

IBM RT PC Advanced Interactive Executive Operating System., Version 2.1

Using the AIX Operating System

Programming Family

-~------- ---~ :: ::-:. == ----­_~_'f_

Personal
Computer
Software

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 ofIBM RT PC AIX Operating System Licensed Program, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984, 1987
©Copyright AT&T Technologies 1984

About This Book

A computer system has two main parts:

Hardware The physical components of the system.

Software The programs that control how the hardware works.

On the IBM RT Personal Computerl system, there are two types of
software:

The operating system
A set of programs that controls how the system works.
Some of the tasks an operating system usually performs
are allocating system resources, scheduling operations,
and controlling the flow of data through the system.

Application programs
Software that performs a particular task such as word
processing, project planning, or inventory control.

The AIXI Operating System consists of a kernel (the programs that
control how the system works) and a shell or (command
interpreter). The shell provides a set of commands (programs)
that cause the system to perform specific operations. The subject
of this book is the AIXI Operating System -a part of the RT PCl
system that exists between the hardware and the application
programs. To determine whether you want to work with the AIX
Operating System as this book describes, please read the remainder
of this section.

RT, RT PC, RT Personal Computer, and AIX are trademarks of International
Business Machine Corporation.

About This Book iii

The AIX Operating System is based on UNIX2 System V, which
consists of a kernel and a standard UNIX shell (the Bourne shell).
Your RT PC system may have additional command interpreters
installed, for example:

• csh (described under csh in A/X Operating System Commands
Reference

• DOS Services (described in Using A/X Operating System
DOS Services)

• Usability Services (described in Usability Services Guide).

This book includes the information you need to be able to:

• Start your RT PC system and use simple commands

• Display and print the contents of files

• Use the AIX file system

• Work with processes

• Write shell programs.

Who Should Read This Book

This book is written for those who want to learn how to use the
basic features of the AIX Operating System.

2 UNIX was developed and licensed by AT&T. It is a registered trademark of
AT&T in the United States of America and other countries.

iv Using the Operating System

Before Y ou Begin

Before you can begin to work with this book, your RT PC system
must be set up and the AIX Operating System must be installed. In
addition, you should have a user name and possibly a password.
If your system is not installed, see Installing and Customizing the
AIX Operating System. If you need a user name, see Managing the
AIX Operating System.

Note: Beginning with Chapter 2, many of the tasks in this book
require you to use one of the RT PC text editing programs. When
you begin Chapter 2, please pay careful attention to the list of text
editing programs in "About This Chapter" on page 1-3.

How to Use This Book

This book also is divided into chapters, each devoted to a major
AIX Operating System concept or feature:

• Chapter 1, "Getting Started on the AIX Operating System" on
page 1-1, explains how you gain access to the system and how
you use AIX Operating System commands to perform work on
the system. After you are familiar with the information in this
chapter, you should be able to use your system to follow the
examples in the remainder of the book.

• Much of the work you do on the system produces or modifies
files (collections of data stored together in the computer under
one name). Chapter 2, "Displaying and Printing Files" on
page 2-1 explains some of the ways in which you can view the
contents of files, either by displaying them on the screen or by
printing them.

• Chapter 3, "Using the File System" on page 3-1 explains how
the AIX file system works, one of the most important AIX
Operating System concepts. Besides explaining the structure
and principles of the file system, this chapter also has many
examples of file system use that you can follow on your system.

• At any given time, when your system is running, there are a
number of different processes, each performing a different task.

About This Book v

Chapter 4, "Understanding Processes" on page 4-1 explains the
relationship between programs and processes and some basic
ways to run processes, modify the way processes work, and
monitor their progress.

• Chapter 5, "Using the Shell with Processes" on page 5-1
explains some of the more advanced ways to control processes,
using features of the AIX Operating System shell program.

• Chapter 6, "Using Advanced Shell Features-A Reference" on
page 6-1 contains information about the shell that you may find
useful if you are developing your own shell programs or
procedures.

In addition, this book also includes supplemental information in an
appendix, and a glossary and an index to make it easier for you to
find information.

A Reader's Comment Form and Book Evaluation Form are
provided at the back of this book. Use the Reader's Comment
Form at any time to give IBM information that may improve the
book. After you become familiar with the book, use the Book
Evaluation Form to give IBM specific feedback about the book.

You can use this book in one of two ways:

• As a training manual. Read and work through it from the first
chapter to the last one. This should give you a general
understanding of the AIX Operating System.

• As a reference manual. Use the "Contents" and "Index" to
locate particular topics. This is a good way to refresh your
memory or learn more details about the AIX Operating System.

vi Using the Operating System

Special Features

This book uses type sty Ie to distinguish among kinds of
information. General information is printed in the standard type
style (the type style used for this sentence). The following type
styles indicate other types of information:

New terms
Each time a new term is introduced, its first occurrence is
printed in this type style (for example, "the AIX
Operating System file system").

System parts
The names for keys, commands, files, and other parts of
the system are printed in this type style (for example, "the
cp command").

Variable information
The names for information that you must provide are
printed in this type sty Ie (for example, "type yourname").

Special characters
Any characters that have a special meaning are printed
in this type style (for example, "the & and && operators
have different uses"). This type is also used for the
names of files that you create as you work through this
book (for example, "create a file named afi 1 e").

Information you are to type
Many examples in this book are designed for you to try
them on your own system; the information that you
should type is printed in this type sty Ie (for example,
"type 1 s tex t and press Enter").

Where appropriate, the chapters and major sections of this book
begin with a box containing quick reference material, for example:.

About This Book vii

To Use a Quick Reference Box

1. Skip the quick reference boxes the first time you read a
section.

2. Use the quick reference boxes as a fast path through the
book.

3. Refer to the quick reference boxes to refresh your memory.

You should use the boxes for reference after you are generally
familiar with the contents of a section or chapter. You can skip
the box the first time you read a section. The boxes make a
convenient fast path through the book, but they are not
comprehensive and they are not intended to take the place of the
explanatory material in each section.

After the quick reference boxes, each chapter in this book takes
the same general approach to the topics it covers-a series of
explanations and examples. The examples build upon each other;
in many instances, an example uses a file created in a previous
example. Therefore, if you intend to follow the examples on your
system, it is important for you to work through each chapter from
start to finish.

In the examples, the characters you should type are printed in blue,
as this example shows:

$ 1 s
afile
bfi 1 e
cfi 1 e

$

After you type the characters on a line, press the Enter key.

In the text, whenever you are told to enter a command or other
information, you should type the information and then press the
Enter key.

viii Using the Operating System

Related Books

Also included in the binder with this book are two aids to using
the AIX system:

• A Quick Reference Card, which contains the essential steps for
a number of basic tasks. The Quick Reference Card should be
most useful after you are generally familiar with the
information in the book.

• A keyboard reference chart for four of the different display
stations that you can use with the AIX system. Certain special
functions require a different sequence of keys on different
keyboards. The keyboard reference chart for a particular
display station shows you which keys to press on that keyboard
to produce the special function.

• IBM RT PC Installing and Customizing the AIX Operating
System provides step-by-step instructions for installing and
customizing the AIX Operating System, including how to add or
delete devices from the system and how to define device
characteristics. This book also explains how to create, delete,
or change AIX and non-AIX minidisks.

• IBM.RT PC Managing the AIX Operating System provides
instructions for performing such system management tasks as
adding and deleting user IDs, creating and mounting file
systems, and repairing file system damage.

• IBM RT PC AIX Operating System Commands Reference lists
and describes the AIX Operating System commands.

• IBM RT PC Guide to Operations describes the IBM 6151 and
IBM 6150 system units, the displays, keyboard, and other
devices that can be attached. This guide also includes
procedures for operating the hardware and moving the IBM
6151 and IBM 6150 system units.

• IBM RT PC Prob lem Determination Guide provides instructions
for running diagnostic routines to locate and identify hardware
problems. A problem determination guide for software and

About This Book ix

•

•

•

•

•

-7-

•

three high-capacity (1.2MB) diskettes containing the IBM RT
PC diagnostic routines are included.

IBM RT PC Usability Services Guide shows how to create and
print text files, work with directories, start application
programs, anddo other basic tasks with Usability Services.
(Packaged with Usability Services Reference)

IBM RT PC Usability Services Reference supplements IBM RT
PC Usability Services Guide by including information on using
all of the Usability Services commands. (Packaged with
Usability Services Guide)

IBM RT PC Exploring Usability Services is an online tutorial
for first-time users of the Usability Services. This tutorial
simulates the user interface and shows how to use the keyboard
and the optional mouse, how to manipulate windows, and how
to use files and directories.

IBM RT PC Messages Reference lists messages displayed by the
IBM RT PC and explains how to respond to the messages.

IBM RT PC Using A/X Operating System DOS Services
provides step-bY-$tep information for using AIX Operating
System shell. (Available optionally; packaged with IBM RT PC
AIX Operating System DOS Services Reference)

IBM RT PC AIX Operating System Technical Reference
describes the system calls and subroutines that a C programmer
uses to write programs for the AIX Operating System. This
book also includes information about the AIX file system,
special files, file formats, GSL subroutines, and writing device
drivers. (Available optionally)

IBM RT PC AIX Operating System Communications Guide
provides information and customizing details on communicating
with other users in a multiple work station environment and in
two system-to-system configurations. One configuration links a
single interactive work station with a remote host, and the
other links two AIX-based systems for batch file transfer.

x Using the Operating System

• IBM RT PC INed provides guide and reference information for
using the INed program to create and revise files.

IBM RT PC AIX Operating System Programming Tools and
Interfaces describes the programming environment of the AIX
Operating System and includes information about using the
operating system tools to develop, compile, and debug programs.
In addition, this book describes the operating system services
and how to take advantage of them in a program. This book
also includes a diskette that includes programming examples,
written in C language, to illustrate using system calls and
subroutines in short, working programs. (Available optionally)

Ordering Additional Copies of This Book

To order additional copies of this publication (without program
diskettes), use either of the following sources:

• To order from your IBM representative, use Order Number
SBOF-0169.

• To order from your IBM dealer, use Part Number 92X1269.

A binder, the Using the AIX Operating System manual, the AIX
Operating System Quick Reference Card, and the keyboard reference
chart set are included with the order. For information on ordering
the binder, manual, and quick reference separately, contact your
IBM representative or your IBM dealer.

About This Book xi

xii Using the Operating System

Contents

Chapter 1. Getting Started on the AIX Operating
System 1-1

About This Chapter 1-3
Logging In to the AIX Operating System 1-4
Logging Out of the AIX Operating System 1-6
Using Operating System Commands 1-8
Setting and Changing Your Password 1-10
Using Display Station Features 1-13

Chapter 2. Displaying and Printing Files 2-1
About This Chapter 2-3
Creating Sample Files for This Chapter 2-4
Displaying Files-The pg (page) Command 2-5
Printing Files-The print Command 2-9

Chapter 3. Using the File System 3-1
About This Chapter 3-3
U nde~standing Files, Directories, and Path Names 3-4
Creating a Directory-The mkdir (Make Directory) Command 3-10
Listing Directory Contents- The Is (List) Command 3-12
Changing Directories-The cd (Change Directory) Command 3-16
Removing Files-The rm (Remove File) Command 3-20
Removing Directories-The rmdir (Remove Directory)

Command 3-23
Linking Files-The In (Link) Command 3-27
Copying Files-The cp (Copy) Command 3-31
Renaming or Moving Files and Directories-The mv (Move)

Command 3-34
Backing up and Restoring Files 3-39
Protecting Files and Directories 3-42

Chapter 4. Understanding Processes 4-1
About This Chapter 4-3
Understanding Programs and Processes 4-4

Contents xiii

Checking Process Status-The ps (Process Status) Command . 4-5
Canceling a Process 4-7
Redirecting Input and Output 4-9
Running Background Processes-The & Operator 4-11

Chapter 5. Using the Shell with Processes 5-1
About This Chapter 5-3
Using Pi pes and Filters 5-4
Using Multiple Commands and Command Lists 5-6
Grouping Commands 5-9
Quoting ... 5-11
Matching Patterns 5-13
Writing and Running Shell Procedures 5-16

Chapter 6. Using Advanced Shell Features-A
Reference 6-1

About This Chapter 6-3
Shell Variables 6-4
How the Shell Uses Variables 6-11
Special Shell Variables 6-19
Shell Control Commands 6-22
Inline Input (Here) Documents 6-28
Standard Error and Other Output 6-29
Shell Flags 6-31
Shell Reserved Characters and Words 6-34

Appendix A. Creating and Editing Files with ed A-I
About This Chapter A-4
Understanding Text Files and the Edit Buffer A-5
Creating and Saving Text Files A-6
Loading Files into the Edit Buffer A-13
Displaying and Changing the Current Line A-17
Locating Text A-22
Making Substitutions-The s (Substitute) Subcommand A-25
Deleting Lines-The d (Delete) Subcommand A-30
Moving Text-The m (Move) Subcommand A-33
Changing Lines of Text-The c (Change) Subcommand A-35
Inserting Text-The i (Insert) Subcommand A-37
Copying Lines-The t (Transfer) Subcommand A-40
Using System Commands from ed A-42
Ending the ed Program A-43

xiv Using the Operating System

Figures

Glossary

Index

X-I

X-3

X-27

Contents xv

xvi U sing the Operating System

Chapter 1. Getting Started on the AIX Operating
System

Getting Started 1-1

CONTENTS

About This Chapter .. 1-3
Logging In to the AIX Operating System 1-4

Starting the System .. 1-5
Logging in to the System .. 1-5

Logging Out of the AIX Operating System 1-6
Using Operating System Commands 1-8
Setting and Changing Your Password 1-10

Using the passwd (Change Password) Command 1-11
Using Display Station Features ... 1-13

Using Special Functions and Keyboard Reference Charts 1-15
Setting Display Station Characteristics 1-18
Special Command Line Editing Features 1-20
Using Virtual Terminals .. 1-23

1-2 Using the Operating System

About This Chapter

This chapter introduces you to the basic tasks of using the RT PC
AIX Operating System. If you are not familiar with the
components of the system, see Guide to Operations to identify
which components your system has and where their power switches
are.

After you finish this chapter, you should learn how to create and
modify files with a text editing program. (A file is simply a
collection of data stored together under a given name.) The
following editing programs are available on the AIX system:

• ed (see Appendix A, "Creating and Editing Files with ed" on
page A-I)

• INed1 (see INed)

• vi (see A/X Operating System Commands Reference).

Your system may have other editing programs as well.

Once you complete this chapter and learn how to use an editing
program, you should have the basic skills necessary to start using
the operating system.

Note: Before you can work through this book on your AIX
system, the components of your system must be set up and the AIX
Operating System must be installed. In addition, you may be
required to have a user name and a password. If your system is not
set up and installed, see Installing and Customizing the AIX
Operating System. If you do not have a user name and a password,
see Managing the AIX Operating System.

INed is a registered tradmark of INTERACTIVE Systems Corporation.

Getting Started 1-3

Logging In to the AIX Operating System

Before you can use the AIX Operating System, your system must be
running and you must be logged in (identified as a valid system
user). If your system displays the 1 ogi n prompt after going
through its initial operations, log in with the procedure described
in the following quick reference box. If your system displays the
auto 1 ogi n of name prompt, it has logged you in automatically; you
can continue your work in this chapter at "Logging Out of the AIX
Operating System" on page 1-6.

To Log In to the AIX Operating System

If your system is not running:

1. Turn on the power switch for each component.

2. Continue with step 3.

If your system is already running:

3. After the prompt:

login:

enter your user name.

4. After the prompt:

password:

enter your password.

(If you do not have a password, you do not receive the
password prompt.)

1-4 Using the Operating System

Starting the System

When you start the RT PC system, the system goes through a series
of internal procedures before it is ready to use. When the system is
ready it displays a copyright notice and the following prompt:

login:

Logging in to the System

When the system displays the log i n prompt, type your user name
and press Enter. (If your system displays the auto 1 ogi n of name
prompt, it has logged you in automatically.)

After you enter your user name, the system displays the password:
prompt. Enter your password. For security reasons, the system
does not display your password as you type it. (If you do not have
a password, the system does not display the pas s VJO r d prompt.)

Note: Although your system may not require you to have a
password, it usually is good practice to set a password for yourself
anyway. For an explanation of how to set or change your
password, see "Setting and Changing Your Password" on page 1-10.

When the system completes the login procedure, it displays a
prompt, usually: $ (a dollar sign followed by a space, which is
called the shell prompt). The system is ready to accept a
command.

Note: The usual prompt is $ (the shell prompt). Another standard
prompt is #. However, it is possible for the prompt to be set to
some other character or characters.

If your system does not display a prompt, you are not logged in.
Try to log in again. You may have typed your password
incorrectly. If you still cannot log in, see Managing the A/X
Operating System.

Getting Started 1-5

Logging Out of the AIX Operating System

To Log Out and Stop the Operating System

The $ (shell) prompt must be displayed before you can log out
of the system correctly.

To log out and leave the operating system running:

• Press END OF FILE (Ctrl-D).

To stop the operating system in the multi-user mode:

• Enter shutdown

To stop the operating system in the single user mode:

• Enter shutdown -f

If you simply want to log out of the system, but leave the system
running for other users, press Ctrl-D. After logging you out, the
system displays the 109; n prompt for the next user.

If you want to turn off the power to the system, you must first stop
the operating system in an orderly way with the shutdown
command.

Warning: It is very important that you use the shutdown
command before you turn off the power to your system.
Failure to do so may result in the loss of data.

When the operating system stops running, you receive the message:

.... Shutdown completed

Note: On some systems, only selected users can use the
shutdown command. If you are not responsible for shutting down
your system, simply log out and leave the system running.

1-6 Using the Operating System

For more information about shutdown, see Managing the AIX
Operating System.

Getting Started 1-7

Using Operating System Commands

Operating system commands are programs that perform tasks on
the AIX system. The AIX Operating System has a large set of
cOlllmands which are described in the remaining chapters of this
book and in AIX Operating System Commands Reference. In
addition to the commands provided with the system, it is possible
for you to create your own commands (see "Writing and Running
Shell Procedures" on page 5-16).

When you work with the operating system, you typically enter
commands after the $ (shell) prompt on the command line, for
exanlple:

$ ls

The Is (list) command displays the contents, if any, of your login
directory.

Note: If you make a mistake while typing a command, use the
Backspace key to erase t.he incorrect characters and then retype
them. The +- cursor movement key does not work for this purpose.

A flag alters the way a command works. Most commands have
several flags. For exarnple, the I (long) flag to the Is command
provides more information about the contents of the directory. The
following example shows how to use the -I flag with the Is
command:

$ ls -1

An argument is a string of characters, usually the name of a file
or directory, that follows a command name. An argument specifies
what data the command is to work with. If you use flags with a
command, arguments follow the flags on the command line. In the
following example, Ibin (the name of a directory) is an argument:

$ ls -1 /bin

The Is -I Ibin command gives a long listing of the contents of the
directory Ibin.

1-8 Using the Operating System

Note: Chapter 3, "Using the File SysteIi1" on page 3-1 contains a
detailed explanation of files and directories.

If you start a command and then decide that you do not want it to
complete, press Ctrl-Backspace or (Left)Alt-Pause
(INTERRUPT) to cancel it. (INTERRUPT and other special
function keys are described under "Using Special Functions and
Keyboard Reference Charts" on page 1-15.)

Note: While a command runs, the system does not display the $
(shell) prompt. When the command completes, the system displays
the $ prompt again, indicating that you can enter another
command.

Getting Started 1-9

Setting and Changing Your Password

A user name is a code that you use to identify yourself to the
system. A password is a code that you use to verify your identity.
Unlike your user name, which is public information and does not
usually change, your password is private and you should change it
periodically (with the passwd command) to protect your data from
unauthorized access. If your account does not have a password,
use the passwd command to set one.

To Set or Change Your Password

1. Enter:

passwd

2. After the prompt:

Old password:

enter your old password.

3. After the prompt:

New password:

enter your new password.

4. After the prompt:

Re-enter new password:

enter your new password again.

1-10 Using the Operating System

Using the passwd (Change Password) Command

Your password must be at least four characters long and can
consist of letters, numbers, and punctuation marks. If your
password contains only one type of character (for example,
lowercase letters), it must be at least six characters long. The
system recognizes only the first eight characters in a password.

On most systems, you can change your password as often, or rarely,
as you like. However, passwords can be set with limits on how
frequently they can be changed or how long they remain valid.
(For information about setting password time limits, see Managing
the AIX Operating System.)

To set or change your password, enter the passwd command:

$ passwd
Changing password for usernarne
Old password:

After the 01 d password prompt, enter your old password. (If you
do not have an old password, you do not receive the prompt.)

Note: For security reasons, the system does not display your
password as you type it. .

After the system verifies your old password, it is ready to accept
your new password:

New password:
Re-enter new password:
$ -

Finally, to verify the new password (since you cannot see it as you
type), the system prompts you to enter the new password again.
When the $ (shell) prompt returns to the screen, your new password
is in effect.

Note: You should not forget your password. You cannot log in to
the system without it. However, if you do forget your password,
see Managing the AIX Operating System to learn how to remove

Getting Started 1-11

password protection from your account. If this happens to you,
promptly set a new password that you can remember.

1-12 Using the Operating System

Using Display Station Features

You can accomplish most of the tasks described in this book with a
very few special keys in addition to the typewriter-style letter and
number keys. Figure I-Ion page 1-14 shows the standard IBM RT
PC Keyboard:

Getting Started 1-13

Figure 1-1. The IBM RT PC Keyboard

(Left)Alt

1-14 Using the Operating System

Used with other keys for special functions. (There
are two keys labeled Alt. (Left)Alt specifies the Alt
key on the left side of the keyboard. The Alt key on
the right side of the keyboard does not perform the
same function.)

Ctrl

Enter

Esc

Used with other keys for special functions.

Sends from the keyboard to the system and moves
the cursor from the end of one line to the beginning
of the next.

Ends certain system activities and is used with other
keys for special functions.

(Cursor Left) Moves the cursor to the left.

(Cursor Right) Moves the cursor to the right.

(Cursor Up) Moves the cursor up.

(Cursor Down) Moves the cursor down.

The cursor is the underscore or rectangle on your screen that
moves as you type characters or press the cursor movement keys.

Using Special Functions and Keyboard Reference Charts

To perform certain functions, you must use two or more keys
together. For example, to log out of the AIX Operating System,
you must send the END OF FILE (end of file) signal. To do so,
you press and hold the Ctrl key and then press the D key. The
names of special functions are printed in this book in all uppercase
letters. Following is a list of the special functions and the IBM RT
PC Keyboard keys you press to use them:

DUMP

END OF FILE

INTERRUPT

NEXT WINDOW

Ctrl-(Left)Alt-End (kernel dump)

Ctrl-D

(Left)Alt-Pause

Alt-Action

QUIT WITH DUMP Ctrl-V (application dump)

Getting Started 1-15

SOFTIPL Ctrl-(Left)Alt-Pause

RESUME OUTPUT Ctrl-Q

STOP OUTPUT Ctrl-S

HORIZONTAL TAB Ctrl-I

VERTICAL TAB

FORM FEED

Ctrl-K

Ctrl-L

CARRIAGE RETURN Ctrl-M (same function as Enter)

LINE FEED Ctrl-J

Ctrl-J works sometimes when the system
will not process Enter. If you get strange
information on the screen or the system does
not respond when you, press Enter, reset the
characteristics of the display station with
the following command:

Ctrl-J stty sane echo -tabs Ctrl-J

You can use the AIX Operating System from any of several
different display stations, each of which has a different keyboard:

• The main RT PC display station, sometimes called the console
(which includes the IBM RT PC Keyboard)

• The IBM 3161 ASCII Display

• The DEC VT1001

• The DEC VT2202

DEC and VT100 are registered trademarks of Digital Equipment Corporation.

2 DEC and VT220 are registered trademarks of Digital Equipment Corporation.

1-16 Using the Operating System

• The IBM PC, using the Crosstalk XVP program.

At the back of this book is a keyboard reference chart for each of
these keyboards. Use the keyboard reference chart for your
keyboard to determine which keys on that keyboard produce the
special functions.

Crosstalk XVI is a registered trademark of Microstuf Company, Inc.

Getting Started 1-17

Setting Display Station Characteristics

You can use the stty command to modify how a display station
works. The general format of stty is:

stty flag

Following is a list of the stty flags you may find useful while you
learn to use the system:

-a Displays the current stty settings.

echoe Causes the Backspace key to erase characters when you
backspace over them.

enhedit Makes special features available for editing the command
line. The -enhedit flag makes the special features not
available. For more information on the special command
line editing features, see "Special Command Line Editing
Features" on page 1-20.

page Causes the system to display information one screen at a
time (instead of scrolling through the entire output of a
command without pause). When page is set, press
another key (for example, Enter) to display the next
screen of information. To disable the page setting, use
the -page flag. -page is the normal setting. Use page in
conjunction with length to set the number of lines
displayed.

length n Sets screen length to n lines, where n is a number from 1
to 255. length works only in conjunction with page.

In the following example, the stty command enables the special
command line editing features, sets the system to display
information one screen at a time, and sets the length of the screen
to 22 lines:

$ stty enhedit page length 22
$ -

1-18 Using the Operating System

For more information about stty flags, see stty in AIX Operating
System Commands Reference. For information about running stty
automatically and additional display station features, see
Managing the AIX Operating System.

Getting Started 1-19

Special Command Line Editing Features

The enhedit flag of the stty command provides certain command
line editing features that you may find convenient. Each time you
enter a command, the system stores a copy of the command line in
a temporary storage area called a buffer. The buffer holds up to
eight lines, or templates. You can change the buffer size with the
enhedstack parameter in /etc/master. As you move the cursor
on the command line, a marker moves to the equivalent position in
the buffer. Use the i (cursor up) and ~ (cursor down) keys to
change to another template in the buffer. When you have changed
to the last template in the buffer, the buffer wraps around to the
first template. Using the information stored in the buffer, the
command line editing features can replace all or part of the last
eight lines you entered from the terminal, making it easy to enter
the same line again or modify a previous template to produce a
similar line. To enable this set of features (described in the
following list), enter stty enhedit on a local terminal or stty
enhedi t ascedi t on a remote terminals:

Note: The following list uses key names as they appear on the
IBM RT PC Keyboard. If you are using a different keyboard, see
the appropriate keyboard reference chart. The keys for remote
terminals are shown in parentheses.

Key

F1 or -+

(Esc 1)

F2
(Esc 2)

1-20 Using the Operating System

Name and Function

Display character

Either of these keys displays one character from the
current template each time you press it.

Display before

Displays all characters of the current template line
from the buffer before the first occurrence of the next
character you type (but after the position of the
marker in the buffer).

F3
(Esc 3)

F4
(Esc 4)

F5
(Esc 5)

Backspace

Display line

Displays all of the characters of the current template
line.

Display after

Moves the marker to the first occurrence of the next
character you type, but does not display any
characters. Use Fl, F2, or F3 to display characters
after positioning the marker with F4.

Load buffer

Places the contents of the input line into the buffer
replacing the current template (without running the
command).

or +- Erase character

Insert
(Esc i)

Either of these keys erases the preceding character
each time you press it, allowing you to correct typing
errors on an input line.

Note: If you are not using the special editing
features, you can use the Backspace key to correct
errors, but not the +-, which erases characters from
the input line, but not from the buffer template.

Insert character

Turns the insert mode on or off. When insert mode is
on, you can insert characters between other
characters on the line without changing the position
of the marker in the buffer.

Getting Started 1-21

Delete
(Esc d)

Esc

Skip character

Moves the marker in the buffer one position to the
right without erasing the skipped character. The
cursor remains in the same position on the input line.

(Esc Esc) (Ctrl-U) Erase command line

i
(Esc h)

~
(Esc I)

1-22 Using the Operating System

Erases the entire input line, but does not affect the
contents of the buffer.

Display next command line

Moves the marker to the next line template in the
buffer, and displays the entire template.

Display previous command line

Moves the marker to the previous line template in the
buffer, and displays the entire template.

U sing Virtual Terminals

It is easier to understand the concept of virtual terminals if you
understand something about how the AIX system handles
commands. Ordinarily, you enter a command, wait for the
command to complete, and then enter your next command.
However, the AIX system can run more than one command at the
same time. For example, if your system has more than one display
station, you can enter a command at one display station, move to
the next display station, enter another command, and so on, until
you have commands running at every display station on the
system.

The RT PC virtual terminal feature gives you the equivalent of
multiple display stations with one exception: Rather than moving
from one display station to the next to enter different commands,
you stay at the main display station and use commands and keys to
move from one virtual terminal to the next.

Note: Only the main RT PC display station has the virtual
terminal feature. If you try to use virtual terminals on the main
display station and find that they do not work, see Managing the
AIX Operating System for an explanation of how to make the
virtual terminal feature available.

To Use Virtual Terlninals

1. To start a virtual terminal, enter:

open sh

2. To move from one virtual terminal to another, press:

NEXT WINDOW (Alt-Action)

3. To close (stop) a virtual terminal, press:

END OF FILE (Ctrl-D)

4. Before you log out, close all virtual terminals you have
opened.

Getting Started 1-23

Note: The open sh command opens a virtual terminal with the
standard operating system command interpreter (sh, or the shell).
If you want to open a virtual terminal with a different command
interpreter, substitute the name of that program for sh.

After you open a virtual terminal, you can enter a command just as
you normally would. If you have several virtual terminals open,
NEXT WINDOW moves you from one to the next, in the order in
which you opened them, as though they are connected in a ring.
The maximum number of virtual terminals that the system can
have open concurrently is 16.

For more information about virtual terminals and other features of
the main display station, see Managing the AIX Operating System.

Note: Before you continue with the remainder of this book, you
should become familiar with a text editing program. See "About
This Chapter" on page 1-3 for a list of the editing programs
available on the AIX system.

1-24 Using the Operating System

Chapter 2. Displaying and Printing Files

Displaying and Printing Files 2-1

CONTENTS

About This Chapter .. 2-3
Creating Sample Files for This Chapter 2-4
Displaying Files-The pg (page) Command 2-5

Displaying Files Without Formatting-The pg (page) Command 2-5
Formatting Files for Display-The pr Command 2-6

Printing Files-The print Command 2-9

2-2 Using the Operating System

About This Chapter

When you want to see the contents of a file, you have two options:

• Display the file on the screen.

• Print the file on the system printer.

In either case, you can choose to see the file:

Unformatted Just as it is.

Formatted With particular characteristics such as double
spacing, a heading for each page, the number of
characters per line, and the number of lines per page.

This chapter explains how to display and print your files, with or
without formatting.

Note: This chapter requires you to work with three files that you
create with a text editing program. "Creating Sample Files for
This Chapter" on page 2-4 explains how to create these files. Later
chapters of this guide, however, require you to be generally
familiar with one of the AIX text editing programs, which are
listed in "About This Chapter" on page 1-3.

Displaying and Printing Files 2-3

Creating Sample Files for This Chapter

Before you can work through the examples in this chapter, you
must have three files to work with. The following example shows
how to use the ed program to create the files used in this chapter.
If you are familiar with a different editing program, you can use
that program to create these files. If you already have created
three files with an editing program, you can use those files by
substituting their names for the file names used in the examples.

$ ed file1
? fi 1 e 1
a
You start the ed program by entering
the command ed, followed by the name
of a new or existing file.

w
101
e fi 1 e2
? fi 1 e2
a
If you are creating a new file, the ed
program first displays the prompt ?
You then type an a on a line by itself to
indicate that you are ready to add text to the
fi 1 e.

\,1

171
e file3
? fi 1 e3
a
When you finish entering your text, enter a period
on a line by itself. Then enter w to write (or save)
a copy of the new file.

2-4 Using the Operating System

Displaying Files-The pg (page) Command

If the $ (shell) prompt is on your screen, you can use the pg (page)
command to display the contents of one or more files. You also
can use an editing program to display files.

To Display a File

Enter:

pg filename

Where filename can be a file name or a series of file names
separated by spaces.

Displaying Files Without Formatting-The pg (page) Command

In the following example, the pg command displays the contents of
the file named fi 1 el:

$ pg filel
You start the ed program by entering
the command ed, followed by the name
of a new or existing file.
$ -

You can use the pg command to display the contents of more than
one file at a time:

$ pg filel file2
You start the ed program by entering
the command ed, followed by the name
of a new or existing file.
If you are creating a new file, the ed
program first displays the prompt ?
You then type an a on a line by itself to
indicate that you are ready to add text to the
fi 1 e.
$ -

Displaying and Printing Files 2-5

The pg command displays the contents of fi 1 el first, then the
contents of fi 1 e2, with no break between them. The pg command
always displays files in the order in which you list them (left to
right).

When you display files that contain more lines than will fit on the
screen, the pg command pauses as it displays each screen. To see
the next screen of information, press Enter.

Formatting Files for Display-The pr Command

Formatting is the process of controlling how the contents of your
files look when they are displayed or printed. The pr command
does simple file formatting. Used without any flags, the pr
command does the following:

• Divides the contents of the file into pages

• Puts the date, time, page number, and file name in a heading at
the top of each page

• Leaves five blank lines at the end of the page to skip over the
perforations between sheets of continuous form paper.

Flags to the pr command give you considerable control over how
your files format. Figure 2-1 on page 2-7 explains several of these
flags. All of the pr command flags are covered under pr in A/X
Operating System Commands Reference.

To Format a File with The pr Command

Enter:

pr filename

When you use the pr command to format a file for display, the
contents of the file may scroll up and off of your screen too quickly
to be read. Use the stty page command (described in "Setting
Display Station Characteristics" on page 1-18) to cause the system,

2-6 Using the Operating System

to pause at the end of each page; press Enter to display the next
page.

A number of flags to the pr command let you control the way pr
formats your files. Figure 2-1 explains some of the most useful pr
command flags. (These and other flags also are covered under pr
in AIX Operating System Commands Reference.)

Flag Action Example

+num Begins formatting on page pr +2 filel
number num. Otherwise,
formatting begins on page 1.

-num Formats page into num pr -2 filel
columns. Otherwise, pr
formats pages with one
column.

-m Formats all specified files at pr -m filel file2
the same time, side-by-side,
one per column.

-d Formats double-spaced pr -d filel
output. Otherwise, output
is single spaced.

-wnum Sets line width to num pr -w40 filel
characters. Otherwise, line
width is 72 characters.

-onum Offsets (indents) each line pr -05 filel
by num character positions.
Otherwise, offset is 0
character positions.

-lnum Sets page length to num pr -130 filel
lines. Otherwise, page
length is 66 lines.

Figure 2-1 (Part 1 of 2). pr Command Flags

Displaying and Printing Files 2-7

Flag Action Example

-h Uses next string of pr -h 'My Nove 1 1 fi 1 el
characters, rather than the
file name, in the header. If
the string includes blanks
or special characters, it
must be enclosed in quote
marks I I (single quote
marks).

-t Prevents pr from formatting pr -t fi 1 e 1
headings and the blank
lines at the end of each
page.

-schar Separates columns with the pr -SI*1 filel
character char rather than
with blank spaces. You
must enclose special
characters in quote marks.

Figure 2-1 (Part 2 of 2). pr Command Flags

You can use more than one flag with the pr command. In the
following example, the pr command formats the file efi 1 e with
two columns (-2), double spacing (d), and the title My Nove 1 (rather
than the name of the file) in the heading:

$ p r - 2 d h 1 My N a velie f i 1 e
$ -

2-8 Using the Operating System

Printing Files-The print Command

Use the print command to send one or more files to the system
printer. The print command places files in a printer queue-a list
of files waiting to be printed. Once the print command places your
files in the queue, you can continue to do other work on your
system while you wait for the files to print.

The general form for the print command is: print filename. If your
system has more than one printer, you can use a command of the
form: print printername filename, where printername is the name of
a particular printer.

Note: If your system has more than one printer, one of those
printers is the default printer. When you do not enter
printername, your print request goes to the default printer.

There are several flags to the print command that you may find
useful. Some of the flags are explained in Figure 2-2 on page 2-10
and all of them are covered under print in A/X Operating System
Commands Reference.

To Print Files

• At the $ (shell) prompt, enter a command of the form:

pri nt filename

where filename is the name of one or more files separated
by spaces.

• If your system has more than one printer, you can choose
the printer you want with a command of the form:

pri nt printername filename

where printername is the name of printer (for example, lpd).

Displaying and Printing Files 2-9

The following example first shows how to print a single file, and
then two files, with the print command:

$ print lpd filel
$ print lpd file2 file3
$ -

The first print command sends the file fi 1 e 1 to the lpd printer,
and then returns the $ (shell) prompt to the screen. The second
print command sends the files fi 1 e2 and fi 1 e3 to the same print
queue, and then returns the shell prompt to the screen before the
files finish printing.

Several flags to the print command let you control how the files
print. The general format for using a flag with the print command
is:

p r i n t flag filename

Figure 2-2 explains some of the most useful flags to the print
command. These and other flags are covered under print in AIX
Operating System Commands Reference.

Flag Action Example

-ca Cancels a print request. print -ca fi 1 e 1
filename (Do not specify

printername.)

-nc=num Prints num copies of the print -nc=3 filel
file. Normally, only one
copy is printed.

-no Notifies you when the print -no fi 1 e 1
print job is completed by
placing a message on your
screen.

-q Displays the status of the print -q
print queue and printer.

Figure 2-2 (Part 1 of 2). print Command Flags

2-10 Using the Operating System

Flag Action Example

-tl= title Places title on the first print -tl=Book filel
page of the printed
document and displays title
when you use the -q flag.

-to = name Labels the printout for print -to=fred afile
delivery to this person.

-cp Copies the file. If you print -cp fi 1 el file2
want to change a file while
you are waiting for the
current copy to print, use
the -cp flag.

Figure 2-2 (Part 2 of 2). print Command Flags

You can specify more than one flag with the print command. For
more information on printing and printer control, see:

• Managing the A/X Operating System

• piobe in A/X Operating System Commands Reference

• print in A/X Operating System Commands Reference.

Displaying and Printing Files 2-11

2-12 Using the Operating System

Chapter 3. Using the File System

Using the File System 3-1

CONTENTS

About This Chapter .. 3-3
Understanding Files, Directories, and Path Names 3-4

Files and File Names ... 3-4
Directories ... 3-5
File System Structure and Path Names 3-6

Creating a Directory-The mkdir (Make Directory) Command 3-10
Listing Directory Contents- The Is (List) Command 3-12

The Current Directory .. 3-12
Other Directories .. 3-13
Is Command Flags ... 3-14

Changing Directories-The cd (Change Directory) Command 3-16
Displaying the Path Name of Your Current Directory 3-17
Returning to Your Login Directory 3-17
Using Relative Directory Names (. and .. Notation) 3-18

Removing Files-The rm (Remove File) Command 3-20
Removing Multiple Files .. 3-21
Removing Multiple Files and Directories 3-21

Removing Directories-The rmdir (Remove Directory) Command 3-23
Removing a Directory .. 3-24
Removing Multiple Directories 3-24
Removing Your Current Directory 3-25

Linking Files-The In (Link) Command 3-27
Using Links .. 3-27
How Links Work-Understanding File Names and i-numbers 3-28
Removing Links ... 3-29

Copying Files-The cp (Copy) Command 3-31
Copying Files in the Current directory 3-32
Copying Files into Other Directories 3-32

Renaming or Moving Files and Directories-The mv (Move) Command 3-34
Renaming Files ... 3-35
Renaming Directories .. 3-35
Moving Files to a Different Directory 3-37

Backing up and Restoring Files .. 3-39
Protecting Files and Directories•................................. 3-42

Displaying File Permissions .. 3-44
Changing Owners and Groups .. 3-50

3-2 U sing the Operating System

About This Chapter

A file is a collection of data stored together in the computer. A
file system is the arrangement of files into a useful order. This
chapter explains the concepts of the AIX file system and the
commands you can use to work with it. The material in this
chapter can help you design a file system that is appropriate for
the type of information you work with and the way you work.

A good way to learn how the file system works is to try the
examples in this chapter on your system. When you work through
the examples, it is easiest for you to do each example in order.
That way, you make the information on your screen consistent
with the information in this guide.

This chapter describes file systems that are stored on the AIX
fixed-disk. You also can create file systems on diskettes. For
information about creating and using diskette file systems, see
Managing the AIX Operating System.

Note: The examples in this chapter rely on the files created in
"Creating Sample Files for This Chapter" on page 2-4.

Using the File System 3-3

Understanding Files, Directories, and Path Names

A file system is an arrangement of many different pieces of
information into a useful pattern. Any time you organize
information, you create something like a computer file system. For
example, the structure of a manual file system (file cabinets, file
drawers, and file folders) resembles the structure of a computer file
system. Once you have organized your file system, manual or
computer, you can find a particular piece of information quickly
because you understand the structure of the system.

To understand the AIX file system, you should first become
familiar with three concepts:

• Files and file names

• Directories

• Tree structure and path names.

Files and File Names

A file can contain the text of a document, a computer program,
records for a general ledger, the numerical or statistical output of
a computer program, or other data. A file name can be up to 14
characters long and can contain letters, numbers, and underscores.
File names should not include characters that have a special
meaning to the shell, including \ (backslash), & (ampersand), and.
(period or dot). The characters with special meanings to the shell
are described under "Shell Reserved Characters and Words" on
page 6-34.

Note: Unlike some operating systems, the AIX Operating System
distinguishes between uppercase and lowercase letters in file
names, (that is, it is case sensitive). For example, the following
three file names specify three different files: fi 1 ea, FI LEA, and
Fi 1 ea.

It is a good idea to use file names that tell you what is in a file.
For example, a file name such as fi 1 e • memo gives you a good idea

3-4 Using the Operating System

Directories

about the contents of the file. However, a file name such as
a .. , , , .. tells you little or nothing about what the file contains.

It is a good idea to use a consistent pattern to name related files.
For example, for a report divided into chapters, one file per
chapter, the files might be named:

chapl
chap2
chap3
and so on

With the RT PC file system, you can organize your files into
groups and subgroups (like the cabinets, drawers, and folders in a
manual file system). These groups are called directories. A
well-organized system of directories (and subdirectories) lets you
retrieve and manipulate the data in your files efficiently.

Directories are different from files in two significant ways:

• Directories contain the names of files, other directories, or
both.

• Directories are organizational tools (not storage places for
data).

You may find it convenient to name files and directories with
different conventions.

Note: You can determine whether a file is an ordinary file, a
directory, or another type of file with either the Is -1 command (15
-1 filename) or the file command (f; 1 e filename).

When you first log in to the system, you are working in your login
directory. As you work with the system, you probably will change
directories, sometimes frequently. The directory you are working
in at any given time is your current directory (sometimes called
the working directory.)

U sing the File System 3-5

Whenever you want to know the name of your current (working)
directory, simply enter the pwd (print working directory)
command, as the following example shows:

$ pwd
/u/uname
$ -

Note: Instead of uname, you see the name of your login directory.

The pwd command returns the path name of your current
directory. Whenever you are uncertain what directory you are
working in, or where that directory fits in the system, use the pwd
command to find out.

File System Structure and Path Names

A file system is an arrangement of directories and files that
resembles an upside-down tree (a hierarchy). Figure 3-1 on
page 3-7 shows a typical AIX file system. (In this example,
directory names are printed in blue and file names are printed in
black.)

3-6 Using the Operating System

/
I

I I
bin u dev

I
jones

I
plans

10
20

30
40

I
etc lib

report

J
lost + found

payroll

regular

10
20

30
40

J
tmp usr

I
smith

contract

1~ 20
30

40 AUSI05143

Figure 3-1. A Typical AIX File System

At the top of the file system is a directory called the root
directory, indicated by the / (slash) symbol. At the next level of
the file system are several directories, each of which has its own
system of subdirectories and files. At this level, the u directory
contains the names of the login directories for the users of this
system (sm; th and j ones). At the next level of this file system are
the login directories themselves (sm; th and j ones), the directories
where these users begin their work after logging in.

A higher level directory is frequently called a parent directory.
For example, in Figure 3-1, the directories p 1 ans and payro 11 have
the same parent directory: jones.

A path name is a sequence of directory names separated by /
(slashes) and ending with a file name or a directory name. A path
name specifies the location of a directory or file within the file
system. The following path name is based on Figure 3-1:

Using the File System 3-7

/u/jones/report/part3

The first / represents the root directory, and indicates the starting
place for the search. The remainder of the path name indicates
that the search is to go to the u directory, then to directory jones,
next to directory report, and finally, to the file part3.

Whether you are changing your current directory, sending data to
a file, or copying or moving a file from one place in your file
system to another, you use path names to indicate the objects you
wish to manipulate.

A path name that starts with / (the name for the root directory) is
called a full path name. You also can think of a full path name
as the full name for a file or directory. Regardless of where you
are working in the file system, you can always find a file or
directory by specifying its full path name.

Note: If there are other users on your system, you mayor may not
be able to get to their files and directories, depending upon the
permissions set for them. For more information about file and
directory permissions, see "Changing Permissions-The chmod
(Change Mode) Command" on page 3-45.

The AIX file system also lets you use relative path names.
Relative path names do not begin with / (the symbol for the root
directory), but are relative to the current directory. A relative path
name can be either:

• The name of a file in the current directory

• A path name that begins with the name of a directory one level
below your current directory

• A path name that begins with .. (dot dot, the relative path
name for the parent directory).

Note: Every directory contains at least two entries: .. (dot
dot) and . (dot, which refers to the current directory).

3-8 Using the Operating System

bin

/
I

i -'
I

u

I
jones

•

I
dev

I I I
etc lib lost + found tmp usr

smith

t-----l------~
plans

10
20

30
40

report payroll

L tJ-----I:
pa~~~121 regular contract

par~!rt3 ~ ~JlI
10 10 I

20 20
30 30

40 40

- = Relative
Path Name

- - - - Full Path Name

Figure 3-2. Relative and Full Path Names

AUSI05144

In Figure 3-2, for example, if your current directory is j ones, the
relative path name for the file lQ in directory contract is
payroll/contract/IQ. (Compare this relative path name with the
full path name for the same file, /u/jones/payroll/contract/lQ,
and you will see that relative path names can be quite convenient.)

The rest of this cha,pter explains how to create and modify the file
system and how to use file system commands.

Using the File System 3-9

Creating a Directory-The mkdir (Make Directory)
Command

Note: Before you can follow the examples in this chapter, you
must be logged in to the system and have three files in your login
directory. The examples in this chapter use the three files created
in "Creating Sample Files for This Chapter" on page 2-4, f; 1 e 1,
fi 1 e2, and fi 1 e3. (To find out what files you have in your current
directory, enter 1 s.) If you use files with different names, make the
appropriate substitutions as you work through the examples.

Directories allow you to organize your files into useful groups. For
example, you could put all the sections of a report in a directory
named report, or the data and programs you use in cost estimating
in a directory named est; mate. A directory can contain the names
of files, other directories, or both.

To create a directory, use the mkdir (make directory) command.
The form for the mkdir command is m kd; r dirname. Your new
directory is created at the next level below your current directory.

To Create a Directory

Enter a command of the form:

mkdi r dirname

where dirname is the name you want to assign to the
directory.

To create a directory, type the mkdir command followed by the
name you want to assign to the directory. The following example
shows how to create a directory named project:

$ mkdir project
$ -

The new directory, project, is one level below the current
directory, as Figure 3-3 on page 3-11 shows.

3-10 Using the Operating System

Current
Directory

mkdir project ~ Current
Directory '-----V

~----------~ ~----~----~

project

Figure 3-3. Relationship Between a New Directory and the Current
Directory

AUS105145

Like file names, directory names can be up to 14 characters long,
and contain letters, numbers, periods, commas, and underscores.
Because there is nothing to automatically distinguish a file name
from a directory name, you may find it useful to establish naming
conventions.

Using the File System 3-11

Listing Directory Contents- The Is (List) Command

Use the Is (list) command to list the contents of one or more
directories. The general form for the Is command is simply 1 s,
which lists the contents of your current directory.

You can do several other things with the Is command as well. For
example, you can list the contents of directories other than the
current directory. You also can use the Is command flags to get
different types of information about the contents of a directory as
is explained under "Is Command Flags" on page 3-14.

To List Directory Contents

Enter: 1 s dirname

where dirname is the name of the directory.

The Current Directory

To list the contents of your current directory, enter 1 s:

$ ls
filel
file2
file3
project
$ -

Used without flags, the Is command simply lists the names of the
files and directories in your current directory.

3-12 Using the Operating System

Other Directories

To list the contents of directories other than your current
directory, use a command of the form 1 s pathname. In the
following example, the current directory is your login directory,
and the Is command lists the contents of a different directory, lu:

$ 1 s ju
alan
bill
brian
cath
don
fox
george
heinz
jerome
1 auri e
mark
melh
nanda
pat
stan
thom
zern
$ -

As this example shows, the Is command ordinarily sorts directory
and file names alphabetically.

Note: Your listing of the lu directory will not be exactly like this
one. It will contain the names of login directories for users on
your system. It also may have a different set of system files,
depending upon how your system is customized.

U sing the File System 3-13

Is Command Flags

In its simple form, the Is command lists only the names of files and
directories. However, there are several flags (or options) that you
can use with the Is command. Flags to the Is command typically
give you more information about the listed files and directories or
change the way the listing displays. To use flags, use a command
of the form 1 s -flag name(s). If you want to use more than one flag,
type all of the flag names together in one string as shown in the
following example:

1s -ltr

The following table lists some of the most useful Is command flags:

Flag Action

-1 Lists in long format. An -I listing provides the type,
permissions, number of links, owner, group, size and time of
last modification for each file or directory listed.

-t Sorts the files and directories by the time they were last
modified (latest first), rather than alphabetically by name.

-a Lists all entries. Without this flag, the Is command does
not list the names of entries that begin with . (period), such
as relative directory names, .profile, and .login.

-r Reverses the order of the sort to get reverse alphabetic
order (Is -r) or reverse time order (Is -tr).

Figure 3-4. Is Command Options

The following example shows a long (-1) listing of a current
directory (substitute your user name for uname):

$ 1s -1
tota 1 4
-rw-r--r-- 1 uname system 101 Jun 5 10:03
-rw-r--r-- 1 uname system 171 Jun 5 10:03
-rw-r--r-- 1 uname system 130 Jun 5 10:06
drwxr-xr-x 2 uname system 32 Jun 5 10:07
$ -

3-14 Using the Operating System

fi1e1
fi1e2
fi1e3
project

The Is -1 command returns the following information:

Field Informa tion

total 4 Number of 512-byte blocks taken up by files in this
directory.

dl'wxr-xr-x File type and permissions set for each file or
directory. The first character in this field indicates
file type:

- (hyphen) for ordinary files
d for directories
b for block special files
c for character special files
p for pipe (first in, first out) special files.

Remaining characters indicate what read, write,
and execute permissions are set for owner, group,
and others. For more information on permissions,
see "Changing Permissions-The chmod (Change
Mode) Command" on page 3-45.

1. Number of links to each file. For an explanation of
file links, see "Linking Files-The In (Link)
Command" on page 3-27.

uname User name of the file's owner.

system Group to which the file belongs.

101 Number of characters in the file.

Jun 5 10:03 Date and time the file was created or last modified.

file 1 N arne of the file or directory.

Figure 3-5. Is -I Command Information

There are other flags to the Is command that you may find useful
as you gain experience with the AIX system. All of the Is
command flags are explained under Is in A/X Operating System
Commands Reference.

Using the File System 3-15

Changing Directories-The cd (Change Directory)
Command

The cd (change directory) command changes your current or
working directory. You can access any directory in the file system
from any other directory in the file system.

Note: You must have permission to access a directory before you
can use the cd command to make that directory your current
directory. (For more information on directory permissions, see
"Protecting Files and Directories" on page 3-42.)

The general form of the cd command is cd pathname. You can use
either a full path name or a relative path name with the cd
command, depending upon the location of the directory.

The cd command alone (without a path name) returns you to your
login directory.

Whenever you want to check the name of your current directory,
enter the pwd (print working directory) command.

To Change Your Current Directory

Enter:

cd pathname

where path name is either the full or relative path name of the
directory that you want to make your current directory.

To Return to Your Login Directory

Enter:

cd

3-16 Using the Operating System

Note: In the following examples, the term uname stands for the
name of your login directory.

Displaying the Path Name of Your Current Directory

In the next example, the pwd command displays the path name of
the current directory (/u/uname):

$ pwd
/u/uname
$ cd project
$ pwd
/ u/uname/project
$ -

Next, the cd command, with a relative path name, makes project
the current directory. Finally, another pwd command displays the
name of the current directory (lu/uname/project), showing that
the change has been made.

Returning to Your Login Directory

To return to your login directory from any other directory in the
file system, use the cd comm~nd without a path name:

$ cd
$ pwd
/u/uname
$ -

To change your current directory to a directory that is either
above your current directory or on a different branch of the file
system, use an absolute path name with the cd command:

$ pwd
/u/uname
$ cd /u
$ pwd
/u
$ -

U sing the File System 3-17

Using Relative Directory Names (0 and 00 Notation)

Every directory contains at least two entries: . ("dot") and .. ("dot
dot"), which refer to directories relative to the current directory.

o ("dot") This entry refers to the current directory.

00 ("dot dot") This entry refers to the parent directory (the
directory immediately above the current directory in
the file system).

To display the relative directory names, use the -a flag with the Is
command. (For more information about the Is command and its
flags, see "Listing Directory Contents- The Is (List) Command" on
page 3-12.)

In the following example, the Is command does not return any
information about the contents of the directory project because
you have created no files or subdirectories in proj ect:

$ cd uname/project
$ 15
$ 15 -a

$ -

However, the Is -a command lists the directory entries that begin
with. (dot)-the relative directory names.

You can use the relative directory name .. to refer to files and
directories that are located above the current directory in the file
system. That is, if you want to move up the directory tree one
level, you can use the relative directory name for the parent
directory rather than using an absolute path name. In the
following example, the cd .. command changes the current
directory from project to uname (the parent directory of project):

3-18 Using the Operating System

$ pwd
/u/uname/project
$ cd ..
$ pwd
/u/uname
$ -

To move up the directory structure more than one level, you can
use a series of relative directory names, for example:

$ cd .. / ..
$ pwd
/
$ -

U sing the File System 3-19

Removing Files-The rm (Remove File) Command

When you no longer need a file, you can remove it with the rm
(remove file) command. The general format for the rm command is
rm filename. The filename can be the name of the file alone, a
relative path name, or an absolute path name, depending upon
where the file is located in relation to the current directory.

To Remove a File

Enter:

rm filename

where filename is a simple file name, a path name, or a list of
file names.

Multiple file names can be linked to a single file. The rm
command removes the links between file names and files. rm
removes the file itself only when it removes the last link to that
file. For more information on links, see "Linking Files-The In
(Link) Command" on page 3-27.

Notes:

1. You also can remove files with the del (delete) command. For
an explanation of del, see del in AIX Operating System
Commands Reference.

2. You must have permission to access a directory before you can
remove files from it. (For more information on directory
permissions, see "Protecting Files and Directories" on
page 3-42.)

3-20 Using the Operating System

Removing Multiple Files

You can remove more than one file at a time with the rID command
by using the following pattern-matching characters (characters
that can stand for another character or string of characters):

* Matches any string of characters in a file name.

? Matches any character in a file name.

[. . .] Matches any of the enclosed characters.

For example, the pattern-matching string * . j un matches any of the
following file names: receivable.jun, payable.jun, payroll.jun,
and expenses. j un. You could remove all four of these files from
your current directory with the rm *. j un command.

Warning: Be certain that you understand how the *
pattern-matching character works before you use it. For
example, the rm * command removes every file in your
current directory. You may choose to use the * character with
the del command, which lets you verify the files to be removed
before removing them.

Similarly, you can use the pattern-matching character? with the
rm command to remove files whose names are the same except for
a single character. For exalnple, if your current directory contains
the files record 1, record2, record3, and record4, you could
remove all four of the files with the rm record? conllnand. For
more information on pattern-matching characters, see "Matching
Patterns" on page 5-13.)

Removing Multiple Files and Directories

Ordinarily, the rm command removes only files, not directories.
(For information about removing directories, see "Removing
Directories-The rmdir (Remove Directory) Command" on
page 3-23.) However, you can remove directories with the -r
(recursive) flag to the rm command. When used with the rm
command, the -r flag first del etes the files from a directory and

Using the File System 3-21

then deletes the directory itself. The format for the rm command
with the -r format is rm -r pathname.

Warning: Be certain that you understand how the -r works
before you use it. For example, the rm - r * command would
delete all files and directories to which you have access. If
you have superuser authority, this command could delete all
system files

Another flag to the rm command, the -i (interactive) flag, allows
you to remove files selectively. It is often convenient to use the -i
flag together with the -r flag, for example:

rm -ri pathname

With the -i flag, the rm command prompts you for a y (yes) or n
(no) response before it removes either a file or the directory.

3-22 U sing the Operating System

Removing Directories-The rmdir (Remove Directory)
Command

When you no longer need a particular directory, you can remove it
with the remove directory (rmdir) command. The rmdir command
removes only empty directories (ones that contain no files or
subdirectories) and cannot remove the current directory. (For
information about removing files from directories, see "Removing
Files-The rm (Remove File) Command" on page 3-20.) The general
format of the rmdir command is rmd i r dirname.

To Remove a Directory

1. Make sure the directory is empty.

a. Enter 1 s - a to list the directory's contents.

b. Use the rm command to remove any files.

c. Use rm or rmdir to remove any directories.

2. Use the cd command to move to a different directory
(usually the parent directory).

3. Enter rmdi r dirnanle (where dirname is the name or path
name of the directory you want to remove).

Before working through the examples in this chapter, create three
subdirectories in the directory project, as the following example
shows. First, use the command cd project to make project your
current directory. Next, use the mkdir command to create the
directories s c h ed u 1 e , t asks, and co s t s. Finally, use the cd
command to return to your login directory.

$ cd project
$ mkdir costs schedule tasks
$ cd
$ -

U sing the File System 3-23

Removing a Directory

The rmdir command removes only empty directories. If you try to
remove a directory that contains any directory or file names, the
rmdir command gives you an error message, as the following
example shows:

$ rmdir project
rmdir: project not empty
$ -

To remove the directory project, you first must remove the
contents of that directory. In the following example, the cd
command makes project your current directory, and then the Is
command lists the contents of project:

$ cd project
$ ls
costs
schedule
tasks
$ rmdir schedule
$ ls
costs
tasks
$ -

The command rmdi r schedul e removes the directory schedul e from
the current directory, project.

Removing Multiple Directories

You can remove more than one directory at a time with the rmdir
command by using pattern-matching characters-characters that
can stand for any other character or string of characters. The
most commonly used pattern-matching characters are:

* Matches any string of characters in a file name

? Matches any character in a file name.

3-24 U sing the Operating System

For example, the characters *s (a pattern-matching string) match
the names of both directories, tasks and costs. It does not match
the name schedul e. The rmdir * command would remove all
empty directories from your current directory.

Similarly, the ??s?? string matches the names of tasks and costs.
Each of these directory names consists of two characters (matched
by??), the character s, and two more characters (again matched by
??). The rmdi r ??s?? command would remove both of these
directories from your current directory.

You can use the * and ? pattern-matching characters together. In
the following example, the *s?s string matches the two directory
names tas ks and costs, since both names consist of a string of
characters (matched by *), an s, another character (matched by the
?), and a final s.

$ rmdir *s?s
$ ls
$

The Is command shows that project contains no entries.

(For more information on pattern-matching characters, see
"Matching Patterns" on page 5-13.)

Removing Your Current Directory

Before you can remove your current directory, you must move out
of it (for example, into the parent directory of your current
directory). Then use the rmdir command to remove the directory
you were working in.

U sing the File System 3-25

The directory project is empty. To remove project, first,move to
your login directory (the parent directory of project). Then, as
the example shows, use the rmdir command:

$ cd
$ rmdir project
$ 15
filel
file2
file3
$ -

Use the Is command to verify that your login directory no longer
contains the directory project.

3-26 Using the Operating System

Linking Files-The In (Link) Command

Using Links

A link is a connection between a file name and the file itself. An
ordinary file usually has one link-a link to its original file name.
However, you can use the In (link) command to connect a single
file to more than one file name at the same time.

You can link files across directories, but not across file systems.
You can link directories only if they have the same parent
directory.

To Link Files

Enter a command of the form:

1 n filenamel filename2

where:

• filenamel is the name of an existing file.

• filename2 is the new file name that you want to link to
filenamel.

Links are convenient whenever you need to work with the same
data in more than one place. For example, assume that you have a
file that contains assembly line production statistics. You use the
same file both" in a monthly report to your management and in a
monthly synopsis that you prepare for the line workers. You can
link the file to two different file names (which can be in different
directories), for example, mgmt. stat and 1 i ne. stat. Because you
have only one copy of the file, you save storage space and you do
not have to remember to update multiple copies of the same file
(that is, both mgmt. stat and 1 i ne. stat always contain the same
data.)

U sing the File System 3-27

In the following example, the In command links the new file name
chec kfi 1 e to the existing file, fi 1 e3:

$ ln file3 checkfile
$ -

To verify that fi 1 e3 and chec kfi 1 e are two names for the same
file, use the pg (page) command to display first one and then the
other:

$ pg file3
When you finish entering your text, enter a period
on a line by itself. Then enter w to write (or save)
a copy of the new file.
$ pg checkfile
When you finish entering your text, enter a period
on a line by itself. Then enter w to write (or save)
a copy of the new file.
$ -

Both fi 1 e3 and chec kfi 1 e are names for the same file. Any
change that you make to the file (for example, by editing fi 1 e3)
shows up when you access the file by the other name (for example,
chec kfi 1 e).

How Links Work-Understanding File Names and i-numbers

Each file has a unique identification number, called an i-number.
The i-number refers to the file itself-data stored at a particular
location- rather than to the file name. A directory entry is simply
a link between an i-number and a file name. It is this relationship
between files and file names that makes it possible for you to link
multiple file names to the same physical file (the same i-number).

To display the i-numbers of files in your directory, use the Is
command with the -i (print i-number) flag:

3-28 Using the Operating System

Removing Links

$ ls -i
1079 checkfile
1076 file1
1078 file2
1079 file3
$ -

The number beside each file name is the i-number for a file. The
i-numbers in your listing probably will be different from those
shown in this example. However, the important thing to note is
that the i-number for fi 1 e3 is the same as the one for chec kfi 1 e
(the two files linked in the previous example). In this case, the
i-number is 1079.

The rm (remove file) command (described under "Removing
Files-The rm (Remove File) Command" on page 3-20) does not
always remove a file. For example, if a file (an i-number) is linked
to more than one file name, the rm command removes the link
between the i-number and that file name, but leaves the file intact.
The rm command removes a file only when it removes the last link
between a name and that file, as Figure 3-6 shows:

~-- name2

I
------'

__ > rm name1

name1 V
~-- name2

->rm name2

AUSI05146

Figure 3-6. Removing Links and Removing Files

Using the File System 3-29

To determine how many links there are to a particular i-number,
use the Is command with the -i (print i-number) and -I (long listing)
flags, as the following example shows:

$ ls -il
total 4

1079 -rw-r--r-- 2 uname system 130 Jun 5 10:06
1076 -rw-r--r-- 1 uname system 101 Jun 5 10:03
1078 -rw-r--r-- 1 uname system 171 Jun 5 10:03
1079 -rw-r--r-- 2 uname system 130 Jun 5 10:06

$ -

Again, the first number in each entry shows the i-number for that
file name. The third field for each entry (the number to the left of
the user's name) is the number of links to that i-number. Notice
that fi 1 e3 and checkfi 1 e both have the same i-number (1079) and
both show two links.

Each time the rm command removes a file name, the number of
links to that file (i-number) is reduced by one. In the following
example, the rm command removes the file name chec kfi 1 e and
reduces the number of links to i-number 1079 (the same i-number
fi 1 e3 is linked to) by one:

$ rm checkfile
$ ls -il
total 3

1076 -rw-r--r-- 1 uname system 101 Jun 5 10:03
1078 -rw-r--r-- 1 uname system 171 Jun 5 10:03
1079 -rw-r--r-- 1 uname system 130 Jun 5 10:06

$ -

Because only one link to i-number 1079 remains, you could use the
rm command to remove both the name fi 1 e3 and the physical file
associated with it.

3-30 Using the Operating System

checkfi
file1
file2
file3

file1
file2
file3

Copying Files-The cp (Copy) Command

The cp (copy) command copies files either within your current
directory or into some other directory. One use for the cp
command is to make back up copies of important files. Because the
back up and the original are two distinct files, you can work with
the original knowing that, if something happens to it-or if you do
not want to save your most recent changes-you can start over
with the unchanged version. (Compare the cp command, which
actually copies files, with the In command, explained under
"Linking Files-The In (Link) Command" on page 3-27, which
creates multiple names for the same file.)

To Copy Files

• To copy a file, enter:

cp source destination

Where source is the name of the file to be copied and
destination is the name of the file source is to be copied to.
(source and destination can be file names in the current
directory or path names.)

• To copy files to a different directory, enter:

cp source destination,

Where source is a series of one or more file names and
destination is a path name that ends with the name of a
directory.

U sing the File System 3-31

Copying Files in the Current directory

Warning: If the destination file exists, the cp command
erases the contents of that file before it copies the source file.
Be certain that you do not need the contents of the
destination file, or that you have a back up copy of the file,
before you use it as the destination file for the cp command.

If the destination file does not exist, the cp command creates it. In
the following example, the first Is command lists the contents of
the current directory:

$ ls
filel
file2
file3
$ cp filel filelx
$ 1 s
filel
filelx
file2
file3
$ -

Next, the cp command copies the source file, fi 1 el, into the
destination file, fi 1 elx. Finally, the second Is command shows
that the directory now contains the file fi 1 e Ix.

Copying Files into Other Directories

If you have followed the examples to this point, you do not have a
subdirectory in your login directory. You need a subdirectory to
do the following examples, so create one with the mkdir command:

$ mkdir extra
$ -

3-32 Using the Operating System

In the following example, the cp command copies the file fi 1 e2
into directory extra:

$ cp fi1e2 extra
$ 1s extra
fi1e2
$ -

The Is command lists the contents of extra, showing that extra
directory now contains a copy of the file fi 1 e2.

With the cp command, you can copy more than one file at a time
into another directory. In the following example, the cp command
copies fi 1 el and fi 1 e3 into the directory extra:

$ cp filel fi1e3 extra
$ 1s extra
fi 1 e 1
fi 1 e2
file3
$ -

The Is command listing shows that the copies have been made.

To change the name of a file when you copy it into another
directory, give the new file name along with the directory name:

$ cp file3 extra/notes
$ ls extra
fi 1 e 1
file2
file3
notes
$ -

U sing the File System 3-33

Renaming or Moving Files and Directories-The mv
(Move) Command

Use the mv (move) command to move one or more files into a
different directory or to rename files or directories. The mv
command can only rename directories; it cannot move them into
other directories. The general format of the mv command is mv
oldfilename newfilename.

The mv command links a new name to an existing i-number and
breaks the link between the old name and that i-number. It is
useful to compare the mv command with the In command
(explained under "Linking Files-The In (Link) Command" on
page 3-27) and the cp command (explained under "Copying
Files-The cp (Copy) Command" on page 3-31).

Note: When you use mv to move files to other directories, it is
extremely important to type the name of the destination directory
carefully. If you do not supply a valid destination directory name,
mv will simply rename the file within the same directory, using the
invalid directory name as a file name.

To Rename Files and Directories

Enter a command of the form:

mv oldname newname

Where oldname and newname can be names of files in the
current directory or path names.

3-34 Using the Operating System

Renaming Files

In the following example, the first Is command lists the i-numbers
for each of the files in the current directory. (If you work this
example on your system, note the i-number for fi 1 elx; it probably
will be a different number than the one shown in the example.)
The mv command then changes the name of the file fi 1 elx to
newfi 1 e:

$ 1s -i
1085 extra
1076 filel
1088 fi"lelx
1078 fi1e2
1079 file3
$ mv fi1e1x newfi1e
$ 1 s -i
1085 extra
1076 fi 1 e 1
1078 file2
1079 file3
1088 newfi1e
$ -

You should notice two things in this example. First, the mv
command removes the entry fi 1 e Ix and adds the entry newfi 1 e.
Second, the i-number for the original file (fi 1 elx) and newfi 1 e is
the same-1088. The mv command removes the link between
i-number 1088 and file name fi 1 e lx, and replaces it with a link
between i-number 1088 and file name newf; 1 e. No change is made
to the file itself.

Renaming Directories

You can use the mv command to rename directories, but only
when those directories have the same parent directory. For
example, as Figure 3-7 on page 3-36 shows, you could use the mv
command to change the name of the directory I u I jon e sip 1 an s to
lu/jones/schemes (since both pl ans and schemes have the same
parent directory, lui jones).

U sing the File System 3-35

/u/jones

i------------~I ~I
sch~mes < mv plans records

1Q ~ tax

AUS10514i

Figure 3-7. Directories That Can and Cannot Be Renamed

However, you could not change the name of the directory
/u/jones/pl ans/lQ to /u/jones/records/tax with the mv
command, since lQ and tax have different parent directories. (To
create the directory /u/tom/memos, you would use the mkdir
command, and then use the mv command to move the files into it.)

In the following example, the 1 s -; command lists the i-numbers
for all entries in the current directory. (Note the i-number for
extra.) The mv command then changes the name of extra to
change:

3-36 Using the Operating System

$ 15 -i
1085 extra
1076 file1
1078 file2
1079 file3
1088 newfile
$ mv extra change
$ 15 -i
1085 change
1076 file1
1078 file2
1079 file3
1088 newfile
$ -

Notice that the 15 -i command does not list the original directory
name extra. It does list the new directory name, change, and it
shows that the i-number for the new directory name is the same as
it was for the original directory name (1085 in this example).

Moving Files to a Different Directory

The mv command also can move one or more files to a different
directory.

Note: Type the directory name carefully. The mv command does
not distinguish between file names and directory names. If you
provide an invalid directory name, the mv command simply takes
that name as a new file name. The result is that the file is
renamed rather than being moved.

In the following example, the Is command lists the entries in the
current directory. Then the mv command moves three files from
the current directory to the directory change.

U sing the File System 3-37

$ ls
change
filel
file2
file3
newfile
$ mv filel file2 change
$ ls
change
file3
newfile
$ ls change
fi 1 e 1
file2
file3
notes
$ -

The second Is command shows that the current directory no longer
contains the files fi 1 e 1 or fi 1 e2. Those files now are in the
directory change, as the 1 s change command shows.

3-38 Using the Operating System

Backing up and Restoring Files

Files and directories represent a significant investment of time and
effort. At the same time, all computer files are potentially easy to
change or erase, intentionally or by accident. A backup copy of a
file is a duplicate of that file stored on a different storage medium
(diskette or tape). When you have a recent backup copy of a file,
you have a good place to start over if your original file is damaged
or lost. To make backup copies of individual files, use the backup
-i command.

Note: The backup -i command backs up the specified files onto a
diskette. A diskette must be formatted before you can use it as a
backup medium. Formatting erases any data stored on the
diskette.

To Format a Dish:ette

1. Enter:

format

The system displays the message:

Insert a new diskette for /dev/fdO
and strike ENTER when ready

2. Insert a diskette in diskette drive 0 (A) and press Enter.

The system displays the message:

Formatti ng . . .

and then, when the diskette is formatted, the message:

Formatting ... Format completed

The diskette is ready to be used.

U sing the File System 3-39

To Back up Individual Files

1. Enter:

backup -i

2. When the system displays the prompt:

Please mount volume 1 on /dev/rfdO
... and type return to continue _

insert a formatted diskette into diskette drive 0 (A) and
press Enter.

3. When the cursor returns to the left side of the screen, enter
one file name per line until you have entered the names of
all the files to be backed up. (Be certain to press Enter
after each file name, including the last file one).

4. Press END OF FILE.

5. When the backup is complete, you receive a message of the
form:

Done at day date time year
n blocks on n volume(s)

Remove the diskette, label it clearly, and store it in a safe
place.

The backup command copies files in a compact form that is not
directly usable. To make the backup copies usable, use the restore
command to transfer them from the diskette to the system.

3-40 Using the Operating System

To Restore Individual Files

1. Insert the backup diskette into diskette drive o.

2. Enter a command of the form:

restore -x filename

Making backup copies of individual files is important and should
be a routine part of your work. However, your backup routine also
should include regular backups of complete file systems. For
information about backing up file systems, see Managing the AIX
Operating System. Also see backup and restore in AIX Operating
System Commands Reference.

U sing the File System 3-41

Protecting Files and Directories

The two most common reasons for protecting files and directories
are:

• They contain sensitive information that should not be available
to everyone who uses your system.

• Not everyone who has access to them should have the power to
alter them.

To Check and Set Permissions

1. Enter 1 s - 1 filename to display the current permissions.

2. Use the chmod command to change permissions, if
necessary.

3. Use the chown command to change the owner, if
necessary.

4. Use the chgrp command to change the group, if necessary.

You can protect a file or directory by setting its
permissions-codes that determine how the file can be used by
anyone who works on your system. Warning: Two or more
users can be making changes to the same file at the same time
(with an editing program, for example) without realizing it.
The changes made by the last user to close the file are saved;
those of the other users are lost. Therefore, it is good practice
to use permissions to allow only authorized users to modify
files, and for those users to communicate with each other
about how and when the file is being used.

3-42 U sing the Operating System

All files (including directories) have nine permissions associated
with them:

• Three types of permissions:

r (read)
w (write)
x (execute)

• For each of three classes of users:

u (user/owner)
g (group)
o (all others)

If you are the owner of a file (usually the person who created it),
you can change file permissions with the chmod command
(described under "Changing Permissions-The chmod (Change
Mode) Command" on page 3-45).

The meanings of the three permissions differ slightly between
ordinary files and directories, as Figure 3-8 shows.

Permission For a File For a Directory

r (read) Contents can be viewed or Contents can be read, but
printed. not searched. Normally r

and x are used together.

w (write) Contents can be changed Entries can be added or
or deleted. removed.

x (eXecute) File can be used as a Directory can be
command (program). searched.

Figure 3-8. Differences Between File and Directory Permissions

Using the File System 3-43

Displaying File Permissions

To display the permissions for all of the files in your current
directory, use the Is -I command:

$ ls -1
total 3
drwxr-xr-x 2 uname system 96 Jun 5 11:08 change
-rw-r--r-- 1 uname system 130 Jun 5 10:06 file3
-rw-r--r-- 1 uname system 101 Jun 5 10:44 newfile
$ -

The first string of each entry in the directory (for example,
-rw-r--r--) shows the permissions for that file or directory. Also
note that the third field shows the file's owner and the fourth field
shows the group to which the owner belongs.

You also can use the Is -I command to list the permissions for a
single file or the Is -Id command to list the permissions for a single
directory:

$ ls -1 file3
-rw-r--r-- 1 uname system 130 Jun 5 10:06 file3
$ ls -ld change
drwxr-xr-x 2 uname system 96 Jun 5 11:08 change
$ -

Together, permissions for a file or directory are called its
permission code. As Figure 3-9 on page 3-45 shows, a permission
code consists of four parts:

• A character that shows file type (- for an ordinary file; d for a
directory; b for a block special file; c for a character special
file; and p for a pipe, or first in, first out, special file)

• A three-character permission field that shows user (owner)
permissions

• A three-character permission field that shows group
permissions

• A three-character permission field that shows permissions for
all others.

3-44 Using the Operating System

-dbcps r w x r w x r w x

file type owner group permissions for
permissions permissions all others

Figure 3-9. File and Directory Permission Fields

When you create a file or directory, the system automatically
supplies a predetermined permission code. Typical permission
codes are:

• For files:

-rw-r--r--

• For directories:

drwxr-xr-x

The - (hyphens) in some positions indicate that those permissions
are not allowed.

To change the predetermined permission code, you must change
your file-creation mode mask with the umask (set file-creation
mode mask) command. For an explanation of umask, see umask
in AIX Operating System Commands Reference.

Changing Permissions-The chmod (Change Mode) Command

The chmod (change mode) command changes the permissions for
files or directories. Your ability to change permissions gives you a
great deal of control over the way your data can be used.

For example, you can permit yourself to read and modify a file,
permit members of your group to read the file, and prohibit all
other system users from any access to the file. You must be the
owner of the file or directory before you can change its
permissions (that is, your user name must be in the third field of an
Is -1 listing of that file).

There are two ways to specify the permissions set by the chmod
command:

U sing the File System 3-45

• With letters and operation symbols

• With octal numbers.

To Change File and Directory Permissions

• Enter a command of the form:

chmod group-operation-permission filename

OR
• Enter a command of the form:

chmod octalnumber filename

Specifying Perlnissions with Letters and Operation Symbols:
The general format of the chmod command is chmod group
operation permission filename where:

• group is one of the following:

u for user (owner)
g for group
o for all others (besides owner and group)
a for all (user, group, and all others)

• operation is one of the following:

+ (add permission)
- (remove permission)
= (assign permission regardless of previous setting).

• permission is one or more of the following:

r for read
s for set user or group ID
t for save text in virtual memory
w for write
x for execute

3-46 Using the Operating System

In the following example, the 1 s - 1 command <:iisplays the
permissions for the file newf; 1 e, and then the command chmod go+w
gives both the group (g) and all other system users (0) write
permission (w):

$ 1s -1 newfi1e
-rw-r--r-- 1 uname system 101 Jun 5 10:44 newfi1e
$ chmod go+w newfi1e
$ 1 s - 1 newfi 1 e
-rw-rw-rw- 1 uname
$ -

system 101 Jun 5 10:44 newfi1e

The second 1 s - 1 command displays the new permissions for the
file newfi 1 e.

The procedure for changing directory permissions is the same as
that for changing file permissions. However, to list the
information about a directory, you use the Is -Id command:

$ 1s -ld change
drwxr-xr-x 2 uname system 96 Jun 5 11:08 change
$ chmod g+w change
$ 1s -1d change
drwxrwxr-x 2 uname
$ -

system 96 Jun 5 11:08 change

In this example, the command chmod g+w gives the group (g) write
permission (w) for the directory change.

If you want to make the same change to the permissions of all
entries in a directory, you can use the pattern-matching character
* (asterisk) with the chmod command. (For more information
about pattern-matching characters, see "Shell Reserved Characters
and Words" on page 6-34.) In the following example, the command
chmod g+x * gives execute (x) permission to all groups (g) for all
files (*) in the current directory:

U sing the File System 3-47

$ chmod g+x *
$ 1s -1
total 3
drwxrwxr-x 2 uname system 96 Jun 5 11:08 change
-rw-r-xr-- 1 uname system 130 Jun 5 10:06 file3
-rw-rwxrw- 1 uname system 101 Jun 5 10:44 newfi1e
$ -

The 1 s -1 command listing shows that the group now has execute
permission (x) for all files in the current directory.

An absolute permission assignment resets all permissions for a file
(or files), regardless of how the permissions were set previously. In
the following example, the 1 s - 1 command lists the permissions for
the file fi 1 e3, and then the command chmod a=rwx gives all three
permissions (rwx) to all users (a):

$ 1s -1 fi1e3
-rw-r-xr-- 1 uname system 130 Jun 5 10:06 file3
$ chmod a=rwx fi1e3
$ 1s -1 fi1e3
-rwxrwxrwx 1 uname system 130 Jun 5 10:06 fi1e3
$ -

You can also use an absolute assignment (=) to remove permissions.
In the following example, the command chmod a=rw- newf; 1 e
removes execute permission (x) for all groups (a) from the file
fi 1 e3:

$ chmod a=rw- fi1e3
$ 1 s - 1 fi 1 e3
-rw-rw-rw- 1 uname
$ -

system 130 Jun 5 10:06 fi1e3

Specifying Permissions with Octal Numbers: Another way to
specify the permissions with the chmod command is with octal
num~e,:s. An octal number corresponds to each type of
permISSIon:

4 = read

2 = write

3-48 Using the Operating System

1 = execute

To specify a group of permissions (a permissions field), add
together the appropriate octal numbers, for example:

3 -wx (2 + 1)

6 rw- (4 + 2)

7 rwx (4 + 2 + 1)

o --- (no permissions)

The entire permission code for a file or directory is specified with a
three-digit octal number, one digit each for owner, group, and
others. The following table shows how octal numbers relate to
permission fields:

Octal Owner Group Others Complete
Number Field Field Field Code

777 rwx rwx rwx rwxrwxrwx

755 rwx r-x r-x rwxr-xr-x

700 rwx --- --- rwx------

666 rw- rw- rw- rw-rw-rw-

Figure 3-10. How Octal Numbers Relate to Permission Fields

To use octal number permission codes with the chmod command,
enter a command of the form: chmod octalnumber filename, as the
following example shows:

$ 1 s - 1 fi 1 e3
-rw-rw-rw- 1 uname
$ chmod 754 file3

system 130 Jun 5 10:06 file3

$ 1 s - 1 fi 1 e3
-rwxr-xr-- 1 uname
$ -

system 130 Jun 5 10:06 file3

It is more difficult to learn to specify permissions with octal
numbers than it is to specify them with letters. However, once you

Using the File System 3-49

are familiar with the octal number system, you probably will find it
more efficient.

Changing Owners and Groups

In addition to setting permissions, you can control how a file or
directory is used by changing its owner or group. Use the chown
command to change the ownercand the chgrp command to change
the group.

To Change the Owner of a File or Directory

Enter:

chown owner file

where:

• owner is the user name of the new owner.

• file is a list of one or more files whose owner you want to
change.

To Change the Group of a File or Directory

Enter:

chgrp group file

where:

• group is the the group ID or group name of the new group.

• file is a list of one or more files whose owner you want to
change.

For more information about the chown and chgrp commands, see
chown and chgrp in AIX Operating System Commands Reference.

3-50 U sing the Operating System

Chapter 4. Understanding Processes
.....

,
..

'. ·c
, '
.

.....

I ------.. '

.

.

..

i ~I
:.'

,

;'

,c:
.

:,

.', .'

" ;

">;, cO:

{:,':{:.' "~I I' .. /
I>·;;':,

,: i C' : "" ':if'·:",·,·/, L',3':: ~',;: I' ," .,' "r'., :~;;@,; f~;·,;{;
I, "

i,' .', "';
: ,",i ii.'. :i;, i,' ":1

:., : <: I:: ,'." ;,::) ',{; , .. '}

.' :y:' .: '; .~'i;r ~:,: .' .
i}~; .. :, . :

, "".', "',"; , ,
;:i, '

:.

;:;,~~
;,

!.~ . .".
,' . . i. ;, ;'

':. :,~' ':.,';." "- :'.: !.,.

i;'" :~:':

" \
.x'

:;~ ~
;,' .,'

': ,~;:'/, :,;~ ,i';' .. ,';

Understanding Processes 4-1

CONTENTS

About This Chapter .. 4-3
Understanding Programs and Processes 4-4
Checking Process Status--The ps (Process Status) Command 4-5
Canceling a Process ... 4-7
Redirecting Input and Output .. 4-9

Reading Input from a File-The < Symbol 4-9
Redirecting Output-The> and> > Symbols 4-10

Running Background Processes-The & Operator 4-11
Starting a Background Process 4-11
Checking Background Process Status 4-12
Ending a Background Process-The kill Command 4-13

4-2 U sing the Operating System

About This Chapter

This chapter explains the concept of a process and the ways you
can run a process, check the status of a running process, and stop
a process. Once you understand the material in this chapter, you
should be able to use the techniques described in
Chapter 5, "Using the Shell with Processes" on page 5-1 to create
and control more complex processes.

A good way to learn how processes work is to try the examples in
this chapter on your system. In the examples, everything you
should type is shaded in blue (for example, ps). When you are told
in the text to enter a command name or a string of characters, type
the characters and then press Enter.

Understanding Processes 4-3

Understanding Programs and Processes

A program is a set of instructions that a computer can interpret
and run. You may think of most programs as belonging to one of
two categories: application programs (for example, text editors,
accounting packages, or electronic spreadsheets) and programs that
are components of the AIX Operating System (for example,
commands, the shell, and your login procedure). While a program
is running, it is called a process.

The AIX Operating System can run a number of different processe.s
at the same time. When more than one process is running, a
scheduler built into the operating system gives each process its fair
share of the computer, according to established priorities. (Only
the person who manages your system can raise these priorities, but
any user can lower priorities by using the nice command explained
under nice in A/X Operating System Commands Reference.)

The rest of this chapter explains how to:

• Check the status of processes

• Cancel processes

• Run processes in the background.

Check the status of background processes

Cancel background processes.

This chapter is an introduction to processes. For more detailed
information about processes and how to control them, see
Chapter 5, "Using the Shell with Processes" on page 5-1.

4-4 U sing the Operating System

Checking Process Status-The ps (Process Status)
Command

While a program runs, it is called a process. For example, a file
on the system contains the program for the cp command (a
command that copies files). When you enter the cp command, you
start a process. That cp process runs until the system displays the
path name of your current directory. Once the path name is
displayed, the process ends.

Any time the system is running, several processes are running as
well. You can use the ps (process status) command to find out
what processes are running and to get information about those
processes.

["BY To Check Process Status

Enter: ps

In the following example, the ps command displays the status of all
processes associated with your display station:

$ ps

$ -

PID
39
43
32

TTY
console
console
console

TIME COMMAND
0:10 sh
0:03 ps
0:01 qdaemon

The ps command displays the following information about each
process:

PID Process identification. The system assigns a process
identification number (PID number) to each process
when that process starts. There is no relationship
between a process and a particular PID number; that is,
if you start the same process several times, it will have
a different PID number each time.

Understanding Processes 4-5

TTY

TIME

Terminal designation. On a system with more than one
terminal, this field tells you which terminal started the
process. On a system with only one display station, this
field can contain the designation console or the
designation for one or more virtual terminals.

Time devoted to this process by the computer (given in
minutes and seconds as of when you enter ps).

COMMAND The name of the command (or program) that started
the process. (In this example, s h is the shell program,
ps is the process status command that displayed this
information, and qdaemon is a program that lets you
send data to the printer.)

Generally, the simple ps command described here tells you all you
need to know about processes. However, you can control the type
of information that the ps command returns by using its flags. One
of the most useful ps flags is -e, which causes ps to return
information about all processes (not just those associated with your
display station). For an explanation of the ps command flags, see
ps in AIX Operating System Commands Reference.

4-6 Using the Operating System

Canceling a Process

If you start a process and then decide you do not want to let it
finish, you can cancel it by pressing INTERRUPT.

Note: INTERRUPT does not cancel background processes. To
cancel a background process, you must use the procedure described
under "Ending a Background Process-The kill Command" on
page 4-13.

To Cancel a Running Process

Press:

INTERRUPT

Note: Most simple AIX commands are not good examples for
demonstrating how to cancel a process-they run so quickly that
they finish before you have time to cancel them. Therefore, the
examples in the rest of this chapter use a command that takes more
than a few seconds to run: fi nd / -type f -pri nt. This command
displays the path names for all files on your system. You do not
need to study the find in order to complete this chapter-it is used
here simply to demonstrate how to work with processes. However,
if you want to learn more about the find command, see find in AIX
Operating System Commands Reference.

Understanding Processes 4-7

In the following example, the find command starts a process. After
the process runs for a few seconds, you can cancel it by pressing
INTERRUPT:

$ find / -type f -print
/usr/lib/acct/acctcms
/usr/lib/acct/acctconl
/usr/lib/acct/acctcon2
/usr/lib/acct/acctdisk
/usr/lib/acct/acctmerg
/usr/lib/acct/accton
/usr/lib/acct/acctprcl
/usr/lib/acct/acctprc2
/usr/lib/acct/acctwtmp
/usr/lib/acct/chargefee
/usr/lib/acct/ckpacct
/usr/lib/acct/dodisk
/usr/lib/acct/fwtmp
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct
/usr/lib/acct/nulladm
/usr/lib/acct/prctmp
/usr/lib/acct/prdaily
/usr/lib/acct/prtacct
/usr/lib/acct/runacct
/usr/lib/acct/sdisk
/usr/lib/acct/shutacct
$ -

<INTERRUPT>

The system returns the $ (shell) prompt to the screen. Now you
can enter another command.

4-8 Using the Operating System

Redirecting Input and Output

A command usually reads its input from the keyboard (standard
input) and writes its output to the display (standard output).
Often, though, you may want a command to read its input from a
file, write its output to a file, or both. With the following shell
notation, you can select input and output files for a command:

Notation Action Example

< Reads standard input from we <file3
a file.

> Writes standard output to 1 s >fi 1 e3
a file.

» Adds standard output to 1 s »file3
the end of a file.

Figure 4-1. Shell Notation for Reading Input and Redirecting Output

This section explains how to read input from a file and how to
write output to a file.

Reading Input from a File-The < Symbol

Use the < (less than) symbol to take input from a file, as the
following example shows:

$ we <file3
3 27 129

$

The we (word count) command counts the number of lines, words,
and characters in the named file. If you do not supply an
argument, the we command reads its input from the keyboard.
However, in this example, input for we comes from the file named
fi 1 e3.

Note: The we command has three flags, -1 (line count only), -w
(word count only), and -e (character count only), which you can
use separately or in combination with each other.

Understanding Processes 4-9

Redirecting Output-The> and> > Symbols

To send output to a file, use either the> (greater than) or > >
symbol. The> symbol causes the shell to replace the contents of
the file with the output of the command; the shell deletes the
contents of the original file. The» symbol adds (appends) the
output of the command to the end of a file. If you use> or > > to
write output to a file that does not exist, the shell creates the file.

In the next example, the output of Is goes to the file named fi 1 e:

$ ls >fi1e
$ -

If the file already exists, the shell replaces its contents with the
output of Is. If fi 1 e does not exist, the shell creates it.

In the following exanlple, the shell adds the output of Is to the end
of the file named fi 1 e:

$ ls »fi1e
$ -

If fi 1 e does not exist, the shell creates it.

In addition to their standard output, processes often produce error
or status messages known as diagnostic output. For information
about redirecting diagnostic output, see "Standard Error and Other
Output" on page 6-29.

4-10 Using the Operating System

Running Background Processes-The & Operator

Besides allowing the processes of several users to run at the same
time, the AIX Operating System allows a single user to run more
than one process at a time. The & (ampersand) operator at the end
of a command tells the system to run that command in the
background. Once a process is running in the background, you can
enter other commands at your display station.

To Run a Bacl(ground Process

Enter:

command name&.

Starting a Background Process

Generally, background processes are most useful with commands
that take a long time to run. However, because they increase the
total amount of work the processor is doing, background processes
slow down the rest of the system. This mayor may not be a
problem, depending upon how much the system slows and the
nature of the other work you do while background processes run.

Note: You can use the nice command to lower the priority of a
process, even a background process. For information about the
nice command, see nice in AIX Operating System Commands
Reference.

Most processes direct their output to standard output, even when
they run in the background. Unless redirected, standard output
goes to the display station. Because the output from a background
process can interfere with your other work on the system, it is
usually good practice to redirect the output of a background
process to a file or a printer. Then you can look at the output
whenever you are ready.

Understanding Processes 4-11

In the following example, the find command runs in the
background (&) and directs its output to a file named di r. paths
(with the> operator):

$ find / -type f -print >dir.paths &
24
$ -

When the background process starts, the system assigns it a PID
number (24 in this example), displays the number, and then prompts
you for another command.

Note: Your process numbers probably will be different from the
ones shown in these examples.

(For more information about redirecting output, see "Redirecting
Input and Output" on page 4-9.)

Checking Background Process Status

As long as a background process is running, you can check its
status with the process status (ps) command explained under
"Checking Process Status-The ps (Process Status) Command" on
page 4-5. You can also check the status of a particular process by
using the -p flag and the PID number with the ps command (for
example, ps -p PID number).

The following example shows how to start another find process and
then check its status:

$ find / -type f -print >dir.paths &
25
$ ps -p 25

PID TTY TIME COMMAND
25 console 0:40 find

$ -

For an explanation of the data that the ps command displays, see
"Checking Process Status-The ps (Process Status) Command" on
page 4-5.

4-12 Using the Operating System

You can check background process status as often as you like
while the process runs. In the following example, the ps command
displays the status of the find process five times:

$ find / -type f -print >dir.paths &
28
$ ps -p 28

PIO TTY TH1E Cm·l~lANO
28 console 0:18 find

$ ps -p 28
PIO TTY T I r·, E CO~H'lAN 0

28 console 0:29 find
$ ps -p 28

PIO TTY TH1E Cor·1HANO
28 console 0:49 find

$ ps -p 28
PIO TTY TH1E COHHANO

28 console 0:58 find
$ ps -p 28

PIO TTY TH1E Cm·lt·1ANO
28 console 1:02 find

$ ps -p 28
PIO TTY TH1E Cor·l~lANO

$ -

Notice that the sixth ps command returns no status information
(because the find process ended before the last ps command was
entered).

Ending a Background Process-The kill Command

If you decide, after starting a background process, that you do not
want the process to finish, you can cancel the process with the kill
command. Before you can cancel a background process, you must
know its PID number. (If you have forgotten the PID number of
that process, use the ps command, described under "Checking
Process Status-The ps (Process Status) Command" on page 4-5, to
list the PID numbers of all processes.)

Note: If you want to end all of the processes you have started, use
the kill 0 command. You do not have to know the PID numbers to
use kill o.

Understanding Processes 4-13

In the following example, after the find starts, the ps command
(without the -p flag) displays the status of all processes:

$ find / -type f -print >dir.paths &
38
$ ps

PID TTY TIME COMMAND
20 console 0:11 sh
38 console 0:10 find
16 console 0:01 qdaemon
39 console 0:03 ps

$ ki 11 38 [or ki 11 OJ
$ ps
38 Terminated

PID TTY TIME COMMAND
20 console 0:11 sh
16 console 0:01 qdaemon
41 console 0:03 ps

$ -

The command kill 38 stops the background find process, and the
second ps command returns no status information about PID
number 38. The system does not display the termination message
until you enter your next command (unless that command is cd).

Note: In this example, ki 11 38 and ki 11 0 have the same effect
because only one process has been started from this display station.

4-14 Using the Operating System

Chapter 5. Using the Shell with Processes

U sing the Shell with Processes 5-1

CONTENTS

About This Chapter .. 5-3
Using Pi pes and Filters .. 5-4
Using Multiple Commands and Command Lists 5-6

Separating Commands on the Same Line with the; (Semicolon) 5-6
Making Commands Conditional-The" and && Operators 5-7

Grouping Commands ... 5-9
Using () (Parentheses) ... 5-9
Using { } (Braces) ... 5-10

Quoting ... 5-11
Using the Backslash ... 5-11
Using I I (Single Quotes) .. 5-12
Using" " (Double Quotes) ... 5-12

Matching Patterns .. 5-13
Naming Files with Pattern-Matching 5-14
Using echo with Pattern-Matching Characters 5-15

Writing and Running Shell Procedures 5-16
Writing a Shell Procedure ... 5-17
Running a Shell Procedure .. 5-17
Creating a Shell Procedure-Example 5-18

5-2 U sing the Operating System

About This Chapter

The shell is a program that interprets commands for the AIX
Operating System and provides a command programming language.
All of the commands described so far in this book are interpreted
by the shell; however, you do not have to know anything about the
shell in order to use them. In contrast, this chapter explains some
tasks you can do by using the shell explicitly:

• Connect commands to each other

• Use multiple commands and groups of commands

• Use special characters to match file names

• Write shell procedures (programs).

Chapter 6, "Using Advanced Shell Features-A Reference" on
page 6-1 contains additional information about the shell.

Using the Shell with Processes 5-3

Using Pipes and Filters

A pipe is a one-way connection between two related commands.
One command writes its output to the pipe and the other process
reads its input from the pipe. When two or more commands are
connected by the I (pipe) operator, they form a pipeline. Each
command in a pipeline runs as a separate process. Figure 5-1
represents the flow of input and output through a pipeline: the
output of the first command (Command 1) is the input for the
second command (Cmd 2); the output of the second command is the
input for the third command (Cmd 3).

Cmd1 AUS105148

Figure 5-1. Flow Through a Pipeline

A filter is a command that reads its standard input, transforms
that input, and then writes the transformed input to standard
output. Filters are typically used as intermediate commands in
pipelines, that is, they are connected by a I (pipe) operator, for
example, 1 s -R I pg (the -R flag causes Is to list recursively the
contents of all directories from the current, or named, directory to
the bottom of the hierarchy).

Certain commands that are not filters have a flag that causes them
to act like filters. For example, the diff (compare files) command
ordinarily compares two files and writes their differences to
standard output. The usual format for diff is:

di ff filel file2

5-4 Using the Operating System

However, if you use the - (hyphen) flag in place of one of the file
names, diff reads standard input and compares it to the named file.
In the following pipeline, Is writes the contents of the current
directory to standard output; diff compares the output of Is with
the contents of a file named di rfi 1 e, and writes the differences to
standard output one page at a time (with the pg command):

15 I diff - dirfile I pg

In the following pipeline, the standard output of 1 s - 1 / becomes
the standard input to grep r-x, a command (in this case a filter)
that searches its standard input for a string (r-x) and writes all
lines that contain the pattern to its standard output. The standard
output of grep r-x becomes the standard input to we (which counts
the number of lines, words, and characters in its standard input):

$ 1 5 - 1 / I 9 rep r- x I VJC
12 108 717

$ -

To get the same results without using a pipeline, you would first
have to direct the output of 1 s - 1/ to a file (for example, 1 s - 1 /
>fi 1 e). Next, you would have to use that file as input for grep r-x
and redirect the output of grep to another file (for example, grep
r-x <fi 1 e >fi 1 e. 0). Finally, you would have to use the output
file of 9 rep as input for we (for example, we < fi 1 e .0). The pipeline
is much more efficient.

Pipelines operate in one direction only (left to right), and all
processes in a pipeline can run at the same time. A process pauses
when it has no input to read or when the pipe to the next process
is full.

U sing the Shell with Processes 5-5

Using Multiple Commands and Command Lists

The shell usually takes the first word on a command line as the
name of a command, and then takes any other words as arguments
to that command. However, the following operators give you five
different ways to use more than one command on a single command
line:

Operator Action Example

, Causes commands to run cmdl;cmd2
(semicolon) in sequence.

&& Runs the next command if cmdl && cmd2
current command succeeds.

II Runs the next command if cmdl II cmd2
the current command fails.

& Causes command to run in
the background.

cmdl > file & cmd2 &

(Described under "Running
Background
Processes-The &
Operator" on page 4-11.)

I Creates a pipeline. lslwc
(Described under "Using
Pipes and Filters" on
page 5-4.)

Figure 5-2. Multiple Command Operators

Separating Commands on the Same Line with the ; (Semicolon)

You can type more than one command on a line if you separate
commands with the ; (semicolon). In the following example, the
shell runs 15 and waits for it to finish:

5-6 Using the Operating System

$ 1 s ; wh 0
change
file3
ne\'Jfi 1 e

date pYJd

uname console/1 Jun 5 J.4:39
Wed Jun 5 14:42:51 COT 1985
/u/unalne
$ -

When 15 is finished, the shell runs who, and so on through the last
command.

To make the command line easier to read, you can separate
commands from the ; (semicolon) with blanks or tabs. The shell
ignores blanks and tabs used in this way.

Making Commands Conditional-The II and && Operators

When you connect commands with the II or && operators, the shell
runs the first command and then runs the remaining commands
only under the following conditions:

II The shell runs the next command if the current command
does not complete (that is, if the command fails [returns a
nonzero value]).

&& The shell runs the next command if the current command
completes (that is, the command succeeds [returns a value
of zero]).

In the following example, the shell checks the exit status of cmdl:

$ cmdl I I cmd2
$ -

If cmdl fails, the shell runs cmd2. (If cmdl succeeds, the shell
abandons the command line and prompts you for another
command.)

Using the Shell with Processes 5-7

In the next example, the shell again checks the exit status of cmdl:

$ cmdl && cmd2 && cmd3 && cmd4 && cmd5

If cmdl succeeds, the shell runs cmd2. If cmd2 succeeds, the shell
runs cmd3, and on through the series until a command fails or the
last command ends. (If any command on the command line fails,
the shell abandons the command line and prompts you for another
command.)

5-8 Using the Operating System

Grouping Commands

The shell provides two ways to group commands:

Command Grouping Action
Symbol

() (parentheses) The shell creates a subshell to run the grouped
commands as a separate process.

{ } (braces) The shell runs the grouped commands as a
unit.

Figure 5-3. Command Grouping Symbols

Using () (Parentheses)

In the following example, the shell runs the commands enclosed in
() (parentheses) as a separate process:

$ (cd x; 1 s) ; 1 s
$ -

The shell creates a subshell (a separate shell program) that moves
to directory x (cd x) and lists the files in that directory (1 s). The
first shell does not change directories. After the subshell process is
complete, the shell lists the files in the current- directory (1 s).

If this command were written without the (), the original shell
would move to directory x, list the files in that directory, and then
list the files in that directory again. There would be no subshell
and no separate process for the cd x; 1 s command.

The shell recognizes the () wherever they occur in the command
line. To use parentheses literally (that is, without their
command-grouping action), quote them by placing a \ (backslash)
immediately before the (or), for example, \ (. (For more
information on quoting in the shell, see "Quoting" on page 5-11.)

Using the Shell with Processes 5-9

Using { } (Braces)

When commands are grouped in { }, the shell executes them
without creating a subshell. In the following example, the shell
runs date and writes its output to the file today. grp, then runs
who and writes its output to today. grp:

$ { date; who; } >today.grp
$ -

If the commands were not grouped together with braces, the shell
would write the output of date to the display and the output of who
to the file.

The shell recognizes { } (braces) in pipelines and command lists,
but only if the left brace is the first character on a command line.
(For other meanings of braces in the shell, see "Using Braces as
Delimiters" on page 6-6.)

5-10 Using the Operating System

Quoting

Reserved characters are characters such as < > I & ? and * that
have a special meaning to the shell. "Shell Reserved Characters
and Words" on page 6-34 lists all the shell reserved characters. To
use a reserved character literally (that is, without its special
meaning), quote it with one of the three shell quoting conventions:

Quoting Action
Convention

\ (backslash) Quotes a single character.
I I (single quotes) Quote a string of characters (except the

I itself).
II II (double quotes) Quotes a string of characters (except $,

" and \).

Figure 5-4. Shell Quoting Conventions

U sing the Backslash

To quote a single character, place a \ (backslash) immediately
before that character:

$ echo \?
?
$ -

This command returns a single? character.

Using the Shell with Processes 5-11

Using' , (Single Quotes)

When you enclose a string of characters in single quotes, the shell
takes every character in the string (except the I itself) literally.

The following example shows how single quotes can be used in the
arguments for a command:

$ echo XI>ly+O
x>y+O
$ -

The echo command returns the string x>y+O because the single
quotes remove the special meaning of the> reserved character.

You also can use single quotes when you assign values to
variables. For more information about using single quotes with
variables, see "Single Quotes in Variable Assignments" on
page 6-7.

Using" " (Double Quotes)

Double quotes provide a special form of quoting. Within double
quotes, the reserved characters $, \ (grave accent), and \ keep their
special meanings. The shell takes literally all other characters
within the double quotes. Double quotes are most frequently used
in variable assignments. For more information about using double
quotes with variables, see "Double Quotes in Variable
Assignments" on page 6-7.

5-12 Using the Operating System

Matching Patterns

The shell gives you five different ways to match character patterns:

Pattern-
Matching
Character Action Example

* Matches any string, th* matches th,
including the null string. theodore, and

thermoh ali ne.

? Matches any single 304?b matches 304Tb,
character. 3045b, 304Bb, or any

other string that begins
with 304, ends with b, and
has one character in
between.

[... J Matches anyone of the [A G XJ * matches all file
enclosed characters. names in the current

directory that begin with
A, G, or X.

[.-.J Matches any character [T - WJ * matches all file
between the enclosed pair, names in the current
including the pair. directory that begin with

T, U, V, or W.

[! ... J Matches any single [! abyzJ * matches all file
character except one of names in the current
those enclosed. directory that begin with

any character except a, b,
y, or Z.

Figure 5-5. Shell Pattern-Matching Characters

Using the Shell with Processes 5-13

Naming Files with Pattern-Matching

Commands often take file names as arguments. To use several
different file names as arguments to a command, you can type out
the full name of each file, as the next example shows:

$ we first.t seeond.t third.t fourth.t fifth.t
$ -

However, if the file names have a common pattern (in this example,
the . t suffix), the shell can match that pattern, generate a list of
those names, and automatically pass them to the command as
arguments.

The * matches any string of characters. In the following example,
the name of every text file in this directory includes the suffix. t.
(This directory contains the same five files shown in the previous
example: fi rs t. t . . . fi fth . t.)

$ we ""-. t

The *. t matches any file name that begins with a string and ends
with . t. The shell passes every file name that matches this pattern
as an argument for we.

Thus, you do not have to type (or even remember) the full name of
each file in order to use it as an argument. Both commands (we
with all file names typed out, and we *.t) do the same thing-they
pass all files with the. t suffix in the directory as arguments to we.

Note: There is one exception to the general rules for
pattern-matching. When the first character of a file name is a
period, you must match the period explicitly. For example, echo *
displays the names of all files in the current directory that do not
begin with a period. The command echo . * prints all file names
that begin with a period. This restriction prevents the shell from
automatically matching the relative directory names . ("dot,"
which stands for the current directory) and .. ("dot dot," which
stands for the parent directory). For an explanation of relative
directory names, see "Using Relative Directory Names (. and ..
Notation)" on page 3-18.

5-14 Using the Operating System

If a pattern does not match any file names, the shell returns the
pattern itself as the result of the matching operation. For example,
if the current directory does not contain any file names that end
with . c, the command echo *. c returns *. c.

Using echo with Pattern-Matching Characters

You can use the echo command to learn how the shell interprets
pattern-matching characters. The following example is based on a
directory that has the files:

part!
part2
part3
pre. txt
post. txt

$ echo ~';

partl p.,a~ .. t2 part3 pre.txt post.txt
$ echo . .
pre. txt post. txt
$ echo part?
partl part2 part3
$ echo ???????
post. txt
$ e c h a ~'; [13 57]
partl part3
$ echo [a-a] ~';
[a-ol';
$ echo [! abc]".';
partl part2 part3 pre. txt post. txt
$ -

Each echo command in the example uses one or more
pattern-matching characters in its argument, and returns different
information about the files in the directory. Notice that echo
[a - 0] * does not return any file names because none of the file
names in this directory begin with one of the lowercase letters a
through o.

Using the Shell with Processes 5-15

Writing and Running Shell Procedures

Besides running commands from the command line, the shell can
read and run commands contained in a file. Such a file, called a
shell procedure or shell script, is a program that you can use
alone or as a part of a program written in another programming
language, such as C, BASIC, or FORTRAN.

Even if you do not usually write programs in other languages, you
may find that shell procedures are easy to develop and can make
your work on the AIX system more efficient. If you do develop
programs routinely, shell procedures provide a quick way to tryout
program segments before you code and compile them and to build
program development tools. In either case, because a shell
procedure is an ordinary text file that does not have to be
compiled, it is relatively easy to create and maintain.

Note: Some AIX commands or programs are shell procedures. As
you become more familiar with writing shell procedures, you may
want to study ones supplied with the system for ideas. Look first
at /etc/rc (the procedure that runs automatically when you start
the system), and at any of the files containing shell commands that
are located in /bin, /usr/bin, and /usr/lib/acct.

To Write and Run a Shell Procedure

1. Use a text editor to create a file of shell and AIX Operating
System commands.

2. Use the chmod command to give the file x (execute) status.

5-16 Using the Operating System

Writing a Shell Procedure

The first step in writing a shell procedure is to create a file of the
commands you need to accomplish a task. Create this file as you
would any text file-with ed or another editing program. Shell
procedures can contain any system command (described in A/X
Operating System Commands Reference) or shell command
(described under "Shell Control Commands" on page 6-22 and sh in
A/X Operating System Commands Reference).

Running a Shell Procedure

If you will use the procedure regularly, you should use the chmod
command to give it x (execute) status. For example, the command
chmod g+x reserve gives execute status to the file named reserve
for any user in the group (g). (For more details on the chmod
command, see "Changing Permissions-The chmod (Change Mode)
Command" on page 3-45 or chmod in A/X Operating System
Commands Reference.} After you give the file x status, run the
procedure by simply entering its name (or path name if the
procedure file is not in your current directory).

If you will use the procedure only a few times and then discard it,
you do not have to give it execute status. However, to run a
procedure that does not have execute status, you first must run the
shell command (sh). For example, if the procedure reserve does
not have execute status, use the command sh reserve to run it.
(If the procedure file is not in your current directory, use its path
name rather than its simple file name.)

Using the Shell with Processes 5-17

Creating a Shell Procedure-Example

The next example shows every step required to create the simple
shell procedure named 1 ss:

$ ed
a
lss: list, sorting by size
ls -s I sort

w lss
q
$ chrnod +x lss
$ -

Following is an explanation of each step in the creation of 1 ss:

ed

Starts the ed line editor.

a

Causes ed to add text to the buffer.

#: list, sorting by size

Comment line describing the purpose of the procedure.

ls -s I sort

\,1 1 s s

Enters the text (commands) of the procedure itself.

(period) Stops the editor from adding text to the buffer.
The period must be entered in the first position on a line
by itself.

Writes (copies) the text from the buffer into the file 1 ss.

5-18 Using the Operating System

q

Qui ts (ends) the editing session.

chillod +x lss

Gives execute status (+ x) to the file 1 s s for all classes of
users.

The 1 ss procedure first finds the size, in blocks, for each entry in a
directory (1 s -s). Output from the Is command is then piped to the
sort command (I sort). The sort command then arranges its
standard input according to size, and writes the size and name of
each file to standard output. To run the 1 ss procedure, simply
enter 1 s s. Shell procedures are especially useful for routine tasks,
allowing you to use multiple commands by entering a single name.

Using the Shell with Processes 5-19

5-20 Using the Operating System

Chapter 6. Using Advanced Shell Features-A
Reference

Advanced Shell Features 6-1

CONTENTS

About This Chapter .. 6-3
Shell Variables ... 6-4

User-Defined Variables ... 6-4
Positional Parameters .. 6-9

How the Shell Uses Variables .. 6-11
Parameter Substitution ... 6-11
Command Substitution ... 6-13
The export Command ... 6-14
The shift Command .. 6-15
The set Command ... 6-17
The read Command .. 6-17

Special Shell Variables ... 6-19
Shell Control Commands .. 6-22

break and continue-Loop Control 6-22
case-The Multiway Branch .. 6-24
The exit and trap Commands ... 6-24
for-Looping Over a List .. 6-25
if-The Structured Conditional Branch 6-26
while and until-Conditional Looping 6-26

Inline Input (Here) Documents ... 6-28
Standard Error and Other Output 6-29
Shell Flags .. 6-31

Set Flags .. 6-31
Command Line Flags ... 6-32

Shell Reserved Characters and Words 6-34
Syntactic .. 6-34
Patterns .;... 6-35
Substitution .. 6-35
Quoting ... 6-35
Reserved Words ... 6-36

6-2 Using the Operating System

About This Chapter

This chapter explains the advanced features of the shell. Many of
the features covered in this chapter can be used either on the
command line (to affect how an individual command runs) or in
shell procedures (programs).

Plea~e note two important differences between this chapter and the
preVIOUS ones:

• This chapter is not for the novice computer user. Unless you
have experience with computer programming, you probably
should skip this chapter until you are thoroughly familiar with
both the AIX system and the earlier chapters of this book.

• This chapter is more like reference material, less like training
material. It is organized according to the features of the shell,
not according to the jobs you do with those features.

If you work through this chapter from first to last, you should have
a general understanding of what you can do with the shell.
However, this chapter probably will be most useful when you use it
as reference material-when you have a unique job to do and need
to understand what shell features can help you do it.

Advanced Shell Features 6-3

Shell Variables

Like variables in other programming languages, shell variables
are names to which you can assign values. For example, you can
assign the value U. S. A. to the variable place with the following
statement:

$ place='U. S. A. I

$ -

From then on, you can use the variable place just as you would
use its value. To display the value of variable, type a $ (dollar
sign) before the name of the variable. In the following example,
the echo command displays the value of place:

$ echo $place
U. S. A.
$ -

The shell provides two kinds of variables:

• User-defined variables (names to which you assign a
character string-one or more characters-as a value).
Generally, user-defined variables can be set on the command
line or in a shell procedure.

• Positional parameters (variables in shell procedures that refer
to values on the command line).

User-Defined Variables

A user-defined variable is a name to which you assign a specific
string value (one or more characters). The name is a sequence of
52 ACSII letters, the 10 ASCII digits, the ASCII underscore, and all
extended character. The name cannot begin with an ASCII digit.
To create a user-defined variable, use an assignment statement of
the form name = value. Then, to use the value of the variable, type
a $ before the name of the variable. You can use user-defined
variables both on the command line and in shell procedures. One
special type of user-defined variable, the keyword arguments, can

6-4 Using the Operating System

be used only on the command line. (Keyword arguments are
explained under "Keyword Arguments" on page 6-8.)

In the following example, the statement s=stri ngofl etters creates
the variable s:

$ s=stringofletters
$ echo $s
stringofletters
$ echo s
s
$ -

The command echo $s returns the value of s. The command echo
s simply returns the character s because a $ does not precede the
variable name S.

One convenient use for shell variables is as a short notation for
long path names. For example, if you routinely use files in the
directory $HOME/personal /correspond/from, you can assign that
path name to the variable name from:

$ from=$HOME/personal/correspond/from
$ -

With this value for the variable from, you can use $from instead of
entering the path name, for example:

Multiple Assignments

You can make more than one variable assignment on a single
command line:

$ t=text d=data
$ -

In the following example, the shell gives b the value abc:

$ a=$b b=abc
$ -

Advanced Shell Features 6-5

Then, because b already has a value (since the shell makes that
assignment first), the assignment a=$b gives a the same value
(abc). Even if the value of b changes, the value of a remains abc.

Using Braces as Delimiters

Use braces { } to separate the name of a variable from any
characters that follow immediately. If the character immediately
following the variable name is a letter, underscore, or digit, braces
are required. In the following example, the purpose of the echo
command is to display the two strings fun and cti on without a
space between them.

$ a='Form follows fun '
$ echo "${a}ction"
Form follows function
$ -

The braces indicate that the enclosed a is a variable name and that
its value should be followed immediately by the string cti on.
(Compare this use of braces with the use described under "Using
{ } (Braces)" on page 5-10.)

Quoting in Variable Assignments

Certain characters (summarized under "Shell Reserved Characters
and Words" on page 6-34) have special meanings to the shell. In
variable assignments, you may need to use these characters
literally-that is, without their special meanings. To use a special
character literally, you must quote it (using the same quoting
conventions described under "Quoting" on page 5-11). The shell
takes literally all characters enclosed in single quotes (I) except
for the single quote itself. Within double quotes, shell takes
blanks, tabs, semicolons, and new-lines literally, but substitutes the
values for variable names.

Note: In variable assignments, you do not need to quote the
special pattern-matching characters (*? [...]), because
pattern-matching does not apply in this context.

6-6 Using the Operating System

Single Quotes in Variable Assignments: In the following
example, the value assigned to the variable stuff is enclosed in
single quotes:

$ stu f f = I e c h 0 $? $ *; 1 s * I vJ C I

$ -

The value of the variable stuff is the literal string echo $? $
*; 1 s * I wc. The shell does not run any of the commands (echo,
1 s, or wc) and does not give the reserved characters ($? * I)
their special meanings.

Double Quotes in Variable Assignments: Within double quotes
("), the reserved characters $, '(grave accent), and \ keep their
special meanings. The shell takes literally all other characters
within the double quotes.

In the following example, the first line of assignments gives values
to the variables h, 0, c, and e, and the second line gives a value to
the variable e:

$ h=hydrogen o=oxygen c=carbon
$ e="Three elements: $h; $0; $c"
$ echo $e
Three elements: hydrogen; oxygen; carbon
$ -

Because the value of e is enclosed in double quotes, the shell takes
literally the blanks and semicolons in the string. At the same time,
the $ keeps its special meaning, and causes the shell to substitute
the values of the variables h, 0, and c. Thus, the command echo $e
returns the value of e with the substituted values of h, 0, and c.

To quote the $, " or \ characters within double quotes, place a \
(backslash) immediately before the character. See "Command
Substitution" on page 6-13 for an explanation of grave accents (')
and how they work in quoted strings.

Advanced Shell Features 6-7

Variable Substitution and Quoted Blanks: Ordinarily, the shell
interprets blanks between words on a command line as delimiters
(separators) between a command and its arguments (and between
the arguments themselves). However, after the shell substitutes
the value of a variable, it still takes quoted blanks literally (that
is, blanks are not reinterpreted as delimiters, even though the
string is no longer enclosed in quotes). For example, the following
lines assign the same value to $fi rst and $second:

$ first='a string with embedded blanks '
$ second=$first
$ -

Compare the assignment in this example with the assignment
fi rst=a stri ng wi th embedded bl anks (the same string without
the quotes). The shell would read fi rst=a as a keyword argument
(see "Keyword Arguments"), stri ng as the command name, and
wi th, embedded, and b 1 an ks as arguments to s t ri ng.

Keyword Arguments

The variables that affect a command are called the environment of
the command. The environment can include variables called
keyword arguments-variables you set on the command line when
you enter the command. In the following example, the keyword
argument assigns the value fred to the variable name user and
that assignment becomes part of the environment of the echo
command:

$ user=fred echo $user
fred
$ -

Note: The variable assignment in this example affects only the
environment of the command, not the environment of the shell
from which the command is run.

Keyword arguments usually precede the command name. However,
if you set the -k flag, the shell takes all arguments of the form
variable = value as keyword arguments:

$ set -k usr=fred command black=green tree=frog
$ -

6-8 Using the Operating System

(For more information about using keyword arguments, see "The
export Command" on page 6-14. For more information about shell
flags, see "Shell Flags" on page 6-31.)

Positional Parameters

A positional parameter is a name that refers to a string in a
particular position on the command line. The positional parameter
$0 refers to the first string on the command line (usually the name
of a command), $1 refers to the second string (the first argument to
the command), and so on. When you run a command, the shell
creates a positional parameter for each string on the command line
up to $9.

Positional parameters allow a shell procedure to take information
from the command line (for example, to assign a value to a variable
each time the procedure runs). For example, in the following
procedure, the echo command displays the second argument on the
command line (the value of positional parameter $3):

Note: The line that begins with the # character is a comment, not
a functional part of the procedure.

posparm3 procedure--demonstrate how pos. parameters work
echo $3

Note: To follow this example on your system, first use an editor
to create the posparm3 file and then give the file execute status
with the chmod command (chmod +x posparm3).

You can enter posparm3 with more than two arguments (character
strings). The procedure returns only the value of positional
parameter $3. In the following example, the posparm3 procedure
has five arguments:

$ posparm3 Bob Jones Dept. 546 Accounting
Dept.
$ -

Each time you run this procedure, you can use different arguments.

Advanced Shell Features 6-9

The shell automatically creates positional parameters for
arguments in positions up to $9. To use arguments in positions
numbered higher than 9, you can use the $* notation described
under "The shift Command" on page 6-15, or a for loop, described
in "for-Looping Over a List" on page 6-25.

6-10 Using the Operating System

How the Shell U ses Variables

"Shell Variables" on page 6-4 describes the different types of shell
variables. This section explains, first, how the shell ordinarily uses
variables and, second, how you can control the way the shell treats
variables.

Parameter Substitution

As is explained under "User-Defined Variables" on page 6-4, the
shell substitutes the value of a variable (or parameter) for the
name of the variable when you type a $ before the name. In the
following example, echo returns the value of variable p:

$ p=45ABA54
$ echo $p
45ABA54
$ -

If a variable is not set (does not have a value assigned), the shell
ordinarily substitutes the null string for the name of the variable.
(For example, if q does not have a value, then echo $q returns
nothing to the display.) However, with the notation ${variable
-stri ng}, you can cause the shell to return a string (rather than
the null) when a variable does not have a value to substitute. In
the following example, variable q does not have a value:

$ echo ${q-x}
x
$ -

Since q does not have a value, echo returns x (the default string).

If you use any special characters in a default string, quote them
with the usual shell quoting conventions. In the following
example, echo returns * if variable q is not set:

$ echo ${q_I*I}
*
$ -

Advanced Shell Features 6-11

You also can use the value of another variable as a default string.
For example, the following echo command returns the value of $1
if q is not set:

$ echo ${q-$l}
$ -

If $1 is not set, the shell returns the null string.

The notation ${vari ab 1 e=stri ng} actually assigns a value to a
variable that is not set. In the following example, if q is not set,
the shell assigns it the value 12B1:

$ echo ${q=12B1}
$ -

Note: The ${variable=string} notation does not work for
positional parameters.

If an appropriate default string does not exist, you can use the
following notation:

$ echo ${q?message}
12B1
$ -

The shell substitutes the value of q if it has one. If q does not
have a value, the shell returns the word message and ends the
procedure.

If a procedure can run only with certain parameters set, you can
use the : command to determine whether those parameters have
values. The following line begins a procedure that must have three
variables set before it can run:

:${user?} ${acct?} ${bin?}

The: command does nothing once the shell evaluates its
parameters. If any of its parameters (user, acct, and bi n in this
example) are not set, the: command causes the shell to abandon
the procedure.

6-12 Using the Operating System

Command Substitution

When you enclose a command in ' , (grave accents), the shell
replaces the name of the command with the standard output of that
command. For example, if the current directory is /u/fred/bi n,
then the following assignments are equivalent:

d='pwd'

d=/u/fred/bin

Within' , (grave accents), the shell quoting conventions explained
under "Quoting" on page 5-11 apply, with one exception: you must
use the \ (backslash) to quote a ' (grave accent).

When' , (grave accents) appear in strings that are enclosed in
double quotes (" . . . ' command name ' . . . "), they are not
quoted, as is explained under "Double Quotes in Variable
Assignments" on page 6-7). That is, the shell reads them as
command substitution reserved characters. In the following
example, double quotes cause the shell to take literally the blanks
and? character in the value assigned to the variable where:

$ where="Where am I? 'pwd'li
$ echo $where
Where am I? usr/fred/bin
$ -

The shell substitutes the standard output of pwd (the current
directory) for 'pwd'.

Within double quotes, a command or reserved character enclosed in
, , (grave accents) retains its special meaning, even though it is
part of a quoted string. When grave accents appear in strings
enclosed in single quotes (I . . . ' command name ' . . . I), the
shell takes literally the grave accents and any commands or
reserved characters they enclose. (For more information on using
single quotes, see "Single Quotes in Variable Assignments" on
page 6-7.)

Advanced Shell Features 6-13

The export Command

With the export command, you can set user-defined variables to
apply to any subsequent commands (rather than setting the
keyword argument for each command when you enter it). This
process, called marking the arguments for export, is useful if, for
example, you want the same user-defined variables to be part of the
environment for several different commands. In the following
example, after values are assigned to variable names user and box,
the export command marks the variables user and box for export:

$ user=jason box=square
$ export user box
$ echo $user $box
jason square
$ -

The subsequent echo command displays the values of user and box.

To get a list of the variables currently marked for export, enter
export.

If you want the value of a variable to remain constant, declare it
readonly. In the following example, the variables user and box
are declared readonly:

$ readonly user box
$ -

After this declaration, the values of user and box cannot be
changed by a subsequent variable assignment.

To get a list of all variables declared readonly, simply enter
readonly. Once you declare a variable readonly, you can change
its value only by deleting the variable and then re-creating it. To
delete the variable, use the shell unset command (described under
sh in AIX Operating System Commands Reference); if you do not
delete the variable, it is automatically deleted when you log out.

6-14 Using the Operating System

The shift Command

The shift command, used with positional parameters, shifts
arguments to the left one string at a time. For example, the shift
command discards the value of positional parameter $1, replaces $1
with $2, replaces $2 with $3, and so on. The shift command does
not shift the $0 positional parameter (the name of the procedure).
With each shift, the positional parameter with the highest number
becomes unset (that is, there is no longer an argument in that
position). An argument can cause the shift command to shift more
than one string at a time (for example, s h i ft 2 causes shift to
move two strings at a time).

To demonstrate the shift command, the following procedure uses
three shell features that have not yet been introduced in this book.
The while statement means as long as a specified condition exists.
The test command determines whether or not a condition exists (in
the example, the command test $# ! = 0 means test for a positional
parameter that is not O. The control command pair do and done
create a loop--a series of commands to be repeated until a specified
condition changes; in the example, the commands are echo, which
displays the values of all the positional parameters, and shift,
which shifts the positional parameters to the left one at a time.
Thus, the procedure displays the values of the positional
parameters, shifts the arguments to the left, displays their values
again, and so on, continuing until only the $0 positional parameter
(the one that refers to echo) remains. (The line that begins with
the # character is a comment, not a functional part of the
procedure.)

Note: To follow this example on your system, first use an editor
to create the file ri pp 1 e and then give the file execute status with
the chmod command (for example, chmod +x ri pp 1 e).

ripple command
while test $# 1= 0
do

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

done

Advanced Shell Features 6-15

To run the ri pp 1 e command, enter ri pp 1 e string1 string2 string3

$ ripple 1 2 3 4 5 6 7 8 9
12345 6 7 8 9
23456 789
345 6 7 8 9
456 789
56789
6 789
789
8 9
9
$ -

At most, the echo command in ri pp 1 e displays the values of nine
arguments.

To pass more than nine arguments from the command line to a
procedure, use the $* notation. For example, in the ri pp 1 e
procedure, the echo command could be written echo $*:

ripple command
while test $# != 0
do

done

echo $*
shift

If there are nine or fewer arguments, these two versions of the
echo command produce the same result. However, if there are
more than nine arguments, only the command echo $* accesses all
of them.

You can also use a for loop to pass additional arguments to the
shell. See "for-Looping Over a List" on page 6-25 for more
information on using a for loop.

6-16 Using the Operating System

The set Command

The shell automatically assigns positional parameters from
command line arguments. However, you can assign values to
positional parameters from within shell procedures with the set
command.

In the following example, the set command is one line from a shell
procedure:

set abc def ghi

This set command first makes these assignments:

abc $1
def $2
ghi $3

Second, it unsets (clears) the remaining positional parameters
(from $4 on), even if they were set before (for example, if there were
arguments to the invoking command). The set command cannot
assign a value to $0, which always refers to the name of the shell
procedure.

The read Command

Like the \ (grave accents) used in command substitution, the read
command lets you assign values to variables indirectly. The read
command takes a line from its standard input (usually the
keyboard) and assigns words from that line, one by one, to named
variables. In the following example, the read command assigns
words to three named variables, fi rst, i ni t, and 1 ast:

read first init last

With the input line B. T. Andover, the read command produces
the same results as would the following variable assignments:

first=B. init=T. last=Andover

Advanced Shell Features 6-17

If there are excess words on the input line (that is, if there are
more words than there are variables), they are assigned to the last
variable.

6-18 Using the Operating System

Special Shell Variables

The shell program uses several special variables. The shell sets
some of these variables, and you can set or reset all of them.
Following is a partial list of the special variables and a brief
description of how the shell uses each one. (For a complete list of
the shell variables, see sh in AIX Operating System Commands
Reference.)

MAIL The path name of the file where your mail is deposited.
You must set MAIL, and this is usually done in the file
.profile in your login directory. (When you login, you
receive an announcement of any mail in your standard
mail file, whether MAIL is or is not set.)

HOME The name of your login directory. If you use the cd
(change directory) command without arguments, cd
changes the current directory to the value of HOME. (In
shell procedures, you can use HOME to avoid having to
use full path names-something that is especially helpful
if the path name of your login directory changes.) HOME
is set by the login command.

PATH A list of directories that contain commands. When the
shell runs a command, it searches a list of directories for
a file of that name that can be·run. If PATH is not set,
the shell searches the current directory, fbi n, and
/usr/bi n. When PATH is set, its value is an ordered list
of directory names separated by colons, as is shown in the
following example:

PATH=:/u/fred/bin:/bin:/usr/bin

This PATH tells the shell to search the current directory
(specified by the null string before the first : [colon]),
/u/fred/bi n, fbi n, and /usr/bi n, in that order. Thus,
the PATH variable lets you have a personal directory of
commands that you can access regardless of your current
directory. Usually , PATH is set in the . profile file.

Advanced Shell Features 6-19

NLCTAB The variable that specifies the path name of the file
containing the current collating table. If this is not
specified, and a definition is contained in NLFILE, the
definition NLFILE is used. Otherwise, the path
nameused is etc/nls/ctab/default.

NLFILE The variable that specifies the path name of a text file
containing configuration information that describes
extended character configuration information. For more
information, see Overview of International Character
Support in Managing the A/X Operating System

CDPATH The variable that tells the shell where to search for the
argument to a cd command whenever that argument is
not null and does not begin with /, ., or ... The value of
CDPATH is an ordered list of directory path names
separated by colons.

A null character anywhere in the list represents the
current directory. If the list begins \vith a colon, a null
character is assumed to be before the colon. Initially,
CDPATH is not set, which means that the shell searches
only the current directory. In the following example, the
cd command is set to search the current directory first,
and then to search the home directory:

CDPATH=:$HOME

Usually CDPATH is set in your .profile file. If the cd
command changes to a directory that is not a descendent
of the current directory, the shell writes the full path
name of the new directory on the diagnostic output.

PSI The variable that specifies the primary prompt string-the
string that the shell displays when it is ready to accept a
command. The standard primary prompt string is $ (a
dollar sign followed by a blank). PSI is usually set in the
file $HOME/. prof; 1 e. If PSI is not set, shell uses the
standard primary prompt string. To change the primary
prompt string, edit $HOME/ • prof; 1 e and either:

• Change the value of PSI (if it is set), or

6-20 Using the Operating System

• Add the line PSl=string (where string is the primary
prompt string you choose).

PS2 The variable that specifies the secondary prompt
string-the string that the shell displays when it requires
more input after a new-line (that is, after you press
Enter). The standard secondary prompt string is > (a >
symbol followed by a blank). PS2 is usually set in the file
$HOME/ . prof; 1 e. If PS2 is not set, shell uses the standard
secondary prompt string. To change the secondary
prompt string, edit $HOME/ . prof; 1 e and either: (I) change
the value of PS2 or (2) add the line PS2=string.

IFS The variable that specifies what characters can be used
as internal field separators (IFS); these are the characters
the shell uses during blank interpretation. The shell
initially sets IFS to include the blank, tab, and new-line
characters.

? The exit status (return code) of the last command run,
given as a decimal string. Most commands return a zero
exit status if they complete successfully, and a nonzero
exit status otherwise.

The number of positional parameters, given as a decimal
string.

$ The process number of the current shell, given as a
decimal string. All existing processes have unique
process numbers.

The process number of the last process run in the
background, given as a decimal string.

The current shell flags.

Advanced Shell Features 6-21

Shell Control Commands

Often, you may want a shell procedure to do one thing under
certain conditions and another thing when those conditions change
(or are never met). For example, you may want part 1 of a
procedure to run if the procedure receives yes as input, and part 2
if the procedure receives no as input. With input yes, control of
the procedure goes to part 1., With input no, control goes to part 2.

The shell provides the following six control commands, or
command pairs, that let you pass control to various parts of a
procedure or control how a procedure ends:

• break and continue (loop control)

• case (multi way branch)

• exit and trap (process ending control)

• for (looping over a list)

• if (structured conditional branch)

• while and until (conditional looping)

This section lists the control commands in alphabetical order.

break and continue-Loop Control

The break command ends a while, until, or for loop. The
continue command starts the next instance of a loop. Both break
and continue work only when they are used between do and done.

In the following example, the case command compares input from
the keyboard (entered in response to the prompt Pl ease enter
data) with the three strings, lid; d", II ", and *. (The lines that
begin with # are comments, not functional parts of the procedure.)

6-22 U sing the Operating System

#This procedure is interactive; 'break ' and 'continue '
#commands are used to allow the user to control data entry.
while true
do

done

echo "Please enter data"
read response
case "$response" in

"done") break
, ,

" ,,) continue
, ,

*)

#no more data

process the data here
, ,

esac

If the entered data match done, the break command ends the loop
and causes the procedure to start again after done (the end of the
enclosing loop). If the entered data match II II (a space), the
continue command causes the procedure to start again at the
while (or until or for) that begins this enclosing loop. If the
entered data match *, the procedure processes the data and then
completes normally (esac ends the case statement).

The break command exits from the innermost enclosing loop and
causes the procedure to start again after the next (unmatched)
done. To restart the procedure more than one level up from the
loop containing break, use break n, where n specifies the number
of levels.

The continue command causes the procedure to start again at the
nearest enclosing while, until, or for (that is, the one beginning
the innermost loop containing the continue). To restart at any
loop other than the innermost enclosing one, use conti nue n,
where n specifies how many loops (levels) up the continue is to
operate.

Advanced Shell Features 6-23

case-The Multiway Branch

With the case command, you can create multiway branches. The
following example shows the general format for the case command:

case string in
pattern) command list;;

pattern) command list;;
esac

The shell attempts to match stri ng with each pattern in turn.
When the shell finds a pattern that ~atches stri ng, it runs the
command list following that pattern. The shell matches only one
pattern (that is, if more than one pattern in the list matches
stri ng, the shell runs the command list after the first matching
pattern, and then ends the case command.

The ;; (double semicolon) symbol causes the shell to break out of
the case procedure. It is required after all but the last command
list. You can use the standard shell pattern-matching characters
with case. (Pattern-matching characters are described under
"Matching Patterns" on page 5-13.)

The exit and trap Commands

With the exit and trap commands, you can control the way a
process ends (terminates). The exit command ends a process before
the process reaches end-of-file. If exit has an argument, it sets the
exit status of the process to the value of that argument. For
example, the command ex itO in a procedure causes the exit status
of that procedure to be 0 (that is, successful). If the argument is
omitted, exit uses the exit status of the last command that ran.

Ordinarily, an interrupt signal from the keyboard ends a shell
procedure. The trap command can be set to do any routine tasks
necessary to make the termination of a process orderly. In the
following example, the trap command is set to remove temporary
files when signal 2 (interrupt from the keyboard) is received:

6-24 Using the Operating System

trap Irm /tmp/ps$ $; exit' 2

The exit command is required. Without the exit, the procedure
would start again at the point where the interrupt was received.

for-Looping Over a List

With the for command, you can perform an operation for each of
several files, or run a command for each of several arguments. The
next example shows the general format of a shell for command:

for variable in word list
do

command list
done

A word list is a series of strings separated by blanks. The shell
runs commands in the command list once for each word in the
word list; vari ab 1 e takes each word in the word list in turn as its
value.

In the following for command, the shell runs we for each of the
files top, mi ddl e, and bottom:

for counts in top middle bottom
do

wc $counts » countfile
done

Each time we runs, its output is directed to a file named
countfi 1 e.

After it is evaluated the first time, the word list is fixed. The for
command ends when there are no more words in the word list.

You can use the for command without the in word 1 i st statement.
In this case, the current positional parameters are used instead of
the word list. This feature is convenient if you need to write a
command that performs the same command list for an unknown
number of arguments.

Advanced Shell Features 6-25

if-The Structured Conditional Branch

The if command can be used with or without an else clause. The
following example includes an else clause:

if command list 1
then

command list 2
else

command list 3
fi

In this example, the shell runs command list 1. If the exit status of
command list 1 is zero, the shell runs command list 2. If the exit
status of command list 1 is not zero, the shell runs command list 3.
The word fi marks the end of the if command.

while and until-Conditional Looping

Following is an example of the general format for the while
command:

while command list 1
do

command list 2
done

The shell runs command list 1. If command list 1 is successful, the
shell runs command list 2. The shell repeats this sequence until
command list 1 is not successful, and then ends the loop.

The until command causes the shell to run a loop as long as the
first command list is not successful (that is, until and while test
for opposite conditions). In the next example, the shell runs
command list 1 and then checks its exit status (successful or
unsuccessful):

until command list 1
do

command list2
done

6-26 Using the Operating System

If command list 1 is not successful, the shell runs command list 2.
The shell repeats this sequence until command list 1 is is
successful, and then ends the loop.

Advanced Shell Features 6-27

Inline Input (Here) Documents

The shell commands and procedures usually read their input from
the keyboard or from a file (as is explained under "Redirecting
Input and Output" on page 4-9). A command in a procedure also
can read its input from data contained in the procedure file (inline
input). The inline input portion of a procedure file is often called
a here document.

A here document begins with the « symbol and ends with a
specified string, as the following example shows:

for i
do

grep $; «~I
ted abc123
fred def456
tom ghi789
sam j kl198
frank mn0765
bill pqr432

!
done

The string that follows «(in this example, !) appears on a line by
itself, it marks the end of the here document. In this example, the
shell takes the data between < <! and ! as the standard input for
grep.

The shell substitutes the values of any variables or parameters in
the here document before it makes the data available as input to a
command. To prevent the shell from substituting the value of
specific variables, quote the $ reserved character with a \. To
prevent the shell from substituting the values of all variables in a
here document, quote the end marking string (! in the previous
example) with a \ (backslash).

6-28 Using the Operating System

Standard Error and Other Output

Generally, when a command starts, three files already are open:
standard input, standard output, and standard error. If you
want to redirect standard input or standard output (for example,
cause a command to take its input from a file rather than from the
keyboard), you can use the procedures explained under
"Redirecting Input and Output" on page 4-9. However, if you want
to redirect standard error (or other) output, you must use the
methods explained in this section; the methods in this section also
can be used to redirect standard input and standard output.

A number, called a file descriptor, is associated with each of the
files a command ordinarily uses:

File File Descriptor Device

standard input 0 keyboard

standard output 1 display

standard error 2 display

Figure 6-1. Standard File Descriptors

To redirect standard error output, type a 2 (the file descriptor
number) before one of the output redirection symbols (> and > >)
and a file name after the symbol. For example, the following
command adds standard error output from the cc command to the
file ERRORS:

$ cc testfile.c 2»ERRORS
$ -

Commands may produce output besides standard and standard
error. With the method just described for redirecting standard
error output, you can redirect output associated with any file
descriptor from 0 through 9. For example, if cmd writes output to
file descriptor 9, you can redirect that output to the file savedata
with the following command:

$ cmd 9>savedata

Advanced Shell Features 6-29

If a command produces output to several different file descriptors,
you can redirect each one independently, as the following example
shows:

$ cmd > standard
$ -

2> error 9> data

The command cmd directs standard output to file descriptor 1,
standard error to file descriptor 2, and output for a data file to file
descriptor 9.

AIX commands generally use only file descriptors 0, 1, and 2. For
more information about using file descriptors to redirect input and
output, see sh in AIX Operating System Commands Reference.

6-30 Using the Operating System

Shell Flags

Set Flags

The shell provides two different types of flags:

• Set flags. These flags, which are put into effect by the set
command, alter the way the shell runs.

• Command line flags. These flags, which are entered on the
command line, alter the way the shell starts. Command line
flags cannot be set with the set command.

To put a set flag into effect, enter set -f (where -f is the name of
one or more flags preceded by a hyphen). In the following example,
the set command turns on the x and v flags.

set -xv

To remove a set flag, enter set +flag (where +flag is the name of
one or more flags preceded by a plus sign):

set +xv

Following is a list of set flags that often are useful in shell
procedures.

Flag

-e

-u

-t

Explanation

Causes the shell to exit immediately if any command exits
with nonzero exit status.

Causes the shell to treat use of an unset variable as an
error. This flag can be used to perform a global check on
variables.

Causes the shell to exit after reading and running the
commands on the remainder of the current input line.

Advanced Shell Features 6-31

-n Prevents the shell from running commands in a
procedure. For example, to check a procedure for syntax
errors without running the commands, enter set -nvat
the beginning of the file.

-k Causes the shell to treat all arguments on the command
line of the form variable = value as keyword arguments.
When -k is not set, only arguments of this type that
appear before the command name are treated as keyword
arguments.

In addition to these set flags, there are two others-the x and v
flags-that are useful for debugging shell procedures. The x and v
flags are usually set from the keyboard.

Flag

-x

Explana tion

Causes the shell to print commands and their arguments
as they are run.

The -x flag does not print shell control commands, such
as for, while, case, and if.

Note: The -x flag traces only the commands that are
run, while the -v flag causes the shell to print each line
of input until a syntax error is found.

-v Causes the shell to print input lines as they are read.

Command Line Flags

This flag is helpful in finding syntax errors. The
commands on each input line are run after that input line
is printed, unless the -n flag is also in effect.

The following list contains descriptions of the four shell command
line flags. These flags are specified on the command line and
cannot be turned on with the set command.

6-32 U sing the Operating System

Flag

-i

-8

-c

-r

Explana tion

Starts an interactive shell. (If this flag is specified or if
both input and output are connected to the display
station, the shell is interactive.)

Causes the shell to read commands from standard input.
(If this flag is specified, or if input is not redirected, the
shell reads commands from standard input.) The shell
output is written to file descriptor 2. When you log in to
the system, your initial shell operates as if the -8 flag is
turned on.

Causes the shell to read commands from the first string
following the flag. Remaining arguments are ignored.
Double quotes should be used to enclose a multi word
string in order to allow for variable substitution.

Starts the restricted shell. In the restricted shell, certain
commands are not available. For example, the cd
command produces an error message, and you cannot set
PATH. For more information on the restricted shell, see
8h in AIX Operating System Commands Reference.

Advanced Shell Features 6-33

Shell Reserved Characters and Words

Syntactic

I pipe symbol

&& ' AND' symbol

II 'OR' symbol

, command separator

"
case delimiter

& background commands

() command grouping

< input redirection

« input from a here document

> output creation
» output append

Figure 6-2. Shell Reserved Characters and Words-Syntactic

6-34 Using the Operating System

Patterns

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

Figure 6-3. Shell Reserved Characters and Words-Pattern-Matching

Substitution

${ ... } substitute shell variable
, ,

substitute command output ...

Figure 6-4. Shell Reserved Characters and Words-Substitution

Quoting

[\] quote the next character
, ,

quote the enclosed characters except for' (the single ...
quote itself)

" " quote the enclosed characters except for the $, " [\], and" ...

Figure 6-5. Shell Reserved Characters and Words-Quoting

Advanced Shell Features 6-35

Reserved Words

if then else elif fi

case in esac

for while until do done

{ } [] test

Figure 6-6. Shell Reserved Characters and Words-Reserved Words

6-36 U sing the Operating System

Appendix A. Creating and Editing Files with ed

Creating and Editing Files with ed A-I

CONTENTS

About This Chapter .. A-4
Understanding Text Files and the Edit Buffer A-5
Creating and Saving Text Files ... A-6

Starting the ed Program .. A-7
Entering Text-The a (Append) Subcommand A-7
Displaying Text-The p (Print) Subcommand A-8
Saving Text-The w (Write) Subcommand A-9
Leaving the ed Program-The q (Quit) Subcommand A-II

Loading Files into the Edit Buffer A-13
Using the ed (Edit) Command A-13
Using the e (Edit) Subcommand A-14
Using the r (Read) Subcommand A-15

Displaying and Changing the Current Line A-17
Finding Your Position in the Buffer A-18
Changing Your Position in the Buffer A-19

Locating Text ... A-22
Searching Forward Through the Buffer A-22
Searching Backward Through the Buffer A-23
Changing the Direction of a Search A-23

Making Substitutions-The s (Substitute) Subcommand A-25
Substituting on the Current Line A-25
Substituting on a Specific Line A-26
Substituting on Multiple Lines A-26
Changing Every Occurrence of a String A-27
Removing Characters .. A-28
Substituting at Line Beginnings and Ends A-28
Using a Context Search .. A-29

Deleting Lines-The d (Delete) Subcommand A-3D
Deleting the Current Line .. A-3D
Deleting a Specific Line .. A-3I
Deleting Multiple Lines .. A-3I

Moving Text-The m (Move) Subcommand A-33
Changing Lines of Text-The c (Change) Subcommand A-35

Changing a Single Line .. A-35
Changing Multiple Lines .. A-36

Inserting Text-The i (Insert) Subcommand A-37
Using Line Numbers .. A-37
Using a Context Search ~ .. A-38

Copying Lines-The t (Transfer) Subcommand A-4D
Using System Commands from ed A-42

A-2 Using the Operating System

Ending the ed Program .. A-43

Creating and Editing Files with ed A-3

About This Chapter

This appendix explains how to create, edit (modify), display, and
save text files with ed, a line editing program. If your system has
another editing program, you may wish to learn how to do these
tasks with that program.

A good way to learn how ed works is to try the examples in this
appendix on your AIX system. Since the examples build upon each
other, it is important for you to work through them in sequence.
Also, to make what you see on the screen consistent with what you
see in this guide, it is important to do the examples just as they are
given.

In the examples, everything you should type is shaded in blue (for
example, 1, 3t5). When you are told in the text to enter something,
you should type all of the information for that line and then press
the Enter key.

Note: A line editing program allows you to work with the
contents of a file one line at a time. Regardless of what text is on
the screen, you can edit only the current line. If you have
experience with a screen editing program, you should pay careful
attention to the differences between that program and ed. For
example, with the ed program, you cannot use the Cursor Up and
Cursor Down keys to change your current line.

A-4 Using the Operating System

Understanding Text Files and the Edit Buffer

A file is a collection of data stored together in the computer under
an assigned name. You can think of a file as the computer
equivalent of an ordinary file folder-it may contain the text of a
letter, a report, or some other document, or the source code for a
computer program. File names can be up to 14 characters long and
can contain letters, numbers, periods, commas, underscores, and
some other characters.

The edit buffer is a temporary storage area that holds a file while
you work with it-the computer equivalent of the top of your desk.
When you work with a text file, you place it in the edit buffer,
make your changes to the file (edit it), and then transfer (copy) the
contents of the buffer to a permanent storage area.

The rest of this appendix explains how to create, display, save, and
edit (modify) text files.

Creating and Editing Files with ed A-5

Creating and Saving Text Files

To follow this procedure, you must be logged in to your AIX system
and have the $ (shell) prompt on your screen.

To Create and Save a Text File

1. At the $ (shell) prompt, enter:

ed filename

Where filename is the name of the file you want to create
or edit.

2. When you receive the ?filename message, enter:

a

3. Enter your text.

4. To stop adding text, enter a . (period) at the start of a new
line.

5. Enter:

w

to copy the contents of the edit buffer into the file filename.

6. Enter:

q

to end the ed program.

A-6 Using the Operating System

Starting the ed Program

To start theed program, enter a command of the form ed filename
after the $ (shell) prompt. (In place of filename, enter the name
you want to assign to the file.)

In the following example, the ed afile command starts the ed
program and indicates that you want to work with a file named
afile:

Note: If you intend to work through the examples, start with this
one.

$ ed afile
?afile

The ed program responds with the message? a fi 1 e, which means
that the file does not now exist. You can now use the a (append)
subcommand (described in the next section) to create af; 1 e and put
text in to it.

Entering Text-The a (Append) Subcommand

To put text into your file, enter a. The a subcommand -tells ed to
add, or append, the text you type to the edit buffer. Type your
text, pressing Enter at the end of each line. When you have
entered all of your text, enter a . (period) at the start of a new
line.

Note: If you do not press Enter at the end of each line, the ed
program automatically moves your cursor to the next line after you
fill a line with characters. However, ed treats everything you type
before you press Enter as one line, regardless of how many lines it
takes up on the screen; that is, the line wraps around.

Creating and Editing Files with ed A-7

The following example shows how to enter text into the file a fi 1 e:

a
The only way to stop
appending is to type a
line that contains only
a period.

If you stop adding text to the buffer and then decide you want to
add some more, enter another a subcommand. Type the text and
then enter a period at the start of a new line to stop adding text to
the buffer.

If you make errors as you type your text, you can correct
them-before you press Enter. Use the Backspace key to erase
the incorrect character(s). Then type the correct characters in
their place.

Displaying Text-The p (Print) Subcommand

Use the p (print) subcommand to display the contents of the edit
buffer. To display a single line, use the subcommand np (where n
is the number of the line):

2p
appending is to type a

To display a series of lines, use the n,mp subcommand (where n is
the starting line number and m is the ending line number):

1,3p
The only way to stop
appending is to type a
line that contains only

To display everything from a specific line to the end of the buffer,
use the n,$p subcommand (where n is the starting line number and

A-8 Using the Operating System

$ stands for the last line of the buffer). In the following example,
1, $p displays everything in the buffer:

1,$p
The only way to stop
appending is to type a
line that contains only
a period.

Note: Many examples in the rest of this appendix use 1,$p to
display the buffer's contents. In these examples, the 1,$p
subcommand is optional, but convenient-it lets you verify that the
subcommands in examples work as they should. Another
convenient ed convention is ,p, which is equivalent to 1,$p-that
is, it displays the contents of the buffer.

Saving Text-The w (Write) Subcommand

The w (write) subcommand writes, or copies, the contents of the
buffer into a file. You can save all or part of a file under its
original name or under a different name. In either case, ed
replaces the original contents of the file you specify with the data
copied from the buffer.

Saving Text Under the Same File Name

To save the contents of the buffer under the original name for the
file, enter w:

w
78

The ed program copies the contents of the buffer into the file
named afile and displays the number of characters copied into the
file (78). This number includes blanks and characters such as
Enter (sometimes called newline) which are not visible on the
screen.

Creating and Editing Files with ed A-9

The w subcommand does not affect the contents of the edit buffer.
You can save a copy of the file and then continue to work with the
contents of the buffer.

The stored file is not changed until the next time you use w to
copy the contents of the bl,lffer into it. As a safeguard, it is a good
practice to save a file periodically while you work on it. Then, if
you make changes (or mistakes) that you do not want to save, you
can start over with the most recently saved version of the file.

Note: The u (undo) subcommand restores the buffer to the state it
was in before it was last modified by an ed subcommand. The
sub commands that u can reverse are: a, c, d, g, G, i, j, m, r, S, t, v,
and V.

Saving Text Under a Different File Name

Often, you may need more than one copy of the same file. For
example, you could have the original text of a letter in two
files-one to keep as it is, and the other to be revised.

If you have followed the previous examples, you have a file (named
afile) that contains the original text of yOur document. To create
another copy of the file (while its contents are still in the buffer),
use a subcommand of the form w filename, as the following example
shows:

w bfile
78

At this point, afile and bfile have the same contents; since each is
a copy of the same buffer contents. However, because afile and
bfile are separate files, you can change the contents of one without
affecting the contents of the other.

A-tO Using the Operating System

Saving Part of a File

To save part of a file, use a subcommand of the form n,mw
filename, where:

n is the beginning line number of the part of the file you
want to save.

m is the ending line number of the part of the file you want
to save (or the number of a single line, if that is all you
want to save).

filename is the name of a different file (optional).

In the following example, the w subcommand copies lines 1 and 2
from the buffer into a new file named cfile:

1,2\'J C fi 1 e
44

Then ed displays the number of characters written into cfile (44).

Leaving the ed Program-The q (Quit) Subcommand

Warning: You lose the contents of the buffer when you leave
the ed program. To save a copy of the data in the buffer, use
the w subcommand to copy the buffer into a file before you
leave the ed program.

To leave the ed program, enter the q (quit) subcommand:

The q subcommand returns you to the $ (shell) prompt.

If you have changed the buffer, but have not saved a copy of its
contents, the q subcommand responds with?, an error message. At
that point, you can either save a copy of the buffer (with the w

Creating and Editing Files with ed A-II

subcommand) or enter q again (which lets you leave the ed
program without saving a copy of the buffer).

Note: You can log out from the ed program by pressing END OF
FILE. If you have changed the buffer since you last saved it, the
system displays the ? error message.

A-12 Using the Operating System

Loading Files into the Edit Buffer

Before you can edit a file, you must load it into the edit buffer.
You can load a file either at the time you start the ed program or
while the program is running.

To Load Files into the Edit Buffer

ed filename

This starts ed and loads the file filename into the edit
buffer.

OR

e filename

When ed is running, this loads the file filename into the
buffer, erasing any previous contents of the buffer.

OR

nr filename

When ed is running, this reads the named file into the
buffer after line n. (If you do not specify n, ed adds the
file to the end of the buffer.)

Using the ed (Edit) Command

To load a file into the edit buffer when you start the ed program,
simply type the name of the file after the command ed. The ed
command in the following example invokes the ed program and
loads the file af; 1 e into the edit buffer:

$ ed afile
78

Creating and Editing Files with ed A-13

The ed program displays the number of characters that it read into
the edit buffer (78).

If ed cannot find the file, it displays ?filename. To create that file,
use the a (append) subcommand (described under "Entering
Text-The a (Append) Subcommand" on page A-7) and the w (write)
subcommand (described under "Saving Text-The w (Write)
Subcommand" on page A-9).

Using the e (Edit) Subcommand

Once you start the ed program, you can use the e (edit)
subcommand to load a file into the buffer. The e subcommand
replaces the contents of the buffer with the new file. (Compare the
e subcommand with the r subcommand, described under "Using the
r (Read) Subcommand" on page A-15, which adds the new file to
the buffer.)

Warning: When you load a new file into the buffer, the new
file replaces the buffer's previous contents. Save a copy of the
buffer (with the w subcommand) before you read a new file
into the buffer.

In the following example, the subcommand e c fi 1 e reads the file
cfi 1 e into the edit buffer, replacing afi 1 e:

e cfile
44
e afile
78

The e afi 1 e subcommand then loads afi 1 e back into the buffer,
deleting c fi 1 e. The ed program returns the number of characters
read into the buffer after each e subcommand (44 and 78).

If ed cannot find the file, it returns ?filename. To create that file,
use the a (append) subcommand, described under "Entering
Text-The a (Append) Subcommand" on page A-7, and the w (write)
subcommand, described under "Saving Text-The w (Write)
Subcommand" on page A-9.

A-14 U sing the Operating System

You can edit any number of files, one at a time, without leaving
the ed program. Use the e subcommand to load a file into the
buffer. After making your changes to the file, use the w
subcommand to save a copy of the revised file. (See "Saving
Text-The w (Write) Subcommand" on page A-9 for information
about the w subcommand.) Then use the e subcommand again to
load another file into the buffer.

Using the r (Read) Subcommand

Once you have started the ed program, you can use the r (read)
subcommand to read a file into the buffer. The r subcommand adds
the contents of the file to the contents of the buffer. The r
subcommand does not delete the buffer. (Compare the r
subcommand with the e subcommand, described under "Using the e
(Edit) Subcommand" on page A-14, which deletes the buffer before
it reads in another file.)

With the r subcommand, you can read a file into the buffer at a
particular place. For example, the 4r cfi 1 e subcommand reads the
file c fi 1 e into the buffer following line 4. The ed program then
renumbers all of the lines in the buffer. If you do not use a line
number, the r subcommand adds the new file to the end of the
buffer's contents.

The following example shows how to use the r subcommand with a
line number:

Creating and Editing Files with ed A-I5

l,$p
The only way to stop
appending is to type a
line that contains only
a period.
3 r cfile
44
l,$p
The only way to stop
appending is to type a
line that contains only
The only way to stop
appending is to type a
a period.

1, $p displays the four lines of afi 1 e. Next, the 3 r cfi 1 e
subcommand loads the contents of cfi 1 e into the buffer, following
line 3, and shows that it read 44 characters into the buffer. The
next 1, $p subcommand displays the buffer's contents again, which
lets you verify that the r subcommand read cfile into the buffer
after line 3.

If You Are Working the Examples

If you are working the examples on your AIX system, do the
following before you go to the next section:

1. Save the contents of the buffer in the file cfi 1 e. Enter:

w cfile

2. Load afi 1 e into the buffer. Enter:

e afile

A-I6 Using the Operating System

Displaying and Changing the Current Line

The ed program is a line editor. This means that ed lets you work
with the contents of the buffer one line at a time. The line you can
work with at any given time is called the current line, and it is
represented by the symbol. (called dot). To work with different
parts of a file, you must change the current line.

To Display the Current Line

To display the current line, enter:

p

OR

To display the line number of the current line, enter:

=

Note: You cannot use the Cursor Up and Cursor Down keys to
change the current line. To change the current line, use the ed
sub commands described in the following sections.

Creating and Editing Files with ed A-17

To Change Your Position in the Buffer

• To set your current line to line number n, enter:

n

• To move the current line forward through the buffer one
line at a time:

Press Enter

• To move the current line backward through the buffer one
line at a time, enter:

• To move the current line n lines forward through the
buffer, enter:

.+n

• To move the current line n lines backward through the
buffer, enter:

. -n

Finding Your Position in the Buffer

When you first load a file into the buffer, the last line of the file is
the current line. As you work with the file, you usually change
the current line many times. You can display the current line or
its line number at any time.

To display the current line, enter p:

p
a period.

A-1S Using the Operating System

The p subcommand displays the current line (a peri ad.). Because
the current line has not been changed since you read afi 1 e into
the buffer, the current line is the last line of the buffer.

Enter. = to display the line number of the current line:

4

Since C1 fi 1 e has four lines, and the current line is the last line in
the buffer, the. = subcommand displays 4.

You also can use the $ (the symbol that stands for the last line in
the buffer) with the = subcommand to determine the number of the
last line in the buffer:

$=
4

The $ = subcommand is an easy way to find out how many lines are
in the buffer.

Note: The ed $ symbol has no relationship to the $ (shell)
prompt.

Changing Your Position in the Buffer

You can change your position in the buffer (change your current
line) in one of two ways:

• Specify a line number (an absolute position).

• Move forward or backward relative to your current line.

To move the current line to a specific line, enter the line number;
ed displays the new current line. In the following example, the
first line of afile becomes the current line:

Creating and Editing Files with ed A-I9

1
The only way to stop

To move the current line forward through the buffer one line at a
time, press Enter, as the following example shows:

appending is to type a

line that contains only

a period.

?

Notice that when you try to move beyond the last line of the
buffer, ed returns?, an error message. You cannot move beyond
the end of the buffer.

To set the current line to the last line of the buffer, enter $.

To move the current line backward through the buffer one line at a
time, enter - (hyphens) one after the other.

line that contains only

appending is to type a

The only way to stop

?

When you try to move beyond the first line in the buffer, you
receive the? message. You cannot move beyond the top of the
buffer.

To move the current line forward through the buffer more, than one
line at a time, enter. n (where n is the number of lines you want to
move):

A-20 Using the Operating System

.2
line that contains only

To move the current line backward through the buffer more than
one line at a time, enter: . -n (where n is the number of lines you
want to move):

.-2
The only way to stop

Creating and Editing Files with ed A-21

Locating Text

If you do not know the number of the line that contains a
particular word or another string of characters, you can locate the
line with a context search.

To Make a Context Search

• To search forward, enter:

/ string to find /

• To search backward, enter:

? string to find?

Searching Forward Through the Buffer

To search forward through the buffer, enter the string enclosed in
/ / (slashes):

/only/
line that contains only

The context search (/only/) begins on the first line after the
current line, then locates and displays the next line that contains
the string only. That line becomes the current line.

If ed does not find the string between the first line of the search
and the last line of the buffer, then it continues the search at line 1
and searches to the current line. If ed searches the entire buffer
without finding the string, it displays the? error message:

/random/
?

A-22 U sing the Operating System

Once you have searched for a string, you can search for the same
string again by entering II. The following example shows one
search for the string 0 n 1 y, and then a second search for the same
string:

lonlyl
The only way to stop
II
line that contains only

Searching Backward Through the Buffer

Searching backward through the buffer is much like searching
forward, except that you enclose the string in question marks (??):

?appending?
appending is to type a

The context search begins on the first line before the current line
and then locates the first line that contains the string append; ng.
That line becomes the current line. If ed searches the entire buffer
without finding the string, it stops the search at the current line
and displays the message ?

Once you have searched backward for a string, you can search
backward for the same string again by entering??

Changing the Direction of a Search

You can change the direction of a search for a particular string by
using the I and ? search characters alternately:

lonlyl
line that contains only
??
The only way to stop

Creating and Editing Files with ed A-23

If you go too far while searching for a character string, it is
convenient to be able to change the direction of your search.

A-24 Using the Operating System

Making Substitutions-The s (Substitute) Subcommand

Use the s (substitute) subcommand to replace a character string
(a group of one or more characters) with another. The s
subcommand works with one or more lines at a time, and is
especially useful for correcting typing or spelling errors.

To Make Substitutions

• To substitute newstring for oldstring at the first occurrence
of oldstring in the current line, enter:

s J oldstring J ne wstring J

• To substitute newstring for oldstring at the first occurrence
of oldstring on line number n, enter:

nsJoldstringJnewstringJ

• To substitute newstring for oldstring at the first occurrence
of oldstring in each of the lines n through m, enter:

n,ms/oldstring /newstringJ

Substituting on the Current Line

To make a substitution on the current line, first make sure that the
line you want to change is the current line. In the following
example, the / append; ng/ (search) subcommand locates the line to
be changed. Then the s/ append; ng/ add; ng text/p (substitute)
subcommand substitutes the string add; ng text for the string
append; ng on the current line. The print (p) subcommand displays
the changed line.

Creating and Editing Files with ed A-25

/appending/
appending is to type a
s/appending/adding text/
p
adding text is to type a

Note: For convenience, you can add the p (print) subcommand to
the s subcommand (for example, s/appendi ng/addi ng text/p).
This saves you from having to type a separate p subcommand to
see the result of the substitution.

A simple s subcommand changes only the first occurrence of the
string on a given line. To learn how to change all occurrences of a
string on the line, see "Changing Every Occurrence of a String" on
page A-27.

Substituting on a Specific Line

To make a substitution on a specific line, use a subcommand of the
form ns / oldstring / newstring /, where n is the number of the line on
which the substitution is to be made. In the following example, the
s subcommand moves to line number 1 and replaces the string stop
wi th the string qui t and displays the new line:

ls/stop/quit/p
The only way to quit

The s subcommand changes only the first occurrence of the string
on a given line. To learn how to change all occurrences of a string
on the line, see "Changing Every Occurrence of a String" on
page A-27.

A-26 Using the Operating System

Substituting on Multiple Lines

To make a substitution on multiple lines, use a subcommand of the
form n,ms/oldstring /newstring/, where n is the first line of the
group and m is the last. In the following example, the s
subcommand replaces the first occurrence of the string to with the
string TO on every line in the buffer.

l,$s/to/TO/
l,$p
The only way TO quit
adding text is TO type a
line that contains only
a period.

The 1, $p subcommand displays the contents of the buffer, which
lets you verify that the substitutions were made.

Changing Every Occurrence of a String

Ordinarily, the s (substitute) subcommand changes only the first
occurrence of a string on a given line. However, the g (global)
operator lets you change every occurrence of a string on a line or
in a group of lines.

To make a global substitution on a single line, use a subcommand
of the form ns/oldstring/ newstring/. In the following example,
3s/on/ON/gp changes each occurrence of the string on to ON in line
3 and displays the new line:

3s/on/ON/gp
line that cONtains ONly

To make a global substitution on multiple lines, specify the group
of lines with a subcommand of the form n,ms/oldstring/
newstring / g. In the following example, 1, $ s /TO / to / 9 changes the
string TO into the string to in every line in the buffer:

Creating and Editing Files with ed A-27

l,$s/TO/to/g
l,$p
The only way to quit
adding text is to type a
line that cONtains ONly
a period.

Removing Characters

You can use the s (substitute) subcommand to remove a string of
characters (that is, to replace the string with "nothing"). To
remove characters, use a subcommand of the form s/oldstring/ /
(with no space between the last two / characters).

In the following example, ed removes the string addi ng from line
number 2 and then displays the changed line:

2s/adding//
text is to type a

Substituting at Line Beginnings and Ends

Two special characters let you make substitutions at the beginning
or end of a line:

Special Substitution Characters

1\ (circumflex) Makes a substitution at the beginning of the
line. (To get the 1\ character, press Shift-6.)

$ (dollar sign) Makes a substitution at the end of the line.
(In this context, the $ character does not stand
for the last line in the buffer.)

To make a substitution at the beginning of a line, use the
sf 1\ fnewstring subcommand. In the following example, one s
subcommand adds the string Remember, to the start of line number

A-28 Using the Operating System

1. Another s subcommand adds the string add; ng to the start of
line 2:

IS/A/Remember, /p
Remember, The only way to quit
2s/ A/adding/p
adding text is to type a

To make a substitution at the end of a line, use a subcommand of
the form s/$/newstring. In the following example, the s
subcommand adds the string Then press Enter. to the end of line
number 4:

4s/$/ Then press Enter./p
a period. Then press Enter.

Notice that the substituted string includes two blanks before the
word Then to separate the two sentences.

Using a Context Search

If you do not know the number of the line you want to change, you
can locate it with a context search. See "Locating Text" on
page A-22 for more information on context searches.

For convenience, you can combine a context search and a
substitution into a single subcommand: /string to find/s/oldstring/
newstring / .

In the following example, ed locates the line that contains the
string , The and replaces that string with , the:

/, The/s/, The/, the/p
Remember, the only way to quit

Also, you can use the search string as the string to be replaced
with a subcommand of the form /string to find/sf /newstring/. In
the following example, ed locates the line that contains the string

Creating and Editing Files with ed A-29

cONtai ns ONly, replaces that string with contai ns only, and prints
the changed line:

/cONtains ONly/sf/contains only/p
line that contains only

A-30 Using the Operating System

Deleting Lines-The d (Delete) Subcommand

Use the d (delete) subcommand to remove one or more lines from
the buffer. The general form of the d subcommand is starting
line,ending lined. After you delete lines, ed sets the current line to
the first line following the lines that were deleted. If you delete
the last line from the buffer, the last remaining line in the buffer
becomes the current line. After a deletion, ed renumbers the
remaining lines in the buffer.

To Delete Lines from the Buffer

• To delete the current line, enter:

d

• To delete line number n from the buffer, enter:

nd

• To delete lines numbered n through m from the buffer,
enter:

n,md

Deleting the Current Line

If you want to delete the current line, simply enter d. In the
following example, the 1, $p subcommand displays the entire
contents of the buffer, and the $ subcommand makes the last line of
the buffer the current line:

Creating and Editing Files with ed A-31

l,$p
Remember,
adding is
line that
a period.
$
a period.
d

the only way to quit
to type a
contains only
Then press Enter.

Then press Enter

The d subcommand then deletes the current line (in this case, the
last line in the buffer).

Deleting a Specific Line

If you know the number of the line you want to delete, use a
subcommand of the form nd to make the deletion. In the following
example, the 2d subcommand deletes line 2 from the buffer:

2d
l,$p
Remember, the only way to quit
line that contains only

The 1, $p subcommand displays the contents of the buffer, showing
that the line was deleted.

Deleting Multiple Lines

To delete a group of lines from the buffer, use a subcommand of the
form n,md, where n is the starting line number and m is the ending
line number of the group to be deleted.

In the following example, the 1, 2 d subcommand deletes lines 1
through 2:

A-32 U sing the Operating System

1,2d
l,$p
?

The 1, $p subcommand displays the? message, indicating that the
buffer is empty.

If you are following the examples on your AIX system, you should
restore the contents of the buffer before you move on to the next
section. The following example shows you how to restore the
contents of the buffer:

e afile
?
e afile
78

This reads a copy of the original file afi 1 e into the buffer.

Creating and Editing Files with ed A-33

Moving Text-The m (Move) Subcommand

Use the m (move) subcommand to move a group of lines from one
place to another in the buffer. After a move, the last line moved
becomes the current line.

To Move Text

Enter a subcommand of the form x,ymz where:

x is the first line of the group to be moved.
y is the last line of the group to be moved.
z is the line the moved lines are to follow.

In the following example, the 1, 2m4 subcommand moves the first
two lines of the buffer to the position following line 4:

1,2m4
l,$p
line that contains only
a period.
The only way to stop
appending is to type a

The 1, $p subcommand displays the contents of the buffer, showing
that the move is complete.

To move a group of lines to the top of the buffer, use 0 as the line
number for the moved lines to follow. In the next example, the
3 ,4mO subcommand moves lines 3 through 4 to the top of the buffer:

3,4mO
l,$p
The only way to stop
appending is to type a
line that contains only
a period.

A-34 Using the Operating System

The 1, $p subcommand displays the contents of the buffer, showing
that the move has been made.

To move a group of lines to the end of the buffer, use $ as the line
number for the moved lines to follow:

1,2m$
l,$p
line that contains only
a period.
The only way to stop
appending is to type a

Creating and Editing Files with ed A-35

Changing Lines of Text-The c (Change) Subcommand

Use the c (change) subcommand to replace one or more lines with
one or more new lines. The c subcommand first deletes the line(s)
you want to replace and then lets you enter the new lines, just as if
you were using the a (append) subcommand. When you have
entered all of the new text, type a . (period) on a line by itself.
The general form of the c subcommand is starting line, ending
linec.

To Change Lines of Text

1. Enter a subcommand of the form:

n,mc

where:

n is the number of the first line of the group to be
deleted.
m is the number of the last line of the group (or the
only line) to be deleted.

2. Type the new line(s), pressing Enter at the end of each
line.

3. Enter a period on a line by itself.

Changing a Single Line

To change a single line of text, use only one line number with the
c (change) subcommand. You can replace the single line with as
many new lines as you like.

In the following example, the 2c subcommand deletes line 2 from
the buffer, and then you can enter new text:

A-a6 Using the Operating System

2c
appending new material is to
use the proper keys to create a

l,$p
The only way to stop
appending new material is to
use the proper keys to create a
line that contains only
a period.

The period on a line by itself stops ed from adding text to the
buffer. The 1, $p subcommand displays the entire contents of the
buffer, showing that the change has been made.

Changing Multiple Lines

To change more than one line of text, give the starting and ending
line numbers of the group of lines to be with the c subcommand.
You can replace the group of lines with one or more new lines.

In the following example, the 2,3 c subcommand deletes lines 2
through 3 from the buffer, and then you can enter new text:

2,3c
adding text is to type a

l,$p
The only way to stop
adding text is to type a
line that contains only
a period.

The period on a line by itself stops ed fronl adding text to the
buffer. The 1, $p subcommand displays the entire contents of the
buffer, showing that the change has been rnade.

Creating and Editing Files with ed A-37

Inserting Text-The i (Insert) Subcommand

Use the i (insert) subcommand to insert one or more new lines into
the buffer. To locate the place in the buffer for the lines to be
inserted, you can use either a line number or a context search.
The i subcommand inserts new lines before the specified line.
(Compare the i subcommand with the a subcommand, explained
under "Entering Text-The a (Append) Subcommand" on page A-7,
which inserts new lines after the specified line.)

To Insert Text

1. Enter a subcommand of one of the following types:

ni

Where n is the number of the line the new lines will be
inserted above.

/string/i

Where string is a group of characters contained in the
line the new lines will be inserted above.

2. Enter the new lines.

3. Enter a period at the start of a new line.

Using Line Numbers

If you know the number of the line where you want to insert new
lines, you can use an insert subcommand of the form n i (where n is
a line number). The new lines you type go into the buffer before
line number n. To end the i subcommand, type a . (period) on a
line by itself.

A-3S Using the Operating System

In the following example, the 1, $p subcommand prints the contents
of the buffer. Then the 4i subcommand inserts new lines before
line number 4.

l,$p
The only way to stop
adding text is to type a
line that contains only
a period.
4i
--repeat, only--

l,$p
The only way to stop
adding text is to type a
line that contains only
--repeat, only--
a period.

After 4 i you enter the new line of text and type a period on the
next line to end the i subcommand. A second 1, $p subcommand
displays the contents of the buffer again, showing that the new text
has been inserted.

Using a Context Search

Another way to specify where the i subcommand inserts new lines
is to use a context search. With a subcommand of the form
/ string / i, you can locate the line that contains string and insert
new lines before that line. When you finish inserting new lines,
type a period on a line by itself.

In the following example, the /peri od/i subcommand inserts new
text before the line that contains the string peri od:

Creating and Editing Files with ed A-39

/period/i
and in the first position--

1,$p
The only way to stop
adding text is to type a
line that contains only
--repeat, only--
and in the first position-­
a period.

The 1, $p subcommand displays the entire contents of the buffer,
showing that the i subcommand has inserted the new text.

A-40 Using the Operating System

Copying Lines-The t (Transfer) Subcommand

With the t (transfer) subcommand, you can copy lines from one
place in the buffer and insert the copies elsewhere. The t
subcommand does not affect the original lines. The general form of
the t subcommand is starting line, ending line tline to follow.

To Copy Lines

Enter a subcommand of the form:

n,mtx

Where:

n is the first line of the group to be copied.
m is the last line of the group to be copied.
x is the line the copied lines are to follow.

To copy lines to the top of the buffer, use 0 as the line number for
the copied lines to follow. To copy lines to the bottom of the
buffer, use $ as the line number for the copied lines to follow.

In the following example, the 1,3 t4 subcommand copies lines 1
through 3, and inserts the copies after line 4:

1,3t4
l,$p
The only way to stop
adding text is to type a
line that contains only
--repeat, only--
The only way to stop
adding text is to type a
line that contains only
and in the first position-­
a period.

Creating and Editing Files with ed A-41

The 1, $p subcommand displays the entire contents of the buffer,
showing that ed has made and inserted the copies, and that the
original lines are not affected.

A-42 Using the Operating System

U sing System Commands from ed

Sometimes you may find it convenient to use a system command
without leaving the ed program-perhaps to use one of the
commands covered in Chapter 3, "Using the File System" on
page 3-1. Use the! character to leave from the ed program
temporarily.

To Use a System Command from ed

Enter:

! command nanw

In the following example, the ! 1 s command temporarily suspends
the ed program and runs the Is (list) system command (a command
that lists the files in the current directory):

! 1 s
afile
bfi 1 e
cfi 1 e
!

The Is command displays the names of the files in the current
directory (afi 1 e, bfi 1 e, and cfi 1 e), and then displays another!
character. The Is command is finished, and you can continue to
use ed.

You can use any system command from within the ed program.
You can even run another ed program, edit a file, and then return
to the original ed program. From the second ed program, you can
run a third, use a system command, and so forth.

Creating and Editing Files with ed A-43

Ending the ed Program

This completes the introduction to the ed program. To save your
file and end the ed program, do the steps in the following box:

Saving a File and Ending ed

1. Enter:

w

2. Enter:

q

For a full discussion of the wand q sub commands , see "Saving
Text-The w (Write) Subcommand" on page A-9 and "Leaving the
ed Program-The q (Quit) Subcommand" on page A-II respectively.

For information about other features of ed, see ed in AIX
Operating System Commands Reference.

For information about printing the files you create with ed, see
Chapter 2, "Displaying and Printing Files" on page 2-1.

A-44 Using the Operating System

I-I.
2-I.
2-2.
3-I.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
4-I.
5-I.
5-2.
5-3.
5-4.
5-5.
6-I.
6-2.
6-3.
6-4.
6-5.
6-6.

Figures

The IBM RT PC Keyboard
pr Command Flags
print Command Flags
A Typical AIX File System
Relative and Full Path Names
Relationship Between a New Directory and the Current Directory
Is Command Options .. .
Is -I Command Information
Removing Links and Removing Files
Directories That Can and Cannot Be Renamed
Differences Between File and Directory Permissions
File and Directory Permission Fields
How Octal Numbers Relate to Permission Fields
Shell Notation for Reading Input and Redirecting Output
Flow Through a Pipeline
Multiple Command Operators
Command Grouping Symbols
Shell Quoting Conventions
Shell Pattern-Matching Characters
Standard File Descriptors
Shell Reserved Characters and Words-Syntactic
Shell Reserved Characters and Words-Pattern-Matching
Shell Reserved Characters and Words-Substitution
Shell Reserved Characters and Words-Quoting
Shell Reserved Characters and Words-Reserved Words

1-14
2-7

2-10
3-7
3-9

3-11
3-14
3-15
3-29
3-36
3-43
3-45
3-49
4-9
5-4
5-6
5-9

5-11
5-13
6-29
6-34
6-35
6-35
6-35
6-36

Figures X-I

X-2 Using the Operating System

access. To obtain data from or put data
in storage.

access permission. A group of
designations that determine who can
access a particular AIX file and how the
user may access the file.

account. The log in directory and other
information that give a user access to the
system.

activity manager. A collection of
system-supplied tasks allowing users to
manage their activities. Provides the
ability to list current activities (Activity
List) and to begin, cancel, hide, and
activate activities.

All Points Addressable (AP A) display.
A display that allows each pel to be
individually addressed. An AP A display
allows for images to be displayed that are
not made up of images predefined in
character boxes. Contrast with character
display.

alloca te. To assign a resource, such as a
disk file or a diskette file, to perform a
specific task.

alphabetic. Pertaining to a set of letters
a through z.

Glossary

alphanumeric character. Consisting of
letters, numbers and often other symbols,
such as punctuation marks and
mathematical symbols.

American National Standard Code for
Information Interchange (ASCII). The
code developed by ANSI for information
interchange among data processing
systems, data communications systems,
and associated equipment. The ASCII
character set consists of 7-bit control
characters and symbolic characters.

American National Standards
Institute. An organization sponsored by
the Computer and Business Equipment
Manufacturers Association for
establishing voluntary industry standards.

application. A program or group of
programs that apply to a particular
business area, such as the Inventory
Control or the Accounts Receivable
application.

application program. A program used
to perform an application or part of an
application.

argument. Numbers, letters, or words
that change the way a command works.

ASCII. See American National Standard
Code for Information Interchange.

Glossary x-a

attribute. A characteristic. For
example, the attribute for a displayed field
could be blinking.

auto carrier return. The system
function that places carrier returns
automatically within the text and on the
display. This is accomplished by moving
whole words that exceed the line end zone
to the next line.

backend. The program that sends output
to a particular device. There are two
types of backends: friendly and
unfriendly.

background process. (1) A process that
does not require operator intervention
that can be run by the computer while the
work station is used to do other work.
(2) A mode of program execution in which
the shell does not wait for program
completion before prompting the user for
another command.

backup copy. A copy, usually of a file or
group of files, that is kept in case the
original file or files are unintentionally
changed or destroyed.

backup diskette. A diskette containing
information copied from a fixed disk or
from another diskette. It is used in case
the original information becomes
unusable.

bad block. A portion of a disk that can
never be used reliably.

base address. The beginning address for
resolving symbolic references to locations
in storage.

X-4 U sing the Operating System

base name. The last element to the right
of a full path name. A filename specified
without its parent directories.

batch printing. Queueing one or more
documents to print as a separate job. The
operator can type or revise additional
documents at the same time. This is a
background process.

batch processing. A processing method
in which a program or programs process
records with little or no operator action.
This is a background process. Contrast
with interactive processing.

binary. (1) Pertaining to a system of
numbers to the base two; the binary digits
are 0 and 1. (2) Involving a choice of two
conditions, such as on-off or yes-no.

bit. Either of the binary digits 0 or 1
used in computers to store information.
See also byte.

block. (1) A group of records that is
recorded or processed as a unit. Same as
physical record. (2) In data
communications, a group of records that is
recorded, processed, or sent as a unit.
(3) A block is 512 bytes long. (4) A
logical block is 2048 bytes long.

block file. A file listing the usage of
blocks on a disk.

block special file. A special file that
provides access to an input or output
device is capable of supporting a file
system. See also character special file.

bootstrap. A small program that loads
larger programs during system
ini tializa tion.

branch. In a computer program an
instruction that selects one of two or more
alternative sets of instructions. A
conditional branch occurs only when a
specified condition is met.

breakpoint. A place in a computer
program, usually specified by an
instruction, where execution may be
interrupted by external intervention or by
a monitor program.

buffer. (1) A temporary storage unit,
especially one that accepts information at
one rate and delivers it at another rate.
(2) An area of storage, temporarily
reserved for performing input or output,
into which data is read, or from which
data is written.

burst pages. On continuous-form paper,
pages of output that can be separated at
the perforations.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or
procedure at its entry point. Compare
with load.

callouts. An AIX kernel parameter
establishing the maximum number of
scheduled activities that can be pending
simultaneously.

cancel. To end a task before it is
completed.

carrier return. (1) In text data, the
action causing line ending formatting to
be performed at the current cursor
location followed by a line advance of the
cursor. Equivalent to the carriage return
of a typewriter. (2) A keystroke generally
indicating the end of a command line.

case sensitive. Able to distinguish
between uppercase and lowercase letters.

character. A letter, digit, or other
symbol.

character display. A display that uses a
character generator to display predefined
character boxes of images (characters) on
the screen. This kind of display cannot
address the screen any less than one
character box at a time. Contrast with
All Points Addressable display.

character key. A keyboard key that
allows the user to enter the character
shown on the key. Compare with function
keys.

character position. On a display, each
location that a character or symbol can
occupy.

character set. A group of characters
used for a specific reason; for example, the
set of characters a printer can print or a
keyboard can support.

character special file. A special file
that provides access to an input or output
device. The character interface is used for
devices that do not use block I/O. See
also block special file.

Glossary X-5

character string. A sequence of
consecutive characters.

character variable. The name of a
character data item whose value may be
assigned or changed while the program is
runnIng.

child. (1) Pertaining to a secured
resource, either a file or library, that uses
the user list of a parent resource. A child
resource can have only one parent
resource. (2) In the AIX Operating
System, child is a process spawned by a
parent process that shares resources of
parent process. Contrast with parent.

C language. A general-purpose
programming language that is the primary
language of the AIX Operating System.

class. Pertaining to the 110
characteristics of a device. AIX devices
are classified as block or character.

close. (1) To end an activity and remove
that window from the display.

code. (1) Instructions for the computer.
(2) To write instructions for the computer;
to program. (3) A representation of a
condi tion, such as an error code.

code segment. See segment.

collating sequence. The sequence in
which characters are ordered within the
computer for sorting, combining, or
comparing.

color display. A display device capable
of displaying more than two colors and the

X-6 Using the Operating System

shades produced via the two colors, as
opposed to a monochrome display.

column. A vertical arrangement of text
or numbers.

column headings. Text appearing near
the top of columns of data for the purpose
of identifying or titling.

command. A request to perform an
operation or run a program. When
parameters, arguments, flags, or other
operands are associated with a command,
the resulting character string is a single
command.

command interpreter. A program that
sends instructions to the kernel; also
called an interface.

command line. The area of the screen
where commands are displayed as they are
typed.

command line editing keys. Keys for
editing the command line.

command programming language.
Facility that allows programming by the
combination of commands rather than by
writing statements in a conventional
programming language.

compile. (1) To translate a program
written in a high-level programming
language into a machine language
program. (2) The computer actions
required to transform a source file into an
executable object file.

compress. (1) To move files and
libraries together on disk to create one
continuous area of unused space. (2) In
data communications, to delete a series of
duplicate characters in a character string.

concatenate. (1) To link together.
(2) To join two character strings.

condition. An expression in a program
or procedure that can be evaluated to a
value of either true or false when the
program or procedure is running.

configuration. The group of machines,
devices, and programs that make up a
computer system. See also system
customization.

configuration file. A file that specifies
the characteristics of a system or
subsystem, for example, the AIX queueing
system.

consistent. Pertaining to a file system,
without internal discrepancies.

console. (1) The main AIX display
station. (2) A device name associated
with the main AIX display station.

constant. A data item with a value that
does not change. Contrast with variable.

context search. A search through a file
whose target is a character string.

control block. A storage area used by a
program to hold control information.

control commands. Commands that
allow conditional or looping logic flow in
shell procedures.

control program. Part of the AIX
Operating System system that determines
the order in which basic functions should
be performed.

con trolled cancel. The system action
that ends the job step being run, and saves
any new data already created. The job
that is running can continue with the next
job step.

copy. The action by which the user
makes a whole or partial duplicate of
already existing data.

crash. An unexpected interruption of
computer service, usually due to a serious
hard ware or software malfunction.

current directory. The directory that is
active, and can be displayed with the pwd
command.

current line. The line on which the
cursor is located.

current working directory. See current
directory.

cursor. (1) A movable symbol (such as
an underline) on a display, used to
indicate to the operator where the next
typed character will be placed or where
the next action will be directed. (2) A
marker that indicates the current data
access location within a file.

Glossary X-7

cursor movement keys. The directional
keys used to move the cursor.

customize. To describe (to the system)
the devices, programs, users, and user
defaults for a particular data processing
system.

cylinder. All fixed disk or diskette
tracks that can be read or written without
moving the disk drive or diskette drive
read/write mechanism.

daemon. See daemon process.

daemon process. A process begun by
the root or the root shell that can be
stopped only by the root. Daemon
processes generally provide services that
must be available at all times such as
sending data to a printer.

data block. See block.

data communications. The
transmission of data between computers,
or remote devices or both (usually over
long distance).

data stream. All information (data and
control information) transmitted over a
data link.

debug. (1) To detect, locate, and correct
mistakes in a program. (2) To find the
cause of problems detected in software.

default. A value that is used when no
alternative is specified by the operator.

X-8 Using the Operating System

default directory. The directory name
supplied by the operating system if none is
specified.

default drive. The drive name supplied
by the operating system if none is
specified.

default value. A value stored in the
system that is used when no other value is
specified.

delete. To remove. For example, to
delete a file.

dependent work station. A work
station having little or no standalone
capability, that must be connected to a
host or server in order to provide any
meaningful capability to the user.

device. An electrical or electronic
machine that is designed for a specific
purpose and that attaches to your
computer, for example, a printer, plotter,
disk drive, and so forth.

device driver. A program that operates a
specific device, such as a printer, disk
drive, or display.

device name. A name reserved by the
system that refers to a specific device.

diagnostic. Pertaining to the detection
and isolation of an error.

diagnostic aid. A tool (procedure,
program, reference manual) used to detect
and isolate a device or program
malfunction or error.

diagnostic routine. A computer
program that recognizes, locates, and
explains either a fault in equipment or a
mistake in a computer program.

digit. Any of the numerals from 0
through 9.

directory. A type of file containing the
names and controlling information for
other files or other directories.

disable. To make nonfunctional.

discipline. Pertaining to the order in
which requests are serviced, for example,
first-come-first-served (fcfs) or shortest job
next (sjn).

disk I/O. Fixed-disk input and output.

diskette. A thin, flexible magnetic plate
that is permanently sealed in a protective
cover. It can be used to store information
copies from the disk or another diskette.

diskette drive. The mechanism used to
read and write information on diskettes.

display device. An output unit that
gives a visual representation of data.

display screen. The part of the display
device that displays information visually.

display station. A device that includes a
keyboard from which an operator can send
information to the system and a display
screen on which an operator can see the
information sent to or received from the
computer.

dump. (I) To copy the contents of all or
part of storage, usually to an output
device. (2) Data that has been dumped.

dump diskette. A diskette that contains
a dump or is prepared to receive a dump.

dump formatter. Program for analyzing
a dump.

EBCDIC. See extended binary-coded
decimal interchange code.

EBCDIC character. Anyone of the
symbols included in the 8-bit EBCDIC set.

edit. To modify the form or format of
data.

edit buffer. A temporary storage area
used by an editor.

editor. A program used to enter and
modify programs, text, and other types of
documents and data.

emulation. Imitation; for example, when
one computer imitates the characteristics
of another computer.

enable. To make functional.

enter. To send information to the
computer by pressing the Enter key.

entry. A single input operation on a
work station.

environment. The settings for shell
variables and paths set associated with
each process. These variables can be
modified later by the user.

Glossary X-9

error-correct backspace. An editing
key that performs editing based on a
cursor position; the cursor is moved one
position toward the beginning of the line,
the character at the new cursor location is
deleted, and all characters following the
cursor are moved one position toward the
beginning of the line (to fill the vacancy
left by the deleted element).

escape character. A character that
suppresses the special meaning of one or
more characters that follow.

exit value. A numeric value that a
command returns to indicate whether it
completed successfully. Some commands
return exit values that give other
information, such as whether a file exists.
Shell programs can test exit values to
control branching and looping.

expression. A representation of a value.
For example, variables and constants
appearing alone or in combination with
operators.

extended binary-coded decimal
interchange code (EBCDIC). A set of
256 eight-bit characters.

feature. A programming or hardware
option, usually available at an extra cost.

field. (1) An area in a record or panel
used to contain a particular category of
data. (2) The smallest component of a
record that can be referred to by a name.

FIFO. See first-in-first-out.

X-tO Using the Operating System

file. A collection of related data that is
stored and retrieved by an assigned name.

file name. The name used by a program
to identify a file. See also label.

filename. In DOS, that portion of the
file name that precedes the extension.

file specification (filespec). The name
and location of a file. A file specification
consists of a drive specifier, a path name,
and a file name.

file system. The collection of files and
file management structures on a physical
or logical mass storage device, such as a
diskette or minidisk.

filetab. An AIX kernel parameter
establishing the maximum number of files
that can be open simultaneously.

filter. A command that reads standard
input data, modifies the data, and sends it
to standard output.

first-in-first-out (FIFO). A named
permanent pipe. A FIFO allows two
unrelated processes to exchange
information using a pipe connection.

fixed disk. A flat, circular,
nonremoveable plate with a magnetizable
surface layer on which data can be stored
by magnetic recording.

fixed-disk drive. The mechanism used to
read and write information on fixed disk.

flag. A modifier that appears on a
command line with the command name

that defines the action of the command.
Flags in the AIX Operating System almost
al ways are preceded by a dash.

font. A family or assortment of
characters of a given size and style.

foreground. A mode of program
execution in which the shell waits for the
program specified on the command line to
complete before returning your prompt.

format. (1) A defined arrangement of
such things as characters, fields, and
lines, usually used for displays, printouts,
or files. (2) The pattern which determines
how data is recorded.

formatted diskette. A diskette on which
control information for a particular
computer system has been written but
which mayor may not contain any data.

free list. A list of available space on
each file system. This is sometimes called
the free-block list.

free-block list. See free list.

full path name. The name of any
directory or file expressed as a string of
directories and files beginning with the
root directory.

function. A synonym for procedure. The
C language treats a function as a data
type that contains executable code and
returns a single value to the calling
function.

function keys. Keys that request actions
but do not display or print characters.

Included are the keys that normally
produce a printed character, but when
used with the code key produce a function
instead. Compare with character key.

generation. For some remote systems,
the translation of configuration
information into machine language.

Gid. See group number.

global. Pertains to information available
to more than one program or subroutine.

global action. An action having general
applicability, independent of the context
established by any task.

global character. The special characters
* and ? that can be used in a file
specification to match one or more
characters. For example, placing a ? in a
file specification means any character can
be in that position.

global search. The process of having the
system look through a document for
specific characters, words, or groups of
characters.

global variable. A symbol defined in one
program module, but used in other
independently assembled program
modules.

graphic character. A character that can
be displayed or printed.

group name. A name that uniquely
identifies a group of users to the system.

Glossary X-II

group number (Gid). A unique number
assigned to a group of related users. The
group number can often be substituted in
commands that take a group name as an
argument.

hardware. The equipment, as opposed to
the programming, of a computer system.

header. Constant text that is formatted
to be in the top margin of one or more
pages.

header label. A special set of records on
a diskette describing the contents of the
diskette.

here document. Data contained within
a shell program or procedure (also called
inline input).

highlight. To emphasize an area on the
display by any of several methods, such as
brightening the area or reversing the color
of characters within the area.

history file. A file containing a log of
system actions and operator responses.

hog factor. In system accounting, an
analysis of how many times each command
was run, how much processor time and
memory it used, and how intensive that
use was.

home directory. (1) A directory
associated with an individual user.
(2) The user's current directory on login
or after issuing the cd command with no
argument.

I/O. See input/output.

X-12 Using the Operating System

ID. Identification.

IF expressions. Expressions within a
procedure, used to test for a condition.

indirect block. A block containing
pointers to other blocks. Indirect blocks
can be single-indirect, double-indirect, or
triple-indirect.

informational message. A message
providing information to the operator,
that does not require a response.

initial program load (IPL). The process
of loading the system programs and
preparing the system to run jobs. See
initialize.

initialize. To set counters, switches,
addresses, or contents of storage to zero or
other starting values at the beginning of,
or at prescribed points in, the operation of
a computer routine.

inline input. See here document.

i-node. The internal structure for
managing files in the system. I -nodes
contain all of the information pertaining
to the node, type, owner, and location of a
file. A table of i-nodes is stored near the
beginning of a file system.

i-number. A number specifying a
particular i-node on a file system.

inodetab. An AIX kernel parameter that
establishes a table in memory for storing
copies of i-nodes for all active files.

input. Data to be processed.

input device. Physical devices used to
provide data to a computer.

input file. A file opened by a program so
that the program can read from that file.

input list. A list of variables to which
values are assigned from input data.

input redirection. The specification of
an input source other than the standard
one.

input-output file. A file opened for
input and output use.

input-output device number. A value
assigned to a device driver by the guest
operating system or to the virtual device
by the virtual resource manager. This
number uniquely identifies the device
regardless of whether it is real or virtual.

input/output (I/O). Pertaining to either
input, output, or both between a computer
and a device.

interactive processing. A processing
method in which each system user action
causes response from the program or the
system. Contrast with batch processing.

interface. A shared boundary between
two or more entities. An interface might
be a hardware component to link two
devices together or it might be a portion
of storage or registers accessed by two or
more computer programs.

interleave factor. Specification of the
ratio between contiguous physical blocks
(on a fixed-disk) and logically contiguous
blocks (as in a file).

interrupt. (1) To temporarily stop a
process. (2) In data communications, to
take an action at a receiving station that
causes the sending station to end a
transmission. (3) A signal sent by an I/O
device to the processor when an error has
occurred or when assistance is needed to
complete I/O. An interrupt usually
suspends execution of the currently
executing program.

IPL. See initial program load.

job. (1) A unit of work to be done by a
system. (2) One or more related
procedures or programs grouped into a
procedure.

job queue. A list, on disk, of jobs
wai ting to be processed by the system.

justify. To print a document with even
right and left margins.

kbuffers. An AIX kernel parameter
establishing the number of buffers that
can be used by the kernel.

K-byte. See kilobyte.

kernel. The memory-resident part of the
AIX Operating System containing
functions needed immediately and
frequently. The kernel supervises the
input and output, manages and controls
the hardware, and schedules the user
processes for execution.

Glossary X-13

kernel parameters. Variables that
specify how the kernel allocates certain
system resources.

key pad. A physical grouping of keys on
a keyboard (for example, numeric key pad,
and cursor key pad).

keyboard. An input device consisting of
various keys allowing the user to input
data, control cursor and pointer locations,
and to control the dialog between the user
and the display station

keylock feature. A security feature in
which a lock and key can be used to
restrict the use of the display station.

keyword. One of the predefined words of
a programming language; a reserved word.

keyword argument. One type of
variable assignment that can be made on
the command line.

kill. An AIX Operating System command
that stops a process.

kill character. The character that is
used to delete a line of characters entered
after the user's prompt.

kilobyte. 1024 bytes.

kprocs. An AIX kernel parameter
establishing the maximum number of
processes that the kernel can run
simultaneously.

label. (1) The name in the disk or
diskette volume table of contents that
identifies a file. See also file name.

X-14 Using the Operating System

(2) The field of an instruction that assigns
a symbolic name to the location at which
the instruction begins, or such a symbolic
name.

left margin. The area on a page between
the left paper edge and the leftmost
character position on the page.

left-adjust. The process of aligning lines
of text at the left margin or at a tab
setting such that the leftmost character in
the line or filed is in the leftmost position.
Contrast with right-adjust.

library. A collection of functions, calls,
subroutines, or other data.

licensed program product (LPP).
Software programs that remain the
property of the manufacturer, for which
customers pay a license fee.

line editor. An editor that modifies the
contents of a file one line at a time.

linefeed. An ASCII character that causes
an output device to move forward one
line.

link. A connection between an i-node
and one or more file names associated
with it.

literal. A symbol or a quantity in a
source program that is itself data, rather
than a reference to data.

load. (1) To move data or programs into
storage. (2) To place a diskette into a
diskette drive, or a magazine into a

diskette magazine drive. (3) To insert
paper into a printer.

loader. A program that reads run files
into main storage, thus preparing them for
execution.

local. Pertaining to a device directly
connected to your system without the use
of a communications line. Contrast with
remote.

log. To record; for example, to log all
messages on the system printer. A list of
this type is called a log, such as an error
log.

log in. To begin a session at a display
station.

log in shell. The program, or command
interpreter, started for a user at log in.

log off. To end a session at a display
station.

log out. To end a session at a display
station.

logical device. A file for conducting
input or output with a physical device.

loop. A sequence of instructions
performed repeatedly until an ending
condi tion is reached.

main storage. The part of the
processing unit where programs are run.

maintenance system. A special version
of the AIX Operating System which is

loaded from diskette and used to perform
system management tasks.

major device number. A system
identification number for each device or
type of device.

mapped files. Files on the fixed-disk
that are accessed as if they are in memory.

mask. A pattern of characters that
controls the keeping, deleting, or testing
of portions of another pattern of
characters.

matrix. An array arranged in rows and
columns.

maxprocs. An AIX kernel parameter
establishing the maximum number of
processes that can be run simultaneously
by a user.

memory. Storage on electronic chips.
Examples of memory are random access
memory, read only memory, or registers.
See storage.

menu. A displayed list of items from
which an operator can make a selection.

message. (1) A response from the system
to inform the operator of a condition
which may affect further processing of a
current program. (2) Information sent
from one user in a multi-user operating
system to another.

minidisk. A logical division of a fixed
disk.

Glossary X-15

minor device number. A number used
to specify various types of information
about a particular device, for example, to
distinguish among several printers of the
same type.

mode word. An i-node field that
describes the type and state of the i-node.

modem. See modulator-demodulator.

modulation. Changing the frequency or
size of one signal by using the frequency
or size of another signal.

modulator-demodulator (modem). A
device that converts data from the
computer to a signal that can be
transmitted on a communications line, and
converts the signal received to data for
the computer.

module. (1) A discrete programming unit
that usually performs a specific task or set
of tasks. Modules are subroutines and
calling programs that are assembled
separately, then linked to make a
complete program. (2) See load module.

mount. To make a file system accessible.

mountab. An AIX kernel parameter
establishing the maximum number of file
systems that can be mounted
simul taneously.

multiprogramming. The processing of
two or more programs at the same time.

multivolume file. A diskette file
occupying more than one diskette.

X-I6 Using the Operating System

nest. To incorporate a structure or
structures of some kind into a structure of
the same kind. For example, to nest one
loop (the nested loop) wi thin another loop
(the nesting loop); to nest one subroutine
(the nested subroutine) within another
subroutine (the nesting subroutine).

network. A collection of products
connected by communication lines for
information exchange between locations.

new-line character. A control character
that causes the print or display position to
move to the first position on the next line.

null. Having no value, containing
nothing.

null character (NUL). The character
hex 00, used to represent the absence of a
printed or displayed character.

numeric. Pertaining to any of the digits
o through 9.

object code. Machine-executable
instruction, usually generated by a
compiler from source code written in a
higher level language. consists of directly
executable machine code. For programs
that must be linked, object code consists
of relocatable machine code.

octal. A base eight numbering system.

open. (1) To make a file available to a
program for processing.

operating system. Software that
controls the running of programs; in
addition, an operating system may provide

services such as resource allocation,
scheduling, input/output control, and data
management.

operation. A specific action (such as
move, add, multiply, load) that the
computer performs when requested.

operator. A symbol representing an
operation to be done.

output. The result of processing data.

output devices. Physical devices used by
a computer to present data to a user.

output file. A file that is opened by a
program so that the program can write to
that file.

output redirection. The specification of
an output destination other than the
standard one.

override. (1) A parameter or value that
replaces a previous parameter or value.
(2) To replace a parameter or value.

overwrite. To write output into a
storage or file space that is already
occupied by data.

owner. The user who has the highest
level of access authority to a data object
or action, as defined by the object or
action.

pad. To fill unused positions in a field
with dummy data, usually zeros or blanks.

page. A block of instructions, data, or
both.

page space minidisk. The area on a
fixed disk that temporarily stores
instructions or data currently being run.
See also minidisk.

pagination. The process of adjusting
text to fit within margins and/or page
boundaries.

paging. The action of transferring
instructions, data, or both between real
storage and external page storage.

parallel processing. The condition in
which multiple tasks are being performed
simultaneously within the same activity.

parameter. Information that the user
supplies to a panel, command, or function.

parent. Pertaining to a secured resource,
either a file or library, whose user list is
shared with one or more other files or
libraries. Contrast with child.

parent directory. The directory one
level above the current directory.

partition. See minidisk.

password. A string of characters that,
when entered along with a user
identification, allows an operator to sign
on to the system.

password security. A program product
option that helps prevent the unauthorized
use of a display station, by checking the
password entered by each operator at
sign-on.

Glossary X-17

path name. See full path name and
relative path name.

pattern-matching character. Special
characters such as * or ? that can be used
in search patterns. Some used in a file
specification to match one or more
characters. For example, placing a ? in a
file specification means any character can
be in that position. Pattern-matching
characters are also called wildcards.

permission code. A three-digit octal
code, or a nine-letter alphabetic code,
indicating the access permissions. The
access permissions are read, write, and
execute.

permission field. One of the
three-character fields within the
permissions column of a directory listing
indicating the read, write, and run
permissions for the file or directory owner,
group, and all others.

phase. One of several stages file system
checking and repair performed by the fsck
command.

physical device. See device.

physical file. An indexed file containing
data for which one or more alternative
indexes have been created.

physical record. (1) A group of records
recorded or processed as a unit. Same as
block. (2) A unit of data moved into or
out of the computer.

PID. See process ID.

X-I8 Using the Operating System

pipe. To direct the data so that the
output from one process becomes the input
to another process.

pipeline. A direct, one-way connection
between two or more processes.

pitch. A unit of width of typewriter type,
based on the number of times a letter can
be set in a linear inch. For example,
10-pitch type has 10 characters per inch.

platen. The support mechanism for paper
on a printer, commonly cylindrical,
against which printing mechanisms strike
to produce an impression.

poin ter. A logical connection between
physical blocks.

port. (1) To make the programming
changes necessary to allow a program that
runs on one type of computer to run on
another type of computer. (2) An access
point for data input to or data output from
a computer system. See connector.

position. The location of a character in
a series, as in a record, a displayed
message, or a computer printout.

positional parameter. A shell facility
for assigning values from the command
line to variables in a program.

print queue. A file containing a list of
the names of files waiting to be printed.

printout. Information from the computer
produced by a printer.

priority. The relative ranking of items.
For example, a job with high priority in
the job queue will be run before one with
medi um or low priority.

priority number. A number that
establishes the relative priority of printer
requests.

privileged user. The account with
superuser authority.

problem determination. The process of
identifying why the system is not working.
Often this process identifies programs,
equipment, data communications facilities,
or user errors as the source of the
problem.

problem determination procedure. A
prescribed sequence of steps aimed at
recovery from, or circumvention of,
problem conditions.

procedure. See shell procedure.

process. (1) A sequence of actions
required to produce a desired result.
(2) An entity receiving a portion of the
processor's time for executing a program.
(3) An activity within the system begun
by entering a command, running a shell
program, or being started by another
process.

process accounting. An analysis of the
use each process makes of the processing
uni t, memory, and 110 resources.

process ID (PID). A unique number
assigned to a process that is running.

profile. (1) A file containing customized
settings for a system or user (2) Data
describing the significant features of a
user, program, or device.

program. A file containing a set of
instructions conforming to a particular
programming language syntax.

prompt. A displayed request for
information or operator action.

propagation time. The time necessary
for a signal to travel from one point on a
communications line to another.

qdaemon. The daemon process that
maintains a list of outstanding jobs and
sends them to the specified device at the
appropriate time.

queue. A line or list formed by items
waiting to be processed.

queued message. A message from the
system that is added to a list of messages
stored in a file for viewing by the user at
a later time. This is in contrast to a
message that is sent directly to the screen
for the user to see immediately.

quit. A key, command, or action that
tells the system to return to a previous
state or stop a process.

quote. To mask the special meaning of
certain characters; to cause them to be
taken literally.

random access. An access mode in
which records can be read from, written
to, or removed from a file in any order.

Glossary X-19

readonly. Pertaining to file system
mounting, a condition that allows data to
be read, but not modified.

recovery procedure. (1) An action
performed by the operator when an error
message appears on the display screen.
Usually, this action permits the program
to continue or permits the operator to run
the next job. (2) The method of returning
the system to the point where a major
system error occurred and running the
recent critical jobs again.

redirect. To divert data from a process
to a file or device to which it would not
normally go.

reference count. In an i-node, a record
of the total number of directory entries
that refer to the i-node.

relational expression. A logical
statement describing the relationship
(such as greater than or equal) of two
arithmetic expressions or data items.

relational operator. The reserved words
or symbols used to express a relational
condition or a relational expression.

relative address. An address specified
relative to the address of a symbol. When
a program is relocated, the addresses
themselves will change, but the
specification of relative addresses remains
the same.

relative addressing. A means of
addressing instructions and data areas by
designating their locations relative to
some symbol.

X-20 Using the Operating System

relative path name. The name of a
directory or file expressed as a sequence of
directories followed by a file name,
beginning from the current directory.

remote. Pertaining to a system or device
that is connected to your system through
a communications line. Contrast with
local.

reserved character. A character or
symbol that has a special (non-literal)
meaning unless quoted.

reserved word. A word that is defined in
a programming language for a special
purpose, and that must not appear as a
user-declared identifier.

reset. To return a device or circuit to a
clear state.

restore. To return to an original value
or image. For example, to restore a
library from diskette.

right adjust. The process of aligning
lines of text at the right margin or tab
setting such that the rightmost character
in the line or file is in the rightmost
position.

right justify. See right align.

right margin. The area on a page
between the last text character and the
right upper edge.

right-adjust. To place or move an entry
in a field so that the rightmost character

of the field is in the rightmost position.
Contrast with left-adjust.

root. Another name sometimes used for
superuser.

root directory. The top level of a
tree-structured directory system.

root file system. The basic AIX
Operating System file system, which
contains operating system files and onto
which other file systems can be mounted.
The root file system is the file system that
contains the files that are run to start the
system running.

routine. A set of statements in a
program causing the system to perform an
operation or a series of related operations.

run. To cause a program, utility, or
other machine function to be performed.

run-time environment. A collection of
subroutines and shell variables that
provide commonly used functions and
information for system components.

scratch file. A file, usually used as a
work file, that exists until the program
tha t uses it ends.

screen. See display screen.

scroll. To move information vertically or
horizontally to bring into view
information that is outside the display
screen boundaries.

sector. (1) An area on a disk track or a
diskette track reserved to record

information. (2) The smallest amount of
information that can be written to or read
from a disk or diskette during a single
read or write operation.

security. The protection of data, system
operations, and devices from accidental or
intentional ruin, damage, or exposure.

segment. A contiguous area of virtual
storage allocated to a job or system task.
A program segment can be run by itself,
even if the whole program is not in main
storage.

separa tor. A character used to separate
parts of a command or file.

sequential access. An access method in
which records are read from, written to, or
removed from a file based on the logical
order of the records in the file.

session records. In the accounting
system, a record of time connected and
line usage for connected display stations,
produced from log in and log out records.

set flags. Flags that can be put into
effect with the shell set command.

shared printer. A printer that is used by
more than one work station.

shell. See shell program.

shell procedure. A series of commands
combined in a file that carry out a
particular function when the file is run or
when the file is specified as an argument
to the sh command. Shell procedures are
frequently called shell scripts.

Glossary X-21

shell program. A program that accepts
and interprets commands for the operating
system (there is an AIX shell program and
a DOS shell program).

shell prompt. The character string on
the command line indicating the the
system can accept a command (typically
the $ character).

shell script. See shell procedure.

shell variables. Facilities of the shell
program for assigning variable values to
constant names.

size field. In an i-node, a field that
indicates the size, in bytes, of the file
associated with the i-node.

software. Programs.

sort. To rearrange some or all of a group
of items based upon the contents or
characteristics of those items.

source diskette. The diskette containing
data to be copied, compared, restored, or
backed up.

source program. A set of instructions
written in a programming language, that
must be translated to machine language
compiled before the program can be run.

special character. A character other
than an alphabetic or numeric character.
For example; *, +, and % are special
characters.

special file. Special files are used in the
AIX system to provide an interface to

X-22 Using the Operating System

input/output devices. There is at least one
special file for each device connected to
the computer. Contrast with directory and
file. See also block special file and
character special file.

spool files. Files used in the
transmission of data among devices.

standalone shell. A limited version of
the shell program used for system
maintenance.

standalone work station. A work
station that can be used to preform tasks
independent of (without being connected
to) other resources such as servers or host
systems.

standard error. The place where many
programs place error messages.

standard input. The primary source of
data going into a command. Standard
input comes from the keyboard unless
redirection or piping is used, in which
case standard input can be from a file or
the output from another command.

standard output. The primary
destination of data coming from a
command. Standard output goes to the
display unless redirection or piping is
used, in which case standard output can
be to a file or another command.

stanza. A group of lines in a file that
together have a common function.
Stanzas are usually separated by blank
lines, and each stanza has a name.

statement. An instruction in a program
or procedure.

status. (1) The current condition or
state of a program or device. For example,
the status of a printer. (2) The condition
of the hardware or software, usually
represented in a status code.

storage. (1) The location of saved
information. (2) In contrast to memory,
the saving of information on physical
devices such as disk or tape. See memory.

storage device. A device for storing
and/or retrieving data.

string. A linear sequence of entities such
as characters or physical elements.
Examples of strings are alphabetic string,
binary element string, bit string, character
string, search string, and symbol string.

suo See superuser.

subdirectory. A directory contained
within another directory in the file system
hierarchy.

subprogram. A program invoked by
another program, such as a subshell.

subroutine. (1) A sequenced set of
statements that may be used in one or
more computer programs and at one or
more points in a computer program. (2) A
routine that can be part of another
routine.

subscript. An integer or variable whose
value refers to a particular element in a
table or an array.

subshell. An instance of the shell
program started from an existing shell
program.

substring. A part of a character string.

subsystem. A secondary or subordinate
system, usually capable of operating
independently of, or synchronously with, a
controlling system.

superblock. The most critical part of the
file system containing information about
every allocation or deallocation of a block
in the file system.

superuser (su). The user who can
operate without the restrictions designed
to prevent data loss or damage to the
system (User ID 0).

superuser authority. The unrestricted
ability to access and modify any part of
the operating system associated with the
user who manages the system. The
authority obtained when one logs in as
root.

system. The computer and its associated
devices and programs.

system call. A request by an active
process for a service by the system kernel.

system customization. A process of
specifying the devices, programs, and
users for a particular data processing
system.

Glossary X-23

system date. The date assigned by the
system user during setup and maintained
by the system.

system dump. A copy of memory from
all active programs (and their associated
data) whenever an error stops the system.
Contrast with task dump.

system management. The tasks
involved in maintaining the system in
good working order and modifying the
system to meet changing requirements.

system parameters. See kernel
parameters.

system profile. A file containing the
default values used in system operations.

system unit. The part of the system that
contains the processing unit, the disk
drives, and the diskette drives.

system user. A person who uses a
computer system.

target diskette. The diskette to be used
to receive data from a source diskette.

task. A basic unit of work to be
performed. Examples are a user task, a
server task, and a processor task.

task dump. A copy of memory from a
program that failed (and its associated
data). Contrast with system dump.

terminal. An input/output device
containing a keyboard and either a
display device or a printer. Terminals
usually are connected to a computer and

X-24 Using the Operating System

allow a person to interact with the
computer.

text. A type of data consisting of a set of
linguistic characters (for example,
alphabet, numbers, and symbols) and
formatting controls.

text application. A program defined for
the purpose of processing text data (for
example, memos, reports, and letters).

text editing program. See editor and
text application.

texttab. A kernel parameter establishing
the size of the text table, in memory, that
contains one entry each active shared
program text segment.

trace. To record data that provides a
history of events occurring in the system.

trace table. A storage area into which a
record of the performance of computer
program instructions is stored.

track. A circular path on the surface of
a fixed disk or diskette on which
information is magnetically recorded and
from which recorded information is read.

trap. An unprogrammed,
hardware-initiated jump to a specific
address. Occurs as a result of an error or
certain other conditions.

tree-structured directories. A method
for connecting directories such that each
directory is listed in another directory
except for the root directory, which is at
the top of the tree.

truncate. To shorten a field or statement
to a specified length.

typematic key. A key that repeats its
function multiple times when held down.

typestyle. Characters of a given size,
sty Ie and design.

Uid. See user number.

update. An improvement for some part of
the system.

user. The name associated with an
account.

user account. See account.

user ID. See user number.

user name. A name that uniquely
identifies a user to the system.

user number (Uid). (1) A unique
number identifying an operator to the
system. This string of characters limits
the functions and information the operator
is allowed to use. The Uid can often be
substituted in commands that take a user's
name as an argument.

user profile. A file containing a
description of user characteristics and
defaults (for example, printer assignment,
formats, group ID) to be conveyed to the
system while the user is signed on.

utility. A service; in programming, a
program that performs a common service
function.

valid. (1) Allowed. (2) True, in
conforming to an appropriate standard or
authority.

value. (1) In Usability Services,
information selected or typed into a
pop-up. (2) A set of characters or a
quantity associated with a parameter or
name. (3) In programming, the contents
of a storage location.

variable. A name used to represent a
data item whose value can change while
the program is running. Contrast with
constant.

verify. To confirm the correctness of
something.

ver.·sion. Information in addition to an
object's nalne that identifies different
modification levels of the same logical
object.

virtual device. A device that appears to
the user as a separate entity but is
actually a shared portion of a real device.
For example, several virtual terrninals
may exist simultaneously, but only one is
active at any given time.

virtual machine. A functional
simulation of a computer and its related
devices.

virtual machine interface (VMI). A
software interface between work stations
and the operating system. The VMI
shields operating system software from
hardware changes and low-level interfaces
and provides for concurrent execution of
multiple virtual machines.

Glossary X-25

virtual resource manager (VRM). A
set of progranls that manage the hardware
resources (main storage, disk storage,
display stations, and printers) of the
system so that these resources can be used
independently of each other.

virtual resources. See virtual resource
rnanager.

virtual storage. Addressable space that
appears to be real storage. Froln virtual
storage, instructions and data are mapped
into real storage locations.

virtual terminal. Any of several logical
equivalents of a display station available
at a single physical display station.

Volume ID (Vol ID). A series of
characters recorded on the diskette used
to identify the diskette to the user and to
the system.

VRM. See virtual resource manager.

X-26 Using the Operating System

wildcard. See pattern-matching
characters.

word. A contiguous series of 32 bits (4
bytes) in storage, addressable as a unit.
The address of the first byte of a word is
evenly divisible by four.

work file. A file used for temporary
storage of data being processed.

work station. A device at which an
individual may transmit information to, or
receive information from, a computer for
the purpose of performing a task, for
example, a display station or printer. See
programmable work station and dependent
work station.

working directory. See current
directory.

wrap around. Movement of the point of
reference in a file from the end of one line
to the beginning of the next, or from one
end of a file to the other.

I Special Characters I

; command separator 5-6
separator

, 5-6
< 4-9

redirecting
> 4-9

(Left)Alt key 1-14
II operator 5-7
& operator 4-11

background
running 4-11

&& operator 5-7
$ prompt 1-5
> 4-9

redirecting
> > 4-9

> > 4-9
background

ampersand (&) operator 4-11
running 4-11

prompt 1-5

absolute permission assignment 3-48
absolute assignment

to remove permissions 3-48
specifying

with octal numbers 3-48
ampersand (&) operator 4-11
append subcommand A-7

application program
definition iii

arguments
command 1-8

autologin 1-4

background processes
canceling 4-13
checking status 4-12
output redirection 4-11
running 4-11
starting 4-11

backing up
files 3-39
media 3-39

diskette 3-39
tape 3-39

restoring 3-39
Backspace key 1-8
backup command

backing up
individual 3-40

restoring
indi vidual 3-41

using 3-40
buffer

Index

changing position in A-19, A-20, A-21
absolute position A-19
context searching A-22
locating text A-22
moving backward more than one
line A-21

Index X-27

moving backward one line A-20
moving forward more than one
line A-20

moving forward one line A-20
relative position A-19

buffer, edit A-5

cd command
changing

requirements 3-16
directories

relative names 3-18
using 3-16

change (c) subcommand A-36, A-37
replacing a single line A-36
replacing multiple lines A-37

character strings, replacing A-25
characters

removing A-28
reserved 6-34
special 6-34

chgrp command
change mode (chmod) command 3-45
directory permissions 3-45

changing 3-45
file permissions

changing 3-45
permissions 3-45

changing 3-45
displaying 3-44

using 3-50
chmod command

changing directory permissions 3-47
changing owner

chown 3-42
changing permissions 3-49
using 3-46

chown command

X-28 Using the Operating System

changing group
chgrp 3-42

using 3-50
command

editing 1-20
environment 6-8
interpreter iii

csh iv
DOS Services IV

separator 5-6
Special Features

fast path vii
quick reference boxes Vll

type styles vii
command programming language

shell 5-3
commands

append (a) A-7
arguments
backup 3-39
canceling

kill command 4-13
cancelling 1-9
cd 3-16
change (c) A-36
change mode (chmod) 3-45
chgrp 3-42
chmod 3-42
chown 3-42
condi tional 5-7
control

case 6-24
shell 6-22, 6-24, 6-25, 6-26

correcting typing mistakes in 1-8
cp 3-31
current

listing contents of 3-12
definition 1-8
del 3-20
delete (d) A-31
diff 5-4
echo 5-15

edit (e) A-13, A-14
edit (ed) A-13
entering 1-8
exit 6-24
export 6-14
exporting variables 6-14
flags 1-8
for 6-25
format 3-39
grouping 5-9, 5-10
grouping symbols 5-9

() 5-9
{} 5-9
braces 5-9

if 6-26
insert (i) A-38
kill 4-13, 4-14

termination message 4-14
listing contents

using path names 3-13
In 3-27
Is 3-12, 3-14

flags 3-14
Is command

-1 3-14
mkdir 3-10
move (m) A-34
mv 3-34
passwd 1-10
password 1-11
pg 2-5
pr 2-6, 2-7
print 2-9, 2-10

flags 2-10
print (p) A-8
ps 4-5
pwd 3-6
quit (q) A-II
read 6-17
read (r) A-15
remove directory 3-23
remove file 3-20

restore 3-39
retyping 1-8
rm 3-20
rmdir 3-23
set 6-17
shift 6-15
shutdown 1-6
specifying

with letters and symbols 3-46
with octal numbers 3-46

stopping 1-9
stty 1-18
substitute (s) A-25, A-28

removing characters with A-28
special characters A-28

substitution 6-13
transfer (t) A-41
trap 6-24
until 6-26
using 1-8
using multiple 5-6
while 6-26
write (w) A-9

condi tional command running 5-7
context search A-29

with substitute (s) subcommand A-29
context searching A-22
copying lines A-41
correcting mistakes

in commands 1-8
backspace 1-8

correcting typing errors A-8
cp command

copying
cp command 3-31

copying files 3-32
in the current directory 3-32
into other directories 3-32
to other directories 3-32

current.
copying files in 3-32

move (mv) command 3-34

Index X-29

moving directories 3-34
moving files 3-34
renaming directories 3-34
use in current directory 3-32
using 3-31
warning 3-32

loss of data 3.:32
creating and editing files A-I
creating and editing text files A-44
creating and saving text files A-6
creating text files A-6
Crosstalk XVI 1-17
Ctrl key 1-15
current directory

changing 3-16
checking 3-6
copying files in 3-32
defini tion 3-5
listing contents of 3-12
removing 3-25
return to login directory 3-16

current line A-17, A-25, A-31
deleting A-31
substitutions on A-25

cursor
definition 1-15
movement keys 1-15

Cursor Down key 1-15
Cursor Left key 1-15
cursor movement keys

Cursor Down 1-15
Cursor Left 1-15
Cursor Right 1-15
Cursor Up 1-15
~ 1-15
i 1-15
! 1-15
~ 1-15

Cursor Right key 1-15
Cursor Up key 1-15

X-30 Using the Operating System

DEC VT100 1-16
DEC VT220 1-16
delete (d) subcommand A-31, A-32

deleting a specific line A-32
deleting current line A-31
deleting multiple lines A-32

deleting a specific line A-32
deleting current line A-31
deleting multiple lines A-32
delimiters

shell
{} 6-6
braces 6-6
quoting in 6-6

variables
delimiters 6-6
keyword arguments 6-8
quoting 6-6

directories
changing 3-16
changing permissions 3-47
checking current 3-6
copying files 3-32
creating 3-10
current 3-12
current. 3-32
definition 3-5
differences from files 3-5
dot 3-18
dot dot 3-18
file system 3-4, 3-5
full path name 3-8
listing 3-12
listing contents 3-13
Is command 3-12
name 3-15
names 3-11
parent 3-7
pa th name 3-7

permISSIons 3-42, 3-45
changing 3-45

purpose 3-10
recursive removal 3-21
relative names 3-18
relative path names 3-8
removing 3-23
removing current 3-25
removing multiple 3-21
renaming 3-35
rmdir 3-23
subdirectories 3-5
working 3-5

diskette
back up medium 3-39
fonnatting 3-39

display station
Backspace 1-21
characteristics 1-18
command line editing features
console 1-16
Crosstalk XVI 1-17
DEC VT100 1-16
DEC VT220 1-16
Delete 1-22
display after 1-21
display all 1-21
display before 1-20
display character 1-20
+- 1-21
erase character 1-21
erase command line 1-22
Esc 1-22
features 1-13
F1 1-20
F2 1-20
F3 1-21
F4 1-21
F5 1-21
i 1-22
IBM 3161 ASCII Display 1-16
Insert 1-21

insert character 1-21
keyboard reference chart 1-17
load buffer 1-21
main 1-16
! 1-22
problems with 1-16
resetting characteristics 1-16
skip character 1-22
special functions 1-15
special keys 1-13
~ 1-20
types 1-16
virtual terminal feature 1-23

displaying
files 2-1, 2-3

displaying files 2-5
displaying

pg command 2-5
without formatting 2-5

printing
formatting 2-6

dot (current line) A-17
DUMP 1-15

+- key 1-15
echo command

with pattern-matching characters 5-15
ed A-6

append subcommand A-7
buffer

absolute position A-19
changing position in A-17, A-19
context searching A-22
finding position in A-17, A-18
locating text A-22
moving backward more than one
line A-21

moving backward one line A-20

Index X-31

moving forward more than one
line A-20

moving forward one line A-20
relative position A-19

change (c) subcommand A-36, A-37
replacing a single line A-36
replacing multiple lines A-37

changing a single line A-36
changing multiple lines A-37
changing position in buffer A-19

absolute position A-19
relative position A-19

changing strings A-27
every occurrence A-27
on a line A-27
on multiple lines A-27

character strings, replacing A-25
commands A-13, A-43

append (a) A-7
edit (ed) A-13
system, from ed A-43

context search A-29
with insert (i) subcommand A-39
with substitute (s)
subcommand A-29

context searching A-22, A-23
backward A-23
changing direction A-23
changing direction of A-23
forward A-22
same string search, backward A-23
same string search, forward A-23

copy lines A-41
to bottom of buffer A-41
to top of buffer A-41

copying lines A-41
correcting typing errors A-8, A-25
creating text files A-6

steps A-6
current line A-17, A-25, A-31

changing A-17
deleting A-31

X-32 Using the Operating System

displaying A-17
substitutions on A-25

delete (d) subcommand A-31, A-32
deleting a specific line A-32
deleting current line A-31
deleting multiple lines A-32

deleting a specific line A-32
deleting current line A-31
deleting multiple lines A-32
displaying text A-8
dot (current line) A-17
edit (e) subcommand A-14
edit (ed) command A-13
files

reading A-13, A-14, A-15
finding position in buffer A-18
global (g) operator A-27
insert (i) subcommand A-38, A-39

context search with A-39
using line numbers with A-38

inserting lines A -38
using line numbers A-38

inserting new lines A-38
leaving the program A-II
line A-32

deleting A-32
lines A-36

copying A -41
replacing A-36

locating text A-22
making substitutions A-25, A-26, A-27

on a specific line A-26
on multiple lines A-27
on the current line A-25

move (m) subcommand A-34
moving text A-34, A-35

to bottom of buffer A-35
to top of buffer A-34

multiple line substitutions A-27
multiple lines A-32

deleting A-32
print subcommand A-8

quit (q) subcommand A-II
read (r) subcommand A-15
reading files A-13

sub commands A-13
removing characters with A-28
removing lines A-31
replacing a single line A-36
replacing character strings A-25
replacing lines A-36
replacing multiple lines A-37
saving text A-9, A-10, A-II

different file name A-10
part of a file A-II
same file name A-9

saving text files A-6
steps A-6

search direction
changing A-23

special characters
substitute (s) subcommand A-28

specific line A-26
substitutions on A-26

starting A-7
sub commands

change (c) A-36
delete (d) A-31
edit (e) A-14
insert (i) A-38
move (m) A-34
print (p) A-8
quit (q) A-II
read (r) A-15
substitute (s) A-25
transfer (t) A-41
write (w) A-9

substitute (s) subcommand A-25, A-28,
A-29

context search with A-29
line beginning A-28
line end A-28
removing characters with A-28

substitutions at the beginning of a
line A-28

substitutions at the end of a
line A-29

system commands A-43
text A-34

displaying A-8
moving A-34

transfer (t) subcommand A-41
copy to bottom of buffer A-41
copy to top of buffer A-41

typing errors, correcting A-8
warnings

saving buffer contents A-14
write (w) subcommand A-9
write subcommand A-II

warning A-II
ed, using A-1-A-44
edit (e) command A-13
edit (e) subcommand A-14
edit (ed) command A-13
edit buffer A-5
editing

command line 1-20
program 1-3

editing and creating files A-I
editing and creating text files A-44
editor, line A-1-A-44
END OF FILE 1-15
Enter key 1-15
environment

command 6-8
keyword arguments 6-8

Esc key 1-15
examples

color in viii
how to use viii
Special Features

color viii
execute permission 3-46

Index X-33

fast path vii
Special Features

examples viii
file

copying 3-31
creating samples with ed 2-4
date created 3-15
definition 1-3, 3-3
determining type 3-5
display 2-3
displaying 2-5
formatting 2-6, 2-7
name 3-15, 3-28
names 3-4, 3-30
number of characters 3-15
permission 3-15
permissions 3-42
pr command 2-6
printing 2-3, 2-6
text editing

ed 1-3
INed 1-3
vi 1-3

time created 3-15
type 3-15
warning, concurrent access 3-42

file names 3-4
names

cases sensitive 3-4
characters in 3-4
conventions 3-4

file system
AIX 3-3
backing up files 3-39
cd command 3-16
change directory command 3-16
copying files 3-31, 3-32
cp command 3-31
defini tion 3-3

X-34 Using the Operating System

directories 3-4, 3-5
listing contents 3-12

file names 3-4
file permissions 3-45
files 3-4, 3-42
full path name 3-8
hierarchy 3-6
levels in 3-7
linking files 3-27, 3-28
Is command 3-12, 3-14

flags 3-14
parent directory 3-7
path names 3-4, 3-6, 3-8

full 3-8
permissions 3-44
removing directories 3-21, 3-23
removing files 3-20, 3-21
removing links 3-29
renaming files 3-34
rm command 3-20, 3-21
rmdir command 3-23
root directory 3-7
structure 3-6
tree structure 3-4, 3-6

files
as input 4-9
backing up 3-39, 3-40
changing group 3-42, 3-50
changing owner 3-42
changing owners 3-50
changing permissions 3-42
copying 3-31
display

formatted 2-3
unformatted 2-3

displaying 2-1
for output 4-10
i-numbers 3-28
moving 3-34, 3-37
moving to other directories 3-37
permissions 3-42-3-50

changing 3-45

printing 2-1, 2-9, 2-10
formatted 2-3
print command 2-9
print command flags 2-10
unformatted 2-3

protections 3-42
reading A-13, A-14, A-15
recursive removal 3-21
removal 3-22
removing 3-20, 3-21

del command 3-20
removing multiple 3-21
renaming 3-34
restoring 3-41

files, creating and editing A-I
filters 5-4

diff
used as filter 5-4

filters
using other commands as 5-4

pi peline 5-4
pIpes

pipeline 5-4
flags

command 1-8
command line 6-32
Is command 3-14, 3-18

-a 3-14
-r 3-14
-t 3-14

pr command 2-7
+ 2-7
-d 2-7
-h 2-8
-1 2-7
-m 2-7
- num 2-7
-0 2-7
-s 2-8
-t 2-8

-w 2-7
print command 2-9

-ca 2-10
-cp 2-11
-nc 2-10
-no 2-10
-q 2-10
-tl 2-11
-to name 2-11

rm command 3-22
shell 6-31

set 6-31
format command

using 3-39
formatting files 2-6

formatting
pr command flags 2-7

pr
flags 2-7

pr command 2-6
full path name

definition 3-8
path names

relative 3-8
full path names 3-8

global (g) operator A-27
group name

date created
shown by Is 3-15

name
shown by Is 3-15

number of characters
shown by Is 3-15

shown by Is 3-15
time created

shown by Is 3-15

Index X-35

hardware
definition III

i key 1-15
i-numbers

links to file names 3-30
name

relationship to i-number 3-28
relationship to file name 3-28

IBM RT PC Keyboard 1-14
IBM 3161 ASCII Display 1-16
inline input 6-28

here documents 6-28
input

inline 6-28
reading from a file 4-9
redirecting 4-9
standard 4-9

insert (i) subcommand A-38
INTERRUPT 1-15

kernel
definition III

keyboard
IBM RT PC Keyboard 1-14

illustration 1-14
keyboard reference chart 1-17
types 1-16

x-a6 Using the Operating System

keyboard reference chart 1-17
characteristics

setting 1-18
keys

(Left)Alt 1-14
Backspace 1-8

correcting typing errors 1-8
Ctrl 1-15
Cursor Down 1-15
Cursor Left 1-15
cursor movement 1-15
Cursor Right 1-15
Cursor Up 1-15
DUMP 1-15
~ 1-15
END OF FILE 1-15
Enter 1-15
Esc 1-15
i 1-15
INTERRUPT 1-15
NEXT WINDOW 1-15
! 1-15
QUIT WITH DUMP 1-15
RESUME OUTPUT 1-16
SOFT IPL 1-16
special 1-13
special functions 1-15
STOP OUTPUT 1-16
~ 1-15

keyword arguments
as value of variable 6-5
delimiters

{} 6-6
braces 6-6

en vironmen t 6-8
variables

used for path names 6-5
kill command 4-13, 4-14

termination message 4-14

line editor, using A-I-A-44
lines

copying A-41
deleting a line A-32
deleting multiple A-32
replacing A-36

linking files 3-27
linking files

i-numbers 3-28
links

definition 3-27
operation 3-27
purpose of 3-27
removal 3-20
removing 3-29
restrictions 3-27
shown by Is 3-15

In command
connecting files and file names 3-27
using 3-27

locating text A-22
logging in

$ prompt 1-5
autologin 1-4, 1-5
directory 3-5
login prompt 1-4
password 1-5
shell prompt 1-5
user name 1-5

logging out
powering off 1-6

shutdown 1-6
shutdown 1-6
stopping the system 1-6
system running 1-6

login directory
return to 3-16

Is command 3-15
checking file permissions 3-42
flags

-a 3-18
information returned 3-15
Is command

-a 3-18

main display station 1-16
matching patterns

See pattern-matching characters
mkdir command
move (m) subcommand A-34
moving text A-34
multiple line substitutions A-27
mv command

files to other directories 3-37
moving files 3-34
rename (mv) 3-34
renaming

limitations 3-35
renaming directories 3-35

limitations 3-35
renaming files 3-34
using 3-34

NEXT WINDOW 1-15, 1-24

Index X-37

~ key 1-15
octal numbers

changing
chmod command 3-46

changing permissions
with octal numbers 3-49

for setting permissions 3-46
in permission setting 3-48
octal numbers

changing with chmod 3-49
relation to permission field 3-49

permission field
relation to octal numbers 3-49

operating system
commands 1-8
defini tion iii
entering commands 1-8
logging in 1-4
parts iii
using iv, 1-1-6-36

operators
ed

global (g) A-27
output

redirecting 4-9, 4-10
standard 4-9

output redirection
background

checking status 4-12
background processes 4-11
checking status

ps command 4-12

x-as Using the Operating System

parameter substitution 6-11
parent directory 3-7
passwd command 1-10
password

changing 1-10
definition 1-10
incorrect 1-5
prompt 1-5
requirements 1-11
setting 1-10
using passwd 1-11

path names
convention 3-7
file system 3-4
file system structure and 3-6
full 3-8
function 3-7
relative 3-8
use with cp command 3-32

pattern-matching 5-15
naming files 5-14

pa ttern-rna tching characters
In command 3-27
removal

interactive 3-22
rm -i command 3-22

removing directories
multiple 3-21

removing files 3-21
multiple 3-21
removing directories 3-21

rm command
* 3-21
? 3-21
[...] 3-21
-i 3-22

shell 5-13
use in removing directories 3-24
with the rm command 3-21

warning 3-21
with the rmdir command 3-24

permlSSIons
absolute assignment 3-48
changing 3-42, 3-46
chmod operations 3-46
classes of users 3-46
directory 3-47
file 3-42
octal numbers 3-49
permission field 3-49
permissions

checking 3-42
specifying 3-46, 3-48
specifying with letters 3-46
types 3-46

pipes 5-4
posi tional parameters 6-9

shell 6-4
prin t (p) command A-8
prin t command 2-9
printing

files 2-1, 2-3
multiple printers 2-9

printing files 2-10
procedures

shell 5-16, 6-31
processes

about this chapter 4-3
background 4-11, 4-12

output redirection 4-11
starting 4-11

canceling 4-7, 4-13
checking status 4-5
COMMAND 4-6
commands 4-13

kill 4-13
definition 4-4
elapsed time 4-6
files as input 4-9

information about 4-6
kill command 4-13, 4-14

termination Inessage 4-14
Inultiple 4-4
output 4-11
PID 4-5
process identification number 4-5
process status (ps) command 4-12

-p flag 4-12
redirecting output 4-10
relationship to programs 4-4
status 4-5, 4-12, 4-13

PID 4-13
terminal designation 4-6
TIME 4-6
TTY 4-6
understanding 4-1

programs
application 4-4

defini tion iii
conlmands 4-4
definition 4-4
editing 1-3
relationship to processes 4-4
text editing 1-3

prompts
$ 1-5
1-5
shell 1-5

protections
file 3-42
from concurrent file changes 3-42

ps command
checking background process
status 4-12

status
information displayed 4-5

types of information 4-6
using 4-5

pwd command 3-6

Index X-39

queues
printer 2-9

quick reference boxes vii
quit (q) command A-11
QUIT WITH DUMP 1-15

to cancel processes 4-7
using 4-7

quoting 5-11, 5-12

r permission 3-46
read (r) command A-13
read (r) subcommand A-15
read permission 3-46
reading files A-13, A-14, A-15
redirecting

input 4-9
output 4-9

relative path names
creating 3-18
curren t directory

relationship to 3-8
dot 3-8
dot dot 3-8
mkdir command 3-10

creating 3-10
types 3-8
using 3-18

removing characters A-28
removing directories 3-23

removing directories
multiple 3-24

removing file links 3-29
names

links to i-numbers 3-30
renaming directories 3-35

X-40 Using the Operating System

moving
between directories 3-37

restoring files 3-39
backup 3-39

replacing character strings A-25
reserved characters 6-34

shell 5-11
< 5-11
& 5-11
* 5-11
> 5-11

C) 5-11
restore command

files 3-42
permissions 3-42
protections 3-42

protections 3-42
with individual files 3-41

restoring
backup 3-39
files 3-39

RESUME OUTPUT 1-16
rm command

-i flag 3-22
interactive removal 3-22
operation 3-20
pattern-matching characters 3-21
-r flag 3-21
recursive directory removal 3-21
recursive file removal 3-21
removal of links 3-20
removing

multiple 3-21
removing files

multiple 3-21
removing links 3-29
removing multiple files 3-21
using 3-20
warning 3-22

rmdir command
pattern-matching 3-24
removing current directory 3-25

removing directories 3-24
removing multiple directories 3-24
removing one directory 3-24
using 3-23

root directory
/ 3-7
place in file system 3-7

s permission 3-46
sample files

creating with ed 2-4
displaying

pg command 2-5
save text permission 3-46
saving text A-9, A-10, A-II
saving text files A-6
set flags 6-31
set group id permission 3-46
set user id permission 3-46
shell

II operator 5-7
&& operator 5-7
advanced features 6-1
command lists 5-6
command programming language 5-3
commands

control 6-22, 6-24, 6-25, 6-26
condi tional commands 5-7
connecting commands 5-6

; command separator 5-6
control commands 6-22

break 6-22
case 6-24
continue 6-22
exit 6-24
for 6-25
if 6-26
trap 6-24

until 6-26
while 6-26

debugging procedures 6-32
delimi ters 6-6
error output 6-29

redirecting 6-29
standard 6-29

filters 5-4
definition 5-4

flags 6-31
command line 6-32
set 6-31

grouping commands 5-9, 5-10
braces 5-10
parentheses 5-9

here documents 6-28
inline input 6-28
matching patterns 5-13
multiple commands 5-6
operators 5-6

; 5-6
I 5-6
II 5-6
& 5-6
&&5-6

pattern-matching 5-13, 5-14, 5-15
* 5-13
? 5-13
[.-.] 5-13
[...] 5-13
[1...] 5-13
asterisk 5-13
naming files with 5-14
question mark 5-13
using echo 5-15

pipes 5-4
definition 5-4

procedures 5-16, 5-17, 6-31, 6-32
debugging 6-32
running 5-16
writing 5-16, 5-17

processes 5-1

Index X-41

programs 5-16
writing 5-16

quoting 5-11, 5-12
, , (single quotes) 5-11, 5-12
" " (double quotes) 5-11, 5-12
backslash 5-11
double quotes 5-12
\ 5-11
single quotes 5-12

redirecting input 4-9
redirecting output 4-9
reserved characters 5-11, 6-34
reserved words 6-34
special characters 6-34
variables 6-4, 6-5, 6-6, 6-8, 6-17

command substitution 6-13
how used 6-11
parameter substitution 6-11
posi tional parameters 6-9
special 6-19
the export command 6-14
the read command 6-17
the set command 6-17
the shift command 6-15
user-defined 6-4

shell prompt 1-5
shutdown command 1-6
SOFT IPL 1-16
software

definition iii
special characters

substitute (s) subcommand A-28
special functions

DUMP 1-15
END OF FILE 1-15
INTERRUPT 1-15
NEXT WINDOW 1-15
QUIT WITH DUMP 1-15
RESUME OUTPUT 1-16

X-42 Using the Operating System

SOFT IPL 1-16
special functions

using 1-15
STOP OUTPUT 1-16

special shell variables 6-19
standard error 6-29
standard input

redirecting 4-9
< 4-9
notation 4-9

standard output
redirecting 4-9, 4-11

starting ed A-7
STOP OUTPUT 1-16
stopping commands 1-9

cancelling commands 1-9
stopping the system

shutdown authority 1-6
shutdown message 1-6
warning 1-6

stty command
characteristics

setting 1-18
flags 1-18

-a 1-18
echoe 1-18
enhedit 1-18
length 1-18
page 1-18

subdirectories 3-5
substitute (s) subcommand A-25, A-29

with context search A-29
substitutions on multiple lines A-27
system

shutdown
message 1-6

stoppin~
warnIng 1-6

~ key 1-15
t permission 3-46
text A-34

moving A-34
saving A-9, A-I0
saving part of a file A-II

text editing programs 1-3
text files, creating and editing A-44
transfer (t) subcommand A-41
tree structure

file system 3-4
TTY

canceling
QUIT WITH DUMP 4-7

COMMAND
process name 4-6

in process status 4-6
TIME

in process status 4-6
typing errors

correcting A-8

user-defined variables
shell 6-4

positional parameters 6-4
user-defined 6-4

user name
shown by Is 3-15

using ed A-I-A-44
U sing the AIX Operating System

About This Book iii
Before You Begin v
How to Use This Book v
Related Books ix
Special Features vii, viii

Who Should Read This Book i v

variables
command substitution 6-13
exporting 6-14
how the shell uses 6-11
parameter substitution 6-11
posi tional parameters 6-9
shell 6-4, 6-6

user-defined 6-4
special shell 6-19
the read command 6-17
the set command 6-17
the shift command 6-15
variables

definition 6-4
keyword arguments 6-5
posi tional parameters 6-4
user-defined 6-4

virtual terminals
definition 1-23
maximum number open 1-24
NEXT WINDOW 1-24
opening 1-24
using 1-23

w permission 3-46
warnings

concurrent file access 3-42
cp command 3-32
ed write subcommand A-II
pattern-matching with rm 3-21
rm command 3-22
saving buffer contents A-14

Index X-43

stopping the system 1-6
system shutdown 1-6

working directory
See also current directory
checking

pwd 3-6
write (w) subcommand A-9
wri te permission 3-46

X-44 Using the Operating System

writing shell procedures 5-17

x permission 3-46
directory

changing 3-47

--------- -------- - ---- - - ----------_.-
Reader's Comment Form

U sing the AIX Operating
System

The IBM RT PC
Family

SX23-0794-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

I
L __ _

I

Q)

c
::i
C)

c
o
~
"0

"0
u.

o
:::J

U

ad!? I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

!llrlD1L' 1n,.1 n" ~~n~1 •

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO.:!

IBM RT PC Using the AIX Operating System SC23-0794

Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may usc this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

Y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

Y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they arc needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size. color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _
r adel pue PIO.:!

OJ
c

:.J
en
c
o
~
"'0

"0
LL

o
.....
::J

U

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

adel pue PIO.:!

@ IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
Department 997. Building 998
11400 Burnet Rd.
Austin, Texas 78758

Printed in the
United States of America

SC23-0794-0

-~---~-~ - -_ -----= ::.=-:. ::= ------
-~-.-

SC23-0794-00

92X1266

