lac-type Indicates the type of locator. If the most significant bit of lac-type is 0,

the locator is a mouse. Otherwise, it is a tablet. For a tablet, the next
most significant two bits are:

00 No sensor is attached.
01 A stylus is attached.
10 A four button puck is attached.

Advanced Display Graphics Support Library 7-121

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsqloc

x-res, y-res Indicate the horizontal and vertical resolution of the device in millimeters
per 100 counts.

hg, vg Define the horizontal and vertical values for the locator threshold or dead
zone in units of 0.25 millimeters. (See "gslcat" on page 7-86.)

An attempt to get the locator attributes may fail for a variety of reasons, the most likely of
which is that the device is not attached. The nature of the problem can be found via a
specific ioctl to the virtual terminal. (See "hft" on page 6-23 for more information.)

Return Value

GS-SUCC
GS-UNSC

Successful.
Unsuccessful.

Related Information

In this book: "hft" on page 6-23 and "gslcat" on page 7-86.

7-122 AIX Operating System Technical Reference

)

gsrrst

Purpose

Restores a rectangular block.

C Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsrrst

int gsrrst- (buffer, xl, yl, x2, y2)

int *buffer, *xl, *yl, *x2, *y2;

FORTRAN Syntax

INTEGER function gsrrst (buffer, xl, yl, x2, y2)

INTEGER buffer (*), xl, yl, x2, y2

Pascal Syntax

FUNCTION gsrrst- (

VAR buffer: ARRAY [I..k] of INTEGER;
VAR xl, yl, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description

The gsrrst subroutine restores a block of pixels saved to the frame buffer by the gsrsav
subroutine. (See "gsrsav" on page 7-125.)

The relevant attributes are:

• Plane mask
• Logical operation.

Advanced Display Graphics Support Library 7-123

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsrrst

Parameters
buffer Indicates where gsrrst should restore the block of pixels from.

xl, yl Define the coordiantes of the lower left corner of the rectangular area to
restore.

x2, y2 Define the coordinates of the upper right corner of the rectangular area to
restore. .

The intended purpose of the gsrsav and gsrrst subroutines is efficient saving and
restoring of pixel blocks displayed temporarily at a fixed location in the frame buffer.
Because the GSL saves the frame buffer contents in a device-dependent fashion, it is
generally not possible to use gsrsav and gsrrst to correctly move blocks of pixels from one
position to another in a plane oriented adapter, nor is it possible for the application to
manipulate the buffer without careful consideration of ada.pter characteristics, block size,
and position of the block in the frame buffer.

For further information on moving and storing blocks of pixels, see "gsxblt" on page 7-139.

For Pascal, the application must declare the array passed as being fixed length and declare
the routine as accepting an array of that length. The k in the routine declaration must be
a constant.

Return Value

GS-SUCC
GS-CORD
GS-INAC

Successful.
Invalid coordinate.
Virtual terminal inactive.

Related Information

In this book: "gsrsav" on page 7-125 and "gsxblt" on page 7-139.

7-124 AIX Operating System Technical Reference

gsrsav

Purpose

Saves a rectangular block.

C Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsrsav

int gsrsav- (buffer, xl, yl, x2, y2)

int *buffer, *xl, *yl, *x2, *y2;

FORTRAN Syntax

INTEGER function gsrsav (buffer, xl, yl, x2, y2)

INTEGER buffer (*), xl, yl, x2, y2

Pascal Syntax

FUNCTION gsrsav- (

V AR buffer: ARRAY [l..k] of INTEGER;
VAR xl, yl, x2, y2: INTEGER
): INTEGER [PUBLIC];

Description

The gsrsav subroutine saves a block of pixels, defined by the input rectangle, in storage
starting at the address indicated. This stored block can be restored with the gsrrst
subroutine. (See "gsrrst" on page 7-123.)

The relevant attributes are:

• Plane mask
• Logical operation.

Advanced Display Graphics Support Library 7-125

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsrsav

Parameters
buffer

xl,yl

x2,y2

Indicates where gsrsav should save the block of pixels.

The size of the buffer depends on the size of the rectangle and on the
device organization. For devices organized by plane, the plane mask
attribute determines the number of planes saved for each pixel. For
devices organized by pixel, the entire pixel is always saved. For both
organizations, the unit of access to the frame buffer also plays a role in
calculating the size of the buffer. See "gscmap" on page 7-32 for details.

Note that the gsrsav subroutine does not check whether the buffer is too
small to contain the pixel block. Serious consequences can result if the
buffer is too small. However, a buffer size equal to

(((y2-yl+l)/32+2)*(x2-xl+l))
will hold all save images.

Define the lower left corner of the rectangular area to save. That is, xl is
the greatest lower bound of the pixels saved in x.

Define the upper right corner of the rectangular area to save. That is, x2
is the least upper bound of the pixels saved in x.

The intended purpose of the gsrsav and gsrrst subroutines is efficient saving and
restoring of pixel blocks displayed temporarily at a fixed location in the frame buffer.
Because the GSL saves the frame buffer contents in a device-dependent fashion, it is
generally not possible to correctly move blocks of pixels from one position to another in a
plane-oriented adapter using gsrsav and gsrrst, nor is it possible to manipulate the buffer
without careful consideration of adapter characteristics, block size, and position of the
block in the frame buffer.

For further information on moving and storing blocks of pixels, see "gsxblt" on page 7-139.

For Pascal, the application must declare the array passed as being fixed length and declare
the routine as accepting an array of that length. The k in the routine declaration must be
a constant.

Return Value

GS-SUCC
GS-CORD
GS-INAC

Successful.
Invalid coordinate.
Virtual terminal inactive.

7-126 AIX Operating System Technical Reference

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsrsav

In this book: "gscmap" on page 7-32 , "gsrrst" on page 7-123, and "gsxblt" on page 7-139.

Advanced Display Graphics Support Library 7-127

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gstatt

gstatt

Purpose

Sets the text attributes for annotated text.

C Syntax

int gstatt- (color, page, baseline, font, name)

int *color, *page, *baseline, *font;
char *name;

FORTRAN Syntax

INTEGER function gstatt (color, page, baseline, font, name)

INTEGER color, page, baseline, font
CHARACTER*n name

Pascal Syntax

FUNCTION gstatt- (

VAR color, page, baseline, font: INTEGER;
VAR name: ARRAY [O •• k] of CHAR
): INTEGER [PUBLIC];

Description

The gstatt subroutine defines the attributes for the class of text drawing functions.

Parameters
color

page

Specifies a text color entry in the color map. If it is -1, the attribute is
unchanged.

Specifies the code page of a font for the display to use. The valid values
for IBM supplied fonts are 0, 1, and 2 for code pages PO, PI, and P2,
respectively. The value -1 indicates no change.

7-128 AIX Operating System Technical Reference

baseline

font

name

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gstatt

For printers and plotters, the page parameter is a font value specification.
The IBM 3812 Pageprinter supports 128 different code pages. Again, the
value -1 indicates no change.

Determines the direction of the text drawing. The valid values are:

-1 Attribute remains unchanged.

o Specifies 0 degrees, or left to right in the viewer's terms.

1 Specifies 90 degrees, or up in the viewer's terms.

2 Specifies 180 degrees, or right to left in the viewer's terms.

Note: The characters appear upside down.

3 For 270 degrees, or down in the viewer's terms.

If the baseline is other than 0 degrees, the user has pre-rotated the fonts.
When a baseline change is made, another font path name is required.

Specifies, for displays, the font to use for text output operations. If the
font index is -1, it remains unchanged. If font index is 0, then gstatt uses
the font specified by the name parameter.

For printers and plotters, the font parameter specifies the vertical height
of the font in pixels.

Contains the null-terminated full path name of the file used when the font
attribute is specified as user. See "fonts" on page 4-68 for the format of
this file.

If a single-shift control is outstanding and gstatt is called to change the code page or the
font, then the single-shift control is ignored. (See "Code Page Switching" on page 5-9 for
details about single-shift controls.)

For Pascal, the application must declare the arrays passed as being fixed length and
declare the routine as accepting arrays of that length. The k in the routine declaration
must be a constant.

Return Value

GS-SUCC
GS-COLI
GS-CPID
GS-BASL
GS-FNTI
GS-FNTN
GS-IVFF

Successful.
Invalid color index.
Invalid code page identifier.
Invalid baseline direction.
Invalid font index.
Invalid file name.
Invalid font format.

Advanced Display Graphics Support Library 7-129

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gstatt

Related Information

In this book: "fonts" on page 4-68 and "Code Page Switching" on page 5-9.

7 -130 AIX Operating System Technical Reference

gsterm

Purpose

Terminates use of the GSL.

C Syntax

void gsterm- ()

FORTRAN Syntax

subroutine gsterm ()

Pascal Syntax

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsterm

PROCEDURE gsterm- () [PUBLIC];

Description

The gsterm subroutine terminates the GSL. It deallocates any private storage required,
returns the virtual terminal to KSR Mode, and causes the monitor mode signals to be
ignored.

Advanced Display Graphics Support Library 7-131

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gstext

gstext

Purpose

Writes annotated text.

C Syntax

int gstext- (x, y, number, text)

int *x, *y, *number;
char *text;

FORTRAN Syntax

INTEGER function gstext (x, y, number, text)

INTEGER x, y, number
CHARACTER*n text

Pascal Syntax

FUNCTION gstext- (

VAR x, y, number: INTEGER;
V AR text: ARRAY [1 . . k] of CHAR
): INTEGER [PUBLIC];

Description

The gstext subroutine writes the number of characters indicated by the parameters,
starting at the specified baseline position and according to the relevant attributes. This
subroutine is to be used only with annotated text.

The relevant attributes are:

• Color map
• Plane mask
• Font

7-132 AIX Operating System Technical Reference

• Code page
• Baseline direction
• Text color index.

Parameters

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gstext

x,Y

number

Define the baseline position for writing the text.

Indicates the number of bytes to write from the text string.

text Contains the ASCII codes for the characters to write, as an array.

The graphics written to the frame buffer are determined by the 8-bit ASCII codes in the
input data and the code page attribute. The ASCII control codes in between are ignored
except the following: 1F, 1E, 1D, and 1C (hexadecimal). These control codes cause a shift
to a predefined code page for the next ASCII character only. The code page definitions
are:

1F Bottom half of code page 1
1E Top half of code page 1
1D Bottom half of code page 2
1 C Top half of code page 2.

For any ASCII value between 0 and 31 (decimal), no graphic is written. For any other
ASCII value and code page combination that does not result in a valid graphic, a dash is
written.

For Pascal, the application must declare the array passed as being fixed length and declare
the routine as accepting an array of that length; the k in the routine declaration must be a
constant.

Return Value

GS-SUCC
GS-CORD
GS-FBUF
GS-INAC

Successful.
Invalid coordinate.
Frame buffer overflow.
Virtual terminal inactive.

Advanced Display Graphics Support Library 7-133

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsulns

gsulns

Purpose

Sets the user line pattern.

C Syntax

int gsulns- (pattern, length, begin)

int *pattern, * length, * begin;

FORTRAN Syntax

INTEGER function gsulns (pattern, length, begin)

INTEGER pattern, length, begin

Pascal Syntax

FUNCTION gsulns- (

V AR pattern, length, begin: INTEGER
): INTEGER [PUBLIC];

Description

The gsulns subroutine establishes the user line style.

Parameters
pattern

length

begin

Defines the pixel pattern used for the line style. A 1 bit indicates that the
GSL draws a pixel; a 0 bit means that it does not.

Defines the number of bits (starting with the most significant) of pattern
used for line drawing. The bits are repeated for the length of the line.

The length parameter is a value not less than 2 or greater than 32.

Indicates the length of the starting run of 1 bits in the pattern. It is used
to adjust the beginning and ending runs of the non-continuous line styles.

7-134 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsulns

For proper appearance, the application supplied line pattern should begin with a run of 1
bits and end with a run of 0 bits.

Return Value

GS-SUCC
GS-LENG

Successful.
Invalid length.

Advanced Display Graphics Support Library 7-135

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsunlk

gsunlk

Purpose

Resumes signal processing.

C Syntax

void gsunlk- ()

FORTRAN Syntax

subroutine gsunlk ()

Pascal Syntax

PROCEDURE gsunlk- () [PUBLIC];

Description

The gsunlk subroutine indicates to the GSL that the application is finished with the
display adapter and it can now read the SIGRETRACT signal.

The application supplied routine called at SIGRETRACT can be entered as a result of
gsunlk.

7-136 AIX Operating System Technical Reference

gsvgrn

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsvgrn

Sets the valuator granularity.

C Syntax

int gsvgrn- (valuators, granularity)

char *valuators, *granularity;

FORTRAN Syntax

INTEGER function gsvgrn (valuators, granularity)

CHARACTER valuators, granularity

Pascal Syntax

FUNCTION gsvgrn- (

VAR valuators, granularity: CHAR
): INTEGER [PUBLIC];

Description

The gsvgrn subroutine sets the resolution of input events generated by the valuators, that
is, the number of events per turn of the valuator dial.

Parameters
valuators

granularity

Specifies which valuators to set to the indicated granularity. Each bit in
valuators corresponds to one of the valuator dials, with the most
significant bit indicating that valuator 0 is to be set, the next most
significant bit indicating that valuator 1 is to be set, and so on.

Specifies the desired resolution for the valuators indicated. It must have
a value of 2 through 8 and indicates a resolution of 4, 8, 16, 32, 64, 128, or
256 points per revolution, respectively. The default value is 4, for a
resolution of 16.

Advanced Display Graphics Support Library 7-137

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsvgrn

An attempt to set the valuator granularity may fail for a variety of reasons, the most likely
of which is that the device is not attached. The problem can be determined with a specific
ioctl to the virtual terminal. (See "hft" on page 6-23 for more information.)

Return Value

GS-SUCC
GS-USUC
GS-VALG

Successful.
Unsuccessful.
Invalid granularity.

Related Information

In this book: "hft" on page 6-23

7-138 AIX Operating System Technical Reference

gsxblt

Purpose

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

Moves a rectangular block in system or display adapter me;mory from one location to
another.

C Syntax

int gsxblt- (srcpix, dstpix, mskpix, W, H, logop)

int *srcpix, *dstpix, *mskpix, *w, *H, *logop;

FORTRAN Syntax

INTEGER function gsxblt (srcpix, dstpix mskpix, W, H, logop)

INTEGER srcpix(*), dstpix(*), mskpix(*) W, H, logop

Pascal Syntax

FUNCTION gsxblt- (

V AR srcpix, dstpix, mskpix: ARRAY [32] of INTEGER;
VAR W, H, logop : INTEGER
): INTEGER [PUBLIC];

Description

The gsxblt subroutine moves a rectangular block of pixels from one memory location to
another, either in system memory or in the display adapter frame buffer.

For FORTRAN specific address information, see "gsxptr" on page 7-148.

The gsxblt subroutine is used to support windowing operations, such as overlays and
movement around the screen. The source rectangle and the destination rectangle can be in
either system or adapter pixel memory. The gsxblt subroutine is also used for user defined
cursors and the save and restore of a pixel map for applications like pop-up menus.

The mask operation provided by the gsxblt subroutine controls which pixels in the
destination rectangle can be modified.

Advanced Display Graphics Support Library 7-139

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

The relevant attributes are:

• Plane mask
• Color map.

Parameters
srcpix

dstpix

mskpix

W

H

logop

Contains the address of the source pixel map.

Contains the address of the destination pixel map.

Contains the address of the mask operation pixel map. This parameter
should equal zero if there is no bit mask operator to apply.

The mskpix pixel map must always consist of only one bit per pixel, and
the mask rectangle must always be the same size as the source and
destination rectangles. In the mask rectangle, a 1 bit means that the
corresponding pixel in the destination rectangle can be modified, while a 0
bit means the destination pixel will not be modified.

Defines the width of the rectangular area to be transferred.

Defines the height of the rectangular area to be transferred.

Indicates the logical operation to perform between the source pixel map
and the destination pixel map.

In the following table, please note:

• The source or tile (a special type of source) pixels represent bits of
data to be merged in some way with the corresponding bits of data in
the destination rectangle.

• The first three columns of the table specify the operations you can
perform, and the Code column contains the corresponding value you
should specify for the logop parameter.

• There are two unique codes for each logical operation, to be used
depending on whether the tiling bit in the source pixel map is set.
Codes 0-15 must be used when the tiling bit is not set, while codes
16-31 must be used when the tiling bit is set.

• A - (tilde) represents the logical INVERSE.

7-140 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

Type of Logical Type of Code
Source Operation Destination

Destination clear 0
Set Destination 15

No operation Destination 5
- Destination 10

Source REPLACE Destination 3
Source AND Destination 1
Source AND - Destination 2
Source EXCLUSIVE-OR Destination 6
Source OR Destination 7
Source OR - Destination 11

-Source REPLACE Destination 12
-Source AND Destination 4
-Source AND - Destination 8
-Source EXCLUSIVE-OR Destination 9
-Source OR Destination 13
-Source OR - Destination 14

Destination clear 16
Set Destination 31

No operation Destination 21
- Destination 26

Tile REPLACE Destination 19
Tile AND Destination 17
Tile AND - Destination 18
Tile EXCLUSIVE-OR Destination 22
Tile OR Destination 23
Tile OR - Destination 27

-Tile REPLACE Destination 28
-Tile AND Destination 20
-Tile AND - Destination 24
-Tile EXCLUSIVE-OR Destination 25
-Tile OR Destination 29
-Tile OR - Destination 30

Advanced Display Graphics Support Library 7-141

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

A pixel map is a 32-bit array of integers that contains the following fields:

o Device ID (0 for memory)

1 Flags

In the following explanations, bit 0 is the low-order bit.

• Plane (XY) format is selected when bit 0 is set and bits 1 and 2 are not set.
Pixel (Z) format is selected when bits 0, 1, and 2 are not set.

• A repetitive tile is specified when bit 3 is set, while no tile is specified when
bit 3 is not set.

If the repetitive tile bit is set in the srcpix, pixel map, then the Device ID field
in that pixel map must equal zero. The tile data must be in memory.

• Bit 4 selects the lower-left coordinate system when it is set, and the upper-left
coordinate system when it is not set.

2 Height (in pixels)

3 Width (in pixels)

This value must be an even multiple of 16 pixels for all pixel maps, which means
that all pixel maps must be at least 16 pixels wide.

4 Number of bits per pixel

5 Pixels per byte, right justified

6 Bytes per pixel

7 x offset

8 yoffset

9 Address of upper-left corner of data

10 Foreground color index

11 Background color index

12 - 31 Reserved.

Definitions of pixel map terms include:

Device ID
This is a required parameter for all pixel map definitions. If the pixel map being
defined is a display adapter, this field must contain the Device ID of that display
adapter. If the pixel map resides in system memory, then this field must equal O.

Pixel format
Data stored in this format has all bits for a pixel stored together. The data
starts with the origin and increases first in the x direction, then in the y
direction.

7-142 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

As an example using the upper-left coordinate system, a pixel map with four bits
per pixel and one pixel per byte stores the four bits for the pixel at location (0,0)
in the first byte of the data area, right justified in the byte. The four bits for the
pixel at location (1,0) are stored in the second byte, followed by the rest of the
pixel values in that row. When the end of the row is reached, the next byte
contains the four bits for the pixel at location (0,1), followed by the rest of the
pixel values in that row, and so on for the entire image.

Plane format
Plane format indicates that each of the bits that make up a pixel is stored in a
separate, consecutive plane in memory. The most significant bit is first,
followed by the next significant, and so on to the least significant bit, which is
last. The bits within a plane are packed together 8 bits per byte. Therefore,
using the upper-left coordinate system as an example, a pixel map with four bits
per pixel would consist of four separate planes of data with the first bit value
being the one for location (0,0) and increasing first in the x direction, then in
the y direction.

Repetitive tiling operation
This operation consists of repeatedly copying a 16 pixel wide by 16 pixel high
tile rectangle pointed to by the tile pixel map data address to fill a rectangular
area of a size specified by the Hand W parameters of this call. The format of
the tile data is determined by the format defined in the flags field of the tile
pixel map structure.

Upper-left coordinate system
This indicates that the upper-left corner of the pixel map is used as the origin of
the coordinate system, with increasing values of x moving to the right and
increasing values of y moving down. The x offset and y offset are to set the
upper-left corner of the rectangle when using this coordinate system.

Lower-left coordinate system
This indicates that the lower-left corner of the pixel map is used as the origin of
the coordinate system, with increasing values of x moving to the right and
increasing values of y moving up. The x offset and the y offset are set to the
lower-left corner of the rectangle when using this coordinate system. Note,
however, that the data address specified in the pixel map structure must always
point to the upper-left corner of the data area no matter which coordinate
system is defined.

Number of bits per pixel
This field identifies the number of bits of data required to define a pixel value.
For example, a simple monochrome display requires only one bit per pixel, while
a color display may require four bits of information to define a pixel.

Number of pixels per byte
If the number of bits per pixel is less than 8, this field defines how many pixels
are stored in each byte of pixel map data. A pixel map with only one bit per

Advanced Display Graphics Support Library 7-143

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

pixel must always store 8 pixels per byte. It is strongly recommended that for
between 2 and 7 bits per pixel, you store data with only one pixel per byte.

Bytes per pixel
If the number of bits per pixel is greater than 8, this field defines how many
bytes are used to store each pixel. It is strongly recommended that for between
9 and 16 bits per pixel, you store data two bytes per pixel. For between 17 and
32 bits per pixel, data should be stored four bytes per pixel.

Foreground color index
This specifies the color index value to use for a value of 1 in the source pixel
map during a color expansion operation.

Background color index
This specifies the color index value to use for a value of 0 in the source pixel
map during a color expansion operation.

A color expansion operation takes place automatically when the source pixel map data
area contains only one bit per pixel and the destination pixel map data area is a color
display adapter frame buffer defined to have more than one bit per pixel. In this case,
when a 1 is specified in the source pixel map data area, the foreground color index value
specified in the destination pixel map (dstpix) is written to the destination data area.
When a 0 is specified in the source pixel map data area, the background color index value
specified in the destination pixel map (dstpix) is written to the destination data area.

The foreground color index and the background color index must be initialized in the dstpix
pixel map before calling this operation, but do not need to be initialized in the srcpix or
mskpix pixel maps.

Not all logical operations are supported for a color expansion operation. The following
table shows which operations are supported. In this table, a - (tilde) represents the
logical INVERSE. Note that the operations in the left column of the table are for source
pixel maps, while the operations in the right column are for tile pixel maps.

Type of Operation Code Type of Operation Code

Destination clear 0 Destination clear 16
Set destination 15 Set destination 31
Destination 5 Destination 21

- Destination 10 - Destination 26
Source 3 Tile 19

-Source 12 -Tile 28

If a source or destination pixel map structure defines the active display adapter, you do not
need to initialize all the fields of that pixel map structure. Device-dependent information,
such as height, width, pixels per byte, bytes per pixel, and address of data, is supplied
automatically. You must initialize the fields for device ID, bits per pixel, flags (except for
the data format bits), x offset, and y offset. Also, the foreground color index and the
background color index must be initialized if appropriate for this adapter.

7-144 AIX Operating System Technical Reference

(
\

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxblt

When initializing a pixel map structure to use as the mskpix parameter:

1. The flags field should equal a value of OxO 1 if the upper left coordinate system will be
used or Ox 11 if the lower left coordinate system will be used.

2. The number of bits per pixel must equal l.
3. The number of pixels per byte must equal 8.

The GSL plane mask attribute applies to all gsxblt operations that use the display adapter
as the source or destination pixel map.

The GSL color map attribute applies to all gsxblt operations that use the display adapter
as the destination pixel map.

Return Value

GS-SUCC
GS-IWID

GS-IHEI

GS-NPLF
GS_INAC
GS-CORD

GS-IBPP
GS-CEXP

GS-PWID

Successful.
Invalid width specification. The x-offset plus the W parameter of one of
the pixel maps exceeds the total width of that pixel map.
Invalid height specification. The y-offset plus the H parameter of one of
the pixel maps exceeds the total height of that pixel map.
Source and destination data formats do not match.
Virtual terminal inactive.
Invalid coordinate specified that placed the origin of the source,
destination, or mask rectangle outside its pixel map.
Invalid value for bits per pixel in the source pixel map.
Color expansion operation attempted, but the destination pixel map was not
a display adapter.
The width of one of the pixel maps is not an even multiple of 16 pixels.

Related Information

In this book: "gsxptr" on page 7-148.

Advanced Display Graphics Support Library 7-145

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxcnv

gsxcnv

Purpose

Converts pixel map data organization.

C Syntax

int gsxcnv- (inppix, outpix)

int *inppix, *outpix;

FORTRAN Syntax

INTEGER function gsxcnv (inppix, outpix)

INTEGER inppix(*), outpix(*)

Pascal Syntax

FUNCTION gsxcnv- (

V AR inppix, outpix: INTEGER
): INTEGER [PUBLIC];

Description

The gsxcnv subroutine converts pixel map data to and from planes. That is, gsxcnv
converts XY form to and from pixels, or Z form.

See "gsxblt" on page 7-139 for more information on data formats and the definition of a
pixel map.

7-146 AIX Operating System Technical Reference

Parameters
inppix

outpix

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxcnv

Points to the address of the pixel map whose data area is to be converted.

Points to the address of the pixel map that contains the address of where
to put the converted data.

Both the inppix and outpix parameters contain the address of a pixel map. The fields of
each pixel map must be completely initialized before calling this subroutine. Both pixel
maps must point to data areas that reside in system memory, not in a display adapter frame
buffer.

The inppix and outpix pixel maps do not have to specify the same number of bits per pixel.
If there are more input bits per pixel, the least significant bits are truncated. If there are
less input bits per pixel than required to fill out the destination, the most significant bits
are filled with zeros.

The gsxcnv subroutine only supports pixel maps defined to have 8 bits per pixel or less. If
a pixel format pixel map is defined with less than 8 bits per pixel, the data must be
arranged 1 byte per pixel, right justified in that byte.

The widths and heights of the two data areas must be identical.

Warning: The calling process must allocate enough storage in the area
pointed to by the outpix pixel map to contain all of the converted data.

Return Value

GS-SUCC
GS-INPF
GS-OUTF
GS-BMAX

Successful.
Invalid data format specified in inppix pixel map structure.
Invalid data format specified in outpix pixel map structure.
Pixel map defines data of more than 8 bits per pixel.

Related Information

In this book: "gsxblt" on page 7-139.

Advanced Display Graphics Support Library 7-147

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxptr

gsxptr

Purpose

Handles FORTRAN addressing of data.

C Syntax

None

FORTRAN Syntax

INTEGER function gsxptr (intptr, datptr)

INTEGER intptr(*), datptr(*)

Pascal Syntax

None

Description

The gsxptr subroutine places a data address in a variable so that the data address field of
a pixel map structure can be initialized.

In a FORTRAN application, you must first call the gsxptr subroutine, then the gsxblt
subroutine.

For C and Pascal applications and for more information, see "gsxblt" on page 7-139.

Parameters
intptr

datptr

Contains the address of the variable containing the data area.

Will be initialized to the address of the data area.

7-148 AIX Operating System Technical Reference

Return Value

GS-SUCC Successful.

Related Information

TNL SN20-9869 (26 June 1987) to SC23-0809-0
gsxptr

In this book: "gsxblt" on page 7-139.

Advanced Display Graphics Support Library 7-149

TNL SN20-9869 (26 June 1987) to SC23-0809-0

7-150 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Chapter 8. Sockets

Sockets 8-1

TNL SN20-9881 (25 September 1987) to SC23-0809-0

About This Chapter

This chapter contains information about the sockets function provided by AIX.

The information in this chapter is divided into two sections: "Overview" and "Socket
Routines." The "Overview" section provides introductory material, definitions, and sources
of additional information, while the "Socket Routines" section contains reference
information on the subroutines that perform socket operations.

If you are not familiar with the use of sockets as a communication tool, you should read
the entire "Overview" section first, then refer to the reference material as needed. If you
are familiar with sockets, you may want to scan the information in the overview to see
how the facility works in AIX.

8-2 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

I Overview

A socket is an object that provides communications between processes. Sockets are
referenced by file descriptors and have qualities similar to those of a character special
device. Read, write, and select operations can be performed on sockets by using the
appropriate system calls.

A socket is created with the socket subroutine. (See "socket" on page 8-47.) This
subroutine creates a socket of a specified domain, type, and protocol. Sockets have
different qualities depending on these specifications.

A domain is a name space or an address space. Each domain has different rules for valid
names and interpretation of names. After a socket is created, it can be given a name,
according to the rules of the domain in which it was created.

AIX provides support for the following socket domains:

Local Provides socket communication between processes running on the same AIX
system when a domain of AF - UNIX is specified. A name in this domain is a
string of ASCII characters whose maximum length is machine dependent.

Internet Provides socket communication between a local process and a process running
on a remote host when a domain of AF -INET is specified. This domain
requires that the IBM RT PC Interface Program for use with TCP!IP be
installed on your system. A name in this domain is a DARPA Internet address,
made up of a 32-bit IP address and a I6-bit port address. (See the discussion of
addresses and names in Interface Program for use with TCP! IP.)

In AIX, there are two types of sockets:

SOCK-DGRAM

SOCK-STREAM

Provides datagrams, which are connectionless messages of a fixed
maximum length. This type of socket is generally used for short
messages, such as a name server or time server, since the order and
reliability of message delivery is not guaranteed.

In the local domain, SOCK-DGRAM is similar to a message queue.
In the Internet domain, SOCK-DGRAM is implemented on the
UDP lIP protocol.

Provides sequenced, two-way byte streams with a transmission
mechanism for out-of-band data. The data is transmitted on a reliable
basis, in order.

In the local domain, SOCK-STREAM is like a pipe. In the Internet
domain, SOCK-STREAM is implemented on the TCP lIP protocol.

A protocol is used only is more than one protocol is supported in this domain. Otherwise,
this parameter is set to O.

Sockets 8-3

TNL SN20-9881 (25 September 1987) to SC23-0809-0

I Socket Names

A socket name, which is also called a socket address, is specified by the sockaddr
structure. This structure is defined in the sys/socket.h header file, and it contains the
following members:

ushort
char

sa-family;
sa-data[14] ;

/* Defines socket address family */
/* Contains up to 14 bytes of direct address */

The sa-family is the address family or domain, either AF -UNIX for the local domain or
AF -INET for the Internet domain. The contents of sa-data depend on the protocol in
use, but generally a socket name consists of a machine name part and a port or service
name part.

8-4 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

I Related Network Publications

For general information about networking, the following publications are recommended.
These publications are distributed by the Network Information Center on behalf of the
Defense Communications Agency and Defense Advanced Research Projects Agency
(DARP A). The mailing address is:

Network Information Center
SRI International
Menlo Park, CA 92025

• Assigned Numbers, RFC990, J. Reynolds, J. Postel

• Broadcasting Internet Datagrams, RFC919, J. Mogul

• Domain Names - Concepts and Facilities, RFC882, P. Mockapetris

• Domain Names - Implementation and Specification, RFC883, P. Mockapetris

• File Transfer Protocol, RFC959, J. Postel

• Internet Control Message Protocol, RFC792, J. Postel

• Internet Name Server Protocol, IENl16, J. Postel

• Internet Protocol, RFC791, J. Postel

• Internet Standard Subnetting Procedure, RFC950, J. Mogul

• Name/Finger, RFC742, K. Harrenstien

• Official ARPA-Internet Protocols, RFC944, J. Reynolds, J. Postel

• Simple Mail Transfer Protocol, RFC821, J. Postel

• Telnet Binary Transmission, RFC856, J. Postel, J. Reynolds

• Telnet Option Specifications, RFC855, J. Postel, J. Reynolds

• Telnet Protocol Specification, RFC854, J. Postel, J. Reynolds

• Telnet Terminal Type Option, RFC930, M. Solomon, E. Wimmers

• The TFTP Protocol, RFC783, K. R. Sollins

• Time Protocol, RFC868, J. Postel, K. Harrenstien

• Transmission Control Protocol, RFC793, J. Postel

• Trivial File Transfer Protocol, RFC783, K. R. Sollins

• User Datagram Protocol, RFC768, J. Postel

Sockets 8-5

TNL SN20-9881 (25 September 1987) to SC23-0809-0

I Socket Routines

The following section contains reference material for each of the subroutines that perform
socket operations. These subroutines are listed in alphabetical order according to routine
name.

8-6 AIX Operating System Technical Reference

iaccept

I Purpose

Accepts a connection on a socket.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int accept (s, addr, addrlen)
int s;
struct sockaddr *addr;
int *addrlen;

I Description

TNL SN20-9881 (25 September 1987) to SC23-0809-0
accept

The accept subroutine extracts the first connection on the queue of pending connections,
creates a new socket with the same properties as s, and allocates a new file descriptor for
that socket. If no pending connections are present on the queue and the calling socket is
not marked as non-blocking, accept blocks the caller until a connection is present. If the
socket specified by s is marked non-blocking and there are no connections pending on the
queue, accept returns an error as described below. The accepted socket cannot be used to
accept more connections. The original socket, s, remains open and can accept more
connections.

The s parameter is a socket that was created with the socket subroutine, was bound to an
address with the bind subroutine, and has issued a successful call to the listen subroutine.

The addr parameter is a result parameter that is filled in with the address of the
connecting entity, as known to the communications layer. The exact format of addr is
determined by the domain in which the communication occurs. The addrlen parameter
initially contains the amount of space pointed to by the addr parameter. On return, it
contains the actual length (in bytes) of the address returned. This subroutine is used with
connection-based socket types, such as SOCK-STREAM.

Before calling the accept subroutine, you can find out if the socket is ready to accept the
connection by doing a read select with the select system call.

Sockets 8-7

TNL SN20-9881 (25 September 1987) to SC23-0809-0
accept

I Return Value

Upon successful completion, the non-negative socket descriptor of the accepted socket is
returned. If the accept routine fails, a value of -1 is returned, and errno is set to indicate
the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF
ENOTSOCK
EOPNOTSUPP
EFAULT

EWOULDBLOCK

I Related Information

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The referenced socket is not of type SOCK-STREAM.
The addr parameter is not in a writable part of the user address
space.

The socket is marked non-blocking, and no connections are
present to be accepted.

In this book: "select" on page 2-111, "bind" on page 8-9, "connect" on page 8-11, "listen"
on page 8-36, and "socket" on page 8-47.

8-8 AIX Operating System Technical Reference

,bind

TNL SN20-9881 (25 September 1987) to SC23-0809-0
bind

I Purpose

Binds a name to a socket.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int bind (s, name, namelen)
int S;
struct sockaddr *name;
int namelen;

~ Description

The bind subroutine assigns a name to an unnamed socket. When a socket is created with
the socket subroutine, it belongs to the address family specified in the socket call, but has
no name assigned yet. The bind subroutine requests that name be assigned to the socket.

Note that all named sockets must have unique names. A socket does not have to have a
name before it can make a connection to another socket, and a socket returned by the
accept subroutine already has a name assigned to it by the subroutine.

! Return Value

Upon successful completion, a value of 0 is returned. If the bind routine fails, a value of-1
is returned, and errno is set to indicate the error.

Sockets 8-9

TNL SN20-9881 (25 September 1987) to SC23-0809-0
bind

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF

ENOTSOCK

EADDRNOTAVAIL

EADDRINUSE

EINVAL

EACCESS

EFAULT

I Related Information

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address.

The requested address is protected, and the current user does
not have permission to access it.

The addr parameter is not in a writable part of the user address
space.

In this book: "connect" on page 8-11, "listen" on page 8-36, "socket" on page 8-47, and
"getsockname" on page 8-28.

8-10 AIX Operating System Technical Reference

I connect

I Purpose

Initiates a connection on a socket.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int connect (8, name, namelen)
int 8;
struct sockaddr *name;
int namelen;

I Description

TNL SN20-9881 (25 September 1987) to SC23-0809-0
connect

The s parameter is a socket. If it is of type SOCK-DGRAM, then this subroutine
permanently specifies the peer, the socket to which data grams are sent. This allows use of
the send subroutine rather than sendto or sendmsg, which require the address that the
socket data should be sent to.

If the socket is of type SOCK-STREAM, which provides read and write capability
between sockets, this subroutine attempts to make a connection to another socket. The
other socket is specified by name, which is an address in the communications space of the
socket. Each communications space interprets the name parameter in its own way.

I Return Value

Upon successful completion, a value of 0 is returned. If the connect routine fails, a value
of -1 is returned, and errno is set to indicate the error.

Sockets 8-11

TNL SN20-9881 (25 September 1987) to SC23-0809-0
connect

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF
ENOTSOCK
EADDRNOTA VAIL
EAFNOSUPPORT

EISCONN
ETIMEDOUT

ECONNREFUSED
ENETUNREACH
EADDRINUSE
EFAULT

EWOULDBLOCK

I Related Information

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The specified address is not available from the local machine.

The addresses in the specified address family cannot be used
with this socket.

The socket is already connected.

The establishment of a connection timed out before a connection
was made.

The attempt to connect was rejected.

The network is not reachable from this host.

The specified address is already in use.

The addr parameter is not in a writable part of the user address
space.

The socket is marked non-blocking, and the connection cannot
be immediately completed. You can select the socket for writing
during the connection process.

In this book: "select" on page 2-111, "accept" on page 8-7, "socket" on page 8-47, and
"getsockname" on page 8-28.

8-12 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostbyaddr, ...

I gethostbyaddr, gethostbyname, sethostent, endhostent

I Purpose

Gets network host en try.

I Library

Sockets Library (libsoek.a)

! Syntax

#inelude < netdb.h >

struet hostent *gethostbyaddr (addr, len, type)
ehar *addr;
int len, type;

struet hostent *gethostbyname (name)
ehar *name;

! Description

void sethostent (stayopen)
int stayopen;

void endhostent ()

The gethostent, gethostbyname, and gethostbyaddr subroutines each return a pointer
to an object. This object is a hostent structure, which contains information obtained from
a name server program, or a field from a line in the fete/hosts file (the network host data
base).

The gethostbyname subroutine recognizes either domain name servers (as described in
RFC883) or IENl16 name servers. (The details of these name servers are contained in
publications listed in "Related Network Publications" on page 8-5.) If the file
/ete/resolv.eonf exists, a domain name server is assumed by gethostbyname. (See
"resolv.conf' on page 5-68.3.) If /ete/resolv.eonf does not exist, an IENl16 name server is
assumed.

When domain name servers are used and the server request times out, the local fete/hosts
file is checked. When an IENl16 name server is used, the fete/hosts file is checked before
the server is queried. Note that the gethostbyaddr subroutine can only use a domain
name server.

The hostent structure is defined in the netdb.h header file, and it contains the following
members:

Sockets 8-13

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostbyaddr,

char *h-name; /* official name of host
char **h-aliases; /* alias list
int h-addrtype; /* host address type
int h-length; /* length of address
char **h-addr-list; /* list of addresses

*/
*/
*/
*/
*/

#define h-addr h-addr-list[O] /* address, for backward compatibility */
The members of the structure are defined below:

h-name Official name of the host.

h-aliases An array, terminated with a 0, of alternate names for the host.

h-addrtype The type of address being returned. The subroutine always sets this value
to AF-INET.

h-Iength The length of the address in bytes.

h-addr -list An array, terminated by a 0, of pointers to the network addresses for the
host. Host addresses are returned in network byte order.

h-addr The first address in h-addr-list, provided for backward compatibility.

The sethostent subroutine opens and rewinds the file. If the stayopen parameter is 0, the
host data base is closed after each call to the gethostbyname or gethostbyaddr
subroutines. Otherwise, the file is not closed after each call.

The endhostent subroutine closes the file.

The gethostbynarne and gethostbyaddr subroutines query the nameserver or search the
file sequentially from its beginning until finding a matching host name or host address, or
until encountering the end of the file. Host addresses are supplied in network order.

I Return Value

The gethostbynarne and gethostbyaddr subroutines return a pointer to a hostent
structure on success.

Note: The return value points to static data that is overwritten by subsequent calls.

A NULL pointer (0) is returned if an error occurs or the end of the file is reached and the
h-errno variable is set to indicate the error.

8-14 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostbyaddr, ...

I Diagnostics

I File

The gethostbyname and gethostbyaddr subroutines fail if one or more of the following
are true:

HOST -NOT _FOUND The host specified by the name parameter was not found.

TRY -AGAIN The local server did not receive a response from an authoritative
server. Try again later.

NO-RECOVERY This error code indicates an unrecoverable error.

NO-ADDRESS The requested name is valid but does not have an Internet
address at the name server.

fete/hosts Host name data base.
/ete/resolv.conf Name server and domain name data base.

I Related Information

In this book: "hosts" on page 5-58.2, "resolv.conf' on page 5-68.3, and "Related Network
Publications" on page 8-5.

Sockets 8-15

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostid, . . .

I gethostid, sethostid

I Purpose

Gets or sets the unique identifier of the current host.

I Library

Sockets Library (lihsock.a)

I Syntax

int gethostid ()

I Description

int sethostid (hostid)
int hostid;

The gethostid subroutine returns the 32-bit identifier for the current host, as set by
sethostid.

The sethostid subroutine establishes a 32-bit identifier for the current host that is
intended to be unique. Often, this is a DARPA Internet address for the local machine.

This subroutine can only be used by processes with an effective user ID of superuser. In
the AIX Operating System, the host ID is usually set by the netconfig portion of the
Interface Program for use with TCP/IP, using the /etc/net configuration file.

I Return Value

Upon successful completion, the gethostid subroutine returns the identifier for the
current host, and the sethostid subroutine returns a value of o. If the gethostid or
sethostid subroutine fails, a value of -1 is returned, and errno is set to indicate the error.

8-16 AIX Operating System Technical Reference

I Diagnostics

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostid, . . .

The gethostid or sethostid subroutine fails if the following is true:

EINVAL There are no IP interfaces available. IBM RT PC Interface
Program for use with TCP lIP is not installed on this system.

The sethostid subroutine also fails if the following is true:

EPERM The calling process did not have an effective user ID of
superuser.

I Related Information

In this book: "getsockname" on page 8-28.

The hostname command in Interface Program for use with TCPIIP.

Sockets 8-17

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostname, .

I gethostname, sethostname

I Purpose

Gets or sets the name of the current host.

I Library

Sockets Library (libsock.a)

I Syntax

int gethostname (name, namelen)
char *name;
int namelen;

I Description

int sethostname (name, namelen)
char *name;
int name len;

The gethostname subroutine returns the standard host name of the current host, as set by
sethostname. The parameter namelen specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

The sethostname subroutine sets the name of the host machine name with the length
namelen. This subroutine can only be used by processes with an effective user ID of
superuser. In the AIX Operating System, the host name of a machine is usually set by the
Interface Program for use with TCPjIP in its initialization program (jetc/rc.tcpip).

I Return Value

Upon successful completion, a value of 0 is returned. If the gethostname or
sethostname routine fails, a value of -1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EFAULT

EPERM

The name parameter or namelen parameter gives an address that
is not valid.

The calling process did not have an effective user ID of
superuser.

8-18 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
gethostname, . . .

I Related Information

In this book: "gethostid, sethostid" on page 8-16.

The hostname command in Interface Program for use with TCPIIP.

Sockets 8-19

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getnetent, . . .

I getnetent, getnetbyaddr, getnetbyname, setnetent,
lendnetent

,Purpose

Gets network entry.

I Library

Sockets Library (libsock.a)

I Syntax

#include < netdb.h >

struct netent *getnetent ()

struct netent *getnetbyname (name)
char *name;

struct netent *getnetbyaddr (net)
long net;

, Description

void setnetent (stayopen)
int stayopen;

void endnetent ()

The getnetent, getnetbyname, and getnetbyaddr subroutines each return a pointer to
an object. This object is a netent structure, which contains the field of a line in the
jetc/networks file (the network data base). The netent structure is defined in the
netdb.h header file, and it contains the following members:

char *n-name; /* official name of net */
char **n-aliases; /* alias list */
int n-addrtype; /* net number type */
long n-net; /* net number */

The members of the structure are defined below:

n-name Official name of the network.

n-aliases An array, terminate with a zero, of alternate names for the network.

8-20 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getnetent,

n-addrtype The type of network number being returned. This value must be
AF-INET.

n-net The network number. Network numbers are returned in machine byte
order.

The getnetent subroutine reads the next line of the file. If the file is not open, getnetent
opens it.

The setnetent subroutine opens and rewinds the file. If the stayopen parameter is 0, the
net data base is closed after each call to getnetent. Otherwise, the file is not closed after
each call.

The endnetent subroutine closes the file.

The getnetbyname and getnetbyaddr subroutines search the file sequentially from its
beginning until finding a matching net name or net number, or until encountering the end
of the file. Network numbers are supplied in host order.

I Return Value

I File

A pointer to a netent structure is returned on success.

Note: The return value points to static data that is overwritten by subsequent calls.

A NULL pointer (0) is returned if an error occurs or the end of the file is reached.

jete/networks Network name data base.

I Related Information

In this book: "networks" on page 5-66.2.

Sockets 8-21

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getpeername

I getpeername

I Purpose

Gets the name of the connected peer.

I Library

Sockets Library (libsock.a)

I Syntax

int getpeername (s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

I Description

The getpeername subroutine returns the name of the peer, or connected socket, that is
connected to the socket specified by the s parameter. You should initialize the name len to
indicate the amount of space pointed to by name. On return, it contains the actual size of
the name returned (in bytes).

I Return Value

Upon successful completion, a value of 0 is returned. If the getpeername routine fails, a
value of -1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF
ENOTSOCK
ENOTCONN
ENOBUFS

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The socket is not connected.

Insufficient resources were available in the system to complete
the call.

8-22 AIX Operating System Technical Reference

EFAULT

I Related Information

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getpeername

The addr parameter is not in a writable part of the user address
space.

In this book: "bind" on page 8-9, "socket" on page 8-47, and "getsockname" on page 8-28.

Sockets 8-23

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getprotoent, .

I getprotoent, getprotobynumber, getprotobyname,
Isetprotoent, endprotoent

I Purpose

Gets protocol entry.

I Library

Sockets Library (libsock.a)

I Syntax

#inc1ude < netdb.h >

struct protoent *getprotoent ()

struct protoent *getprotobyname (name)
char *name;

struct protoent *getprotobynumber (proto)
int proto;

I Description

void setprotoent (stayopen)
int stayopen;

void endprotoent ()

The getprotoent, getprotobyname, and getprotobynumber subroutines each return a
pointer to an object. This object is a protoent structure, which contains the field of a line
in the /etc/protocols file (the network protocol data base). The protoent structure is
defined in the netdb.h header file, and it contains the following members:

char
char
long

*p-name;
**p-aliases;
p-proto;

/* official name of protocol */
/* alias list */
/* protocol number */

The members of the structure are defined below:

p-name Official name of the protocol.

p-aliases An array, terminated by a 0, of alternate names for the protocol.

p-proto The protocol number.

8-24 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getprotoent,

The getprotoent subroutine reads the next line of the file. If the file is not open,
getprotoent opens it.

The setprotoent subroutine opens and rewinds the file. If the stayopen parameter is 0, the
protocol data base is not closed after each call to getprotoent. Otherwise, the file is not
closed after each call.

The endprotoent subroutine closes the file.

The getprotobyname and getprotobynumber subroutines search the file sequentially
from its beginning until finding a matching protocol name or protocol number, or until
encountering the end of the file.

I Return Value

I File

A pointer to a protoent structure is returned on success.

Note: The return value points to static data that is overwritten by subsequent calls.

A NULL pointer (0) is returned if an error occurs or the end of the file is reached.

fete/protocols Protocol name data base.

I Related Information

In this book: "protocols" on page 5-68.1.

Sockets 8-25

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getservent, .

I getservent, getservbyname, getservbyport, setservent,
I endservent

I Purpose

Gets service entry.

I Library

Sockets Library (libsock.a)

I Syntax

#include < netdb.h >

struct servent *getservent ()

struct servent *getservbyname (name, proto)
char *name, *proto;

struct servent *getservbyport (port, proto)
int port;
char *proto;

I Description

void setservent (stayopen)
int stayopen;

void endservent ()

The getservent, getservbyname, and getservbyport subroutines each return a pointer
to an object. This object is a servent structure, which contains the field of a line in the
/etc/services file (the network services data base). The servent structure is defined in
the netdb.h header file, and it contains the following members:

char
char
long
char

*s-name;
**s-aliases;
s-port;
*s-proto;

/* official name of service */
/* alias list */
/* port where service resides */
/* protocol to use */

The members of the structure are defined below:

s-name Official name of the service.

s-aliases An array, terminated by a 0, of alternate names for the service.

8-26 AIX Operating System Technical Reference

s-port

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getservent, . . .

The port number at which the service resides. Port numbers are returned in
network byte order.

s-proto The name of the protocol to use when contacting the service.

The getservent subroutine reads the next line of the file. If the file is not open,
getservent opens it.

The setservent subroutine opens and rewinds the file. If the stayopen parameter is 0, the
service data base is closed after each call to getservent. Otherwise, the file is not closed
after each call.

The endservent subroutine closes the file.

The getservbyname and getservbyport subroutines search the file sequentially from its
beginning until finding a matching protocol name or port number, or until encountering
the end of the file. When a protocol name is also supplied, searches also match the
protocol.

I Return Value

I File

A pointer to a servent structure is returned on success.

Note: The return value points to static data that is overwritten by subsequent calls.

A NULL pointer (0) is returned if an error occurs or the end of the file is reached.

/etc/services Service name data base.

I Related Information

In this book: "getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent"
on page 8-24 and "services" on page 5-68.5.

Sockets 8-27

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getsockname

I getsockname

I Purpose

Gets the socket name.

I Library

Sockets Library (libsock.a)

I Syntax

int getsockname (8, name, namelen)
int S;
struct sockaddr *name;
int *namelen;

I Description

The getsockname subroutine stores the current name for the socket specified by the s
parameter into the structure pointed to by the name parameter. Initialize the value
pointed to by the namelen parameter to indicate the amount of space pointed to by name.
On return, the namelen parameter points to the actual size of the name returned (in bytes).

I Return Value

Upon successful completion, a value of 0 is returned. If the getsockname routine fails, a
value of -1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF
ENOTSOCK
ENOBUFS

EFAULT

The 8 parameter is not valid.

The 8 parameter refers to a file, not a socket.

Insufficient resources were available in the system to complete
the call.

The addr parameter is not in a writable part of the user address
space.

8-28 AIX Operating System Technical Reference

I Related Information

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getsockname

In this book: "bind" on page 8-9 and "socket" on page 8-47.

Sockets 8-29

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getsockopt, .

Igetsockopt, setsockopt

I Purpose

Gets and sets options on sockets.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int getsockopt (s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *opt/en;

int setsockopt (s, level, optname, optval, opt/en)
int s, level, optname;
char *optval;
int *opt/en;

I Description

The getsockopt and setsockopt subroutines manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the uppermost
socket level.

When manipulating socket options, you must specify the level at which the option resides
and the name of the option. To manipulate options at the socket level, specify level as
SOL-SOCKET. To manipulate options at any other level, supply the appropriate protocol
number for the protocol controlling the option. For example, to indicate that an option
will be interpreted by the TCP protocol, set level to the protocol number of TCP, as defined
in the sys/socket.h header file.

Use the parameters optval and opt/en to access option values for setsockopt. For
setsockopt, these parameters identify a buffer in which the value for the requested option
or options are returned. For getsockopt, the optlen parameter initially contains the size
of the buffer pointed to by the optval parameter. On return, it is modified to indicate the

8-30 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getsockopt, . . .

actual size of the value returned. If no option value is supplied or returned, the optval
parameter can be zero.

The optname parameter and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. The sys/socket.h header file contains
definitions for socket level options. These options are:

SO-DEBUG
SO-ACCEPTCONN
SO-REUSEADDR
SO-KEEPALIVE
SO-DONTROUTE
SO-LINGER
SO-OOBINLINE
SO-SNDBUF
SO-RCVBUF
SO-SNDLOWAT
SO-RCVLOWAT
SO-SNDTIMEO
SO-RCVTIMEO
SO-ERROR
SO-TYPE

Turns on recording of debugging information.
Specifies that socket is listening.
Allows local address reuse.
Keeps connections active.
Does not apply routing on outgoing messages.
Lingers on a close system call if data is present.
Leaves received out-of-band data (data marked urgent) in line.
Sends buffer size.
Receives buffer size.
Sends low-water mark.
Receives low-water mark.
Sends timeout.
Receives timeout.
Gets error status.
Gets socket type.

SO-DEBUG enables debugging in the underlying protocol modules. SO-REUSEADDR
indicates that the rules used in validating addresses supplied by a bind subroutine should
allow reuse of local addresses. SO-KEEP ALIVE enables the periodic transmission of
messages on a connected socket. If the connected socket fails to respond to these
messages, the connection is broken and processes using that socket are notified with a
SIGPIPE signal. SO-DONTROUTE indicates that outgoing messages should bypass the
standard routing facilities and are directed to the appropriate network interface according
to the network portion of the destination address. SO-LINGER controls the action taken
when unsent messages are queued on a socket and a close system call is performed. If
SO-LINGER is set, the system blocks the process during the close system call until it can
transmit the data or until the time expires. Specify the amount of time for the linger
interval by using the setsockopt subroutine when requesting SO-LINGER. If
SO-LINGER is not specified and a close system call is issued, the system handles the call
in a way that allows the process to continue as quickly as possible.

Options at other protocol levels vary in format and name.

Sockets 8-31

TNL SN20-9881 (25 September 1987) to SC23-0809-0
getsockopt, .

I Return Value

Upon successful completion, a value of 0 is returned. If the getsockopt or setsockopt
routine fails, a value of -1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF The s parameter is not valid.

ENOTSOCK The s parameter refers to a file, not a socket.

ENOPROTOOPT

EFAULT

I Related Information

The option is unknown.

The addr parameter is not in a writable part of the user address
space.

In this book: "socket" on page 8-47 and "getprotoent, getprotobynumber, getprotobyname,
setprotoent, endprotoent" on page 8-24.

8-32 AIX Operating System Technical Reference

1 htonl, htons, ntohl, ntohs

I Purpose

TNL SN20-9881 (25 September 1987) to SC23-0809-0
htonl, ...

Convert values between host and Internet network byte order.

I Library

Sockets Library (libsock.a)

iSyntax

#include < sys/types.h >
#include < netinet/in.h >

unsigned long htonl (hostlong)
unsigned long hostlong;

unsigned short htons (hostshort)
unsigned short hostshort;

I Description

unsigned long ntohl (netlong)
unsigned long netlong;

unsigned short ntohs (netshort)
unsigned short netshort;

These subroutines convert 16- and 32-bit quantities between network byte order and host
byte order.

These subroutines are often used in conjunction with Internet addresses and ports as
returned by the gethostent and getservent subroutines.

I Related Information

In this book: "gethostbyaddr, gethostbyname, sethostent, endhostent" on page 8-13 and
"getservent, getservbyname, getservbyport, setservent, endservent" on page 8-26.

Sockets 8-33

TNL SN20-9881 (25 September 1987) to SC23-0809-0
inet-addr, . . .

I inet-addr, inet-network, inet-ntoa, inet_makeaddr,
I inet_Inaof, inet-netof

I Purpose

Manipulation subroutines for Internet addresses.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/socket.h >
#include < netinet/in.h >
#include < arpa/inet.h >

struct in-addr inet-addr (cp)
char *cp;

int inet-network (cp)
char *cp;

char *inet-ntoa (in)
struct in-addr in;

I Description

I struct in-addr inet-makeaddr (net, Ina)
I int net, lna;

lint inet-Inaof (in)
I struct in-addr in;

! int inet-netof (in)
I struct in-addr in;

The inet-addr and inet-network subroutines each interpret character strings
representing numbers expressed in the Internet standard dot (.) notation, returning
numbers suitable for use as Internet addresses and Internet network numbers. The cp
parameter represents a string of characters in the Internet address form.

The inet-ntoa subroutine takes an Internet address and returns an ASCII string
representing the address in dot notation. The in parameter contains the Internet address
to be converted to ASCII.

The inet-makeaddr takes an Internet network number and a local network address and
constructs an Internet address from it. The net parameter contains an Internet network
number, while the lna parameter contains a local network address.

8-34 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
inet-addr, . . .

The inet-netof and inet-Inaof subroutines break apart Internet addresses, returning the
network number and local network address part. The in parameter represents the Internet
address to separate.

All Internet addresses are returned in network order, with the first byte being the
high-order byte. All network numbers and local addresses are returned as integer values
in machine format.

The values specified using the dot notation take one of the following forms:

a.b.e.d
a.b.e
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned to the four
bytes of an Internet address, ordered from high-order to low-order.

When a three-part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right two bytes of the network address. This makes the three-part address
format convenient for specifying Class B network addresses as 12S.net.host.

When a two-part address is supplied, the last part is interpreted as a 24-bit quantity and
placed in the right three bytes of the network address. This makes the two-part address
format convenient for specifying Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

All numbers supplied for each part of a dot notation may be decimal, octal, or hexadecimal,
as specified in C language. A leading Ox or OX implies hexadecimal, a leading a implies
octal, and anything else is interpreted as decimal.

I Return Value

The inet-addr and inet-network subroutines return numbers suitable for use as Internet
addresses and Internet network numbers, respectively, on success. If the inet-addr or
inet-network subroutine fails, a value of -1 is returned.

I Related Information

In this book: "hosts" on page 5-58.2, "networks" on page 5-66.2, "gethostbyaddr,
gethostbyname, sethostent, endhostent" on page 8-13, and "getnetent, getnetbyaddr,
getnetbyname, setnetent, endnetent" on page 8-20.

Sockets 8-35

TNL SN20-9881 (25 September 1987) to SC23-0809-0
listen

I listen

,Purpose

Listens for connections on a socket.

I Library

Sockets Library (libsock.a)

I Syntax

int listen (8, backlog)
int 8, backlog;

~ Description

To accept connections, create a socket with socket, specify a backlog for incoming
connections with listen, and accept the connections with accept. The listen subroutine
applies only to sockets of type SOCK-STREAM.

The backlog parameter defines the maximum length for the queue of pending connections.
If a connection request arrives with the queue full, the client receives an error with an
indication of ECONNREFUSED.

I Return Value

Upon successful completion, a value of 0 is returned. If the listen routine fails, a value of
-1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF

ENOTSOCK

EOPNOTSUPP

The 8 parameter is not valid.

The 8 parameter refers to a file, not a socket.

The referenced socket is not of type that supports listen.

8-36 AIX Operating System Technical Reference

I Related Information

TNL SN20-9881 (25 September 1987) to SC23-0809-0
listen

In this book: "accept" on page 8-7, "connect" on page 8-11, and "socket" on page 8-47.

Sockets 8-37

TNL SN20-9881 (25 September 1987) to SC23-0809-0
recv, ...

I recv, recvfrom, recvmsg

I Purpose

Receives a message from a socket.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int recv (s, buf, len, flags)
int s;
char *buf;
int len, flags;

int recvmsg (s, msg, flags)
int s;
struct msghdr msg[];
int flags;

I Description

lint recvfrom (s, buf, len, flags, from, fromlen)
lint s;
I char *buf;
I int len, flags;
I struct sockaddr *from;
lint *fromlen;

The recv subroutine can be used only on a connected socket (see "connect" on page 8-11),
but recvfrom and recvmsg can be used to receive data on a socket whether it is
connected or not.

If the value of from is anything other than zero, the source address of the message is filled
in. The from len parameter is initialized to the size of the buffer associated with the from
parameter. On return, it is modified to indicate the actual size of the address stored there.
These subroutines return the length of the message. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending on the type of socket the message
is received from. For more information, see "socket" on page 8-47.

If no messages are available at the socket, the receive subroutines wait for a message to
arrive, unless the socket is non-blocking. If a socket is non-blocking, a -1 is returned with
the external variable errno set to EWOULDBLOCK.

8-38 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
recv, ...

Use the select system call to determine when more data arrives. For more information,
see "select" on page 2-111.

The flags argument to receive a call is formed by logically OR-ing one or more of the
values shown in the following list:

MSG-PEEK Peeks at incoming message.

MSG-OOB Processes out-of-band data.

The recvmsg subroutine uses a msghdr structure to minimize the number of directly
supplied parameters. The msghdr structure is defined in the sys/socket.h header file,
and it contains the following members:

caddr-t msg-name; /* optional address */
int msg-namelen; /* size of address */
struct iov *msg_iov; /* scatter/gather array */
int mS9-iovlen; /* # of elements in msg-iov */
caddr-t msg-accrights; /* access rights sent/received */
int msg-accrightslen; /* length of access rights */

In the above structure, the fields are defined as follows:

msg_name

msg-namelen

msg-iov

msg-iovlen

msg -accrights

msg-accrightslen

I Return Value

Defines the destination address if the socket is unconnected. If no
names are needed, you can use a NULL pointer for msg-name.

Specifies the size of msg-name.

Describes the scatter gather locations.

Specifies the number of elements in the msg-iov array.

Defines the access rights sent with the message.

Specifies the length of the access rights.

Upon successful completion, the length of the message in bytes is returned. If the recv,
recvfrom, or recvmsg routine fails, a value of -1 is returned, and errno is set to indicate
the error.

Sockets 8-39

TNL SN20-9881 (25 September 1987) to SC23-0809-0
recv, ...

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF
ENOTSOCK
EWOULDBLOCK

EINTR

EFAULT

I Related Information

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The socket is marked non-blocking, and no connections are
present to be accepted.

The receive was interrupted by delivery of a signal before any
data was available for the receive.

The addr parameter is not in a writable part of the user address
space.

In this book: "send, sendto, sendmsg" on page 8-43 and "socket" on page 8-47.

8-40 AIX Operating System Technical Reference

Irexec

TNL SN20-9881 (25 September 1987) to SC23-0809-0
rexec

I Purpose

Allows command execution on a remote host.

I Library

Sockets Library (libsock.a)

I Syntax

int rexec (host, port, user, passwd, command, errfdp)

char ** host;
int port;
char *user, *passwd, *command;
int *errfdp

I Description

The rexec subroutine allows the calling process to execute commands on a remote host.

The host parameter contains the name of a remote host that is listed in the /etc/hosts file.
If the name of the host is not found in this file, the rexec fails.

The port parameter specifies the well-known DARPA Internet port to use for the
connection. A pointer to the structure that contains the necessary port can be obtained by
issuing the following call:

getservbyname (" exec ", II tcp ")

The protocol for the connection is described in detail in the discussion of rexecd in
Interface Program for use with TCP/IP.

The user and passwd parameters point to a user ID and password valid at the host. If these
parameters are not supplied, the rexec subroutine takes the following actions until finding
a user ID and password to send to the remote host:

1. Searches the current environment for the user ID and password on the remote host.

2. Searches the user's home directory for a file called .netrc that contains a user ID and
password.

3. Prompts the user for a user ID and password.

Sockets 8-41

TNL SN20-9881 (25 September 1987) to SC23-0809-0
rexec

The command parameter points to the name of the command to be executed at the remote
host.

If the connection succeeds, a socket in the Internet domain of type SOCK-STREAM is
returned to the calling process and is given to the remote command as standard input and
standard output.

If errfdp is not 0, an auxiliary channel to a control process is set up, and a descriptor for it
is placed in *errfdp. The control process provides diagnostic output from the remote
command on this channel and also accepts bytes as signal numbers to be forwarded to the
process group of the command. This diagnostic information does not include remote
authorization failure, since this connection is set up after authorization has been verified.

If errfdp is 0, then the standard error of the remote command is the same as standard
output, and no provision is made for sending arbitrary signals to the remote process. In
this case, however, it may be possible to send out-of-band data to the remote command.

I Return Value

The rexec subroutine fails and a value of -1 is returned if the specified host name does not
exist.

I Related Information

In this book: "hosts" on page 5-58.2.

The discussion of rexecd in Interface Program for use with TCP/IP.

8-42 AIX Operating System Technical Reference

I send, sendto, sendmsg

I Purpose

Sends a message from a socket.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int send (s, msg, len, flags)
int s;
char *msg;
int len, flags;

int sendmsg (s, msg, flags)
int s;
struct msghdr msg[];
int flags;

I Description

TNL SN20-9881 (25 September 1987) to SC23-0809-0
send, ...

lint sendto (s, msg, len, flags, to, tolen)
lint s;
I char *msg;
I int len, flags;
I struct sockaddr *to;
lint tolen;

The send subroutine sends a message only when the socket is in a connected state. The
sendto and sendmsg subroutines can be used at any time.

Give the address of the target by to, with tolen specifying its size. Specify the length of the
message with len. If the message is too long to pass through the underlying protocol, the
error EMSGSIZE is returned and the message is not transmitted.

No indication of failure to deliver is implied in a send. Return values of -1 indicate some
locally detected errors.

If no space for messages is available at the sending socket to hold the message to be
transmitted, the send subroutine blocks unless the socket is in a non-blocking I/O mode.

Use the select system call to determine when it is possible to send more data.

Sockets 8-43

TNL SN20-9881 (25 September 1987) to SC23-0809-0
send,

The flags argument to send a call is formed by logically OR-ing one or both of the values
shown in the following list:

MSG-OOB Processes out-of-band data on sockets that support
SOCK-STREAM.

MSG-DONTROUTE Sends without using routing tables.

For a description of the msghdr structure, see "recv, recvfrom, recvmsg" on page 8-38.

I Return Value

Upon successful completion, the number of characters sent is returned. If the send,
sendto, or sendmsg routine fails, a value of -1 is returned, and errno is set to indicate the
error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EBADF

ENOTSOCK

EFAULT

EMSGSIZE

EWOULDBLOCK

I Related Information

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The addr parameter is not in a writable part of the user address
space.

The socket requires that the message be sent all at once, and the
message is too large for that to happen.

The socket is marked non-blocking, and no connections are
present to be accepted.

In this book: "recv, recvfrom, recvmsg" on page 8-38 and "socket" on page 8-47.

8-44 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
shutdown

!shutdown

i Purpose

Shuts down part or all of a full-duplex connection.

I Library

Sockets Library (libsock.a)

I Syntax

int shutdown (8, how)
int s, how;

: Description

The shutdown subroutine allows you to disable receives, sends, or both on the socket
specified by the 8 parameter. The action of the subroutine is determined by the how
parameter, according to the following values:

o Disallows further receives.

1 Disallows further sends.

2 Disallows both further sends and receives.

i Return Value

Upon successful completion, a value of 0 is returned. If the shutdown routine fails, a
value of -1 is returned, and errno is set to indicate the error.

! Diagnostics

The subroutine fails if one or more of the following are true:

EBADF

ENOTSOCK
ENOTCONN

The s parameter is not valid.

The s parameter refers to a file, not a socket.

The socket is not connected.

Sockets 8-45

TNL SN20-9881 (25 September 1987) to SC23-0809-0
shutdown

I Related Information

In this book: "connect" on page 8-11 and "socket" on page 8-47.

8-46 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0
socket

I socket

I Purpose

Creates an endpoint for communication and returns a descriptor.

I Library

Sockets Library (libsock.a)

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

int socket (at, type, protocol)
int at, type, protocol;

I Description

The socket subroutine creates an endpoint for communication and returns a socket
descriptor.

The at parameter specifies an address format with which addresses specified in later socket
operations should be interpreted. These formats are defined in the sys/socket.h header
file. The formats are:

AF-UNIX
AF-INET

AIX path names
ARPA Internet addresses.

The value of the type parameter specifies the semantics of communication. AIX supports
these types:

SOCK-STREAM Provides sequenced, two-way byte streams with a transmission
mechanism for out-of-band data.

SOCK-DGRAM Provides datagrams, which are connectionless messages of a fixed
maximum length (usually small).

The protocol parameter specifies a particular protocol to be used with the socket. In most
cases, a single protocol exists to support a particular socket type using a given address
format. When many protocols exist, you must specify a particular protocol. Use the
number for the communication domain in which the communication takes place.

Sockets 8-47

TNL SN20-9881 (25 September 1987) to SC23-0809-0
socket

The different types of sockets available are used for different purposes. SOCK-DGRAM
sockets allow sending datagrams to correspondents named in send socket calls. Programs
can also receive datagrams via sockets by using the recv subroutines.

SOCK-STREAM sockets are full-duplex byte streams. A stream socket must be connected
before any data may be sent or received on it. Create a connection to another socket with
the connect routine. Once connected, use the read and write system calls, or the send
and recv subroutines to transfer data. Issue the close system call when a session is
finished. Use the send and recv subroutines for out-of-band data.

SOCK-STREAM communications protocols are designed to prevent the loss or
duplication of data. If a piece of data for which the peer protocol has buffer space cannot
be successfully transmitted within a reasonable period of time, the connection is broken.
When this occurs, the socket routines indicate an error with a return value of -1 and with
ETIMEDOUT as the specific code written to the global variable errno. If a process sends
on a broken stream, a SIGPIPE signal is raised. Processes that cannot handle the signal
terminate.

When out-of-band data arrives on a socket, a SIGURG signal is sent to the process group.
The process group associated with a socket may be read or set by the SIOCGPGRP ioctl
operation or the SIOCSPGRP ioctl operation. If you want to receive a signal on any data,
use both the SIOCSPGRP and FIOASYNC ioctl operations. These ioctl operations are
defined in the bsd/sys/ioctl.h file.

Sockets can be set to either blocking or non-blocking I/O mode. The FIONBIO ioctl
operation is used to determine this mode. When FIONBIO is set, the socket is marked
non-blocking. If a read is tried and the desired data is not available, the socket does not
wait for the data to become available, but returns immediately with the error code
EWOULDBLOCK. When FIONBIO is not set, the socket is in blocking mode. In this
mode, if a read is tried and the desired data is not available, the calling process waits for
the data.

Similarly, when writing, if FIONBIO is set and the output queue is full, an attempt to
write causes the process to return immediately with an error code of EWOULDBLOCK.

The 'Operation of sockets is controlled by socket level options. The getsockopt and
setsockopt subroutines are used to get and set these options, which are defined in the
sys/socket.h file. See "getsockopt, setsockopt" on page 8-30 for information on how to
use these options.

I Return Value

Upon successful completion, a descriptor referring to the socket is returned. If the socket
routine fails, a value of -1 is returned, and errno is set to indicate the error.

8-48 AIX Operating System Technical Reference

I Diagnostics

TNL SN20-9881 (25 September 1987) to SC23-0809-0
socket

The subroutine fails if one or more of the following are true:

EAFNOSUPPORT The addresses in the specified address family cannot be used
with this socket.

ESOCKNOSUPPORT

EMFILE

ENOBUFS

! Related Information

The socket in the specified address family is not supported.

The per-process descriptor table is full.

Insufficient resources were available in the system to complete
the call.

In this hook: "ioctl" on page 2-56, "select" on page 2-111, "accept" on page 8-7, "bind" on
page 8-9, "connect" on page 8-11, "getsockname" on page 8-28, "getsockopt, setsockopt" on
page 8-30, "listen" on page 8-36, "recv, recvfrom, recvmsg" on page 8-38, "send, sendto,
sendmsg" on page 8-43, "shutdown" on page 8-45, and "socketpair" on page 8-50.

Sockets 8-49

TNL SN20-9881 (25 September 1987) to SC23-0809-0
socketpair

I socketpair

I Purpose

Creates a pair of connected sockets.

I Syntax

#include < sys/types.h >
#include < sys/socket.h >

socketpair (d, type, protocol, sv)
int d, type, protocol;
int sv[2];

I Description

The socketpair subroutine creates an unnamed pair of connected sockets in the specified
domain d, of the specified type, and using the optionally specified protocol. The descriptors
used in referencing the new sockets are returned in sv[O] and sv[l]. The two sockets are
identical.

Note: The socketpair subroutine can be used only in the local (AF -UNIX) domain. This
subroutine does not create sockets for use in the Internet domain.

I Return Value

Upon successful completion, a value of 0 is returned. If the socketpair subroutine fails, a
value of -1 is returned, and errno is set to indicate the error.

I Diagnostics

The subroutine fails if one or more of the following are true:

EMFILE

EAFNOSUPPORT

This process has too many descriptors in use.

The addresses in the specified address family cannot be used
with this socket.

EPROTONOSUPPORT The specified protocol cannot be used on this system.

EOPNOSUPPORT The specified protocol does not allow create of socket pairs.

8-50 AIX Operating System Technical Reference

EFAULT

TNL SN20-9881 (25 September 1987) to SC23-0809-0
socketpair

The sv parameter is not in a writable part of the user address
space.

Sockets 8-51

TNL SN20-9881 (25 September 1987) to SC23-0809-0

8-52 AIX Operating System Technical Reference

Appendix A. Error Codes

This section describes the error conditions that can occur when using the system calls
described in this book. Some subroutines that invoke system calls indicate errors in a
similar way.

System calls indicate the fact that an error has occurred by returning a special value.
This value is almost always -1, but check the description of the individual system call to be
sure. Also, a number that identifies the error is stored in an external variable named
errno. The errno variable is not cleared when a system call finishes successfully, so its
value is meaningful only after an error has occurred.

If you are going to check the value of errno in a program, include the following line at the
top of the source file:

#include < errno.h >

The errno.h header file declares the errno variable and defines the name of each error
condition.

For each error code, the following list shows the symbolic name defined in the
/usr/include/errno.h header file, the corresponding numeric value, and a brief description
of the error:

EPERM (1)

ENOENT (2)

ESRCH (3)

Not the owner

Cause: You attempted to modify a file in some way forbidden except to the
owner of the file or to superuser. Or, a user other than superuser attempted
to do something that only superuser is allowed to do.

No such file or directory

Cause: The file specified does not exist, or one of the directories in a path
name does not exist.

No such process

Cause: A process, corresponding to that specified in the pid parameter of
the kill or ptrace system calls, cannot be found.

Error Codes A-I

EINTR (4)

EIO (5)

ENXIO (6)

E2BIG (7)

Interrupted system call

Cause: An asynchronous signal (such as interrupt or quit), which you have
elected to catch, occurred during a system call. If the system call resumes
after processing the signal, it appears as if the interrupted system call
returned this error condition;

I/O error

Cause: A physical I/O error occurred. In some cases, this error occurs on a
system call following the one to which it actually applies.

No such device or address

Cause: I/O on a special file referred to a device or subdevice that does not
exist or referred to an address that is beyond the limits of the device.

Argument list too long

Cause: The combined length of the argument list and the environment list
passed to one of the exec system calls totaled more than 5,120 bytes.

ENOEXEC (8) Exec format error

EBADF (9)

Cause: A request was made to execute a file that has the appropriate
permissions, but does not start with either a valid shared library magic
number, or a valid text header. (For information about text headers, see
"a.out" on page 4-5.)

Bad file number

Cause: A file descriptor was specified that does not refer to an open file, or
a read request was made to a file that is open only for writing, or a write
request was made to a file that is open only for reading.

A-2 AIX Operating System Technical Reference

ECHILD (10)

EAGAIN (11)

No child processes

Cause: A process that invoked the wait system call has no existing child
processes that have not been waited for.

No more processes

Cause: The fork system call failed because the system's process table is full
or the user is not allowed to create any more processes. Or, an attempt was
made to access a region of a file that has an outstanding enforcement-mode
lock. (See "lockf' on page 2-64 about file locking.)

ENOMEM (12) Not enough space

EACCES (13)

EFAULT (14)

Cause: During a brk, sbrk, or exec system call, a program asked for more
space than the system is able to supply. This is not a temporary condition.
The maximum space size is a system parameter.

Permission denied

Cause: An attempt was made to access a file in a way that is forbidden by
the protection system.

Bad address

Cause: An address passed to a system call that points to a location outside
of the process's allocated address space.

ENOTBLK (15) Block device required

Cause: A nonblock file was specified when a block device is required, such
as in the mount system call.

Error Codes A-3

EBUSY (16)

EEXIST (17)

EXDEV (18)

Mount device busy

Cause: An attempt was made to mount a device that is already mounted, or
an attempt was made to dismount a device on which there is an active file.
This error also occurs when an attempt is made to enable accounting when
it has already been enabled.

File exists

Cause: An existing file was specified to a system call or subroutine that
would create that file, such as the link system call.

Cross-device link

Cause: An attempt was made to link to a file on another device. (See "link"
on page 2-62.)

ENODEV (19) No such device

Cause: An attempt was made to use an inappropriate system call to a
device, for example, to write to a read-only device.

ENOTDIR (20) Not a directory

EISDIR (21)

Cause: A nondirectory parameter was specified where a directory is
required, for example in a path prefix or as a parameter to the chdir system
call.

Is a directory

Cause: An attempt was made to write on a directory.

A-4 AIX Operating System Technical Reference

EINVAL (22)

ENFILE (23)

EMFILE (24)

ENOTTY (25)

Invalid parameter

Cause: An invalid parameter or action was specified to a system call, such
as dismounting a device that is not mounted, specifying an undefined signal,
or writing to a file for which lseek has generated a negative file pointer.

File table overflow

Cause: An attempt was made to open a file, and the system/stable of open
files is full.

Too many open files

Cause: A process attempted to open more than two hundred (200) file
descriptors at one time.

Not a typewriter

Cause: An ioctl system call was issued to a special file that does not
support ioctl.

ETXTBSY (26) Text file busy

EFBIG (27)

Cause: This error occurs when an attempt is made to execute a
pure-procedure program or shared library that is currently open tor writing
or reading. It also occurs when an attempt is made to open a pure-procedure
program or shared library for writing while that program or library is being
executed.

File too large

Cause: The size of a file exceeded the maximum file size (1,082,201,088
bytes), or the maximum size set by the ulimit system call.

Error Codes A-5

ENOSPC (28)

ESPIPE (29)

EROFS (30)

EMLINK (31)

EPIPE (32)

EDOM (33)

No space left on the device

Cause: During a write to an ordinary file, the device ran out of free space.

Illegal seek

Cause: An lseek system call was issued to an "unseekable" file or device,
such as a pipe.

Read-only file system

Cause: An attempt was made to modify a file or directory on a device that
is mounted as read-only.

Too many links

Cause: An attempt was made to make more than the maximum number of
links (1000) to a file.

Broken pipe

Cause: An attempt was made to write to a pipe for which there is not a
process to read the data. This condition normally generates a signal; the
error is returned if the signal is ignored.

Math argument

Cause: A parameter to a Math Library (libm.a) subroutine was out of the
domain of the function.

ERANGE (34) Result too large

Cause: The return value of a Math Library (libm.a) subroutine is not
representable within machine precision.

A-6 AIX Operating System Technical Reference

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0

ENOMSG (35) No message of the desired type

Cause: An attempt was made to receive a message of a type that does not
exist on the specified message queue.

EIDRM (36) Identifier removed

Cause: The specified identifier has been removed from the file system's
name space. (See "msgctl" on page 2-73, "semctl" on page 2-115, and
"shmctl" on page 2-135.)

Note: The values ECHRNG (37) through EL2HLT (44) are supplied in the errno.h
header file for compatibility with UNIX System V. These values are not set by any AIX
software.

ECHRNG (37)
EL2NSYNC (38)
EL3HLT (39)
EL3RST (40)
ELNRNG (41)
EUNATCH (42)
ENOCSI (43)
EL2HLT (44)

EDEADLK (45)

Channel number out of range
Level 2 not synchronized
Level 3 halted
Level 3 reset
Link number out of range
Protocol driver not attached
No CSI structure available
Level 2 halted

Potential deadlock

Cause: A potential deadlock was detected while attempting to lock a region
of a file with the lockf system call.

ENOTREADY(46) Device not ready

Cause: The device is not ready for operation. For example, a diskette drive
does not contain a diskette, or the device is not powered on.

Error Codes A-7

TNL SN20-9869 (26 June 1987) to SC23-0809-0

EWRPROTECT(47) Write-protected media

Cause: The I/O media is write-protected.

EFORMAT(48) Unformatted or incompatible media

ENOLCK(49)

Cause: The I/O media has not been formatted or the format is not
compatible with the I/O device.

No locks available

Cause: There are not more file locks available. Too many segments are
already locked.

ENOCONNECT(50) New connection not made

Cause: A new network connection to a remote node cannot be made.

EBADCONNECT(51) Connection not found

ESTALE(52)

EDIST(53)

Cause: An attempt to use an existing connection to a remote node has
failed.

No file system

Cause: The file system of a remote file has been unmounted, or the file
descriptor of a remote file has become obsolete.

Requests blocked

Cause: Sending or receiving of requests is currently not allowed. All
requests may be blocked or only requests of the specified type.

A-8 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

EWOULDBLOCK (54) Resource not available

Cause: The socket is not blocking because O-NDELA Y is set, but the
desired kind of data is not available or, for an accept operation, no
connections are pending.

EINPROGRESS (55) Connection in progress

Cause: The socket was marked O-NDELAY by an fcntl system call, then a
connect operation was attempted that has not completed yet.

EALREADY (56) Already in progress

Cause: The requested socket connection or disconnection is already in
progress.

ENOTSOCK (57) Not a socket

Cause: The command cannot complete because the file descriptor specified
is not a socket.

EDESTADDRREQ (58) Destination address required

Cause: The attempted socket operation failed because a destination address
was required, but not provided.

EMSGSIZE (59) Message too long

Cause: The socket data transfer failed because the message exceeded the
size limits.

EPROTOTYPE (60) Incorrect protocol type

Cause: Either the two sockets to be connected are not of the same type, or
the protocol used does not support this type of socket.

Error Codes A-9

TNL SN20-9881 (25 September 1987) to SC23-0809-0

ENOPROTOOPT (61) Unavailable protocol option

Cause: The protocol specified either does not support this particular option
or does not support any options.

EPROTONOSUPPORT (62) Protocol not available

Cause: No protocol of the specified type and domain exists.

ESOCKTNOSUPPORT (63) Socket not supported

Cause: The type of socket specified is not supported. Do not use this type
of socket in your program.

EOPNOTSUPP (64) Operation not supported

Cause: This socket, with its particular type, domain, and protocol, does not
allow the requested operation.

EPFNOSUPPORT (65) Protocol not supported

Cause: The socket protocol specified is not supported. Do not use this
protocol in your program.

EAFNOSUPPORT (66) Invalid socket name

Cause: The socket name is of a type that is not valid in this socket or the
domain.

EADDRINUSE (67) Socket name in use

Cause: A bind or connect operation was attempted using a socket name
that is already in use.

A-IO AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

EADDRNOTAVAIL (68) Socket name not available

Cause: The requested socket name is not available to this machine. Either
an incorrect socket name was used, or there is a problem at the remote node
where the socket name should be.

ENETDOWN (69) Network down

Cause: A socket operation failed because the network is down.

ENETUNREACH (70) Remote node unreachable

Cause: A socket operation failed because the destination is at a remote
node that cannot be reached over the network.

ENETRESET (71) Remote node reset

Cause: The host the socket was connected to went down. The connection
can be re-established after the remote node is restarted.

ECONNABORTED (72) Connection terminated

Cause: The connection between a socket and a remote node was terminated
at the local node, the remote node, or the network level.

ECONNRESET (73) Connection reset

Cause: The connection with another socket was reset by that socket. This
errno can be set due to an error, or just due to a connection that was
closed.

ENOBUFS (74) Insufficent buffer space

Cause: Not enough buffer space is available for the requested socket
operation.

Error Codes A-II

TNL SN20-9881 (25 September 1987) to SC23-0809-0

EISCONN (75) Socket already connected

Cause: A connect operation was attempted on a socket that is already
connected.

ENOTCONN (76) Socket not connected

Cause: A socket operation other than a connect was attempted on a socket
that is not currently connected, or a send operation that does not require a
connection was attempted without a destination address.

ESHUTDOWN (77) Socket already shut down

Cause: An attempt was made to send data after a shutdown operation was
done on the socket.

ETIMEDOUT (78) Connection timed out

Cause: A remote socket did not respond within the timeout period set by
the protocol of the socket on this node.

ECONNREFUSED (79) Connection refused

Cause: A remote node refused to allow the attempted connect operation.

EHOSTDOWN (80) Host down

Cause: A socket operation failed because the remote node specified is down.

EHOSTUNREACH (81) Host unreachable

Cause: A socket operation failed because no route to the remote node was
available due to an incorrect address, an incorrect routing table, or network
hardware problems.

A-12 AIX Operating System Technical Reference

Appendix B. Writing a Queuing System Backend

This section assumes that you know what a queue backend is, friendly and unfriendly
types, and that you need to write one. It discusses friendly backends, not backends in
general. Backend in this chapter refers to friendly backends. See Managing the A/X
Operating System for more information about backends.

Introduction

The principal purpose of a backend is to send characters to a device, typically a printer.
There are several ways the backend can do this. First, it can open a particular device and
write to it. This has the advantage of simplicity, but it means that the backend cannot be
used for any other device. Second, it can accept a parameter supplied by the user to tell it
which device to use. This is more flexible, but involves a little extra work. Third, it can
simply write to its standard output, and the qdaemon command will automatically open
the device onto the correct file descriptor. This is the recommended method. It works only
if the file field in the qconfig file has been set up appropriately.

The backend is invoked once for every file or group of files to be printed. The name of
each file to be printed is passed to the backend as a parameter. The backend must open
the file, read its contents, and send them to the device in one of the ways previously
described.

Since the backend must open files, read them, and write to devices, you (the writer of a
backend) should understand the domain where the backend operates. When a back end is
invoked, its current directory is the one where the print request was made. The name of
the file or files to be printed can either be a direct or relative path name. The UID and
GID of the backend are those of the process that invoked the print command.

If the backend writes to its standard output and allows the qdaemon process to open the
device, permissions are handled by the qdaemon automatically. Otherwise, the backend
will need to have write permission on the special file corresponding to the device. This
may require changing the protections on the device or installing the back end set-user-ID or
set-group-ID.

By default, stdin, stdout, and stderr are all open to the null device (fdev/null), though it
is possible to override the setting of stdout (and possibly stdin) with the file and access
lines in the qconfig file.

Writing Queue Backends B-1

Interaction Between Qdaemon and Backend

Besides reading files and writing to devices, a friendly backend must cooperate with the
qdaemon in several ways. The requirements can be summarized as follows:

• Recognize a -statusfile parameter and call a library routine that does some
initialization.

• Print burst pages as requested.

• Print extra copies as requested.

• Update status information (pages printed, percentage done) periodically.

• Supply charges (accounting data) for the completed job.

• Exit with some agreed on codes.

• Pass error messages through a special routine.

• Set state to WAITING, if appropriate.

• Terminate cleanly on receipt of SIGTERM.

Each requirement is discussed more fully in the following.

There is a set of library routines that the backend should use to fulfill these requirements.
The routines were designed to make the task of writing a backend as easy as possible.
These routines are in the /lib/libqb.a library and accessible with the -lqb flag. The
individual routines are discussed in the body of the text that follows, and a summary table
is given at the end of this chapter.

The -statusfile Parameter

When the qdaemon process invokes a backend, it passes the following parameters, in
order:

1. The parameters appearing in the qconfig file
2. The -statusfile parameter, if running as a friendly backend
3. The flags that the print command did not recognize, in the order they were given
4. The names of one or more files to be printed.

The presence of the -statusfile parameter indicates that the status file is open on file
descriptor 3 of the backend.

The status file provides a means for the qdaemon process and the backend to
communicate. The daemon passes such information as the date of the file, which burst
pages are to be printed, the number of copies to be printed, and so on. The backend passes
back the charge for the job it has just finished running. In addition, the backend

B-2 AIX Operating System Technical Reference

periodically writes into the file the number of pages it has printed and what percent of the
job is finished. This information is read by the print -q command.

Backends should never explicitly write into their status file. Instead, they shnuld call the
library routines that do so. The reason for calling the routines is twofold: (1) backends are
spared the trouble of accessing the status file directly, and (2) the format of the status file
can be changed without requiring backends to rewritten. In this case, the backends only
need to be re-linked.

To initialize certain data common to the library routines, the backend must call the
routine log-init. The call is:

109-in it () ;

This routine should be called when the -status file parameter is recognized. The log-init
routine, like all the routines in library whose names begin log-, returns a value of -1 if it
fails.

Burst Pages

There are four types of burst pages:

header A page preceding a file that shows its title, date, it recipient, and other
information.

trailer

feed

align

A page following a file that gives the name of the user of the output.

Blank pages printed only when the printer has become idle. Feed pages make it
easier for users to tear off paper from the printer.

A form-feed printed only when the printer has been idle and is about to print a
new job. The form-feed aligns the paper to top-of-form and is helpful if someone
has moved the paper while the printer was idle.

If the backend will never print any burst pages, the following information can be skipped.

The printing of burst pages is done automatically by the burst-page routine. The routine
takes two parameters: the address of a function and the width of the header and/or trailer
desired. If the function address is NULL (#include < stdio.h >), the routine uses the
supplied function and passes the character as its single parameter.

By passing the address of a special function for output, a backend can maintain strict
control of what goes to the device and when it goes to the device. For example, the
burst-pages routine uses line-feeds to separate lines, and form-feeds to separate pages. If
the device requires a carriage return to precede every line-feed, the special function can
make such a translation.

Writing Queue Backends B-3

The basic algorithm for synchronizing calls to the burst-page routine with file printing
looks like this:

burst-page(fnaddr, width);
whi 1 e (files are to be printed)
{

}

burst-page(fnaddr, width);
print the next file;
burst-page(fnaddr, width);

Every backend should follow this structure. The line numbers are used for reference in
the following explanation.

The burst-page routine uses the information in the status file to decide whether (and
how) to print a header, a trailer, some feed pages, or an aligning form-feed. The status file
is set up by the qdaemon, using the information provide in the qconfig file. For example,
if the qconfig file contains the line header = group, the call on line (2) results in a header
page only if this file is used by a different user than the user who printed the previous file
on this device. The burst-page routine when invoked on line (2) makes that test and
either prints the header or returns. Similarly, line (3) either prints a trailer or does
nothing.

With the exception of line (1), which may appear to extraneous, the algorithm is simple.
This first call is necessary because qdaemon does not ask the backend to print a group
trailer until it knows positively that there are no more files for a particular user. It
cannot know this fact until either the first file for the next user is ready to be printed or
there are no more files for this device. In the first case, qdaemon appends the trailer
request for the previous user to the file request for the current one. Line (1) prints the
trailer for the previous user if the trailer = group option has been selected; otherwise, it
does nothing. In the second case, the backend is invoked with no file parameter at all. In
this case, line (1) prints both a trailer and feed pages (assuming qconfig requests them),
the while test fails, and the backend exits.

The burst-page routine assumes that the printer is at the top of the page, and it prints a
form-feed at the end of its header or trailer to leave the printer in the same state.
Backends are responsible for maintaining the position of the paper. The align option is
useful only for device like continuous-form daisy-wheel printers, where it is possible for the
printer paper to be out of alignment after a job is removed.

The burst-page routine should be enough for most friendly backends. If it is not, the
library provides a set of routine at a lower level that should prove helpful for generating
burst pages. There is a group of routines that return information from the status file, and
two other routines that print headers and trailers, respectively.

B-4 AIX Operating System Technical Reference

Functions in the first group take no parameters; the following describes their actions:

get-align
Returns TRUE or FALSE, telling whether an alignment form-feed is to be
printed, assuming get-newuserO is TRUE and get-endgroupO is FALSE.

get-endgroup
Returns TRUE or FALSE, telling whether this the end of a group of files for
the same user.

get-feed Returns the number of feed pages to be printed, assuming get-endgroupO is
TRUE and get-newuserO is FALSE.

get-from
Returns the name of the person that made the print request.

get-header
Returns NEVER, ALWAYS, or GROUP (#include < IN/backend.h ».

get-Iastuser
Returns the name of the previous user, assuming get-endgroupO is TRUE.

get-moddate
Returns a string showing the modification date of the file.

get-newuser
Returns TRUE or FALSE, telling whether this is the beginning of a group of
files for a new user.

get-nodeid
Returns the node ID.

get-qdate
Returns a string showing the date that the request was queued.

get-title Returns the title of the job being printed.

get-to Returns the name of the person for whom the job is intended.

get-trailer
Returns NEVER, ALWAYS, or GROUP.

In addition, there is a routine put-header(fnaddr, width), that prints a header with no
following form-feed, returning the number of lines printed, and a routine,
put-trailer(user,fnaddr,width), that prints a trailer for user, again with no following
form-feed, and returns the number of lines printed. The fnaddr and width parameters
work like the same parameters in the burst-page function previously stated.

It should be emphasized that the auxiliary functions should not be necessary for most
backends. The burst-pageO routine handles all tasks required when it is called as
described in the previous algorithm.

Writing Queue Backends B-5

Extra Copies

The user can request that extra copies of a file be printed with the print -nc command.
The print -nc = 5 filename command prints 5 copies of a file.

The print program passes the -nc information to the qdaemon process, which puts it into
the status file. Backends should get the information by calling the get-copiesO routine,
which returns the total number of copies desired.

Job Status Information

The print-q command displays information about currently running jobs, including its
origniator, its title, the number of pages to be printed, and the percentage completed. All
this information comes from the status file. Most of the information is set up by the
qdaemon process when the backend is first invoked, except the pages printed and
percent done fields, which must be filled in by the backend itself.

To provide this information, the backend should periodically call log-progress (pages ,
percent), which writes the two numbers in the appropriate place in the file. The backend is
free to call this routine as frequently or infrequently as desired; once at the end of each
page is recommended.

Charge for the Job

Whenever a backend completes a job, the qdaemon process reads the status file for a
charge. If the qconfig file has been set up appropriately, the charge is written to a file
that is eventually processed by the accounting programs, resulting in a bill (real or
imaginary) for the user issuing the print request.

The backend passes the charge back to the qdaemon process with the routine
log-charge(charge), where charge is a long integer. The backend should certainly call
this routine on exit. It should also call the routine along with log-progress while
printing the job. Otherwise, if the job is canceled, no charge will be made for the pages
printed up to that point.

The charge is interpreted by all current accounting programs as the number of pages
printed. However, a backend might decide that one page on its device is worth two or
three normal pages (or some fraction) and set the charge accordingly.

B-6 AIX Operating System Technical Reference

Exit Codes

When a backend exists, the qdaemon process looks at its exit code for information about
whether the job was completed successfully, whether the device is still usable, and so on.
Therefore, it is important that backends use the same convention for their exit codes. The
backend should use #include < IN/standard.h > for the values of the codes mentioned
here.

The permissible exit codes are:

EXITOK No problems were encountered.

EXITBAD
The parameters were bad in some way. That is, a flag was unrecognizable or
illegal, a file could not be opened, and so on. The qdaemon process notifies the
user, throws out the job request, and continues sending jobs to the device.

EXITERROR
The backend could not finish printing the job and that it wants another chance.
The qdaemon process restarts the same job (from the beginning) on the same
device. The qdaemon process enforces a limit on the number of times that the
job will be restarted.

EXITFATAL
The job could not be finished because of a problem in the device that requires
manual intervention. The qdaemon process sets the state of the device
(displayed by print -q) to OFF, sends a message to the console, and does not
run any further jobs on that device until someone has explicitly set its state to
ON again (with a print -du).

EXIT SIGNAL
The backend was interrupted by a SIGTERM signal.. (#include < signal.h >).

Return Error Messages

If the backend cannot run a job (that is if it exits EXITBAD or EXITFATAL), it should
send a message to the qdaemon process explaining the problem. The qdaemon process
passes the message to the user, and, for EXIT FATAL prints it on the the console.

The message should be sent with the log-message routine, which takes parameters in the
sty Ie of printf:

log-message("cannot open file %s; error return %d\n",
filename, erret);

The message cannot be longer than MAXMESG (#include < IN/backend.h >) bytes.

Writing Queue Backends B-7

Set State to WAITING

The print -q command displays the status of a particular device. One of the entries in the
table that is displayed shows whether the device is READY, RUNNING, WAITING, or
OFF. This information is taken from the status file.

Normally, the qdaemon process keeps the status file updated, and a backend need never
worry about it. However, some back ends may want to explicitly set the state to WAITING
(#include < IN/backend.h >) if they can no longer send output to the device, and set it
back to RUNNING when output resumes. For example, a backend that paused at the end
of each page, waiting for the user to load the next page and type a RETURN, might want
to set the status to WAITING during this time.

The log-status(status) routine can be used to change the status of the job from RUNNING
to WAITING and back again. The parameter is the new status.

Terminate on Receipt of SIGTERM

When a user cancels a running job with print-ca, the print command passes the request to
the qdaemon process. Therefore, in order for cancellation to work, the backend must
terminate soon after receipt of the signal. There are two ways to comply with this
requirement.

First, the backend cannot do anything special about SIGTERM, in which case the signal
kills the backend process immediately. This option is the simplest, but does not allow the
backend to do any cleanup (reset line speeds, put paper at top-of-form, hang up the phone)
before it terminates.

Second, the backend can catch SIGTERM, carry out whatever cleanup tasks are required,
and exit EXITSIGNAL (#include < IN/standard.h ». The special exit code tells the
qdaemon process that the job was canceled.

Backends that decide to catch SIGTERM should exit very soon after receipt of the signal.
If the cleanup code is too long, or if it can hang indefinitely (waiting for terminal to open,
for a device to respond, and so on), the backend is not friendly.

Backend Routines in libqb

The following is a list of backend routines available using the ld or cc command-line
option -lqb.

burst-page(fnaddr,width)
i nt (*fnaddr) () ;

B-8 AIX Operating System Technical Reference

get_a 1 i gn ()

get-copies()

get-endgroup()

get- feed ()

char *
get-from()

get-header()

char *
get-lastuser()

char *
get-moddate()

get-newuser()

char *
get_nodeid()

char *
get-qdate()

char *
get-title()

char *
get-to()

get-trailer

log-charge(charge)
long charge;

Writing Queue Backends B-9

1 og- i ni t ()

log-message (. . .)

log-progress(pages,percent)

log-status(status)

put-header(fnaddr, width)
i nt (*fnaddr) () ;

put-trailer(user, fnaddr, width)
char *user;
int (*fnaddr)();

B-IO AIX Operating System Technical Reference

Appendix C. Writing Device Drivers

This appendix explains many of the details involved in writing a device driver for the AIX
Operating System. To get the most from this information, you should be familiar with the
e programming language, how AIX handles I/O, interrupt-level programming, the Virtual
Resource Manager (VRM), the Virtual Machine Interface (VMI), and the interface to the
device for which you are writing a driver.

The operating system contains device drivers for all devices known to the system. You can
add device drivers to the system to control other devices. Once the device driver is
installed, you can use existing commands and utilities.

You can write drivers that allow several processes to use a device at the same time. Since
most devices are much slower than the processor, device drivers may also release control
of the processor to other processes while waiting for a device to complete an operation.

Device Driver Concepts

When a user program issues a system call that requests input or output, the kernel
determines which device driver should handle the data transfer, and calls the proper
routine of the device driver to perform the operation. In general, a device driver performs
the following operations:

1. Determines whether there is enough buffer space for the transfer, and if not, requests
more buffer space from the kernel.

2. Requests the kernel to move the data from the user area of memory to its buffer space.

3. Masks interrupts to avoid being interrupted.

4. Issues an sve to send a request to the VRM device driver, which communicates the
information to the hardware device.

5. Updates data structures to reflect the data that was moved from the user program's
buffer.

6. Unmasks the interrupts.

7. Waits for the device to finish the transfer.

When the device finishes the transfer operation, it generates an interrupt, which the VRM
passes to the kernel. The kernel then calls the interrupt-handling entry point of the device

Device Drivers C-l

driver. The device driver interrupt handler ensures that the interrupt was valid, checks
the status, and then starts the transfer of data that has been queued.

This cycle continues until the data transfer routine has sent all of the data to the device.
When the data transfer is complete, the device driver returns a completion code to the
kernel, and the kernel returns the code to the calling program.

An AIX device driver is actually linked, using the ld command, into the kernel load
module and is therefore part of the kernel.

The device driver can access members of a structure that contains various administrative
information about the user process that is called the user area, user block, or ublock.
This structure is accessed with the construct u.field, where field is a valid field name of
struct user as defined in the sys/user.h header file. For example, the error code stored
in u. u-error is the value that is passed back to the application program as errno.

Warning: Do not:

• Modify any fields of the user block or of any other kernel structure that
are not explicitly mentioned in this section

• Call any kernel subroutines that are not explicitly mentioned in this
section.

Otherwise, unpredictable and disasterous results may occur.

Types of AIX device drivers

An AIX device driver can be one of two types: character or block. A block device driver
organizes data into fixed-size blocks or clusters that are usually 2048 bytes in size. Each
block can be accessed at random when given block number. Block devices include
fixed-disk and diskette drives.

A block device driver can perform each transfer as soon as the request is received, or it
can queue the requests and perform them in an order that is most efficient for the device
being used.

A character device is any device that does not fit the block device definition; the interface
for character devices is less structured than the interface for block devices. Character
devices include the keyboard, displays, and printers.

C-2 AIX Operating System Technical Reference

Character device drivers can also be designed to provide controlled access to low-level
facilities of the system that are not necessarily associated with true I/O devices. Since
device driver are accessed by an AIX path name, access to these facilities can be controlled
by the access permission mode of the special file (see "chmod" on page 2-18). AIX provides
the following special-purpose drivers in addition to others:

tty

null

bus

mem

kmem

config

Allows a program to access its controlling terminal.

Discards output written to it and indicates an end-of-file condition when read.

Permits direct access to the I/O bus for memory-mapped I/O.

Provides access to system memory.

Provides access to kernel memory.

Issues the sves that send configuration information to the VRM.

trace Records data when tracing programs.

These and other device drivers that are supplied with the AIX system are described in
Chapter 6, "Special Files."

Most block devices also have a character special file and device driver entry points for
character data transfer that allow reading and writing unformatted data. For example, the
first floppy diskette drive can be accessed as either /dev/fdO (block) or /dev/rfdO
(character). The r in the name /dev/rfdO stands for raw because character-oriented access
to a block device is called raw I/O.

AIX device driver Entry Points

When a program issues a system call for an I/O device, the kernel issues a call to device
driver routines to perform the requested operation.

Each AIX device driver is invoked by the kernel using standard entry points, also called
interface routines. Each major device number has a corresponding set of entry points
named ddinit, ddopen, ddc1ose, ddioctl, ddread, ddwrite, ddstrategy, ddprint, and
ddselect, where dd is a prefix that uniquely identifies the device driver.

Not all of these entry points need to be defined for a given driver. For instance, an
output-only device such as a parallel printer does not need a ddread routine. Also,
ddread, ddwrite, and ddselect apply only to character device drivers; ddstrategy and
ddprint are valid only for block device drivers. In addition, block device drivers usually
include ddread and ddwrite entry points for character-oriented (raw) access to the block
device.

The procedure for rebuilding the kernel constructs a table that contains pointers to these
entry points for each of the device drivers in the system. This table is called the device
switch table, and it is an array of type struct devsw, which is defined in the sys/conf.h
header file. The device switch table is constructed using information from the stanza for

Device Drivers C-3

each AIX device driver in the fetc/master file, which defines the unique dd prefix used for
each entry point name and lists the entry points that are defined for the device. (The
procedure for rebuilding the kernel is explained under "Rebuilding the AIX Kernel" on
page C-51.)

In addition to these entry points, a device driver can include a routine to service interrupts
that an I/O device generates when an operation is finished. Such an entry point is called a
second-level interrupt handler (SLIH), and, by convention, it is named ddintr. The
SLIH is not included in the device switch table; instead, it is identified to the kernel with
the vec-init kernel subroutine, which is usually called from within the ddopen routine.
(See "vec-init" on page C-IB.)

Entry points for both character and block device drivers:

ddinit Called during the AIX start-up procedures to configure the VRM device
driver for the device.

ddopen

ddclose

ddioctl

ddintr

ddprint

Called when the device is opened with an open or creat system call to get
the device ready to transfer data.

Called when the device is to be closed. Puts the device in a known idle
state.

Called when a user program invokes the ioctl system ,call. Decodes
commands for special functions.

Called when the I/O device interrupts the main processor.

Calle~ to print device information for debugging or error analysis.

Character and raw device driver entry points:

ddread Called when the user program issues a character device read.

ddwrite

ddselect

Called when the user program issues a character device write.

Called when the user program issues a select system call to a character
device.

Block device driver entry point:

ddstrategy Called to schedule a read or write to a block device. Performs block data
transfer to or from the device.

C-4 AIX Operating System Technical Reference

Parameters

Some of the parameters passed to the entry points always have the same meaning. These
parameters are described here:

devno Major and minor device numbers. This is an int that specifies both the major
and minor device numbers. For convenience and readability, the
sys/sysmacros.h header file defines the following macros for manipulating
device numbers:

minor

offchan

ext

major(devno)
minor(devno)
makedev(maj, min)

Returns the major device number
Returns the minor device number
Constructs a composite device number in the format of
devno from the major and minor device numbers given.

The minor device number.

The read/write character offset or channel ID. This is the same as the value in
u.u-offset, but declared differently. If the device driver is not multiplexed,
then it is an off-t value that specifies the character read/write offset, which is
also called the seek pointer. If the driver is multiplexed, then it is the caddr-t
value that was passed to the setmpx kernel subroutine identifying the channeL
(See "Multiplexed Devices" on page C-20.)

The extended system call parameter. The openx, closex, readx, writex, and
ioctlx system calls allow applications to pass an extra, device-specific parameter
to the device driver. This parameter is passed to ddopen, ddclose, ddread,
ddwrite, and ddioctl as the ext parameter. If the application uses one of the
nonextended system calls (for example read, instead of readx), then the ext
parameter has a value of O. Using the ext parameter is highly discouraged,
particularly for open, close, and ioctl operations, because doing so makes a
device driver incompatible with much existing software.

Device Drivers C-5

Common Entry Points

ddinit

The following entry points are common to both character and block AIX device drivers.

ddinit (devno, iodn, ilev, ddilen, ddiptr)
int devno, iodn, ilev, ddilen;
char *ddiptr;

The init entry point is used to configure the VRM device driver.

Parameters:

devno

iodn

ilev

ddilen

ddiptr

Major and minor device numbers.

I/O device number, or 0 if not applicable. If iodn is -1, then the driver is
being deleted and all future attempts to open the driver should fail.

Virtual interrupt level.

Length of device-dependent information, or 0 if none.

Pointer to the device-dependent information, or a NULL pointer if none.

The ddinit entry point passes initialization information to the device driver. The
device driver can attach the device and set the interrupt handler from within
ddinit, but usually the information is saved in a static structure and is used in
ddopen to initialize the device.

ddopen

ddopen (minor, rwflag, ext)
int minor, rwflag, ext;

The kernel calls the ddopen routine of a device driver when a program issues an
open or creat system call.

Parameters:

minor

flag

The minor device number.

One of the following values:

FREAD
FWRITE

The device is being opened for reading only.
The device is being opened for writing or reading and
writing.

C-6 AIX Operating System Technical Reference

ddclose

ext The extended system call parameter. Using the ext parameter is highly
discouraged because doing so makes a device driver incompatible with
much existing software.

The ddopen entry point prepares a device for reading and writing.

Many character devices, such as printers and plotters, should only be opened by
one process at a time. The open entry point can enforce this by maintaining a
static flag variable, which is set to 1 if the device is open and 0 if not. Each time it
is called, ddopen checks the value of the flag and, if it is other than zero, sets
u.u-error to EIO and returns a value of -1 to indicate that the device is already
open. Otherwise, ddopen sets the flag and returns normally. ddclose later clears
the flag when the device is closed.

Most block devices can be used by several processes at once, and the driver should
not usually try to enforce opening by a single user.

Other special processing that is typically done in ddopen entry points:

• Define an SLIH (ddintr entry point) by calling the vec-init kernel subroutine
(see "vec-init" on page C-18).

• Call usrchar to get the extended path name of a multiplexed special file and
use it to set up a structure containing information about the logical subdevice
being opened.

• Define the device driver to be multiplexed by calling setmpx (see "Multiplexed
Devices" on page C-20).

The ddopen entry point can indicate an error condition to the application program
by storing· a nonzero error code in the u. u-error field of the user block. This
causes the system call to return a value of -1 and makes the error code available to
the application in the errno external variable. The error code used should be one
of the values defined in the errno.h header file, which are also listed under
Appendix A, "Error Codes."

ddclose (minor, offchan, ext)
int minor, offchan, ext;

The close entry point resets the device to a known state and resets the device
controller to prevent it from generating any more interrupts until it is opened
again.

Parameters:

minor The minor device number.

offchan The read/write character offset or channel ID.

Device Drivers C-7

ddioctl

ext The extended system call parameter. Using the ext parameter is highly
discouraged because doing so makes a device driver incompatible with
much existing software.

If the device is multiplexed, then the kernel calls ddclose each time a process
issues a close system call. If the device is not multiplexed and more than one
process has opened it, then the kernel calls ddclose only once: when the last
process closes it.

The ddclose entry point can indicate an error condition to the application program
by storing a nonzero error code in the u. u-error field of the user block. This
causes the system call to return a value of -1 and makes the error code available to
the application in the errno external variable. The error code used should be one
of the values defined in the errno.h header file, which are also listed under
Appendix A, "Error Codes."

ddioctl (minor, op, arg, flag, offchan, ext)
intminor, op, arg, flag, offchan, ext;

When a program issues an ioctl system call, the kernel calls the ddioctl routine of
the specified device driver.

Parameters:

minor The minor device number.

op The parameter from the system call that specifies the operation to be
performed.

arg The parameter from the system call that specifies the address of a
parameter block.

flag The file parameter word, which includes bits that indicate whether the
file is open for read, write, or append:

FREAD Open for reading.
FWRITE Open for writing.
F APPEND Open for appending.

off chan The read/write character offset or channel ID.

ext The extended system call parameter. Using the ext parameter is highly
discouraged because doing so makes a device driver incompatible with
much existing software.

See the /usr/include/sys/file.h file for a complete list and bit definition of the file
parameter word.

C-8 AIX Operating System Technical Reference

ddintr

Most ioctl operations depend on the specific device involved. However, all ioctl
routines must respond to the following commands:

IOCTYPE Returns a character that indicates the device type.

IOCINFO Returns a structure that describes the device (refer to the description
of the special file for a particular device in this book for a
description of the structure). Only the first two fields of the data
structure need to be returned if the remaining fields of the structure
do not apply to the device.

The ddioctl entry point can indicate an error condition to the application program
by storing a nonzero error code in the u.u-error field of the user block. This
causes the system call to return a value of -1 and makes the error code available to
the application in the errno external variable. The error code used should be one
of the values defined in the errno.h header file, which are also listed under
Appendix A, "Error Codes."

ddintr (argp)
int *argp;

Warning: The second-level interrupt handler has access to segment
o orily. Attempts to access other segments can produce
unpredictable results.
An SLIH or ddintr entry point, is similar in concept to a signal handler (see
"signal" on page 2-145). However, a ddintr routine is called in response to an
interrupt from an I/O device, which usually indicates that an I/O operation is
finished. A ddintr routine also runs in a restricted environment:

• It does not run as a process and, therefore, cannot perform operations that
suspend the current process, such as delay, sleep, and wait.

• It can access only segment 0 of memory, the kernel segment. In particular, it
cannot access the user block, user data, or the I/O bus.

Due to these restrictions, ddintr routines usually do little more than update a few
data structures and call the wakeup kernel subroutine to restart the process that
actually handles the I/O request.

The argp parameter is a pointer to an integer that contains the value given to
vec-init when it was called in the ddinit or ddopen routine.

See "Device Interrupts" on page C-18 for more information about interrupts.

Device Drivers C-9

Character Device Drivers

ddread, ddwrite

ddread (minor, offchan, ext)
int minor, offchan, ext;

ddwrite (minor, offchan, ext)
int minor, offchan, ext;

When a program issues a read system call, the kernel calls the read entry point;
when a program issues a write system call, the kernel calls the write entry point.

m~nor

offchan
ext

The minor device number.
The read/write character offset or channel ID.
The extended system call parameter.

Both entry points use the following system variables to control the data transfer
operation:

u.u-base

u.u-count

u.u-offset

The address of the beginning of the user buffer relative to the
process data segment.

The byte count given to the read or write call.

The file offset established by a previous lseek. Most character
devices ignore this variable, but some, such as the /dev/mem pseudo
device, use and maintain it.

Several kernel subroutines are available that automatically update these variables
while moving characters to and from the user data space. See "Moving Data for
Character I/O" on page C-12 for details about them.

For most devices, the ddread and ddwrite routines issue an SVC to the VRM and
then wait for the VRM to finish. The waiting is accomplished by calling the sleep
kernel subroutine, which suspends the driver and the process that called it and
permits other processes to run. When the I/O operation is completed, the device
usually issues an interrupt, causing the device driver's ddintr interrupt handler to
be called. ddintr then calls the wakeup kernel subroutine to allow the ddread or
ddwrite routine to resume.

When ddread and ddwrite entry points are provided for raw I/O to a block device,
these routines usually translate requests into block I/O requests.

The ddread and ddwrite entry points can indicate an error condition to the
application program by storing a nonzero error code in the u- > u-error external

C-IO AIX Operating System Technical Reference

ddselect

variable. This causes the system call to return a value of -1 and makes the error
code available to the application in the errno external variable. The error code
used should be one of the values defined in the errno.h header file, which are also
listed under Appendix A, "Error Codes."

#include < sys/select.h >

int ddselect (minor, seltype, chan)
int minor, seltype;
caddr-t chan;

Parameters:

m~nor The minor device number.

seltype One of the following values, specifying the type of selection operation:

FREAD
FWRITE
o

Read selection
Write selection
Exception selection.

chan The channel ID, if this is a multiplexed device.

The ddselect entry point is called when the select system call is invoked to check
whether any data is available to be read, the device is ready to perform a write
operation, or an exceptional condition is outstanding for the device.

If the selection criterion specified by the seltype parameter is true, then ddselect
should return a value of 1.

If the selection is not satisifed, then ddselect checks to see if another process is
already waiting for the same selection criterion to occur. If so, then ddselect sets
a flag to record the fact that a collision occurred on a select of the requested type.
If no other process is waiting, then ddselect saves the value of u.u-procp to
identify the process later, and it returns a value of O. A separate collision flag and
waiting process pointer are kept for each type of select request. In effect, this
implements a queue with a depth of 1 process waiting for each type of select
condition to occur, and sets a collision flag if more than one process is waiting.

If the device is in a state in which the selection criteria can never be satisfied, such
as a communication line that is not operational, then ddselect should return a 1 so
that the process calling select does not wait indefinitely.

Note: If your device driver does not support exception selects, then ddselect
should return a value of O. If your device driver does not support read or write
selects, then ddselect should return a value of 1.

Device Drivers C-ll

For an example of the overall structure of a ddselect entry point, see the definition
of ppse 1 ect on page C-42.

The ddread and ddwrite entry points and the exception-handling routines also
require logic to support the select operation. Depending on how you write your
device driver, your ddintr routine may need to include this logic as well. At each
point where one of the selection criteria is true, the device driver checks for a
process waiting for that selection and, if one exists, calls the selwakeup kernel
subroutine to restart it. The collision flag and waiting process pointer that were
saved are passed as parameters to selwakeup, and then they are reset. For an
example of how this can be done, see "A Sample AIX Device Driver" on page C-35.

void selwakeup (procptr, coIl)
struct proc *procptr;
int coll;

The selwakeup kernel subroutine wakes up processes that are waiting on select.
If the coll parameter is a nonzero value, indicating that a collision was detected,
then selwakeup wakes up all processes waiting on select. Otherwise, it wakes up
only the process identified by -the.procptr parameter, which is a pointer to the
process structure for the requesting process (u.u-procp).

Moving Data for Character I/O

Character device drivers can use the following kernel subroutines to transfer data into and
out of the user buffer area during read and write calls. These kernel subroutines use
u.u-base as the address of the buffer in the user area, and they automatically increment
u.u-base and u.u-offset and decrement u.u-count by the number of bytes transferred.

If an invalid user space address is specified, these kernel subroutines set the value of
u.u-error to EFAULT.

You can use these kernel subroutines in multiplexed device drivers even though they
update u.u-offset. Because seek operations are not allowed on multiplexed files, the
kernel does not try to update the read/write character offset of the file.

int cpass ()

Gets a character from the user buffer that is specified in a write system call. Upon
successful completion, cpass returns the character. If the buffer is empty or if the
user base address (u.u-base) points to a location outside of the user area, then
cpass returns a value of -1. In the latter case, u.u-err9r is also set to EFAULT.

C-12 AIX Operating System Technical Reference

int passe (c)
char c;

Stores the character c in the user buffer that is specified in a read system call.
This routine returns a -1 if there is no more space in the user buffer after the
character is put into the buffer, or if the base address was not valid. Upon
successful completion, passc returns a value of O. If the buffer is full or if the user
base address (u.u-base) points to a location outside of the user area, then cpass
returns a value of -1. In the latter case, u.u-error is also set to EFAULT.

void iomove (addr, count, flag)
char *addr;
int count, flag;

Moves a block of data between kernel space and user space. The addr parameter
points to a buffer in the kernel area, and the count parameter specifies the number
of bytes to move. The flag parameter indicates the direction of the move:

B-READ Copies data from kernel space to user space
B-WRITE Copies from user space to kernel space.

If all or part of the user buffer lies outside of the user area, then cpass sets the
value of u.u-error to EFAULT.

Moving Data between User and Kernel Space

The following kernel subroutines do not update u.u-count, u.u-offset, and u.u-base.
Use them to copy data between user and kernel space.

int subyte (uaddr, c)
char *uaddr;
char c;

Stores the byte c at user data address uaddr. subyte returns a value of 0 upon
successful completion, or -1 if uaddr points outside of the user area.

int suword (uaddr, w)
int *uaddr;
int w;

Stores the word w at user data address uaddr. suword returns a value of 0 upon
successful completion, or -1 if uaddr points outside of the user area.

Device Drivers C-13

int fubyte (uaddr)
char *uaddr;

Fetches the byte from user data address uaddr. fubyte returns the byte upon
successful completion, or -1 if uaddr points outside of the user area.

int fuword (uaddr)
int *uaddr;

Fetches the word from user data address uaddr. fuword returns the word upon
successful completion, or -1 if uaddr points outside of the user area. Note that a
legitimate value of -1 and the error indication are indistinguishable.

int copyin (uaddr, kaddr, count)
char *uaddr, * kaddr;
int count;

Copies count bytes from user data address uaddr to kernel data address kaddr.
copyin returns a value of 0 upon successful completion, or -1 if any or all of the
uaddr buffer is outside of the user area.

int copy out (kaddr, uaddr, count)

Copies count bytes from kernel data address kaddr to user data address uaddr.
copyout returns a value of 0 upon successful completion, or -1 if any or all of the
uaddr buffer is outside of the user area.

C-14 AIX Operating System Technical Reference

Block Device Drivers

Block device drivers must be able to perform multiple block transfers. If the device cannot
do multiple block transfers, or can only do multiple block transfers under certain
conditions, then the device driver must transfer the data with more than one device
operation.

An area of memory is set aside within the kernel memory space for buffering data transfers
between a program and the peripheral device. The kernel buffers are allocated in blocks of
2048 bytes. Each block becomes a member of one of the following linked lists that the
driver and the kernel maintain:

Available buffer queue
Contains all of the buffers that are not waiting for data to be transferred to or from
a device.

Busy buffer queue
Contains all of the buffers that contain data that is waiting to be transferred to or
from a device.

Each block in the queue has a buf header structure that contains, among other
information about the block, two sets of pointers to the next (forw) and previous (back)
members in the list. The device driver maintains these pointers for the available blocks
(av-forw and av-back). The kernel maintains these pointers for the busy blocks (b-forw
and b-back).

The buf structure, which is defined in the sys/buf.h header file, includes the following
fields:

int
struct buf
struct buf
struct buf
struct buf
dev­
unsigned
caddr-t
daddr-t
unsigned int

b-flags
*b-forw
*b-back
*av-forw
*av-back
b-dev
b-bcount
b-un.b-addr
b-b 1 kno
b-resid

Flag bits. See the following discussion.
The forward busy block pointer.
The. backward busy block pointer.
The forward pointer for a driver request queue.
The backward pointer for a driver request queue.
The major and minor device number.
The byte count for the data transfer.
The memory address of the data buffer.
The block number on the device.
Amount of data not transferred after Arror.

Device Drivers C-15

Warning: Do not modify any of the following fields of the buf structure
that is passed to the ddstrategy entry point: b-forw, b-back, b-dev,
b-un, or b-blkno.

Do not modify any of the following fields of a buf structure that is
acquired with the geteblk kernel subroutine: b-flags, b-forw, b-back,
b-dev, b-count, or b-un.

Modifying these fields can cause unpredictable and disasterous results.
The value of the b-flags field is constructed by logically OR-ing zero or more of the
following values:

B-WRITE

B-READ

B-DONE

B-ERROR

B-BUSY

B-PHYS

B_WANTED

B_AGE

B-ASYNC

B-DELWRI

B-OPEN

B-STALE

B-DMA

This is not a read operation.

This is a read data operation, rather than write.

I/O on the buffer has been done, so the buffer information is more current
than other versions.

A transfer error occurred, transaction aborted.

The block is not on the free list.

Physical I/O.

A wakeup call should be issued when the block is released.

The data is not likely to be reused soon, so prefer this buffer for reuse.
This flag suggests that the buffer goes at the head of the free list rather
rather the end.

Asynchronous 1/0 is being performed on this block. When I/O is done,
put the block back on the free list rather than waking up a waiting
process.

The contents of this buffer still need to be written out before it can be
reused, even though this block may be on the.free list. This is used in the
write routine when the system expects another write to the same block to
occur soon.

The open routine called.

The data conflicts with the data on disk because of an I/O error.

b-un.b-addr points directly into the user segment.

C-16 AIX Operating System Technical Reference

ddstrategy

The entry point that performs block-oriented I/O is called ddstrategy:

ddstrategy (bufp)
struct buf *bufp;

When the kernel needs a block I/O transfer, it calls the strategy routine of the
device driver for the device.

The bufp parameter points to a buf structure. Of particular interest to ddstrategy
is the following information:

• The type of transfer (read or write)
• The device block number
• The m.;IDory address to be used
• The byte count (number of bytes to be transferred).

This entry point either sends the data to the VRM device driver immediately, or it
queues the request for later processing.

void iodone (bufp)
struct buf *bufp;

When the block I/O transfer is complete, the device driver must call the iodone
kernel subroutine to inform the kernel of this fact. The iodone kernel subroutine
marks the buffer pointed to by the bufp parameter to indicate that the I/O has been
completed. If the B-ASYNC bit of the buffer's h-flags field is set, indicating
asynchronous I/O, then the buffer is released. Otherwise, iodone wakes up any
processes that are waiting for the buffer.

Device Drivers C-17

Device Interrupts

Interrupts generated by I/O devices are serviced by a second-level interrupt handler, which
is an AIX device driver entry point that, by convention, usually has a name of the form
ddintr.

The following kernel subroutines define the SLIH to AIX and remove this definition.

level-t vec-init (level, routine, arg)
int level;
int (*routine) ();
int arg;

The vec-init kernel subroutine associates an interrupt handler with an interrupt
level and sublevel. It is usually called from within the ddopen or ddinit routine to
define the ddintr interrupt handler to the system.

The vec-init kernel subroutine associates the interrupt routine pointed to by the
routine parameter with an unused sublevel for interrupt priority level level. The
value of the level parameter should be that of the ilev parameter that was passed to
the ddinit entry point. This value is always 4 because AIX uses interrupt level 4
for all I/O devices.

After the interrupt handler is installed, a device interrupt associated with this level
and sublevel causes routine to be called and passed a pointer to an int that
contains the value argo Thus, the arg value can be used to identify the device that
caused the interrupt when one AIX device driver controls more than one device.

The vec-init kernel subroutine returns a value that identifies the interrupt level
and sublevel assigned. The low-order eight bits of this value specify the sublevel,
and the next lowest-order three bits specify the level. This is the format used to
pass the interrupt level and sublevel to the VRM using the Attach-Device sve.

void vec-clear (levsublev)
level-t levsublev;

The vec-clear kernel subroutine removes the association of the interrupt handler
with the interrupt level and sublevel specified by the levsublev parameter. The
value of this parameter is the same as that returned by a previous call to vec-init.

C-18 AIX Operating System Technical Reference

Device drivers sometimes need to mask interrupts when in a critical section of code, such
as when accessing data that is shared with a ddintr interrupt handler. The following
kernel subroutines mask and unmask interrupts:

int splx (level)
int level;

The splx kernel subroutine masks interrupts on the level specified by the level
parameter, and then returns the current level. Because all interrupts occur on the
level 4, a value of 0 disables interrupts and a value other than 0 enables interrupts.

Alternatively, you can use the following kernel subroutines:

int splO () Enables all interrupts and returns the current level
int spl4 () Disables all interrupts and returns the current level
int spl5 () Disables all interrupts and returns the current level
int spl6 () Disables all interrupts and returns the current level
int spl7 () Disables all interrupts and returns the current level
int splhi () Disables all interrupts and returns the current level.

Device Drivers C-19

Multiplexed Devices

A multiplexed device is one that uses the following kernel subroutines to decode special
information that is appended to the end of the path name of the special file for the device.
This path name extension is frequently used to identify a logical or virtual subdevice, or
channel. The usrchar kernel subroutine provides access to the path name extension, and
setmpx provides a means by which individual channels can be recognized on subsequent
I/O calls.

char usrchar ()

Each call to usrchar returns a character from the path name of a multiplexed
special file, starting immediately after the / (slash) that ends the system file name.
At the end of the file name, a value of 0 ('\0') is returned. If the path name has no
more characters after the special file name, a value of 0 is returned on the first
call.

The usrchar kernel subroutine is normally called from the ddopen routine to
determine the channel of a multiplexed device that is being opened.

int setmpx (chan)
caddr _ t mpx;

The setmpx kernel subroutine is called from the ddopen routine to declare a
device driver to be multiplexed. The value of the chan parameter is saved in the
open file table for the process, and it is passed to the ddread, ddwrite, ddioctl,
and ddclose routines to identify this instance of ddopen.

Note that the lseek system call is not allowed on a multiplexed file, and that the
ddclose entry point is called each time a process closes it. (For nonmultiplexed
files, ddclose is called only once: when the last process that opened it closes it.)

C-20 AIX Operating System Technical Reference

Process Suspension and Timing

The operating system provides the following kernel subroutines to suspend and
synchronize processes:

sleep (chan, pri)
int chan, pri;

Deactivates the calling process on channel chan. When the process activates
again, it runs with the priority specified by pri. The new priority is effective only
while the device driver has control. Once it returns to the user program, the
kernel controls the priorities.

All processes that are waiting on the channel are restarted at once, causing a race
condition to occur. Thus, after returning from the sleep kernel subroutine, each
process should check to see whether it needs to sleep again.

The channel specified by the chan parameter is simply a value that identifies an
event to wait for, or to sleep on. This value is passed to the wakeup kernel
subroutine to start up all of the processes that are waiting for the event. The
channel identifier must be unique system-wide, so the address of an external kernel
variable (which can be defined in a device driver) is generally used for this value.

wakeup (chan)
int chan;

Makes all processes that were suspended on channel chan by the sleep kernel
subroutine ready to execute. The processes do not actually begin to execute until
the current process relinquishes control of the processor or returns to user mode.
Because all processes that are waiting on the channel are restarted, a race
condition occurs. Thus, after returning from the sleep kernel subroutine, each
process should check to see whether it needs to sleep again.

The channel specified by the chan parameter is simply a value that identifies an
event to wait for, or to sleep on. This value is passed to the wakeup kernel
subroutine to start up all of the processes that are waiting for the event. The
channel identifier must be unique system-wide, so the address of an external kernel
variable (which can be defined in a device driver) is generally used for this value.

The wakeup kernel subroutine is usually called from an interrupt handler
(ddintr).

timeout <tunc, arg, ticks)
int (*func) ();
int arg, ticks;

Schedules the function pointed to by the func parameter to be called with the
parameter arg after ticks timer ticks. Timer ticks occur many times a second, but

Device Drivers C-21

they do not necessarily occur at regular real-time intervals because they are caused
by virtual interrupts from the VRM.

The tunc function is called on an interrupt level; therefore, it must follow the
conventions for interrupt handlers. See "ddintr" on page C-9 for more information
about the restrictions that apply to interrupt handlers.

untimeout (func, arg)
int (*tunc) ();
int arg;

Cancels all pending timeout requests that were made by calling timeout with the
specified tunc and arg values.

delay (ticks)
int ticks;

Suspends the calling process for the number of timer ticks specified by the ticks
parameter. This is implemented by using timeout to schedule a call to wakeup,
then calling sleep to wait for the wakeup.

Processes have two kinds of sleep: fast and slow. When the wakeup priority is
numerically less than or equal to the PZERO value defined in /usr/include/sys/pri.h,
sleep is fast. In this case, no signal or other external action can interrupt the process.

If the priority is numerically greater than PZERO, then the sleep is slow. In this case, a
signal such as one caused by the kill or alarm system calls, or pressing the Alt-Pause key
sequence aborts the sleep and restarts the process. When this happens, the process does
not return from the sleep, but uses longjmp to return to the address saved in u.u-qsav.
By default, this causes the system call to return a value of -1 to the user process and to set
errno (u.u-error) to EINTR, indicating that the system call was interrupted by a signal.

Device drivers can take either of two approaches to handling signals. The simpler and
more common approach is to write the driver so that it will continue to operate correctly
even if the sleep routine does not return. This approach is taken in the sample driver
shown in "A Sample AIX Device Driver" on page C-35.

The second approach is that instead of letting the process return to the address saved in
u.u-qsav, the process can catch and process the signal. To do this, logically OR the value
PCATCH with the pri parameter passed to the sleep routine. If the sleep kernel
subroutine returns due to a signal, then it returns a nonzero value. Otherwise, it returns a
value ofO.

C-22 AIX Operating System Technical Reference

\
I

)

TNL SN20-9869 (26 June 1987) to SC23-0809-0

This second approach is demonstrated in the following example.

if (sleep(chan, PZERO + 4 I PCATCH) == 1)
{

/* ... Perform operations in response to the signal */
u.u-error = EINTR; /* Indicate the interruption */
return;

}

In this case, a signal does not restart the process, but returns control to the next
sequential instruction after the call to sleep. This allows the kernel code to perform
operations in response to the signal before returning normally.

Setting the runrun external variable to a nonzero value causes the scheduler to dispatch
the next procedure with the highest priority at the next opportunity. Such opportunities
occur when returning from an interrupt handler, leaving kernel mode, and returning from
a system calL You can set runrun to cause a signal to preempt the process that is
currently running. To set runrun, use the following statement:

runrun++;

Device Drivers C-23

TNL SN20-9869 (26 June 1987) to SC23-0809-0

Interprocess Communication

The following kernel subroutines allow an AIX device driver to communicate directly with
user processes.

I Signals

psignal (p, sig)
struct proc *p;
int sig;

The psignal kernel subroutine sends a signal to a process. The p parameter points
to the process table entry for the receiving process. The sig parameter specifies the
signal to send.

To get the value for the p parameter, save u.u-procp, which contains a pointer to
the process table entry for the process that made the system call.

See "signal" on page 2-145 for a list of the valid signals and "sigvec" on page 2-156
for more information about how signals work.

I Message Queues

The following kernel subroutines provide the same message queue services as the msgctl,
msgget, msgsnd, and msgxrcv system calls. The return values are the same, and the
error code stored in errno can be accessed by the device driver as u.u-error. Note that a
memory fault (EFAULT) cannot occur because message buffer pointers in the kernel
address space are assumed to be valid.

These subroutines must be called from the process level, not the interrupt level (ddintr),
since they call sleep when waiting for resources.

int kmsgctl (msqid, cmd, but)
int msqid, cmd;
struct msqid-ds buf;

See the description of "msgctl" on page 2-73.

int kmsgget (key, msgflg)
key-t key;
int msgflg;

See the description of "msgget" on page 2-76.

C-24 AIX Operating System Technical Reference

TNL SN20-9869 (26 June 1987) to SC23-0809-0

int rmsgsnd (msqid, msgp, msgsz, msgflg, segflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg, segflg;

The msqid, msgp, msgsz, and msgflg parameters are described under "msgsnd" on
page 2-82. The segflg parameter should be 1, indicating that the msgbuf is in the
kernel address space, not user space.

int rmsgrcv (msqid, msgp, msgsz, msgtyp, segflg)
int msqid;
struct msgxbuf *msgp;
int msgsz;
mtype-t msgtyp;
int segflg;

The msqid, msgp, msgsz, and msgtyp, parameters are described under "msgxrcv" on
page 2-85. The segflg parameter should be (XMSG I 1), where XMSG indicates
that this is an extended message receive, and the 1 indicates that the msgxbuf is
in the kernel address space, not user space.

Device Drivers C-24.1

TNL SN20-9869 (26 June 1987) to SC23-0809-0

C-24.2 AIX Operating System Technical Reference

Dynamic Storage Management

If a device driver expects to buffer more than a few characters of data, it should use the
dynamic storage facilities provided by the kernel. The following sections discuss three
separate facilities.

malloc, palloc, free

The malloc, palloc, and free routines describe allocation of kernel address space and
provide a simple interface for kernel address space allocation.

caddr-t malloc (size)

The malloc kernel subroutine returns a pointer to an area that is size bytes in
length. It returns a NULL pointer if the requested block of memory cannot be
allocated.

caddr-t palloc (size, align)

The palloc kernel subroutine returns a pointer to an area of length size aligned on
an address boundary of 2 raised to the power specified by the align parameter
(2align). For example, p a 11 oc (1024, 11) returns a pointer to a l024-byte area that
is aligned on a 2048-byte boundary (211 = 2048). palloc returns a NULL pointer if
the requested block of memory cannot be allocated.

void free (ptr)

free returns an area allocated by malloc or palloc to the free buffer pool.

malloc and palloc can only be called from process level. free can be called from
process level or interrupt level.

Character Lists

Character lists are used to maintain a queue of bytes, which can also be treated as a queue
of buffers that contain groups or blocks of bytes. They are appropriate for relatively slow
devices such as terminals and printers.

Device Drivers C-25

For each character list that you use, you must define a queue header, which is a variable
of type struct clist. This clist structure is defined in the sys/tty.h header file, and it
contains the following members:

int
struct cblock
struct cblock

Character count
Pointer to first block
Pointer to last block

You do not need to be concern~d with maintaining the fields in the clist header; the
character list kernel subroutines do that for you.

Each block in the queue is a cblock structure, which is also defined in the sys/tty.h
header file:

struct cblock
char
char
char

*c_next
c-data eelS I ZE]
c-first
c-last

Pointer to next block
Data
Offset to first character
Offset to last character

A block does not need to be completely filled with characters. The fields c-first and
c-Iast are zero-based offsets within the c-data array, which actually contains the data.

The following kernel subroutines are provided for handling character lists. All of the
routines mask the interrupts as needed, so you can call them from either mainline or
interrupt level.

int getc (header)
struct clist * header;

Returns the next character from the queue whose header is pointed to by the
header parameter. If it is the last character in the buffer, the buffer is freed. If the
buffer is empty, then getc returns -1.

int putc (c, header)
char c;
struct clist *header;

Puts the character c in the queue whose header is pointed to by the header
parameter. If the operation is successful, a value of 0 is returned. If the queue is
full and no more blocks are available, then putc returns -1.

struct cblock *getcf ()

Gets a block from the free list and returns a pointer to it. If no blocks are
available, then getcf returns a NULL pointer. If you get buffer space with this
routine, you must ensure that you free the space when you are through with it.

C-26 AIX Operating System Technical Reference

void putcf (P)
struct cblock *p;

Returns the block specified by the p parameter to the free block list.

struct cblock *getcb (header)
struct clist *header;

Returns the address of the next buffer on the queue specified by the header
parameter, or a NULL pointer if the queue is empty. The buffer is removed from
the queue as well. If you get a buffer with this routine, you must ensure that you
free the space when you are through with it.

void putcb (p, header)
struct cblock *p;
struct clist * header;

Puts the buffer pointed to by p on the queue specified by header. Befure calling
putcb, you must load this new buffer with characters and set c-first and c-last.
The p parameter is the pointer returned by either getcf or getcb.

You can mix calls to getc, putc, getcb and putcb. In this manner, you can insert
characters in the buffer one by one, and remove them as a group. You can also insert
them as a group and remove them one by one.

The amount of system memory available for character queues is limited. All character
device drivers must share this pool of memory. Therefore, you must limit the number of
characters in your queue space to a few hundred. When the device is closed, the driver
should make certain that all of its character queues are flushed so that the character
blocks are returned to the system.

Disk Buffer Header Allocation

Device drivers (even character device drivers) can get buffers from the system supply of
available disk buffers. The use of disk buffers by character device drivers is strongly
discouraged. Instead, using malloc to allocate memory space is preferred. Because these
buffers cannot then be used to buffer disk I/O, be careful to get only the amount of space
needed.

"Block Device Drivers" on page C-15 explains the fields of the buffer structure and
describes how these buffers are maintained. In the header, the b-forw, b-back, b-flags,
b-bcount, b-dev and b-un fields are used by the system and may not be modified by the
driver. The av-forw and av-back fields are available for keeping a chain of such buffers
by the kernel or by the driver. b-blkno and b-resid can be used for any purpose. If input
or output is to occur directly to the user address space (sometimes referred to physical I/O),
the b-proc entry contains a pointer to the process table entry for the process performing a

Device Drivers C-27

read or write. Segment register information is stored in the process structure, therefore,
the b-proc entry is used in an interrupt routine that starts a physical I/O to ensure that
the segment is actually mapped into memory when the start I/O SVC is issued.

Two kernel subroutines allo\v you to get and release buffers for use by your device dl~iveL
When disk buffers are used in a device driver, the ddopen entry point typically calls
geteblk to get the buffers, and ddclose calls brelse to return them.

struct buf *geteblk ()

Returns the address of a buffer header that is not in use. Note that geteblk does
not allocate disk data buffers. If no free buffer headers are available, then geteblk
waits for one to .become available. Therefore, you can call this routine only from
the process level, not from the interrupt level (ddintr).

void brelse (b)
struct buf *b;

Frees the buffer that is pointed to by the b parameter. This kernel subroutine can
be called from either the interrupt level or the process level.

Block Buffer Allocation

Some device drivers may need to use the Block I/O Communication Area (BIOCA). The
BIOCA is a block of storage in the kernel address space that is allocated when the device
driver is configured. The /etc/biohelp customize helper can be used to configure a device
driver that uses the BIOCA. See the discussion of IBM device drivers in Virtual Resource
Manager Technical Reference for detailed information about the BIOCA, and see AIX
Operating System Programming· Tools and Interfaces about configuring device drivers.

A device driver can request and release buffers from the BIOCA with the following kernel
subroutines:

#include < sys/bioca.h >

struct biobuf *bfget (poolptr)
char *poolptr;

The bfget kernel subroutine returns a pointer to the next available buffer in the
BIOCA. If no buffers are available, then bfget returns a NULL pointer. The
poolptr parameter is a pointer to the buffer pool that is passed back from the block
I/O manager.

C-28 AIX Operating System Technical Reference

#include < sys/bioca.h >

int bffree (bufaddr)
struct biobuf *bufaddr;

The bffree kernel subroutine frees the buffer pointed to by the bufaddr parameter.
bffree always returns a value of o.

Device Drivers C-29

Error Logging and Console Messages

void printf (format [, value, . • .])
char *format;

The printf kernel subroutine writes a formatted character string to the error log
(using the errsave kernel subroutine), and then it writes the string to the console.
Most of the system's operation is suspended while printf is writing to the console,
so use it only for important messages.

The printf kernel subroutine resembles the printf subroutine described on page
3-300, but do not confuse the two. The subroutine is part of the Standard I/O
Package (libc.a), which is used by application programs. The kernel subroutine is
built into the kernel and is accessible only within the kernel and AIX device
drivers. Also, the printf kernel subroutine recognizes only the %5, %d, %D, %0, and
%x conversion specifications. Field width, precision, and other modifiers are not
recognized.

The record written to the error log is marked as being an informational message
about an AIX device driver. The fields of the error log header are set to the
following values, as defined in the sys/erec.h header file:

class
subclass
mask
type

E-SOFTWARE
E_UNIX
E-UNIXDDI
E-INFO

int errprintf (format [, value, . . .])
char *format;

The errprintf kernel subroutine is identical to printf, except that it writes the
formatted string to the console only if the error device driver, /dev/error, has not
been opened.

panic (s)
char *s;

The panic kernel subroutine is called when a catastrophic error occurs and the
system can no longer continue to operate. It performs the following actions:

• Usesprintf to write the character string pointed to by the s parameter to the
console, preceded by the word pan i c :

• Performs a sync operation, flushing all disk buffers
• Does a system dump
• Records the first 14 characters of the s string in non-volatile random access

memory (NVRAM)
• Goes into an endless idle loop during which interrupts are processed.

C-30 AIX Operating System Technical Reference

If panic is called a second time while processing an interrupt, then panic performs
the following actions:

• Writes the s string to the console, preceded by the phrase Daub 1 e pan; c:
(print£)

• Records the first 14 characters of the new s string in NVRAM
• Goes into an endless idle loop during which interrupts are processed.

void errs ave (buf, ent)
char *buf;
unsigned int ent;

The errsave kernel subroutine allows AIX device drivers and the AIX kernel to
write error log entries to the error device driver. Application programs should use
the errunix kernel subroutine to log error messages.

The buf parameter points to a buffer that contains the following information:

1. A word (int) that contains the class, subclass, mask, and type of the message,
as defined in the discussion of "error" on page 6-15

2. A word that specifies the number of words of dependent data for the error log
entry, including this int itself

3. Dependent information for the error log entry. The number of dependent data
words must be one less than the word count specified immediately before them.

The other fields of the error log header (length, date and time, time extended, node
name, and virtual machine ID) are supplied for you automatically.

The ent parameter specifies the number of bytes in the buffer pointed to by buf.
The value of ent must be a multiple of 4.

See also "errunix" on page 3-126, and "error" on page 6-15.

Device Drivers C-31

Trace Logging

void trsave (traceid, cnt, buf)
unsigned short traceid;
char *buf;
unsigned int cnt;

The trsave kernel subroutine allows AIX device drivers and the AIX kernel to
write trace log entries to the trace device driver. Application programs should use
the trcunix kernel subroutine to log trace events.

The high~order 5 bits of the traceid parameter specify the channel number, and the
low-order 11 bits specify the hookid for the message. User programs may use only
channel number 31. The buf parameter points to a buffer that contains up to 20
bytes of data for the trace log entry. The cnt parameter specifies the number of
bytes in the buffer pointed to by buf.

If the system trace device driver has already been opened, and if the channel
specified by the traceid parameter has been enabled, then the driver stores the log
entry in a queue. If there is not enough room in the queue, then the entire entry is
discarded and a special entry is made to record the fact that it was discarded.

See also "trace-on" on page 3~357, "trcunix" on page 3-362, and "trace" on
page 6~128.

C-32 AIX Operating System Technical Reference

VMI Supervisor Calls

Services are requested of the VRM by using VMI supervisor calls (SVCs). The following
kernel subroutines issue these SVCs for AIX device drivers. The AIX device driver must
include the sys/ksvc.h header file in order to use these routines.

Supervisor Call

S-ST (a, b, c)
S-SI (a)
S-SOI (a, b, c, d, e)
S-RFI ()
S-VMW ()
S-D ()
S-R ()
S-DEFDEV (a)
S-XADEV (a, b, c)
S-XDDEV (a, b)
S-QDEV (a)
S-XSIO (a, b)
S-CIO (a, b, c)
S-CRSEG (a)
S-DSEG (a)
S-LCSEG (a)
S-CSSEG (a, b)
S-PP (a, b, c, d)
S-QPP (a)
S-LSR (a)
S-CSR (a)
S-PINPR (a, b, c)
S-UPR (a, b, c)
S-PURPR (a, b, c, d, e)
S-SIM (a, b, c, d)
S-SAM (a, b, c, d)
S-SMR (a)
S-XTVM (a)
S-DCODE (a, b, c, d)
S-NOOP ()
S-KOUTPUT (a, b, c)
S-KSO (a, b, c, d, e, f)
S-KSS (a, b, c, d)

Description

Set Timer
Set In terru pt
Soft Interrupt
Return From Interrupt
VM Wait
Dispatch
Return
Define Device
Attach Device
Detach Device
Query Device
Start 10
Cancel 10
Create Segment
Destroy Segment
Logical Copy Segment
Change Size of Segment
Protect Pages
Query Page Protection
Load Segment Registers
Clear Segment Registers
Pin Page Range
Unpin Page Range
Purge Page Range
Send Immediate Message
Send Address Message
Set Message Receive
Terminate Virtual Machine
Define Code
No-op; sets hardware floating-point processor registers
KSR Output
KSR Short Output
Set Structure

Device Drivers C-33

Supervisor Call

S-KSQ (a, b, c, d, e)
S-MAP (a)
S-UNSHRlVIPR (a, b, c)
S-XSC (a, b, c, d, e, f)
S-IPL VM (a, b, c)
S-UPDVRM ()
S-VIPL ()
S-POST (a, b)
S-RQGET (a)
S-RQPUT (a, b)
S-QVM (a, b, c)
S-RNVRAM (a, b, c)
S-WNVRAM (a, b, c)
S-ALLOCFP (a, b)
S-FREEFP (a)
S-QUERYFP ()

Description

KSR Struct Query
Map Page Range
Unshare Mapped Page Range
Send Command
IPL Virtual Machine
Update VRM
Re-IPL VRM
Post
Ring Queue Get
Ring Queue Put
Query Virtual Machine
Read NVRAM
Write NVRAM
Alloc FP hardware register sets
Free FP hardware register sets
Query FP hardware register sets

C-34 AIX Operating System Technical Reference

A Sample AIX Device Driver

The following example is a complete character device driver. This driver does the basic
operations necessary to run the device, but little or no error checking is done. A more
robust driver would examine the return value of each sve to determine success or failure.
Also, the interrupt handler should test the operation result in the interrupt PSB to
determine success or failure. See Virtual Resource Manager Technical Reference for
discussions of sve error codes and formats of the interrupt PSB.

/* Example device driver program for device
similar to parallel printer */

#include <sys/param.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/tty. h>
#include <sys/devinfo.h>
#include <sys/errno.h>
#include <sys/kio.h>
#include <sys/select.h>

#define DD-PP I P I /* this would be defined in your
devinfo.h */

#define PP-WRITE Oxl /* ccb operation */
#define PPPRI (PZERO+8) /* sleep priority */
#define PPLOWAT 40 /* try not let queued below this */
#define PPHIWAT 100 /* try not let queued above this */
#define OPEN OxOl /* already open flag */
#define ASLEEP Ox08 /* asleep flag */
#define HOG OxlO /* queued chars gone above HIWAT */
#define WCLOSE Ox20 /* close pending */
#define PPBUSY Ox40 /* io svc in progress */
#define PPWCOL Ox80 /* write select collision */

/* macros for convenience */
#define min(x, y) (((x) < (y)) ? (x) : (y))

/* validate range of minor device number */
#define DEVCHECK(dev) \

Device Drivers C-35

pp = &pp-dev[minor(dev)J; \
if (pp > &pp-dev[PPMAXJ) \
{ \

u.u-error = ENXIO; \
return; \

}

/* device table entry
struct pp {

int p-pvec;
unsigned short p-iodn;
struct clist p-outq;
struct cblock *p-block;
long p-pathid;
struct ccb p-ccb;
struct com-elm p-elm;
char p-state;
struct proc *p-selw;
short p-ilevel;

};

/* device table */
#define PPMAX 2
struct pp pp_dev[PPMAX]

char lbuf[PPHIWAT-PPLOWAT+l];

/* driver open routine
ppopen(dev, mode)
dev-t dev;
{

struct pp *pp;
int ppintr;

*/

*/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

interrupt level, sublevel */
iodn of vrm device */
head of clist */
current cblock */
path id of vrm device */
ccb for start io */
element for start io */
state flags */
proc waiting on select */
interrupt level */

/* temp copy buffer */

/* validate device number */
DEVCHECK(dev);

/* if already open, don't allow another */

C-36 AIX Operating System Technical Reference

}

if (pp->p-state & OPEN) {
u.u-error = EBUSY;
return;

}

/* if not already assigned, assign interrupt
level on 4 */

if (pp->p-pvec == 0) pp->p-pvec = vec-init(4, ppintr, pp);

/* perform attach SVC */
if (S-XADEV(pp->p-pvec « 16 1 pp->p-iodn, 5, &pp->p-pathid) != 0)
{ u.u-error = EIO;

return;
}

/* mark as now open */
pp->p-state 1= OPEN;

/* driver close routine */
ppclose(dev)
{

struct pp *pp;

DEVCHECK(dev);

sp14();

ppkick(pp) ;

/* mask interrupts */

/* flush remaining chars */

/* wait for I/O complete */
while (pp->p-state & PPBUSY) {

}

splO();

pp->p-state 1= (ASLEEP 1 WCLOSE);
sleep(&pp->p-block, PPPRI);

/* unmask interrupts */

/* detach device */
S-XDDEV(pp->p-iodn, pp->p-pathid);

Device Drivers C-37

pp->p-state = 0;
}

/* driver write routine */
ppwrite(dev)
{

char *p;
int n;
struct pp *pp;

DEVCHECK(dev);
/* while output data still remains */

while (u.u-count) {
/* if number queued below high water mark */

if (PPHIWAT < pp->p-outq.c-cc) {

}

sp14();

ppkick(pp);

/* mask interrupts */

/* get io going */

/* stay asleep if queued characters
still above high water threshold */

while (PPHIWAT < pp->p-outq.c-cc) {

}

splO();

pp->p-state 1= ASLEEP 1 HOG;
sleep(&pp->p-state, PPPRI);

/* unmask interrupts */

/* copy another chunk */
p = lbuf;
n = min(u.u-count, sizeof lbuf);
if (copyin(u.u-base, p, n))
{ u.u-error = EFAULT;

return;
}
u.u-base += n;
u.u-count -= n;

/* put on clist */

C-38 AIX Operating System Technical Reference

wh i 1 e (n - -)
while (putc(*p++, &pp->p-outq)) {

delay(4);
}

}
}

/* driver ioctl routine */
ppioctl (dev, cmd, arg, mode)
int dev;
int cmd;
caddr-t arg;
{

struct pp *pp;
struct devinfo dinfo;

DEVCHECK(dev);
/* perform standard info ioctls only */

switch(cmd) {
case IOCTYPE:

u.u-rvall = DD-PP«8;
break;

case IOCINFO:
dinfo.devtype = DD-PP;
dinfo.flags = 0;
if (copyout((char *)&dinfo, arg, sizeof(dinfo)))

u.u-error = EFAULT;
break;

default:
u.u-error EINVAL;

}
}

/* driver init routine */
ppinit(dev,iodn,ilev,ddlen,ddptr)
dev-t dev;
ushort iodn;
short ilev;

Device Drivers C-39

short ddlen;
char *ddptr;
{

}

struct pp *pp;

DEVCHECK{dev);
pp->p-ilevel = ilev;
pp->p-iodn = iodn;
return{O);

/* routine to start output and keep it going */
/* called from both base level and interrupt level */
/* always called with interrupts masked */
ppkick{pp)
struct pp *pp;
{

struct ccb *lb;
struct com-elm *le;
struct cblock *lcb;

/* if busy, then interrupt pending.
no kick needed */

if (pp->p-~tate & PPBUSY) return;

/* see if characters still queued for output */
if { !(pp->p-block = getcb{&pp->p-outq))) {

/* No more to do.
See if a close is pending and wake up process. */

if (pp->p-state & WCLOSE) {

}

pp->p-state &= -(ASLEEP I WCLOSE);
wakeup(&pp->p-block);

/* otherwise get next block of characters sent */
} else {

pp->p-state 1= PPBUSY;
/* -> to I/O element */

le = &pp->p-elm;

C-40 AIX Operating System Technical Reference

}

}

/* -> to ccb */
lb = &pp->p-ccb;

/* -> to data to output */
lcb = pp->p-block;

/* address of data */
le->memaddr = lcb->c-data + lcb->c-first;

/* number of characters */
le->tranlen = lcb->c-last - lcb->c-first;

/* last element, none to follow */
le->linkwd = 0;

/* iodn of device to receive data */
lb->iodn = pp->p-iodn;

/* interrupt on completion,
interrupt on error, element follows
write command */

lb->dev-opt = CCB-INTCOMP I CCB-INTERR I CCB-ELM I PP-WRITE;
/* no auto line feed */

lb->dd.pr.afpai = 0;
S-XSIO(lb, pp->p-pathid); /* Start I/O */

/* when number of pending characters falls below low
threshold wake up process */

if ((pp->p-state & HOG) != 0 && pp->p-outq.c-cc <= PPLOWAT) {
pp->p-state &= -(ASLEEP I HOG);

}

wakeup(&pp->p-state);
if (pp->p-selw)
{

}

/* Wake up the process that is waiting on a */
/* write select. */
selwakeup(pp->p-selw,

pp->p-state & PPWCOL);
pp->p-selw = NULL;
pp->p-state &= -PPWCOL;

Device Drivers C-41

/* interrupt handler */
ppintr(pdev)
struct pp **pdev; /* specified via vec-init */
r
'\.

/* note that some checking for success should be performed by
interrogating the PSB operation result */

}

/* get device pointer */
struct pp *pp = *pdev;

/* no interrupt pending */
pp->p-state &= ~PPBUSY;

if (pp->p-block) {

}

sp14();

/* give back cblock */
putcf(pp->p-block);
pp->p-block = 0;

/* mask interrupts */

/* get next block started
ppkick(pp);

/* unmask interrupts */
splO();

ppselect(dev, seltype, offchan)
int dey, seltype;
caddr-t offchan;
{

int rc, s;
struct pp *pp;

DEVCHECK(dev);

*/

if (/* Selection criterion can never be satisfied */)
{

rc = 1;
}
else
{

C-42 AIX Operating System Technical Reference

rc = 0;
/* Mask interrupts while checking device status.
s = sp15();

switch (seltype)
{

case FWRITE:
if (pp->p-outq.c-cc <= PPHIWAT)
{

/* Queued chars are below high-water threshold */
rc = 1;

}
else
{

/* Selection criterion not met; return O.
rc = 0;

if (pp->p-selw &&
pp->p-selw->p-wchan == &selwait)

{

*/

*/

/* Another process is already waiting for */
/* a write select on this device. Therefore, */
/* set the device write select collision flag. */
pp->p-state 1= PPWCOL;

}
else
{

/* Save process information since the select */
/* system call may put this process to sleep. */
pp->p-selw = u.u-procp;

}
}
break; /* FWRITE */

case FREAD:
/* This device driver can always accept reads. */
rc = 1;
break;

Device Drivers C-43

}

case 0: /* Exception selection */
/* This device driver has no exceptions.
rc= 0;
bt"'eak;

} /* switch */

/* Reset interrupt mask.
splx(s);

} /* if */

return(rc);

C-44 AIX Operating System Technical Reference

*/

*/

Installing Device Drivers

After a device driver is written, it should be installed on the system. This section discusses
installing device drivers in the AIX kernel. It also provides an example of a helper
program that builds the VRM structure to support the AIX kernel driver. This section also
lists the steps to rebuild an AIX kernel.

Device drivers are loaded when the system is booted. Mter it is loaded, the device driver
becomes part of the kernel that provides access to the device it controls. VRM device
drivers are defined and bound to the AIX kernel device drivers by a combination of the
/etc/vrmconfig program and the customize helper programs. This process takes place
primarily at system power-on (IPL). The /etc/vrmconfig program uses information in the
/etc/system and Jete/master files and to issue the Define-Code supervisor call (SVC) to
the VRM to define device driver code in the VRM. Another step required to make a VRM
device driver operational is to issue the Define-Device SVC to the VRM, passing a
pointer to a buffer containing the Define Device Structure (DDS). The customize helper
issues this second VRM SVC as well as binding this new VRM device driver to the
corresponding AIX kernel device driver. See Virtual Resource Manager Technical
Reference for additional information about binding VRM device drivers. The Define-Code
and the Derme-Device SVCs use the ioctl system calls in the configuration kernel device
driver, /dev/config.

IBM-supplied VRM device drivers use /etc/vrcmain as a customize helper. The keyword
config = name in kernel device driver stanza of the /etc/master file identifies the
customize helper program used by the device driver. For mM-supplied software this is
specified as config = vrcmain. The /etc/vrmconfig program calls the customize helper
program passing the parameters that relate to a stanza in the /etc/system being processed.
When writing your own VRM and AIX kernel device drivers, you must also provide a
customize helper program. The information that follows describes the relationships and
other details.

Customize Files

Several files are used to configure the AIX Operating System. These files include:

• /etc/system (see "system" on page 4-139)
• /etc/master (see "master" on page 4-98)
• /etcJddiJfilename (see "ddi" on page 4-43)
• /etc/filesystems (see "filesystems" on page 4-64)
• Jete/ports (see "ports" on page 4-117)
• Jetc/rc (see AIX Operating System Commands Reference)

The /etc/vrmconfig and customize helper programs only use /etc/system, /etc/master
and the files in the /etc/ddi directory. The /etc/system file is the focal point for all

Device Drivers C-45

RT PC customize information. This file contains contains the information in stanzas. See
"attributes" on page 4-20 for a detailed description of stanzas.

Customize File Format

In general, a customize file has the format:

stanzaname:
keywordl = valuel
keyword2 = value2
keyword3 = value3

The stanzaname: must start at the first column within the file. A stanzaname specified in
the /etc/system file is the name of the special file for the kernel device driver (prefixed
with fdevf, that is, /devfstanzaname).

The keyword = value pairs must follow on consecutive lines with no blank lines between
the keyword = value pair lines or between stanzaname: and the first keyword = value
pair. Comments in these files require an * (asterisk) in the first column of every comment
line. Stanzas must be separated by a minimum of two blank lines (that is, new-line
characters in the first column).

/ etc/ system File
The fetc/system file contains primarily two types of stanzas. One type deals with
:ninidisks (partitions on the fixed disks) and is not important to this discussion. The
second type is the device stanza. This second type is required by users interested in
installing their own VRM kernel device drivers. See "system" on page 4-139 for the file
contents. The following is an example of a stanza for a printer.

C-46 AIX Operating System Technical Reference

lpO:
* IBM PC Graphics Printer (5152)

name = 5152
crname = true
minor = cO
vint = 4
iodn = 12000
kaf-file = /etc/ddi/pprinter.kaf
kaf_use = kparallel
file = /etc/ddi/pprinter
noddi = false
dtype = printer

* Printer
switchable = true

* Coprocessor Device
specproc = cfgaqcfg
shared = false
noduplicate = false
dname = lp
noshow = false
aflag = true

* IBM Mono Disp & Paral Prntr
adp = mp,sp1,sp2
use = d5152mp
nname = 5152mp
driver = u5152mp

/ etc/master File
The fete/master file also contains two types of stanzas. The first type describes
information about the AIX kernel device driver. The second type of stanza describes
information about the VRM device driver. The following example shows both types which
also have references in the fete/system file previously shown.

Device Drivers C-47

* printer drivers

u5152mp:
major"' ~ 6
prefi x = 1 p

<==== Kernel stanza

routines = open,close,write,ioctl,init
maxminor = 8
vdriver = v5152mp
config = vrcmain

v5152mp:
iocn = 2011
code = /vrm/vrmdd/vpptr
ctype = vdrvr

/ etc/ddi Directory

<==== VRM stanza

The files in the /etc/ddi directory contain information specific to individual device types
(such as, /etc/ddi/pprinter concerns parallel attached printers). In general, an /etc/ddi
file exists for each type of peripheral device. The /etc/ddi/pprinter file contains
information about both the parallel printer devices as well as a description of the hardware
adapter cards to which the printer must be connected. The ddi file must contain certain
hardware adapter information that is required to define a VRM device driver. It may
contain information that allows the devices command to operate on the particular device.
(This is true for IBM devices). Other information is strictly dependent on the device
requirements.

Customize File Relationships

As previously stated, the /etc/system file is the focal point for all devices currently
configured into a particular RT PC system. The /etc/system stanzas are keyword
pointers to stanzas in other customize files. The information contained in a particular
/etc/system stanza in addition to the information in the stanzas indicated (target)
completely describes that device. The relational keywords in the stanzas are pointers to
other files and other stanzas. Pointers in the /etc/system file are:

system-stanza:
driver = driver -stanza
use = ddi-stanza-name

C-4S AIX Operating System Technical Reference

file = ddi-file-name
kaf-file == kaf-file-name
kaf-use = kaf-stanza-name
vdmgr = devicel,device2, . .

The following describes the relational keywords in the /etc/system file:

driver Specifies the stanza name of the AIX kernel device driver stanza in the
/etc/master file. In certain instances, there is no direct kernel device driver
and the driver = keyword points directly to the VRM device driver stanza in
the /etc/master file.

file Specifies the device dependent information (ddi) filename (full pathname of file).

use Specifies the stanza name in the ddi file that contains the device and adapter
specific information.

kaf-file Specifies the name of the attribute file (used by the devices command and the
IBM-supplied customize helper program) that contains instructions as to how
the device information is to be processed.

kaf-use Specifies the stanza name in the kaf-file.

vdmgr Used only in special cases to describe a VRM device manager (see Virtual
Resource Manager Technical Reference for information concerning device
managers). The value list (separated by a , (comma) (no blanks are allowed) are
the stanza names (in this file) of the devices managed by this device manager.

Pointers in the /etc/master file are:

kernel-master -stanza:
vdriver = driver-stanza

VRM-master -stanza:

code = /vrm/vrmdd/driver

The following describes the relational keywords in the /etc/master file.

vdriver Specifies the name of the VRM device driver stanza within this same file.

code Specifies the full path name to the executable VRM device driver code.

Device Drivers C-49

Writing a Customize Helper Program

The customize helper program is responsible to locate, convert, and construct the
Define-Device structure unique to the VR~vf device dl~iVel~ being loaded in the character
string it receives. The helper program must additionally locate, convert, and construct the
AIX kernel device driver structure that calls the AIX kernel device driver initialization
routine.

Both program structures are declared in header file /usr/include/sys/kcfg.h, which must
be included in the source code of the customize helper program. After both program
structures are constructed, the customize helper program issues ioctl system calls to the
/dev/config kernel device driver to complete the function.

A customize helper program is required to issue the Define-Device SVC for each VRM
device driver. It is also required to call the initialization routine of the AIX kernel device
driver associated with this VRM device driver. Use the cfgabdds subroutine to build the
Define-Device structure and issue the SVC. See "cfgabdds" on page 3-13 for information
about this subroutine.

Developing Device Drivers Before the Customize Helper Program

Sometimes the VRM or AIX kernel device drivers are ready to be tested before the
customize helper program is available and the device driver structures are finalized. At
that time a mechanism to allow testing to continue without the existence of the final
design is needed. This requires the ability to temporarily circumvent the need for a
customize helper program. The ddi and uinfo keywords can be used to create this
temporary mechanism for both VRM and AIX kernel device drivers. The ddi keyword can
be used to create temporary VRM DDS structures for device drivers under development,
and the uinfo keyword can be used to initialize AIX kernel device drivers.

Warning: If either the ddi or uinfo keyword is used, then the config
keyword, which specifies the customize helper program, cannot be used. If
these keywords appear in the same device configuration stanza, or in
stanzas that are referenced for a single device, then undefined results will
occur.
Both the ddi and uinfo keywords map ASCII character string values as data for the
corresponding driver program structures. Both require that the number of ASCII
character value fields be a multiple of words in the RT PC environment. That is, no
partial word of the structure data may be used. A word in the RT PC environment is 4
bytes. Therefore, to represent one word in a device driver structure requires exactly eight
ASCII characters in the ddi value field. For example, to put the value Oxfedcba98 (note:
exactly one word) in a structure requires only that the string ddi = fedcba98 be
included in the device configuration stanza. To initialize the corresponding kernel driver

C-50 AIX Operating System Technical Reference

in the same manner would require that the string ui nfo = fedcba98 be included in the
device configuration stanza. The data (such as converted values for these keywords) is
included in the proper program structures in particular fields. The user of this mechanism
is responsible to manually calculate structure offsets and length fields and to include this
information in the character strings.

The ddi keyword data starts at the union in the defdev structure, which is defined in
< sys/kcfg.h >. This structure makes it clear that the user must calculate three offset
fields as well as three length fields in order to complete it. The vrmconfig command adds
data in the defdev structure preceding the union declaration.

The uinfo keyword adds data in the program structure starting at the union in the
unxdrv structure, which is defined in < sys/kcfg.h >. Again, the data must be an exact
multiple of words (eight ASen characters per word). The vrmconfig command adds data
to the program structure preceding the union declaration.

Rebuilding the AIX Kernel

If the you have written an AIX kernel device driver, then you must rebuild the AIX kernel
to include the new kernel driver. You may also rebuild the kernel at other times in order
to change system parameters in the sysparms stanza of the /etc/master file. The
procedure to rebuild the kernel is essentially the same whether you are installing a device
driver in the AIX kernel or not. The following procedure applies to any rebuild operation,
except for steps 1, 2, and 3, which apply only when installing a new device driver.

Use the following steps to rebuild the kernel:

1. After you have written the new kernel device driver, compile it:

c c - c driver -name. C

2. Archive the new kernel device driver into the /usr/sys/lib2 library, which contains the
kernel device drivers:

ar r /usr/sys/lib2 driver-name. 0

3. Modify the /etc/system and /etc/master files to reflect the new device driver
information.

• Add new stanzas to /etc/system and /etc/master. A device named /dev/device
should have a stanza in the /etc/system file named device.

• Select keywords and values for the new stanza that do not conflict with the
existing machine environment. For example, the major device number defined by
major = num in the /etc/master stanza must not conflict with that of an existing
stanza.

See "system" on page 4-139 and "master" on page 4-98 for more information about
constructing stanzas.

Device Drivers C-51

4. If necessary, modify other parameters in fete/master, such as the sysparms stanza.

5. Change the current directory to /usr/sys and run the make command:
_ .J I " " _"_ I _ . " _
l.U /u==>r"/-::,y-::,

make
The make command produces a file named /usr/sys/unix.std, which contains the
newly built AIX kernel, and a shell procedure named /usr/sys/speeials.

6. Run the shell procedure created by the make command:

/usr/sys/specials
7. Rename the existing AIX kernel as a precaution until the new kernel has been

successfully tested:

mv /unix.std /unix.old
8. Move the new AIX kernel to the root directory and create another link to it named

/unix:

mv /usr/sys/unix.std /unix.std
In /unix.std /unix

9. Shut the system down:

shutdown
10. Restart the system by pressing the Ctrl-Alt-Pause key sequence. This loads and runs

the new AIX kernel with the modified customization files.

11. When you are satisfied with performance of the new kernel, delete the old kernel
(/ un i X • old).

C-52 AIX Operating System Technical Reference

Appendix D. Porting DOS 3.0 Applications

This section is intended for an experienced DOS 3.0 programmer that desires to port
applications to the RT PC system using the AIX operating system. This section directs
you to the proper section of RT PC documentation that contains detailed information
required to port an application.

High-Level Languages

The RT PC has several high-level languages that are designed to allow application
migration and portability or both with minimal changes to the application. The languages
provided are Basic, Pascal, Fortran, and C. The Basic and Pascal languages contain the
same syntax and semantics as the PC DOS versions of these languages, in addition to
extensions to the language in order to take advantage of the RT PC architectural features.
For a complete description of the languages, their extensions, and any differences between
them and the PC DOS versions of the language, see BASIC Language Reference and Pascal
Compiler Language Reference.

DOS File System

The DOS file system and the RT PC native file systems are different. However, a complete
set of commands and run-time subroutines are provided for the application developer to
mask these file system differences. See the dosdel, dosdir, dosread, doswrite commands
in AIX Operating System Commands Reference, for a complete description of the commands
that manipulate a DOS file system. The RT PC system provides a complete set of run-time
subroutines that allow an application to deal with both DOS and native RT PC file
systems. See "DOS services library," for a description of the DOS library and the DOS
RT PC subroutine calls and see Chapter 3, "Subroutines," for a complete description of
each file system subroutine.

Note: These routines are intended to handle ASCII files in a transparent fashion. The
application must handle binary data within a file.

Porting DOS D-l

DOS Function Calls

Most DOS function calh; map to equivalent AIX operating system functions in a very
straightforward way. The following is a detailed listing of DOS function calls and the
equivalent AIX operating system functions that provide the same services.

Table of DOS 3.0 Function Calls

AIX
Function Calls Equivalent Function Notes

OOH Program terminate exit See "hft" on page 6-23.

01H Keyboard input KSR echo, getc

02H Display output putc

03H Auxiliary input read See "tty" on page 6-131.

04H Auxiliary output write See "tty" on page 6-131.

05H Printer output write See "lp" on page 6-9S.

06H Direct console I/O getc, putc

07H Direct console input getchar
without echo

OSH Console input without getchar
echo

09H Print string puts

OAH Buffered keyboard input gets

OBH Check standard input ioctl See "hft" on page 6-23.
status

OCH Clear keyboard buffer, ioctl See "hft" on page 6-23.
invoke a keyboard function

ODH Disk reset sync

OEH Select disk Set environment variable See "DOS services library" on
page 3-65.

D-2 AIX Operating System Technical Reference

AIX
Function Calls Equivalent Function Notes

OFH Open file mapped All FCB functions should be
mapped to the equivalent file
handling functions.

IOH Close file mapped All FCB functions should be
mapped to the equivalent file
handling functions.

IIH Search for first entry mapped All FCB functions should be
mapped to the equivalent file
handling functions.

12H Search for next entry mapped All FCB functions should be
mapped to the equivalent file
handling functions.

13H Delete file mapped All FCB functions should be
mapped to the equivalent file
handling functions.

14H Sequential read mapped All FCB functions should be
mapped to the equivalent file
handling functions.

15H Sequential write mapped All FCB functions should be
mapped to the equivalent file
handling functions.

16H Create file mapped All FCB functions should be
mapped to the equivalent file
handling functions.

17H Rename file mapped All FCB functions should be
mapped to the equivalent file
handling functions.

18H Used internally by DOS DOS

19H Current disk dospwd

IAH Set disk transfer address NjA

IBH Allocation table dosstat
information

ICH Allocation table dosustat
information for specific device

Porting DOS D-3

AIX
Function Calls Equivalent Function Notes

IDH Used internally by DOS N/A

lEH Used internally by DOS N/A

IFH Used internally by DOS N/A

20H Used internally by DOS N/A

21H Random read mapped All FCB functions should be
mapped to the equivalent file
handling functions.

22H Random write mapped All FCB functions should be
mapped to the equivalent file
handling functions.

23H File size mapped All FCB functions should be
mapped to the equivalent file
handling functions.

24H Set relative record field mapped All FCB functions should be
mapped to the equivalent file
handling functions.

25H Set interrupt vector N/A Part of system configuration.

26H Create new program exec, dosexecvec
segment

27H Random block read mapped All FCB functions should be
mapped to the equivalent file
handling functions.

28H Random block write mapped All FCB functions should be
mapped to the equivalent file
handling functions.

29H Parse filename N/A Not useful for path names.

2AH Get date time

2BH Set date stime Must have superuser authority.

2CH Get time time Must have superuser authority.

2DH Set time stime

2EH Set/reset verify switch ioctl See "hd" on page 6-20.

D-4 AIX Operating System Technical Reference

AIX
Function Calls Equivalent Function Notes

2FH Get disk transfer address N/A

30H Get DOS version number uname

31H Terminate process and N/A See "fork" on page 2-46, "exec:
remain resident execl, execv, execle, execve,

execlp, execvp" on page 2-34,
and "signal" on page 2-145.

32H Used internally by DOS N/A

33H Ctrl-Break check N/A Break key generates signal to
process.

34H U sed internally by DOS N/A

35H Get vector N/A

36H Get disk free space ustat, dosustatl

37H Used internally by DOS N/A

3SH Set or get country N/A
dependent information

39H Create subdirectory mkdir, dosmkdir
(MKDIR)

3AH Remove subdirectory rm, dosrmdir
(RMDIR)

3BH Change current directory chdir, doschdir
(CHDIR)

3CH Create a file (CREAT) creat, doscreate

3DH Open a file open, dosopen

3EH Close a file handle close, dosclose

3FH Read from a file or device read, dosread

40H Write to a file or device write, doswrite

41H Delete a file from a unlink, dosunlink
specified directory (UNLINK)

42H Move file read/write lseek, doslseek
pointer (LSEEK)

Porting DOS D-5

AIX
Function Calls Equivalent Function Notes

'43H Change file mode
I

chmod, doschmod
(CHMOD)

44H I/O control for devices ioctl
(IOCTL)

45H Duplicate a file handle dup, dosdup
(DUP)

46H Force a duplicate of a file fcntl
handle (FORCDUP)

47H Get current. directory getcwd, dospwd

48H Allocate memory malloc

49H Free allocated memory free

4AH Modify allocated memory realloc
blocks (SETBLOCK)

4BH Load or execute a exec, dosexecvec
program (EXEC)

4CH Terminal a process (EXIT) exit

4DH Get return code of a wait
sub-process (WAIT)

4EH Find first matching file dosfirst
(FIND FIRST)

4FH Find next machine file dosnext

50H U sed internally by DOS 'N/A

51H U sed internally by DOS N/A

52H U sed internally by DOS N/A

53H Used internally by DOS N/A

54H Get verify setting ioctl See "hd" on page 6-20.

55H U sed internally by DOS N/A

56H Rename a file dosrename

57H Get/set a file's date and utimec, dostatc, dostouch
time

D-6 AIX Operating System Technical Reference

AIX
Function Calls Equivalent Function Notes

58H Used internally by DOS N/A

59H Get extended error errno, doserrno

5AH Create temporary file mktemp, dosmktemp

5BH Create new file N/A

5CH Lock/unlock file access lockf

5DH U sed internally by DOS N/A

5EH Used internally by DOS N/A

5FH Used internally by DOS N/A

60H Used internally by DOS N/A
61H Used internally by DOS N/A

62H Get PSP address N/A

RT PC Hardware Access

Normal access to the RT PC system hardware devices is by means of special files (see
chapter 6 in this book). However, it is possible for the applications to gain direct control
of the hardware display to perform high function graphic applications. To use the display
in this fashion, see "Monitor Mode (MOM)" on page 6-73. An application can also gain
direct access to the hardware I/O or to manipulate a device that is unknown to the system
(see "bus" on page 6-5 and the Virtual Resource Manager Technical Reference).

For a complete description of the hardware and I/O devices supported by RT PC, see
Hardware Technical Reference.

Differences Between IBM Personal Computer AT Processor and 032
Microprocessor

There are hardware differences between the processors that affect application data. For
example, IBM Personal Computer AT integers are 2 bytes long and are typically stored in a
left-reversed fashion on media; while 032 Microprocessor integers are 4 bytes long and are
stored in sequence on the media. There are also differences in the way floating-point
numbers are stored. The person developing applications is responsible for understanding
and handling any differences between binary data that is exchanged between IBM Personal
Computer AT architecture machines and 032 Microprocessor architecture machines. For a

Porting DOS D-7

more detailed description of the 032 Microprocessor architecture, see Assembler Language
Reference and Personal Computer AT Coprocessor Services Technical Reference.

D-8 AIX Operating System Technical Reference

Appendix E. Component Cross Reference

The following subroutines and subroutine libraries are packaged with the Extended
Services Program:

Subroutine or Library Page

dbminit 3-63

delete 3-63

fetch 3-63

first key 3-63

libdbm.a 3-63

libprint.a 4-115

nextkey 3-63

store 3-63

Figure E-l. Extended Services Subroutines

The following subroutines and subroutine libraries are packaged with the Multi-User
Services Program:

Subroutine or Library Page

arc 4-115

circle 4-115

closepl 4-115

cont 4-115

erase 4-115

label 4-115

libgsl.a 7-1

Figure E-2 (Part 1 of 2). Multi-User Services Subroutines

Component Cross Reference E-l

Subroutine or Library Page

libplot.a 4-115

lih300.a LL11~ I ---;K; ..L~U I

lib300s.a 4-115

lib300S.a 4-115

lib4014.a 4-115

lib450.a 4-115

line 4-115

linemod 4-115

move 4-115

openpl 4-115

point 4-115

space 4-115

Figure E-2 (Part 2 of 2). Multi-User Services Subroutines

All other system calls, subroutines, and subroutine libraries discussed in this book are
packaged with the IBM RT PC AIX Operating System Licensed Program.

E-2 AIX Operating System Technical Reference

access. To obtain data from or put data in
storage.

access permission. A group of designations
that determine who can access a particular AIX
file and how the user may access the file.

account. The log in directory and other
information that give a user access to the
system.

activity manager. A collection of
system-supplied tasks allowing users to manage
their activities. Provides the ability to list
current activities (Activity List) and to begin,
cancel, hide, and activate activities.

All Points Addressable (AP A) display. A
display that allows each pel to be individually
addressed. An AP A display allows for images to
be displayed that are not made up of images
predefined in character boxes. Contrast with
character display.

allocate. To assign a resource, such as a disk
file or a diskette file, to perform a specific task.

alphabetic. Pertaining to a set of letters a
through z.

alphanumeric character. Consisting of
letters, numbers and often other symbols, such
as punctuation marks and mathematical
symbols.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated
equipment. The ASCII character set consists of
7-bit control characters and symbolic
characters.

Appendix F. Glossary

American National Standards Institute. An
organization sponsored by the Computer and
Business Equipment Manufacturers Association
for establishing voluntary industry standards.

application. A program or group of programs
that apply to a particular business area, such as
the Inventory Control or the Accounts
Receivable application.

application program. A program used to
perform an application or part of an
application.

argument. Numbers, letters, or words that
change the way a command works.

ASCII. See American National Standard Code
for Information Interchange.

attribute. A characteristic. For example, the
attribute for a displayed field could be blinking.

auto carrier return. The system function
that places carrier returns automatically within
the text and on the display. This is
accomplished by moving whole words that
exceed the line end zone to the next line.

backend. The program that sends output to a
particular device. There are two types of
backends: friendly and unfriendly.

background process. (1) A process that does
not require operator intervention that can be
run by the computer while the work station is
used to do other work. (2) A mode of program
execution in which the shell does not wait for
program completion before prompting the user
for another command.

backup copy. A copy, usually of a file or
group of files, that is kept in case the original

Glossary F-1

file or files are unintentionally changed or
destroyed.

backup diskette. A diskette containing
information copied from a fixed disl{ or from
another diskette. It is used in case the original
information becomes unusable.

bad block. A portion of a disk that can never
be used reliably.

base address. The beginning address for
resolving symbolic references to locations in
storage.

base name. The last element to the right of a
full path name. A filename specified without its
parent directories.

batch printing. Queueing one or more
documents to print as a separate job. The
operator can type or revise additional
documents at the same time. This is a
background process.

batch processing. A processing method in
which a program or programs process records
with little or no operator action. This is a
background process. Contrast with interactive
processing.

binary. (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Involving a choice of two conditions, such
as on-off or yes-no.

bit. Either of the binary digits 0 or 1 used in
computers to store information. See also byte.

block. (1) A group of records that is recorded
or processed as a unit. Same as physical record.
(2) In data communications, a group of records
that is recorded, processed, or sent as a unit.
(3) A block is 512 bytes long. (4) A logical
block is 2048 bytes long.

block file. A file listing the usage of blocks on
a disk.

block special file. A special file that provides
access to an input or output device is capable of

supporting a file system. See also character
special file.

bootstrap. 1: small pro?r~J? ~hat.I0ads larger
programs dunng system InItialIzation.

branch. In a computer program an instruction
that selects one of two or more alternative sets
of instructions. A conditional branch occurs
only when a specified condition is met.

breakpoint. A place in a computer program,
usually specified by an instruction, where
execution may be interrupted by external
intervention or by a monitor program.

buffer. (1) A temporary storage unit,
especially one that accepts information at one
rate and delivers it at another rate. (2) An area
of storage, temporarily reserved for performing
input or output, into which data is read, or from
which data is written.

burst pages. On continuous-form paper, pages
of output that can be separated at the
perforations.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or procedure at
its entry point. Compare with load.

callouts. An AIX kernel parameter
establishing the maximum number of scheduled
activities that can be pending simultaneously.

cancel. To end a task before it is completed.

carrier return. (1) In text data, the action
causing line ending formatting to be performed
at the current cursor location followed by a line
advance of the cursor. Equivalent to the
carriage return of a typewriter. (2) A keystroke
generally indicating the end of a command line.

case sensitive. Able to distinguish between
uppercase and lowercase letters.

character. A letter, digit, or other symbol.

F -2 AIX Operating System Technical Reference

character display. A display that uses a
character generator to display predefined
character boxes of images (characters) on the
screen. This kind of display cannot address the
screen any less than one character box at a
time. Contrast with All Points Addressable
display.

character key. A keyboard key that allows
the user to enter the character shown on the
key. Compare with function keys.

character position. On a display, each
location that a character or symbol can occupy.

character set. A group of characters used for
a specific reason; for example, the set of
characters a printer can print or a keyboard
can support.

character special file. A special file that
provides access to an input or output device.
The character interface is used for devices that
do not use block I/O. See also block special file.

character string. A sequence of consecutive
characters.

character variable. The name of a character
data item whose value may be assigned or
changed while the program is running.

child. (1) Pertaining to a secured resource,
either a file or library, that uses the user list of
a parent resource. A child resource can have
only one parent resource. (2) In the AIX
Operating System, child is a process spawned by
a parent process that shares resources of parent
process. Contrast with parent.

C language. A general-purpose programming
language that is the primary language of the
AIX Operating System.

class. Pertaining to the I/O characteristics of
a device. AIX devices are classified as block or
character.

close. (1) To end an activity and remove that
window from the display.

code. (1) Instructions for the computer.
(2) To write instructions for the computer; to
program. (3) A representation of a condition,
such as an error code.

code segment. See segment.

collating sequence. The sequence in which
characters are ordered within the computer for
sorting, combining, or comparing.

color display. A display device capable of
displaying more than two colors and the shades
produced via the two colors, as opposed to a
monochrome display.

column. A vertical arrangement of text or
numbers.

column headings. Text appearing near the
top of columns of data for the purpose of
identifying or titling.

command. A request to perform an operation
or run a program. When parameters,
arguments, flags, or other operands are
associated with a command, the resulting
character string is a single command.

command interpreter. A program that sends
instructions to the kernel; also called an
interface.

command line. The area of the screen where
commands are displayed as they are typed.

command line editing keys. Keys for editing
the command line.

command programming language. Facility
that allows programming by the combination of
commands rather than by writing statements in
a conventional programming language.

compile. (1) To translate a program written in
a high-level programming language into a
machine language program. (2) The computer
actions required to transform a source file into
an executable object file.

Glossary F-3

compress. (1) To move files and libraries
together on disk to create one continuous area
of unused space. (2) I'll data communications,
to delete a series of duplicate characters in a
character string.

concatenate. (1) To link together. (2) To
join two character strings.

condition. An expression in a program or
procedure that can be evaluated to a value of
either true or false when the program or
procedure .is running.

configuration. The group of machines,
devices, and programs that make up a computer
system. See also system customization.

configuration file. A file that specifies the
characteristics of a system or subsystem, for
example, the AIX queueing system.

consistent. Pertaining to a file system,
without internal discrepancies.

console. (1) The main AIX display station.
(2) A device name associated with the main AIX
display station.

constant. A data item with a value that does
not change. Contrast with variable.

context search. A search through a file
whose target is a character string.

control block. A storage area used by a
program to hold control information.

control commands. Commands that allow
conditional or looping logic flow in
DOS Services procedures.

control program. Part of the AIX Operating
System system that determines the order in
which basic functions should be performed.

controlled cancel. The system action that
ends the job step being run, and saves any new
data already created. The job that is running
can continue with the next job step.

copy. The action by which the user makes a
whole or partial duplicate of already existing
data.

crash. An unexpected interruption of
computer service, usually due to a serious
hardware or software malfunction.

current directory. The directory that is
active, and can be displayed with the pwd
command.

current line. The line on which the cursor is
located.

current working directory. See current
directory.

cursor. (1) A movable symbol (such as an
underline) on a display, used to indicate to the
operator where the next typed character will be
placed or where the next action will be directed.
(2) A marker that indicates the current data
access location within a file.

cursor movement keys. The directional keys
used to move the cursor.

customize. To describe (to the system) the
devices, programs, users, and user defaults for a
particular data processing system.

cylinder. All fixed disk or diskette tracks that
can be read or written without moving the disk
drive or diskette drive read/write mechanism.

daemon. See daemon process.

daemon process. A process begun by the root
or the root shell that can be stopped only by the
root. Daemon processes generally provide
services that must be available at all times such
as sending data to a printer.

data block. See block.

data communications. The transmission of
data between computers, or remote devices or
both (usually over long distance).

F -4 AIX Operating System Technical Reference

data stream. All information (data and
control information) transmitted over a data
link.

debug. (1) To detect, locate, and correct
mistakes in a program. (2) To find the cause of
problems detected in software.

default. A value that is used when no
alternative is specified by the operator.

default directory. The directory name
supplied by the operating system if none is
specified.

default drive. The drive name supplied by the
operating system if none is specified.

defa~lt value. A value stored in the system
that IS used when no other value is specified.

delete. To remove. For example to delete a
file. '

dependent work station. A work station
having little or no standalone capability, that
must be connected to a host or server in order
to provide any meaningful capability to the
user.

device. An electrical or electronic machine
that is designed for a specific purpose and that
at~aches to your computer, for example, a
prInter, plotter, disk drive, and so forth.

device driver. A program that operates a
s~ecific device, such as a printer, disk drive, or
dIsplay.

device name. A name reserved by the system
that refers to a specific device.

diagnostic. Pertaining to the detection and
isolation of an error.

diagnostic aid. A tool (procedure, program,
reference manual) used to detect and isolate a
device or program malfunction or error.

diagnostic routine. A computer program that
recognizes, locates, and explains either a fault

in equipment or a mistake in a computer
program.

digit. Any of the numerals from 0 through 9.

directory. A type of file containing the names
and controlling information for other files or
other directories.

disable. To make nonfunctional.

discipline. Pertaining to the order in which
requests are serviced, for example,
first-come-first-served (fcfs) or shortest job next
(sjn).

disk I/O. Fixed-disk input and output.

~iskette. A thin, flexible magnetic plate that
IS permanently sealed in a protective cover. It
can be used to store information copies from the
disk or another diskette.

diskette drive. The mechanism used to read
and write information on diskettes.

display device. An output unit that gives a
visual representation of data.

display screen. The part of the display device
that displays information visually.

display station. A device that includes a
keyboard from which an operator can send
information to the system and a display screen
on which an operator can see the information
sent to or received from the computer.

dump. (1) To copy the contents of all or part
of storage, usually to an output device.
(2) Data that has been dumped.

dump diskette. A diskette that contains a
dump or is prepared to receive a dump.

dump formatter. Program for analyzing a
dump.

EBCDIC. See extended binary-coded decimal
interchange code.

Glossary F-5

EBCDIC character. Anyone of the symbols
included in the 8-bit EBCDIC set.

edit. To modify the form or format of data.

edit buffer. A temporary storage area used by
an editor.

editor. A program used to enter and modify
programs, text, and other types of documents
and data.

emulation. Imitation; for example, when one
computer imitates the characteristics of another
computer.

enable. To make functional.

enter. To send information to the computer by
pressing the Enter key.

entry. A single input operation on a work
station.

environment. The settings for shell variables
and paths set associated with each process.
These variables can be modified later by the
user.

error-correct backspace. An editing key that
performs editing based on a cursor position; the
cursor is moved one position toward the
beginning of the line, the character at the new
cursor location is deleted, and all characters
following the cursor are moved one position
toward the beginning of the line (to fill the
vacancy left by the deleted element).

escape character. A character that
suppresses the special meaning of one or more
characters that follow.

exit value. A numeric value that a command
returns to indicate whether it completed
successfully. Some commands return exit
values that give other information, such as
whether a file exists. Shell programs can test
exit values to control branching and looping.

expression. A representation of a value. For
example, variables and constants appearing
alone or in combination with operators.

extended hinary~coded decimal interchange
code (EBCDIC). A set of 256 eight-bit
characters.

feature. A programming or hardware option,
usually available at an extra cost.

field. (1) An area in a record or panel used to
contain a particular category of data. (2) The
smallest component of a record that can be
referred to by a name.

FIFO. See first-in-first-out.

file. A collection of related data that is stored
and retrieved by an assigned name.

file name. The name used by a program to
identify a file. See also label.

filename. In DOS, that portion of the file
name that precedes the extension.

file specification (filespec). The name and
location of a file. A file specification consists
of a drive specifier, a path name, and a. file
name.

file system. The collection of files and file
management structures on a physical or logical
mass storage device, such as a diskette or
minidisk.

filetab. An AIX kernel parameter establishing
the maximum number of files that can be open
simultaneously.

filter. A command that reads standard input
data, modifies the data, and sends it to standard
output.

first-in-first-out (FIFO). A named permanent
pipe. A FIFO allows two unrelated processes to
exchange information using a pipe connection.

fixed disk. A flat, circular, nonremoveable
plate with a magnetizable surface layer on

F -6 AIX Operating System Technical Reference

which data can be stored by magnetic
recording.

fixed-disk drive. The mechanism used to read
and write information on fixed disk.

flag. A modifier that appears on a command
line with the command name that defines the
action of the command. Flags in the AIX
Operating System almost always are preceded
by a dash.

font. A family or assortment of characters of a
given size and style.

foreground. A mode of program execution in
which the shell waits for the program specified
on the command line to complete before
returning your prompt.

format. (1) A defined arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) The
pattern which determines how data is recorded.

formatted diskette. A diskette on which
control information for a particular computer
system has been written but which mayor may
not contain any data.

free list. A list of available space on each file
system. This is sometimes called the free-block
list.

free-block list. See free list.

full path name. The name of any directory or
file expressed as a string of directories and files
beginning with the root directory.

function. A synonym for procedure. The C
language treats a function as a data type that
contains executable code and returns a single
value to the calling function.

function keys. Keys that request actions but
do not display or print characters. Included are
the keys that normally produce a printed
character, but when used with the code key
produce a function instead. Compare with
character key.

generation. For some remote systems, the
translation of configuration information into
machine language.

Gid. See group number.

global. Pertains to information available to
more than one program or subroutine.

global action. An action having general
applicability, independent of the context
established by any task.

global character. The special characters *
and ? that can be used in a file specification to
match one or more characters. For example,
placing a ? in a file specification means any
character can be in that position.

global search. The process of having the
system look through a document for specific
characters, words, or groups of characters.

global variable. A symbol defined in one
program module, but used in other
independently assembled program modules.

graphic character. A character that can be
displayed or printed.

group name. A name that uniquely identifies
a group of users to the system.

group number (Gid). A unique number
assigned to a group of related users. The group
number can often be substituted in commands
that take a group name as an argument.

hardware. The equipment, as opposed to the
programming, of a computer system.

header. Constant text that is formatted to be
in the top margin of one or more pages.

header label. A special set of records on a
diskette describing the contents of the diskette.

here document. Data contained within a
DOS Services program or procedure (also called
in line input).

Glossary F-7

highlight. To emphasize an area on the
display by any of several methods, such as
brightening the area or reversing the color of
characters within the area.

history file. A file containing a log of system
actions and operator responses.

hog factor. In system accounting, an analysis
of how many times each command was run, how
much processor time and memory it used, and
how intensive that use was.

home directory. (1) A directory associated
with an individual user. (2) The user's current
directory on login or after issuing the cd
command with no argument.

I/O. See input/output.

ID. Identification.

IF expressions. Expressions within a
procedure, used to test for a condition.

indirect block. A block containing pointers to
other blocks. Indirect blocks can be
single-indirect, double-indirect, or
triple-indirect.

informational message. A message providing
information to the operator, that does not
require a response.

initial program load (IPL). The process of
loading the system programs and preparing the
system to run jobs. See initialize.

initialize. To set counters, switches, addresses,
or contents of storage to zero or other starting
values at the beginning of, or at prescribed
points in, the operation of a computer routine.

inline input. See here document.

i-node. The internal structure for managing
files in the system. I-nodes contain all of the
information pertaining to the node, type, owner,
and location of a file. A table of i-nodes is
stored near the beginning of a file system.

i-number. A number specifying a particular
i-node on a file system.

inodetab. An AIX kernel parameter that
establishes a table in memory for storing copies
of i-nodes for all active files.

input. Data to be processed.

input device. Physical devices used to provide
data to a computer.

input file. A file opened by a program so that
the program can read from that file.

input list. A list of variables to which values
are assigned from input data.

input redirection. The specification of an
input source other than the standard one.

input-output file. A file opened for input and
output use. .

input-output device number. A value
assigned to a device driver by the guest
operating system or to the virtual device by the
virtual resource manager. This number
uniquely identifies the device regardless of
whether it is real or virtual.

input/output (I/O). Pertaining to either
input, output, or both between a computer and
a device.

interactive processing. A processing method
in which each system user action causes
response from the program or the system.
Contrast with batch processing.

interface. A shared boundary between two or
more entities. An interface might be a
hardware component to link two devices
together or it might be a portion of storage or
registers accessed by two or more computer
programs.

interleave factor. Specification of the ratio
between contiguous physical blocks (on a
fixed-disk) and logically contiguous blocks (as
in a file).

F -8 AIX Operating System Technical Reference

interrupt. (1) To temporarily stop a process.
(2) In data communications, to take an action
at a receiving station that causes the sending
station to end a transmission. (3) A signal sent
by an I/O device to the processor when an error
has occurred or when assistance is needed to
complete I/O. An interrupt usually suspends
execution of the currently executing program.

IPL. See initial program load.

job. (1) A unit of work to be done by a system.
(2) One or more related procedures or programs
grouped into a procedure.

job queue. A list, on disk, of jobs waiting to
be processed by the system.

justify. To print a document with even right
and left margins.

kbuffers. An AIX kernel parameter
establishing the number of buffers that can be
used by the kernel.

K-byte. See kilobyte.

kernel. The memory-resident part of the AIX
Operating System containing functions needed
immediately and frequently. The kernel
supervises the input and output, manages and
controls the hardware, and schedules the user
processes for execution.

kernel parameters. Variables that specify
how the kernel allocates certain system
resources.

key pad. A physical grouping of keys on a
keyboard (for example, numeric key pad, and
cursor key pad).

keyboard. An input device consisting of
various keys allowing the user to input data,
control cursor and pointer locations, and to
control the dialog between the user and the
display station

keylock feature. A security feature in which
a lock and key can be used to restrict the use of
the display station.

keyword. One of the predefined words of a
programming language; a reserved word.

keyword argument. One type of variable
assignment that can be made on the command
line.

kill. An AIX Operating System command that
stops a process.

kill character. The character that is used to
delete a line of characters entered after the
user's prompt.

kilobyte. 1024 bytes.

kprocs. An AIX kernel parameter establishing
the maximum number of processes that the
kernel can run simultaneously.

label. (1) The name in the disk or diskette
volume table of contents that identifies a file.
See also file name. (2) The field of an
instruction that assigns a symbolic name to the
location at which the instruction begins, or
such a symbolic name.

left margin. The area on a page between the
left paper edge and the leftmost character
position on the page.

left-adjust. The process of aligning lines of
text at the left margin or at a tab setting such
that the leftmost character in the line or filed is
in the leftmost position. Contrast with
right-adjust.

library. A collection of functions, calls,
subroutines, or other data.

licensed program product (LPP). Software
programs that remain the property of the
manufacturer, for which customers pay a
license fee.

line editor. An editor that modifies the
contents of a file one line at a time.

linefeed. An ASCII character that causes an
output device to move forward one line.

Glossary F-9

link. A connection between an i-node and one
or more file names associated with it.

literal. A symbol or a quantity in a source
program that is itself data, rather than a
reference to data.

load. (1) To move data or programs into
storage. (2) To place a diskette into a diskette
drive, or a magazine into a diskette magazine
drive. (3) To insert paper into a printer.

loader. A program that reads run files into
main storage, thus preparing them for
execution.

local. Pertaining to a device directly
connected to your system without the use of a
communications line. Contrast with remote.

log. To record; for example, to log all messages
on the system printer. A list of this type is
called a log, such as an error log.

log in. To begin a session at a display station.

log in shell. The program, or command
interpreter, started for a user at log in.

log off. To end a session at a display station.

log out. To end a session at a display station.

logical device. A file for conducting input or
output with a physical device.

loop. A sequence of instructions performed
repeatedly until an ending condition is reached.

main storage. The part of the processing unit
where programs are run.

maintenance system. A special version of
the AIX Operating System which is loaded from
diskette and used to perform system
management tasks.

major device number. A system
identification number for each device or type of
device.

mapped files. Files on the fixed-disk that are
accessed as if they are in memory.

mask. A pattern of characters that controls
the keeping, deleting, or testing of portions of
another pattern of characters.

matrix. Ar.. array arranged in rows and
columns.

maxprocs. An AIX kernel parameter
establishing the maximum number of processes
that can be run simultaneously by a user.

memory. Storage on electronic chips.
Examples of memory are random access
memory, read only memory, or registers. See
storage.

menu. A displayed list of items from which an
operator can make a selection.

message. (1) A response from the system to
inform the operator of a condition which may
affect further processing of a current program.
(2) Information sent from one user in a
multi-user operating system to another.

minidisk. A logical division of a fixed disk.

minor device nur.n.ber. A number used to
specify various types of information about a
particular device, for example, to distinguish
among several printers of the same type.

mode word. An i-node field that describes the
type and state of the i-node.

modem. See modulator-demodulator.

modulation. Changing the frequency or size
of one signal by using the frequency or size of
another signal.

modulator-demodulator (modem). A device
that converts data from the computer to a
signal that can be transmitted on a
communications line, and converts the signal
received to data for the computer.

module. (1) A discrete programming unit that
usually performs a specific task or set of tasks.
Modules are subroutines and calling programs

F -10 AIX Operating System Technical Reference

that are assembled separately, then linked to
make a complete program. (2) See load module.

mount. To make a file system accessible.

mountab. An AIX kernel parameter
establishing the maximum number of file
systems that can be mounted simultaneously.

multiprogramming. The processing of two or
more programs at the same time.

multivolume file. A diskette file occupying
more than one diskette.

nest. To incorporate a structure or structures
of some kind into a structure of the same kind.
For example, to nest one loop (the nested loop)
within another loop (the nesting loop); to nest
one subroutine (the nested subroutine) within
another subroutine (the nesting subroutine).

network. A collection of products connected
by communication lines for information
exchange between locations.

new-line character. A control character that
causes the print or display position to move to
the first position on the next line.

null. Having no value, containing nothing.

null character (NUL). The character hex 00,
used to represent the absence of a printed or
displayed character.

numeric. Pertaining to any of the digits 0
through 9.

object code. Machine-executable instruction,
usually generated by a compiler from source
code written in a higher level language.
consists of directly executable machine code.
For programs that must be linked, object code
consists of relocatable machine code.

octal. A base eight numbering system.

open. (1) To make a file available to a
program for processing.

operating system. Software that controls the
running of programs; in addition, an operating
system may provide services such as resource
allocation, scheduling, input/output control,
and data management.

operation. A specific action (such as move,
add, multiply, load) that the computer performs
when requested.

operator. A symbol representing an operation
to be done.

output. The result of processing data.

output devices. Physical devices used by a
computer to present data to a user.

output file. A file that is opened by a program
so that the program can write to that file.

output redirection. The specification of an
output destination other than the standard one.

override. (1) A parameter or value that
replaces a previous parameter or value. (2) To
replace a parameter or value.

overwrite. To write output into a storage or
file space that is already occupied by data.

owner. The user who has the highest level of
access authority to a data object or action, as
defined by the object or action.

pad. To fill unused positions in a field with
dummy data, usually zeros or blanks.

page. A block of instructions, data, or both.

page space minidisk. The area on a fixed
disk that temporarily stores instructions or data
currently being run. See also minidisk.

pagination. The process of adjusting text to
fit within margins and/or page boundaries.

paging. The action of transferring
instructions, data, or both between real storage
and external page storage.

Glossary F-ll

parallel processing. The condition in which
multiple tasks are being performed
simultaneously within the same activity.

parameter. Information that the user supplies
to a panel, command, or function.

parent. Pertaining to a secured resource,
either a file or library, whose user list is shared
with one or more other files or libraries.
Contrast with child.

parent directory. The directory one level
above the current directory.

partition. See minidisk.

password. A string of characters that, when
entered along with a user identification, allows
an operator to sign on to the system.

password security. A program product option
that helps prevent the unauthorized use of a
display station, by checking the password
entered by each operator at sign-on.

path name. See full path name and relative
path name.

pattern-matching character. Special
characters such as * or ? that can be used in
search patterns. Some used in a file
specification to match one or more characters.
For example, placing a ? in a file specification
means any character can be in that position.
Pattern~matching characters are also called
wildcards.

permission code. A three-digit octal code, or
a nine-letter alphabetic code, indicating the
access permissions. The access permissions are
read, write, and execute.

permission field. One of the three-character
fields within the permissions column of a
directory listing indicating the read, write, and
run permissions for the file or directory owner,
group, and all others.

phase. One of several stages file system
checking and repair performed by the fsck
command.

physical device. See deuice.

physical file. An indexed file containing data
for which one or more alternative indexes have
been created.

physical record. (1) A group of records
recorded or processed as a unit. Same as block.
(2) A unit of data moved into or out of the
computer.

PID. See process ID.

pipe. To direct the data so that the output
from one process becomes the input to another
process.

pipeline. A direct, one-way connection
between two or more processes.

pitch. A unit of width of typewriter type,
based on the number of times a letter can be set
in a linear inch. For example, 10-pitch type has
10 characters per inch.

platen. The support mechanism for paper on a
printer, commonly cylindrical, against which
printing mechanisms strike to produce an
impression.

pointer. A logical connection between
physical blocks.

port. (1) To make the programming changes
necessary to allow a program that runs on one
type of computer to run on another type of
computer. (2) An access point for data input to
or data output from a computer system. See
connector.

position. The location of a character in a
series, as in a record, a displayed message, or a
computer printout.

positional parameter. A DOS Services
facility for assigning values from the command
line to variables in a program.

F -12 AIX Operating System Technical Reference

print queue. A file containing a list of the
names of files waiting to be printed.

printout. Information from the computer
produced by a printer.

priority. The relative ranking of items. For
example, a job with high priority in the job
queue will be run before one with medium or
low priority.

priority number. A number that establishes
the relative priority of printer requests.

privileged user. The account with superuser
authority.

problem determination. The process of
identifying why the system is not working.
Often this process identifies programs,
equipment, data communications facilities, or
user errors as the sourc"e of the problem.

problem determination procedure. A
prescribed sequence of steps aimed at recovery
from, or circumvention of, problem conditions.

procedure. See shell procedure.

process. (1) A sequence of actions required to
produce a desired result. (2) An entity
receiving a portion of the processor's time for
executing a program. (3) An activity within the
system begun by entering a command, running
a shell program, or being started by another
process.

process accounting. An analysis of the use
each process makes of the processing unit,
memory, and I/O resources.

process ID (PID). A unique number assigned
to a process that is running.

profile. (1) A file containing customized
settings for a system or user (2) Data describing
the significant features of a user, program, or
device.

program. A file containing a set of
instructions conforming to a particular
programming language syntax.

prompt. A displayed request for information
or operator action.

propagation time. The time necessary for a
signal to travel from one point on a
communications line to another.

qdaemon. The daemon process that maintains
a list of outstanding jobs and sends them to the
specified device at the appropriate time.

queue. A line or list formed by items waiting
to be processed.

queued message. A message from the system
that is added to a list of messages stored in a
file for viewing by the user at a later time. This
is in contrast to a message that is sent directly
to the screen for the user to see immediately.

quit. A key, command, or action that tells the
system to return to a previous state or stop a
process.

quote. To mask the special meaning of certain
characters; to cause them to be taken literally.

random access. An access mode in which
records can be read from, written to, or
removed from a file in any order.

readonly. Pertaining to file system mounting,
a condition that allows data to be read, but not
modified.

recovery procedure. (1) An action performed
by the operator when an error message appears
on the display screen. Usually, this action
permits the program to continue or permits the
operator to run the next job. (2) The method of
returning the system to the point where a major
system error occurred and running the recent
critical jobs again.

redirect. To divert data from a process to a
file or device to which it would not normally
go.

Glossary F -13

reference count. In an i-node, a record of the
total number of directory entries that refer to
the i-node.

relational expression. A logical statement
describing the relationship (such as greater
than or equal) of two arithmetic expressions or
data items.

relational operator. The reserved words or
symbols used to express a relational condition
or a relational expression.

relative address. An address specified
relative to the address of a symbol. When a
program is relocated, the addresses themselves
will change, but the specification of relative
addresses remains the same.

relative addressing. A means of addressing
instructions and data areas by designating their
locations relative to some symbol.

relative path name. The name of a directory
or file expressed as a sequence of directories
followed by a file name, beginning from the
curren t directory.

remote. Pertaining to a system or device that
is connected to your system through a
communications line. Contrast with local.

reserved character. A character or symbol
that has a special (non-literal) meaning unless
quoted.

reserved word. A word that is defined in a
programming language for a special purpose,
and that must not appear as a user-declared
identifier.

reset. To return a device or circuit to a clear
state.

restore. To return to an original value or
image. For example, to restore a library from
diskette.

right adjust. The process of aligning lines of
text at the right margin or tab setting such that

the rightmost character in the line or file is in
the rightmost position.

right justify. See right align.

right margin. The area on a page between the
last text character and the right upper edge.

right-adjust. To place or move an entry in a
field so that the rightmost character of the field
is in the rightmost position. Contrast with
left-adj ust.

root. Another name sometimes used for
superuser.

root directory. The top level of a
tree-structured directory system.

root file system. The basic AIX Operating
System file system, which contains operating
system files and onto which other file systems
can be mounted. The root file system is the file
system that contains the files that are run to
start the system running.

routine. A set of statements in a program
causing the system to perform an operation or a
series of related operations.

run. To cause a program, utility, or other
machine function to be performed.

run-time environment. A collection of
subroutines and shell variables that provide
commonly used functions and information for
system components.

scratch file. A file, usually used as a work
file, that exists until the program that uses it
ends.

screen. See display screen.

scroll. To move information vertically or
horizontally to bring into view information that
is outside the display screen boundaries.

sector. (1) An area on a disk track or a
diskette track reserved to record information.
(2) The smallest amount of information that

F-14 AIX Operating System Technical Reference

can be written to or read from a disk or diskette
during a single read or write operation.

security. The protection of data, system
operations, and devices from accidental or
intentional ruin, damage, or exposure.

segment. A contiguous area of virtual storage
allocated to a job or system task. A program
segment can be run by itself, even if the whole
program is not in main storage.

separator. A character used to separate parts
of a command or file.

sequential access. An access method in
which records are read from, written to, or
removed from a file based on the logical order
of the records in the file.

session records. In the accounting system, a
record of time connected and line usage for
connected display stations, produced from-log in
and log out records.

set flags. Flags that can be put into effect
with the DOS Services set command.

shared printer. A printer that is used by
more than one work station.

shell. See shell program.

shell procedure. A series of commands
combined in a file that carry out a particular
function when the file is run or when the file is
specified as an argument to the sh command.
Shell procedures are frequently called shell
scripts.

shell program. A program that accepts and
interprets commands for the operating system
(there is an AIX shell program and a DOS shell
program).

DOS Services prompt. The character string
on the command line indicating the the system
can accept a command (typically the $
character).

DOS Services script. See DOS Services
procedure.

DOS Services variables. Facilities of the
DOS Services program for assigning variable
values to constant names.

size field. In an i-node, a field that indicates
the size, in bytes, of the file associated with the
i-node.

software. Programs.

sort. To rearrange some or all of a group of
items based upon the contents or
characteristics of those items.

source diskette. The diskette containing data
to be copied, compared, restored, or backed up.

source program. A set of instructions written
in a programming language, that must be
translated to machine language compiled before
the program can be run.

special character. A character other than an
alphabetic or numeric character. For example;
*, +, and % are special characters.

special file. Special files are used in the AIX
system to provide an interface to input/output
devices. There is at least one special file for
each device connected to the computer.
Contrast with directory and file. See also block
special file and character special file.

spool files. Files used in the transmission of
data among devices.

standalone DOS Services. A limited version
of the DOS Services program used for system
maintenance.

standalone work station. A work station
that can be used to preform tasks independent
of (without being connected to) other resources
such as servers or host systems.

standard error. The place where many
programs place error messages.

Glossary F -15

standard input. The primary source of data
going into a command. Standard input comes
from the keyboard unless redirection or piping
is used, in which case standard input can be
from a file or the output [rom another
command.

standard output. The primary destination of
data coming from a command. Standard output
goes to the display unless redirection or piping
is used, in which case standard output can be to
a file or another command.

stanza. A group of lines in a file that together
have a common function. Stanzas are usually
separated by blank lines, and each stanza has a
name.

statement. An instruction in a program or
procedure.

status. (1) The current condition or state of a
program or device. For example, the status of a
printer. (2) The condition of the hardware or
software, usually represented in a status code.

storage. (1) The location of saved
information. (2) In contrast to memory, the
saving of information on physical devices such
as disk or tape. See memory.

storage device. A device for storing and/or
retrieving data.

string. A linear sequence of entities such as
characters or physical elements. Examples of
strings are alphabetic string, binary element
string, bit string, character string, search
string, and symbol string.

SUo See superuser.

subdirectory. A directory contained within
another directory in the file system hierarchy.

subprogram. A program invoked by another
program, such as a subshell.

subroutine. (1) A sequenced set of statements
that may be used in one or more computer
programs and at one or more points in a

computer program. (2) A routine that can be
part of another routine.

subscript. An integer or variable whose value
refers to a particular element in a table or an
array.

subs hell. An instance of the DOS Services
program started from an existing DOS Services
program.

substring. A part of a character string.

subsystem. A secondary or subordinate
system, usually capable of operating
independently of, or synchronously with, a
controlling system.

superblock. The most critical part of the file
system containing information about every
allocation or de allocation of a block in the file
system.

superuser (su). The user who can operate
without the restrictions designed to prevent
data loss or damage to the system (User ID 0).

superuser authority. The unrestricted ability
to access and modify any part of the operating
system associated with the user who manages
the system. The authority obtained when one
logs in as root.

system. The computer and its associated
devices and programs.

system call. A request by an active process
for a service by the system kernel.

system customization. A process of
specifying the devices, programs, and users for
a particular data processing system.

system date. The date assigned by the system
user during setup and maintained by the
system.

system dump. A copy of memory from all
active programs (and their associated data)
whenever an error stops the system. Contrast
with task dump.

F-16 AIX Operating System Technical Reference

system management. The tasks involved in
maintaining the system in good working order
and modifying the system to meet changing
requirements.

system parameters. See kernel parameters.

system profile. A file containing the default
values used in system operations.

system unit. The part of the system that
contains the processing unit, the disk drives,
and the diskette drives.

system user. A person who uses a computer
system.

target diskette. The diskette to be used to
receive data from a source diskette.

task. A basic unit of work to be performed.
Examples are a user task, a server task, and a
processor task.

task dump. A copy of memory from a program
that failed (and its associated data). Contrast
with system dump.

terminal. An input/output device containing a
keyboard and either a display device or a
printer. Terminals usually are connected to a
computer and allow a person to interact with
the computer.

text. A type of data consisting of a set of
linguistic characters (for example, alphabet,
numbers, and symbols) and formatting controls.

text application. A program defined for the
purpose of processing text data (for example,
memos, reports, and letters).

text editing program. See editor and text
application.

texttab. A kernel parameter establishing the
size of the text table, in memory, that contains
one entry each active shared program text
segment.

trace. To record data that provides a history
of events occurring in the system.

trace table. A storage area into which a
record of the performance of computer program
instructions is stored.

track. A circular path on the surface of a
fixed disk or diskette on which information is
magnetically recorded and from which recorded
information is read.

trap. An unprogrammed, hardware-initiated
jump to a specific address. Occurs as a result of
an error or certain other conditions.

tree-structured directories. A method for
connecting directories such that each directory
is listed in another directory except for the root
directory, which is at the top of the tree.

truncate. To shorten a field or statement to a
specified length.

typematic key. A key that repeats its
function multiple times when held down.

typestyle. Characters of a given size, style
and design.

Uid. See user number.

update. An improvement for some part of the
system.

user. The name associated with an account.

user account. See account.

user ID. See user number.

user name. A name that uniquely identifies a
user to the system.

user number (Uid). (1) A unique number
identifying an operator to the system. This
string of characters limits the functions and
information the operator is allowed to use. The
Uid can often be substituted in commands that
take a user's name as an argument.

user profile. A file containing a description of
user characteristics and defaults (for example,
printer assignment, formats, group ID) to be

Glossary F-17

conveyed to the system while the user is signed
on.

utility. A service; in programming, a program
that performs a common service function.

valid. (1) Allowed. (2) True, in conforming to
an appropriate standard or authority.

value. (1) In Usability Services, information
selected or typed into a pop-up. (2) A set of
characters or a quantity associated with a
parameter or name. (3) In programming, the
contents of a storage location.

variable. A name used to represent a data
item whose value can change while the program
is running. Contrast with constant.

verify. To confirm the correctness of
something.

version. Information in addition to an object's
name that identifies different modification
levels of the same logical object.

virtual device. A device that appears to the
user as a separate entity but is actually a
shared portion of a real device. For example,
several virtual terminals may exist
simultaneously, but only one is active at any
given time.

virtual machine. A functional simulation of a
computer and its related devices.

virtual machine interface (VMI). A software
interface between work stations and the
operating system. The VMI shields operating
system software from hardware changes and
low-level interfaces and provides for concurrent
execution of multiple virtual machines.

virtual resource manager (VRM). A set of
programs that manage the hardware resources

(main storage, disk storage, display stations,
and printers) of the system so that these
resources can be used independently of each
other.

virtual resources. See virtual resource
manager.

virtual storage. Addressable space that
appears to be real storage. From virtual
storage, instructions and data are mapped into
real storage locations.

virtual terminal. Any of several logical
equivalents of a display station available at a
single physical display station.

Volume ID (Vol ID). A series of characters
recorded on the diskette used to identify the
diskette to the user and to the system.

VRM. See virtual resource manager.

wildcard. See pattern-matching characters.

word. A contiguous series of 32 bits (4 bytes)
in storage, addressable as a unit. The address
of the first byte of a word is evenly divisible by
four.

work file. A file used for temporary storage of
data being processed.

work station. A device at which an individual
may transmit information to, or receive
information from, a computer for the purpose of
performing a task, for example, a display
station or printer. See programmable work
station and dependent work station.

working directory. See current directory.

wrap around. Movement of the point of
reference in a file from the end of one line to
the beginning of the next, or from one end of a
file to the other.

F-18 AIX Operating System Technical Reference

I Special Characters I

.init.state file format 4-3
-C- prefix 3-129, 3-336, 5-60
-C-func 3-129, 3-336, 5-60
-exit system call 2-40
-NCtolower macro 3-39
-NCtoupper macro 3-39
-NCxcol macro 3-267
-NLxcol macro 3-267
-to lower subroutine 3-39
-toupper subroutine 3-39

a.out file 4-5
a.out relocation 4-9
a.out segments

data 4-5
stack 4-5
text 4-5

a.out structure 4-5
abort subroutine 3-5
abs subroutine 3-6
absolute value function 3-167
absolute value, integer 3-6
accept

socket connection 8-7
accept socket subroutine 8-7
access

excl usi ve 2-64
access list

group 2-126, 3-230
access system call 2-9
access time

file 2-180
access utmp file entry 3-224

TNL SN20-9881 (25 September 1987) to SC23-0809-0

accessibility, determine file 2-9
accounting

process 2-11
accounting file structure 4-15
accounting, process file 4-15
acct file 4-15
acct system call 2-11
acos subroutine 3-335
action

upon receipt of signal 2-145
acute accent character 5-10
add a device 3-15
add a minidisk 3-19
add protocol procedure 3-376
addch subroutine 3-52, 3-134
addressing

kernel mode 1-14
user mode 1-12

addstr subroutine 3-52, 3-135

Index

Advanced Floating-Point Accelerator 3-170,
3-183

afork flag 4-16
AIX file system 1-22
AIX kernel 1-6
AIX kernel, rebuild 3-21
AIX system name

extended 2-172
get 2-172

AIX trace collector 3-362
alarm clock

set 2-13
alarm system call 2-13
allocating free blocks 1-29
allocation

change data segment space 2-14
free blocks 1-29
i-number 1-28

allocator, main memory 3-236
ANSI floating point 3-170
APCj881 3-170, 3-183, 3-190

Index X-I

TNL SN20-9881 (25 September 1987) to SC23-0809-0

append
data to a file 2-184

apply configuration information 3-21
ar file 4-18
al"C subroutine t.)-4~O

arccosine function 3-335
archive file format 4-18
archive file member structure 4-18
archive format, cpio 4-41
arcsine function 3-335
a.rctangent function 3-335
argc parameter 2-35
argument list, print 3-374
argv parameter 2-35
ASCII character set 5-3
ASCII controls 5-11
ASCII facility 5-3
ASCII to floating-point conversion 3-8
ASCII to integer conversion 3-4
asctime subroutine 3-46
asin subroutine 3-335
assembler output file 4-5
assert subroutine 3-7
assertion verification 3-7
assign a DOS Services drive 3-70
assign buffering to a stream 3-330
at an subroutine 3-335
atan2 subroutine 3-335
atof subroutine 3-8
atoi subroutine 3-347
atol subroutine 3-347
atomic operation 2-150
attach

mapped file 2-131
shared memory segment 2-131

attribute file 3-23
attribute file, close 3-25
attribute file, read stanza 3-31
attribute files 3-27, 3-29
attributes

file system 4-64
attributes file 4-20
attroff subroutine 3-52
attron subroutine 3-52
attrset subroutine 3-52
automatic new line mode (AUTONL) 6-69

AUTONL mode 6-69
a64l subroutine 3-4

'--I
L!!J

back end
burst pages B-3
exi t codes B-7
extra print copies B-6
job charge B-6
job status information B-6
return error messages B-7
routines in libqb B-8
SIGTERM terminate B-8
waiting state B-8

back ends B-1
backup file 4-23
baudrate subroutine 3-52
beep subroutine 3-52, 3-136
bessel subroutines 3-9
bffree kernel subroutine C-29
bfget kernel subroutine C-28
binary input/output 3-192
binary search 3-11
binary search trees 3-364
binary synchronous communications 6-11
bind

name to socket 8-9
bind socket subroutine 8-9
BIOCA C-28
BISYNC 6-11
block

signal delivery 2-143
block I/O communication area (BIOCA) C-28
block 0 layout 1-25
blocked signals

release 2-150
blocks

allocation of free 1-29
data 1-28
delayed 2-163
free 1-28
superblock 1-25

bootstrap 1-9, 4-3

X-2 AIX Operating System Technical Reference

box subroutine 3-53, 3-136
brelse kernel subroutine C-28
breve accent character 5-10
brk system call 2~14
BRKINT 6~ 117
bsc device driver 6~11
BSDLY 6~118
bsearch subroutine 3~11
BSO 6-118
BS1 6~118
buffer subsystem 1~36
buffered I/O 3~342
buffering assignment to a stream 3~330
buffers C~ 15
build kernel C~51
bus

I/O 1-37
bus special file 6~5
byte order conversion

host to network 8~33
network to host 8~33

byte swapping 3~349

-C_ prefix 3~129, 3~336, 5~60
-C-func 3~129, 3~336, 5~60
caddr-t data type 5~75
call switch table 1~36
calling sequence v
calloc subroutine 3~236
calls

to devices 1 ~40
calls, AIX supervisor

See system calls
calls, function

See kernel subroutines
See subroutines

calls, kernel
See kernel subroutines
See system calls

calls, routine
See kernel subroutines
See subroutines

TNL SN20-9881 (25 September 1987) to SC23-0809-0

calls, subroutine
See kernel subroutines
See subroutines

calls, supervisor, AIX
See system calls

calls, system
See system calls

cancel sound 6~67
caron accent character 5-10
case

conversion 3~39, 3-276, 3-278
translation 3~39, 3-276

CBAUD 6-119
cbox subroutine 3-136
cbreak subroutine 3-53
cc.cfg file 4~29
cedilla accent character 5-10
ceil subroutine 3~167
ceiling function 3-167
cfgabdds subroutine 3-13
cfgadev subroutine 3-15
cfgamni subroutine 3-19
cfgaply subroutine 3-21
cfgcadsz subroutine 3-23
cfgcclsf subroutine 3-25
cfgcdlsz subroutine 3-27
cfgcopsf subroutine 3-29
cfgcrdsz subroutine 3-31
cfgddev subroutine 3-33
cfgdmni subroutine 3-36
change

access permissions 2-18
current directory 2-16
data segment space allocation 2-14
effective root directory 2-23
file mode 2-18
group of a file 2-21
owner of a file 2-21

change current DOS Services directory 3-72
change current DOS Servicesdrive 3-72
change DOS file mode 3-74
change fonts 6-71
change modification date of DOS file 3-108
change priority

of a process 2-88
channel

Index X-3

TNL SN20-9881 (25 September 1987) to SC23-0809-0

create 2-95
character

conversion 3-278
lists C-25
single shift 5-9
two-byte 5-9

character classification 3-49
international character support 3-270

character code processing 6-69
character codes 5-24
character collation

code point 3-280
international character support 3-267

character I/O 3-369
character set

ASCII 5-3
character set definition 6-69
character translation 3-39, 3-276
character, get from stream 3-204
characteristics

virtual machine 1-3
characteristics, device 4-57
characters

international character support 3-276
characters, nonspacing 5-10
characters, two-byte 5-9
chdir system call 2-16
check whether trace channel is enabled 3-357
chgat subroutine 3-136
child process 1-17, 2-46

control 2-102
wait for termination of 2-182

child process times
get 2-165

chmod system call 2-18
chown system call 2-21
chownx system call 2-21
chroot system call 2-23
circle subroutine 3-296
circumflex accent character 5-10
classify characters 3-49
clear subroutine 3-53, 3-137
clearerr macro 3-165
clearok subroutine 3-53, 3-137
clists C-25
CLOCAL 6-120

clock
set alarm 2-13

clock rate 2-165
clock resolution 3-38
clock subroutine 3-38
close

a file 2-25
network data base 8-20
network host database 8-13
network protocol data base 8-24
network services data base 8-26

close a stream 3-163
close all files 3-112
close an attribute file 3-25
close routine (ddclose) C-7
close system call 2-25
closepl subroutine 3-296
closing a DOS file 3-75
clrtobot subroutine 3-53, 3-137
clrtoeol subroutine 3-53, 3-137
cnt-t data type 5-75
code page 5-5, 5-6, 5-7, 5-8, 5-9

PO 5-6,5-25
PI 5-7, 5-33
P2 5-8, 5-40
switching 5-9

code point 5-5
character collation 3-280

collector, AIX errors 3-126
color palette, setting 6-70
colorend subroutine 3-137
colorout subroutine 3-138
COLUMNS variable 3-353
command execution

remote host 8-41
communication endpoint

See socket
communication, interprocess 2-5,3-198
communications 6-11
compile regular expression 3-318
complementary error function 3-125
config device driver 6-7
config device driver structure 6-9
config disk structure 6-8
configuration information, apply 3-21
connect socket subroutine 8-11

X-4 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

connect. con file 4-33
connection

socket 8-11
construct a unique file name 3-247
construct the name for a temporary file 3-355
cont subroutine 3-296
contents

directory 1-30
control

execution of child process 2-102
file 2-44
I/O devices 2-56

control characters 5-11
control operations

shared memory 2-135
control registers

virtual machine 1-4
control sequence, virtual terminal data 6-61
control sequences 5-13
controlling terminal interface 6-131
controls 5-10
conversion subroutines 3-276
conversion, byte order

host to network 8-33
network to host 8-33

convert
ASCII string to floating-point number 3-8
string to integer 3-347

convert base-64 ASCII to long integer 3-4
convert between 3-byte integers and long
integers 3-232

convert date and time to string 3-46
convert floating-point number to string 3-121
convert formatted input 3-325
convert long integer to base-64 ASCII
string 3-4

copyin kernel subroutine C-14
copyout kernel subroutine C-14
core file 4-39
cos subroutine 3-335
cosh subroutine 3-337
cosine function 3-335
costomize files C-45
cpass kernel subroutine C-12
cpio file 4-41
cpio structure 4-41

CPU time used report 3-38
CRDLY 6-118
CREAD 6-120
creat system call 2-27
create

interprocess channel 2-95
new file 2-27
new process 2-46
pair of connected sockets 8-50
socket 8-47

create a directory 3-90
create a DOS temporary file 3-92
create a temporary file 3-354
create-ipc-prof subroutine 3-40.2
creating a DOS file 3-76
creating backends B-1
cresetty subroutine 3-138
crmode subroutine 3-138
crypt subroutine 3-42
CRO 6-118
CR1 6-118
CR2 6-118
CR3 6-118
csavetty subroutine 3-138
CSIZE 6-120
CSTOPB 6-120
ctermid subroutine 3-44
ctime subroutine 3-46
ctype macros 3-49
current directory, full path name 3-96
current directory, get path name of 3-206
current directory, path name 3-96
current DOS Services directory, change 3-72
current DOS Services drive, change 3-72
current signal mask

setting 2-152
curses subroutine library 3-51
cursor representation 6-72
cuserid subroutine 3-62
customize

files C-45
helper program C-50

customize file format C-46
customize files

/etc/ddi C-48
/etc/master C-47

Index X-5

TNL SN20-9881 (25 September 1987) to SC23-0809-0

/etc/system C-46
relationships C-48

customize helper 3-13
customize helper program C-50

daddr-t data type 5-75
daemon, trace 3-359
DARPA 8-5
data

append to a file 2-184
lock 2-97
unlock 2-97

data access
machine-independen t 3-334

data base subroutines
data base, terminal capability 4-148
data blocks 1-28
data segment 1-12

change space allocation 2-14
data stream

3270 6-11
data structures

file system 1-33
I/O 1-38

data types, defined 5-75
data types, major

monitor mode 6-73
datagrams 8-47
date format 3-288
date to string conversion 3-46
date, modification, change 3-108
daylight external variable 3-46
dbm subroutines 3-63
dbminit subroutine 3-63
ddclose routine C-7
ddi 4-56, 4-110
ddi file 4-43
ddinit routine C-6
ddintr routine C-9, C-18
ddioctl routine C-8
ddopen routine C-6
ddread routine C-10

DDS 3-13
ddselect routine C-11
ddstrategy routine C-17
ddwrite routine C-10
declarations, parameter v
Defense Advanced Research Projects
Agency 8-5

Defense Communications Agency 8-5
Define-Code SVC 6-7
define-device structure 3-13
define-device SVC 3-13
del-ipc-prof subroutine 3-64.1
delay kernel subroutine C-22
delay-output subroutine 3-53, 3-57
delch subroutine 3-53, 3-139
delete a device 3-33
delete a DOS file 3-110
delete a minidisk 3-36
delete protocol procedure 3-376
delete stanza 3-27
deleteln subroutine 3-53, 3-139
delta table format 4-136
delwin subroutine 3-53, 3-139
description file, port 4-117
description, file system 4-64
descriptions file format 4-56
descriptor

file 2-111
detach

shared memory segment 2-138
dev-t data type 5-75
device characteristics 4-57
device-dependent information 4-56, 4-110
device driver 1-39

entry points C-3
interface routines C-3
kernel 1-36
VRM 1-36

device driver error log C-31
device driver trace C-32
device drivers

See also special files
definition 1-40
trace 6-128

device drivers, installing C-45
device drivers, writing C-1

X-6 AIX Operating System Technical Reference

device I/O 1-40
device interrupt handler C-9, C-18
device management 1-39
device number

major 1-39
minor 1-39

device status, DOS Services 3-114
device switch table 1-36, C-3
device, add 3-15
device, delete 3-33
devices

See special files
devinfo structure 4-57, 6-100
devsw table C-3
DFT 6-11
dft device driver 6-11
diacritic characters 5-10
dir file 4-60
direct path 1-30
directory

change current 2-16
change the root 2-23
create 2-69

directory change, DOS Services 3-72
directory contents 1-30
directory creation 3-90
directory entry 4-60

create a new 2-62
remove 2-174

directory en try " .. " 4-60
directory entry"." 4-60
directory file 1-23
directory file structure 4-60
directory format 4-60
directory removal, DOS Services 3-102
directory, full path name of current 3-96
directory, path name of current 3-206
disclaim system call 2-30
disk buffer headers C-27
disk buffers C-15
diskette file 6-17
diskette structure 6-17
display symbols 5-24
display, changing physical 6-67
dispsym definition 5-24
distance function, euclidean 3-229

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Distributed Function Terminal 6-11
domain

definition 8-3
DOS Services assign 3-70
DOS Services directory, change 3-72
DOS Services drive, change 3-72
DOS Services environment, initialize 3-85
DOS Services file handle duplication 3-78
DOS Services program execution 3-79
DOS Services subroutine library 3-65
DOS Servicesdirectory removal 3-102
DOS file access 3-65
DOS file creation 3-76
DOS file lock 3-88
DOS file mode, change 3-74
DOS file modification date, change 3-108
DOS file read 3-98
DOS file read/write pointer, move 3-104
DOS file rename 3-100
DOS file status, get 3-106
DOS file system D-l
DOS file write 3-116
DOS file, close 3-75
DOS file, delete 3-110
DOS file, open 3-94
DOS file, unlink 3-110
DOS files synchronization 3-83
DOS function call table D-2
DOS function calls D-2
DOS programs, porting D-l
DOS temporary file creation 3-92
dosassign subroutine 3-70
doschdir subroutine 3-72
doschmod subroutine 3-74
dosclose subroutine 3-75
doscreate subroutine 3-76
dosdup subroutine 3-78
dosexecve subroutine 3-79
dosfirst subroutine 3-81
dosfstat subroutine 3-106
dosfsync subroutine 3-83
dosinit subroutine 3-85
doslock subroutine 3-88
dosmkdir subroutine 3-90
dosmktemp subroutine 3-92
dosnext subroutine 3-81

Index X-7

TNL SN20-9881 (25 September 1987) to SC23-0809-0

dosopen subroutine 3-94
dospwd subroutine 3-96
dosread subroutine 3-98
dosrename subroutine 3-100
dosreopen subroutine 3-112
dosrmdir subroutine 3-102
dosseek subroutine 3-104
dosstat subroutine 3-106
dostouch subroutine 3-108
dosunlink subroutine 3-110
dosunopen subroutine 3-112
dosustat subroutine 3-114
doswrite subroutine 3-116
dot notation, Internet 8-34
double acute accent character 5-10
do update subroutine 3-53
drand48 subroutine 3-118
drawbox subroutine 3-139
drive change, DOS Services 3-72
drive, DOS Services, assign 3-70
driver format, message 6-105
driver, event-tracing 6-128
drivers

hft 6-23
drivers, device

See special files
drivers, writing device C-1
drsname subroutine 3-120.1
drsnidd subroutine 3-120.1
dsstate system call. 2-30.2
dup system call 2-32
duplicate an open file descriptor 2-32
duplicating a DOS Services file handle 3-78

EBCDIC character set 5-45
ecactp subroutine 3-140
ecadpn subroutine 3-140
ecaspn subroutine 3-140
ecblks subroutine 3-140
ecbpls subroutine 3-141
ecbpns subroutine 3-141
ecdfpl subroutine 3-142

ecdppn subroutine 3-143
ecdspl subroutine 3-143
ecdvpl subroutine 3-144
ecflin subroutine 3-145
ECHO 6-120
echo subroutine 3-53, 3-147
ECHOE 6-121
ECHOK 6-121
ECHONL 6-121
ecpnin subroutine 3-147
ecrfpl subroutine 3-148
ecrfpn subroutine 3-148
ecrlpl subroutine 3-148
ecrmpl subroutine 3-149
ecscpn subroutine 3-149
ecshpl subroutine 3-149
ectitl subroutine 3-150
ecvt subroutine 3-121
edata 3-123
emulation, hft 6-54
encrypt subroutine 3-42
encrypted password 4-113
encryption, password 3-42
end 3-123
endgrent subroutine 3-210
endhostent subroutine 8-13
endnetent subroutine 8-20
endprotoent subroutine 8-24
endpwent subroutine 3-219
endservent subroutine 8-26
endutent subroutine 3-224
endwin subroutine 3-53, 3-150
enhanced signal facilities 2-156
entries in name list, obtaining 3-283
entry points, device driver C-3
environ global variable 2-35
environment 2-35
environment alteration 3-310.1
environment facility 5-47
environment setting 4-127
environment subroutines 3-208, 3-280

getenv 3-208
NLgetenv 3-208

environment variable, value of 3-208
environment, initialize DOS Services 3-85
envp parameter 2-35

X-8 AIX Operating System Technical Reference

eof character 6-115
eol character 6-115
eqn special character definitions 5-54
eqnchar facility 5-54
erand48 subroutine 3-118
erase

portion of a file 2-42
erase character 6-115
erase subroutine 3-53, 3-150, 3-296
erasechar subroutine 3-53
erf subroutine 3-125
erfc subroutine 3-125
errfile file 4-62
errno 3-294
errno values A-I
errno.h A-I
error codes A-I
error collector, AlX 3-126
error file 6-15
error function 3-125
error-handling function 3-238
error log, device driver C-31
error log, kernel C-31
error logging 6-15
error messages 3-294
error numbers A-I
error values A-I
errprintf kernel subroutine C-30
errsave kernel subroutine C-31
errunix subroutine 3-126
escape sequences 5-13
etext 3-123
euclidean distance function 3-229
event log file 4-62
event logging 6-15
event-tracing driver 6-128
exception handling, floating-point 3-188
excl usi ve access

to a file region 2-64
exec system call 2-34
execl system call 2-34
execle svstem call 2-34
execl p system call 2-34
execute

file 2-34

TNL SN20-9881 (25 September 1987) to SC23-0809-0

execution monitor 3-248
execution profile 3-248
execution suspension 3-338
execution time

profile 2-99
execv system call 2-34
execve system call 2-34
execvp system call 2-34
exit system call 2-40
-exit system call 2-40
exp subroutine 3-128
exponential function 3-128
exponentiation 3-128
expression, regular 3-318, 3-321
extended AlX system name 2-172
extended curses subroutine library 3-131
extended message receive 2-85
extended path name C-20
extended read 2-106
extended subroutine 3-150
externals

edata 3-123
end 3-123
etext 3-123

F -DUPFD 2-44
F -GETFD 2-44
F -GETFL 2-44.1
F -GETLK 2-44.1
F-SETFD 2-44.1
F -SETFL 2-44.1
F -SETLK 2-44.2
F -SETLKW 2-44.2
fabs subroutine 3-167
facilities

mm 5-62
regexp 3-321

facilities, miscellaneous
See miscellaneous facilities

fault generation, lOT 3-5
fclear system call 2-42

execute a program with a DOS path name 3-79 fclose subroutine 3-163

Index X-9

TNL SN20-9881 (25 September 1987) to SC23-0809-0

fcnt! system call 2-44
fcntl.h header file 5-56
fcvt subroutine 3-121
fd devinfo structure 6-18
fd file 6-17
fdopen subroutine 3-168
feof macro 3-165
ferror macro 3-165
fetch subroutine 3-63
FFDLY 6-118
fflush subroutine 3-163
ffullstat system call 2-50.2
FFO 6-118
FFI 6-118
fgetc subroutine 3-204
fgets subroutine 3-221
fifo

create 2-69
file 2-90, 2-106

accessibility, determine 2-9
close a 2-25
control 2-44
create 2-69
creation 2-27
directory en try

create a new 2-62
erase portion of 2-42
execu te 2-34
lock a region 2-64
mode change 2-18
open to read or write 2-90
read from 2-106
read from, extended 2-106
rewrite 2-27
shorten 2-50
unlock a region 2-64
write 2-184
write changes 2-48

file access
set time 2-180

file control 2-3
file creation mask

get 2-169
set 2-169

file creation, DOS, temporary 3-92
file creation, temporary 3-354

file descriptor 2-111
close 2-25
duplication 2-32

file entry, group, obtaining 3-210
file entry, utmp access 3-224
file formats

archive 4-18
process accounting 4-15

file i/o subsystem 1-36
file maintenance 2-3
file mapping 2-7
file member, archive structure 4-18
file mode change, DOS 3-74
file modification

set time 2-180
file name generation, terminal 3-44
file name, construct 3-247
file name, make 3-247
file naming, temporary files 3-355
file pointer

read/write 2-67
file pointer repositioning 3-196
file status

obtain 2-159
file status, DOS, get 3-106
file synchronization, DOS 3-83
file system

backup format 4-23
data structures 1-33
DOS D-1
layout 1-25
mount 2-71
statistics 2-178
unmount 2-170

file system attributes 4-64
file system description 4-64
file system management 1-22
file system table 4-108
file tree, read 3-200
file types 1-23

directory 1-23
ordinary 1-24
special 1-24

file, assembler output 4-5
file, link editor output 4-5
file, storage image 4-39

X-tO AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

fileno macro 3-165
files

directory 2-69
header vii
mapped 2-7
ordinary 2-69
special 1-40, 2-69, 2-71

files, device
See special files

files, special
See special files

file systems file 4-64
find DOS files that match a pattern 3-81
find slot in utmp file for current user 3-368
find value of user information name 3-223
find-ipc-prof subroutine 3-166.1
firstkey subroutine 3-63
fixterm subroutine 3-53
flag letter, get from argument vector 3-214
flash subroutine 3-53, 3-150
floating-point

conversion from ASCII 3-8
Floating-Point Accelerator 3-170, 3-183
floating-point exception handling 3-188
floating-point numbers manipulation 3-194
floating-point subroutines, ANSI/IEEE 3-170
floating-point to string conversion 3-121
floor function 3-167
floor subroutine 3-167
flush a stream 3-163
flushinp subroutine 3-53
fmod subroutine 3-167
font file format 4-68
font symbols 5-24
fonts, changing 6-71
fopen subroutine 3-168
fork 2-46
form v
format v, 3-288

date 3-288
time 3-288

format of cpio archive 4-41
format of SCCS file 4-135
format specification, text files 4-82
format, archive 4-18
format, gps 4-84

format, message driver 6-105
format, system volume 4-74
formats

directory 4-60
event log file 4-62
hosts data base 5-58.2
inode 4-92
master 4-98
network data base 5-66.2
protocol data base 5-68.1
resolv.conf 5-68.3
SCCS delta table 4-136
SCCS file 4-135
service data base 5-68.5

formats, file
See file formats

formatted input conversion 3-325
formatted output, print 3-300
formatted varargs argument list, print 3-374
formatting a permuted index, macro
package 5-63

FP-DOUBLE 3-170
FP-FLOAT 3-170
fpfp subroutines 3-170
fprintf subroutine 3-300
fputc subroutine 3-309
fputs subroutine 3-313
fread subroutine 3-192
free-block list 1-28
free blocks

allocation 1-29
free kernel subroutine C-25
free subroutine 3-236
freopen subroutine 3-168
frexp subroutine 3-194
fs file 4-74
fscanf subroutine 3-325
fseek subroutine 3-196
fspec file 4-82
fstat system call 2-159
fsync system call 2-48
ftell subroutine 3-196
ftok subroutine 3-198
ftruncate system call 2-50
ftw subroutine 3-200
fubyte kernel subroutine C-14

Index X-11

TNL SN20-9881 (25 September 1987) to SC23-0809-0

fullbox subroutine 3-151
fullstat structure 5-56.2
fullstat system call 2-50.2
fullstat.h header file 5-56.2
function calls

DOS D-2
function libraries

See libraries
function, complementary error 3-125
function, error 3-125
function, error-handling 3-238
function, euclidean distance 3-229
functions

See also kernel subroutines
See also subroutines
absolute value 3-167
ceiling 3-167
floor 3-167
remainder 3-167

functions hyperbolic 3-337
functions, trigonometric 3-335
fuword kernel subroutine C-14
fwrite subroutine 3-192

gamma function 3-202
gamma subroutine 3-202
gcvt subroutine 3-121
generate file name for terminal 3-44
generate pseudo-random numbers 3-317
generating an lOT fault 3-5
geometric text font 4-72.4
get

file status 2-159
group IDs 2-55
message queue identifier 2-76
process IDs 2-54
time 2-164
user IDs 2-55

get a string from a stream 3-221
get character or word from stream 3-204
get DOSfile status 3-106
get file system statistics 2-178

get group file entry 3-210
get login name 3-212
get names from name list 3-283
get option letter from argument vector 3-214
get password file entry 3-219
get path name of current directory 3-206
get status of DOS Services device 3-114
get the name of a terminal 3-367
get user name 3-62
getc kernel subroutine C-26
getc macro 3-204
getcb kernel subroutine C-27
getcf kernel subroutine C-26
getch subroutine 3-53, 3-151
getchar macro 3-204
getcwd subroutine 3-206
geteblk kernel subroutine C-28
getegid system call 2-55
getenv subroutine 3-208
geteuid system call 2-55
getgid system call 2-55
getgrent subroutine 3-210
getgrgid subroutine 3-210
getgrnam subroutine 3-210
getgroups system call 2-52
gethostbyaddr subroutine 8-13
gethostbyname subroutine 8-13
gethostid socket subroutine 8-16
gethostname socket subroutine 8-18
getlogin subroutine 3-212
getnetbyaddr subroutine 8-20
getnetbyname subroutine 8-20
getnetent subroutine 8-20
getopt subroutine 3-214
getpass subroutine 3-217
getpeername socket subroutine 8-22
getpgrp system call 2-54
getpid system call 2-54
getppid system call 2-54
getprotobyname subroutine 8-24
getprotobynumber subroutine 8-24
getprotoent subroutine 8-24
getpw subroutine 3-218
getpwent subroutine 3-219
getpwnam subroutine 3-219
getpwuid subroutine 3-219

X-12 AIX Operating System Technical Reference

gets subroutine 3-221
getservbyname subroutine 8-26
getservbyport subroutine 8-26
getservent subroutine 8-26
getsockname socket subroutine 8-28
getsockopt socket subroutine 8-30
getstr subroutine 3-53, 3-152
gettmode subroutine 3-53, 3-152
getuid system call 2-55
getuinfo subroutine 3-223
getutent subroutine 3-224
getutid subroutine 3-224
getutline subroutine 3-224
getw subroutine 3-204
getyx subroutine 3-53, 3-152
gmtime subroutine 3-46
goto, nonlocal 3-332
gps format 4-84
graphic output file format 4-115
graphic symbols 5-24
graphics interface 4-115
graphics interface subroutines
grave accent character 5-10
Greek characters 5-58
greek facility 5-58
group access list 3-230

get 2-52
set 2-126

group file 4-87
group file entry, obtaining 3-210
group ID

set 2-129
set for a process 2-128

group ID of a file
change 2-21

group ID translation 2-21
group IDs

get 2-55
gsbply subroutine 7-20
gscarc subroutine 7-22
gscatt subroutine 7-24
gsccnv subroutine 7-26
gscir subroutine 7-29
gsclrs subroutine 7-31
gscmap subroutine 7 -32
gscrca subroutine 7-34

TNL SN20-9881 (25 September 1987) to SC23-0809-0

gsdpik subroutine 7-36
gseara subroutine 7-38
gsearc subroutine 7-40
gsecnv subroutine 7-42
gsecur subroutine 7 -45
gsell subroutine 7-46
gsepik subroutine 7-48
gseply subroutine 7-50
gsevds subroutine 7-52
gseven subroutine 7-54
gsevwt subroutine 7 -56
gsfatt subroutine 7-63
gsfci subroutine 7-65
gsfell subroutine 7 -67
gsfply subroutine 7-69
gsfrec subroutine 7-71
gsgtat subroutine 7-73
gsgtxt subroutine 7-78
gsignal subroutine 3-340
gsinit subroutine 7-80
gslatt subroutine 7-84
gslcat subroutine 7-86
gsline subroutine 7 -88
gslock subroutine 7-90
gslop subroutine 7-92
gslpat subroutine 7-95
gsmask subroutine 7-97
gsmatt subroutine 7-99
gsmcur subroutine 7-102
gsmult subroutine 7-104
gspcls subroutine 7-106
gsplym subroutine 7-108
gspoly subroutine 7-110
gspp subroutine 7-112
gsqdsp subroutine 7-114
gsqfnt subroutine 7-117
gsqgtx subroutine 7-119
gsqloc subroutine 7-121
gsrrst subroutine 7-123
gsrsav subroutine 7-125
gstatt subroutine 7-128
gsterm subroutine 7-131
gstext subroutine 7-132
gsulns subroutine 7-134
gsunlk subroutine 7-136
gsvgrn subroutine 7-137

Index X-13

TNL SN20-9881 (25 September 1987) to SC23-0809-0

gsxblt subroutine 7-139
gsxcnv subroutine 7-146
gsxptr subroutine 7-148

handle, duplicating 3-78
handler, interrupt C-9, C-18
hardware access

RT PC D-7
has-ic subroutine 3-53
has-il subroutine 3-53
hash tables 3-227
hcreate subroutine 3-227
HD devinfo structure 6-21
hdestroy subroutine 3-227
head, of screen manager ring 6-50
header files vii
help text, issue 3-252
help text, retrieve 3-263
helper, customize 3-13
hft device, query 3-352
hft driver 6-23
hft emulation 6-54
hft, remote 6-54
history file 4-89
hole

make in a file 2-42
host byte order

conversion to network byte order 8-33
host identifier 8-16
host name 8-18
hostent structure 8-13
hosts data base 5-58.2
hosts file 5-58.2
hsearch subroutine 3-227
htonl subroutine 8-33
htons subroutine 8-33
HUPCL 6-120
hyperbolic cosine function 3-337
hyperbolic functions 3-337
hyperbolic sine function 3-337
hyperbolic tangent function 3-337
hypot subroutine 3-229

i-list layout 1-26
i-node iayout 1-27
i-nodes

update 2-163
i-number allocation 1-28
I/O 2-3
I/O activity

wait for 2-111
I/O bus 1-37
I/O data structures 1-38
I/O devices

See also special files
control operations 2-56

I/O overview 1-34
I/O status

check 2-111
I/O, buffered 3-342
ICANON 6-120
ICRNL 6-117
idlok subroutine 3-53
IEEE floating point 3-170
ieeetrap subroutine 3-189
IGNBRK 6-117
IGNCR 6-117
IGNPAR 6-117
ilog file 4-170
image, memory 6-103
image, virtual memory 6-103
immediate message, issue 3-255
inch subroutine 3-54, 3-152
inet-addr subroutine 8-34
inet_lnaof subroutine 8-34
inet-makeaddr subroutine 8-34
inet-netof subroutine 8-34
inet-network subroutine 8-34
inet-ntoa subroutine 8-34
in it routine (ddinit) C-6
.init.state file format 4-3
initgroups subroutine 3-230
initial AIX state 4-3
initialize DOS Services environment 3-85

X-14 AIX Operating System Technical Reference

initialize group access list 3-230
initiate a pipe to or from a process 3-298
initscr subroutine 3-54, 3-153
INLCR 6-117
ino-t data type 5-75
inode format 4-92
in ode structure 4-92
INPCK 6-117
input stream, put character back 3-369
input/output 2-3
input/output devices

control operations 2-56
input/output, buffered 3-342
input/output, device 1-40
input, binary 3-192
inquiry, stream status 3-165
insch subroutine 3-54, 3-153
insert mode 6-69
insert, retrieve 3-263
insertln subroutine 3-54, 3-153
install protocol procedure 3-376
installing device drivers C-45
integer

conversion from string 3-347
integer absolute value 3-6
integer to ASCII conversion 3-4
interface control, terminal 6-131
interface routines, device driver C-3
interface, graphics 4-115
international character support 3-288

character classification 3-270
character collation 3-267
character conversion 3-39
date format 3-288
environment 3-280, 5-47
formatted output 3-300
NLchar data type 3-276
parameter fetching 3-281
string conversion 3-278
string handling 3-288, 3-291
string operations 3-272, 3-285
time format 3-288
time structure 3-291

Internet address
manipulation 8-34

Internet dot notation 8-34

TNL SN20-9881 (25 September 1987) to SC23-0809-0

interprocess channel
create 2-95

interprocess communication 2-5, 3-198
interrupt handler C-9, C-18
interrupt handler. C-18
interrupt-level processing C-9, C-18
interrupt level, sublevel C-18
intr character 6-115
intr routine (ddintr) C-9, C-18
intrflush subroutine 3-54
ioctl routine (ddioctl) C-8
ioctl system call 2-56
iodone kernel subroutine C-17
iomove kernel subroutine C-13
lOT fault generation 3-5
IPC 2-5
ipc-perm structure 2-6
IPC-RMID 2-136
IPC-SET 2-136
IPC-STAT 2-135
IPL 4-3

virtual machine 2-58, 2-109
iplvm system call 2-58
isalnum macro 3-49
isalpha macro 3-49
isascii macro 3-49
isatty subroutine 3-367
iscntrl macro 3-49
isdigit macro 3-49
is graph macro 3-49
ISIG 6-120
islower macro 3-49
isprint macro 3-49
ispunct macro 3-49
isspace macro 3-49
issue a queued message 3-259
issue a shell command 3-350
issue an immediate message 3-255
issue help text 3-252
ISTRIP 6-117
isupper macro 3-49
isxdigit macro 3-49
IUCLC 6-117
IXANY 6-117
IXOFF 6-117
IXON 6-117

Index X-I5

TNL SI~20-9881 (25 September 1987) to SC23-0809-0

jrand48 subroutine
jO, j1, jn subroutines

kaf file format 4-94
kernel calls

'l 11 Q
V-.J...1.V

3-9

See kernel subroutines
See system calls

kernel device driver 1-36
kernel error log C-31
kernel features 1-8
kernel functions

file system management 1-7
memory management 1-7
process management 1-7
program management 1-8
resource management 1-8
time management 1-7

kernel mode 1-10
kernel mode addressing 1-14
kernel rebuild C-51
kernel subroutines

bffree C-29
bfget C-28
brelse C-28
copyin C-14
copyout C-14
cpass C-12
delay C-22
errprintf C-30
errsave C-31
free C-25
fubyte C-14
fuword C-14
getc C-26
getcb C-27
getcf C-26

geteblk C-28
iodone C-17
iomove C-13
kmsgctl C-24
kmsgget C-24
malloc C-25
palloc C-25
panic C-30
passc C-13
printf C-30
psignal C-24
putc C-26
putcb C-27
putcf C-27
rmsgrcv C-24.1
rmsgsnd C-24
selwakeup C-12
setmpx C-20
sleep C-21
splhi C-19
splx C-19
splO-spl7 C-19
subyte C-13
suword C-13
timeout C-21
trsave C-32
untimeout C-22
usrchar C-20
vec-clear C-18
vec-init C-18
wakeup C-21

kernel trace C-32
kernel trap routine 1-35
kernel, AIX, rebuild 3-21
key-t data type 5-75
keyboard 6-79
keypad subroutine 3-54,3-153
keywords, ddi 4-56
kill character 6-115
kill system call 2-60
killchar subroutine 3-54
kmem file 6-103
kmsgctl kernel subroutine C-24
kmsgget kernel subroutine C-24

X-I6 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

label subroutine 3-296
label_t data type 5-75
layout

block 0 1-25
file system 1-25
i-list 1-26
i-node 1-27
superblock 1-25

lcong48 subroutine 3-118
ldexp subroutine 3-194
leaveok subroutine 3-54, 3-154
letter, option, get from argument vector 3-214
level, interrupt C-18
level-t data type 5-75
lfind subroutine 3-234
libPW subroutine library 3-305
libraries

DOS Services 3-65
extended curses 3-131
programmers workbench 3-305
standard I/O 3-342

light-emitting diodes, setting 6-64
limits

user 2-167
line subroutine 3-296
linear congruential algorithm 3-118
linear search and update 3-234
linemod subroutine 3-296
LINES variable 3-352
link

create 2-62
link editor output file 4-5
link system call 2-62
list

free-block 1-28
listen

fursocketconnection ~36
listen subroutine 8-36
lists

character C-25
loadtbl system call 2-62.2
localtime subroutine 3-46
locator thresholds 6-64

lock
data 2-97
process 2-97
region of a file 2-64
text 2-97

lock a region of a DOS file 3-88
lockf system call 2-64
log errors C-31
log subroutine 3-128
log trace entry C-32
logarithm 3-128
login name 3-62
login name of user, obtaining 3-233
login name, get 3-212
login, remote 6-107
logname subroutine 3-233
log10 subroutine 3-128
long integers from 3-byte integers 3-232
longjmp subroutine 3-332
longname subroutine 3-54, 3-154
lp special file 6-98
lprio structure 6-100
lprmode structure 6-100
LPRUDE structure 6-101
lrand48 subroutine 3-118
lsearch subroutine 3-234
lseek system call 2-67
lto13 subroutine 3-232
l3tol subroutine 3-232
l64a subroutine 3-4

machine-independent data access 3-334
macro definitions vii
~acro package for formatting a permuted
Index 5-63

macron accent character 5-10
macros

-NCtolower 3-39
-NCtoupper 3-39
-tolower 3-39
- tou pper 3-39
clearerr 3-165

Index X-17

TNL SN20-9881 (25 September 1987) to SC23-0809-0

ctype 3-49
feof 3-165
ferror 3-165
fileno 3-165
getc 3-204
getchar 3-204
isalnum 3-49
isal pha 3-49
isascii 3-49
iscntrl 3-49
isdigit 3-49
isgraph 3-49
islower 3-49
is print 3-49
ispunct 3-49
isspace 3-49
isupper 3-49
isxdigit 3-49
NCesc 3-39
NCunesc 3-39
putc 3-309
putchar 3-309
varargs 3-371

magic number 2-34
main memory allocator 3-236
main subroutine 2-35
maintenance 2-3
maintenance mode 4-3
make

hole in a file 2-42
make a unique file name 3-247
manoc kernel subroutine C-25
manoc subroutine 3-236
management

device 1-39
manipulate parts of floating-point
numbers 3-194

manipulating
Internet addresses 8-34

mapped file
attach 2-131

mapped files 2-7
mask

file creation 2-169
master file 4-98
master format 4-98

match regular expression 3-318
math.h header file 5-60
matherr subroutine 3-238
mdverify subroutine 3-243
mem file 6-103
memccpy 3-245
memchr 3-245
memcmp 3-245
memcpy 3-245
memory allocator 3-236
memory control operations

shared 2-135
memory image 6-103
memory image file 6-103
memory locations

predefined 1-4
memory management 1-10
memory-mapped files 2-7
memory operations 3-245
memory segment

attach to process 2-131
detach 2-138
get 2-140

memory subroutine 3-245
memory, disclaim 2-30
memset 3-245
message

control operations 2-73
from queue 2-79
receive from a socket 8-38
send to a socket 8-43

message control 2-73
message driver format 6-105
message file 4-105
message queue 2-111

get identifier 2-76
send message 2-82

message queues C-24
message receive

extended 2-85
message, issue a queued 3-259
message, issue an immediate 3-255
message, retrieve 3-263
messages, error 3-294
meta subroutine 3-54,3-154
minidisk customizing 6-20

X-1S AIX Operating System Technical Reference

minidisk, add 3-19
mini disk, delete 3-36
minidisks 3-243
miscellaneous facilities
mkdir system call 2-68.1
mknod system call 2-69
mktemp subroutine 3-247
mm facility 5-62
mm macro package 5-62
mntctl system call 2-70.2
mnttab file 4-108
mnttab.h structure 4-108
mode bit

set-group-ID 2-36
set-user-ID 2-36

mode change, file 2-18
mode, DOS file, change 3-74
modes

kernel 1-10
user 1-10

modf subroutine 3-194
modification date, change, DOS file 3-108
modification time

file 2-180
monitor mode major data type 6-73
monitor subroutine 3-248
mount

file system 2-71
mount system call 2-71
mounted file system table 4-108
move

read/write file pointer 2-67
move DOS file read/write pointer 3-104
move subroutine 3-54, 3-154, 3-296
mptx facility 5-63
mrand48 subroutine 3-118
msgbuf structure 2-79
msgctl system call 2-73, C-24
msgget system call 2-76, C-24
msghdr structure 8-39
msghelp subroutine 3-252
msgimed subroutine 3-255
msgop system calls 2-79, 2-82, 2-85
msgqued subroutine 3-259
msgrcv system call 2-79
msgrtrv subroutine 3-263

TNL SN20-988I (25 September 1987) to SC23-0809-0

msgsnd system call 2-82, C-24
msgxrcv system call 2-85, C-24
multi-byte characters 5-9
multi-byte controls 5-13
multi-user mode 4-3
multiplexed device C-20
Multiprotocol Adapter 6-11
mv facility 5-64
mvaddch subroutine 3-54, 3-134
mvaddstr subroutine 3-52, 3-135
mvchgat subroutine 3-136
mvcur subroutine 3-54, 3-155
mvdelch subroutine 3-54, 3-139
mvgetch subroutine 3-54, 3-151
mvgetstr subroutine 3-54, 3-152
mvinch subroutine 3-54, 3-152
mvinsch subroutine 3-54, 3-153
mvpaddch subroutine 3-134
mvpaddstr subroutine 3-135
mvpchgat subroutine 3-136
mvprintw subroutine 3-54
mvscanw subroutine 3-54
mvwaddch subroutine 3-52, 3-134
mvwaddstr subroutine 3-52, 3-135
mvwchgat subroutine 3-136
mvwdelch subroutine 3-54, 3-139
mvwgetch subroutine 3-54, 3-151
mvwgetstr subroutine 3-54, 3-152
mvwin subroutine 3-54, 3-155
mvwinch subroutine 3-54, 3-152
mvwinsch subroutine 3-54, 3-153
mvwprintw subroutine 3-55
mvwscanw subroutine 3-55

name for a temporary file, create 3-355
name list entries, obtaining 3-283
name of a terminal 3-367
name of the user 3-62
name, login 3-212
name, user login, obtaining 3-233
name, user, find value 3-223
nameserver 5-58.2

Index X-19

TNL SN20-9881 (25 September 1987) to SC23-0809-0

NCchrlen macro 3-276
NCcollate subroutine 3-267
NCcoluniq subroutine 3-267
NCctype 3-270
NCdec macro 3-276
NCdechr macro 3-276
NCdecode subroutine 3-276
NCdecstr subroutine 3-276
NCenc macro 3-276
NCencode subroutine 3-276
NCencstr subroutine 3-276
NCeqvmap subroutine 3-267
NCesc macro 3-39
NCflatchar subroutine 3-39
NCisalnum subroutine 3-270
NCisalpha subroutine 3-270
NCisdigit subroutine 3-270
NCisgraph subroutine 3-270
NCislower subroutine 3-270
NCisNLchar subroutine 3-270
NCisprint subroutine 3-270
NCispunct subroutine 3-270
NCisshift subroutine 3-270
NCisspace subroutine 3-270
NCisupper subroutine 3-270
NCisxdigit subroutine 3-270
NCstrcat subroutine 3-272
NCstrchr subroutine 3-272
NCstrcmp subroutine 3-272
NCstrcpy subroutine 3-272
NCstrcspn subroutine 3-272
NCstring subroutine 3-272
NCstrlen subroutine 3-272
NCstrncat subroutine 3-272
NCstrncmp subroutine 3-272
NCstrncpy subroutine 3-272
NCstrpbrk subroutine 3-272
NCstrrchr subroutine 3-272
NCstrspn subroutine 3-272
NCstrtok subroutine 3-272
-NCtolower macro 3-39
NCtolower subroutine 3-39
NCtoNLchar subroutine 3-39
-NCtoupper macro 3-39
NCtoupper subroutine 3-39
NCunesc macro 3-39

-NCxcol macro 3-267
neqn special character definitions 5-54
netent structure 8-20
network byte order

conversion to host byte order 8-33
network data base 5-66.2

close 8-20
find an entry in 8-20
open 8-20

network data base entry 8-20
network host address 8-13
network host database

close 8-13
find an entry in 8-13
open 8-13

network host name 8-13
Network Information Center 8-5
network protocol address 8-24
network protocol data base

close 8-24
find an entry in 8-24
open 8-24

network protocol name 8-24
network service address 8-26
network service name 8-26
network services data base

close 8-26
find an entry in 8-26
open 8-26

networks file 5-66.2
new-line character 6-115
new process image 2-34
newpad subroutine 3-55
newterm subroutine 3-55
newview subroutine 3-155
newwin subroutine 3-55, 3-156
nextkey subroutine 3-63
nice system call 2-88
nl subroutine 3-55, 3-156
NLchar data type 3-276
NLchrlen macro 3-276
NLconvstr subroutines 3-278
NLDLY 6-118
NLecflin subroutine 3-145
NLescstr subroutine 3-278
NLflatstr subroutine 3-278

X-20 AIX Operating System Technical Reference

NLfprintf subroutine 3-300
NLfscanf subroutine 3-325
NLgetctab subroutine 3-280
NLgetenv subroutine 3-208
NLgetfile 3-281
NLisNLcp macro 3-276
nlist subroutine 3-283
NLO 6-118
NLprintf subroutine 3-300
NLscanf subroutine 3-325
NLsprintf subroutine 3-300
NLsscanf subroutine 3-325
NLstrcat subroutine 3-285
NLstrchr subroutine 3-285
NLstrcmp subroutine 3-285
NLstrcpy subroutine 3-285
NLstrcspn subroutine 3-285
NLstring 3-285
NLstrlen subroutine 3-285
NLstrncat subroutine 3-285
NLstrncmp subroutine 3-285
NLstrncpy subroutine 3-285
NLstrpbrk subroutine 3-285
NLstrrchr subroutine 3-285
NLstrspn subroutine 3-285
NLstrtime subroutine 3-288
NLstrtok subroutine 3-285
NLtmtime subroutine 3-291
NLunescstr subroutine 3-278
-NLxcol macro 3-267
NL1 6-118
nocbreak subroutine 3-53
nocrmode subroutine 3-138
nodelay subroutine 3-53, 3-156
noecho subroutine 3-53, 3-147
NOFLSH 6-121
nometa subroutine 3-154
non-standard tabbing 4-82
nonl subroutine 3-55, 3-156
nonlocal goto 3-332
nonspacing characters 5-10
noraw subroutine 3-55,3-158
nrand48 subroutine 3-118
ntohl subroutine 8-33
ntohs subroutine 8-33
null special file 6-104

TNL SN20-9881 (25 September 1987) to SC23-0809-0

number
magic 2-34

numbers, pseudo-random 3-118, 3-317
nvram file 6-103

OCRNL 6-118
OFDEL 6-118
OFILL 6-118
ogonek accent character 5-10
OLCUC 6-118
ONLCR 6-118
ONLRET 6-118
ONOCR 6-118
open

network data base 8-20
network host database 8-13
network protocol data base 8-24
network services data base 8-26

open a DOS file 3-94
open a stream 3-168
open attribute file 3-29
open file

to read 2-90
to write 2-90

open routine (ddopen) C-6
open system call 2-90
openpl subroutine 3-296
operating system profiler 6-106
operating system state 1-4
OPOST 6-118
oprmode structure 6-101
option letter, get from argument vector 3-214
options

socket 8-30
options file format 4-110
ordinary file 1-24
os overview 1-3
osm driver 6-105
out-of-band data 8-31
output file, assembler 4-5
output file, link editor 4-5
output, binary 3-192

Index X-21

TNL SN20-9881 (25 September 1987) to SC23-0809-0

output, print formatted 3-300
overcircle accent character
overdot accent character 5-10
overlay subroutine 3-55, 3-157
overview

I/O 1-34
signals 2-4

overview of sockets 8-3
overview of system 1-3
overwrite subroutine 3-55, 3-157
owner ID translation 2-21
owner of a file 2-21

change 2-21

paddch subroutine 3-134
paddr-t data type 5-75
paddstr subroutine 3-135
palette, setting color 6-70
palloc kernel subroutine C-25
panic kernel subroutine C-30
param.h header file 5-68
parameter passing 2-35
parameters v
PARENB 6-120
parent control

of child process 2-102
paren t directory 4-60
parent process 1-17, 2-46
parent process ID 2-54
PARMRK 6-117
PARODD 6-120
passc kernel subroutine C-13
passing

parameter 2-35
passwd file 4-112
password description 4-113
password encryption 3-42
password file entry, get 3-218, 3-219
password file entry, write 3-312
password, read 3-217
path name

direct 1-30

relative 1-32
resolution 1-30

path name extension C-20
path name of current directory 3-206
pattern, finding DOS files that match 3-81
pause system call 2-94
PC-DOS programs, porting D-l
pchgat subroutine 3-136
pclose subroutine 3-298
pcs font 4-72.4
peer

definition 8-22
peer name

socket 8-22
perase subroutine 3-150
permanent storage

write file to 2-48
permission

file access 2-18
perror subroutine 3-294
physadr structure 5-75
pipe initiation 3-298
pipe system call 2-95
pixel map 7-142
plock system call 2-97
plot file format 4-115
plot subroutines 3-296
pnoutrefresh subroutine 3-55
point subroutine 3-296
pointer, DOS file read/write, move 3-104
popen subroutine 3-298
port description file 4-117
porting DOS 3.0 D-1
ports file 4-117
portstatus file 4-122
portstatus structure 4-122
pow subroutine 3-128
power (exponentiation) 3-128
predefined file 4-124
predefined memory locations 1-4
prefresh subroutine 3-55
prf file 6-106
primitive system data types 5-75
print

formatted output 3-300
print floating-point number 3-121

X-22 AIX Operating System Technical Reference

print formatted varargs argument list 3-374
printf kernel subroutine C-30
printf subroutine 3-300
printw subroutine 3-55, 3-157
priority computation 1-20
priority of a process

change 2-88
process

child 1-17
creation 2-46
get IDs 2-54
get owner 2-176
lock 2-97
parent 1-17
preemption 1-19
set owner 2-176
states 1-19
trace execution 2-102
unlock 2-97

process accounting 2-11
process accounting file 4-15
process addressing 1-10
process alarm 2-13
process communication

signals 1-20
process control 2-4
process creation 1-16
process data structures 1-14
process execution 1-16
process group ID 2-54, 2-128, 2-129

set 2-128
process ID 2-54
process identification 2-4
process image

new 2-34
process management 1-9
process priority

automatic assignment 1-20
change 2-88

process statistics 2-11
process suspension 2-94
process termination 2-40
process times

child 2-165
get 2-165
parent 2-165

TNL SN20-9881 (25 September 1987) to SC23-0809-0

process-to-process communication 2-5
process trace 2-102
process user ID 2-129
processor

difference, IBM Personal Computer AT and
032 Microprocessor D-7

processor user state 1-4
procO 2-60
proc1 2-60
profil system call 2-99
profile

execution time 2-99
profile file 4-127
profile setting 4-127
profile, execution 3-248
profiler, operating system 6-106
program execution, DOS Services 3-79
programmable character set font 4-72.4
programmers workbench library 3-305
protocol

definition 8-3
protocol data base 5-68.1
protocol modes 6-62
protocol procedure 3-376
protocols file 5-68.1
protoent structure 8-24
pseudo-random number generator 3-317
pseudo-random numbers 3-118
pseudo-terminal device 6-107
psignal kernel subroutine C-24
ptrace system call 2-102
pty special file 6-107
publications

related viii
push character back into input stream 3-369
putc kernel subroutine C-26
putc macro 3-309
putcb kernel subroutine C-27
putcf kernel subroutine C-27
putchar macro 3-309
putenv subroutine 3-310.1
putp subroutine 3-57
putpwent subroutine 3-312
puts subroutine 3-313
pututline subroutine 3-224
putw subroutine 3-309

Index X-23

TNL SN20-9881 (25 September 1987) to SC23-0809-0

Qconfig file 4-129
qdaemon to backend interaction B-2
qsort subroutine 3-315
query DMA 6-48
query hft device 3-352, 6-47
query physical device 6-41
query physical device identifiers 6-40
query presentation space 6-46
query terminal characteristics 3-352
queue

message 2-111
send message to 2-82

queue identifier 2-76
queue message

read 2-79
store 2-79

queued message, issue 3-259
queues, message C-24
queuing system B-1
quick sort 3-315
quit character 6-115

rand subroutine 3-317
random-number generator 3-317
random numbers 3-118
rasconf file 4-133
raw I/O C-3
raw subroutine 3-55, 3-158
read

from a file, extended 2-106
message from a queue 2-79
open a file to 2-90

read a DOS file 3-98
read a file tree 3-200
read a password 3-217
read attribute file stanza 3-31
read from a file 2-106
read routine (ddread) C-10

read system call 2-106
read/write file pointer

move 2-67, 3-104
readx system call 2-106
realloc subroutine ;:5-:'.;:50
reboot system call 2-109
rebuild AIX kernel 3-21
rebuild kernel C-51
receive

extended message from queue 2-85
recv subroutine 8-38
recvfrom subroutine 8-38
recvmsg subroutine 8-38
refresh subroutine 3-55, 3-158
regcmp subroutine 3-318
regex subroutine 3-318
regexp facility 3-321
registers 1-4

virtual 1-4
regular expression 3-318, 3-321

advance 3-321
compile 3-318, 3-321
match 3-318
step 3-321

related publications viii
relative path 1-32
release

blocked signals 2-150
relocation, a.out 4-9
remainder function 3-167
remote hft 6-54
remote host

command execution 8-41
remote login 6-107
remove

directory entry 2-174
remove a DOS Services directory 3-102
remove protocol procedure 3-376
rename a DOS file 3-100
rename system call 2-110.1
reopen all files 3-112
replace mode 6-69
report CPU time used 3-38
reposition the file pointer of a stream 3-196
resetterm subroutine 3-55
resetty subroutine 3-55, 3-158

X-24 AIX Operating System Technical Reference

TNL SN20-9881 (25 September 1987) to SC23-0809-0

resolution
path name 1-30

resolv.conf file 5-68.3
resolver

. configuration file 5-68.3
retrieve a message, insert, or help text 3-263
return login name of user 3-233
return node ID 3-120.1
return node nickname 3-120.1
return status 1-37
rewind subroutine 3-196
rewrite existing file 2-27
rexec subroutine 8-41
ring, screen manager 6-50
rmdir system call 2-110.4
rmsgrcv kernel subroutine C-24.1
rmsgsnd kernel subroutine C-24
root directory

change 2-23
routine libraries

See libraries
routines

See kernel subroutines
See subroutines

RT PC hardware access D-7

saveterm subroutine 3-55
savetty subroutine 3-55, 3-158
sbrk system call 2-14
scanf subroutine 3-325
scanw subroutine 3-55, 3-158
secs delta table format 4-136
secs file format 4-135
sccsfile 4-135
schedule alarm 2-13
screen handling package 3-51
screen manager ring 6-50
screen optimization package 3-51
scroll subroutine 3-55, 3-158
scrollok subroutine 3-55, 3-159
search and update, linear 3-234
search trees, binary 3-364

search, binary 3-11
second-level interrupt handler C-9, C-18
seed48 subroutine 3-118
segment

data 1-12
stack 1-13
text 1-12

sel-attr subroutine 3-159
select routine (ddselect) C-11
select support 6-12, 6-28, 6-108, 6-125
select system call 2-111
selwakeup kernel subroutine C-12
semaphores 2-115, 2-119, 2-122
semctl system call 2-115
semget system call 2-119
semop system call 2-122
send

message to message queue 2-82
signal to a process 2-60
signal to process group 2-60

send a message to a queue 2-82
send subroutine 8-43
sendmsg subroutine 8-43
sendto subroutine 8-43
servent structure 8-26
service data base 5-68.5
services file 5-68.5
set-group-ID mode bit 2-36
set time 2-162
set-user-ID mode bit 2-36
set-term subroutine 3-55
setbuf subroutine 3-330
setgid system call 2-129
setgrent subroutine 3-210
setgroups system call 2-126
sethostent subroutine 8-13
sethostid socket subroutine 8-16
sethostname socket subroutine 8-18
setjmp subroutine 3-332
setmpx kernel subroutine C-20
setnetent subroutine 8-20
setpgrp system call 2-128
setprotoent subroutine 8-24
setpwent subroutine 3-219
setscrreg subroutine 3-55
setservent subroutine 8-26

Index X-25

TNL SN20-9881 (25 September 1987) to SC23-0809-0

setsockopt socket subroutine 8-30
setterm subroutine 3-56, 3-159
setting environment 4-127
setting the profile 4-127
setuid system call 2-129
setup-attr subroutine 3-159
setupterm subroutine 3-58
setutent subroutine 3-224
setvbuf subroutine 3-330
sgetl subroutine 3-334
shared memory

control operations 2-135
shared memory segment

attach 2-131
detach 2-138
get 2-140

shell command, issue 3-350
shell environment 2-35
shell variable 2-35
shell variable, value of 3-208
shift, single 5-9
shmat system call 2-131
shmctl system call 2-135
shmdt system call 2-138
shmget system call 2-140
shmop system calls 2-131, 2-135, 2-138, 2-140
shorten a file 2-50
shut down

socket connection 8-45
shutdown socket subroutine 8-45
SIGAIO signal 2-146
SIGALRM signal 2-146
sigblock system call 2-143
SIGBUS signal 2-145
SIGCLD signal 2-40, 2-41, 2-146, 2-148, 2-182,

3-262
SIGDANGER signal 2-145, 2-148
SIGFPE signal 2-145, 2-148, 2-157, 3-188
SIGGRANT signal 2-146
SIGH UP signal 2-41, 2-145
SIGILL signal 2-145
SIGINT signal 2-145
SIGIOINT signal 2-146
SIGIOT signal 2-145
SIGKILL signal 2-37, 2-143, 2-145
SIGMSG signal 2-146

signal
block deli very 2-143

signal action 2-145
signal-catching function 2-145
signal facilities

enhanced 2-156
signal handler 2-145
signal mask

setting 2-152
signal overview 2-4
signal stack context 2-154
signal system call 2-145
signals 1-20, 2-145, 2-150

release blocked 2-150
signals, device driver C-24
signals, floating-point 3-188
signals, software 3-340
sigpause system call 2-150
SIGPIPE signal 2-145
SIGPTY signal 2-146
SIGPWR signal 2-146, 2-148
SIGQUIT signal 2-145
SIGRETRACT signal 2-146
SIGSEGV signal 2-145
sigsetmask system call 2-152
SIGSOUND signal 2-146
sigstack system call 2-154
SIGSYS signal 2-145
SIGTERM signal 2-146
SIGTRAP signal 2-145
SIGUSR1 signal 2-146
SIGUSR2 signal 2-146
sigvec system call 2-156
sin subroutine 3-335
sine function 3-335
single-byte controls 5-11
single-shift control 5-9
single-user mode 4-3
sinh subroutine 3-337
sleep kernel subroutine C-21
sleep subroutine 3-338
SLIH C-9, C-18
sockaddr structure 8-4
socket

create 8-47
definition 8-3

X-26 AIX Operating. System Technical Reference

initiate a connection 8-11
socket connection

accept 8-7
listen 8-36
shut down 8-45

socket message
receive 8-38
send 8-43

socket name 8-28
bind 8-9

socket options 8-30
socket peer name 8-22
socket subroutine 8-47
socketpair subroutine 8-50
sockets

hosts data base 5-58.2
network data base 5-66.2
overview 8-3
protocol data base 5-68.1
routines 8-6
service data base 5-68.5

software
enhanced signal facilities 2-156

software signals 3-340
sort, quick 3-315
sound data 6-66
space

allocation change for data segment 2-14
space subroutine 3-296
special character definitions for eqn and
neqn 5-54

special file 2-71
create 2-69

special files 1-24, 1-40
specification of text file format 4-82
splhi kernel subroutine C-19
splx kernel subroutine C-19
splO-sp17 kernel subroutines C-19
sprintf subroutine 3-300
sputl subroutine 3-334
sqrt subroutine 3-128
square root 3-128
srand subroutine 3-317
srand48 subroutine 3-118
sscanf subroutine 3-325
ssignal subroutine 3-340

TNL SN20-9881 (25 September 1987) to SC23-0809-0

SSl-SS4 5-9
stack

signal 2-154
stack segment 1-13
standard I/O 3-309
standard I/O subroutine library 3-342
standard interprocess communication
package 3-198

standend subroutine 3-56,3-160
standout subroutine 3-56, 3-160
stanza, add 3-23
stanza, delete 3-27
stanza, read 3-31
stanza, replace 3-23
stanza, write 3-23
start

character 6-115
system 2-109
virtual machine 2-58

stat structure 5-69
stat system call 2-159
stat.h header file 5-69
state of processor

operating system 1-4
user 1-4

statistics
file system 2-178
process 2-11

statistics, file system 2-178
status

check I/O 2-111
file 2-159

status of a DOS file, get 3-106
status of DOS Services device, get 3-114
status, stream 3-165
statusfile parameter B-2
stdio subroutine library 3-342
stdipc (ftok subroutine) 3-198
stime system call 2-162
stop

wait for child process to 2-182
stop character 6-115
storage image file 4-39
store

message from a queue 2-79
store subroutine 3-63

Index X-27

TNL SN20-9881 (25 September 1987) to SC23-0809-0

strategy routine (ddstrategy) C-17
strcat subroutine 3-344
strchr subroutine 3-344
strcmp subroutine 3-344
strcpy subroutine 3-344
strcspn subroutine 3-344
stream closing and flushing 3-163
stream I/O 3-309
stream open 3-168
stream status 3-165
stream, assigning buffering to 3-330
stream, data

3270 6-11
stream, get character or word from 3-204
string from a stream, obtaining 3-221
string handling 3-278
string operations 3-285, 3-344

international character support 3-272
string to integer conversion 3-347
string, write to a stream 3-313
strlen subroutine 3-344
strncat subroutine 3-344
strncmp subroutine 3-344
strncpy subroutine 3-344
strpbrk subroutine 3-344
strrchr subroutine 3-344
strspn subroutine 3-344
strtod subroutine 3-8
strtok subroutine 3-344
strtol subroutine 3-347
structures

a.out 4-5
a.out relocation 4-9
accounting file 4-15
archive file member 4-18
backup 4-23
cpio 4-41
Define-Code SVC 6-7
device driver config 6-9
devinfo 4-57, 6-100
directory file 4-60
disk config 6-8
diskette customizing 6-17
fd devinfo 6-18
fulls tat 5-56.2
HD devinfo 6-21

hostent 8-13
inode 4-92
i pc-perm 2-6
lprio.h 6-100
Iprmode 6-100
LPRUDE 6-101
minidisk customize 6-20
mnttab.h 4-108
msghdr 8--39
netent 8-20
oprmode 6-101
portstatus 4-122
process data 1-14
protoent 8-24
servent 8-26
sockaddr 8-4
stat 5-69
superblock 4-75
symbol table 4-10
tacct.h 4-16
tape archive header 4-146
termio 6-116
VRM 1-6
VRM Query -Device call 6-9

structures, file
See file formats

sublevel, interrupt C-18
subroutine libraries

See libraries
subroutines

See also kernel subroutines
del-ipc-prof 3-64.1
find-ipc-prof 3-166.1

subsystem
buffer 1-36
file i/o 1-36

subwin subroutine 3-56, 3-160
subyte kernel subroutine C-13
superblock 1-25

update 2-163
superbox subroutine 3-160
supervisor call instruction 1-4
supervisor calls, AIX

See system calls
suspend

process 2-94

X-28 AIX Operating System Technical Reference

suspend execution 3-338
suword kernel subroutine C-13
SVCs, AIX

See system calls
swab subroutine 3-349
swap bytes 3-349
switch table, device C-3
symbol table structure 4-10
symbols, display 5-24
sync system call 2-163
synchronize a DOS file 3-83
syntax v
.sys-errlist 3-294
sys-nerr 3-294
system

reboot 2-109
system calls

difference from subroutines 2-2
errno values A-I
functional summary 2-2

system data types, primitive 5-75
system error messages 3-294
system file 4-139
system name

extended 2-172
get 2-172

system overview 1-3
system profiler 6-106
system subroutine 3-350
system volume format 4-74

TABDLY 6-118
table

call switch 1-36
device switch 1-36
DOS function call D-2

table, mounted file system 4-108
tabs, non-standard 4-82
TABO 6-118
TAB1 6-118
TAB2 6-118
TAB3 6-118

TNL SN20-9881 (25 September 1987) to SC23-0809-0

tacct.h structure 4-16
tail, of screen manager ring 6-50
tan subroutine 3-335
tangen t function 3-335
tanh subroutine 3-337
tape archive header structure 4-146
tape driver file 6-111
tape special file 6-111
tar file 4-146
tcflsh 6-126
tcgeta 6-125
tcsbrk 6-126
tcseta 6-125
tcsetaf 6-125
tcsetaw 6-125
tcxonc 6-126
tdelete subroutine 3-364
tempnam subroutine 3-355
temporary file creation 3-354
temporary file creation, DOS 3-92
tem porary file naming 3-355
TERM environment variable 5-72
TERM variable 3-352
termcap

emulation using terminfo 3-59
termdef subroutine 3-352
terminal capability data base 4-148
terminal characteristics 3-352
terminal file name generation 3-44
terminal interface control 6-131
terminal name 3-367
terminal, data base 4-148
terminate

wait for child process to 2-182
terminate a process 2-40
terminfo file 4-148
termio file 6-114
termio structures 6-116
text

lock 2-97
unlock 2-97

text file format specification 4-82
text segment 1-12
text, help, issue 3-252
tgetent subroutine 3-59
tgetflag s:ubroutine 3-59

Index X-29

TNL SN20-9881 (25 September 1987) to SC23-0809-0

tgetnum subroutine 3-59
tgetstr subroutine 3-59
tgoto subroutine 3-59
thresholds, locator 6-64
tilde accent character 5-10
time

get 2-164
set 2-162

time format 3-288
time profile

execution time 2-99
time structure 3-291
time system call 2-164
time to string conversion 3-46
time used report, CPU 3-38
time-t data type 5-75
timeout kernel subroutine C-21
times system call 2-165
timeserver 5-58.2
timezone external variable 3-46
tmpfile subroutine 3-354
tmpnam subroutine 3-355
toascii subroutine 3-39
tolower subroutine 3-39
-tolower subroutine 3-39
touchwin subroutine 3-56, 3-161
toupper subroutine 3-39
-toupper subroutine 3-39
tparm subroutine 3-58
tputs subroutine 3-58, 3-59
trace 3-357

child process execution 2-102
trace channel, check whether enabled 3-357
trace collector, AIX 3-362
trace daemon 3-359
trace driver 6-128
trace special file 6-128
trace, device driver C-32
trace, kernel C-32
trace-on subroutine 3-357
trace off subroutine 3-56
traceon subroutine 3-56
trackloc subroutine 3-161
trailer record 4-42
translate

characters 3-39, 3-276

group IDs 2-21
owner IDs 2-21

trap, floating-point exception 3-188
trap, kernel 1-35
trc-start subroutine 3-359
trc-stop subroutine 3-359
trcunix subroutine 3-362
tree, read 3-200
trees, binary search 3-364
trigonometric functions 3-335
trsave kernel subroutine C-32
tsearch subroutine 3-364
tstp subroutine 3-161
tty special file 6-131
ttyname subroutine 3-367
twalk subroutine 3-364
two-byte characters 5-9
typeahead subroutine 3-56
types.h header file 5-75
tzname external variable 3-46
tzset subroutine 3-46

U.S. English keyboard 6-79
uint data type 5-75
ulimit system call 2-167
ulong data type 5-75
umask system call 2-169
umlaut accent character 5-10
umount system call 2-170
uname system call 2-172
unamex system call 2-172
unctrl subroutine 3-56, 3-162
ungetc subroutine 3-369
Unix error collector 3-126
unlink a DOS file 3-110
unlink system call 2-174
unlock

region of a file 2-64
unlock a region of a DOS file 3-88
unmount

file system 2-170
untimeout kernel subroutine C-22

X-30 AIX Operating System Technical Reference

update
delayed blocks 2-163
i-nodes 2-163
superblock 2-163

update, linear 3-234
user ID

get 2-55
set 2-129

user information 2-176
user information name, find value 3-223
user limits 2-167
user login name 3-62
user login name, obtaining 3-233
user mode 1-10
user mode addressing 1-12
user name 3-62
ushort data type 5-75
usrchar kernel subroutine C-20
usrinfo system call 2-176
ustat system call 2-178
utime system call 2-180
utmp file 4-170
utmp file entry access 3-224
utmp file, find user's slot 3-368
utmpname subroutine 3-224
uvmount system call 2-180.3

value of environment variable 3-208
value of user information name, find . 3-223
values.h header file 5-77
varargs argument list, print 3-374
varargs macro 3-371
variable-length parameter list 3-371, 3-374
vec-clear kernel subroutine C-18
vec-init kernel subroutine C-18
verify program assertion 3-7
verify, write 3-243
vfprint subroutine 3-374
vidattr subroutine 3-58
vidputs subroutine 3-58
virtual

memory 1-10

TNL SN20-9881 (25 September 1987) to SC23-0809-0

registers 1-4
terminal data (VTD) 6-61

virtual machine
characteristics 1-3
control registers 1-4
IPL 2-58
restart 2-109
start 2-58
wait for termination 2-58

virtual memory image 6-103
vmount system call 2-180.5
vprintf subroutine 3-374
vrcppr subroutine 3-376
VRM device driver 1-36
VRM Query -Device call 6-9
VRM structure 1-6
vscroll subroutine 3-162
vsprint subroutine 3-374
VTD 6-61
VTDLY 6-118
VTO 6-118
VT1 6-118

waddch subroutine 3-52, 3-134
waddfld subroutine 3-135
waddstr subroutine 3-52, 3-135
wait

for I/O activity 2-111
for signal 2-94
virtual machine 2-58

wait system call 2-182
waitvm system call 2-58
wakeup kernel subroutine C-21
walk a file tree 3-200
wattroff subroutine 3-56
wattron subroutine 3-56
wattrset subroutine 3-56
wchgat subroutine 3-136
wclear subroutine 3-56, 3-137
wclrtobot subroutine 3-56, 3-137
wclrtoeol subroutine 3-56, 3-137
wcolorend subroutine 3-137

Index X-3t

TNL SN20-9881 (25 September 1987) to SC23-0809-0

wcolorout subroutine 3-138
wdelch subroutine 3-56, 3-139
wdeleteln subroutine 3-56, 3-139
well-known host names

definition of 5-58.2
nameserver 5-58.2
printerserver 5-58.2
timeserver 5-58.2

werase subroutine 3-56, 3-150
wgetch subroutine 3-56, 3-151
wgetstr subroutine 3-56, 3-152
winch subroutine 3-56, 3-152
winsch subroutine 3-56, 3-153
winsertln subroutine 3-56, 3-153
wmove subroutine 3-56,3-154
wnoutrefresh subroutine 3-56
wOI'd, get from stream 3-204
workbench library 3-305
wprintw subroutine 3-56, 3-157
wrefresh subroutine 3-56, 3-158
write

file to permanent storage 2-48
open a file to 2-90
to a file 2-184

write a string to a stream 3-313
write characters 3-309
write password file entry 3-312
write routine (ddwrite) C-10
write stanza 3-23
write system call 2-184
write to a DOS file 3-116
wri te to a stream 3-309
write-verify 3-243
write words 3-309
writex system .call 2-184
wri ting a helper program C-50

wscanw subroutine 3-57, 3-158
wsetscrreg subroutine 3-57
wstandend subroutine 3-57, 3-160
wstandout subroutine 3-57, 3-160
wtmp file 4-170

XCASE 6-120

yO, y1, yn subroutines 3-9

zombie process 2-40

I Numerics I
3-byte integer conversion to long
integers 3-232

3270 data stream 6-11
3270 device driver 6-11
3278/79 Emulation Adapter 6-11
68881 floating-point processor 3-170, 3-183,

3-190

X-32 AIX Operating System Technical Reference

--------- -------- - ---- -- ----------_.-
Reader's Comment Form

IBM RT PC AIX Operating System
Technical Reference

The IBM RT PC
Family

SC23-0809-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

'1-
L __ _

Q)

c:
::J
Cl
c:
o «
"0
"0
u..
(5
....
:J
U

adBJ pUB PIO.::!

ade.L

IIIII1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

aldetS tON 00 aseald

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBJ PUB PIO.::!

ade.L

--------- -------- -. ---- - - ----------_.-
Reader's Comment Form

IBM RT PC AIX Operating System
Technical Reference

The IBM RT PC
Family

SC23-0809-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L __ _

(I)
c
::;
CI
C
o «

""0
(5
u..
(;
....
::l

U

adBl pUB PIO~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO~

IBM RT PC AIX Operating System Technical Reference SC23-0809-0

Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _
I adB} PUB PIO.::l

Q)

c:
:.J
C)

c:
o «
" (5
LL.

(; ...
::J

U

adel.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

aldelS ION 00 aseald

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO.::l

adel.

