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This publication is planned for use as a
reference book by the PL/I programmer.
is not a tutorial publication, but is
designed for the reader who already has a
knowledge of the language and who requires
a source of reference material.

It

The publication is in two parts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules .
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information needed to write a program that
will be processed by the 0S PL/I Optimizing
Compiler or the 0S PL/I Checkout Compiler.
It does not contain all the information
needed to execute programs. For further
information on executing a program refer to
the appropriate programmer's guide (for
batch processing only) or the Time Sharing
|Option or CMS publications (for processing
|in conversational mode).

In order to execute programs processed
by these compilers, subroutine libraries
are required. The subroutines are provided
by the 0S PL/I resident library (optimizing
compiler only) and the 0S PL/I transient
library (both compilers).

Programs that have been compiled by the
PL/I Optimizing Compiler and which utilize
PL/I multitasking facilities can be
|executed only under the MVT or VS2 version
of the operating system.

Use of this Publication

This publication is designed as a reference
book for the PL/l programmer. Its two-part
format allows a presentation of the
material in such a way that references can
be found quickly, in as much or as little
detail as the user needs.

Part I, "Concepts of PL/I," is composed
of discussions and examples that explain
the different features of the language and
their interrelationships. To reduce the
need for cross references and to allow each
chapter to stand alone as a complete
reference to its subject, some information
is repeated from one chapter to another.
Part I can, nevertheless, be read
sequentially in its entirety.
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Preface

Part II, "Rules and Syntactic
Descriptions," provides a quick reference
to specific information. It includes less
information about interrelationships, but
it is organized so that a particular
question can be answered quickly. Part II
is organized purely from a reference point
of view; it is not intended for sequential
reading.

For example, a programmer would read
chapter 5, "Statement Classification" in
Part I for information about the
interactions of different statements in a
program; but he would look in section J,
"Statements" in Part II, to find all the
rules for the use of a specific statement,
its effect, options allowed, and the format
in which it is written.

In the same manner, he would read
chapter 4, "Expressions and Data
Conversions" in Part I for a discussion of
the concepts of data conversion, but he
would use section F, "Data Conversion and
Expression Evaluation" in Part II, to
determine the exact results of a particular
type of conversion.

An explanation of the syntax language
used in this publication to describe
elements of PL/I is contained in section A,
"Syntax Notation" in Part II.

Requisite Publications

For information necessary to compile, link
edit, and execute a program, the reader
should be familiar with the appropriate one
of the following publications:

OS PL/I Ooptimizing Compiler:
Programmer's Guide, Order No. SC33-0006

0S PL/I Checkout Compiler:
Guide, Order No. SC33-0007

Programmer's

0S PL/I Optimizing Compiler: TSO User's

Guide, Order No. SC33-0029

0S PL/I Checkout Compiler:
Guide, Order No. SC33-0033

TSO User's

0S PL/I Optimizing Compiler: CMS User's

Guide, Order No. SC33-0037

0S PL/I checkout Compiler:
Guide, Order No. SC33-0047

CMS User's
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Recommended Publications

The subjects covered in the following
publications include the compiler
facilities, the optimization or checkout
features (whichever are applicable),
methods of implementing the various
language features, and comparisons of the
language implemented by the 0S PL/I
Optimizing or Checkout Compilers with that
implemented by the PL/I(F) Compiler.

0OS PL/I Optimizing Compiler: General
Information, Order No. GC33-0001

0S PL/I Checkout Compiler: General
Information, Order No. GC33-0003

0OS PL/I Optimizing Compiler: Execution
Logic, Order No. SC33-0025
0S PL/I Checkout Compiler: Execution

Logic, Order No. SC33-0032
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Availability of Publications

The availability of a publication is
indicated by its use key, the first letter
in the order number. The use keys for
publications referred to in this manual
are:

G - General: available to users of
IBM systems, products, and
services without charge, in
quantities to meet their normal
requirements; can also be
purchased by anyone through IBM
branch offices.

S - Sell: can be purchased by anyone
through IBM branch offices.
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Chapter 1: Basic Characteristics of PL /I

The modularity of PL/I, the ease with which
subsets can be selected to meet different
needs, becomes apparent when one examines
the different features of the language.
Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

Machine Independence

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used
programming languages. The methods used to
achieve this show in the form of
restrictions in the language. The most
obvious example is that data with different
characteristics cannot in general share the
same storage; to equate a floating-point
number with a certain number of alphabetic
characters would be to make assumptions
about the representation of these data
items which would not be true for all
machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC built-
in function and record-oriented data
transmission are machine dependent.

Program Structure

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a
subroutine. Procedures may invoke other
procedures, and these procedures or
subroutines may be either compiled
separately, or nested within the calling
procedure and compiled with it. Each
procedure may contain declarations that
define names and control allocation of
storage.

The rules defining the use of
procedures, communication between
procedures, the meanings of names, and
allocation of storage are fundamental to
the proper understanding of PL/I at any
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level but the most elementary. These rules
give the programmer considerable control
over the degree of interaction between
subroutines. They permit flexible
communication and storage allocation, at
the same time allowing the definition of
names and allocation of storage for private
use within a procedure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained, PL/I makes it possible
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.

Data Types and Data Description

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or
decimal, fixed-point or floating-point,
real or complex, and its precision may be
specified.

PL/I provides features to perform
arithmetic operations, comparisons, and
operations and functions for assembling,
scanning, and subdividing strings.

The compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement; the compiler may
determine all or some of the attributes by
context; or a partial or complete set of
attributes may be assumed by default. The
programmer can specify which attributes are
to be applied by default, or he can allow
the compiler to determine them.

Default Assumptions

An important feature of PL/I is its default
philosophy. If all the attributes
associated with a name, or all the options
permitted in a statement, are not specified
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by the programmer, attributes or options
will be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

The default attributes assumed by the
compiler are the standard default
attributes of the PL/I language and the
implementation precision defaults.
However, the programmer can override these
by use of the DEFAULT statement.

The compiler optionally produces an
attribute listing which contains the
identifiers used in a PL/I source program
and a complete list of the attributes
specified either by explicit, contextual,
or implicit declarations, or by application
of default rules. The programmer can use
this listing to check that these attributes
are consistent with his intentions.

Storage Allocation

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage
is allocated whenever the block in which
the variables are declared is activated.

At that time the bounds of arrays and the
lengths of strings are calculated.
AUTOMATIC storage is freed and is available
for re-use whenever control leaves the
block in which the storage is allocated.

Storage may also be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or
programming economy that he needs for each
application. The cost of a particular
facility will depend upon the
implementation, but it will usually be true
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that the more dynamic the method of storage
allocation, the greater the execution time.

Expressions

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of
elementary algebra. For example:

A +B *C

This specifies multiplication of the value
of B by the value of ¢ and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
be used in an expression. For examrle, it
is conceivable, though unlikely, that A
could be a floating-point nurber, B a
fixed-point number, and C a character
string.

When such mixed expressions are
specified, the operands will be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
same value as the original. And, of
course, any conversion increases execution
time.

The results of the evaluation of
expressions are assigned to variables by
means of the assignment statement. Aan
example of an assignment statement is:

X=A+B ¥ C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

Data Collections

PL/I offers the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. An item that
does not contain another structure must
represent an elementary data item or array.

An element of an array may be a
structure; similarly, any level of a



structure may be an array. Operations can
be specified for arrays, structures, or
parts of arrays or structures. For
example:

A =38+ C;

In this assignment statement,lA, B, and C
could be arrays or structures.

Input and Output

Facilities for input and output allow the
user to choose between factors such as
simplicity, machine independence, and
efficiency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to
internal form and assigned to variables
specified in a list. Similarly, on output,
data items are converted one by one to
external character form and are added to a
conceptually continuous stream of
characters. Within the class of stream
input/output, the programmer can choose
different levels of control over the way
data items are edited and selected from or
added to the stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a
specified line size and page size. The
programmer has facilities to detect the end
of a page and to specify the beginning of a
line or a page. These facilities may be
used in subroutines that can be developed
into a report generating system suitable
for a particular installation or
application.

| In a system employing the Conversational
|Monitor System or the Time Sharing Option,
data may be fed into, and output may be
obtained from, a PL/I program using a
terminal remote from the machine.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these
one record at a time without any data
conversion; the external representation is
generally an exact copy of the internal
representation. Because the aggregate is
treated as a whole, and because no
conversion is performed, this form of
input/output is more efficient than stream-
oriented input/output.
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Teleprocessing facilities are provided
by PL/I as part of the basic record-
oriented transmission facilities.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data
conversion is required. Record-oriented
input and output, on the other hand,
provides faster transmission, but generally
requires a greater programming effort.

Input and output operations for data
banks involving a number of interrelated
data sets is simplified by the use of file
variables. All input/output statements can
use file variables with file values
established and modified during execution
of the program.

Multitasking

The operating system has facilities for
multiprogramming, that is, it allows a
number of programs to be active
concurrently. In the same way, PL/I has
facilities to allow a number of procedures
within a PL/I program to be active
concurrently.

Any PL/I procedure may invoke another,
in other words initiate the execution of
another procedure. The progranmer may
specify that the procedures are to be
tasks, which means that they may both be
active concurrently. The invoked procedure
is known as a subtask of the other, and is
said to have been attached by it.

The advantage of multitasking is that
CPU operations may be carried out in one
task while an input/output operation (or
other CPU operations, in the case of
multiprocessing machines) is carried out
concurrently in another. As soon as the
CPU or the input/output operations in one
task are completed, a search is made
amongst all the active tasks for another
one that requires the same resource. If
more than one such task is found, the
resource is assigned to the one having
highest priority. The PL/I programmer may
allow the system to allocate relative
priorities or he may assign priorities to
his tasks when they are attached.

A number of tasks may be dependent on
each other at various points during their
execution., For example, one task may
require results obtained in another before
it can be completed. In PL/I, the
programmer may synchronize tasks at various
points in their execution. An operation in
one task may be made to await the
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completion of an operation in another task.

The optimizing and checkout compilers
differ in their implementations of
multitasking. Each task in a PL/I program
compiled by the optimizing compiler forms a
system task to be scheduled by the
operating system. The checkout compiler
constitutes a single task, and the compiler
itself schedules the tasks created within a
PL/I program.

Facilities of the Two Compilers

The optimizing and checkout compilers are
complementary program products. The main
function of the optimizing compiler is to
generate highly efficient object code,
while that of the checkout compiler is to
minimize the time a programmer needs to
spend in debugging.

Both compilers may be used for batch
processing, that is, processing in which a
program must be compiled, and possibly
executed, in full before the programmer
obtains any result. The checkout compiler
has the facility for conversational
processing. In this mode, the program's
execution is monitored from a keyboard
terminal and temporary amendments may be
made during execution as a result of
information so obtained; new PL/I code may
be temporarily included in the program, for
instance. The best use is made of PL/I
facilities when both compilers are
employed. The program is compiled by the
checkout compiler during the debugging
stages, to allow the programmer to use his
time most efficiently; the debugged program
is then compiled by the optimizing
compiler, to obtain object code that makes
the most efficient use of the machine.

The language implemented by the two
compilers is, in general, the same. There
are a few exceptions concerned with the
different primary function of each
compiler. Certain optimizing features are
not implemented by the checkout compiler
and certain program checkout features are
not implemented by the optimizing compiler.
For instance, a number of statements
instruct the checkout compiler to provide
the programmer with information about the
flow of control through his program during
execution. Since the optimizing compiler
does not have these facilities, it merely
checks the statements' syntax and otherwise
ignores them. Similarly, there are
statement options concerned with generating
the most efficient object code possible
that are used by the optimizing compiler
but which are syntax-checked and then
ignored by the checkout compiler.
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Compile-time Operations

PL/I permits a compile-time level of
operation, in which preprocessor statements
specify operations upon the text of the
source program itself. The simplest, and
perhaps the cormonest preprocessor
statement is %INCLUDE (in general,
preprocessor statements are preceded by a
percent symbol). This statement causes
text to be inserted into the program,
replacing the #INCLUDE statement itself. A
typical use could be to copy declarations
from an installation's standard set of
definitions into the program.

Another function provided by compile-
time facilities is the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become more
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the
language.

Execution-time Facilities

PL/I includes statements and options that
provide powerful facilities for debugging.
Other features allow program amendment
during execution; these require the use of
|the Conversational Monitor System or the
Time Sharing Option of the operating
system, and of the checkout compiler. They
allow the programmer to learn quickly about
the behaviour of his program while it is
being executed and also, in the appropriate
processing environment, to correct it.
|Also, under the Conversational Monitor
|System or the Time Sharing Option, stream
I/0 can be performed from and to a
terminal, on programs compiled by either
the checkout or the optimizing compiler.

The debugging facilities cause
information to be written on the SYSPRINT
file (and, if desired, at the terminal when
the terminal is not defined as the SYSPRINT
file) throughout execution or at designated
points during execution. The programmer
can, throughout execution, cause
information to be written every time a
reference to a selected variable occurs in
a pre-defined situation or when a transfer
of control takes place. Similarly, at
designated points in the program being
executed, the information to be written can



include the values of selected variables,
the names of the procedures currently
active, or the numbers of the statements
involved in the latest transfers of
control.

The time at which this output is
available depends on the processing mode.
In batch processing, information written on
the SYSPRINT file is only available when
the SYSPRINT file is printed, which is
normally after execution has terminated.
In conversational processing, information
written on the SYSPRINT file can be
immediately printed at the terminal;
therefore the output provided by the
debugging facilities can be made available
immediately it is produced.

Program amendment during execution is
possible only with conversational
processing under the checkout compiler.

The programmer can enter instructions at
the terminal that cause program execution
to be suspended and control passed to the
terminal. He can then enter statements
that are executed during the current
suspension of execution or during a further
suspension; this future suspension will be
at a point specified by the programmer.
These statements can, for instance,
initiate the debugging facilities described
above, change the value of a variable or
insert extra statements in the program.
Changes made to the existing program can be
temporary, or they can be incorporated
automatically into the current source
program. The current source program can be
saved on an external data set and can be
retranslated at any time without leaving
the checkout compiler environment.

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrupt
occurred.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify, by means
of a condition prefix, that an interrupt
will occur if the condition should arise.
By use of an ON statement, he can specify
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the action to be taken when an interrupt
does occur. In conversational processing,
the programmer can deal with any error
condition immediately it occurs.

Operating System Facilities

A number of facilities provided by the
operating system can be called upon by the
PL/I programmer. The most prominent ones,
namely interlanguage communication,
sort/merge, and checkpoint/restart are
outlined below. RAll relevant facilities
are described in the appropriate
programmer's guide.

It is possible for a PL/I program to
communicate with COBOL and FORTRAN routines
at execution time, provided that the latter
were compiled by a compiler developed by
IBM for OS. A PL/I procedure may invoke a
COBOL, FORTRAN, or assembler routine, and
may be invoked by a COBOL or FORTRAN
program or routine. In addition, a PL/I
program may be used to create or access a
COBOL or FORTRAN data set. All these
facilities are provided by the
implementation of the PL/I language.
Further communication is possible between
PL/I and other languages if an assembler
language interface is provided. Such
interfaces are fully described in the
appropriate programmer's guide.

Provided the operating system has been
generated with the appropriate sort/merge
program, the sort/merge facilities may be
utilized by the PL/I programmer. They may
be used on records on PL/I-created data
sets, on data passed by a PL/I program, and
on data being passed to a PL/I program.

" When a PL/I batch processing program
compiled by the optimizing compiler is to
run for an extended period, the operating
system checkpoint/restart facility can be
employed to minimize the losses caused by a
machine or system failure. The programmer
selects checkpoints in his program at which
processing is to be recommenced following a
failure. Only the processing carried out
between the checkpoint and the failure may
be lost. Results obtained up to the
checkpoint are preserved on auxiliary
storage, together with data (including a
copy of the program and its associated
storage) necessary for continuation of the
run.
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There are few restrictions in the format of
PL/I statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is
terminated by a semicolon, the format is
completely free. Each statement may begin
in the next column or position after the
previous statement, or any number of blanks
may intervene.

Character Sets

One of two character sets may be used to
write a source program; either a 60-
character set or a U48-character set.
given external procedure, the choice
between the two sets is optional. 1In
practice, this choice will depend upon the
available equipment.

For a

60-CHARACTER SET

The 60-character set is composed of
alphabetic characters, digits, and special
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign (@), which precede the 26 letters of
the English alphabet in the IBM System/360
collating sequence Extended Binary Coded
Decimal Interchange Code (EBCDIC). For use
with languages other than English, other
characters may be substituted for §, #, and
D.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

An alphameric character is either an
alphabetic character or a digit.

There are 21 special characters.,
are as follows:

They
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Name Character
Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiply symbol
Slash or divide symbol
Left parenthesis
Right parenthesis
Comma
Point or period
Single quotation mark
or apostrophe
Percent symbol
Semicolon
Colon
"Not" symbol
"And" symbol
"Oor" symbol
"Greater than" symbol
"Less than" symbol
Break character
Question mark

s n AN\ ¥ o+

AV—amd

=]

Special characters are combined to
create other symbols. For example, <=
means "less than or equal to", == means
"not equal to". The combination ** Jdenotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symkols.

The break character is the same as the
typewriter underline character. It can be
used in a name, such as GROSS_PAY, to
improve readability.

48-CHARACTER SET

The #48-character set is composed of 48
characters of the 60-character set. 1In all
but four cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the uU8-character set, but a
double slash (//) can be used to represent
it. The four characters that are not
duplicated are the commercial "at®" sign,
the number sign, the break character, and
the question mark.

The restrictions and changes for this
character set are described in section B,
"Character Sets with EBCDIC and Card-Punch
Ccodes".
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USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comments may
contain any of the 256 characters
represented by an 8-bit code.

Certain characters perform specific
functions in a PL/I program. For example,
many characters function as operators.

There are four types of operators:
arithmetic, comparison, bit-string, and
string.

The arithmetic operators are:

+ denoting addition oxr prefix plus

- denoting subtraction or prefix
minus

* denoting multiplication

/ denoting division

** denoting exponentiation

The comparison operators are:

> denoting "greater than"
-> denoting "not greater than"

= denoting "greater than or

equal to"

= denoting "equal to"

~= denoting "not equal to"

= denoting "less than or equal to"
< denoting "less than"

-< denoting "not less than"

The bit-string operators are:

- denoting "not"
& denoting "and"
| denoting "or"

The string operator is:
|| denoting concatenation

Figure 2.1 shows some of the functions
of other special characters.

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
observe the syntax rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of alphameric and
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break characters, not contained in a
comment or constant, and preceded and
followed by a blank or some other
delimiter; the initial character of the
string must be alphabetic. The length must
not exceed 31 characters.

Language keywords also are identifiers,
|possibly preceded by a percent symbol (%).
A keyword is an identifier that, when used
in the proper context, has a specific
meaning to the compiler. A keyword can
specify such things as the action to be
taken, the nature of data, the purpose of a
name. For example, READ, DECIMAL, and
ENDFILE are keywords. Some keywords can be
abbreviated. A complete list of keywords
and their abbreviations is contained in
section C, "Keywords and Keyword
Abbreviations".

Note: PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

Examples of identifiers that could be
used for nhames or labels:

A
FILE2
LOOP_3
RATE_OF PAY
#32

Some identifiers, as discussed in laterx
chapters, cannot exceed seven characters in
length and must not contain the break
character. This limitation is placed upon
certain names, called external names, that
may be referred to by the operating system
or by more than one separately compiled
procedure. If an external name of a PL/I
procedure contains more than seven
characters, it is truncated by the
compiler, which concatenates the first four
characters with the last three characters.
The entry name of a COBOL or FORTAN routine
may have up to eight characters. If more
than eight characters are specified, the
leftmost eight are taken.

Blanks

Blanks may be used freely throughout a PL/I
program. They may surround operators and
most other delimiters. 1In general, any
number of blanks may appear wherever one
blank is allowed, such as between words in
a statement.



| Name Character

' ............................................
| {comma ’
B

|

| period .

[

|

|semicolon :

|

|assignment =

| symbol

|

| colon :

|

|

|

|

|blank

{

|single quotation '

| mark

|

| parentheses )

|

|

|

i

|

|arrow ->

=percent symbol %

|

|

|

1Note that the character =

Figure 2.1.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, ==)
cannot contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed.
examples of the use of blanks are:

Some

AB+BC is equivalent to AB + BC
TABLE (10) is equivalent to TABLE (10)
FIRST,SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to A TO B

- - —— - - — - — - — - ———_ -

Separates elements of a ljst; precedes
BY NAME option. [wve p 16

Indicates decimal point or binary point;
connects elements of a qualified name

Terminates statements

Indicates assignment of values?

Connects prefixes to statements; can be
used in specification for bounds of an
array; can be used in RANGE specification
of DEFAULT statement

Separates elements of a statement

Encloses string constants and picture
specification

Enclose lists; specify information
associated with various keywords; in
conjunction with operators and operands,
delimit portions of a computational
expression

Denotes locator qualification
Indicates statements to be executed by the

compile-time preprocessor or listing
control statements

| can be used as an equal sign and as an assignment symbol.
Lo o o o o o e o s e = .~ o T . Y " Y = A = . 4 = = A A . . - - ——

Some functions of special characters

Comments

Comments are permitted wherever blanks are

allowed in a program, except within data
items, such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not
otherwise affect execution of a program;
they are used only for documentation
purposes. Comments may be coded on the
same line as statements, either inserted
between statements or in the middle of
them.

The general format of a comment is:

/* character-string */
The character pair /* indicates the
beginning of a comment.

pair reversed, */, indicates its end. No

blanks or other characters can separate the

two characters of either composite rpair;
the slash and the asterisk must be
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immediately adjacent. The comment itself
may contain any characters except the */
combination, which would be interpreted as
terminating the comment. The initial /%
must never be in columns 1 and 2 of a line.

Example:

/% THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

Any characters permitted for a
particular machine configuration may be
used in comments. :

Basic Program Structure

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple statements:
keyword, assignment, and null, each of
which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:
GO TO LOOP_3; (keyword statement)

GO TO is a keyword; the
blank between GO and TO
is optional. The
statement body is
LOOP_3;

A =B + C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
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this semicolon. The IF statement can
contain two statements which may be simple
or compound as shown in the following
example:

IF A>B THEN A=B+C;
EISE GO TO LOOP_3;

The following is an example of the ON
statement:

ON OVERFLOW GO TO OVFIX;

Statement Prefixes

Both simple and compound statements may
have one or more prefixes., There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
st atement.

A condition prefix specifies whether the
named conditions are to be enabled.
Condition names are language keywords,
of which represents an exceptional
condition that might arise during execution
of a program. Examples are OVERFLOW and
SIZE. The OVERFLOW condition arises when
the exponent of a floating-point numbker
exceeds the maximum allowed (representing a
maximum value of about 107%). The SIZE
condition arises when a value is assigned
to a variable with loss of high-order
digits or bits.

each

When the programmer does not expect the
condition to arise, he may disable it by
preceding the condition name in a prefix by
the word NO. If NO is used, there can be
no intervening blank between the NO and the
condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. One or
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE,NOOVERFLOW) : COMPUTE: A=B*C#**D;

The single condition prefix indicates that
an interrupt is to occur if the SIZE



condition arises during execution of the
assignment statement, but that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a
prefix and its associated statement are
ignored, it is often convenient, when using
card input, to punch the condition prefix
into a separate card that precedes the card
into which the statement is punched. Thus,
after debugging, the prefix can be easily
removed. For example:

(NOCONVERS ION) :
(SIZE,NOOVERFLOW) :
COMPUTE: A*B*C*%*D;

Note that there are two condition prefixes.
The first specifies that no interrupt is to
occur if an invalid character is
encountered during an attempted data
conversion.

Condition prefixes are discussed in
chapter 14, "Exceptional Condition Handling
and Program Checkout".

GROUPS AND BLOCKS

A group is a sequence of statements headed

by a DO statement and terminated by a
corresponding END statement. It is used
for control purposes. A group also may be
called a do-group.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program consists of
one or more blocks. Every statement must
appear within a block. There are two kinds
of blocks: begin blocks and procedure
blocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block, except the first, must be invoked by
execution of a statement in another block.
The first procedure in a program to be
executed is invoked automatically by the
operating system. This first procedure
must be identified by specifying
OPTIONS (MAIN) in the PROCEDURE statement.

A procedure block may be invoked as a
task, in which case it is executed
concurrently with the invoking procedure.
Tasks are discussed in chapter 17,
"Multitasking®.
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Data is generally defined as a
representation of information or of wvalue.

In PL/Y, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which can be a symbolic
name) has a value that cannot change.

The following statement contains both
variables and constants:

AREA = RADIUS*#2#3.1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PTI = 3.1416;
AREA = RADIUS**2%PI;

In the last statement, only the number 2 is
a constant.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

A constant represented by a symbolic
name has a value which is determined by the
compiler, and which the programmer does not
need to know. Such constants are normally

, associated with the control of the program;

they represent addresses in main storage

| rather than computational values. For
| instance the identifier "LOOP" in the
| following example is.a symbolic name which
| represents a constant, namely the address
jof the machine code generated by the
| statement A=2*B as follows:
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GET LIST(B);
A=2%B;
C=B+6;

LOOP:

The characteristics of a variable or a
symbolic constant are not immediately
apparent in the name. Since these
characteristics, called attributes, must be
known, certain keywords and expressions may
be used to specify the attributes in a
DECLARE statement. The attributes used to
describe each data type are discussed
briefly in this chapter. A complete
discussion of each attribute appears in
section I, "Attributes".

In preparing a PL/I program, the
programmer must be familiar with the types
of data that are permitted, the ways in
which data can be organized, and the
methods by which data can be referred to.
The following paragraphs discuss these
features.

Data Types

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Problem data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.
Program _control data is used by the
programmer to control the execution of his
program. Program control data consists of
the following seven types: 1label, event,
file, entry, locator, task, and area.

Problem Data

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale,
precision, and mode. The characteristics
of data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
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default.

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum numbexr of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For fixed-
point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared
precision is maintained. The assigned item
is aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item
contains too many integer digits;
truncation on the right may occur, without
rounding, if it contains too many
fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable representing
complex data items, the base, scale, and
precision of the two parts must be
identical.

Base, scale, and mode of arithmetic
variables are specified by keywords;
precision is specified by parenthesized
decimal integer constants. The precision
of arithmetic variables and constants is
discussed in greater detail below.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, binary fixed-point, decimal
floating-point, and binary floating-point.
Any of these can be used as the real part
of a complex data item. The imaginary part
of a complex number is discussed in the
section "Complex Arithmetic Data," in this
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chapter.

Complex arithmetic variables must be
explicitly declared with the COMPLEX
attribute. Real arithmetic variables may
be explicitly declared to have the REAL
attribute, but it is not generally
necessary to do so, since an arithmetic
variable is generally assumed to be real
unless it is explicitly declared complex.

Decimal Fixed-Point Data

A decimal fixed-point constant consists of
one or more decimal digits with an optional
decimal point. If no decimal point
appears, the point is assumed to be
immediately to the right of the rightmost
digit. A sign may optionally precede a
decimal fixed-point constant.

Examples of decimal fixed-point
constants as written in a program are:

3.1416
455.3
732
003
-5280
.0012

For expression evaluation, decimal
fixed-point constants have an apparent
precision (p,q), where p is the total
number of digits in the constant and q is
the number of digits specified to the right
of the decimal point. For example:

3.14 has the precision (3,2)

| A scaling factor may be appended to the
|right of the constant. For example, 3.1U4F3
{and 3.14F-2 have values 3140 and .0314, and
|precisions (3,-1) and 3,4), respectively.
|This form of constant is used when
|precisions in which g<0 or p<q are

| required.

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total
number of digits; the second, the scale
factor, may be signed and specifies the
number of digits to the right of the
decimal point. If the variable is to
represent integers, the scale factor and
its preceding comma can be omitted. The



attributes may appear in any order, but the
precision specification must follow either
DECIMAL or FIXED (or REAL or COMPLEX).
Following are examples of declarations of
decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,U4);
DECLARE B FIXED (6,0) DECIMAL;

DECLARE C FIXED (7,-2) DECIMAL;

DECLARE D DECIMAL FIXED REAL(3,2);

The first DECLARE statement specifies
that the identifier A is to represent
decimal fixed-point items of not more than
five digits, four of which are to be
treated as fractional, that is, to the
right of the assumed decimal point. Any
item assignhed to A will be converted to
decimal fixed-point and aligned on the
decimal point.

The second DECLARE statement specifies
that B is to represent integers of no more
than 6 digits. Note that the comma and the
zero are unnecessary; it could have been
specified B FIXED DECIMAL(6).

The third DECLARE statement specifies a
negative scale factor of -2; this means
that the assumed decimal point is two
places to the right of the rightmost digit
of the item.

The fourth DECLARE statement specifies
that D is to represent fixed-point items of
no more than three digits, two of which are
fractional.

The maximum number of decimal digits
allowed is 15. Default precision, assumed
when no specification is made, is (5,0).
The internal coded arithmetic form of
decimal fixed-point data is packed decimal.
Packed decimal is stored two digits to the
byte, with a sign indication in the
rightmost four bits of the rightmost byte.
Consequently, a decimal fixed-point data
item is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
(p) as an even number.

When the declaration specifies an even
number of digits, the extra digit place is
in the high-order position, and it
participates in any operations performed
upon the data item, such as in a comparison
operation. Any arithmetic overflow or
assignment into an extra high-order digit
place can be detected only if the SIZE
condition is enabled.

Binary Fixed-Point Data

A binary fixed-point constant consists of
one or more binary digits with an optional
binary point, followed immediately by the
letter B, with no intervening blank. A
sign may optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B

111118 . i ;o
s E ‘//54J(w! .

101B
-111.018
1011.111B

For expression evaluation, binary fixed-
point constants have an apparent precision
(p,q), where p is the total number of
binary digits in the constant, and q is the
number of binary digits specified to the
right of the binary point. For example:

0000001B has the precision (7,0)

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two
decimal integer constants, enclosed in
parentheses, to represent the maximum
number of binary digits and the numbter of
digits to the right of the binary point,
respectively. If the variable is to
represent integers, the second digit and
the comma can be omitted. The attributes
can appear in any order, but the precision
specification must follow either BINARY or
FIXED (or REAL or COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262,143.75.

The maximum number of binary digits
allowed is 31. Default precision is
(15,0). The internal coded arithmetic form
of binary fixed-point data can be either a
fixed-point binary halfword or fullword. A
halfword is 15 bits plus a sign bit, and a
fullword is 31 bits plus a sign bit. Any
binary fixed-point data item with a
precision of (15,0) or less is stored as a
halfword, and with a precision greater than
(15,0), up to the maximum precision, is
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stored as a fullword. The declared number
of digits are considered to be in the low-
order positions, but the extra high-order
digits participate in any operations
performed upon the data item. Any
arithmetic overflow into such extra high-
order digit positions can be detected only
if the SIZE condition is enabled.

When the standard default rules are in
force, an identifier for which no
declaration is made is assumed to be a
binary fixed-point variable, with default
precision, if its first letter is any of
the letters I through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

15E-23

15E23

4E-3
-48333E65
438E0
3141593E-6
.003141593E3

The last two examples represent the same
value.

For expression evaluation, decimal
floating-point constants have an apparent
precision (p) where p is the number of
digits of the constant to the left of the E
(the mantissa). For example:

0.012E5 has the precision (4)

The keyword attributes for declaring
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
parentheses. It specifies the minimum
number of significant digits to be
maintained. If an item assigned to a
variable has a field width larger than the
declared precision of the variable,
truncation may occur on the right. The
least significant digit is the first that
is lost. Attributes may appear in any
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order, but the precision specification must
follow either DECIMAL or FLOAT (or REAL or
COMPLEX) .

Following is an example of the
declaration of a decimal floating-point
variable:

DECLARE LIGHT_ YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for
decimal floating-point data items is (33);
the default precision is (6). The exponent
cannot exceed two digits. A value range of
approximately 10-78 to 1075 can be
expressed by a decimal floating-point data
item. The internal coded arithmetic form
of decimal floating-point data is

-normalized hexadecimal floating-point, with

the point assumed to the left of the first
hexadecimal digit. If the declared
precision is less than or equal to (6),
short floating-point form is used; if the
declared precision is greater than (6) and
less than or equal to (16), long floating-
point form is used; if the declared
precision is greater than (16), extended
floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H, O
through Z, or one of the alphabetic
extenders, $, #, d, when the standard
default rules are applied.

Binary Floating-Point Data

A binary floating-point constant consists
of a field of binary digits followed by the
letter E, followed by an optionally signed
decimal integer exponent followed by the
letter B. The exponent is a decimal
integer and specifies a power of two. The
field of binary digits may contain a binary
point. The entire constant may be preceded
by a plus or minus sign. Examples of
binary floating-point constants as written
in a program are:

101101E5B

101.101E2B
11101E-28B
-10.01E99B

For expression evaluation, binary
floating-point constants have an apparent



~

precision (p) where p is the number of
binary digits to the left of the E (the
mantissa). For example:

0.0101E33B has the precision (5)

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant(digits“to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
COMPLEX). Following is an example of
declaration of a binary floating-point
variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier s is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items is (109); the
default precision is (21). The exponent
cannot exceed three decimal digits. A
value range of approximately 2-260 o 2252
can be expressed by a binary floating-point
data item. The internal coded arithmetic
form of binary floating-point data is
normalized hexadecimal floating-point.
the declared precision is less than or
equal to (21), short floating-point form is
used; if the declared precision is greater
than (21) and less than or equal to (53),
long floating-point form is used; if the
declared precision is greater than (53),
extended floating-point form is used.

If

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no
complex constants in PL/I. A complex value
is obtained by a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type immediately
followed by the letter I.

Examples of imaginary constants as
written in a program are:

271
3.968E10I

11011.01BI

Each of these is considered to have a real
part of zero. A complex value with a non-
zero real part is represented in the
following form:

[+]|-] real constant {+|-}
imaginary-constant

Thus a complex value could be written as
38+271I.

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both
fields.

Unless a variable is explicitly declared

to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

A numeric character data item (also known
as a numeric field data item) is the value
of a variable that has been declared with
the PICTURE attribute and a numeric picture
specification. The data item is the
character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification
describes a character string to which only
data that has, or can be converted to, an
arithmetic value is to be assigned. A
numeric picture specification cannot
contain either of the picture characters A
or X, which are used for non-numeric
picture-character strings. The basic form
of a numeric picture specification is one
or more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character vV, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single quotation marks. For
example:

*999v99"

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may be used in
numeric picture specifications. A
| repetition factor is an unsigned decimal
| integer constant, enclosed in parentheses.
|No blanks are allowed within the
|parentheses. The repetition factor
| indicates the number of repetitions of the
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immediately following picture character.
For example, the following picture
specification would result in the same
description as the example shown above:

*(3v(2)9!

The format for declaring a numeric
character variable is:

DECLARE identifier PICTURE
'numeric-picture-specification’;

For example:
DECLARE PRICE PICTURE '999V99’';

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the
rightmost two digits. Data assigned to
PRICE will be aligned on the assumed point
in the same way that point alignment is
maintained for fixed-point decimal data.

The numeric picture specification
specifies arithmetic attributes of data in
much the same way that they are specified
by the appearance of a constant. Only
decimal data can be represented by picture
characters. Complex data can be declared
by specifying the COMPLEX attribute along
with a single picture specification that
describes either a fixed-point or a
floating~-point data item.

The maximum number of decimal digits
allowed in a numeric character item is 15.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. Numeric character data is
stored in zoned decimal format; before it
can be used in arithmetic computations, it
must be converted either to packed decimal
or to hexadecimal floating-point format.
such conversions are done automatically,
but they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be
specified for insertion into a numeric
character data item, and such characters
are actually stored within the data item.
consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
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only the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:

DECLARE PRICE PICTURE '399V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);
PRICE = 12.28;
COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.

They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE
and COST can be considered identical. If
they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE = PRICE;

COST = PRICE;

VALUE COST ¢

PRICE

I

COST;

After the first two assignment
statements are executed, the value of VALUE
would be 0012.28 and the value of COST
would be *$12,.28', 1In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a
numeric picture specification always
participate in such an assignment. No
conversion is necessary because PRICE is
stored in character form.

The third and fourth assignment
statements would cause errors. The value
of COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a
numeric picture specification.

Note: Although the decimal point can be an
editing character or an actual character in
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an
arithmetic constant. The same would be
true of a valid plus or minus sign, since



arithmetic constants can be preceded by
signs.

Other editing characters, including zero
suppression characters, drifting
characters, and insertion characters, can
be used in numeric picture specifications.
For complete discussions of picture
characters, see section D, "Picture
Specification Characters" and the
discussion of the PICTURE attribute in
section I, "Attributes".

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-string Data

A character string can include any digit,
letter, or special character recognized as
a character by the particular machine
configuration. Any blank included in a
character string is an integral character
and is included in the count of length., A
comment that is inserted within a character
string will not be recognized as a comment.
The comment, as well as the comment
delimiters (/% and */), will be considered
to be part of the character-string data.

Character-string constants, when written
in a program, must be enclosed in single
quotation marks. If a single guotation
mark is a character in a string, it must be
written as two single guotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as-
a single character.

Examples of character-string constants
are:

‘LOGARITHM TABLE"

*PAGE 5"

"SHAKESPEARE''S "''"HAMLET"'"'""'
'ACu438-19"

(2) '"WALLA "'

The third example actually indicates
SHAKESPEARE'S " 'HAMLET'' with a length of
24, In the last example, the parenthesized
number is a repetition factor, which
indicates repetition of the characters that
follow. This example specifies the
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant,
enclosed in parentheses. It has a maximum
permissible value of 32767.

A null character-string constant is
written as two quotation marks with no
intervening blank.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length may be declared by an expression or
a decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length
specification must follow the keyword
CHARACTER. For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent character-
string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the

right with blanks to a length of 15, If a
longer string were assigned, it would be
truncated on the right. (Note: If such

truncation occurs it can be detected by use
of the STRINGSIZE condition).

When no length is specified, the
standard default assumption is a length of
one.

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the length of the data item
assigned to it at that time. The
programmer need not keep track of the
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length of a varying-length character
string; this is done automatically. The
length at any given time can be determined
by the programmer, however, by use of the
LENGTH built-in function, as discussed in
chapter 13, "Editing and String Handling".

Character-string data is maintained
internally in character format, that is,
each character occupies one byte of
storage. The maximum length allowed for
variables declared with the CHARACTER
attribute is 32,767. The maximum length
allowed for a character-string constant
before application of repetition factors
varies according to the amount of storage
available to the compiler, but it will
never be less than 512, The minimum length
for a character string is zero. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial two
bytes hold the string's current length, in
bytes.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE ‘'character-picture-specification”

The character picture specification is a
string composed of the picture
specification characters A, X, and 9. The
string of picture characters must be
enclosed in single guotation marks, and it
must contain at least one A or X and no
other picture characters except 9. The
character A specifies that the
corresponding position in the described
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the
corresponding position in the field.
picture character 9 specifies that the
corresponding position will contain a
numeric character or blank. For example:

The

DECLARE PART_NO PICTURE ‘'AA9999X999';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants.
Repetition factors must be placed inside
the quotation marks. The repetition factor
specifies repetition of the immediately
following picture character. For example,
the above picture specification could be
written:

'(2)A(4)9X(3) 9"
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The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as
discussed above.

Note that, for character picture
specifications, the picture character 9
specifies a digit or a blank, while, for
numeric picture specifications, the same
character specifies only a diqgit.

Bit-string Data

A bit-string constant is written in a
program as a series of binary digits (bits)
enclosed in single quotation marks and
followed immediately by the letter B.

A null bit-string constant is written as
two quotation marks with no intervening
blank, followed immediately by the letter
B.

Examples of bit-string constants as
written in a program are:

"1'B
*11111010110001"B
(64)*'0'B

"B

The parenthesized number in the third
example is a repetition factor which
specifies that the following series of
digits is to be repeated the specified
number of times. The example shown would
result in a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length may be
declared by an expression or a decimal
integer constant, enclosed in parentheses,
to specify the number of binary digits in
the string. The letter B is not included
in the length specification since it is not
part of the string. The length
specification must follow the keyword BIT.
Following is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (6U4);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

If no length is specified, a length of
one is assumed.



A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

Bit strings are stored eight bits to a
byte. The maximum length allowed for a
bit-string variable is 32,767. The maximum
length allowed for a bit-string constant
before application of repetition factors
depends upon the amount of storage
available to the compiler, but it will
never be less than 4096 (512 bytes). The
minimum length for a bit string is zero.
The storage allocated for varying-length
strings is two bytes longer than that
required by the declared maximum length.
The initial two bytes hold the current
length of the string, in bits.

UNINITIALIZED: VARIABLES

When the programmer makes a reference to an
arithmetic or string variable such that the
variable should contain a valid value -
assigns the value to another variable for
instance - errors can occur if this is the
first reference to the variable. The
programmer must ensure that a variable has
been assigned a value before trying to
access it. The checkout compiler checks
whether this has been done.

To facilitate this checking, the
compiler assigns a special value to each
variable as soon as storage is allocated to
it. An attempt to use a variable having
this value will result in interruption of
execution. The special value is one which
the variable would not normally have. For
instance, with a varying-length character
string, the compiler assigns the variable a
length of -1. Certain of these special
values, however, might occasionally be used
by the programmer. These are as follows.

Fixed length character strings:
X'FE' in each byte
Picture data:
X'FE' in each byte
Fixed-point binary data:
halfword X*'8001°*,

i.e. -215+1(-32767)

fullword X'80000001*', i.e. ~231+]

(-2,187,483,647)

If it is essential that one of the above
values is used in a program to be run under

the checkout compiler, the compiler options
should specify that no checking for
uninitialized variables is carried out.

The optimizing compiler does not check for
uninitialized variables.

Program Control Data

The types of program control data are file,
label, entry, event, task, locator, and
area.

FILE DATA

A file data item represents information
about a PL/I file. It may be a file
constant, or the value of a file variable.
A file constant can be assigned to a file
variable: a reference to the file variable
is a reference to the assigned file
constant.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier
written as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: MILES = SPEED*HOURS;
In this example, ABCDE is the statement
label. The statement can be executed
either by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:
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LBL_A: statement;

LBL_B: statement;

GO TO LBL_X;

LBL_A and LBL_B are statement-label
constants because they are prefixed to
statements. IBL X is a statement-label
variable. By assigning LBL_A to LBL_X, the
statement GO TO LBL X causes a transfer to
the LBL_A statement. Elsewhere, the
program may contain a statement assigning
IBL_ B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
IBL_B. This value of LBL_X is retained
until another value is assigned to it.

A statement-label variable must be
declared with the LABEL attribute, as
follows: )

DECLARE LBL_X LABEL;

ENTRY DATA

Entry data is used only in connection with
entry names, and has values which permit
references to be made to entry points of
procedures. Entry data may be an entry
constant or the value of an entry variable.

An entry constant is an identifier that
appears in the program as an entry name
written as a prefix to a PROCEDURE or ENTRY
statement. It permits references to be
made to an entry point of a procedure.

Example:

P: PROCEDURE;
CALL P1;

CALL P1A;

P1: PROCEDURE;

P1A:ENTRY;

24 OS PL/I CKT AND OPT LRM PART I

P1 and P1A are declared as entry constants.
Control is transferred to the procedure

entry points designated by Pl or P1A when a
reference is made to either entry constant.

An entry variable is an identifier that
refers to an entry constant. Consider the
following example:

DECLARE EV ENTRY VARIABLE,
(E1,E2) ENTRY;

EV is declared an entry variable by means
of the VARIABLE attribute. The first CALL
statement invokes an entry point
represented by the entry constant El.
second CALL invokes the entry point E2.

The

EVENT DATA

Event variables are used to coordinate the
concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record-oriented input/output
operation (or the execution of a DISPLAY
statement) and the execution of other
statements in the procedure that initiated
the operation.

A variable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see chapter
17, "Multitasking," chapter 12, "Record-
Oriented Transmission", or "DISPLAY" in
section J, "Statements".

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attribute
by its appearance in a TASK option, or by
explicit declaration, as in the following
example:



DECLARE ADTASK TASK;

For detailed information, see chapter
17, "Multitasking.”

LOCATOR DATA

There are two types of locator data:
pointer and offset.

. The value of a pointer variable is

. effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations.

The value of an offset variable
specifies a location relative to the start
of a reserved area of storage and remains
valid when the address of the area itself
changes.

Locator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREA1) ;

In this example, AREAl is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the left-
hand side of a locator qualification
symbol, or by its appearance in a SET
option. :

For detailed information, see chapter 8,
"Storage Control".

AREA DATA

Area variables are used to describe areas
of storage that are to be reserved for the
allocation of based variables. An area can
be assigned or transmitted complete with
its contained allocations; thus, a set of
based allocations can be treated as one
unit for assignment and input/output while
each allocation retains its individual
identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREAl AREA(2000),
AREAZ AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREAl in the example;
otherwise a default size is assumed. The
default size is 1000 bytes; the theoretical
maximum size is 16,777,200 bytes but in
practice the maximum depends on the amount
of storage available to the program.

For detailed information, see charter 8,
"Storage Control".

Data Organization

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents a collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be collected into arrays
or structures.

ARRAYS

Data elements having the same
characteristics, that is, of the same data
type and of the same precision or length,
may be grouped together to form an array.
An array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
within the array.

consider the following two declarations:
DECIARE LIST (8) FIXED DECIMAL (3);
DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight
elements, each of which is a fixed-point
decimal item of three digits. In the
second example, TABLE is declared to be a
two-dimensional array, also of eight fixed-
point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute
specification. It must follow the array
name, with or without an intervening blank.
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It specifies the number of dimensions of
the array and the bounds, or extent, of
each dimension. Since only one bounds
specification appears for LIST, it is a
one-dimensional array. Two bounds
specifications, separated by a comma, are
listed for TABLE; consequently, it is
declared to be a two-dimensional array.

The bounds of a dimension are the
beginning and the end of that dimension.
The extent is the number of integers
between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification for a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have bounds of 1 and 4 and 1 and 2;
the extents are 4 and 2.

If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly, with the two
numbers connected with a colon. For
example:

DECLARE LIST A (4:11);
DECLARE LIST B (-4:3);

In the first example, the bounds are 4 and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in chapter 4, "Expressions and Data
Conversions") involving more than one
array, the bounds -- not merely the extents
-- must be identical. Although LIST,
LIST A, and LIST_B all have the same
extent, the bounds are not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (4) 30
LIST (5) 630
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LIST (6) 150
LIST (7) 310
LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized
subscript following an array name, with or
without an intervening blank, identifies a
particular data item within the array. A
subscripted name, such as LIST(4), refers
to a single element and is an element
variable. The entire array can be referred
to by the unsubscripted name of the array,
for example, LIST. In this case, LIST is
an array variable. Note the difference
between a subscript and the dimension
attribute specification. The latter, which
appears in a declaration, specifies the
dimensionality and the number of elements
in an array. Subscripts are used in other
references to identify specific elements
within the array.

The same data could be assigned to
LIST A and LIST B, as declared above
(though not by direct assignment from
LIST). In this case it would be would be
referred to as follows:

Reference Element Reference

LIST A (&) 20 LIST_B (-8)
LIST A (5) 5 LIST_B (-3)
LIST_A (6) 10 LIST B (-2)
LIST A (7) 30 LIST_B (-1)
LIST A (8) 630 LIsST_B (0)
LIST A (9) 150 LIST B (1)
LIsT A (10) 310 LIST_B (2)
LIST A (11) 70 LIST_B (3)

Assume that the same data were assigned
to TABLE, which is declared as a two-
dimensional array (though note again that
assignment could not be direct from LIST to
TABLE). TABLE can be illustrated as a
matrix of four rows and two columns, as
follows:

TABLE (m, n) m 1) (m,2)
(1,n) 20 5
(2,m) 10 30
(3,n) 630 150
(4,n) 310 70



An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptuwal. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most
subscript varying most rapidly. For
example, assignment to TABLE would be to
TABLE(1,1), TABLE(1,2), TABLE(2,1),
TABLE(2,2) and so forth.

Arrays are not limited to two
dimensions; up to 15 dimensions can be
declared for an array. In a reference to
an element of any array, a subscripted name
must contain as many subscripts as there
are dimensions in the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. All data
types may be collected into arrays. String
arrays, either character or bit, are valid,
as are arrays of label, entry, event, file,
area, task, or locator data.

Expressions as Subscripts

The subscripts of a subscripted name need
not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an
expression yields a value that is not a
fixed-point binary integer, it is converted
to FIXED BINARY(15,0), since subscripts are
maintained internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross-Sections of Arrays

Cross-sections of arrays can be referred to
by substituting an asterisk for a subscript
in a subscripted name. The asterisk then
specifies that the entire extent is to be
used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross-section
consisting of TABLE(1,1), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The
subscripted name TABLE(2,*) refers to all
of the data items in the second row of

TABLE.
array.

TABLE(*, *) refers to the entire

Note that a subscripted name containing
asterisk subscripts represents, not a
single data element, but an array with as
many dimensions as there are asterisks.
Consequently, such a name is not an element
expression, but an array expression.

A reference to a cross-section of an
array may be a reference to two or more
elements of that array which may not be
adjacent in storage, the elements specified
by such a reference being separated by
other elements which are not part of the
cross-section. The storage represented by
such a cross-section is known as non-
connected storage. Certain restrictions
apply to the use of non-connected storage;
for example, a record variable (that is, a
variable to or from which data is
transmitted by a record-oriented
transmission statement) must represent data
in connected storage (that is, data items
which are adjacent in storage).

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the
structure name, which represents the entire
collection of element variables. For
example, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST_NAME
FIRST NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME_RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.
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PAYROLL
LAST NAME REGULAR_HOURS  REGULAR_RATE
FIRST NAME OVERTIME_HOURS OVERTIME_ RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical
collections. 1In the above examples,
LAST_NAME and FIRST NAME might make a
logical subcollection, as might
REGULAR_HOURS and OVERTIME_HOURS, as well
as REGULAR_RATE and OVERTIME_RATE. In a
structure, such subcollections also are
given names.

PAYROLL
NAME HOURS RATE
FIRST REGULAR REGULAR
LAST OVERTIME OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called
elementary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is
specified in a DECLARE statement through
the use of level numbers. A major
structure name must be declared with the
level number 1. Minor structures and
elementary names must be declared with
level numbers arithmetically greater than
1; they must be decimal integer constants.
A blank must separate the level number and
its associated name. For example, the
items of a weekly payroll could be declared
as follows: '
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DECLARE 1 PAYROLL,

2 NAME,
3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

Note: In an actual declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names
LAST and FIRST, and the two pairs REGULAR
and OVERTIME. The pattern of indentation
in this example is used only for
readability. The statement could be
written in a continuous string as DECLARE 1
PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A
programmer can refer to the entire
structure by the name PAYROLL, or he can
refer to portions of the structure by
referring to the minor structure names. He
can refer to an element by referring to an
elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deerer
levels need not be the immediately
succeeding integers. They are used merely
to specify the relative level of a name. A
minor structure at level n contains all the
names with level numbers greater than n
that lie between that minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have
been declared as follows:

DECIARE 1 PAYROLL,

4 NAME,
5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous
declaration. The maximum permissible
number of levels is 15, and the highest
permissible level number is 255.

The description of a major structure
name is terminated by the declaration of
ancther item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the



DECLARE statement.

Level numbers are specified with
structure names only in DECLARE statements
and, in the case of controlled structures,
ALLOCATE statements. In references to the
structure or its elements, no level numbers
are used.

pualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
be ambiguous without some qualification to
make the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A gualified name
is an elementary name or a minor structure
name that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and
OVERTIME could be made unique through use
of the qualified names HOURS.REGULAR,
HOURS.OVERTIME, RATE.REGULAR, and
RATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may
appear surrounding the period.
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS.REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unigue with the
name WORK.,HOURS.REGULAR). All of the
gualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unigue. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a

DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for.
each month of a year, it might be declared
as follows:

DECLARE 1 WEATHER (12),
2 TEMPERATURE,
3 HIGH DECIMAL FIXED (4,1),
3 LOW DECIMAL FIXED(3,1),
2 WIND_VELOCITY,
3 HIGH DECIMAL FIXED (3),
3 LOW DECIMAL FIXED(2),
2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED (3,1);

Thus, when such an array represents the
weather for a whole year, a programmer
could refer to the weather data for the
month of July by specifying WEATHER (7).
Portions of the July weather could be
referred to by TEMPERATURE(7), WIND
_VELOCITY (7), and PRECIPITATION(7), but
TOTAL (7) would refer to the total
precipitation during the month of July.

TEMPERATURE.HIGH (3), which would refer
to the high temperature in March, is a
subscripted qualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECLARE 1 A (6,6),
2B (5,
3 c,
3D,
2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
identifies a particular C that is an
element of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such
references may be moved to the right or
left and attached to names at a lower or
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.C have the sare meaning as
A(1,1).B(2).C for the above array of
structures. Unless all of the subscripts
are moved to the lowest or highest level,
the qualified name is said to have
interleaved subscripts; thus, A.B{(1,1,2).C
has interleaved subscripts.

An array” declared within an array of
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structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of
structures A, the array B is a three-
dimensional structure, because it inherits
the two dimensions declared for A. If B is
unique and requires no qualification, any
reference to a particular B would require
three subscripts, two to identify the
specific A and one to identify the specific
B within that A.

Cross-Sections of Arrays of Structures

A reference to a cross-section of an array
of structures is not permitted, that is,
the asterisk notation cannot be used in a
reference.

Other Attributes

Keyword attributes for data variables such
as BINARY and DECIMAL are discussed briefly
in the preceding sections of this chapter.
other attributes that are not peculiar to
one data type may also be applicable. A
complete discussion of these attributes is
contained in section I, "Attributes". Some
that are especially applicable to a
discussion of data type and data
organization are DEFINED, LIKE, ALIGNED,
UNALIGNED, and INITIAL.

DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

DECLARE LIST (100,100),
LIST_ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST ITEM is an identical array defined on
LIST. A reference to an element in
LIST_ITEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute with the POSITION

attribute can be used to subdivide or
overlay a data item. For example:
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DECLARE LIST CHARACTER (50),
LISTA CHARACTER (10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST
POSITION (11),
LISTC CHARACTER(30)
POSITION(21);

DEFINED LIST

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant fromw 1 through n
(where n represents the number of
dimensions for the defined item). The
value of the iSUB variable ranges from the
lower bound to the upper bound of the ith
dimension of the defined array. For
example:

DECLARE A(20,20),
B(10) DEFINED A (2#1SUB, 2*1SUB);

B is a subset of A consisting of every even
element in the diagonal of the array, A.

In other words, B(l) corresponds to A(2,2),
B(2) corresponds to A(4,4).

Non-connected storage: The use of the
DEFINED attribute to overlay arrays with
arrays creates the possibility that array
expressions can refer to array elements in
non-connected storage (that is , array
elements which are not adjacent in
storage). It is possible for an array
expression involving consecutive elements
to refer to non-connected storage in the
two following cases:

1. Where an array is declared with iSUB
defining. An array expression which
refers to adjacent elements in an
array declared with iSUB defining can
be a reference to non-connected
storage (that is, a reference to
elements of an overlayed array which
are not adjacent in storage).

2. Where a string array is defined on a
string array which has elements of
greater length. Consecutive elements
in the defined array are separated by
the difference between the lengths of
the elements of the base and defined
arrays, and are considered to be held
in non-connected storage.



LIKE Attribute

The LIKE attribute is used to indicate that
the name being declared is to be given the
same structuring as the major structure or
minor structure name following the
-attribute LIKE. For example:

DECLARE 1 BUDGET,

2 RENT,

2 FOoD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,

1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST_OF_LIVING is the
same as if it had been declared:

DECLARE 1 COST_OF_LIVING,

2 RENT,

2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies
structuring, names, and attributes of the
structure below the level of the specified
name only. No dimensionality of the
specified name is copied. For example, if
BUDGET were declared as 1 BUDGET (12), the
declaration of COST _OF_LIVING LIKE BUDGET
would not give the dimension attribute to
COST_OF _LIVING. To achieve dimensionality
of COST_OF_LIVING, the declaration would
have to be DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

ALIGNED and UNALIGNED Attributes

In System/360 and System/370, information
is held in units of eight bits, or a
multiple of eight bits. Each eight-bit
unit of information is called a byte. When
PL/I data is stored in character form, each
character occupies one byte.

Bytes may be handled separately or
grouped together in fields. A halfword is
a group of two consecutive bytes. A word
is a group of four consecutive bytes. A
double woxrd is a field consisting of two
words. Byte locations in storage are
consecutively numbered starting with 0;
each number is considered the address of
the corresponding byte. A group of bytes
in storage is addressed by the leftmost
byte of the group. < i {

Fixed-length fields, such as halfwords
and double words, mustibe located in main
storage on an integral boundary for that
unit of information. A boundary is called
integral for a unit of information when its
address is a multiple of the length of the
unit in bytes. For example, a word (four
bytes) must be located in storage so that
its address is a multiple of the numker 4,
A halfword (two bytes) must have an address
that is a multiple of the number 2, and a
doubleword (eight bytes) must have an
address that is a multiple of the number 8
(see figure 3.1).

Halfwords, words, and doublewords may be
accessed more readily than a field of the
same length that is not aligned on an
integral boundary. For this reason, it is
a system requirement that data to be used
in certain operations is aligned on cne of
the three integral boundaries.

It is possible in PL/I to align data on
boundaries that will give the fastest
possible execution. This is not always
desirable, however, since there may be
unused bytes between successive data
elements, which increases use of storage.
This is likely to be particularly important
when the data items are members of
aggregates that are to be used to create a
data set; the unused bytes can greatly
increase the amount of external storage
required. The ALIGNED and UNALIGNED
attributes allow the programmer to choose
whether or not data is to be stored on the
appropriate integral boundary.

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type requirement.
These requirements are specified in section
K, "Data Mapping".

UNALIGNED specifies that each data
element, with one exception, is mapped on
the next byte boundary. The exception is
for fixed-length bit strings, which are
mapped on the next bit.

When the UNALIGNED attribute is
specified, the compiler generates code that
moves the data to an appropriate integral
boundary before an operation is performed,
if the operation requires data alignment.
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Figure 3.1.

Consequently, although the UNALIGNED
attribute may reduce storage requirements,
it may increase execution time.

Defaults are applied at element level.
The default for bit-string data, character-
string data, and numeric character data is
UNALIGNED; for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its
elements:

DECLARE 1 s,
2 X BIT(2), /*UNALIGNED BY DEFAULT*/
2 A ALIGNED, /*ALIGNED EXPLICITLY */
3 B, /*ALIGNED FROM A */
3 C UNALIGNED, /*#UNALIGNED EXPLICITLY*/
4 D, /*UNALIGNED FROM C */
4 E ALIGNED, /*ALIGNED EXPLICITLY */
4 F, /*¥UNALIGNED FROM C */
3 G, /¥ALIGNED FROM A */
2 H; /*¥ALIGNED BY DEFAULT */

INITIAL Attribute

The INITIAL attribute specifies an initial
value to be assigned to a variable at the
time storage is allocated for it. For
example:
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DECLARE NAME CHAR(10) INIT('JOHN DOE');
DECLARE PI FIXED DEC (5,4) INIT(3.1416);
DECLARE TABLE(100,100) INIT CALL SUBR;
DECLARE A INIT ((B*C));

DECLARE X INIT(SQRT(2));

When storage is allocated for NAME, the
character string "JOHN DOE' (padded on the
right to 10 characters) will be assigned to
it. When PI is allocated, it will be
initialized to the value 3.1416. Either
value may be retained throughout the
program, or it may be changed during
execution.

The third example illustrates the CALL
option. It indicates that the procedure
SUBR is to be invoked to perform the
initialization. The required values are
assigned to TABLE during the execution of
SUBR.

The fourth example shows an INITIAL
attribute which contains an expression. It
specifies that A is to be initialized with
the value of the product of B and C.

The fifth example illustrates the use of
a function reference to initialize a data
item.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains allocated
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. For automatic
variables, which are allocated at each
activation of the declaring block, any



specified initial value is assigned with
each allocation. For based and controlled
variables, which are allocated at the
execution of ALLOCATE statements (also
LOCATE statements for based variables), any
specified initial value is assigned with
each allocation. Note, however, that this
initialization of controlled variables can
be overridden in the ALLOCATE statement.

The INITIAL attribute cannot be given
for entry constants, file constants,
DEFINED data, entire structures, or
parameters (except CONTROLLED parameters).

Note: The CALL option or an expression
containing one or more variables cannot be
used with the INITIAL attribute for static
data. {

An area variable is automatically
initialized with the value of the EMPTY
built-in function, on allocation, after
which any specified INITIAL is applied. An
area can be initialized by assignment of
another area, using the INITIAL attribute
with or without the CALL option.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only elementary names can be given the
INITIAL attribute.

An array or an array of structures can
be partly initialized or fully initialized.
Uninitialized elements are specified by
either omitting to put a value in the
INITIAL attribute or by using an asterisk.
For example:

DECLARE A(15) CHARACTER(13) INITIAL
('JOHN DOE®', *,
'RICHARD ROW',
'MARY SMITH"),
B (10,10) DECIMAL FIXED(5)
INITIAL((25)0,(25)1,(50)0),
1c),
2 D INITIAL (0),
2 E INITIAL((8)0);

In this example, only the first, third,
and fourth elements of A are initialized;
the rest of the array is uninitialized.
The array B is fully initialized, with the
first 25 elements initialized to 0, the
next 25 to 1, and the last 50 to 0. The
parenthesized numbers (25, 25, and 50) are
iteration factors, that specify the number

of elements to be initialized. In the
structure C, where the dimension (8) has
been inherited by D, only the first element
of D is initialized; where the dimension
(8) has been inherited by E, all the
elements of E are initialized.

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O0),
1 J(8) LIKE G;

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be
confused with the string repetition factor
discussed earlier in this chapter.
consider the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)°A',(25)(10)°*B*,
(20) (1) 'c*);

This INITIAL attribute specification
contains both iteration factors and
repetition factors. It specifies that the
first element of TABLE is to be initialized
with a string consisting of 10 A's, each of
the next 25 elements is to be initialized
with a string consisting of 10 B's, and
each of the last 24 elements is to be
initialized with the single character C.

In the INITIAL attribute specification for
a string array, a single parenthesized
factor preceding a string constant is
assumed to be a string repetition factor
(as in (10) *A'). If more than one agpears,
the first is assumed to be an iteration
factor, and the second a string repetition
factor. For this reason (as in

(24) (1)'Cc*), a string repetition factor of
1 must be inserted if a single string
constant is to be used to initialize more
than one element.
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Chapter 4: Expressions and Data Conversion

An expression is a representation of a Examples of element expressions are:
value. A single constant or a variable is

an expression. Combinations of constants C *D

and/or variables, along with operators

and/or parentheses, are expressions. An A(3,2) + B(4,8)

expression that contains operators is an

operational expression. The constants and RATE. PRIMARY - COST.PRIMARY (1)
variables of an operational expression are

called operands. A(4,4) * C

RATE.SECONDARY / 4
Examples of expressions are:

A(4,6) * COST.SECONDARY(2)

27 All of these expressions are element
expressions because each operand is an
element variable or constant (even though

LOSS some may be elements of arrays or
elementary names of structures); hence,

A+B each expression represents an element
value.

(SQTY-QTY) *SPRICE

‘ Examples of array expressions are:
Any expression can be classified as an

element expression (also called a scalar A+ B
expression), an array expression, or a
structure expression. Element variables, A *¥ C-D
array variables, and structure variables
can appear in the same expression. B / 10B
An element expression is one that RATE + COST
represents an element value. This
definition includes an elementary name All of these expressions are array
within a structure or a subscripted name expressions because at least one orerand of
that specifies a single element of an - each is an array variable; hence, each
array. expression represents an array value. Note
that the third example contains the binary
An array expression is one that fixed-point constant 10B., The last example
represents an array of values. This represents an array of structures.
definition includes a structure, or part of
a structure (a minor structure or element) Examples of structure expressions are:

that is given the dimension attribute.

RATE * COST(2)
A structure expression is one that

represents a structured set of values. RATE / 2
None of its operands are arrays, but an
operand can be subscripted. Both of these expressions are structure

expressions because at least one operand of
In the examples that follow, assume that each is a structure variable and no operand
the variables have attribytes declared as is an array; hence, each expression
follows: represents a structure value.

DCL A(10,10) BIN FIXED(31),
B(10,10) BIN FIXED(31),
1 RATE,
2 PRIMARY DEC FIXED(4,2),
2 SECONDARY DEC FIXED(4,2),

Use of Expressions

1 CcosT(2), Expressions that are single constants or

2 PRIMARY DEC FIXED(4,2), single variables may appear freely

2 SECONDARY DEC FIXED(4,2), throughout a program. However, the syntax
C BIN FIXED(15), of many PL/I statements allows the
D BIN FIXED(15); appearance of operational expressions,
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provided the result of the expression
conforms with the syntax rules.

In syntactic descriptions used in this
publication, the unqualified term
"expression" refers to an element
expression, an array expression, or a
structure expression. For cases in which
the kind of expression is restricted, the
type of restriction is noted; for example,
the term "element-expression" in a
syntactic description indicates that
neither an array expression nor a structure
expression is valid.

Note: Although operational expressions can
appear in a number of different PL/I
statements, their most common occurrences
are in assignment statements of the form:

A= B + C;

The assignment statement has no PL/I
keyword. The assignment symbol (=)
indicates that the value of the expression
on the right (B + C) is to be assigned to
the variable on the left (A). For purposes
of illustration in this chapter, some
examples of expressions are shown in
assignment statements.

Data Conversion

OPERATIONAL EXPRESSIONS

An operational expression consists of one
or more single operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
before the operation is performed. General
principles concerning these conversions are
given in "Attributes of Targets" later in
this chapter. Detailed rules for specific
cases, including rules for computing the
precision or length of a converted item,
can be found in section F, "Data Conversion
and Expression Evaluation."

Data conversion is mainly confined to
problem data. The only conversion possible
with program control data is between offset
and pointer types (except that conversion
to character strings takes place under the
checkout compiler during stream output).

There are very few restrictions on the
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use of more than one representation in an
expression. It must be realized, however,
that such mixtures imply conversions. If
conversions take place at execution time,
they will slow down execution. Also,
unless care is taken, conversion can result
in loss of precision and can produce
unexpected results. Mixed-representation
expressions should, therefore, be avoided
as far as possible, and when they are used
the relevant conversion rules should be
thoroughly understood by the programmer.

ASSIGNMENT

In addition to conversion performed in the
evaluation of an expression, conversion
will also occur when a data item (or the
result of an expression evaluation) is
assigned to a variable whose attributes
differ from the attributes of the item
assigned. The rules for such conversions
are, with a few exceptions, the same as
those for conversion in the evaluation of
operational expressions.

Conversion also takes place during
stream-oriented input/output (see chapter
11), and there are a number of other
circumstances that cause conversion; a
complete list is given in Section F.

PROBLFM DATA CONVERSION

Two classes of conversion can be performed
on problem data: type conversion and
arithmetic conversion.

Type conversions are those that take
place between the different types of
problem data, namely:

character-string - data with the CHARACTER
attribute

data with the BIT
attribute

bit-string -

numeric character- data with a PICTURE
attribute that contains
neither of the picture
characters A and X.

coded arithmetic - data with FIXED or
FLOAT, DECIMAL or BINARY
REAL or COMPLEX, and
precision attributes.

(strictly, numeric character data is merely
a particular case of arithmetic data, but
for the purpose of presenting the
conversion rules, it is regarded as a



separate type of representation.)

Arithmetic conversions are those that
occur within the coded arithmetic form -
conversions between fixed-point and
floating-point scales, decimal and binary
bases, and real and complex modes, and
conversions of precision.

An example of type conversion is a bit
string being converted to coded arithmetic
representation during the evaluation of an
arithmetic expression. The bit string is
interpreted as an unsigned binary integer,
as if it had the attributes FIXED
BINARY (31,0) REAL, with a value equal to
the positive binary value represented by
the bit pattern in the string. If the
current length of the string is greater
than 31, excess bits on the left-hand end
of the string are ignored.

An example of arithmetic conversion is
an item being converted from fixed-point
decimal representation to floating-point
binary representation, both in real mode, .
during the evaluation of an arithmetic
expression. The item retains the same
|value but the base on which it is
represented is changed from decimal to
|binary and its scale is changed from fixed-
point to floating-point. Also, the value
of the precision attribute is increased by
a factor of 3.32, because 3.32 times as
many binary :integers are required to
represent a given value as decimal
integers. The precision is rounded up to
an integer after being multiplied by 3.32.

LOCATOR DATA CONVERSION

The only type of program control data that
may be converted during evaluation of
expressions, and execution of assignment
statements, is locator data, that is, data
with the OFFSET or POINTER attributes.
During the evaluation of an expression
(locator data may be included in comparison
operations using the = and -= comparison
operators), only offset to pointer
conversion may occur. During an
assignment, conversion from offset to
pointer and from pointer to offset may
occur.

USE OF BUILT-IN FUNCTIONS

As well as allowing conversions to take
place during expression evaluation and on
assignment, the programmer may initiate
conversions when he requires them by means
of PL/I built-in functions. (The concept
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of a built-in function is explained in
chapter 9, "Subroutines and Functions," and
detailed descriptions of the functions are
given in section G, "Built-in Functions and
Pseudovariables.")

The functions are:

CHAR
BIT
FIXED
FLOAT
DECIMAL
BINARY

Each function converts data to the
attribute implied by its name. It will
perform any type and arithmetic conversions
that may be required. 1In addition to these
functions, there are the COMPLEX built-in
function, which converts two real arguments
to a single complex value, and the function
REAL, which extracts the real part of a
complex value.

In the case of BIT and CHAR built-in
functions, the programmer may specify the
length attribute of the resultant string,
and in the case of FIXED, FLOAT, DECIMAL,
and BINARY, he may specify the precision of
the result.

The precision of a data item may ke
controlled by means of the PRECISION built-
in function.

conversion between pointer and offset
types may be initiated by the programmer
using the OFFSET and POINTER built-in
functions.

Most of the conversions performed by
these built-in functions could equally
readily be achieved by assignment to a PL/I
variable having the required attributes
(with the exception of the conversiomns
performed by the COMPLEX built-in
function). The programmer may, however,
find the use of a built-in function more
convenient than the creation of a variable
solely for the purpose of carrying out a
conversion.

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation is dependent upon the class of
operator specified for the operation.
There are four classes of operations -
arithmetic, bit-string, comparison, and
concatenation.
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ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ - * / * ¥

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A
or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any of the
operands of an infix operation. For
example, in the expression A*-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
-1 times the value of B.

More than one prefix operator can
precede and be associated with a single
variable. More than one positive prefix
operator will have no cumulative effect,
but two consecutive negative prefix
operators will have the same effect as a
single positive prefix operator.

Results of Arithmetic Operations

After any necessary conversion of the
operands in an expression has been carried
out, the arithmetic operation is performed
and a result is obtained. This result may
be the value of the expression or it may be
an intermediate result upon which further
operations are to be performed.

Consider the expression
A ¥ B + C

The operation A * B is performed first, to
give an intermediate result. Then the
value of the expression is obtained by
performing the operation (intermediate
result) + C.

The intermediate result is held in a
temporary location designated by the
compiler. It has attributes in the same
way as any variable in a PL/I program.
What attributes the result has depends on
the attributes of the two operands (or the
single operand in the case of a prefix
operation) and on the operator involved.
This dependence is further explained under
"Attributes of Targets" later in this
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chapter,

An intermediate result may undergo
conversion if a further operation is to be
performed, and the value of an expression
may be converted if it is assigned. These
conversions follow exactly the same rules
as the conversion of programmer-defined
data.

Operations using Built-in Functions

There are three built-in functions in PL/I
that allow the programmer to override the
implementation precision rules for
addition, subtraction, multiplication, and
division operations. (The concept of a
built-in function is explained in chapter
9, "Subroutines and Functions,"™ and the
functions are described in detail in
section G, "Built-in functions and
Pseudovariables.")

The functions are ADD, MULTIPLY, and
DIVIDE. ADD may be used for subtraction
simply by prefixing the operand to be
subtracted with a minus sign. In using
these functions, two operands are
specified, together with the precision of
the result. The base, scale, and mode of
the result are as defined by the rules for
conversion in the evaluation of
expressions.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

- & l

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and"
symbol and the "or" symbol, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. 1If the
operands of an infix operation are of
unequal current length, the shorter is
extended on the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the current
length of the operands (the two operands,
after conversion, are always the same
length).



Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not"
operation is bit reversal; that is, the
result of -1 is 0; the result of -0 is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1;
otherwise, the result is 0. The result of
an "or' operation is 1 unless both operands
are zero, in which case it is 0. The
following table illustrates the result for
each bit position for each of the
operators:

| A | B || -A | -B | A&B | A|B |
|=====-—-mmommom oo ittt |
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More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is *'010111*'B, the value of
operand B is '111111'B, and the value of
operand C is '110'B, then:

~ A yields '101000'B
C yields "001'B
B yields '110000'B
A | B yields '111111°'B
B yields '111111'B
A | (~C) yields '011111°'B

~((~0) [ (~B)) yields '110111'B

Boolean Built-in Function

In addition to the "not", "and" and "or"
operations using the operators -,§& and |,
Boolean operations may be performed using
the BOOL built-in function. The concept of
a built-in function is described in chapter
9, "subroutines and Functions," and the
function is described in detail in section
G, "Built-in Functions and
Pseudovariables.”

Chapter 4:

COMPARISON OPERATIONS

A comparison operation is one that is
specified by combining operands with one of
the following operators.

< =K <= = A= >= > a>

These operators specify "less than", "not
less than", "less than or equal to", "equal
to", "not equal to", "greater than or equal
to", "greater than", and "not greater
than".

There are four types of comparisons:

1. Algebraic, which involves the
comparison of signed arithmetic values
in internal coded arithmetic form. If
operands differ in base, scale,
precision, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic before
comparison. Only the operators = and
-= are valid for comparison of complex
operands.

2. Character, which involves left-to-
right, character-by-character
comparisons of characters according to
the collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

4., Program control data, which involves
comparison of the internal coded forms
of the operands. Only the comparison
operators = and ~= are permitted; area
variables cannot be compared. The
only conversion that can take place is
offset to pointer; all other tyrge
differences between operands for
program control data comparisons are
in error.

If the operands of a problem data
comparison are not immediately compatible
(that is, if their data types are
appropriate to different types of
comparison), the operand of the lower
precedence is converted to conform to the
comparison type of the other. The
precedence of comparison types is (1)
algebraic (highest), (2) character, (3)
bit. Thus, for example, if a bit string
were to be compared with a fixed decimal
value, the bit string would be converted to
fixed binary for algebraic compariscn with
the decimal value (which would also be
converted to fixed binary). In the
comparison of strings of unequal lengths,
the shorter string is padded on the right
with blanks (in a character comparison) or
*0'B (in a bit comparison).
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The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '0'B if the relationship is false.

The most common occurrences of
comparison operations are in the IF
statement, of the following format:

IJF A =B
THEN action-if-true
ELSE action-if-false

The evaluation of the expression A = B
yields either '1'B or '0'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

X = A < B;

In this example, the value *'1'B would be
assigned to X if A is less than B;
otherwise, the value *'0'B would be
assigned. In the same way, the following
assignment statement could be valid:

X = A = B;

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be *'1'B; if A is not equal to B, the
value of X will be '0'B.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

It signifies that the operands are to be
joined in such a way that the last
character or bit of the operand to the left
will immediately precede the first
character or bit of the operand to the
right, with no intervening bits or
characters.

The concatenation operator can cause
conversion to string type since
concatenation can be performed only upon
strings, either character strings or bit
strings., If either operand is character or
decimal, any necessary conversions are
performed to produce a character-string
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result. Otherwise if the operands are bit
and binary, or both binary, conversions are
performed to produce a bit-string result.

The results of concatenation operations
are as follows:

Bit String: A bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character String: A character string whose
length is equal to the sum of the lengths
of the two character-string operands.

If an operand requires conversion for
the concatenation operation, the result is
dependent upon the length of the character
string to which the operand is converted.
For example, if A has the attributes and
value of the constant '010111'B, B of the
constant '101'B, C of the constant *XY,Z2',
and D of the constant 'AA/BB', then

A||B yields '010111101'B
A||A]|B yields "010111010111101*B

C||D yields 'XY,ZAA/BB'

D||C yields 'AA/BBXY,Z°

B||D yields '101AA/BB'

Note that, in the last example, the bit
string '101°'B is converted to the character
string "101' before the concatenation is
performed. The result is a character
string consisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational
expression. Any combination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C § D;

Each operation within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the
operation is performed.

Assume that the variables given above
are declared as follows:

DECLARE RESULT BIT(3), A FIXED
DECIMAL (1), B FIXED BINARY
(3), C CHARACTER(2), D BIT(4);

¢ The decimal value of A would be
converted to binary base.



e The binary addition would be performed,
adding A and B.

e The binary result would be compared with
the converted binary value of C.

e The bit-string result of the comparison
would be extended to the length of the
bit string D, and the "and" operation
would be performed.

e The result of the "and" operation, a bit
string of length 4, would be assigned to
RESULT without conversion, but with
truncation on the right.

The expression in this example is
described as being evaluated operation-by-
operation, from left to right. Such would
be the case for this particular expression.
The order of evaluation, however, depends
upon the priority of the operators
appearing in the expression.

Priority of Operators

In the evaluation of expressions, priority
of the operators is as follows:

** prefix+ prefix- - (highest)
* 7 l
infix+ infix- I

I I
< =< K== A= > > a> |

& v

| (lowest)

If two or more operators of the highest

¢ priority appear in the same expression, the

order of evaluation of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator is
evaluated first. Each succeeding
exponentiation or prefix operator to the
left has the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order or priority
of those operators is from left to right.

Note that the order of evaluation of
expression in the assignment statement:

the

RESULT = A + B < C & D;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
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as follows:

(a) + (B)
(A + B) < (C)
((Aa + B) <Q) & (D)

The order of evaluation (and,
consequently, the result) of an expression
can be changed through the use of
parentheses. The above expression, for
example, might be changed as follows:

(A + B < (C § D

The order of evaluation of this
expression would yield a bit string of
length one, the result of the comparison
operation. In such an expression, those
expressions enclosed in parentheses are
evaluated first, to be reduced to a single
value, before they are considered in
relation to surrounding operators. Within
the language, however, no rules specify
which of two parenthesized expressions,
such as those in the above example, would
be evaluated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (result_1). The value of C would be
converted to a bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have
been reduced to:

result_1 < result_2

result 2 would be converted to binary, and
the algebraic comparison would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example:

A+ (B<C) & (D || E ** F)
The priority of the operators specifies, in
this case, only that the exponentiation
will occur before the concatenation. It
does not specify the order of the oreration
in relation to the evaluation of the other
operand (A + (B < C)).

Any operational expression (except a
prefix expression) must eventually be
reduced to0 a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"
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operator is the operator of the final infix
operation; in this case, the result of
evaluation of the expression is a bit
string of length 4., In the second example
(because of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit string of length 1.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A+ B*t 3 || C#*D=-E

In this case, the concatenation operator
indicates that the final operation will be:
(A+ B ** 3) || (C * D~ E)

The evaluation will yield a character-
string result.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A+ (B ** 3)

(C* D) - E

Function Reference Operands

aAn operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRTI(C);

In this example, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
expression is called a function reference.

A function reference consists of a name
and, usuwally, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of code written to perform specific
computations upon the data represented by
the list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the code that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment
statement would become:
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A =B * 4

The code represented by the name in the
function reference is called a function.
The function SQRT is one of the PL/I
built-in functions. Built-in functions,
which provide a number of different
operations, are a part of the PL/I
language. A complete discussion of each
appears in section G, "Built-in Functions
and Pseudovariables.®™ 1In addition, a
programmer may write functions for other
purposes (as described in chapter 9,
"subroutines and Functions"), and the names
of those functions can be used in function
references.

The use of a function reference is not
limited to operands of operational
expressions. A function reference is, in
itself, an expression and can be used
wherever an expression is allowed. In
general, it cannot be used in those cases
where a variable represents a receiving
field, such as to the left of an assignment
symbol.

There are, however, several built-in
functions that can be used as
pseudovariables. A pseudovariable is a
built-in function name that is used in a
receiving field. Consider the following
example:

DECLARE A CHARACTER(10),
B CHARACTER (30) ;

SUBSTR (A, 6,5) = SUBSTR (B,20,5);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and as a
pseudovariable.

The SUBSTR built-in function extracts a
substring of specified length from the
named string. As a pseudovariable, it
indicates the location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be replaced by
characters 20 through 24 of B. The first
five characters of A remain unchanged, as
do all of the characters of B.

All the built-in functions that can be
used as pseudovariables are discussed in
section G, "Built-in Functions and
Pseudovariables." No programmer-written
function can be used as a pseudovariable.



Attributes of Targets

The target of a conversion or expression
operation is the receiving field to which
the result of the conversion or operation
is assigned. This section deals with the
principles of determining attributes of
such targets. Detailed rules are given in
section F, "Data Conversion and Expression
Evaluation. "

In the case of a direct assignment,
as the statement

such

A = B;

in which conversion must take place, then
the target is the variable on the left of
the assignment symbol (in this case A).
However, during the evaluation of an
expression, targets are frequently
temporary storage locations created by the
compiler.

consider the following example:

DECLARE A CHARACTER(8),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A =B + C;

During the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned.

2. The compiler-created temporary to
which the binary result of the
addition is assigned.

3. The compiler-created temporary to
which the converted decimal fixed-
point equivalent of the binary result
is assigned.

4., A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned.

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the
converted representation of B). The
attributes of the third target are
determined in part from the source (the
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second target) and in part from the
attributes of the eventual target (2).

(The only attribute determined from the
eventual target is DECIMAL, since a binary
arithmetic representation must be converted
to decimal representation before it can be
converted to a character string.) The
attributes of the fourth target (A) are
known from the DECLARE statement.

When an expression is evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some
implementation restrictions (for example,
maximum precision) and conventions exist.
After an expression is evaluated, the
result may be further converted. In this
case, the target attributes usually are
independent of the source.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or supplied by default, at
compile time.

It is possible for a conversion to
involve intermediate results whose
attributes may depend upon the source
value. For example, conversion from
character string to arithmetic may require
an intermediate conversion and, thus, an
intermediate result, before final
conversion is completed. The final target
attributes in such cases, however, are
always determined from the source data item
and are independent of the values of
variables.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants i, '1'B, "1°,
1B, or 1EO0. Under the optimizing compiler,
constants may be converted at compile time
as well as at execution time, but in all
cases, the rules are the same.

Array Expressions

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators (both prefix and
infix), element variables, and constants.

Evaluvation of an array expression yields
an array result. All operations performed
on arrays are performed on an element-by-
element basis, in row-major order.

Expressions and Data Conversion 43



Therefore, all arrays referred to in an
array expression must have the same number
of dimensions, and each dimension must be
of identical bounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF clause of
an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result. However, the equality of two
arrays of string data can be tested by
using the STRING built-in function and
pseudovariable to produce two element
values. For example:

DECLARE (A,B)

(10) CHAR(YS) ;

IF STRING(A) = STRING(B) THEN ...

Note: Array expressions are not generally
expressions of conventional matrix algebra.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of
identical bounds, each element of which is
the result of the operation having been
performed upon each element of the original

array. For example:
If A is the array 5 3 -9
1 2 7
6 3 -4
then -A is the array -5 -3 9
-1 -2 =7
-6 -3 ]

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an
element, another array, or a structure as
the other operand.

Array-and-Element Operations

The result of an operation in which an
element and an array are connected by an
infix operator is an array with bounds
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identical to the original array, each
element of which is the result of the
operation performed upon the corresponding
element of the original array and the
single element. For example:

If A is the array 5 10 8
12 11 3

then A*3 is the array 15 30 24
36 33 9

The element of an array-element
operation can be an element of the same
array. For example, the expression
A*A(2,3) would give the same result in the
case of the array A above, since the value
of A(2,3) is 3.

Consider the following assignment
statement:

A =23 *a(1,2);

Again, using the above values for A, the
newly assigned value of A would be:

50 100 800
1200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent
operations. The first two elements are
multiplied by 10, the original value of
A(1,2); all other elements are multiplied
by 100, the new value of A(1,2).

Array-and-Array Operations

If two arrays are connected by an infix
operator, the two arrays must be of
identical bounds. The result is an array
with bounds identical to those of the
original arrays; the operation is performed
upon the corresponding elements of the two
original arrays.

Note that the arrays must have the same
number of dimensions, and corresponding
dimensions must have identical lower bounds
and identical upper bounds. For example,
the bounds of an array declared X(10,6) are
not identical to the bounds of an array
declared Y(2:11,3:8) although the extents
are the same for corresponding dimensions,
and the number of elements is the same.

Examples of array infix expressions are:



If A is the array 2 4 3

6 1 7

4 8 2

and if B is the array 1 5 7
8 3 4

6 3 1

then A+B is the array 3 9 10
14 4 11

10 11 3

and A*B is the array 2 20 21
48 3 28

24 24 2

Array-and-Structure Operations

The result of an operation in which an
array and structure are connected by an
infix operator is an array of structures
with bounds identical to the array and
structuring identical to the structure.

For example,
declaration:

given the following

DECLARE 1 A,
X)),
Y(2) LIKE A;

2B, 2¢,
the assignment statement:
Y = X + A;

is valid. This is equivalent to:

Y.B(1) = X(1) + A.B;
Y.C(1) = X(1) + A.C;
Y.B(2) = X(2) + A.B;
Y.C(2) = X(2) + A.C;

If the structure has a dimension attribute
on the level 1 name, the operation becomes
an array-and-array operation. If the array
elements are structures, the rules about
identical structuring given under
"Structure Expressions" apply to the array
elements and the structure.

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single
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arithmetic operations. The rules for
combining operations and for data
conversion of operands are the same as
those for element operations.

Structure Expressions

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a
structure operand cannot appear in the IF
clause of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor
structuring and the same number of
contained elements and arrays and that the
positioning of the elements and arrays
within the structure (and within the minor
structures if any) must be the same.
Arrays in corresponding positions must have
identical bounds. Names do not have to be
the same. Data types of corresponding
elements do not have to be the same, so
long as valid conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
been performed upon each element of the
original structure.

Note: Since structures may contain
elements of many different data types, a
prefix operation in a structure expression
would be meaningless unless the operation
can be validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.
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INFIX OPERATORS AND STRUCTURES

Infix operations that include a structure
variable as one operand may have an element
or another structure as the other operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure M, the following is a structure
expression:

M.N & '1010'B

Structure-and-Element Operations

When an operation has one structure and one
element operand, it is the same as a series
of operations, one for each element in the
structure. Each sub-operation involves a
structure element and the single element.

Consider the following structure:

1 a,
2

’

wwww
Q
-~

2F

wWws
m
-

If X is an element variable,
equivalent to:

then A * X is

A.C * X
A.D ¥ X
A.E * X
A.G ¥ X
A.H * X
A.T * X

Structure-and-Structure QOperations

When an operation has two structure
operands, it is the same as a series of
element operations, one for each
corresponding pair of elements. For
example, if A is the structure shown in the
previous example and if M is the following
structure:
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1 M,
2 N,
3 o,
3p,
3 0,
2 R,
3 s,
3T,
3 0;

|| M is equivalent to:

M.O

Structure Assignment BY NAME

One exception to the rule that operands of
a structure expression must have the same
structuring is the case in which the
structure expression appears in an
assignment statement with the BY NAME
option.

The BY NAME appears at the end of a
structure assignment statement and is
preceded by a cormma. Examples are shown
below.

Consider the following structures and
assignment statements:

1 ONE, 1 TWO, 1 THREE,

2 PART1, 2 PART1, 2 PART1,
3 RED, 3 BLUE, 3 RED,
3 ORANGE, 3 GREEN, 3 BLUE,

2 PART2, 3 RED, 3 BROWN,
3 YELLOW, 2 PART2, 2 PART2,
3 BLUE, 3 BROWN, 3 YELLOW,
3 GREEN; 3 YELLOW; 3 GREEN;
ONE = TWO, BY NAME;

ONE.PART1 = THREE.PART1, BY NAME;
ONE = TWO + THREE, BY NAME;

The first assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED;
ONE.PART2. YELLOW = TWO.PART2.YELLOW;

The second assignment statement would be
the same as the following:

ONE.PART1.RED = THREE.PART1.RED;

The third assignment statement would be the
same as the following:



ONE.PART1.RED = TWO.PART1l.RED
+ THREE.PART1.RED;

ONE . PART2. YELLOW = TWO.PART2,YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.

Except for the highest-level qualifier
specified in the assignment statement, all
gqualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, operation and assignment are
performed only upon those elements whose
names have been declared in each of the
structures. In the third assignment
statement above, no operation is performed
upon ONE. PART 2. GREEN and THREE.PART2.GREEN,
because GREEN does not appear as an
elementary name in PART2 of TWO.

Exceptional Conditions

Three PL/I exceptional conditions may be
raised during conversion of data: SIZE,
CONVERSION, and STRINGSIZE. (The concept
of a condition is explained in chapter 14,
"Exceptional Condition Handling and Program
Checkout," and the conditions are described
in detail in section H, "On-Conditions."™)

The SIZE condition is raised when
significant digits are lost from the left-
hand side of an arithmetic value. This can
occur during conversion within an
expression, or upon assigning the result of
an expression. It is not raised in
conversion to character string or bit
string even if the value is truncated. It
is raised on conversion to E or F format in
edit-directed output if the field width
specified will not hold the converted value
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of the list item. The SIZE condition is
normally disabled, so an interrupt will
occur only if the condition is raised
within the scope of a SIZE prefix (except
that, under the checkout compiler, standard
system action takes place whether or not
the condition is enabled).

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any
character other than those allowed in
arithmetic constants, or if a character
string that is being converted to bit
contains any character other than 0 and 1.
Each invalid character raises the
CONVERSION condition once, so a single
conversion operation causes several
interrupts if more than one invalid
character is encountered. The CONVERSION
condition is normally enabled, so when the
condition is raised, an interrupt will
occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

The STRINGSIZE condition is raised when
a character or bit string is assigned to a
target that is too small to accommodate it.
Characters or bits are truncated from the
right-hand end of the string so as to match
the length of the target. The STRINGSIZE
condition is normally disabled, so that an
interrupt will occur only within the scope
of a STRINGSIZE condition prefix.

These three conditions may be raised
also during the evaluation of an
expression. In addition, four other
conditions may be raised: FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, and ZERODIVIDE. Note
that FIXEDOVERFLOW and OVERFLOW are raised
when the implementation-defined maximum
precisions are exceeded, not when the
declared precision of a target is exceeded.
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Chapter B: Statement Classification

This chapter classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may be
found in section J, "Statements."

Classes of Statements

Statements can be grouped into the
following classes:

Descriptive

Input/Output

Data Movement and Computational
Program Organization

Storage Control

Control

Exception Control

Preprocessor

Diagnostic

The names of the classes have been chosen
for descriptive purposes only; apart from
preprocessor sStatements they have no
fundamental significance in the language.
A statement may be included in more than
one class, since it can have more than one
function.

Descriptive Statements

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except an arithmetic or
string constant, is referred to in the
program by a name. The PL/I language
requires that the properties (or
attributes) of data items referred to must
be known at the time the program is
compiled. There are a few exceptions to
this rule; for non-STATIC items, the bounds
of the dimensions of arrays, the lengths of
strings, area sizes, initial values, and
some file attributes may be determined

during execution of the program.

DECLARE AND DEFAULT STATEMENTS

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by
context. If the attributes are not
explicitly declared and cannot be
determined by context, default rules are
applied. Default rules are either the
standard default rules defined for the
compilers or those defined by the
programmer for a particular program using
the DEFAULT statement. The combination of
default rules and context determination can
make it unnecessary, in some cases, toO use
a DECLARE statement.

The DEFAULT statement gives the
programmer control over attributes which
are applied by default, for the following:

explicitly declared identifiers
contextually declared identifiers
implicitly declared identifiers
descriptors in the ENTRY attribute
values returned by internal procedures

DECLARE statements may also be an
important part of the documentation of a
program; consequently, programmers may make
liberal use of declarations, even when
default attributes arply or when a
contextual declaration is possible.
Because there are no restrictions on the
number of DECLARE statements, different
DECLARE statements can be used for
different groups of names. This can make
modification easier and the interpretation
of diagnostics clearer.

OTHER DESCRIPTIVE STATEMENTS

The OPEN statement allows certain
attributes to be specified for a file
constant and may, therefore, also be
classified as a descriptive statement.
Certain attributes can be specified in an
ALLOCATE statement for a controlled
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variable. The FORMAT statement may be
thought of as describing the layout of data
on an external medium, such as on a page or
an input card.

Input/Qutput Statements

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements, which affect such
transfers, may be considered input/output
control statements.

Each of the inputrs/output statements is
used with an associated FILE option to
identify a file. The file option specifies
a file expression which can be either a
file constant, a file variable, or a
function reference which returns a file
value.

In the following list, the statements
used when transferring data are grouped
into two subclasses, RECORD I/0 and STREAM
I/70:

RECORD I/0 Statements
READ
WRITE
REWRITE
LOCATE
DELETE
STREAM I/0 Statements
GET
PUT
I/0 Control Statements
OPEN
CLOSE
UNLOCK

An allied statement, discussed with
these statements, is the DISPIAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
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transmitted; in RECORD transmission, the
record on the external medium is generally
an exact copy of the record as it exists in
internal storage, with no editing or
conversion performed.

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or decimal. Stream transmission may
be used for processing keypunched data and
for producing readable output, where
editing is required.

RECORD TRANSMISSION STATEMENTS

The READ statement transmits records
directly into internal storage and makes
them available for processing. The WRITE
statement causes records to be transmitted
to the output device. The LOCATE statement
allocates storage for a variable within an
output buffer, setting a pointer to
indicate the location in the buffer, having
previously caused any record already
located in a buffer for this file to be
written out.

The REWRITE statement alters existing
records in an UPDATE file. The DELETE
statement deletes records in an UPDATE
file.

STREAM TRANSMISSION STATEMENTS

Only sequential files can be processed with
the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes:
data-directed, list-directed, or edit-
directed. In data-directed transmission,
the names of the data items, as well as
their values, are recorded on the external
medium. In list-directed transmission, the
data is recorded externally as a list of
constants, separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by
character according to a format list.

Data-directed transmission is most
useful for reading a relatively small
number of values and for producing self-
annotated debugging output. List-directed
input is suitable for reading in larger



volumes of data punched in free form.
Edit-directed transmission is used wherever
format must be strictly controlled, for
example, in producing reports and for
reading cards punched in a fixed format.

Note: The GET and PUT statements can also
be used for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used
for moving data to and from a buffer, it is
not actually a part of the input/output
operation.

INPUT/OUTPUT CONTROL STATEMENTS

The OPEN statement associates a file name
with a data set and prepares the data set
for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
specify any file attribute except the
ENVIRONMENT attribute. For a PRINT file,
the length of each printed line and the
number of lines per page can be specified
only in an OPEN statement by the PAGESIZE
and LINESIZE options. The LINESIZE option
can be specified for a non-PRINT OUTPUT
file to determine the length of the
physical blocks transmitted to a device.
The OPEN statement can also be used to
specify a name (in the TITLE option) other
than a file name, as a link between the
data set and the file.

The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE
statement is not always required.

The UNLOCK statement releases, for use
by other tasks, a record which has
restricted access because it is associated
with an EXCLUSIVE file.

DISPLAY STATEMENT

The DISPLAY statement is used to write
messages on the console, usually to the
operator.- It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be

used merely as a means of suspending
program execution until the operator
acknowledges the message.

Data Movement and Computational
Statements

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option can also be used for
internal data movement. The PUT statement
can, in addition, specify computations to
be made.

ASSIGNMENT STATEMENT

The assignment statement, which has no
keyword, is identified by the assignment
symbol (=). It generally takes one of the
two forms illustrated by the following
examples:

NTOT=TOT;
AV= (AV*NUM+TAV* INUM) / (NUM+TNUM) ;

The first form can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies computations to be
made, as well as data movement.

Ssince the attributes of the variakle on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array or
structure value. Thus the assignment
statement can be used to move aggregates of
data, as well as single items.

Multiple Assignment: The values of the
expression in an assignment statement can
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be assigned to more than one variable in a
statement of the following form:

A, X =B +C;

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A= B + C;

X =B+ C;

Note: If multiple assignment is used for a
structure assignment BY NAME, the
elementary names affected will be only
those that are common to all of the
structures referred to in the statement.

Program Organization Statements

The program organization statements are
those statements used to delimit sections
of a program into blocks and to manipulate
these blocks. These statements are the
PROCEDURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
FETCH statement, and the RELEASE statement.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which it is
declared.

PROCEDURE STATEMENT

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures 1inked
together. A procedure may also contain
other procedures nested within it. These
internal procedures may contain
declarations that are treated (unless
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otherwise specified) as local definitions
of names. Such definitions are not known
outside their own block, and the names
cannot be referred to in the containing
procedure. Storage associated with these
names is generally allocated upon entry to
the block in which such a name is defined,
and it is freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds
concurrently with that of the invoked
procedure); for details of asynchronous
operation, see chapter 17, "Multitasking."”
A procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the
procedure is called a function reference.
A function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression., A function procedure cannot be
executed asynchronously with the invoking
procedure.

Communication between two procedures is
by means of arguments passed from an
invoking procedure to the invoked
procedure, by a value returned from an
invoked procedure, and by names known
within both procedures. A procedure may
therefore operate upon different data when
it is invoked from different points. A
value is returned from a function procedure
to a function reference by means of the
RETURN statement.

ENTRY STATEMENT

The ENTRY statement is used to provide
|another possible entry point to a procedure
|and, possibly, another parameter list to
which arguments can be passed,
corresponding to that entry point.

Note: It is important to distinguish
between the ENTRY statement, which
specifies an entry to the procedure in
which it occurs, and the ENTRY attribute.
The ENTRY attribute is considered in
chapter 9, in "Subroutines and Functions."

BEGIN STATEMENT

Local definitions of names can also be made
within begin blocks, which are delimited by



a BEGIN statement and an associated END
statement. The BEGIN and END statements
specify that the statements contained
between them are to be considered as an
entity for the purpose of flow of control.
Begin blocks are executed in the normal
flow of a program. One of the most common
uses of a begin block is as the on-unit of
an ON statement, in which case it is not
executed through normal flow of control,
but only upon occurrence of the specified
condition., It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated.

Each begin block must be nested within a
procedure or another begin block.

END STATEMENT

The END statement is used to signify the
end of a block or group. Every block or
group must have an END statement. However,
the END statement may be explicit or
implicit; a single END statement can be
applied to a number of nested blocks and
groups by the inclusion of the label of the
containing block or group after the keyword
END. The other END statements are then
implied by the one containing the label,
and need not be given explicitly. If no
label follows END, the statement applies to
only one group or block.

Execution of an END statement for a
block terminates the block. However, it is
not the only means of terminating a block,
even though each block must have an END
statement. For example, a procedure can be
terminated by execution of a RETURN
statement (see "Control Statements").

The effect of execution of an END
statement for a group depends on whether or
not the group is iterative (see "Control
Statements®). If the group is iterative,
execution of the END statement causes
control to return to the beginning of the
group until all iterations are complete,
unless control is passed out of the group
before then. If the group is noniterative,
the END statement merely delimits the group
(to enable the group to be treated as a
single unit in the logic of the program),
and control passes to the next statement.

FETCH AND RELEASE STATEMENTS

The FETCH statement copies a procedure from
auxiliary storage into main storage so that
it may be invoked, for instance by a CALL
statement later in the program. The

RELEASE statement frees main storage thus
allocated. If a procedure's entry name
appears in a FETCH statement, then, even if
this FETCH statement is never executed, the
invoking statement will load the procedure
before attempting to initiate its
execution. Also, if the procedure's name
appears in a RELEASE statement, but there
is no FETCH statement in the invoking
procedure, invocation will cause the
loading of the invoked procedure.

Storage Control Statements

As with many other conventions in PL/I, the
conventions concerning storage allocation
may be overridden by the programmer.
Storage for variables is generally given
the storage class AUTOMATIC by default,
which means that the storage remains
allocated from the time the procedure is
activated until it is terminated.
Alternatives to the AUTOMATIC attribute
that may be chosen by the programmer are
STATIC, in which case storage is allocated
for the duration of the entire program, and
CONTROLLED or BASED, in which case the
storage can be allocated to the variable
and freed under the control of the
programmex, using the ALLOCATE and FREE
statements.

ALLOCATE AND FREE STATEMENTS

The ALLOCATE statement is used to assign
storage to controlled and based data,
independent of procedure block boundaries.
The bounds of controlled arrays, the
lengths of controlled strings, and the size
of controlled areas, as well as their
initial values, may also be specified at
the time the ALLOCATE statement is
executed. The FREE statement is used to
free previously-allocated controlled and
based storage when it is no longer
required.

Control Statements

Statements in a PL/I program, in general,
are executed sequentially unless the flow
of control is modified by the occurrence of
an interrupt or the execution of one of the
following control statements:
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GO TO
IF

DO
CALL
RETURN
END
STOP
EXIT

HALT

GO TO STATEMENT

The GO TO statement is used as an
unconditional branch. If the destination
of the GO TO is specified by a label
variable, it may then be used as a switch
by assigning label constants, as values, to
the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. The destination of a GO TO
statement can also be specified by a
function reference that returns a label
value. By using label variables or
function references, quite subtle switching
can be effected. It is usually true,
however, that simple control statements are
the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or blanks, or as a single word,
GOTO.

IF STATEMENT

The IF statement provides the most common
conditional branch and is usually used with
a simple comparison expression following
the word IF. For example:

IF A =B
THEN action-if-true
ELSE action-if-false
A THEN or an ELSE clause consists of
either a single or compound statement, a
do-group (see "DO Statement" below), or a

begin block. If the comparison is true,
the THEN clause is executed. After
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execution of the THEN clause, the ELSE
clause is not executed, and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is false, only the
ELSE clause is executed. Control then
continues normally.

The IF statement might be as follows:

IF A=B
THEN C = Dj;
ELSE C = E;

If A is equal to B, the value of D is
assigned to C, and the ELSE clause is not
executed. If A is not equal to B, the THEN
clause is not executed, and the value of E
is assigned to C.

Either the THEN clause or the ELSE
clause can contain a control statement that
causes a branch, either conditional or
unconditional. If the THEN clause contains
a GO TO statement, for example, there is no
need to specify an ELSE clause. Consider
the following example:

IFA =B
THEN GO TO LABEL_1;
next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to ILABEL_1. If A is not equal to B,
the THEN clause is not executed and control
passes to the next statement, whether or
not it is an ELSE clause associated with
the IF statement.

Note: If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next
statement will be executed whether or not
the THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can, however, be a logical expression
with more than one operator. For example:

IFA=B &§C=D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:



Example 1z

IF A=B&C=0D
THEN GO TO R;
B =B+ 1;

Example 23

IF A =B
THEN IF C = D
THEN GO TO R;
B=3+ 1;

Example 3:
IF A -= B THEN GO TO S;

IF C -= D THEN GO TO S;
GO TO R;

DO STATEMENT

The most common use of the DO statement is

to specify that a group of statements is to
be executed a stated number of times while

a control variable is incremented each time
through the loop. Such a group might take

the form:

DO I =1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

I =1;
A: IF I > 10 THEN GO TO B;

e oo

I L +1;
GO TO A;
B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I =1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one specification can be
included in a single DO statement.
Consider each of the following DO
statements:

DO I = J,K;

DO I

1 T10 10, 13 TO 15;

DO I 1 TO 10, 11 WHILE (A = B);

The first statement specifies that the
do-group is executed once only with the
value of I set equal to the value of J, and
once only with the value of I set equal to

the value of K.

The second statement specifies that the do-
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
third DO statement specifies that the group
is to be executed at least ten times, and
then (provided that A is equal to B) once
more; if "BY 0" were inserted after "11",
execution would continue with I set to 11
as long as A remained equal to B. Note
that in both statements a comma is used to
separate the two specifications. This
indicates that a succeeding specification
is to be considered only after the
preceding specification has been satisfied.

The control variable of a DO statement
can be used as a subscript in statements
within the do-group, so that each iteration
deals with successive elements of a table
or array. For example:

DOI =1 TO 10;
A(I) = I;
END;
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In this example, the first ten elements of
A are set to 1,2,...,10, respectively.

The increment in the iteration
specification is assumed to be one unless
some other value is stated, as follows:

DO I = 2 TO 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

NONITERATIVE DO STATEMENTS

The DO statement need not specify repeated
execution of the statements of a do-group.
A simple DO statement, in conjunction with
a do-group, can be used as follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the do-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential
control without the use of a begin block.

CALL, RETURN, AND END STATEMENTS

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. When the multitasking
facilities are not in use, control is
returned to the activating, or invoking,
procedure when a RETURN statement is
executed in the subroutine or when
execution of the END statement terminates
the subroutine. If the CALL statement
contains one of the multitasking options,
TASK, EVENT, or PRIORITY, the subroutine is
executed as a subtask with its own separate
flow of control; in this case, the RETURN
or END statement merely terminates the
separate flow of control established for
the subtask. (See chapter 17,
"Multitasking.")

The RETURN statement with a
parenthesized expression is used in a
function procedure to return a value to a
function reference.

Normal termination of a program occurs
as the result of normal execution of the
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final END statement of the main procedure
or of a RETURN statement in the main
procedure, either of which returns control
to the calling program, which may be the
operating system. Termination of a program
by any other method is abnormal.

STOP AND EXIT STATEMENTS

The STOP and EXIT statements are both used
to cause abnormal termination. The STOP
statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See chapter 17,
"Multitasking.")

HALT STATEMENT

The HALT statement is effective only in
conversational processing; in batch
processing it is a null operation. When
included in a source program, it causes
program execution to be suspended and
control passed to the terminal.

Exception Control Statements

The control statements, discussed in the
preceding section, alter the flow of
control whenever they are executed.

Another way in which the sequence of
execution can be altered is by the
occurrence of a program interrupt caused by
an exceptional condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in chapter 14,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

ON STATEMENT

The ON statement is used to specify action
to be taken when any subsequent occurrence
of a specified condition causes a program



interrupt. ON statements may specify
particulax action for any of a number of
different conditions. For all of these
conditions, a standard system action exists
as a part of PL/I, and if no ON statement
is in force at the time an interrupt
occurs, the standard system action will
take place. For most conditions, the
standard system action is to print a
message and take action which usually leads
to termination of execution.

The ON statement takes the form:
ON condition[SNAP] {SYSTEM;|on-unit}

The "condition" is one of those listed in
section H, "On-Conditions." The "on-unit"
is a single statement or a begin block that
specifies action to be taken when that
condition arises and an interrupt occurs.
For example:

ON ENDFILE (DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be transferred to the
statement labeled NEXT_MASTER.

When execution of an on-unit is
successfully completed, control will
normally return to the point of the
interrupt or to a point immediately
following it, depending upon the condition
that caused the interrupt.

The effect of an ON statement, the
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same
condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, or (2) by the
execution of a REVERT statement naming that
condition. On-units in effect at the time
another block is activated remain in effect
in the activated block, and in other blocks
activated by it, unless another ON
statement for the same condition is
executed. When control returns to an
activating block, on-units are re-
established as they existed.

REVERT STATEMENT

The REVERT statement is used to cancel the
effect of all ON statements for the same
condition that have been executed in the
block in which the REVERT statement

appears.

The REVERT statement, which must specify
the condition name, re-establishes the on-

unit that was in effect in the activating
block at the time the current block was
invoked.

SIGNAL STATEMENT

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the on-unit established by
execution of an ON statement. For example:

SIGNAL OVERFLOW;

This statement would simulate the
occurrence of an overflow interrupt and
would cause execution of the on-unit
established for the OVERFLOW condition. If
an on-unit has not been established,
standard system action for the condition is
performed. In most cases, the standard
system action is the same as for when the
on-unit is entered following an interrupt.

Preprocessor Statements

PL/I allows a degree of control over the
contents of the source program during the
compilation. The programmer can srecify,
for example, that any identifier appearing
in the source program will be changed; he
can select parts of the program to be
compiled without the rest; he can include
text from an external source. These
operations are performed by the
preprocessor stage of the compiler, and are
specified by preprocessor statements that
appear among the other statements within
the source program itself.

In general, preprocessor statements are
identified by a leading percent symbol
before the keyword; several of them have
the same keywords as standard PL/I
statements, and these have a similar effect
at compile time to that of their
counterparts at execution time,

The complete list of preprocessor
statements is as follows:
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%ACTIVATE %GO TO

%assignment %IF

%DEACTIVATE %INCLUDE

%DECLARE %NULL

%DO %PROCEDURE

%END preprocessor
RETURN

These statements are discussed in chapter
16, "Compile-Time Facilities"™ and in
section J, "Statements."

Listing Control Statements

There are three statements that allow the
programmer to control the format of the
listing of his program. The statements
are:

%PAGE
%SKIP
% CONTROL

They are described in chapter 16, "Compile-
time Facilities."

Although they have the initial percent
symbol, these statements do not require the
use of the preprocessor.

Diagnostic Statements

A program processed by the PIL/I checkout
compiler can include statements that
provide a considerable amount of diagnostic
information during execution. These
statements:

1. Control a continuing output of
diagnostic information throughout
execution:

CHECK|NOCHECK statement
FLOW| NOFLOW statement

2. Produce diagnostic information at
specific points during execution:

PUT statement with one of the
options:
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LIST
DATA
EDIT
SNAP
FLOW
ALL

With the exception of a PUT statement with
the LIST, DATA, or EDIT option, none of
these statements provide diagnostic
information when processed by the PL/I
optimizing compiler. This compiler checks
these statements for syntax and then
ignores them; there is no output. 1In
addition, the implementation of a PUT
statement with the LIST or DATA option by
the optimizing compiler is different from
that of the checkout compiler. The
checkout compiler implements such a
statement by producing inforration about
problem and program-control variables; the
optimizing compiler produces information
about problem variables only.

CHECK AND NOCHECK STATEMENTS

When a CHECK statement is executed,
information about the variables specified
or assumed is put out whenever these
variables occur in pre-defined situations.
This continues to the end of program
execution or until the CHECK statement is
overridden by a NOCHECK statement.

The execution of a CHECK statement that
specifies or assumes a particular
identifier has the same result as if the
CHECK condition has been enabled for every
block in which the identifier is known.
This applies to all such blocks in the
current compilation and to all separately
compiled blocks in which the identifier is
known and which are active at the same time
as the current block.

Information is put out for label and
entry constants and for all variables. It
comprises:

1. Problem variables:
Name and value

2. Constants and program-control
variables:

Name, and, under the checkout
compiler, details of the current
situation of the constant or
variable. For example, the
details for a file variable
include whether the file is open
or closed.

The NOCHECK statement prevents output of



CHECK information for the specified or
assumed variables.

FLOW AND NOFLOW STATEMENTS

Execution of a FLOW statement results in
information being put out at every transfer
of control within the current task during
execution. This continues to the end of
program execution or until a NOFLOW
statement is executed.

At each transfer of control, the
information put out comprises the statement
number of the statement that caused the
transfer of control, and the statement
number of the statement that received
control at that transfer.

The NOFLOW statement prevents the output

of FLOW information at a transfer of
control.

PUT STATEMENTS

When a PUT statement is executed, the
output comprises:

LIST, DATA or EDIT

The name of the variable appears if DATA
is used. The remaining output is:

Problem variables: Value
Program-control variables (LIST and
DATA only): Current situation of the
variable

SNAP

The current statement number and a list
of the procedures currently active.

FLOW

The same information as for the FLOW
statement, for the last n transfers of
control. The value of n is specified in
a compiler option.

ALL

Information about all the variables in
the program, together with the
information provided by the SNAP and
FLOW options, and the values of the ON
built-in functions. Options may be
specified to limit the output.
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This chapter discusses how statements can
be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements. The
discussion in this chapter does not
completely cover multitasking, which is
discussed in detail later. However, the
discussion generally applies to all blocks,
whether or not they are executed
concurrently.

Blocks

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
ot variables. There are two kinds of
blocks: procedure blocks and begin blocks.
The optimizing compiler will accept a
maximum of 255 blocks in one compilation.
There is no limit for the checkout
compiler.

PROCEDURE BLOCKS

A procedure block, simply called a
procedure, is a sequence of statements
headed by a PROCEDURE statement and ended
by an END statement, as follows:

label:

{label:1... PROCEDURE;

END(labell ;

All procedures must be named because the
procedure name is the primary point of
entry through which control can be
transferred to a procedure. Hence, a
PROCEDURE statement must have at least one
label. A label need not appear after the
keyword END in the END statement, but if
one does appear, it must match the label
(or one of the labels) of the PROCEDURE
statement to which the END statement
corresponds. (There are exceptions;
"Use of the END Statement", later in
chapter.) An example of a procedure
follows:

see
this
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A: READIN: PROCEDURE;
statement-1
statement-2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

A PL/I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements headed
by a BEGIN statement and ended by an END
statement, as follows:

[label:]... BEGIN;

END ([labell;

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, ratching a
label of the corresponding BEGIN statement.
(There are exceptions; see "Use of the END
Statement", later in this chapter.) An
example of a begin block follows:

B: CONTROL: BEGIN;
statement-1
statement-2

statement-n
END B;

Unlike procedures, begin blocks
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generally are not given control through
special references to them. The normal
sequence of control governing ordinary
statement execution also governs the
execution of begin blocks. Control passes
into a begin block sequentially, following
execution of the preceding statement. The
only exception is a begin block used as the
on-unit in an ON statement. In this case,
the block is executed only upon occurrence
of the specified condition.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are
discussed in this chapter and in chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more blocks.
That is, a procedure, as well as a begin
block, can contain other procedures and
begin blocks. However, there can be no
overlapping of blocks; a block that
contains another block must totally
encompass that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: Each external procedure is
compiled separately. Entry names of
external procedures cannot exceed seven
characters.)

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The
outermost block must always be a procedure.
Consider the following example:
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A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement~bl

statement-b2
statement-b3

END B;
statement-al
statement-asb
C: PROCEDURE;

statement-cl

statement~c2

D: BEGIN;

statement-dl

statement-d2

statement-d3

E: PROCEDURE ;
statement-el
statement-e2
END E;

statement-dd

END D;

END C;
statement-ab
statement-a?7
END A;

In the above example, procedure block A
is an external procedure because it is not
contained in any other block. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal
procedure E. This example contains three
levels of nesting relative to A; B and C
are at the first level, D is at the second
level (but the first level relative to C)
and E is at the third level (the second
level relative to C, and the first level
relative to D).

Under the optimizing compiler, the
maximum permissible depth of nesting is 50.
There is no limit under the checkout
compiler.

Use of the END Statement

The use of the END statement with a
procedure, begin block, or do-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (that is, ends)
that unclosed block headed by the
BEGIN or PROCEDURE statement, or that
unclosed do-group headed by the DO
statement, that physically precedes,
and appears closest to, the END
statement.

2. If the optional label is used after



END, the END statement closes that
unclosed block or do-group headed by
the BEGIN, PROCEDURE, or DO statement
that has a matching label, and that
physically precedes, and appears
closest to, the END statement. Any
unclosed blocks or do-groups nested
within such a block or do-group are
automatically closed by this END
statement; this is known as multiple
closure.

Multiple closure is a shorthand method
of specifying a number of consecutive END
statements. In effect, the compiler
inserts the required number of END
statements immediately preceding the END
statement specifying multiple closure. For
example, assume that the following external
procedure has been defined:

FRST: PROCEDURE;
statement-£f1
statement-f 2
ABLK: BEGIN;
statement-al
statement-a2
SCND: PROCEDURE;
statement-sl
statement-s2
BBLK: BEGIN;
statement-bl
statement-b2
END;
END;
statement-a3
END ABLK;
END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement. would be END SCND, because one
END statement with no following label would
close only the begin block BBLK (see the
first rule above). 1In the second case,
only the statement END FRST is required;
the statement END ABLK is superfluous.
Thus, the example could be specified as
follows:

FRST: PROCEDURE;
statement-f1
statement-£2
ABLK: BEGIN;
statement-al
statement-a2
SCND: PROCEDURE;
statement-sl
statement-s2
BBLK: BEGIN;
statement-bl
statement-b2
END SCND;
statement-a3
END FRST;

Note that a label prefix attached to an END
statement specifying multiple closure is
assumed to apply to the last END statement.
Therefore all intervening groups and blocks
will be terminated if control passes to
such a statement. For example:

CBLK: PROCEDURE;
statement-cl
statement-c2
DO I =1 TO 10;
statement-dl
GO TO LBL;
statement-d42
END CBLK;

DGP:

LBL:

In this example, the END CBLK statement
closes the block CBLK and the iterative do-
group DGP. The effect is as if an
unlabeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking rlace,
and statement-d2 would not be executed.

Activation of Blocks

Although the begin block and the procedure
have a physical resemblance and play the
same role in the allocation and freeing of
storage, as well as in delimiting the scope
of names, they differ in the way they are
activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can appear
wherever a single statement can appear.

For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry expression in one of the
following contexts:
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1. After the keyword CALL in a CALL
statement.

2. After the keyword CALL in the CALL
option of the INITIAL attribute.

3. As a function reference.

This chapter uses examples of the first
of these; the material, however, is
relevant to the other two forms as well.
For further information, refer to the
discussion of the INITIAL attribute in
section I, "Attributes,” and to chapter 9,
"Subroutines and Functions. "

The simplest form of the CALL statement
is:

CALL entry-constant;

If the entry constant is a label of a
PROCEDURE statement it represents the

primary entry point to the procedure; if it
is a label of an ENTRY statement it
represents a secondary entry point. The

following is an example of a procedure
containing secondary entry points.

A: PROCEDURE;
statement-1
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement~5

NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both names for the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point. The
procedure may be activated by one of the
following statements:

CALL A;

CALL ERRT;
CALL NEXT;
CALL RETR;

Alternatively, the appropriate entry
name value could be assigned to an entry
variable, and this entry variable could be
used in the procedure reference. In the
following example, the two CALL statements
have the same effect.
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DECLARE ENT1 ENTRY VARIABIE;
ENT1 = ERRT;

CALL ENT1;

CALL ERRT;

When a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to be
invoked; control is transferred to the
specified entry point. (This statement
does not apply when the CALL statement
specifies one of the multitasking options.
See "Multitasking.") The point at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a
procedure is invoked at a secondary entry
point, execution begins with the first
executable statement following the ENTRY
statement that defines that secondary entry
point. Therefore, if all of the numbered
statements in the last example are
executaple, the statement CALL A would
invoke procedure A at its primary entry
point, and execution would begin with
statement-1; the statement CALL ERRT would
invoke procedure A at the secondary entry
point ERRT, and execution would begin with
statement-3; either of the statements CALL
NEXT or CALL RETR would invoke procedure A
at its other secondary entry point, and
execution would begin with statement-6.
Note that any ENTRY statements encountered
during sequential flow are never executed;
control flows around the ENTRY statement as
though the statement were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal
procedures that are at the first level of
nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other, For example:



PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-al
statement-a2
B: PROCEDURE;
statement-bl
statement-b2
END A;
statement-4
statement=-5
C: PROCEDURE;
statement-cl
statement-c2
END C;
statement-6
statement-7
END PRMAIN;

In this example, PRMAIN can invoke
procedures A and C, but not B; procedure A
can invoke procedures B and C; procedure B
can invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the
activation of blocks presupposes that a
program has already been activated. A PL/I
program becomes active when a calling
program invokes the initial procedure.
This calling program usually is the
operating system, although it could be
another program. The initial procedure,
called the main procedure, must be an
external procedure whose PROCEDURE
statement has the OPTIONS(MAIN)
specification, as shown in the following
example:

CONTRL: PROCEDURE OPTIONS(MAIN) ;
CALL A;
CALL B;
CALL C;
END CONTRL;

In this example, CONTRL is the initial
procedure and it invokes other procedures
in the program.

The following is a summary of what has
been stated or implied about the activation
of blocks:

e A program becomes active when the
initial procedure is activated by the
operating system.

e Except for the initial procedure,
external and internal procedures
contained in a program are activated
only when they are invoked by a
procedure reference.

e Begin blocks are activated through
normal segquential flow or as on-units.

e The initial procedure remains active for
the duration of the program.

e All activated blocks remain active until
they are terminated (see below).

Termination of Blocks

In general, a procedure block is terminated
when, by some means other than a procedure
reference, control passes back to the
invoking block or to some other active
block. Similarly, a begin block is
terminated when, by some means other than a
procedure reference, control passes to
another active block. There are a number
of ways by which such transfers of control
can be accomplished, and their
interpretations differ according to the
type of block being terminated.

Note that when a block is terminated,
any task attached by that block is
terminated (see chapter 17,
"Multitasking").

BEGIN BLOCK TERMINATION

A begin block is terminated when any of the
following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically
following the END, except when the
block is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that begin
block) transfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

4. Control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

5. A procedure within which the begin
block is contained has been attached
as a task, and the attaching block
terminates.

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
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block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated. ’

For example, if begin block B is
contained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B
effectively terminates both A and B.
case is illustrated below:

This

FRST: PROCEDURE OPTIONS (MAIN);
statement-1
statement-2
statement-3
A: BEGIN;
statement-al
statement-a2
B: BEGIN;
~ statement-bl
statement-b2
GO TO LAB;
statement-b3
END B;
statement-a3
END A;
statement-4
statement-5
statement-6
statement-7
END FRST;

LAB:

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two
statements in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as well as termination of block B.

PROCEDURE TERMINATION

A procedure is terminated when one of the
following occurs: :

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of
invocation in the invoking procedure.
If the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the reference will be resumed.
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2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement
within the procedure (or any block
activated from within that procedure)
transfers control to a point not
contained within the procedure.

4, A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

5. The procedure or a containing
procedure has been attached as a task
and the attaching block is terminated.

Items 1 and 2 are normal procedure
terminations; items 3, 4, and 5 are
abnormal procedure terminations.

As with a begin block, the type of
termination described in item 3 can
sometimes result in the termination of
several procedures and/or begin blocks.
Specifically, if the transfer point
specified by the GO TO statement is
contained in a block that did not directly
activate the block being terminated, all
intervening blocks in the activation
sequence are terminated. Consider the
following example:

A: PROCEDURE OPTIONS (MAIN) ;
statement-1
statement-2
B: BEGIN;
statement-bl
statement-b2
CALL C;
statement-b3
END B;
statement-3
statement-4
C: PROCEDURE;
statement-cl
statement=-c2
statement-c3
D: BEGIN;
statement-dl
statement-d2
GO TO LAB;
statement-4d3
END D;
statement-cl
END C;
statement-5
statement-6
statement-7
END A;

LAB:

In the above example, A activates B, which
activates C, which activates D. In D, the
statement GO TO LAB transfers control to
statement-6 in A. Since this statement is
not contained in D, C, or B, all three



blocks are terminated; A remains active.
Thus, the transfer of control out of D
results in the termination of intervening
blocks B and C as well as the termination
of block D.

PROGRAM TERMINATION

A program is terminated when any one of the
following occurs:

1. Control for the program reaches an
EXIT statement in the major task.
This is abnormal termination.

2. Control for the program reaches a STOP
statement. (When multitasking is in
operation, the program, that is, the
major task, is terminated when any
task reaches a STOP statement. See
chapter 17, "Multitasking.") This is
abnormal termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal
termination.

4. The ERROR condition is raised in the
major task and there is no established
on-unit for ERROR and FINISH, or, if
one or both of the conditions has an
established on-unit, on-unit exit is
by normal return, rather than by GO TO
branching. This is abnormal
termination. The program is not
terminated if ERROR is raised by a
SIGNAL ERROR statement inserted by the
checkout compiler in place of a
statement in which an error had been
detected. In conversational
processing, the ERROR and FINISH
conditions cause control to be passed
to the terminal, and this is regarded
as equivalent to an on-unit being
entered; any statements then entered
in immediate mode are processed as if
in an ERROR or FINISH on-unit.

On termination of a program, whether
normal or abnormal, control is returned to
the calling program (this is usually the
operating system control program).

Dynamic Loading of an External
Procedure

A procedure invoked by a CALL statement or
a CALL option of an INITIAL attribute, as
described in "Activation of Blocks",
earlier in this chapter, or by a function
reference, as described in chapter 9,

"Subroutines and Functions", is generally
resident in main storage throughout the
execution of the entire program. If
required, however, a procedure may ke
brought into main storage for only as long
as it is required: the invoked procedure
is dynamically loaded into, and dynamically
deleted from, main storage during execution
of the calling procedure.

Dynamic loading and deletion of
procedures is particularly useful when a
called procedure is not necessarily invoked
every time the calling procedure is
executed, and when conservation of main
storage is more important than a short
execution time.

The PL/I statements that initiate the
loading and deletion of a procedure are
FETCH and RELEASE. The appearance of an
entry name in a FETCH or RELEASE statement
indicates to the compiler that the
procedure containing an entry point with
that name will need to be fetched into main
storage before it can be executed. When a
FETCH statement is executed, the procedure
is copied from auxiliary storage into main
storage, unless a copy already exists in
main storage. In addition, when a CALL
statement or option or a function reference
is executed, the procedure is copied into
main storage, unless a copy exists already.
Thus, a procedure may be loaded from
auxiliary storage by:

1. execution of a FETCH statement;

oxr

2. execution of a CALL statement or
option or a function reference,
provided that the name of the entry
point of the procedure appears,
somewhere in the calling procedure, in
a FETCH or RELEASE statement.

In neither case is it an error if the
procedure has already been fetched into
main storage. 1In case 2, it is not
necessary that control should pass through
the FETCH or RELEASE statement, either
before or after execution of the CALL or
function reference.

Whichever statement caused the loading
of the fetched procedure,. execution of the
CALL statement or option or the function
reference invokes the procedure in the
normal way.

The fetched procedure may be allowed to
remain in main storage until execution of
the whole program is completed.
Alternatively, the storage it occupies may
be freed for other purposes at any time by
means of the RELEASE statement.
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Consider the following example, in which
PROGA and PROGB are entry names of
procedures resident on auxiliary storage.

PROG: PROCEDURE;

FETCH PROGA;
CALL PROGA;

RELEASE PROGA;

CALL PROGB;
GO TO FIN;
FETCH PROGB;

FIN: END PROG;

PROGA will be loaded into main storage by
the first FETCH statement, and will be
executed when the first CALL statement is
reached; its storage is released when the
RELEASE statement is executed. PROGB will
be fetched when the second CALL statement
is reached, even though the FETCH statement
referring to this procedure is never
executed, and the same CALL statement will
initiate execution of PROGB. Note that the
same results would be achieved if the
statement FETCH PROGA; were omitted; the
appearance of PROGA in a RELEASE statement
will cause the statement CALL PROGA; to
fetch the procedure, as well as invoke it.

The fetched procedure is compiled and
link-edited separately from the calling
procedure. The programmer must ensure that
the entry name specified in FETCH, RELEASE,
and CALL statements and options, and in
function references, is known in auxiliary
storage. The job control statements
necessary to achieve this are discussed in
0S _PL/I Checkout Compiler: Programmer's
Guide and 0s PL/I Optimizing Compiler:
Programmexr's Guide

Rules concerning the use of dynamically-
loaded procedures are:

1. Only external procedures may be
fetched,

2. Identifiers with the EXTERNAL
attribute are not permitted in a
fetched procedure.

3. Identifiers with the CONTROLLED or
FILE attributes are not permitted in a
fetched procedure unless they are
parameters. Note that this means any
file used in the fetched procedure,
including either of the standard

68 OS5 PL/I CKT AND OPT LRM PART I

stream-oriented I/0 default files
SYSIN or SYSPRINT, must be passed from
the calling procedure.

4. sStorage for STATIC variables in the
fetched procedure is allocated when
the FETCH statement is executed, and
is freed when a corresponding RELEASE
statement is executed. Each time a
procedure is fetched into main
storage, a STATIC variable either is
given the value specified in an
INITIAL attribute, or, if there is no
INITIAL attribute, is uninitialized.

5. The FETCH, RELEASE, and CALL
statements must specify entry
constants. Entry variables are not
permitted. Note that an entry
constant may have no more than seven
characters.

6. Fetched procedures may not fetch
further procedures.

Storage Allocation

Storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been
associated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place statically,
that is, before the execution of the
program, or dynamically, during execution.
A variable that is allocated statically
remains allocated for the duration of the
program. A variable that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or at the request
of the programmer, depending upon its
storage class.

The manner in which storage is allocated
for a variable is determined by the storage
class of that variable. There are four
storage classes: static, automatic,
controlled, and based. Each storage class
is specified by its corresponding storage
class attribute: STATIC, AUTOMATIC,
CONTROLLED, and BASED, respectively.
last three define dynamic storage
allocation.

The

Storage class attributes ray be declared
explicitly for element, array, and major
structure variables. If a variable is an
array or a major structure variable, the
storage class declared for that variable
applies to all of the elements in the array
or structure.



All variables that have not been
explicitly declared with a storage class
attribute are given the AUTOMATIC
attribute, with one exception: any
variable that has the EXTERNAL attribute is
given the STATIC attribute.

Chapter 8, "Storage Control" discusses
how the various storage classes may be
used.

Reactivation of an Active Procedure
(Recursion)

An active procedure that can be reactivated
from within itself or from within another
active procedure is said to be a recursive
procedure; such reactivation is called
recursion.

A procedure can be invoked recursively
only if the RECURSIVE option has been
specified in its PROCEDURE statement.
option also applies to the names of any
secondary entry points that the procedure
might have.

This

The environment (that is, values of
automatic variables, etc.) of every
invocation of a recursive procedure is
preserved in a manner analogous to the
stacking of allocations of a controlled
variable (see chapter 8, "Storage
Allocation®). An environment can thus be
thought of as being "pushed down" at a
recursive invocation, and "popped up" at
the termination of that invocation. Note
that a label constant in the current block
always contains information identifying the
current invocation of the block that
contains the label. Consider the following
example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;

PUT DATA (X);

IF ¥X=5 THEN GO TO LAB;
CALI, AGN;

X=X-1;

PUT DATA(X) ;

LAB: END RECURS;

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;
PUT DATA(X) ;

CALL RECURS;
X=X-1;

PUT DATA(X) ;
END AGN;

In the above example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked, X
is incremented by 1 and X=1 is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. 1In AGN, X is
incremented by 1 and X=2 is transmitted
(also by a PUT statement). AGN then
reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as lefore,
and then X=3 is transmitted. X is still
less than 5, so AGN is invoked again.

Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again, X=4 is transmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and
control returns to the procedure that
invoked AGN for the second time; that is,
control returns to the statement following
CALL AGN in the second invocation of
RECURS. Here X is decremented again and
X=3 is transmitted, after which the second
invocation of RECURS is terminated and
control returns to the first invocation of
AGN. X is decremented again, X=2 is
transmitted, the first invocation of AGN is
terminated, and control returns to the
first invocation of RECURS., X is
decremented, X=1 is transmitted, and the
first invocation of RECURS is terminated.
control then returns to the procedure that
invoked RECURS in the first place.
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Note that if a label constant is
assigned to a label variable in a
particular invocation, a GO TO statement
naming that variable in another invocation
would restore the environment that existed
when the assignment was performed.

Note also that the environment of a
procedure invoked from within a recursive
procedure by means of an entry variable is
the one that was current when the entry
constant was assigned to the variable.
Consider the following example:

I=1;
CALL A; /*¥FIRST INVOCATION OF A*/
A:PROC RECURSIVE;

DECLLARE EV ENTRY VARIABLE STATIC;
IF I=1 THEN DO;

I=2;

EV=B;

CALL A;
END ;
ELSE CALL EV;

/*SECOND INVOCATION OF A*/

/*¥INVOKES B WITH
ENVIRONMENT OF FIRST
INVOCATION OF Ax/
B:PROC;

GO TO OUT;
END;
OUT :END A;

The GO TO statement in the procedure B will
transfer control to the END A; statement in
the first invocation of A, and will thus
terminate B and both invocations of A.

Prologues and Epilogues

Each time a block is activated, certain
activities must be performed before control
can reach the first executable statement in
the block. This set of activities is
called a prologque. Similarly, when a block
is terminated, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an epilogue.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

PROLOGUES

A prologue is code that is executed as the
first step in the activation of a block.
In general, activities performed by a
prologue are as follows:
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e cComputing dimension bounds and string
lengths for automatic and DEFINED
variables.

e Allocating storage for automatic
variables and initialization, if
specified.

®» Determining which currently active
blocks are known to the procedure, so
that the correct generations of
automatic storage are accessible, and
the correct on-units may be entered.

e Allocating storage for dummy arguments
that may be passed from this block.

The prologue may need to evaluate
expressions for initial values (including
iteration factors), and for array bounds,
string lengths, and area sizes.

| Note that errors may occur during the
|prologue, and the ERROR condition (or other
| exceptional condition) may be raised. If

| this happens, the environment of the block
|may be incomplete, in particular some
[automatic variables may not yet be

| allocated. Statements executed after the
|ERROR condition has been raised should not,
|therefore, reference AUTOMATIC variables
|declared in that block. PUT ALL and PUT
|DATA statements in on-units established

| prior to block entry, or entered at the
|terminal, imply reference to automatic

| variables in all active blocks and are
|particularly vulnerable to this situation.
|The results of referring to unallocated
|storage are unpredictable.

For each block in the program, the
optimizing compiler assigns these values in
the following order:

1. Values that are independent of other
declarations in the block. (Values
may be inherited from an outer block.)

2. Values that are dependent on other
declarations in the block. If a value
depends on more than one other
declaration in the block, correct
initialization is not guaranteed.
example:

For

DCL I INIT(10), J INIT(I), K INIT(J);

Correct initialization of K is not
guaranteed.

The checkout compiler has no restriction
on the number of dependencies; it evaluates
the expressions in the order required by
the dependencies (provided the dependencies
can be determined from inspection of the
DECLARE statement alone.)



Note that declarations of data items
must not be mutually interdependent. For
example, the following declaration is
invalid:

DCL A(B(1)), B(A(1));

Note that interdependency can occur with
more than two data items. For example, the
following declaration is also invalid:

DCL a(B(1)), B(C(1)), Cc(A(l));

EPILOGUES

An epilogue is code that is executed as the
final step in the termination of a block.
In general, the activities performed by an
epilogue are as follows:

s Re-establishing the on-unit environment
existing before the block was activated.

e Releasing storage for all automatic
variables allocated in the block.
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A PL/I program consists of a collection of
identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either
keywords or names with a meaning specified
by the programmer. The PL/I language is
constructed so that the compiler can
determine from context whether or not an
identifier is a keyword, so there is no
list of reserved words that must not be
used for programmer-defined names. (Though
the uses of the 48-character set composite
symbols, and, under the checkout compiler,
of the file SYSPRINT, are restricted.) Any
identifier may be used as a name; the only
restriction is that at any point in a
program a name can have one and only one
meaning. For example, the same name cannot
be used for both a file and a floating-
point variable.

Note: The above is true so long as the 60-
character set is used. Certain identifiers
of the #48-character set cannot be used as
programmer-defined identifiers in a program
written using the 48-character set; these
identifiers are: 6T, GE, NE, LT, NG, LE,
NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
Outside the block it is unknown unless the
same name has also been declared in the
outer block. In this case, the name in the
outer block refers to a different data
item. This enables programmers to specify
local definitions and, hence, to write
procedures or begin blocks without knowing
all the names being used by other
programmers writing other parts of the
program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a
particular meaning applies to. In PL/I a
name is given attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the
meaning applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name (such as in recursion); such
cases are considered separately.

Chapter 7: Recognition of Names

In order to understand the rules for the
scope of a name, it is necessary to
understand the terms "contained in" and
"internal to."

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.
Internal To:

Text that is contained in a block, but
not contained in any other block
nested within it, is said to be
internal to that block. Note that
entry names of a procedure (and labels
of a BEGIN statement) are not
contained in that block.
consequently, they are internal to the
containing block. Entry names of an
external procedure are treated as if
they were external to the external
procedure.

In addition to these terms, the
different types of declaration are
important. The three different types --
explicit declaration, contextual
declaration, and implicit declaration --
are discussed in the following sections.

Explicit Declaration

A name is explicitly declared if it
appears:

1. In a DECLARE statement.

2. In a parameter list.

3. As a statement label.

4, As a label of a PROCEDURE or ENTRY
statement.

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately
following the PROCEDURE or ENTRY statement
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in which the parameter list occurs (though
the same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement
constitutes a declaration within the
procedure containing the one to which it
refers.

The appearance of a label prefix on a

statement constitutes explicit declaration
of the label.

SCOPE OF AN EXPLICIT DECLARATION

The scecpe of an explicit declaration of a
name is that block to which the declaration
is internal, including all contained blocks
except those blocks (and any blocks
contained within them) to which another
explicit declaration of the same identifier
is internal.

For example:

B'CC'"DQR

P: PROCEDURE;
DECLARE A, B;
Q: PROCEDURE;
DECLARE B, C;
R: PROCEDURE;
DECIARE C,D;

END R;

END Q; ]

END P; 1 ] i
The lines to the right indicate the
scope of the names. B and B' indicate the
two distinct uses of the name B; C and C'
indicate the two uses of the name C.

Contextual Declaration

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit
declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared
explicitly will be recognized and declared
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contextually in the following cases:

1. A name that appears in a CALL
statement, in a CALL option, or
followed by an argument list is given
the BUILTIN and-INTERNAL attrikbutes.
Built-in functions. and pseudovariables
without arguments, such as ONCHAR,
ONSOURCE, DATE and DATAFIELD, should
be declared explicitly with the
BUILTIN attribute, contextually using
a null argument list, for example,
ONCHAR(), or implicitly by using a
DEFAULT statement, for example,

DEFAULT RANGE (ON,DAT) BUILTIN;

2. A name that appears in a FILE or COPY
option, or a name that appears in an
ON, SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE attribute.

3. A name that appears in an ON
CONDITION, SIGNAL CONDITION, or REVERT
CONDITION statement is recognized as a
programmer-defined condition name.

4. A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

5. A name that appears in a TASK option
is given the TASK attribute.

6. A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer
qualification symbol is given the
POINTER attribute.

7. A name that appears in an IN option,
oxr in the OFFSET attribute, is given
the AREA attribute.

Examples of contextual declaration are:
READ FILE (PREQ) INTO (Q);
ALLOCATE X IN (S);

In these statements, PREQ is given the FILE
attribute, and S is given the AREA
attribute.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately
following the PROCEDURE statement of the
external procedure in which the name
appears.

Note that contextual declaration has the



same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the
context of a name to add to the attributes
established for that name in an explicit
declaration. For example, the following
procedure is invalid:

P: PROC (F);

READ FILE (F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. The
standard default attributes REAL DECIMAL
FLOAT conflict with the attributes that
would normally be given to F by its
appearance in the FILE option. Such use of
the identifier is in error.

Implicit Declaration

If a name appears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scope
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name is used. A
name used only in a contained procedure
will be known in the containing procedure.

Unless the DEFAULT statement causes
programmer-defined defaults to override the
standard defaults, an implicit declaration
causes standard default attributes to be
applied, depending upon the first letter of
the name. If the name begins with any of
the letters I through N it is given the
attributes REAL FIXED BINARY (15,0). If
the name begins with any other letter
including one of the alphabetic extenders
$, #, or @, it is given the attributes REAL
FLOAT DECIMAL (6).

Examples of Declarations

Scopes of data declarations are illustrated
in figure 7.1. The brackets to the left
indicate the block structure; the brackets
to the right show the scope of each
declaration of a name. In the diagram, the
scopes of the two declarations of Q and R
are shown as Q0 and Q' and R and R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in block B results in an
implicit declaration of R in A, the
external procedure. TwO separate names
with different scopes exist, therefore.
The scope of the explicitly declared R is
C; the scope of the implicitly declared R
is all of A except block C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, ¢, and D.

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry constant and statement
label declarations are illustrated in
figure 7.2. The example shows two external
procedures. The names of these procedures,
A and E, are assumed to be explicitly
declared with the EXTERNAL attribute within
the procedures to which they apply. 1In
addition, E is explicitly declared in A as
an external entry constant. The explicit
declaration of E applies throughout block
A. It is not linked to the explicit
declaration of E that applies throughout
block E. The scope of the name E is all of
block A and all of block E. The scope of
the name A is only all of the block A, and
not E.

However, it could appear in an external
entry declaration in E, which would then
result in the scope of A being all of A and
all of E.

The label 11 appears with statements
internal to A and to C. Two separate
declarations are therefore established;
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement
in block B is executed, control is
transferred to L1 in block A, and block B

the
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| i
| {i: PROCEDURE; ] |
| DECLARE P, Q; |
| B: PROCEDURE; 7 |
| DECLARE Q; |
| R = Q; I
| C: BEGIN; |
| DECLARE R; |
i DO I =1 TO 10; |
I END; |
| END C; I
| END B; |
| [ D: PROCEDURE; |
| DECLARE S; ] |
| I
| |
L J

END D;
END A;

Figure 7.1. Scopes of data declarations

[ i
| A: PROCEDURE; [
| DECLARE E ENTRY; |
| Ll: P = Q; _ - I
| [ B: PROCEDURE; |
| L2: CALL C; |
| C: PROCEDURE; |
[ Ll: X = Y; |
| CALL E; |
| END C; |
| GO TO L1; |
| R END B; |
] D: PROCEDURE; [
| END D; |
[ CALL B; |
| - END A; J J J I
| E: PROCEDURE; |
| END E; ] |
L J

- - - - . S . - - — - - - W - " - - T - - —— - - - -

Figure 7.2. Scopes of entry and label declarations

is terminated. Internal and External Attributes

The scope of a name with the INTERNAL
attribute is the same as the scope of its
D and B are explicitly declared in block declaration. Any other explicit
A and can be referred to anywhere within A; declaration of that name refers to a new
but since they are INTERNAL, they cannot be object with a different, non-overlapping
referred to in block E (unless passed as an scope.
argument to E).

A name with the EXTERNAL attribute may
be declared more than once in the same
program, either in different external
procedures or within blocks contained in

C is explicitly declared in B and can be external procedures. Each declaration of
referred to from within B, but not from the name establishes a scope. These
outside B. declarations are linked together and,

within a program, all declarations of the
same identifier with the EXTERNAL attribute

L2 is declared in B and can be referred refer to the same name. The scope of the
to in block B, including C, which is name is the sum of the scopes of all the
contained in B, but not from outside B. declarations of that name within the
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program.

Note: External names of PL/I data cannot
be more than seven characters long and must
not contain the _ (break) character. This
|restriction on the break character is a job
|scheduler restriction. If a PL/I procedure
|name, containing a break character, is
|invoked by an EXEC statement, the job
|scheduler will produce a diagnostic
|message. A similar problem occurs with
|PI/I file names in a DD statement.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be
impossible for the .compiler to check all
declarations, particularly if the names are
declared in different procedures, so care
should be taken to ensure that different
declarations of the same name with the
EXTERNAL attribute do have matching
attributes. The attribute listing, which
is available as optional output from these
compilers, helps to check the use of names.
The following example illustrates the above
points in a program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
DCL SET ENTRY(FIXED DECIMAL(1)),
OUT ENTRY (LABEL) ;
CALL SET (3);
E: GET LIST (5,M,N);
B: BEGIN;
DECLARE X (M,N),
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q):
DECLARE P(*,%), Q(#%),
S BINARY FIXED EXTERNAL;
s = 0;
DO I =1 TO M;
IF SuUM (P(I,*)) = Q(I)
THEN GO TO B;
S = S+1;
IF s = 3 THEN CALL OUT (E);
CALL D(I);
B: END;
END C;
D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW ',
N, *TABLE NAME ', S);
END D;
END B;
GO TO E;
END A;

Y(m ;

OUT: PROCEDURE (R);
DECLARE R LABEL,
(M,L) STATIC INTERNAL
INITIAL (0),
S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1):
M = M+1l; s=0;
IF M<L THEN STOP;
ENTRY (2Z);
L=2;
RETURN;
END OUT;

ELSE GO. TO R;
SET:

A is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. 1Its
apearance as a parameter establishes an
explicit declaration of N within D since
there is no other declaration of N within
D; the references outside D cause an
implicit declaration of N in block A.

These two declarations of the name N refer
to different objects, although in this
case, the objects have the same data
attributes, which are, by standard default,
FIXED (15,0), BINARY, and INTERNAL.

X and Y are known throughout B and could
be referred to in block C or D within B,
but not in that part of A outside B.

P and Q are parameters, and therefore if
there were no other declaration of these
names within the block, their appearance in
the parameter list would be sufficient to
constitute an explicit declaration.
However, a separate DECLARE statement is
required in order to specify that P and Q
are arrays and it is this that is the
explicit declaration. Note that although
the arguments X and Y are declared as
arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the
arguments.)

I and M are not explicitly declared in
the external procedure A; they are
therefore implicitly declared and are known
throughout A, even though I appears only
within block C.
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The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the ENTRY and EXTERNAL
attributes. They must also be declared
explicitly with the ENTRY attribute in
procedure A. Since ENTRY implies EXTERNAL,
the two entry constants SET and OUT are
known throughout the two external
procedures.

The label B appears twice in the
program, once as the label of a begin
block, which is an explicit declaration, as
a label in A. It is redeclared as a label
within block C by its appearance as a
prefix to the END statement. The reference
to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C,
any reference to B would be to the label of
the begin block.

Note that C and D can be called from any
point within B but not from that part of A
outside B, nor from another external
procedure. Similarly, since E is known
throughout the external procedure 34, a
transfer to E may be made from any point
within A. The label B within block C,
however, can only be referred to from
within C. Transfers out of a block by a GO
TO statement can be made; but such
transfers into a nested block generally
cannot. An exception is shown in the
external procedure OUT, where the label E
from block A is passed as an argument to
the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
ouT.

The variables M and L are declared
within the block OUT to be STATIC; their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the
procedure C, both have been declared with
the attribute EXTERNAL.

Scope of Member Names of External
Structures

When a major structure name is declared
with the EXTERNAL attribute in more than
one block, the attributes of the
corresponding structure members must be the
same in each case, although the
corresponding member names need not be
identical. Names of members of structures
always have the INTERNAL attribute, and
cannot be declared with any scope
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attribute. However, a reference to a
member of an external structure, using the
member name known to the block containing
the reference, is effectively a reference
to that member in all blocks in which the
external name is known, regardless of
whether the corresponding member names are
jdentical. For example:

PROCA: PROCEDURE;
DECL2ARE 1 A EXTERNAL,
2 B,
2 C;

END PROCA;
PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,
2 B,
2 D;

END PROCB;

In this example, if A.B is changed in
PROCA, it is also changed for PROCB, and
vice versa; if A.C is changed in PROCA, A.D
is changed for PROCB, and vice versa.

Multiple Declarations and Ambiguous
References

Two or more declarations of the same
identifier internal to the same block
constitute a multiple declaration, unless
at least one of the identifiers is declared
within a structure in such a way that name
gqualification can be used to make the names
unique.

Two or more declarations anywhere in a
program of the same identifier as EXTERNAL
names with different attributes constitute
a multiple declaration.

Multiple declarations are in error.

A name need have only enough
qualification to make the name unique.
Reference to a name is always taken to
apply to the identifier declared in the
innermost ‘block containing the reference.
An ambigquous reference is a name with
insufficient qualification to make the name
unique.

The following examples illustrate both
multiple declarations and ambiguous
references:

2 D,

DECLARE 1 B3, 3 E;

BEGIN;

2 C,



DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2B, 2B, 2¢c, 3D, 2D;
In this example, B has been multiply
declared. A.D refers to the second D,
since A.D is a complete qualification of
only the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 ¢, 2D, 3 C;

In this example, A.C is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X;

DECLARE 1 Y, 2 X, 3 2, 34,
2Y,3 12, 3 A;

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z refers to the first 2.

Default Attributes

Every identifier in a PL/I source program
requires a complete set of attributes.
However, the attributes specified in a
DECLARE statement need rarely be the
complete set of attributes for the
identifier. Moreover, contextual
declaration can result in only a partial
declaration of an identifier. For each
partially declared identifier the set of
attributes is completed implicitly by the
compiler by application of default rules.

Default rules which are determined for
the implementations are termed standard
default rules; alternative default rules
can be defined by the programmer who wishes
either to modify the standard default
rules, or develop a completely new set of
default rules. The DEFAULT statement is
used for this purpose. Its use is
described in a later section of this
chapter.

PROCESSES IN THE APPLICATION OF
ATTRIBUTES

Attribute processing by the compiler takes
place in the following order:

1. Defactoring of attributes.
2. Application of the LIKE attribute.

3. Application of ALIGNED or UNALIGNED
attributes to structure members.

4, Establishment and application of
explicit declarations.

5. Establishment and application of
contextual declarations.

6. Establishment of implicit
declarations.

7. Application of attributes specified in
the DEFAULT statements (if present),
for explicitly, contextually, and
implicitly declared identifiers; then
application of standard default
attributes.

8. Resolution of identical identifiers,
including identifiers used in
attributes, or declared in different
blocks of a procedure.

From this it should be seen that
attributes applied by default cannot
override attributes of the same class
applied to an identifier by explicit or
contextual declaration. Further, any
attributes applied by default are largely
dependent on attributes already applied.
This is fundamental to understanding the
use of the DEFAULT statement.

APPLICATION OF STANDARD DEFAULTS

Sstandard default rules are applied for a
class of attributes when an attribute of a
particular class, such as scope, scale,
base, or mode, etc., has not been arrlied
either by explicit or contextual
declaration. A summary of the standard
defaults for file attributes appears in
chapter 10, "Input and Output." A summary
of standard default assumptions for both
problem and program control data are given
below. A complete description of standard
default assumptions is given in section I,
"Attributes."
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Problem Data

If the problem data is not known to be
either of character or of arithmetic type,
arithmetic type is assumed.

Arithmetic Data: The standard defaults
vary according to the information specified
for the data:

1. If an arithmetic data item is
partially specified in an explicit

declaration, the attributes assumed by
default are:

Default
Explicit attributes
declarations assumed
BINARY REAL, FLOAT
DECIMAL REAL, FLOAT
FIXED REAL, DECIMAL
FLOAT REAL, DECIMAL
REAL FLOAT, DECIMAL
FIXED BINARY REAL
FIXED DECIMAL REAL
FLOAT BINARY REAL
FLOAT DECIMAL REAL
REAL FIXED DECIMAL
REAL FLOAT DECIMAL
REAL BINARY FLOAT
REAL DECIMAL FLOAT

Note that if COMPLEX is declared
instead of REAL, the attributes are
the same as for REAL, and are applied
to each of the two parts.

2. If a base but not a scale is
specified, the scale assumed depends
on the presence of a scale factor in
the precision attribute., TIf there is
a scale factor, FIXED is assumed, if
there is not, FLOAT is assumed.

For example:

DCL A BINARY (3),
B BINARY (5,2);

The assumed attributes for A are REAL
FLOAT: for B, they are REAL FIXED.

3. If mode, scale, and base are not
specified by a DECLARE or DEFAULT
statement, the attributes assumed
depend on the initial letter of the
identifier.
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Default
attributes
assumed

Initial
letter

$,#,6,A - H REAL FLOAT DECIMAL

I-N REAL FIXED BINARY

0 -2 REAL FLOAT DECIMAL

A value returned from a function
reference can have default rules arrplied to
determine its base, scale, and mode.
Default attributes for a returned value are
obtained by applying default rules to the
function name as if it were an arithmetic
identifier.

Precision of arithmetic data: Standard
default precisions for arithmetic data are:

Attributes Precision
FIXED BINARY (15,0
FIXED DECIMAL (5,0)
FLOAT BINARY (21)
FLOAT DECIMAL (6)

Other attributes of arithmetic data: The
assumed attributes are ALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if

EXTERNAL.

String data: If the length of a character
or bit string is undefined, a length of 1
is assumed. The attributes UNALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL, are assumed.

Structures and structure members: Level-
one structures are assumed AUTOMATIC if
INTERNAL, and STATIC if EXTERNAL. Minor
structures and structure members cannot be
declared to have storage or scope
attributes.

Arrays and data elements: UNALIGNED is
assumed for data elements of string or
picture type. ALIGNED is assumed for all
other data types. Scope and storage depend
on the data type.

Program Control Data

ENTRY: An entry constant declared in a
DECLARE statement, or as a statement prefix
on a PROCEDURE or ENTRY statement, is
assumed EXTERNAL. An entry variable is
assumed INTERNAL.

LABEL, POINTER, OFFSET, AREA, EVENT, TASK:
Identifiers declared with any one of these




attributes are assumed ALIGNED, and
AUTOMATIC if INTERNAL, STATIC if EXTERNAL.
If the size is not specified for an area
variable, the default size of 1000 bytes is
applied.

DEFAULT Statement

The function of the DEFAULT statement is to
give the programmer control over the
default attributes assigned to identifiers.
The DEFAULT statement cannot be used to
override the attributes assigned to
identifiers by explicit or contextual
declarations.

The DEFAULT statement can be used to
modify the standard default rules or to
specify a complete set of programmer-
defined default rules. It can specify
attributes for identifiers whose attribute
sets are not complete after explicit,
implicit, or contextual declaration, for
the descriptors in entry declarations, and
for the attributes in the RETURNS option of
PROCEDURE and ENTRY statements. Standard
default rules can be restored after
programmer-defined default rules have been
established in a program.

A simplified general form of the DEFAULT
statement is as follows: A i
X \ [ vu ,\SU(L-*
DEFAULT o d ’
RANGE ({ {1dent1f1er}\| {letter:letter} | {*}J)}
DESCRIPTORS

[attribute-specification];

RANGE Option: The RANGE option specifies
the identifiers to which the associated
default rules are to be applied. The range
can be specified as either two letters
separated by a colon, or as a single
identifier. For example, the option:

RANGE (A:J)...

applies to all identifiers with initial
letters in the range A through J. The
option:

RANGE (ABC) ...

applies to all identifiers with the initial
three letters 'ABC' such as ABC, ABCD, and
ABCDE .

The RANGE option can also be specified
as:

RANGE (%)
whereby all possible initial alphabetic

characters, from A through Z, and the
characters §, @, and # are specified.

DESCRIPTORS Option: The DESCRIPTORS option
specifies that the associated default rules
are to be applied to non-null parameter
descriptors.

Attribute Specification: The attribute
specification is a list of attributes from
which selected attributes are applied to
identifiers in the specified range.
Attributes in the list may appear in any
order and must be separated by blanks.

oOnly those attributes that are necessary
to complete the declaration of a data item
are taken from the list of attributes. If
the list does not supply all the required
attributes, then standard default
attributes are applied. Therefore,
specification of any attribute that is a
st andard default is unnecessary. For
example:

DEFAULT RANGE(T) POINTER;

This means that any identifier that begins
with the letter T is a pointer. The
complete list of attributes that arply to
these identifiers is POINTER, AUTOMATIC,
INTERNAL, and ALIGNED.

Attributes that conflict when applied to
a data item do not necessarily conflict
when they appear in an attribute
specification. For example:

DEFAULT RANGE(S) BINARY VARYING;

This means that any identifier that begins
with the letter s and is declared
explicitly with the BIT or CHARACTER
attribute will receive the VARYING
attribute; all others (that are not
declared explicitly or contextually as
other than arithmetic data) will receive
the BINARY attribute.

The VALUE option is used within the
attribute specification to specify
attributes that are represented by a
decimal integer constant or an expression.
These are the attributes length, size, and
precision., For examrle:

DEFAULT RANGE(*) VALUE{(AREA(2000));

This statement gives a default size of 2000
to all area variables. The dimension
attribute can be specified directly in an
attribute specification provided it appears
first in the list.

Assume that the following ranges of
initial letters are to correspond to the
attributes given:
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Initial letters Attributes required

A-D REAL FLOAT DECIMAL
E - H REAL FLOAT BINARY
I-N REAL FIXED BINARY
o -1z REAL FIXED DECIMAL

The precisions to be assumed are the
default precisions for these
implementations. A DEFAULT statement to
establish these additional default rules
1S3

DEFAULT RANGE(E:H) BINARY,
RANGE(O:2) FIXED;

In this statement additional default
rules for two ranges of initial letters are
specified. The standard default rules for
identifiers with initial letters outside
the ranges E - H and O - Z are unchanged.

Example 2:

A DEFAULT statement can specify that all
implicitly-declared data has the same
attribute.

DEFAULT RANGE (%) PICTURE '99999°*;

This statement causes all implicitly-
declared identifiers to be assumed numeric
character type with the attributes REAL
PICTURE '99999°'.

If values other than the standard
defaults are required, the argument of the
VALUE option should always contain an
attribute to qualify the precision, string
length, or area size for a particular
detault attribute. For example:

a. DEFAULT RANGE (S:T) CHARACTER
VALUE (CHARACTER (10)) ;

b. DEFAULT RANGE (%) VALUE (FIXED
BINARY(31) ,FLOAT DECIMAL (33),
FLOAT BINARY(109), FIXED
DECIMAL(15));

The first example specifies that all
implicitly-declared identifiers with the
initial letters S and T are to receive the
default attribute CHARACTER and a default
string length of ten characters. The
second example specifies that all
identifiers of arithmetic type with
undefined precisions will have the
precisions as defined in the argument to
the keyword VALUE. (In this instance the
precisions specified are the maximum
precisions permitted.)

Note that the only attributes which the
VALUE option can influence are precision,
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string length, and area size. Other
attributes in the option, such as CHARACTER
and FIXED BINARY in the above examples,
merely indicate which attributes the value
is to be associated with. Consider the
following example.

DEFAULT RANGE(I) VALUE(FIXED
DECIMAL(8,3));

I=1;

If it is not declared explicitly, I will be
given the standard default attributes FIXED
BINARY (15,0). It will not be influenced by
the default statement, because this
statement specifies only that the default
precision for FIXED DECIMAL identifiers is
to be (8,3).

Restoring Standard Defaults

The following statement:
DEFAULT RANGE(#*), DESCRIPTORS;

overrides, for all identifiers, any
programmer-defined default rules
established in a containing block. It can
be used to restore standard defaults for
contained blocks.

To restore standard defaults to a

particular identifier, the keyword SYSTEM
can be specified in its DECLARE statement.

Scope of the DEFAULT Statement

The scope of a DEFAULT statement is the
block in which it is specified, and any
blocks contained in that block, except that
if a DEFAULT statement in a contained block
specifies all or part of the range
specified in a DEFAULT statement in a
containing block, the statement in the
contained block overrides the other for the
range that they have in common. For
example:

A: PROC;
DEFAULT RANGE(A:I) FIXED BINARY;

B: PROC;
DEFAULT RANGE(I) DECIMAL;

END A;

In procedure B, DECIMAL overrides BINARY



for identifiers beginning with I, and FIXED
is not inherited. Standard defaults will
be applied for alignment, scope, storage
class, mode, and precision.

A DEFAULT statement in an internal block
affects only explicitly declared
identifiers. This is because the scope of
contextually and implicitly declared
identifiers is determined as if their
declaration were made in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name appears.

Factored Default Specification

A default specification can be factored.
For example, the following statement:

DEFAULT (RANGE(A:C) FIXED, RANGE(D:F)
FLOAT) DECIMAL;

specifies that arithmetic identifiers with
the initial letters A to C receive the
attributes FIXED DECIMAL, and those with
the initial letters D to F receive the
attributes FLOAT DECIMAL.

Programmer-defined Defaults for
Parametex Descriptors

The DEFAULT statement can be used to
specify attributes for parameter
descriptors. The keyword DESCRIPTORS
designates the list of attributes which
follows it as an attribute specification
for parameter descriptors. For example:

DEFAULT DESCRIPTORS BINARY;
- DCL X ENTRY (FIXED, FLOAT);

the attribute BINARY is added to each
parameter descriptor in the list, producing
the equivalent list:

(FIXED BINARY, FLOAT BINARY)

The DESCRIPTORS default attributes are
not applied to parameters having null
descriptors, that is, parameters for which
no attributes are specified in the
parameter descriptor, and whose attributes

must therefore match those of the
corresponding arguments.

Programmer-defined Default for the
RETURNS Option

The default attributes of implicitly
declared values returned from function
procedures are dependent on the entry name
used to invoke the procedure. The DEFAULT
statement can be used to specify such
attributes when the entry name, or the
initial letter of the entry name, is
specified in the DEFAULT statement.

For example, the following statements:

DEFAULT RANGE
X ¢ PROC(Y);

(X) FIXED BINARY;
would be interpreted as:

X : PROC(Y) RETURNS (FIXED BINARY);

Restrictions of the Use of the DEFAULT
Statement

The DEFAULT statement must not specify the
attributes ENTRY, ENVIRONMENT, RETURNS,
LIKE, VARIABLE, or any file attributes
other than FILE. It cannot be used to
specify structuring, although structure
elements can have defaults applied
according to a RANGE specification.

Although the DEFAULT statement may
specify the dimension attribute for
identifiers that have not been declared
explicitly, a subscripted identifier would
be contextually declared with the attribute
BUILTIN. Therefore the dimension attribute
can be applied by default only to
explicitly declared identifiers.
example:

For

DEFAULT RANGE (ARRAY)
DCL ARRAY1l, ARRAY2;

(10,10) FIXED BIN;

Both ARRAY1 and ARRAY2 are explicitly
declared two-dimensional arrays of 100
elements, each with the attributes FIXED
and BINARY.
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The purpose of this chapter is to describe
how the PL/I programmer can control the
allocation of storage. Allocation is the
process of obtaining storage for a
variable., A generation of a variable
refers to a particular allocation of it.
The four storage classes STATIC, AUTOMATIC,
CONTROLLED, and BASED allow the programmer
to exercise as much control as he requires
for a particular program.

All variables require storage; this
applies both to problem data, such as
string and arithmetic variables, and to
program control data such as label
variables, entry variables, and file
variables. The declaration of a variable
must include a storage class attribute even
if only by default. The name of a variable
is effectively the address of the variable,
and the attributes specified for a variable
describe the amount of storage required and
how it is to be interpreted. For example:

DECLARE X FIXED BINARY (31,0) AUTOMATIC;
The name X addresses a fullword, i.e., four
bytes, that contains a value to be
interpreted as a fixed-point binary
integer. For static and automatic
variables, this concept is not very
important, but when considering controlled

and, particularly, based variables it is
relevant.

It should be understood that at no point
in a PL/I program does the programmer have
access to the absolute address of a
variable within main storage, because the
allocation of storage for variables is
managed by the compiler. The programmer
does not specify where in main storage the
allocation is to be made. He can, however,
specify where it is to be allocated
relative to storage already allocated for
instance by allocating based variables in
an area variable.

The degree of storage control that can
be exercised depends on the class of
storage used.

Static Storage

Variables declared with the STATIC
attribute are allocated prior to the
execution of a program and remain allocated
until the program terminates. The program
has no control on the allocation of static
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variables during execution. Programs often
need data that is used whenever the program
is executed. For example, all arithmetic
constants specified in a program are stored
in a manner similar to variables declared
STATIC. The difference is that constants
cannot be changed during program execution
whereas the values of static variables can.
Although static variables can be declared
at any point in a program, they are all
allocated prior to execution. But it is
important to note that static variakles
follow normal scope rules for the validity
of references to them. For example:

A:PROC OPTIONS (MAIN) ;

B:PROC;
DECLARE X STATIC INTERNAL;

END B;
END A;

Although the variable X is allocated
throughout the program, it can be
referenced only within procedure B or any
block contained in B,

If static variables are initialized
using the INITIAL attribute, the initial
values must be specified as constants with
the exception of pointer variables as noted
below. And any specification of extents,
for instance array bounds, must also be
constants. Thus if static storage is used,
it must be borne in mind that whatever
allocation has been specified when the
program was written will be retained
throughout the execution of the program.
Static storage should be used for all data
that may be referred to by the programmer
at any point in a program. A STATIC
pointer or offset variable may be
initialized only by using the NULL kuilt-in
function.

All other forms of storage allocation
are dynamic, that is, the storage is
obtained dAuring the execution of the

program. Because of this, the programmer
can exert more control.

Automatic Storage

Automatic variables are allocated on entry
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to the block in which they have been
declared. They can be reallocated many
times during the execution of a program.
The programmer controls their allocation by
his design of the block structure of his
program. For example:

A:PROC;

CALL B;
B: PROC;
DECLARE X,Y AUTO;

END B;

CALL B;

Each time procedure B is invoked, the
variables X and Y are allocated storage,
and when B terminates the storage is
released; consequently, the values they
contained are lost. The storage that has
been freed is available for reallocation to
other variables. Thus, whenever a block
(procedure or begin) is active, storage is
allocated for all variables declared
automatic within that block, and whenever a
block is inactive no storage is allocated
for the automatic variables in that block.
Only one allocation of a particular
automatic variable can exist, except for
those procedures that are called
recursively or by more than one task.

Array bounds, string lengths, and area
sizes for automatic variables can be
specified as expressions. This means not
only that storage can be allocated when it
is required but also that the required
amount of storage can be allocated. For
example:

A:PROC;
DECLARE N FIXED BIN;

B:PROC;
DECLARE STR CHAR(N) ;

The character string STR will have a length
defined by the value of the variable N that
existed when procedure B was invoked.
However, storage is conserved at the
possible expense of speed of execution
because of the extra operations required to
evaluate such expressions.
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EFFECT OF RECURSION ON AUTOMATIC
VARIABLES

A procedure that can be invoked when it is
already active in the same task is said to
be recursive. The values of variables
allocated in one activation of such a
procedure must be protected from change by
other activations. This is arranged by
stacking the variables. A stack operates
on a last-in first-out basis; the most
recent generation of an automatic variable
is the only one that can be referenced.
Note that static variables are not affected
by recursion. Thus they are useful for
communication across recursive invocations.
This also applies to automatic variables
that are declared in a procedure that
contains a recursive procedure and to
controlled and based variables., For
example:

A: PROC;
DCL X;

B:PROC RECURSIVE;
DCcL 2z,

Y STATIC;
CALL B;

END B;
END A;

A single generation of the variable X
exists throughout invocations of procedure
B. The variable Z will have a different
generation for each invocation of procedure
B. The variable Y can be referred to only
in procedure B and will not be reallocated
at each invocation. (The concept of
stacking of variables is also of importance
in the discussion of controlled variables.)

Controlled Storage

Variables declared as CONTROLIED are
allocated only when they are specified in
an ALLOCATE statement. The programmer has
individual control over each controlled
variable. Effectively, they are
independent of the program block structure,
but not completely. The scope of a
controlled variable, when declared
internal, is the block in which it is
declared and any contained blocks. The
declaration of a controlled variable
describes only how much storage will be
required when the variable is allocated and
how it is to be interpreted. For example:



A:PROC;
DCL X CONTROLLED;

CALL B;

B: PROC;
ALLOCATE X;

-

END B; ,
END A; Ay

The variable X can be valjdly referred to
within procedure B and that part of.
procedure A that follows® the CALL
statement. Any reference to the value of
the variable before execution of the CALL
statement is in error. Once a controlled
variable has been allocated, it remains
allocated either until a FREE statement
that names the variable is encountered or
until the end of the program. Note that
the scope of a controlled variable may not
be the whole program; this creates a
situation analogous to that for the STATIC
INTERNAL variable described under "Static
Storage" earlier, i.e., it exists but
cannot be referenced.

The FREE statement frees the storage
allocated for a controlled variable. The
storage can then be re-used for other
allocations.

Generally, controlled variables are
useful when large data aggregates with
adjustable extents are required in a
program. For example:

DCL A(M,N) CTL;

GET LIST(M,N);
ALLOCATE A;
GET LIST(3);

FREE A;

This program sequence allocates the exact
storage required depending on the input
data and discards the data (and frees its
storage) when no longer required. This
method can be more efficient than the
alternative of setting up a begin block,
because no prologue or epilogue is
required.

ALLOCATE STATEMENT FOR CONTROLLED
VARIABLES

A controlled variable can be allocated only
by an ALLOCATE statement. The general form
of the ALLOCATE statement for controlled
variables is:

ALLOCATE [level] identifier {dimension
attributel [attributel
[,[level] identifier [dimension
attributel] [attributell...
[INITIAL attributel;

The "identifier" is any variable that has
the CONTROLLED attribute. It can be an
element, array, or structure, but cannot be
subscripted or qualified. Permitted
attributes are those that specify
dimensions, the length of strings, and the
size of areas. (Areas are discussed later
in this chapter but in this context they
are simply variables whose storage is
adjustable.) This enables the programmer
to alter the amount of storage for a
particular generation of a variable.
attributes are:

These

dimension
CHARACTER( length)
BIT (length)
AREA(size)

The dimension attribute can appear with
any of the others. For example:

DCL X(20) CHAR (5) CONTROLLED ;

ALLOCATE X(25) CHAR(6);

The attribute values specified in an
ALLOCATE statement always override those
given in the DECLARE statement for the same
variable. However, the attributes
themselves must agree. Thus the dimension
attribute must specify the same numker of
dimensions. As in a DECLARE statement,
element expressions can be used to specify
bounds, lengths, and sizes.

The INITIAL attribute can also be
specified in an ALLOCATE statement.
Initial values given in an ALLOCATE
statement override those, if any, given in
a DECLARE statement.

FREE STATEMENT FOR CONTROLLED VARIABLES

Storage for a controlled variable is freedqd,
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and therefore its value is lost, when a
FREE statement is executed that names the
variable. The form of the FREE statement
is:

FREE identifier[,identifierl]...;

The "identifier"™ has the same restrictions
as in the ALLOCATE statement.

If the FREE statement names a variable

that has not been allocated, no action is
taken.

Implicit Freeing

If a controlled variable is to remain
allocated until the end of a task, it need
not be explicitly freed by a FREE
statement. All controlled storage is
automatically freed at the termination of
the task in which it was allocated.

MULTIPLE GENERATIONS OF CONTROLLED
VARIABLES

If storage for a controlled variable is
reallocated before being freed the first
generation is preserved, i.e., stacked.

The second generation becomes the current
generation; the first generation cannot be
directly accessed until the current
generation has been freed. This is similar
to the process described for automatic
variables in a recursive procedure. For
controlled variables, however, stacking and
unstacking of variables occur at ALLOCATE
and FREE statements rather than at block
boundaries and are independent of
invocation of procedures within a task.

Al though values of successive
generations of a controlled variable are
stacked, values can be obtained from the
most recent generation to help create a new
generation. If, in an ALLOCATE or DECLARE
statement, a bound, length, or size is
specified by an expression that contains
references to the variable, the value is
taken from the most recent previous
generation. For example:

DCL X(20) FIXED BIN CTL;

-

ALLOCATE X;

ALLOCATE X(X(1));
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In the first allocation of X the upper
bound is specified by the DECLARE
statement, i.e., 20. In the seconrd
allocation the upper bound is specified by
the value of the first element of the first
generation of X.

Asterisk Notation

If, in an ALLOCATE statement, dimensions,
lengths, or sizes are indicated by
asterisks, values are inherited from the
most recent previous generation. For
arrays, the asterisk must be used for every
dimension of the array, not just one of
them. For example:

DCL X(10,20) CHAR(5) CTL;

ALLOCATE X;

.

ALLOCATE X(10,10);

ALLOCATE X(*,%*);

In this example, the first generation of X
has bounds (10,20); the second and third
generations have bounds (10,10). The
elements of each generation of X are all
character strings of length five.

The asterisk notation can also be used
in a DECLARE statement, but has a different
meaning. For example:

DCIL, Y CHAR(*) CTL,
N FIXED BIN;
N=20;

ALLOCATE Y;

ALLOCATE Y CHAR(N);

This simply means that the length of the
character string Y is to be taken from the
previous generation unless it is specified
in an ALLOCATE statement, in which case Y
is given the specified length. This allows
the programmer to defer the specification
of the string length until the actual
allocation of storage.



CONTROLLED STRUCTURES

When a structure is controlled, any arrays,
strings, or areas it contains can be
adjustable. For this reason, it is
permissible to describe the relative
structuring in an ALLOCATE statement.
example:

For

DCL 1 A CTL,
2 B(-10:10),
2 C CHAR(*) VARYING;

ALLOCATE 1 A,
2 B,
2 C CHAR(S);

FREE A;

When the structure is allocated, A.B has
the extent -10 to +10 and A.C is a VARYING
character string with maximum length S5 and
the value null. When the structure is
freed, only the major structure name is
given. All of a controlled structure must
be freed or allocated; it is an error to
attempt to obtain storage for part of a
structure,

ALLOCATION BUILT-IN FUNCTION

Where the allocation and freeing of a
variable depend on flow of control, it is
useful to be able to determine if the
variable has been allocated. The
ALLOCATION built-in function returns a
binary integer value indicating the number
of generations that can be accessed in the
current task for a given controlled
variable. If the variable is not
allocated, the value zero is returned.
function reference has the form:

The

ALLOCATION (a)
where a must be a controlled variable.

Besides the ALLOCATION built-in
function, other built-in functions that may
be useful are the array-handling functions
DIM, which determines the extent of a
specified dimension of an array, and LBOUND
and HBOUND, which determine the lower and
upper bound respéctively of a specified
dimension of a given array. Similarly for
strings, the built-in function LENGTH,
returns the current length of the string.

Based Storage

A based variable is fundamentally different
from all other storage classes in that the
name of a based variable does not identify
the location of a generation in main -
storage; a declaration of a based variable
is only a description of the generation,
i.e., the amount of storage required and
how that storage is to be interpreted. The
location of the generation is identified by
a separate variable called a locator
variable. A locator variable is either a
pointer variable or an offset variakle.
Offset variables are discussed later in
this chapter in conjunction with area
variables.

Although a declaration for a controlled
variable is also only a description of the
storage, once an ALLOCATE statement has
been executed for the variable, its name
also identifies the location of the
variable. For this reason, it is
impossible to refer to more than one
generation of a controlled variable at a
particular point in a program. In fact,
the ALLOCATE statement can also be used for
a based variable, but because the location
of any generation is identified by an
independent locator variable, it is
possible to refer at any point in a program
to any generation of a based variable by
using an appropriate locator value.

BASED VARIABLES

A declaration of a based variable has the
keyword BASED and, optionally, the name of
a locator variable that can be assumed to
be associated with the based variable. For
example:

DCL X FIXED BIN BASED(P);

For this declaration the value of the
variable P will identify the location of
the variable X, except when the reference
is otherwise explicitly qualified, as
described below.

The association of a pointer variable in
this way is not a special relationship. P
can be used to identify locations of other
based variables and other locators can be
used to identify other generations of the
variable X.

LOCATOR QUALIFICATION

Because a reference to the value of a based
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variable consists of two parts, it is a
qualified reference and to distinguish this
from a reference to a member of a
structure, it is called a locator-qualified
reference. The composite symbol -> (a
minus sign immediately followed by a
greater than sign) represents 'qualified
by' or 'points to'. For example:

P -> X

X must be a based variable and P must be a
locator expression. The reference means:
that generation of X identified by the
value of the locator P. X is said to be
explicitly locator-qualijified.

When a based variable is associated with
a locator variable in a declaration, the
programmer need specify only the name of
the based variable in a reference. For
example:

DCL X FIXED BIN BASED(P) ;

ALLOCATE X;

X =X+ 1;

The ALLOCATE statement sets a value in
the pointer variable P so that the
reference X applies to allocated storage.
The references to X in the assignment
statement are implicitly locator-qualified
by P. References are explicitly locator-
qualified as follows:

0->X = Q->X + 1;

This assignment statement has the same
etfect as that of the previous example. A
based variable can be declared without
naming a pointer variable; in this case any
reference to the based variable must always
be explicitly locator-qualified.

(Note that PL/I allows a more general
form of locator qualification than is
described here; see "Multiple Locator
Qualification" at the end of this chapter.
However, the general form is not essential
to an understanding of the remainder of
this chapter.)

POINTER VARIABLES

A pointer variable is declared contextually
if it appears in the declaration of a based
variable, if it appears as a locator
gqualifier, or if it appears in the SET
option of an ALLOCATE, LOCATE, or READ
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statement. It can also be declared
explicitly as in the following example:

DCL Q POINIER;

Because Q is a variable it must have a
storage class; in this case, AUTOMATIC is
applied by default. Note that a pointer
variable is a program control variable and
therefore cannot be manipulated in the same
way as arithmetic values. Pointer
variables can be collected in arrays and
structures.

Pointer Expression

A pointer expression is either a pointer
variable, which can be qualified or
subscripted, or a function reference that
returns a pointer value.

A pointer expression can be used in the
following ways:

1. As a locator qualifier, in association
with a declaration of a based
variable.

2. In a comparison operation, for example
in a IF statement (pointer values can
be compared whether egual or not
equal).

3. As an argument in a procedure
reference.

Setting Pointer Variables

Before a reference is made to a pointer-
qualified variable, the pointer must have a
value. A pointer value is obtained from
any of the following:

1. The NULL built-in function.
2. The ADDR built-in function.
3. A READ or LOCATE statement.
4. An ALLOCATE statement.

All pointer values are originally derived
from one of these three methods. Such
values can then be manipulated by
assignment that copies a pointer wvalue to a
pointer variable; by locator conversion
that converts an offset value to a pointer
value, or vice versa; by passing the
pointer value as an argument in a procedure
reference; and by returning a pointer value
from a function procedure.



ADDR BUILT-IN FUNCTION

The ADDR built-in function returns a
pointer value that identifies the first
byte of a variable. The variable can have
any data type or organization and any
storage class. For example:

P = ADDR(X) ;

where P is a pointer variable and X is any
connected variable. The argument to the
built-in function can be a subscripted
qualified reference. For example:

DCL A(3,2) CHARACTER(S5) BASED(P),
B CHAR(5) BASED(Q),
Cc(3, 2) CHARACTERI(5);

ADDR(C) ;
ADDR(A(2,1));

P
Q

In this example, the arrays A and C refer
to the same storage. The elements B and
c(2,1) also refer to the same storage.

Notice that when a based variable is
overlaid in this way no new storage is
allocated - the based variable uses the
same storage as the variable on which it is
overlaid (A(3,2) in the example).

This overlay technique can be achieved
by use of the DEFINED attribute, but an
important difference is that for DEFINED
the overlay is permanent. When based
variables are overlaid, the association can
be changed at any time in the program by
assigning a new value to the pointer
variable. Note that although PL/I does not
permit the overlay of variables with
different data types, for example,
overlaying an integer with a bit string or
overlaying a character string with a bit
string, it is possible in this
implementation.

| However, it should be understood that
|this type of programming is invalid use of
|PL/I, and the following points should be

| noted:

1. Unless the length of the bit string is
a multiple of eight, data in the base
variable may be corrupted when an
assignment is made to the based
variable when running under the
optimizing compiler since this
compiler produces optimum code from
valid language.

2. Incompatibilities between the
attributes of the BASED variable and
the attributes of the base variable,
that is the variable being overlaid,

will be detected only when running
under the checkout compiler with the
NOCOMPATIBLE option.

The ADDR built-in function does not
supply any information on the organization
of a variable. Therefore, if the variable
is an aggregate, it should be in connected
storage if it is to be referenced as an
entity. For example, if the variable is a
cross-section of an array, the elements
must not be interleaved. Furthermore, in
this implementation, if the variakle is a
varying-length string or an area, control
information is an integral part of the
variable. A varying-length string is
prefixed by a two-byte length field, and an
area is prefixed by 16 bytes of control
information. Thus if the ADDR function is
performed on these types of variable, the
pointer value identifies the start of the
control information.

Other rules that apply to the use of the
ADDR function are given in section G,
"Built-in Functions".

BASED VARIABLES AND INPUT/OUTPUT

Based variables can be transmitted using
either stream~oriented or record-oriented
transmission.

In the list-directed form of stream-
oriented transmission, provided the based
variables are locator-qualified (implicitly
or explicitly), they are treated in the
same way as other types of variable. For
example:

GET LIST (P->X);

For data-directed transmission, however,
only a based variable that has been
associated with a locator expression in a
declaration can be transmitted. For
example:

DCL Y BASED(Q), Z BASED;

PUT DATA(Y);

The variable Z cannot be transmitted in a
PUT DATA oxr GET DATA (that is, data-
directed I/0) statement. Chapter 11
discusses the techniques and facilities of
stream-oriented transmission.

Record-oriented transmission provides
two processing modes: move mode, which
moves data into or out of an allocated
generation of a variable either directly or
indirectly via a buffer; or, locate mode,
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which only moves the data into or out of a
buffer and identifies the storage allocated
within the buffer. Although based
variables can be transmitted using either
mode, they are designed to be used with
locate mode. Based variables are used in
locate mode to describe the contents of a
buffer, and therefore allow data to be
processed while it is in the buffer. Note
that locate mode applies only to BUFFERED
files; also, the files must be SEQUENTIAL,
except for INPUT and UPDATE files
associated with key-sequenced VSAM data
sets. Chapter 12, "Record-Oriented
Transmission, " discusses the two modes more
fully.

READ with SET Statement

In locate mode, the READ statement has the

form:

READ FILE(file-expression)
SET (element-pointer-variable) ;

This statement places a record in a buffer
and identifies its location by setting the
specified pointer variable. Any based
variable qualified by this pointer variable
describes the contents of the buffer. For
example:

DCL X CHAR(20) BASED(P),
Y(20) CHAR(1l) BASED(P);

.

READ FILE(IN) SET(P);

In this program segment, a record is read
into a buffer and the pointer variable P
identifies its location. The record in the
buffer is treated simultaneously by the
based variable X as a fixed-length
character string and by the based variable
Y as an array of single characters. Note
that P is declared contextually as a
pointer variable and that a reference to X
or Y is implicitly qualified by P.

The next I/0 operation on the file

(including closing the file) frees the
buffer.

LOCATE Statement

The LOCATE statement complements the READ
with SET statement and is used for output
from a buffer. The form is:

LOCATE based-variable

92 OS PL/I CKT AND OPT LRM PART I

FILE (file-expression)
[SET (element-pointer-variable)];

This statement allocates storage in a
buffer for a specified based variable. The
SET option need only be specified if the
based variable has not been associated with
a pointer variable in a declaration.

The LOCATE statement operates
differently from all other transmission
statements. Because the statement sets a
pointer to a storage address, there is
nothing to transmit until values have been
assigned to that storage. The LOCATE
statement transmits the previous record
(i.e., the contents of storage obtained by
a previous LOCATE statement), frees the
storage for that record, and allocates
storage for the next record. The current
record is also transmitted if a WRITE or
CLOSE statement is executed for the same
file. The following example shows the use
of the LOCATE statement:

DCL 1 STR BASED (P),
2 NAME CHAR(20),
2 RATE FIXED(5,2);

OUTPUT: LOCATE STR FILE(OUT);
/*¥ASSIGN VALUES TO STR*/
GO TO OUTPUT;

Note: Because of the method of operation of
the LOCATE statement, some care is
necessary when using it with device-
associated files, where a number of files
are grouped together; no transmission can
take place after any one of the group has
been closed. (See "Device-associated
Files,"™ in chapter 12.)

By using locate mode the programmer can
specify that a number of different forms of
record be held in the same file. For
example:

| DCL 1 STR1 BASED(Q),

I 2 CODE CHAR(1),

| 2 X CHAR(30),

| 1 STR2 BASED(Q),

| 2 CODE CHAR (1),

| 2 X(8) FIXED BIN;
| .

, .

| READ FILE(IN) SET(Q);

| IF STR1.CODE= '2' THEN DO;
I I=Q->STR2.X (1);

| END;

|

|In this program segment each based
| structure has an element CODE that
|identifies the structure. A record is read
|and its location is set in Q. Depending on



|the value of CODE, the record can be
|interpreted as STR1 or STRZ.

If an element varying-length string is
transmitted using locate mode, the
SCALARVARYING option of the ENVIRONMENT
attribute must be specified for the file
(see chapter 12, "Record-Oriented
Transmission"). The records will include a
two-byte length prefix.

SELF-DEFINING DATA (REFER OPTION)

A self-defining record is one which
contains information about its own fields,
such as the length of a string. A based
structure can be declared so that such data
can be manipulated. String lengths, array
pounds, and area sizes can all be defined
by variables declared within the structure.
When the structure is allocated (by either
an ALLOCATE statement or a LOCATE
statement), the value of an expression is
assigned to a variable that defines a
length, bound, or size. For any other
reference to the structure, the value of
the defining variable is used.

The REFER option is used in the
declaration of a based structure to specify
that, on allocation of the structure, the
value of an expression is to be assigned to
a variable in the structure and is to
represent the length, bound, or size of
another variable in the structure. The
REFER option has the following general
format:

element-expression REFER
(element-variable)

The value of the element-expression must be
capable of being converted to an integer.
Any variables used as operands in the
expression must not belong to the structure
containing the REFER option.

The element-variable, known as the
object of the REFER option, must be the
name of a member of the structure being
declared. It must not be locator-qualified
or subscripted and it must precede the
member it defines. For example:

DECLARE 1 STR BASED(P),
2 X FIXED BINARY,
2 Y (L REFER (X)),
L FIXED BINARY INITIAL(1000);

This declaration specifies that the based
structure STR will consist of an array Y
and an element X. When STR is allocated,
the upper bound is set to the current value
of L which is assigned to X. For any other
reference to Y, such as a READ statement

that sets P, the bound value is taken from
X

Any number of REFER options may be used
in the declaration of a structure provided
that at least one of the following
restrictions is satisfied:

1. All objects of REFER options are
declared at logical level two, that
is, not declared within a minor
structure. For example:

DECLARE 1 STR BASED,
2 (M,N),
2 ARR(I REFER (M),
J REFER(N)),
2 X

When this structure is allocated, the
values assigned to I and J will set
the bounds of the two-dimensional
array ARR.

2. The structure is declared so that no
padding between members of the
structure can occur. Section K, "Data
Mapping, " describes the rules by which
structures are mapped. For example:

DECLARE 1 STR UNALIGNED BASED (P),
2 B FIXED BINARY,
2 c,
3 D FLOAT DECIMAL,
3 E (I REFER (D))
CHAR(J REFER (B)),
2 G FIXED DECIMAL;

Because this structure has the
UNALIGNED attribute, all items require
only byte alignment. Therefore
regardless of the values of B and D
(the REFER objects) no padding will
occur. Note that D is declared within
a minor structure.

3. If the REFER option is used only once
in a structure declaration,
restrictions 1 and 2 can be ignored
provided that:

a. For a string length or area size,
the option is applied to the last
element of the structure.

b. For an array bound, the option is
applied either to the last element
of the structure or to a minor
structure that contains the last
element. The array bound must be
the upper bound of the leading
dimension. For example:
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DCL 1 STR BASED (P),
2 X FIXED BINARY,
2y,
3 2z FLOAT DECIMAL,
3 M FIXED DECIMAL,
2 D (L REFER (M)),
3 E (50,
3 F (20);

Note that the leading dimension of
an array can be inherited from a
higher level. For example, if we
had declared STR(4) in the above
example, the leading dimension
would have been inherited from
STR(4) and so it would not have
been possible to use the REFER
option in D.

This declaration does not satisfy
restrictions 1 or 2; the REFER
object M is declared within a
minor structure and padding will
occur. However, restriction 3 is
satisfied as the REFER option is
applied to a minor structure that
contains the last element.

If the value of the object of a REFER
option varies during the program then:

1. The structure must not be freed until
the object is restored to the value it
had when allocated.

2. The structure must not be written out
while the object has a value greater
than the value with which it was
allocated.

3. 'The structure may be written out when
the object has a value equal to or
less than the value it has when
allocated. The number of elements,
the string length, or area size
actually written will be that
indicated by the current value of the
object. For example:

DCL 1 REC BASED (P),
2 N,
2 A (M REFER(N)),
M INITIAL (100);

ALLOCATE REC;
N = 86;
WRITE FILE (X) FROM (REC) ;

In this example, 86 elements of REC
are written. It would be an error to
attempt to free REC at this point
since N must be restored to the value
it has when allocated (i.e., 100). 1If
N was assigned a value greater than
100, an error would occur when the
WRITE statement was encountered.
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When the value of a refer object has
been changed, the next reference to the
structure causes remapping. For example:

DCL 1 A BASED(P),
2 B,
2 ¢ (I REFER(B)),
2 D,

I INIT(10);

ALLOCATE A;

B =5;

The next reference to A after the
assignment to B will cause the structure to
be remapped to reduce the upper bound of C
from 10 to 5, and to allocate to D storage
immediately following the new last element
of C. Although the structure is remapped,
no data is reassigned - the contents of the
part of storage originally occupied Ly the
structure A are unchanged. If the
programmer does not take account of
remapping, errors can occur. Consider the
following example, in which there are two
REFER options in the one structure:

DCL 1 A BASED (P),
2 B FIXED BINARY (15,0),
2 C CHAR (I1 REFER (B)),
2 D FIXED BINARY (15,0),
2 E CHAR (I2 REFER (D)),

(I1,I2) INIT (10);

ALLOCATE A;

B = 5;

The mapping of A with the original and new
values of B is as follows:

1 B | o 1. D 1 E |

| B | C | D | E B=5

D now refers to data that was originally
part of that assigned to the character-
string variable C. This data will be
interpreted according to the attributes of
D - that is, as a fixed-point decimal
number - and the value obtained will be
taken to be the length of E. Hence, the
length of E is unpredictable.

LIST PROCESSING

List processing is the name for a number of
techniques to help manipulate collections
of data. Although arrays and structures in
PL/I are also used for manipulating



collections of data, list processing
techniques are more flexible in that they
allow collections of data to be
indefinitely reordered and extended during
program execution. It is not the purpose
here to illustrate these techniques but
simply to show how based variables and
locator variables serve as a basis for this
type of processing.

A list that has at least one pointer
within each member that identifies the
location of another member in the list is
called a chained or threaded list. The
primary application of the ALLOCATE and
FREE statements is to build these lists.

ALLOCATE STATEMENT FOR BASED VARIABLES

The form of the ALLOCATE statement is:

ALLOCATE based-variable
[IN(area-variable)]
[SET(locator~-variable)]
{,based-variable
[IN(area-variable)l
[SET(locator-variable)ll...;

The based variable can be any data type or
organization. The SET option is needed if
the based variable was declared without an
associated pointer variable or if it is
required to leave the pointer that was
declared with the based variable unchanged,
and to set a different pointer to the
generation of the based variable that is
being allocated.

Both based and controlled variables can
be allocated in the same statement.

FREE STATEMENT FOR BASED VARIABLES

The form of the FREE statement is:

FREE [locator-qualifier->)
based~-variable [IN(area-variable)]l
[,[locator-qualifier->]

based-variable [(IN(area-variable)ll...;

A particular generation of a based variable
is freed by specifying a pointer qualifier
in the statement. If a qualifier is
omitted, the pointer variable associated
with the based variable in its declaration
is used; it is an error in this case if a
pointexr variable has not been associated
with the based variable.

A FREE statement cannot be used to free
a locate-mode I/0O buffer.

Both based and controlled variables can
be freed in the same statement.

MULTIPLE GENERATIONS OF BASED VARIABLES

All current generations of a based variable
can be referred to by specifying
appropriate pointer variables. In list
processing, a number of based variables
with many generations can be included in a
list. Members of the list are chained
together by a pointer in one member
identifying the location of another member.
Note that the allocation of a based
variable cannot specify where in main
storage the variable is to be allocated.

In practice a chain of items may be
scattered throughout main storage. But by
accessing each pointer the next member is
found. A member of a list is usually a
structure that includes a pointer variable.
For example:

DCL 1 STR BASED (H),
2 P POINTER,
2 DATA,
T POINTER;

ALLOCATE STR;
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

GO TO NEXT:;

In this program segment, a list of
structures is created. The structures are
generations of STR and are linked by the
pointer variable P in each generation. The
independent pointer variable T identifies
the previous generation during the creation
of the list. The first ALLOCATE statement
sets the pointer H to identify it.
Ultimately the pointer H identifies the
start, or head, of the list. The second
ALLOCATE statement sets the pointer P in
the previous generation to identify the
location of this new generation. The
assignment statement T=T->P; updates
pointer T to identify the location of the
new generation.

Figure 8.1 shows a diagrammatic
representation of a one-directional chain.

Note that, unless the value of P in each
generation is assigned to a separate
pointer variable for each generation, the
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Figure 8.1.

generations of STR can be accessed only in
the order in which the list was created.
For the above example, the following
statements can be used to access each
generation in turn:

T=H;

NXT: T->DATA=X;
T=T->P;
GO TO NXT;

NOLL BUILT-IN FUNCTION

When a list is created in the way
described, it is necessary to indicate the
end of the list. The NULL built-in
function returns a pointer value that
cannot identify a location in storage.

Thus by setting the pointer in the last
generation in a list to the value of NULL a
positive indication of the end of the list
is given. For example:

T=H;
IF T-=NULL THEN
DO;
T->DATA=X;

NXT:

T=T->P;
GO TO NXT;
END;

This program segment can be used instead of
the previous example to scan the list; it
is assumed that the pointer P in the final
generation of STR has been set to the value
of NULL.

In general, the value of a NULL built-in
function is used whenever a pointer (or
offset) variable should not identify a
location in storage. Note that the only
way a pointer can acquire the null value is
by assignment of the NULL built-in function
(apart from one special case, namely the
assignment of the value returned by the
ADDR built-in function when passed an
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Example of one-directional chain

unallocated controlled variable). The
value of a pointer variable that no longer
identifies a generation of a based
variable, for example, when a based
variable has been freed, is undefined.

TYPES OF LIST

The foregoing examples showed a simple list
processing technique, the creation of a
unidirectional list. More complex lists
can be formed by adding other pointer
variables into the structure. If a second
pointer were added, it could be made to
point to the previous generation. The list
would then be bidirectional; from any item
in the 1list, the previous and next items
could be accessed by using the appropriate
pointer value. Instead of the last pointer
value being set to the value of NULL, it
can be set to point to the first item in
the list, thus creating a ring or circular
list.

A list need not consist only of
generations of a single based variakle.
Generations of different based structures
can be included in a list by setting the
appropriate pointer values. Items can be
added and deleted from a list by
manipulating the values of pointers. A
list can be restructured by manipulating
the pointers, so that the processing of
data in the list may be simplified.

By reducing the amount of movement of
data within main storage, the programmer
can generally achieve a considerable saving
on processing time. Note, however, that
each pointer requires four bytes of storage
and any allocated based variable requires
at least eight bytes of storage, even if it
is a bit string of length one.

AREAS

When a based variable is allocated, the
storage is obtained from wherever it is
available. Consequently, a list of



allocated based variables could be
scattered widely throughout main storage.
For internal operations on the list, this
is not significant, because items are
readily accessed using the pointers.
However, if the list is to be transmitted
to a data set, the items would have to be
collected together. Items allocated within
an area variable are already collected and
can be transmitted or assigned as a unit
while still retaining their separate
identities.

It is desirable to identify the
locations of based variables within an area
variable relative to the start of the area
variable. Offset variables are defined for
this purpose. If pointer variables were
used they would be unlikely to be valid
when the area variable were transmitted
back to main storage.

Area Variables

The AREA attribute defines an area of
storage that is to be reserved for the
allocation of based variables. The
declaration of an area variable has the
form:

DCL identifier AREA ((size)]l;

The amount of storage to be reserved is
given in bytes; i.e. the integral value of
“size". If size is not given, a default of
1000 bytes is assumed.

The size of an area is adjustable in the
same way as a string length or an array
bound and therefore it can be specified by
an expression or an asterisk (for a
controlled area or parameter) or by a REFER
option (for a based area). The maximum
size of an area is limited only by the
amount of main storage available to the
program.

In addition to the declared size, an
extra 16 bytes of control information,
which contains such details as the amount
of storage in use, precedes the reserved
size of an area.

The amount of reserved storage that is
actually in use is known as the extent of
the area. The maximum extent is
represented by the area size. Based
variables can be allocated and freed within
an area at any time during execution. This
means that the extent of an area varies as
storage is used. Because any based
variable can be allocated within an area,
they could require different amounts of
storage. When a based variable is freed,
the storage it occupied is marked as

available for other allocations. 1In fact
the implementation maintains a chain of
available storage within an area; the head
of the chain is held within the 16 bytes of
control information. Inevitably, as based
variables with different storage
requirements are allocated and freed, gaps
will occur in the area when allocations do
not fit available spaces. Thus the extent
of an area may contain allocations that
have been freed but are still significant.
A significant allocation is one that has
not been freed or that has been freed but
has at least one unfreed allocation
following it. When an area has no
significant allocations, the extent is
Zero.

Note that based variables are always
allocated in multiples of eight bytes.

No operators, not even comparison, can
be applied to area variables.

Offset Variables

Offset variables are a special form of
pointer used exclusively with area
variables. The value of an offset variable
indicates the location of a based variable
within an area vdriable relative to the
start of the area. Because the based
variables are identified relatively, if the
area variable is assigned to a different
part of main storage, the offset values are
not invalidated. Note that offset
variables do not preclude the use of
pointer variables within an area. An
offset variable is declared as follows:

DCL identifier
OFFSET([(element-area~-variable)l;

The association of an area variable with
an offset variable is not a special
relationship; an offset variable can be
associated with any area variable by means
of the POINTER built-in function (see
"Locator Conversion" below). The advantage
of making such an association in
declaration is that a reference to the
offset variable implies reference to the
associated area variable.

Note that the appearance of an area
variable in the declaration of an offset is
a contextual declaration of the area
variable.

Locator Conversion

When an offset variable is used in a
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reference, it is implicitly converted to a
pointer value; the address value of an
associated area variable is added to the
offset value. Explicit conversion of an
offset to a pointer value is accomplished
using the POINTER built-in function. For
example:

DCL. P POINTER, O OFFSET(A) ,B AREA;

.

P = POINTER(O,B);

This statement assigns a pointer value to
P, giving the location of a based variable,
identified by offset O in area B. Because
the area variable is different from that
associated with the offset variable, the
programmer must ensure that the offset
value is valid for the different area. It
would be valid, for example, if area A had
been assigned to area B prior to the
invocation of the function.

The OFFSET built-in function complements
the POINTER built-in function and returns
an offset value derived from a given
pointer and area. The given pointer value
must identify the location of a based
variable in the given area.

In practice, these functions need rarely

be used as most conversions are carried out
implicitly.

Offset Expressions

Because an offset is implicitly converted
to a pointer value, offset expressions can
be used interchangeably with pointer
expressions. An offset expression can be
used as a locator qualifier, in association
with a declaration of a based variable, in
a comparison operation, or as an argument
in a procedure reference. Note, however,
that an offset variable cannot be specified
in the SET option of a READ or LOCATE
statement.

ALLOCATE Statement with the IN Option

An offset value is originally obtained
either by conversion of a pointer value or
by the SET option of the ALLOCATE
statement. This form of the ALLOCATE
statement is as follows:

ALLOCATE based-variable

[{IN(element-area-variable)]
[SET(locator-variable)];
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This statement allocates storage for a
based variable within the specified area.

The variable has an offset relative to
the start of the area, and this offset
value is assigned to the locator variable
specified in the SET option. Conversion
takes place if the locator variable is of
pointer type. Either or both of the
options IN and SET can be implied. For
example:

DCL. X BASED(0),
Y BASED(P),
A AREA,
O OFFSET(A);

ALLOCATE X;
ALLOCATE Y IN(A);

The storage class of area A and offset O is
AUTOMATIC by default. The first ALLOCATE
statement is equivalent to:

ALLOCATE X IN(A) SET(O);

The second ALLOCATE statement is equivalent
to:

ALLOCATE Y IN(A) SET(P);

The programmer must ensure that all
implications can be resolved. If, for
example, the offset O had not been
associated with the based variable X, the
SET option would be required.

When the IN and SET options are
specified rather than implied, it is
permissible to use an offset variakle that
has been declared with no associated area.
The area in the SET option may also be
different from the one in the DECLARE
statement, provided it is contained within
that area. For example:

DCL Ol OFFSET (A1),

02 OFFSET,

A2 AREA BASED(P);
ALLOCATE A2 IN(Al) SET(P);

ALLOCATE X IN(A2) SET(0O1);
ALLOCATE Y IN(A2) SET(02);

The offset variables 01 and 02 have the
values of the offsets of the variables X
and Y, in, respectively, the areas Al and
A2.

The following example shows how a list
can be built in an area variable using
offset variables. This example is a
rewrite of the example given in "Multiple
Generations of Based Variables" earlier in



this chapter.

DCL A AREA,
(T,H) OFFSET(A),
1 STR BASED(H),
2 P OFFSET(A),
2 DATA;

o

ALLOCATE STR IN(A);
T=H;

NEXT:ALLOCATE STR SET(T->P) ;
T=T->P;

o

GO TO NEXT;

FREE Statement with the IN Option

A based variable allocated within an area
variable can be freed by specifying the
area variable by the IN option:

FREE based-variable
[IN(element-area-variable)l;

Multiple freeing of both based and
controlled variables can be made by the
same FREE statement. When all the current
allocations of variables within an area
variable are to be freed, the EMPTY built-
in function is the most convenient method.

EMPTY Built-In Function

When an area variable is allocated, it
automatically has the empty state, i.e.,
the area extent is zero. The value of the
EMPTY built-in function can be assigned to
an area variable to free all allocations in
the variable. The function reference does
not require arguments but must be given a

null argument list if the name has not been

declared BUILTIN. For example:

DECLARE A AREA,
I BASED (P),
J BASED (Q);

ALLOCATE I IN(A), J IN (R);

A = EMPTY();
/*EQUIVALENT TO:
FREE I IN (A), J IN (A); */

Note that the area variable itself is not
freed, its storage is retained for further
allocations of based variables.

AREA ASSIGNMENT

The value of an area expression can be
assigned to one or more area variables by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
offsets for the source area are valid for
the target area. For example:

DECLARE X BASED (0(1)),
0(2) OFFSET (aA),
(A,B) ARFA;

ALLOCATE X IN (A);

X =1;

ALLOCATE X IN (a) SET (0(2));
o(2) -> X = 2;

B = A;

Given this program segment and using the
POINTER built-in function, the references
POINTER (0(2),B)->X and 0(2)->X will
represent the same value allocated in areas
B and A respectively.

If a source area containing no
allocations is assigned to a target area,
the effect is merely to free all
allocations in the target area.

A possible use for area assignment is to
allow for expansion of a list of kased
variables beyond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that
contains insufficient free storage to
accommodate it, the AREA condition is
raised (see below). The on-unit for this
condition could be to change the value of a
pointer qualifying the reference to the
inadequate area, so that it pointed to a
different area; on return from the on-unit,
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the allocation would be attempted again,
within the new area. MAlternatively, the
on-unit could write out the area and reset
it to EMPTY.

AREA ON-Condition

The AREA condition is raised in any of the
following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2, When an attempt is made to perform an
area assignment, and the target area
is too small to accommodate the extent
of the source area.

3. When a SIGNAL AREA statement is
executed.

The ONCODE built-in function can be used
to determine whethexr the condition was
raised by an allocation, an assignment, or
a SIGNAL statement. On normal return from
the on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is re-
attempted. If the on-unit has changed
the value of a pointer qualifying the
reference to the inadequate area so
that it points to another area, the
allocation is re-attempted within the
new area. Note that if the on-unit
does not effectively correct the
fault, a loop may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

If no on-unit is specified, the system will
comment and raise the ERROR condition.

INPUT/0OUTPUT OF AREAS

The area facility is designed to allow easy
input and output of complete lists of based
variables as one unit, to and from RECORD
files. On output, only the area extent,
together with the 16 bytes of control
information, is transmitted (although the
extent does include freed allocations which
are still significant). Thus the unused
part of an area does not take up space on
the data set. Because the extents of areas
may vary, V-format or U-format records
should be used. The maximum record length
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required is governed by the area length
(i.e., area size + 16).

MULTIPLE LOCATOR QUALIFICATION

Locator qualification is the association of
one or more locator values with a based
variable to identify a particular
generation of the based variable.

Reference to a based variable can ke
explicitly qualified as follows:

element-locator-expression->
[based-locator-variable->...]
based-variable

A number of general rules can be stated
concerning the use of locator
qualification:

1. Locator qualification is used to
indicate the generation of a based
variable to which the associated
reference applies.

2. If an offset expression or an offset
variable is used as a locator
qualifier, its value is implicitly
converted to a pointer value on each
reference to the based variable.

3. When more than one locator qualifier
is used in a reference, only the
first, or leftmost, can be a function
reference; all other locator
qualifiers must themselves be kased
variables. Note, however, that an
entry variable can be based and can
represent a function that returns a
locator value.

4. When more than one locator qualifier
is used, they are evaluated from left
to right.

Reference to a based variable can also
be implicitly qualified. The locator value
used to determine the generation of a based
variable that is implicitly qualified is
the one declared with the based variable.
Because the locator declared with a based
variable can also be based, a chain of
locator qualifiers can be implied. For
example:

DECLARE (P(10),0Q) POINTER,
R POINTER BASED (Q),
V BASED (P(3)),
W BASED (R),
Y BASED;
ALLOCATE R,V,W;

Given this declaration and allocation, the
following are valid references:



1. pP@3) ->v

3. Q->R->W

4., R -> W

5. W
References 1 and 2 are equivalent as are
references 3, 4 and 5. Note that any

reference to Y must include a qualifying
locator variable.

Levels of Locator Qualification

A pointer that qualifies a based variable

represents one level of locator
qualification; an offset represents two
levels because it is implicitly qualified
within an area. The number of levels is
not affected by a locator being subkscripted
and/or an element of a structure. Under
the optimizing compiler, the maximum number
of levels of locator qualification allowed
in a reference depends on the available
storage, but it will never be less than
ten; there is no limit under the checkout
compiler. For example:

DECLARE X BASED (P),
P POINTER BASED (Q),
Q OFFSET (A);

Given this declaration the references: X,

P -> X, and Q -> P -> X all represent three
levels of locator qualification.
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Chapter 9: Subroutines and Functions

The block structure of PIL/I permits the use
of subroutines and programmer-defined
functions. Subroutines and functions are
groups of statements that can:

1. be invoked from different points in a
program to perform the same
frequently-used process.

2. process data passed from different
points of invocation.

3. return control, and in the case of
functions, return a value derived from
the execution of the function, to a
point immediately following the point
of invocation.

Subroutines and functions may be either
internal or external to the invoking block.
Built-in functions are always external
procedures which are permanently maintained
in a PL/I system environment, and are an
integral p%rt of the PL/I language.

The rules given in this chapter for the
use of (1-subroutine depend on whether the
subroutine or function is an external or
internal procedure: this is because the
compiler can determine the relationship
between two procedures from the procedures
themselves when the invoked procedure is
internal to the invoking procedure.: When
the invoked procedure is external the
relationship must be given explicitly in
the invoking procedure. Consequently it is
necessary to supply more information about
an external subroutine or procedure in the
invoking procedure to enable the compiler
to produce the required object program.

A subroutine is a procedure invoked by a
CALL statement or CALL option of an INITIAL
attribute.

A function, either programmer-defined or
built-in, is invoked by the presence of a
*function reference' in an expression. A
function reference is an entry expression
which represents an entry name of a
function. (An entry name is an identifier
which represents a particular entry point
of a procedure.)

The definitive difference between a
subroutine and a function in PL/I is that a
subroutine does not return data values to
the point of invocation, whereas a function
procedure returns a value to replace the
function reference in the evaluation of the
expression in which the function reference
appears.

Both subroutines and functions can make
use of data known in the invoking block.
There are two methods by which data can be
made available:

1. Data represented by names which are
known in both the invoking block and
the invoked procedure. For
information about the rules for
deciding where a name is known see
chapter 7, "Recognition of Names".

2. Arguments and Parameters: valués from
the invoking block can be passed to
the invoked procedure by writing
arguments in an argument list
associated with a CALL statement or
option, or function reference; these
values are made available by
parameters in the invoked procedure.

Parameters are identifiers which
appear in the parameter list of an
invoked entry point. The number of
arguments and parameters must ke the
same; the maximum number permitted for
a particular entry point is 64.

A parameter has no storage associated
with it: it is simply a means of
allowing the invoked procedure to
access storage allocated in the
invoking procedure. A reference to a
parameter in a procedure is
effectively a reference to the
corresponding argument. Any change to
the value of the parameter is made to
the value of the argument. However in
certain circumstances a dummy argument
is created and the value of the
original argument is not changed.
These are:

a. When the attributes of an argument
differ from those of the
corresponding parameter. The
value of the original argument is
converted and assigned to a dummy.

b. When only a value is passed as an
argument. For example, when an
argument is a constant.

c. When the argument is an iSUB-
defined array.

In these cases, a reference to the
parameter is effectively a reference
to the dunrmy. The dummy and the
parameter initially have the same
value as the original argument, but
subsequent changes to the parameter do
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not affect the original arqument's
value. Storage for dummy arguments is
within that belonging to the invoking
procedure.

Both internal and external subroutines
and functions are normally link-edited, and
loaded into main storage at the same time
as the calling procedure. An external
subroutine or function may, however, be
compiled, link-edited, and loaded
separately from the calling procedure. By
the use of FETCH and RELEASE statements in
the calling procedure, the subroutine or
function is allowed to remain on auxiliary
storage until required in the calling
procedure, at which time it is fetched into
main storage; and it may be deleted from
main storage when it is no longer required.
This dynamic loading of external procedures
is described in chapter 6, "Program
Organization”.

Entry points of Subroutines and
Functions

A subroutine or function procedure may have
one Oor more entry points.

PROCEDURE Statement: The primary entry
point to a procedure is established by the
PROCEDURE statement.

ENTRY Statement: Secondary entry points to
a procedure are established by the ENTRY
statement.

Each PROCEDURE and subsidiary ENTRY
statement can specify its own parameters
and, in the case of function procedures,
returned value attributes. However, the
environment established on entry to a block
at a PROCEDURE statement is identical to
the environment established when the same
block is invoked at a secondary entry
point. Each entry point has an associated
entry name. The length of the name for an
external entry-point to a PL/I procedure is
limited to seven characters.

Entry names are explicitly declared in
the invoking block as entry constants for
internal procedures by their presence as
prefixes to PROCEDURE or ENTRY statements;
it is an error to declare an internal entry
name in a DECIARE statement. External
entry names must be declared explicitly as
entry constants with the ENTRY attribute.
Entry variables are identifiers with the
attributes ENTRY and VARIABLE which
represent entry constants assigned to them.
A reference to an entry variable is a
reference to its latest assigned entry
constant value.
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ENTRY Attribute

The general form of the ENTRY attribute is:

identifier ENTRY
[(parameter descriptor list)]
[VARIABLE]
[RETURNS (attribute list)]
[OPTIONS (options 1list)]

The parameter descriptor 1list is used to
specify the attributes of the parameters
associated with the entry point represented
by the identifier. The parameter
descriptor must provide accurate
information about the attributes of the
parameters so that the compiler can create
the correct dummy arguments. If the
parameter descriptor list is omitted from
an external entry declaration, the compiler
must assume that the attributes of any
arguments match those of the corresponding
parameters. No conversions are performed.
Further information is given under the
heading "Parameter Descriptor List" in this
chapter.

The RETURNS attribute may be given to
specify the attributes of the value
returned by the function procedure.

The OPTIONS attribute is required if the
entry point is in an external function or
subroutine that has been compiled by a
COBOL or FORTRAN compiler, Further
information is given in chapter 19,
"Interlanguage Communications".

Exit-Points of Subroutines and

Functions

The RETURN statement is used to return
control to the point immediately following
the point of invocation; the GOTO statement
is used to transfer control to some other
point; and the END statement can also be
used to return control from a subroutine
procedure in the same way as a RETURN
statement., For a function procedure, the
RETURN statement must specify an element
expression whose value is given to the
function reference in the expression in
which it appears.

RETURNS Attribute and RETURNS Option

The RETURNS attribute specifies for the
invoking block the attributes of the value
to be received from the function procedure.
The RETURNS option specifies for the
function procedure the attributes that a



value to be returned should have. If the
value does not have these attributes, the
appropriate conversion is performed before
the function relinquishes control and
returns the value.

If the RETURNS option is not specified,
the attributes of the returned value are
assumed by default according to the initial
letters of the entry-point name. The
standard default assumptions are: REAL
FIXED BINARY (15,0) for initial letters in
the range (I:N) and REAL FLOAT DECIMAL (6)
for the ranges (A:H) and (0:Z) and the
characters $, #, 2.

The RETURNS attribute must not be
specified for an internal entry name
because the compiler can determine the
attributes of the returned value from the
function procedure itself., If it is not
specified for an external entry name or an
entry variable, the compiler assumes
default attributes (determined from the
name of the entry point) for the value
returned from the function. Consequently
the RETURNS attribute and the RETURNS
option must both be given in the situation
when an external function procedure must
return a value with attributes which cannot
be determined correctly by default. The
attributes in both the RETURNS attribute
and the RETURNS option should agree, since
the value returned by the function will
have the attributes specified in the
option, whereas the invoking procedure
always assumes that the value will have the
attributes specified in the RETURNS
attribute.

Subroutines

The PL/I statements associated with the use
of subroutine procedures are discussed
below.

A subroutine is a procedure that usually
requires arguments to be passed to it in an
invoking CALL statement. It can be either
an external or an internal procedure. A
reference to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference in a CALL
statement or CALL option of an INITIAL
attribute is as follows:

CALL entry-expression
{ (argument[,argumentl...)1;

Whenever a subroutine is invoked, the
arguments of the invoking statement are
associated with the parameters of the entry
point, and control is then passed to that
entry point. The subroutine is thus
activated, and execution of the subroutine

procedure can begin.

Upon termination of a subroutine,
control is usually returned to the invoking
block. A subroutine can be terminated by
any of the following statements.

END Statement: Control reaches the final
END statement of the subroutine. Execution
of this statement causes control to ke
returned to the CALL statement from which
the subroutine was invoked (unless control
passes to another task).

RETURN Statement: Control reaches a RETURN
statement in the subroutine. This causes
the same normal return caused by the END
statement.

GO TO Statement: Control reaches a GO TO
statement that transfers control out of the
subroutine. (This is not permitted if the
subroutine is invoked by the CALL option of
the INITIAL attribute.) The GO TO
statement may specify a label in a
containing block (the label must be known
within the subroutine), or it may specify a
parameter that has been associated with a
label argument passed to the subroutine.
Although this is a valid termination of the
subroutine, it is not normal return of
control, as effected by an END or RETURN
statement.

EXIT Statement: The EXIT statement
encountered in a subroutine abnormally
terminates execution of that subroutine and
of the task associated with the procedure
that invoked it.

STOP_Statement: The STOP statement
encountered in a subroutine abnormally
terminates execution of that subroutine and
of the entire program associated with the
procedure that invoked it.

Use of Subroutines: The following examples
illustrate how a subroutine interacts with
the procedure that invokes it.
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PRMAIN: PROCEDURE;
DECLARE NAME CHARACTER (20),
ITEM BIT(5), OUTSUB ENTRY;

CALL OUTSUB (NAME,

ITEM);

END PRMAIN;
OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),
B BIT(5);

PUT LIST (A,B);

END OUTSUB;

In procedure PRMAIN, NAME is declared as a
character string, and ITEM as a bit string.
The CALL statement in PRMAIN invokes the
procedure called OUTSUB, and the
parenthesized list included in this
procedure reference contains the two
arguments being passed to OUTSUB. The
PROCEDURE statement defining OUTSUB
declares two parameters, A and B. When
OUTSUB is invoked, NAME is associated with
A and ITEM is associated with B. Each
reference to A in OUTSUB is treated as a
reference to NAME and each reference to B
is treated as a reference to ITEM.
Therefore, the PUT LIST (A,B) statement
causes the values of NAME and ITEM to be
written into the standard system output
file, SYSPRINT. Note that in the
declaration of OUTSUB within PRMAIN, no
parameter descriptor need be associated
with the ENTRY attribute, since the
attributes of NAME and ITEM match those of,
respectively, A and B.

A name is explicitly declared to be a
parameter by its appearance in the
parameter list of a PROCEDURE or ENTRY
statement. However, its attributes, unless
defaults apply, must be explicitly stated
within that procedure in a DECLARE
statement.

It can be seen that the use of arguments
and parameters provides the means for
generalizing procedures so that data whose
names may not be known within such
procedures can, nevertheless, be operated
upon.
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A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(5),
DISTANCE FLOAT(15), MASTER FILE;

CALL READCM (RATE, TIME, DISTANCE,
MASTER) ;

READCM: PROCEDURE (W,X,Y,7);
DECLARE W FLOAT (10), X FLOAT(5),
Y FLOAT(15), Z FILE;

GET FILE (%) LIST (W,X,Y);
Y = W*X;
IF Y > 0 THEN RETURN;
ELSE PUT LIST('ERROR READCM');
END READCM;
END A;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Functions

Unlike a subroutine, which is invoked by a
CALL statement or a CALL option, a function
is invoked by the appearance of the
function name (and associated arguments) in
an expression. Such an appearance is
called a function reference. Like a
subroutine, a function can operate upon the
arguments passed to it and upon other known
data. But unlike a subroutine, a function
is written to compute a single value which
is returned, with control, to the pocint of
invocation. This single value can be of
any data type except entry. An example of
a function reference is contained in the
following procedure:

MAINP: PROCEDURE;
GET LIST (A, B, C, Y);

X = Y**3+SPROD(A,B,C);

In the above procedure, the assignment
statement

X = Y**3+SPROD(A,B,C);

contains a reference to a function called



SPROD. ‘The parenthesized list following
the function name contains the arquments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IFU>V +W
THEN RETURN (0);
ELSE RETURN (U*V*W);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and parameter.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement
associated with the ELSE clause is
executed. In either case, the executed
statement is a RETURN statement.

RETURN Statement: The RETURN statement is
the usual way by which a function is
terminated and control is returned to the
invoking procedure. Its use in a function
differs somewhat from its use in a
subroutine; in a function, not only does it
return control but it also returns a value
to the point of invocation. The general
form of the RETURN statement, when it is
used in a function, is as follows:

RETURN (element-expression) ;

The value of the element expression is
returned to the invoking procedure at the
point of invocation. Thus, for the above
example, SPROD returns either 0 or the
value represented by U*V*W, along with
control to the invoking expression in
MAINP. The returned value is taken as the
value of the function reference, and
evaluation of the invoking expression
continues.

GO_TO Statement: A function can also be
terminated by execution of a GO TO
statement. If this method is used,
evaluation of the expression that invoked
the function will not be completed, and
control will go to the designated
statement. As in a subroutine, the
transfer point specified in a GO TO
statement may be a parameter that has been
associated with a label argument. For
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example, assume that MAINP and SPROD have
been defined as follows:

MAINP: PROCEDURE;

GET LIST (A,B,C,Y);
X = Y**3+SPROD(A,B,C,LAB1);

3

CALL ERRT;

LAB1:

END MAINP;
SPROD: PROCEDURE (U,V,W, 2Z) ;
DECLARE % LABEL;

IFU >V + W
THEN GO TO Z;
ELSE RETURN (U*V*W);

END SPROD;

In MAINP, LABl is explicitly declared to be
a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is inwoked, LABl is
associated with parameter Z. Since the
attributes of Z must agree with those of
LABl, Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is
discontinuved. If U is not greater than V +
W, the ELSE clause is executed and a return
to MAINP is made in the normal fashion.
Additional information about the use of
label arguments and label parameters is
contained in the section "Relationship of
Arguments and Parameters" in this chapter.

Note: 1In some instances, a function may be
so defined that it does not require an
argument list. In such cases, the
appearance of an external function name
within an expression will be recognized as
a function reference only if the function
name has been explicitly declared to be an
entry name. See "ENTRY Attribute"™ in this
chapter for additional information.

ATTRIBUTES OF RETURNED VALUES

RETURNS Attribute: The RETURNS attribute
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is specified in a DECLARE statement for an
external entry name. It specifies for the
invoking block the attributes of the value
returned by that function. It further
specifies, by implication, the ENTRY
attribute for the name. Unless attributes
for the returned value can be determined
correctly by default, any invocation of an
external function must appear within the
scope of a declaration with the RETURNS
attribute for the entry name.

The general format of the RETURNS
attribute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from an external function procedure is to
be treated as though it had the attributes
given in the attribute list., The word
treated is used because no conversion is
performed in an invoking block upon any
value returned to it. The attributes given
in a RETURNS attribute must agree with the
data attributes given in the corresponding
RETURNS option, since the value returned
will have attributes determined from the
RETURNS option.

The RETURNS attribute cannot be given
for an internal procedure. The attributes
of the returned value are determined from
the RETURNS option at the entry point, if
given; otherwise according to default rules
as applied to the identifier of the entry
constant.

RETURNS Option: The RETURNS option is
specified in a PROCEDURE or ENTRY statement
of a function procedure. It specifies the
attributes to which the value returned by
the function will be converted before
return.

Generic Entry Names and References

A generic entry name represents a family of
procedure entry points, each member of
which can be invoked by a generic
reference, that is, a procedure reference
using the generic name in place of the
actual entry name. The member invoked is
determined according to the number and
attributes of the arguments specified in
the generic reference; the member that is
invoked is the first one whose generic
descriptor list matches the arguments both
in number and attributes.

A generic name must be declared with the
GENERIC attribute. The general format of
this attribute is as follows:
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Q <
|generic nawe GENERIC (entry-expregsgion
WHEN eneric-descriptor-1lis
[, entry-expression
WHEN (generic-descriptor-1list)]...);

where generic-descriptor-list is:
([descriptor(,descriptor]...l)

Each entry-expression corresponds toO one
procedure entry point in the family. The
entry expression can be an entry name or an
expression which represents an entry name.
Each descriptor in the generic-descriptor
list corresponds to a single argument, and
may specify attributes that the
corresponding argument must have in order
that the associated entry name can be
selected. Where no descriptor is required,
it may be either omitted or indicated by an
asterisk. The asterisk form is essential
if the missing descriptor is the only
descriptor. For example, whereas (,)
represents two descriptors (*) represents
one. The generic descriptor list which is
to represent the absence of any argument
takes the form:

«es «ENTRY1 WHEN( )...

An entry expression is chosen from those
specified in a generic declaration by a
process known as generic selection.

Generic selection is performed by comparing
arguments specified in a function reference
or CALL statement with the contents of the
generic descriptor list supplied with each
entry expression in the GENERIC
declaration. Firstly, each generic
descriptor list is checked, in order of
appearance in the declaration to determine
whether it contains the same number of
descriptors as there are arguments in the
reference to the generic name.

When a generic descriptor list with the
same number of descriptors as arguments is
found, each descriptor is tested with the
corresponding argument to determine whether
attributes given in the descriptor are
attributes of the argument. For example,
if a generic descriptor list contains:

«eeee (FLOAT,FIXED)

and the corresponding two arguments have
attributes such as DECIMAL FLOAT(6) and
BINARY FIXED(15,0) either explicitly,
contextually, implicitly, or by default,
then each attribute in the generic-
descriptor list is an attribute of the
corresponding argument and the selection is
successful. However, if either argument
did not have the attributes in the
corresponding descriptor, the selection
process would consider the next generic
member with just two descriptors. For
example consider the following statement:



DECLARE CALC GENERIC
(FXDCAL WHEN (FIXED,FIXED),
FLOCAL WHEN (FLOAT,FLOAT),
MIXED WHEN (FLOAT,FIXED)) ;

This statement defines CALC as a generic
name having three members, FXDCAL, FLOCAL,
and MIXED. One of these three function
procedures will be invoked by a generic
reference to CALC, depending on the
characteristics of the two arguments in
that reference. For example, consider the
following statement:

Z=X+CALC(X,Y);

If X and Y are floating-point and fixed-
point, respectively, MIXED will be invoked.
|In a similar manner, an entry point to a
|procedure can be selected by means of
|dimensionality. For example,
DCL D GENERIC (D1 WHEN((#*)),
D2 WHEN((*,%))),
a2y,
B(3,5);
CALL D(a);
CALL D(B);

|When the first call statement is executed,
| the procedure entry point D1 will be
|invoked. When the second call statement is

| executed, the procedure entry point D2 will

|be invoked.

If all the descriptors are omitted or
consist of an asterisk, the first entry
name with the correct number of descriptors
is selected.

The program is in error if no generic
descriptor list is found to match the
attributes of the arguments to a particular
generic function reference.

Built-in Functions

Besides function references to procedures
written by the programmer, a function
reference may invoke one of a comprehensive
set of pre-defined functions called
built-in functions.

Built-in functions are an intrinsic part
of PL/I. They include not only the
commonly used arithmetic functions but also
other necessary or useful functions related
to language facilities, such as functions
for manipulating strings and arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in
functions can return an array of values,
whereas a programmer-defined function can
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return only an element value.

Note: Some built-in functions will
actually be compiled as in-line code rather
than as procedure invocations.

The use of a built-in function with a
list, such as SUBSTR (X,Y¥,Z) or
INDEX(A,'B'), is recognized without further
identification being necessary to establish
the identifier as a built-in function.
However, any built-in function or
pseudovariable which does not have a
parenthesized argument list, such as
ONCHAR, ONSOURCE, TIME, must be either
declared explicitly with the attribute
BUILTIN, or specified with a null argument
list (for example TIME()) in the klock in
which the identifier is used as a built-in
function.

Built-in function names can be used as
programmer-defined names. Consequently,
ambiguity may occur if a built-in function
reference is used in a block that is
contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in function name in any block that
has inherited, from a containing block,
some other declaration of the identifier.
Consider the following example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

C: BEGIN;
DECLARE SQRT BUILTIN;

END A;

Assume that in external procedure A, SQRT
is contextually declared with the attribute
BUILTIN. Consequently, any reference to
SQORT would refer to the built~in function
of that name. In B, however, SQRT is
declared to be a floating-point binary
variable, and it cannot be used in any
other way. Finally, in C, SQRT is declared
with the BUILTIN attribute so that any
reference to SQRT will be recognized as a
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reference to the built-in function and not
to the floating-point binary variable
declared in B.

Note that a variable having the same
identifier as a built-in function can be
implicitly declared as an arithmetic
variable by, for instance, its appearance
on the left-hand side of an assignment
symbol (in an assignment statement, a DO
statement, or a repetitive specification)
or in the data list of a GET statement,
provided that it is neither enclosed within
nor immediately followed by an argument
list. (This also applies to the names
ONCHAR, ONSOURCE, and PRIORITY which are
pseudovariables that do not require
arguments.) For example, if the statement
SORT = 1 had appeared in begin block B
instead of the DECLARE statement, SQRT
would have been implicitly declared as a
floating-point decimal variable.

A programmer can even use a built-in
function name as the entry name of a
programmer-defined function and, in the
same program, use both the built-in
function and the programmer-defined
function. This can be accomplished by use
of the BUILTIN attribute when the
programmer-defined function is an internal
procedure, and by use of the BUILTIN and
ENTRY attributes when the programmer-
defined function is an external procedure.

The following example illustrates use of
the BUILTIN attribute in conjunction with
an internal function procedure.

A: PROCEDURE;
SQRT: PROC (PARAM) RETURNS(FIXED(6,2));
DECLARE PARAM FIXED (12);

END SQRT;

X = SQRTI(Y);

B: BEGIN;
DECLARE SQRT BUILTIN;

Z = SQRT (P);
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The use of SQRT as the label of the second
PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. The function reference in the
assignment Statement in A thus refers to
the programmer-written SQRT function. In
the begin block B, the identifier SQRT is
declared with the BUILTIN attribute.
Cconsequently, the function reference in the
assignment statement in B refers to the
built-in SQRT function.

For a programmer-written internal
function using the name of a built-in
function any reference to the identifiexr in
the containing block would be a reference
to the programmer-written function. In the
above example the attributes of the
returned value are specified in the RETURNS
option of the procedure statement for SQRT.
Since the function procedure is internal,
these attributes are known to the calling
procedure.

In the case of a programmer-written
external function procedure using as an
entry name the name of a built-in function,
any procedure containing a reference to
that function procedure name must also
contain an entry declaration of that name;
otherwise a reference to the identifier
would be a reference to the built-in
function. 1In the above example, if the
begin block B were not contained in A,
there would be no need to specify the
BUILTIN attribute; unless the identifier
SORT is given attributes other than BUILTIN
(by explicit or contextual declaration), it
refers to the built-in function. If the
procedure SQRT were an external procedure,
procedure A would need the following
statement to declare explicitly SQRT as an
entry name, and to specify the attributes
of the values passed to and returned from
the programmer-written function procedure.

DCL SQRT ENTRY (FIXED (12)) RETURNS
(FIXED(6,2));

FORTRAN Library Functions

Library functions, analagous to PL/I built-
in functions, are associated with FORTRAN
compilers. These functions may be invoked
from a PL/I program by means of PL/I
interlanguage communication facilities.

The facilities are described in charpter 19.

Built-in Subroutines

A PL/I programmer can avail himself of
certain operating system facilities by



using built-in subroutines. These have
entry names that are defined by the
implementation and are invoked by means of
the CALL statement. The operating system
facilities and the corresponding entry
names are as follows.

Checkpoint/restart (implemented by the
optimizing compiler only): PLICKPT,
PLIREST, PLICANC

A CALL statement specifying PLICKPT,
PLIREST, or PLICANC is treated as a null
statement by the checkout compiler.

sort/merge:
PLISRTD

PLISRTA, PLISRTB, PLISRTC,

In addition, there is a subroutine,
PLIDUMP, that provides an edited dump of
main storage, and another, PLIRETC, that
allows the user to set the return code of
his program.

The entry names are known as built-in
names, and can be explicitly or
contextually declared to have the BUILTIN
attribute. They are not reserved words.

The use of these subroutines is
described in the following publications:
0S PL/I Optimizing Compiler: Programmer's
Guide and 0S PL/I Checkout Compiler:
Programmer's Guide.

Relationship of Arguments and
Parameters

When a function or subroutine is invoked, a
relationship is established between the
arguments of the invoking statement or
expression and the parameters of the
invoked entry point. This relationship is
dependent upon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the preceding discussions of arguments
and parameters, it is pointed out that the
name of an argument, not its value, is
passed to a subroutine or function.
However, this is not always possible. A
constant, for example, has no name; nor
does an operational expression. Therefore,
the compiler provides storage for such
values and associates the name of the
corresponding parameter with each. These
storage locations are called dummy
arguments. The PL/I programmer should be
aware of their existence because any change
to a parameter will be reflected only in
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the value of the dummy argument and not in
the value of the original argument from
which it was constructed.

A dummy argument is always created when
the original argument is any of the
following:

1. A constant.
2. An expression involving operators.
3. An expression in parentheses.

4, A variable whose data attributes are
different from the data attributes
declared for the parameter. This does
not apply when an expression other
than a decimal integer constant is
used to define the bounds, length or
size of a controlled parameter: the
compiler assumes that the argument and
parameter bounds, length or size
match. (In the case of arguments and
parameters with the PICTURE attribute,
a dummy argument will be created
unless the picture specifications
match exactly, after any repetition
factors have been applied. The only
exception is that an argument ox
parameter with a + sign in a scaling
factor matches a parameter or argument
without the + sign.)

5. A function reference with an argument
list.
