Programming Systems Analysis Guide

IBM 7030 Master Control Program (MCP)

PREFACE

This manual was prepared by Programming Systems
to provide detailed information on the internal logic
of the IBM 7030 Master Control Program (MCP).

It is intended for systems programming personnel
who are responsible for diagnosing system operation
or for adapting the programming system to special
usage.

Certain knowledge is prerequisite for the full uti-
lization of this manual. It is assumed that the reader
has a basic knowledge of the IBM 7030 and its basic
language, STRAP II. Such background knowledge can
be obtained from the IBM 7030 Data Processing Sys-
tem Reference Manual, Form A22-6530-2, and from
the IBM Reference Manual, STRAP II 7030 Assembly
Program, Form C28-6129. It is also assumed that
the reader has a general knowledge of MCP as des-
cribed in the IBM 7030 Data Processing System
Master Control Program Reference Manual,

Form C22-6678,

INTRODUCTION

GENERAL DESCRIPTION OF MCP., . .
The Logical Structure of MCP . . .
Interrupt Control Programs
Service Routines
Major Packages.
Program Control and Priority . . .
Program Organization
Memory Allocation
The MCP Communication Region.
Control of Symbolic I-O.

INTERRUPT CONTROL

The Interrupt Tables

Error Interrupts
Machine Errors
Program Errors

Maskable Interrupts [
The Program Table of Exits (PTOE) N
The MCP PTOE and the Standard Fixup .
The Maskable Interrupt Routine . . .

TS Maskable Interrupt
Other Maskable Interrupts
The EXE Interrupt and Combinations .
EXE Interrupt Alone
TS Interrupt, $EXE Set
I-O Interrupt, $EXE Set

TS Interrupt, an I-O Indicator On, $EXE On

Return After Maskable Interrupt . . .
I-O Interrupts

The Receptor « « . « « « .+ .
The Receptor Main Flow.
The Channel Signal Search . . .
Search and Unstack . .

Channel Signal and Console Unstack Control

The Conceptor o e e e
The Channel Signal Entry . e e e
The Set-Up Interrupt Entry
The Actuator Entty

The IF Interrupt - The Dispatcher . . .

The Pseudo-Ops« . . .

The Tentacle Table

The IF Analyzer

Identifier Routine

The Service-Op Return Routine . .

The Return Routine
MCP Features and the Return Routine
The Logic of the Return Routine . .
ErrorContyol
The Prime Routine

SYSTEMS OPERATION PROGRAMS . . .
System Input Modes
Overlapped Modes.
Bypass Mode . . . P
Use of the Input Program [
JobControl« . .+ .
Job Control, Phase 1 (JC1)
Special Returns for JC1
Miscellaneous JC1 Functions . . .
Job Control, Phase 4 (JC4)

0 ©o 00 00 00

10
10
10

12
12
12
12
13
14
14
15
15
15
17
17
17
17
17
18
18
18
18
20
21
21
21
28
28
28
28
30
30
31
31
31
37
38
38
39
42
43

47
47
47
47
47
48
49
49
49
52

Major Package Pseudo-Ops Used by JC4
JC4 Operations .« . + « + .+
Beginning-of-Job
Bypass I-O Assignment
Overlapped I-O Assignment. . . .
Compiler Control o e e e e e
Error Control
Job Control Subroutines « o+ « « «
The Uncode Routine « + .« .« =«
Decode, Assign, Move
JC4 Print Program
Major Package Fetcher . e e
The Reel History Routine
Conversion Routines .
The Short Message Routine . .
Resume Load « .
The Resume Load Package
The MCP Loader . . « .« « « =«
Accounting Program Procedures (Logger)

Initial Program Load (IPL}
The Master IPL Tape « « « + + « &
The IPL Bootstrap C e e e e e
The Initialization Program

Control Cards . . . e e e

The I-O Status Table Set-up .
MCP 1-O Assignment . e e
Transfer to MCP . . :

IPL Frror Control

Restart + + « & o o o &« & s
Restart Bootstrap . . « . < . .
Internal Restart .

The Restart Program

The Command Package . « =
Command Mainstream . . .
Sources . . . P
SCOMD Pseudo- Op e e e e e
Mode Control Commands . .« . . &
The BYPASS Command
The ONLINE Command
The OFFLINE Command
Job Control Commands+ .
The CLOCK Commands
The COMMENT Command
The REJECT Command
The EOJ Command
The ABEOJ Command
1-O Control Commands
The OUTPUT Command . I
The EOF Command
The REWIND Command
The I-O CHANGE Command . . .
The Special Assignment Routine .

SYSTEM INPUT-OUTPUT
The Input Program+ .
System Input Modes
Overlapped Operation
Bypass Operation . . e
Input Program Pseudo- Ops [
General Organization.
The Functional Programs
The Tape Switch Routines . . .

.

CONTENTS

.. .. 82

. e . . 56
e o+ . . 56
.« .« . 56
..« . 56
. . 65
. . 65

.« .+ . 66
. . . . 66
.+ . . 66
. . . . 83

. . . 83

. . 83

. . . 8

. . . 86
.+ . . 86
. . . . 86
. . . 88
e e o 95
e o . . 95
. . . 96
.. . . 96
.. . . 96
. . . . 96
... . 58
e e .. 98
e e .. 98
... 98
A 10 2]
..o 102
.. 102
N 0]
... . 102
... 107
. . 107
... . 107
A
. . . . 109
.. . . 109
P 5
coe e W 111
P 5§]
I 5 5]
I 5 5 |
.o 112

... W 112
oL w112
e ... 112

... L 112
... . 112
. e . . 116
. . 121

.. o123
... 123
.. 123
. 123

P -2
.. . . 124
... 124
... . 125

The Transition Routines. 125 Unload . « « « & « o « o + + & « e . . . 187

The I-OFixups + o + ¢ & « &« « « « . o« . 125 The Alter Tape Disposition Routine « « « « « + . . 190
Program Operation 125 The Rewind Routine« . « « 190
The Functional Program Operation 125 Unit Lights S -0
Control Tables. 126 Gong e e e v e e e e e e e e e w e .. 190
Transfer of Control 126 Density Change. « « « « « 190
Queues .« + .+ + . 4 . o o+ 4 e 126 Evenand Odd Parity + . . « « . . . 190
Parameter Flow 126 NOECCMode v v v v o o o o « 4 o« « « « « 191
Queue Manipulation 128 ECCMode + ¢« « « « o« o« « o o o o s o + o 191
Buffer Processing « . . .+ 130 Actuator Subroutines «.+ < 191
The Card Reader (CR) Program 131 Control Word Check 191
The Job Boundary Scan (SC) Program. 135 Status Evaluation« .« 191
The Write Tape (WT) Progrtam. 135 Verify. . . . + + « « +« « « « « .« . . . 195
The Read Tape (RT) Program 139 Write Label « « . « 195
The Scan Tape (ST) Program + 141 Space Label. . . . «+ .« « . .+ . . 19
The Request Processors (Eand Q) 141 SetDensity 195
The Tape Switch Program 145 ChangeMode 185
The Tape Switch Initiation Routines, . . 145 I-OReject Test« . . « « « < . . . 195
The Tape Switch Routines 146 EOP Test for SEOPI-O , 200
The Transition Routines T 1] I-O IndicatorCheck « . . .« . . 200
Online from Offline -- VONLIN 149 Symbolic I-O Control Routines 200
Online from Bypass -- VONLIB 149 I-O Definition Report. 200
Bypass from Online -- VBYPAN, . . 151 Change I-O Table of Exits 205
Bypass from Offline -- VBYPAF 151 Free Routine « .+ . « 205
Offline from Online -- VOFFLN . , 153 Interrupt Mode Control Routines 205
Offline from Bypass -~- VOFFLB 154 SIO and RIO Routines + « 205
The Input Command Dispatcher 154 Wait Routine 205
The REWIND Command e e e v e e e 4w o. 154 Processor Communication Region., . 208
The System Input EOF Command e« s s e . . 157 Processing Chains e o e e e s e e e e 4 . . 208
The Initial Start of the Input Program 157 Input + .+ < .+« . < . . . 208
The Input Program Fixup Routines 157 Intermediate Disk Storage 208
The Input I-O Table of Exits 158 Output + . « . « 208
Generalized Dispatcher 158 Communication Region 208
EPGK Condition + +« & + « & « & &« « +« .+ . 158 Communication Region Format 209
UK on Write End-of-File 158 Communication RegionUsage 209
UKonCardReader 1le61 The Service Op Routines for Fetch and Store 210
UK on Read Tape/Scan Tape 162 Time Service Op Routines 210
UKonPseudo-Op « .+ + « +« « . . 162 The $TIME Service Op Routine 210
Fixup Program Significant Counts and Bits 170 The $SIT Service Op Routine 210
System Qutput+ . . « + « +« « +« « . . . 170 The Commentator + . + + . . 210
The OQutput Tape . . .« . « « « + 4« +« « « o« . 170 MainFlow . . + + + & « « &« & + « .« . . . 210
The Print and Punch Programs 170 Commentator Subroutines« 212
Output EOJ+ . . « + « . « .+ « . . 175 The Stack Subroutine, JSTKR 212
Output Command 175 The Write Test Subroutine, JDWTST. 212
Tape Switch. + .+ . . . 175 The Control Word Setup Subroutine, JSTCW 214
Error Control . . . + + + . o« « 4 . 4 o« . . 177 The I-O Routine, JIOGO 214
AEPGK o v e e e e e e e .77 The I-O Bookkeeping Routine, MSETIO 214
CKUK . . . + .« v v v v e« v v« v WA The Release Routine, JRECLN. 214
AUKEF . . . v v v v e e e e e e e w77 The Interrupt Stack Routine, MSTACK . ., 214
Error Message Routines 177 The Table Address Routine, MTABLE, . , 214
The Disk Fetch Program 178 The EPGK and UK Fixups, MCHECK 214

ProsaControls « + « 178

The Disk Fetch Program 178 DEBUGGING AIDS. 215

The Dump Routines 215
The $EDUMP Program 215
The $DUMP Program 215

Console Debugging + .« « 218
The $HOLD Routine + . . . + « . . . 218
The Console Debugging Package 218
The PP TOE at ABEOJ Routine 221
The Fetch Lower Registers Routine, 221
The Store Lower Registers Routine 222

SERVICEROUTINES+ « . « + . . 181
The Actuator I-O Routines 181
The Read Routine. 181
The Write Routine 183
Copy Control Word . . .+ + . + + + « « o+ . . 183
Write TapeMark 183
Locate + .+ . . o« .+ 187

Release+ . .+ + « 187 The Fi Routi
FeedCard« . .+ .+ .+ 187 e Flxup Routine. o . e o.ee .. 222
Erase Long Gap.+ . .+« « . « « .+ . . . 187 SUPPORTING PROGRAMS « + « « . . 224

The Space Routine« . . . 187 Update Programs « . .+ « + « « & o . . 224

Symbolic Update Program (1401) 224 Card Format . « o+ o « « + « « « « + o . 254

USagee o« « = = o & + o« e o e e e . . . 224 Input Deck « & o « & & + & « « & + « & o 255
Operating Procedures for the Symbolic Update Program . 227 Operator Instructions .« + + « & + « « o« . o« 255
Frror Messages « « « « + o & o o« o o« o . o 227 Programmed Halts « . « « . . . 255
Master Update Program (UPDATE -30) 228 Program Flow « 255
Master Tape . « « + . + « « « « 228 System Peripheral Output 256
HED Control Cards « « 229 Operator Instructions . . . « « . « - . o . 256
Operation Codes .« « .+ « .+ « « .« & « .+ o . 229 Programmed Halts.+ . « « « .+ . 256
Operating Procedure forthe Master Update Program . . 229 Program Flow . . . + + +« + + « « o« « « . 256
Program Description « 231
Generator Librarian 240 APPENDIX A - SYMBOLIC I-O CONTROL TABLES 260
Peripheral Input-Qutput « « 250 Channel and Unit Status Tables 260
Tape Labeling (1401). 250 The Unit Area Table . . « « « + « + o« « « « o o 267
Operator Instructions + . « .« 250 The File Area Table + . « « « « o« « . « 271
Stop Conditions 250 The Symbolic I-O Location Table 273
Progam Flow « « +« « .« + « + . . 250 The Reel Pool Table - £
System Peripheral Input 1 251
InputDeck . . . « + « « « « o« « « . . . 251 APPENDIX B - FLOW CHART STANDARDS 275
Operator Instructions 251
Programmed Halts 251 APPENDIX C - THE IBM 7030 MULTIPLIER REGISTER . . . 277
Program Flow . . .+ .+ « « « « « + « « . . 251
System Peripheral Input2 254 APPENDIX D - CONNECTORINDEX 278
ILLUSTRATIONS
Figure Title Page Figure Title Page
1 Function of Return Routine 9 31 JC4 - Chart 8 - Title Card Analysis 64
2 Inter-relationship of I-O Control Tables 11 32 . Uncode Routine 67
3 Distribution of Interrupts 12 33 Decode Routine 71
4 Maskable Interrupt Routine 16 34 Assign Routine - Chart 1 73
5 Return After Maskable Routine 19 35 Assign Routine - Chart 2 74
6 Receptor - Chart 1 22 36 Assign Routine - Chart 3 75
7 Receptor - Chart 2 23 37 Assign Routine - Chart 4 76
8 Receptor - Chart 3 24 38 Assign Routine - Chart 5 77
9 Receptor - Chart 4 25 39 Assign Routine -~ Chart 6 78
10 Receptor - Chart 5 26 40 Move Routine - Chart 1 80
11 Receptor ~ Search and Unstack Routines 27 41 Move Routine - Chart 2 81
12 Conceptor 29 42 Unassign Routine 84
13 MCP Dispatcher 30 43 Resume Load Package 87
14 Service Pseudo-Ops 30 44 The Relocation Table Structure 91
15 Major Package Pseudo-Ops 31 45 MCP Loader - Chart 1 92
16 Tentacle Table Structure 34 46 MCP Loader - Chart 2 93
17 IF Analyzer 35 47 MCP Loader ~ Chart 3 94
18 Identifier 36 48 TPL Bootstrap 97
19 Return Routine - Chart 1 40 49 Initialization Program - Chart 1 929
20 Return Routine - Chart 2 41 50 Initialization Program - Chart 2 100
21 Dispatcher Exror Control 45 51 Initialization Program - Chart 3 101
22 Prime Routine 46 52 Restart -~ Chart 1 - Bootstrap 103
23 Job Control 1 51 53 Restart - Chart 2 - Options 104
24 JC4 - Chart 1 - Entry 57 54 Restart - Chart 3 - Write Output Buffer 105
25 JC4 - Chart 2 - Job and Type Card Handling 58 55 Restart - Chart 4 - Disk IPL 106
26 JC4 ~ Chart 3 - Compiler Control 59 56 Command Mainstream 108
27 JC4 - Chart 4 - Bypass and Compiler 1-O 1 60 57 Mode Control Commands 110
28 JC4 - Chart 5 - Bypass and Compiler I-O 2 61 58 Clock and Comment Commands 113
29 JC4 - Chart 6 - Compiler EOJ 62 59 1-O Commands - Chart 1 114
30 JC4 - Chart 7 - Overlap Mode I-O 63 60 I-O Commands - Chart 2 : 115

Figure

61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Title

IOCHANGE Commands - Chart 1
IOCHANGE Commands - Chart 2
IOCHANGE Commands - Chart 3
Special Assignment Routine

Functional Programs

The Six Transition Routines

Control Table Format and Symbols
Passage of Buffer Parameters

Functional Program Symbols

Input Chart 1 - Queue Manipulation
Input Chart 2 - I-O Actuation

Input Chart 3 - Card Reader Program
Input Chart 4 - Scan and SCR1 Programs
Input Chart 5 - Scanning Subroutines
Input Chart 6 - Write Tape Program
Input Chart 7 - Tape EE Fixup

Input Chart 8 - Card Request Processors
Input Chart 9 - EOJ Scan

Input Chart 10 - Tape Switch 1

Input Chart 11 - Tape Switch 2

Input Chart 12 - Transition to Online
Input Chart 13 - Transition to Bypass
Input Chart 14 - Transition to Offline
Input Chart 15 - Transition Subroutines
Input Chart 16 - UK Fixup Entry

Input Chart 17 - Write Tape UK

Input Chart 18 - Erase Gap UK Procedure 1
Input Chart 19 - Erase Gap UK Procedure 2
Input Chart 20 - Card Reader UK 1
Input Chart 21 - Card Reader UK 2
Input Chart 22 - Read/Scan Tape UK 1
Input Chart 23 - Read/Scan Tape UK 2
Input Chart 24 - Control Op UK Failure
Output Tape Switch Routine

System Print Routine

System Punch Routine

Print and Punch Control Symbols

EE, EOP, Fixups for Print and Punch
Qutput EOJ and Output Command Programs
Typical Fetch Dictionary Entry

Disk Fetch Package

Read Routine

Write Routine

Copy Control Word Routine

Write Tape Mark and Spacing Routines
Locate Routine

Page

118
119
120
122
124
125
127
128
128
132
133
134
136
137
138
140
142
144
147
148
150
152
155
156
159
160
163
164
165
166
167
168
169
171
172
173
174
174
176
178
179
182
184
185
186
188

Figure

107
108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125

127
128
129
130

132
133
134
135
136
137
138
139
140
141
142
143

© 144

145

146

147
148

Title

Release, Feed Card, Erase Gap Routine

Unload and Rewind Routines

Unit Lights and Gong Routines

Control Word Check Routine

Verify Routine

Check Density, Check Mode and Write
Label Routines

Space Label and SEOP Test Routines

Disabled Service Routines

I-O Indicator Check Routine - Chart 1

I-O Indicator Check Routine - Chart 2

1-O Indicator Check Routine - Chart 3

CHEX and IODEF Routines

Free Routine

RIO and Wait Routines

Commentator - Chart 1

Commentator - Chart 2

Error Dump Routine

$DUMP Routine

Console Debugging Package - Chart 1

Console Debugging Package - Chart 2

$FIXUP Routine

Symbolic Update Program

Update 30 - Chart 1

Update 30 - Chart 2

Update 30 - Chart 3

Update 30 - Chart 4

Update 30 - Chart 5

Update 30 - Chart 6

Table of Contents (TOFC)

Generator Librarian - Chart 1

Generator Librarian - Chart 2

Generator Librarian - Chart 3

Generator Librarian - Chart 4

Generator Librarian - Chart 5

Tape Labeling Program

System Peripheral Input I

System Peripheral Input II

System Peripheral Output

Channel Status Table Entry for Single
Unit Channel

Channel Status and Unit Status Table Entries
for Multi-Unit Channels

Unit Area Table

File Area Table

Page

189
192
193
194
196

197
198
199
201
202
203
204
206
207
211
213
216
217
219
220
223
225
232
233
234
236
237
238
242
243
245
246
247
248
252
253
258
259

260
260

268
272

The IBM Programming System for the IBM 7030
Data Processing System consists of the Master Con-
trol Program (MCP), the assembly program (STRAP
II), FORTRAN, and the System Macro Language,
SMAC I. MCP is the system control program; the
other three programs are language processors. The
programs constituting the system are described in
detail in their respective Programming Systems
Analysis Guides. This manual, then, is one of a set
of four Analysis Guides which describe the IBM 7030
Programming System completely.

How MCP is used with respect to computer opera-
tions and problem programs is described in the IBM
7030 Data Processing System Master Control Pro-
gram Reference Manual, Form C22-6678. Detailed
information about the functions performed by MCP is
described in the Analysis Guide, together with mis-
cellaneous programming information. This, together
with the program listing, enables the systems pro-
grammer to determine how MCP accomplishes any
given task, and to adapt MCP to such special usage
as the installation may require. The Analysis Guide,
designed to complement the program listing, is a
tool for the systems programmer to help him make
most effective use of the MCP program listing.

INTRODUCTION

For purposes of exposition, MCP has been divided
into the following five basic functional areas:

1. Interrupt control
System operation
System 1-O
Service routines
Debugging aids

Each area is described in a section of the Analysis
Guide. Additional sections provide a general descrip-
tion of MCP, and descriptions of the supporting pro-
grams.

Flow charts have been included in context for ease
of reference. They are drawn at a functional level,
and conform to the standards specified in Appendix
A. Program symbols are used freely in both the text
and the flow charts in order to relate the Analysis
Guide and the listing as closely as possible.

The subprograms of MCP are closely interrelated.
In order to avoid diversionary discussions through-
out the Analysis Guide, each section has been written
presuming knowledge of the other sections whenever
necessary. The reader with the responsibilities
outlined in the preface should read the entire Analy-
sis Guide once to become familiar with content,
terminology, and level of discussion, before attempt~
ing to put it to use.

G W N

Introduction 7

GENERAL DESCRIPTION OF MCP

The Master Control Program (MCP) for the IBM
7030 is composed of many small programs whose
overall purpose is to expedite the flow of work
through the 7030 system. They total approximately
11,000 words, most of which remain in core storage
at all times. They rely on a set of supporting pro-
grams to perform peripheral I-O operations and
system update.

THE LOGICAL STRUCTURE OF MCP

MCP is composed of three kinds of programs:

1. Interrupt control programs

2. Service routines

3. Major packages

These three categories constitute distinct logical
levels within MCP. They operate within the frame-
work of a few basic priority and control concepts.

Interrupt Control Programs

One of the design features of the 7030 is its interrupt
system. MCP takes all interrupts, although some
may be subsequently routed to a problem program
(PP). Included in the category of interrupt control
programs are those programs which receive control
directly or almost directly from an interrupt table.
These programs operate with the interrupt system
disabled, and, except for interrupts due to non-recov-
erable errors, they route control to some other pro-
gram. Since MCP uses the IF interrupt as a basic
means of communication, the interrupt control pro-
grams concerned with the IF interrupt are referred
to collectively as the dispatcher. Similarly, the
interrupt programs concerned with handling I-O
interrupts are referred to as the receptor.

Service Routines

MCP permits the problem program (PP) to use sym-
bolic I-O, and performs I-O operations on the proper
unit when requested by the PP. The programs which
actually accomplish these services (i.e., read, write,
rewind, etc.) are called service routines. The group
of service routines concerned exclusively with sym-
bolic I-O operations is called the actuator. Additional
service routines perform such functions as suppression
and release of I-O interrupts, setting of the interval
timer, etc. . The service routines may be explicitly
defined as those routines which accomplish pseudo-ops
for pseudo-op codes less than 64.0. They operate

disabled, and are effectively an extension of the
requesting program. They receive control from the
dispatcher and return to the point of request.

Major Packages

The remaining programs in MCP are major pack-
ages. In terms of pseudo-ops, a major package is a
program which services a pseudo-op whose code is
64.0 or greater. A major package has characteris-
tics similar to those of a problem program. It may
operate enabled, may suppress I-O interrupts, may
perform I-O (but must use symbolic I-O and the serv-
ice routines), may use other major packages, and
has priority over a problem program and its inter-
rupts. A major package may be primed; that is,
have its pseudo-op and parameters entered into a
queue for execution at a later time.

Program Control and Priority

MCP receives control only when an interrupt occurs.
Pseudo-op requests enter MCP via the IF interrupts.
Since the service routines are considered a logical
extension of the requesting program (MCP or PP), it
is necessary to introduce the concept of level of pro-
gram operation. The program level, or instruction
counter owner, is MCP when an MCP major package
is in control or about to receive control. At all other
times the level is PP. The system level (SL) bit is
used by MCP for control logic. Note that the service
routines operate at either level, depending on the
level of the program requesting the service pseudo-
op. Thus, an MCP service routine may be in con-
trol, but may be operating at PP level. However,

all portions of MCP in which this is possible (i.e.,
non-major packages) operate with the interrupt sys-
tem disabled.

Interrupts other than IF may occur only while the
PP or an MCP major package is operating. Consid-
ering only I-O interrupts, four situations are possible:

1. An MCP I-O unit interrupts an MCP major
package.
2, A PP I-O unit interrupts an MCP major pack-
age.)
3. An MCP I-O unit interrupts the PP,
4. A PP I-O unit interrupts the PP,
These situations may arise in any order and at any
rate. In addition, one interrupt may immediately
follow another interrupt, in which case response to

the second interrupt must be deferred until the re-
sponse to the first is complete. An I-O interrupt
stacking mechanism is required, and is provided by
MCP,

Because of the functions performed by MCP, the
MCP program level must have priority over the PP
level. The PP must not be allowed to interrupt MCP.
Thus, a stacking mechanism is required for PP
interrupts occurring at MCP level.

The MCP receptor places a program (MCP or PP)
in the auto-stack mode (in which successive inter-
rupts are automatically stacked) when it passes an
I-O interrupt to that program. When the receptor
receives an I-O interrupt and the program owning
" the interrupt is auto-stacked, or is, by request,
suppressing I-O interrupts ($SIO), the interrupt is
stacked in a queue. Two such queues are main-

these must be unstacked whenever the level is to
change to PP, The return service routine ($RET)
sends control to the proper place. Every fixup
routine, PP or MCP, and every major package,
terminates with $RET. The return routine must al-
so attend to the unpriming of primed major packages.
Consider the sequence of events shown in Figure 1.

This sequence of events could be further compli-
cated by adding simultaneous interrupts of different
levels, and primed major packages.

In summary, MCP has priority over PP; all MCP
tasks must be completed before control is given to
PP. All major transfers of control are the result of
interrupts: major package to major package, PP to
major package, major package to PP, mainstream
to fixup, and fixup to mainstream.

X) X Interrupt Program Program Interrupt
tained: one for PP and one for MCP. Considering Owner Level Mode Disposition
the SIO mode and the/auto-stack mode as identical,
the disposition of I-O interrupts may be tabulated as MCP MCP Auto-stack Stack for MCP
shown. MCP MCP Non-auto-stack Give to MCP auto-
When a fixup routine (a program responding to an stacked

I-O interrupt) has finished, control must ultimatel PP Mcp Either Stack for PP

P .) ’ . y MCP PP Either Give to MCP, change
return to the point of interrupt; however, interven- level
ing interrupts must first be unstacked. Since PP PP PP Auto-stack Stack for PP
interrupts are stacked when the IC is at MCP level, PP PP Non-auto-stack Give to PP auto-stacked

[Event 1
RET
PP $
$RET
PHeTIPt gspR Second PP $RET
(‘ Request €
PP Mainstream Interrupt
Qutput —
Tape Interrupt $RET
Stages PP Fixup AN
c of 1 (Interrupt is
ontro Major Package Unstacked)
MCP Fixup o
-~
(Stacked)

Figure 1. Function of Return Routine

General Description of MCP 9

PROGRAM ORGANIZATION

In general, the order of the MCP programs are inter-
rupt control, service routines, then major packages.
All of MCP resides permanently on the Permanent
Read Only Storage Area of the disk (PROSA). Most
of it also resides permanently in upper core storage,
the rest being called in from the disk as needed.
Some of the part called in from the disk operates in
the overlay area at the upper end of the permanent
core storage portion, while part of phase 4 of job
control operates in PP memory, since it is required
only between jobs.

Memory Allocation

MCP occupies five type areas on PROSA. One is the
main portion of MCP, the others are major packages
called into core when required. They are:

Type Area Content

11D11MCP Main portion of MCP
228SCOMD Command package
22LOADER Loader and resume load
22$DUMP Debug and dump packages
22$EOJ JC4, assign move

An overlay area is provided for major packages
which are infrequently used, for example, once per
job. Once a program is in the overlay area, it need
not be called in again unless it has been overlayed by
another program. The overlay area is controlled by
the major package fetcher, a subroutine of JC4, and
is also used as the buffer for the disk fetch ($FETCH)
program.

The core region from the overlay area to the top
of memory is available for patches and special
installation packages.

The MCP Communication Region

The MCP communication region consists of 14 words
from SMCP to SMCP + (16)g reserved for control bits
and words to be used by any part of MCP. The sym-
bols associated with this region are listed in the early
pages of the listing. They are further defined in
subsequent sections of the Analysis Guide as they

are used.

CONTROL OF SYMBOLIC I-O

To utilize its symbolic I-O feature, MCP requires
the following:

1. Precise knowledge of the I-O equipment con-
figuration of the machine.

10

2. A mechanism for translating IOD reference
numbers (logical I-O units) into the specific
channels and units used to perform I-O requests.

3. A mechanism for translating a channel and unit
into an IOD reference number to determine the
I-O table of exits for which an interrupt is
intended.

4. A mechanism which can differentiate between
interrupts resulting from I-O operations per-
formed by the owner of a unit and set-up opera-
tions performed by MCP for the owner of the
unit.

5. A bookkeeping system to keep track of activi-
ties both at the physical unit level and at the
logical unit level.

These functions are performed by the I-O control
tables. MCP uses six distinct types of I-O control
tables:

1. A Channel Status Table (CST) exists for each
channel; it contains the operational status for the
channel. For single unit channels, the CST also
contains the operational status of the unit, and locates
the unit area table. For other channels, the CST
locates each unit status table.

2. The Unit Status Table (UST) provides the opera-
tional status for units on a multi-unit channel. It
locates the unit area table. Each such unit has a
UST.

3. The Unit Area Table (UAT) serves as an inter-
face between tables oriented toward physical units
and tables oriented toward logical units. It contains
current information on unit usage, and locates both
the file area table and the channel status table. One
UAT exists for each physical unit defined by I0D's.

4. A File Area Table (FAT) exists for each logical
I-O unit: that is, each unit requested by an 10D card.
The FAT contains information in terms of operations
on the logical unit. It contains the information from
the IOD card, and locates the proper entry in the
symbolic I-O location table.

5. The Symbolic I-O Location Table contains one
entry for each IOD reference number. The entry
locates the UAT and FAT,

6. The Reel Pool Table is used to record the

sequence of reels used by a physical unit. It contains
the labeling information from the REEL cards.

The channel and unit status tables are originally
set up by the initialization program at initial pro-
gram load. They may be changed by the IOCHANGE
command, and are initialized by job control. They
are updated by the actuator and receptor.

The unit and file area tables, along with the sym-
bolic I-O location table and reel pool table, are set
up by phase 4 of job control, immediately prior to

running a job. The area tables are updated by the
actuator and receptor.

The tables may need to be referenced starting
either with a channel number (as in the receptor) or
with an IOD reference number (as in the actuator).
The tables are chained (Figure 2) so that either

number serves to locate all related tables. The
channel number locates the CST entry, and the IOD
reference number locates the proper entry in the
symbolic I-O location table. These tables are
defined in detail in Appendix B.

The basic characteristics of the tables are as
follows:

Table Size Frequency Total Storage Location
Channel status 1word 1 per channel 32 plus 1 words MCP core
for each BX channel
Unit status 1 word 1 per unit of Varies with I-O MCP core
multi-unit channels configuration
Unit area 9 words 1 per unit used Varies User's core -
protected
File area 7 words 1 per 10D Varies User's core -
protected
I-O location 1 word 1 per IOD Varies User's core -
protected
Reel pool 2 words 1 per PP reel Varies PP core
10D RN 1
. Unit Area Table Address File Area Table
Address
2
— N 1-O Location Table
J‘MN e
n
F 10D RN <]
File Area Table
/
/
/ -
[ChanNo. | — N
| \
- Unit Area KSingle Unit
Add FA Activ l Table Address 0 Channel)
Unit Status niti Channel
. < N
Uit Table Address \ 1 Use Status
Area] . Table
Table
First Reel Address I
< Reel Pool Table /
Next Reel Address
] Unit Area
Table Address
Unit
Status
"~ ———— "~ | Table
Figure 2. Inter-Relationship of I-O Control Tables

. General Description of MCP

11

INTERRUPT CONTROL

MCP design is centered around the IBM 7030 inter-
rupt system. All interrupts are taken by MCP. All
major transfers of control and all I-O functions
depend upon the interrupt system and the MCP inter-
rupt control programs for their success.

MCP divides the IBM 7030 interrupt ($IND) indica-
tors into four categories:

1. The error indicators: 0-3, 5-8, 15-17, 19

2. The maskable indicators: 4, 18, 20, 22-47

3. The I-O indicators: 9-13

4, The IF indicator: 21

The IF indicator is placed in a category by itself
because, in addition to indicating a potential error,
it is used for major transfers of control.

Figure 3 shows the distribution of interrupts
among the MCP programs. All interrupts are
received by the MCP interrupt table and from there,
control flows to the specified MCP programs. -

MCP Interrupt Table
Error Maskable l 1-0 J IF
A Y A A
Parallel Interrupt Table
SFandard Dispatcher
Fixups Maskable l 1-0
A
Maskable
Interrupt Receptor
Routine

Figure 3, Distribution of Interrupts Among MCP Programs

THE INTERRUPT TABLES

MCP provides the following two interrupt tables:

1. The interrupt table (SIT)

2. The parallel interrupt table (SIPT)

All IBM 7030 interrupts are received by the inter-
rupt table (SIT). It consists of 48 full word instruc-
tions of the form SIC, ---; BD, ---; one for each indi-
cator 0 through 47. Indicator 14 is not used, the
interrupt table containing two NOP instructions in
the word corresponding to that indicator. The inter-
rupt table branches to one of the following three
basic areas of MCP (Figure 3):

1. The standard fixups

2. The parallel interrupt table

3. The dispatcher

12

I- O interrupts are all handled by a common routine,
as are the maskable interrupts, and control is passed
to these routines through the parallel interrupt table.
This permits retaining the identity of the individual
interrupt while branching to a common routine.

The parallel interrupt table consists of 48 full
words. All 48 words are not used, because all inter-
rupts do not require use of this table. In positions
corresponding to the maskable indicators, the par-
allel interrupt table contains the full word instruction
SIC, ---; B,---. In positions corresponding to the
I-O indicators, it contains BZB1, SPSIOI+ (indicator
number), KSTORE, providing for entry to the recep-
tor with a bit set corresponding to the interrupt.

The action taken by the interrupt tables for the
various interrupts may be tabulated as shown on the
following page.

ERROR INTERRUPTS

MCP divides error interrupts into two groups that
are both handled by standard fixup routines:

1. Machine errors (indicators 0-3, 5)

2, Program errors (indicators 6-8, 15-17, 19)

Machine Errors

Indicators MK, IK, 1J, EK and CPUS are set by ma-
chine errors. The interrupt table, on a machine er-
ror, branches respectively to one of five routines
all of which have the following form:

YFX** SIC, YMFL
B, YMFP
(IQSX)DD(BU, 32), **X
(AX)DD(BU, 32), *k X

VF,XX.
(** denotes the indicator mnemonic)
(XX. denotes the ABEX codes 65.-69.)

Thus, control passes to a common fixup routine,
YMTP, with the location of the indicator mnemonic
in the address YMFL. Lower registers are stored
in the backup buffer (SLRBU) and the level bit (SL)
is tested to determine the source of the error.

If the error was caused by PP (SL=0), the level
bit is set to MCP, the IC converted to A8 and IQS
and placed in the appropriate PP error messages
along with the proper indicator mnemonic, and the
ABEX code is stored in YAXTYP. The disabled
entry to the commentator is used to type the mes-
sage:

$ OPTR PP 'interrupt'. IC = 'location'
CNSL CS TO CONTINUE.

Interrupt Interrupt Interrupt Table (SIT) Parallel Interrupt Table (SIPT)
Category Indicators SIC IN BD TO SIC IN B TO
ERROR MK, IK,1J YMFIC CYFX**
EK, CPUS (standard
(03, 5, fixup; **
machine denotes
error) indicator
mnemonic)
EKJ, UNRJ, YSFIC YEX*+*
CBJ, OP, AD, (standard
USA, DS, fixup; **
(6-8, 15-17, 19, denotes
program error) indicator
mnemonic)

MASKABLE TS(4, the only STIC SIPT+4.0 SINTO JWLODE
asynchronous (special TS
maskable interrupt
interrupt) routine)
All other STIC SIPT+ WINTOR WLODE
maskable (indicator (maskable
(18,20,22-47) number) interrupt

routine)

1-O EPGK, UK, EE STIC SIPT+ Not saved. KSTORE
EOP, CS (indicator Bit SPSIOI (receptor)
(9-13) number) + (indicator

number) set.
IF IF (21) STIC SIFAE

(IF analyzer)

If the console channel signal is given, a test is
made for the MK interrupt. An MK interrupt at PP
level causes core storage to be searched for the MK
location., The location is restored to prevent possi-
ble parity errors when the system continues. ABEOJ
is primed and MCP mask and boundaries are se-
lected. Control is then given to the short message
routine, which writes the following message on the
output tape: .

'interrupt' INTERRUPT AT LOCATION 'location'

Then the ABEOJ is unprimed causing termination
of the PP and the system continues. (See the dis-
patcher return routine, the short message routine,
and the ABEX routine.)

If the error occurred at MCP level, the contents
of the IC in IQS and the indicator mnemonic are
placed in the MCP error message:

$OPTR MCP 'interrupt'. IC = 'location’
IPL REQD.

After using hardware I-O instructions to write the
error message, the system halts with a BD, $ at
YMCPHP and must be reinitialized.

Program Errors

Incorrect program action may set indicators EKJ,
UNRJ, CBJ, OP, AD, USA, and DS. The interrupt
table, on a program error, branches respectively
to one of seven routines all which have the following
form:

YEX** SIC, YPREL
B, YPREFX
(AX)DD(BU, 32), *x X
(IQSX)DD(BU,32) **X
VF, XX.

(** denotes the indicator mnemonic)
(XX. denotes the ABEX code 70.-76.)
Control passes to a common fixup routine,
YPREFX, where the location of the A8 mnemonic
is contained in YMFL.
If PP caused the interrupt, the lower registers are

" stored in the backup buffer (SLRBU), the program

error indicators are cleared, and the EXE and IF
indicators are reset to prevent an unanticipated loss
of subsequent control. The indicator mnemonics are

Interrupt Control 13

placed in PP and MCP error messages and the level
bit is retested and set to MCP.

If the error was caused by PP, the IC saved in
YSFIC is converted to A8 and placed in the PP error
message, the ABEX code is stored in YAXTYP, the
MCP mask and boundaries are selected, the ABEOJ
is primed with control given to the short message
routine that writes the error message. The ABEOJ
is then unprimed and the PP terminated.

If the error was caused by MCP, system operation
cannot be continued. Hardware I-O instructions are
used to write the error message using the same
routine as for an MCP machine error. The system
halts with a BD, $ at YMCPHP.

MASKABLE INTERRUPTS

The maskable indicators are used at the option of the
problem program. They are:

Indicator Type
4 Time Signal (TS)
18 Execute Exception (EXE)
20 Data Fetch (DF)
22-34 Result Exceptions
35-38 Flagging
39-40 Transits
41-47 Program

Time signal and execute exception are permanently
masked on, but to give the problem program more
control, they are treated as pseudo-maskable (see
the description of the maskable interrupt routine,
and the EXE interrupt). The IF indicator, the mask
of which must always be 1, is not included in this
group.

Interrupts caused by these indicators are routed
via the parallel interrupt table to the maskable inter-
rupt routine, or, in the case of TS, to a special entry
in the maskable interrupt routine. Control then passes
to a program table of exits (PTOE) in either PP or
MCP. In the case of MCP, the standard fixup routine
is entered from the PTOE, and control returned to
the point of interrupt via the return after maskable
interrupt routine.

The Program Table of Exits (PTOE)

When any maskable interrupts are masked on, fixup
routines must be available to handle the resulting
interrupts. The problem program has the option of
providing special fixup routines or of using the MCP
standard fixup routine, or a combination of both.

14

If the problem program is to use special fixup
routines, it must provide MCP with a program table
of exits (PTOE) to these routines. The refill field
(RF) of index register 15 ($15) is reserved for this
purpose. If the problem program is to use any spe-
cial fixup routines for maskable interrupts, it must
load the RF of $15 with the first word (18 bit) address
of a PTOE. The RF of $15 will be zero when MCP
initially gives control to PP. It will also be zero when
MCP gives control to any PP I-O table of exits. It
is the responsibility of the PP that $15 RF be correct
whenever PP has control. PP may provide as many
special PTOE's as are necessary, changing $15 RF
when desired.

The PTOE reserves storage for the IC, the indica-
tor register and the mask register (JIND and $MASK).
It consists of 4+k full words as follows:

Word Content

1 Saved IC

2 Saved $IND

3 Saved $MASK

4 Pattern word, containing k
ones

4+1 First instruction for the first
special interrupt routine.

4+i First instruction for the ith
special interrupt routine.

4+k First instruction for the last

special interrupt routine.

The pattern word indicates whether the PP furnishes
a special interrupt routine or desires to use the stand-
ard fixup routine. There is a one-to-one correspond-
ence between positions in the indicator register and in
the pattern word. When a pattern word bit is set to
one, it means that a special interrupt routine is to be
used for the corresponding interrupt. The first
instruction for the routine must be in the PTOE at
word 4+i, where the interrupt indicator register posi-
tion corresponds to the ith one in the pattern word.

Only bits 4. 18, 20, and 22 through 47 may be set to
one in the pattern word. All others are treated as

zero. The PP must set the appropriate mask bits in
the mask register ($MASK). The IF mask bit, 21,
must always be left as one.

When MCP enters the problem program PTOE, the
IC, $IND, and $MASK are stored in the word specified.
The remaining low registers are unchanged. $IND is
cleared to zero, and $MASK is cleared to zero except
for the IF bit and those permanently on.]

Maskable interrupts $TS and $EXE are considered ‘
as masked off unless a PP PTOE is specified, and the
corresponding pattern bits are on.

The MCP PTOE and the Standard Fixup

Since PP may elect to take maskable interrupts with-
out providing special interrupt routines, MCP is pre-
pared to take any maskable interrupt. MCP provides
its own PTOE, which is entered when PP does not
provide a PTOE, or when the appropriate pattern

bit in the PP PTOE is off.

The MCP PTOE is located at SFPTE. It has the
same structure as the PP PTOE, and contains ones in
the pattern word corresponding to each of the maskable
. interrupts. The last 27 full word entry points are all
of the form

LVI, $1, YIN**

B, YMSF

(** denotes the location of the A8 indicator

mnemonic)

NOTE: The first two interrupts, TS and EXE, are
treated as masked off, and the PTOE branches to the -
return after maskable routine (WRAM).

Thus, control passes to a standard fixup routine with
the location of the A8 indicator mnemonic in $1. - The
maskable interrupt standard fixup routine, YMSF,
saves the low registers in SLRBU, and puts the indica-
tor mnemonic and the IC in a message skeleton. The
program changes the level to MCP and branches to the
system short message routine to print the following
message on the output tape:’

'interrupt' INTERRUPT AT LOCATION 'location’
Since the level bit (SL) is set to MCP, the return
routine will return to PP rather than to the short
message routine. (See the description of the short
message routine and the return routine.)

If PP has entered the standard fixup routine 50
times, the dispatcher error control routine (SDISP)
is entered with error code 13 in $14. This will result
in ABEOJ for the PP.

The Maskable Interrupt Routine

From the parallel interrupt table, the maskable inter-
rupt routine is entered disabled at WLODE for all
maskable interrupts except TS. It is entered at
JWLODE when a TS interrupt occurs. The routine
selects either the PP or the MCP PTOE, performs
the necessary set-up, and enters the table.

TS Maskable Interrupt

The TS interrupt is the only maskable interrupt
occurring asynchronously with the program in con-
trol, therefore, the system modes must be deter-
mined before the interrupt is released to a PTOE.

If TS interrupts MCP, the TS is stacked until control

is returned to PP. If TS interrupts a PP I-O fixup
(PP auto-stacked), the TS will be stacked until con-
trol is returned to PP mainstream, unless PP has
provided a PTOE effective in auto-stack mode. (Re-
call that MCP sets $15 to zero before entering a PP
I-O table of exits.) If TS occurs while a PP PTOE
has control (SSPFIX = 1), it will be stacked, requir-
ing that PP leave the PTOE with a $SRAM pseudo-
op (return after maskable) to unstack TS interrupt.
The low registers are saved in STLR upon entry
into the maskable interrupt routine (Figure 4). If
the interrupt was TS (entry at JWLODE), the system
mode control bits are tested and the TS either stacked
or given to a PTOE. It will be given to a PTOE only
if it occurs in PP main stream, or in PP auto stack
with a PP PTOE provided. Otherwise, it is stacked
as follows:

TS Occurs Stacked by Unstacked
in Setting by

PP special STSBIT $RAM

fixup (PP PTOE

in use)

PP auto-stacked SLRPP+8.4 $RET

(no PP PTOE

provided in A/S)

MCP SLRBU+8.4 S$RET

The first case (PP special fixup) is provided
because of the asynchronous nature of the TS interrupt,
to keep an uncontrollable maskable interrupt from
occurring during a maskable interrupt fixup. To pre-
vent this, MCP stacks the TS and releases it to the
PTOE when the PP executes $SRAM. The second case
(PP auto-stacked) provides for holding the TS inter-
rupt until return to PP mainstream, unless PP has
specifically provided for taking the interrupt by
loading $15 RF in the I-O fixup routine. The third
case is simply an exercise of MCP priority over PP.
As with any other PP interrupt, the TS interrupt is
stacked until MCP returns control to PP.

In the first case, the stacking mechanism is simply
a bit (STSBIT) reserved for that specific purpose. In
the last two cases, the stacking mechanism involves
the basic return logic in MCP. The buffers SLRPP
and SLRBU are used to save PP low registers when
transfer of control among programs is involved.
SLRPP contains PP mainstream registers while PP
is in an I-O fixup, or when MCP- has control after
having interrupted the PP I-O fixup. - In any case
where the program level is changed from PP to MCP,
the PP registers at the point where the level changed
are saved in SLRBU. Thus, SLRBU may contain regi-
sters from either PP mainstream or a PP I-O fixup.
When the level is returned to PP, it always returns

Interrupt Control 15

ENTRY ONLY FOR TS

JWLOD3
ranun SRRRREEAERSSRAREE wanny SARARSRNN Anene
* * * » - * » * -
. * * STORE LOW # * [COES PP * NG % SET TS (Bed) * * .
#JWLODE # eseceX® REGISTERS %scaceceeX® OWN THE IC ¥evoseeeoX® IN SLRBU #recscsesesesX® KSUPP #
- * - IN STLR - * - * R - .
* * * * . - - - - .
wnnan ERGERRRAR AR RAER saann AEERBARB AR ARARENS nnea
«YES
.
X JULCOA
wEnme ERRERAREABARARAAN aanue
- . . * .
* [S THE PP % YES % STACK TS FOR & * -
* IN A SPECIAL ¥eceveseeX¥ SRAM ¥eeesssscsssesX® KSUPP #
. FIXup - - {STSBIT) - - *
* » * * L]
funus SENEBABNRNRRRERS anuw
*NO
.
.
X
snnun
NO ® IS PP IN #
* AUTO-STACK
* MGCE *
»
sanas
«YES
.
.
X
[T SEEARARENR RSB RN ETTT T
* * « L) * *
* COES PP #* NO * SEY TS (Beq) * - e
eXeo® HAVE PTOE IN ¥oceuoaanoX¥ IN SLRPP PN eeceeX® KSUPP ¥
. * 1/0 FIXuP # * * * .
. - - « *]
“unan LT Y Y TR T LTI T
rnzn ERERERARRAEE RS R weane nsan
* * * * *] » * - .
- * - STORE LOW * COES PP * YES »* IS PTCE ® ANC * SCIsp «
* WLODE *sescoceccccaX¥ REGISTERS *eoonasaeX® HAVE PTCE AEET TR RRY L4 WITHIN PP #eoseccacsesesX® {(TYPE #
* » . IN STLR . * ($15 RF) * * BOUNDS # &« 17) =
* * . » - . - *
*rnan EARAERARRARB RS sxnes wEnnn sanen
oNO «YES
.
.
WCONA X X
REREERARRARA RN FEREBRNARRRER AR
» . - *
#SELECT MCP PTOQE¥ el SET EXIY -
. X®*SET EXIT BRANCH#¥ - BRANCH TO -
- * TO DISABLED * - ENABLED -
. * * - *
. EERERAREARAARARRE BABEARRERANERENY
. . .
. . .
. . .
- eXeoeosencecsesssasccacennos
. X
. wasun
+ NC * IS PTOE #
ssee® PATTERN BIT #
* ONE *
wesua

Xesene

EXT ST YT Ry TR Y
* -
* DEVELCP EXIT *
* ADDRESS. SET
* IN BRANCH *

»

*

3
AERARRRERRERBBRN

SREARMSSRRRERNR RN
- -

- -
*[S THE MCP * NO

- SET PP IN -
* PTOE SELECTED ¥.cceeasaX*® SPECIAL FIXUP #
* b » (SSPFIX} .
» * -
AEREN EARERRABAG SRR

«YES -

. .

. .

eXeonevcoe
.

x
AEREEAB RO R AN
. -
- =
* REGISTERS *
®# CLEAR SIND, *
* 0 X L
» .

SEXE
I T T YT 2

ERany
»

-
* ENTER *
* PYCE *
* *

- -
nunn

Figure 4, Maskable Interrupt Routine

16

via SLRBU. Return via SLRPP occurs when a PP
I-O fixup returns to PP mainstream.

When the return routine is returning to PP via
either SLRBU or SLRPP, it examines bit 8.4 of the
buffer to determine if a TS has been stacked. If so,
it restores the lower registers and exits to the TSentry
in the parallel interrupt table, faking the TS inter-
rupt. Thus, the TS eventually gets unstacked while
PP has control.

Other Maskable Interrupts

' Maskable interrupts other than TS, together with TS
interrupts being taken, are processed by the routine
which starts at WLODE (Figure 4). If $15 RF is zero
(no PP PTOE provided), the routine selects the MCP
PTOE and sets the exit branch to disabled. If $15 RF
is not zero, it is checked for being in PP boundaries,
and the exit branch set to enabled. If the PTOE is

outside PP bounds, control is given to dispatchererror

control (SDISP) with error code 17 in $14.

The program checks the pattern word of the PTOE
selected. If the required bit is off, it loops back to
select the MCP PTOE and change the exit to disabled.
(The MCP PTOE pattern word has a one for every
maskable interrupt.) It then computes the exit address
and stores it in the preset BD or BE. If the required
bit is on in the PP PTOE selected, a bit is set
(SSPFIX) to indicate to MCP that PP is in a special
fixup. The IC, $IND, and $MASK are stored in the
PTOE, $EXE is reset (see the following description
of the EXE interrupt), the used registers are restored,
and the PTOE is entered.

The EXE Interrupt and Combinations

The EXE interrupt, although permanently masked on,
is treated as pseudo-maskable by MCP. Since 18
other interrupts have priority over EXE, the simul-
taneous occurrence of $EXE and the higher priority
indicators must be considered. Not all of these
simultaneous occurrences are significant, in view
of the following analysis:

1. $EXE is off if an interrupt is caused by DS or
a lower priority indicator.

2. $EXE will not be set while MCP has control.

3. Interrupts caused by machine errors (0-3, 5)
or program errors (6-8, 15-17) result in BD, § or
ABEOJ, so the only concern is that $EXE be off if
ABEOJ is to be executed.

4, The remaining interrupts with higher priority
than EXE are TS (4) and the I-O (9-13).

5. Since EXE is treated as pseudo-maskable, it
is considered as masked off unless there is a PP
PTOE with the EXE pattern bit on.

6. If $EXE is on when a higher priority interrupt
occurs, it cannot be allowed to remain on and cause

the interrupt on any subsequent BE; the BE must be
to the point of original interrupt (where $EXE was
set). If this will not be the case, $EXE must be
turned off, and a mechanism established to fake the
interrupt at a proper time.

The combinations of interrupts of concern are as
follows: EXE interrupt by itself, TS with $EXE set,
I-O with $EXE set, and TS with both I~O and $EXE
set. These may occur only in PP; however, they
must be considered separately for the three levels
of PP: mainstream, auto-stacked, and special fixup.

EXE Interrupt Alone

If the EXE interrupt occurs by itself (no higher
priority indicators) in PP mainstream, it is either
taken by the PP PTOE (if one exists with the EXE
pattern bit on) or is ignored and return is to the point
of interrupt in PP.

If the EXE occurs in a PP special fixup, it is
treated as though it were mainstream. The PP has
control of PTOE specification and should be prepared
for this eventuality.

If the EXE occurs in PP auto-stacked, it is again
treated as though it were mainstream. If PP may
cause EXE in an I-O fixup, then the fixup routine
must provide a PTOE if the EXE is to be taken.

TS Interrupt, $EXE Set

If a TS interrupt occurs with $EXE set, the handling
of the EXE is influenced by the disposition of the TS.

"If the TS is stacked (for instance with PP in auto-

stack with no PTOE) or in special fixup, $EXE may
remain on and be allowed to occur on return to the
point of TS interrupt. If the TS is taken, the $IND is
saved with the EXE bit set in the PTOE (MCP or PP),
$EXE itself turned off, and the EXE interrupt faked
when $RAM is executed after the TS fixup (MCP or
PP).

I-O Interrupt, $EXE Set

When an I-O interrupt occurs, the receptor will either
enter the appropriate I-O table of exits or return to
the point of interrupt with the I-O interrupt stacked,
depending on the modes (SIO or A/S) of the programs
and the owner of the interrupt. If the receptor is to
return to the point of the interrupt, then $EXE may
remain on to occur when the return is attempted. If
a table of exits is to be entered, the PP low registers
are saved in SLRPP (including $IND with $EXE on),
and $EXE must be turned off to enter the I-O fixup
enabled. The EXE will be detected by the return
routine (JRET) when attempting to restore low regi-
sters from SLRPP, and an EXE interrupt faked at

Interrupt Control 17

that point, which reduces to the case of;an EXE inter-
rupt by itself.

TS Interrupt, an I-O Indicator On, $EXE On

If a TS interrupt occurs and an I-O indicator and $EXE
come on simultaneously, the TS interrupt is processed
in the normal manner. If a PTOE is to be entered,
$EXE is turned off (on in the PTOE), and the situation
is reduced to a simultaneous TS and EXE with a sub-
sequent I-O. If the TS is to be stacked, the I-O occurs
on attempt to return to the point of interrupt, and the
situation is that of simultaneous I-O and EXE.

Return After Maskable Interrupt

The return after maskable interrupt routine is entered

from the MCP PTOE or when the pseudo-op $RAM is
executed. Its function is to return to the point at which
a maskable interrupt occurred, after first releasing

a stacked TS or EXE interrupt. It operates entirely
disabled.

When $RAM is executed, the routine is entered from
the identifier at WRAMPP (Figure 5). The current
PP PTOE specified by $15 RF is compared with the PP
boundaries, and if it is not within PP boundaries,
dispatcher error control is entered (SDISP) with error
code 17 in $14. The PP special fixup bit is reset
(SSPFIX), and STSBIT tested for a stacked TS inter-
rupt. If a TS occurred while the special fixup was in
progress (STSBIT one), the saved IC is stored in STIC,
the used registers are restored, and the TS interrupt
faked by a branch to the parallel interrupt table at
SIPT+4.0.

If STSBIT is off, bit 18 of the saved indicator regi-
ster is tested to determine if an EXE had been stacked
due to the simultaneous occurrence of TS. If so, con-
ditions are restored and control returned enabled to
the point at which the maskable interrupt occurred.

When the routine is entered at WRAM by the MCP
PTOE as a result of a TS or EXE interrupt which was
logically masked off, the MCP PTOE address is
selected, and control is given to the main line of the
routine at the point of the EXE test.

I-O INTERRUPTS

The I-O interrupts correspond to the five indicators:
$EPGK, $UK, $EE, $EOP, and $CS. When any of
these interrupts occur, the MCP receptor is entered.
The receptor must identify the owner of the interrupt
and either pass it to the proper program or stack it,
according to program mode.

18

Channel signal (CS) interrupts from the console are

given by the receptor to the conceptor because the owner
“of a CS from the console cannot be identified until a

read is performed. The conceptor is used to perform
this identification.

The Receptor

The receptor is entered disabled from the parallel
interrupt table with a bit set in SPSIOI corresponding
to the interrupt. The functions of the receptor are:

1. To identify the interrupt and its owner and
decide whether to stack the interrupt or pass it to the
proper program.

2. To stack all channel signal interrupts occurring
simultaneously with other interrupts. CS interrupts
will be treated at a later time as separate interrupts.

3. To pass console signals to the conceptor.

4. To update tape file and disk arc records in the
control tables.

An I-O interrupt may be owned by PP, an MCP
major package, or by a set-up operation being per-
formed by a disabled MCP routine (e.g., change
density). If it is a set-up operation, control will be
given to the appropriate routine at the address speci-
fied in SRETAD in the unit area table, UAT. (See
Control of Symbolic I-0.)

Interrupts caused by non-set-up operations will be
stacked if the owner is in a stack I-O mode, or if the
owner is PP and the system is at MCP level. Stacked
interrupts are eventually unstacked by the dispatcher
return routine, which enters the receptor by way of

‘the unstack subroutine. -

The receptor is entered at KSTORE from the par-
allel interrupt table, and also at three other points
in the following circumstances:

Entry Point Circumstances

KUNSTC The return routine is
unstacking an interrupt.
$RIO has been given, and
stacked interrupts must be
unstacked.

KQIN Entered by the conceptor to
fake a CS.

KGATE Entered by the actuator and

conceptor to fake an inter-
rupt under certain circum-
stances.

ENTRY FOR SRAM

LTI anue srpBsseNsRENRSEAR
» - " - - -
* - ® IS THE PP & YES ®TAKE PP QUT OF #
SURAMPP #c0csssscacssX#PTOE WITHIN FP #ececceceeX® SPECIAL FIXUP #
- * ’BOUNDAﬂlEa - ®{RESET SSPFIX) :

- - - »
L2222] rREAEN SRERABARARRABERRS
«NO .

wXe 00 an

e weuny
- 3 -
.
* (STSEIT) *
- - 3
(1] LT
«NOC

.

x
ERARw
. .
® wRAM #
* (MCP
* PTCE) *
L

.
“nnna

.
.
.
:
X
anan

- -
IS _AN EXE ® YES

EY ST IR Y Y RY T YT R
-

-
u ORE o

- IS A TS * YES REST
: - STACKED .Qooo.ooox: INTERRUPTY %osesnccasseeX®
-

CONDITIONS
CETYTTYRRY YTy Y 2

SRAABRERERNERNANNE
= -

- RESTORE b
» STACKED LEETTTTRRS L4 INTERRUI
* IN PTOE # * CONDITICNS
* »
nEnae EEAERRE AR BEANERE
«NO
.
X
BIEREABRRARRBOINY
- .

RESTORE o

INTERRUPT :ooo-.-....-.

.
»
CONODITIONS
-
»

a
ERBREBETRBERENEY

Figure 5. Return After Maskable Routine

0 LO
®0F INT.®
. .

[TXT1]

PT #eecssccsnsaeX
-

snnnn
- .

SIPY

+4.0
- -

[XITTS

[T}
. -

SIPT

£18,0 *
L] -

Interrupt Control

19

The exits from the receptor are as follows:

Exit To

The address
specified in
SRETAD in the
UAT.

PCONE1
(the conceptor)

The I-O table
of exits speci-
fied in the FAT

KSUPP
(service-op
return)

SDISP
(dispatcher
error
control)

RRR
(verify label)

Circumstances

The set-up I-O bit (SSETUP) is
on in the unit status table (UST),
indicating that it was a set-up
operation.

The interrupt is a channel
signal from the console.

The interrupt owner is MCP,
or PP at PP level, and is not
stacking I-O.

The interrupt is stacked, be-
cause the owner cannot take

it now.

Either OP, AD, USA, or DS
indicators occurred simultan-
eously with the I-O interrupt,
and are being allowed to inter-
rupt.

An EOP interrupt occurred for
an operation which had been
requested in the SEOP mode.

Type 5 error, a PP PTOE is
out of PP bounds.

Type 78 error, there is no
more room in the interrupt
queue,

Type 76 error, a locate or
CCW attempted by the recep-
tor has heen repeatedly re-
jected.

Type 77 error, an interrupt was
not found in the queue when the
queue count was non-zero.

A label verification had failed.
The remount is handled enabled
and asynchronously.

The channel signal is handled as
a setup interrupt and control is
returning to the verification
process.

The Receptor Main Flow

The receptor (KSTORE, Figure 6) saves the low regi-

sters in STLR, clears the I-O indicators, and com-
putes the address of the channel status table. If the
interrupt is CS alone, and occurs in a multi-unit

channel, control is given to KSIGNL to find the unit.
If the interrupt was not CS, but CS is on, subroutine

20

KCSIN is used to stack the CS and set KSUPP to
unstack it. In either case, address of the UST is
obtained.

If the channel is a single unit channel, the unit,
status table (actually the CST) address is setup’
(KSINGL)." If the unit was not assigned, it is assumed
that the interrupt was a stray CS from the card reader,
printer, or punch, and an exit is made via the service
op return routine (KSUPP).

NOTE: The disk and the console are considered as
multi~unit channels, since they may have more than
one logical unit.

Whether a single or a multi-unit channel, the unit
and file area table addresses are set up at KDOOL.
The index registers at this point locate the control
tables as follows:

$10VF Address of CST
$11VF Address of UST
$12VF Address of UAT
$13VF Address of FAT

If the set-up bit is on (SSETUP) in the UST, control
is given to the address specified in SRETAD in the
UAT. Otherwise, $1 is set for an ultimate branch to
KNORM at KLEVEL, and control passes to KGATE
after performing the following bookkeeping:

1. If the operation is read or write, CCW into
SCCW inthe FAT.

2. If tape, update the file count (SFILEK) in the
UAT according to the interrupt and the I-O operation.

3. If disk, update the current arc address (SCUARC)
in the FAT, and the located arc address (SARCAD)
in the CST. ‘

The receptor is entered at KGATE from the actua-
tor and the conceptor with the index registers set as
though KSTORE had been entered. The actuator enters
the receptor either with the index registers set as
though an EPGK had occurred (when, for example, a
read request is received for a file protected tape) or
with EOP faked when a $REL is requested. The con-
ceptor enters the receptor when a console read is
given after a console channel signal had been passed
to the user. Since the read had already been done by
the conceptor, it is necessary to fake an EOP to the
using program.

At KGATE (Figure 7) the I-O indicators are saved
in the FAT, and the status indicators are cleared in

"the UST. The release and SEOP hits are examined

in the UST. If the release bit is on, the code at W23K
is used to return to KGATE with an EOP faked for
the release. If the SEOP bit is on, a check is made
for indicators other than EOP (at KFREE) and if none
are on, the service op return’ routine is entered
(KSUPP). If others are on, or if the SEOP bit was
not on, control passes to KQIN.

At KQIN, the interrupt is stacked in the interrupt
queue (SQUE), which consists of 128 nineteen-bit

fields containing the 18 bit address of the FAT and a
bit identifying the owner of the unit., PP and MCP
interrupts are intermixed in the same queue. How-
ever, a separate count of stacked interrupts is main-
tained for the two levels and is stored in the value
field of the second half word (SQK) of the program
status table (SPROGS) for the level. The unit sup-
pressed bit (SUNSUP) is set, and control given to
either KNORM or KHEX, according to $1.

At KNORM, (Figure 7), a decision is made whether
or not to unstack the interrupt. If PP is interrupting
MCP, the interrupt remains suppressed and exit is
made via the service op return routine (KSUPP). If
MCP is interrupting PP, the unstack routine (KUNSTC)
is entered after moving low registers to the back-up
buffer. If the present program level is the same as
that of the interrupt owner, and the program is not in
$WAIT status or in auto-stack or SIO mode, the inter-
rupt will be unstacked. If the program is in $WAIT
status, and is auto-stacked, the service op return
routine is entered. The $WAIT routine will unstack
this interrupt if it is the one awaited. In all cases
where the interrupt is to be unstacked, low registers
are saved in the appropriate buffer. (See description
of the return routine.)

The unstack routine returns to KINTTY, where the
proper mask and boundaries are set up, and the pro-
gram put in the auto-stack mode. If a PP PTOE
is to be entered, it is checked against the PP bounds.
The unit suppressed bit is reset, and the table of
exits is set up. If either OP, AD, USA, or DS are
on, KSUPP is entered to allow the error interrupt.
Otherwise, the maskable indicators are cleared, $15
is cleared, $EXE is reset, and the PTOE is entered
enabled according to the highest priority I-O indica-
tor that was on.

The Channel Signal Search

Control is given to KSIGNL (Figure 9) when a channel
signal is received from a multi-unit channel. (The
console and disk are considered logically as multi-
unit channels.) If the CS is from the console, con-
trol is given to the conceptor at PCONE1. If from
tape, control passes to KHEX. The function of the
code at KHEX is to determine what change, if any,
has been made in the ready status of the tape units
on that channel. If the equipment is neither tape nor
console, control is returned to the main flow at KKK.
The channel signal will be considered valid only for
tape units in a mount or rewind status (SMOUNT,
SREW in the UST). For all such units on the channel,
the unit will be selected, the control word copied,
and the ready bit tested. If the unit is now ready, the
UST is updated, and the receptor takes one of the
following four courses of action depending on the
status bits:

1. SIMNT and SMOUNT bits on -- This signifies
initial use of this tape unit. The CS is discarded
for a PP unit but delivered to MCP if the unit belongs
to the input or output programs.

2. Either SMOUNT or SREW bits on -- This signi-
fies the issuance of a $UNLD or $REW. The CS for
the unit is stacked starting at KQIN and control is
returned to KHEX.

3. SIMNT and SREW bits on -~ The MCP unassign
program has issued a SFREE,which in turn issued
$REW. This combination is used internally for im-
proved tape handling. Once the bits have been zeroed,
the CS is discarded by going directly to KHEX.

4. SMOUNT and SSETUP bits on -- This is a situ-
ation where a verify label remount has occurred. If
the verify buffer is in use when the remount occurs,
an indication of the remount is saved in a queue. If
the buffer is not busy, control will go to the verifica-
tion process. When the verify buffer becomes not
busy (signaled by a tape 1/0 pseudo-op branch to
RKSUPP) the unqueuing of remount-verifies is initi-
ated on an MCP first basis.

After testing all the units on the channel, control
is returned to KNORM or KSUPP according to
whether or not a change in ready status was found.
First, however, the unit originally in select on the
channel (SUNIT in the CST) is relocated.

Search and Unstack

The search subroutine (KSERCH, Figure 11) is used
by $WAIT, the return routine, and the receptor to
search the interrupt queue for a particular FAT
address (the one being waited). It uses the linkage

LVI, 1, $+1.0

B, KSERCH

(not found return)

(found return)
with the desired FAT address in $13VF. If it finds
the address in the queue, it repacks the queue
(KPACK) and reduces the proper queue count.

The unstack routine (KUNSTC, Figure 11) is entered
by the receptor, the return routine, and the $RIO
routine to release interrupts. It will try to obtain the
first MCP FAT address from the queue, otherwise
the first PP FAT address. Then it enters the search
routine in the vicinity of KPACK with $1 set to
KINTTY-. 32, to force return to KINTTY after repack-
ing the queue. If the queue is empty, the unstack
routine returns to KSUPP,

Channel Sigrial and Console Unstack Control

If the CS indicator is on when a higher priority I-O
interrupt occurs for a multi-unit channel, the channel
signal is deferred. The higher priority interrupt is

Interrupt Control 21

Enune
* *

- »
®KSTORE #*
* *

» *
wanww wennn
x
I'l!l.!.l‘!l".ll (2322 L2 ER 2] "EaAnE
* SAVE SLR . . K
- IN STLR. ‘ * ES - Is - YES
8 OINITIALIZE *eeaceecoxs MUl.Tl S IS S cs l............leS[GNL -
- » JCHANNEL = ALCNE
¢ cSY'Aoomess . * “a o
EARERREERRRARR AN eann anuxw ranan
-NO «NO
. .
KSINGL X X
ARABRABBFRARABARAS N EEZEE] RERERREBARNAER RN
» * * KCSIN »
#COMPUTE SINGLE * * YES B S Pttt
® UNIT STATUS * * IS CS ON %aseeseeaX¥® STACK CS AND *
® TABLE ENTRY + * * OPEN PROGRAM
* AD s - #GATE AT KSUPCS #
ARFERABAARRB AR AR EREN HERAERAREERARBEES
. «NO .
. .
. . .
. tesasssccesensacscsnssaseXe
X KDOOL X
EREEN EAEE .!C!lli}.ll!"!.l AERBRRRERRERRR BN ERE.
» . . . » * CCMPUTE MULTI * . »
* * NO ® s + [YES * COMPUTE UNIT ®* UNIT STATUS * » »
* KSUPP %Xesee UNIT veesaeX® AND FILE AREA lx....... ABLE. $Xeescossocaas? KKK ¥
- - * ASSIGNED - - ACCRESSES ®* ENTRY ADDRESS * -
* L] - - -
ERRRE LAZZ 2] Ill.l'l'llli.l'.l SEERRERAAERARRANE I"'D
.
KRELAY
sunnn RARRRRRARRAARRARR srerrersasanaannnne
* 10 *OBTAIN ACTUATCR*®
® UNIT _IRETURN ACDRESS + » SET $1 _BRANCH 0
#RETURN *Xsacasnooe - seeX¥ ADDR T0
ADORESS FILE * s ZKNORM FOR KaIN ¥
* ¥ ThBLE
ERRER lili'l.llli.ﬂi!li - HEBREARR R BN
. .
- X
wanun . sruns
' i - - -
NO 1s * YES o * 1s * NO
~ KSUPP cx............- INTERRUPT ®#.0244s % EQUIPMENT %ecee
» EXPECTED * TAPE - .
e " » M
nEnaw Ruenn annnn .
<YES .
. .
. .
KSPACE x
anan wexun Enuusn ey wanun
l' <l - - L]
YES ® IS THIS * YES * . . 1s » . » =
- KCOPY -x............* A WRITE *Xesseaese* IS EE ON %Xesesasee® EPGK CR UK # o * KCOPY #
* OPERATION & » * oN * . * .
* P * . . .
Ih‘«l! ERUERR EARNE REEN - RENEN
+NO «NO +YES .
. . oXeo . -
. . . .
. . . .
X X KSTACK X x
SRR AR LR RY S HEBABASRAIG S
- * - * * * » -
NO ® IS THIS ¥ * IS TRIS % * IS THIS % * COPY CONTROL
ceee ek A READ . * A CONTROL ceex® A READ <X#wORD INTC SCCw
* OPERATICN *# * OPERATION * x * OPERATICN * * IN FILE AREA
. » * - - . - - TABL
. annaw PTITL . ey |¢ucn¢u-n-|un
. -YES «YES . «NC .
.
.
.
. . N . .
x KFORWD X KWEF x . X . .
RERR FRESARRERRARRRAES AERER - L2222) - -
* * - - -
® 1S THIS * NO UPDATE FILE * YES * IS ThIS * RO . * IS THIS * YES . .
A BACKSPACE ¥ecesaeeeX#COUNT SFILEK+1e¥Xuoasoosoh WEF eeeaxe o ® A WRITE .
* OPERATION # * » * OPERATICN # . * OPERATION .
* * . * : * * .
A2 222 HABHABERERER AR A ERERR - LE2 22 -
YES . . «NO .
. . . - .
. ceeeestsececttsattectetecsecacncanneosnna . .
. . .
. . o
X x x
REREERERARRBRRERR e xnus ranee
* . » . . » N .
* UPDATE FILE % * DQES * O * N 1S
#COUNT SFILEK=1e%eseecaseX® SFILEK EQUAL ®essccecsssvssaasecsscessoscasencsncsssX® KGATE #Xasavosancaae® EQUIPMENT
* * * zEmc * » . o1sK »
- * - £ *
RARRRABERERRR AR HEERE #RERE LR L]
-YES x «YES
.
. . .
. N .
. . .
X . X
EAFERERBRARRARARS - “anan
* . . .
. - -
sesecene PP *CARCAD *
SET _KNOR¥ * *

Figure 6. Receptor - Chart 1

22

LI
] *

* -
#SFAKEI *
* 1]

TO 1 *
AERRAERRAARR AR

- *
(222}

.
-
n

-

annnE SRRERRABBRRRENY

l u -

(LEAR OPERAT TON®

' KGATE '..-..-......X‘ STATUS HeevoesaoX®
* “ lNDlC‘YOﬂs -

n - -
[TTY1} Illb.l.!.li..llll

anans ARABARBEABA SRR
-

* wa23K

LI T TRy v
FAKE EOP -
SET K:‘OR“ *

N
ARANARARRRRAARNNEY

NELEASE * YES
INOIC TO LETY R RRTRS §.4
-

anann
«NC .
.
. . .
X . x
T2 1Y) FAARAABEABRB AN . ETTYey
- - . - -
. 1s * NO b TURN CFF * . " -
EPGKsUK OR EE %eoosssooX® EOP IN - - % KGATE
- ON - A SCCw * - . .
* # » . * 3
nnasn ARAREREBRRRRAANN . “sane
«YES . .
X X X
aaan LTI wsun TIYY)
- - - - n -
- » . . * IS IT A % YES
*® KQIN ® * KSUPP # #SECP OPERATION -............xn KFREE 0
- . . * s)
» - *] h n
xenen (22T suana anane
. *NC
. .
. .
. .
X X
AERERAREAE R EN N *REu wnnnn nenunn
'I/O lNDICATORS b - - * - -
IN FILE . * SDISP - »
‘ AREA sCCw *, eX® (TYPE # * KQIN ®
- CCMPUTE QUEUE * ® 7e) = A -
*)
b5 nnen swnwu
.
X
ranan ARBREAS AR R A FERARARRAABEAONE Anaxa rense
- * #® SET SUNSUP - * . - - -
* * 'ST‘CK INTERFUPT' * UPDATE QUEUE # * BRANCH ON # * *
* KNORM # LEVEI *e esX®* ADDRESS AND #, e s X#PRESET CONTENTS#. oX¥% KFEX #
* * ' ADDRESS I'\ * # QUEUE COUNT ¥ * OF s1 . . -

» » QUEUE - » . . .
LR R] .I‘lli'.i SATER ABEDPRRRRARBRRHE RN ,HERN LR 2R
. .
. .
. .
- .
. .
X KSUPRS x
rHRER I!ll(..'.l'.!lll! '!ll' fEIen
» »
®* 1S PP ® YES SSTORE SICBy I *
INTERRUPTING ®ececeasssX®SINTAD IN FILE -............x! Ksupp » * KNORM ®
. McP . ! AREA TABLE ¥ W
*
Kunew PR "evans” nese
«NO x
.
. .
. .
. .
X <YE KCONM
ERARE nEEAR LA RS l‘lil’.ll."..l!. LA L2
* - * IS IT = * I l
* IS MCP * NO *1S PROGRAN # NO ® EITHER * KO * McVE STLR To &
* INTERRUPTING ®eesseescX® _ IN SWALT BeereseseX® AUTOSTACK OR_ ¥eceosoooXSLREP OR sumcv-............xuxunsrc :
. PP - * STATUS * sto ACCORCING TO N
* £l WNER
L2222) “nnan LA LR Oll‘l.ll.&'...'.l Illl!
«YES <YES x
. . .
. . .
. . .
CMINTP X CwAIT X «NO
2322222222222 8 300 ARREE LEEER] #AARn AEnAn
#CLEAR INDICATOR® * »
1 0PsUSA.AD.OS 4 *1S _PROGRAN * NO *IS THIS THE® NO 1S TH * YES » -
 STLR # * AUTOSTACKED #. AWAITED . «ssX® PROGRAM IN # X% KSUPP #
. * * * * INTERRUFT * * S10 NOCE_ ¥ - .
s seTOuch LEvEL o . . » * .
P e T ansun L nnen Anwun
. «YES «YES
. . .
. . .
. . .
. - -
x X X
EARE ERBAE HERRBRRARARERRTRN HEERBRBRARERBABNA “ERRE
* * * » * KSERCH *]
- - ® MCVE STLR TC - - - - -
EKUNSTC # * KSUPP ® *SLRPP OR SLRMCP#, «XAKINTTY ¥
» * 2 ACCORDING 7O 1 . .
* * » OWNER # INTERRUPT M .
RERN BREAE l!.l!llil.'l‘l'l. ..III.I.!.IIC.‘!' AR
ERBEN SEREEABBRAERARRAES RN EEZ 22 HERER
* - * '3 *IF PP, # » . - "
* * * SET MASK - ® IS TOE ®* YES * ARE $OPs ® NC 2 ENTER *
EKINTTY #ececsocoeceeX® BOUNDARIES: *eeececeoX¥ WITHIN ¥eceesssaX® $ADs SUSA FoccacsceecssX®I/C TOE
* * * SET CONTROL * * BOUNDS #CR $DS SET * ENABLEC!
- * - TABLES. - - * - -
EEEX 2] ERRAFABAFARETAARR nEREN sAREE ll!‘i
«NO <YES
.
X X
REERR LEE 2]
- -
* SOISP * » »
* (TYPE = * XSUPP ®
- s - - -
. » * »
ARAEN RERER
Figure 7. Receptor - Chart 2

Interrupt Control

23

[ZXT L] ARBRBBRNRABABRE AR
* * CCMPUTE TABLE ¥
- -

. .
* KSUPP + +eeeX4PCONEZ ¥
*
- -
(2 X2 L) S8RNBRRRN EXZ 2]
.
.
.
M .
X KCOMMR KCONCP «YES
EXXE1] AR RBBRERBRRARARS BRERS BAABBIRENA RN RERN
is 2 GET_UKIT aReA 8 ®1S THIS® . .
*SWITCH ssr * YES RESET €0P FOR No ® CONPUTE
veeeXs COMNERTATOR. '........x'concsnea. SET Weceeseeoxt TABLE .
SRESET SWITCH' ATE CommM, * * ADORESSES. *
KSUPP n H » *
"'.'.'."'.‘.... ARANN ARABSABARANGANIEREN
.
.
:
SERVICE OP RETURN .
X
- ’..l...‘.....'... -
.
* o 1s YES * RESTORE LOWER & . .
* QuEUE Em=rv BeceesesnsscnsesasscscscesscasesssssXPREGISTERS FROM # & KNORM #
- X - STLR - - -
- - - - -
AAERARARABEAEN NN L2212
.
.
.
.
.
KNTCSQ X
FARBERABRARRABAES FESSRBARARRERORNS L2 22
»* - - - -
s coMPLTE * * sEY . ®RETURN #
" #Xeesesasat FOR usxr cs 4 #ENABLEO®
* AODRESSES # * N KCS . » VIA
- - 13 - “STIC #
EARARBRRBABERERER ARBRFRRARBRRRARNS HERRR
X
.
X
ERES
* - - *
* S THE % YES * ARE_ANY
% CHANNEL ¥eceeeeasX® _ MORE CS
*+ BUSY * * IN GUEUE *
- * » -
L2 R R ARBEN
«NO
N
.
.
.
.
X
*EEER ‘.‘“...‘.'......' HRARE
* - - -
* ARE ANY - YES ' CLEAR PRESENT ‘ - »
s MORE CS #*.. -X2CS FROM KCSREG.2.. X#SFAKEL *
* IN QUEUE * FAKE CS INT - -
* - STLR+8. - -
EREN I.‘-...Ili...'l" fRENR
«NO x
:
. .
% :
'nnuaunuuﬁnun .
- RESET swiicH .

%eoseescvensencece
-

10 NCP

- *
FARRERRA AR AR RN

KDISKE
wnaun nnuunnnunnunu wnnnn nu-nuucnauunuu
s - - - »
* ' SET SNSECH TC * » DOES * NO lFOﬂCE LOC!YE ONC
'CARCGD '-..-.-.----.x- GET NAL *esesevvaX® coqu EQUAL %ecseces s X¥NEXT DI /0.
CONTﬂOL VORO * 2ERO . * pur SCU 'N '
. o NT * - * *
REE FERNERERARBRIANNS sxuua FABABABRASRAROENS
«YES -
. .
. .
. .
X X
unuuwuuunog-uu ansen
»
' UPCAT - »
\‘SARCAD(SIO) ANO'-.-. easX® KGATE ®
SCUARC(s$13) - -
* -
EEERARARARRE AR T

Figure 8. Receptor - Chart 3

24

srans
* *
I -
* KPUNT #X,
* *

wnane

Xevooe

BEBRBRERAREES
* =
LOCATE TO THE
el REQUIRED
- UNIT

- »
FRRRRBERARRES
.

Xesooo

KNET
RERBBARARRRRE
- *

* copPYy CONYF'IOL

WORD ON THE
* LOCATED UNIT
* *
RARSRARERIREN
.
.
.
.
.
.
.
x
LIYTY]

*
* ARE ANY #
. INDICATORS
- ON

Xessesssessesscenase

RERR
.
® WAS THE *
CS A STRAY
- »

annnw
«YES

Xe s oo

Pyl
* -
» »
® KSUPP #
- -

L *
RRER

CS ALONE
AR
- -

» L]
*KSIGNL %o
- -

% ARE #
NO # THERE ANY ¥

UNITS T
.ll'lTERHOGA:E'

snnan

ssevex

NemuseEannans
-
- e TURN_GFF
el b THE TAPE
. INDECATOR

»
ERsRsRRNRRARS

snnan
- »

-

»
=
n
»
x
m

-

rnanun

YES * IS ONLY %
S CN

* seaaX® =
*

-
eaen
«YES

Xesoeoae

XeesosasoscsessscsncscssenssscscsceccscscaneXh

AERARRRRRAR AN
NO -
HessssaseX® EL
*INTERRUPT INDI
. FOR KNO

ETTTRTTY 22 Y

Figure 9. Receptor - Chart 4

ARARS
.
3 15 .
EQUIPMENT »
- TAPE -
- -
ARERR
-YES
.
.

X
RABRBIERARRRARNRN
- L}
- SETUP TO
INTERROGATE
#* READY STATUS
- F UNIT

saex

FERRBERRABRGANNRY

PIEREN)

KKHUNT
suane
MCUNT
® OR REW
X#® INDICATORS . -
.

snnun
«NO

Xes s

annun
3] [

» -
* KHEX #Xeos
» *

- * -
sanam

.
.
.
-

» »
YES # 1S _EE -

seeea®

ON FROM *
* LOCATE *
» -

[2Y2T3

HrREBERRARRRG RN
*

NO

L

- THE 1/
®* INTERRUPTS -
SrRERRBEARRIRGNNN

X
.

£y
*

YES # -

IS EE ON . -

I Y

e RERRE
* Cs

* * FRCM

#oeesceneX® VERIFICATION
cx 4 REMCUNT

. . .
e neaw
«NO

KMAL
L2222
. ® YES

-

NO 1s
seccccceX® EQUIPMENT
CONSOLE

KSYAB
AARBBREBIRENS
.

-
* LOCATE TO THE # # COPY CONTROL
x# REQUIRED ®esenncaaX® WORD ON THE
* UNIT * # LOCATED UNIT

YES
e

*
sssessnsusane

Xessen

sanaw
»

NO ®* IS TEHE -
sevsesccsccccscesesnssascscensasessc® UNIT READY .
-

X
: 2 XZ21)
. <YES
. .
. .
. .
<YES X
"AANE *nENS
* INIT_ e
* TAPE . YES * MOUNT
® UNASSIGNED #Xesscaceo®
» REWIND + % RESET _«
. . .
"EERE L2 XL
«NO «RO
.
N
x
antne
* MOUNT #
* BIT ON

anwn
» -

* SDISP *
* (TYPE =
* 76)

- -
wunee
x

.
.
.
+YES
tesns

(2221
* -

-
NC * 1S THE * NO * *
sessssseX® RETRY COUNT #ececescssnseX® KPUNT #
* EXHAUSYEE - - -
-

- -
nunn [XTE TS

“nuny
L] -

YES

» .
* XRKRELAY #
. .

- -
[2TTRY

snseansuesses
] »

Interrupt Control

25

sxenn

REAN

- -
= -
#RVFCSG #
- -

. »
nans
.

Xe oo

FRBARRRREARIRR BN
AD

(N
PROPER
USER

1-0

BASE
AERFRRRERRBERSRND

[T T

XYl
. »

- *
#RKSUPP *
. »

. -
renes
.
.
.
.
X
AERRRERRERIRRNRNE annns
- RKSPP . -
B
- CLEAR -
* VERIFY *
®* BUSY SLOT # » »
ERERERRRSRRSEBER nenes
.
.
.
X
ERERRBBEAARR BN renue
* SAVE - -
» CST * - MCP -
X% AND %oeeevsoaX¥ REMOUNT ®esssevsscsscaccnace
* UNIT - # STACKED #
* NUMBER * . -
FEEARRERNSERRERES 2T

.
.
.
.
.
-
.

eascesscrcccccssccvsnscne

sssen
*
- -
* RKSPP #
» »

- -
Benae

Xeevoe

REAR

. -
NG * REMOUNT #

- -
KSUPP ¥Xecassscccsest® CHECK *
* * * NEC *

X
ARRRBRBERIRIRNERE
. SET =

e VFY e
- BUFFER -
- NOT *
- BUSY b
FEERRERRRIE RO NN

-

.

.

.

x

aanes
* -

» 3
#RETURN *
. *

- - -
. sunae
.
.
.
x <YES X
#RERE RERER sRRBE
- 15 - - - -
* REMOUNT * YES * OTHER . PP * NO
» CHANNEL #.cessessX® REMOUNTS REMOUNT ®eeeaee
* ACTIVE _ * * STACKED # % STACKED *® .
- » - - -
ranan remnw anan -
«NO «YES .
N . .
. . .
. . .
. . .
X x .
EEARREBRBRBRRBRES ABRBRBRERERERER N L2322 -
- FORCE * » FOR . » 1S .
* RECEPTOR . * RECEPTOR * NO_# REMOUNT & .
» T0 USE » » TO USE #Xeosessnsh CHANNEL #Xeeo o
* SPROGS#1.0 * » SPROGS » * ACTIVE _ * ..
* e * * (G - . - <« .
ABRRERRREREREREAR ERARRRERRRERRBRRR (XYY 2 PR
. . <YES P
.
.
.
. . . .
. . .
X . X
RBERBERRERERRERRR . e 2
*+ BOOKKEEP » . * ANY
+ REPACK QUEUE # . ®# OTHER * YE
#2ZERQ BUSY SLOT #Keesoessccecaseses * REMOUNTS *. .
* LOAD ALL * * STACKED * .
* STATUS REGS * - - .
SEERRBBBBRRNEBBEN i3 3243 .
. oNO .
. - .
. . .
. . .
. . .
X x .
[e .
» » .
- mcp - .
* RRR * ceesesanene INTERRUPT #X.
* STACKED
ERERR ERERR
«YES
.
X
renen snnne
* FIND * #SDISP#
» Mee * NO L3 .
® INTERRUPT ®ecesessssccsX® (TYPE #
* IN » .
* QUEUE * » 77) %
- ERRER SRR
. «YES
. .
. .
. -
. .
x x
2RERR ERERE L2222
- » - *

NO %

- *
* KSUPP ¥X.
- -

[* YES * *

INTERRUPT #.ccesccscaseX® KNORM *

* STACKED * * »
*

* » - - -
anEEE rnnan rennn

Figure 10. Receptor— Chart §

26

nuEn
. *
* »
*KUNSTC *
* *

» *
ENRER

Xeosne

R e L T Y]
*

*
> SET KSERCH *
* FOUND RETUR N
* TO KINTTY

»
.

x
ERRRRRENRE RN NN

Xe ve e

nnEw

-
% DOES MCP #
* QUCUE COUNT
*EQUAL ZERO #
* *

axmEs
«NO

xXe oo

P e T T
*

* ADD PP -

* COUNT TO

MCP COUNT

*

»

»*
EEERERRE I ARRRE Y

ey
*

" -
*IRCPFC *.
» *

* »
exew

S * DDES PP
®eeseseseX® QUEJE COUMT

= FIND
¥oeeseseeX® INTERRUPT IN
.

enne
- .
» *
* KSUPP #
z *

- -
rnwn
X

I eYES
21T

*EQUAL ZERO *
* *

Py

EREERER AR RN
» 1y
MCP

QJUEUVE .
* ADJUST COUNT

*
*
*
*
BARARRRRRERA R NRS

NO * PLACE FAT
®eesesess X*ADDRESS IN $13
*

esscsse e X®FAT ADDRESS IN #,.0440

2222

* *
#KSERCH ¥eaass
- »

- »
rnne

AR EREAE AR SRR
* *

FROM QUEUE

ERRRRRRSREERRRN N,

AERRBRRRB R RRI R
» »
* PLACE MCP »
$13 FROM QUEUE #
- -

AERAAERRRERARRENN

»
*eeunosseeX®
»

Yy Yy

#DOES TOTAL *
oX#® QUEUE COUNT
#EQUAL ZERO *

- -

#unE.
«NO
.
.
eXesseooe

KeLue | X
rnnn

» -
#1S STACKED # NO

* ADDRESS EOUAI'. -
*

TO FAT
#ADDRESS#*
"RERE
«YES
.
.
.
KPACK X

EREBERRBRARBRE RS
*PACK THE QUEUE.#®
* REDUCE QUEUE ®

COUNT AND -

X ST NEXT #*
- *AVAILABLE ADDR.#®
. FERERRRERDIRES
. .
X
. anan
- . ts IV * YES
. * AUTOSTACKED #eceses
* * .
- .
L T .
«NO -
. .
. .
. .
X -
FARERERRBABIRB RN .
* * .
* CLEAR WAIT * X

* FLELD IN
*PROGRAM STATUS #
. TABLE -

EREURREEBAEREIRES

KREREER RN RRARR R T EERERREERARRRE RO
* BOOKKEEP * * TEST * BOOKKEEP *
FILE COUNT ® AND RESET * ON * VERIFY BIT
CF TO CS *eevasasaX¥ MOUNT *ee -
* TUNIT READY % 81T * -
* * .
EEEEREARRRRRR AR rwr R RAREREARARR NN
+OFF .
x
X .
ramun T N
* s x .
* THIS £ NO * RELEASED ¢ YES.
* A VERIFY ®easncseaX¥ Faaoe
* REMOUNT # op »
* * - .
L2222) RRBES
«YES «NO
-
x x
ERERERR AR AR e rumEn
* * ¥ IS » # SEOP ®
* SET KOIN * * THIS CS *
* EXIT TO #Xesssssae® LEVEL HIGHER *Xesssessa® OPERATION
* KHEX »* X * THAN
. * * PREV *
ERRREEARRRRERAARY rEEn seene
«YES

Figure 11. Receptor - Search and Unstack Routines

*
secask

* SAVE UST

*
HERARREERRRRENRE

13
#RETURN :

oX®

L TIYYY
-

{NOT

*FOUND) #
* -

QUE!
* EXHA
-

-

-
|

.

#eseacssccaasX®

.

sssse

NO
aane
HAS
UE BEEN

snans
«YES
.
.
.

.
X
ranan
13 3
RETURN #
(NOT &
FOUND) #
L] -
REE

[TTY Y]
[]

RETURN &
lFOUND):

»-
rene

YES - -
%esesssoscsesX¥ KHEX ®
- »

- *
senue

USTED *
.

Interrupt Control

27

associated with the unit in select, but the channel
signal may have originated at any unit on the channel.

The receptor uses the subroutine KCSIN to stack
the CS until a later time. The stacking consists of
setting a bit corresponding to the channel number in
the word KCSREG. The NOP at KSUPCS in the serv-
ice op return routine is changed to a branch, and the
CS will be unstacked on the next entry to the service
op return routine. When this occurs, control passes
to KMTCSQ (Figure 8), The channel number for the
first 1 in KCSREG is computed, and if the channel is
not operating, the receptor is entered at SFAKEI with
registers set up as though the CS had just occurred by
itself. If, after resetting the bit in KCSREG, the word
ig all zeros, the instruction at KSUPCS is changed to
a NOP.

If the channel is operating the KCSREG is examined
for additional 1's. If 1 is found for a non-operating
channel, control goes to SFAKEI as described. Other-
wise, the service op return routine is used, and un-
stacking of the CS is deferred until the channel is
not busy.

The service op return routine is also used to un-
stack console interrupts in certain circumstances.

If the $COMM pseudo-op had been given while the
console was being used for non-commentator I-O,
the commentator suppresses the console user's inter-
rupts and changes KSUPP to abranchto KCOMMR to
release them. Furthermore, if the commentator
suppressed a conceptor EOP, it changed the instruc-
tion at KCONCP to a NOP, and stored the copied
control word at KCOMCW. If the suppressed inter-
rupt was not the conceptor's, then the commentator
stored the UAT address in KCOMMR.

When the service op return routine is entered with
KSUPP (Figure 8) set to a branch, the switch is re-
set and the UAT address (if any) is picked up. If the
interrupt is the conceptor's (KCONCP a NOP), the
registers are set up as though the interrupt had been
received by the receptor and recognized as a con-
ceptor set-up operation. Control is given to PCONE2.
If the interrupt is not the conceptor's, then registers
are set up as though the interrupt had been received
by the receptor, and the receptor is entered at
KNORM. The return function of the service op re-
turn routine is discussed with the dispatcher pro-
grams.

The Conceptor

The conceptor is a special program to receive con-
sole channel signals. It performs a set-up console
read, and, upon completion, identifies the owner of
the CS and sets up a fake CS for that owner. When
the subsequent $READ is issued, the actuator enters
the conceptor, which performs a data transmission
and enters the receptor with an EOP faked for the read.

28

The three entry points are: PCONEL, when a CS
is received; PCONE2, when the read is complete;
PCSRD, when the $READ is given,

The Channel Signal Entry

When a console channel signal is received (or un-
stacked) by the receptor, the conceptor is entered at
PCONE1 (Figure 12). The conceptor sets up the
addresses of the MCP console tables and gives a
set-up console read, with PCONE2 in SRETAD in the
UAT. 1t exits to KSUPP.

The Set-Up Interrupt Entry

When the interrupt occurs from the set up read, the
conceptor is entered at PCONE2. The program re-
sets the set up, read, and channel operating bits,
and tests the interrupt indicators. An error message
is printed if EPGK or UK is on, and control returned
via KSUPP. PCONEL is entered if CS is on, and if
EE is on, a message is printed acknowledging the
erase,

If EOP is the only indicator on, the message is
examined to determine the owner. The owner may
be PP, the debugging package, or the command pack-
age as follows:

1. The owner is PP if either:

The keyboard was not enabled (CS key) and
the message consists of the switches and keys
(the end code is in the third word).

The first two non-control characters of the
message are PP,

2. The owner is the debugging package if the end
code is the first character of the fourth word (the
ENTER, END sequence).

3. Otherwise, the owner is the command package.

The flow separates according to the owner, and
converges againat PMAIN for the two MCP owners,
and at PEX1 for all owners. If a typewritten message
had been read, it is edited for backspace codes by
the subroutine GEDIT, and, according to owner, the-
proper tables and registers are set up. MCP messages
are stored in the buffer PMCPBF, and PP messages
are stored in PPPBF. At PEXI1, the console signal
bit, SCNSSG, is set in the UST, and control given to
KQIN with registers set as though a CS had just
occurred and with $1 set to KNORM.

The Actuator Entry

The recipient of the faked channel signal is expected
to issue a $READ for the console. When the actuator
read routine receives a console read request with
SCNSSG set in the UST, it enters the conceptor at
PCSRD, since the hardware read has already been
done.

CS ENTRY
ranuy
- »

* .
#PCONE1 #
» L]

- -
annnn
.

ARBRBBRRRRBARIRNS
- -
* GET_ADORESSES *®
- FO P »
: CONSOLE UNIT :
SEEBszERARARRR R R

Xeooas

AERERBRARERERERRN
: UPDATE TAEIBES *

- CONSOLE READ . l
* PUT PCONE2 b
® INTO SRETAD
ELITEE TS TR P TY Y Y 2

.
.
x
BERBRNREBERRSRRNS

* RCTLST -
Lot ot ST PR T
- READ e

* THE e

* CONSOLE .
RABRBABERABRRRANS
.

X
LR 2]
KSUPP#
* VIA
#RCTLST *
* *

* -
*neny

reny
» *

» -
[T

REBERRERRRRRR RN
* GEDIT -

oY
* BACKSPACE *
* CODES -
SRARRRERRARGIRANE

Xesoas

(231
S

I
* IT A PP ® NO
* MESSAGE
»

*
Enaes

Figure 12, Conceptor

YES

NO

'...-.-.-X' :DVE MESSAGE

» * * CONSOLE
*PPPRET #seseacvcceceeX® ASSIGNED TO
» L] »

SETUP ENTRY
enan
x -

- -
#PCONE2 #
. -

- -
tenan

Xesoue

ARRERBIRENRENNIES
* *
* RESET SETUP
READs CHANNEL
:OPEHATING BITS #

-
CE T R R R T Ry Y

-

saune

*
» IS EE ON
-

L XET]
«NO

Xesooe

senan
* 1S *
® END CCDE ®
* IN WORD .
- 3 »
. -
Anenw
«NO

x
[Tyt

-
P YT

PNCRET
AEBRARRBRRRRRA AR

* UPDATE -
® FAT ADDRESS. *
QO MCP BUFFER

EEABRRERRRBENR AR

axnan
* 1S -
-

MESSAGE -
*

ARAAER AR AR NNBE N

YES * -
#esevesssssee X¥PCCNEL *
- -

* S
% END CODE - YES
sees#THE FIRST CrAR *,
* OF & -

E
#eesscnseX®

tresissssssnaas

'-.......x'
* *

YES
LEXRTTTRYD 34
»

CONSOLE REAC ENTRY
ennan
- -

- -
PCSRD #
* -

1] .
Ananw

Xeoseoe

AR RRERESREENNR Y
- *
#SELECT BUFFER, 4%
WORD COUNT, %,.,

#* RESEY SCNSSA &
* .

RN RBREARBEA AN

SREBRARABAASRARN S
.

- SET UP
el ERROR
: MESSAGE

FERRRRSAERBANRE AN

LTINS
* -

» *
aEnEE

RESBAABRARARBSE RN
» *

* SET uUP -

#eeens
*

.
.
.
.
.
.
.
.
.
.

ERASE
* MESSAGE
*

»
AARBARERCRBRRNRE

* YES

- KEY
e X® 58 CR S§
» ON

POBRET
RERFRARNERRANNT RN
» .
» SET UuP hed
- FAT FOR *
* DEBUGGER »
L -
EREREARRER NN RRT.

Xe ot ese

PMAIN

'nuuu--nnu'nuuanu

' SET SINTAD

MOVE FIRST ‘
®sevssse

TO MCP BUFFER

.
RERRREARRERERRERN

FARRREARR AR RN

*

®*UPDATE TABLES, *

SET _SINTAD,
FLAAC

*
AARRRARREERA BB,

wEnEn
» .

* *
sescerse X® RPRRX *
» -

N *
wnnun

¥easeceseX®
-

HRRRERBAREAR AN
TRANE -

a3 L B B e
+X®% MOVE MESSAGE
® ACCORDING TO
% CONTROL WORD #
ELTIT TP e ey

LI 2T

3 -
- »
sesseeX® RPRRX #
- »

- -
snnns

Xoas e

LI IR YT R Y 2T
M -
(5% 8 TRy gy oy Ny

- TYPE .
* MESSAGE -
- »
ASRNEBRAERRRBNANY
.
.
.
x
EETTY]
KSUPP =
XYY
ARRBRBRBEER
- TRANSMIT .
. COMDLECQY -
eeX*® FOR KEY
® CCMDsABEQJ

® FQR KEY 59 .
ERAARRB AR ABAT AN

PEX1
RERERBARARSRA AR
* SET SCNSSG -
% RESET SSEL_IN '
e X¥ UST. PUT
KNORM IN $1

LTI Y ST 2

ereanex

aRERNRBEEERERR RN
»

MOVE MESSAGE
BUFFER

*
R R e e

“emam

+
#eeeseacceX® PUT
-

cou!unnna..ogc-ac

-
SETU# FAKE EOF .

lcoouuouounouuu

Xeo o

LI Y]
L] -
* -
® KGATE *
- .

- -
sunan

assne
* *

L) »
®eerscecccsc s XEPMCRET *
. - -

- .
arnan

AEREN

- ®

* »
eeX® KGIN &
- -

- -
nnny

Interrupt Control

29

At PCSRD, the SCNSSG bit is reset and the sub-
routine GTRANF used to transfer the message from
the buffer to the user according to the control word.
Registers are then set up as though a hardware read
had terminated with EOP, and the receptor is entered
at KGATE.

THE IF INTERRUPT -- THE DISPATCHER

The IF interrupt initiates major transfers of control
within MCP, between MCP and PP, and between the
PP I-O fixups and PP mainstream. Control programs
concerned with the IF interrupt are referred to col-
lectively as the dispatcher. The dispatcher consists
of the IF analyzer, the identifier, the service op
return program, the return routine, and error con-
trol. All dispatcher programs operate disabled.
Figure 13 provides a general picture of flow in and
through the dispatcher.

All pseudo-op requests generate an IF interrupt,
resulting in control passing to the IF analyzer.

IF

l Interrupt
[I B B !
| Fror | | | service
l] I ldentifier| Op Ly
l | | Return
|
| |
S | |

l IF Service |
l —_— Analyzer Routines I
I McP Lo

Major T .

,_L able of Exits |

Packages Ve (MCP or PP)

I / Unstack \ |
il

I Control / 1
l ~ --4’ I
‘ Unprime |

Control Return Receptor |
T |

I-O Interrupt

Figure 13, General Flow In and Through MCP Dispatcher

(MCP Dispatcher Programs within Solid Lines)

30

Pseudo-ops are requested by an acceptable linkage
of the form

B, $MCP

, ($0P)

, parameter

, parameter
where $MCP is defined as 32.0 in protected storage,
($OP) is the pseudo-op code, and the parameters
depend upon the pseudo-op for their meaning and
number. The B, $MCP results in an IF interrupt
which is taken by the IF analyzer. The action taken
by the IF analyzer depends upon the pseudo-op
requested and may involve setting up atentacletable.

The Pseudo-Ops

Pseudo-ops are considered in two categories: the
service pseudo-ops (Figure 14), and the major pack-
ages (Figure 15).

The service pseudo-ops are considered an exten-
sion of the requesting program; they operate disabled,
and always return to the point of request via the serv-
ice-op return routine (except $SRET and $RAM; see
description of return routine). The level bit (SL) is
not changed when the service-ops are used.

The major packages are MCP programs which
may use other MCP programs. They are enabled at
some time, and may be primed by MCP programs.
When a major package is used, it operates at MCP
level (level bit SL =1). The major packages use

Pseudo-Op Code Pseudo-Op Code Pseudo-Op Code
$RD 1.00 $WEF 7.32 $EVEN 15,00
$RDS 1.01 $WEFS 7.33 $EVENS 15.01
W 1.32 $REW 8,00 $ODD 15,32
$WS 1.33 $REWS 8,01 $ODDS 15.33
$CCW 2,00 $UNLD 8.32 $ECC 16,00
$REL 2,32 $UNLDS 8.33 $ECCS 16.01
$RELS 2.33 $RLF 9.00 $NOECC 16.32
$LOC 3,00 $RLFS 9.01 $NOECCS 16.33
$LOCS 3.01 $RLN 9.32 $ATID 17.00
$FC 3.32 $RLNS 9.33 $SIO 32,00
$FCS 3,33 $KLN 10,00 $RIO 32,32
$TIF 4,00 $KLNS 10,01 $RET 33.00
$TIFS 4,01 $FREE 10,32 $RAM 33,32
$ERG 5.00 $GONG 11,00 $STRG 34,00
$ERGS 5.01 $GONGS 11,01 $FECRG 34,32
$SP 5.32 $WAIT 11.32 $TIME 35,00
$SPS 5433 $CHEX 12,00 $COMM 35.32
$BSP 6.00 $FREE 12,32% $SIT 36.00
$BSPS 6.01 $IODEF 13,00 $FIXUP 36.32
$SPFL 6.32 $HD 14,00 $STLR 37.00
$SPFLS 6.33 $HDS 14,01 $FELR 37.32
$BSFL 7.00 $LD 14,32 $ABEX 38.00
$BSFLS 7.01 $LDS 14,33

* Available only to MCP,

Figure 14, The Service Pesudo-Ops

Available to MCP Available to MCP Only
and PP
Pseudo-Op Code Pseudo-Op Name Code
$DUMP 64,00 Sjct Job Control 1 79.32
$EDUMP 64.32 | SOUTPT Qutput Command 80.00
$EQJ 65.00 | SSPEQJ Output EOJ 80. 32
$HOLD 65.32 | SDDT Debugger 81.00
$RESLD 66.00 | SJjC4 IPL Entry to JC4 81.32
$FETCH 66.32 | SSCR4 First Card Request 82.00
$SPU 67.00 | SKOM Input Commands 82.32
- $SPR 67.32 | SCOMD System Commands 83.00
. $ABEQ] 68.00 | SLOG4 Logger 4 83.32
$SCR 68.32 | SLOG2 Logger 2 84.00
SLOG1 Logger 1 84.32

Figure 15. Major Package Pseudo-Ops

tentacle tables for linkage and return control. When
a major package uses another major package, the
latter must perform any necessary saving and.re-
storing of registers

The Tentacle Table

Each major package program has an associated ten-
tacle table located in its program area. The tentacle
table provides operating control information for the
major package program, and is used for linkage,
return, and priming control.

The tentacle table (Figure 16) is composed of two
and one-half words plus N half-word linkage param-
eters. '

To determine the number of half word parameters
(N) in the pseudo-op linkage, $OP is counted as the
first half word, then a half word is reserved in the
table for each parameter in the linkage. An additional
two and one-half full words are in the tentacle table.
Therefore, the size of each table is two and one-half
words plus N half words. e

Each linkage parameter will be processed as
controlled by its parameter descriptor. For each
parameter in the linkage following the half word for
$0OP, there will be a corresponding half word slot in
the tentacle table.

The IF Analyzer

When an IF interrupt occurs, the IF analyzer receives
control in the disabled mode from the interrupt table.
The IF analyzer itself may also be entered by a dis-
abled MCP program requesting a major package, or
by the return routine entering a primed major pack-
age. The IF analyzer channels all requests for the
service-ops to the identifier routine. Table 1
summarizes the entries to and exits from the IF
analyzer.

The IF analyzer (Figure 17) saves low registers in
the STLR buffer. The multiplier register ($MR; see

Appendix C) is saved, and the linkage examined for a
valid IF interrupt. If the instruction causing the inter-
rupt was not a B, $MCP, control is given to dispatcher
error control (SDISP) with error code 1 in $14. If
the op code is less than 1.0, or has ones in any of
bits 19 through 22, control is given to dispatcher
error control with error code 2 in $14. If the op code
is in the range of the service ops (less than 64.0),
control is given to the identifier routine (KFRONT).

If PP is requesting a major package pseudo-op,
the MCP mask and boundaries replace those of PP
and the registers saved (STLR) are moved to the
backup buffer, SLRBU. The op code is tested to
determine whether PP may legally request it (must
be less than SJC1). If PP is trying to use an MCP
pseudo-op, control is given to dispatcher error con-
trol with error code 2 in $14.

The foregoing steps are skipped if the disabled
entry was used (SIC,STIC; B,SIFAD). In this case

low registers are saved in STLR and a full word is
subtracted from the address saved upon entry. Then,
for either method of entry, the entry in the IF ana-
lyzer operation table corresponding to the pseudo-op
is located, and, in turn, gives the address of the
tentacle table. If the busy bit in this table is 1, the
return address is set as the location of the B, $MCP
(or the SIC,STIC, if a disabled entry), low registers
are restored, and control is returned to the linkage
via the service op return routine.

If an MCP fixup routine tries to use a major pack-
age, an error code 80 is put in $14 and exit is made
to error control (SDISP). A fixup routine may prime
a major routine, but may not attempt to give it con-
trol directly, since the interrupt may have occurred
while a major package was Operating.

The required information is put in the tentacle
table according to the parameter descriptors. The
level bit (SL) is set to denote MCP ownership of the
IC. The entry address is selected (MTC1), the entry
modes are preset (MTC2A), and the routine is entered.

The IF analyzer operation table starts at MIFTTT
and is used by the IF analyzer to determine the loca-
tion of the tentacle table pertaining to the pseudo-op
requested. The table is constructed so that each half
word contains the address of the pertinent tentacle
table. It is arranged in order of pseudo-op codes.

Identifier Routine

When a service-operation is requested, the identifier
routine is entered disabled from the IF analyzer.
The functions of the identifier routine are to:
1. Identify the specific unit assigned to the sym-
bolic file referenced in the calling sequence,
2. Check the calling sequence for a legal request,
3. Transfer control to the proper service routine
for the performance of the operation requested.

Interrupt Control 31

Table 1. Entries To and Exits From the IF Analzer

ENTRIES
Entry Registers
Symbol Conditions Preserved
SIFAE Entered disabled from All in STLR, IfPP
interrupt table due to IF owns IC, also in
interrupt. Location of SLRBU on other than
interrupt in STIC. service ops.
SIFAD Entered disabled by user All in STLR.
(MCP).
MTC1 Entered disabled from None.
return. Tentacle table
parameters set up by
return for primed routine,
MTC2A Entered disabled by retumn None,
routine returning from major
package to major package.
Branch address presumed pre-
set in MTC3A.
EXITS
Registers
Exit to Conditions Restored
SDISP Error; code in $14; None.
KFRONT $OP is a service op None.
$1.0=0P=64,0)
Address from Legal non-actuator None.
tentacle table pseudo-op.
KSUPP Tentacle table busy bit None.

The identifier is entered at KFRONT (Figure 18).

is set. Return is to the
B, $MCP (or SIC, STIC).

Remarks

Enabled entry, with linkage:
B, $MCP;, $OP
, PARAMETER
, PARAMETER

Disabled entry. User must be
MCP.
Linkage:

SIC, STIC: BD, SIFAD

, $OP; , PARAMETER

Sets up entry address for routine.
Used for same purpose by return to
enter primed routine.

Establishes SIO or non-SIO mode,
enabled or disabled branch, and
branches to routine.

Remarks

Errors possible:
Type 1 (MNOMCP) illegal IF

interrupt

Type 2 (MOPCI) illegal op
code

Type 80 (MIFAS) MCP in
Auto stack,

Exit to identifier routine,
Tentacle linkage set up.

Exit to service~op return routine

to wait in enabled loop.

If the pseudo-op is in the range 32.0 through 38.0
(Table 2), it does not use an IOD reference number,
and the appropriate routine is entered. If the pseudo-
op exceed 38.0, dispatcher error control is entered
with error code 2 in $14,

For pseudo-ops less than 32.0, the IOD reference
number (RN) is loaded in $1. For $RD, $RDS, $W,

32

$WS, and $CCW, the control word address is loaded
into $0. After turning off $USA and $AD, in the event
they came on during one of the LVE instructions, the
level bit (SL) is tested. If PP is requesting the
pseudo-op, the IOD RN must be less than the maxi-
mum PP IOD RN and must be a non-zero integer, or
control is given to dispatcher error control (SDISP)
with error code 4 in $14.

Table 2.
ENTRIES

Entry
Symbol

KFRONT

EXITS

Exit to

SDISP

KSUPP

ENTER
Routine

ENTER
Routine

Identifier Routine Entries and Exits

Conditions Remarks

Entered disabled from the IF analyzer with pseudo-op 64,0 Control sent here by the IF analyzer on any actuator
$2VF points to calling sequence at pseudo-op. pseudo-op.
$3VF contains pseudo-op. Low registers are in STLR.

Conditions Remarks

$OP is illegal 10D reference number invalid. Channel or Type 2 error.

unit not available. Referenced unit has an interrupt stacked. = Type 4 error.
Type 3 error.

Type 12 error.

10D refers to a tape unit in mount or REW status. Channel Return address (STIC) set to FWA of linkage. Enabled

is operating. Pseudo-op in SFREE for an unassigned unit. loop until unit is ready.
Return address (STIC) set to the instruction beyound
linkage. Treated as NOP.

32.0=<$0OP=38.0
The index registers are unchanged (same as at KFRONT),
Routines are:

Pseudo-Op Entry Symbol Pseudo-Op Entry Symbol
$SIO 32,0 KSIO $COMM 35,32 JCOMM
$RIO 32,32 KRIO $SIT 36.0 JSITX

$RET 33.0 CRETN $FIXUP 36.32 *SCBTT
$RAM 33,32 WRAMPP $STLR 37.0 TSTLR
$STRG 34,0 KSTRG $FELR 37.32 TFCHLR
$FECRG 34,32 KFECRG $ABEX 38.0 YABEX
$TIME 35.0 ZTIME

* For core storage conservation, $FIXUP has been setup as a major package in the 22 $DUMP leg.

1.0=X$0P=17.0 Return address set in STIC.
Actuated address and SEOP control set.

Routines are:

Pseudo-Op Entry Symbol Pseudo-Op Entry Symbol
$RD or $RDS 1,0 ZSTART $RLF 9.0 BRLFR
$W or $WS 1,32 EWR1 $RLN 9.32 BRLNR
$CCW 2.0 BCCWR $KLN -~ 10,0 BKLNR
$REL 2.32 WREL $FREE 10.32 ZFREE
$LOC 3.0 KSLOC $GONG 11.0 WGONG
$FC 3,32 WFC $WAIT 11,32 KWAIT
$TIF 4.0 BTIFR $CHEX 12,0 CCHEX
(Invalid) 4,32 SDISP (type 2) $FREE 12,32 ZFREE
$ERG 5.0 EELG $IODEF 13,0 JZIOR
$SP 5.32 R1 $HD 14,0 *RHD
$BSP 6.0 Rl +1.0 $LD 14,32 *RLD
$SPFL 6.32 R1 + 2,0 $EVEN 15,0 *REVEN
$BSFL 7.0 R2 - .32 $0ODD 15.32 *RODD
$WEF 7.32 EWT1 $ECC 16.0 *RECC
$REW 8.0 ZREWST $NOECC 16.32 *RNOECC
$UNLD 8.32 ZUNLDB $ATID 17.0 SCBALT

* KCOP gives control to the location as indicated; however, each routine resets $3 to 13,32 and control
goes to RALLPS to do functions common to the mode and density operations.

Interrupt Control

33

.0 .31.4 .5 .6 .7}1.8].9].10{.11].12].13].14 .15{.16 .37].38 . 45 .63
Parameter Descriptors
g
£ FWA of Pseudo-Op
Routine
T E
|
S
T
1 -
- @
] -]
e s 9
‘«O ~ wn 2
= @ [o0 < - °
29 5 5 § 5] A
£ slol3 |3 & 8| & 85
B s3] 8 2 @ @ Q - 1]
Z 3 lel=2lz|> =] E E £ by £ 3
S1E12121 8|83 5| B | 5 |3| 51|s
Dlolald|Z]lal 2 & a a g [¥
8 8
4 B
v =
. " A
- Pal Ra] L Ral @
HHEIHEIRIE R
el el gt 8] gl gl gl & 2
sl 8|l 51 3| 5] 8| 5|58 3
AEAR" R A RSN a [-1 a
.32
FWA of Last Tentacle Table Used Return Address
FWA of Pseudo-Op Linkage Pseudo-Op Parameter
Parameter 2 Parameter 3
Parameter 4 Parameter 5
~ ~ ::
la'd ’T
Parameter 14 Parameter 15

" Word 0

bit Q.4 - the user bit defines the identity of the instruction counter
owner at the time the IF analyzer was entered. If 1, owner is MCP;
if 0, owner is problem program.

bits 0. S through 0.7 - entry mode bits determine whether the pro-
gram is to be entered disabled, enabled-S10'd, or enabled non-SIO'd:

.5 .6 .7

0 0 0 Non-SIO, enabled entry mode

0O o0 1 SIO enabled entry mode

0 1 X Disabled entry mode

1 X X Same as user is entry mode (for PP user, this
(X=1or0) implies non-SIO, enabled).

bit 0.9 - busy bit - A 1 in bit position 0.9 indicates that the pseudo-
op program is in use. The IF analyzer will continuously return to the
beginning of the user's linkage via the service op return routine. The
user must be in the non-SIO enabled mode, because the busy signal
can only be turned off by an I-O routine receiving control upon I-O
interruption. :
bit 0. 11, 0.13,..
If a 1 is in bit position 0.11, the effective address of the first param-
eter will be formed and saved in the proper tentacle table position.
With a 0'in bit position 0. 11, the first parameter will be saved.

Bit positions 0. 11 through 0. 38 are reserved for parameter descriptors,
Except for the $OP param-
eter, there are two parameter descriptors (form effective or restore)

-1 0. 37 - parameter descriptor (form effective) -

with two bit positions for each parameter.

for each parameter in the pseudo-op linkage, allowing for 14 param-

Figure 16, Tentacle Table Structure

34

eters not including the $OP parameter.

bit 0.12, 0.14,...,0.38 - parameter descriptor (restore) - If a 1 is
in bit position 0.12, the first parameter will be returned to the user's
linkage when control is transferred back to that package. With a 0
in bit position Q. 12, the parameter will not be restored.

bits 0. 45 through 0. 63 - FWA of pseudo-op routine - Word zero, bit
positions 0. 45 through 0. 63, contains the location for the first word
The
IF analyzer utlimately transfers to this address in the specified entry
mode.

Word 1, bits 0 through 23, Value field - FWA of last tentacle Table
used - contains the first word address of the last tentacle table and

If the

address of the pseudo-op routine pertinent to the tentacle table.

locates the tentacle table pertinent to the user's routine.
problem program is the user, this half word will be a zero.
bits 32 through 55, Value fijeld - return address - contains the normal
return as computed by the IF analyzer unless otherwise modified by*
the pseudo-operation routine. The return service pseudo-op ($RET)
will transfer control to this address when requested by the pseudo-
program owning the tentacle table.

Word 2, bits O through 23, Value Field - FWA of pseudo-op linkage -
contains the address of the first half word in the user's pseudo-operation
linkage (B, $MCP).

bits 32 through 55, Value Field - pseudo-op parameter - the identifi-
cation of the pseudo-op as indicated in the second half of the linkage
is saved in this slot.

nBEES BAERFBEREERBANE S ARARN “na
»* - » * - -
. » % SAVE LOW * * WAS THE * NO * spise *
% SIFAE #.esessssesesX® REGISTERS #eccccceoX® 1F %eeeeaccceceaX® (TYPE *
* » [IN STLR . BsSNCP _ # 1) e
* - * * - * - -
EEERS ERBRRARARRARRAARES ERERR HHERE
«YES
.
.
.
x
ERRRE HEARE
* - - -
#IS OPF COCE % NO » Spisp ®
* OF CORRECT ¥eeessascscacX® (TYPE ¥
» FCRM - * 2) -
- * - -
LX22 2] A8ARN
«YES
.
.
x
LARR R sunen
. . . .
* IS IT AN &

- ACTUATOR
* OPERATICN ®
. *

sraan ARRRBRAAEERRRNRE

»
CP_ = NO

% COUNTER #
* »

. SLRBY)
AERRR AARAESEARRNBRE
.YES
.
. YES
eXeeseeasscsscsccee®
.
.
.
.

Tz AAAAARR B A AR AR AR [ETE]
* - - SAVE LOw hd
» * * REGISTERS IN_ * » SET UP
SIFAD #ecescessosseX® STLR. ADJLUST %*eacueees o X¥TENTACLE TABLE
- . * LINKAGE - * ADCRESS.
REFERENCE. *
ARRAEARRRBRR RN

ERRARERE
*

- * »* '
Iyl RAREEBRNARRRNBAREN

3

- 1S * YES
= PSELCC CP LR T TRy
» BUSY

* YES
-

seeccscee

AARERAERARRRREN N
* .

» SET _ULP *
#TENTACLE TABLE *sceccacace
* PARAMETERS *
% SET MCP LEVEL ¥
FARERARAARERR RN

saunw ARRERARARRBN AR AN aunnn
- - - » * 3

* * * SEV ENTRY » » * *
* MTC1l *eeoonscecoveaX¥ ADDRESS ®eoaesessanesX® MTC2A ®escesencanssX¥
* % * * * * -
* » » . . -
rennn ERRRERRBRNRERANR aenns

Figure 17. IF Analyzer

-
X

EAERE
® IS PP _®
* PERAMITTED *
10 USE THIS
% PSEUOC-OP *#
- -

rnune

“uase
* .

* -

eoX¥ KSUPP #

. *

[T
. L}

* SDIsSp #
eaX® (TYPE #
* 80)

.

.
[T

suunn
.

- »

coX® MTCL &

» *

* -
sunuw

SET ENTRY
MCOES

#SET BOUNDARIES *
- MCP .

nC

MessvssevecseX

RTARNRARRBARONE RN
» »

*
*e
»

* .
SENRREREIRGRNEREY

nnnan
- .
SCISP ®
(TYPE #
2) .

. -
sEnen

nsua
- [

-]
[T

Interrupt Control

35

RERAE A2 2213 £33 2]
. - * 1S » ® 1S »
. * * 0P CODE * NO ® 0P CODE * YES
KFRONT #cccvccccaceaX® LESS THAN %ececeeseX® GREATER THAN %ecs
* * * " 32.0 . + 38.0 .
- - - - - »
REREN THRAN EBNEN
oYES «NO
.
.
. .
x X
ARRRAEAR RN “uREN
* SELECT BASE # » .
4 ACORESS FCR # * ENTER #
. o » *ROUTINE®
STATUS TABLE # . »
» * * *
AAAA R A RSS2SR 2] LER 23]
.
.
x
RARERRERBRERRRRRNNE EREAR *annn
* - - -
* GET CHANNEL # YES # 1s * NO * SOISP #
* UNIT STATUS #X. 100 NO.
* REFERENCE + * ,DEFINED # 4) »
- -
ERBRBAARNRIRBRRNENY RRE. ERARS
.
X
sRAnE *hEnw Lial2d
*IS UNIT® LN * IS 13
* A TAPE IN % NO # OP CODE #* YES * OF CODE_ * YES
® MOUNT OR REW %ecesaceaeX® LESS THAN ®oceeeeooX® OR GREATER .
+ STATUS # 11.32 THAN
* » ® 17.0
wnuns LYY T Aranw
«YES «NO «NO
.
. .
. .
. .
. .
. .
- .
. .
. .
. .
. .
. .
. .
X x
sunns T rxnws
L] * * ARE * »
* SDISP # NO_ * CHANNEL * YES % IS THE #
* (TYPE *Xaas sese® AND UNIT #Xsessaess® OPERATION #...
* 3 ® AVAILABLE SFREE _
- - - *
runn YTy senan
«YES
.
X
ERERR SRERR EARRE
» . . » N
* SDISP # » 1s . » »
* (TYPE * » CHANNEL saX® KNOGO ®
* a) o» ® OPERATING # . .
* . * 5 - .
Erune T ruane
x «NO
. .
. .
. .
. .
«NO x
wninn “enan
*
1s NO % »
#* OPERATION #Xeeseoesse® UNIT *
* SFREE * ASSIGNED *
. . *
RERE REARE
<YES <YES
. .
. .
X X
ERERE REEE EREBE
» - . » »
* » . TEE * YES - »
* KSUPP » ® OPERATION %eceaevemaecoesX® KOPOK #
* - - $CCw - - *
- - * - L
EEERE HRREE ARAEN
«NO
.
X
L2 X2 T AERRR
. * IS AN #
* TAPE » * INTERRUFT * KO
* PSEUDO-OF STACKED faee
* FOR UNIT
. - »
*RREN - “ngne
«YES . «YES
. . .
. . .
x . x
HEABARBBAERRANE R - AERRRRRRRRERERN NN
- ACTCNT . . oo KSERCH .
- S-S S PRSP et e A
* IDENTIFY
* INTERRUPT
REEL HISTORY # * *
PRIV M RrEsusensnennsuuE
Figure 18. Identifier

36

(272
. -

% SOISP #
seesscensX® (TYPE #
« 2) =

. -
sunen

[2TY)
» L]

- -
% KOPOK #Xevecee
- -

- -
[T

rasne
] L]
.

* KKNI

»

*
*Xeosnee
*

- -
LT YT

“nune
L] -
* SOISP #

2)

SEAARNBRBERRNRD RN

- RESET IC -
. .
% TO START OF #x,
- -
- CALL SEQ .
L e e P Y P Y X
.
.
.
- * YES
. LT
.
.
x
EEX T2
- »
* ENTER #
*ROUTINESX
»
-
(2212

KNI X

FERERBERREAE NN

» -

- SET b
ceseX¥ ACTUATED Heae

- ADDRESS -

-
R T R T
X

YES
P es
*[S THE #
* QOPERATICN # AC
+X® RELs FREEs> CR %440
® 1S INTPT #

s
[Ty

YES # SCHEX -
wee® UNMOUNT TAPE #
* o .
ICDEF #
ennn
«NQ

ey

-

YEE #
CERT RN 4
-

E
UNIT CHAN
OR N
* MCUNT #
anman
«NO

Xeo e

wnanw

.
-
.
.
.
x

% REMIND -
MESSAGE
L4 GIVEN .

ERNEEER R ARRARRE

. SCOMM

E O R o N S P
REMINC *

CPERATOR TC *

MOUNT TAPE .

NEAREEARRRA AR

sssesssnsaacn

seese®
-

*nune
* .

- *
eececesssX¥ KOPCK #
» »
. .
EXI 21
.

e s sna

SERBEBRASRENANNSN
- »

* SET RETURN *
ACCRESS 1IN .
sSTIC *

= -
ARARRAEA AR AN

EETT TS
- *

-
eesccscc X
»

»
KCPCK =
-

* *
sxann

EEE2 2]

* £
SCISP «
esessssacX® (TYPE #
® 12) =

2121

The base address of the user's I-O table is added
to $1 to locate the entry for the IOD RN. (If MCP is
requesting SFREE, it is referring to a PP unit and
the PP base address is added.) The unit area address
for the 10D RN is loaded into $12 from the I-O table.
A zero address denotes the absence of an IOD card
for the 10D RN, in which case error control is entered
with error code 4 in $14. The file area table is
loaded into $13 from the I-O table. Index register 2
is adjusted to point to the first instruction of the
linkage (B,$MCP), $14 is loaded with the channel
number, and $10 with the reference address for the
channel status word in the channel status table. The
equipment code is loaded into $4, and $11 is loaded
with the correct unit status word reference, depending

on whether or not the channel is a multiple unit channel.

The index registers except $2, are now ready for
entry into any of the routines.

The status of index registers when identifier enters
routine (pseudo-op less than 32.0) is as follows:

Index Register Value Field Contains

$0 Control word address.

$1 10D RN entry in I-O table.

$2 Return address if service op routine entered.
$3 The pseudo-op code.

$4 Equipment code..

$10 Channel status word reference.

$11 Unit status word reference.

$12 Unit area table address.

$13 File area table address.

If the unit is a tape in mount or rewind status, con-
trol is returned (KNOGO) to the linkage via the serv-
ice op return routine to establish an enabled loop,
unless the pseudo-op is one which will not require a
hardware I-O instruction. If the pseudo-op is $CCW,
$CHEX, or $IODEF, the appropriate routine may be
entered, and control is given to KOPOK to accomplish
the entry. If the pseudo~op is $REL or $FREE (in
the non-rewind status), the actuated address and the
SEOP bit must be stored before entering the routine,
and control is given to KKNI.

For a single unit channel, or a tape unit not in
mount or rewind status (KNI), the pseudo-op code is
examined for $WAIT, $CHEX, or $IODEF, which
may be entered immediately via KOPOK. A pseudo-
op code greater than 17.0 is detected at this point,
and control given to dispatcher error control with
error code 2 in $14. If the op code is associated with
density, mode or alter disposition pseudo-ops, these
routines are given control immediately.

If the channel and unit selected are not physically
available, as indicated the appropriate bit in the
corresponding status word, dispatcher error control
is entered with error code 3 in $14, If the channel

'is operating, the pseudo-op is treated in the same

manner as with a tape unit in mount or rewind status
(KNOGO).

If the unit has not been assigned, and the pseudo-op
is not SFREE, dispatcher error control is entered
with error code 4 in $14. Control is returned to the
point after the linkage if MCP has requested SFREE
for a unit already unassigned.

For pseudo-ops other than $CCW, the appropriate
count ($RD, $W, control) is updated if the pseudo-op
is for a tape unit, otherwise the unit suppressed bit
is examined in the status table. If the requested unit
has an interrupt stacked, and the pseudo-op is $REL,
$FREE, or SFREE, the interrupt is unstacked and
discarded and the pseudo-op entered. A stacked CS
interrupt is always discarded. Otherwise, error con-
trol is entered with type 12 error selected.

The actuated address is stored in the {ile area
(KKNI), the actuated file address is stored in the
unit area, and the SEOP hit originally specified is
stored in the SEOP bit for the unit. Index register 2
is adjusted for the return address (KOPOK) and
stored in STIC and the routine is entered.

The Service-Op Return Routine

The disabled routines in MCP need to return to the
point of the most recent interrupt, or, in the case of
an IF interrupt, to the beginning or end of the calling
sequence. In all instances, the low register buffer
(STLR) contains the information necessary to return.
The service-op return routine, KSUPP, is used for
this purpose. It includes an unstacking mechanism
for console EOP and for tape unit channel signals.

When the routine is entered, STIC must contain the
address to which return is desired. If no unstacking
is required, that is, the first two instructions are ,
NOP's, the address in STIC is placed in a BE instruc-
tion, the multiplier register ($MR; see Appendix C)
and the low registers restored from STLR, and the
BE executed.

When a disabled routine decides to return via
KSUPP, STIC is not always correct for the desired
return, and must be adjusted before control goes to
KSUPP. Occasionally, this is done in the routine.
Other times, the disabled routine branches to a short
routine to make the proper adjustment and branch to
KSUPP. The most commonly used of these short
routines are as follows:

Symbol Quantity Placed in STIC
KCBUSY $2VF - 2.0
KELOOP $2VF - 1.32
KSUPP2 $2VF + .32
KCHOPN $2VF

KSUPP2 + .32 $2VF

Interrupt Control 37

When it is necessary to stack a non-commentator
EOP from the console, the first instruction of
KSUPP, that is, NOP, KCOMMR, is changed to a
branch by the commentator. The next entry to
KSUPP results in the release of the EOP to the
receptor. (See description of commentator.)

The second instruction of KSUPP, that is, NOP,
KMTCSQ, is changed to a branch by the receptor
when a CS arrives with a higher priority I-O inter-
rupt. It is unstacked on a subsequent entry to KSUPP.
(See description of receptor, channel s1gnal and
console unstack control.)

The Return Routine

The identifier gives control to the return routine in
the disabled mode when the pseudo-op $RET is
requested. The problem program (PP) must use
$RET to end its fixup routines in order to release
stacked interrupts, and to permit MCP to restore
the lower registers and instruction counter (IC).
Only in this way can the PP be taken out of the auto-
stack mode. MCP must use $RET to end MCP fixup
routines, and to end any major pseudo-op routine.
The ultimate function of the return routine is to
return control to the main stream of the problem
program. A $RET request in PP main stream results
in immediate return to the point of request via the
service op return routine. If the $RET is given else-
where (PP fixup, MCP fixup, MCP routine), the
routine must insure that there are no stacked inter-
rupts that can be unstacked, and no interrupted or
primed MCP routines which should be given control.

MCP Features and the Return Routine

In order to follow the logic of the return routine,
certain basic features of MCP must be understood.
These features are described on the following pages.
1. The utilization of buffers to store low registers.
2. The priming of major pseudo-op routines.
3. The use of the program status table.

Low Register Buffers: There are four buffers used
to store low registers: STLR, SLRBU, SLRPP, and
SLRMCP. Each is thirty words long, and the last
word of each is used to hold the IC associated with
the low registers (STIC,, SICBU, SICPP, SICMCP).

The low register buffer, STLR, always contains
the registers from the most recent interrupt. When
the return routine receives control, STLR contains
the registers at the B, $MCP which requested the
return.

The back up buffer, SLRBU, is used to hold PP
low registers as they were when the level changed

38

from PP to MCP. It is filled from STLR by any

MCP program which changes the level bit (SL) from
zero to one. (Note that this excludes the service
pseudo-ops, which operate at the level of the
requestor, and which return via the service op return
routine.)

The PP low register buffer (SLRPP) is used to
hold PP main stream registers when a PP I-O Table
of Exits is to be entered. It is filled from STLR when
a PP I-O interrupt occurs in non-SIO'd PP main
stream. (Note that a PP I-O interrupt ocecurring at
any other time is always stacked, and unstacked when
SIO'd PP main stream requests $RIO.) It may be
filled by the return routine from SLRBU when MCP
has requested $RET and PP interrupts must be
unstacked.

The MCP low register buffer (SLRMCP) is used to
hold MCP main stream low registers when MCP inter-
rupts MCP. It is filled from STLR by the receptor
when the interrupt occurs, or by the return routine
when an MCP program requests $RET and an MCP
interrupt is unstacked.

Word 9 of each buffer holds $MASK when the buffer
is in use. With respect to buffers SLRMCP and
SLRBU, bit 0 of word 9 is used to denote that the
buffer is in use. The corresponding position of
$MASK is permanently 1, so the bit is set whenever
the buffer is filled. The return routine resets bit
9.0 of the buffer whenever it restores registers from
SLRMCP or SLRBU.

Primed Routines: A pseudo-op is said to be primed
when delayed entry has been designated for it. (See
description of prime routine.) The need to prime a
major pseudo-op arises in two situations:

1. An MCP auto-stacked routine must use the
pseudo-op, but major pseudo-ops may not be used in
the auto-stack mode.

2. An MCP major package requires that another
major package (or itself) be entered at some time
subsequent to its $RET.

In these cases, the prime routine is used to enter
the request in a revolving queue which the return
routine must empty before returning to PP, When a
major pseudo-op routine is given control by the return
routine because it was primed, its tentacle table has
the following unique characteristics which remain when
the pseudo-op routine requests $RET, and are used
by the return routine to determine subsequent control.

1. The user is MCP.

2. The FWA of the last tentacle table used is zero.

3. The return address is zero.

The Program Status Table: The program status table '
is a two word table used to record the various modes

of PP and MCP. The first word denotes PP status,
the second MCP status. Both words have the same

structure:

Symbol Bits Quantity

0.0 .0-.17 Address of the file area table
corresponding to the 10D
reference number for which
$WAIT was requested, if the
wait is still in effect. If the
wait is not in effect, it is 0.

SAS .25 Auto-stacked bit. 1 denotes
the program is auto-stacked,
0 that it is not.

SQK .32-.49 Interrupt queue count. 0 if
no interrupts are stacked for
program.

SSIO .61 SIO bit. If 1, the program is

in SIO mode.

The Logic of the Return Routine

IC at MCP Level (SL=1):" The return routine (Figures
19,20) is entered at CRETN from the identifier. If
the IC is at MCP level (SL is one) SRET was requested
by one of the following:

1. An MCP auto-stacked routine (I-O fixup).

2. A major package which was primed.

3. A major package being used by PP.)

4. A major package being used by another major
package.

Considering each in turn (Figure 19), if MCP is
auto-stacked, the auto-stack bit is reset in the pro-
gram status table (SPROGS). MCP may either be in
SIO mode or not in SIO mode. If in SIO mode, then
MCP interrupted MCP (MCP is non-SIO at PP level)
and return is made restoring low registers from
SLRMCP. If not in SIO mode, there may or may not
be MCP interrupts stacked. Any stacked MCP inter-
rupts must be taken, taking a waited interrupt first
if it has occurred. If MCP is not in SIO mode and has
no interrupts stacked, then SLRMCP is examined.

If it is in use, MCP interrupted MCP and return is
made restoring low registers from SLRMCP. Other-
wise, control is given to MUP1 to attempt return to
PP. (MUPI1 logic is described later in this section.)

If $RET is requested by a major package (not auto-
stacked), MCP is put in non-8I0 mode. If the
requesting routine was primed, (MCP user, FWA of
last tentacle table zero), control is given to MUP1
to attempt return to PP (case 2).

If $RET is requested by a major package being
used by PP, the tentacle table parameters are
restored as specified, the return address is moved
from the tentacle table to SICBU, and control is
given to MUPI to attempt return to PP (case 3).

If $RET is requested by a major package being
used by another major package, the tentacle table
parameters are restored and the return address
placed in the low register buffer (STIC). Conditions
are set up for return to the routine via the IF analyzer
(MTC2A), and if no MCP interrupts are stacked, the
IF analyzer is entered. If MCP interrupts are
stacked, the unstack routine (KUNSTC) is entered
(case 4). NOTE: MCP interrupts are unstacked even
if a SIO'd major package is returning to a SIO'd major
package.

MUP1 Program: Control is given to MUPI under the

following circumstances:

1. MCP interrupted PP and is returning from auto-
stack with no MCP interrupts stacked.

2. A primed routine issued the SRET. (Primed
routines originally get control from MUP1).

3. The routine which issued the $RET was being
used by PP.

At MUPI, control is given to the unstack routine
(KUNSTC) if any MCP interrupts are stacked. If
the prime queue is not empty, the next major package
in the queue must be unprimed before returning to
PP. Its busy bit is tested. If the routine is busy,
implying that it released control while waiting for
1-O activity to be completed and was subsequently
primed, control is returned to the $RET request via
the service op return routine. This establishes an
enabled loop which will continually renew the request
to unprime the routine while allowing the I-O inter-
rupt to occur. If the routine is not busy, the param-
eters are moved from the prime queue to the tentacle
table, the prime queue controls are adjusted, and the
tentacle table is set up to indicate that the routine was
primed. The IF analyzer is then entered at MTC1
to complete entry to the routine.

If no routines are primed, the address of the cur-
rent tentacle table (MCR) is cleared (MPP1), and $9
is adjusted to refer to the PP program status table
(SPROGS). The subroutine JMPP1 is entered to
determine if either $OP, $AD, $USA, or $DS had
come on simultaneously with an I-O interrupt when
PP was interrupted. If so, dispatcher error control
(SDISP) is entered at PP level with the type 14 error
code set in $14. Otherwise, the subroutine returns,
and PP is checked for auto-stack, non-wait SIO or
wait-interrupt not queued modes. If in either, or if
it has no interrupts stacked, control may be given
to PP restoring registers from the backup buffer

Interrupt Control 39

LT T2Y
*]

-
% CRETN
»

*
(222

nniau-unninnacnul

RELEASE MCP .

.FROM AU;O SYACK!X-.-.--.-' IN AUTO-STACK

lll‘l!l."l..!ll.

Xe oo o

rane

. *
* IS MCP * YES

seaX® -
-

RN L2 LS
- - - -
* DOES PP & YES - »
OWN THE e X®CRETPP ®
Ic - -
- -
2REER (22 E 3]
«NO
.
.
.
X
EREAR L2222 ANARRERRSN
. *
YES * NO * RELEASE MCP &

LETTPTPRRY $.4
»

FROM S10
MCCE

*
sanss

-unnubnun.ucou.o Q.Q!‘
n

RESTORE LCw & sRETURN .
* IN SI0 '........xmeclsrsns FROM 2ecceceeceneexs 10
* MODE . : e o
» * " .
RERR I‘ICIQ..QIIIIIII! AR
«NO X
.
.
X cHsNOW
EREERE e #EARE
» "

.
DOES MCP # NO

#HAVE INTERRUPTS®cccevssaX¥
-

KED %
»

“rEER
«YES
.

P

*
IS MCP * NO
ING FOR AN #..

»
*uAL
& INTERRUPT *

.

e x

AR
«YES

Xeo 4 ae

ARBEERAR RS RERERNN
- KSERCH -

P R S o2 TR TN
* IS WALTED
e INTERRUPT

ACK *
REERRIRRRRIAERRAAN
<YES
.
x

nunn
» -

.
.
.
.
.

*
WAS NCP # NO - *
INTERRUPTED *esessccccoaseX® MUPL *
* L} - .

L3 . -
renEn ARRES
sssse ARBEARTBARARNRENS
- # MOVE RETULRN '

- -
see s XEKUNSTC #
- * TO EACK uP

BUFFER
-n-uin---u.lcuoao

cennn

.

.

x

ERaAN snnun
» -
* SODISP *
* MUPL ®

* (TYPE *
* 14) -

- »*
[TXYI)

X
YT

» . -
RKINTTY # Se*Xsee
* * -ca Sud’ occunnsn* . * STACKED *
- - - *
RERER ‘I!'..‘.i.l!‘.‘ll REARE
- «NO
. .
. .
x X
P senan wanun
YES - PP N - PP . NC * ARE ANY -
ceee® WATTING %Xeessesse® AUTOSTACKED * ROUT INES
. . . * PRIV
: » * *
. ARG *ERRE L2 R L
- «NO »YES
. . .
. . cessscesssancscsscesenssaas
. feesccscssssaasasssncssscee .
. . .
. x :
- HAEBRBEEA AR AR AR R, RERE -
P SERCH * * .
T Eemes_K-N—k—-%-2NO . PP « YES :
seeX¥® IS AWAITED * STACK I C %esesesssacaccsccXe
* INTERRUPT * MO] .
* STACKED * * .
RERERRERRRABERARE wenan M
«YES «nO .
. . .
. . .
. . .
. . .
. . .
X X CRETBU x
HERRBRFAEARRR AR - I‘.I.Q..l.'..l.'.
* .

MOVE
* REGISTERS -
* FROM BACKUP #
TO AUTOSTACK *
- BUFFER *
ARBERRERRRRB R AN

X1 es oo

[T
* -
* »
*KINTTY *
» *

* *
ranue

* DOES PP % NO - SET PP
#EAVE INTERRUPTS®cceeeeseX*® AS IC OWNER
* STACKEC * .

*
wnaue
«YES

»
nunic&nununuc

xes s

uan\nuunuuqnu« Neawe
- *

MCVE (SLRBU)} '
TO (SLRPP) *eeoasee
-

u » 1
* « e XBKUNSTC #
- - »
.
.

* - .
AxBeRBERARRBANEY AnARE

Figure 19. Return Routine - Chart 1

40

» ®
SRBEBRSEBARERRRNY

$ooseecea k¥
"

NC
'TENYACLE TABLE 'Xo- eccnced

DOES MCP ® YES * -
*#RAVE INTERRUPTS®eaevescoces s XFKUNSTC #
- -

wnane

YES
eescscsssssessccane

® 1S NCP -
THE ROUTINE
- USER -

.
anEn .
oNO .
. .
. .
- .
- .
. x
. snnan
- *
. NC & WAS THE #
eXeeoscoasscsessce® ROUTINE -
. 4 FPRIMEC -
. - -
. snnus
. «YES
. -
. .
. .
. .
. .
x x
sanan

AR NERORS RSB NENY
* a
- RESTORE -
STENTACLE TABLE *
PARAMETERS :

-
BENRNANEBA NN
-

Xeoose

FT YL Y ARARRBAERARARGERS
MOVE RETURN ¥
ADDRESS FROM '

.X'YENI’ACLE TABL

TO LCW GISYER'

' EUFFER .
ERBRAAABRE RN DR

1S MCP -
YNE RCUTINE
- . USER -

“nune
.
H
X
L1 Quuu!li-u anew
- -
MOVE (STLR) ' YES * DOES WNCP
: TO (SLRNMCP) 'l-.ouc-o-.FAVE lNTERRUFYS‘
- !
AEARNRRERRRRNBENE sRute
. *NO
. .
. .

snune
. .

- -
* MTC2A =
- -

- * » *
AN LR R3]
(2223 *ABAN
- -
* veS » .
X% KSUFP #
. .
- #*
RREEN LAl 2l]
«NO
.
.
.
X
AERBRAERBENBRROEN Il.ii
BADJUST PRINE q # .

-
'SEY upP TENTACLE’-....-.-..--X' NTCL
' TABLE LINKAGE & *

-

llllll.lllilll.ll nnun

l.lllil'llli'!l‘. .l.ii
JTSEXE -

i_|_i—.-.-u-u-|-!¥§5

l -
:.~----..X' FAS TS OR EXE ’o-....-....-x' SIPT %
*

OCCURRED
a .

nuuuncinu.uu-ul EE1 2]

oN

-

.

.

x
BEEBRBERATERRBANR ll.!.
- »
RESTORE LOW # OHE?URN C

..)u TC

#REGISTERS FROM
- SLRBU

* - [
SERRARBEE RN BB RN IETYRY

» -
®CRETPP #
- .
- -
SEREN
.
.
X
Li i 2l “Auan
* - -
IS PP IN # NGO - .
% AUTO-STACK «X¥ KSUPP ¥
* MOODE - - -
- - - -
*RENE nERAR
«YES
.
.
.
X
'."ll"l.i’l‘.!'
RELEASE
OFROM AUTO-SI‘ACK'
escasnnsenssrans
.
.
X cPsI0
#RERE LA 221) RHERERRARADAS RN I!!QI
- - - . - KSERCK - |
® IS PP IN #* YES YES EET T PR B T ot O 17 X1
* SI10 MODE ‘..‘--o..X'IAlTlNG FOﬂ Ah '-------.X' IS WAITED '.....o-oo--oX‘KlNTTV '
- ® * INTERRUPT 4 INTERRUPT -
- » - * TACK L)
RN snane .ll...l.llili.'l‘ IIllI
oNO oNO «NO
. . .
. .
. .
. Xe
X CESNOW X
wnenn HNEREEEEANSNEN N cunesuENaNRRO NN wans
u . JTSEXE - a -
0ES NO B et g S B B R RESTORE LOW 4 uaE‘ruuN »
‘HAVE lNTERRUPTS'-o-.o..-X. HAS TS OR EXE 'o-o-oo--K'REGlSTEFS FROM 'o-o-o-o-o-ocl' TO PP #
STACK * OCCURRED
| -
RN FEARRARBHTRRRARES ll...i'll'll!l’ll LA S S 2]
«YES .
. .
. .
. .
X X
LAE L] *RENS
- - -
1 * NO
#WAITING FOR AN %.ccees
* INTERRUPT # .
3 . .
EERS .
-YES -
. .
. .
. .
X .
AAERRRRBEREABRE RN - "ESES
M - »
x » .
- « X#KUNSTC =
* -

- 1

*
*
-

Py
- 1]

NTERRUPT -
- STACKED -
L e T IR}
«YES

-
KINTTY #
*

* *
annnw

Figure 20. Return Routine - Chart 2

Interrupt Control

41

(SLRBU). If PP interrupts are stacked, the contents
of SLRBU are moved to SLRPP, and an interrupt is
unstacked.

If return is to be from the backup buffer, it must
be examined (CRETBU) to determine that TS and
EXE are not set. (See the maskable interrupts.) If
either is on, the corresponding interrupt is faked by
entry to the parallel interrupt table (SIPT) at the
appropriate point. If both are off, control is returned
to PP with registers restored from the backup buffer.

IC at PP Level (SL=0): If $RET is requested by PP
(S1=0), the return routine (CRETPP, Figure 20)
examines the PP auto-stack bit in the program status
table (SPROGS). If PP requested $RET in main
stream, STIC is adjusted to the half word after the
$RET pseudo-op and the service op return routine
(KSUPP) is used to return immediately. When $RET
is requested by PP I-O fixup, PP is taken out of
stack mode. Then, if PP is in SIO mode and waiting
for an interrupt, the search subroutine (KSERCH) is
entered to determine if the waited interrupt has been -
stacked. If it has, it is unstacked and control given
to the receptor at KINTTY. If PP is not in SIO mode
and has interrupts stacked, one is unstacked: either
the one waited (if PP is waiting and the waited inter-
rupt has occurred) or the next one to be unstacked.

If PP is in SIO mode and not waiting, or not in SIO
mode and has no interrupt stacked, the routine
(CPSNOW) uses the JTSEXE subroutine to determine
if the TS indicator had been set in SLRPP since the
I-O interrupt, or if the EXE indicator had been set
with the I-O interrupt. In either case, the interrupt
is faked by entering the parallel interrupt table (SIPT)
at the appropriate point. (Seé maskable interrupts.)
If neither is on in SLRPP, low registers are restored
from SLRPP and control returned to the location
specified in SICPP. ’

The exits from the return routine are shown in
Table 3.

Error Control

The dispatcher error control is entered when errors
generated by program execution are detected by MCP.
The routine determines the program responsible for

the error. If PP generated the error, ABEOJ is
primed, and a message written on the output tape.

If MCP generated the error, a message is written
on the typewriter and a BD, $ executed.

The error control routine is entered disabled at
SDISP (Figure 21) with the A8 error code in $14VF.
If the error occurred at MCP level, or if the error
is an MCP error (denoted by the magnitude of the
error code), the console is released and the error

42

code is converted from A8 to IQS. It is placed in an
IQS message which is typed (TYPE XX ERROR), and
a BD, $ executed.

If SDISP is entered at PP level with a PP error
code in $14VF, the MCP mask and boundaries are
selected, SLRBU is filled from STLR, and MCP level
is set. ABEOQOJ is primed, the error code placed in
the message skeleton, the ABEX error code is set up,
a check is made via RYPRBR for installation optional
console typing of the error message, and control given
to the short message routine (ZSPLPR).

The error control routine may be entered at
SDSPDS if PP accomplishes a branch to 40.0g) or
40.40(g). In this case, low registers are saved in
STLR, error code 16 put in $14VF, and control given
to SDISP.

When the error routine branches to the short
message routine, the flow of control is predetermined
all the way to the ABEOJ package. The short message
routine enters the system print program, a major
package. The tentacle table for the system print pro-
gram will have the user bit set to MCP, and the FWA
of the last tentacle table used will be zero, since
none was used since PP last had control. When $RET
is requested by the system print routine, the return
routine will decide that system print had been primed,
and examine the prime queue for other primed
routines. ABEOJ was primed when the level was
changed, and thus will be unprimed immediately, and
control never returned to the short message routine.

Error Codes - Problem Program Errors:
Error
Type $14VF Meaning
1 10001.0 Illegal IF Interrupt
2 10002.0 Pseudo-Op code invalid
3 10003.0 Channel not available
Unit not available _
4 10004.0 I0D invalid, or Unit not
assigned
5 10005.0 I-O TOE address on IOD
card invalid
6 10006.0 Request for too many scratch
tapes
7 10007.0 Control word invalid
8 10010.0 Control word address invalid
9 10011.0 Communication with protected
area
10 412.0 $ATID non-tape IOD
11 401.0 $Chex linkage specifies an
illegal address
12 402.0 Unit suppressed
13 403.0 50 maskable interrupts
14 404.0 OP, AD, USA or DS inter-

rupts

Error
Type

15
16
1
18

19
20
21
22
23

$14VF Meaning

405,0 Bad label

406, 0 Successful B, $MCP

407.,0 Bad PTOE address

410.0 Illegal $COMM first word

address

411.0 Illegal $FIXUP word
1012.0 Non-autostacked $STLR
1001.0 Repeated UKs ended job
1002.0 Incorrect tape mounted twice
1003.0 $SCR, $SPR or $SPU calling

sequence

Error Codes - MCP Errors:

Error
Type

75
76
77

78
79
80
81
82
83
84
85

$14VF

Meaning

(=]

3405,
3406.
3407,

o o

3410.
3411.
4012.
4001.
4002.
4003.
4004.
4005.

OO OC OO O OC

MCP setup I-O error

I-O operation rejected

File not stacked in interrupt
queue

Interrupt queue too small

Prime queue too small

MCP error while auto-stacked

MCP EPGK

Special assignment error

Assign error

Job control error

Repeated UKs on disk

The Prime Routine

The prime routine is used to enter the parameters in
a revolving queue, and to update the prime queue
count. The return routine empties this queue, hon-
oring the prime request.

The prime routine (Figure 22) is entered with the
calling sequence:

SIC, SPRIMR

BD, SPRIME

] $OP

(Parameter specification as
for entry via the IF analyzer.)

After saving index registers 0 through 4, the rou-
tine adds the pseudo-op code to the base address of
the IF analyzer operation table to fetch the address
of the tentacle table. The routine uses the tentacle
table to determine the number of parameters to be
stored in the queue, the return address, and the form
effective control. The tentacle table is not changed.

The current queue count (MPRMQK) is examined.
If zero, the prime and unprime control words (MR4,
MRS5) are initialized to insure synchronism.

The parameter count specified by the tentacle table
is added to the queue count and to the linkage address,
and the resulting return address is stored. If the
updated queue count exceeds 30 half words, dispatcher
error control is entered at MCP level with error
code 79 in $14.

The new queue count is stored (MPRMQK), and
the current prime queue control word (MR4) is used
to control storage of the parameters in the queue.
When the parameters have all been entered in the
queue, the updated control word is stored, index
registers 0 through 4 are restored, and control is
returned (still disabled) to the linkage return ad-
dress.

Interrupt Control 43

Table 3. Exits from the Return Routine

Exit to

KUNSTC

KINTTY

MTC1

MTC2A

KSUPP

SDISP

Retum to
MCP at
location of
interrupt

Retum to
PP at
location of
interrupt

SIPT
(Parallel
interrupt
table)

Conditions

" An MCP or PP interrupt
must be unstacked.

A waited interrupt must
be taken,

There are no MCP interrupts
to be unstacked, but a primed
routine must be entered.

Returning to the MCP routine
which was using the routine
that gave $RET.

Return to location is STIC.

An OP, AD, DS, or USA
interrupt occurred simultan-
eously with the interrupt
which caused the change to
MCP level.

$RET given by an MCP fixup.
MCP has no interrupts to be
unstacked,

No interrupts to be unstacked,
no MCP routine to be unprimed,
no unfinished MCP routines, no
error interrupts,

TS occurred while in PP fixup
or at MCP level or EXE
occurred simultaneously with
the I-O interrupt.

Registers
Restored

(1) If return to a major
package from a major
package is being post-
poned to take an MCP
interrupt, (STLR) are
moved to (SLRMCP),
(2) 1f return to PP from
MCP is being postponed
to take a PP interrupt,
(SLRBU) are moved to
SLRPP),

None.

Tentacle table linkage
set up.

Return address set in

MTC3A.

All by KSUPP from
STLR.

Error code in $14.

All from SLRMCP.

All from SLRBU or
SLRPP,

All from SLRBU.

Remarks

An1-O table of exits will get
control in the auto-stack mode.

MCP or PP is waiting, and the
waited interrupt has been found
stacked.

The routine is entered via the IF
analyzer which sets up entry ad-
dress and modes.

When an MCP routine uses another
MCP routine the latter must per-
form any necessary saving and
restoring of registers,

Return to linkage at B, $MCP is
made if the next primed routine
is busy. Return after the linkage
is made if $RET is given in PP
main stream. See the service op
return routine.

No return will be made. Control
given to error control,

Normal return when MCP is
interrupted.

Ultimate return,

Registers restored from SLRBU
if MCP gave $RET, and from
SLRPP if PP gave $RET,

These are treated as maskable
interrupts. They require special
handling since they are permanent-
ly masked on, Entry to the para-
1llel interrupt table releases the
interrupt.

sannn
» *
- -
* SDISP &
- *

» »
nane

AR
.
* WHOSE
* ERROR CODE
* IN s14 #
. »
nnan

«PP
.

Xe o0

AR RRNBRBERIENS

.

.

.

X
sasnssERNRRRRRRRR
* SPRIM .
PO - D Y B
. PRINE »
* ABEOJ *

J R
- .
% SET UP ERROR *
* MESSAGE *
- M
. .
HAEBERBREREARB RN
.

Xe oo aa

FUBRRBBRRARRREA RN
» ET -

- SABEX .
* ERROR *
- coDE *
- .
ARRERRRRAEEBENARY

-
.
.
.
.
X

AERABABRRRERERREN
- RYPRER *

INST OPTION
SEERRRRRRRRRREY
.

.

.

x
ranan
L} 3

- *
#ZSPLPR *
- »

» -
anune

seX® REGISTERS
* 14 AND 1S

X
RRERRRASRRRRARAER
- -
SAVE INDEX *
-
.
-
-

.
BACRBEEBRRRNANES
.

X
eRARRERERBNNNS
L] L]
. RELEASE -
THE CONSOLE
* SEOP .

*
AEuBERBRRBERY
.

Xe oo as

FEBAABRBBRRRENARN
. sAslcs *
I T oy e o
® CONVERY ERROR #
: CCDE TG IGCS :

EABANBBRRRRBIEA,

Meseans

snnnw
»
CONSOLE ®* NO
RELEASE
COMPLETE
. -
teane
«YES

Xs oo

RSN BSNARALY
»* -

% WRITE ERROR *
% MESSAGE ON -
L CONSCLE -
» *
ARABRRERRRINY
.

.
X
SANBRBRBRABERA AN
» »
* RESTORE *
® 314 AND 315 *
* »
- (3
SRRRMREREABNRAEN .
.

.

X
ARABARNSRAARRC
L] -
* 8D+3 »
L] »

SEANERR SRR AES

Figure 21. Dispatcher Error Control

*anee

YYY2s

] -
» -
*S0SPDS *
- -

Xeoes e

fRBEBERBRRNIORREY
RESET _THE IF
#INOICATORe PUT @
LOW REGISTERS ®
#IN STLR, OOOOAO:

. N .
SEBERBNRANSNTERNE
.

Xeos oo

TR RARERRRRN Y
- -

#SET ERROR CODE #
: FCR DISABLED *®

. -
SEsRERRNRERIRANES
.

Interrupt Control

45

SPR [MR
wnunn SERARCRB R AR BEEARRRNARRAERNY
. . * * » .
- 4 * SAVE INDEX ol * GET PARAMETER #
RSPRIME ®ccecscsscsceX® REGISTERS *esseecseX® COUNT FROM -
* - ® 0 THROUGH &4 *TENTACLE TABLE ¢
* [} - - - *
[T EREAARBBRREN RN RN ERBERAARARERGRANS
.
.
.
.
s
aeunn sssannes
- .
* IS PRIME * YES * SET INITIAL ¥
QUEUE LETTTRTRRY 4.4 PRIME AND .
3 EMPTY - SUNPRIME CCNTROL®
- . -
XYY SEREEARERER ARG
«NC .
. .
. .

KHeseseses

x
FERARASRC RS RORRNY

M
® SET RETURN
» ACORESS .
* -
» -
FERARAURBRBINIRNY
.
.
.
x
- SEgue
. . N .
* 1S PRIME % SDISP
. QUELE esX® (TYPE #
* FULL - * 75)
» B . »
EERR 23 LA 2R 2]
NG
X
ERBRBRERAERERRE RN L2232 IR RRRTTRYY)
M . - .
* UPDATE COLNT, 4 * SAVE PRINE &
#PUT PARAMETERS ¥eseseseaX® CONTROLs *oee
* "IN QUEUE . . RESTORE .
- M » REGISTERS E
SRABBRREAARBRBRRES SEABESRRBRAB RN,

Figure 22, Prime Routine

46

In order to accomplish its function as system super-
visor and automatic operator, a substantial portion
of MCP is devoted to programs concerned with sys-
tem operation. These programs will be considered
in three general areas:

1. Initial program load - programs concerned
" with getting the system started.
’ 2. Job control - programs concerned with
guiding jobs through the system, making absolute
assignments for symbolic I-O, providing tape -
mounting instructions for the operator, etc. .

3. System commands - programs concerned with
requests to change some facet of system operation. ‘

The initializing program, by its very nature, is a
one-shot program which must give consideration to
all aspects of system operation. Two other programs
are major packages or subroutines of major pack-
ages. They communicate in the manner previously
discussed, using the tentacle tables, the priming
mechanism, and the return routine. (See the Dis-
patcher.)

SYSTEM INPUT MODES

The first step in the study of system operation pro-
grams is to discuss the characteristics of the system
input modes and the usage of the system input pro-
gram. From the point of view of program logic, sys-
tem input may be classified as either being in over-
lapped mode or not overlapped (bypass) mode. (Refer
to the portion of the MCP Reference Manual concerned
with system modes.) Although there is a distinction
between on-line and offline overlapped modes, its
influence on program logic is not as great.

Overlapped Modes

In the overlapped modes, the input program has two
input sources operating at the same time. One source
is the read tape, which provides jobs to phase 4 of

job control (JC4) to run, and the other is either the
scan tape or the card reader, which provides cards
to Phase 1 of job control (JC1). JCI makes prelim-
inary decisions concerning which jobs canbe executed,
and sets up I-O assignment tables to allow tape
mounting instructions to be given before thé job comes
up for execution.

SYSTEM OPERATION PROGRAMS

The system command package must be sensitive to
both the source of a command and the mode of the sys-
tem. Commands encountered by JC1 may require
immediate action, or may have to be deferred until
phase 4. For example, a COMD, OUTPUT will be
performed immediately if the source is JC4 or the
console, but deferred if the source is JC1.

Bypass Mode
In the bypass mode, JC1 has no function. I-O assign-
ments are made as the jobs are encountered by

phase 4 of job control.

Use of the Input Program

The system input program provides one system
pseudo-op, $SCR, which is available to any program.
This pseudo-op provides cards from the phase 4
source (the read tape, or the card reader in the by-
pass mode), provided a job boundary is not encoun-
tered. The first card of a job is defined as the first
JOB or COMD card not preceded by a B card (ex-
cluding T cards).

The input program provides a special pseudo-op,
SSCR4, for the benefit of JC4. The SSCR4 pseudo-op
is a request for the next card. However, it differs
from $SCR in calling sequence and the meaning of the
end return. The calling sequence for SSCR4 is:

B, $MCP
, SSCR4
, FWA(D)
(end return)
(normal return)

The SSCR4 pseudo-op is a request for one card;
thus, no card count is provided, and a partial trans-
mission is not possible. The end return is given by
the input program when no cards are immediately
available from the phase 4 source. This differs from
the end return for $SCR, which is given when no more
cards are available for that job. JC4 uses SSCR4
when it is looking for a job card, and only at the
beginning of a job.

The input program provides one other pseudo-op
with an eight valued parameter. This pseudo-op,
SKOM, is most easily discussed by considering the
eight sub-types as separate pseudo-ops, as follows:

System Operation Programs 47

Pseudo- Calling
Op Sequence

SCR1 B, $MCP
(3.0) , SKOM
, SCR1
A VF, 0.0
(End return)
(Normal return)
SCAN B, $MCP
(3. 32) , SKOM
, SCAN ‘
(Normal return)
SEJSCN B, $MCP
(1.32) , SKOM
, SEJSCN
(Normal return)
SONL B, $MCP
(0.0) , SKOM
SOFFL , (Parameter)
(. 32) (Normal return)
SBYP
2.0)
SEOF B, $MCP
(1.0) , SKOM
SREW , (Parameter)
(2.32) (Normal return)

Function

To be used by JC1 to
request the address of
the next card in the phase
1 buffer. That address
will be placed in A. End
return will be used if no
cards are available.

To be used by JC1 to
request the input pro-
gram to respond to the
next SCR1 request with
the first card from the
next job. (SCAN to the
next job boundary in the
phase 1 buffer.)

To be used by JC4 to
request the input pro-
gram to respond to the
next SSCR4 request with
the first card of the next
job. (SCAN to the next
job boundary in the phase
4 buffer.)

To be used by the system
command program to
inform the input program
of a mode change com-
mand.

To be used by the system -

command program to
inform the input program
of an input command.

Being major packages, any of the operations previ-
ously mentioned may be primed instead of entered

directly.

JOB CONTROL

Job control consists of four major packages and their
subroutines (decode, unassign, assign, move, etc.)

servicing eight pseudo-ops:

Major
Package Pseudo-Op
JC1 SJC1
JC4 $EOJ
$ABEOJ
SJC4
Resume Load $RESLD
The accounting program SLOG1
(logger) SLOG2
SLOG4

Job control will be discussed considering only the
overlapped mode of operation. It will be shown later
that operation in the bypass mode actually is a special
case of overlapped operation. Remember that the basic
purpose of overlapped operation is to accomplish tape
mounting for one job while a preceding job is running.
The following discussion presents the basic concepts
of preassignment of tape units as done by job contrel
in overlapped operation. The actual implementation
may differ in detail due to various environmental
constraints.

Overlapped operation is controlled by phase 1 of
job control (JC1), phase 4 of job control (JC4) and
the subroutines, decode, unassign, assign, and move.
These routines are all tied together by a set of tables
called the I-O assignment tables. A detailed descrip-
tion of these tables appears elsewhere in this section.
For the moment, they will be defined as having one
entry for each job which has passed through phase 1
(JC1 scanning) but not though phase 4 (JC4 EOJ). An
entry will be defined as something to identify the job
and its I-O requirements. Then, the functions of the
six routines may be defined as follows in terms of
operations on or for the jobs in the tables.

Job Control 1: Attempts to keep the I-O assignment
tables full by taking input (jobs) from the scan source.

Job Control 4: Attempts to empty the I-O assignment
tables by taking jobs from the read source and running
them. '

Decode: On request from JC1, decodes IOD cards into
an entry in the tables.

Unassign: On request from JC4 at EOJ, makes the
I-O devices used by the PP being terminated available
to assignment.

Assign: On request from JC4 at the beginning of the
next job in the PP reference table, insures that all
its I-O requests have been assigned; in addition, it
proceeds down the table assigning leftover tape units
until either the tape units are all assigned or the tape
requirements of all jobs in the table have been met.

Move: On request from JC4, constructs the I-O con-
trol tables needed to run the next job in the tables.

Thus, overlapped operation could be pictured as
JC4 pursuing JC1 around the I-O assignment tables,
one trying to keep them full, one trying to empty
them, with both making demands on the input pro-
gram for jobs from different sources.

Bypass operation can then be considered as over-
lapped operation with a set of tables whose capacity
is one job.

Job Control, Phase 1 (JC1)

The job control phase 1 major package performs two
tasks in MCP. First, it enters symbolic information
into the three I-O assignment tables: PP reference,
I-O request, and first reel, for pre-assignment of
I-O. Second, it makes preliminary decisions about
the executability of jobs. A subsidiary function is to
dispatch COMD cards to the system command pro-
gram. JC1 may be considered an interface between
the input program and the decode routine, and between
the input program and system command package. It
operates only in the overlapped mode, and scans jobs
on the phase 1 system input tape. (See Table 4.)

JC1 is entered when first used, at YC11ST, and at
YC1A on subsequent occasions. It operates enabled,
and is always entered via the unpriming mechanism
in the return routine, having been primed by JC4 or
the input program. JCI1 uses three other major
packages and two subroutines, as tabulated:

Job Control 1 (Figure 23) normally gets control
from the input program, via the unprimed mechanism,
when a new job is sensed in the input Phase 1 buffer.
JC1 then examines the B cards in that job until either
the buffer is empty or the job is fully entered in the
I-O assignment tables. Normally, then, JC1 consists
of a loop through the calling sequences to the input
program and the uncode and decode routines. The
remaining code exists essentially to handle special
returns from these three routines.

Special Returns for JC1

One such return is end return from the input pro-
gram, meaning that the input buffer is temporarily

exhausted. JC1 gives up control via $RET, with the
assurance that it will be given control when the supply
of cards is replenished.

Another return is error return from uncode,
meaning one of four things has been detected: (case
1) a COMD card, (case 2) a T card, (case 3) the first
non-B card, and (case 4) a real error in the B-card
in question. Case 1, the appearance of a COMD card,
is handled by going to the system command routine.
Error return from this routine, in turn, means that
the COMD card said REJECT. JC1 effects the reject
by setting the TRJECT (see I-O Assignment) bit to
one in the PP reference table for the last job. Case
2, a T card, is ignored by JC1. Case 3, the first
non-B card, signals that the current job is now com-
plete in the I-O assignment tables. A final entry is
made to decode, the input program is instructed to
scan to the next job, and control is given up via $RET.
Finally, Case 4, a real error in a B-card, causes
JC1 to enter decode with a reject disposition set, and
from that point it proceeds as in Case 3.

A third exception occurs when the decode routine
comes back with error return. If one of the I-O
assignment tables is full, SJ1FUL is set to one, and
control is given up via $RET (see JC4). Other decode
rejects reduce to Cases 3 and 4, as discussed. When-~
ever JC1 rejects a job, it gives JC4 a reason for it
by placing the address of a‘4~word diagnosing error
message in the second word of the PP reference table
for that job. .This message will then be printed by
JC4 in lieu of running the job.

Miscellaneous JC1 Functions

JC1 has other miscellaneous functions:

1. JOB cards, in addition to furnishing an ID for
the PP reference table, cause JC1 to enter the
accounting program, via SLOG1 (see description of
accounting procedures).

2. Any TYPE, COMPILE card will terminate
analysis of the current job, since the following cards
are only symbolic input.

3. To accommodate the Fortran IV compiler, I0D
cards are ignored by JC1 if the type field begins with
$. Such IOD's are treated as T cards.

4. Before each new job is scanned by JC1, a bit
(REJJOB. 61) is checked. If this bit is on, an uncor-
rectible data error has been associated with the
previous job (see Input Program). JCI1 will reject
the previous job just as if a COMD, REJECT has been
encountered.)

5. The first time JC1 is entered (at YC11ST) it
saves the IPL reject count, which is a count of the
number of jobs to be skipped by JC1 and JC4 before
execution is begun. This count is tested and decre-

System Operation Programs 49

Table 4. Use of Major Packages by JC1

Name Symbol
Input SKOM
Program
Input SKOM
Program
YCI1CA
Uncode YUNCOD
Commands SCOMD
Logger SLOG1
Decode LDECOD

50

Linkage

B, $MCP
, SKOM
, 3.32

B, $MCP

, SKOM

, 3.0

, 0
End Return
Normal Return

LVI, $14, YIUCXW
B, YUNCOD
XwW, 0

VF, 1.0

» 0(310)

, YC1DB
Error Return
Normal Return

@DISP

B, $MCP

, SCOMD

, 1.0

, YC1DB

, 0
End Return
Normal Return

B, $MCP
, SLOG1
NOP, ($10)

LVI, $15, $+1.
B, LDECOD
VF, YC1DB-1.
CF, 0

VF, 0

Error Return
Normal Return

Function

Instruct Input Program to scan to
next job.

Request the location of next card in
the Input Program Phase 1 buffer.
(Location is placed in YC1CA.)

Verify card, convert, and break out
into YC1DB.

To route COMD cards to the command
major package.

To give a logger card during Phase 1.

To enter JOB names and I-O requests
into the I-O assignment tables and
make a preliminary check on the IOD
cards.

[Ty nann HERARBARARBRRN RN ARBERREAARBBAB RGN eann
* * * € - - »

* pIC # » . PRIM
M * * REJECT OR % YES #SET REJECT BIT # R e e R Tl ok ot - -
% YCIA MesecssssssesX® UK OCCUR CN #ccevsessX®¥AND THE REASON * # PRIME SKOM ¥eae esseX® SRET
* * * PREVIOUS # * FOR_IT * - AN TO * . .
* . % JoB * INTQ TABLES * ® RESTARY INPUT ® . .
111t} wEEnn AR RERRRAR AR ERN PRV ROy F . sanun
«NO - X .
. . . .
. . : .
. . . -
. - - .
« x +YES .
nunw N FRRERREANRAARROY sanne . [T TS
* . - SKOM=SCR1 * * ALL ® . . "
3 X - n-.-u-n-a-u Q-OENB - B * NC . » .
YCLlAL %,00c000c0c00000sca0ssnovsvcncsrse X*® INPUT *esosese #YC1SCN ¢
* . - ONE CAHD ’ - FILE . - *
»
runne FERERRR SRR AR sanne asess
X L] X
. . .
. - .
. . .
. . .
. X «YES
. EAReREANRRSEAREN annne sunes
- - UNCGCODE - - - -
. Rk B K A-¥-¥-N-NERR * IS IT A % NC 1S _IT rs *
. » CDNVEﬁSION ¥oosmsoonoX® T CARD ®oeesescsoX® FIRSY GINARV -
. * : » *
. * ANAL 515 * . » .
. -;:a-uuu--‘u-onn A T3S
. «YES «NO
. .
. . .
. . .
. . .
- B .
. EEEER AR ARER RN e .
. * ' - DOECCLE - l 0 -
. ® IS IT YES i et taded .
. #REEL OR AN IOD FeeesseccXk ENTER I/0 ‘.c.oc-.-...-l' YC1AlL ‘ .
. * CARC % REQUEST INTO * .
. * * * TABLES " * .
. nEun . ARRERNRRA AN R weana .
. «NO <ERR .
. . . .
o YES X . X
e * . sanen sases
* - » o a *

L IS 1T A # NO * IS IT A * - YES # IS IT - NC # IS 1T A &
b LIM CARD %Xeseseccak JOB CARD A eXoesseossccsccanet KPL HEJECT = COMD CARD -
* . - * o » .
» * - * . - * .
rxuna wEnan . sunnn ranae

NO «YES - oNC +YES
.
. . . .
.
. X - X -
. T T T Y . ARsRsRREANANEENRN .
. - SLOG1 . .
. P R ey e R DL . .
. . G0 10 - eXeoosasnas .
. # LOGGER WITH # . .
. * J0B CARD * . .
. ArAARRRRA RN . .
. . . .
. . . .
. . .
. . .
. . .
X - X
. anwue . sannnennnreaseran ssanenruEataRaEey
- * * . SCOovD
. € 1S 1T & YES . Enaa-n-n-u--_n_u - -
. # IPL REJECT LYY ssesaneacXe ‘REJECT BIT FOR .X-.-o---ol EN
- * * - *SVSTEM CCVNAND .
. .
. ranan : nu-cuunuunnu- ucnu--nucuanuu
. «NO . oNCRM
. . . .
. . . .
.
X X . X X
wrnun T . wxana YL
* * . » .]
® 1S TYPE # NG . b NC ¥ DIC
- COMPILE O.n.........x- YC1AL ' - ' YC1AL .X-acoo.o-o..-’ SCOPD SET YFE -
* * ‘ . STRANB BIT
» » . . -
anune P . “enens” ranus
«YES . «YES
. . .
. .
. .
. .
. . .
X X x
reEre ARXARREAEREAAAERN EERREERARARNRA AR srReeansanRananee anune
* * DECOCE * * " » ACC TC » *
* * B T S Y e L N] . JoB CC\.NT. M I3
#YCISCN *ossosvosoaneX¥ FINAL *........X‘ *sasaceceX® SET UNC *oee el
- * # DISPOSITICN. * » CISFCSITICN - *
* * #JOB IS ALRIGHT l * » 8 - - *
T ERRERARANREA A AR OO R4 SR | senew
e AR B AR ANAR anane
« INITIALIZE * . »
* IPL R - *
!VCII§T '.--.-..-.--.X' COUNT. seeX® YCLAL *
ENTR * -
' VCIA * - -
ferann AR 431 P (2T

Figure 23. Job Control 1

System Operation Programs 51

mented at the beginning of each job, and jobs are
skipped until the count reaches zero. They are never
entered into the I-O assignment tables, and they will
be ignored by JC4.

Job Control, Phase 4 (JC4)

Phase 4 of job control (JC4) has several functions.
One of its functions is to be the instrument for the
removal of a job from the computer, involving such
things as unloading of tapes used by the PP, dumping
in response to SEDUMP requests, closing of the job's
system output file, and several other items. Other

functions of JC4 all involve the initiation of execution -

of problem programs in response to the B-cards
which precede every MCP job. JC4 initializes PP
memory and MCP so that the new job is ready to be
loaded and executed. It sets up the boundary control;
in response to 10D cards, it builds the I-O tables for
the PP; it instructs the operator to mount and dis—
mount tape reels according to the IOD cards of the
current job or jobs to be run; from the TYPE card
it determines the compiling chain (if any) to be used,
and keeps track of its links; it recognizes and dis-
patches COMD cards to the system command routine;
and finally, it scans and takes appropriate action on
the I-O assignment tables built by JC1. Thus, JC4
is partly an end-of-job, mostly a beginning-of-job,
and only for compilers a control-of-job program.

JC4 has one entry point, YC4NO, and three pseudo-
ops associated with it:

1. $EOJ -- the current job (or compiler) has
finished normally.

2. $ABEOJ -- the current job has finished abnor-
mally.

52

3. 8JC4 -- the current job does not exist; JC4 has
been trying unsuccessfully to get a JOB card from the
input program.

Both $EOJ and $ABEOJ may be given either by the
PP or from an MCP major package via SPRIME.
However, 8JC4, occurs only when JC4 primes itself.
JC4 runs enabled, in the non-SIO mode, and saves
and restores no index registers. It runs mostly in
PP memory. »

The only exit from JC4 is a $RET with, however,
one or more of five pseudo-ops primed previously:
$RESLD, SJC4, SCOMD, $EOJ, and SJC1. Of these,
$RESLD is primed normally at the end of JC4 when
a new job or compiler is ready to be loaded. At thig
point the SLRBU buffer will contain the proper bound-
ary control, the remainder of the buffer containing all
zeros with the exception of the MK and IF mask bits.
The next pseudo-op, SJC4, is primed when JC4 is
unable to read a job card. If a COMD card were read
instead, SCOMD would be primed as well. $EOJ is
primed whenever JC4 detects and error in the job
prohibiting its execution. Finally, SJC1 is primed’
(along with $RESLD) whenever JC4 sees that the I1-0.
assignment tables have been filled (SJIFUL =1), and
some space has been made available again.

Major Package Pseudo-Ops Used by JC4

The major package pseudo-ops used by JC4 are shown
in Table 5. The service ops and subroutines used by

JC4 are shown in Tables 6 and 7. The routines shown

in Table 6 are outside Job Control; the routines shown
in Table 7 are all basically a part of JC4.

Table 5. JC4 Major Packages

Major Package

Pseudo-Op

Input Program

Input Program

Input Program

Output Program

Output Program

Dump

Disk Fetch

Logger

Logger

SKOM

SSCR4

$SCR

SSPEOJ

$SPU

$DUMP

$FETCH

SLOG2

SLOG4

Linkage Function

B,

3

B,

H

$MCP To "scan' to the 1st card of the
SKOM next job.
1.32

$MCP To ask for the 1st card of a job.
SSCR4
YBCBU

End Return

B,
3
3
3

b

$MCP To ask for other B~cards in a job.
$SCR

YBCBU

1

0

End Return

B’

s

B,

3

B,

3

$MCP To empty the buffers and write a
SSPEOJ tape mark on the system output tape.

$MCP To punch a job card via the output
$SPU tape.

YBCBU

1.

$MCP To dump according to $SEDUMP
$DUMP formats in case of $ABEOJ.
YEDLL

$MCP To get LIM and IOD cards for com~-
$FETCH pilers and compiled PP’s.

(AX)DD(BU, 48,6),...X

b

0

YBCBU
15.

0
WRESTR
NOP

$MCP To signal end-of-job to a logger.
SLOG2

$MCP To give a logger CC and A8 JOB
SLOG4 cards at beginning of job.
YBCBU

YJCDBU

System Operation Programs

53

Table 6. JC4 Service Ops and Subroutines

Name

Commentator

$TIME

Short Message

Prime Routine

Return

Major Package
Fetcher

A6 to IQS
Conversion

Breakdown
Routine

54

Symbol

$COMM

$TIME

ZSPLPR

SPRIME

$RET

YMPFCH

SABIQS

SBRKS

YPCCT

Linkage

B,

CF,

B,

VF,

SIC,
BD,

SIC,
BD,

H

B,

b

$MCP
$coMM
YC4CM
4.0

$MCP
$TIME
YC4CM2

ZSPLP9
ZSPLPR
"buffer"
9.0

SPRIMR
SPRIME
(30P)

$MCP
$RET

LX, 1, YXWEJM
B, YMPFCH

LX,

B, YMPFCH

LVI, 15, $+1.
BD, SA6IQS
VF, YJCDB1+1.
CF, 8

VF, YC4CM1

LVI, 15, $+1.
BD, SBRKS

VF, YUCBF1+.6
CF, 71.

VF, YUCBF2
CF, 0

(error return)

1, RIOABEX-1.0

Function

To print on-line a beginning of job
message.

To put the time of day into the afore-
mentioned message.

To print the JOB, TYPE, IOD,
REEL and TITLE cards.

To prime one or more other pack-
ages, such as SCOMD.

To return.

To get itself into memory from disk.

To call the kill PP I/O and attempt
$ABEX program into the MCPoverlay
area.

To get the JOB name into IQS.

To get the compiler names in a chain
broken out, and ready to put into
KSILO.

Table 7. JC4 Routines

Name Symbol

Decode LDECOD

Linkage

LVI,
B,

YDECVF VF,

Assign TASIGN

Move TMOVE

Uncode YUNCOD

Card Code SCA6
to A6 Con-
version

Unassign TJUNAS

JC4 Print YPR

Read From YRDFSO
Source Routine

CF,
VF,
B,

LVI,
B,
Xw,

LVI,
B,

XwW, C, D, E, F
(error return)

LVI,
B,
XW:
VF,

s

(error return)

LVI,
BD,
LVE,
CF,
VF,

$15, $+1.
LDECOD
0

7

0

YICER2

$15, A
TASIGN

$15, B
TMOVE

$14, A
YUNCOD
B, C, D
DISP
F(J)

$15, $+1.
SCA6

, SICTWS
80
YUCBF1

15, A
TJUNAS

1, A
YPRRET
YPR

$15
YRDFSO
YBCBU

Function

To enter I-O requests when in the
bypass mode or for compiler 10D
cards.

To assign I-O requests, in both
bypass and overlapped modes.

To construct I-O tables for the next
job to be run. Secondly, to clear out
a slot in the PPREF table.

To verify, convert, and break out
card designated by disp, and put
information in A and F(J).

To convert compiler names to BCD.

To clear the I-O tables and get
ready to assign new job or compiler.

To print error diagnostics on or off
line on a selective basis for each

installation.

To get an 10D card from $SCR, disk,
or core.

System Operation Programs

55

JC4 Operations

JC4 will be described in 6 general areas: end-of-job,
beginning-of-job, bypass I-O assignment, overlapped
I-O assignment, compiler control, and error con-
trol. (See Figures 24-31.)

End-of-Job

At YC4NO, if the op is SJC4 there is no PP to be
terminated so that the JC4 program is called into PP
core and given control, otherwise a section of code is
called into the overlay area of MCP, This code as-
sures that all PP I-O is done. If the PP is writing,

a release is issued when the write exceeds an instal-
lation determined time constant. If the PP is reading,
a release is issued immediately. If the PP is doing

a control function, MCP simply waits for completion.
For the $EOJ case, the JC4 program is called into
PP area and given control. For $ABEOJ, a $DUMP

is taken using the proper limits. MCP then checks

for $SABEX usage. If there is no successful use of
$ABEX, the JC4 program is called into PP area and
given control. For successful use of $ABEX, MCP
puts the PP in non-suppressed mainstream mode and
discards all I-O interrupts before returning to the PP.

After calling itself in from disk, JC4 checks the op
code for SJC4 to skipthe end-of-job procedure if it
has already been effected, i.e., JC4 is looping wait-
ing for a new job card.

The next step is to reset SSYRFT, the temporary
arc assignment pointer, to SDKMCP, the permanent
reset arc (see description of move routine later in
this section). Now the compiler routine, YC4INT is
entered if a compiler was running, otherwise, the
input program is instructed to '"scan" to the next
JOB or COMD card. The PP's I-O is then "unassigned,
and the output program instructed to empty its buf-
fers (SSPEOJ), provided there is something in them
(YSSPBT = zero). In addition, several items are re-
set, among them the commentator buffer (PONOUT)
and the maskable interrupt counter (YMISCO). At
this point termination of the current job is complete.
and JC4 is ready to begin a new job.

Beginning-of-Job

At YC4B2 (Figure 24), the LFINB bit is checked to
see if decode is currently processing B cards for

JCL. If so, steps are taken to allow either JC1 to
finish processing the phase 1 job or to force a reject
of the phase 1 job to prevent a system hang. In any
case control goes to RLFINF where the SSCR4 pseudo-
op is then used to ask for a job card. If the input pro-
gram gives end return, JC4 again waits via a prime
SJC4-$RET sequence, but first it checks STLFUL to
make sure phase 1 is not stopped for lack of table

56

space. If the input program gives normal return, the
card is sent to uncode for verification, If it is a JOB
card, one more hurdle must be passed: the WREJJB .
routine which checks for phase 1 rejects (see JC4
error control), Then the job card is converted to A8,
given to the logger, converted to IQS, and printed
and punched on the output tape. A message is printed,
using the commentator, with the job name, the time,
and the day. With this message, the job is fully anno-
tated, and JC4 turns to the succeeding B~cards. Two
separate logic flows exist, one (for the bypass mode)
beginning at YTCSR, the other (for the overlapped
modes) at WJ4PA. The flow converges again at
WJIC4G.

Bypass I-O Assignment

In bypass I-O assignment (Figure 27), the TYPE card
is read and uncoded using the Uncode routine. If it
contained COMPILE or COMPILGO, the compiler
set-up routine is entered at YCOJB1. If not, the
LIM card is read at YC4B5. The read source routine
is used because the flow is rejoined at this point for
compiler LIM and IOD cards. The limits are saved
in all the necessary places: YEDLL, the $SEDUMP
buffer; SLRBU, the eventual boundary control regi-
ster; and SMARK, to establish the upper extent of the
PP's I-O tables. Before the upper limit is used to
establish the PP I-O location table base address
(SBAPP), JC4 makes sure it is greater than YMAX,
to prevent any possible memory conflict. The next
step by JC4 is to string out all the IOD cards in mem-
ory in the format required by the decode and move
subroutines. This is done in a loop beginning at
YIODSO (Figure 27) which is broken normally when
the first binary card is encountered. The code from
YC4C9 to WIC4G effects successively the decoding

of the IOD and REEL cards, the actual I-O assign-
ment, and the construction of tables by Move. This
whole sequence is skipped for jobs with no IOD cards.
At the end SCORG is checked so that special action
may be taken for compiler at YC4INT.

Overlapped I-O Assignment

This logic starts at WJ4PA (Figure 30) by checking
the TYPE card, as in the bypass mode. It proceeds
to YCOJB if compiler setup is necessary. At WJ4PF
the read source is set to $SCR, because WJ4PFF is
the entry point for go phases of overlapped COMPILGO
jobs. Now the logic differs from that of the bypass
mode. Since the IOD cards were decoded by JC1,

the PP is ready to be assigned. If all goes well, the
LIM card will be read (at WJ4PG) and uncoded. If
assignment comes back with a reject, a diagnosing
message will be printed. After uncoding the LIM

inna
n

‘cuculouluouuccco

ET PAGE COUNT .

.RTIYLRY‘--0¢.oonnoooX. 70 AVOID NEw &
i

Q
IQQQI

XYY
» -

- -
#YBRLOG *
" -

PAGE FOR PP ®

B8 CARD: -
IQQ'IQD‘!!IG!.!Q!

Xesreen

rnnaw

» 1s -
TITLE OPTION
- I:EOUESTEI‘J -

. »
snns snean

x «YES

. .

. .

. .

- X
ERRRRBRNRERNNRER LTI TTT X T T A
- - bl $SCR
- SET UP A . P T I Y Y 2
. TYPE CARD * GET -
ERROR MESSAGE ® . TITLE -
- - . CAR .
AEREREREABARARERY ansERERRNANRRARNS

x .

. .

. .

. .

. .

«NC X

aann ERARRARR R AR AR
- (3 . St *
4 IS THIS * D et e e S B
A TITLE CARD ' CONVERT CARD
» - TO BCD CODE #
» » -
BN |-

+YES

.

.

.

.

N

annny IIIIIQ.Q'!Q!!IIII
. 1 * *
INSERT * NO uP A -
3 CONTROL ﬁ-.......xc zsno CONTROL
#CHARACTER A® CHARACTER #
#1 CR 2 * *
R SRERERRRARRIANNE

«YES .

.
aXe
.

X
SERRARBERRREARRE N
* STORE INSERT *
- CONTROL -
CHARACTER IN #*
. THE OUTPUT :

-

PROGRA|
CI.QI..QI.IQO!II

.

X

PN
15

- FIRS o -
#COUNT CHARACTER®aaccoeaeX¥
- - *

LESS THAN
*

.

X
nnae

- DOES *
COUNT EQUAL
- ZERO -

XL
«NO

AERERRRERRRRRROAN
- -
STORE_COUNT
* N E
*QUTPUT PROGRAM :
L

FEARBERRRNENRRAAR

-
ceX¥®
-

YE
®oeseanaeX¥
»

®roenesaeX¥
-

EARRRRRBRGRR RN
» -

SET UP A -
ZERQ COQUNT *
CHARACTER b
- »
ARNNRAB RS AAR AR AR
.
.

.
sXseoseessesecvnccssccssesnae

RARARBBERABNREAND
.

SET UP A
ZERO COUNT
CHARACTER

LI XX T

L]
BEEREEERRERR NN RN

22T}

»

* SET UP A

CQUNT OF
55

[ZTZ2TTY IY

reame

»
ARNASAR SRR ARNEN
.

ARERRABAARARARRN.
- *
. TRANSFER *
TO _THE OQUTPUT #

* TITLE BUFFER #
AEARREARARRBARARS

Figure 24, JC4 - Chart 1 - Enfry :

THE TITLE L

.
.
.
.
.
.
-
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
-
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.

nENNN
- -
- -
*SCEPTY ¥
- .

- -
annen
.

oot oo

T TR Y Y Y YR T)

SET UP TITLE
* FARAHETEﬁ? -
3

sABNNENRRASEASRES

ZSPLPR .
L R e e D Sl

#PRINT TYPE CARD#®
- VIA $SPR *

-
EXTT YT TR R TR YT Y
.

Xe oo e

ARBBRARRBB SRR BN
-

-
* FORCE FIARST *#
#LINE OF TITLED #
.OUYPUY T0 SKIP I

P
n.n.oluuunolounin
.

.
X
.

'] -

- »
SRETURN *
» »

- »
[XIXT]

EXIELS

- -
» -
YNGRR
- »

» *
nunn

Xesens

RERUBBARERERRBRE
-

- RESTORE
- INDEX
: REGISTERS
»

FRERRANBRRA RN

ETTI IR YR Y R YT EY

TRANSMIT
BREAKDOWN
TABLE

xame
xaeme

AR ABBRABREANRE .

e eene

LTS
- .

* "
anunn

- L]
e X#RETURN #Xosse
- -

.
.
.
.
.
.
.
.
.
.
.

raaes
- -
- -
*RIITOP #
- -

- -
YTyl
B

Xeos oo

“naan

1S THIS * NO

-
* A G0 JoB #eaea
- - -
E2 1] EARLZ 2]
.

. .
. N
. .
. .
x .

SERBSERNNEES -

- . -

. SET UP . .

SROUTEINE TO SKIP® .

e ONLY TwO . -

el FIELDS . .

BERsERRRAERRR RN .
. .
. .
. .
. .
. .
. .
. X
. suann
.
. ANY
esesscssscscncnscX®

-
OPTION
'F:RA!‘ETERS -
*

LRI E R IR RS 2]
» 3
- SET _uP -
X® PARAMETERS TO #
* SkipP TH:EE M

LTTTY

o

»
.
.
.
.

.
senuw .
+YES .
. .
. -
. .
. .
. L4 1s - NC # - .
- LISY #Xeseoeees "PARAMETER MATCHW -
. # EXHAUSTED ® #LIST ENTRY # -
. - - * L] .
. [T T) 2T 1] .
. «YES «YES .
. . . .
. . . .
. . . .
. . - .
. . - .
. . x .
. - FRARRBURBARARAEES .
. - - SET . -
. . - APFRD#&IAYE - .
. . # QPTI - .
. . 'I’N COUNY FIEI.D ' .
- . F .
. . I.IQQIIC!C'QQIQ!Q .
. . . .
. . . .
. . - .
. . . .
. . . .
. - - .
. X . .
. nune . .
. . -
e« NC ® ARE ALL . .
seee® OPTIONS #Xessosccavscacccss .
DONE .
.
anana .
«YES .
. .
. -
. .
. .
. .
. ll.llillil !! .
. .

. ' RESTORE INDEX '

ssessccscsrcnccseX® REGISTERS X
® 314 AND $15 *
ASEBSRBRBBRNRNIAS

Xessaw

senun
- .
. .
#* YNORR #
- »

* -
ETTRTS

System Operation Programs

57

P TR
* -

wEann

YES

ARERRSANERBRNRA NS
* ET UP .

el AN ASSIGN bt

* » * ANY
AWIAPFF %.c0000c0s0eeX® CONFIGURATION '-..---.-X’ CONFIGUR‘T!ON !
- * # CHANGE »

- -
renne

unnc&.do.:an'nncn

- LIM CARD *
-

-
EERBRARSRRAERRENY
.

Xe oo

ll.{lll!li.llil!l

CONVERT LIM #*
- CARD TO ‘
* PARAMETERS

nln'nn&-.nan:;&c'

Xe oo an

REAARABFREERRRER N

. *
SET uP_INDEX %

4 REG1sT

FERCM PARAMETERS!

n-u-av--n;cnu-aan

Figure 25.

58

®ececscsenenaX®
.

teszessnienarney
* TASIGN
PR A SR

#ASSIGN J0BS #MJ'X-.-.- sesssscscna
N

- MESSAGES »

* L}

* WAS .
Joe
*PRERESECTED#®
- .

Xe o oos

(211}
*IS THISH
THE GO
PHASE CF & -
* .BSS JOB' .

AnuEn
«YES

-

*

.

X
AERAEBRNBANNABARE
- -

INDEX REGISTER *
#$14 WAS FILLEC #
#FROM COMs REGs :
»

FRENERRBREBII RN

Xeos v

renan

. »
YLl o=
*

- -
senan

JC4 - Chart 2 - Job and Type Card Handling

CHANGE ENTRY

. I
AEEBERARERRERRREN

(23112
- -
- 3

eeaX¥mJCAQL #
* -

H -
LTTYTS

THE BSS JoB
INDICATOR AND
SET SCORG

TC GO
RERRRBERRRARNRY
.

Illllllllllll!lll
* SET LP ANOD

® TRANSMIT TOQ '
* YBRLOG BUFFER ¢
* THE PREREJECT *
b MESSAGE "
FARRBARRAREARRRRR

.
x
ey
» L3
#YBRLCG *
- *

- -
YT Y

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.

-uno.-|¢gacann
SETY

‘ INITIAI. ENYRV

' 1'0 ﬁOVE
* CONDITICN
SRR NI RS

-
.
.
X

FEAASRERNERERRAGAN
RCFSO -

.
-
-
-
-
-

® CARD, 100 OR

» EEL -
ARBARARNRIRGR RN

BENARARARRERNNENE
» UNC -

o0
IR R - .

#CONVERT B CARD «
:TC USABLE FORM :
ERRARARERRRRERRN Y

Xeewaoe

ERARARA RS E RN R AR
- SCBLID *

AREARERERERRRRAEE
* TMCVE *
LR B P P BY o L B8 4
* BUILD PP »
#1/C_TABLES FOR %
. Te#1S 1CC L

SEenEREERERRRRRR .

FTRR RN
H

EY)

NC * DID

NCVE #
ees® REJECT THIS #
- *

[ZEE]
«YES

.

PIEER)

sunes

»
® IS MCP -
OLT OF PHASE

. »

“nmun
«YES

RANBARVERNBARANRNS
SEY

1 _CARD

INCICATCR

asansw

senes
LTEYEY

x

«YES
anun

- *
*WAS THIS A #

ssaseX® T CARD *
» *

.
.
.
x

sanaw
- .A -
THE AT
'LE‘ST ONE MOVE #aoee

.
.
.
.
.
.
.
.
.
.
.
.
.

FABRERBRBBER AR
» .
» SET LP »
A MCVE INITIA %
» ENTRY .
»

ANERER TR

Xeoese

[y e IR TR YY)
et TMOVE -

- PP TABLES *
] *

ARNsEasEREEE R,

.
.
.
X
-
* *
] L]
* WJCAG *Xaee
* *

* L]
nanun

BENEREBRERRECANSEY

YPR *
L R Y ST Y Y A

NC
®oeoenseaeX® PRINT REJECT #

®MESSAGE CN TAPE®
* ANC CCNSOLE. *
REARARRANABRAR NN

SHsRRARBNS

nERE.

- -
* .
* vcoJn *
* L]

» -
EXTYRS
.

Xeovee

nane

* D10
* [OCHANGE
* OCCUR *

EAEENSRERABER NN
* SIGN *
P e N S s ot
#PRINT MESSAGES #X.
#BEFORE COMPILE *
TO SAVE TIME
ERERRNERSARERRRUNY
.

X
nEREE

.
* WAS JOB_ % NO . . * 1S

% PREREJECTED ®oeeeessocsssaXPYCOJEZ #acvvasevsoseX® CCMPILGO
* * - - -

suunse
*YES

YES # *
csas® .
. - -

.
.
-
. -
. # D10 JOB # N
. # SUPPRESS LIST %#ssaee
. * OR PUNCH #
. * -
. XYL
. <YES
. .
- -
. .
. .
. .
. X
snnnn
3 -
*
» *
LT

* YES

cstessssscssesansens s re e s X

»* -
*YCoJBl #
» *

* L]
[TTTTY

Figure 26. JC4 - Chart 3 - Compiler Control

F e o B N e]

ee X#FETCE CCMPILER #X
* B CAR

FROM @

PC TYPE AREA %

FAEREANRAEERA NN
.

oo oo

FEBRRANAS P RAR RO
®CONVERT 8 CARDSH®
® TO BEROKEN OUT &

- ROLTINES -
RERERBARBUAR IR

x
BRRARRABRB AR BN
- BCCKKEEP s »
% PUT CCMPILER %
CHAIN AND TwsS ¥
» SIZE IN

.
hd COMs REG. .
ERRARTRARARRRAA R

Xe oo e

REEEREREBERRERRRY
FORCE YRDFSQ
ROUTINE TO *
* TAKE 8 CARDS %
* FROM FETCHED *
#INTO LCCATIONS *
P R TR Y T T 2 R)
.

"X a0 en

aunus
. *

- *
* YC4BS *
* »

- "
ranne

LITTE]
L] -

* -
®*YROFSO #
- -

. 1s * YES - SET _ul
* CCMPILE EKY. ®eeesesaaX® CORRECT CARD
-

L] -
anann
.
.
.
X
FEARAARBAEABARER ARRRABEERRAB SRR [XXE1]
- » » $s .
. SET * P P B e P] Il 1s »
x® MACH INE . * GET NEXT ¥Xeeevaeae® INPUT FRCM #
® CONFIGURATION ¢ . B CARD [# OISK .
* CRANGE ENTRY #
ARBABRGTENRRB RN RRRBRBRREEN sEEEN
. . «YES
N . .
. . .
. . .
. . .
. X X
- EEREE S L2 22]
- - -
. . -
cecscssne *RETURN *
. *
» .
LR RS ER2 2 1]
«NC
.
.
.
X
*ERER AANE EXTEEITE SRR R2L]
. - B . »
TYPE * YES ® TRANSMIT CARD #
®reee - FRCM ITS Al
. . FETCHED .
. . . M * GCATICN .
ERER “RRES . BRERERBABREN
oNO . .
. . .
. . .
. . .
. . .
o . .
x - X
ARERRBABRARARAA R SREAN
» TNCVE . * WAS A
TR 4 * GOOD CARD *
® CLEAR OLT % o ® TRANSMITTED *
. BEASE 4 .. * .
* BLE [.
AR ERARARABUNRE o FXEIY)
. . +NO
. . .
. . .
. . .
. . .
x . x
1L HEARRARAARRRNERNN . ERERRAEARBROBRIRN
» . * SFETCH . ZERO OUT .
.

S G
RABHSRRAANERRNRS

* -
2uane

.
.
.
.
.
.
-
.
.
.

.

- . .
SRETURN %Xssessene
- .

ARARARBER AR AR R
* -

®*PARAMETERS FCR
- FETCH

»
EXLTTERE LY T
.

Xeo oo

ARARERBRBBENANNES

d SFETCH

[et o S B T

- GET NEXT b

: REQUESTED :

AERBRBAAREBANNS
.

Xessse

[TTITS

- wAS * YES
ERROR RETURN %acee
* . GIVEN . . .

(13
-

* .
*RETURN @
* *

- *
neuw

.
.
.
.
-
.
.
.
.

2anns
. -

- -
:iﬂESTR X

. -
RRaR

System Operation Programs

59

sesus

* -
* »
* RLINF #
* *

* -
snens

e eoes

SRBRRERRRA AR RN
SSCR4

* [
[T e e e LT
% ASK INPUT FOR #sceeeeeeX®CID UNCOCE FIND*ese
- JOB CAR * % A JOB CARD .

Do
hd GET CARD *
HERRBARBEARERRRN Y
NO

X
“nEnw
* -
* -
*WSYSCA »
» "
- -
[T TS
X
(2T
NC @ ARE *
see® J0OB CDNYROL
TABLES L]
. FULL L4
-VES

Xeone

SERER

- *
C % IS TRIS_#
<o THE FIRST
ENTRY -

*

.
.
.
.
.
.
.

anwEn
«YES

[S
- SCOMM -
[T B 2 iy S
- PRINT OUT A
*TABLES ARE FULL®

» MESSAGE *
ARBARRERERRA RN

. X
. e T Ty T
PO)
see X BEWs$.32 *
* M
fBERBERERERRRES
.
X
EEEREARRRERBEAANN
- SPRI L
R T Y
* PRIME
. sJca »
ARREEERRELRSRRERY
.
.
.
X
waEnn
.
* SRET *
. »
reunn

*Xeae

.

Q'l.'!'ll!.l'uuio

. YUNCCOD
IR0 20 v l-cvgs

- .
SARARRRB RN NAA,
.

x
SRRAEERRRIRR AR
- REJJ .
a- n_------o-- e

HECK FOR -
' lPL OR _INPUT #

* REJECTEC JCBS ®
I ST R e Y P

*
*® IS IT A ®
% CONMAND CARD ¥#.40e
I3 L}
f e
LTy L]

oYES
.

x
ERRARRBE RN NRE N
RINVE hd

» PACKAGE *
EERBAREBRERR RN

seessenssisunasne
COMM *
U031 S

seessessesrsesressessassasa s

NO JOB CARD #Xe.
b IN FILE ol
* MESSAGE .

ARAANSERBARDERANE
.

Xeossee

EENRRERERAES AR RN
* -
#SET BIT TO STCP#
- ECJ FROM *
#ISSUING QUTPUT #

»* *
FAURREAE IR NN AN

X
ET X T
-
YES % Is IT -
BYPASS *
MODE

seat

“nuen

Xs oo

nnenn
-

* -

® WJyCaOQ *

- -

- -
L2 TN

nERER
* -

- *

ases e o XEWRESTR *

- .

[y .
LYY

Figure 27. JC4 - Chart 4 - Bypass and Compiler I-O1

60

.
.
.
.
.

.
.
.
.
.
.
.

SRBEBNNGENORIEANS [IITTS

. ZSPLER . . $5PU .
-'—'—l—ﬁ—'—l
X CARD %aae

mn SuTeuT Tase

*PRINT JCS CARD #
: VIA SSPR

* THE OPERATOR

RARBERBERY C!I'.l..l.l'!...l ll...'l..'l....’.
x
. .
eXesesesscesccccccccscsccane -
. . .
. . .
. . .
eNO . X
anuen tussennsansnnanes TassaneusRnansnne
3 . . WREJJ . SPLP *
1S IT YES [T B Jur ooy ey o 2% BN) S i iy
LAPPED * PRINT LINE CF #
OCE - TIHE ANC DATE '
* - $SPR
RANE SARARERRIRRARGNS L2 k] Ill.lll‘.l..
.
.
.
.
.
x
AR RAARABRRARRE
. SLOGA *
PR 2T X SN 2R B 2 P
® ENTER LCGGER #
'FOH FPURPCSES OF'
ACCOUNTING
3341014 14 SO
.
.
N
SEFERTRABARAAGRRY aSARES
- $SCR . .
R B AT B) Y * 1S IT L]
- GEY #Xeoeseeee® OVERLAPPED -
- TYPE b - MCOE *
I3 CARD .
HERABHBBIRERRBRD Y LA 22
. +NO
. .
.
. .
X x
*RANE ARBREBRERBREERNE HEANBERRRBERAEANRY
- - - YUNCOC M $SCR *
L d - LRI BT S 2t ST B 2 LEE SR B B S 2 B 2
SWREJJB ¥ ‘SREAK TYPE CARD# GET
* » NTO FIELDS K TYPE .
»] el - ARC
HRER. .I.!.'IIQ".'III! ARAAAR L2222
. -
. . .
. . .
. . .
. . .
. . -
X x X
nEEaw BRARBENRARNENIOEN RAARFARARBAARARE.
3 SET UP . . YUNCOD .
® ANY MORE # #COMPILE AND GO ® » .
* IPL REJECTED #,.. 0 BITS lN CON. 'EREAK TYPE CARD®
. JoES - INTO FIELDS #

-
' ccuﬂlLER B" .
. LTy

[TIT Y]

<YES . .

. . .

. . .

- . -

. . .

. - .

X . x
sERNe - BREARRRARIRIRRANS
- . - SCePTY -
* - - [b bt d
*WRESTR # . #PRINT TYPE CARD®
* * . . v SPR_AND »
. - . ®SET UP TITLING #
LEIE] ARBERBERBANANRREY

.

.

. .

. X

sanus - (X3}
. .

N * WAS JOB # . * DOCES J08 * YES
see® REJECYED BY #Xease . REQUIR %eee
* INPUT - SCOMPILATION®
- - . .
rnnE" snaan

+YES oNC

. .

.

. .

- .

. .

X X

Tkt S L DL T T YT -
HCV - - -

bt T E
LY B N D Y B

[-
g CLEAR JC4 * *WJAPFF *
- REFERENCE * -
* TABLES . - -
LRI T T T T T Y ssens
.
.
.
.
x
annnn [I3Y 23
* .
- L
eoe X#RETURN #
* -

. »
anane

AND BITS *
ARARRAREACRE D
.

Xeeenn

uail»a.:nauac-u..
ET UP

S|
'CONPILE AgD co '

ANC
0 CONFILER EIT *
AR ENRARUARABAREE

Xeoasve

AR RARAE BN
- SCBPTY *
o Sl D0 Sy ST
#PRINT TYPE CARD#®
* VIA SSPR _ANC #
#SET UP TITLING #
LI TR R Y BT 2

.

-

X
snnsn

* DOES JOE #

- REQUI LYY

#COMPILATICNS®
- -

wnpnn
oNO
.

Xe oo

"AREn
. .
L] -
* YCaBS
- L]

(] -
sasaw

LI T 2
. ']

- -

®YCCJEY #Xooo

- *

- -
sunse

.
.
-
-
.
.

anune
» .

- .
® YCABS ®
. L]

* .
(XTI}
-
.
.
.
.
% e e
el YRDFSO * M YUNCCD .
[
- GEV LIM
- CARD FROM .
- YRDFSO * * CF_AND VF »
arane
ranne sanas

X
ARAARBRERBCRRERES
b YROFSO bt
P e e e s e L

asana
- L]

L [
*Y10DSC #.
- -

% FROM SOURCE _#
SRRARSRDBERNERRES
.

- .
[ITT1)

Ko s o e

FENAEARRB AR NRE RN,
. YUNCOCD .
R R oo Bttt dated
seeX# BREAK IN -
: LDECOD USABLE :
ARARARRBARNNBARREE

Xesosse

-
raEs
«YES

Xeoas e

ERNEREBRRNENANEN
- scaL 1o

T T e e]
» PRINT 10C »
: CARD VIA $SPR :

HENANRBERSAN RN

sesesssssssatessiestes it sssssrenrssenes

X
snnnn
. [

- -
*WREFNO #
* *

[»
nane

Figure 28, JC4 - Chart 5 - Bypass and Compiler 1-02

sesceX® GET 100 CARD *Xsesevecsccsscsone
- F ANY -

% IS THIS # NO *
#AN (0D OR REEL %eccccscoX¥
- CARD " -

X
SEERVRABAERIRARARD
» *

SEYT UP THE .
¢e X#CONVERT LIMITS PoceceseeX¥LIMITS FOR THISH
bl INTO $ - -

JOB FRCM s14 &
hd CF_AND VF .
NERARRABAR RSB RN Y

xe o000

snuun
-

. NO # 1s *
#Xeeeeesse® COMPILER BIT #
* - OoN »

ARERD
«YES

LI 1]
- -
L] .
*YJDCER #
- -

L] »
snuan
.

PIEEEX)

ARBARANSRRERARNRN

- -

SET UP RETURN #
TO YIODSO

»
SERERBEERIINCARA

[T
- »
» -
#YBRLOG #*X.
. -

* *
sanns

PR RN

ARBRBARARRRARRE RS
#INDEX REGISTER ®
® $10 CONTAINS #

AR BRBBBNRBRRBERN
- YPR

P e T e 2]

PRINT REJECT

#MESSAGE ON TAPE¥

AND CONSCLE

FRARBERARRRRRAI NS
.

Xeosane

wenan
L] *

- -
#YRESTR #
» -

» *
anuns

FROM YBCERR :.-

YES

NO

sanes
. .

.
:SCBLIB

- L]
sunun

L]
* WILL BSS #

LXTIT]

- .
[»
®YBCERR #
- .

»*

aanna

» L)
*1S THERE A ®
IN COLUNN : -

-
anne
«NC

.
.
-
X
e

IS THIS @
eesee® AN 10D CAﬂD. -
»

ERROR
#MESSAGE#®
ansen
+YES

.

Xeoon

[XTTT)

- »
% ARE THERE % NC
ANY 100S
»

sanun
«YES

Xeeo oo

“nnnn
* *
- -
* vcacs *
. .

= -
“nure

L PP TTRTTEY 1.4
-

eosscs

»
Foeescescsse e X¥WICAGL *
- - »

cuman
L] -

-
* IS THIS_ # YES - -
#THE COMPILATION®cccasccsses o X*RETURN #
» PHASE . . - .

] [
anaes

AMBANARARARARNREN.
. ZSP! .

PRINT 1C0 .
CARD VIA SSPR :

sHBNNRREERENARRRS

ERBEBINNBETNENORS
. *

- SET
xe T _CARD
: INDICATCR
[T RTERRRERR Y]
.

ssen

Xeoneo

ansen
1] -
- -
#RETURN #
* *

L] -
[TIY TS

(X221}
*]
*

* -
XYY Y

System Operation Programs

61

P LY R PR P Y P YT P P PP P PP RNy
- .

X «YES
AL reunn Suenssesssananans sass
- - LDE . *
" 1S NO o1 S - ANY * Ne
M YCACY %encoancsaseak® u\sr Eumv ra ®eeecesaoX® ENTER B CARD %usceccseX® MORE B CARDS #ecess assceses
. . ECO X #INTO PP TABLES # * . .
» ¥ . . * - .
w—ne sanan . AERBBERNANRBNNEEE LTI .
«YES - .
. . .
. . -
. - .
. . .
: . .
. X
wnuse ABARERRR SRR RAN . IR TR Yy Y Y Y] Qlll! ranun
» . * - . - . AS # - -
» 3 %SET UP UNCOCEC # .« ® SET uP » YES # msne A NE -nm ODECOCE *
*YBRLOG * % B CARC TO e % A MACHINE #Xeeesssee® ctmnaunnwn LT Pprmes) VE ERRCR #
» - # REFLECT LAST @ * CONFIGURATION ' . llE"UHN -
. . * TR - * CHANGE ENTRY - -
[T Er R e T T PR P Huane 1112
X . «NC eYES
. . . .
. . . .
. . . .
. . . .
. . . .
- x .
FEAREBARB AR R sanan SreseBRsRSNERRENS . sanen
»* . » - » TASIGN . . .]
* SET UP * YES ®#DID ASSIGN # L EY T B Y 2% 2% 2N . Y .
% I/0 REQUEST %Xeseesese® GIVE ERROR %#Xeeosssoe® ASSIGN EXeeesencscsescoesen *YICER2 *
INCOMPATIBLE & # RETURN - # DECODED 1/0 # - -
* MESSA » * » % REQUESTS » 0 .
ARBBEBRRRARRIRRR “unuw BEERRRREERNRRRNRE vesun
+NO .
. .
. .
. .
. .
. .
X X
revsseresseenieny nenn rasan
TMOVE . . .
n-a-u-o-.—n-n-n-- * * YES ® 15 RROR
:YP‘OVEJ :X.- sessesce o---o.'CODE LEiS VHAN -
. . . .
sausw srnns
. oNO
. .
. .
. .
. .
. .
X X
“nsan runnn ARERERERER RN Fureessesananseen
» » 3) » . .
% ANY MCRE # NO ® DID MCVE * YES . SET UP . -
#CARDS FOR MOVE %Xeaeeecses® REJECT THE %eeecesseX*® THE PROPER . !Ducr«osnc AND ¥
. . - Jos . SDIAGNOSTIC FOR TRAN TC %
» - * #THE MOVE ERROR # H vam.ae u FER &
rEnas rnnue FERBRARAURBUNRNRY P T T T TR Y
«NO .
. .
. .
. .
. .
X X
renne annmesssnEsERRENE
* * YER . .
. - [BT ey S e) - -
#WJCAG] * * PRINT ERROR & ®YBRLCG *
- . lMESSAGE ON YAPE' * *
. » ANC CCNSCLE * *
LXTTE seanses SNttt tenaw
. .
. .
. Y .
. .
. .
X X
*an nenan sesen
* * - - -
- » . - -
- caX®YCAINT # *YEBRLCG *
- . - -
3 - -
“Enew raane sanne
*NO
.
.
.
X
Teasresstenenraey suunn
] -
. SET * .
sLOWER REGISTERSlx.... cese® WJCAG ¥
FOR GO PHAS - -
- -
earsksersnnenann nnaw

anun LYY

* ARE * NO
*eesssseeX¥® JOB CONTROL #evacccascscccccecs
» TABLES -

»
FEBARRBR AR RGO RUNY [Ls

EXe s o seov s

ERRARERRARARRTARNSE e
« SPR [ME » . -

» »
PRIME SJCL ®eveseseesceeX® SRET *
* TO RESTART . .

SCANNING » * *
RERER BB AR AAERS LR L LX)

Figure 29, JC4 - Chart 6 - Compiler EOQJ

62

EZ 222 “EERE RENR nanes
* * - - - -
* * » - 15 - - -
YCANO # ® YCAE2 %cceversccvccasnscnnns DECODE ssseX® RLINF
» . . - * BUSY » - .
L - - - * -
*ERREE EXE L ssuns EiEX2]
. X «YES
. . .
. . .
- . .
. . .
X +YES .
ERRRRBRRARRRR RN ‘HBRE .QI.I.I.IQ.I'I‘.I -
. YMPFCH * L] BOOKKEEP .
Rk R— * 1S THIS # NO 'thEﬂauFr YABLE' .
®*GET 223DUMP TO ' # A JCA REQUEST # MS -
oL 1/0 * . .
AND ABEX I * . .
II'IC"QQQ'Q.".Q LR AR 2] BN ARBRREBERBRREE -
. x . .
. . . .
. . . .
. . . .
X . . .
ERARRBEARABRREA AN . . -
#DELAY UNTIL PP # . . .
#1/C COMPLETE OR® . . .
¢ RELEASE VIA ¥ . . .
* INSTALLATION * . . .
* T * - . .
AERBBARERRRERBE NN . . .
. - . .
- . . .
. . . .
. . . .
. . . .
. . . .
X . .
EE nuulonau--cuunnu- . -
* * . .
* 1s i1 * . .
» EOJ . GET . .
. - X 228ECY . . .
* * . » . .
Enure . ERRERARRERAAAAAEE . .
«NC . . .
. . . .
. . . .
. . . .
. . . .
X . X .
’I..l.li.ll.ll.'. . lllIIlIh.I&l'll‘& L2232 .
SOUM . .
PSSt S . -runN OFF INPUT H NO .
. GIVE PP * . BITs SET #Xeeesosooa® COHPILER Eo.) - .
- ERROR * . 'EOJ Svll\'CN BIT .
- DUMP - . * .
ARBRRRRERAARRB O . lll'lllll'l.l.l.. XA 2 -
. . oYES -
. . . .
. . . .
. . . .
.
X . X X X
LA 2R) - BARARBRERAB R RN LR LR TRBEN LXE R L]
) . SKOM . » .
» WAS . B N S T e * - " + NC % ARE ALL % NO
* SABEX USED ®eesson * AN TO ®YCAINT & * 1/0 HEFERENCE BeeasssesaX® INPUT TAPES Weeen
* caRnECI’Lv # JCB BOUNDARY # * . #TABLE FULL # % MOUNTED ¥ .
BY PP - * - - - - -
Ex IZZ XSS AR LR 22 S L EE] LR S 3 SANRE -
«YES . YES o YES .
.
etaseccentasesstscacncansns
X X
AERFRRERRERBRRARS L2 R3] AABABBAARRERARRRY .
- * - - - -
* SET UP - % CAN WE « NO . FCRCE JCI m . YES . .
#CORRECT RETURN # - * RESTART JC1_ ¥eeoececeX® RE #Xeessooect . .
* TO PP_ABEX . * SCAN * BEIM; SedbBeo 4 - .
TABLE - .
ARERBAIRRRRRSRBAND - AR LELE 2 'l..'.lll‘."‘.ll' .
. . +NO «YES - .
.
.
. . o . .
.
.
X . X X .
ll‘ll'll'il!'.ll! . AAEFRABRBRERR AR RERERE -
ZSPLPR . » TJUNAS * . .
LR D B 22 -l-'—'-l . LR BN 2 2 b i Bl -
PUT ABEX * . * UNASSIGN * esssesssscasncseX®
MESSAGE OGN # . . PP 1/0 . . .
* TPUT TAPE # - - - .
HABBURBERRARRRRE S RARRARRAABRB AR REN EERBRRBARARRRNRRS - .
.
.
.
. -
. . . eXessoneassccccscssscscccns .
. . . % .
X . X .
HRERS . RARABSRRBRRE AR AR RBRAERRAARARRS BARABARRBRRAURBNS RAGARBHERRAARABRD -
« * BOOKKEEP . * BCCKKEEP * - SPRIME " - SCOMM * .
% $RET # - ® JOB CONTROL * ol VEﬁlFY TAPE * L Rttt beiubebaindetdel bt el .
* (TQ * ceeX® BUSY BIT. ®ieeeonsaX® MECHANISM % - PRIME "Xao CPERATOR *Xeoe
* PP) * * MAKE SLOG2 - ‘NASKABLE INTERW% - JCa * MOUNT TAPE -
. b ENTRY * * " * ME GE -
EXX22] RERARRBRRAGARA RN “I!IQ.!I!I.!IC!I‘ RARAHSHRRARARRERES ARARARBRBRRERIRRS
. .
. .
. .
. .
X x
ARRRRREEARANGRNN rnuen .
. SSPECJ - . 1 . .

B R e e e et
* EMPTY BUFFERS *Xsoseeo
* ON_OUTPUT *

- A
AEREARBARREB RS
.

.
X
fEEAN
- -
- .
* YCag2 *
- »

L] "
I Y

Figure 30. JC4 - Chart 7 - Overlap Mode I-O

YES

»*
<% NECESSARY ON ¥
*

FILE MARK * - -
* SRET *
THIS JoB # - -
» -
EYIT LY
«NO
.

. [
XTI TS

eXeosessavessesccsssscsnsocns

System Operation Programs

63

.
.
-
.
.
.

LI T
- -

» .
%eesc0sccccseX¥YRESTR &
X - »

- *
L1}

L Y Y Ty Yy
. .

- - - SET MCVE *
® WJICAO MoscecosooncoX® INITIAL ENTRY #
- - b BIT ON -

.

raaen annun SesResIRERRRRRRRY ssune
- - * * -
- - * 1S TrE * YES - SET _SCORG * 1s 17 * YES
*YCHINT #eoeososceceeX¥ EOJ SWITCH #eseacscaX® B8lT TQ hEELTEFTRS L4 BYPASS
- » . ON » . X ® MODE *
* - . - *
21T senun HEAERAS AR B SRR RN . nnan
«NO «NC
.
.
. .
. .
X . X
* ARRBRB AR, . sanss
. L .
- SET THE - . * IS IT A NC
% READ_SCURCE * . # COMPILE-GO %esane
* BIT YO ZERO = . - JOB
. » .
ARAARB B BERANAN. . wnnna
. . «YES
. . .
. .
.
.
. .
X YLASTC X
nusan SENEBIUERUABRRENS LTy
» *]] .
® K+AS THE # YES - SET SCORG - .
LAST COMPILER %444 oX® eIV vo - .
* RUN - . ZERQ - .
. -
eune RARARBARABRARANA . LT
ohO .
. . .
. . .
. . .
. . .
. . .
X X -
AREESERARRCARNENR nEen * -
* * . .
* SET * YES # IS THIS # * IS TrE ® YES
* FLAG *Xeose THE LAST . # REJECT FLAG ®..0
. ON - * COMPILER * CN *
* . . * - 3
ERBESARRRE RN esan rEawn
«NO «NO
. .
. .
*esscccsecevescvecncnseneXa .
- .
x X
sesRsaReRIER NS [RTT *nnns
* UPDATE COMPL . -

» -
® POINTER AND # * IS IT A & NG
* SET TYPE - * COMPILE~GO LY
* INTO FETCH * - Joe .
L} » »
ARRAARBR AR TANE naan

. «YES

x
NERRBEEEERNES

*

- SET

- YRFFSQ TO
e REAC FRCM
» 23513
*

*

AT Tws
FARBEEEACRERNEY
.

R
Xeoone

[T T T Y P) SEERERERACRERA NN asnus
» TJUNAS - * SET ULP - b -
L et O X I Y » L YES % Is 1T -
- UNASSIGN *Xo es® LIMITS #Xe ee® BSS LOADER -
hd ROUTINE - * * * -

. FOR FP * » -
FRRBRARRARABER SN FReERBIRRERNERERRE sunae

+NC

Figure 31.

64

JUNAS -
Lot T Joe-tuy ply-oiF N Y}

- UNASSIGN -
- ROUTINE *

- .
AR SRRARN RN R NS

- -
SWJAPFF
* -

* -
(22223

JC4 - Chart 8 - Title Card Analysis

13 »
X®YRESTR #,
’:RESIR"

[1]

BRNNSRBERRABAABNY
* UNA -

UNASSIGN .
ROUTINE .
.
AEBRARRANBAREES

.

.

.

.

x

nass
. "

.
IR R Y YRR Y Y
-

Xe e oo

HRRRRANEBNARNY
- ™

VE
LSl Ed 28 ET AT PN P
e MOVE b
. ROUTINE *
(22T L]
.

Xeooss

SRENEANERRNAB RN
. -

. SET -
1 EO0J .
» SWITCH .
- -
AFARBBRAAREBEURRE.

.

.

.

.

.

.

x
ABRNERRARERER.
* SET FP .
- -
% INCOMPLETE +
. -
. SWITCH .
AARBRARTRAE AR S

.

x
LA LA I LSRR T
- RIME b

Sy YO T By
PRIME e
EQJ .

-
CRABABERNNENNY

Xessonse

card, the overlapped mode logic borrows some by-
pass code, at YL1, to process the limits. The by-
pass code returns to WJCV-1.0 at which point JC4
goes into a loop from WJCV to WMOVIO+1, 0 to
"move'" the IOD and REEL cards. In addition to
constructing I-O tables for the PP, Move checks
the job name against the name in the PP reference
table, and steps the TPPRUN pointer to the next table
slot (see I-O assignment). It is therefore necessary
for JC4 to enter Move even if there are no IOD cards.
This is done at WTEST, the normal exit from the
loop, if the initial entry to Move is still on. When
the IOD cards are exhausted, the overlapped mode
logic rejoins the bypass logic at WJC4G.

Compiler Control

During their execution, compilers are treated by
MCP exactly as any other problem program. How-
ever, JC4 treats them in a special way for three
reasons: (1) their binary decks, LIM and 10D cards
are in PROSA on the disk, (2) they may be chained
together, (3) their output may be executable programs
(COMPILGO). Because of reason 1 above, JC1 does
not scan the LIM and IOD cards in the overlapped
mode, meaning that IOD cards must be decoded and
assigned from scratch by JC4. Therefore, all
compiler IOD's are assigned by JC4 in the bypass
mode. When a COMPILE or COMPILGO TYPE card
is uncoded by JC4, the compiler setup routine is
entered at YCOJB (overlapped mode) or at YCOJB1
(bypass mode). At YCOJB (Figure 26), JC4 must
first determine whether the job was pre-rejected by
JC1 (TRJECT =1). A COMPILGO job will be run in
the compile phase in this case only if the pre-reject
was due to decode, and both list and punch options
called for, since the compiled deck may then be
easily corrected. Otherwise, the pre-reject will be
diagnosed at WJ4PFF (I-O assignment will return
with reject disposition set). If the job is a COMPILE
job and was not pre-rejected by J C1, the TPPRUN
pointer is stepped by entering Move at YCPREJ.

This must be done to keep the pointer in phase with
the jobs being executed, since a slot for this job was
created by JC1. The compiler setup begins in ear-
nest at YCOJB1. After fetching the processor chain
type-area for the compiler chain named on the TYPE
card, JC4 converts the individual compiler names to
BCD and "breaks out' the names in order to set up
the communication region. When KSILO is initialized,
JC4 sets up $13 to cause the read source routine
(YRDFSO) to transmit LIM and IOD cards from lower
memory. The bypass logic for I-O assignment is
then entered at YC4B5.

The code beginning at YC4INT (Figure 29) performs
the loading of the next compiler in the compiling
chain. It is entered whenever a compiler gives $EOJ
or $ABEOJ, and when the I-O has been assigned
initially for the chain by JC4. It will terminate
compilation immediately if an abnormal EOJ is given
(YEOJS = 1), proceeding, if the job is an overlapped
COMPILGO, to Move at WJC4Q to advance TPPRUN
over the GO phase. Otherwise, KSILO, YDFCS and
$13 (read source) are set appropriately, and exit is
made to WJC4G. The flow continues to YLASTC when
the last link in a chain has run, at which point it
might be necessary to run the GO phase of a
COMPILGO job. This is accomplished (after setting
the necessary parameters) by branching to the appro-
priate logic (overlapped or bypass) by way of Unassign,
going directly to YL1 for BSS jobs.

Error Control

Much of the JC4 code exists to handle error returns
from the various subroutines of JC4. These error
returns may be categorized as follows:

1. Bypass and compiler errors

2. Overlapped errors

a. Before I-O assignment
b. During and after I-O assignment

3. Special (WREJJB)

In Case 1, a message diagnosing the error is
printed via YPR, followed by an exit to YRESTR
(SYN, WRESTR), which sets the YEOJS and SPINCL
appropriately and exits by priming $EOJ and giving
a $RET. Case 2a is handled similarly, except
that here the TPPRUN pointer must be stepped
past the current job. This is accomplished by exiting
to WJC4Q, which goes to Move and then to YRESTR.
Error returns from Assign and Move make up Case
2b. Here the TPPRUN index will already have been
stepped (although Move normally steps TPPRUN,
Assign does it when the job is pre-rejected or
rejected in Assign). JC4 diagnoses Assign rejects
by picking up the address of a message from the
TPREFT slot, the address of which in turn is found
in TNEXT (see JC1).

Finally, the WREJJB routine is entered each time
the first non-COMD card of a job is read. First,
the IPL reject count (SREJJIB) is checked. If it is
non-zero, it is decremented, and the job skipped
over by exiting to YRESTR. TPPRUN is not stepped,
because no entry was made by JC1. If it is zero, the
current job in the PP reference table is checked for
YTRB = 1. If it is, it means that although the job
was entered in the tables by JC1, the input program
was unable to bring it to phase four (repeated tape

System Operation Programs 65

failure, tape breakage, etc.). The TPPRUN index
must therefore be stepped over the current slot.’

Job Control Subroutines

This section describes job control subroutines,
including those that actually perform a job control
function such as Decode, Assign, Move, etc., as
well as those used for such basic tasks as code con-
version, even though the latter are not functionally a
part of job control.

The Uncode Routine

At many points in job control 1 and 4 it is necessary
to verify a B card, convert it to BCD, and get infor-
mation from it. The uncode subroutine was written
to perform this function. The uncode routine is used
with the following linkage:

LVI, $14, A
B, YUNCOD
A XW, B, C, D
" VF, Disp
» FWA(D
» RA(J)

(Error Return)
(Normal Return)

where:
Disp denotes the type of card expected:
0.0 - TYPE
1.0 - JOB
2.0 - LIM
4.0 - IODor REEL

FWA(D) is the location of the card.

RA(J) is the location where the converted card is
to be put. If RA(J) = 0, no transmission is
desired.

Error return signifies that the card designated by
Disp was unidentifiable or contained in uncor-
rectible error.

Normal return signifies that the card designated
by Disp has been recognized, converted, and
processed.

For a normal return, the XW at A will contain

information according to Disp:

Disp B C D

TYPE - Bits 1.18-1.35 ——
in communication
region

JOB -— Number of fields ---

LIM Lower Upper limit -

limit

66

IOD/REEL Absolute Number of I-O0
exit fields reference
number

Uncode (Figure 32) uses two subroutines, SCA6 and
SBRKS, respectively to convert the card to BCD, and
break out the fields into consecutive full word loca-
tions. (A field is defined as a collection of charac-~
ters, none of which is a comma, bounded on the left
by a comma or column 9 of a card, and on the right
by a comma or column 63 of a card.) The first field
is compared against its mask in the table at YTYPMK.
If the comparison is successful, further information
must be extracted from the card. If not, error
return is given, and no information is transmitted,
unless a JOB card was expected.

The remainder of Uncode consists of three routines
to extract information from TYPE, LIM, and IOD or
REEL cards. The TYPE card routine has an exit to
JC4 if an UPDATE was encountered in the bypass
mode. A TYPE, UPDATE card causes uncode to set
loader limits to their maximum, the read source ($13)
to $SCR, and SCORG to 1 (compile). When the
$RESLD package gets control, it will be set up to load
C and P cards directly into MCP. Otherwise uncode
sets up communication region (KSILO) bits 1.18-1.35
in the calling sequence. JC4 gets the actual compiler
name from YUCBF2, the breakout buffer. The LIM
card routine converts the limits from BCD to binary,
and verifies that they do not violate MCP memory.
Note that the checking allows for the possibility that
MCP might occupy lower rather than upper memory.
The IOD card routine sets up the IOD information in
the format required by the decode and move sub-
routines.

Data and storage used by Uncode are: YIDX12 and
YUCX12 are used by the IOD and LIM card routines,
respectively, to convert numbers from BCD to binary.
YUTOE is the symbolic location of the reference
number on a BCD IOD card. Cards are converted to
BCD into YUCBF1 and broken out into YUCBF2.
YGOMK through YFORTR is the uncode symbol table.
Uncode also uses ABSSID, a data entry in the loader,
and YNLST and YNOPUN in the JC4 compile and go
subroutines.

Decode, Assign, Move

These three subroutines perform key functions in
moving jobs through MCP. Decode sets up I-O
assignment tables in phase 1 (or phase 4 bypass).
Assign associates physical I-O units with symbolic
I-O requests, assigning tape units as far ahead as
possible. Move sets up the I-O controls to run the
immediate job.

anun
* »

- -
#YUNCOD %
- -

* *
EIZER]
.
.
.
.
x
(X RIS 2222282 2] *EREE AERRARRRAERBRBRRES SERABASRBERRARERS AAARBABESERERER
* * 1S . * SCAE - * ERKE * *
® SAVE INDEX * * THERE A vES B T E LT S L] g B RN K. B-BERR * CHANGE
REGISTERSe #acseesseX® B IN COLUMN 1 %ecsceeseX® CONVERT CARD # erseX® BREAK OUT X% CISPOSITICN
* PICK _UP * * . * Y0 AE * . FIELDS . Yo Jo8
® DISPOSITION. # » "
AERBERRBRERARNRRAS HERAERAAERREBBRA N FARABAABARNBARRRES BARANIRABRBARNNE
. .
. .
. .
. .
. .
x x -
#RNEN EIXEL) -
» . M
* - * IS TYPE .
cecsvasaece oX® YUER #Xeaos OF CARD #Xeesesccseacscnces
. . 0 * ALRIGHT ®
- - . - »
. YT Iy
. «YES
. .
. .
. .
. .
. .
«NO x
L2222] (22X EEE L L) “enun
*+ - * - - *
. JoB . NO_ % IS IT A NO_ % IS IT NC % IS IT A ®
DISPOSITION LIM #Xeseeseee® REEL OR 10D *Xeosacasa® TYPE .
» . * CARD . * CaRD . ® CARD .
- - * - - -
nune YTt “nany sanne
e YES «YES «YES «YES
. - . .
. . . .
. . . .
. . . .
x x x X
HRBEE HABABABARBFRAAREN RERRERAAEANRERB RS ARAEFRBRAABER T REN ARnaw
- * * * * *
. . - CONVERT * * SET UP TQEs * ®* SET UP EITS * * .
* YNORR *# . LIMITS » * REFERENCE * #* "FOR_TYPE . * YNORR *
* » * 7O BINARY % NUMBER AND ¥ % CARC TESTING & .
. . * ® NULL FIELDS. # . .
RN HEAAARRBRNBRARERN ARBRBRARABARRRNRS SRERAAEARRARRE RN L2 LR L]
. . . x
. . .
. . .
. .
. . .
x x X +NO
#RRNN EXZ 2 E) sAENN ARERN
* L] L] - - - -
* IS LOWER # NO . » * IS IT % YES % 1S THERE
LEMIT eeeo * YNCRR . TYPE .. A _THIREC
* ZERC . » . . 60 . FIELC *
- - - - - -
BREEEN . AR AAARE HAnEn
<YES . oNC «YES
. . .
. . .
. . .
X x
AAERRERN *RERE NuSEn
» . .
« ACD 41.08) % NG 1S TT » Ne % 1S LT @ Ne .
. TO BOTH E iXeaeo® TYPE «eo®TYPE COMPILE OR# ceeet
. LIMITS . . UPDATE _ # * COMPILEGG * . » .
- » . » - » -
HABBEIRAARERAARRE - HRRER nHERER
N . YES «YES
. .
. . . .
. . . .
. . . .
. . . .
X . x x . x
RERER SARRE - EBEN HBEREARAAREERBRRN . ARARARARRBBRARES
» - * * . . » . SET UP * . % CEANGE BITS
* * YES ARE THE % « NO_ % 1S 1T A 4 TYPE OF RUN_ % X & TC INDICATE
* YNGRR #X. . LIMITS # cXeeeo¥ VALID * 2AND OPTION BITS#Xeeoesesss¥ COMPILGO FOR
. * * ALRIGHT # . * SITUATION * #IN COMMUNICAT, * *» A TYPE GC
. - . . . - * - REGION * # FORTRAN CASE
ERER *EREN . SRRER FERTRAARBARABRAES AEBRAERABRARANEN
NO . +YES .
. . .
. .
. .
. . .
X . X X
E2 2 22] ARBARBRBARRRAANRS - REBBRBRARNBBRARARN aRBEN LEAERE]
* * * . . . ® PHASE * - -
* * RESTGRE * » SET WP » * FOUR . . .
YUER #eeeececsseaaX¥ INDEX X # LIMITS FOR % . UNCODE X% YNORR
» * # REGISTERS * * LCACER [* ENT - .
* »* - - * " - - - -
ERERE HARRRBRBRARRENRE ENERRRARAERRERREN EXI2 23 sEBuE
. . <YES
. . .
. .
. .
X x x
anaan T anunn
- » . B N
* ERRCR *

Figure 82. Uncode Routine

- - * -
#RETURN # *wycac2 # rRJLTOR *
- - - * - -

L] * * * " .
XYY axnEn axane

senw

.

-
-
-
-
-
»

System Operation Programs

67

I-O Assignment Tables: The I-O assignment tables
are the PP reference table, the I-O request table,
and the first reel number table. Decode, Assign,

and Move are concerned with setting up or responding
to these tables.

THE PROBLEM PROGRAM REFERENCE TABLE
(TPREFT): This table has one two-word entry for
each PP which has arrived at phase 1 but has not
been run. The length of the table is controlled by
the parameter TPPC, the number of jobs allowed in
the table plus one. Presently this parameter is set
at 21, to handle 20 problem programs. (e.g., one
in phase 4, and ten on each of two input tapes.)
The table control words are as follows:
TPPREF -- a constant index word for the
TPREFT table, used for refill.
TPPRUN -- an index word pointing to the next PP
to be run.
The format of the first of the two 64-bit words for
each PP is as follows:
TCRREF -- 18 bits, an address of the first word -

(0.0) used within the I-O request table for
the PP.
TUNCT -~ 8 bits, is the number of words used
(.28) within the I-O request table for the
PP,
TIJBPRO -- 1 bit, is zero if the PP has not been
(. 36) run or processed. It is one if the PP
has been run.
TRJECT -- 1 bit, is zero if the PP has not been
(.37) rejected, a one if the PP has been
rejected in phase 1.
TASGNP -- 1 bit, is zero if any one or more of
(. 38) the I~ O requests are not pre-assigned

for the PP, is one if all requests
have been pre-assigned for the PP.
TLPPEN -- 1 bit, is zero if this word is not the
(. 39) last plus one entry within the
TPREFT table, is one if this is the
last plus one entry made by decode
within the TPREFT.
TLREFN -- 12 bits, contains the largest refer-
(.40) ence number found on any one of the
IOD's submitted for this PP.
TIODCT -- 12 bits, the total number of IOD's
(. 52) submitted to decode for this PP.
The second of the two words, TPNAME, is the
name of the PP taken from the first 8 characters of
the JOB card in A6 format.

THE I-O REQUEST TABLE (TIOREQ): This table
contains one word for each unique I-O unit requested
by the PP. The length of the table is controlled by
the parameter TIOC, which is the maximum number
of problem programs multiplied by an estimated

68

average number of units used by each problem pro-
gram. Presently the parameter is 80. The format
of each word is as follows:

TASGNI -- 1 bit, is zero if this request word

0.0) has not been pre-assigned, and will

be set to one when pre-assignment
has been made.
1 bit, is zero for normal pre-assign-
ment case. It will be set to one if
this request was once pre-assigned
and the unit to which it was pre-
assigned was taken from the machine
configuration.

TUNOBT --
(-1)

TPRINT --
(-2)

1 bit, set to one when (if tape request)
the tape mounting message has been
sent to the operator via the commen-
tator.
4 bits, indicating the equipment types
being requested.

0001 - Disk request

0010 - Console request

0011 - Card reader request

0100 - Card punch request

0101 - Printer request

1000 - Tape request
3 bits, indicating the absolute unit
number to which the request has been
assigned. (Multi-unit channels only.)
7 bits, is a number relative to a posi-
tion within the symbolic channel table.
Hence, this number is relative to the
symbolic channel field of the IOD card
which is used for channel separation.

TYPE --
(-3)

TABSUN
-7

TRLSYM
(.11)

TLAST
(.18)

1 bit, indicates the last plus one
word of this I-O request table, used
only to note when to refill the value
field of the TIOREQ tables control
index.

9 bits, denotes the sequence in
which the IOD for this request was
received.

18 bits, is the cross-reference
address of the reel label within the
TFSTRE table. (Tape IOD's only)

18 bits, is the absolute channel
address (to locate the Channel Status
Table) to which this request has been
assigned.

TIODSQ --
(.19)

TFREEL --
(.28)

TABSCH --
(.46)

THE FIRST REEL NUMBER TABLE (TFSTRE): This
table contains one word for each reel label requested

by a REEL card. The reel label is 8 characters long
and is in A6 format, using only 48 of the 64 bits.

The size of the table is determined by the parameter

. TFRC, presently 50.

The table entry, TREELN, is the name of the tape
reel to be mounted on a tape unit, The first three
characters specify whether the tape is labelled or
unlabelled and whether the tape is protected or not
protected. The remaining five characters are the
label.,

The preceding three tables are duplicated to handle
problem programs in the bypass mode. They are
only for one job, however, and the table sizes are
chosen accordingly. The formats of the tables are
the same as for the overlapped mode.

In the overlapped first reel table, bit .50
(RMULTIRL) is used to indicate that multiple reels
have been requested for the IOD, The job-to-job
tape passing section of Assign will not match a later
job's similar reel request to this multiple reel IOD
because the final reel on the drive will not be the
reel that we wish to pass to the later job.

Bits .48 and .58-.63 are used internally by the
Assign program to keep track of pass tapes that did
not arrive at the actual running state.

Table Usage: The usage of these tables is summa-
rized as follows:

PROBLEM PROGRAM REFERENCE TABLE
(TPREFT):

Decode Assign Move
TCRREF S Us Us
TUNCT S UsS US
TJBPRO RE CS (o]
TRJECT RE CS Ccs
TASGNP RE CS Us
TLPPEN S Us Us
TLREFN S NU Us
TIODCT S NU Us
TPNAME S Us Us

S = Set (most cases set to not zero).

RE = Reset (most cases set to zero).

CS = Conditional set.

US = Used but not modified (conditional).
CR = Conditional reset.

NU = Not used, not modified.

NR = Not used and reset.

UR = Used and then reset (conditional).

I-O REQUEST TABLE (TIOREQ):

Decode Assign Move
TASGNI RE CS NR
TUNOBI RE CS NR

Decode Assign Move
TPRINT RE CS NR
TTYPE S Us UR
TABSUN RE CS UR
TRLSYM CS Y UR
TLAST Us us UR
TIODSQ S NU UR
TFREEL CS Us UR
TABSCH RE CS UR
THE FIRST REEL TABLE (FSTRE):

Decode Assign Move
TREELN CS USs UR
RMULTIRL S US NU

THE CURRENT REEL ON DRIVE TABLES
(SBCRODT): This table contains one full word for
each of the possible twenty-four tape units (6 units
on each of 4 channels) with a corresponding job name
table of 24 one-word entries. The format of the one-
word entries for each of the two tables is as follows:

Bits Content _
0.00-0,29 The name of the reel currently on this
tape unit
0.30 The reel protection indicator
(0 - not protected)
(1 - protected)
0.31 The reel label indicator
(0 - not labeled)
(1 - labeled)
0.32 The Psave indicator
(0 - not pass save reel)
(1 - pass save reel)
0.54 The final disposition indicator
(0 - not save)
(1 - saved)
0.55-0.60 The Channel number (32-33-34 or 35)
0.61-0.63 The Unit number (0 through 5)
24,00-24,63 The IQS name of the job which orig-

inally requested the tape for this
unit.

A summarization of the use of these tables follows:
Unassign(or

Bits Assign Move SFREE-SUNLD)
0.00-0.29 Us CS CR
0.30 US (O] CR
0.31 Us Cs CR
0.32 CS Cs CR
0.54 NU NU UR
0.55-0.60 NU NU NU

System Operation Programs 69

Unassign (or

Bits Assign Move SFREE-SUNLD)
0.61-0.63 NU NU NU
24,0-24.63 NU NU NU

The Decode Routine: The decode routine is used by
job control to enter information from IOD and REEL
cards into the I-O assignment tables. It is entered
by JC1 in the overlapped modes, and by JC4 in the
bypass mode, with the following linkage:
LVI, 15, X
B, LDECOD
X VF, ALPHA
CF, B
VF, C
error return
normal return
where ALPHA locates the information (see following),
B identifies the system mode (zero is overlapped,
non-zero is bypass), and C is used to contain the
error code in the event the error return is used.
The table at ALPHA contains the information for
the IOD or REEL card as follows:

Location Content
ALPHA-1.0 Job name in A6 code.
ALPHA (.28-.46) Number of broken out fields
following.
(.52-.63) IOD reference number.

ALPHA+1.0 IOD or REEL.

+2.0 Type or first label.

+3.0 PTOE or second label etc.

When all the requests for a job have been proc-
essed, decode must be notified in order to separate
I-O requests from successive jobs. This final entry
is accomplished by setting the word at ALPHA+1.0
to zero. Also, after several entries have been made
in the tables, it may be necessary to reject the job
and clear these entries. This is accomplished by
setting bit .26 of X in the linkage and using the final
entry procedure. This bit must be zero for a normal
entry.

The decode routine will use the error return for
one of two reasons:

1. The IOD or REEL card is invalid. The corre-
sponding error codes are:

A REEL card following a non-tape I0D.
Invalid type field on IOD.
Two IOD's requesting infinity disk on
the same channel.
8.0 The first card submitted was not an
IOD card.

2. One of the I-O assignment tables is full.
error codes used are:

1.0 The PP reference table is full.
2.0 The I-O request table is full.

3 O O
o O O

The

70

3.0 The first reel table is full,
4.0 The internal tape channel and unit
tables are full,

The I-O request and first reel tables will be cleared
for the job in question prior to the error return when
the error is due to the first reason. When error re-
turn is given to JC1 for the second reason, JCI1 sets
SJ1FUL and issues $RET.

The decode routine (Figure 33) checks the system
mode to set up the program for the correct table
entry. A mode change is allowed only between jobs.
If the entry is an initial entry, the routine clears and
sets up certain internal tables. Then, if overlap, a
check is made to see whether or not a slot is available
within the PP reference table (PPREF). If not, a
type 1 condition is set up in the linkage, indicies are
restored, and the error return is made. If a slot is
available, the program proceeds to check if the entry
is a final entry (IOD/REEL zero in ALPHA+1). If so,
the PP to be entered is a PP without IOD cards, or
possibly a PP that was rejected by job control.

If the entry is not a final entry, the flow follows
one of two paths depending on whether the card is 10D
or REEL. If it is IOD (LIODRN), the I-O request
table is checked for room, and LIODTP entered if the
type is tape. A tape IOD has both channel and unit
fields for separation, while the remaining I-O types
have only a channel field for separation. The I-O
request table (TIOREQ) is then set up with proper
entries. For each non-tape 10D card with a unique
type or channel field, there will be an entry made
in the TIOREQ table. For a tape IOD an entry will
be made in the TIOREQ table for each IOD card with
a null channel and unit field, and each IOD card with
unique channel and unit fields. In the case where
channel fields are alike and unit fields differ a
TIOREQ table entry is made requesting the same
channel as the previous IOD card with that channel.
Making a table entry consists of setting up the
following fields in the TIOREQ word:

TYPE identifying the equipment type.
TRLSYM for channel separation (tape only).
TIODSQ the sequence number in which the

IOD was received.

If the IOD card has a TYPE field requesting a disk,
a check is made to see if it is an illegal request for
infinity disk. If so, the error return is made. Other-
wise, a normal return is made.

If the card is a REEL card, it will be processed
only if it is the first REEL card following a tape IOD.
If the last IOD was not a tape IOD, the error return
procedure is followed. If the card is not the first
reel card for the IOD, it is ignored. The multi-reel
bit is set to one in the first reel table, and the normal
return made. (On a single unit, mounting instruc-
tions for tape reels other than the first are of no value

annne
» -

- -
#LDECOD ®secescscccceX¥
»*

- *
ananw

YIRS

L3 -

- *
#LERROR #Xoass
* {5) #

»* 3
ruune

essccse
.

X
LTIy
#IS THE #
'FIRST REEL. #
- TERED FOR
- THIS oD

aEnun
«NO

Xe oo

EX2 12}
* IS -
+ REEL POOL *
. sLoT
* AVAILABLE #
M H
RERRS
YES

b3
L1 RERABARRNRBAN
®ENTER INTO THE *
% REEL POOL THE o
FIRST »
*
M
-

»
'LABEL FROH YHE
REEL CARD

.‘l'll. ll!Qlll

x
HARBRABABERGE RN NAN
* STORE THE

.
- REEL PCOL *
#ADDRESS IN THE ¥*
1/0 REGUEST *
D .

.

- WOR
EEBRERERSARRRRS
.

X
wnEnw
- -
*NORMAL *
#RETURN *
* *

» -
[T RLS

Figure 33. Decode Routine

YES

LETY Y

NO
-

cacaces

sscecscsccccsccacccascentacse
-
+NO
anue
- -

YES -

LXTETTRTTS 3.4
L3

. 1s 17T " SEY UP FO
BYPASS MODE
» L]

suane
. -

ANORMAL

- -
ERROR

«X#RETURN *
*(3)
.

-
LYY

X
LY Ys

BY!
TABLE ENTRY

P L L Y T

* 1S -
NO #[/0 REQUEST#® .

ARRBNRARERNRBIEEN

"
.
-
.
*

voo® .
® AVAILABLE * -
- - * - -
(2 X223 L2222 -
+YES .
. .
. .
. .
. .
X .
annun .
*IS THE * .
vES ® 100 .
cecossscscrscronasat TYPE . .
. TAPE .
. * .
- HARS .
. «NO .
. . .
. . .
. . .
. . .
X . .
fRaan . -
ARE . .
SCHANNEL AND® YES . .
* UNIT FIELD UF *eeen . .
* THE 160 . .
* BLANK . .
CTE Rl - -
«NO . -
. . .
. - .
. . .
- N .
. .
- . x
o.ncu - I
*1S 10D # . #1S THE #
with'The" » wo o * 10D CARC Ne
aSAME UNIT WANE #o-X. * TYPE FIELD ¥%eeesse
* AR - . * VALID
sENTERED S . . »
"EARN - nENAN
«YES . «YES
. . .
. . .
. . .
. . .
. . .
X . x
sunan . wmunn
* HAS . #wAS 10C*
® YHIS IOD ® NO o + WITH THIS % YES
% THE SAME *euXe * TYPE AND CHAN %.¢
® CHANNEL *# . #PREVICUSLY *
* NAM . ®ENTEREC#
"ARREN . EEER L)
«YES N «NO
. .
. .
X .
BARRY -
* [] -
#NORMAL # .
#RETURN * .
- -
.
LI X AR RERAENRBRBRERS

X
nanNG

0 INITIA

- 1s 17 Y 00 INI L
X% :N(TIAL ENTRV ..o-o....li HOUSEKEEPING

snnns
NO .
. .
. .
. .
. .
X x
RRAAS RERER
* 1S 1T 1S PP
. YES * REFERENCE *
JFINAL ENTRY ®Xeoceeecos TABLE SLO
- -

* AVAILABLE
- 0

.
sanus suaan

«YES «NO

. .

. .

- .

. .

. .

x x
SREBRNNNRANRRRNRY susay
#® TERMINATE THE # * .

® ERRQR *

#RETURN #
FOR THIS PP : . (1) =

.
EREBRRERANRRRRNSES

n
PR YT TTR YT YYYY I

o---ccouocuul!.l!

sesns

ETYYS
.
.
.
.
X
LTty uunnuun-unon-ncn.
. - # SCRT 1/C REQ
* Is IT * NC #TABLE ACCOHDING'
REJECT ENTRY F¥eseeeseeX#TO THE LARGEST @
- - NUNEEﬁ OF UNI?S'

. R CH
anane cuncli.nn
o YES .
. -
. .
. .
. .
. .
X x
annes nnan
= . -
YES ANORMAL &
caek lNl1IAL ENTRY * ®RETURN #
. -
. - L}
asnew sanaw
oNC
.
LA iisd -uuq-
CLEAR OUT THE I '

.llc HEOUEST AND
E REEL POOL |X-ooo..----o-'LEﬂHCﬂ
CYAELE FOR TNIS -
M

#PRCBLEM PR |
sRREBRENANY !uu.l
.
.
.
.
X
annen
- 3
ceccseX® ERROR #
#RETURN #
- .
wanan
YT Y] sunan
* - » -
* - ANORMAL #
. eeX#LERROR # #RETURN ®
* (&) % - »
- L] L] »
sunaa naney
.
.
-
.

#1S THIS#*
®THE SECCND #

* YES
TYPE REQUEST FOR_
15K * INFIN
DISK Ve
aunns HuRE
«NC «YES
N
.
. .
X x
(X222 *ABAR
- -
#NORMAL * . .
+X®RETURN % #LERROR #
- » {7 -
- - -
“nann L2222

System Operation Programs

71

until PP has finished with the first. Since this will
not happen until phase 4, pre-assignment is com-
plete when the first reel is called for.)

If the REEL card is acceptable, the reel label is
entered in the first reel table, and its address is
entered in the I-O request table. A normal return is
made. Ifafinal entry is made and the reject bit is off,
the PP reference table entry is made for this PP.
These entries are defined in the preceding section on
I-O assignment tables.

When an invalid card is detected or a reject request
is received, the program (LERROR) clears any entries
it had made in the I-O request and first reel tables for
this job, and sets the reject bit in the PP reference
table,

The Assign Routine: The assign routine (Figures
34-39) pre-assigns the problem program requests
which were submitted through IOD cards. This en-
ables the operator to set up in advance the tape units
to be used by the problem program. The set up of
tapes as far in advance as possible optimizes set-up -
time. The basic rule used for assignment is to utilize
all tape units when they become unassigned. At as-
sign time, all requests are checked for adherence to
the machine I-O configuration. If there are any dis-
crepancies, the problem program will be rejected.
The assign routine is entered from JC4 with the

linkage:
LVI, $15, Y
B, TASIGN
Y XW, A, B,C
(Return)
where

A is the status of the machine:
0 - no configuration change has taken place.
#0 - configuration change has taken place.
B is the exit disposition:

0 - next PP has been assigned successfully
and is ready for Move.
#0 - next PP has been rejected and cannot be

given to Move.
C is the Assign entry mode:
0 - overlapped mode.
#0 - unoverlapped mode.
Assign uses SA8IQS to convert and $COMM to output
messages to the operator.

Upon entry to Assign (TASIGN, Figure 34), the

first check made is whether or not a machine configu-
ration change took place since the last time the assign
routine was entered. Conditions for stating a con-
figuration change must be set by job control for the
initial entry to Assign in order that the necessary
tables for I-O validity checking be set up. The con-
figuration change section performs the following
functions:

72

1. All requests reserving units that have become
unavailable due to a machine configuration change,
must be relieved of these units. At the same time
these relieved requests must be marked so that they
have priority in re-assignment (pseudo-unoverlapped).

2. The equipment count is generated for the validity
check table. This table contains the equipment code
and count and a zero field for the requested count
for a PP.

3. The multi-unit count table is generated. This
gives the total number of tapes on a channel. The
format of the table is half-word: .0-.17 the channel
number and . 18-, 21 the unit count. Along with this,
the largest count per channel is stored for PP request
checking.

Upon returning from the configuration change sec-
tion (or if there was no change), a mode check and
set up is made. If the mode is overlapped, the index
pointing to the PP reference table is set to the next
slot in the table. This contains the information about
requests which have not been completely assigned.

If the mode is unoverlapped, this index will be set to
the unoverlapped table.

If the mode is overlapped, it is necessary to cycle
through all preassigned tape requests. As each pre-
assigned tape request is encountered, the channel and
unit numbers in the TIOREQ table (TABSCH and
TABSUN) are used to turn on the overlapped reserved
bit in the Unit Status Table (SOVRES). This is neces-
sary because of tape passing from job to job. Con-
sider the following situation: Job A and Job C both
use the same tape. Both Job A and C turn on the
SOVRES bit (Job C does so redundantly). Later when
Job A goes into the running phase, the Move program
sets the SOVRES bit to zero. Since Job C has al-
ready turned on the SOVRES bit earlier, it cannot do
so now; therefore the tape unit appears to be avail-
able and is to be reserved for a later Job E.

The Assign routine refers to the PP reference table
to get the information about the PP: rejected, com-
pletely assigned or already processed. If the PP is
accepted, the table contains the cross reference
address to the I-O request table and, if any I-O was
requested by the PP, the count of the number of
individual units requested. This count is used to set
up the minor index (TIXA) which is used for scanning
the I-O request table. With the exception of the print
bit, the information was computed and stored in the
I-O request table by the decode routine. Information
pertaining to the assignment of a unit, such as the
absolute channel address, the absolute unit number
and the assigned bit, are computed and stored by the
assign routine. The unoverlapped bit that appears in
the I-O request table is a special indicator denoting
the fact that this request was once assigned and was
dis-assigned due to a machine configuration change.

E1z223 FERBARB B RARRARER “ae - “nan e ANANNBANABEN
. * # SAVE INDEX * * GENERATE . ® RELIEVE ALL- #
» * * . * INTERNAL . # PRE-ASSIGNEC *
STASIGN ®ocsescsevessX® REGISTERS ¥ oX#® CONFIGURATION #ecosceseX® [/0 REGUESTS
* * » . % TABLES NEEDED * * FROM THE NOT ®
. . ® IN TASAVE & » Y ASSIGN % ® AVAIL UNITS #
L2 X 22 AABERIRRRRRANIRAY ARABBEBRBEBRABERS ARFRARAAEREATRASN

+NO .

. .

.
eXsessecsevensesvssccoces

X
snans sUBNEBERNENENNRBER - RRBBRARAR RO
- » - SEARCH M - SET INDEX -
YES ®# BYPASS * NO # TIOREG TABLE # * REGISTE
. ce ¥ MecococsaX® FOR TAPES TO FaocasoeseX® TO _BYPASS
. - MODE - ® SET SOVRES ® PP REFERENCE *
. * * » UST BIT - E "
. sauan HENAREBEANBA BRGNS SReNBRBENTSINANSY
. .
.
.
.
.
X X
CARARARB R AR BTN sunnn
. SET INDEX - *

. REGISTER - * NO .

.
* ANY -

T0 OVERLAP #esaveneaaX® UNASSIGNED %eesescssssces X*TSCRIE
. *

% PP REFERENCE % JCE
. AB 3 # LEFT & . .
AERNERRERANSRRANY AnanE sesen
«YES
.
.
X
senun TR
» . -
» . L3 408 * YES . »
® TAL %eeevesecsescX¥® ALREADY BevacasaceccoX¥ TBOZ &
» * ® ASSIGNED # . .
. * - . . .
FZTTY ranun ansen
«NO
.
.
.
X
sauue LTI LTYTY]
* . . . » .
- -) 1/¢ » [.
* TA20 # * REGUESTS seX® TAREY #
. * * vALID » - -
» (3 - * *
ruEne LYYTL cnann
. «YES
. -
. .
. .
. .
X X
neun sanus ETXT Y LTIY)
» » * * * * -
* TAPE * YES . ® ANY 1/0 % YES . .
» REGUEST Besenesese . * REQUESTED . vescense X¥RBZBEND®
» » . * L] - -
.] * * »
anae wnaas axuen runen
«NC «NO
. .
. .
o
X
weeun canun EXXITLS
- * # TAPE # * PUT ASSIGN
- . - 160S * YES . INTC SPLIT
RRTAZ ®ocevesacesasX® REQUEST %asseceseX® CHANNEL AND ¥
. . - # TOC NANY & # SAME CHEANNEL ®
. . . * ChANS # - OK WODE
. “nees wnNE PETT TN R T TR A
. -NO -
. - .
. . .
. .
. cscsee
. .
X X
wunaw senes LYYy
. # MCRE ¢ * -
* * NO - TAPES * NO
* BYPASS ¥eaesscencosceveces AVAILABLE *oe
. MODE * - *
» * . * . 3
rnane . T Y LYY
YES . «YES
. .
. .
. .
. .
X X
ranus sunnz anann
® CST # . - - - -
NO SCAN . * 1/0 REC #* NO *
seset FIND AN » - * ASSIGNED toee -
. * VAIL . » . » * -
® UNIT # . » * . »
SRR . wnunn LZT)
«YES . o YES
. . .
. . . .
. . . .
. . . .
. x .
. ARBRRAARRERAAARRR . ranun wxnne
. * MARK U . # ANY * - .
. # RESERVED.THE * MORE * NO * L
- #HEUWUEST ASSIGNCH* 170 FOR ¥eseosacsscceX® TaAB ¥
- #SEY UP CST ADD.*® » THIS * . .
. #IN REQUEST SLOT# * JcB ¢ * .
. P It wrnwe sensn
- . - X
. X X .

seesssssscscssesssoescscessscsasensesorescssnancsocen

Figure 34. Assign Routine - Chart 1

System Operation Programs 73

YES
EE 22 1) L2 X2 2]
*
* R * TAPE . O
* BZB X REQUEST L
* END »
*
RARS AA 22 2]
x
.
.
.
«YE!
RAARE EREEN
* - * NY *
* R = * MORE »
* NT e, 1/0 *Xaa
* SPECL * * REQS]
® » .
ERAEE #nan
X +NO
. .
. .
. .
. X
. Lia il
. ASS *
. NO * TA »
. esee® HAVE SAME &
. . * C .
. . * SEP. *
. RABER
. YES
.
.
. X
- AEBRBBREBERRA N
. # RSORTIOD -
. TRt S Sut
. * SORT I/0 REQS #
. * TO ASSIGN #
. # SAME CHAN »
- EERBERRRBEREER RN
. .
X
T

- -
esseceX® RRTA2 ®
- *

» »
LT YT

.
.

O R PP Y
-
*
-
*
*

*
NO # FIND »

Xeesassesssaavees® PROTECTION *
» oK -

LI
«YES

*
n
-
z
o
*

NO ®
Xeosevensonseoanath
* oK *
* *

Xeos e

AR
* FIRST #
* TAPE USE #
* MULTIPLE *
* REELS _ #
. .

YES

-
.
.
.
. -
.
.
.
.
.
.
.

REAFEREREEIRRS RN

*Xeeeooses*IN
* *

SEP REQUEST #
ERERARN BTN RE RN

* RESERVE UNIT *

*

-

»

- SAME CHAN
*

- ET T Ty e e I

Figure 35. Assign Routine - Chart 2

74

teseasesiecnan

E2 224
- * - *
* TAPE * YES . .
. ALREADY ®eceeascercaeX® RRTAZ ®
* ASSIGNED # . .
- » * -
annne "nuan
«NO
.
.
.
X
(X222 “nE
- - -
* SCRATCK & YES . -
* REGUEST ¥ecsetscsveaceX® NT @
* * SPECL
- * -
L2222 T3 SunEn
«NO
.
.
X
EXZ 223 E1x123
* FIND #
* MATCH - FIND YES
* IN CURRENT seX® PROTECTION Meeeeseccccsanscone
* OUNT . oK .
* TABLE .
"EERS (22222 -
«NO «NO .
. . .
. . .
. . .
. o .
X X x
PSS aue rxwne
- - * FIND »
* . R * LABEL *

» BYPASS NT USAGE .
* MODE . * SPECL # . THE .
- - - - M .
L2222) LAz il #RRRN

+NO x «YES
. A .
. . .
. . .
. . .
. . .
x . X
*w EEABRERBRBREERIED
* FIND THE * ® CK * - BOOKKEEP -
* FIRST TAPE # . +
* REQUEST . *
* IN_TIOREQ * ¢« s ASSIGN AND
. LE » * SEP. REGQUEST * * RESERVE UNIT #
ARABRRABERRRRRD RS
.
.
.
X
B -
* SEY UP -
* SCAN -
* MECHANISM
* TO CHECK *
* MA -
AR BERR SRR R RN
*EBRE FRBARBEBESRRBRROS ARRBRBRERBAREREES
. . * MOVE ALL » a3 MOVE ALL .
+ R * 1/0 REGS » * NON TAPE 1/0 +
* SORT #eeeeesesecssX® TO WORK %eaes x® REQS BACK
s 100 # * AREA FOR ®* TO 1/0 REQ *
. * THIS JoB . . ABLE *
HRRER ERRRARSHRRARBEENN RAREBERARAR BRI
.
.
.
.
x
AARLZZ I SIS Y 2
% MOVE ALL »
* PASS TAPE
* 1/0 REQS BACK ®
- 70 -
* REQ TABLE #
AARR L 2R ST T Y
.
i
RERER - RREBRRRERARNE BRARBRABERRRARRDE
* . » MOVE » * MOVE ALL .
* » * REMAINING SAME CHAN #
#RETURN #X * TAPE REQS #Xeeeeeess® REQS BACK #
» . BACK TO 1/0 * » T0 1/0 »
* - EQ TABLE @ * REQ TABLE #
HRERE RERTRBAEREBRERNRY ERABEERBBEARAREND

anass YT YT I TS FERNBALBRBDIRERNS
- - * SET UP - * SET UP
* * # FIRST PRINT # # FIRST PRINT #
#TSCRIB %ecasscscoccsX¥ PASS FOR THE & * PASS FOR THE #Xeee
- b # OVERL APPED - L BYPASS -
. * - . * MODE .
[TET1)] P I T PR AT A SERRRBRERSRNEBRNS

esssssssessssessseX®

sesesenex

.
FRERRBERTRARRBRAR
* SET TSCRIB *
- ROUTINE * NO
- TO_SCAN #Xeosssoaat
* THE

» NEXT JOB »
FHEERBRSRERSRREES

*
»
z
<
*

YES #* MORE * YES
cot /0 #Xesesccest®
»

essscetesessssnccess s aseen

Xeeooscrene

eeseestseanssesssesr st X

Figure 36. Assign Routine - Chart 3

eXessssesosscsccssccencsse

- 170
. REQUESTS

-

-
sanan
«YES

REQUEST
PRI NTED.

-
[A
ES

x

(2213
» -

UNIT
BYPASS
RESERVED
*

annne

«YES

Xesoe

SRRBRERRRBRBCRRNR

ERRRARRRBAERERNED

cecessescssessacsccscsseccscsccch
-

tessessseecesssecsssenessesessssstanssscesessecesene

YES
*eesee ssccse
»
-
nnne
* WRONG #
L4 MOD * NO

Xesessecssssessacsessecssssascssee

P e L

- MESSAGE *
AETARBRNAERNNNRSY

%eascscsc X

* BYP #
PRINT # S
PASS ®eessscscsnssscscne
DONE .
. .
snuNe .
.
.
.
.
.
.
X
L2222
» -
- NO - .
BeesescecasesX® TPICA #
. * *
»* -
SARNE
CYIIZIZETT IR 2222 2.0 aunEn
. SCOMM » . .
T B R e R o ko g - -
PP REQS CHXX ®ececccsssaseX® TP3 *
® UNY SCRATCH # . .

- MESSAGE M
ARBERERBERRENRRON

= NO

«YES
snene

- L3
SCRATCH
REQUEST . .

-
snnan
«NO

xeeae

TAPE
* LOGICALLY

o
LEXTETRTRY 3.4]
-

* -
YT

%eeassssscocsscosce

seesecsssrasssne

X
ERERNUTRERSRERRES

- SCOMM -
#~4MOUNT TAPE #-3
ESSAGE :X

ATTACHED *
. - - » .
Ei223d PR YTITRRRRRR R 212 -
«YES . -
. . .
. . .
. . .
. .
. .
X x
rnane cnune
.« 1S5 . - .
ATTACHED & NO » - .
* APE LErYE * TP3 w .
* A PASS . - .
* TAPE # . . .
"nans . E22 21 -
«YES . -
. . .
- .
. .
. .
- .
. .
. ARVBRABPRRCRS .
- - - .
- - - - -
- . o X® SFREE %eoee
» - - -
- *
EXIIISTT 22 L

AENBRBRAABEBBRASE
$COMM -

J g e etae]
#+ PP REQ CHXX #
» UNY REEL .
* MESSAGE .
ANRERBRBERNBIERES

System Operation Programs

75

YES

Figure 37. Assign Routine - Chart 4

76

ERRER AR
- - * t 3
- -
*TAREJX * TAB s
- -
- -
AENS RAER
.
. .
. .
X X
ERBABRBRBRERRRRN D rEEAN L2222
* SET uUP I/0
* REQUIREMENTS # YES N . NO_ * I35 ALL _®
* INCOMPATIBLE #Xeevesoaa® 8YPASS #Xecssssea® [/0 ASSIGNED *
* WITH CONFIG. MODE #" "FCR JOB_ #
s REJECT - -
RERBBRABERABARNNS *hunn REARS
. «NO YES
. .
. .
. .
. .
X X
*REE - EARABEERARARBENE N
- - -
. - MARK THE -
* TAREJ * . - FIRST JoB -
. ® ASSIGNED .
- » -
HRERR - HERREREABRBRRERRE
. . .
. . .
. . .
. . .
. . .
. . -
X X X
EranRRsErRRRRRREE nauan rnan
- - - - -
» SET . » * NO # IN *
* JOB REJECTED # ® THBZ *Xeeeosseeanee® BYPASS .
. BIT » . . ® MODE .
* - - - - -
RERRBRBERBARB RN LX 22 sEREn
. . «YES
. . .
. . .
- . .
X x X
sexan EBaREREERERRRNNE T
. » - M
* DOES JOB * NO * SET UP NEXT * - -
®* HAVE 1/0 *eaae * "JOB IN PP #TSCRIB *
* REQS . *REFERENCE TABLE® . -
* - - *
SRERN HARBRBEBRERRRRE NN *REne
+YES - .
. . .
. . .
. . .
. . .
X . X
EEBRBERBARBRRRRRE - -
$SFREE - . Ad *
L B B T 2 B BN Y - -
* FREE TAPES * * TAL
* ASSIGNED TO * . *
- THIS JOB - - L -
EARRARBABRRERA RN - Lz 22
. .
. .
. .
x .
RRBERRRERERERNRRRE -
BOOKKEEP . .
* RESERVED BiT, # .
* ASSIGNED BIT, # .
. RO_1/0 .
* REQUEST SLOTS ® .
RERRARBRRRRERSRA -
. .
. .
. .
. .
. .
X .
*RRRE -
. .
* ANY MORE * .
* 1/0 REQGS *Xeoae
-
-
wnan
-NOD
.
x
Py renan
- * »
» IN - N - *
* BYPASS ®eacscesnscaeX® THBZ
* MODE * - -
- -
ERERE EaX X2]
«YES
N
X
xaan
.
* TPICA *
* M
. .
rean

.
.
.
.
.
.
-

- Is
JoB
ASSIGNED
. L]
Eann
«NO

Xe oo

“auns

*
* DOES JOB

YES
. HAVE 170

X
RARRERRRBRRERY
-

- MARK THE
* JOB ASSIGNED
-

-
ARNBEBERRRIRRE

eunan

* -
* WAS JoOB

e X¥ .PREREJECTED
eane
oNO

x
“nuny
- 3
. -
#TAREJX *
- -

* -
[T

X
es

*
® IS THIS # NO
* J08 TO RUN LETYY
- NEXT
-
nnaa.

eYES

Xes o

sunas

NG # IS THIS #
esee® THE LAST JOB #
" IN THE -
* TABLE #
“nune
+YES

Xeo oo

FREEARTRRARABRERS
L3 -
SET ERROR BIT
* IN JC4 CALL
- SEQUENCE

-

*
sesnanen

LYY

.

.

.

.

x
“as

"

* ves .

BececscsccssoX*® TPIA #Xonsesse
* -

ERRBRRANCRAAB AR
.

Xeooes

snnun

. X

. - -

. trune

. .

. .

. .

. .

. .

. X

- SEBARARAERRAE AR

- - -
. « ® RESTORE INDEX *

» -+ *REGISTERS 0-14 *

- - - FROM TASAVE -

. -

.

.

.

.

.

e
* -
*RETURN #
. 10 =
* JCa »

- - .
“ne sanen

LT TR
* .

* YES - -
®eeecccscsecsX? TAREY #
* » *

- *
(21T TS

sesesnnee

.
.
-
.
.
.
.

.
.
.
.
-

(22220
* »

-

* TA2€E

*

* .
[I211)

FEERNBSBERIBENIRE
- *

* ol GET COUNT -
#eeeasessseses XFOF LIKE CHANNEL®
* * REQUESTS .

.
RRERRARRRRHRRRB NN

.
.
.
.
X
*RERE ERBREE LA LA L
* DOES . » -
* PASS TAPE # "
- HAVE LIKE ssessssssssssscsscsssessscscaceX® RTAGD ¥ * TAQ ®
+ CHANNEL * X » »
+ REG. * . . *
ERRE LA L d 2] sannn
+YES . .
. .
. .
. .
. . .
. . .
X . X
wnaw o B L T T Y
DOES * - . - L]
COUNT OF # YES . - SAME * YES % PUT ASSIGN -
LIKE REQUESTS %*ccsnccscccsccsscXe % CHANNEL REGS %40 oX® IN SPLIT -
EQUAL 1 % . * EXCEED . # CHANNEL MODE
- - - * MACH. * - L]
- L2222 FERBENRABBRBANREE
. «NO -
. . .
. . .
. . . .
. . . .
. . . .
X . X x
"'llﬁi&l!.ll.." - RENE SHERBFRBBABRBERRS
ET - . - - ® FORCE ASSIGN #
. REQUEST TABLE * TO SCAN *
SCAN FOR THE ¥ - * TA3 *Xe o CHANNELS *
. PASS TAPE - . - * ' HIGNEST e
* CHANNEL . . » L3 -
ARARRABEIRBAERRERS . "EREN ...0. l!...l.l&'.
. . .
. . .
. . .
- . .
X . X
senen . aesne YTy
. * 1s - - -
ES # SCAN * NO . ' CHANNEL # . .
.......-.--..-o--.'FI D PASS YAPE *asenee . - EPARATION eeX® TC3Z 'X--.
. * REQUESI’ED - -
. .
. LTS ranaw srens
. «YES X
. . .
. . .
. . .
N . .
. . .
x x +YES
EREEE QCQIQ ‘tannn (X222
+ CAN * R »
* WE * YES ‘ * DOES * YES # IS SAME *
- OPTIMIZE n............xu TASA # # CHANNEL HAVE #easeeseoX® CHANNEL MODE #
- MOUNT * * ENOUGH - x % ALLOWED =
* # UNITS # . -
nEREE EAER s - L2 3 Zsd
«NO . «NO . oNO
.
.
M
.
.
X X x .
nERER .’i"!.l’l'il.l" ‘R - L a4
#MUST WE#* * BOOKK! * L . #1S CST &
FORCE A * UNIT RESERVED - * 1S SPLIT # - + USED BY
. MOUNT ..xv REQ. ASSIGNED # » CHANNEL MODE #ecesee ® SAME PP FOR ®
#CHANNEL + UNIT ¥ LLOWED » OTHER .
. # IN REQsTABLE # REQ
(22 23] HABBRABBERERRRRR R BEANE #ERRE
«NO . «NO «YES
. . . .
. . . .
. . . .
. . . .
. . . .
X X . X
l‘."..llll‘.lll’ SRRAR ‘l..ll"llll..ll. - *RERE
- SET UP * MUST # SFREE - *IS THE #
SCAN TQ CHECK ' # TAPE ON ® YES ' R bbb - * SAME *
#FOR CASE WHERE ¥ - UNIT BE *esesssceX® FREE TAPE . - SYMBOLIC »
* OVERLAP CAN # * REPLACED # * ASSIGNED TO . * CHANNEL &
MOUNT LATER # * » - THE UNI . REQ
SRBRBARSRNEREONRS “nennw ERRREABARE RN ERE . e
«NO - . NO
N . . .
. . .
. cssesense eccssssesaXs . .
. . . .
X x . X
AR ARREE ARRER . HERER
#[S CHAN® » - - . .
#SEPARATION # YES » * * . *
[MPOSSIBLE #eceesveccsesX® TAQ * # RRTAZ2 # ssassscssescsacscesseX® TAIFI *
% WITH PASS # - . - - *
* * * - - - - -
HERER *EERR EREEN E2 22 2]
«NO

Figure 38. Assign Routine - Chart 5

2

Xy

NO
eoX

Sesssessesessstssssssesastresssansae

System Operation Programs

7

“nnun
- *

- » - -
* TC3z 0+ » TC3 *
- * * *
* * -
HERER -
. .
: :
. :
: : tresessscssecsnncsens
. . .
X X x
EERARBERBRRBERRERR BEBRABERBRERRRRES ARnEn
- - * *
* STORE UST * * RELOAD UST « IS UNIT * NO »
5 REGISTER IN %. X* REGISTER FROM ®cecsscasX® AVAILABLE SeevassecsX® U
- TWORK2 * TWORK2 * * NOW X -
- - * »
REBERRRRBRRERRRER HRARRRBBERRRRRRE EXZL 2] :
SYES
. .
: .
: :
: :
. :
X .
rases .
* IS UNIT * YES .
BYPASS #oessoe
* RESERVED *
- -
RRDE
NG
:
.
x
PR AR
- * - -
. » * CAN WE_ * NO s s T .
* TA3F1 # ® OPTIMIZE ¥eessesssX® FORCE MOUNT %
M . * O MOUNT % MODE _ *
- - - - -
[wanes
. +YES
:
.
.
X
RERRR
» .
ANY TAPE - NO
% CHANNELS %ecoeeseasasscansas
* AVAILABLE # .
: H
ERRE
+YES

sanan
* -

.
.
-
.

.
.
.
.
X
[TXIY
*
- is 1T - Is *
SPLIT CHANNEL #Xoe BYPASS
- MODE * - " MODE -
nRE - nunn
+NO .
.
. .
. .
X .
EEEERARRBRBRBRREE M LT
* - .
* PUT ASSIGN IN # « YES * 1S THIS #
SPLIT CHANNEL * easesss® THE NEXT JOB
* MODE el # TO BE RUN #
* .)
BRARERNERERRBENRE eean
- «NO
. .
.
X .
RS .
* » .
- .
TB2 #Xeeeveeccvcscccssccssce
* »
* *
ennn

Figure 39. Assign Routine - Chart 6

78

o*
*UN
-
ey ey

e
-

NO

#esesvessssscccnse

sesn

.
.

X
T2 T TS

NO # ANY -
#Xesessase® UNITS STILL *
* AVAILABLE #
* .
annnw
<YES

.

Xoene

HRNERIABRBREEEREN
- -
PUT ASSIGN IN
* SAME CHANNEL *
- MCCE -
» .
EARRRRBERBRERRR N,
.

.
-
X

Yy

*
-

»
* SE

seseee
«YES
LT

ANY MORE *

INITS ON THE

CHANNEL #
.

ETIY
x

#secsesesesssssesessnce

=z
.0

2]

X112
«YES

-

CAN WwE -
FORCE MOUNT

MOOE -

ARAFNAREABBRERBE
-

ASSIGN TO
A

FERERRRENEE

SCAN UST
FOR UNIT TO
DISMOUNT

ERBRBRE RSN ERI RN

.
.
.
X
HuNRE
- -
- -
* TASA *
- *

* -
nnuns

YT}
* -
* TA3F1 *Xa
» -

» .
ETYY Y

ISMOUNT *
5SIGNED PASS#®

APE MODE
Py Pt Y T

L]
#ecoscessessscscnce
.

-

.
-

.

.
.

-
.
.
.
.
.
.
-
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
-
-
.
-
.
.
.
.
.
.
.

.
.
.
-
.
.
X

“nnun

YES # 1S IT
«® FORCE MOUNT
»

RERR
«NQ

»
nanan

*

-

When the unoverlapped indicator is on, this request
has top assignment priority and if there is no unit
available to satisfy this request, the assign routine
will reject the PP. If there is a unit available
assigned to a request of a PP that is to run at a later
time, then the assign routine will relieve that PP of
the unit and give it to the top priority request.. The
PP that lost the unit to the priority request will be
assigned a unit as soon as one becomes available.

The first reel table is used to provide the first label
or reel name for the mount message. This message
is printed as soon as there is a unit available for the
IOD request. If there was no REEL card after the
tape IOD, the request is then considered to be for a
scratch tape. In this case, the first reel entry in
the I-O request table will be zero.

All three of the I-O assignment tables are used in
a circular fashion.

The I-O assignment procedure is as follows:

1. Each PP is checked to see if the requested
I0Ds are valid. If not, the PP is rejected.

2, If the PP to be assigned has no tape requests,
the tape passing mechanism is skipped.

3. Requests for specific tapes are checked against
current tape unit mountings (as per the SCRODT
table). The I-O request is assigned if the requested
reel is mounted.

4, If the system is in an overlapped mode, un-
assigned tape requests are checked against the I-O
request table (TIOREQ) for the same reel request.
If the reel is matched and protection and label usage
is correct, the request is marked assigned.

5. If a tape request has been preassigned because
of steps 3 or 4, a check is made for another tape
I-O for the same channel within the PP. If such a
request is found, the PP I-O requests are reordered
in an attempt to maintain the channel separation
mechanism. The following illustrates a typical re-
ordering.

Before After

TAPE CH1 DISK

DISK CONSOLE

TAPE CH4 UNA TAPE CH4 UNB
CONSOLE TAPE CH3
TAPE CH2 UNZ TAPE CH4 UNA
TAPE CH1 UN2 TAPE CH1 UN1
*TAPE CH4 UNB TAPE CH1 UNZ2
*TAPE CH3 TAPE CH2 UNZ

* Indicates that this tape has been matched to
either the SCRODT or TIOREQ tables.

6. If any tape requests are found that have the
same separation as a matched tape, they are pre-
assigned now.

7. Any other tape requests are preassigned now.
All non-tape requests are assigned when the job is
about to be run.

Working on one PP at a time, each individual I-O
request is compared with each unit in the I-O con-
figuration status tables to see whether or not the unit
satisfies the request. If the request is satisfied as
far as the type and channel grouping is concerned,
further checks are made to see if the unit is available,
unassigned, and not reserved. In the case of tape,

a check is made to determine whether or not optimum
reel mounting (the program tries to place a scratch
tape on a unit that has a scratch tape already mounted)
is to take place. If the unit is assigned or not avail-
able, it will be ignored. If the unit is reserved, a
test is made to see if the requesting PP is being
entered in the bypass mode. If it is not, the unit

will be ignored as this unit is reserved for a PP in
queue ahead of this PP. If the mode is bypass and
the I-O request is otherwise satisfied, then this
request will override the previous assignment for
that unit.

The pre-assignment will be carried out, proc-
essing one program at a time, either until there are
no more units available for reservation or there are
no more requests to process. After processing a
program, a check is made to see whether or not the
program is completely pre-assigned. If it is, the
assigned bit is set to one in the PP reference table,
signifying that all units have been pre-assigned so
that continual scanning of the PP's I-O request table
is not necessary upon entry to the assign routine.

At the same time as the above check, there is another
check to find out whether or not the mode is unover-

lapped. If it is, then a quick exit is made from assign
disregarding the remaining PP's that are in the queue.

Before any exit is made, all tape mountings neces-
sary will be printed for the operator via the commen-
tator. The disposition field of the linkage will also
be adjusted according to the status of the next PP to
be run. If the status is reject, the pointer (TPPRUN)
will be advanced to the next PP, This pointer is used
by the move routine and should always be synchronized
with the incoming problem programs via the input
program. .

All the information necessary for assignment is
stored away in the I-O assignment tables. This infor-
mation is later transformed and merged with the 10D
card to form the Actuator tables. This transformation
is carried on by the move routine.

The Move Routine: The move routine (Figures 40,
41) obtains and merges 10D or REEL cards with in-
formation generated by the assign routine to form the
four actuator tables: symbolic I-O location table, file
area tables, unit area tables, and the reel pool table.
Certain system parameters will also be set up by the
move routine: the maximum reference number used
by the problem program, the next available full word

System Operation Programs 79

™

Figure 40.

80

snsnn
» .
- -
®* TMOVE *
* *

-
AR

.
.
.
X

ARNRRERSEERRRBNEE
*

-
#SAVE THE INDEX &

REGISTERS AND %*,e0voeseX®

#RESET THE ERROR¥
FLA .

ERARRERBBEENRE R

1D
ERERCRARERRRRR NN
* *

* GET REFERENCE %
* NUMBER. SIOL
* ADDRESS AND
* UAT ADDRESS #
ERERRRBRRERE RN RS

[T YY)
*

» -
(2332

%Xosssssne?
P

*
#TMREJB *Xesososeovoae®
* * .

LYY FERERBREARRRERENR *nana
» * * * * IS =
- - ®INITIALIZE THE # * THE JOB # NO
* TM2 ‘-o-------oohx‘lNYERNAL TABLES'....-...X’ IN PHASE
- . SETUP THE *
4 " WORKING MODE -
n..:u mu-uuuqunnucln [T
X «YES
.
. .
< INIT X
runne [T HRERRREARRBERN RS
- . -
- TEST * REJe - - * SORT THE I1/0
THE ENTRY ®eesessessseeX® TMREY # * REQUEST TABLE
TYPE - - # BY ORDER OF &
L » - - RE T .
renn TR EARSERRARERERRNNS
«NORM .
e wu
a H

™1

LEAR THE
'Xo.-a..--n--.‘LOCAI’lONS 10 BE'

USED FOR _THE #
.ACTUATOR TABLES#*
ABRARRREAERRBEERS

“enas 2T 2]
» » - -
IS IT AN #* NO * »
* 10D CARD #eevsassecsaaX® TME6 *
* 13 -
- - * -
rARES REERE
«YES
.
x
REARSRBRBERRB AN shane
- CONVERT *
THE NECESSARY * » THE -

#* FIELDS OF THE #eeae
* 100 CARD * *
- * .
ARAEAARRARARARNRN .
. . .
. . .
X . X
TR e Y T . nnnn
- - . * *
* SETUP THE . * IS THE *
® APPROPRIATE #*sscece = SIOL SLOT
* ERROR FLAG - #* AVAILABLE *
- . * *
FARARRBRRAAGRAARS anans
«YES
.
.
.
X
(2T annen
* HAS # * -
UAT BEEN_ # NO # 1S IT -
GENERATED FOR #Xesssaseet A TAPE *
* THIS 100 # X * HEOUEST. -
sanun N nEEn
«NO . = YES
. . .
. . .
. . .
x . x
cuuuuununu-nu . Aninn
- ®ARE THE®
'STORE ﬁEFERENCE' . NO #CHANNEL AND®*

#NUMBER INTO UAT®
STEP TABLE *
- COUNTER -
L T I T T
.
.

v X
ERANRRRRARRBARR
* »

* GENERATE VAT
FOR THIS 100Ds

® FILL IN REEL
#POOL TBLE ADDR *
FAERERRRARRRA RN

RRRAEBERRARRRRBN
» »
* SETUP THE *
APPROPRIATE
ERROR FLAG

= -
ERRBRRARAERERANN

Move Routine - Chart 1

®esesanceX®
-

YES

*Xeosoasaot
»

UNIT FIELDS
» BLANK *

L2322
«YES

.
eXessesesessnsssscsscssscnan
.

ARRBRRRSRRER B BN

» »
ZERQ THE REEL
POOL _SLOTS, *
* STEP TQO NEXT &

LOT *
P T TR P Y T T

Xs oo ®

senne
* DOES

* REEL PQOL #*

TABLE EXCEED

- LIMIT *

EX1223

NO

NO

#osasacsaXW

.
.
.

COMPUTE THE .
.AC'UATOR TABLE .
*

*
.;:anu;nn.«»coc.on

ARBBABAERRRB RN
- -
- SETUP THE -

X APPROPRIAYE
* ERROR FLAG

* -
L R I T T T

[T YS

L2221
* ®
MODIFY THE -

CHAN/UNIT
* STATUS TABLES
-

CX R T R T Y

#eeescsaeX®

*ensne
»

'-.-o..uxu
.

EERRRERRRRBE RN
- -

* ERROR FLAG

SETUP THE .
APPROPRIATE #
» »
ARRRRERARREARRRR

SHERORRBER BN RE Y
. -
- SETUP TFE
«X% APPROPRIATE
* ERROR FLAG

*
FERASERBRRRERRE N
.

-
-
-
*

Xesese

RS
- -
* »
seeX*TMREJE *
- -

. -
“nnne

[ITY
* .

sessssRsRanRREREL
» 3
* ZERO THE I/O l
REGUESY
REEL POOL TABLE.
LOTS

l!nuuuuiuuiiiui

snane
* -

» 3
"nane

X
‘l!lli‘.!..ﬂ.llll

ssetup THE ReEEL H

POOL SLOT FOR #Xaese
THE SPECIFIED

.

REEL
ARRRRRBRRRABRERRS
.

Xeosee

RBRS
l IS IT *

REEL REGUESY
.Ou THE Cl

nnnm
«YES

.
SCROOT X
QQ!CI‘O..!QI..Q'!

’COHPUTE CURRENY'
ON ORIVE *

E TA
RERRRARRERBURREAS

Xesaons

'lﬁl.l."l.“ll!l

‘SYORE JOB NAME
* INTO CORRES=~
PONDING NAME
*

n
»
-
.

T
AERRARBRRERRARS

T

FOR TH 10!
HRBHERRBARBBABARD

EXeT)
. -

- -
X% SDISP #
*TYPE 83%
» -

YT

.
.
.
.
.
.

o
snses
' DOES *
POOL #

EL
seseX¥ TASLE EXCEED. .

*
nnaw
«YES

Xeeesa

FRRRERRERABRNRE N

SETUP THE
APPROPRIATE
ERROR FLAG

SRERGARRN AR ND NN

T T Y]
IR TR

*w
.,

'TNREJB .--oooo.--oo-X' JOB PROCESSED :.-n

Figure 41. Move Routine - Chart 2

.
- IS 1T -
A DISK YYPE

YES
%oseassaeX¥

“asen

.
#* WHAT TYPE #

SRR ATRBRBRAROS RS

»
TRCK # ROUND UP TO

»
-
3
-
.

coaX® OF D1SK $escssceext BECINNING OF
REQUEST * REQUEST_ * TRACK IF NOT
. . - ALREADY
L2 il] L2222] l.....'....'..ll.
«NO «ARC .
N . .
. . .
. . .
. Xessessssssssesssessacsons
. .
TNIFA X THDK X
L] -
®UPDATE THE FAT 1 gomweute THE
* POINTER FOR #Xaeee + TOTAL OISK #
® THE NEXT 10D . e REGQUEST FOR #
. . * THIS JO .
: -
. . .
. . .
. . .
. . .
. . .
X -
EX2E 12 - E2111] SARBRBRIRERBRBRRE
- - - -
. . * 1S IT ® . TUP THE *
 TNZ ® . # A LEGAL DISK #eeeccasesX® APPROPRIATE
» . * REQUEST & * ERROR FLAG
- - - » -
*RNNN - RARES BRBRBVERRRIRIRRES
. . oYES .
. . . .
. . . .
. . . .
. . . .
. . . .
x - X X
. . .
- - *
* RESTORE INDEX * o * UPDATE THE # » »
#REGISTERS, SAVE® eecees® ARC POINTERS # *TMREJB *
#THE ERROR FLAG # * FOR THE NEXT ¢ . *
- ANY - - - - -
ARNVRBRBRARUIRAES ARRERBRRBTRRIARES Fa122d
.
.
.
.
.
X
“RBAN
. .
- *
SRETURN *
- .
- *
"REREn
EXZEL) HERRBRRERRRBERRRE
- - - L]
* - ¢ CLEAR PP 1/0 #
* TMREJ #.. seeeeX¥ TABLESe SAVE
* . ZPOINTER FOR rns!
» * NEX
(22233 .Q.lll'.l.....l!'
RABRBERARRS .l" EX2 22
- - *
#SET REJECT BIY-' - -
cesssseX® TNS #
2517 TO ONE FOR . »
1S PP . .
.'...C!.l‘..l...l sRNER L2223
«YES
.
.
.
o
TMREJ1 X
.".I.III.....D.'
SETUP DUMMY_
%1/0 TABLES FOR #
* REJECTED J08 ¢
.
RERBRVBBARABABRES
.
.
.
.
X
QQ..'.’!........’ .."Q
SFREE .
'-l—l~.-'—l—'—.—' -
®UNLOAD_TAPES os!............xl ™2
REJECTED Joe ¥ .
.’l'.'.."!.'ll.l ".II

System Operation Programs

81

following the reel pool table, and the arc address of
the next available arc that is unused by the problem
program. The move routine is entered with the
linkage:
LVI, $15, Z
B, TMOVE
Z XW, A, B,C, D
(return)
where: :
A is the first word address of the IOD or
REEL card breakout:
+ for normal entry
~ for initial entry
B is the return disposition:
Bits 28-30 indicate IOD errors:
0 - none
1 - in disposition field
2 - in density field
4 - in mode field
Bits 44-47 indicate other errors, if any:
0 - none
1 - illegal disk request
2 ~ out of phase
4 - exceeding reel pool table
8 - zero [-O reference number
C is job control reject indicator:
0 - means accept next PP
1 - means reject next PP
D is mode and owner indicator:
Bit 25 is mode indicator:
0 - means overlapped
1 - means unoverlapped
Bit 26 is ownership bit:
0 - PP owns IOD
1 - MCP owns IOD
The move routine (TMOVE, Figure 40) is used by
JC4. The initial entry for each new problem program
is noted to the move routine by a negative index found
in the linkage. This initial entry allows the move rou-
tine to initialize itself for the next PP by resetting
certain move parameters, computing the size and re-
setting the memory area used by the actuator tables,
and checking the validity of the PP about to be run.
After the initial entry procedure has been performed,
control is sent to the beginning of the move routine
(TM1) as in the normal entry.
At TM1, the routine checks for the type of card.
If IOD, the card is decoded into a format more usable
by the remaining routine. A check is then made to
see whether the request for this unit via another IOD
card has been submitted prior to this IOD card. If
not, a new Unit Area Table is constructed and the
channel unit status table slot for the unit assigned to
this request is modified. The information about the
absolute assignment is taken from the I-O request
table. If the unit has been requested by another IOD
card prior to this IOD card, the construction of the

82

unit area table and the modification of the channel
unit status table are bypassed. All IOD cards cause
the move routine to construct a file area table. Ifthe
10D submitted is for tape, a two-word slot is auto-
matically reserved within the reel pool table whether
or not a REEL card follows.

When a REEL card is submitted to the move rou-
tine, control is passed to the section that constructs
the reel pool table (TM6). This section looks back at
the last IOD card submitted and finds the unit area
table constructed for that IOD card. It then takes
the address of the reserved slot within the reel pool
table to see if this slot is available for a reel name
entry. If it is, the reel pool table continues to be
constructed until the reel names are exhausted from
the REEL card. If it is not, the move routine scans
the reel pool table until it finds a vacant slot for the
reel name. When the reel pool table is set up for
each reel, the Current Reel on Drive Table is set
up with the reel name for the specified tape unit, and
the PP name which requested the unit.

If a disk IOD card is submitted and the type is
DISK, the next available arc is assigned to it. If type
is TRACK, the next available arc address is rounded
forward to the next track address, then this IOD re-
quest is assigned to that address. Hence, for opti-
mum disk assignment or allocation, a PP should sub-
mit all disk requesting IOD's in a grouped fashion,
all IOD's within the type field of DISK together, then
all IOD's with the type field of TRACK.

After performing the above functions for each
IOD/REEL card submitted, control is returned to
job control via the TN2 return.

In the case of a reject entry to Move from job con-
trol there are no checks made for proper phasing.
The next PP appearing in queue to be run is rejected
by clearing out the I-O request table entries and reel
pool table entries. Then all the non-scratch tapes
assigned for this PP that were previously mounted by
the operator must be removed from the respective
tape drives. The tape unloading procedure is carried
out by using the $FREE service routine. The reject
routine tests the entry mode. If the mode is bypass,
the rejection is made in the not-overlapped PP refer-
ence (TPURFT), I-O request (TUIORQ) and reel pool
(TUFRE) tables. If the entry mode is overlapped,
the rejection is made in the overlapped tables for this
particular PP. In the overlapped mode, the TPPRUN
and TSAV index words are stepped to point to the
next PP to be run. After the rejection is complete,
the exit from move is from normal exit TN2 with no
error flag,

The TN2 return sets up SMARK (SYN, TMARK) with
the last memory cell used by move in setting up the
actuator tables. The preset error flag index is then
stored in the return linkage to job control, the index

registers restored, and control returned to job control.

THE ACTUATOR TABLES ALLOCATION
ALGORITHM:

Let B equal the B limit (higher) from the LIM card.

Let S equal the first word of the Symbolic I-O Loca-
tion Table. '

Let R equal the largest Reference Number per prob-
lem program. .

Let F equal the first location of the File Area Table.

Let I equal the total number of IOD cards for prob-
lem program.

Let U equal the first location of the Unit Area Table.

Let R' equal the total number of unique units
requested by problem program.

Let P equal the first address of the Reel Pool
Table.

Let N equal the number of individual REEL requests,
plus one for every 10D card with the type of
TAPE that was submitted without a REEL card.

Let TMARK equal the next slot available after the
Reel Pool Table.

then: S = MAX (B, 30000g)
S+R=F
F+I*7 =10

U+ R *¥9)=P
P + N = Contents of TMARK

The Unassign Routine: The unassign routine (Figure
42) makes the I-O units used by the previous problem
program available again for assignment, unloads and
rewinds the tapes used and tells the operator what to
do with the unloaded reels. This routine is used only
by JC4, and is entered by the following calling

sequence:
LVI, 15, (return address)
B, TJUNAS

It saves and restores the used index registers.
Two subroutines are entered: SFREE (an actuator
op) and the reel history routine (JHISTE). SFREE
effects the unassignment of tape units, and JHISTE
prints via the output program a record of the tape
reels used by the problem program.

After saving index registers, unassign initializes
the reel history routine and tests TMAXRF, or
SMAXRN, to see if the previous job had any I0D
cards. Starting at TINEXT, the program loops
through successive entries in the PP symbolic I-O
location table. Unassignment proceeds on a unit
basis. As a unit is checked out, the SUUNAS bit
is set to one in the unit area table, preventing re-
peated unassignment of a unit with several 10D

cards attached to it. For tape units, the mount bits
are set to zero (to guarantee entry to the actuator),
_ the SFREE routine is used to unassign the unit, and

then the reel history routine is entered. For non-
tape units, unassign first waits for the unit to be-
come not busy, after which the unit is released. Any
repeated EKJ's result in a type 76 error exit to
SDISP. For both kinds of units, the appropriate chan-
nel and unit status table bits are reset at the end of
the loop (at TITAP and TINTPS), and the disabled
modes. After all units are unassigned, any stacked
PP interrupts are discarded from SQUE, and the
SAS and SSIO bits in the program status table are
cleared.

Aside from the index saving area, unassign uses
only one word of working storage, TJCW, to copy
control word into. It always returns to the address
in $15.

JC4 Print Program

This program prints out JC4 and $RESLD error
diagnostics on the system output tape, and allows
each installation to modify the routine easily so

that these messages may be put out via the commen-
tator. The unmodified routine (YPR) uses no index
registers, and employs the short message routine
(ZSPLPR) to effect the printout. All messages must
be 8 words long and in A8 code.

The modified routine uses $2 and does not restore
it, uses SA8IQS to convert the message, and $COMM
to print the message online.

The routine may be modified by putting in a NOP
at location YPR with any of three effective addresses:

1. NOP, 0.0 produces messages on-line only
in the BYPASS mode.

2. NOP, 1.0 produces messages on-line in
both the BYPASS and ONLINE
modes.

3. NOP, 2.0 ‘produces messages on-line for

all modes (BYPASS, ONLINE,

OFFLINE).
Major Package Fetcher

This routine calls in segments of MCP from the disk
as required, and keeps track of the current segment
in core. It is entered at YMPFCH, and on the basis
of the content of $1 and the current value of YMPSAYV,
decides whether or not a fetch is necessary. If not,
it returns immediately at YFHBR. If necessary, the
fetch is made via $FETCH, and the fetch parameter
CBUFF, and CFOT are reset to indicate an empty
fetch buffer. Return is then made to the fetched seg-
ment at FHBR.

The Reel History Routine

The reel history routine (JHISTE) prints the job name,
the Channel and unit number, the IOD number which

System Operation Programs 83

*REES

® -
» «
*TJUNAS #.
* .

. .
rEEe

RSB ARREEAERRARS

REEL *
b HISTORY -
RERBRFRERRERRR RN

Keareane

X
Exans
. .
. *
*TYSTPA »
* -

» -
[T 223

renEn
- *

+ *
#TITEST #....
* *

- -
wnuan

AABRRAEREFERREERE
* JHISTE bt
L s e e
- PRINT THE
* REEL

* HISTORY *
REARAREERERLRNE NN

#Xeo
*

ARFARRBERARAR NN
- =
SAVE INDICES.
x: INITIALIZE :oon

» -
ERERRERRRAIRREREN

ETY YY)
* »

» »
#TINEXT #,
- -

» »
2212

RRERRRBRERARRRRNS
» SFRE *
-
UNASSIGN
M TAPE

* UNIT »
RUBRRBBERBAR AR ER

.
.

eXeeosconoosn
.

x
ERRARABRAG B RGN
-

*

RESET THE MOUNT

-X#% AND STATUS
* BITS

* "
SEAEABRRARBB AN RS

.
.
x
ensn
.
= IS IT o«
A TAPE *
* NIT .
»
essssscaccscccXs
X
T
» *

* »
*TISTPA *
- -

nnaw

*
-
I
-]
m

-
m

X
FERRAREBERRE RN
#THROW AWAY ANY #
PROBLEM PROGRAM
* STACKED oo
* INTERRUPTS -

* *
E T Y Ry

Figure 42, Unassign Routine

oX®

-
* THE UNIT ®
sesssecesX® CMECKED OUT
] 13

YES
#Xeosossse®
»

#Xeeeesmeaanaanas

FERBRRAERRRBRRRNN
» -

-
X
*

- *
ERERRFERARRERRRRN

-

annes annnn
® ARE & - -
- THERE * NO hd
ANY 10DS #eseccccacce s XPRETURN
. -
- *]
Nenuy LTI
-YES
.
.
.
X
wnunn LrYTY
s
YES
%o
annaw srzee
»NO
.
.
.
.
X
LTIy
1S »
H -
UNIT .
FREE 3
» -
wreuy
«NO
PRTYYS
. - -
NO .
¥eessecscccasX® TUNTP
- .
3 . L3
LTI R
.

-
-
-

-
B
.

x
HEREE E2 112
* 1S " - *
UNIT . - NO » *
CHANNEL - - Beeacseneces s XETYTEST *
AVAILABLE * . - .
- » - -
wnens nane senns
«NO *YES x
. . .
. .
x
RN RERRE
IS * IS =
«YES THE NO * THE *
PP UNIT IN Beeeeneaaxt UNIT -
SETUP * SELECTED #
. H .
. “rann T
. «YES
. .
. .
. .
. o
<«NO X
RN BRERAERRRBRRBABRNS ERERE
* - - -
1S + WAIT FOR EQP, * NG 1s .
EKJ ee® THEN RELEASE #Xaseeecoee® THE UNIT .
ON - * NIT - DISK .
. . .
REREERFRRBRTRABERS nERAN
«YES

anens
* .

- -
escees XRTUNEXT #
» -

L3 »
Exne

anane
- *

RESTORE
INDICES

*eeessece
-

» *
[X2Y Y}

» -
X%#RETURN #
- -

.
.

.
eXasssssncces
.
-

.
YES.

*eooa

- L3
*TJTEST »
- »

* -
LTI TS

last activated the unit, a list of all the reels used by
a unit with a count of its actuations and unit check
errors, and indicates the reels final disposition. It
is used by the unassign routine at EOJ time, and is
entered once for each physical tape unit assigned

to the PP. The routine uses the short message rou-
tine to perform the output via $SPR.

Conversion Routines

Four subroutines are used to convert data from one
format to another. They operate disabled and are

as follows:
SIQSAS8 1QS to BCD
SIQSA6
SA6IQS BCD to IQS
SASIQS
SCA6 Card image to BCD
SBRKS Field break down

The 1QS to BCD Conversion Routine: This routine
is entered at SIQSA6 or SIQSAS8 according to the BCD
byte size required, with the following linkage:
VI, 15, $+1.0
BD, SIQSAx
VF, A
CF, N
VF, B
Return
where
A -
N -

is the FWA of the IQS string,

is the number of characters to be con-
verted,

B -

The routine selects a 6 or 8 bit store instruction and
performs the conversion by table lookup. The routine
saves, uses, and restores index registers 13, 14,
and 15. ’

The BCD to IQS Conversion Routine: This routine is
entered at SAGIQS or SA8IQS according to the byte
size to be converted, with the following linkage:
- LVI, 15, $+1.0

BD, SAXIQS

VF, A

CF, N

VF, B

Return
where

A - is the address of the BCD string,

N - is the number of characters,

B - is the location where the IQS string is to

be stored.

The routine adjusts for the input byte size and per-
forms the conversion by table lookup. It saves, uses,
and restores index registers 13, 14, and 15.

The Card Image to BCD Routine: This routine is
entered at SCA6 or SCAS8 according to the BCD byte
size desired, with the following linkage:

LVI, 15, $+1.0

BD, SCAx

VF, FWA()

CF, N

VF, A
where

FWA(D) - is the location of the first column in

the card image to be converted,

N - is the number of columns to be con-
verted,
A - is the address at which the BCD string

is to be stored.
The routine performs the conversion by table lookup,
inserting a right parenthesis if an illegal punch com-
bination is detected. Index registers 1 through 6 are
used and not restored.

The Breakdown Routine: The function of the break-

is the FWA where the BCD is to be stored.

down routine is to place each field of a string of BCD
characters into a separate word. A field is defined
as bounded on the left by a comma or the beginning
of the string and on the right by a comma or the end
of the string. The routine is written so that it can be
assembled to take six bit characters or eight bit
characters, according to the parameters QKSIZ
(character size) and QSKIP (number of bits to skip at
the end of a field word). These parameters are
presently set at 6 and .16 respectively. A field is
limited to eight characters.

The routine is entered at SBRK8 with the linkage:
LVI, 15, $+1.0
BD, SBRKR
VF, A
CF, N
VF, B
VF, M
Error return
Normal return

where
A - is the starting location of the string,
N - is the number of characters to bg broken
into fields,
B - is the starting location where the fields
are to be stored,
M - is the number of fields found by the

routine.
The error return is used if a field is found containing
more than eight non-blank characters. Blanks are

System Operation Programs 85

omitted in setting up a field, as are commas. The
routine saves, uses, and restores index registers 1,
2, and 3. '

The Short Message Routine
The short message routine provides MCP with a

common 17 word buffer for output via $SPR. It
operates disabled, and is entered with the linkage:

SIC, ZSPLP9Y
BD, ZSPLPR
» FWA()
, N.
Return
where
FWA() - is the starting location of the message

intended for $SPR, and
N - is the number of words.

The short message routine moves the message to
its buffer and uses $SPR via the disabled entry to the
IF analyzer. The routine saves, uses, and restores
index registers 0 and 1. Note that control is not
returned when the short message routine is used by
a program which is not a major package. $SPR will
appear to the return routine to have been primed,
and primed routines do not return to the requestor.
(See dispatcher error control.)

Resume Load

The resume load major package controls the loading
of binary decks prior to execution of programs under
MCP. Its main function is to supply cards to the MCP
loader, which it uses as a subroutine, and respond

to exceptional returns from it. It also serves as the
last phase of the Fortran BSS Loader. It is primed by
phase 4 of job control, and may also be used by the
PP,

The Resume Load Package

Resume load has one entry point, YRESLD (Figure
43). Two pseudo-ops are associated with this entry
point, $RESLD and 74. 32. The latter pseudo-op
forces resume load to use $SCR as a source of cards.
Otherwise, the SCORG bit, KSILO (see JC4) and
SREADS determine the source of cards and the man-
ner of loading. Other preset registers hold limits
for the loader (YLLSAV), and the disk type-area, if
any (YDFCS). Resume load runs enabled, in the

RIO mode, and saves no index registers.

Exit is always made via SRET. If the current
deck was successfully loaded, its return or branch
address is placed both into SICBU and location 1. 32
of the tentacle table (see $RET). If an error was

86

encountered during loading, $EOJ or $ABEOQJ is
primed so that the program is not executed.

Resume load uses the following routines:

1. The JC4 print program - YPR - to print out
diagnosing messages for loading errors.

2, The major package fetcher - YMPFCH - to
call itself into memory (if necessary).

3. The MCP Loader - MLOADR - to load cards.

4. The Input program - $SCR - to get cards from
the system input source.

5. The Disk fetch - $FETCH - to get card images
from the disk.

6. The Prime and return - SPRIME, $RET - as
noted above.

Resume load immediately enters YMPFCH to get
itself into memory from disk.

Its first task is to determine whether it is to act
as a postprocessor to the BSS loader as is the case
if KSILO+2, 0 says BSShbbbb in BCD, and if the
current job is in the GO phase (SCORG=0) of a
COMPILGO (KSILO+1. 19=1). 1If it is a BSS post-
processor, resume load obtains the loader limits
from KSILO and sets them up to extend from the
lower limit to the base address of blank common, to
inhibit loading into blank common. If the BSS job
is segmented, exit is made to MRNRM5. Otherwise,
PP memory is set to plus (+) infinity, starting at lo-
cation (8)41. to the base of the relocation tables. It
then exits to MRNRMS5 in the loader, in such a way as
to persuade the loader that it should load the next
(i.e., the first)Fortran subprogram.

If resume load is not a BSS postprocessor, it sets
up loader limits from YLLSAV, the fetch type-area
from YDFCS, and $13 with the read source. At this
point the op code is checked for 74. 32, or uncondi-
tional $SCR. If this is the initial entry for the cur-
rent deck (YLLSAV.25=1) PP memory is cleared
from location 41. (g) TO SBAPP, or the base address
of the PP I-O location table. The 1st card is already
in YBCBU, if this is a GO phase, otherwise, it must
be read from the source indicated by $13.

At this point we have completed all of the initiali-
zation in resume load. The routine basically con-
sists of a loop between YRLCR and YLBRA. 32: get
a card, load a card, etc.. If the loader gives branch
return, the loop is broken, and return is made to the
PP provided no input program UK has occurred
(REJJOB. 60=0).

The remaining code exists to handle exceptional
returns; $SCR end return, $FETCH end or error
return, and loader error return. All are errors and
cause a diagnostic message to be printed via YPR,
with the exception of end return from $FETCH for a
BSS job, which is handled specially. After printing
the message, resume load primes $ABEOJ or $EQJ,
depending on the initial entry bit. YEOJS and SPINCL

kX222 AR RRPERRRRRRBENN EXT 2L “REnw
* * YMPFCH * -
. » PO *[S THIS GO ® _YES IS_THIS A *
HYRESLD *secssseesseeX® GET LOADER %asseceseeX® PHAS FeessssaaX® 855 J0B
» . * FROM DISK ® COMPILEGQ * .
» - * * L]
*ERRS ARBRRBRRRER BN R2 22 2) LZ211]
«NO «NO
. .
. .
S
X
IIIQ.".IIIIIIQ.I *RERR
. .
-ssr UP LIMITS. * . *
READ SOURCE + SHANRMS *X..
* -
- L3 L] -
ARARRBRERRBRARRRE LEX2 2]
.
.
.
x
ARNAR SEARRARRIRTAORRER
- » -
. s * * SET READ .
* OPERATION X*#SOURCE TG $SCR #
* $SCRESLD * - .
- - » -
enuaw sresanesannnnBREe
«NO .
. .
. .
eXesesssesssncessccnssscacse
.
X
L2222 II..I'.I"‘.‘.'..
. * -
. THIS * YES : CLEAR .
» INETIAL ENTRY ¥ecaeecooxy 23 .
. MEMORY .
-
“REEN EXXTITTZIZZI TS 2)
.NO .
. .
. .
. .
X .
senne N
. . .
* YALCR * .
.
EXTE2] .
. .
. .
. .
. .
x X
aawen sreanaresseunaune e senen
» - - - -
* . * IncREmENT YES * IS TH NO_ ®1S THIS THE®
* YLERR * . EXesorenast SOURCE #Xeeooseee® GO PHASE
. . - POINTER * *+ T DISK »
» * - - - -
(22233 ERARARRA RSN AR sRERN EXX 22
x . «NO
. . .
. .
. .
x X
srressseeres * SRRRRERERNERRERRE anune
SFETCH . . $5CR * » .
- ENDu---n-.-----n-a-u AR RN N RN KEND . -
* LT PO GET ONE - » GET ONE ¥eeessscseneeX® YLERR #
» - ARD * » CARD * . .
M » » . . .
SREER ARBAERBRBRARABAA RN FRARERFARERBERRRS HHBEN
.YES +NORM «NORM
. . .
. . .
. eeesesssasssasssnssssseseXaXeosaasosecsossssssesccccsssscccnnnaes
X X
RN L2 2 2E) .Il'.li...ll.'l.l RBRBERARNERABRRRN
» * . MLCADER - »
* IS AT A * NO NORNE-#-re s DR a uotERR . SET uP
» LIBRA . eee® LOAD ONE *. eeX*® DIAGNOSTIC
wsuspnosam * . CARD . * MESSAGE
H . M M . = -
rEERE - L2 ERL HERRERBERRARRRA RN - SEBRIBRAAERERBARN
<YES . +BRANCH .
. . . .
. . . .
.
. N . . .
.
x . X . X
P . snuun nEnnn :
. . * * wAs # .
* » . M * * THERE _ * YES .
*MRNORM *# CesevecsaX® YLERR * * INPUT PROGRAM #ccacee
- * » * * UK -
* - * * -
EEAE L2222 HENE
«NO
x
asun peesssrerevaerees
- -

» »
* SRET *
. -

» -
henn
X

.
&Ihlhlhlllltll'!n

» -
#1S THIS THE#®

PR
*BEG!N EXECUTION‘X.--.----‘ GO PHASE #Xao
MES:

-nonlnu.anunniulc FTTY TS

Figure 43. Resume Load Package

' RESTORE READ I
ol SOURCE IF *
b SRESLD *
»
»

»
EERRRRARRERE NG

Xevene

6!‘!.‘!}..'!’!"!
»

% PUT BRANCH ’
.' ADDRESS INTO :

CTENTACLE TABLE -
P e T ey

YES
-

sensssees e s e

.
.
.
.
.
.
.
.
.

. s 17

. INITIAL
® ENTRY
RN

-YES

.

.

.

.

X
li.l“...’.l'.l'l
* SPRIME
Q—l—.—l—'—l-‘—.o.

PRIME
. $SE0Y

-
ncucn&cuo.un-uucn

.

.
.

YARSL

ERARNARABBRRANAES
.
. U

xXe MITS TO

' LOAD sss DECK

oiouonsccounuoolc

arsas

Xeoosee

» »
NOG % IS THIS A #

A SEGMENTED -
. Joe »
sanan

*YES

Xenae

SREBARBERBRASRNE Y
.

+ INIFINITY

EEBARBABNNCE RN

sesn
!
-“m
=3
b
»
o
m
-
)

“hune
- -

* . »
#Xgoseeeseesees® YLERR &
- » -

. »
seane

HEBUSERARARBBANRD
- SPRIME -

PRIM
. $SABEQJ .
» -
HESAAEARRBBRRRNRE

.

.

.

.

x

IQ.Q'
-

*
.~l¢-o---oooox. SRET &
*

u »
sunne

System Operation Programs

87

(see JC4) are set to indicate the job has been com-
pleted. A
Tables and Flags Used by Resume Load: Below is a
list of the various tables and flags used by resume
load and their definitions. The first four items are
all preset by phase 4 of job control, prior to priming
$RESLD.

SREADS - the read source control is an XW whose
flag bit is zero if the source is $SCR. If the flag is
one, the source is disk and the value field contains
the relative FWA in the disk type-area. Further, the
count field, for compiled PP, contains the number of
cards left on the current arc of disk. This XW is
loaded into $13 by resume load. When the afore-
mentioned count reaches zero, the value field is
stepped 2 words and the count is reset to 34, the
number of cards on one arc of disk.

YLISAV - contains loader limits, i.e., those
limits outside which the loader must not load. In
addition, it contains the initial entry bit (. 25), the
T~card indicator (YTBIT, see JC4), and bit .57.
This word is transmitted directly into the loader
calling sequence by resume load.

YDFCS - contains the A6 type-area name to be
loaded from, if disk is the source for cards.

SCORG - a bit in SCOMRG, which equals 1 when
the current deck is a compiler and 0 when it is a go

phase.
REJJOB - Bit 60 of this word is set by the input

program when an uncorrectable unit check occurs
during the reading of a job.

YBCBU - This 15-word buffer is used by both JC4
and resume load to read cards into.

KSILO - The processor communication region.
The Fortran BSS loader and resume load define words
8.0-10.0 of this region jointly (see description of
Processor Communication Region).

lower limit of PP 8.0 (BU, 18)
upper limit of PP 8.32 (BU, 18)
base address of blank

common 9.0 (BU, 18)
address of relocation

tables 9.32 (BU, 18)
branch address 10.0 (BU, 19)

MRCDCT - loader card counter for BSS jobs. It
is set to 1 by resume load upon end return from
$FETCH.

The MCP Loader

The MCP loader, MLOADR, is a binary, correction,
dump, and patch card loader. It is used as a sub-
routine of the Resume Load pseudo-op, $RESLD,
$RESLD fetches the cards to be loaded and enters
MLOADR, one card at a time, by the following linkage:

88

LV, $15, $+1.0

B, MLOADR

, FWA

, L

, U

(Error return)

VF, D

(Branch return)

VF, A

(Normal return)

where

FWA is the first word (18-bit) address of the card
to be loaded.

L is the lower limit of the PP. If XF=1, this is a
new job and the loader must initialize.

U is the upper limit (protected) of the PP. If
XF=1, the sequence counter is reset to contain
the information in column 3 of the first binary
card encountered. .

Error return is a half-word location to which the
loader returns when it cannot correctly load the
card.

Half-word error code, D contains the sequence
number, in bits 0-11, of the binary card in error
or zero for an octal card. Bits 13-17 contain

the following error codes:
1 -- Checksum error

2 -- Sequence or ID error
3 -- Illegal card type
4 -~ Illegal non-BSS function
5 ——= Out of bounds
6 -- C or P card incorrectly punched, e.g.,
hex character is not a 0-9 or A-F.
7 -- Blank location in first octal card.
8 —- First binary card not an origin card.
Branch return is a half-word location to which the
loader returns when it encounters a branch card,
or when the card count equals zero and there are
no more relocation tables in a BSS job.

Half-word branch address is given unless the

branch address field of the branch card is zero.
In that case, A is the origin of the first origin
card, or in a BSS job the branch address is
taken from the communication region.

The loader does not save or restore index regis-
ters. A blank checksum means that the checksum
is not to be used. The sequence number on reloca-
table cards is not checked.

BSS Jobs: For BSS jobs the MCP loader uses the
communication region, KSILO, which has been set up
by BSS. KSILO+2. contains the A6 name "BSShbbbb'
which is used by the loader to decide if the current
job is a BSS job. KSILO+9.32 contains the address of
the relocation tables which are used by the loader to

load BSS jobs. KSILO+10.0 contains the branch ad-
dress which will be inserted in the resume load
loader calling sequence when loading is finished, and
the rest of the PP memory, (i.e., blank common) is
set to plus (+) infinity for non-segmented jobs.

The format of the relocation tables is shown in
Figure 44.

The loader (MLOADR, Figure 45) checks bit num-
ber 25 of the lower limit. If this bit is 1, MLOADR
turns it off, initializes its counters, and sets up its
internal boundary limits for the new job. A check is
made on bit 25 of the upper limit to see if a T card
has been saved for this job. If one has, MTCRDI
is turned on and the sequence number of the first
binary card is used as the base sequence number.
Column 1 is tested to determine the card type, and
control is transferred to the appropriate routine.
These routines return to MNORMR to make a normal
return, or to MERR3 to set up an appropriate error
message and make an error return. A branch return
is made when the validity of the branch is verified.

Loader Card Classes: The loader handles 18 classes
of cards, identified by the punches in column 1:

Absolute origin . (7, 8, 9)
Absolute flow 7, 9)
Absolute branch 6, 7, 9)
Relocatable data 6, 7, 8, 9)
Relocatable instruction 5, 7, 9
Fortran branch 5, 6, 7, 8, 9)
Fortran program 6, 6, 7, 9
Common definition G, 7, 8, 9).
Correction 12, 3)
Patch (11, 7)
Dump 12, 4)

T 0, 3)
Super T 0, 2, 3)
Loader adjustment (O) (11, 6)

B (12, 2)
Relocatable correction (K) (11, 2)
Relocatable patch (A) (12, 1)
Relocatable dump (Z) 0, 9)

B, T, and Super T Cards: These cards are not
loaded, For T and super T cards, indicator
MTCRDI or MSTCRD is turned on. These indicators
are later tested by the sequence test routine MSEQ.

Loader Adjustment Card: Loader adjustment cards
(O in column 1) are handled by MLDADJ. This rou-
tine picks up the 8 Hollerith characters in columns
2-9, converts them to octal, and checks to see if
they set an origin which is within the program's
bounds. If the origin is within bounds, the loader's
origin counter MLDCTR is set to the value on the

O card. The branch address is also set to this value

if a previous quantity has not been saved. These
cards are ignored for BSS jobs.

Absolute Branch Card: The branch address on the

card is checked to see if it is within bounds. If so,

it is inserted into the calling sequence. If it is not,
an error return is made to the calling sequence. If
there is no branch address, a check is made to see if
an initial origin has been saved, which will then be-
come the branch address. If no origin has been
saved, an error return is made. This routine gives
control to the branch return in the loader calling
sequence.

Common Definition Card, Fortran Branch Card, and

Fortran Program Card: These card types use the

routine MFPCRD (Figure 46). A check is made on
MFPCI to determine whether or not a Fortran pro-
gram card had previously been handled. If so, the
card is counted in the routine MRNRM1. If the card
count for this BSS job is not zero, normal return is
made to the loader's calling sequence. If the card
count equals zero, a test is made on the count field
of the second word of the current relocation table to
determine how many transfer vectors are to be trans-
mitted to problem program storage. If SRNXAD is
zero, the branch address is picked up from KSILO
and stored in the branch address slot of the calling
sequence and branch return is made. If SRNXAD is
not zero, $RESLD is set up to fetch the next sub-
program and normal return is made.

If no Fortran program card has been received, a
test is made to see if this is a BSS job. If not, error
return is made. If this is a BSS job, MFPCI is set
to one and the address of the first relocation table is
picked up from KSILO. This table gives the origin
to the loader and enables it to compute the width of
the set of relocation bits for each half word. This
width is 1, 4, or 4+i where iis the field size neces-
sary to express the highest-numbered labeled com-
mon block. For non-BSS jobs, the width of the set is
either 1 or 4. If the current subprogram is not a
library routine, the card count is stored in MRCDCT.
Control is passed to the card count routine and
eventually normal return is given.

Absolute Origin, Absolute Flow, and Relocatable

Binary Data Cards: These card types eventually are

treated as one, and use MORG1 to load the informa-
tion from the card.

The absolute flow card routine (MFLOW, Figure
46) checks to see if an origin has been saved. If not,
error return is given. The next location table loaded
into is picked up from MLDCTR and put in $1 for
MORG1, $6 is set up for the boundary test made in
MORG1 and set-up is done so that a partial word will
be loaded. Control is then passed to the absolute
origin card routine at the boundary test instructions.

System Operation Programs 89

The relocatable binary data routine, MRBDCD,
picks up a 19-bit loading base from column 10 and
tests to see if it is program data or common data.

If it is data to be loaded into named common and this
is a2 non-BSS job, error return is made. If it is
named common data, the common origin is picked up
from the relocation table for this subprogram.
Otherwise, the current location is picked up from
MLDCTR. The relative origin is added to it and the
total is stored in $1 as an absolute origin for MORG1.
The origin saved indicator, MLL.3, is set to one,
MTCRDI is set so that no sequence check is made,
and MRBCDI is set so that the appropriate return will
be made from the absolute origin card routine. Con-
trol is passed to the absolute origin routine at the
origin checking point, MLDS.

The absolute origin card routine sets up the origin
punched in columns 6 and 7 in $1 and tests for an out
of bounds origin, in which case error return is made.
The number of full words and the size of a partial
word to load are set up. A test is made to see if the
card will be loaded within bounds. If not, error
return is made. I a partial word is to be loaded, the
number of bits involved is set up in the field length.
and address fields of instruction. MLD1 and the suc-
ceeding instruction and the partial word indicator,
MHFWDI, are set to 1, The sequence number and
checksum are tested. The appropriate skipping or
zeroing is done and the contents of the card are
loaded one 64-bit word at a time. The partial word,
if any, is loaded next, and any skipping or zeroing is
taken care of. If this was a relocatable binary data
card, control is passed to MRNORM which adjusts
the appropriate counters and counts this card. Other-
wise the current instruction counter is stored in
MLDCTR, MHIWD is rounded up to a 19-bit address,
if necessary, and normal return is made.

Relocatable Instruction Cards: These cards are proc-
essed by the routine MRBICD (Figure 46). The
checksum is computed and checked. The absolute
origin is computed by adding the relative origin in
columns 6 and 7 to the program origin. The upper
address to be occupied by this card is computed by
adding the number of bits to be loaded to the absolute
origin of this card; the result is then checked to see

if it is within bounds. The number of half words to

be loaded is stored in the count field of $4; the number
of bits left is stored for use as the field length of
MRBCDA and MRBCDS6 and as the address field of
MRBCD6. The location of the relocation bits is com-
puted. A half word instruction is picked up and its
associated relocation bits are tested to determine what
type of relocation, if any, is to be done. The reloca-
tion bits are defined as follows:

90

0 - No relocation (one bit used).

1000 - Relocate leftmost 18 bits as lower address.

1010 - Relocate rightmost 18 bits as lower address.

1001C - Relocate leftmost 18 bits as common C.

1011C - Relocate rightmost 18 bits as common C.
where C is a binary integer, encoded in i bits, indi-
cating the number of the common. For blank common
references, C=0. If a reference to a named common
is made and this is a non-BSS job, error return is
given.

The card is loaded one half word at a time and any
remaining bits are relocated and loaded. The loader's
counters, MHIWD and MLDCTR, are updated. If this
is a BSS job, the card counting routine is entered.
Otherwise, normal return is made.

Absolute Octal Cards (C, P, and D): These cards are
all processed by the routine MOCTLA (Figure 47),
which computes and checks the origin and each half
word to be loaded. The decimal point column is placed
in the accumulator and compared for a decimal point
(12, 3, 8 punch). For C cards, it is also checked for
the optional one punch (12, 1, 3, 8, or 1 punches). If
the one punch is in the origin field, no loading is done,
but the location counter is stepped for each half word
correction. If the one punch is in a half word correc-
tion, that correction is not loaded, but the counter is
stepped. If the decimal point column does not contain
alz, 3, 8 12, 1, 3, 8, or 1 punches a check is made,
at MOCTL6, to see if this is the beginning of a contin-
uation card with a blank origin field. If so, the con-
tents of MLDTC are used as the origin for this card
and the loading process continues with the first half
word on the card. If not, then the contents of the card
have been loaded and the loader's counters, MHIWD
and MLDTC, are updated and normal return is given.

After checking the decimal field, the 7 Hollerith
characters of the location field are converted to octal
and checked to see if it is within bounds. If not, error
return is made. The rest of the card is scanned as
follows: (1) the location to be loaded into is checked
to be sure it is within bounds, (2) the decimal point
column is checked, (3) an octal-hex half word is con-
verted, (4) the half word is loaded into core storage.
This continues until a maximum of 4 half words per
card have been loaded.

The P card routine, MACARD, also picks up the
full or half word instruction at the location of the
patch and moves it to the location specified by MHIWD
before it loads the corrections. It inserts a branch
to the patch area (and a NOP if the instruction being
replaced is a full word instruction). After the contents
of the patch are loaded, MNORMR returns control to
MPCRND where a branch to the PP is stored in the
patch area and MHIWD and MLDTC are updated.

For Dcards, MZCARD performs the function of

MACARD and uses MACARDto replace the instructions

5 L%
SRDKAD gl =t
0 35 63
i P
SRDKAD SRCDCT =
0 17 28 63
SRORG SRTVL SRNXAD
0 17 28 46 63
SRCCT SRCOMB
0 18 ‘32 63
Other Named COMMON Other Named COMMON
| 32

S "Transfer Vector"

LEGEND:

SRDKAD SYN(BU, 36, 6), 0.0 If SRLIB bit = 1, meaning a library subprogram
is to be loaded, then this is a 36-bit field
containing a type-area name for a library
subprogram.

If SRLIB bit = 0, meaning TWS is to be loaded,
then this is an 18-bit relative FWA in TWS,

SRCDCT SYN(BU, 18), 0.28 Count of cards in subprogram when SRLIB = 0.

SRORG SYN(BU, 18), 1.0 Origin of subprogram.

SRTVL SYN(BU, 18), 1.28 Length of transfer vector,

SRNXAD SYN(BU, 18), 1.46 Address of next relocation table. This equals
zero when there are no more tables.

SRCCT SYN(BU, 19) 2.0 Number of named COMMONS.

SRCOMB SYN(BU, 32), 2.32, etc.

Figure 44, The Relocation Table Structure

with a branch or branch; NOP and uses MOCTLS to
load the dump parameters. In addition, it inserts
the dump calling sequence in the patch area.

Relocatable Octal Cards (K, A, and Z): These cards
are handled by the same routine as the Absolute
Octal cards with the following additions: the relative

origin is relocated with respect to the subprogram or

Base of named COMMON.

named common specified to form the effective origin
just prior to computing the half word corrections.

" Then, at the conclusion of each half word correction
computation, it is relocated according to the reloca-
tion columns on the card. Also, because of the pres-
ence of the relocation columns, the maximum number
of half words on a relocatable Octal card is three.
(See the IBM 7030 Data Processing System Bulletin,
Loader and BSS Processor, Form C28-6379).

System Operation Programs 91

'°RthN COUNTEﬂ

-
»

“nnnn senne wnann P
- - - - »
. . * IS THIS # YES AS ES » TURN CN .
#MLOADR #ccceassasaosX¥ A NEW ot eeeex® "7 CARD BEEN rcseeeeoxs T CARD .
* R Jo8 *ENCOUNTERED® * INDICATOR %
-
(2222] (X222 “RRRE IR 222222222223
«NO «NO .
. . .
. . .
. .
.
X X
Li2 2] LZ 2223 BERERBERERERRERE S
* - - - -
* ERROR # NO_ # IS THIS A # * INITIALIZE
SRETURN #Xeceosceoeccc® KNOWN TYPE = #Xeeoeceee® THE LOADER o
* * RD - -
* - * - -
KERsE L2222 RABRBRBERERRBEIREN
«YES
.
.
.
X
ERBERBEIRABRRRNR S HERES
* - - -
* GO TO PROPER # * *
SUBROUTINE TO #.ccccacenececs XPRETURN
4 HANDLE CARD # - -
* TYP - -
resesnREERERRRRE runnw
T+ SUPER T
L2222 IR 2222222222222 3 LA s Ll sanns
- - ® - - - - -
*MTCARD_# . TURN ON . #NORMAL # * ERAROR #
#MSUPERT#ccensesarseaXt APPROPRIATE #. +«X#RETURN # *RETURN #
* * % INDICATOR # » » » .
- * * - - - -
E2 222 EX 22222222222 3223 RRERE tEREN
x
A
.
.
-
BRANCH .
«NO
HEBNE ".l.l'lll'ﬂll..l REREE EX2 22
- * - -
. » . * NO SCHECK CHECKSUM * BRANCH * YES * IS BRANCH #
AMBCARD ®ssessccscsasX® #esescoee Xt AND SEQUENCE -........xuonnsss ON CARDS... X* ADDRESS IN #
. - » ZER(* BOUNCS
.
LRIz 22 Ql.'!'l"""‘l.l BRERE (22212
«NO +YES
.
. .
. .
. .
X X
L2222 “RBRR AERBRBBARRBERREEN
- - HAS - -
» * ERROR # NO -AN lNITlAL * *+ STORE BRANCK #
EMRNRM1 #RETURN #Xeeesoososvae® . * TADDRESS IN *
* . . » “BeEN . CALLING .
. . . . * SAVED * *# SEQUENCE »
*RREE EALE 2] SARES SERERRBBEAGA R RES
«YES .
. .
LOADER ADJUSTMENT
x
#RENRE L2222] AE2 22 EXZ2X2)
- - - - - -
» . * IS THIS # YES - . *BRANCH #
*MLDADJ *.. A 8ss ee e XEMRNRM] # #RETURN *
* » - JOoB - - - * *
* -
E3z 2] EXx22]
*NO
.
.
.
.
X
“RERs l..l.l'.....l."' aARaAnE ERAFRARANERNBRERS
» - . » » - .
. . H PICK UP . ¥NORMAL * PICK UP .
SMRNAM1 # JLOCATION FIELD *. +e e XK*RETURN # #BRANCH ADDRESS *
» - AND STORE » » * FROM KSILG #
*

LYY

-
* DOES .
CARD COUNT
#EQUAL ZERQ #
» *
annue

«NO
.

COUNT CARDS

®oencscsaX®
*

»
CEERARERERRA RN

Xe o0

sasan
» *

SNORMAL #

-
SRETURN *Xeeevenvosvovsvssscsessscssscsssnsassoet
" - -

- *
ranse

Figure 45. MCP Loader - Chart 1

92

EEETTY S Pe e ey

* -
sesan

-nnnn-q-n-on"nln
-

*COMPUTE LEN

YES
AETETTYRYS L3

OF TRANSFE
® VECTOR AN
* TRANSMIT
FRRRABERRRER

-
CE T T T T Y YAy
x
-
-
.
ST ..
1s
™ ’ ORE $S
ER G-.-----.---.X'nRNRNS '---o-.--.-..X'NEXY RELOCA"XON'
YABLE ZERO -
T 0 ' .
nue anann sEnny
oNO
:
X
- “ne
. SET UP I * PICK UP »
SRESLD % RELOCATION b
TQ REAO 1IN 'X'oqo'ovo' TABLE ADDRESS +«
NEW . NEXT -
* SUBPROGRAM . g SU PR i

OGRAM
T R e] ELI TR TR T Y Y P T RS

FORTRAN PROGRAM

sanae ssane snunn aunan
l ' - HAS A . - .
RTR 4 NO * IS THIS * NO . . .
-uﬂ-cau ~............x- Pnocmn cAno FecavosaeX® A BSS SeescessncsssX® ERROR # #MRNRM]
* *BEEN NOTEC * . J08 - #RETURN # - »
- - - » - -
GQ.C' seunn enane a“sane
oVES sYES x
. -
. .
. .
. .
RELOCATE BINARY . :
X +YES
nane nenee
. * #* TURN ON BSS # - " - L
* * » » * INDICATOR » #COMPUTE NUNMBER ® * IS THIS =
*MRBICO # SMRNRM] # - K_UP ®eesescecX® OF RELOCATION ®caceccooX® A LIBRARY -
* - - - #* RELOCATION » d BITS - #SUBPROGRAM #
- - - - #* TABLE ADDRESS * - - - .
(23 “nan asuun
«NO
.
.

. 4e0sseesvsnsescssencesencnan .

. . . .

X x X
SOENREIRENOS RSN ssnen sunes XTI RN T2 - SERuBERNRRERN
#CHECK CHECKSUM # » . . . » .
. COMPUTE - - ILI. CARD & YES * MAVE ALL * NO % RELOCATE . » SETUP -
#ABSOLUTE ORIGIN#eseceoceX® BE O ED #eacscaeeX® HALF WORDS #eseessecaX® AND LOAD - . *
- FOR CAROD - - - ®BOEEN LOADEO® hd HALF WORO . ot COUNT -
- - naounus - - Y - . » -
ARARBEABREARENIND L ey [TTI) CIITITTR YT YR TN T LT RTYNTYRPY Y X RS

«NO «YES .
. - -
. . .
. . .
. . .
. . .
X x X
seanw RRRBRRERRARERE IR [T annse
» . # RELOCATE AND # 3 . . .
» . # LOAD PARTIAL # » » L3 3
+ ERROR # # HALF WORD ®.cecsescccss XEMNORNR # SMRNRM1 *
SRETURN # hd IF ANY - - - - -
* - » . - . * .
LT TY 2] SEERBIRBRIRNERNONE “nenne senus
RELOCATE OATA
[T SRERERIERARRNNOES renew ensne
- . COMPUTE . [} . .
- . ® ABSOLUTE I » IS IT # NO 4 1S IT ® NO [
#MRBOCD #a.4 oX® LOADING ®eeu ceX® PROGRAM ececeasaXh A @ss #eeececssesesX® ERROR .
- - * BASE FOR CARO # - DATA - - Jos - #RETURN #
- - - . . - » -
senae sasEnsERRRRNRERRS senan XYY wnane
ABSOLUTE ORIGIN
FLOW CARD x
snnne neney enun LLIITR I TRY YR T2 #nen
- » - . - " - - L]
- - - [3 I3 * INITIALIZE * .
MLOB # # MLD8 * MFLOW # * FOR ABSOLUTE * .
* —4,0 # - - - - LOADE - -
. - » » - - - -
wnune asuns “anen ERRERBERRSANRIN NN weannn

Xesoos

X
AREBEBERRBBNRRADE ELIITIIY XYY R YTYE Y
-

- : -
- PICK UP & PICK UP NUMBER # Q
- ABSOLUTE 0........)(- OF HALF WORDS # -
- ORIGIN : TO BE LOACED : :
-

ERACOREERREERRARNS EEARRRERRERE BRI

Xeowoe

0.0.‘!.!.0.!00'00

ABSOLU'E i
LOADING *
BASE FOR CARD #
*

BEBBBAERRRRERARRE

.
.
.
. .
. .
X X
seEmskussunenREnE seenn sPItnzesencarsee
3 . - ® SETUP NUMBER #
* SETUP " YES @ WILL CARD * * OF MALF WORDS H
* LOAD PARTIAL *Xeweeerose LOADED _ #Xseeseess? TO BE LOADE
® HALF WORD % T » 2ANO TNiFIACTZE -
» » *BOUNDS * R AORG
A2Z2 22222 322222222 L2221] Qll'lllll'll'."l
. «NO
. .
. .
. M
. .
. .
x x
AZE2 22222 2222222 *RAn
- . . -
BCHECK CHECKSUM # . »
AND SEQUENCE + * ERRQGR
- NUMBER - #RETURN #
- - - »
HERERBBBRERRBRRRS R3]
.
.
.
.
.
x
e “puEN ARBRABANBERBRRBRE L2221
- * - » - - - - -
® LOAD HALF & * LOAD PARTIAL & * WAS THIS * NO » UPDATE - - -
* WORD CONTENTS ¥#eecvesoeX® HALF WORD ¥eesesecosX® A BINARY R LOADER ®eeseeenaass s XENORMAL *
* OF CARD * * IF ANY * #* DATA CARD # - COUNTERS b *RETURN #
- - - - - - . - -
e HERER HRBRBRRBERBRRREREN *ERNE
«YES
.
B+ FCDCs FBC s
RERE REFRRBRAERRTEERR SRERE
- - - - - -
* » . UPDATE . . »
#MNORMR ®esecacecssceX® LOADER Meceeccesecss XEMRNRML #
. . * COUNTERS . - .
- - L] L4 »
L2221 HEBARBRRERERERBES wBRRES

Figure 46, MCP Loader - Chart 2

System Operation Programs

93

runaw
» -

#MACARD #

#MZCARD #ccevcccvocseX®
* .

- -
—aae

Y TYYS
- -

* »
#MKCARD #
* »

*
P

Xeevse

FERAEERRERS RO N,
. -
* INITIALIZE
FOR K AND €
- CARD

-

-

-
Y T

nuen
- -

* ERROR #
#RETURN *#
- .

NO
e
L] *
. 1S THE *
* ORIGIN =X
WITHIN BOUNDS
- *
12231

X
FERRARBEEREERERRY
INSERT A BRANCH

#INSTRUCTION ANDS

#REPLACE ORIGIN 0.-......)(' COMPUTE HALF- %......

'lNSYRUCT[ON N :

-a---nnnnnu-uan..
«DCRD

X
lulcii...inonllul
-

NSERT THE
' DUNP CALL ING
* SEQUENCE IN
* PATCH AREA b
LTI RS T T e e)

%enene

‘lill
a

*NOCTLS 'Xooo-aao-.--..LAST INSTR.
HE CARD

Qﬂ'ﬂa

MOCTLA

%oesessneaX¥
- -

YES
.

*1S THISH
THE FIRSTY ¢
CARD OF TNE
* . DECK

LI I T T Y Y Y 2
* -

INlYlALllE 10 ’

COMPU THE
CARDS OR IGIN .
»

*
SERRERRR AR BN R R,
.

s esee

RERERRRANERRE RN RN
- MOCTLD M
- “.-.—.—'—.-.—'
#CHECK DEC PT

O COMPUTE FlELD .

SAVE IN $3
0"0000.'.!00-.0-
.

Xesown

LTI

IS THIS =
AN ABSOLUTE
- . CARD .

LY T

X
sEann
- L]

* *
+X#MOCTL3 *
- -

- -
2T
.

Xeosoee

AERRBERBRRRBERRRE
* *
* INITIALI2E TO #

WORD INSTRa '

nunouoo.-oc-olcoo

FARABREHERRR RGN
#RELOCATE INSTR.#
*VIA SUBPROGRAM #
#OR NAMED COMMON#
#ORIGIN AND LOAD
THE HALF WORD
LRI TTT P TR 2

Xeoens

YY)

NO #1S THIS THE®

ON #
-

anue

sasae
. -

ENORMAL #

YES

IQIOQ

.-oo.-.a.--.-l'ﬂE'URN 0

uanno

ARABRRSEARBAORE RN

* NAMED COMMON

- ORIGIN
HERBRBBRRBBIGONS

-
-
-
*
-
-

I T L TR Y
LD

EL R Ty ey Y
-

Xevooovaoh

X
anken

HIS

* IS T
AN ABSOLUTE

* CAROD
»

MOCTAA

rEEN.

ES
#eenaseeo X

Illl.ll.‘.l...lld
.

MABSLD

-%c-nnuno;a.au.;-
-

b4 LOAD THE
HALF WORD
CORRECTION

[XTTITTTTY YRR Y

ensmn

Xesense

L TYYs

- -
®1S THIS THE®

YES SAVE THE . YES
-oo.c---X‘ ORIGIN LAST ‘X..on--an‘LAST INSTRe ON @
USED - T“E CARD &
Q.'li'l'l!!'l'.l. L2142
.
MNORMR ;
snnnn :.Q.QQlloilocbuna
NO ' INSERT BRANCN '

'RETURN 'X.--o.oco.o-o’ Po Ds

. u
(22T

Figure 47. MCP Loader - Chart 3

94

* .
ERAN

* IS THIS A
DoH z

LEETTTRRRY £ 4
-

TO_PROGR. -
IN PATCH AREA -

BEAANRBEERNGERTEN

nsae
- -
NO - -
cecsaceceess K#MOCTLI ®
. -
- -
RIXT2]
L2221
- -
ENORMAL ®

-oo-ooc--.‘.X'RETURN '

'ill.

Accounting Program Procedures (Logger)

The accounting program to be used must be supplied
by the installation, and will occupy storage in excess
of that allocated directly to MCP. Since MCP will
have reference to the accounting program, and vice
versa, appropriate addresses must be available upon
compilatibn of both systems, or correction cards may
be used when an MCP update is done.

In this section, the calling sequences for the account-
ing program entries will be given, as well as an
explanation of the kinds of information that are avail-
able at the specific times used. The accounting pro-
gram must have an initial state, since the system will
start in the IPL phase. The job control sequence of
events is critical, and will affect how the accounting
program receives control.

B, D MCP

, SLOG 1
, Hollerith card FWA(J)
return

The entry through an S LOG 1 will provide a Hollerith
card image address. The card will be either a JOB
card or a COMD, EOF card. One of the initial set~
tings of the accounting program may be to make use
of the S LOG 1 JOB card entry to determine the time
spent in the unoverlapped scanning of the original sys-
tem input tape when the system is starting up in the
overlapped mode. This procedure may be terminated
when the first job is started by entry in 8 LOG 4
(described later), which will communicate to S LOG 1
the fact that overlapping is now in effect. The COMD,
EOF card will be transmitted by the command pack-
age upon receipt of an EOF command card. This
transmission will take place only if the EOF card is
the last card in the card reader when in the online
mode of operation, or the EOF card is the last file
on a scan tape if in the off-line mode. This EOF will
signify that the system is no longer overlapping the
scanning and running of jobs, since it will come
through job control 1 and S LOG 1.

B, D MCP

, S LOG 2
return

The S LOG 2 entry indicates that a job is completed.
No addresses are provided since the accounting pro-
gram should have a record, from the last S LOG 4
entry, of the job name of the job just completed.
There exists, for convenience of accounting purposes,
a special program to assign a card punch or printer
unit to the accounting program for use between jobs.
The I0D tables will be set up at IPL time by having
inserted an appropriate IOD card in the IPL tape for
the desired unit. The calling sequence to the special
assignment routine is:

SIC, Z COM 90EJ
B, Z ASNO1EJ
VF, 10D NUMBER

return

" The S LOG 2 function might be to calculate the time

for the job, and then punch this information into a
card along with the job name and other data, such as
number of units used, etc. . It cannot be assumed
that any of PP storage or associated IOD tables will
contain valid information at this time.

B, D MCP

, SLOG 4
, Hollerith card FWA(])
, A8 FWA(J)

return
The S LOG 4 entry to the accounting program is used
by the job control 4 at the beginning of a job or by
commands to indicate an EOF condition arising when
an EOF card appears as the last file on a system read
tape or in the card reader as the last card in the
BYPASS mode. The Hollerith and A8 FWA's make
the contents of the card available if the accounting
program wants to note the job name or determine
whether the system is now idle.

It is the responsibility of S LOG 4 to disassign the
punch or printer at this time. When the system is
initially started, the initializing program will have
assigned the unit to the accounter. Since S LOG 2 is
not entered before the first job is started, the dis-
assignment must be done by S LOG 4 when job control
4 gives it control just before the first or new job is
started. The S LOG 4 entry is made before assign-
ments are made to the PP so that the unit will be free
when assignments are made. The calling sequence
for the special disassignment package is:

SIC, Z COM 90EJ

B, Z DSN 01 EJ

VF, I0D NUMBER

return

. The accounting program may also wish to make use

of the $TIME pseudo-operation afforded by the sys-
tem. :

INITIAL PROGRAM LOAD (IPL)

Initial Program Load (IPL) is used to read MCP into
storage at the beginning of a work period or after an
emergency shut-down. IPL is in two parts: the IPL
bootstrap and the initialization program. It performs
the following functions:

1. Fulfills the requirements of a power-on initial
program loading (IPL).

2. Constructs I-O status tables according to the
configuration at IPL time.

3. Assigns absolute I-O units to symbolic MCP
requests.

System Operation Programs 95

Mounts MCP tapes.

Loads MCP into core.
Writes PROSA on the disk.
Starts job control.

G o G

The Master IPL Tape

The master IPL tape is prepared by the master update
program (UPDATE-30). The tape consists of two
files: (1) a record containing the IPL bootstrap mem-
ory usage, (2) a series of 513-word records in one-
to-one correspondence with arcs of PROSA (perman-
ent read only storage area) on the disk. The order of
the first four type areas in this file is always the
same: ‘

Type Area Content

11A11DIC PROSA dictionary
11B11IND PROSA index

11C11IPL IPL initialization program
11D11MCP MCP

The first word on the tape is a control word to
read in the rest of the IPL bootstrap record. The
tape unit on which this tape is mounted must be on a -
unit dialed to zero.

The IPL Bootstrap

The IPL bootstrap (XIPLBS, Figure 48) performs the
machine initialization necessary at IPL time, locates
the channel with the master tape, and prepares it for
subsequent reading. The bootstrap consists of the
code from XIPLBS to XBSEND. The bootstrap reads
as many records from the master tape as core stor-
age permits, and then (X9A3A) moves the initialization
program (the third type area) to its operating storage.
Control is given to the initialization program at XIN+1.
to move MCP (the fourth type area) to its operating
storage. The disk is located to arc zero, and the
input buffer written on the disk. A loop is set up
between the read portion of the bootstrap (X9A) and
the initialization program (X11) to read tape and write
PROSA until the tape is exhausted. The IPL tape is
then unloaded, and initialization beginsin earnest (X13).

The Initialization Program

The initialization process is controlled by certain
control cards, which define the I-O configuration,
MCP's I-O requirements, and furnish necessary
parameters.

Control Cards

Symbolic cards are used to simplify any changes
which have to be made. These cards describe

96

standard conditions which can be modified through
the use of console switches at initializing time. The
control cards are included with the initializing pro-
gram, and if they are to be changed, they must be
updated on the master tape. Each of the three types
of control cards used must contain a B in column 1.
They are:

1. I-O Configuration Definitions (IOCD)

2. MCP IOD's (I0D)

3. MCP Parameters (MCPP)

I-O Configuration Definitions: The IOCD cards

define the distribution of I-O units at initializing time.
Each card describes a channel. Channels which are
not so defined are assumed to have no attached units.
The IOCD cards, which do not have to be in order of

. channel number, have the following fixed fields:

Cols. 10-13 -~ Card Type: contains the char-
acters, IOCD.

Cols. 14-15 -~ Channel Number: contains the
decimal number of the channel.

Cols. 16-17 -- Equipment: must contain one of
the following codes:

CN Console
DK Disk
PR Printer
PU Punch
TP Tape
RD Reader

Col. 18 -- Channel Status: contains a "U" punch
if the specified channel is up, or a '""D'" punch if the
specified channel is down.

Cols. 19-26 -~ Unit Status: contains a '""U'' punch
if the corresponding unit is up, or a "D" punch if the
corresponding unit is down. Col, 19 refers to unit 0,
col. 20 tounit 1 ... col. 26 refers to unit 7.

MCP I0D's: The IOD cards define the I-O require-
ments of MCP and perform the same function for
MCP as they do for the problem program. The
initializing program will assign these symbolic
requests to absolute units.

MCP Parameters: This card is used to provide MCP

with initial parameters. It consists of fixed fields as
follows:

Cols. 10-13 -~ Card Type: contains the characters
MCPP.

Cols. 14-17 -- Mode: defines the mode in which
MCP will ordinarily start operating. It must be one
of the following:

OFFLINE - Off-line overlapped
ONLINE - On-line overlapped
BYPASS - Bypass (Unoverlapped)

nuen
* *

n'uuu'n.oolnln.'u

cL
' REGISTERS- '

ERERRARRRERB RN
STORE SIZE OF ¥
* 7030 STORAGE. *

EAERBACRNERE
*

-
® SPACE FILE %ERR
..

aneny
- »

. .
«X% INDICATORS ‘-.oo...oX' FIND 1PL #osseseseX® (SEOP) AND X% SUCAR #
% AND STORAGE. * CHANNEL . * SPACE OVER ¢ - .
- » - UMBER « * TAPE RK - .
nuun ARERRNBREENEEOREN ARBRRBERERRERORER FRERERRNRENGE nuan
.
.
.
READ IPL TAPE .
YT SrEEBenuARIRL l.lll Q.".'ll'l’.. nuns
3 » . .
'ERR 'ERR
* X9A :-...----...-X‘ SUCAR ’ ’RELEASE (SEOP) ’ocooo--..-o-)(' SUCAR .
.
. » 0 *
rannw BREBRERBENRES ranne PYTYYY YIS Y arnns
. .
. .
. .
. .
. .
. .
. X
. (YY)
. . .
.
. ® XGA *
.
. - »
. PRI
.
.
WRITE DISK ;
rennn nune sanan [ZYITT RN
- » - - - .
WAS IT * * 1S EE * - RELEASE -
X1l - . THE _FIRST eeeX® STATUS BIT - eesessassescescscsassesssacesaX® (SEOP hd
. EAD - ON - * THE UNIT .
wnnen annen SRBEBBRABRRAS
+YES «NO .
. . .
- . -
. . .
. . secsssencen
X X9A3A X X1 x
-auoﬁnuuuunuuu FREENEBERAEBRRRE - .l.ll.!l...ll! FARERBRERRANS ansn
* MOVE * - # LOCATE DISK ® * .
.COMPUTE NUMBER C #INTTIALTZATION # % MOVE MCP TO ' * TO ARC ZEROQ. *
#0F PROSA WORDS # 'FROGRAM TO ITS #.. * OPERATING #oaonnoea X® WAIT FOR *eoe X1y =
' YO BE WRITTEN ‘ . DPEg‘Y‘I;NG ' - STORAGE - - DISK L?gATE .
. .
uucuonunun-uu nuunuauununu BREERRESUIRRENGRR anuns
.
. .
. .
. .
X X
ey BERRBERBEERRRRIRRE anune rnane
» - » . »
- 15 * YES * UNL 0AD . .
WORD COUNT 1PL BeeecncasscasXt X13 ® # SUCAR
L4 ZERO . TAPE - - -
- * - *
crune SRRERABERANR RN RN LTI reans
«NO X
. .
. .
. .
. «YES
. aenan SERBRFCRERRBERENS aenes
. . - *
. * WAS * N - » % ENTER ERROR # - -
- - TAPE MARK BeeacasssssceX® X9A ¥ - TYPE CODE #Xeeoessancses® SUCAR *
. » READ * » - # IN MESSAGE - - »
. . 3 - - .
. snens TEYY) FERARBATIARRRBRE nsae
. X .
. . .
. . .
. . .
. . .
- . .
X - SUSAN X
ARRBEREEERRRR ERERERBRIIRBRRARE nuuuauo.conunu
WRITE PROSA #* - .
* ON DISKe . UPDATE * T
* WAIT FOR WaoessaveX¥ - 'ERROR LOCA'ION .
* WRITE TO * . COUNT - TC 1QS FORMAT '
- FINISHe * * -
SEERRABRREERE ERAREERERRERERIRY nnco-«unu-l-nnoun
+E .
.
X
L2 onuonnnunu-oon
- »
% 1S THE * NO SHOW '
» CONSOLE ®evosnee cX. ERROR ADORESS *
- .LOCATED. - ON CE CONSOLE :
XL sunnw FRAERRBANROIERNRRS
«YES -
. .
. .
. .
. .
. .
X .
ARGRRBARGRRDE X
- ARuEsRERIEERRER
SOUND GONGe . HAL L3
WRITE ERROR oX¥ (8D, S$) -
MESSAGE AT . -
- CONSOLE - AR RRBURBRENEES

Figure 48. IPL Bootstrap

RREBEEBRBBNS

System Operation Programs

97

The I-O Status Table Set Up

At X13 (Figure 49), the initialization program proc-
esses the IOCD cards to form the Unit and Channel
Status Tables (UST and CST). The IOCD cards need
not be arranged in channel-number order, but there
must be one card for each channel physically in the
system whether that channel is available or not.

The tables are first formed in lower storage and
then relocated (X19, Figure 50) to the area just below
MCP (toward lower registers). This relocation allows
the.table size to vary from IPL to IPL. The tables
which are set up by the assignment phase of the
initializing program are just below the I-O tables.
The lower boundary of the MCP table area is com-
puted and saved as a system parameter (S MCP) in
the communication region.

After processing the IOCD cards, the program types
the date of the tape update (XDATE), and reads the
console to determine if the operator desires any
options. If binary key 29 is on, the program per-
forms the requested status change and reads the con- -
sole again, repeating until a status change is no
longer requested.

MCP I-O Assignment

The assignment of absolute units from IOD cards will
be done for MCP at IPL time through a modified
decode-assign-move routine (SB22, Figure 50).

The assignments are made according to the I-O
configuration as defined by the I~O tables, the type
of IPL (normal or abnormal), and the operating mode
(on or off line overlapped or unoverlapped). A sum-
mary of the action taken by this decode-assign-move
sequence is as follows:

1. Normal IPL and Unoverlapped Mode: The card
reader is assigned to MCP. A unit area table and
file area table are set up for the card reader under
MCP ownership. The output tape units are assigned
to MCP and the necessary tables are constructed.
Mounting messages are sent out to operator for
scratch tapes to be placed on the assigned units.
unit and file area tables are formed for the input
tapes, but they are not put under MCP ownership until
a system command changes the operating status to
overlapped. No mounting requests are made until the
mode changes.

The

2. Normal IPL and On-Line Overlapped Mode:
The input tape units are assigned to MCP and the
necessary tables are set up. Mounting messages are
printed out for tapes to be mounted on two units.
These tapes will initially contain no jobs, but will be
filled with problem programs read in from the card
reader. Card reader and output tapes are assigned
as they were in case 1.

98

3. Normal IPL and Off-Line Overlapped Mode:

The input tape units are assigned as in cases 1 and 2.
However, the mounting messages will be worded
differently since the scan tape which contains the first
job to be run must be mounted on the symbolic unit
which will be first referenced by the input program.
The other scan tape will be placed on the second input
unit. Output tapes are assigned in the same manner
as the two prior cases. The input card reader unit
area and file area tables are formed but not put under
MCP ownership until a system command changes the.
operating status to unoverlapped, on-line overlapped,
or makes the unit the system input source.

4. Abnormal IPL and Off-Line Overlapped Mode:
The abnormal IPL selection is made at the console and
must be used when restarting with an input spool read
tape which has been partly exhausted of its jobs, such
as after a system failure or after an end-of-day shut-
down, While in the on-line or off-line overlapped
mode, the IPL must be made in the off-line overlapped
mode because the old read tape must be rescanned.
The assignments and the mountings will be the same
as case 3 except the second input tape will be an un-
used scan tape which will be used later as a write tape.
A system command must be entéred before tape switch
time to return to the on-line overlapped mode, if such
mode is desired. The output tapes and the card reader
are handled as they were in case 3.

When I-O assignment is complete, the program
stores the base address of the I-O location table and
the address of the next available arc on the disk in
the MCP communication region, and moves the UAT
and FAT to their proper locations.

Transfer to MCP

The program stores the number of jobs to be rejected
if this is an abnormal IPL, and tests for a mode
change request from the operator, (XMODEL, Figure
51). If none, the mode is taken from the MCP param-
eter card. The necessary bookkeeping is performed,
and (X37) the command package and JC4 are primed.
The MCP boundary register and interrupt address are
stored, and the IPL messages printed if the suppress
key is not on.

Final bookkeeping is done (X378), the disk located
to arc zero and all tape units selected, and $RET
issued. The system starts when the return routine
empties the prime queue.

IPL Error Control

Any error detected by the IPL initialization or boot-
strap programs results in a BD, $, with an accom-
panying error message typed if possible. The error
control routine, SUCAR, will type an error message
if it can identify the error andcan access the console.

X
FRERARARRSEB IO
»
SET up
TO PROCESS
10CD CARDS

SAEARARERERIRRARE
.

Tenne
“rxe

Xeo e

(2212

* *
. .
* X131 =
* .

- -
YL 2s

Xeos 00

nEnn

.
® §S THIS #
- AN 10CD
. CARD *
-

nune
«YES

xe oo

BESRRERBRRRERRBE N
e CONVERT *
* CHANNEL -
#NUMBDER. SELECT #
» EQUIPMENT :
-

SRRBRBRRRREOONINS

.
.
X
anmue
* -

. 1S »
. EQUIPMENT *
* TAPE .

.
seans
«YES

x
ARERERRERATRONREN
- -
- SEY uP -
STATUS TABLES *
» FOR UNITS :

.
AEBRRABUBAEEBNNN

rneew

3 »
» -
* X184 %
* »

- -
FYz2Ys

Xesoee

rean

* is -
- CHANNEL -
* AVAILABLE *

. *
sanne

+YES

.
.
.
.

sHnEn
- »
* -

ssesscereX® X19 #
»

- -
senan

snsuu
* L]

NO - -
4sassscsevesX® X18 #
» -

- -
snnaw

.o

ARERAEBERNRABIRARE

SET CURRENT *

NO » UNIT TO -
casscssesX® UNAVAILABLE ¥
e IN UST -

» L3
FEBRBRRBERERRN RN

Xeoo o

ARERREBRRAREERNREE
% SET CURRENT
% UNIT STATUS

eccsssseX® TG NOT

: ASSIGNED

FRAERBRRERGERNTS

Erxenew

Figure 49. Initialization Program - Chart 1

nnuw
* IS L3

* EQUIPMENT * NO
DISK OR

* CONSOLE %
. »

sannn
«YES

e X¥

Xeso oo

L ey
» »

* INSERT .
UST ADDRESS
- IN CST o
- »
- .

FERRRBERRERRERY
.

snane
- *
-

-
¥eeevesssesacX® X184 ¥
- *

- -
annus

x
RIS 22252 24
#SET_UNIT COUNT #
#TO TWO AND SET
* MULTI BIT ON ¢
- ASSIGN *
» CHANNEL .
SABBRERBHRERBBEES
.
.
.
.
.
.
x
L] -e SRBABERAANS
- . CURRENT #
A4 1s * NO b UNIT TO -
ceox® CHANNEL %iaeesseeX® UNAVAILABLE *
. * AVAILASLE " IN UST
- - - -
- (X222 ARBUBERARARBRARNNES
. <YES .
. . .
. . .
. . .
. . vecesoscssssscscnasXe
. .
. X
. R EX YIRS RS2 AR 22 3
. * WERE * . .
s« NO ® TwO - * CURRENT UNIT
eses® LOGICAL UNITS #X. AT TO
.

PROCESSED #
» -

.
s -
NOT ASSIGNED :
-

-
snsun EARBERRERAERRES

+YES

Xesssssesssseracsens

SRR RRBERRSREORRE.
- -

- ENTER -
eeX® ADDRESS OF -
el NEXT CARD :

*

-
FEBRRRRBARGRREEY
.

[XTYRS
» -

. -
eeX® X171 ¥
* *

) -
nune

System Operation Programs

99

Xe s oo

FRERBERRRRRERRS RN
* SAVE CST AND #
* USTe COMPUTE @
. UST SIZE. .
® MOVE UST AND »
* CST BELOW MCP %
A T T Y R T 1

Xeso 0

FREREHRBERBBARARE
% SAVE CST BASE *
-

-
N
ON#®
211

Figure 50.

ceeseereerrrens

L]
* XDATE #
. .

- -
LT T YY)

*nuae
- -

» L]
sanan

Xeeeoen

HREERERRRRNNY
PRINT LAST 1/0

LT R Y TR YY)

Xesoos

LA LIT T T T T Y T
X *

- TEST FOR -
- NORMAL -
® COMPLETION -

AERREREIREROARANS

X10A
LA IR T Y oY)
] .

- GET CS *
X#STATUS BIT FRCM®
CSONSOLE CHANNE!;'

ARERREERNREY

Xesoes

.
-
a
I
>
z
z
m
r
E1)
M
o
z
>
r
3
.
.
.
.
.

fhune

Initialization Program - Chart 2

scascssveseX®

.
.
-
.
.
.
.
.
.
.
.
-
-
.
.
.
.
.
.
.
-

oX®

L2 TR TR Y YTy
-

GET DATE THE

TAPE UPDATE

: WAS PREFORMED

SRR REARERSNER NN
.

ssnn

Xeeese

LLITYT TR Yy
-

-
i TYPE OUT »
- TAPE DATE b
#TO THE OPERATOR®
» -
EERNTRRCIRBEE

Xeae a0

AERARRBRBRREBBNR Y
* -

X
Lad Al B T1 B N BN B)
® TEST FOR .
» NORMAL .
* OPERATION #
ERBRBABRERBRR RO

.
.
.
.
.
.
.
-
-
.
.
.

.
.
.
.
.
.
.
.

LI I T T TR AT Y PO

S 70 B8CD
nunuum»"a.aoo

Xeosane

asoquo.;a-auu-u
C

LDE
.-Q-o-l-n-'-n-c-o
DECODE AND
*PREPROCESS ALL
* 1/0 REQUESTS
FRERRNRIBAABNB NN

Moo ae

Fahalt T T T TR
ASG
ot S Lt oy
#ASSIGN ALL MCP #
' 1/0 REQUESTS '

QIlQ.'G.I'IG.!.I'

.
x

x .
LT TTY YTy . SRSRBNNNRREURE RN
. - . - ASGE *
g READ CONSOLE . R RSN ¥R RERR
. » FORM FAT ®eoose
.REPORY O’YIDNS . * AND UAT FROM +#
* . ®ASSIGNED UNITS #
ERBRANER ARG " ARBERSRBRSBRGRN R
- . .
. . .
. .
. .
.
. .
X .
nn . il
. X71 . *COMPUTE EASE OF #
et ot S S . *10 LOCATICN TBL#®
- TEST FOR * - *AND KCF-S AVE IN®
ol NORMAL * - ' CO!(MUNICATION '
® COMPLETION - . N
EERERBRERRB RN . -n¢|¢¢'¢|na-¢.¢--
. . .
. . .
. . .
. . .
. . .
. . .
X . X
et . 3T
*CALIBRATE TIME # . * IS *
#DATE AND PRINT # . #PROSA S12E ®= NO
* APPROPRIATE = . * THE SAME AS
- MESSAGE - . ®*CISK PROSA *
. - B SIZ2E #
SnRNBRERERERER RS . PRy
. . *YES
. . .
- . .
. - .
. . .
. . .
X . x
L2TE2) . EREARIARBRAE RN NN
* DID . * SAVE ADDR -
* OPERATOR # NO . ® OF NEXT TRACK ®
* MAKE I/0 Feeosns *AFTER PROSA IN #
* STATUS ® COMMUNICATION #
#REPORT # - -
eEan HABRREB RSN R NN
e YES .
. .
. .
. .
X x

i loaananu--.-u
»
® ADJUST UST

#AND CSY TO SHO"
®* UNIT FAILURE &
-

*
EEEBRRERRARBRRRRS

.
.
x
*

* -
» .
* X101 »
- .

- -
LT TTY

AARERER BB RRA RN
#COMPUTE SIZE O
*MCP_I0 LOCATIO
. TABLE AND -
- RELOCATE :

-

® UAT AND FAT
EREARSERDANA RN

Xeoo o

rnuE

-

* IS AN MCP »
#* REJECT JoB
A sEOUESTEg

“xnue
«NO
.
.
eXeosoases
.

x
A2 21)

- -
- -
#XMODE1 +
- »

- -
sran

e
x
.
.
.
.
.

ERR

.
.
.
.
.
.
.
.
.

sescaXE
*

..Qll
l

......xl SUCAR '

'ill.

"EREE
- .
- *
X# SUCAR #
- -

* -
LI Y2y

nenew
. .

- -
®ecscesceX® SUCAR #
- -

- -
sasan

RERRBRARNNDABARNEE
SAVE NUMBER
* OF JOBS TO BE #

REJECTER IN &
COMMUNICATION #

* GION
SRERBEARRRGR ARG
.

nenn
- »
»* -
#XMODE1 #
. *

» .
snnus

Xeosaee

*HRRE
- »
. MCP
* REQUESTED *
* *
E222 2]

X36
5.0Q;¢|0a0n'||nnl
-

* OFFLINE MODE ‘
. IN THE

- COMMUNICAT[ON
*
-

RE.
naolno!uii-nuanu
.

Xess o

uunnanun»unn
ELIMINATE

& ASSIGNMENT OF

SYSTEM READER

- FROM [/

- TABLES
EERRARRERRRABE AR

“xsen

1S YES
MODE CHANGE ®ececsccesX®MODE OF SYSTEM ¥
- OPERATION

escesssrsscscacscccceX

#Xeeesanes?MO
u *

suene
. .

® X377 %esevecrsscee
- *

- -
anane

l..'I.'ll!Q.lIQQ!
lSAVE REQUESTED ‘
-

. »
FERARBRBRBBR OB

PR RO

*
-

‘NHAT 1s THE'
OPERAYIOD: -

*
nann
«BYPASS
.
.
.
.
X33AA

x
P T L
- ELIMINATE -
ASSIGNMENT OF
* SYSTEM TAPES *
- FROM 1/0 »*

- TABLES -
RRBRBRBERERBRNARR

.
.
X
ARARNBNERRSRERNS
* ELIMINATE -
MOUNT TAPE -
b MESSAGES *ee
FROM QUEUE e
OF MESSAGES
ARRBBRSRFRARRRARNES

Figure 51. Initialization Program - Chart 3

PRIME SYSTEM #
COMMAND FOR &
. ED MODE
SENBRRRGERREERRNY
.

Xeses e

RANBREBABBEARAREY

* SPRIME
F e e o T

» PRIME *
* JOB CONTROL 4 :

(] *
- -
* BOUNDA

: FROTECYION
[TTYTTITTY e

E OF SYSTEM %eevecccccccscacece

$oavsscecX®
"

* MESSAGE
SUPPRESSION
. eEOUESYEe

-

nnen
. -

X
saane

#1S MESSAGE *
BE -

. X: THE NEXT

.
srannnaesae

® ADVANCE TO
MESSAGE

-
FERNERTREBRNERRS
X

% HAVE ALL *
THE MESSAGES ®
®BEEN TYPED *
. -
RN
YES

X
“REEN
. -
- -
* X378 %
- -

* .
nuene

e eoan

SAFRRAERGRININEED
SET IPL MODE &
* CODE IN THE =

o.-uo-b-onc-cnlan

. CLEAR SMAXRNe

* MOVE DUMMY -

COMMUNICATION

REGION TO MCP

BARERABENBBBBA NS
.

Xe oo

RERBRBY
*

LOCATE *
DISK _TQ *
ARC ZERO *
-
ARREBABRARERS
.

ase

X
ARABEREENREE

-
#Xeeossaascass® TO ALLOW CS #
* - 7O COME A

-
* PRINTED #
- -
(22213
<YES
.
.
X
ARERNBTRERENS
TYPE
THE
, MESSAGE
1222222222224
.
.
.
.
.
.
.
.
X3S X
‘Ql!."'.l“ll....
F »
ME! SAGE *
vexs SPECIFYING *
* READER .
. CHANNEL .
FERBBRBREABBARBRRR
.
.
.
.
X
aenun naune
- - -
- 1s 1T + YES . -
» BYPASS BiceecsenceaeX® X3T #
MOD! » x . »
. B . » .
“nans . (XYY
«NO .
. .
. .
N .
. .
. .
X -
AERBBRBBARNRBE N -
FORM MESSAGE * .
* SPECIFYING * . -
AWHICH OF INPUT #...... # SRET
#TAPES IS TO 8E .
* MOUNTED FIRST # » -
RERARRBEARTLURERER 2222)

- THROUGH
ARARARBABRARE

System Operation Programs

101

RESTART

The Restart program is used to reinitialize the sys-
tem without recourse to the master IPL tape once
the IPL program has written the system on the disk
in the PROSA area and has placed MCP in core stor-
age. Restart is composed of two parts: the Restart
bootstrap in main leg of MCP and the Restart type
area (33RESTRT) on the disk. Some of the actions
of Restart are controlled by the binary keys but Re-
start can perform all the following functions:

1. Give a console message if 33RESTRT is
brought in successfully.

2. Give a console message stating the name of
the current program, the system's operating mode,
and the instruction counter when Restart was initiated.

3. Write out the commentator buffer on the type-
writer.

4, Write the output program's print and punch
buffers on the output tape.

5. Give a dump of core storage.

6. . Reinitialize the system by bringing in the IPL .
bootstrap program from the disk and giving it con-
trol (Disk IPL).

Restart Bootstrap

The Restart bootstrap (YSICADD, Figure 52) first
checks the instruction counter to determine if there
is a call for Restart or a violation of protected stor-
age area, octal location 41. If the instruction
counter indicates a branch disabled to location 41,

a type 16 error is given. Otherwise, Restart boot-
strap saves the lower registers, and searches the
dictionary in core storage for 33RESTRT to get the
arc and word for the type area. If 33RESTRT is not
found in the dictionary, Restart bootstrap halts with
a B,$. If 33RESTRT is found, the track containing
the Restart program is read from the disk into octal
location 1000, Control then passes to the Restart
program at the relative location of YARPBRP. This
location is determined by the arc-word address of
the Restart type area.

Internal Restart

The MCP program allows the option of initiating a
Restart through programmed instructions in MCP
rather than operator intervention. The instructions:
SIC, YIPLREQ
BD, YIPLREQ
pass control to the YIPLREQ routine in Restart
bootstrap, which prints the console message:
$ SYSTEM ERROR. MCP WILL RE-IPL.
The gong is then sounded and a branch is made to
YSICADD, the beginning of Restart bootstrap.

102

The Restart Program

At YARPBRP (Figure 52), the Restart program is
transmitted into its place starting at octal location
1000 and is given control at YARPBF (Figure 53). In
the YARPBF routine, two messages are given; one
indicates Restart was brought in from the disk suc-
cessfully, and the other gives the job name, system's
mode, and IC. The console is then read to get the
Restart options, If binary key 63 is set, the com-
mentator buffer is written on the typewriter. At
VJISYNX, binary key 62 is tested and if set, the out-
put program's print and punch buffers are written on
the output tape. The status of the buffers is checked
in the VJTEST routine and the buffers are written
out, starting at VITAPE (Figure 54). Control event-
ually goes to YGOONX (Figure 53), a routine which
reads the console; if binary key 61 is set, control
goes to the YDMLOOP routine. At YDMLOOP, if a
console channel signal is given in response to the
dump request message, the program dumps on the
selected output device, the locations specified in the
numeric switches.

At the end of each dump, the console is checked to
see if binary key 61 is still set; if so, a return is made
to repeat the dump sequénce. When binary key 61 is
off, control goes to YSKPDMP where binary key 60
is tested.

If binary key 60 is set, the VCHKNO bit is set to
indicate to the Disk IPL program that a check sum of
PROSA should not be done. Control then passes to
VCLEAR (Figure 55), the beginning of the Disk IPL
program and the last subprogram in Restart.

VCLEAR halts the Restart program and gives a
message suggesting that the IPL console options be
set up in the binary keys. Upon console channel sig-
nal, Restart continues and the check sum of PROSA is
calculated if the VCHKNO bit is zero. If the check
sum calculated does not agree with the one that Update
30 calculated and stored in Type Area))))))). on the
disk, Restart gives a console message stating that the
check sum is incorrect; this is followed by another
message to IPL the tape, after which Restart halts
at a B, $. If the check sum is correct or if it is not to
be calculated, the IPL bootstrap program is brought
in from the disk, the PROSA arc count is stored into
XVDK, the disk is located to arc zero, the Disk IPL
indicator (PGS5) is set, and IPL bootstrap is given
control to renew the system.

THE COMMAND PACKAGE

At any given time during the normal processing of
jobs, the operator may want to alter the automatic

REn
» -

- L]
#YSICADD
- -

. .
Huune
.
.
.
.
.
X
RBRE L2222
. . .
* DOES IC * YES * SDISP *#
® EQUAL 31+0(8) #ecevecescsaeX® (TYPE #
» - - 16) *
.
L1223 auBNE
«NO

X
ERRRRBERERRBERBEE
. »
* SEARCH CORE #®
#DICTIONARY FOR #
* 33RESTRT -

BREARAREAB R AR RRD

Xe s oo

[T S
ARRBUBRBRBRERES
* WAS * NO
- 33RESTRT LETYY
- FOUND . -

X% Bes .
- -
FRREERRABBEERN
E2 222
«YES
.

.

-

A
FARARERRERRRRRERN
- -
* RELEASE DISK
AND LOCATE TO
: 33RESTRT ARC

R ERERETRBRIRRY

axne

Xe a0 0e

ARBRBERBRRERRRRD NN
* $RO -

B ot Dttt irntuted
READ 33RESTRY
#TRACK INTO CORE#*
- ORAGE -
ERRRRARSANGRBURNY

Xe oo os

RERARARRRRNRONSSNS
- -
BRANCH TO
LATIVE
L0$AYION OF
P]
.

=xxw
b
m

axnn

Xeso s

HERER

. »
» -
*YARPBRP#
» M

- *
sanun

PR

Py T Y

» »

* TRANSMIT -

. RESTART -

: INTO PLACE :

RRRERRARARERBRIRS
.

Xo emee

EERE
-

- *

#YARPBF #

- -
* »
R

Figure 52. Restart - Chart 1 - Bootstrap

System Operation Programs 103

enEe

» -
- -
*YARPBF #
» -

» *
aune

SEFRBBREVRBRNANNENS
- s -
B e e R N e B
*RELEASE CONSOLE®
% AND GIVE Two &
- MESSAGES *
L T T I Xy e

X
—rREe ssnus

* ANY #
#* UNWRITTEN & YES

- -
IS BINARY
KEY 63 oX# DATA IN SCOMM #
* BUF
-

ON - UFFER #
. .
LA 21
«NO .
. .
. .
.
X csvene
.
VJISYNX X
(2221 atens
* * * ANY #
* IS _BINARY # YES ®_ DATA IN_ #
oX¥ KEY 62 ¥ecenseseX® THE OUTPUT
. on * BUFFERS #
L2223 RENNS
«NO «NO
. .
. . .
. .
. .
. .
x x
E2 221 FAA 2 222222222222
- - - s .

i
P S S ST B R

% INFORM OF NGO &
*QUTPUT AND END #

- - #* BUFFER WRITE #
LEz 1] SRBESRBAARARNNBEDS
.
.
.
-
.
x
SRR sesns FESSENERERNNNRAES
- - - -

[t Y B na- S W Y

IS BINARY & VYES - * X -
KEY 61 Becreessecce s XKEYDMLOOP* ssevcecssccaX? MESSAGE TO WeucoseeeX® .
- [:] - - SOPERATOR TO CS * .
- . » . - »
L2212 “Rany SRARENBEIBABNBAEN “EN..
oNO X «YES
. . .
- . .
. . .
. . .
X . X
asnas - SEEERNENRNERNTEGEN
- Y . # READ CONSOLE #
» - . * Y0 GET DUMP &
*YSKPOMP# . SLIMITS, OUTPUT #
. - . # SOURCE, AND &
- - . ® DUMP FORMAT &
Li 22l] - HEFRSRBRARINARSBEY
. . .
. . .
. . .
. . .
. . .
. . .
x YES X
LA 220 d ABERBABNBRRIE - "enNe HANNNNENTRENBRTIEN
- - - - - - - DUMP
IS BINARY ® YES ® SET VCHKNO bt # IS BINARY & ittt od
- KEY 60 #eesevanaXt TO OMIT - . KEY 61 #Xevesscoe® GIVE DUMP CN #
* ON - & CHECK SUM IN # - ON OUTPUT UNIT
*D A b SPECIFIED
wsuan Lt nsnn EXTT Ty T e v
«NO - «NO
. . .
. . .
- . .
- . .
X . x
L adll] - Lid 4] el tRERS a8
- - . -
- - - ® WAS DUMP & YES - WRITE A -
®VCLEAR #Xceseoccvccccsccscnsce * GIVEN ONTO ReovsecsceX® TAPE MARK AND &
- - ®* TAPE(S) * SREWIND TAPE(S)
- - - - -
Lisdld LA 2124 SRERBARARARARNGEY
«NO .
. .
. -
. .
. -
. .
X .
LA il 4] -
- -
- - -
HYSKPDMP®*Xcseconcscccsosscsscnne
- -

Figure 53. Restart - Chart 2 - Options

104

(222 0]

- *
» =
RVITAPE *
- -

* -
anane
-

Xeesre

ASRERRBEBRRBRBRAE
DETERMINE CH ®
AND UN OF .
OUTPUT TAPE, *®
RELEASE AND
* LOCATE IT &
SRRRABRERBRABRENS

Xesseas

zesan
*

*
®# 1S OUTPUT * NO
- IAPE MOUN\'ED. -

anune
«YES

Xe e v e

rnann

* 1S TAPE # NO
* . VERIFIED

-
rnene
«YES
.

VJBACKS X
'DID!{O!.!!..I!.Q

BACKSPACE ’
A FILE

LLETE]

.I.ﬂ"l.l.l'l’l‘}

seseX® TAPE AND WAIT
- FOR CS

RessessseX¥
*

VJIMONT
RRBRRREREAES
*

#REQUEST OUTPUT

sxane

»
BENBRRRBRINTATANS
.

Xeoere

FRRARRIRRRRERORE .
» -

* SPACE -
HI -

LABEL *

- -
REBARBRRRBERNRRN.

.

Xees 00

VJIWRIT
leaunaﬁnnnnnnono
* W

E I e o

-
- D1D -

..I'll.!""lll'.

sw
I—.-Q-l—!—.-l—'_

. 010
WRITE PRINT ®esceeeeeX® UK OR EKJ
. . * 0CCUR

AND PUNCHK
- BUFFERS -
ARRRCRRARARE NSRS

Py
lo..-.a..l' WRITE MESSAGE lX----...--o-.-.
HAT QUTPUT IS *
‘ TO FOLLOW -
REANRRBBRIRRRBRER
.

.
x

YES
®oasseneeX® REQUEST A

Figure 54. Restart - Chart 3 - Write Output Buffer

.
.
.
.
.
-
-
.

*

* RING_IN TAPE
*WAIT TILL REAOV
SERRERRBEARRENN

incnnancloaua‘an
sw
--n-. l-!-.-o-o-
eX* GIVE MESSAGE
THAT QUTPUT

b SKIPPED
AERERRABABARARON
X

AABBBERAARESRIRY
.

W
[SR T Y Y

»
*
*

‘

®eescerssecescscace
-

.
.
.
-
.
.

-

«YES
rane
*
.
* .
.
sune .
«NO .
. .
. .
- .
. .
X YGOON X
en
* - - sw »
* WRITE TWO L} o N e o o 2
TAPE MARKS, X* GIVE END QF &
* REWINO AND - . BUFFER IHI‘I’E '
* UNLQAD TAPE #
ERERRRBEERREARNEN u-ctcinnl IIlI.Il
.
.
.
.
x
anan
. 13

- -
#YGOONX #
* -

- -
sanne

System Operation Programs

105

nanan
L] »
= -
*VCLEAR #
- »

nane

X
.lll..lll'.l’ll.l
W
l-i-n-n-a-n_a-a-.
* SUGGEST THAT &
® IPL OPTIONS #
- BE SET -

EITR I rr T PR TR Y A

X
rRREN [e Y
. SRD -

L i Ot el
eeX® READ PROSA -

NO & WAS
et 'CONSOLE cS

GIVEN _ # #DICTIONARY INTO®
* * CORE STORAGE
LI 22 ERBERARBARRRARNE
.
:
.
.
VSET x
I.."I"."'.“... *RRAN
IS IPL W
’SAVE gooTsTRAP M YES * BOOTSTRAP *
#Xosossees® TYPE AREA
H oONTORC 3 *DICTIONARY *
- * - -
RHERRERBREERABRARN EZTIT)
.
:
:
x VCHECK
REBER E2222]
1s .

CHECK SUM * YES - 1s
* TVPE AREA IN #ecscsceoX¥ VCHKNO
‘D:CTIONAR: . - SET

L] -
22223 snuwe
oNO «YES

YES

eeeeeneeeneenooe TYRES

. ’DICTIONAQY .

.

. enran

. «NO

. .

. .

. .

. N

. .
VSTORE X X
RERBRRFARLIRERRAEE ‘HENS
- L] - -
* SAVE TWS ARC * . .
. IN si0 . SVERROR #
- * - »
» L] - -
L2222 222222222 1) L2222]

.

.

.

.

X VCKSUM

fERRR .l"!"..lll.l‘..
SRO

» -
* IS VCHK * YES L it w-n-u---.

- A BRANCH . #asasees s XRLOCATE AND QEAD’ooooo-o.X. CNECK ngJH OF
» n

l IN CHECK SUM

» TYP REA
tRERE 'ﬂoii'ﬂ..n-un---n
«NO

.

.n.-nuuunuvnu:en-
c_.-.-.-‘-._._;,o

GIVE MESSAGE, *
#* $NO CHECK SUM :

.
PRI TY R YT Y Y Y
.

.

X
rEnen
- -

- *
#*VGOAHED®
» -
- -

cEREn

Figure 55. Restart - Chart 4 - Disk IPL

106

SET _NOP
#eoevsseeX® VCHK SWITCH
- TO BRANCH

eune
- *

- -
* VMESS ®
- 3

il'..il.lll.l’!.l

W
0-0-0-0-.-0-0-0_
* GIVE MESSAGE. *
’ $CHECK SUM -

INCORRECT -
Q-incoao sene

Xe oo 0e

“anen
- -

- -
annne

SERERRREAERRBNE RN
- *
. .
-
-
»
»

SRBGBRENRRERNENY

X
SHERRRREARNBNBI RN,
* 1]

* STORE ARC AND &

.X.--.---.'HORD COUNT FOR #

HECK SUM TYPE '

AREA
ll.ll..l...l..Ol.

nont.n-n---;n-nan
»

CALCULATE :

*
.
.

HERERRARARRERTRN

nnnn

® IS -
CHECK SUM

LTIy YRR Y Y

- sw .
B L]

ooK’ GIVE MESSAGE, *#

$1PL THE TAPE l
on.-.c.uc-ono.ouo

SrssenRNsEREREY

- .
» BeS .
.

SERESRRNRRARNRS

YRS
n o

* THE SAME AS. %eesaves -.-..ICVGOIHED'

- UPDATE 30
FOUND #
Ly

«NO

X
(X33 T3
- -
- -
* VMESS #
- »

* .
T2y}

'
’DI!Q

- -
#VGOAHED®
- »

Xeeosson

FUNBSABARERRRNE R
. $RO .

el tabab b
#L0Ce BOOTSTRAP &
'TVP AREA, REAO
TWO ARCS
Qlluancno.ncniuln
.

Xeoses

WREEBRREERN RO NN
- -
® TRANSMIT IPL #
#BOOTSTRAP INTO *»
- PLACE et

-
XTSI Ry Y Y TR
.

Xe 1o e

BEBBBREAB BRI NE.
-

- LOCATE
* DISK TO
* ARC ZERO
-
-

APBERRBBARNR SRR

saans

X
ARBARRBRTREAR AR
* *
SET THE OISK &
IPL INDICATOR
* PGS M

-
RABRAREARBRBRN R RN

saRBNRGRRRSRISRRY

*

: STORE TwWS

. BOOTSTRAP

- {XVDK}

S R TR Y T)
.

sesen

“neue
#GIVE ®
#CONTROL®
470 IPL #
BOOT~-
#STRAPS®
anen

flow of work through MCP. The System Command
Program interprets and acts upon these requests.

For some of these commands, the desired response
may depend upon the operating mode of the system,
e.g., overlapped or bypass. In order to avoid a con-
flict between intent and actual execution, the input
source for some commands is restricted. The proper
source is determined by the system mode and the
nature of the command.

Command Mainstream

~ Before control can be passed to one of the individual

command routines, certain general checking proced-
ures must be performed. The command mainstream
(JCOMD, Figure 56), decodes all commands into a
standard format and breaks them into individual
fields. It develops a matrix mask from the source
and the operating mode of the system to test the
legality of the command request. The mask is also
used for internal control procedures within the
routines. A normal exit routine is provided by the
mainstream for all specific routines, and two error
exits: ZEREX1, for use when the command is illegal;
and ZEREX2, for use when a legal command is given
in an illegal situation.

Sources

There are four possible entrance sources to the Sys-
tem Command Program. All use the calling linkage
described under SCOMD pseudo-op. The most fre-
quently used sources will be the operator's console,
known as the operator source, and the input program
card reader source. In this case, the linkage will be
an indirect transmitting linkage between the operator
and the command package.

Console: The operator may wish to enter a command
via the console typewriter, providing this is a legiti-
mate source for the command in the mode in which
the system is operating.

When the CS is generated at the console, the inter-
rupt is received and interpreted by the conceptor.
The conceptor will issue a hardware read to the
console; this releases the keyboard. The console
reserved light will also be turned on. The conceptor
then gives up control until the operator has finished
entering his message and an EOP interrupt is gener-
ated by the END key. The console read portion of the
conceptor gains control and examines the message
for a DB or PP as the first two characters. If
neither is there, control is passed to the signal return
exit in the command console table of exits, the first
location of which is JCFIX.

Job Control:

The signal return interrupt routine resets the
SCNSSG indicators in the unit status tables, obtains
a count of the number of characters in the message,
primes system commands, and issues $RET. The
eventual unstacking of the prime queue actuates the
command. Since the console is reserved, the message
may be left in the conceptor buffer PMCPBF with
impunity.

Commands entered via the input source
will be discarded by job control unless they occur
between jobs: i.e., after a job boundary and before
the succeeding job card.

When job control detects a command card in phase
1 (JC1 source), it enters the command package directly
with the command pseudo-op, SCOMD. Control is
returned to JC1 when $RET is given by the com-
mand package.

When phase 4 of job control detects a command
(JC4 source), it primes the command package (SCOMD),
primes itself, and issues $RET. Thus, control will
ultimately return to the beginning of JC4 after the
command is activated.

SCOMD Pseudo-Op

The communication link between the separate sources
and the command package depends mainly on the
calling linkage; in the case of the operator, it depends
on the interrupt mechanism and routines. The con-
version routine and the prime mechanism are the
primary system routines used.

The passage of control to the Command Program
uses the following linkage:

B, $SMCP (or SIC,SPRIMR; BD, SPRIME)

, SCOMD

, S.
» Lo (D

," N (d)

(Error return)

(Normal return)
in which:

S is the source of the command:

1.0 - Job Control 1

2.0 - Job Control 4

3.0 - Console

4.0 - Initializing Program

L. () is the bit address of the first IQS character
(console) or of the broken-out field (Job Control)
or of the BCD character string (Initializing Pro-
gram).

N. (J) is the number of characters or fields.

(Error return) may be used only when the reject
command is given by JCI.

System Operation Programs 107

LTI
» -

seen

X
I I Y]

AERERARRBRBRBEWRE - HERBEFERARBERRNER R3]
SAVE INDICES. ¥ . GET UNIT * - L]
% GET MESSAGE # #STATUS ADDRESSe* -
ADDRESS AND ‘YURN OFF SCNSSG'... el
LENGTHe GET - SSAGE A
SQURCE CODE # .CMARACTER CODE 0
SEBERRRREEREB RN AAREVVERRERRSTARS
x
senun, weune naonnolacuuanau-n
» . s SCCMM - YT TN Y
* Is ® NO - » n YT I sy P 2]
% SQURCE CODE %asasee seeX® JERRX ¥, « X% COMMAND ERROR l........xi B0 .
CORRECT # - . * IPL REQUIRED * -
- - - - RABRRBR R RGBS
ARREE (X2 2L ."....I‘QI.Q‘IOI
o YES
.
.
.
.
ZTSTSR_ X
RARR FERBRERBRBRBRARES FREBRBERARRARBERS HERARNBBERERREN
* 8 * Z 9 M » SBR
. 15 * YES PR a-ouy-at Y BY Y [PPSOy SRy Y P ST TR e-pup ooy PN 2
* IPL THE SET _UP #i00000seX® SET UP FOR %oeanvaneX® BREAKOUT -
% SOURCE - # BCD MESSAGE * X ' BREAKOUT ’ - ROUT INE -
* » . » ROUTINE * »
EREE AARFABRRSARRNR BN ...Q"l...'l..l.' AERBRBARRABERRARN
«NO .
. .
. . .
. . .
. . -
. . .
X . 2CMCRD X
ARERN HEARRERE BB RE AR - LA il]
- - z1 - . -
1S THE * YES Rl St dtetot et bebrtainded . 1S 17 -
CONSOLE THE #aacacaceX® CONVERT 105 %assees A COMO -
* SOURCE _ * # MESSAGE FRCM & - % CARD .
*pPMCBUF YO JCBUF. . L]
wREES ARFAARBRBRARARNS - *RRNS
«NC - «NO
. . .
. . .
N . .
. . .
X X X
ERRRRRERBRBEERRAS EXZ L] RGN
3 ZBKBCD * . 13 . .
L D o Rkt 1S IT A & NC - -
MOVE BROKEN #.cccececesasscsscsscscanss VALID * eesa e X#ZEREX1
* FIELDS YO JoB % ® CONNAND ® - -
#CCNTROL BUFFER # . » »
ARRBRARBERARBENES LA L2 EE2 2]
«YES
.
:
x
R2 223 LL XSS L hddded
* L] L] - #ENTER®
- * . . #COMNAND#
®ZEREX1 * #2ZEREX2 * .NOUYINE'
3 * - - ViA
- - - - .J[ABL.
rHRES *HEnn REER
. .
. .
. .
. .
x X
BERRFAER AR AR AERRBREBBBRRATARD SRERN
- - ® SET STAYEMENT #
% SET STATEMENT # * FOR LEGAL ®
* FOR ILLEGAL # * COMMANG BUT # * JHARD #
* CONMMAND * * ILLEGAL -
* * SITUATION -
BRERERBRAR SRR AERBAERAARRRARAES nNERER
.
.
veseX
.
X
RNRER nEER.
* 1S SCURCE # NO L 1s * YES
. SYSTEM THE CONSOLE &

L4 INPUT L4
. .
LX)

<YES

e

x
AERERBERRRANRERNN
» SRERD *

e e R]
#GET FEELD COUNT#.

Ck
I T T A T 2]

Figure 56. Command Mainstream

108

xe CONVERT
COMMAND FROM

®THE SOURCE ®
- .

“anne .

«NO .

. .

. .

. .

. .

ZEARDC X .
SABANNERRRBBBRNBEN .
» SAGIQ . .
D e ot BT SN .
®eaanes

- CD _TO IGS *
SEEREBRARNNGRRBRRY

caX®

crnne

.
.
.
.
-
x

*ABNRNGBEBIRARSREL

RESTORE
THE INDEX
REGISTERS

CTTIYYY TR YRYY I
-

senen

X
anREN
- 3
- -
SRET &
- .

»* a
anpan

neee
- »
- -
#ZEXITX &
- -

- »
sxnan
.

sana

xe

HENRRRSES RN AN
* SCOMM .
LT EY BN St 2 22

SEND -
* ANPLIFYING *
- MESSAGE .
TR RARORRRRERY

- -
* JNOPX @
- »

- -
YTy RS

The format of the command message is essentially
the same for all sources. Commands coming via
cards must have a B punch in column 1 but the state-
ment field, columns 10-72, contains the command
statement as it is entered via the console:

COMD, command and parameters

Upon receipt of control, JCOMD (Figure 56) saves
the index registers and then proceeds to construct
the matrix mask from information in the calling
sequence and thé system mode bits, SYSMOD. Be-
cause the command message may be any one of three
different formats depending on the source, a multi-
way branch must be made to specific calling sequence
sets for conversion, breakout and/or moving routines.
These sets of calling sequences will transform the
message, if necessary, into BCD format, break it
out, and eventually store it in an area JFLDB. The

message in JFLDB is in eight-character broken-out
fields. If the number of fields is less than two, the
command request is in error, and the common error
exit routine is entered with an explanatory message.

If there are two or more fields and the command
is entered through a source other than the Job Con-
trol source, the first field will be tested for COMD
at ZCMCRD. If rejected, exit will be made via the
common error exit routine. After determining that
a command message is acceptable, a table lookup is
made to compare the second broken-out field, the
command request op code, with a table of legal op
codes for the commands. If the command request is
not found in the legal list, the common error exit is
entered, with an appropriate message. For all error
messages, a hard copy is made on the console if the
input source was not console. If an equal comparison
was found, a branch is made to the requested indi-
vidual command routine for further processing.

The common error exit routine, JHARD, will make
a hard copy of the command message on the console
typewriter, if the console was not the source. The
routine uses the SAGIQS conversion routine to convert
the original command message to IQS code. This,
together with an amplifying error message is then
sent to the console typewriter via the commentator.
The normal exit routine, ZEXIT, is then used, which
resets the console reserved light, if necessary,
restores the index registers, and gives $RET. The
general exit routine provides for handling normal
exit messages as well as error exit messages by use
of index registers.

The major system subroutines used by the com-
mand mainstream are the conversion routines from
one format to another, and the breakout routine. The

inputs can be in IQS, BCD broken out, or BCD. These

must be transformed to broken out BCD fields.
The reserved light off pseudo-op is the only pseudo-
op used, and the commentator is used for output. The

hard copy maker converts from BCD to IQS for the
commentator, using the SA6IQS routine.

Mode Control Commands

The operating mode of the system (bypass, online,
offline) may be altered by the operators at any time
via the system command package. The mode control
commands may be entered via any of the sources,
and the IPL source serves as the initiator for the
system input program.

The BYPASS Command

The BYPASS command (ZBYPASS, Figure 57) will be
actuated in several different ways, depending upon
the source. If the source is IPL, SYSMOD is set to
BYPASS(10), and the SPPBT1 indicators are set to
11. These indicators are tested by the overlapped
mode change commands to determine whether tape
IOD's have been previously assigned or not. The IPL
sequence then leads to ZBAL.

If the source was Job Control 1 and the present
mode is overlapped, the STRANB indicator is set so
that on $RET, Job Control 1 will stop requesting
cards from System Input. A branch is then made to
ZBAL.

If the operator's console is the source and the
present mode is offline overlapped a branch is made
to ZBA1l. ZBAI1 is an MCP calling sequence linkage
to the input program, requesting a transition to the
bypass mode. Upon return, the index linkage is set
for the command acceptance message and exit is
made to ZEXITX.

If the source was Job Control 4 in the bypass mode
and STRANB is 1, STRANB is set to 0 and a branch
made to JNOPX (Figure 57). This is done because
the input program will give the BYPASS command
card to JC4 as the first card of the first bypass job.
Since this command has already been actuated, it
must be ignored. If STRANB were =0, an error exit
ZEREX2 branch would be made. If the source was
JC4 in an overlapped mode, the BYPASS command
was on an offline tape, and return to overlapped has
been accomplished after entering bypass from phasel, .
JNOPX is entered. Any other source or mode is in
error and branches to ZEREX2.

The ONLINE Command

The ONLINE command (ZONLIN, Figure 57), like
BYPASS, is source-dependent for its actions. If the
source is Job Control 4 in the bypass mode, a branch
is made to ZONO1Y where STRANB is turned off.
This is necessary because STRANB might have been

System Operation Programs 109

sanan snane seana PTT)
» * - . . 1S »
* [3 3 1s + NO #1PL OR JC1 # NO » » vEs
#ZOFFLN %eoescecscsceX® JCAIN ®eseseeaseX® IN ONLINE OR #cceocsseX® Jca N #scceccnss
» » + BYPASS ¢ #OVERLAPPED # #OVERLAPPED #
. * # MODE # # MOCE # ® MQDE *
[TY Y] anane snnse sazen
*YES «YES «NO
. . .
. . .
. . .
. . .
. . .
20FF02 ZOFFO9 X . X
ERRNBRENERERRRERS nenun . sanan
- ZASNOL - * . .
[Sl o S EL 2d S NG ® HAVE ® YES . . .
ASSIGN TAPE #X.eeceeees® TAPES BEEN #esvsssssesssacceXe #ZEREX2 #Xeoevsovcnsne
- UNITS FOR - # ASSIGNED # . . -
SYSTEM INPUT # . L . . *
PR A T T nnan - sauss
- - X
. . .
. . .
. . .
. . .
. . .
X ZOFFIX X 20FFT2 +NO
L Ry] FREERARERARBNEN [T
» . - KOM) .
- SET . S BB BN W8 8-FEND * HAVE -
» SWITCH #eesencescessscscsnssasassscssascseX® REQGUEST INPUT %cscsesseX® TAPES BEEN eeeeX
» SPPBT3 » I3 T0 GO - # ASSIGNED #
. . OFFL INE . . .
ARBRRSRERRRRONN RESHBRARARRENBO snuva
«NORM
.
.
.
.
.
x ZOFF20
[T anunn LT
. - . - -
- - s 17 -
#ZBYPASS#® . 13 1PL PPN
* * . MODE .
- * - » .
snune sennn senen
. «NO «NO
. . .
. . .
. .
. .
X ZBALY X X
*BERE ARBARAAB BRI NN .
- . * - * - - ZDSNO1 -
. is ® YES . SEV - * SET RETURN - BBt e bty tndaind.d
. JC1 IN BosecasaeX® STRANS e # TO JC1 SRET ®. - DISASSIGN Reseossesek
#OVERLAPPED * - 817 - # FOR ONLINE - - THE CARD el
MODE # » . - MOOE » - READER ° .
sanas srassssaneRsnEany SREERERNNY
«NO
. .
. .
. .
. .
X x
[TTYT) annna
. * » .
- - .)
- ce s XRZEXITX # #ZONLIN ®
- - * -
[l - » » »
raene FAAARBRRERARARRO annew snune
«NO x .
. . .
. . .
. . .
- . .
. . .
x ZBAL1X . X
nsne FERERBRNBIRNRRAG Y LXYIYY
- L] * - *
- 1s 1T - * SET BYPASS - » * ves
. IPL coX® FROM 1PL MODE ¥ . ca BareasnnaX
+ MODE 3 * INTO SYSMOD # ® BYPASS #
- - * % MODE #
sasne cRBNEeIRBRRR SRS Pty
«NO «NO
. .
. .
. .
. .
. .
X x
P TIE) LTYYT) LXTYT) anune
* . - . - - - -
- 1s * NO - 1s * YES » . * 1s IT YES
- JCA [N #oesnosecX JCa IN ®eesescscccsaX® JNOPX # - 1PL ®eossscensX
BYPASS * #QVERLAPPED * - * * MODE
* E # » * . -
ey ranaw arnne suenn
«YES «NO x +NO
N . . .
. - . .
. . . .
. - . .
. . . .
zZB2t X x «YES x
snune [TXTH snune LRYYY)
* IS - * - »
#MODE CHANGE® NO » . NO @ 1s

NO
* BIT STRANB ®eeseesseess o XFZEREX2 #Xonsescsoscace® *Xeesesanct®
- SET - - *

JCa IN
®#OVERLAPPED #
MODE

. -

[23333 rEARE RBER

-YES

.

.

.

X 2
ABNRARRARERBRRERN L2221 “Euww -
- L] L] - - -
® SET STRANB M * . - -

» BIT TO #eeonssesscceX® JNOPX # $ZEXITX #Xessseoccsccc®
- ZERO - * - - L] -
- - * . L] . »
AR RERRBRARNRENN LT3 tanun .

Figure 57. Mode Control Commands

110

« 1S *
JC1 OR OP IN

-
* OFFLINE ¥
MOCE

Runn
«YES

xs oo e

CNOO1
R T YT
SKOM
W B e B
REQUEST
ONL INE

MQDE
ARRNBBRBIBNN

sesses

Kesssssvssvesne

.
#Xessossas

“nunn
- L]
. .

seeX® JNOPX &
- (3

- *
snsan

T YR YT Y)
-

SET SPPBT1

sssen

XTI TSI ST Y X0
- ZDSNO1L -
LT BT BT S EY BY T
* DISASSIGN *
® TAPES JUST -
. ASSIGNED *
R R T S TR R T Y

*
L3
. OFFLINE -
3 3
3

SAENBARTANN SRR

.
.
.
-
X
-
-

- -
SZEXITX #
- -

. -
sanas
ZONO1LY
FAANNARERIRNRARE,
L] *
RESEY MODE -
CHANGE BIT *
» STRANB .
-

CETYTE Y YTY Y T

.

.

.

.

.
20NOLX X
AARBEBRRARARRRARS
- -
* SET MODE .
® TQO ONLINE #
* OVERLAPPED *

.

-
ARaTERRBRBRRANENY
.

Xeosoe

2nunn
-

. HAVE -
TAPES BEEN -
* :SS!GNED. »

annaw

«NC

.

.

R

.
20F X
SABERARRRABERANRY
» ZASNO1L

#* ASSIGN TAPE &
- UNITS FCR

® SYSTEM INPUT @
SaBARRRANRERRIESE

set by a BYPASS command, appearing at the end of a
scan tape, in the offline mode. STRANB would not be
reset since the BYPASS command card in offline mode
is not passed on to JC4 as the first card of the bypass
job. Control then passes to ZONO1X.

If the source is IPL, a branch is made to ZONO1X,
where SYSMOD is set to online mode (00), followed
by a test of SPPBT2 to determine if tape I0D's have
been assigned. If so, a branch is made to ZOFFO02,
a subroutine consisting of two calling linkages to the
special assignment routine. Both branches go to
. ZON0O1.

If the source is JC1 or operator's source and the
mode is offline, a direct branch is made to ZON001
which is an MCP calling linkage requesting the input
program to make a transition to the online mode.
This is followed by setting up of the acceptance'
message and a branch to ZEXITX.

If the source was JC4 overlapped, the NOP exit
JNOPX is taken. Otherwise the command is in error
and a branch is made to ZEREX2,

The OFFLINE Command

The OFFLINE command (ZOFFLN, Figure 57) is also
source-dependent for its actions. If the source is
JC4 in the bypass mode, a branch is made to ZOFF09
to turn off STRANB. This is the same situation as
ZONOL1Y in the ONLINE command. SPPBT1 is then
tested for previously assigned system tapes, and if
not assigned, control is given to ZOFF02. An indi-
cator, SPPBT3, is also set for test later_to show that
the tapes were assigned by this command. In either
case, control eventually goes to ZOFF1X. If the
source was IPL or JC1, online control is given
directly to ZOFF1X. ZOFF1X is an MCP calling
sequence to the input program requesting initiation of
a transition to the offline mode of operation. There
are two returns from the input program: one for nor-
mal and an end return if the command card is not the
last card in the card reader.

If the normal return is reached, a test of mode is
made; if online, the return address to JC1 is altered
to go to a $RET sequence to JC1. In either case mode
is then tested for IPL. If not IPL, the card reader is
disassigned via the special disassignment routine
ZDSN01. Both branches now lead to ZOFF10 which
sets SYSMOD to OFFLINE(01), sets the present-
command-assigned-tape indicators off (SPPBT3) and
exits via ZEXITX.

If the end return is given by the input program, a
branch to ZOFF72 is made. If tapes were assigned
earlier by this command, they are disassigned and
the assigned tape indicators SPPBT1 and SPPBT2 are
reset to 1. Either branch leads to the error exit
ZEREX2.

Job Control Commands

Five commands are available to operations personnel
to control the flow of work through the system. They
provide the following capabilities:

1. Change the time clock ($TC) calibration con-
stant (CLOCK).

2. Cause the rejection of a job already on or par-
tially on the scan tape (REJECT).

3. Cause the termination of the job in progress
with or without an error dump (ABEOJ or EOJ).

The CLOCK Command

The CLOCK command may be primed by setting the
binary keys at IPL time, or entered via the console
typewriter or system input after IPL. If the command
is accepted, the difference between the time in the
command and $TC will be stored in STIMEK for use
on all subsequent $TIME operations.

The program (ZTCC, Figure 58) prints on the con-
sole typewriter the time computed using both the old
and new calibration constants and the date. The new
time and date are saved to be written on the output
tape with the job card.

The COMMENT Command

The COMMENT command is used for communication
between the operator and the programmer.

The matrix mask determines the actions taken by
the command (VVCOMJ, Figure 58). If the source
is the operator, a branch is made to the VVOPTP
routine where the message is converted to A8 and
written on the output tape. Exit is made via ZEXITX.
If the command comes from Job Control 1, online or
offline, a normal return is made via JNOPX. A re-
quest from Job Control 4 overlapped causes the com-
ment to be given to the operator as well as written
on the output tape.

The REJECT Command

The operator may pre-reject a job by use of the
REJECT command. This should be used only in the
overlapped mode via system input, but it will act like
the EOJ command if entered via the operator's source
in the bypass mode.

The matrix mask is tested for validity of the re-
quest (ZREJCT, Figure 59). If the source is opera-
tor and the mode is bypass, a branch is made to the
$EOJ routine for processing of end-of-job. If the
request is from Job Control 4 overlapped, a normal

‘return is made via JNOPX; if from the input program

card reader in the unoverlapped mode, an error mes-
sage is sent to the operator via ZEREX2. If the com-
mand is entered through Job Control 1, the return

System Operation Programs 111

address parameter in the tentacle table is set to error
return and exit is made via ZEXITX. This will return
control to Job Control, which will note the error re-
turn and the code, and reject the previous job.

The EOJ Command

The End of Job command is used to terminate the
presently operating problem program without pro-
ducing a dump. '

The matrix mask is tested for the valid conditions
for EOJ (JEOJ, Figure 59), These consist of a re-
quest from the console or from Job Control 1 in the
online mode. If either of these conditions are met,
$EQJ is primed, a message is printed through the
output program, and the operator is informed of the
operation. Bit YEOJS is set to permit JC4 to termi-
nate a processor chain. A normal exit is then made
through the mainstream exit routine via ZEXITX.

If the matrix mask shows that Job Control 4 is the
source and the online mode is in control, the com-
mand has already been executed, and a normal return
is made via JNOPX. For any other masks, an error
exit is made via ZEREX2, If EOJ is given between
jobs or before the first job, an error exit to ZEREX2
is made.

The ABEOJ Command

The ABEOJ command is implemented in the same way
as EOJ, except that $ABEOQJ is primed; if $ABEX is
in effect, control is returned to the PP. If $ABEX is
to get control, the problem programmer is informed
that the operator requested an abnormal end of job
and the operator is told that the PP has been given
control through ABEX, The PP is only given one re-
turn through ABEX from an ABEOJ command
(ZABEND, Figure 59).

I-O Control Commands

Four commands influence I-O operations. Two of
these, OUPUT and REWIND, are concerned with
terminating operations of the system input and output
tapes. The EOF command is used to indicate an
intentional EOF at the card reader in the online mode.
The fourth, IOCHANGE, is concerned with changes

in the availability of physical I-O devices.

The OUTPUT Command

The OUTPUT command is designed to permit the
operator to force a change of the output tape before
the beginning of the next job, thus starting the next
job on a new output tape.

The command is accepted (JOUTP, Figure 60) if
the matrix mask shows Job Control 4 in any mode, or

112

if the source is the console. The pseudo-op,
SOUTPT, is given to the output program. Upon re-
turn from the output program, KSILO+1.30 is tested
to determine if the NWIPL option is requested. If not,
a normal exit is made via ZEXITX. The request for
the NWIPL option causes an automatic IPL of the
NWIPL tape after a successful Update 30 run. The
tentacle table for the MVDISK routine is entered at
RNWIPL.

If the matrix shows that Job Control 1 is the source
of the command, a normal exit via JNOPX is given
since the command will be executed in phase 4. Any
other matrix is an error and an error exit will be
made via ZEREX2,

The EOF Command

The EOF command is used to permit the input pro-
gram to rewind the write tape at tape switch time if
necessary. It is a substitute for a non-existing job
and means that there are no more cards available at
the present time through the card reader, and that an
end of file may be written. It also is used by the
logger entries as an accounting device for idle time.

If the source is JC1 in online mode, an entry to
SLOG1 is made at ZEOF19 (JEOF, Figure 60), Fol-
lowing this, a branch is made to JDOIT which is an
MCP calling linkage to the input program to indicate
an EOF condition, If there are more cards following
the EOF card, an end return will be made, which
causes the EOF command to take an error exit
ZEREX2, Otherwise, the normal exit (ZEXITX) is
made. If the source is JC4 in bypass mode, an entry
to SLOG4 is made at ZEOF10; upon return, control .
is given to JDOIT.

If JC1 in offline mode is the source, ZEOF19 is
entered and then exit made via JNOPX. If JC4 over-
lapped is the source, ZEOF10 is entered and then
exit made via JNOPX, Any other source causes error
exit via ZEREX2. ‘

The REWIND Command

The REWIND command is a request to terminate and
rewind the present online write tape.

The console is not considered a legal source for
this command. The input program card reader is the
only source, and the parameter REWIND is the only
one following COMD, as in: COMD, REWIND.

The only acceptable matrix for the REWIND com-
mand is the Job Control 1 source and the online mode
(ZREWCD, Figure 60). The pseudo-op, SKOM, is
given to the input program and a comment to the op-
erator precedes a normal exit from the routine. If
the matrix is Job Control 4 online, a normal exit is
made since the command has been executed already.
All other matrices are considered in error.

PYINY ssase 2xans
- n

1s
- 1s RCE JCl * NO URCE #
* . OPERATOR

lll..

* NO OU NO
. ‘--..ooooX'IN ONLINE MODE BaasessnceX® JC4 lN ONLINE 'o..--o-c-c..X‘ZEﬁEXZ ‘
.

H
#SOURCE #* .BVPASS ' -
HEERE AREN E2222] '....
«YES «YES «YES
. .
. .
.
eXesoenssses .
. .
zTccol X X
HEEER AERERBRBREARRN AR, EXZ 22
* * » * -
® 1S THE * YES * SET -
* TIME ENTERED ®osseesecaX® VVAZER - * UNOPX
* ZE » . BIT *
* -
HEERE ERERRBRRBARAREANR USRS
«NO .
- .
- N
. .
X .
T T I .
. STIME * .
Do ot .
#PUT THE PRESENT#Xessosscesccccssas
#TIME IN MESSAGE®
* .
ERARABRRRRBRBRERD
.
X
EBEE AEARARERFRRARARARD AuEEN
* - - - * -
* 1s * YES #VWAKE BOTH TIMES# - »
% VVAZER BIT MecesesesX® THE SAME IN *.o ceeeeX® VVCTE *
* SET # THE MESSAGE * - -
* * . * »
RSN RARBABARRRRBARAES ARARE
«NO .
x X
AERRERERAEARARANR llllll."."ll..{ AERRRAARRRERBRARN
DETERMINE NEw * . sTI .
* CALIBRATION - L s e i .—l-.-}
CONSTANT FOR EoscocaeeX® PUT NEW TIME Xeoo
* THE TIME * IN - QS AND STORE *
- NTERED * MESSAGE * » ‘9% NEssace
RARRRFRRERERRRRER ".'.‘.'.'ﬂ'.i". Ql‘.lli!.'ﬂ!l"!ﬁ
.
x
RBER RARTRARBAARAETRER aARRR
» . . SCOMM »
- - E e e O e ok s ted - 1s * YES
rVVCOMY * #GIVE TIME/DATE *eesssecseX® DATE FIELD _ %ase
* » » MESSAGE * * BLANK _
- - - - »
RN RERBARAERRRABERRN HARER
- «NO
- .
. .
x o
e Exnan .
* * . - - SA61QS - ‘CONVERT DATE TO‘
* 1s * NO * 1S TRE * NO » * * A8 AND »
» JC1 ®ecesseeaX® OPERATOR Reeesen * IN STODAV o -............xi JINOPX *
#THE SOURCE * *THE SOURCE * * WRITE ON THE # -
* * * " b * QUTPUT TAPE ® ' -
ErRRE RRAR RERBRRERERRERRRAS ARERRERERRRERNREE tARER
<YES «YES .
. . .
. . .
: . .
. . .
X X X
aRRER L2222) ‘.."..l.{'..”il
* . . » SCOMM
* »* - - '—’—l’ L X B B .—l—l
* JNOPX * *VVOPTP * 2 GIVE COMMENT 3
- - * - T .
» * * . T obcha Yon
T reaunn P4 -Liro) 41 S
. .
. .
x VYTPCN X
.‘l".'l"“.il‘.. t22 3 - REEN
* * S10SA8 * . ZSPLPR » . *
* PICK UP I Sug-5ie- S PR e * -
COMMENT IN '........xccouvenr COMMENT'........X. WRITE COMMENT #cccescscscesX®ZEXITX ¥
» 1QS FCR T0 I ON TAPE * - -
- I ' » *
'III..'.IG!C.'I!I RERARNBRABRBRRRNN I. ERRRBERBARRES EREEN

Figure 58. Clock and Comment Commands

System Operation Programs

113

nnes rREen
* -
* * - s -
#ZREJCT #,, * JC4 IN
* * #OVERLAPPED #
* * * MODE %
EERE
"EnER
» -

- *
* JEQU %
» »

- *
AL L]
.
.
.
X
LR il
[1s * NO
. JCa IN LEREET TR T .
#OVERLAPPED # » X
* MODE # .
RN .
«YES .
. . .
. . .
. - .
X X . X
RERE EX 2213 - L2221
- 3 . . . -
* » % 1S _THE * ES o b -
* JNOPX * * OPERATOR THE ®eqeses #ZEREX2 *
* * # SOURCE - - -
* - - - - -
ERERE SREE EBRE
«NO
.
.
.
x
RERNE rene
» - -

* - - .
®ZABEND # *ZEREX2 #
* * * »

snase

Jc1 1IN
#OVERLAPPED
MODE ¢

wanon
«YES

Xesane

e 2SPLPR
e X#TELL
* 0

LLIITY Y TR Y Yy Y ey
- -
* SET ERROR
®RETURN ADDRESS
L

BLE F C
ARRBERRRBRBRREREN

Arsnessanssasoens
L N e ot
PROGRAMM
PERATOR GAV

-
P IT TR TR Y I

nunn
* -

. -
oX®ZEREX2 #
* . -

. L]
snene

LT Y)
- -

- .
SX#ZEXITX #
. -

L] *
sennn

ssasanssscsnusnan
-

- »
#ZEXITX ®
. L]

- -
sEnes

L I I Ty 3
COoM

X GAVE
#PP CONTROL EACK¥
RESRERARANRENNARS

* - - -
ERRER ‘RN
.
.
:
L2223 thann HRERE HERRN
» - - - - - -
. 1s * NO - Is * NO * IS THE * NO - -
* JCa IN LRPTTYYReS ¢ JC1 IN %esesceeeX® OPERATOR THE #cccecescccssX#2EREX2 #
#OVERLAPPED # ONLINE * SOURCE _ # . .
MODE # * MODE » »
rEBAR LXX22) *EEEN ,EERS
«YES «YES «YES
. . .
. . .
. . .
. eXassssesacesessscecocanane
. .
X ZAECGJIX X
*RERN (22223 ananE
- . * IS IT # - .
* - * BETWEEN # YES i *
* UNOPX # #J0BS OR_BEFORE ®ecsecoccecseX¥ZEREX2 #
» * FIRST JOB # . .
N » B . .
L2223 ‘RN E2ZE L]
«YES
.
.
.
X
HARAEABERARR NGRS EHERRREARARRRAEER NS LXX2 23
SPLPR . - SPRIME .
it e it b ttied
*TELL PROGRAMMER#¥, e X¥
* OPERATOR GAVE # ‘
* A - - ON OUTPUT - .
LEEAZ 2 RS2 22222) RARBERARABBANTREY EERBN
Figure 59. I-O Commands - Chart 1

114

[TYTR) XTI sunen
* - . -
*JouTP # #ZREWCD %eoeovesoscoaaX® JC1 1IN JC& IN
* L] #OVERLAPPED # SOVERLAPPED #
® MCDE * #* MODE *
wrnun sennn Ly sy

- +YES «NO

. . .

. . .

. . .

. . .

X X x

ranne rERER T Ty e) Euan
- - - SKOM * - -
* Is * YES * R L BT ST B * »
JC1 IN ®eseesecesnosX® JNOPX - NOTIFY el SZEREX2 *
#OVERLAPPED # * * * INPUY OF . * .
MQODE * *REWIND REQUEST * - -
Ly nEnw EAERRRSEEARERRERS nunw
«NO -
x x
wnnan ARREERRENBERSERRE ann
*(S THE # * SOUTPT e - -
F e o N P * [3
* sseeXt INF ORM * #ZEXITX ®
- OUTPUT OF * * -
e COMMAND * - -
ARARARERBERG ARSI LYY
.

. .

. .

. .

X X

wunn nEEE sannn
- 1 * * .
» * # THE TYPE # YES * CALL #
¥ZEREX2 * #CARD HAVE NWIPL®acoessssccceX® 22- &
* L4 * OPTICN L #MVDISK #
. - - * -
rans wnens nuve
«NQ
.
X
IITT) ennw
* 0
* * » »
* JEOF # SZEXITX *
* * * .
* 13 * .
rrane Enun
-
X
23] HEAE [XTET) ranan
* s *
* 1 * NO #THE SOURCE # NO 1s . -

* JC1 IN BeesavseaeX¥® THE OPERATOR PececooseX® JCL IN feessnoceeX® JC4 IN *
* CONLINE » * * * OFFLINE * *OVERLAPPED *
* MODE * - * MOCE # * M .
ey R annan uEEn

«YES «YES «YES +YES

. . .
. . .
. .

X x X x
ARARSERRE AR R AANN ERARARERRRAG AN ERERBERRIRARAERGR ErsneREERREERERS R
. SLOG1 - . SLOGA . . SLOGL . . SLOGS .
e e e S) L B T S T S P B e e e B 2)

* - DISASSIGN - SS -
PUNCH + PRINTER# -

= NOTIFY

* ACCOUNTING -

- PROGRA *

ERRRRERBERE RSN AN
.

eXeseseasssrssescssccncana

x
ERRRRERERRARRN RN
. K »
B LT
* NOTIFY INPUT o
. OF EOF

.
- REQUEST *
EEERERRRRERANREN Y

+NCRM

.

.

X

LT
*

* *
*ZEXITX *
* »

*
nEn.

ERR

eee

*
#TELL ACCCUNT PR#*
RARERRAR RSN NN

.
.

anwas
.

» »
e veXBZEREX2 *
- .

Ll
nnnw

Figure 60, I1-O Commands - Chart 2

- NCTIFY M
#* ACCCUNTING *
PROGRAM *

"
FRRRRRRBREERRREN

.
.
.
.

. -
aesscscsccscsncscscnsX® JNOPX &
. »

cnuna

YES
LY

sanas
. L]

- -
sennn

(1221

- -
" *
«X®ZEREX2 *
- *

- -
annew

System Operation Programs

115

The IOCHANGE Command

The IOCHANGE command is the method by which the

operator may make a unit or an entire channel avail-
able or not available to the system. If an MCP unit
or channel is made not available, an attempt will be
made to assign a similar piece of equipment to MCP.
A unit or channel is available if it is physically
capable of being operated by the system. A unit is
assigned if it is presently logically connected to
either MCP, or the PP which is presently operating.
The format for both console and card is:
COMD, IOCHANGE, Channel, Unit, Code, Type
where:
Channel is the decimal number of the channel.
Unit is the decimal number, 0-7, of the unit. It
is applicable only when a unit is being acted upon
as distinct from a command relating to an entire
channel. In the latter case, the symbol ALL
should be used.
Code permits one of three available options to be
requested:
ADD -- this makes a unit or channel available.
DELETE -- this makes a unit or channel unavail-
able and is normally given in
response to a service request from
a program which has had repeated
failures on a unit or channel. .
DELETM -~ this makes a unit or channel unavail-
' able for maintenance purposes. It
is restricted to units or channels
which are not assigned to MCP or
to an operating PP. An error
return will be given if DELETM is
requested for an assigned unit.
Type is used only if the Code is ADD. It must be
one of the following:
READER
PRINTER
PUNCH
If the operation is ADD and the channel is a single-
unit channel, a different type of equipment may be
attached. Jf the subfield is null, the Channel Status
Table will reflect the same type of equipment. For
both channel and unit numbers, if a request is given
for a piece of equipment which has no corresponding
Channel or Unit Status Table entry, an error return
will be given.
Note: If a deletion of an MCP unit is requested, it
may cause the ending of the currently operating PP.

Validity Testing: The matrix mask for source and
operating mode is tested for valid IOCHANGE situa-
tions (ZIOCH, Figure 61). If the request is from
Job Control 4 in the overlapped mode, it has already
been processed, and a normal exit is made via

116

- tenance.

JNOPX. If the source is operator or Job Control 1
online, or unoverlapped Job Control 4, the command
will be implemented. If these conditions do not exist,
an error return is given via ZEREX2.

After validity checking of the command request,
the channel number is obtained from the command
message. If a disk channel, a branch is made to a
special disk routine ZDSKCH. If it is not a disk
channel, the channel number is tested for a valid
basic exchange channel number. An error exit is
made if the channel number is not possible for the
present configuration. This is determined by refer-
ence to SXCHAN.

Unit or Entire Channel Change: Upon completion of
validity testing of the channel number, it must be
determined if the request is for a unit change or an
entire channel change. If the request is for a unit
change, the unit number is tested against the number
of unit status table entries for the channel. If the
unit number is high, an error exit is made. If the
request is for an entire channel change, a switch PG1
is set, and in either case, unit or channel, control

is returned to the next test at ZACTON.

If the channel is a multi-unit channel, the system
configuration change bit SCHFCG is set on. At this
point, a test is made of the entire channel change
switch. The action for a unit or entire channel is very
similar, but the two must be performed separately
because of minor differences. They will be discussed
jointly, with minor differences noted. '

The operation code is tested, and if it is ADD, a
branch is made to the unit or channel add routines
ZADDCH or ZADDUN (Figure 61). If not ADD, the
op code must be DELETE or DELETM. The available
bit for the unit or channel is tested, and if not pres-
ently available an error exit is made to ZEREX1. If
it is available, the channel or unit is made not avail-
able. At this point, if the request is to delete an
entire multi-unit channel, a branch is made to
ZMULCH (Figure 62). If the unit is not assigned
(ZQUESL1, Figure 62), a test is made for DELETE or
DELETM at ZMAIND. If either, a normal exit is
made; if neither, error exit ZEREXI is made.

If the unit is assigned, a test is made for DELETE.
If not DELETE, an error has occurred, since an
attempt was made to delete an assigned unit for main-~
In this case, at ZMNERX (Figure 62), the
unit or channel is made available again, the configu-
ration change bit is reset, and if DELETM, exit is
made to ZEREX2, otherwise to ZEREX1. If the unit
was owned by the problem program, a branch is made
to ZABEOJ, $ABEOJ is primed, a message is written
through the output program, a comment is made to the
operator about the change, and a normal exit is made.
_If the unit was owned by MCP, a scan of the status

tables by ZCHSCN (Figure 63) must be made to find
a replacement unit. After return from the scan, a
normal exit is made via ZDONE toZEXITX.

Multiple Unit Channel Deletion:- In the case of a
multiple-unit channel, when an entire channel is to be
deleted, the special case of both MCP and PP owned
units on the same channel must be solved, If PP
units are on the channel, the PP must be removed by
$ABEOJ eventually., If MCP units are on the channel,
replacements must be found, each one individually by
. the scan routine. The procedure for deleting an entire
multi-unit channel at ZMULCH begins by the count of
units on the channel being established and used as a
control by index. A test is made to determine if the
indexed unit is assigned. If not assigned, a branch
is made to ZQUS11 which tests if the code has been
examined for DELETE or DELETM. If not, PG6 is
set and the operation is tested. If already tested,
the units on the channel are made unavailable. At
ZQUES22 a test is made to see if there are more units
to test on the channel. If so, a branch is made back
to ZQUESL to see if the next unit is assigned. Ifthere
are no more units to test, a switch PG5 is tested to
determine if any units on the channel were assigned.
If not, the code is tested at ZMAIND for validity, and
error or normal exit is taken, depending on the out-
come. PG2 is tested; if there were assigned units on
the channel and at least one was PP owned, a $ABEOJ
should have been given for the PP, In either case,
whether or not there were PP units on the channel, a
comment is made to the operator about the change,
and a normal return made.

Previously, at ZQUESL, if the indexed unit tested
was assigned, a switch PG5 was set for later use and
the code is tested for legality. If illegal, a branch
is made to ZMNERX and the channel is made avail-
able again, the configuration change bit is reset, and
an error exit is made. If the code is a legal DELETE,
the unit is made unavailable and the question of owner-
ship arises for the unit under examination. If PP
owned, a switch PG2 is set for later use, and then a
test is made for any more units to be examined on the
channel at ZQUES22, described previously.

If the indexed unit was owned by MCP and not PP,
the unit is set unassigned, and a branch is made to
find a replacement via the ZCHSCN scan routine.
Upon return, a branch is made back to ZQUES22 to
determine if there are more units to examine on
the channel.

For the ADD code, a test is made at ZADDCH or
ZADDUN of unit or channel availability. If already
available, an error return is given via ZEREX1. If
not, the unit or channel is made available and the

status table is cleared. If a single-unit channel, the
type of equipment on the IOCHANGE request is entered
in the status table via ZINSRT, and a comment is
made to the operator before normal exit.

At ZDSKCH, the disk routine tests if the request
is for an entire channel. If not, an error exit is
made. If so, a test for ADD code is made. If it is
an ADD request, and the channel is already available,
an error return is made via ZEREX1. If unavailable,
the channel is made available, the configuration change
bit is set, and a normal return is given via ZDONE.
Replacing an Unavailable MCP Unit: The scan

routine (ZCHSCN, Figure 63) for MCP unit replace-
ment attempts to find an unassigned unit of the same
type to replace the MCP unit being made unavailable.
If unassigned units are not to be had, the PP will be
given a $ABEOJ and one of its units will be assigned
to MCP. If even removal of the PP will not produce
a unit for MCP, the operator will be told by $COMM,
the VF of $9 will be cleared to indicate an error and
control returned to the user. These objectives are
accomplished in the following manner.

Indexes are initialized for the channel and unit
status tables as necessary. At ZLOPO a test of
equipment is made on the indexed channel status
entry against the type of equipment on the channel to
which the deletion has reference. If not equal, the
channel entry index is incremented at ZLOP1 and a
new channel is examined until no more channels
exist, at which point it would branch to ZREMOV.

At ZREMOV if no more channels exist to be examined
and no available channels had equivalent equipment,
an error exit is made with the appropriate comment
to the operator at ZNTFND. If there are available
channels of the same type of equipment, they must
have had assigned units. Therefore, a second pass
must be made through the scan to remove the PP
units and give them to MCP. A switch is set at
ZREMV1 so that this sequence is followed only once,
since the assigned units could have been MCP and
would not have been obtainable, and a branch is made
back to ZCHSCN.

If similar equipment is found in the search at
ZLOPO, then (at ZOKEQP) the channel availability is
tested. If the channel is not available, the search is
continued at ZLOP1. If the channel is available, the
availability of a unit is queried at ZIGZAG. If the
unit is not available, other units on the channel are
examined, until either a unit is found which is avail-
able or no more units exist on the channel. In the
latter case, return is made to ZLOP1 to determine
whether any more channels exist for test.

When an available unit is found, control passes to
ZAVLUN and again the question must be asked if this

System Operation Programs 117

nnne 2nunn
l l a
EYPASS' NO
' Z10CH '.o-o--o-oo-ox' OR SOURCE JCL #e0a0e
- lN gNIE.INE -

; n
L2312 Lt
«YES

.
ZTSTCL

RERRREREAERBAENE
- -

b CLEAR b
* PROGRAM -
. SWITCHES *
* -
RERBRRBBARRRERANS

Xeoooe

auuu-unnﬁ;a.q'udl
CONV! *

- - o-a-b-'-;-«-n—c-
RZEXITX #Xesooaes #EDET ZEROS AND *eusas
* * SELANKS [N UNIT &

* A . #AND CHANNEL NCS#
enuE . CEI T T YR Y Ty Y e

X .

. .

. .

. .

. .

. . 2ZCSKCH
FRRARRBERARBRARRD . AERERARB B RG R RN
* SET CHANNEL - - *

- - ADD CR -
eecese® DELETE FOR $Xeo
M -

*
» AND UNIT *
#AVAILABLE BITS &
- AND CLEAR - DISK CHANNEL
STATUS TABLES *»

L T T T et

-
AERABERBRRBR AN RN,

b3
A
«YES
X
* -
% 1S THE -
» CODE Xesasae eesecescrascsas
. ADD *
*
renue
«NO
N
X
ERERE RAREe
») » -
* IS ThE * NO * -
* CHANNEL ®eceessraveos XNZEREX] #
AVAILABLE * * »
- . . -
e ansue
«YES x
. .
. .
. .
. .
. «NO
. "EANE
.]
. » IS THE *
- * TYPE *Xeooo
. - VALID .
- - -
. LE A2
. +YES
. .
. .
. X
. “rrEERERRRRENSIRR
- - *
. - SET THE -
. * ERROR *o
. - CODE g
. . . »
. RERARBEARRRR BN
.
.
X
Py snuunn
* * * *
. s * YES * -
» CHANNEL ®ecsesescaes s XEZMULCH
*MULTI-UNIT # » -
*) - .
YT Ly
«NO
.
.
.
.
X
LA A2 RENE
» -]
® IS TrE * YES ® 1S TrE * YES
- UNLT ®eeseoveeX® CODE DELETE H*esees
#* ASSIGNED # - -
. * * .
RREN *HERE
«NO «NO
. .
. .
. .
X X
axans cxnne
. . .]
» » - [
*ZMAIND # #ZMNERX #
. » » .
* * - *
RERER "HEEE

Figure 61. IOCHANGE Commands - Chart 1

118

. LITY Y
. .

Is
* JC4 IN * NO
seeX® OQVERLAPPED 1]
. MOCE *
[

wnune
<YES
.
x
suene
- »
* JNCPX ®
XTI
“nunn RALLL [TTYT)
nls ANY ® L] -
IT OR #* YES . -
...xcanNNEL Nuussa -............xozsaexl 0 SZMAIND #
. .
Q o
nnun
X
.
.
.
.
.
«NO
ranse
Y » - -
® IS THE # YES * IS THE *
* - UNIT LETYTRTREY { UNIT
* AVAILABLE * * ASSIGNED #
- * . .
renan [TTITY sanes
«NO x «YES
. . .
. . .
. . .
. . .
. . .
ZACTON X «NO .
. [TT2 .
- - .
IS THE - .
CODE * .
- ADD » .
* .
LTTT) wnnun .
«YES .
. .
. .
. .
. .
ZADDUN X .
sanna *nnaw .
- . -
YES = Is 17 * NG #* IS THE » .
vees*® A SINGLE UNIT #Xoeoaseose® UNIT .
. #* AVAILABLE * .
. - . - . .
N anann wenua .
. +NO .
. . .
. . .
. . .
. . .
. . .
. X .
. AL I T TR XYY 2T .
. - * .
- * SET UNIT . * * .
. ®AVAILABLE BIT. * #ZEREX1 * .
CLEAR STATUS & * - -
ol TABLES * * * .
FEREARIARRI R B N annes .
. .
. .
.
X X
senan annew raeae
*) » - L3
. * - * NC # IS TEHE -
ce s XEZEXITX # #ZMNER9 #Xeeooses o CODE DELETE #
* . * * . .
» . *] .
LT sanes “nusw
«YES
.
.
.
X
cnnew anvas
.

YES # DOES PF -
o« HN TNE .
-

.
-
E#RERN L2221)
«NO
.
.
. .
. .
+YES X
AREEE ARRRARBARERARNAEN
* » * 2ZCHSCN *
- DOES PP - Lt D B 21 PY PR 2 2
cesseccecccssasissscncsassne e Xt OWN THE - ® SCAN FOR .
* UNIT . s ANOTHER UNIT
- FOR MCP #
£ 222 AEARAEBBERNBBRNEN
«NGC .
.
.
.
.
s .
X
...Q..I'IQ..'.... '.'..
» 2ZCHSCN .

% SCAN FOR AN ..-..--o.-...X‘ZE!l‘X l
* AVAILe SINGLE ' *
UNIT CHANNEL 0 *
Illl.ll..l!.l.ill XYL

«n.no
u

0 n
'ZMULCN '----...-....K‘AND UNlT COUNT O........xn
-

00!06

F2213]
* .

- -
#ZQUES] ¥eeessscssveaX®
- *

* »
EXIT TS

PR
* *

- - NO
% ZMNERX #Xosoovssonccah
* .

* »
AREE

Xeseoses

FEERRARRSARER NN
»

- MAKE

» CHANNEL
- AVAILABLE
»
*

ARRRABEARBRRANAD
.

-k

cenen

ZMNERR X
SREARERAERRRERAAN
*

hd RESET THE e

CONFIGURATION *Xeas
- CHANGE B IT- '

* {SCN
l.l!}lli."illl‘i

Xt o000

Ty
-

* 1S THE *
#* CODE DELETM
- *
ey
+NO

.

x
AR
» *
* »
*ZEREX1 *
» -

» -
FYITYS

Figure 62.

n'nol‘&..dnil'-!c

G
BASE ADUQESS

CHANNEL
l-uuiupnunaounnna

.

X
snens
Is
THE UNIT
* ASSIGNED #
* -

Ry
«YES
.

X
uqq-uu.onnuauuin«

SET ASSIGNED l
'UN!T INDICATOR hd
. s) »
rrrEsruEEeresesy

.

Xesene

nunn

- T -

[T

BERER
» *
- *
#ZMNERG *
» -

- *
asnnun

Xe oo e

‘quunn.ni-!!l'lo
l MAKE UNIT

o® AVAILABLE ANC '
* UNASSIGNED el

. »
EARTURARA R BN A AN

FYYYTY

YES * *
®eseesessecses e X*ZEREX2 *
» -

* *
YT

IOCHANGE Commands - Chart 2

IS THE A
CODE DELEYE‘ LT
-

NO
FosaseveeX®

.
.

Ensew

* IS THE * YES
CODE ADD

aman
«NO
.
.

eeses

2Qusll
[TI17]

-
* WAS THE #
OPERATION
#* TESTEOD *

*
anunw
«YES

.

-
.
ZQUES2 X
EARRBARARR G ER RN
* .
- SET UNITS *
eeX¥% UNAVAILABLE #X.
* -
* *
AEERBRBERNRBARERS
.

Xe s oo

anuEn

a [-
* * YES
* ouNER OF ru:s LY

0
®esesess s X*TEST INDICATOR
* (PG6)

ZADDCH
ARBARERBRERIER RN,
0 SET CHANNEL 0

'-ooc-.--X: AVAILABLE AND :....l'.ll

M CLEAR STATUS
RAARNRBRABRRERNEE

REARRRRERRAB RN
-

% SET OP CODE

IYTLY]

*
ARRRBRERERRRARNRS

ZNCPMC
RRERRAERRANBREARY

- »

SAVE QP CODE. .
o X® SET UNIT

'UNASSKGNED SIY.

ee X

senas
- L]
- *

CX®ZEXITX #*
- .

- *
annan

AR
- *
3 -
«X®ZEREX1 #
. 3

* -
anunn

Il'llilll.ll e
ZCHSCN -

| L e e e B O B
SCAN FOR A bl
* NEW MCP UNIT *
-

-
ARERRBRASARBARRN,

anune -

«NO .

.

. .

x x
HREARBFARR AR .'Gll ERRE
* * ' * ARE -
* SET PP UNIT * YES #MORE UNITS #
* SWITCH -............xozauzszznx............- AVAILABLE #
* (PG2) * * FOR MCP_ %
M M
ARERRRARERRRRREER "COI EARRN

«NO

annne
BARE ANY#
#MQRE UNITS *

E2 2 R 2]

* .
» *
+ JNOPX *
* *

. -
anunw

seesn
-

!
*T0 BE EXAH!NED l-...........xlzouEsl -
-

»
'CHANNEL’
e Y
+NO

x
xans
% ARE #

b -
rnens

REEnn
n

ANY UNITS * *
#ON THE CHANNEL .--o'-ccc---.X'ZMAIND '

% ASSIGNED #
- -

anane
<YES

.

x
LT
- 0
* ANY .
* PP UNITS ON
#THE CHANNEL®
-

wanaw
«NO

L3 »*
#ZEXITX ®
- »

- -
seanw

»
nu-uu

lllil

s b
'c-o--acooc--X'ZGUESQ *
»

* *
anan

System Operation Programs

119

(222 1] 'n OQQICUOQIQIQQ
- -
. - OSET upP INDICES '
#ZCHSCN X® FOR SC. AND
- ‘NESSAGE couNTER'
-
snnun -unucunuuuuu‘

eseecscsne

.
20KEQP_ _oNO 2L0PE _ oYES
HERE "HRER
»
* 15 A
. CHANNEL
AVAILABLE # . DAT
. . . . SCOUNTER®
‘HRAR HHANE 2211
«YES «NO
. .
. .
. .
. .
. .
x ZRENOV X
LA xR ARRARBAABARARRRAS sREne .Ill.
- . T osET MT

- »
#* WAS THIS # NO
THE SECOND '.--..-o..-o.X'ZCHSCN '
- PASS *
* -

* IS IT A # NO
MULTI-UNIT .-n--...-X. SINGLE UNIT-
* CHANNEL

rexa

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
* "STATUS DDNESS.“ ' .
[y ASBRIRBNEINANERI NS sunan canan
+YES . «YES
. . .
. . .
. . .
. . .
. . .
ZMULUN X ZIGZAG X X
RARRBRBRBARBARARE FREERAR AR OB RN Ennen BESRRRRRRRSRINES
GET COUNT ON # * * . - SCOMM
MULTI=-UNIT * #FIND AVAILABLE # - CAN * NO bttt Sttt iuebtel
* CHANNEL » *eaeeosas X*UNIT AND UFDATE'-.-.. . ANY UNITS ’o.-n----X.NO REPLACEMENTS#®
®GET UNLT STATUSH * UNIT NUMBE! # BE USED # FOR OELETED '
% BASE ADDRESS. # - ’ - - MCP UNIT
LI e ey BEEBEERBRRERORNEN wnane ncnuaalunuuntol
«YES .
.
. .
. .
. .
X X
annaw ARRARERNER RS RN cannn
» » I3 SCOMM . »
» - B il gt * -
#ZABECJ * % TELL OPERATOR %.ccecsscsessX#RETURN ¥
. . ® WHAT UNITS » .
. » 4 TO CHANGE . *
(213 ARAERERBARRRRRREN anane
.
.
.
.
X
HRARANBR RN BRGNS
- 2SPLPR »
Q-n-.---n-n---n-'
- -
n ﬁHOGRQMHEF *
-
qunual-n*-uuuu
.
.
N
HERREBREB AR RN wnane enue tenne
SPRINE * * - * . -
L
- PRIME
: $ABEQY
HRSERERENRER AR
. .
. .
. .
. .
. .
X X
RERRRESRRAAR AN R nnuuonuono-nu-
* SCONM - - 2SPLP
LR Il S S S D B B L IR B 2 P !—Q..-.
® UNIT DOWN AND * *PUT REASON FQR #
#0ELETED. ASECJ * s AsEod oN .
* 0 PP * QUTPUT TAPE #
EEIT I I RY T R PR A anlnnoqnlnuqncnq
. .
. .
. .
. .
x x
LT TR runae SRREBERSRNENNDUS
. . - 3 * PRI .
* » * » L e o]
#ZMAIND # BZEXITX # * PRIME .
* » * * - SABEOJ .
» . . . » -
Ennnn XTI EERANBRBERRRRR RS
. .
. .
. .
. .
H .
X
e ARBEAERBARARAREER wraen FARARRRARRERER BN
* RESET THE * * * * SCOMM .
* 1S THE * NC #CHANGE BIT ANC # b - "'-.-.-'—l e Sl
CODE DELETE #eseveseeX® MAKE CHANNEL *oosvecssceceX®ZEREXL * TELL -
* . - AND UNIT » * - . OPERATOR -
- * ®AVAILABLE AGAIN® * - - OF ABECJ *
nn HENBEERSFRNRIRSES snnen SEEERARGRERNRNRYS
+YES -
. .
. .
. .
. .
X X
¥ »*
* - » -
* - - *
RZEXITX # SZEXITX #
* - * *
3 * . .
[TXYT] LETET)

Figure 63, IOCHANGE Commands - Chart 3

120

is the second pass through the scan (PGO). If it is,the
first PP assigned unit found will be taken. If the unit is
owned by MCP, a branch is made to ZTSTPP to
determine if any more units are to be tested. When
a PP unit is found, the ownership bit is set to MCP.
and the unit is protected from unassignment when the
eventual $ABEOJ is implemented. $ABEOJ is primed
and a switch PG3 is set to tell other sections that the
PP has been already primed for $ABEOJ. A mes-
sage is also put out through the output program and
a comment made to the operator. If the channel is
in operation or in setup, the program will loop until

" the channel is not operating. A branch is then made
to ZSETAS which will clean out the status tables of
PP information, set a new unit area address in the
unit status table, new unit and channel numbers in
the unit area, and put out a message to the operator
to change units. A return is then made to the user of
the scan routine within IOCHANGE. Within ZSETAS
there is a branch switch at ZLODLP for use by spe-
" cial assignment. This permits a branch out before
the regular message generator of ZCHSCN is used.

At ZAVLUN, if it was not the second pass through
the scan (PG0=0) , and the unit being examined is
assigned, a branch is made to ZTSTUN to test for
more units. If an unassigned unit is found, unit
ownership is set to MCP, and the above cleanup rou-
tine of tables, etc., is entered at ZSETAS.

The Special Assignment Routine

The special assignment routine (Figure 64) is used by
the command package or the input program under the
following circumstances:

1. A mode change has been requested which re~

- quires that tapes be assigned for use by the input program.

2. A mode change to off-line has been requested,
and the card reader must be unassigned to be made
available to problem program.

3. An IOCHANGE command has been requested
which requires re-assignment of MCP units.

The special assignment subroutine consists of two
routines using a common subroutine. When assign-
ment is required, the linkage is:

SIC, ZCOM90

B, ZASNO1

VF, (I0D number)

When disassignment is required, the linkage is:

SIC, ZCOM90

B, ZDSNO1

VF, (IOD number)

The two routines, ZASNO1 and ZDSN0O1, use a
common subroutine, ZCOMO01, to save indicies and
set up status table references. Dispatcher error
control is entered if the IOD number is zero (type 4),
or if either a unit cannot be found to assign, or the
unit to be disassigned is not presently assigned or is
suppressed (type 82).

System Operation Programs 121

LT3 L2221

» - - Ll
- " - -
#ZASNOL # #ZC0MOL &
* . Ll »

» - L] »
[IYIYY nane
-

seeee
Xeosoos

X
ARURERERRRERREEND avuun RESBIRRNNNGB RN
* o1 * . -

® SAVE INDICES #
#GEY 100 NUMBER #
: AND ADDRESS &

-
RSB RNR SRR NS

2¢0 . 15 ¥
Lo R o e e 2 2] # CHANNEL #
* SET UP ®oossovee X
* REFERENCE TO #

OR UNIT
* AVAILABLE &
* STATUS TABLES # - *

ARBRARBERERRERENY *RNu

+YES .

. .

. .

. .

. .

. .

X X X

LiX 2] SRRERBBSERBANGO RN L2222) HEEN
- » * ZCHSCN . [] . »
*« IS THE = e b BT + SDISP YES ® DOES L3
UNIT » SCAN - esecceca® 16D EGUAL #
4 ASSIGNED # * FCR * - ZERO 1
- - . NEW UNIT * - -
L2222) HERFBARBARIABRNRE tnuny aAnann

«NO . «NO

. . .

. . .

. . .

. . .

. . .

X X X
HBRBARBERDAR GBS LA R R L2 X212 SARERRBBIRVARAEES
- - - - . - - "
% SET OWNER AS * # WAS A _* NO * SOISP * - SET _UP .
#MCP, CLEAR THE # # REPLACEMENT #.ccsccssscecX® (TYPE # # INDICES To @
* STATUS TABLES * - FOUND - * 82) - R *
* * - . - - * STATUS TAELES ®
AR R II X2 RS2 22222} L2il 2] NERR. HEBBNRNGRERNEYN *

*YES

ZASNSL X
RN RABRRBBERBRABRNEN
» . » .
» - NO - » - -
#RETURN #Xeososcsecoast . . UPDATE . #RETURN #
* * - TABLES . - .
- . . - -
reuNE HERBRBABARBR RN snsan
.
.
.
ZASNOGS X
funn
.
® 1S UNIT # YES
eX® ATTACHED TO %ccecsvsccccsesscns
- McP - .
waue .
«NO .
. .
. .
ssscssscsacXe .
. . .
. x RNOTPE X
reunn . anane FRBERRNRARNRNINAN Y Ys
* - . - * - SUNLD . . .
- " - 1s & NO L Y R oy S 11 [»
*ZDSNOL # TAPE Raoe «X® UNLOAD THE %o X#RETURN @
- - # REWINDING # - TAPE L . .
- - - - L] L -
RERES LARZ 2] HBEBEBES en (X222
.
.
.
AERRRRRERARRRRRA sanan aneee
- 2COMO - #IS UNIT® . -
P R Lo L I B % ASSIGNED # NO * SDISP *
et SET UP %oeeoasaosX® AND _NOT ®esecascnnaseX® (TYPE #
* REFERENCE TQO # #SUPPRESSED % * 82) =
* STATUS TABLES + - . - *
HBRERRBERRARRRRE *NREN rHeE"
«YES
.

X
ERRARAERRERRARAR R
- -
- CLEAR UST -
- »
®CISASSIGN UNITS#
» *

CIITTYTTRRRYYYY Y Y
.

.
.
.
X
Herne ERASREENARERERRRN LT
* » » SCCMM] . .
» IS IV + YES [R e ol
MULTI-UNIT #eososoaasXt
* CHANNEL ¢ b
* . #SYSTEM TP MOUNT¥ . -
LT FARAREERRRBNB RN snanw
*NO
.
.
x
seuan
- .

» -
*RETURN #
. .

- .
ssasn

Figure 64. Special Assignment Routine

122

The three major packages in MCP that perform sys-
tem I-O functions for both PP and MCP are:

1. The input program

2. The output program

3. The disk fetch program
The input program is designed to overlap preproc-
essing with input data transmission. It keeps two
input sources active, one for phase 1 and one for
phase 4, and handles the details of tape switch for
the input sources and mode change. It performs one
pseudo-op, $SCR, for both PP and MCP; and two
others, SCR4 and SKOM, available only to MCP.

The output program blocks information into print
and punch records on the output tape, and attends to
output tape control and separation of the output of
jobs. It performs the pseudo-ops $SPR and $SPU;
the output command; and its special EOJ pseudo-op,
SSPEOJ.

The disk fetch program performs the $FETCH
pseudo-op to read named material from PROSA.

THE INPUT PROGRAM

The input program is a major package which performs
three pseudo-ops. It uses two tentacle tables, and
operates enabled but usually in SIO mode. Its basic
function is to pass input (cards) to JC1 and JC4 (see
system operation programs), and to the PP.

The logic of the input program is almost completely
determined by system mode definitions. Therefore,
before discussing the program itself, system input
modes will be reviewed from the point of view of the
input program.

System Input Modes

There are two logical modes of system input: over-
lapped and bypass. The overlapped mode is so named
because two functions are being performed at one
time:

1. Scanning of input (jobs) for purposes of pre-
. assignment of tape units.

2. Buffering of input (jobs) in order to execute
jobs.

The processing of a given job is considered in two
phases: Phase 1, scanning the I-O requests for the

* The titles ""Phase 1" and '"Phase 4'' were chosen to
allow insertion of intermediate phases for multi-
programming purposes at such time as this is
desired.

SYSTEM INPUT-OUTPUT

job; and Phase 4, the execution of the job. * The
overlapped mode is further divided into two modes:
online and offline, according to the phase 1 input
source. If the phase 1 input source consists of cards
from the online card reader, the overlapped mode is
online. If the phase 1 input source consists of card
images from a magnetic tape prepared by one of the
system peripheral input programs on the IBM 1401,
the overlapped mode is offline.

The second of the two logical system input modes
is the bypass mode. The bypass mode is so named
because the phase 1 function of scanning I-O requests
is bypassed. All I-O assignment is done on a per
job basis, immediately prior to execution of the job.
The bypass mode is provided to allow interruption of
overlapped operation under priority or emergency
circumstances. Accordingly, the only input source
in the bypass mode is the online card reader.

Overlapped Operation

The input programs use two buffers, the phase 1
buffer (VBF1) and the phase 4 buffer (VBF4). Each
handles the buffering requirements of its phase. Each
has a capacity of 34 card images, or two 17-column
binary card blocked records.

Input from the phase 1 source is read into the phase
1 buffer as buffer space becomes available. If job
control 1 is not currently processing cards, the SJC1
pseudo-op is primed. This results in an entry to JC1,
which will resume its scanning of B cards. The buffer
is used (scan pointer moved) only by SCR1 and SCAN
requests.

The phase 4 input source is the read tape. All
information on the read tape has passed through phase
1. Input is read from the read tape as space in the
phase 4 buffer becomes available. However, a pro-
gram will not be primed as a result of phase 4 input.
The buffer is used (card request pointer moved) by
phase 4 card requests ($SCR, SSCR4) and by the
SEJSCN request.

If the overlapped mode is offline, the phase 1 input
source is the scan tape. This tape will become the
read tape for phase 4 when it has been completely
scanned and the current read tape is completely
processed.

If the overlapped mode is online, a tape must be
prepared for use as the phase 4 read tape. This tape
is called the write tape. In the online mode, phase 1
input is blocked onto the write tape as a part of phase
1 operation. In this mode, all tape mounting for the
input tapes is eliminated since the read tape becomes

System Input-Qutput 123

available for use as a write tape after it has been
processed.

Bypass Operation

Only one functional buffer is required for bypass
operation, since phase 1 is eliminated. Physically,
the phase 1 buffer is used, since it must serve as a
buffer for the card reader in online operation and
card reader controls exist for it. Functionally, it is
used as the phase 4 buffer to service $SCR, SSCR4,
and SEJSCN requests.

Input Program Pseudo-Ops

The input program services three pseudo-ops: the
two card requests, $SCR and SSCR4; and the input
command pseudo-op, SKOM. The card request
pseudo-ops differ slightly, as described in System
Operation. However, they use a common tentacle
table and are carried out by one program, the card
request routine. .
The SKOM pseudo-op is handled by another program

and tentacle table. This pseudo-op has eight sub-
types, referred to as the input commands. (See

. System Operation). They are:

SEOF Phase 1 command to communicate
intentional EOF from the card
reader (online mode).

SREW Phase 1 command to ferminate the

write tape at this point (online mode}.

General Organization

The input program may be considered in four cate-
gories:

1. The functional programs

2. The tape switch routines

3. The mode transition routines

4. The I-O fixup routines

The functional programs do the card processing
work of the input program. The others do necessary
housekeeping functions.

The Functional Programs

The seven functional programs are:
1. Card reader
2. Scan tape

3. Job boundary scan
4, Write tape

5. Read tape

6.

Card request (overlapped)

SCR1 Phase 1 card request 7. Card request (bypass)
SCAN Phase 1 scan request The input program processes information through
SEJSCN Phase 4 scan request two buffers, the phase 1 buffer and the phase 4 buffer;
SONL Transition command to online it is possible to associate each of the functional pro-
SOFFL Transition command to offline grams with one of these buffers according to system
SBYP Transition command to bypass input mode (Figure 65).
Buffer Involved
Mode Phase 1 Phase 4
Card Write
Online Reader Job Tape
Program Program
/ Read Card
Tape Request
Scan Program Program
Offline Tape Boundary
Program
Card Card
Bypass Reader Scan Request
Program Program

Figure 65. Functional Programs

124

A bookkeeping system involving control tables and
queues is used by the functional programs to keep
track of information and control flow through the
input program. Each of the seven functional pro-
grams has an associated control table and queue.
All control tables have the same format and usage,
unless a type of information does not apply to the
functional program. The seven queues are of vari-
ous lengths, but all use half word entries of similar
information.

The Tape Switch Routines

The input program has two tape switch routines:

- VTSA for the phase 1 tape, and VTSB for the phase

4 tape. VTSA rewinds the phase 1 tape and notifies
the phase 4 programs of the availability of a new
read tape. VTSB rewinds the phase 4 (read) tape,
and either (online mode) makes it available as a new
write tape or (offline mode) makes the drive available

for mounting a new scan tape. Interlocks are provided

between the tape switch routines and the functional
programs.

The Transition Routines

There are six transition routines in the input pro-
gram; one for transition from each mode to each of
the other two. The choices, along with the names of
the routines, are summarized in Figure 66.

Mode Transition
Requested Present Name Symbol
Online Bypass Online from Bypass VONLIB
Offline Bypass Offline from Bypass VOFFLB
Bypass Online Bypass from Online VBYPAN
Offline Online Offline from Online VOFFLN
Bypass Offline Bypass from Offline VBYPAF
Online Offline Online from Offline VONLIN

Each transition routine has two basic functions:
to put the requested mode in effect, and to insure that
operation in the previous mode is terminated in an
orderly manner with no information lost. This will
generally require that the transition routines influence
the operation of the functional programs and the tape
switch routines.

The I-O Fixups

The input program uses three I-O units: the card
reader, the phase 1 tape, and the phase 4 tape. The
fixup routines must attend to error recovery, and
must notify the appropriate functional program of the
end of an I-O operation, either by EOP or EE.

Program Operation

The input program receives control by two means:

a pseudo-op request, and an I-O interrupt. Control
is given to the functional program most directly
affected by that entry (e.g., the buffer scan program
is entered when SCR1 or any scan operation is
requested). If that program does anything to change
the buffer situation, then control must be given to
other programs affected by that change. When it is
established that nothing further can be done by any
programs, the input program gives up control with
$RET.

Note that the same programs will be used whether
the entry is a pseudo-op request or an I-O interrupt.
Thus, it is necessary to run in the SIO mode so that
input I-O interrupts will not be released.

The Functional Program Operation

Figure 66, The Six Transition Routines

Each functional program has a control table and a
queue. The control words for the queue are stored
in the control table. The control table is referenced
by use of the symbolic index register, VU. In general,
a functional program is entered when it is necessary
to make entries in its queue, and, once entered, it
performs as much processing as possible before
yielding control.

System Input-OQutput 125

Control Tables

Every control table has the same format and uses the
same symbolism to specify a particular field in the
table. Its format and symbolism are shown in Figure
67.

Transfer of Control

All functional programs ultimately return control to
their predecessor. For a given mode, at most three
functional programs will be involved in a normal pass
through the input program. However, any one of the
three may have been the one originally entered by a
pseudo-op request or I~O interrupt, and must be the
one to give $RET.

The functional programs use a scheme for passing
control to successor programs which insures proper
flow back through predecessors and, ultimately,
issuance of SRET. Multiple passes are also allowed
around the three programs, resulting in multiple
entries to the same program. The scheme consists
simply of a table of return addresses and a pointer
which (effectively) points to SRET when it reaches
zero. An index register, symbolically designated
VP, is initially loaded with XW, VPDB, 0. A suc-
cessor program is entered with the linkage

SIC, (VP); CB+, VP, VNX(VU)
or, in the event the table pointer, index VU, is one
not permitted in the J field of a CB instruction, the
linkage

SIC, (VP); CB+, VP, VNXT
is used. VNXT is B, VNX(VU).

The result is the development of a table of return
addresses at VPDB. Return linkage then is

CB-, VP, -1.0(VP)

Queues

Each functional program uses a queue. In normal
flow, a program is entered with an entry for its
queue specified. It then tries to process as many of
the entries in the queue as it can.

The length of the queues varies with program. An
entry is a half-word, and is either a positive integer
or a negative address. A positive integer represents
the number of card positions ready for processing by
that program in the buffer it uses. A negative address
indicates the logical end of cards (i.e., job boundary),
and the location to which the program should branch
when the entry comes up for processing.

Parameter Flow

Each functional program has two basic responsibilities:

1. Performance of its basic function, such as

126

initiating a card or tape read or transfnitting card
images, and :

2. Advising its successor program of changes in
the buffer situation.
The first responsibility is peculiar to the particular
functional program. The second is standard among
all functional programs, and involves the passage of
parameters to the queue of the successor program.

Consider operations on the phase 1 buffer in the
online mode. The three programs involved are the
card reader control, the buffer scan program, and
write tape control. For convenience of discussion,
let these programs be represented by the symbols
CR, SC, and WT, respectively. Then CR must
advise SC of cards read and available for scanning,
and SC must advise WT of cards scanned and avail-
able for writing, and WT must advise CR of buffer
space (card positions) available for card reading.
Control of the phase 1 buffer in online operation may
be seen as a cyclic passage of parameters from one
program to the next as illustrated by the circle.

N
{xj”

The function of the queue now becomes apparent.
A parameter is passed by giving control to a program
with the parameter specified for entry into its queue.
Similarly, the functions of the control table entries
VX, VX1, VX28, VX2R, and VNX should now have
assumed significance. Figure 68 illustrates this
passage of parameters for both buffers in all modes,
using the following symbolism for the functional pro-
grams:

Card reader program CR
Job boundary scan program SC
Write tape program WT
Read tape program RT
Scan tape program ST
Card request program (overlapped) Q
Card request program (bypass). E

When a program receives an item for its queue,
it stores it in the first available position in the queue.
Then, if the program is not busy on a previous opera-
tion, the next parameter in the queue (not necessarily
the one just entered) is removed and action based on
the parameter is started. If this action results in a
change in the buffer situations, the succeeding pro-
gram must be notified by an appropriate parameter
entry in its queue, and the process repeated.

‘There are several situations in which a functional
program determines that a special action must be
taken at a time which depends on the operation of its
successor. The program then may pass a negative
address to that program identifying the special action

Word Table Structure
0 .32 .63
] VX VX1
1 vX2s
2 VX2R
3 (VCWR - 1.0)
4 VCWR
5 VNX VIO
6 VSsuU VRQB
7 VRCNT VFCNT
8 VSTR VTS
9
VFCNX NOT USED

Symbol Format Content

VX VF An integer between -34 and
zero locating a card position
in a 34 card buffer (phase 1
or 4). Not used in the table
for the buffer scan program.

VX1 VF An integer between O and 34
specifying the number of
cards currently being pro-
cessed by the program in the
buffer. Used by all programs.

vX2s XwW An XW to control storing in
the program's queue. The
VF specifies the next store
address, and the count and
refill fields are used to cycle
around the queue. Used by
all programs.

VX2R XwW An XW to control removing
entries from the program’s
queue. The VF specifies the
next entry to be removed, and
the count and refill fields are
used to cycle around the
queue. Used by all programs.

VCWR cw A CW to control transmission
of data into or out of the
buffers (VBF1 for phasel,
VBF2 for phase 4). If two
control words are required, the
word at VCWR-1. 0 is used to
control the transmission
starting at the beginning of
the buffer, and the first
CW chained to it. These
slots are not used in the buffer

Figure 67. Control Table Format and Symbols

Symbol

VIO

\'Al

VRQB

VRCNT

VFCNT

VSTR

VTS

VFCNX

Format

Half Word

Half Word

Address

Half Word

Content

scan table, since that program
does no data. transmission,

A half word branch to the
logical successor program
for the current mode. (See
program linkage.) This is
fixed for every program ex-
cept buffer scan, in which
case the successor is set by
the transition routines ac-
cording to mode.

A half word branch to be
used after an EOP to initiate
additional 1-O. Is not used
in non-1-O programs; i.e.,
not in buffer scan or card
request tables. The branch
is permanent.

10D reference number for
unit currently assigned to
that program, Not used in
the tables for buffer scan
and card request programs,
Variable in tape control
programs, and set by the
tape switch program,

Used by tape [-O control
programs to store the resi-
dual after blocking; e. g.,
in the scan tape table the
number of cards positions
in the buffer still available
after initiating a read of a
block (17 cards).

Used by the tape control
programs to store the num-
ber of records processed in
the current file.

Used by the tape control
programs to store the num-
ber of files processed on the
current tape.

Permanent branch to proper
entry point after tape switch,
Used only by tape control
programs,

Used by read tape and scan
tape control programs; con-
tains a parameter for queue
entry when end of tape is
encountered.

Used only in the table for the
read tape program. Contains
the number of files (jobs) re-
maining on the read tape.

System Input-Output 127

Phase 1 Phase 4
Buffer Buffer
CR
\\ RT
sC WT Online
v .
ST RT

Offline

AR
SN

Bypass

Figure 68. Passage of Buffer Parameters

to be taken when that point in its queue is reached.
For example, if the job boundary scan program
received 10 cards from the card reader program and
found a job boundary after the third card, it would
pass to the write tape program the parameters 3,
-VWEFT, 7, in that order (one at a time). The write
tape program would branch to VWEFT to write a

file mark when it encountered the -VWEFT in its
queue.

Each functional program has a subroutine whose
function is to enter a parameter in the queue. The
parameter is given in index register, VT5, and the
various programs are entered at the Q entry point
for this purpose. The symbols associated with each
functional program are listed in Figure 69.

Queue Manipulation

Considering a queue as composed of N consecutive
half words, then the queue store and remove refer-
ences, VX28 and VX2R, are of the form:

K XW, Queue, N, K.

Ii———— Entry Point Symbols _hl
Pro- Table Queue | Q- Pseudo- EOP EE cs

gram Symbol Symbol| Entry Op

CR VCR
SC Vvsc

VRD2 | VRDQ VEOFB VRDEOP VRDEE VRDCSS
VSC2Q | VSQ VSCAN, VSC10 - ---
VSCR1

WT VWT VW2 |VWQ VSREW, VWEOP, RWEE ---
VEOFN VWFEOP

E VE VE2 |VEQ VREQ, --- —.— e
VBEO]J

" RT VRT VR2 |VRQ VOEO] VREO VREE ---

Q Vo VQ2Q | VQQ VREQ --- --- ---

ST VST VS2T |VSTQ --- VREOP VRTEE ---

Figure 69. Functional Program Symbols

As the queue is used, VX2S and VX2R are occa-
sionally updated by means of the instruction, V+ICR,
(XR), . 32 so that the references move upward in
memory over the queue and then recycle starting at
the