
SC26-4036-2Assembler H Version 2

Programming Guide

Release 1

Third Edition (December 1987)

This is a major revision of, and makes obsolete, SC26-4036-1.

This edition applies to Release 1 of Assembler H Version 2, Licensed Program 5668-962, and to any
subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Changes" following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any subsequent republication of the page affected. Editorial changes that have no technical signif­
icance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systeml370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing,
San Jose, California, U.S.A. 95150. IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1986, 1987

Preface

This manual describes how to use Assembler H Version 2, Release 1, Program
Product 5668-962, hereafter referred to as the Assembler H program, or simply,
assembler.

Assembler H is an assembler language processor that performs high-speed
assemblies on all IBM System/370, 303x, 308x, 3090, 9370 and 43xx processors,
provided they are supported by any of the following operating systems: OSIVS2
MVS 3.8, MVS/Extended Architecture (MVS/XA), MVS/System Product (MVS/SP)
V1, OSIVS1 Release 7, VM/XA SP, VM/XA SF, or VM/SP.

This manual is divided into three parts to distinguish between common use of
assembler, use of assember on OSIVS systems, and use of assembler on CMS
systems under VM.

Who This Manual Is For
This manual is for application programmers coding in the Assembler H lan­
guage. It is intended to help you assemble, link-edit, and execute your
program. It describes assembler options, how to invoke the assembler, assem­
bler listing and output, assembler data sets, error diagnostic facilities, sample
programs, programming techniques and considerations, messages, and storage
estimates.

How to Use This Manual
To use this manual, you should be familiar with the basic concepts and facilities
of your operating system as described in OSIVS1 Planning and Use Guide,
GC24-5090; OSIVS2 MVS Overview, GC28-0984; MVSIExtended Architecture
Overview, GC28-1146; or VMISP Introduction, GC19-6200. You should also have
a good understanding of the assembler language as described in Assembler H
Version 2 Language Reference, GC26-4037, and, if running under MVS/XA, you
should also understand the concepts described in MVSIExtended Architecture
System Programming Library: 31-8it Addressing, GC28-1158.

And, because this is a reference manual, you should use the index or the table
of contents to find the subject in which you are interested.

Preface iii

Organization of Manual
Part 1. Common Information

• 	 "Chapter 1. Introduction" describes the organization of this manual, the
purpose of the assembler, and system requirements.

• 	 "Chapter 2. Using the Assembler Listing" describes each field of the
assembler listing.

• 	 "Chapter 3. Using the Assembler Diagnostic Facilities" describes the
purpose and format of error messages, MNOTEs. and the MHELP macro
trace facility.

Part 2. OSIVS Information

• 	 "Chapter 4. Using the Assembler" reviews the concepts of job, job step,
and job control language; describes assembler input and output; tells how
the operating system handles your program; describes the assembler
options, the data sets used by the assembler, the number of channel pro­
grams, and return codes; and the job control language cataloged proce­
dures supplied by IBM. The cataloged procedures can be used to
assemble, link-edit or load, and execute an assembler program.

• 	 "Chapter 5. Programming Considerations" discusses various topics, such
as standard entry and exit procedures for problem programs and how to
invoke the assembler dynamically.

• 	 "Chapter 6. Calculating Storage Requirements" describes the priorities and
use of main storage by Assembler H during an assembly.

Part 3. eMS Information

• 	 "Chapter 7. Assembler Language Programming under CMS" describes
how to assemble and execute your program, how to choose and specify the
options you need, and how to interpret the listing and diagnostic messages
issued by the assembler.

• 	 "Chapter 8. Programming Considerations" discusses various topics, such
as standard entry and exit procedures for problem programs.

Appendixes

• 	 "Appendix A, Sample Program" provides a sample program that demon­
strates many of the assembler language features.

• 	 "Appendix B, MHELP Sample Macro Trace and Dump" lists the operation,
name, and operand entries related to macro calls.

• 	 "Appendix C, Object Deck Output" describes the object module output
format.

• 	 Appendix D describes the Assembler H error diagnostic messages and
abnormal termination messages.

Lastly, a glossary is included to define the terms used in this manual.

iv Assembler H Version 2 Programming Guide

Assembler H Version 2 Publications
• 	 Assembler H Version 2 General Information contains a brief description of

Assembler H and compares Version 2, Release 1, features with those of
Version 1, Release 5. Comparisons are also made between Assembler H
and VS Assembler.

• 	 Assembler H Version 2 Installation, contains information necessary to install
the assembler program.

• 	 Assembler H Version 2 Programming Guide describes how to use Assem­
bler H Version 2.

• 	 Assembler H Version 2 Language Reference describes the basic assembler
language functions and specifications that are available with Assembler H.

• 	 Assembler H Version 2 Logic, describes the design logic and functional
characteristics of Assembler H.

• 	 Assembler Coding Form provides the means for programmers to structure
their code in the proper columns.

Related Publications
Machine instruction information

• 	 IBM Systeml370 Principles of Operation, GA22-7000

• 	 IBM Systeml370 Extended Architecture Principles of Operation, SA22-1085

• 	 IBM Systeml370 Vector Operations, SA22-7125

• 	 IBM 4300 Processors Principles of Operation for ECPS: VSE Mode,
GA22-7070

• 	 IBM Systeml370 Reference Summary, GX20-1850

OSIVS information

• 	 OSIVS 1 JeL Reference, GC24-5099

• 	 OSIVS2 MVS JeL Reference, GC28-0692

• 	 MVSIExtended Architecture JeL, GC28-1148

• 	 OSIVS Linkage Editor and Loader, GC26-3813

• 	 MVSIExtended Architecture Linkage Editor and Loader, GC26-4011

• 	 OSIVS1 Supervisor Services and Macro Instructions, GC24-5103

• 	 OSIVS2 MVS Supervisor Services and Macro Instructions, GC28-0683

• 	 MVSIExtended Architecture System Programming Library: Supervisor Ser­
vices and Macro Instructions, GC28-1154

• 	 OSIVS 1 Utilities, GC26-3901

• 	 OSIVS2 MVS Utilities, GC26-3902

• 	 MVSIExtended Architecture Utilities, GC26-4018

• 	 MVSIExtended Architecture Conversion Notebook, GC28-1143

Preface V

• MVSIExtended Architecture System Programming Library: 31-8it Addressing,
GC28-1158

eMS information

• VMISystem Product System Messages and Codes, SC19-6204

• VMISystem Product CMS Command and Macro Reference, SC19-6209

• VMISystem Product CP Command Reference for General Users, SC19-6211

• VMISystem Product CMS User's Guide, SC19-6210

VS FORTRAN Version 2 communication information

• VS FORTRAN Version 2 Language and Library Reference, SC26-4221

vi Assembler H Version 2 Programming Guide

Summary of Changes

I 	Release 1 Update, December 1987

Changes to the Product
• 	 Support has been added for the IBM DBCS-Host double-byte character set.

Double-byte data can be used wherever single-byte data, enclosed by apos­
trophes, is allowed. Refer to the Glossary for the definition of DBCS terms.

• 	 The MHELP facility has been extended. MHELP can now dump SETC
symbols and parameters in hexadecimal as well as in EBCDIC format.

• 	 New machine instructions have been added for the IBM 3090 Vector Facility.

• 	 Extended and System/370 instruction sets are now contained in the Uni­
versal instruction set.

• 	 The underscore character U is now allowed in variable symbols and inline
macro names, as well as ordinary symbols.

Changes to This Manual
Documentation of the above product changes, as well as miscellaneous cor­
rections to existing information, have been added.

Summary of Changes vii

'~,,:

""'"

Contents

Part 1. Common Information .. 1

Chapter 1. Introduction .. 3

Requirements 3

System Requirements 3

Machine Requirements 3

Storage Requirements 4

Compatibility 4

Chapter 2. Using the Assembler Listing 5

External Symbol Dictionary (ESD) 7

Source and Object Program 8

Relocation Dictionary (RLD) 11

Symbol and Literal Cross-Reference 12

Diagnostic Cross-Reference and Assembler Summary 13

Chapter 3. Using the Assembler Diagnostic Facilities 15

Assembly Error Diagnostic Messages 15

MNOTE Statements 16

Suppression of Error Messages and MNOTE Statements 18

Abnormal Assembly Termination 18

MHELP-Macro Trace Facility 18

Part 2. OS/VS Information 21

Chapter 4. Using the Assembler 23

Input 23

Output 23

How the Operating System Handles Your Program 23

Assembler 24

Linkage Editor 24

Execution of Your Program 24

Loader 25

Job Control Language 25

Jobs and Job Steps 25

Job Control Language . 26

Job Control Statements for Assembler Jobs 27

Simple Assembly and Execution 27

Assembler H Options 29

Default Options 33

Assembler Data Sets 33

Number of Channel Programs (NCP) 37

Return Codes 37

Cataloged Procedures 37

Cataloged Procedure for Assembly (ASMHC) 38

Cataloged Procedure for Assembly and Linkage Editing (ASMHCL) 39

Cataloged Procedure for Assembly, Link-Editing, and Execution

(ASMHCLG) 41

Contents ix

Cataloged Procedure for Assembly and Loader Execution (ASMHCG) 42

Overriding Statements in Cataloged Procedures 44

Examples of Cataloged Procedures 45

Chapter 5. Programming Considerations 47

Saving and Restoring General Register Contents 47

Program Termination 48

PARM Field Access 48

Macro Definition Library Additions 49

Load Module Modification-Entry Point Restatement 49

Object Module Linkage 50

Linking with IBM-Supplied Processing Programs 50

Invoking the Assembler Dynamically 52

Chapter 6. Calculating Storage Requirements 55

Main Storage .. 55

Fixed Storage 55

Variable Storage 57

Auxiliary Storage Estimates 60

Work File Space for SYSUT1 60

Auxiliary Space on LlNKLIB and PROCLIB 60

Part 3. eMS Information 61

Chapter 7. Assembler Language Programming under CMS 63

Diagnostic Messages Written by CMS 76 '\

HASM Command Error Messages .. 77

Relationship of Assembler to CMS 63

Input 64

Output 64

CMS Management of Your Assembly 64

Files Created during Assembly 64

File Processing by the Assembler 65

Creating an Assembler Language Program: CMS Editor 65

Overriding HASM File Defaults 66

Using Macros 67

Assembler Macros Supported by CMS 67

Macro Definition Library Additions 67

Specifying Macro Libraries 67

Assembling Your Program: HASM Command 68

HASM Command Format 68

Assembler Options for CMS 68

Command Defaults 69

Command Format 69

Assembler Data Sets and Storage Requirements 73

Assembler Data Sets for CMS Users 73

Assembler Virtual Storage Requirements 74

Loading and Executing Your Assembled Program 74

CMS Register Usage during Execution of Your Program 75

Passing Parameters to Your Assembler Language Program 75

Creating a Module of Your Program 75

Programming Aids 75

CMS SYSTERM Listing 75

"-"'"

Assembler H Version 2 Programming Guide X

Appendixes

Chapter 8. Programming Considerations
Saving and Restoring General Register Contents
Program Termination

Appendix A. Sample Program

Appendix B. MHELP Sample Macro Trace and Dump

Appendix C. Object Deck Output
ESD Card Format
TEXT (TXT) Card Format
RLD Card Format
END Card Format
TESTRAN (SYM) Card Format

Appendix D. Assembler H Messages
Message Descriptions
Assembly Error Diagnostic Messages

Message Not Known
Messages

Abnormal Assembly Termination Messages
Messages

Appendix E. Assembler H Version 2 Incompatibility with OS/VS Assembler

Appendix F. Sample Listing Containing Double-byte Data

Glossary

Index ..

81
81
82

83

85

97

105
105
106
106
107
108

111
111
112
113
113
142
142

147

149

153

157

Contents xi

'W.,

"WIll,

Figures

1. Assembler H Listing 6

2. Types of ESD Entries 7

3. Sample Error Diagnostic Messages 	 17
4. How the Operating System Handles Your Program 	 24
5. Jobs and Job Steps 	 25
6. Cataloged Procedure Concept 	 26
7. Assembler H Data Sets 	 34
8. Assembler Data Set Characteristics 	 35
9. Number of Channel Program (NCP) Selection 	 36

10. 	 Cataloged Procedure for Assembly (ASMHC) 38
11. 	 Cataloged Procedure for Assembling and Link-Editing (ASMHCL) 40
12. 	 Cataloged Procedure for Assembly, Link-Editing, and Execution

(ASMHCLG) 42
13. 	 Cataloged Procedure for Assembly and Loader Execution (ASMHCG) 43
14. 	 Sample Assembler Linkage Statements for FORTRAN or COBOL

Subprograms 51
15. 	 Basic Layout for Assembler H 56

16. 	 Required Space in Link Pack 57

17. 	 Aid in Assessing Main Storage Required by a Symbol Table with 1000

or 2000 Symbols 60
18. 	 Files Created during Assembly 65

19. 	 TESTRAN SYM Card Format 110

20. 	 Sample Listing Containing Double-byte Data 149

Figures xiii

Part 1. Common Information

• 	 "Chapter 1. Introduction" describes the organization of this manual, the
purpose of the assembler, and system requirements.

• 	 "Chapter 2. Using the Assembler Listing" describes each field of the
assembler listing.

• 	 "Chapter 3. Using the Assembler Diagnostic Facilities" describes the
purpose and format of error messages, MNOTEs, and the MHELP macro
trace facility.

Part 1. Common Information 1

Chapter 1. Introduction

This chapter contains:

• 	 a list of system, machine, and storage requirements

• 	 a discussion of compatibility between Assembler H Version 2, and VS
Assembler and OS Assembler H

Requirements

System Requirements
Assembler H Version 2 requires one of the following operating systems:

• 	 MVS/XA-MVS/Extended Architecture
• 	 OSIVS2 MVS Release 3.8
• 	 OSIVS1 Release 7
• 	 MVS/SP Version 1-MVS System Product
• 	 VM/SP-VM/System Product
• 	 VM/XA SP-VM/Extended Architecture System Product
• 	 VM/XA SF-VM/Extended Architecture Systems Facility

Note: Assembler H Version 2 cannot be used with the OS/MFT, OS/MVT, or
OSIVS2 SVS operating systems.

Assembler H supports the new operation codes available with the Extended
Architecture mode processor, VM/XA, and bimodal addressing of MVS/XA. It is
required for installation and service of MVS/SP - JES2 Version 2 and
MVS/SP-JES3 Version 2, and for installation of Data Facility Product.

Machine Requirements
• 	 For assembling Assembler H Version 2 programs: Programs written using

Assembler H can be assembled, including use of the new Extended Archi­
tecture mode processor machine instructions, on all IBM System/370, 303x,
308x, 3090, 9370 and 43xx processors supported by the above operating
systems. You may require the MVS/XA macro library to assemble pro­
grams that will be executed on MVS/XA, depending on macro usage.

• 	 For executing Assembler H Version 2 programs: Execution of programs
assembled with Version 2 containing Extended Architecture machine
instructions can only be accomplished on processors operating in Extended
Architecture mode under MVS/XA or an MVS/XA guest operating system
under VM/XA Systems Facility .

• 	 One 2400 or 3400 series tape unit is required for installation. The 2400
series tape unit is not, however, supported by MVS/XA.

• 	 Double-byte data can be displayed and/or entered in their national lan­
guage representation on the following:

IBM 3800-8 system printer
IBM 3200 system printer
IBM 3820 remote printer
IBM PS/55 family as an IBM 3270 terminal

Chapter 1. Introduction 3

Storage Requirements

Compatibility

• 	 Virtual storage: Assembler H Version 2 requires a minimum of 200K bytes
of main storage.

• 	 Auxiliary storage space: Auxiliary storage space is required for the fol­
lowing data sets:

System input.

Macro instruction library-either system or private or both.

An intermediate work file, which must be a direct-access device

(3330/3333, 334013344, 3350, 3375, or 3380). Under VM/XA SF, the inter­

mediate work file must be formatted as a CMS minidisk. Under VM/SP

and VM/XA SP, the intermediate work file, which must be a direct­

access device (3310, 3370, or one of the devices mentioned above),

must also be formatted as a CMS minidisk.

Pri nt outp ut.

• 	 Library Space: In terms of the IBM 3350 Direct Access Storage require­
ments, cataloged procedures for Assembler H require a maximum of one
track on SYS1.PROCLlB, and the Assembler H load modules need approxi­
mately 15 tracks on SYS1.LlNKLIB or a private link library.

• 	 Installation: Please refer to Assembler H Version 2 Instal/ation for installa­
tion requirements.

The language supported by Assembler H Version 2 has functional extensions to
the language supported by VS Assembler and OS Assembler H 5734-AS1
Release 5. Programs written for VS Assembler and OS Assembler H Release 5
that were successfully assembled with no warning or diagnostic messages can
be assembled with Version 2, with the minor exceptions described in
Appendix E, "Assembler H Version 2 Incompatibility with OS/VS Assembler."

4 Assembler H Version 2 Programming Guide

Chapter 2. Using the Assembler Listing

This chapter tells you how to interpret the printed listing produced by the
assembler. The listing is obtained only if the option LIST is in effect. Parts of
the listing can be suppressed by using other options; for information on the
listing options, refer to "Assembler H Options" on page 29 or "Assembler
Options for eMS" on page 68.

The Assembler H listing consists of up to five sections, ordered as follows:

• External symbol dictionary (ESD)
• Source and object program
• Relocation dictionary (RLD)
• Symbol and literal cross-reference
• Diagnostic cross-reference and assembler summary

Figure 1 on page 6 shows each section of the listing. Each item marked with a
number in the left-hand margin is explained in the following text. (See "Glos­
sary" for definitions of terms.)

Chapter 2. Using the Assembler Listing 5

PRIME 	 EXTERIIAL SYf1BOL OICTIOtlARY
(1) 	 SniBOL TYPE 10 AOOR LEIIGTH LO 10 FLAGS

PC eOOl 000000 e0010C ee

EXSYi4 ER 0002

10LOOP LD oeoa22 aBel

(2) 	 PRIHE SAflPLE LISTING DESCRIPTIOtl
(3) 	 LOC OBJECT CODE AoORl ADDR2 STMT SOURCE STATEr4EtH

a000es 	 2 CSECT

3 EXTRtl EXSYM

4 EtlTRY 10LOOP

00005 5 R5 EQU 5

eoeooe 9aEC OOOC OOOOC 7 SHI 14,12,12(13)

800004 65C0 8 BALR 12,9

a9996 USItIG ",12

000006 5000 CODE 009E4 10 ST 13,SAVE+4

00000A 00ae Boaa BOB9B 11 LA 1B,SAUE

I Eva44 ""''' ERROR *"'* UlIoEFIIIED SYMBOL
90BB9E 	 5850 C102 00108 12 R5,"A(EXSYM)

13 PRItH tlOGEN
14 OPEII (1IIoCB"OUToCB,(OUTPUT»
23 PRIllT GEII
24 10LOOP GET IIIDCS,I1IBUf

(4) 	 000022 4110 C02A B9030 25+IOLOOP LA I, IUoCB
000026 410a Cl92 B0108 26+ LA a,I11BUF
000B2A 58Fa 1038 aea3B 27+ L 15,48(0,1)
00B02E 05EF 28+ BALR 14,15

PRIloIE 	 RELOCAT I Of! 0 I CTI OIIARY
(5) 	 POS.Io REL.Io FLAGS ADDRESS

0081 8001 08 8aa019
0001 B001 88 600B10
0081 0BB1 08 000051
0001 00B1 08 000BS5
e0a1 0001 ac 000068
8081 0001 08 OOOOAo
0001 0001 0C 6000CO
00B1 0002 BC 000108

PRIME 	 CROSS REFEREIICE
(6) 	 SYfoIBOL LEII VALUE oEFIl REfEREIlCES

EOO B0B01 B00000E0 0132 8051
ERR 09001 a0000BE0 0133 9066 e1l8
EXIT 00001 a000S0Ee 0134 0853 (He5
EXSYfoi 00001 00000000 00e3 0139
IIIBUF 00001 008108 0136 0026
IflDCB 00004 oe0830 0033 8018 0025
10LOOP 00004 000022 0025 0004
OUTSUF e06e1 0e0158 0137
OUTDCS 9B0e4 600088 0084 0020
R5 B0BB1 B0000005 00e5 9612
SAUE *"**UIIoEFIIIED**** oell
SAVE e8ee4 0000E0 0135 B01B
"A(EXSYfoI)

00004 00B108 6139 e012

PRII-IE 	 DIAGnOSTIC CROSS REFEREIICE ArlO ASSHIBLER SUI·II·IARY

THE FOLLOWIlIG STATEflEilTS \~ERE FLAGGED
(7) 	 B0e0ll

1 STATEMElIT FLAGGED It1 THIS ASSEf.IBLY 8 WAS HIGHEST SEVERITY CODE
(8) OVERRIDHIG PARAHETERS- SYSPARfl(SAI'IPLE PROGRM1) ,IIODECK,BATCH

OPTIOIIS 	 FOR THIS ASSHIBLY
1I0oECK, 1I00BJECT, LIST, XREF(FULL), 1I0REIIT, 1I0TEST, BATCH, ALIGII, ESD, RLo, 1I0TERM,
L1IIECOUIIT (55), FLAG (0), SYSPARfoI (SAfoIPLE PROGRAi·l)

(9) 110 OVERRIDIIIG 00 flAMES
(1e) 	 29 CARDS FROI'I SYSIII 2214 CARDS fROI·I SYSLI B

161 LIliES OUTPUT B CARDS OUTPUT

PAGE 1
ASi·1 H V B2 18.48 07/16/87

PAGE 2
ASM H v 02 18.48 	07/16/87

aOB20BBO
00030000
00040000
00050000
00070000
00S8S0ee
00099000
B0100eee
ee110ee2

00120000
80130080
00140000
00150000
00160000

LOAD PARAflETER REG 1 02- I HBIII
LOAD PARAMETER REG 0 02-IHBitl
LOAD GET ROUTI liE AooR 81-GET
LI 11K TO GET ROUT I liE ai-GET

PAGE 5
ASI'I H v 62 18.48 07/16/87

PAGE 6
ASM H V 02 18.48 07/16/87

PAGE 7
ASI·I H v 02 18.48 07/16/87

IIODBCS,

Figure 1. Assembler H Listing

6 Assembler H Version 2 Programming Guide

External Symbol Dictionary (ESD)
This section of the listing contains the external symbol dictionary information
passed to the linkage editor or loader in the object module.

This section helps you find references between modules in a multimodule
program. The ESD may be particularly helpful in debugging the execution of
large programs constructed from several modules.

The ESD entries describe the control sections, external references, and entry
points in the assembled program. There are seven types of ESD entries (SD,
LD, 	ER, PC, CM, XD, and WX). They are shown in Figure 2 with their associ­
.ated fields. For each of the different types of ESD entries, the Xs indicate which
of the fields will have values.

SYMBOL TYPE 10 AOOR LENGTH LDIO FLAGS

X SO X X X X

X LO X X

X ER X

PC X X X X

X CM X X X X

X XO X X X

X WX X

Figure 	2. Types of ESO Entries

(1) 	 SYMBOL: The name of every external dummy section, control section,
entry point, and external symbol.

TYPE: The type designator for the entry, as shown in the table. The type
designators are defined as:

SD 	 Control section definition. The symbol appeared in the name field of
a CSECT or a START statement.

LD 	 Label definition. The symbol appeared as the operand of an ENTRY
statement.

ER 	 External reference. The symbol appeared as the operand of an
EXTRN statement, or was declared as a V-type address constant.

PC 	 Unnamed control section definition (private code). A CSECT or
START statement that com mences a control section does not have a
symbol in the name field, or a control section is commenced (by any
instruction which affects the location counter) before a CSECT or
START is encountered.

CM Common control section definition. The symbol appeared in the
name field of a COM statement.

XD 	 External dummy section. The symbol appeared in the name field of
a DXD statement or a Q-type address constant. (The external
dummy section is also called a pseudo register in the appropriate
Linkage Editor and Loader manuaL)

Chapter 2. Using the Assembler Listing 7

WX 	Weak external reference. The symbol appeared as an operand in a
WXTRN statement.

10: The external symbol dictionary identification number (ESOIO). The
number is a unique 4-digit hexadecimal number identifying the entry. It
is used in combination with the LO entry of the ESO and in the relocation
dictionary for referencing the ESO.

AOOR: The address of the symbol (in hexadecimal notation) for SO- and
LO-type entries, and blanks for ER- and WX-type entries. For PC- and
CM-type entries, it indicates the beginning address of the control section.
For XO-type entries, it indicates the alignment by printing a number one
less than the number of bytes in the unit of alignment. For example, 7
indicates doubleword alignment.

LENGTH: The assembled length, in bytes, of the control section (in
hexadecimal notation).

LD ID: For an LO-type entry, the ESDIO of the control section in which
the symbol was defined.

FLAGS: For SO-, PC-, and CM-type entries, this field contains the fol­
lowing flags:

Bit 5: 	 0 = Rr-IOOE is 24
1 = Rr10DE is ANY

Bits 6-7: 	00 = A~IODE is 24
01 = M10DE is 24
10 = M~ODE is 31
11 = AMODE is ANY

Source and Object Program
This section of the listing documents the source statements of the module and
the resulting object code.

This section is the most useful part of the listing, because it gives you a copy of
all the statements in your source program (except listing control statements)
exactly as they are entered into the machine. You can use it to find simple
punching errors, and, together with the diagnostics and statistics, to locate and
correct errors detected by the assembler. By using this section with the cross­
reference section, you can check that your branches and data references are in
order. The location counter values and the object code listed for each state­
ment help you locate any errors in a storage dump. Finally, you can use this
part of the listing to check that your macro instructions have been expanded
properly.

(2) 	 "PRIME": The 1- to 8-character deck identification, if any. It is obtained
from the name field of the first named TITLE statement. The assembler
prints the deck identification and date (item 16) on every page of the
listing.

"SAMPLE LISTING INFORMATION": The information taken from the
operand field of a TITLE statement.

"PAGE 2": The listing page number.

Assembler H Version 2 Programming Guide 8

(3) LaC: The assembled address (in hexadecimal notation) of the object
code.

• 	 For ORG statements, the location-counter value before the ORG is
placed in the location column and the location counter value after the
ORG is placed in the object code field.

• 	 If the END statement contains an operand, the operand value

(transfer address) appears in the location field (LOC).

• 	 In the case of LOCTR, COM, CSECT, and DSECT statements, the
location field contains the current address of these. control sections.

• 	 In the case of EXTRN, WXTRN, ENTRY, and DXD instructions, the

location field and object code field are blank.

• 	 For a USING statement, the location field contains the value of the

first operand. It is 4 bytes long.

• 	 For L TORG statements, the location field contains the location

assigned to the literal pool.

• 	 For an EQU statement, the location field contains the value assigned.
It is 4 bytes long.

OBJECT CODE: The object code produced by the source statement. The
entries are always left-justified. The notation is hexadecimal. Entries
are machine instructions or assembled constants. Machine instructions
are printed in full with a blank inserted after every 4 digits (2 bytes).
Only the first 8 bytes of a constant will appear in the listing if PRINT
NODATA is in effect, unless the statement has continuation cards. The
entire constant appears if PRINT DATA is in effect. (See the PRINT
assembler instruction in Assembler H Version 2 Language Reference.)

ADDR1 ADDR2: Effective addresses (each the result of adding a base
register value and a displacement value):

• 	 The field headed ADDR1 contai.ns the effective address for the first

operand of an SS instruction.

• 	 The field headed ADDR2 contains the effective address of the last

operand of any instruction referencing storage.

Both address fields contain 6 digits; however, if the high-order digit is a
0, it is not printed.

STMT: The statement number. A plus sign (+) to the right of the
number indicates that the statement was generated as t~e result of
macro call processing. An unnumbered statement with a plus sign (+)
is the result of open code substitution.

SOURCE STATEMENT: The source program statement. The following
items apply to this section of the listing:

• 	 Source statements are listed, including those brought into the
program by the COPY assembler instruction, and including macro
definitions submitted with the main program for assembly. Listing
control instructions are not printed, except for PRINT, which is always
printed.

• 	 Macro definitions obtained from SYSLIB are not listed, unless the

macro definition is included in the source program by means of a

COPY statement.

Chapter 2. Using the Assembler Listing 9

http:contai.ns

• 	 The statements generated as the result of a macro call follow the
macro call in the listing, unless PRINT NOGEN is in effect.

• 	 Assembler and machine instructions in the source program that
contain variable symbols are listed twice: as they appear in the
source input, and with values substituted for the variable symbols.

• 	 All error diagnostic messages appear in line except those sup­
pressed by the FLAG option. "Chapter 3. Using the Assembler Diag­
nostic Facilities" describes how error messages and MNOTEs are
handled.

• 	 Literals that have not been assigned locations by L TORG statements
appear in the listing following the END statement. Literals are identi­
fied by the equal sign (=) preceding them.

• 	 Whenever possible, a generated statement is printed in the same
format as the corresponding macro definition (model) statement. The
starting columns of the operation, operand, and comments fields are
preserved, unless they are displaced by field substitution, as shown
in the following example:

Name Operation Operand Comnent

&C SETC 'ABCDEFGHIJK' Source statement
&C LA 1,4 Source statement
ABCDEFGHIJK LA 1,4 Generated statement

It is possible for a generated statement to occupy ten or more contin­
uation lines on the listing. In this way, generated statements are
unlike source statements, which are restricted to nine continuation
lines.

"ASM H V 02": The version identifier of Assembler H.

"18.4807/16/87": The current date (date run is made).

(4) 	 "02-IHBIN": The identification-sequence field from the source statement.
For a macro-generated statement, this field contains information identi ­
fying the origin of the statement. The first two columns define the level
of the macro call.

For a library macro call, the last five columns contain the first five characters of
the macro name. For a macro whose definition is in the source program
(including one read by a COPY statement), the last five characters contain the
line number of the model statement in the definition from which the generated
statement is derived. This information can be an important diagnostic aid in
analyzing output resulting from macro calls within macro calls.

10 Assembler H Version 2 Programming Guide

Relocation Dictionary (RLD)
This section of the listing contains the relocation dictionary information passed
to the linkage editor in the object module. The entries describe the address
constants in the assembled program that are affected by relocation. This
section helps you find relocatable constants in your program.

(5) 	 POS.ID: The external symbol dictionary 10 number assigned to the ESD
entry for the control section in which the address constant is used as an
operand.

RELlD: The external symbol dictionary 10 number assigned to the ESD
entry for the control section in which the referenced symbol is defined.

FLAGS: The 2-digit hexadecimal number represented by the characters
in this field is interpreted as follows:

First Digit:

• 	 0 indicates that the entry describes an A-type or V-type address con­
stant

• 	 1 indicates that the entry describes a V-type address constant
• 	 2 indicates that the entry describes a Q-type address constant
• 	 3 indicates that the entry describes a CXD entry

Second Digit: The first three bits of this digit indicate the length of the
constant and whether the base should be added or subtracted:

Bits 0 and 1 	 Bit 2 Bit 3

00 	= 1 byte 0= + Always 0

01 	 = 2 bytes 1 = ­

10 = 3 bytes

11 = 4 bytes

ADDRESS: The assembled address of the field where the address con­
sta nt is stored.

Chapter 2. Using the Assembler Listing 11

Symbol and Literal Cross-Reference
This section of the listing concerns symbols and literals that are defined and
used in the program. This is a useful tool in checking the logic of your
program; it helps you see if your data references and branches are in order.

(6) SYMBOL: The symbols or literals.

LEN: The length, in bytes (in decimal notation), of the field represented
by the symbol.

VALUE: Either the address that the symbol or literal represents, or a
value to which the symbol is equated. The value is 3 bytes long, except
for the following, which are 4 bytes long: CSECT, DSECT, START, COM,
DXD, EQU, LOCTR, EXTRN, WXTRN, and a duplicate symbol.

DEFN: The number of the statement in which the symbol or literal was
defined.

REFERENCES: The statement numbers of statements in which the
symbol or literal appears as an operand. In the case of a duplicate
symbol or literal, the assembler fills this column with the message:

****DUPLICATE****

The following notes apply to the cross-reference section:

Notes:

1. 	 The statement numbers in the DEFN and REFERENCES columns may have
4,5, or 6 print positions. The number of print positions for the statement
number will be chosen based on the highest statement number assigned for
the assembly. For example, if 21056 is the highest statement number used
in an assembly, all statement numbers in the cross-reference listing will
have 5 print positions.

2. 	 Symbols appearing in V-type address constants do not appear in the cross­
reference listing.

3. 	 Cross-reference entries for symbols used in a literal refer to the assembled
literal in the literal pool. Look up the literals in the cross-reference to find
where the symbols are used.

4. 	 A PRINT OFF listing control instruction does not affect the production of the
cross-reference section of the listing.

5. 	 In the case of an undefined symbol, the assembler fills columns LEN,
VALUE, and DEFN with the message:

****UNDEFINED****

12 Assembler H Version 2 Programming Guide

Diagnostic Cross-Reference and Assembler Summary
The diagnostic messages issued by the assembler are fully documented in
Appendix D, "Assembler H Messages."

(7) 	 The statement number of each statement flagged with an error message
or MNOTE appears in this list. The number of statements flagged and
the highest nonzero severity code encountered are also printed. The
highest severity code is equal to the assembler return code.

If no errors are encountered, the following statement is printed:

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

See "Chapter 3. Using the Assembler Diagnostic Facilities" for a com­
plete discussion of how error messages and MNOTEs are handled.

(8) 	 A list of the options in effect for this assembly is printed. The options
specified in the PARM field to override the assembler default options are
also printed.

(9) 	 If the assembler has been called by a problem program (see "Invoking
the Assembler Dynamically" on page 52) and any standard (default)
ddnames have been overridden, both the default ddnames and the over­
riding ddnames are listed. Otherwise, this statement appears:

NO OVERRIDING DO NAMES

(10) 	 The assembler prints the number of records read from SYSIN and
SYSLIB and the number of records written on SYSPUNCH. The assem­
bler also prints the number of lines written on SYSPRINT. This is a count
of the actual number of 121-byte records generated by the assembler; it
may be less than the total number of printed and blank lines appearing
in the listing if the SPACE n assembler instruction is used. For a SPACE
n that does not cause an eject, the assembler inserts n blank lines in the
listing by generating n/3 blank 121-byte records, rounded to the next
lower integer if a fraction results. For example, for a SPACE 2, no blank
records are generated. The assembler does not generate a blank record
to force a page eject.

Chapter 2. Using the Assembler listing 13

Chapter 3. Using the Assembler Diagnostic Facilities

The diagnostic facilities for Assembler H include diagnostic messages for
assembly errors, diagnostic or explanatory messages issued by the source
program or by macro definitions (MNOTEs), a macro trace and dump facility
(MHELP), and messages and dumps issued by the assembler in case it termi­
nates abnormally.

This chapter briefly describes these facilities. The assembly error diagnostic
messages and abnormal assembly termination messages are described in
detail in Appendix D, "Assembler H Messages."

Assembly Error Diagnostic Messages
Assembler H prints most error messages in the listing immediately following
the statement in error. It also prints the total number of flagged statements and
their line numbers in the diagnostic cross-reference section at the end of the
listing.

The messages do not follow the statement in error when:

• 	 Errors are detected during editing of macro definitions read from a library.
A message for such an error appears after the first call in the source
program to that macro definition. You can, however, bring the macro defi­
nition into the source program with a COPY statement. The editing error
messages will then be attached to the statements in error.

• 	 Errors are detected by the lookahead function of the assembler.
(Lookahead scans, for attribute references, statements after the one being
assembled.) Messages for these errors appear after the statements in
which they occur. The messages may also appear at the point at which
lookahead was called.

• 	 Errors are detected on conditional assembler statements during macro gen­
eration or MHELP testing. Such a message follows the most recently gen­
erated statement or MHELP output statement.

A typical error diagnostic message is:

IEV0S7 ***ERROR*** UNDEFINED OPERATION CODE-xxxxx

The term ***ERROR'" is part of the message if the severity code is 8 or
greater. The term **WARNING** is part of the message if the severity code is a
or 4.

A copy of a segment of the statement in error, represented above by xxxxx, is
appended to the end of many messages. Normally this segment, which can be
up to 16 bytes long, begins at the bad character or term. For some errors,
however, the segment may begin after the bad character or term. The segment
may include part of the remarks field.

Chapter 3. Using the Assembler Diagnostic Facilities 15

If a diagnostic message follows a statement generated by a macro definition,
the following items may be appended to the error message:

• 	 The number of the model statement in which the error occurred, or the first
five characters of the macro name .

• 	 The SET symbol, parameter number, or value string associated with the
error.

Note: References to macro parameters are by number (such as PARAM008)
instead of by name. The first seven numbers are always assigned for the
standard system parameters as follows:

PARAt~fl(:l8 = &SYSNDX
PARAM881 = &SYSECT
PARAM882 = &5YSLOC
PARAM883 = &SYSTIME
PARAM884 = &SYSDATE
PARAM805 &SYSPARM
PARAM886 = Name Field Parameter

Then the keyword parameters are numbered in the order defined in the macro
definition, followed by positional parameters. When there are no keyword
parameters in the macro definition, PARAM007 refers to the first positional
parameter.

If a diagnostic message follows a conditional assembler statement in the
source program, the following items will be appended to the error message:

The word "OPENC"

The SET symbol or value string associated with the error

Several messages may be issued for a single statement or even for a single
error within a statement. This happens because each statement is usually eval­
uated on more than one level (for example, term level, expression level, and
operand level) or by more than one phase of the assembler. Each level or
phase can diagnose errors; therefore, most or all of the errors in the statement
are flagged. Occasionally, duplicate error messages may occur. This is a
normal result of the error detection process.

Figure 3 on page 17 is an example of Assembler H handling of error mes­
sages.

MNOTE Statements
An MNOTE statement is included in a macro definition or in the source
program. It causes the assembler to generate an inline error or informational
message.

An MNOTE appears in the listing as follows:

IEV254 ***MNOTE*** severity code, message

Unless it has a severity code of' or the severity code is omitted, the statement
number of the MNOTE is listed in the diagnostic cross-reference.

16 Assembler H Version 2 Programming Guide

Lot OBJECT CODE ASH H V 02 11.51 09/30/82

1 •••
2 • SAMPL E ERROR 01 AGNOS TIC MESSAGES •
3 • IN SQURCE PRUGRA~ 10PEN CODEI AND GENERATED BY MACRO CALLS •
4 •••

000000 b A CSEC T
000000 0000 0000 00000 1 ST~ lIo,U20121111

IEYO~~ •••• ERROR ••• UNOcFI'IEI' SYMBOL
IEYOZ9 ••• ERROII ••• I'ICORRECT PEGISTER SPECIFltATIU~
IEY179 ••• ERROR ••• OELIMITEIt ERROR, tXPECT RIGHT PAReNTHESIS

OOOOO~ O'SCO B BALA 12,0
OOOOb 'l USING .012

000006 0000 0000 10 S1 13 ,SAVE
IEV~~ ••• ERROR U"IOEF INEO SYMBOL•••

~o

11 OPE~ (CRUIN, II'IPUT I ,CIIOOUT, 1OUTPUll

IEYOII ••• EIIROI\ ••• UNBALANCED PAReNTHESES IN MACIIO CALL O~EIIANO OPENC/ICRDIN,IIN

OOOOOA 0100 12+ C~OP 0,,, 01-0PEN
OOOOOC ~510 COOF 00014 13+ BAL I,.+~ LOAD REGI M/LIST AODR. Ol-OPEN
000010 00000000 1"+ DC AIOI OPT BYTE AND DCB ADUR. Ol-OPEN
000014 0000 0000 00000 I~+ Sf CRDIN,I''''''UTI,CROI1UT,IOUTPUT,Oll,OI XOI-OPEN

STOllE I "ITO LIST

IEY029 ••• E~ROR ••• INCORRECt KEGISHR SPEC I F itA TlON

IEV04~ ••• ERROR ••• UNon l'IeD SYMtlOL

IEYI11 ••• ERROR ••• DELIMITER FRRUR, EXPECT tllANK aR LEfT PARENTHESIS

000018· 9280 1000 00000 Ib+ MVI 01110128 MOYE IN OPTION BYTE 01-0PEN
OOOOIC DAn 11+ SVC 19 ISSUE OPEN SVC 01-0PEN

19 ••
21' • EOITI Nt; AND GENERATlO'll ERRORS AND M"IOreS FROM A LIBRARY MACRO •
21 ••

23 lOADR REGI=IO,REG2-S,CHEROKEE,CHAMP

IEYI3b ••• ER~DR ••• ILLEGAL LUGICAL/Rf.LATIONAL OPERATUR MACRU - LUAOR

IEYOBi ••• ~RROR ••• ARITHMHIC fXPR~SSI()N CUNTAI~S ILLEGAl OELIMITER OR E'IDS PREMATURELV MACRO - LOADR

DOODlE 'S8AO C02A n0030 24+ L 10,CHtROKEE oI-LOAM

lb L'JAllM RtGI=15,REG2=R,CHEROKEE,SMIFT
000022 0000 0000 00000 21+ L 25,CHtoRUKEE DI-LOAOII

IEY029 ••• ERROR ••• INCOR~ECT RE&ISTEH SPECIFIC~TION

Z'l LUAOR HEG2=IO,CHAMP,SWIFT
000026 S800 COlE)0+ L Q,CHAMP Ol-LOADR

6 ••
1. SAMPLF MAC~O nEFINITION RERUN WITH EDITING ERRORS CORRECTED •
~•........................•...........................

10 MACKel
II &NAMF lOAOR ®I=,®2-,&OPI,&OPZ
12 tK III SETA &R~Gl,®2
13 AIF IT'&RfGI f~ 'O'I.ERR
14 L &MIII,r.OPI
I~ L &RI21,&OP2
Ib MEXI T
11 • ERR MNUTf 3b,'VOU LEFT OUT THE FIRST REGISTER'
18 MEND

10 ••
21 • SAMPL~ MACRO CALLS WITH GENERATION ERRORS AND KNOTES •
22 ••

LOADII REGl'10,REG2-e,CHEROKEE,CHAMP.. " OOOOOC 58AO COO" 00004 2S' L 10,CHfROKEE OI-OOOl~
000010 S810 C008 OOOOR 2b+ L ~,CHA"P 01-0001'

18 LOAUR MEGI-25,MEGZ-e,CHEROKEE,r.SMIFT
I EY003 ••• ERROR ... UNOECLARED VARIABLf SYMBOL. DEFAULT-O, NULL, UR TYPE-U OPENC/SMIFT

000014 0000 0000 00000 2~+ L 25,CHEROKEE OI-OOOI~
IEYD29 ••• ERROR ••• INCORRECT REGISTtR SPECIFICATION

000018 0000 0000 00000 30+ L 8, 01-00015
IEY014 ••• ERROR ••• IllEGAL SYNTAX IN EXPRESSION

32 LUADR REG2=8,CHAMP,SWIFT
IEY25~ ••• IINUTE ••• 13+ 3b,YUU LEFT OUT THE FIRST REGIST~R 01-00017

34 END

Figure 3. Sample Error Diagnostic Messages

Chapter 3. Using the Assembler Diagnostic Facilities 17

Suppression of Error Messages and MNOTE Statements
Optionally, error messages and MNOTE statements below a specified severity
level can be suppressed by specifying the assembler option 'FLAG(n)' (where
"n" is the selected severity level when the assembler is invoked).

Abnormal Assembly Termination
Whenever the assembly cannot be completed, Assembler H provides a

message and, in some cases, a specially formatted dump for diagnostic infor­

mation. This may indicate an assembler malfunction or it may indicate a pro­

grammer error. The statement causing the error is identified and, if possible,

the assembly listing up to the point of the error is printed.

Appendix D, "Assembler H Messages" on page 111 describes the abnormal

termination messages. The messages give enough information to enable you

(1) to correct the error and reassemble your program, or (2) to determine that
the error is an assembler malfunction.

Assembler H Version 2 Logic contains a com plete explanation of the format and
contents of the abnormal termination dump.

MHELP-Macro Trace Facility
The MHELP instruction controls a set of trace and dump facilities. Options are
selected by an absolute expression in the MHELP operand field. MHELP state­
ments can occur anywhere in open code or in macro definitions. MHELP
options remain in effect until superseded by another MHELP statement.

Format of MHELP:

Name Operation Operand

MHELP Absolute expression, binary or decimal options
(see below)

MHELP B'1' or MHELP1, Macro Call Trace: This option provides a one-line
trace listing for each macro call, giving the name of the called macro, its nested
depth, and its &SYSNDX value. The trace is provided only upon entry into the
macro. No trace is provided if error conditions prevent entry into the macro.

MHELP B'10' or MHELP2, Macro Branch Trace: This option provides a one-line
trace-listing for each AGO and AIF conditional assembly branch within a macro.
It gives the model statement numbers of the "branched from" and the
"branched to" statements, and the name of the macro in which the branch
occurs. This trace option is suppressed for library macros.

MHELP B'100' or MHELP 4, Macro AIF Dump: This option dumps undimen­
sioned SET symbol values from the macro dictionary immediately before each
AIF statement that is encountered.

18 Assembler H Version 2 Programming Guide

MHELP 8'1000' or MHELP 8, Macro Exit Dump: This option dumps undimen­
sioned SET symbols from the macro dictionary whenever an MEND or MEXIT
statement is encountered.

MHELP 8'10000' or MHELP 16, Macro Entry Dump: This option dumps param­
eter values from the macro dictionary immediately after a macro call is proc­
essed.

MHELP 8'100000' or MHELP 32, Global Suppression: This option suppresses
global SET symbols in two preceding options, MHELP 4 and MHELP 8.

MHELP 8'1000000' or MHELP 64, Macro Hex Dump: This option, when used in
conjunction with the Macro AIF dump, the Macro Exit dump or the Macro Entry
dump, will dump the parameter and SETC symbol values in EBCDIC and
hexadecimal formats. Only positional and keyword parameters will be dumped
in hexadecimal, system parameters will be dumped in EBCDIC. The full value
ofSETC variables or parameters is dumped in hexadecimal.

MHELP 8'10000000' or MHELP 128, MHELP Suppression: This option sup­
presses all currently active MHELP options.

MHELP Control on &SYSNDX: The MHELP operand field is actually mapped into
a fullword. Previously defined MHELP codes correspond to the fourth byte of
this fullword.

&SYSNDX control is turned on by any bit in the third byte (operand values 256
through 65535, inclusive). Then, when &SYSNDX (total number of macro calls)
exceeds the value of the fullword which contains the MHELP operand value,
control is forced to stay at the open code level by, in effect, making every state­
ment in a macro behave like a MEXIT. Open code macro calls are honore<:l, but
with an immediate exit back to open code. When the value of &SYSNDX
reaches its limit, the message'ACTR EXCEEDED-&SYSNDX' is issued.

Examples:

~1HELP 256 Limit &SYSNDX to 256.
MHELP 1 Trace macro calls.
MHELP 256+1 Trace calls and limit &SYSNDX to 257.
MHELP 65536 No effect. No bits in bytes 3,4.
MHELP 65792 Limit &SYSNDX to 65792.

Chapter 3. Using the Assembler Diagnostic Facilities 19

Part 2. OS/VS Information

• 	 "Chapter 4. Using the Assembler" reviews the concepts of job, job step,
and job control language; describes assembler input and output; tells how
the operating system handles your program; describes the assembler
options, the data sets used by the assembler, the number of channel pro­
grams, and return codes; and the job control language cataloged proce­
dures supplied by IBM. The cataloged procedures can be used to
assemble, link-edit or load, and execute an assembler program.

• 	 "Chapter 5. Programming Considerations" discusses various topics, such
as standard entry and exit procedures for problem programs and how to
invoke the assembler dynamically.

• 	 "Chapter 6. Calculating Storage Requirements" describes the priorities and
use of main storage by Assembler H during an assembly.

Part 2. OSIVS Information 21

...; ~

Chapter 4. Using the Assembler

This chapter describes assembler input and output; tells how the operating
system handles your program; reviews the concepts of job, job step, and job
control language; shows you how to invoke the assembler for simple jobs
(using cataloged procedures); and lists the job control statements that make up
the four assembler cataloged procedures. In addition, it describes the
assembly-time options available to the assembler language programmer; data
sets used by the assembler; and number of channel programs, return codes,
and cataloged procedures of job control language supplied by IBM to simplify
assembling, link-editing or loading, and execution of assembler language pro­
grams. The job control language is described in detail in the appropriate JCL
Reference.

Input
As input, the assembler accepts a program written in the assembler language
as defined in Assembler H Version 2 Application Programming: Language Ref­
erence. This program is referred to as a source module. Some statements in
the source module (macro or COPY instructions) may cause additional input to
be obtained from a macro library.

Output
The output from the assembler consists of an object module and a program
listing. The object module can either be punched or included in a data set
residing on a direct access device or a magnetic tape. From that data set, the
object module can be read into the computer and processed by the linkage
editor or the loader. See Appendix C, "Object Deck Output" for the format of
the object module.

The program listing lists all the statements in the module, both in source and
machine language format, and gives other important information about the
assembly. such as error messages. The listing is described in detail in
"Chapter 2. Using the Assembler Listing."

How the Operating System Handles Your Program
Once you have coded and entered your program, it must be processed by the
assembler and the linkage editor or the loader before it can be executed.
Figure 4 on page 24 shows how the operating system handles your program.

Chapter 4. Using the Assembler 23

Source
Module Assembler

Object
Module

Loader

Linkage
Editor

Your
Program

The source program is read in COMPUTER

for processing by the assembler.

The output of the assembler,

the object module, is placed on

auxiliary storage.

The object module is read into

either the linkage editor or the

loader for processing.

After processing your program,
the loader gives control to it.

The linkage editor output, the

load module, is placed on a load

module library.

Your program, in load module

format, is read into the computer

for execution.

Figure 4. How the Operating System Handles Your Program

Assembler
The assembler translates your source module into an object module, the
machine language equivalent of the source module. The object module,
however, is not ready for execution; it must first be processed by the linkage
editor or loader.

Linkage Editor
The linkage editor prepares your program for execution. The output of the
linkage editor is called a load module and can be executed by the computer.
The linkage editor can combine your program with other object and load
modules to produce a single load module. The linkage editor stores your
program in a load module library, a collection of data sets on a direct access
device. These load modules can be read into the computer and given control.
The load module library may be either permanent, so that you can execute your
program in later jobs, or temporary, so that the program is deleted at the end
of your job.

Execution of Your Program
Once you have included your program in a permanent load module library, you
can execute it any number of times without assembly and link-editing.
However, if you need to change your program, you must assemble and link-edit
it again. Therefore, you should not store your program in a permanent load
module library until it has been tested properly. To save time during test runs,
you can use a program that combines the basic functions of the linkage editor
with the execution of your program. That program is the loader.

24 Assembler H Version 2 Programming Guide

Loader
The loader performs most of the functions of the linkage editor; in addition, it
loads your program into the computer and passes control to your program. The
loader cannot, however, include your program in a load module library. For a
full description of the linkage editor and loader, refer to the appropriate linkage
editor and loader manual.

Job Control Language

Jobs and Job Steps
Each time you request a service from the operating system, you are asking it to
perform a job. A job may consist of several steps, each of which usually
involves the execution of one processing program under the control of the oper­
ating system's control program. For example, if you submit a job to the com­
puter calling for assembly and linkage editing of a program, that job will be a
two-step job. The concepts of jobs and job steps are shown in Figure 5.

Source
Module

Job Step

Assembly

Job Object
Assembly Module
and
Link
Editing

Job Step

Link

Editing

Loed
Module

Figure 5. Jobs and Job Steps

Chapter 4. Using the Assembler 25

Job Control Language
The job control language is your way of communicating to the operating system
control program what services you want used. Job control language state­
ments are usually punched into cards and supplied in the job stream with your
source module and other data needed by the job. For a detailed discussion of
job control language statements, see the appropriate JeL Reference.

To save time and trouble, you can use predefined sets of JCL statements that
reside in a library. Such a set of statements, called a cataloged procedure, can
be included in your job by means of a single JCL statement naming the set.
Figure 6 shows the concept of a cataloged procedure.

There are several cataloged procedures available for assembler jobs. They are
described in the following sections.

Input

Stream

Procedure
DATA Library

/I EXEC PRCD

/I JOB

Resulting Job Stream

Figure 6. Cataloged Procedure Concept

26 Assembler H Version 2 Programming Guide

Job Control Statements for Assembler Jobs
The following sections show you how to invoke the assembler for simple jobs,
using cataloged procedures, and list the job control statements that make up
the four assembler cataloged procedures.

Simple Assembly and Execution
This section gives the minimum JCL statements needed for two simple
assembly jobs:

• 	 Assembly of your program to produce a listing and an object deck
• 	 Assembly and execution of your program

Both jobs use cataloged procedures to call the assembler.

Assembly
To assemble your program, use the following JCL statements:

Iljobname JOB accountno,progrname,t1SGLEVEL=1 (1)
I I EXEC ASt1HC (2)
IISYSIN DD * (3)

(your source program)

Notes:

1. 	 Identifies the beginning of your job to the operating system. 'jobname'is
the name you assign to the job. 'accountno' specifies the account to which
your job is charged, and 'progrname' is the name of the programmer
responsible for the job. 'MSGLEVEL= l' specifies that the job control state­
ments connected with this job are to be listed. Check what parameters are
required at your installation and how they must be specified.

2. 	 Calls the cataloged procedure ASMHC. As a result, a number of job control
statements are included in the job from the procedure library. ASMHC is
described under "Cataloged Procedure for Assembly (ASMHC)" on
page 38; an expanded job stream is shown there.

3. 	 Specifies that the assembler language source program follows immediately
after this statement.

These statements cause the assembler to assemble your program and to
produce a listing (described in "Chapter 2. Using the Assembler Listing") and
an object module punched on cards (described in Appendix C, "Object Deck
Output"). If you do not want any object module cards to be punched during the
job, use the following statements:

Iljobname JOB accountno,progrname,MSGLEVEL=l
II EXEC ASMHC,PARM=NODECK
IISYSIN DD *

(your source program)

Note: The second parameter (PARM) specifies the assembler option NODECK,
which tells the assembler not to produce any punched object module on
SYSPUNCH. For a full discussion of assembler options, see "Assembler H
Options" on page 29.

Chapter 4. Using the Assembler 27

Examples:

,PARM=DECK 	 Only one option specified.

,PARM='LINECOUNT(48), 	 LINECOUNT, FLAG, SYSPARM, and

XREF must be surrounded by

single quotation marks.

,PARM=(DECK,NOOBJECT) More than one option is specified.
or None of them require quotation

,PARM='DECK,NOOBJECT' marks.

,PARM='DECK,NOLIST,SYSPARM(PARAM), More than one option is specified.
or SYSPARM must appear within

,PARM=(DECK,NOLIST, 'SYSPARM(PARAM) ') quotation marks.
or

,PARM=(DECK, 'NOLIST,SYSPARM(PARAM) ')

,PARM=(DECK,NOLIST, 'LINECOUNT(35)', 	 The whole field must be enclosed in
NOALIG~j, NORLD) 	 parentheses because it is continued onto

another card. The LINECOUNT option must
be within single quotation marks,
and the portions of the field that are
enclosed within quotation marks cannot
continue onto another card.

Note: Even though the formats of some of the options previously supported by
Assembler H have been changed, you can use the old formats for the following
options:

ALGN (now ALIGN), NOALGN (NOALIGN), LINECNT=nn (LINECOUNT(nn)),

LOAD (OBJECT), NOLOAD (NOOBJECT), MULT (BATCH), NOMULT (NOBATCH),

XREF (XREF(FULL)), and MSGLEVEL=nn (FLAG(nnn)).

The IBM-supplied option defaults are underlined in the list below.

ALIGN I NOALIGN
specifies whether or not alignment checking is done.

If ALIGN is specified, the assembler does not suppress the alignment error
diagnostic message; all alignment errors are diagnosed.

If NOALIGN is specified, the assembler suppresses the diagnostic message
"IEV033 ALIGNMENT ERROR" if fixed point, floating point, or logical data
referred to by an instruction operand is not aligned on the proper boundary.
The message will be produced, however, for references to instructions that
are not aligned on the proper (halfword) boundary or for data boundary vio­
lations for privileged instructions such as LPSW. In addition, DC, DS, DXD,
or CXD constants, usually causing alignment, are not aligned.

BATCH I NOBATCH
specifies single or multiple assemblies.

If BATCH is specified, the assembler will do multiple (batch) assemblies
under the control of a single set of job control language cards. The source
decks must be placed together with no intervening /* card; a single /* card
must follow the final source deck.

If NOBATCH is specified, the BATCH option is suppressed.

30 Assembler H Version 2 Programming Guide

OBCS I NOOBCS
specifies whether or not the assembler will accept double-byte data, as
summarized in Assembler H Version 2 Language Reference for details on
how to program for double-byte data.

DECK I NODECK
specifies whether or not the object module is placed on the device specified
in the SYSPUNCH DD statement.

ESD I NOESD
specifies whether or not the assembler will print an ESD (external symbol
dictionary) with the listing.

FLAG(n I ID
specifies the message level-the lowest severity code for which error mes­
sages are to be printed during assembly. Error diagnostic messages below
severity code n will not appear in the listing, and will not be used to set a
condition code. Diagnostic messages can have a severity code of 0, 4, 8,
12, 16, or 20 (0 is the least severe). MNOTEs can have a severity code of 0
through 255.

Example: FLAG(8) will suppress messages for severity codes 0 through 7.

LlNECOUNT(n I ~
specifies the number of lines to be printed between headings. The permis­
sible range is 1 to 32767 lines.

LIST I NOLIST
specifies whether or not an assembler listing is printed.

NOLIST overrides the options ESD, RLD, XREF, and LlNECOUNT.

OBJECT I NOOBJECT
specifies whether or not an object module is placed on the device specified
in the SYSLIN DD statement.

The OBJECT and DECK options are independent of each other. Both or
neither can be specified. The output on SYSLIN and SYSPUNCH is iden­
tical, except that the control program closes SYSLIN with a disposition of
LEAVE, and SYSPUNCH with a disposition of REREAD.

RENT I NORENT
specifies whether or not the assembler checks for a possible coding vio­
lation of program reenterability. Non-reentrant code is identified by an
error message, but is not exhaustively checked, because the assembler
cannot check the logic of the code. Therefore, it is possible to have
nonreentrant code not flagged.

RLD I NORLD
specifies whether or not the assembler prints an RLD (relocation dictionary)
as part of the listing.

SYSPARM(char-string I empty-string)
specifies the character string to be used as the default value of the
&SYSPARM system variable symbol. The assembler uses&SYSPARM as a
read-only SETC variable. The function of &SYSPARM is explained in
Assembler H Version 2 Language Reference.

Chapter 4. Using the Assembler 31

Because of JCL restrictions, the length of the SYSPARM value is limited (as
explained in Note below). Two single quotation marks are needed to repre­
sent a single quotation mark, and two ampersands to represent a single
ampersand. For example:

PARr1= I OBJECT, SYSPARM ((&&AM, I I EO) • FY) I

assigns the following value to &SYSPARM:

(&AM, I EO) •FY

Any parentheses inside the string must be paired. If you call the assembler
from a problem program (dynamic invocation), SYSPARM can be up to 256
characters long; otherwise, it is limited to 56 characters (see Note below).

The defau It is SYSPARM ().

Note: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters, unless you use symbolic
procedure parameters to substitute for the value, or the value contains
commas that can be used as breaking points between cards. Consider the
following example (the underlined characters indicate columns 1, 4, 13, and
68, respectively):

II EXEC ASMHC,PARM=(OBJECT,NODECK,
LI ~SYSPARt1(~BCD ••••••••••••••••••••••••••••••••••••• .!)')

Because SYSPARM uses parentheses, it must be surrounded by single quo­
tation marks. Thus, it cannot be continued onto a continuation card. The
leftmost column that can be used is column 4 on a continuation card. A
quotation mark and the keyword, as well as the closing quotation mark,
must appear on that line. In addition, either a right parenthesis, indicating
the end of the PARM field, or a comma, indicating that the PARM field is
continued on the next card, must be coded before or in the last column of
the statement field (column 71).

TERM I NOTERM
specifies whether or not a summary of error diagnostics is written to the
SYSTERM data set for use in sending error messages to a TSO terminal.

TEST I NOTEST
specifies or not the object module contains the special source symbol table
required by the test translator (TESTRAN) routine.

TEST is ignored if both NODECK and NOOBJECT are specified.

XREF(FULL) I XREF(SHORT) I NOXREF
specifies whether or not cross-reference information is listed.

If XREF(FULL) is specified, the assembler listing contains a cross-reference
table of all symbols used in the assembly. This includes symbols that are
defined but never referenced. The assembler listing also contains a cross­
reference table of literals used in the assembly.

If XREF(SHORT) is specified, the assembler listing contains a cross­
reference table of all symbols that are referred to in the assembly. Any
symbols defined but not referred to are not included in the table. The
assembler listing also contains a cross-reference table of literals used in
the assembly.

If NOXREF is specified, no cross-reference tables are printed.

32 Assembler H Version 2 Programming Guide

Default Options
The IBM-supplied option defaults are underlined in the list above.

However, these may not be the default options in effect in your installation; the
defaults can be respecified when Assembler H is installed. For example,
NODECK can be made the default in place of DECK. Also, a default option that
you cannot override can be specified during installation.

The cataloged procedures described in this book assume the default entries.
"Overriding Statements in Cataloged Procedures" on page 44 tells you how to
override them. First, however, check whether any default options have been
changed, or whether there are any you cannot override at your installation.

Assembler Data Sets
Assembler H requires the following data sets, as shown in Figure 7 on page 34:

SYSUT1 A utility data set used as intermediate external storage when
processing the source program.

SYSIN An input data set containing the source statements to be proc­
essed.

In addition, the following five data sets may be required:

SYSLIB 	 A data set containing macro definitions (for macro definitions
not defined in the source program) and/or source code to be
called for through COPY assembler instructions.

SYSPRINT 	 A data set containing the assembly listing (unless the NOLIST
option is specified).

SYSTERM 	 A data set containing essentially a condensed form of
SYSPRINT, principally error flagged statements and their error
messages (only if the TERM option is specified).

SYSPUNCH 	 A data set containing object module output, usually for
punching (unless the NODECK option is specified).

SYSLIN 	 A data set containing object module output usually for the
linkage editor (only if the OBJECT option is specified).

Chapter 4. Using the Assembler 33

SYSIN

SYSLIB SYSUT1

Assembler H
(overflow)

(Macro and
COPY Calls)

SYSLIN

'(Object Modules)"

(SO Character Card Image)

Figure 7. Assembler H Data Sets

The data sets listed above are described in the text following Figure 8 on
page 35 and Figure 9 on page 36. The ddname that normally must be used in
the DO statement describing the data set appears as the heading for each
description. The characteristics of these data sets, those set by the assembler
and those you can override, are shown in Figure 8 and Figure 9.

34 Assembler H Version 2 Programming Guide

SYSPRINT &
Data Set SYSUT1 SYSPUNCH SYSTERM SYSLIN SYSIN SYSLIB

Access BSAM BSAM BSAM BSAM BSAM BPAM

Method

Logical Fixed at Fixed at 80 Fixed at 121 Fixed at Fixed at .Fixed at

Record BLKSIZE 80 80 80

Length

(LRECL)

Block Size (1) (2) (2) (2) (2) (3)

(BLKSIZE)

Record (4) (4,6) (5,6) (4,6) (4,6) (4,6)

Format

(RECFM)

Number of (1) (7) (7) (7) (7) Not

Channel Pro­ Appli ­

grams (NCP) cable

Figure 8. Assembler Data Set Characteristics

Notes to Figure 8:

1. 	 You can specify a block size (BLKSIZE) between 2008 and 5100 bytes in the
DD statement or in the data set label. BLKSIZE should be a multiple of 8; if
it is not, it will be rounded to the next lower multiple of 8. If you do not
specify BLKSIZE, the assembler sets a default block size based on the
device used for SYSUT1.

"Chapter 6. Calculating Storage Requirements" discusses the reasons for
changing the default block size.

2. 	 If specified, BLKSIZE must equal LRECL or a multiple of LRECL. If BLKSIZE
is not specified, it is set equal to LRECL. If BLKSIZE is not a multiple of
LRECL, it is truncated.

Refer to the appropriate Linkage Editor and Loader for the block size
requirements of SYSPUNCH and SYSLlN, if they are used as input to the
linkage editor.

3. 	 BLKSIZE be specified in the DD statement or the data set label as a mUl­
tiple of LRECL.

4. 	 Set by the assembler to F or FB if necessary.

5. 	 Set by the assembler to FM or FBM if necessary.

6. 	 You may specify B, S, or T.

7. 	 You can specify the number of channel programs (NCP) used by any

assembler data set except SYSUT1 and SYSLIB. The NCP of SYSUT1 is

fixed at 1. The assembler, however, can change your NCP specification

under certain conditions. Figure 9 on page 36 shows how NCP is calcu­

lated.

If the NCP is greater than 2, chained I/O request scheduling is set by the
assembler.

Chapter 4. Using the Assembler 35

Unit Record No Unit
Device Record Device

NCP specified :? 21 User specified User specified

NCP specified = 1 CompLlted 2 User specified(= 1)

NCP not specified Computed 2 Computed2

Figure 9. Number of Channel Program (NCP) Selection

Notes to Figure 9:

1. 	 If the NCP is greater than 2, chained I/O scheduling is set by the assembler.

2. 	 For SYSPRINT and SYSTERM data sets, the NCP set by the assembler is the
larger of 1210/BLKSIZE or 2. For SYSIN data set, the NCP set by the
assembler is the larger of 800/BLKSIZE or 2. For SYSLIN or SYSPUNCH
data sets, the NCP set by the assembler is the larger of 240/BLKSIZE or 2.

ddname SYSUT1: The assembler uses this utility data set as an intermediate
external storage device when processing the source program. The input/output
device assigned to this data set must be a direct-access device. The assem­
bler does not support multivolume utility data sets.

The following are the devices supported for this data set: 3330/3333, 3340/3344,
3350, 3375, and 3380.

ddname SYSIN: This data set contains the input to the assembler-the source
statements to be processed. The input/output device assigned to this data set
may be either the device transmitting the input stream, or another sequential
input device that you have designated. The DD statement describing this data
set appears in the input stream. The IBM-supplied procedures do not contain
this statement.

ddname SYSLlB: From this data set, the assembler obtains macro definitions
and assembler language statements to be called by the COpy assembler
instruction. It is a partitioned data set; each macro definition or sequence of
assembler language statements is a separate member, with the member being
the macro instruction mnemonic or COPY operand name.

The data set may be defined as SYS1.MACLIB or your private macro definition
or COPY library. SYS1.MACLIB contains macro definitions for the system
macro instructions provided by IBM. Your private library may be concatenated
with SYS1.MACLIB. The two libraries must have the same logical record length
(80 bytes), but the blocking factors may be different. The DD statement for the
library with the largest block size must appear first in the job control language
for the assembly (that is, before any library DD statements). The appropriate
JCL Reference explains the concatenation of data sets.

ddname SYSPRINT: This data set is used by the assembler to produce a
listing. Output may be directed to a printer, a magnetic tape, or a direct-access
storage device. The assembler uses the machine code carrier control charac­
ters for this data set.

36 Assembler H Version 2 Programming Guide

ddname SYSTERM: This data set is used by the assembler to store a summary
form of SYSPRINT containing flagged statements and their associated error
messages. It is intended for output to a terminal, but can also be routed to a
printer, a magnetic tape, or a direct-access storage device. The assembler
uses the machine code carrier control character to skip to a new line for this
data set.

ddname SYSPUNCH: The assembler uses this data set to produce the object
module. The input/output unit assigned to this data set may be either a card
punch or an intermediate storage device capable of sequential access.

ddname SYSLlN: This is a direct-access storage device, a magnetic tape, or a
card punch data set used by the assembler. It contains the same output text as
SYSPUNCH. It is used as input for the linkage editor.

Number of Channel Programs (NCP)
The number of channel programs can be specified by the user or set by the
assembler. The number will vary depending upon whether or not a unit record
device is used. Figure 9 on page 36 shows how the NCP selection is made.

Return Codes
Assembler H issues return codes for use with the COND parameter of the JOB
and EXEC job control language statements. The COND parameter enables you
to skip or to execute a job step, depending on the results (indicated by the
return code) of a previous job step. It is explained in the appropriate JeL Ref­
erence.

The return code issued by the assembler is the highest severity code that is
associated with any error detected in the assembly or with any MNOTE
message produced by the source program or macro instructions. See
Appendix 0, "Assembler H Messages" for a listing of the assembler errors and
their severity codes.

Cataloged Procedures
Often the same set of job control statements is used over and over again (for
example, to specify the compilation, linkage editing, and execution of many dif­
ferent programs). To save programming time and to reduce the possibility of
error, sets of standard series of EXEC and DO statements can be prepared once
and cataloged in a system library. Such a set of statements is termed a cata­
loged procedure and can be invoked by one of the following statements:

//stepname EXEC procname
//stepname EXEC PROC=procname

The specified procedure is read from the procedure library (SYS1.PROCLlB)
and merged with the job control statements that follow this EXEC statement.

Chapter 4. Using the Assembler 37

This section describes four IBM cataloged procedures: a procedure for assem­
bling (ASMHC); a procedure for assembling and linkage editing (ASMHCL); a
procedure for assembling, link-editing, and executing (ASMHCLG); and a proce­
dure for assembling and loader executing (ASMHCG).

Cataloged Procedure for Assembly (ASMHC)
This procedure consists of one job step: assembly. The name ASMHC must be
used to call this procedure. The result of execution is an object module, in
punched card form, and an assembler listing. (See also "Simple Assembly and
Execution" on page 27 for more details and another example.)

In the following example, input enters via the input stream. An example of the
statements entered in the input stream to use this procedure is:

//jobname JOB
//stepname EXEC PROC=ASMHC
//SYSIN DO *

source program statements

/* 	 (delimiter statement)

The statements of the ASMHC procedure are read from the procedure library
and merged into the input stream.

Figure 10 shows the statements that make up the ASMHC procedure.

IIC EXEC PGI·I·IEV90,REGION·ZOOK (1)
//SYSLIB DD DSN·SYSUIACLIB, DISp·SHR (2)
//SYSUTl DD UNIT· (SYSDA, SEp·SYSLI B) ,SPACE= (CYL, (10,5)) ,DSN·&SYSUTl (3)
/ISYSPUNCH DO SYSOUT·B,DCB·(BLKSIZE=BOO) ,SPACE·(CYL, (5,5,0)) (4)
//SYSPRINT DD SYSOUT=A, DCB· (BLKS IZE=35(9) ,UNIT= (, SEP= (SYSUTl, SYSPUNCH)) (5)

Figure 10. Cataloged Procedure for Assembly (ASMHC)

Notes to Figure 10:

1. 	 PARM = or COND = parameters may be added to this statement by the
EXEC statement that calls the procedure (see "Overriding Statements in
Cataloged Procedures"). The system name IEV90 identifies Assembler H.

2. 	 This statement identifies the macro library data set. The data set name
SYS1.MACLIB is an IBM designation.

3. 	 This statement specifies the assembler utility data set. The device class
name used here, SYSDA, represents a direct-access unit. The I/O unit
assigned to this name is specified by the installation when the operating
system is generated. A unit name such as 3330 may be substituted for
SYSDA.

4. 	 This statement describes the data set that will contain the object module
produced by the assembler.

5. 	 This statement defines the standard system output class, SYSOUT = A, as
the destination for the assembler listing.

38 Assembler H Version 2 Programming Guide

Cataloged Procedure for Assembly and Linkage Editing (ASMHCL)
This procedure consists of two job steps: assembly and linkage editing. The

........ 	 name ASMHCL must be used to call this procedure. Execution of this proce­
dure results in the production of an assembler listing, a linkage editor listing,
and a load module.

The following example illustrates input to the assembler via the input job
stream. SYSLIN contains the output from the assembly step and the input to
the linkage edit step. It can be concatenated with additional input to the linkage
editor as shown in the example. This additional input can be linkage editor
control statements or other object modules.

An example of the statements entered in the input stream to use this procedure
is:

//jobname JOB
I/stepname EXEC PROC=ASMHCL
//C.SYSIN DO *

source program statements

/*
//L.SYSIN DO *

object module or linkage editor control statements
/*

Note: IIL.SYSIN is necessary only if the linkage editor is to combine modules
or read linkage editor control information from the job stream.

Chapter 4. Using the Assembler 39

Figure 11 shows the statements that make up the ASMHCl procedure. Only
those statements not previously discussed are explained.

IIC EXEC PGI~= IEV90, PARH=OBJ ECT, REGION=200K

IISYSLlB DD DSN=SYSl.I·IACLlB, DI SP=SHR

IISYSUTl DO UNIT=(SYSDA,SEP=SYSLIB),SPACE=(CYL,(lO,5)),DSN=&SYSUTl

IISYSPUNCH DO SYSOUT=B,DCB=(BLKSIZE=BOO),SPACE=(CYL,(5,5,O))

IISYSPRINT DO SYSOUT=A,DCB=(BLKSIZE-3509),UNIT-(,SEP-(SYSUTl,SYSPUNCH))

IISYSLlN DO DISP-(,PASS),UNIT-SYSOA,SPACE-(CYL,(5,5,O)), (1)

II DCB-(BLKSIZE-400),DSN=&&LOADSET

IlL EXEC PGH=IEWL,PARH-'HAP,LET,LIST,NCAL',REGION=96K,COND-(B,LT,C) (2)

IISYSLlN DO DSN=&&LOADSET,DISP=(OLD,DELETE) (3)

II DO DDNAt·IE =SYS IN (4)

IISYSLflOD D DISP- (, PASS) , UNIT-SYSDA, SPACE- (CYL, (2,1,2)) , DStl=&GOSET (GO) (5)

IISYSUTl DO UNIT-SYSDA,SPACE-(CYL,(3,2)),DSN=&SYSUTl (6)

IISYSPRINT DO SYSDUT-A,DCB-(RECFH=FB,BLKSIZE-3509) (7)

Figure 11. Cataloged Procedure for Assembling and Link-Editing (ASMHCL)

Notes to Figure 11:

1. 	 In this procedure, the SYSLIN DO statement describes a temporary data set,
the object module, which is passed to the linkage editor.

2. 	 This statement initiates linkage editor execution. The linkage editor options
in the PARM field cause the linkage editor to produce a cross-reference
table, a module map, and a list of all control statements processed by the
linkage editor. The NCAl option suppresses the automatic library call func­
tion of the linkage editor.

3. 	 This statement identifies the linkage editor input data set as the same one
(SYSLlN) produced as output from the assembler.

4. 	 This statement is used to concatenate any input to the linkage editor from

the input stream (object decks and/or linkage editor control statements)

with the input from the assembler.

5. 	 This statement specifies the linkage editor output data set (the load
module). As specified, the data set will be deleted at the end of the job. If
it is desired to retain the load module, the DSN parameter must be respeci­
fied and a DISP parameter added. See "Overridin{l Statements in Cata­
loged Procedures." If the output of the linkage editor is to be retained, the
DSN parameter must specify a library name and a member name at which
the load module is to be placed. The DISP parameter must specify either
KEEP or CATlG.

6. 	 This statement specifies the utility data set for the linkage editor.

7. 	 This statement identifies the standard output class as the destination for the
linkage editor listing.

40 Assembler H Version 2 Programming Guide

Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG)
This procedure consists of three job steps: assembly, link-editing, and exe­
cution.

The name ASMHCLG must be used to call this procedure. An assembler
listing, an object deck. and a linkage editor listing are produced.

The statements entered in the input stream to use this procedure are:

//jobname JOB
//stepname EXEC PROC=ASMHCLG
//C.SYSIN DD *

source program statements

/*

//L.SYSIN DO *

object module or linkage editor control statements

/*
//G.ddname DD (parameters)
//G.ddname DD (parameters)
//G.ddname DO *

problem program input

/*

Notes:

1. 	 //L.SYSIN is necessary only if linkage editor is to combine modules or read
linkage editor control information from the job stream.

2. 	 //G.ddname statements are included only if necessary.

Chapter 4. Using the Assembler 41

Figure 12 shows the statements that make up the ASMHCLG procedure. Only
those statements not previously discussed are explained in the figure.

IIC EXEC PGH=IEV90,PARH=OBJECT,REGION=200K

IISYSLIB DO DSN=SYS 1. ftACLlB, DISP=SHR

IISYSUTl DO UNIT=(SYSOA,SEP=SYSlIB},SPACE=(CYl,(lO,5}},DSN=&SYSUTl

IISYSPUNCH DO SYSOUT=B,DCB=(BlKSIZE=BOO},SPACE=(CYl,(5,5,O}}

IISYSPRINT DO SYSOUT=A,DCB=(BlKSIZE=3509},UNIT=(,SEP=(SYSUT1,SYSPUNCH}}

IISYSlIN DO OISP=(,PASS},UNIT=SYSDA,SPACE=(CYl,(5,5,O}},

II DCB=(BlKSIZE=400},OSN=&&lOADSET

III EXEC PGH= IH/l, PARI~=' I-tAP ,lET, LI ST, NCAl ' ,REGION=96K, CONO= (8, l T ,C)

(I}
IISYSLIN DO DSN=&&lOADSET,DISP=(OlO,OElETE}
I I DO DDNAftE=SYSIN
I ISYSLt~OD DO DISP=(,PASS},UNIT=SYSDA,SPACE=(CYl,(2,l,2}},OSN=&GOSET(GO)

(2)
IISYSUTl DO UNIT=SYSDA,SPACE=(CYl,(3,2}},DSN=&SYSUTl
IISYSPRINT DO SYSOUT=A,DCB=(RECFH=FB,8lKSIZE=3509}
IIG EXEC PGH=*. L. SYSlfIOO,cmw= «B,lT,C), (4,l T ,l)} (3)

Figure 12. Cataloged Procedure for Assembly, Link-Editing, and Execution (ASMHCLG)

Notes to Figure 12:

1. 	 The LET linkage editor option specified in this statement causes the linkage
editor to mark the load module as executable even though errors were
encountered during processing.

2. 	 The output of the linkage editor is specified as a member of a temporary
data set, residing on a direct-access device, and is to be passed to a fol­
lowing job step.

3. 	 This statement initiates execution of the assembled and link-edited
program. The notation *.L.SYSLMOD identifies the program to be executed
as being in the data set described in job step L by the DD statement named
SYSLMOD.

Cataloged Procedure for Assembly and Loader Execution (ASMHCG)
This procedure consists of two job steps: assembly and loader execution.
Loader execution is a combination of linkage editing and loading the program
for execution. Load modules for program libraries are not produced. (See also
"Simple Assembly and Execution" on page 27 for more details and another
example.)

42 Assembler H Version 2 Programming Guide

The statements entered in the input stream to use this procedure are:

//jobname JOB

//stepname EXEC PROC=ASMHCG

//C.SYSIN DD *

source program

/*
//G.ddname DD (parameters)

//G.ddname DO (parameters)

//G.ddname 00 *

problem program input

/*

Note: IIG,ddname statements are included only if necessary,

Figure 13 shows the statements that make up the ASMHCG procedure, Only
those statements not previously discussed are explained in the figure,

The name ASMHCG must be used to call this procedure. Assembler and
loader listings are produced.

IIC EXEC PGH= IEV90, PARt,I=OBJ ECT, REGI ON=200K

IISYSLIB DO DSN=SYS1.HACLIB,DISP=SHR

IISYSUTl DO UNIT=(SYSDA,SEP=SYSLIB) ,SPACE=(CYL, (10,5)) ,DSN=&SYSUTl

IISYSPUNCH DO SYSOUT=B,DCB=(BLKSIZE=800),SPACE=(CYL,(5,5,O))

IISYSPRINT DO SYSOUT=A,DCB=(BLKSIZE=3509),UN1T=(,SEP=(SYSUT1,SYSPUNCH))

IISYSLIN DO DISP=(,PASS),UNIT=SYSDA,SPACE=(CYL,(5,5,O)),

II DCB=(BLKSIZE=400),DSN=&&LOADSET

IIG EXEC PGt~=LOADER, PARt,l= '11AP, LET, PRItH, NOCALL ' (1)

IISYSLIN DO DSN=&&LOADSET,DISP=(OLD,DELETE) (2)

II DO D!iNA~IE=SYSIN

IISYSLOUT DO SYSQUT=A (3)

Figure 13, Cataloged Procedure for Assembly and Loader Execution (ASMHCG)

Notes to Figure 13:

1, 	This st?tement initiates loader execution, The loader options in the

PARM = field cause the loader to produce a map and print the map and

diagnostics, The NOCALL option is the same as NCAl for the linkage

editor, and the lET option is the same as for the linkage editor.

2, 	 This statement defines the loader input data set as the same one produced
as output by the assembler.

3, 	 This statement identifies the standard output class as the destination for the
loader listing,

Chapter 4, Using the Assembler 43

Overriding Statements in Cataloged Procedures

EXEC Statements

Any parameter in a cataloged procedure can be overridden except the PGM =
parameter in the EXEC statement. Such overriding of statements or fields is
effective only for the duration of the job step in which the statements appear.
The statements, as stored in the procedure library of the system, remain
unchanged.

Overriding for the purposes of respecification, addition, or nullification is
accomplished by including in the input stream statements containing the
desired changes and identifying the statements to be overridden.

Any EXEC parameter (except PGM) can be overridden. For example, the
PARM = and COND = parameters can be added or, if present, respecified, by
including them in the EXEC statement calling the procedure, the notation
PARM.stepname =, or COND.stepname =, followed by the desired parameters.
"Stepname" identifies the EXEC statement within the procedure to which the
modification applies.

If the procedure consists of more than one job step, a PARM.procstepname =
or COND.procstepname = parameter may be entered for each step. The
entries must be in order (PARM.procstepname1 =, PARM.procstepname2 =,
etc.).

REGION Parameter of EXEC or JOB Statement

DO Statements

If OK, OM, or a value greater than 16M is specified, the results will be unpredict­
able.

All parameters in the operand field of DD statements may be overridden by
including in the input stream (following the EXEC card calling the procedure) a
DO statement with the notation //procstepname.ddname in the name field.
"Procstepname" refers to the job step in which the statement identified by
"ddname" appears.

Note: If more than one DD statement in a procedure is to be overridden, the
overriding statements must be in the same order as the statements in the pro­
cedure.

44 Assembler H Version 2 Programming Guide

Examples of Cataloged Procedures
1. 	 In the assembly procedure ASMHC (Figure 10 on page 38), the production

of a punched object deck could be suppressed and the UNIT = and
SPACE = parameters of data set SYSUT1 respecified, by including the fol­
lowing statements in the input stream:

Iistepname EXEC PROC=ASMHC, X
II PARM=NODECK
IISYSUTl DO UNIT=3330, X
II SPACE=(200,(300,40)) X
IISYSIN DO *

source statements

1*

2. 	 In procedure ASMHCLG (Figure 12 on page 42), suppressing production of
an assembler listing and adding the COND = parameter to the EXEC state­
ment, which specifies execution of the linkage editor, may be desired. In
this case, the EXEC statement in the input stream would appear as follows:

Iistepname EXEC PROC=ASMHCLG, X
I I PARt1.C=(NOLIST ,OBJECT), X
II COND.L=(8,LT,stepname.C)

For this execution of procedure ASMHCLG, no assembler listing would be
produced, and execution of the linkage editor job step IlL would be sup­
pressed if the return code issued by the assembler (step C) were greater
than 8.

Note: When you override the PARM field in a procedure, the entire PARM
field is overridden. Thus, in this example, overriding the LIST parameter
effectively deletes PARM = OBJECT. PARM = OBJECT must be repeated in
the override statement; otherwise, the assembler default value NOOBJECT
will be used.

3. 	 The following list shows how to use the procedure ASMHCL (Figure 11 on
page 40) to:

a. 	 Read input from a nonlabeled 9-track tape in unit 282 that has a
standard blocking factor of 10.

b. 	 Put the output listing on a tape labeled T APE10, with a data set name of
PROG1 and a blocking factor of 5.

c. 	 Block the SYSLIN output of the assembler and use it as input to the
linkage editor with a blocking factor of 5.

d. 	 Link-edit the module only if there are no errors in the assembler
(COND =0).

Chapter 4. Using the Assembler 45

e. 	 Link-edit onto a previously allocated and cataloged data set

USER. LIBRARY with a member name of PROG.

Iljobname JOB ,.."Iistepname EXEC PROC=ASMHCL, X

II COND.L=(8,NE,stepname.C)

IIC.SYSPRINT DO DSNAME=PROGl,UNIT=TAPE, X

II VOLUME=SER=TAPE18,DCB=(BLKSIZE=685)

IIC.SYSLIN DO DCB=(BLKSIZE=808)

IIC.SYSIN DO UNIT=282,LABEL=(,NL), X

II DCB=(RECFM=FBS,BLKSIZE=880)

IIL.SYSIN DO DCB=stepname.C.SYSLIN

IIL.SYLMOD DO DSNAME=USER.LIBRARY(PROG),DISP=OLD

1*

Note: The order of appearance of overriding ddnames for job step C corre­

sponds to the order of ddnames in the procedure; that is, SYSPRINT pre­

cedes SYSLIN within step C. The ddname C.SYSIN was placed last because

SYSIN does not occur at all within step C. These points are covered in the

appropriate JCL Reference.

4. 	 The following example shows assembly of two programs, link-editing of the

two assemblies into one load module, and execution of the load module.

The input stream appears as follows:

Iistepnamel EXEC PROC=ASMHC,PARM=OBJECT

IISYSLIN DO DSNAME=&LOADSET,UNIT=SYSSQ, X

II SPACE=(80,(188,50)), x

II DISP=(MOD,PASS),DCB=(BLKSIZE=888)

IISYSIN DO *

source program 1 statements

1*
Iistepname2 EXEC PROC=ASt1HCLG

IIC.SYSLIN DO DCB=(BLKSIZE=808),DISP=(MOD,PASS)

IIC.SYSIN DO
 *

source program 2 statements

1*
IIL.SYSHJ DO *

ENTRY PROG
1*
IIG.ddname DO dd cards for G step

The appropriate JCL Reference provides additional descriptions of overriding
techniques.

46 Assembler H Version 2 Programming Guide

Chapter 5. Programming Considerations

This chapter discusses some topics in assembler language programming.

Saving and Restoring General Register Contents
A problem program should save the values contained in the general registers
upon commencing execution and, upon completion, restore to the general reg­
isters these same values. Thus, as control is passed from the operating system
to a problem program and, in turn, to a subprogram, the status of the registers
used by each program is preserved. This is done through use of the SAVE and
RETURN system macro instructions.

The SAVE macro instruction should be the first statement in the program. It
stores the contents of registers 14, 15, and 0 through 12 in an area provided by
the program that pa-sses control. When a problem program is given control,
register 13 contains the address of an area in which the general contents
should be saved.

If the program calls any subprograms, or uses any operating system services
other than GETMAIN, FREEMAIN. ATTACH. and XCTL. it must first save the con­
tents of register 13 and then load the address of an 18-fullword save area into
register 13. This save area is in the problem program and is used by any sub­
programs or operating system services called by the problem program.

At completion, the problem program restores the contents of general registers
14. 15, and 0 through 12 by use of the RETURN system macro instruction (which
also indicates program completion). The contents of register 13 must be
restored before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process of saving and
restoring the contents of the registers. A complete discussion of the SAVE and
RETURN macro instructions and the saving and restoring of registers is con­
tained in the appropriate Supervisor Services and Macro Instructions manual.

Name 	 Operation Operand

BEGIN 	 SAVE (14,12)
USING BEGIN,15

ST 13,SAVEBLK+4
LA 13,SAVEBLK

L 13,SAVEBLK+4
RETURN (14,12)

SAVEBLK DC 1BF'(')'

END
/

\..."

Chapter 5. Programming Considerations 47

Program Termination
You indicate completion of an assembler language source program by using
the RETURN system macro instruction to pass control from the terminating
program to the program that initiated it. The initiating program may be the
operating system or, if a subprogram issued the RETURN, the program that
called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction may also pass a return code-a condition indicator
that may be used by the program receiving control.

If the return is to the operating system, the return code is compared against the
condition stated in the COND = parameter of the JOB or EXEC statement.

If return is to another problem program, the return code is available in general
register 15, and may be used as desired. Your program should restore register
13 before issuing the RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in the appropriate
Supervisor Services and Macro Instructions manual.

PARM Field Access
Access to information in the PARM field of an EXEC statement is gained

through general register 1. When control is given to the problem program,

general register 1 contains the address of a fullword which, in turn, contains the .."

address of the data area containing the information.

The data area consists of a halfword containing the count (in binary) of the

number of information characters, followed by the information field. The infor­

mation field is aligned to a fullword boundary. The following diagram illustrates

this process:

General Register 1

I IAddress of Fullword
L

Points

to
 Fullword

..J I
Address of Data Area PointsI I Ito

Data Area

_J
Count in Binary I I nformation Field II

48 Assembler H Version 2 Programming Guide

Macro Definition Library Additions
Source statement coding, to be retrieved by the COPY assembler instruction,
and macro definitions may be added to the macro library. The IEBUPDTE utility
program is used for this purpose. Details of this program and its control state­
ments are contained in the appropriate Utilities publication. The following
example shows how a new macro definition, NEWMAC, is added to the system
library, SYS1.MACLIB.

IICATMAC JOB l2345,BROWN.JR, ...
IISTEPl EXEC PGM=IEBUPDTE,PARM=MOD
IISYSUTl DO DSNAME=SYSl.MACLIB,DISP=OLD
IISYSUT2 DO DSNAME=SYSl.MACLIB,DISP=OLD
I/SYSPRINT DO SYSOUT=A
//SYSIN DO DATA
. / ADD LIST=ALL,NAME=NEWMAC,LEVEL=Ol,SOURCE=O

MACRO
NEWMAC &OPl,&OP2
LCLA &PARl,&PAR2

MEND

. / ENDUP

/*

The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLlB, an
existing program library, is to be updated. Output from the IEBUPDTE program
is printed on the Class A output device (specified by SYSPRINT). The utility
control statement, .I ADD, and the macro definition follow the SYSIN statement.
The .I ADD statement specifies that the statements following it are to be added
to the macro library under the name NEWMAC. When you include macro defi ­
nitions in the library, the name specified in the NAME parameter of the .I ADD
statement must be the same as the operation code of the macro definition.

Load Module Modification-Entry Point Restatement
If the editing functions of the linkage editor are to be used to modify a load
module, the entry point to the load module must be restated when the load
module is reprocessed by the linkage editor. Otherwise, the first byte of the
first control section processed by the linkage editor will become the entry point.
To enable restatement of the original entry point, or designation of a new entry
point, the entry point must have been identified originally as an external
symbol; that is, it must have appeared as an entry in the external symbol dic­
tionary. External symbol identification is done automatically by the assembler if
the entry point is the name of a control section or START statement; otherwise,
an assembler ENTRY statement must be used to identify the entry point as an
external symbol.

When a new object module is added to or replaces part of the load module, the
entry point is restated in one of three ways:

• 	 By placing the entry pOint symbol in the operand field of an EXTRN state­
ment and an END statement in the new object module

• 	 By using an END statement in the new object module to designate a new
entry point in the new object module

Chapter 5. Programming Considerations 49

http:l2345,BROWN.JR

• 	 By using a linkage editor ENTRY statement to designate either the original
entry point or a new entry point for the load module

Further discussion of load module entry points is contained in the appropriate
Linkage Editor and Loader manual.

Object Module Linkage
Object modules, whether generated by the assembler or by another language
processor, may be combined by the linkage editor to produce a composite load
module, provided each object module conforms to the data formats and linkage
conventions required. This makes it possible for you to use different program­
ming languages for different parts of your program, allowing each part to be
written in the language best suited for it. This topic discusses the use of the
CALL system macro instruction to link an assembler language main program to
subprograms produced by another processor. The appropriate Supervisor Ser­
vices and Macro Instructions manual contains additional details concerning
linkage conventions and the CALL system macro instruction.

Figure 14 on page 51 is an example of statements used to establish the assem­
bler language program linkage to FORTRAN and COBOL subprograms.

If any input/output operations are performed by called subprograms, appro­
priate DD statements for the data sets used by the subprograms must be sup­
plied. See the appropriate language programmer's guide for an explanation of
the DD statements and special data set record formats used for the processor.
See Appendix C, "Object Deck Output" for the format of the object deck.

Linking with IBM-Supplied Processing Programs
You usually use the EXEC job control statement to load and give control to a
processing program of the operating system. However, you can also load and
give control to a sort program, a utility program, or even a compiler "dynam­
ically," that is, by using a system macro instruction (LINK, XCTL, CALL, or
ATTACH) in your own program.

Note: If you use the ATTACH macro instruction, the MVS/XA object program
will not run on S/370. See MVS/Extended Architecture Conversion Notebook for
more details.

When calling a program dynamically, make sure you follow the OSIVS linking
conventions described in the appropriate Supervisor Services and Macro
Instructions manual. You must also pass certain parameters to the processing
program. These parameters give the same information to the program as you
would supply in job control statements if you called the program with an EXEC
statement. The following section describes how to call the assembler dynam­
ically. Dynamic invocation of each of the other IBM-supplied processing pro­
grams is covered in one of the manuals describing that program.

50 Assembler H Version 2 Programming Guide

ENTRPT 	 SAVE (14,12)

LR 12,15

USING ENTRPT,12

ST 13, SVAREA+4 (1)

LA 15, SVAREA

5T 15,8(13)

LR 13,15

CALL name,(Vl,V2,V3),VL (2)

L 13,5VAREA+4
RETURN (14,12)

SVAREA DC IBF'O' (3)

Vl DC (data) (4)

V2 DC (data) (4)

V3 DC (data) (4)

EHD

Figure 14. 	Sample Assembler Linkage Statements for FORTRAN or COBOL Subpro­
grams

Notes to Figure 14:

1. 	 This is an example of OSIVS linkage convention. For details, see your

system Supervisor Services and Macro Instructions manual.

2. 	 The symbol used for "name" in this statement is:

• 	 The name of a subroutine or function, when the linkage is to a
FORTRAN-written subprogram.

• 	 The name defined by the following COBOL statements in the procedure
division: ENTER LINKAGE. ENTRY'name'

• 	 The name of a CSECT or START statement, or a name used in the
operand field of an ENTRY statement in an assembler-language subpro­
gram.

The order in which the parameter list is written must reflect the order in
which the called subprogram expects the argument. If the called routine is
a FORTRAN-written function, the returned argument is not in the parameter
list: a real or double precision function returns the value in floating point
register zero; an integer function returns the value in general purpose reg­
ister zero.

When linking to FORTRAN-written subprograms, consideration must be
given to the storage requirements of IBCOM (FORTRAN execution-time I/O
and interrupt handling routines) which accompanies the compiled FORTRAN
subprogram. In some instances, the call for IBCOM is not automatically
generated during the FORTRAN compilation. VS FORTRAN Application Pro­
gramming: Library Reference provides information about IBCOM require­
ments and assembler statements used to call IBCOM.

FORTRAN-written subprograms and FORTRAN library subprograms allow
variable-length parameter lists in linkages which call them; therefore, all
linkages to FORTRAN subprograms are required to have the high-order bit
in the last parameter in the linkage set to 1. COBOL-written subprograms
have fixed-length calling linkages; therefore, for COBOL the high-order bit in
the last parameter need not be set to 1.

Chapter 5. Programming Considerations 51

3. 	 This statement reserves the save area needed by the called subprogram.
When control is passed to the subprogram, register 13 contains the address
of this area.

4. 	 When linking to a FORTRAN or COBOL subprogram, the data formats
declared in these statements are determined by the data formats required
by the FORTRAN or COBOL subprograms.

Invoking the Assembler Dynamically
Assembler H can be invoked by a problem program at execution time through
use of the CALL, LINKAGE, XCTL, or ATTACH macro instruction. If the XCTL
macro instruction is used to invoke the assembler, no user options may be
stated. The assembler will use the standard default, as set during system gen­
eration, for each option.

If the assembler is invoked by CALL, LINKAGE, or ATTACH, you may supply:

• 	 The assembler options
• 	 The ddnames of the data sets to be used during processing

Name Operation Operand

symbol CALL IEVge,(optionlist[,ddnamelist]),VL
LINKIATTACH EP=IEVge,PARAM=(optionlist[,ddnamelist]),VL=1

EP
specifies the symbolic name of the assembler. The entry point at which
execution is to begin is determined by the control program (from the library
directory entry).

PARAM
specifies, as a sublist, address parameters to be passed from the problem
program to the assembler. The first word in the address parameter list
contains the address of the option list. The second word contains the
address of the ddname list.

optionlist
specifies the address of a variable-length list containing the options. This
address must be written even if no option list is provided.

The option list must begin on a halfword boundary, that is, not also a
fullword boundary. The first two bytes contain a count of the number of
bytes in the remainder of the list. If no options are specified, the count
must be zero. The option list is free form, with each field separated from
the next by a comma. No blanks or zeros appear in the list.

ddnamelist
specifies the address of a variable-length list containing alternative
ddnames for the data sets used during compiler processing. If standard
ddnames are used, this operand may be omitted.

52 Assembler H Version 2 Programming Guide

The ddname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder of the list. Each
name of less than 8 bytes must be left-justified and padded with blanks. If
an alternative ddname is omitted, the standard name will be assumed. If
the name is omitted within the list, the 8-byte entry must contain binary
zeros. Names can be omitted from the end merely by shortening the list.
The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternative
1 SYSLIN
2 Not applicable
3 Not appli'cable
4 SYSLIB
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 Not applicable
10 Not applicable
11 Not applicable
12 SYSTERM

Note: An overriding ddname specified when Assembler H was added to the
operating system occupies the same place in the above list as the
IBM-supplied ddname it overrides. The overriding ddname can itself be
overridden during invocation. For example, if SYSWORK1 replaced
SYSUT1, it occupies position 8 in the above list. SYSWORK1 can be over­
ridden by another name during invocation.

A'

VL
specifies that the sign bit is to be set to 1 in the last word of the address
parameter list.

The appropriate JCL Reference provides additional description of overriding
techniques.

Chapter 5. Programming Considerations 53

Chapter 6. Calculating Storage Requirements

Main Storage

Fixed Storage

When Assembler H is run in a 200K-byte region, about half the region is
devoted to fixed storage for load modules, data management, and operating
system workspace. The other half is allotted to variable storage for buffers,
tables, and intermediate results. If the region size is varied, the size of the var­
iable storage will be affected. There are ways to decrease the size of fixed
storage, whether the region size is increased or kept at 200K bytes.

Fixed storage accounts for approximately 9SK bytes, of which about 86K bytes
are needed for load modules. Figure 15 on page 56 shows the assembler's
use of a 200K-byte region. Neither time nor main storage is drawn to scale.
The shaded portion represents main storage that is free at any point in time.

Figure 15 represents a series of assemblies in BATCH mode. The first few
events follow. For further details, see "Program Organization" in Assembler H
Version 2: Logic.

1. 	 Module IEV90 is loaded first.

2. 	 Module IEV90 loads modules IEVOO and IEV10, then transfers control to

module IEVOO.

3. 	 Module IEVOO loads module IEV60, opens the necessary data sets (bringing
in Data Management modules), gets all remaining free space in the region
by a GETMAIN, releases 8K bytes for OS transient use, and returns to
module IEV90.

4. 	 Module IEV90 deletes module IEVOO, loads module IEVSO, and transfers

control to module IEV10.

5. 	 Module IEV90 deletes module IEV10, loads module IEV20, and transfers

control to module IEV20.

6. 	 Module IEV90 deletes module IEV20, loads module IEV10, etc.

An installation can reduce the region size or increase the amount of variable
storage by putting one or more modules into the link pack area. Note that
approximately 6K bytes can be saved if the required BSAM data management
modules are in link pack.

Chapter 6. Calculating Storage Requirements 55

Main
Storage

86K

77K

DATA MANAGEMENT MODULES
(5K)

VARIABLE STORAGE (105K)

Buffers, Tables,
Workspace, etc.

ASSEMBLER COMMON TABLES
(9K)

...",

PASS 1 PASS 2,
(65K) REINITIALIZE

(64K)

12K

OPCODE TABLE
(6K)

6K

(MAINLINE CONTROL)
(6KI

OK
\, ...

Note: Values in bytes.
Time

Figure 15. Basic Layout for Assembler H

.I

56 Assembler H Version 2 Programming Guide

Figure 16 shows the amount of space required in link pack by the indicated
modules, and the reduced minimum region required for the assembler.

Modules 	 Space in Assembler H Region
Link Pack (in Bytes)

None 	 o 200K

IEV90 	 6K 194K

IEV10 	 133K 135K
IEV20
IEV80

IEV10 	 139K 129K
IEV20
IEV80
IEV90

Figure 16. Required Space in Link Pack

Module IEV80 was not shown in Figure 15 on page 56. It is called by IEV90 only
if an I/O error from which the system cannot recover occurs, or if Assembler H
encounters an impossible situation. Module IEV80 produces a formatted dump
of the region.

If Assembler H is in link pack, a maximum of only a few seconds is saved for
each assembly. However, if a high volume of assemblies justifies keeping two
regions active, the saving in region size shown in Figure 16 becomes more
meaningful.

Variable Storage

Buffers
The amount of main storage that module IEVOO sets aside for buffers can be
considerable. Consider the following example:

OPTIONS=BATCH,DECK,OBJECT
BLKSIZE=3288 (for SYSIN)

3368 (for SYSLIB)
3146 (for SYSPRINT)

488 (for SYSPUNCH and SYSLIN)
2 buffers for each data set

Then,

BUFFERS 	 = 2(3208+3360+3146+488+400) bytes
= 21,012 bytes

If all factors are as above except PARM = NOBATCH, then

BUFFERS 	 = MAX[(SYSIN+SYSLIB),(SYSPRINT+SYSPUNCH+SYSLIN)]
= MAX[2(3280+3360),2(3146+408+488)]
= MAX[(13,128),(7,a92)]
= 13,120 bytes

Either way, the assembler is tying up a lot of variable storage for buffers.

Chapter _6. Calculating Storage Requirements 57

Work File Blocks

Suppose 200K bytes is the size of the largest region available in a particular
installation and there is no possibility of putting Assembler H modules into link
pack. If a particularly large source deck will not assemble under Assembler H
because of a lack of variable storage, then you can attempt the following proce­
dures, in the indicated sequence, singly or in combination:

1. 	 If both the options TERM and LIST have been specified, see whether one of
them can be eliminated.

2. 	 Decrease BLKSIZE, particularly on SYSIN and SYSPRINT. The distributed
cataloged procedures (for details, see "Cataloged Procedures" on page 37)
include the following DO statement:

//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=3509)

Override these as follows:

//SYSPRINT DD SYSOUT=A,OCB=(BLKSIZE=1210)
//SYSIN DO *,OCB=(BLKSIZE=800)

Note that BLKSIZE must be a multiple of 121 for SYSPRINT and SYSTERM,
and a multiple of 80 for SYSIN, SYSLlB, SYSPUNCH, and SYSLIN.

3. 	 Copy SYSLIB to a private library, reblocking it to a smaller size. The new
BLKSIZE must be a multiple of 80. Override the SYSLIB DO statement to
indicate the new blocking factor and the new DSNAME.

4. 	 Consider the default setting of SYSUT1 described below. Specify, byover­
riding the default, a smaller BLKSIZE on the SYSUT1 DO card. See "Work
File Blocks," below, for details.

5. 	 If none of these procedures solves the problem, you are faced with the

prospect of breaking the single, large program down into two or more

smaller ones.

Assembler H keeps the ordinary symbol table and global dictionary in main
storage throughout Pass 1 (IEV10). This leads to the type of problem covered
by the above five steps. Before breaking the program into smaller ones, you
might attempt to decrease the number of symbols that are in your program or
are generated by your program.

For example, if you use the DCBD macro to define all possible symbolic fields
of a DCB and actually use only one such field, you have unknowingly put about
100 unused symbols into the symbol table. These 100 symbols occupy about
3400 bytes.

After setting aside sufficient variable storage for data set buffers, IEVOO divides
the remaining variable storage into work file blocks.

Several factors are considered in determining the block size. They include the
following:

1. 	 Many of these blocks will be spilled onto SYSUT1. For efficient utilization of
SYSUT1 space, the block sizes should be chosen from full-track, half-track,
third-track, etc., sizes corresponding to the device assigned to SYSUT1.

2. 	 The block size should be reasonable.

3. 	 For ease of internal processing, the block size should be a multiple of 8.

58 Assembler H Version 2 Programming Guide

The default size selected (that is, the largest block size satisfying 1, 2, and 3
above) for a 3330/3333 direct-access device is 4248 bytes.

The various routines in Assembler H are given one block of work space at a
time, as needed. Once obtained, the blocks are not reusable until the
requesting routine indicates that they can be returned or spilled onto SYSUT1.
Depending on the assembly and the device used for SYSUT1, this may result in
inefficient use of main storage.

For example, Pass 2 needs a block for RLDs. If SYSUT1 is a 3330 and there is
only one RLD involved, then Pass 2 ties up 4248 bytes of main storage for 8
bytes of useful information. Because there is room for fewer than 20 of these
blocks in the normal 200K-byte region, it is conceivable that the assembler
could run out of main storage in some situations.

As pointed out in the previous section, one method of attempting to remedy this
situation would be to override the block size (BLKSIZE) for SYSUT1 on the DO
statement. Thus, in the case of the 3330 (refer to "Cataloged Procedures" on
page 37), you could use the following:

//SYSUTI DD UNIT=SYSDA,DCB=(BLKSIZE=Z8S6),SPACE=(CYL,(18,5»

Strictly speaking, you do not need to restrict yourself to the natural divisors
(full, half, third, quarter) of device tracks. However, you should be aware of the
consequences of a poor choice. For example, 4248 bytes is nearly a third of a
track for the 3330; 4144 bytes bytes is also nearly a third of a track, but 4352
bytes is too big-only two 4352-byte blocks would fit on each track. In addition,
making the block size too small may cause unusually heavy I/O activity on
SYSUT1 and hinder performance. Assembler H will set the SYSUT1 block size
to the default value if you attempt to set it to less than 2008 bytes.

You can specify a BLKSIZE larger than the size of a track for the device if you
also specify the parameter RECFM = T (for track overflow); naturally, the device
used for SYSUT1 must have the track overflow feature. If the BLKSIZE specified
is larger than a track but track overflow is not specified in RECFM, the assem­
bler takes the default block size for the device.

Symbol Tables
A program containing approximately 1000 symbols, each symbol occupying
about 34 bytes of main storage work space, can be assembled in the Assembler
H 200K-byte region.

Figure 17 on page 60 can be used as a guide in assessing the amount of main
storage needed to assemble a program with a given number of symbols.

Overall Dynamic Storage
Assembler H uses BPAM to access library data and BSAM for general data
management. The assembler can run on any OSIVS system that has a virtual
storage area of 200K bytes assigned to it.

Chapter 6. Calculating Storage Requirements 59

Number of
Symbols

2000

1000

Main storage in bytes

170K

Figure 17. 	Aid in Assessing Main Storage Required by a Symbol Table with 1000 or
2000 Symbols

Auxiliary Storage Estimates

Work File Space for SYSUT1
During both Pass 1 and Pass 2, the single work file SYSUT1 is used for interme­
diate results. Distributed cataloged procedures (see "Cataloged Procedures"
on page 37) for SYSUT1 show a primary allocation of 10 cylinders and up to 15
additional secondary allocations in increments of 5 cylinders each. This should
be sufficient for most assemblies.

The amount of SYSUT1 space used is almost independent of region size. As
pointed out earlier, a poor choice of BLKSIZE for SYSUT1 could drastically
increase the direct access space needed. Whenever IEV10 fills a block that can
be spilled to SYSUT1, the block is written out to SYSUT1 in anticipation of a
need to reuse the main storage space. If this need never arises and the main
storage space is never overlaid, the data is simply not read back from SYSUT1.
However, such data is taking up space on SYSUT1.

Auxiliary Space on LlNKLIB and PROCLIB
The following list shows the number of tracks needed for the Assembler H load
modules on SYS1.LlNKLIB (or a private library) when the system uses the
OSIVS Linkage Editor or Loader. The PROCLIB uses approximately 1 track
regardless of device type.

Number of Directory Blocks: 2

Number of Tracks Required for lINKlIB:

3330 OASO - 19 3375 OASO - 8
3340 OASO - 29 3380 OASO - 6
33513 OASO - 13

60 Assembler H Version 2 Programming Guide

200K 230K

j#-	 Part 3. eMS Information

• 	 "Chapter 7. Assembler Language Programming under CMS" describes
how to assemble and execute your program, how to choose and specify the
options you need, and how to interpret the listing and diagnostic messages
issued by the assembler.

• 	 "Chapter 8. Programming Considerations" discusses various topics, such
as standard entry and exit procedures for problem programs.

Part 3. eMS Information 61

...., ..

Chapter 7. Assembler Language Programming under CMS

This chapter is for programmers who code in the assembler language under
CMS (Conversational Monitor System). It is intended to help you assemble and
execute your program, to choose and specify the options you need, and to
interpret the listing and the diagnostic messages issued by the assembler. To
use this section effectively, you should be familiar with the assembler language
described in Assembler H Version 2 Language Reference.

This chapter is composed of the following major sections:

• 	 "Introduction" describes the relationship of the assembler to CMS, and the
input for and output of the assembler.

• 	 "CMS Management of Your Assembly" describes how CMS manages the
processing of permanent and temporary files created during assembly.

• 	 "Creating an Assembler Language Program: CMS Editor" describes how
you create an assembler language program using the CMS editor. This
section also describes how to define an OSIVS data set as a CMS file.

• 	 "Using Macros" refers you to another manual for a description of CMS
As~embler macros, and describes how to add macro definitions to a macro
library and specify the order in which those macro libraries are searched.

• 	 "Assembling Your Program: HASM Command" describes the format of the
CMS HASM command.

• 	 "Assembler Options for CMS" describes how you use the assembler
options when you assemble your program.

• 	 "Assembler Data Sets and Storage Requirements" describes the assembler
data sets and storage requirements of the assembler.

• 	 "Loading and Executing Your Assembled Program" describes the com­
mands for execution and for executing more than one module in an
assembly. This section also describes CMS register usage during program
execution and how parameters are passed to the program. Finally, this
section tells you how to create a module of your program, so that it will
execute when you invoke its file name on the command line.

• 	 "Programming Aids" supplies information about the SYSTERM listing, and
about the diagnostic messages generated by CMS.

Relationship of Assembler to eMS
The assembler language program can be executed under control of CMS. This
assembler program is the same as that supplied with the OSIVS systems. For
more information about CMS, refer to VMISP CP Command Reference for
General Users and VMISP CMS Command and Macro Reference.

Chapter 7. Assembler Language Programming under CMS 63

Input

Output

As input, the assembler accepts a program written in assembler language (as
defined in the Glossary). This program is referred to as a source module.

The output from the assembler consists of an object module and a program
listing. The object module is stored on your virtual disk in a TEXT file. You can
bring it into your virtual storage and execute it by using the CMS LOAD and
START commands. The program listing lists all the statements in the module,
both in source and machine language format, and gives other important infor­
mation about the assembly, such as error messages. The listing is described
in detail in "Chapter 2. Using the Assembler Listing."

eMS Management of Your -Assembly
When you assemble a program under CMS, permanent and temporary files are
created and CMS performs certain processing steps. This section describes
how CMS manages this processing.

Files Created during Assembly
During the assembly of your program, files are created by CMS. Some files are
permanent, others temporary. The permanent files are:

• 	 An ASSEMBLE file, which is the source code used as input by the assem­
bler

• 	 The LISTING file, which contains the listing produced by the assembler,
describing the results of the assembly

• 	 The TEXT file, which contains the object code created during the assembly

A temporary file, SYSUT1, is created during assembly. It is used as a work file
during assembly of your program. Figure 18 on page 65 shows input to the
assembler and its output.

The utility files are plated on the read/write disk with the most available write
space.

The TEXT and LISTING files are placed on one of three possible disks, if they
are available:

• 	 The disk on which the source file resides
• 	 The parent disk of the above disk (if it exists)
• 	 The primary disk

If all three attempts fail to place the information on a read/write disk, the
assembly will terminate with an error message.

64 Assembler H Version 2 Programming Guide

INPUT TO ASSEMBLER ASSEMBLER OUTPUT

A1

Virtual Disk
on which your
ASSEMBLE File
resides, the A 1 Disk.

MYFILE
ASSEMBLE

A1

I~

~ Assembler
Program

r­~
MYFILE
ASSEMBLE

MYFILE

Your A1 Disk now
contains three files
with filename MYFI LE -

TEXT ASSEMBLE, TEXT,

~ MYFILE
and LISTING.

SYSUT1 LISTING
Temporary
workfile; erased
after assembly

....

Figure 18. Files Created during Assembly

File Processing by the Assembler
When assembling under CMS, two new files are created, each with the file
name of the source ASSEMBLE file, but with file types of TEXT and LISTING.
During assembly, any files residing on the virtual disk being processed, with the
file name of the file you are processing and file types of TEXT or LISTING, will
be erased. Unless you specify otherwise, the new TEXT and LISTING files
created during assembly take their place on your processing disk. These files
are erased even if you specify via NOOBJECT and NOLIST that there will be no
new files to replace them.

CMS also defines a utility file for your assembly, thus eliminating the need for
you to define it. At the end of assembly, the utility file is erased.

Creating an Assembler Language Program: CMS Editor
To create an assembler language program using CMS, you can use the CMS
EDIT command. The EDIT command invokes the CMS editor, which provides an
interactive environment for program creation, including subcommands that
allow you to perform such functions as inserting and deleting lines and auto­
matic tab setting. When you create an assembler language program under
CMS, the EDIT command is entered in the following form:

EDIT filename ASSEMBLE

where filename is the name of your file. You must ensure that you enter a
filetype of ASSEMBLE, thus specifying to the editor (and CMS) that you are cre­
ating an assembler language program. You can find a complete description of
the editor and its facilities in VMISP CMS Command and Macro Reference.

Chapter 7. Assembler Language Programming under CMS 65

When you have created your assembler language program, you use the CMS
HASM command to invoke the assembler program to assemble your program
file.

Overriding HASM File Defaults
When you issue the HASM command, default FILEDEF commands are issued for
assembler data sets. You may want to override these with explicit FILEDEF
commands. The ddnames used are:

SYSIN Input to the assembler
SYSLIB Macro/COPY library
SYSUT1 Utility work file
SYSPUNCH Object module output
SYSLIN Object module output
SYSPRINT Listing output
SYSTERM Diagnostic output

The default FILEDEF commands issued by HASM for these ddnames are:

FILEDEF SYSLIN DISK fn ASSEMBLE * (RECFM FB LRECL 88 BLOCK 3288
FILEDEF SYSLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 88 BLOCK 3288
FILEDEF SYSUT1 DISK fn SYSUT1 m4 (BLOCK 4888
FILEDEF SYSPUNCH PUNCH
FILEDEF SYSLIN DISK fn TEXT m1
FILEDEF SYSPRINT DISK fn LISTING m1 (RECFM FB BLOCK 121
FI LEDEF SYSTERt1 TERtmlAL

In the FILEDEFs for SYSUT1, SYSLlN, and SYSPRINT, the file modes 'm4' and
'm1' are established dynamically by the HASM command processor as follows:

In the FILEDEF for SYSUT1, the file mode 'm4' is set to use the read/write disk
with the most available space. For example, if three read/write disks were
accessed as the A, B, and 0 disks, and if the 0 disk had the most available
space, then 'm4' would be set to '04' for use during the assembly.

In the FILEDEFs for SYSLIN and SYSPRINT, if the assembler source file (SYSIN
input) is not on disk or is on a read-only disk, the file mode 'm1' is set to 'A1'.
If the source file is on a read/write disk, the mode letter 'm' is set to the mode
of that read/write disk. For example, if the source file were on a read/write B
disk, the file mode 'm1' would be set to 'B1'.

A FILEDEF command, issued to any of the above ddnames prior to invoking the
assembler, overrides the default FILEDEF issued by the HASM command
processor. Assume that there is an assembler source file in card deck form
that you want to assemble. If you have this card deck available to your CMS
card reader, you could issue an overriding FILEDEF command prior to assem­
bling; that is, FILEDEF SYSIN READER. Now you can invoke the assembler as
follows:

HASM SAMPLE (options

The name SAMPLE is used by the HASM as the file name for any TEXT or
LISTING files produced by the assembler. An existing TEXT and/or LISTING file
on your read/write A-disk would be replaced by new versions created by the
HASM command processor.

66 Assembler H Version 2 Programming Guide

Similarly, if you have a tape containing an assembler input file that you want to
assemble, you must issue the following command:

FILEDEF SYSIN TAPn (RECFM F LRECL 80 BLOCK 80

or, if the file were blocked 80x800, you could specify BLOCK 800 in the pre­
ceding FILEDEF. In either case, the FILEDEF would be followed by the
command HASM SAMPLE (options

You can read OSIVS data sets on CMS files by defining those data sets with the
FILEDEF command. For example,

FILEDEF SYSIN DISK OSDS ASSEMBLE fm
DSN OS DATASET (options .•.

HASM (options ...

It is also possible to assemble a member of an OSIVS partitioned data set by
using the MEMBER parameter of the FILEDEF command.

The same techniques used in these examples can be applied to other ddnames.
Care should be taken that any attributes specified for a file conform to the attri­
butes expected by the assembler for the device.

Using Macros

Assembler Macros Supported by eMS
There are several macros you can use in assembler programs. Among the ser­
vices provided by these macros are the ability to write a record to disk, to read
a record from disk, to write lines to a virtual printer, and so on. All the CMS
assembler macros are described in VMISP CMS Command and Macro Refer­
ence.

Macro Definition Library Additions
Source statement coding, to be retrieved by the COPY assembler instruction,
and macro definitions may be added to a macro library. The CMS MACLIB
command is used to create and modify CMS macro libraries. Details of this
command are contained in VMISP CMS Command and Macro Reference.

Specifying Macro Libraries
The GLOBAL command is used to identify which CMS libraries are to be
searched for macro definitions and COPY code. Private libraries and CMSLlB
may be concatenated with each other in any order by the GLOBAL command.
The format of this command is described in VMISP CMS Command and Macro
Reference.

Chapter 7. Assembler Language Programming under CMS 67

Assembling Your Program: HASM Command
Once you have created or defined a source program, you assemble the
program using the CMS HASM command. This command invokes the assem­
bler program. This section describes how you use HASM.

HASM Command Format
You use the HASM command to create an object file from a source file. The
source program can be created by the CMS editor, or it can be created
externally and defined for use under CMS by the FILEDEF command. HASM
takes the following form:

HASM filename (options[)]

where 'filename' is the name of the file you are assembling and 'options' is a
series of keywords used to specify functions associated with the assembler.
The options are described in "Assembler Options for CMS."

File Name Entry
When your file has been created by the CMS editor, you use the file name asso­
ciated with the file when you issue the HASM command. If your file has been
defined for use under CMS by the FILEDEF command, you use a dummy or
unique file name to be used by the assembler to define the LISTING and TEXT
files the assembler produces. You need not enter the standard CMS file-type
field, since the default file type is ASSEMBLE.

Assembler Options for eMS
HASM offers a number of optional facilities. For example, you can suppress
printing of your assembly listing or parts of the listing, and you can specify
whether you want an object deck or an object module. You select the options
by including appropriate keywords in the HASM command that invokes the
assembler. There are three types of options:

• 	 Simple pairs of keywords: a positive form (such as OBJECT) that requests a
facility, and an alternative negative form (such as NOOBJECT) that rejects
that facility.

• 	 Keywords that permit you to assign a value to a function (such as
LlNECOUN(50)).

• 	 HASM command processor options (such as PRINT) which are not passed
to Assembler H but are used to control certain aspects of the assembly
process. Such options are referred to in later sections as "CMS options" to
distinguish them from Assembler H options.

Each of these options has a standard or default value that is used for the
assembly if you do not specify an alternative value. The default values are dis­
cussed in "Command Defaults" below.

The HASM command processor combines ali the assembler options into a
string of characters with a comma separating each option. This string is
passed to the assembler when it is invoked. If n options are specified (n> 1),
then n-1 commas are inserted. The total number of characters in the assem­
bler options plus the number of inserted commas must not be greater than 100.

68 Assembler H Version 2 Programming Guide

The CMS options are not included in this count. You may specify the options in
any order. If contradictory options are used (for example, LIST and NOLlST),
the rightmost option (in this case, NOLlST) is used.

The command options are described under "Command Format."

Command Defaults
If you do not code a given option in the HASM command, a default option will
be assumed. The following default options are included when HASM is shipped
by IBM:

DECK, NOOBJECT, LIST, XREF(FULL), NORENT, NDTEST, NDBATCH,
ALIGN, ESD, RLD, LINECDUN(55), FLAG(S), SYSPARM(), DISK,
NUMBER, NOSTMT, NOTERM, NODSCS

However, these may not be the default options in effect at your installation. The
defaults could have been respecified when HASM was installed. For example,
RENT could be made the default in place of NORENT. Also, a default option can
be specified during installation so that you cannot override it. Similar consider­
ations apply to the assembler ddnames for which the HASM command
processor issues FILEDEFs. In the description of the HASM command, the
options and ddnames specified as being "default values" are those included
when HASM is shipped by IBM.

You should determine which default values are in effect at your installation and
whether there are any you cannot override.

Command Format
The HASM command is used to invoke Assembler H to assemble a specified
file. HASM processing and output are controlled by the options selected.
IBM-supplied option defaults are underlined in the following discussion.

Syntax --------------------------,

HASM
[filename]
[([ALIGN I NOALlGN]

[,BATCH I NOBATCH]
[,DBCS I NODBCS]
[,DECK I NODECK]
[,ESD I NOESD]
[,FLAG(n I Q)]
[,LlNECOUN(n I W]
[,LlST I NOLlST]
[,NUM I NONUM]
[,OBJECT I NOOBJECT]
[,PRINT I NOPRINT I DISK]
[,RENT I NORENT]
[,RLD I NORLD]
[,STMT I NOSTMT
[,SYSPARM(char-string I empty-string)]
[,TERM I NOTERM]
[,TEST I NOTES!]
[,XREF(FULL) I XREF(SHORT) I NOXREF])]

Chapter 7. Assembler Language Programming under CMS 69

filename
is the file name of the source file to be assembled. The file specified must
consist of fixed-length. 80-character records. If a user-issued FILEDEF for
SYSIN is active. and if the FI LEDEF specified DISK, the file name may be
omitted. If the user FILEDEF specified TAPn or READER, a "dummy" file
name must be supplied and is used to name the TEXT and LISTING files. If
no user FILEDEF for SYSIN is active, the source file must exist on an
ACCESSed disk and must have a file type of ASSEMBLE.

option-1.option-2•...•option-n
specifies the option(s) to take affect. The IBM-supplied default options are
underlined in the following list.

ALIGN I NOALIGN
specifies whether or not alignment checking is done.

If ALIGN is specified, the assembler does not suppress the alignment
error diagnostic message; all alignment errors are diagnosed.

If NOALIGN is specified, the assembler suppresses the diagnostic
message "IEV033 ALIGNMENT ERROR" if fixed-point, floating point. or
logical data referred to by an instruction operand is not aligned on the
proper boundary. The message will be produced, however. for refer­
ences to instructions that are not aligned on the proper (halfword)
boundary or for data boundary violations for privileged instructions such
as LPSW. In addition, DC, DS, DXD, or CXD constants, usually causing
alignment, are not aligned.

BATCH I NOBATCH
specifies single or multiple assemblies.

If BATCH is specified, the assembler will do multiple (batch) assemblies
under the control of a single HASM command. The source decks must
be placed together in one file. The TEXT file produced will contain mUl­
tiple object decks. The LISTING file produced will contain multiple
listings.

If NOBATCH is specified, the BATCH option is suppressed.

OBCS I NOOBCS
specifies whether or not the assembler will support double-byte data, as
summarized in Assembler H Version 2 General Information. Refer to
Assembler H Version 2 Language Reference for details on how to
program for double-byte data.

OECK I NOOECK
specifies whether or not the object module is placed on the SYSPUNCH
device.

ESO I NOESO
specifies whether or not the assembler will print an ESD (external
symbol dictionary) with the listing.

.'"

~

70 Assembler H Version 2 Programming Guide

FLAG(n I Q)
specifies the message level-the lowest severity code for which error
messages are to be printed during assembly. Error diagnostic mes­
sages below severity code n will not appear in the listing nor on the
SYSTERM device. Diagnostic messages can have severity codes of 0,
4,8, 12, 16, or 20 (0 is the least severe). MNOTEs can have a severity
code of 0 through 255.

Example: FLAG(8) will suppress messages for severity codes 0 through
7.

LlNECOUN(n I ~
specifies the number of lines to be printed between headings in the
listing. The permissible range is 1 to 32767 lines.

Note: The heading occupies 5 of these lines.

LIST I NOLIST
specifies whether or not an assembler listing is printed.

If LIST is specified, an assembler listing is produced. Note that no diag­
nostic information will be written on the SYSTERM device if NOTERM is
the Assembler H default option chosen at installation time.

If NOLIST is specified, no assembler listing is produced. This option
overrides ESD, RLD, XREF, and LlNECOUN.

NUM I NONUM
(CMS only) specifies whether or not the line number field (columns 73 to
80 of the input records) is written on the SYSTERM device for state­
ments for which diagnostic information is produced.

OBJECT I NOOBJECT
specifies whether or not the object module is placed on the SYSLIN
device.

The OBJECT and DECK options are independent of each other. Both or
neither can be specified. The output on SYSLIN and SYSPUNCH is iden­
tical, except that the control program closes SYSLIN with a disposition
of LEAVE, and SYSPUNCH with a disposition of REREAD.

PRINT I NOPRINT I DISK
(CMS only) specifies where the LISTING file is written.

If PRINT (PR) is specified, the LISTING file is written on the printer. The
LISTING file is not written on disk.

If NOPRINT (NOPR) is specified, the writing of the LISTING file is sup­
pressed. Any assembler diagnostic messages to be written to the
SYSTERM device are not affected.

If DISK (DI) is specified, the LISTING is written on a virtual disk.

RENT I NORENT
specifies whether or not a check is done on violation of program
reenterability.

Chapter 7. Assembler Language Programming under CMS 71

If RENT is specified, the assembler checks for a possible coding vio­

lation of program reenterability. Code that makes your program

nonreentrant is identified by an error message, but it cannot be an

exhaustive check as the assembler cannot check the logic of the code.

Therefore, it is possible to have nonreentrant code not flagged.

If NORENT is specified, the RENT option is suppressed.

RLD I NORLD
specifies whether or not the assembler prints an RLD (relocation dic­
tionary) with the listing.

STMTI NOSTMT
(CMS only) specifies whether or not the statement number assigned by

the assembler is written on the SYSTERM device for those statements

for which diagnostic information is produced.

SYSPARM(char-string I empty-string)
specifies the character string to be used as the default value of the
&SYSPARM system variable symbol. char-string is the value of the
system variable symbol &SYSPARM. The assembler uses &SYSPARM
as a read-only SETC variable. If no value is specified for the SYSPARM
option, &SYSPARM will be a null (empty) character string.

In the CMS environment, 'string' cannot be longer than 8 characters. If

you wish to enter a string of more than 8 characters, use the

SYSPARM(?) format. Using this form, you will be prompted at your ter­

minal with the message:

ENTER SYSPAR~~:

You may then enter as many characters as you want up to the option

limit of 100 characters. It is also necessary to use the SYSPARM(?)

form to enter parentheses and/or embedded blanks in 'string'.

TERM(n) I NOTERM
specifies the ability to stop diagnostic information of a given severity
from being written on the SYSTERM device. The value of n is a decimal
number between 0 and ?, and can be thought of as a 3-bit binary
number. It is this 3-bit "mask" that serves as the diagnostic message
filter. Consider the 3 bits to be labeled bO, b1, b2 from left to right.
Then, the following apply:

be = I suppress 'ERROR' diagnostics

bl = 1 suppress 'WARNING' diagnostics

b2 = 1 suppress 'MNOTE' diagnostics

For example, TERM(4) will suppress ERROR diagnostics, and TERM(S)

will suppress ERROR and MNOTE diagnostics.

If NOTERM is specified, the writing of all diagnostic information on the

SYSTERM device is suppressed. NOTERM has the same effect as the

option TERM(?).

Note: The TERM option under CMS is different than the TERM option
under MVS. Under CMS, the Assembler H installation-time option
TERM cannot be overridden. TERM, or NOTERM, is not passed from the
CMS interface program, HASM, to Assembler H. HASM interrogates
SYSPRINT output and determines if the line should be sent to the,
SYSTERM device. If TERM is the default option and if the default"
FILEDEFs are used, double messages are sent to the terminal. If TERM
or NOTERM is specified as an Assembler option, it is handled by HASM.

72 Assembler H Version 2 Programming Guide

TEST I NOTEST
specifies whether or not the object module contains the special source
symbol table (SYM cards).

XREF(FULL) I XREF(SHORT) I NOXREF
specifies whether or not cross-reference information is listed.

If XREF(FULL) is specified, the assembler listing contains a cross­
reference table of all symbols used in the assembly. This includes
symbols that are defined but never referenced. The assembler listing
also contains a cross-reference table of literals used in the assembly.

If XREF(SHORT) is specified, the assembler listing contains a cross­
reference table of all symbols that are referred to in the assembly. Any
symbols defined but not referred to are not included in the table. The
assembler listing also contains a cross-reference table of literals used
in the assembly.

If NOXREF is specified, no cross-reference tables are printed.

Assembler Data Sets and Storage Requirements
This section describes the data set used by the assembler. It also describes
the main storage and auxiliary storage requirements of the assembler. This
description is intended for programmers who want to alter the assembler's
region size or data set parameters.

Assembler Data Sets for eMS Users
This section describes the data sets used by the assembler to assemble your
program under CMS; these data sets are referred to as files.

ddname SYSUT1: The assembler uses this utility data set as an intermediate
external storage device when processing the source program. This data set
must be organized sequentially, and the device assigned to it must be a direct­
access device.

ddname SYSIN: This data set contains the input to the assembler-the source
statements to be processed. The input device assigned to this data set may be
DISK, READER, or TAPn, or another sequential input device that you have des­
ignated. The FILEDEF command describing this data set appears in the input
stream.

ddname SYSLlB: From this data set, whose file type must be MACLlB, the
assembler obtains macro definitions and assembler language statements that
can be called by the COpy or a macro assembler instruction. It is a partitioned
data set: Each macro definition or sequence of assembler language statements
is a separate member, with the member name being the macro instruction
mnemonic or COPY code name. The data set may be CMSLlB or a private
macro library. OSMACRO contains macro definitions for the IBM-supplied OS
macro instructions supported by CMS. DMSSP contains macro definitions for
the IBM-supplied CMS macro instructions for VM/SP. Private libraries and
CMSLlB can be concatenated with each other in any order by the GLOBAL
command.

Chapter 7. Assembler Language Programming under CMS 73

ddname SVSPRINT: This data set is used by the assembler to produce a
listing. Output may be directed to a printer, a magnetic tape, or a direct-access
storage device. The default device is DISK. Assembler H uses machine control
characters for this data set, not American National Standards Institute (ANSI)
characters. The smallest block size -recommended is 1089 bytes (with a
blocking factor of 9).

ddname SYSPUNCH: The assembler uses this data set to produce a punched
copy of the object module. The output unit assigned to this data set may be
either a card punch or an intermediate storage device capable of sequential
access. The object module is placed on the SYSPUNCH device if the assembler
option DECK is specified.

ddname SYSLlN: This is a direct-access storage device or a magnetic tape
data set used by the assembler. It contains the same output text (object
module) as SYSPUNCH. It is used as input for the CMS LOADER. The object
module is placed on the SYSLIN device if the assembler option OBJECT is
specified.

ddname SYSTERM: This data set is used by the assembler to produce diag­
nostic information. The output may be directed to a remote terminal, a printer,
a magnetic tape, or a direct-access storage device. Assembler H uses machine
control characters for this data set, not American National Standards Institute
(ANSI) characters. The smallest block size recommended is 1089 bytes (with at

blocking factor of 9).

Assembler Virtual Storage Requirements
The minimum virtual machine size required by the assembler is 344K bytes, in
addition to the amount of space needed by the operating system under which
Assembler H is running. However, better performance is generally achieved if
the assembler is run in a larger virtual machine.

If more virtual storage is allocated to the assembler, the size of buffers and
work space can be increased. The amount of storage allocated to buffers and
work space determines assembler speed and capacity.

Loading and Executing Your Assembled Program
Once you have assembled your program file, you can load and execute the
resulting TEXT file (containing object code) using the eMS LOAD and START
commands. The LOAD command causes your TEXT file to be loaded into
storage in your virtual machine and the START command begins execution of
the program. If you are assembling more than one file, use the CMS INCLUDE
command to bring the additional files into storage. These commands and the
options associated with them are described in VM/SP CP Command Reference
for General Users.

J

74 Assembler H Version 2 Programming Guide

CMS Register Usage during Execution of Your Program
eMS reserves four registers for its own use during the execution of an assem­
bler language program. When control is received from the user program, the
entry point address for the program is placed in register 15. Register 1 con­
tains the address of a parameter list, which contains any parameters passed to
the program. Register 13 contains the address of the save area. Register 14
contains the section address to return control to the control program.

Passing Parameters to Your Assembler Language Program
eMS provides you with the ability to pass parameters to an assembler lan­
guage program by means of the START command. The statement below shows
how to pass parameters to your program using the eMS START command:

START MYJOB PARMI PARM2

The parameters must be no longer than 8 characters each, and must be sepa­
rated by blanks.

eMS creates a list of the parameters for use during execution. The parameter
list for the command above would look like:

PLIST DS eD
DC CL8 'MYJOB'
DC CL8'PARM1'
DC CL8' PARI'12'
DC 8X'FF'

where the list is delimited by hexadecimal FFs.

Creating a Module of Your Program
When you are sure that your program executes properly, you may want to
create a module of it, so that you can execute it by simply invoking its file name
on the command line.

To create a module, you use the LOAD, GENMOD, and, in some cases, the
LOADMOD commands. For more information, see the section in VMISP CP
Command Reference for General Users.

Programming Aids
This section contains reference information about the assembler. It describes
the SYSTERM listing and the diagnostic messages generated by eMS.

CMS SYSTERM Listing
The SYSTERM data set is used by the assembler to store a summary form of
SYSPRINT containing flagged statements and their associated messages.

You use the assembler option TERMINAL(n) to specify that you want a
SYSTERM listing to be produced.

Each diagnosed statement in the assembly listing printed in the SYSTERM
listing is immediately followed by its associated error message. If there are
multiple error messages associated with a source statement, the source state­
ments will be listed once for each error message.

Chapter 7. Assembler Language Programming under CMS 75

To help identify the position of the statement in your program, two additional
assembler options are available:

• 	 NUMBER, which prints the line number(s) of the diagnosed statement

• 	 STMT, which prints the statement number assigned to the diagnosed state­
ment by the assembler

Format of the flagged statement:

Name Operation Operand

Line no. Statement no. Source records (columns
(opt ion NUr"IBER) (option STMT) 1-72 of the source

statement lines)

Diagnostic Messages Written by eMS
If an error occurs during execution of the HASM command, a message may be
typed at the terminal and, at completion of the command, register 15 contains a
nonzero return code.

There are two types of messages that may be issued:

• 	 Messages that are issued by the assembler (see Appendix D, "Assembler
H Messages" on page 111)

• 	 Messages that are issued directly by the HASM command processor (refer
to the following section)

The messages issued directly by the HASM command processor are in two
parts: a message code and the message text. The message code is in the form
'IEVCMSnnnt', where IEVCMS indicates that the message was generated by the
HASM command program, nnn is the number of the message, and t is the type
of message. The message text describes the error condition.

The actual message typed may not be complete. By using the CP SET (EMSG)
command, the user can specify that the entire error message be typed, or only
the error code, or only the text, or neither code nor text. VMISP CP Command
Reference for General Users contains a description of the CP SET command.

Unless NOTERM is specified, diagnostic and error messages originating in the
assembler are typed at the terminal in the form IEVnnn text. Errors detected by
the HASM command program, which terminate the command before Assembler
H is called, result in error messages (type E).

For additional information about the text, format, or codes in the messages for
HASM, see VMISP System Messages and Codes.

76 Assembler H Version 2 Programming Guide

HASM Command Error Messages

IEVCMS002E FILE 'fn ft fm' NOT FOUND.

Explanation: The filename you included in the
HASM command does not correspond to the
names of any of the files on your disks.

Supplemental Information: The variable
filename, filetype, and filemode in the text of the
message indicate the file that could not be
found.

System Action: RC = 28. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the HASM with
an appropriate filename.

IEVCMS003E INVALID OPTION 'option'.

Explanation: You have included an invalid option
with your HASM command.

Supplemental Information: The variable option in
the text of the message indicates the invalid
option.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Check the format of the
HASM command, and reissue the command with
the correct option.

IEVCMS004E IMPROPERLY FORMED OPTION
'option'.

Explanation: You have included an improperly
formed option with your HASM command.

Supplemental Information: The variable option in
the text of the message indicates the improperly
formed option.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Check the format of the
HASM command, and reissue the command with
the correct option.

IEVCMS006E NO READ/WRITE DISK ACCESSED.

Explanation: Your virtual machine configuration
does not include a read/write disk for this ter­
minal session, or you failed to specify a
read/write disk.

System Action: RC = 36. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Issue an ACCESS
command specifying a read/write disk.

IEVCMS007E FILE 'fn ft fm' DOES NOT CONTAIN
FIXED LENGTH 80 CHARACTER
RECORDS.

Explanation: The source file you specified in the
HASM command does not contain fixed-length
records of 80 characters.

Supplemental Information: The variable
filename, filetype, and filemode in the text of the
message indicate the file that is in error.

System Action: RC=32. The command cannot
be executed.

Programmer Response: You must reformat your
file into the correct record length. CMS EDIT or
COPYFILE can be used to reformat the file.

IEVCMS010E FILENAME OMITTED AND DDNAME
'SYSIN' IS UNDEFINED.

Explanation: You have not included a filename
in the HASM command, and no FILEDEF could
be found for the ddname specified.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the HASM
command and specify a filename, or issue a
FILEDEF for the ddname specified.

Chapter 7. Assembler Language Programming under eMS 77

HASM Command Error Messages

IEVCMS002E FILE 'fn ft fm' NOT FOUND.

Explanation: The filename you included in the
HASM command does not correspond to the
names of any of the files on your disks.

Supplemental Information: The variable
filename, filetype, and filemode in the text of the
message indicate the file that could not be
found.

System Action: RC = 28. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the HASM with
an appropriate filename.

IEVCMS003E INVALID OPTION 'option'.

Explanation: You have included an invalid option
with your HASM command.

Supplemental Information: The variable option in
the text of the message indicates the invalid
option.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Check the format of the
HASM command, and reissue the command with
the correct option.

IEVCMS004E IMPROPERLY FORMED OPTION
'option'.

Explanation: You have included an improperly
formed option with your HASM command.

Supplemental Information: The variable option in
the text of the message indicates the improperly
formed option.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Check the format of the
HASM command, and reissue the command with
the correct option.

IEVCMS006E NO READ/WRITE DISK ACCESSED.

Explanation: Your virtual machine configuration
does not include a read/write disk for this ter­
minal session, or you failed to specify a
read/write disk.

System Action: RC = 36. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Issue an ACCESS
command specifying a read/write disk.

IEVCMS007E FILE 'fn ft fm' DOES NOT CONTAIN
FIXED LENGTH 80 CHARACTER
RECORDS.

Explanation: The source file you specified in the
HASM command does not contain fixed-length
records of 80 characters.

Supplemental Information: The variable
filename, filetype, and filemode in the text of the
message indicate the file that is in error.

System Action: RC = 32. The com mand can not
be executed.

Programmer Response: You must reformat your
file into the correct record length. CMS EDIT or
COPYFILE can be used to reformat the file.

IEVCMS010E FILENAME OMITTED AND DDNAME
'SYSIN' IS UNDEFINED.

Explanation: You have not included a filename
in the HASM command, and no FILEDEF could
be found for the ddname specified.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the HASM
command and specify a filename, or issue a
FILEDEF for the ddname specified.

Chapter 7. Assembler Language Programming under CMS 77

IEVCMS011E FILENAME OMITTED AND FILEDEF
'SYSIN' IS NOT FOR DISK.

Explanation: You have not included a filename
in the HASM command, and the FILEDEF for the
ddname specified is not for disk.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the HASM
command and specify a filename, or reissue the
FILEDEF for the ddname specified with a device
type of 'DISK'.

IEVCMS038E FILEID CONFLICT FOR DDNAME
'SYSIN'.

Explanation: You issued a FILEDEF command
that conflicts with an existing FILEDEF for the
ddname specified.

Supplemental Information: The variable ddname
in the text of the message indicates the ddname
in error.

System Action: RC = 40. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue the FILEDEF
command with an appropriate ddname.

IEVCMS052E OPTIONS SPECIFIED EXCEED 100
CHARACTERS.

Explanation: The string of options that you spec­
ified with your HASM command exceeded 100
characters in length.

System Action: RC = 24. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue your HASM
command with fewer options specified.

IEVCMS070E INVALID PARAMETER 'parm'.

Explanation: You specified an invalid parameter
for an option in the HASM command.

Supplemental Information: The variable param··
eter in the text of the message indicates the
invalid parameter.

System Action: RC=40. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Check the format of the
option with its appropriate parameters, and
reissue the command with the correct param­
eter.

IEVCMS074E ERROR {SETTINGIRESETTING}
AUXILIARY DIRECTORY.

Explanation: One of two conditions causes this
message to be generated:

1. 	 The disk containing the assembler modules
(that is, the disk specified at auxiliary direc­
tory generation by means of the GENDIRT
mode field) has not been accessed.

2. 	 An attempt to reset the file status table has
failed, thereby removing the auxiliary direc­
tory from the search chain. Either the auxil ­
iary directory was not included in the file
status table chain, or a processing error has
caused the disk containing the assembler
modules to appear to not be accessed.

System Action: RC = 40. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Verify that the disk con­
taining the assembler modules has been
accessed using the proper mode specification
(that is, the mode specified by means of the
GENDIRT mode field when the auxiliary directory
was generated). If the error occurred resetting
the auxiliary directory, contact installation main­
tenance personnel.

78 Assembler H Version 2 Programming Guide

IEVCMS075E DEVICE 'device' INVALID FOR
INPUT.

Explanation: The device specified in your
FllEDEF command cannot be used for the input
operation that is requested in your program. For
example, you have tried to read data from the
printer.

Supplemental Information: The variable device
name in the text of the message indicates the
incorrect device that was specified.

System Action: RC = 40. Execution of the
command terminates. The system remains in
the same status as before the command was
entered.

Programmer Response: Reissue your FllEDEF
command, specifying an appropriate device for
the desired input operation.

Chapter 7. Assembler Language Programming under CMS 79

Chapter 8. Programming Considerations

This chapter discusses various topics in assembler language programming.

Saving and Restoring General Register Contents
A problem program should save the values contained in the general registers
upon commencing execution and, upon completion, restore to the general reg­
isters these same values. Thus, as control is passed from the operating system
to a problem program and, in turn, to a subprogram, the status of the registers
used by each program is preserved. This is done through use of the SAVE and
RETURN system macro instructions.

The SAVE macro instruction should be the first statement in the program. It
stores the contents of registers 14, 15, and 0 through 12 in an area provided by
the program that passes control. When a problem program is given control,
register 13 contains the address of an area in which the general contents
should be saved.

If the program calls any subprograms, or uses any operating system services
other than GETMAIN, FREEMAIN, ATTACH, and XCTL, it must first save the con­
tents of register 13 and then load the address of an 18-fullword save area into
register 13. This save area is in the problem program and is used by any sub­
programs or operating system services called by the problem program.

At completion, the problem program restores the contents of general registers
14, 15, and 0 through 12 by use of the RETURN system macro instruction (which
also indicates program completion). The contents of register 13 must be
restored before execution of the RETURN macro instruction.

The coding sequence that follows illustrates the basic process of saving and
restoring the contents of the registers. A complete discussion of the SAVE and
RETURN 	macro instructions and the saving and restoring of registers is con­
tained in the appropriate Supervisor Services and Macro Instructions.

BEGIN 	 SAVE (14,12)
USING BEGIN,15

ST 13, SAVEBLK+4
LA 13,SAVEBLK

L 13, SAVEBLK+4
RETURN (14,12)

SAVEBLK 	 DC IBF'G'

END

Chapter 8. Programming Considerations 81

L

Program Termination
You indicate completion of an assembler language source program by using
the RETURN system macro instruction to pass control from the terminating
program to the program that initiated it. The initiating program may be the
operating system or, if a subprogram issued the RETURN, the program that
called the subprogram.

In addition to indicating program completion and restoring register contents, the
RETURN macro instruction may also pass a return code-a condition indicator
that may be used by the program receiving control.

If the return is to eMS, the return code is displayed to the user.

If return is to another problem program, the return code is available in general
register 15, and may be used as desired. Your program should restore register
13 before issuing the RETURN macro instruction.

The RETURN system macro instruction is discussed in detail in the appropriate
Supervisor Services and Macro Instructions manual.

82 Assembler H Version 2 Programming Guide

Appendixes

• 	 "Appendix A, Sample Program" provides a sample program that demon­
strates many of the assembler language features.

• 	 "Appendix B, MHELP Sample Macro Trace and Dump" lists the operation,
name, and operand entries related to macro calls.

• 	 "Appendix C, Object Deck Output" describes ttle object module output
format.

• 	 Appendix D describes the Assembler H error diagnostic messages and
abnormal termination messages.

Appendixes 83

Appendix A. Sample Program

The sample program included with Assembler H when it is received from IBM is
described in this appendix. This program demonstrates some basic assembler
language, macro, and conditional assembly features, most of which are unique
to Assembler H. The letters in parentheses in the descriptions below refer to
corresponding letters in the listing that precedes the descriptions.

Appendix A. Sample Program 85

(1)..,
:I:

~ ..,

0) PAGE0) BIGNAME 	 EXTERNAL SYMBOL DICTIONARY

ASM H V 02 13.19 02/19/82» 	 TYPE 10 ADDR LENGTH LD 10 fLAGS
<Jl SYMBOL
<Jl
(1) 	

A SO 0001 000000 OOOODC 00
3 	 o PD2 CM 0002 000000 000702 00
2:

<Jl o·
:J BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES 	 PAGE 2

~

"'0
LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT 	 ASM H V 02 13.19 02/19/82

~ .., 2 A CSECT 	 00100000
tl> 	 000000

00000 3 USING *,8 	 001500003
3 5 ** 00250000
:::J 00300000to 	 6 * PUSH AND POP STATEMENTS *

7 * PUSH DOWN THE PRINT STATEMENT, REPLACE IT, RETRIEVE ORIGINAL * 00350000C)
C 	 8 ** 00400000o
c.:
(1) 	 10 PUSH PRINT SAVE DEfAULT SETTING' PRINT ON,NODATA,GEN' 00500000

11 PRINT NOGEN,DATA 00550000
t;::\ 12 WTO Mf=(E,(l)) EXPANSION NOT SHOWN 00600000

000002 01230ABC0102030A DC X'123,ABC', (REALLYLONGSYMBOL-TRANSYLVANIA)B'l, 10, 11, 1010,1011,1100' 00650000~14
OOOOOA OBOC0102030AOBOC
000012 0102030AOBOC0102
00001A 030AOBOC

15 POP PRINT 	 RESTORE DEfAULT PRINT SETTING 00700000
16 WTO Mf=(E,(l)) EXPANSION SHOWN 00750000

00001E OA23 17+ SVC 35 ISSUE SVC 01-WTO
000020 01230ABC0102030A 18 DC X'123,ABC', (REALLYLONGSYMBOL-TRANSYLVANIA)B'1,10,11,10 10,1011,1100' 00800000

20 ** 00900000
fn\ 21 * LOCTR INSTRUCT ION 	 * 00950000
~22 * LOCTR ALLOWS 'REMOTE' ASSEMBLY Of CONSTANT 	 * 01000000

23 ** 01050000

01150000
000098 26 DEECEES LOCTR 01200000
000098 00000005 27 CONSTANT DC F'5' CONSTANT CODED HERE, ASSEMBLED BEHIND LOCTR A 01250000
000040

00003C 5850 8098 00098 25 L 5,CONSTANT

28 A LOCTR 	 RETURN TO 1ST LOCTR IN CSECT A 01300000

~30 ** 01400000
~31 * 3 OPERAND EQUATE WITH fORWARD REfERENCE IN 1ST OPERAND * 01450000

32 ** 01500000

000040 1812 34 A5 LR 1,2 L'A5 2, T'A5 01600000
35 PRINT DATA 01650000

000042 000000030000
000048 413243f6A8885A30 36 A7 DC L'3.1415926535897932384626433832795028841972' L'A7 16,T'A7 L 01700000
000050 338D313198A2E037

37 &:TYPE SETC T'A7 01750000
38 A8 EQU B5,L'A5,C'&:TYPE' 01800000

OOOAO +A8 EQU B5,L'A5,C'L' 01800000

L L 	 (

(A) 	 The external symbol dictionary shows a named common statement. The
named common section is defined in statement 158.

(8) 	 Statement 10: Save the current status of the PRINT statement
(ON,NODATA,GEN).

Statement 11: Leave ON in effect, modify the other two options to
DAT A,NOGEN.

Statement 12: Macro call; note that the expansion (statement 13) is not
pri-nted.

Statement 14: All 28 bytes of data are displayed to the two-operand DC.

Statement 15: Restore prior status of PRINT.

Statements 17 and 18: The generated output of the macro WTO is shown
and only the first 8 bytes of the data are displayed.

(C) 	 Statements 14 and 18: Multiple constants are allowed in hexadecimal and
binary DC operands, and neither symbol in the duplication factor has been
defined yet. Definition occurs in statements 108 and 109.

(D) 	 Statements 26, 28, 136, and 155 illustrate use of the LOCTR assembler
instruction. This feature allows one to break control sections down into
subconfrol sections. It may be used in CSECT, DSECT, and COM. LOCTR
has many of the features of a control section; for example, all of the first
LOCTR in a section is assigned space, then the second, and so on. The
name of the control section automatically names the first LOCTR section.
Thus LOCTR A is begun, or resumed, at statements 2, 28, and 155. Note
that the location counter value shown each time is the resumed value of
the LOCTR. On the other hand, various LOCTR sections within a control
section have common addressing as far as USING statements are con­
cerned, subject to the computed displacement falling within 0 through
4095. In the sample, CONSTANT is in LOCTR DEECEES but the instruction
referring to it (statement 25) has no addressing problems.

(E) 	 Three-operand EQU. Here, we are assigning: (a) the value of 85 (not yet
defined) to A8, (b) the length attribute of A5 to A8, and (c) the type attri ­
bute of A7 to A8. If no operand is present in an EQU statement, the type
attribute is U and the length attribute is that of the first term in the
operand expression. Symbols present in the label and/or operand field
must be previously defined. Note that it is not possible to express the
type attribute of A7 directly in the EQU statement. The EQU statement at
38 could have been written

A8 EQU B5,2,C'L'

A8 EQU 85,X '2' ,X '03'

Appendix A. Sample Program 87

00 BIGNAME SAMPLE PROGRAM. 1ST TITLE STATEMENT HAS NO NAME, 2ND ONE DOES PAGE 300

~ LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82
(JJ
(JJ
@

3
C"
CD.,
::t:

~ .,
(JJ

o·
::J
I\)

""0.,
o
(0.,
III

3
2.
::J
(0

40 **
41 * IMPLICIT DECLARATION OF LOCALS &A, &C -­ USE OF SETC DUP FACTOR TO *
42 * PRODUCE SETC STRING LONGER THAN 8, MNOTE IN OPEN CODE *
43 **o 45 &LA8 SETA L'A8

F 46 &TA8 SETC T'A8
~ 47 MNOTE *,'LENGTH OF A8 &LA8, TYPE OF A8 &TA8'

G +*,LENGTH OF A8 = 2, TYPE OF A8 L

® 49 &A SETA 2
H 50 &C SETC (&A+3)'STRING,'

51 MNOTE *,'&&C HAS VALUE = &C'

o
+*,&C HAS VALUE = STRING,STRING,STRING,STRING,STRING,

53 **
54 * EXAMPLES OF 4 BYTE SELF-DEFINED TERMS, UNARY + AND - *
55 **

01900000
01950000
02000000
02050000

02150000
02200000
022500QO
02250000

02350000
02400000
0245CJOOO
02450000

02550000
02600000
02650000

Cl
c
c.
@

000058 7FFFFFFFC1C2C3C4
000060 FFFFFFFF
000064 1810

57

58

DC

LR

A(2147483647,C'ABCD',X'FFFFFFFF')

-1+2,16+-3

02750000

02800000

FFFFFFE8 60 X EQU 4*-6 02900000

~cl l,~ (

(F) 	 Set symbols &lA8 and &TA8 have not been declared in an lCl or GBl
statement prior to their use here. Therefore, they are defaulted to local
variable symbols as follows: &lA8 is an lClA SET symbol because it
appears in the name field of a SETA: &TA8 is an lCLC SET symbol
because it is first used in a SETC.

(G) 	 MNOTEs may appear in open code. As such, they have all properties of
MNOTEs inside macros, including substitution.

(H) 	 A SETe expression may have a duplicate factor. The SETA expression
must be enclosed in parentheses and immediately precede the character
string, the substring notation, or the type attribute reference.

(I) 	 Statements 57 through 60 illustrate 4-byte self-defining values and unary
+ and -. The value of X will appear later in a literal address constant
(see statement 162).

Appendix A. Sample Program 89

<D BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW PAGE 4 o

» LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82
(fl
(fl

ro 62 ***********************************~********************************** 03000000
3 63 * MIXED KEYWORDS AND POSITIONAL PARAMETERS, EXTENDED AGO AND AIF * 03050000
C'" 64 * STATEMENTS, DECLARATION AND USE OF SUBSCRIPTED SET SYMBOLS, * 03100000ro., 65 * USE OF CREATED SET SYMBOLS, EXTENDED SET STATEMENTS * 03150000

66 ** 03200000I

., ~
0) 68 MACRO 03300000

~. 69 DEMO &Pl,&KEY1=A,&P2,&:KEY2=1,&P3,&:KEY3=3,&P4 03350000
o 70 &LOC(l) SETC '2', '3' &LOC IS DIMENSIONED LCLC BY DEFAULT 034000000)
.,

=­ 71 GBLC &XA(5),&XB(20),&XC(1) 03450000
I'.) 72 &Pl &SYSLIST(4),&SYSLIST(5),&SYSLIST(6),MF=E 03500000
"'0 73 &N SETA 1 03550000
o 74 AGO (&KEY2).MNOTE1,.MNOTE2,.MNOTE3 03600000

<C 75 &N SETA 2 03650000Q; 76 MNOTE *, '&&KEY2 NOT 1,2, OR 3---USE &&KEY3 IN PLACE OF IT' 037000003 77 AI F (&KEY3 EQ 1).MNOTE1, X037500003 ~ (&KEY3 EQ 2).MNOTE2,(&KEY3 EQ 3).MNOTE3 03800000
=­ 78 MNOTE *, 'BOTH &&KEY2 AND &&KEY3 FAIL TO QUALIFY'<C 03850000

79 AGO . COMMON 03900000G)

o
C 80 .MNOTEl MNOTE *, '&&KEY&LOC(&N) l' 03950000
0- 81 AGO . COMMON 04000000 ro 82 .MNOTE2 MNOTE *, '&&KEY&LOC(&N) 2' 04050000

83 AGO . COMMON 04100000
84 .MNOTE3 MNOTE *, '&&KEY&LOC(&N) 3' 04150000
85 .COMMON L 5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS 04200000
86 &XB(2) SR 9,10 ON MODEL STATEMENTS 04250000
87 &(X&KEY1)(2) LM 12,13,=A(A5,X) ARE KEPT IN PLACE UNLESS DISPLACED 04300000
88 &P2 ST 7, &P3 AS A RESULT OF SUBSTITUTION 04350000
89 MEND 04400000

o 91 ***** DEMO MACRO INSTRUCTION (CALL) 04500000

G
93 GBLC &XA(1),&XB(2),&:XC(3) 04600000
94 &XA(1) SETC 'A' 'MISSISSIPPI' 04650000
95 &XB(l) SETC 'B';'SUSQUEHANNA' 04700000
96 &XC(l) SETC 'C', 'TRANSYLVANIA' 04750000
97 DEMO KEY3=2,WRITE,REALLYLONGSYMBOL, M04800000

A8+8*(B5-CONSTANT-7)(3),KEY1=C,(6),SF, N04850000
(8),KEY2=7 04900000

000066 1816 98+ LR 1,6 LOAD DECB ADDRESS 03-IHBRD
000068 9220 1005 00005 99+ MVI 5(1),X'20' SET TYPE FIELD 03-IHBRD
00006C 5081 0008 00008 100+ ST 8,8(1,0) STORE DCB ADDRESS 03-IHBRD
000070 58Fl 0008 00008 101+ L 15,8(1,0) LOAD DCB ADDRESS 03-IHBRD
000074 58FO F030 00030 102+ L 15,48(0,15) LOAD RDWR ROUTINE AD DR 03-IHBRD
000078 05EF 103+ BALR 14,15 LINK TO RDWR ROUTINE 03-IHBRD

104+*,&KEY2 NOT 1,2, OR 3---USE &KEY3 IN PLACE OF IT 01-00076
105+*,&KEY3 = 2 01-00082

00007A 5850 A008 00008 106+ L 5,8(,10) NOTE THAT OPCODES, OPERANDS & COMMENTS 01-00085
00007E lB9A @107+SUSQUEHANNA SR 9,10 ON MODEL STATEMENTS 01-00086
000080 98CD 8090 00090 108+TRANSYLVANIA LM 12,13,=A(A5,X) ARE KEPT IN PLACE UNLESS DISPLACED 01-00087
000084 5073 80A8 000A8 109+REALLYLONGSYMBOL ST 7,A8+8*(B5-CONSTANT-7)(3) X01-00088

+ AS A RESULT OF SUBSTITUTION

l,;/ L {j

(J) 	 The programmer macro DEMO is defined after the start of the assembly.
Macros can be defined at any point and, having been defined and/or
expanded, can be redefined. Note that the parameters on the prototype
are a mixture of keywords and positional operands. &SYSLIST may be
used. The positional parameters are identified and numbered 1, 2, 3 from
left to right; keywords are skipped over.

(K) 	 Statement 70 illustrates the extended SET feature (as well as implicit dec­
laration of &LOC(1) as an LCLC). Both &LOC(1) and &LOC(2) are
assigned values. One SETA, SETB, or SETC statement can then do the
work of many.

(L) 	 Statement 72 is a model statement with a symbolic parameter in its oper­
ation field. This statement will be edited as if it is a macro call; at this
time, each operand will be denoted as positional or keyword. At macro
call time, it will not be possible to reverse this decision. Even though
treated as a macro, it is still expanded as a machine or assembler opera­
tion.

(M) 	 Statement 74 illustrates the computed AGO statement. Control will pass
to .MNOTE1 if &KEY2 is 1, to .MNOTE2 if &KEY2 is 2, to .MNOTE3 if &KEY2
is 3 or will fall through to the model statement at 75 otherwise.

(N) 	 Statement 77 illustrates the extended AIF facility. This statement is
written in the alternative format. The logical expressions are examined
from left to right. Control passes to the sequence symbol corresponding
to the first true expression encountered, else falls through to the next
model statement.

(0) 	 Statement 87 contains a subscripted created SET symbol in the name
field. Exclusive of the subscript notation, these SET symbols have the
form &(e), where e is an expression made up of character strings and/or
variable symbols. When such a symbol is encountered at expansion time,
the assembler evaluates e and attempts to use &(value) in place of &(e).
Looking ahead, we see that DEMO is used as a macro instruction in state­
ment 97 and &KEY1 = C. Thus, the 'e' in this case is X&KEY1, which has
the value Xc. Finally, the macro-generator will use &XC(2) as the name
field of this model statement. In statement 108, note that &XC(2) equals
TRANSYLVANIA (statement 96). Finally, in the sequence field of statement
108, we see that this statement is a level 01 expansion of a programmer
macro and the corresponding model statement is statement number 87.

Created SET symbols may be used wherever regular SET symbols are
used in declarations, name fields, or operands of SET statements, in
model statements, etc. Likewise, they are subject to all the restrictions of
regular SET symbols. In the programmer macro DEMO, it would not have
been valid to have the statement GBLC &(X&KEY1)(1) because, in state­
ment 71, &XA, &XB, and &XC are declared as global variable symbols and
&(X&KEY1)(2) becomes &XC(2) unless, of course, &KEY1 were assigned
something other than the value A, B, or C in the macro instruction DEMO,
statement 97. In that case, we would need a global declaration statement
if we wanted &(X&KEY1) to be a global SET symbol. Because global dec­
larations are processed at generation time and then only if the statement
is encountered, we would insert the following statements between, say,
statements 71 and 72:

AIF ('&KEYl' EO 'A' OR '&KEYl' EO 'B' OR '&KEYl' EO 'C').SKIP
GBLC &(X&KEYl)(l)

.SKIP ANOP

Appendix A. Sample Program 91

As the macro is defined, &(X&KEY1) will be a global SETC if &KEY1 is A,
B, or C; otherwise it will be a lClC or, possibly, a lClA. In the macro, if
&(X&KEY1) becomes a local, it will have a null or zero value.

(P) 	 In statements 93 and 94, note that &XA is declared as a subscripted global
SETC variable with a maximum subscript of 1 and, in the next statement
(an extended SET statement), we store something into &XA(2). There is
no contradiction here. The statement GBlC &XA(1) marks &XA as a sub··
scripted global SETC symbol. Any decimal self-defined number (1 through
2147483647) can be used. Furthermore, only a nominal amount of space is
set aside in the global dictionary. This space is open-ended and will be
increased on demand and only on demand.

(Q) 	 Statement 97 is the macro instruction DEMO. Note that &P1 has the value
WRITE. Therefore, the model statement at statement 72 becomes an innE~r
macro, WRITE, producing the code at statements 98-103. The sequence
field of these statements contains 03-IHBRD, indicating that they are gen­
erated by a level 03 macro (DEMO is 01, WRITE is 02) named IHBRDWRS.
It is an inner macro called by WRITE.

(R) 	 Statements 108 and 109 contain some ordinary symbols longer than 8
characters. The limit for ordinary symbols, operation codes (for pro­
grammer and library macros and operation codes defined through
OPSYN), variable symbols, and sequence symbols is 63 characters
(including the & and. in the latter two instances, respectively). Most 10n!1
symbols will probably be nearer to 8 than 63 characters in length.
Extremely long symbols are simply too difficult to write, especially if the
symbol is used frequently. The requirement that the operation field be
present in the first statement of a continued statement is still in effect.
Furthermore, names of START, CSECT, EXTRN, WXTRN, ENTRY, etc.,
symbols are still restricted to 8 characters.

92 Assembler H Version 2 Programming Guide

5

r (~' (

BIGNAME INSERT PROGRAMMER MACRO IN SOURCE STREAM NOW PAGE

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

111 **
112 * COPY 'NOTE' MACRO IN FROM MACLIB, RENAME IT 'MARK', CALL IT UNDER *
113 * ITS ALIAS -­ IN EXPANSION OF MARK, NOTICE REFERENCE BACK TO *
114 * DEFINITION STATEMENTS IN 'COLUMNS' 76-80 OF EXPANSION *
115 **

05000000
05050000
05100000
05150000
05200000

0 117118
119 &:NAME
120
121 &:NAME
122
123
124
125 .ERR
126

COPY NOTE
MACRO
NOTE &:DCB,&:DUMMY=
AI F ('&:DCB' EQ ").ERR
IHBINNRA &:DCB
L 15,84(0,1)
BALR 14,15
MEXIT
IHBERMAC 6

MEND

LOAD
LINK

NOTE RTN ADDRESS
TO NOTE ROUTINE

05300000
000200QO
00040017
00060000
00080000
00100000
00120000
00140000
00160000
00180000

000088 1816
00008A 58FO
00008E 05EF

1054

o 129 MARK
130
131+

00054 132+
133+

OPSYN
MARK
LR
L
BALR

NOTE COMMENTS OF
(6) 'COLUMNS'
1,6
15,84 (0,1)
14,15

GENERATED STATEMENTS OCCUPY SAME
AS THOSE IN MODEL STATEMENTS

LOAD PARAMETER REG 1
LOAD NOTE RTN ADDRESS
LINK TO NOTE ROUTINE

05450000
05500000
02-IHBIN
01-00122
01-00123

00009C
00009C
OOOOAO

00000000
OBOOOOA000000050

135 **
136 DEECEES LOCTR SWITCH TO ALTERNATE LOCATION COUNTER

137 B5 CCW X'OB' ,B5,0,80

05600000
05650000

05700000

139 **
140 * DISPLAY OF &:SYSTIME, &:SYSDATE, &:SYSPARM AND &:SYSLOC *
141 **

05800000
05850000
05900000

0000A8 E3C9D4C5407E40F1

(0 143
144

+
DC
DC

PRINT
C'TIME
C'TIME =

NODATA
&:SYSTIME, DATE = &:SYSDATE, PARM = &:SYSPARM'
13.19, DATE = 02/19/82, PARM = SAMPLE PROGRAM'

06000000
06050000
06050000

»
"'C
"'C
(1)
:J
c..
X o

146
147
148 &:SYSECT
149 &:SYSLOC
150

MACRO
LOCATE
CSECT
LOCTR
MEND

DISPLAY OF CURRENT CONTROL
AND LOCATION COUNTER

SECTION

06150000
06200000
06250000
06300000
06350000

~
(fl
til
3

"'C ro
""0...,
o
cc...,
til
3

OOOODC
OOOODC
000090

000000
000000
0007DO

000090

1867

00000040FFFFFFE8

o
o

152 LOCATE
153+A CSECT DISPLAY OF CURRENT CONTROL SECTION
154+DEECEES LOCTR AND LOCATION COUNTER
155 A LOCTR

157
158
159
160
161
162

**
PD2 COM

DS
LR
END

500F
6,7

:::A(A5,X)

NAMED COMMON THROWN IN FOR GOOD MEASURE

06450000
01-00148
01-00149
06500000

06600000
06650000
06700000
06750000
06800000

CD
W

(S)

(T)

(U)

(V)

(W)

(X)

Library macros may be inserted into the source stream as programmer
macros by use of a COpy statement. The result (statements 118 to 126) is
essentially a programmer macro definition. When a library macro is
brought in and expanded by use of a macro instruction, the assembler (1)
looks the macro up by its member-name and (2) verifies that this same
name is used in the operation field of the prototype statement. Therefore,
for example, DCB has to be cataloged as DCB. However, as COPY code,
the member name bears no relationship to any of the statements in the
member. Thus, several variations of a given macro could be stored as a
library under separate names, then copied in at various places in a single
assembly as needed. (Assembler H allows you to define and redefine a
macro any number of times).

In statement 129, MARK is made a synonym for NOTE. To identify NOTE
as a macro, it has to be used as either a system macro call (that is, from
a macro library) or a programmer macro definition prior to its use in the
operand field of an OPSYN statement. The COpy code at 118 through 126
is a programmer macro definition. The macro instruction at statement 130
is MARK. We can use MARK and NOTE interchangeably. If desired, we
could remove NOTE as a macro definition in the following way:

MARK OPSYN NOTE
NOTE OPSYN

We could then refer to the macro only as MARK.

Statement 144 demonstrates &SYSTIME, &SYSDATE and &SYSPARM. The
values for the first two are the same as we use in the heading line. The
value for &SYSPARM is the value passed in the PARM field of the EXEC
statement of the default value assigned to &SYSPARM when Assembler ~i
is installed.

System variable symbols &SYSLOC and &SYSECT are displayed. The
sequence field indicates that the model statements are statements 148
and 149.

Illustration of named COMMON. You can establish addressability for a
named COMMON section with:

USING section-name, register

You can address data in a blank COMMON section by labeling a state­
ment after the COMMON statement and using relative addressing.

If there are literals outstanding when the END statement is encountered,
they are assigned to the LOCTR currently in effect for the first control
section in the assembly. This mayor may not put the literals at the end of
the first control section. In this sample assembly, the first control section,
A, has two LOCTRs, A and DEECEES. Because A is active (at statement
155), the literals are assembled there. You always have the ability to
control placement of literal pools by means of the L TORG statement. Note
that X'FFFFFFE8' is used for the contents of A(A5,X), statement 162. The
symbol X was assigned the value (4*-6) by an EQU in statement 60.

94 Assembler H Version 2 Programming Guide

((r
BIGNAME RELOCATION DICTIONARY PAGE 6

POS. I D REL. I D FLAGS ADDRESS ASM H V 02 13.19 02/19/82

0001 OC01 OC 000090
0001 0001 08 0000A1

BIGNAME CROSS REFERENCE PAGE 7

SYMBOL LEN VALUE DEFN REFERENCES ASM H V 02' 13. "19 02/19/82

A 00001 00000000 0002 0028 0153 0155
A5 00002 000040 0034 0038 0162
A7 00016 000048 0036
A8 00002 OOOOOOAO 0038 0109
B5 00008 OOOOAO 0137 0038 0109 0137
CONSTANT 00004 000098 0027 0025 0109
DEECEES 00001 00000098 0026 0136 0154
PD2 00001 00000000 0158
REALLYLONGSYMBOL

00004 000084 0109 0014 0018
SUSQUEHANNA

00002 00007E 0107
TRANSYLVANIA

00004 000080 0108 0014 0018
X 00001 FFFFFFE8 0060 0162
=A(A5,X) 00004 000090 0162 0108

}> BIGNAME DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 8
"0
"0
(1)
::J ASM H V 02 13.19 02/19/82
a.
x NO STATEMENTS FLAGGED IN THIS ASSEMBLY
;r>
(J)
til
3

"0
(D

OVERRIDING PARAMETERS­ SYSPARM(SAMPLE PROGRAM),NODECK,BATCH
OPTIONS FOR THIS ASSEMBLY

NODECK, OBJECT, LIST, XREF(FULL), NORENT, NOTEST, BATCH, ALIGN,
FLAG(O), SYSPARM(SAMPLE PROGRAM)

NO OVERRIDING DD NAMES

ESD, RLD, NOTERM, LINECOUNT(55),

""lJ...,
o

(Q...,
136 CARDS
198 LINES

FROM SYSIN
OUTPUT

524 CARDS
11 CARDS

FROM SYSLIB
OUTPUT

til
3

CD
U1

Appendix B. MHELP Sample Macro Trace and Dump

The macro trace and dump (MHELP) facility is a useful means of debugging
macro definitions. MHELP can be used anywhere in the source program or in
macro definitions. MHELP is processed during macro generation. It is com­
pletely dynamic; you can branch around the MHELP statements by using AIF or
AGO statements. Therefore, its use can be controlled by symbolic parameters
and SET symbols.

The following sample program illustrates the five primary functions of MHELP.
Because most of the information produced is unrelated to statement numbers,
the dumps and traces in the listing are marked with numbers in parentheses.
Most dumps refer to statement numbers. If you request MHELP information
about a library macro definition, the first five characters of the macro name will
appear in place of the statement number. To get the statement numbers, you
should use COpy to copy the library definition into the source program prior to
the macro call.

MHELP 1, Macro Call Trace: Item (1A) illustrates an outer macro call, (1B) an
inner one. In each case, the amount of information given is brief. This trace is
given after successful entry into the macro; no dump is given if error conditions
prevent an entry.

MHELP 2, Macro Branch Trace: This provides a one-line trace for each AGO
and true AIF branch within a programmer macro. In any such branch, the
"branched from" statement number, the "branched to" statement number, and
the macro name are included. Note, in example (2A), the "branched to" state­
ment number indicated is not that of the ANOP statement bearing the target
sequence symbol but that of the statement following it. The branch trace facility
is suspended when library macros are expanded and MHELP 2 is in effect. To
obtain a macro branch trace for such a macro, one would have to insert a
COpy "macro-name" statement in the source deck at some point prior to the
MHELP 2 statement of interest.

MHELP 4, Macro AIF Dump: Items (4A), (4B). (4C), ... are examples of these
dumps. Each such dump includes a complete set of unsubscripted SET symbols
with values. This list covers all unsubscripted variable symbols that appear in
the same field of a SET statement in the macro definition. Values of elements
of dimensioned SET symbols are not displayed.

MHELP 8, Macro Exit Dump: This provides a dump of the same group of SET
symbols as are included in the macro AIF dump when an MEXIT or MEND is
encountered.

Note: Local and/or global variable symbols are not displayed at any point
unless they appear in the current macro explicitly as SET symbols.

Appendix B. MHELP Sample Macro Trace and Dump 97

MHELP 16, Macro Entry Dump: This provides values of system variable
symbols and symbolic parameters at the time the macro is called. The fol­
lowing numbering system is used:

Number Item
000 &SYSNDX
001 &SYSECT
002 &SYSLOC
003 &SYSTIME
004 &SYSDATE
005 &SYSPARM
006 Name Field on Macro Instruction

If there are NKW keyword parameters, they follow in order of appearance on
the prototype statement.

007 1st keyword value

008 2nd keyword value

006+NK\~ NK\·/th keyword value

If there are NPP positional parameters, they follow in order of appearance in
the macro instruction.

007+NKI"I 1st positional parameter values

008+NK\1 2nd positional parameter values

006+NKI"I+NPP NPPth positional parameter values

For example, item (16A) has one keyword parameter (&OFFSET) and one posi­
tional parameter. The value of the keyword parameter appears opposite
110006, th~ positional parameter, opposite 110007. In both the prototype (state­
ment 3) and the macro instruction (statement 54), the positional parameter
appears in the first operand field, the keyword in the second. A length appears
between the NUM and VALUE fields. A length of NUL indicates the corre­
sponding item is empty.

Item (16B) illustrates an inner call containing zero keywords and two positional
parameters.

MHELP 64, Macro Hex Dump: This option, when used in conjunction with the
Macro AIF dump, the Macro Exit dump or the Macro Entry dump, will dump the
parameter and SETC symbol values in EBCDIC and hexadecimal formats.

Notes:

1. 	 The hexadecimal dump will precede the EBCDIC dump and will dump the
full value of the symbol.

2. 	 System parameters are not dumped in hexadecimal.

98 Assembler H Version 2 Programming Guide

r (!~ (

PAGE 2

LaC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

000000 1
2 *
3
4 &NAME
5
6 &LABEL
7
8 &LABEL
9 . SK I P

10 &LABEL
11
12
13

CSECT
COPY LNSRCH
MACRO

LNSRCH &ARG,&OFFSET=STNUMB-STCHAIN
LCLC &LABEL
SETC 'A&SYSNDX' GENERATE SYMBOL
AI F \T'&NAME EQ 'O').SKIP
SETC &NAME' IF MACRO CALL HAS LABEL, USE
ANOP INSTEAD OF GENERATED SYMBOL
LA O,&OFFSET LOAD REG. 0
SCHI &ARG,O(l) SEARCH
BC 1, &LABEL IF MAX REACHED, CONTINUE
MEND

IT

06850000
06900000
06950000
07000000
07050000
07100000
07150000
07200000
07250000
07300000
07350000
07400000
07450000

PAGE

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

15 * COPY SCHI 07550000
» 16 MACRO 07600000
"0 17 &NM SCHI &COMP, &lI ST 07650000
"0
CD 18 LCLA &CNT 07700000
::::J 19 LCLC &CMPADR 07750000
x 20 &CNT SETA 1 07800000a.

21 &NM STM 1,15,4(13) 07850000
~ 22 .TEST ANOP 079000QO

23 &CMPADR SETC '&CMPADR'. '&COMP'(&CNT 1) 07950000
:5:: 24 AI F ('&COMP'(&CNT,l) EQ ,(1).LPAR 08000000
I
m 25 &CNT SETA &CNT+l 08050000
r 26 AI F (&CNT LT K'&COMP).TEST 08100000
-0 27 .NOLNTH ANOP 08150000
(fl 28 LA 3,&COMP COMPARAND 08200000
!lJ 29 AGO .CONTIN 08250000
3 30 . LPAR AI F ('&COMP'(&CNT+l,l) EQ ',').FINISH 08300000

"0
31 &CNT SETA &CNT+l 08350000co
32 AI F (&CNT LT K'&COMP).LPAR 08400000

:5:: 33 AGO . NOLNTH 08450000
!lJ 08500000n 34 .FINISH ANOP...,
a 35 &CMPADR SETC '&CMPADR'. '&COMP'(&CNT+2,K'&COMP-&CNT) 08550000
--i 36 LA 3,&CMPADR COMPARAND SANS LENGTH 08600000
.., 0865000037 .CONTIN ANOP
!lJ LA 1, &LI ST LIST HEADER 08700000n 38
CD 39 MVC &COMP,O(O) DUMMY MOVE TO GET COMP LENGTH 08750000
!lJ 40 ORG *-6 CHANGE MVC TO MVI . 08800000
::::J
a. 41 DC X'92' MVI OPCODE 08850000

42 ORG *+1 PRESERVE LENGTH AS IMMED OPND 08900000
0 43 DC X'DOOO' RESULT IS MVI 0(13),L 08950000c
3 44 L 15,=V(SCHI) 09000000

"0 45 BALR 14,15 09050000
46 LM 1,15,4(13) 09100000
47 MEXIT 09150000

CD
48 MEND 09200000CD

3

o
~

o
LOC

»
rJ> 	 000000rJ>
(!) 000000
3
0­ro...
:::c
<
(!)...
rJ> o·
:J

r0

""0...
o

<0...
3
~

3
:J

<0

C>
C

Co

(!)

000002

OBJECT CODE

05CO

4100 0002

PAGE 4

ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

50 TEST CSECT 09300000
51 BALR 12,0 09350000

00002 52 USING *,12 09400000

54 MHELP B'lllll' 09500000
55 LNSRCH LISTLINE,OFFSET=LISTLINE-LISTNEXT 09550000 e 	 ++IIMHELP. CALL TO MACRO LNSRCH . DEPTH=OOl, SYSNDX=OOOl, STMT 00055

s IIMHELP ENTRY TO LNSRCH . MODEL STMT 00000, DEPTH=OOl, SYSNDX=OOOl, KWCNT=OOl
IIIIPARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIME,SYSDATE,SYSPARM,NAME,KWS,PPS) III
IINUM LNTH VALUE (64 CHARS/LINE)
110000 004 0001
1/0001 004 TEST
110002 004 TEST
110003 005 13.19
110004 008 02/19/82
110005 014 SAMPLE PROGRAM
110006 NUL
110007 017 LISTLINE-LISTNEXT
110008 008 LISTLINE

IIMHELP AIF IN LNSRCH. MODEL STMT 00007, DEPTH=OOl, SYSNDX=OOOl, KWCNT=OOle 	 IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOLS).II
110000 LCLC LABEL LNTH= 005
II VAL=AOOOl

@ 	 ++IIMHELP. BRANCH FROM STMT 00007 TO STMT 00010 IN MACRO LNSRCH

00002 56+AOOOl LA O,LISTLINE-LISTNEXT LOAD REG. 0 	 01-00010

G 	 ++IIMHELP. CALL TO MACRO SCHI DEPTH=002, SYSNDX=0002, STMT 00011

IIMHELP ENTRY TO SCHI . MODEL STMT 00000, DEPTH=002, SYSNDX=0002, KWCNT=OOOS 	 IIIIPARAMETERS (SYSNDX,SYSECT,SYSLOC,SYSTIME,SYSDATE,SYSPARM,NAME,KWS,PPS) III
IINUM LNTH VALUE (64 CHARS/LINE)
110000 004 0002
1/0001 004 TEST
110002 004 TEST
110003 005 13.19
110004 008 02/19/82
110005 014 SAMPLE PROGRAM
110006 NUL
110007 008 LISTLINE
110008 004 0(1)

00004 57+ STM 1,15,4(13) 	 02-00021

~ 	IIMHELP AIF IN SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO

000006 901F D004

~ L 	 \,

http:SYMBOLS).II

5

(' (" 	 (

PAGE

lOC OBJ ECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82

IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEqUENCE SYMBOlS).11
110000 lCLA CNT VAl= 0000000001
110001 lClC CMPADR lNTH= 001
II VAl=l

@ 	 IIMHElP AIF IN SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11
110000 lClA CNT VAL= 0000000002
110001 LCLC CMPADR LNTH= 001
I I VAl=l

® ++IIMHELP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

@ 	IIMHElP AIF IN SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11
110000 lClA CNT VAl= 0000000002
110001 lClC CMPADR lNTH= 002
II VAl=ll

IIMHELP AIF IN SCHI . MODEL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
:l> ® 	I I I ISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11"C

"C 	 110000 lClA CNT VAl= 0000000003
(I)
::J 	 1/0001 lClC CMPADR lNTH= 002
9: 	 II VAl=ll
x
CD

~ ++IIMHElP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHIs::
:r:
m
r 	 IIMHElP AIF IN SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
""0 I I I ISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11
(J) 110000 lClA CNT VAl= 0000000003III

1/0001 lClC CMPADR lNTH= 0033 I I VAl=Li S "2..
(I)

s::
III 	 IIMHElP AIF IN SCHI . MODlL STMT 00026, DEPTH=002, SYSNDX=0002, KWCNT=OOO
o..., 	 IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11
o 110000 lClA CNT VAl= 0000000004
...,--I 1/0001 lClC CMPADR lNTH= 003
III II VAl=lIS o
(I)

III
::J ++IIMHElP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHIC-

o
c
3 IIMHElP AIF IN SCHI . MODEL STMT 00024, DEPTH=002, SYSNDX=0002, KWCNT=OOO
u IIIISET SYMBOLS (SKIPPED NUMBERS MAY BE SEQUENCE SYMBOlS).11

110000 lClA CNT VAl= 0000000004
...II. 1/0001 lClC CMPADR lNTH= 004
o 	 II VAl=lIST
...II.

http:SYMBOlS).11
http:SYMBOlS).11
http:SYMBOlS).11
http:SYMBOlS).11
http:SYMBOlS).11
http:SYMBOlS).11
http:SYMBOlS).11

...lI.
C PAGE 6
N

» lOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM H V 02 13.19 02/19/82
<II
<II
(!)

3
0­
ro

IIMHElP AIF IN
IIIISET SYMBOLS
110000 lCLA

SCHI
(SKIPPED

CNT

MODEL STMT 00026, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOlS).11

VAl=

KWCNT=OOO

0000000005
:I: 110001 lClC CMPADR lNTH= 004

~ I I VAL=LlST
.....
<II o·
:l ++IIMHElP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI
rv
.." a

(C
.....
~

IIMHElP AIF IN
IIIISET SYMBOLS
110000 lClA

SCHI
(SKIPPED

CNT

MODEL STMT 00024, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOlS).11

VAl=

KWCNT=OOO

0000000005
3
~.

1/0001
II

lClC
VAl=LISTl

CMPADR LNTH= 005

:l
(C

C)
c
0.:
(!)

IIMHElP AIF IN
IIIISET SYMBOLS
110000 lClA

SCHI
(SKIPPED

CNT

MODEL STMT 00026, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOLS).II

VAl=

KWCNT=OOO

0000000006
110001 lClC CMPADR lNTH= 005
I I VAl=LI STl

++IIMHElP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

IIMHELP A I FIN
IIIISET SYMBOLS
110000 lClA

SCHI
(SKIPPED

CNT

MODEL STMT 00024, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOlS).11

VAl=

KWCNT=OOO

0000000006
1/0001
II

lClC
VAL=lISTLI

CMPADR lNTH= 006

IIMHElP AIF IN
IIIISET SYMBOLS
110000 lCLA

SCHI
(SKIPPED

CNT

MODEL STMT 00026, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOlS).11

VAl=

KWCNT=OOO

0000000007
110001
II

lClC
VAL=LISTll

CMPADR LNTH= 006

++IIMHElP. BRANCH FROM STMT 00026 TO STMT 00023 IN MACRO SCHI

IIMHELP AIF IN
IIIISET SYMBOLS
110000 lClA

SCHI
(SKIPPED

CNT

MODEL STMT 00024, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOLS).II

VAl=

KWCNT=OOO

0000000007
1/0001
II

lCLC CMPADR
VAL=lISTlIN

LNTH= 007

IIMHElP AIF IN
IIIISET SYMBOLS

SCHI
(SKIPPED

MODEL STMT 00026, DEPTH=002, SYSNDX=0002,
NUMBERS MAY BE SEQUENCE SYMBOLS).II

KWCNT=OOO

l.,
il .. l

7

»
"0
"0
(1)
:::J
0­
x
OJ

s::
:::c
m
r
""tI
(J)
til
3
"0
iii"
s::
til
n..,
o
--I..,
til
n
(1)

til
:::J
0 ­

o
c:
3

"0

...lio
o
Co)

r

LOC

OOOOOA

OOOOOE
000012
000018
000012
000013
000014
000016
00001A
00001C

000020

000024
000026
000030
000030
000000

OBJECT CODE ADDRl ADDR2 STMT

4130 C024 00026 58+

4111 0000 00000 59+
D202 C024 0000 00026 00000 60+

00012 61+
92 62+

00014 63+
DOOO 64+
58FO C02E 00030 65+
05EF 66+
981F D004 00004 67+

@

4710 COOO 00002 68+

®
69
70
71

00000000 72
73

(....,

SOURCE STATEMENT

//0000 LCLA CNT
//0001 LCLC CMPADR
// VAL=LISTLIN

LA 3, LI STLI NE

++//MHELP. BRANCH FROM STMT 00029

LA 1,0(1)

MVC LlSTLINE,O(O)

ORG *-6

DC X'92'

ORG *+1

DC X'DOOO'

L 15, =V (SCH I)

BALR 14,15

LM 1,15,4(13)

//MHELP EXIT FROM SCHI . MODEL
////SET SYMBOLS (SKIPPED NUMBERS
//0000 LCLA CNT
//0001 LCLC CMPADR
// VAL=LISTLIN

BC 1, AOOOl

//MHELP EXIT FROM LNSRCH . MODEL
////SET SYMBOLS (SKIPPED NUMBERS
/ /0000 LCLC LABEL
// VAL=AOOOl

LISTNEXT DS H
LISTLINE DS FL3'0'

LTORG
=V(SCHI)

END TEST

(,

PAGE

ASM H V 02 13.19 02/19/82

VAL= 0000000008
LNTH= 007

COMPARAND 02-00028

TO STMT 00038 IN MACRO SCHI

LI ST HEADER 02-00038
DUMMY MOVE TO GET COMP LENGTH 02-00039
CHANGE MVC TO MVI 02-00040
MVI OPCODE 02-00041
PRESERVE LENGTH AS IMMED OPND 02-00042
RESULT IS MVI 0(13),L 02-00043

02-00044
02-00045
02-00046

STMT 00047, DEPTH=002, SYSNDX=0002, KWCNT=OOO
MAY BE SEQUENCE SYMBOLS).//

VAL= 0000000008
LNTH= 007

IF MAX REACHED, CONTINUE 01-00012

STMT 00013, DEPTH=OOl, SYSNDX=OOOl, KWCNT=OOl
MAY BE SEQUENCE SYMBOLS).//

LNTH= 005

09600000
09650000
09700000

09750000

Appendix C. Object Deck Output

ESD Card Format

Columns Contents

1 X'02'

2-4 ESO

5-10 Blank

11-12 Variable field count-number of bytes of information in variable field
(columns 17-64)

13-14 Blank

15-16 ESOIO of first SO, XO, CM, PC, ER, or WX in variable field

17-64 Variable field. One to three 16-byte items of the following format:

8 bytes-Name
1 byte -ESO type code; the hexadecimal value is:

00 SO
01 LO
02 ER
04 PC
05 CM
06 XO(PR)
OA WX

3 bytes-Address
1 byte

-Alignment if XO
-Blank if LO, ER, or WX
-AMOOE/RMOOE flags if SO, PC, or CM

Bit 5: 0 = RMODE is 24
1 = RMOOE is ANY

Bits 6-7: 00 = AMOOE is 24
01 = AMOOE is 24
10 = AMOOE is 31
11 = AMOOE is ANY

3 bytes-Length, LOIO, or blank

65-72 Blank

73-80 Deck 10 and/or sequence number. The deck 10 is the name from the
first TITLE statement that has a nonblank name field. This name can
be 1 to 8 characters long. If the name is fewer than 8 characters long
or if there is no name, the remaining columns contain a card
sequence number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck 10 or a sequence number.)

Appendix C. Object Deck Output 105

TEXT (TXT) Card Format
Columns Contents

1 X'02'

2-4 TXT

5 Blank

6-8 Relative address of first instruction on card

9-10 Blank

11-12 Byte count-number of bytes in information field (columns 17-72)

13-14 Blank

15-16 ESDID

17-72 56-byte information field

73-80 Deck ID and/or sequence number. The deck ID is the name from the
first TITLE statement that has a nonblank name field. The name can
be 1 to 8 characters long. If the name is fewer than 8 characters 10n~1
or if there is no name, the remaining columns contain a card
sequence number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence number.)

RLD Card Format
Columns 	Contents

1 X'02'

2-4 RLD

5-10 Blank

11-12 	 Data field count-number of bytes of information in data field (columns
17-72)

13-16 	 Blank

17-72 	 Data field:

17-18 Relocation ESDID
19-20 Position ESDID
21 Flag byte
22-24 Absolute address to be relocated
25-72 Remaining RLD entries

73-80 	 Deck ID and/or sequence number. The deck ID is the name from the
first TITLE statement that has a nonblank name field. The name can
be 1 to 8 characters long or if there is no name, the remaining
columns contain a card sequence number. (Columns 73-80 of cards
produced by PUNCH or REPRO statements do not contain a deck ID
or a sequence number.)

106 Assembler H Version 2 Programming Guide

If the rightmost bit of the flag byte is set, the following RLD entry has the same
relocation ESDID and position ESDID, and this information will not be repeated;
if the rightmost bit of the flag byte is not set, the next RLD entry has a different
relocation ESDID and/or position ESDID, and both ESDIDs will be recorded.

For example, if the RLD entries 1, 2, and 3 of the program listing contain the
following information:

Position Relocation
Entry ESDID ESDID Flag Address

02 04 OC 000100
2 02 04 OC 000104
3 03 01 OC 0OO8()()

then columns 17-72 of the RLD card would be as follows:

Entry 1 Entry 2 Entry 3

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37~ 72

Flag
(not
set)

Flag
(not
set)

I' •blanks

END Card Format
Columns Contents

1 X'02'

2-4 END

5 Blank

6-8 Entry address from operand of END card in source deck (blank if no
operand)

9-14 Blank

15-16 ESDID of entry point (blank if no operand)

17-32 Blank

33 Number of IDR items that follow (EBCDIC1 or EBCDIC2)

34-52 Translator identification, version and release level (such as 0201), and
date of the assembly (yyddd)

53-71 When present, they are the same format as columns 34-52

Appendix C. Object Deck Output 107

L

72-80 	 Deck ID and/or sequence number. The deck ID is the name from the
first TITLE statement that has a nonblank name field. The name can
be 1 to 8 characters long. If the name is fewer than 8 characters long
or if there is no name, the remaining columns contain a card
sequence number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence number.)

TESTRAN (SYM) Card Format
If you request it, the assembler punches out symbolic information for TESTRAN
concerning the assembled program. This output appears ahead of all loader
text. The format of the card images for TESTRAN output follows:

Columns 	Contents

1 X'02'

2-4 SYM

5-10 	 Blank

11-12 	 Variable field-number of bytes of text in variable field (columns
17-72)

13-16 	 Blank

17-72 	 Variable field (see below)

73-80 	 Deck ID and/or sequence number. The deck ID is the name from the
first TITLE statement that has a non blank name field. The name can
be 1 to 8 characters long. If the name is fewer than 8 characters long
or if there is no name, the remaining columns contain a card
sequence number. (Columns 73-80 of cards produced by PUNCH or
REPRO statements do not contain a deck ID or a sequence number.)

The variable field (columns 17-72) contains up to 56 bytes of TESTRAN text. The
items comprising the text are packed together; consequently, only the last card
may contain less than 56 bytes of text in the variable field. The formats of a
text card and an individual text item are shown in Figure 19 on page 110. The
contents of the fields within an individual entry are as follows:

1. Organization (1 byte)

Bit 0: 0 = nondata type
1 = data type

Bits 1-3 (if nondata type):
000 = space
001 = control section
010 = dummy control section
011 = common
100 = instruction
101 = CCW, CCWO, CCW1

,"",

...",J

J

108 Assembler H Version 2 Programming Guide

Bit 1 (if data type):
o = no multiplicity
1 	= multiplicity (indicates presence of

M field)

Bit 2 (if data type):
o = independent (not a packed or zoned

decimal constant)

1 	= cluster (packed or zoned decimal

constant)

Bit 3 (if data type):
o = no scaling
1 = scaling (indicates presence of S

field)

Bit 4:
o = name present

1 = name not present

Bits 5-7:

Length of name minus 1

2. 	 Address (3 bytes)-displacement from base of control section

3. 	 Symbol Name (0-8 bytes)-symbolic name of particular item

Note: If the entry is nondata type and space, an extra byte is present that
contains the number of bytes that have been skipped.

4. 	 Data Type (1 byte)-contents in hexadecimal

00 	= character
04 	= hexadecimal or pure DBCS (G-type)
08 	 = binary
10 	= fixed point, full
14 	= fixed point, half
18 	 = floati ng poi nt, short
1C = floating point, long
20 	= A-type or Q-type data
24 	= V-type data
28 	 = S-type data
2C = V-type data
30 	= packed decimal
34 	= zoned decimal
38 	 = floating point, extended

5. 	 Length (2 bytes for character, hexadecimal, decimal, or binary items; 1 byte
for other types)-Iength of data item minus 1

6. 	 Multiplicity - M field (3 bytes)-equals 1 if not present

7. 	 Scale-signed integer-S field (2 bytes)-present only for F-, H-, E-, D-, P-,
and Z-type data, and only if scale is nonzero.

Appendix C. Object Deck Output 109

8

Entry
(complete or
end portion)

2 4 5 1011 12.13 16 .7 72 73 80

No.

of

X'02' SYM Deck & Sequenceblank bytes blank TESTRAN text - packed entries
10 numberof

text

56

EntryN complete entries (complete or
N 2: 1 head portion)

Variable size entries

Data Mult.Org. Address Symbol name Length Scale Org.type factor name

3 1-2 3 2

Figure 19. TESTRAN SYM Card Format

110 Assembler H Version 2 Programming Guide

Appendix D. Assembler H Messages

Assembler H has two types of messages:
Assembly error diagnostic messages and
assembly abnormal termination messages. The
following section describes both types and gives
their format and placement. "Assembly Error
Diagnostic Messages" on page 112 and
"Abnormal Assembly Termination Messages" on
page 142 describe and list each type of
message.

Message Descriptions

Each message entry in this book has five
sections:

• Message Number and Text
• Explanation of Message
• System Action
• Programmer Response
• Severity Code

Message Number and Text

Only the message number and the major fixed
portion of the message text included in the
message description. Any abbreviations in
actual message text are spelled out in full in the
book. Unused message numbers account for the
gaps in the message number sequence. No
messages are defined for numbers, such as
IEV006, not included in this section.

Explanation of Message

There may be more than one explanation for
some messages, because they are generated by
different sections of the assembler. Several of
the assembler termination messages have iden­
tical explanations.

System Action

This section tells how the assembler handles
statements with errors. A machine instruction is
assembled as all zeros. An assembler instruc­
tion is usually ignored; it is printed but has no
effect on the assembly. Many assembler

instructions, however, are partially processed or
processed with a default value.

For some instructions, the operands preceding
the operand in error or every operand except
the operand in error is processed. For example,
if one of several operands on a DROP statement
is a symbol that has not been equated to a reg­
ister number, only that operand is ignored. All
the correctly specified registers are correctly
processed.

For some assembler statements, especially
macro prototype and conditional assembly state­
ments, the operand or term in error is given a
default value. Thus the statement will assemble
completely, but will probably cause incorrect
results if the program is executed.

Programmer Response

Many errors have specific or probable causes.
In such a case, the Programmer Response
section gives specific steps for fixing the error.
Most messages, however, have too many pos­
sible causes (from keypunch error to wrong use
of the statement) to list. The programmer
response for these error messages does not
give specific directions. The cause of most such
errors can be determined from the message text
and the explanation.

Severity Code

The severity code indicates the seriousness of
the error. The severity codes and their
meanings are shown in the table at the end of
this appendix.

This code is the return code issued by the
assembler when it returns control to the oper­
ating system. The IBM-supplied cataloged pro­
cedures include a COND parameter on the
linkage edit and execution steps. The COND
parameter prevents execution of these steps if
the return code from the assembler is 8 or
greater. Thus errors with u*ERROW** in the
message prevent the assembled program from
linkage editing or executing. Errors with
'WARNING' in the message do not.

Appendix D. Assembler H Messages 111

Assembly Error Diagnostic
Messages

Assembler H prints most error messages in the
listing immediately following the statements in
error. It also prints the total number of flagged
statements and their line numbers in the Diag­
nostic Cross Reference section at the end of the
listing.

The messages do not follow the statement in
error when:

• 	 Errors are detected during editing of macro
definitions read from a library. A message
for such an error appears after the first call
in the source program to that macro defi­
nition. You can, however, bring the macro
definition into the source program with a
COpy statement. The editing error mes­
sages will then be attached to the state­
ments in error.

• 	 Errors are detected by the look-ahead func­
tion of the assembler. (Look-ahead scans,
for attribute references, statements after the
one being assembled.) Messages for these
errors appear after the statements in which
they occur. The messages may also appear
at the point at which look-ahead was called.

• 	 Errors are detected on conditional assembly
statements during macro generation or
MHELP testing. Such a message follows the
most recently generated statement or
MHELP output statement.

A typical error diagnostic messsage is:

IEV057 	 ***ERROR*** UNDEFINED OPERATION
CODE-xxxxx

The term '"ERROR''' is part of the message if
the severity code is 8 or greater. The term
"WARNING** is part of the message if the
severity code is 0 or 4.

A copy of a segment of the statement in error,
represented above by xxxxx, is appended to the
end of many messages. Normally this segment,
which can be up to 16 bytes long, begins at the
bad character or term. For some errors,
however, the segment may begin after the bad

character or term. The segment may include
part of the remarks field.

If a diagnostic message follows a statement gen­
erated by a macro definition, the following items
may be appended to the error message:

• 	 The number of the model statement in which
the error occurred, or the first five charac­
ters of the macro name.

• 	 The SET symbol, parameter number, or

value string associated with the error.

Note: References to macro parameters are by
number (such as PARAM008) instead of by
name. The first seven numbers are always
assigned for the standard system parameters as
follows:

PARAr'1000 &SYSNDX
PARAr1001 &SYSECT
PARAf1002 &SYSLOC
PARAt1003 &SYSTH1E
PARAr1004 &SYSDATE
PARAt'1005 &SYSPARt1
PARAr'lflfl6 Name Field Parameter

Then the keyword parameters are numbered in
the order defined in the macro definition, fol­
lowed by positional parameters. When there are
no keyword parameters in the macro definition,
PARAM007 refers to the first positional param­
eter.

If a diagnostic message follows a conditional
assembly statement in the source program, the
following items will be appended to the error
message:

• 	 The word "OPENC"
• 	 The SET symbol or value string associated

with the error

Several messages may be issued for a single
statement or even for a single error within a
statement. This happens because each state­
ment is usually evaluated on more than one
level (for example, term level, expression level,
and operand level) or by more than one phase of
the assembler. Each level or phase can diag­
nose errors; therefore, most or all of the errors
in the statement are flagged. Occasionally,
duplicate error messages may occur. This is .a
normal result of the error detection process.

112 Assembler H Version 2 Programming Guide

Message Not Known

The following message may appear in a listing:

IEVnnn 	 ***ERROR*** MESSAGE NOT

KNOI'/N -xxxxxxxxxx

The statement preceding this message contains
an error but the assembler routine that detected
the error issued the number (IEVnnn) of a nonex­
istent error message to the assembler's
message generation routine. The segment of
the statement in error may be appended to the
message. If you can correct the error, this state­
ment will assemble correctly. However, there is
a bug in the error detection process of the
assembler. Save the output and the source deck
from this assembly and report the problem to
your IBM customer engineer.

Messages

IEV001 	 OPERATION·CODE NOT ALLOWED
TO BE GENERATED

Explanation: An attempt was made to produce a
restricted operation code by variable symbol
substitution. Restricted operation codes are:

ACTR AGO AGOB AREAD
AIF AIFB ANOP SETA
COPY REPRO ICTL SETB
MACRO t~END t'lEXIT SETC
GBLA GBLB GBLC
LCLA LCLB LCLC

System Action: The statement is ignored.

Programmer Response: If you want a variable
operation code, use AIF to branch to the correct
unrestricted statement.

Severity: 8

I EV002 	 GENERATED STATEMENT TOO LONG.
STATEMENT TRUNCATED

Explanation: The statement generated by a
macro definition is more than 864 characters
long.

System Action: The statement is truncated; the
leading 864 characters are retained.

Programmer Response: Shorten the statement.

Severity: 12

IEV003 	 UNDECLARED VARIABLE SYMBOL.
DEFAULT=O, NULL, OR TYPE=U

Explanation: A variable symbol in the operand
field of the statement has not been declared
(defined) in the name field of a SET statement, in
the operand field of an LCL or GBL statement, or
in a macro prototype statement.

System Action: The variable symbol is given a
default value as follows:

SETA = e
SETB = e
SETC = 	null (empty) string

The type attribute (T ') of the variable is given a
default value of U (undefined).

Programmer Response: Declare the variable
before you use it as an operand.

Severity: 8

I EV004 	 DUPLICATE SET SYMBOL DECLARA·
TION. FIRST IS RETAINED

Explanation: A SET symbol has been declared
(defined) more than once. A SET symbol is
declared when it is used in the name field of a
SET statement, in the operand field of an LCL or
GBL statement, or in a macro prototype state­
ment.

System Action: The value of the first declaration
of the SET symbol is used.

Programmer Response: Eliminate the incorrect
declarations.

Severity: 8

IEVOO5 	 NO CORE FOR INNER MACRO CALL.
CONTINUE WITH OPEN CODE

Explanation: An inner macro call could not be
executed because no main storage was avail ­
able.

System Action: The assembly is continued with
the next open code statement.

Programmer Response: Check whether the
macro is recursive, and, if so, whether termi­
nation is provided for; correct the macro if nec­
essary. If the macro is correct, allocate more
main storage.

Severity: 12

Appendix D. Assembler H Messages 113

IEV007 	 PREVIOUSLY DEFINED SEQUENCE
SYMBOL

Explanation: The sequence symbol in the name
field has been used in the name field of a pre­
vious statement.

System Action: The first definition of the
sequence symbol is used; this definition is
ignored.

Programmer Response: Remove or change one
of the sequence symbols.

Severity: 12

IEV008 	 PREVIOUSLY DEFINED SYMBOLIC
PARAMETER

Explanation: The same variable symbol has
been used to define two different symbolic
parameters.

System Action: When the parameter name (the
variable symbol) is used inside the macro defi ­
nition, it will refer to the first definition of the
parameter in the prototype. However, if the
second parameter defined by the variable
symbol is a positional parameter, the count of
positional operands will still be increased by
one. The second parameter can then be
referred to only through use of &SYSLIST.

Programmer Response: Change one of the
parameter names to another variable symbol.

Severity: 12

I EV009 	 SYSTEM VARIABLE SYMBOL ILLE·
GALLY RE·DEFINED

Explanation: A system variable symbol has been
used in the name field of a macro prototype
statement. The system variable symbols are:

&SYSECT &SYSDATE
&SYSLI ST &SYSLOC
&SYSNDX &SYSPARM
&SYSTIME

System Action: The name parameter is ignored.
The name on a corresponding macro instruction
will not be generated.

Programmer Response: Change the parameter
to one that is not a system variable symbol.

Severity: 12

IEV011 	 INCONSISTENT GLOBAL DECLARA·
TIONS. FIRST IS RETAINED

Explanation: A global SET variable symbol has
been defined in more than one macro definition
or in a macro definition and in the source
program, and the two definitions are inconsistent
in type or dimension.

System Action: The first definition encountered
is retained.

Programmer Response: Assign a new SET
symbol or make the definitions compatible.

Severity: 8

IEV012 	 UNDEFINED SEQUENCE SYMBOL.
MACRO ABORTED

Explanation: A sequence symbol in the operand
field is not defined; that is, it is not used in the
name field of a model statement.

System Action: Exit from the macro definition.

Programmer Response: Define the sequence
symbol.

Severity: 12

IEV013 	 ACTR COUNTER EXCEEDED

Explanation: The conditional assembly loop
counter (set by an ACTR statement) has been
decremented to zero. The ACTR counter is dec­
remented by one each time an AIF or AGO
branch is executed successfully. The counter is
halved for most errors encountered by the
macro editor phase of the assembler.

System Action: A macro expansion is termi­
nated. If the ACTR statement is in the source
program, the assembly is terminated.

Programmer Response: Check for an AIFI AGO
loop or another type of error. (You can use the
MHELP facility, described in Chapter 3 and
Appendix S, to trace macro definition logic.) If
there is no error, increase the initial count on
the ACTR instruction.

Severity: 12

114 Assembler H Version 2 Programming Guide

IEV017 	 UNDEFINED KEYWORD PARAMETER.
DEFAULT TO POSITIONAL
INCLUDING KEYWORD

Explanation: A keyword parameter in a macro
call is not defined in the corresponding macro
prototype statement.

Note: This message may be generated by a
valid positional parameter that contains an equal
sign.

System Action: The keyword (including the
equals sign and value) is used as a positional
parameter.

Programmer Response: Define the keyword in
the prototype statement.

Severity: 4

IEV018 	 DUPLICATE KEYWORD IN MACRO
CALL. LAST VALUE IS USED

Explanation: A keyword operand occurs more
than once in a macro call.

System Action: The latest value assigned to the
keyword is used.

Programmer Response: Eliminate one of the
keyword operands.

Severity: 12

IEV020 	 ILLEGAL GBL OR LCL STATEMENT

Explanation: A global (GBL) or local (LCL) dec­
laration statement does not have an operand.

System Action: The statement is ignored.

Programmer Response: Remove the statement
or add an operand.

Severity: 8

IEV021 	 ILLEGAL SET STATEMENT

Explanation: The operand of a SETB statement
is not 0, 1, or a SETB expression enclosed in
parentheses.

System Action: The statement is ignored.

Programmer Response: Correct the operand or
delete the statement.

Severity: 8

IEV023 	 SYMBOLIC PARAMETER TOO LONG

Explanation: A symbolic parameter in this state­
ment is too long. It must not exceed 63 charac­
ters, including the initial ampersand.

System Action: The symbolic parameter and
any operand following it in this statement are
ignored.

Programmer Response: Make sure all symbolic
parameters consist of an ampersand followed by
1 to 62 alphameric characters, the first of which
is alphabetic.

Severity: 8

IEV024 	 INVALID VARIABLE SYMBOL

Explanation: One of these errors has occurred:

• 	 A symbolic parameter or a SET symbol is
not an ampersand followed by1 to 62 alpha­
meric characters, the first being alphabetic.

• 	 A created SET symbol definition is not a

valid SET symbol expression enclosed in

parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid symbol
or expression.

Severity: 8

IEV025 	 INVALID MACRO PROTOTYPE
OPERAND

Explanation: The format of the operand field of a
macro prototype statement is invalid. For
example, two parameters are not separated by a
comma, or a parameter contains an invalid char­
acter.

System Action: The operand field of the proto­
type is ignored.

Programmer Response: Supply a valid operand
field.

Severity: 12

Appendix D. Assembler H Messages 115

IEV026 	 MACRO CALL OPERAND TOO LONG.
255 LEADING CHARACTERS DELETED

Explanation: An operand of a macro instruction
is more than 255 characters long.

System Action: The leading 255 characters are
deleted.

Programmer Response: Limit the operand to 255
characters, or limit it into two or more operands.

Severity: 12

IEV027 	 EXCESSIVE NUMBER OF OPERANDS

Explanation: One of the following has occurred:

• 	 More than 240 positional and/or keyword
operands have been explicitly defined in a
macro prototype statement.

• 	 There are more than 255 operands in a DC,
DS, or DXD statement.

System Action: The excess parameters are
ignored.

Programmer Response: For a DC, DS, or DXD
statement, use more than one statement. For a
macro prototype statement, delete the extra
operands and use &SYSLIST to access the posi­
tional operands, or redesign the macro defi ­
nition.

Severity: 12

IEV028 	 INVALID DISPLACEMENT

Explanation: One of the following has occurred:

• 	 The displacement field of an explicit address
is not an absolute value within the range 0
through 4095.

• 	 The displacement field of an S-type address
constant is not an absolute value within the
range 0 through 4095.

System Action: The statement or constant is
assembled as zero.

Programmer Response: Correct the displace­
ment or supply an appropriate USING statement
containing an absolute first operand prior to this
statement.

Severity: 8

IEV029 	 INCORRECT REGISTER OR MASK
SPECIFICATION

Explanation: The value specifying a register or a
mask is not an absolute value within the range 0
through 15; an odd register is used where an
even register is required; a register is used
where none can be specified; or a register is not
specified where one is required.

System Action: For machine instructions and
S-type address constants, the statement or con­
stant is assembled as zero. For USING and
DROP statements, the invalid register operand is
ignored.

Programmer Response: Specify a valid register.

Severity: 8

IEV030 	 INVALID LITERAL USAGE

Explanation: A literal is used in an assembler
instruction, another literal, or a field of a
machine instruction where it is not permitted.

System Action: An assembler instruction con­
taining a literal is generally ignored and another
message, relative to the operation code of the
instruction, appears. A machine instruction is
assembled to zero.

Programmer Response: If applicable, replace
the literal with the name of a DC statement.

Severity: 8

IEV031 	 INVALID IMMEDIATE FIELD

Explanation: The value of an immediate operand
of a machine instruction requires more than one
byte of storage (exceeds 255) or the value of the
immediate operand exceeds 9 on an SRP
instruction.

System Action: The instruction is assembled as
zero.

Programmer Response: Use a valid immediate
operand, or specify the immediate information in
a DC statement or a literal and change the state­
ment to a nonimmediate type.

Severity: 8

116 Assembler H Version 2 Programming Guide

IEV032 	 RELOCATABLE VALUE FOUND
WHERE ABSOLUTE VALUE REQUIRED

Explanation: A relocatable or complex relocat­
able expression is used where an absolute
expression is required.

System Action: A machine instruction is assem­
bled as zero. In a DC, OS, or DXD statement,
the operand in error and the following operands
are ignored.

Programmer Response: Supply an absolute
expression or term.

Severity: 8

IEV033 	 ALIGNMENT ERROR

Explanation: An address referenced by this
statement may not be aligned to the proper
boundary for this instruction; for example, the
data referenced by a load instruction (L) may be
on a halfword boundary, or the address may
depend upon an index register.

System Action: The instruction is assembled as
written.

Programmer Response: Correct the operand if it
is in error. If you are using a System/370 model
that does not require alignment or you wish to
suppress alignment checking for some other
reason, you can specify 'NOALlGN' as an assem­
bler option. If a particular statement is correct,
you can suppress this message by writing the
statement with an absolute displacement and an
explicit base register, as in this example:

L 1,SYM-BASE(,2)

Severity: 4

I EV034 	 ADDRESSABILITY ERROR

Explanation: The address referenced by this
statement does not fall within the range of a
USING statement, or a base register is specified
along with a relocatable displacement.

System Action: The instruction is assembled as
zero.

Programmer Response: Insert the appropriate
USING statement prior to this statement. Other­
wise, check this statement for a misspelled
symbol, an unintended term or symbol in an
address expression, or a relocatable symbol
used as a displacement.

Severity: 8

IEV035 	 INVALID DELIMITER

Explanation:

1. 	 A required delimiter in a DC, OS, or DXD
statement is missing or appears where none
should be; the error may be any of these:

• 	 A quotation mark with an address con­
stant.

• 	 A left parenthesis with a nonaddress
constant.

• 	 A constant field not started with a quota­
tion mark, left parenthesis, blank, or
comma.

• 	 An empty constant field in a DC.
• 	 A missing comma or right parenthesis

following an address constant.
• 	 A missing subfield right parenthesis in

an S-type address constant.
• 	 A missing right parenthesis in a constant

modifier expression.

2. 	 A parameter in a macro prototype statement
was not followed by a valid delimiter:
comma, equal sign, or blank.

3. 	 The DBCS option is on, and SO follows a

variable symbol without an intervening

period.

System Action: The operand or parameter in
error and the following operands or parameters
are ignored.

Programmer Response: Supply a valid delimiter.

Severity: 12

IEV036 	 REENTRANT CHECK FAILED

Explanation: A machine instruction that might
store data into a control section or common area
when executed has been detected. This
message is generated only when reentrant
checking is requested by the assembler option
'RENT'.

System Action: The statement is assembled as
written.

Programmer Response: If you want reentrant
code, correct the instruction. Otherwise, you
can suppress reentrant checking by specifying
'NORENT' as an assembler option.

Severity: 4

Appendix D. Assembler H Messages 117

IEV037 	 ILLEGAL SELF·DEFINING VALUE

Explanation: A decimal, binary (B), hexadecimal
(X), or character (C) self-defining term contains
invalid characters or is in illegal format.

System Action: In the source program, the
operand in error and the following operands are
ignored. In a macro definition, the entire state­
ment is ignored.

Programmer Response: Supply a valid self­
defining term.

Severity: 8

!EV038 	 OPERAND VALUE FALLS OUTSIDE
OF CURRENT SECTION/LOCTR

Explanation: An ORG statement specifies a
location outside the control section or the
LOCTR in which the ORG is used. Note that
ORG cannot force a change to another section
or LOCTR.

System Action: The statement is ignored.

Programmer Response: Change the ORG state­
ment if it is wrong. Otherwise, insert a CSECT,
DSECT, COM, or LOCTR statement to set the
location cou nter to the proper section before the
ORG statement is executed.

Severity: 12

IEV039 	 LOCATION COUNTER ERROR

Explanation: The location counter has exceeded
224_1, the largest address that can be contained
in 3 bytes. This occurrence is called location
counter wraparound.

System Action: The location counter is 4 bytes
long (only 3 bytes appear in the listing and the
object deck). The overflow is carried into the
high-order byte and the assembly continues.
However, the resulting code will probably not
execute correctly.

Programmer Response: The probable cause is a
high ORG statement value or a high START
statement value. Correct the value or split up
the control section.

Severity: 12

IEV040 	 MISSING OPERAND

Explanation: The statement requires an
operand, and none is present.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored.

Programmer Response: Supply the missing
operand.

Severity: 12

IEV041 	 TERM EXPECTED. TEXT IS UNCLASS­
IFIABlE

Explanation: One of these errors has occurred:

• 	 A term was expected, but the character

encountered is not one that starts a term

(letter, number, =, +, -, *).

• 	 A letter and a quotation mark did not intro­
duce a valid term; the letter is not L, C, G
(DBCS option only), X, or B.

System Action: Another message will accom­
pany an assembler statement. A machine
instruction will be assembled as zero.

Programmer Response: Check for missing punc­
tuation, a wrong letter on a self-defining term, a
bad attribute request, a leading comma, or a
dangling comma. Note that the length attribute
is the only one accepted here. If a scale, type,
or integer attribute is needed, use a SETA state-·
ment and substitute the variable symbol where
the attribute is needed.

Severity: 8

I EV042 	 LENGTH ATTRIBUTE OF UNDEFINED
SYMBOL. DEFAULT= 1

Explanation: This statement has a length attri ­
bute reference to an undefined symbol.

System Action: The L I attribute defaults to 1.

Programmer Response: Define the symbol that
was referenced.

Severity: 8

118 Assembler H Version 2 Programming Guide

IEV043 	 PREVIOUSLY DEFINED SYMBOL

Explanation: The symbol in a name field or in
the operand field of an EXTRN or WXTRN state­
ment was defined (used as a name or an
EXTRN/WXTRN operand) in a previous state­
ment.

System Action: The name or EXTRN/WXTRN
operand of this statement is ignored. The fol­
lowing operands of an EXTRN or WXTRN will be
processed. The first occurrence of the symbol
will define it.

Programmer Response: Correct a possible
spelling error, or change the symbol.

Severity: 8

I EV044 	 UNDEFINED SYMBOL

Explanation: A symbol in the operand field has
not been defined, that is, used in the name field
of another statement or the operand field of an
EXTRN or WXTRN.

System Action: A machine instruction or an
address constant is assembled as zero. In a DC,
OS, or DXD statement or in a duplication-factor
or length-modifier expression, the operand in
error and the following operands are ignored. In
an EQU statement, zero is assigned as the value
of the undefined symbol. Any other instruction is
ignored entirely.

Programmer Response: Define the symbol, or
remove the references to it.

Severity: 8

IEV045 	 REGISTER NOT PREVIOUSLY USED

Explanation: A register specified in a DROP
statement has n.ot been previously specified in a
USING statement.

System Action: Registers not currently active
are ignored.

Programmer Response: Remove the unrefer­
enced registers from the DROP statement. You
can drop all active base registers at once by
specifying DROP with a blank operand.

Severity: 4

IEV046 	 BIT 7 OF CCW FLAG BYTE MUST BE
ZERO

Explanation: Bit 7 of the flag byte of a channel
command word specified by a CCW, CCWO, or
CCW1 statement is not zero.

System Action: The CCW, CCWO, or CCW1 is
assembled as zero.

Programmer Response: Set bit 7 of the flag byte
to zero to suppress this message during the next
assembly.

Severity: 8

I EV047 	 SEVERITY CODE TOO LARGE

Explanation: The severity code (first operand) of
an MNOTE statement is not· or an unsigned
decimal number from 0 to 255.

System Action: The statement is printed in
standard format instead of MNOTE format. The
MNOTE is given the severity code of this
message.

Programmer Response: Choose a severity code
of· or a number less than 255, or check for a
generated severity code.

Severity: 8

IEV048 	 ENTRY ERROR

Explanation: One of the following errors was
detected in the operand of an ENTRY statement:

• 	 Duplicate symbol (previous ENTRY)
• 	 Symbol defined in a DSECT or COM section
• 	 Symbol defined by a DXD statement
• 	 Undefined symbol
• 	 Symbol defined by an absolute or complex

relocatable EQU statement

System Action: The external symbol dictionary
output is suppressed for the symbol.

Programmer Response: Define the ENTRY
operand correctly.

Severity: 8

Appendix D. Assembler H Messages 119

or, if a macro definition is intended, insert a
IEV049 ILLEGAL RANGE ON ISEQ MACRO statement.

Explanation: If this message is accompanied by Severity: 8
another, this one is advisory. If it appears by
itself, it indicates one of the following errors:

IEV052 CARD OUT OF SEQUENCE
• 	 An operand value is less than 1 or greater

than 80, or the second operand (rightmost
column to be checked) is less than the first
operand (leftmost column to be checked).

• 	 More or fewer than two operands are

present, or an operand is null (empty).

• 	 An operand expression contains an unde­

fined symbol.

• 	 An operand expression is not absolute.
• 	 The statement is too complex. For example,

it may have forward references or cause an
arithmetic overflow during evaluation.

• 	 The statement is circularly defined.

System Action: Sequence checking is stopped.

Programmer Response: Supply valid ISEQ oper­
ands. Also, be sure that the cards following this
statement are in order; they have not been
sequence checked.

Severity: 4

IEV050 	 ILLEGAL NAME FIELD. NAME DIS­
CARDED

Explanation: One of these errors has occurred:

• 	 The name field of a macro prototype state­
ment contains an invalid symbolic parameter
(variable symbol).

• 	 The name field of a COPY statement in a
macro definition contains an entry other than
blank or a valid sequence symbol.

System Action: The invalid name field is
ignored.

Programmer Response: Correct the invalid
name field.

Severity: 8

IEV051 	 ILLEGAL STATEMENT OUTSIDE A
MACRO DEFINITION

Explanation: A MEND, MEXIT, or AREAD state­
ment appears outside a macro definition.

System Action: The statement is ignored.

Programmer Response: Remove the statement

120 Assembler H Version 2 Programming Guide

Explanation: Input sequence checking, under
control of the ISEQ assembler instruction, has
determined that this statement is out of
sequence. The sequence number of the state­
ment is appended to the message.

System Action: The statement is assembled
normally. However, the sequence number of the
next statement will be checked relative to this
statement.

Programmer Response: Put the statements in
proper sequence. If you want a break in
sequence, put in a new ISEQ statement and
sequence number. ISEQ always resets the
sequence number; the card following the ISEQ is
not sequence checked.

Severity: 12

IEV053 	 BLANK SEQUENCE FIELD

Explanation: Input sequence checking, con­
trolled by the ISEQ assembler statement, has
detected a statement with a blank sequence
field. The sequence number of the last num­
bered statement is appended to the message.

System Action: The statement is assembled
normally. The sequence number of the next
statement will be checked relative to the last
statement having a non blank sequence field.

Programmer Response: Put the proper
sequence number in the statement or discon­
tinue sequence checking over the blank state­
ments by means of an ISEQ statement with a
blank operand.

Severity: 4

I EV054 	 ILLEGAL CONTINUATION CARD

Explanation: A statement has more than 10
cards or end-of-input has been encountered
when a continuation card was expected.

System Action: The cards already read are
processed as is. If the statement had more than
10 cards, the next card is treated as the begin­
ning of a new statement.

Programmer Response: In the first case, break
the statement into two or more statements. In
the second case, ensure that a continued state­
ment does not span the end of a library member.
Check for lost cards or an extraneous continua­
tion punch.

Severity: 8

IEV055 RECURSIVE COPY

Explanation: A nested COPY statement (COpy
within another COpy) attempted to copy a library
member already being copied by a higher level
COPY within the same nest.

System Action: This COpy statement is ignored.

Programmer Response: Correct the operand of
this COPY if it is wrong, or rearrange the nest so
that the same library member is not copied by
COPY statements at two different levels.

Severity: 12

IEV057 UNDEFINED OPERATION CODE

Explanation: One of the following errors has
occurred:

• 	 The operation code of this statement is not a
valid machine or assembler instruction or
macro name.

• 	 In an OPSYN statement, this operand symbol
is undefined or illegal or, if no operand is
present, the name field symbol is undefined.

System Action: The statement is ignored. Note
that OPSYN does not search the macro library
for an undefined operand.

Programmer Response: Correct the statement.
In the case of an undefined macro instruction,
the wrong data set may have been specified for
the macro library. In the case of OPSYN, a pre­
vious OPSYN or macro definition may have
failed to define the operation code.

Severity: 8

IEV059 ILLEGAL ICTL

Explanation: An ICTL statement has one of the
following errors:

• 	 The operation code was created by variable
symbol substitution.

• 	 It is not the first statement in the assembly.
• 	 The value of one or more operands is incor­

rect.
• 	 An operand is missing.
• 	 An invalid character is detected in the

operand field.

System Action: The ICTL statement is ignored.
Assembly continues with standard ICTL values.

Programmer Response: Correct or remove the
ICTL. The begin column must be 1-40; the end
column must be 41-80 and at least five greater
than the begin column; and the continue column
must be 2-40.

Severity: 16

IEV060 COPY CODE NOT FOUND

Explanation: (1) If this message is on a COPY
statement and no text is printed with it, one of
the following occurred:

• 	 The library member was not found.

• 	 The look-ahead phase previously processed
the COPY statement and did not find the
library member, the copy was recursive, or
the operand contains a variable symbol.

(2) If this message is not on a COPY statement,
but has a library member name printed with it,
the look-ahead phase of the assembler could not
find the library member because the name is
undefined or contains a variable symbol.

System Action: The, COpy statement is ignored;
the library member is not copied.

Programmer Response: Check that the correct
macro library was assigned, or check for a pos­
sible misspelled library member name. If the
library member may be read by the look-ahead
phase of the assembler, do not make the library
member name a variable symbol.

If COpy member is not defined in any macro
library, and is not executed because of an AGO
or AIF assembler instruction, add a dummy
COPY member with the name to the macro
library.

Appendix D. Assembler H Messages 121

Severity: 12

IEV061 	 SYMBOL NOT NAME OF DSECT OR
DXD

Explanation: The operand of a Q-type address
constant is not a symbol or the name of a
DSECT or DXD statement.

System Action: The constant is assembled as
zero.

Programmer Response: Supply a valid operand.

Severity: 8

IEV062 	 ILLEGAL OPERAND FORMAT

Explanation: One of the following errors has
occurred:

• 	 DROP or USING-more than 16 registers

were specified in the operand field.

• 	 PUSH or POP-an operand does not lipecify
a PRINT or USING statement.

• 	 PRINT-an operand specifies an invalid print
option.

• 	 MNOTE-the syntax of the severity code (first
operand) is invalid.

• 	 AMODE-the operand does not specify 24,
31, or ANY.

• 	 RMODE-the operand does not specify 24 or
ANY.

• 	 TITLE-more than 100 bytes were specified.

System Action: The first 16 registers in a DROP
or USING statement are processed. The
operand in error and the following operands of a
PUSH, POP, or PRINT statement are ignored.
The AMODE or RMODE instruction is ignored,
and the name field (if any) will not appear in the
cross-reference listing.

Programmer Response: Supply a valid operand
field.

Severity: 8

IEV063 	 NO ENDING APOSTROPHE

Explanation: The quotation mark terminating an
operand is missing, or the standard value of a
keyword parameter of a macro prototype state­
ment is missing.

System Action: The operand or standard value
in error is ignored. If the error is in a macro

122 Assembler H Version 2 Programming Guide

definition model statement, the entire statement
is ignored.

Programmer Response: Supply the missing quo­
tation mark.

Severity: 8

IEV064 	 FLOATING POINT CHARACTERISTIC
OUT OF RANGE

Explanation: A converted floating-point constant
is too large or too small for the processor. The
allowable range is 7.2x107S to 5.3x10-77.

System Action: The constant is assembled as
zero.

Programmer Response: Check the characteristic
(exponent), exponent modifier, scale modifier,
and mantissa (fraction) for validity. Remember
that a floating-point constant is rounded, not
truncated, after conversion.

Severity: 12

IEV065 	 UNKNOWN TYPE

Explanation: An unknown constant type has
been used in a DC or DS statement or in a
literal.

System Action: The operand in error and the fol­
lowing operands are ignored.

Programmer Response: Supply a valid constant.
Look for an incorrect type code or incorrect
syntax in the duplication factor.

Severity: 8

IEV066 	 RELOCATABLE V-TYPE CONSTANT

Explanation: This statement contains a relocat­
able Y-type address constant. A Y-constant is
only 2 bytes long, so addressing errors will
occur if this program is loaded at a main storage
address greater than 32K (32,768).

System Action: The statement is assembled as
written.

Programmer Response: If this program will not
be loaded at a main storage address greater
than 32K, you can leave the Y-constant.

Severity: 4

I EV067 ILLEGAL DUPLICATION FACTOR

Explanation: One of the following errors has
occurred:

• 	 A literal has a zero duplication factor.
• 	 The duplication factor 'of a constant is

greater than 224_1.

• 	 A duplication factor expression of a constant

is invalid.

System Action: The operand in error and the fol­
lowing operands of a DC, OS, or DXD statement
are ignored. The statement containing the literal
is assembled as zero.

Programmer Response: Supply a valid dupli ­
cation factor. If you want a zero duplication
factor, write the literal as a DC statement.

Severity: 12

IEV068 LENGTH ERROR

Explanation: One of the following errors has
occurred:

• 	 The length modifier of a constant is wrong.
• 	 The C, X, B, Z, or P-type constant is too long.
• 	 An operand is longer than 224_1 bytes.
• 	 A relocatable address constant has an illegal

length.
• 	 The length field in a machine instruction is

invalid or out of the permissible range.

System Action: The operand in error and the fol­
lowing operands of the DC, OS, or DXD state­
ment are ignored, except that an address
constant with an illegal length is truncated. A
machine instruction is assembled as zero.

Programmer Response: Supply a valid length.

Severity: 12

IEV070 SCALE MODIFIER ERROR

Explanation: A scale modifier in a constant is
used illegally, is out of range, or is relocatable,
or there is an error in a scale modifier
expression.

System Action: If the scale modifier is out of
range, it defaults to zero. Otherwise, the
operand in error and the following operands are
ignored.

Programmer Response: Supply a valid scale
modifier.

Severity: 8

IEV071 EXPONENT MODIFIER ERROR

Explanation: The constant contains multiple
internal exponents, the exponent modifier is out
of range or relocatable, or the sum of the expo­
nent modifier is out of range.

System Action: If the constant contains multiple
internal exponents, the operand in error and the
following operands are ignored. Otherwise, the
exponent modifier defaults to zero.

Programmer Response: Change the exponent
modifier or the internal exponent.

Severity: 8

IEV072 DATA ITEM TOO LARGE

Explanation: A Y-type address constant is larger
than 215_1 or smaller than _2 15 , or the value of a
decimal constant is greater than the number of
bits (integer attribute) allocated to it.

System Action: The constant is truncated. The
high-order bits are lost.

Programmer Response: Supply a smaller scale
modifier or a longer constant.

Severity: 8

IEV073 PRECISION LOST

Explanation: The scale modifier of a floating­
point number was large enough to shift the
entire fraction out of the converted constant.

System Action: The constant is assembled with
an exponent but with a zero mantissa (fraction).

Programmer Response: Change the scale modi­
fier or use a longer constant. For example, use
a D-type constant instead of an E-type constant.

Severity: 8

IEV074 ILLEGAL SYNTAX IN EXPRESSION

Explanation: An expression has two terms or
two operations in succession, or invalid or
missing characters or delimiters.

System Action: In a DC, OS, or OXO statement,
the operand in error and the following operands
are ignored. In a macro definition, the entire

Appendix D. Assembler H Messages 123

statement is ignored. A machine instruction is
assembled as zero.

Programmer Response: Check the expression
for keypunch errors, or for missing or invalid
terms or characters.

Severity: 8

IEV075 	 ARITHMETIC OVERFLOW

Explanation: The intermediate or final value of
an expression is not within the range _2 31

through 231 _1.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored.

Programmer Response: Change the expression.

Severity: 8

IEV076 	 STATEMENT COMPLEXITY EXCEEDED

Explanation: The complexity of this statement
caused the assembler's expression evaluation
work area to overflow.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored.

Programmer Response: Reduce the number of
terms, levels of expressions, or references to
complex relocatable EQU names.

Severity: 8

I EV077 	 CIRCULAR DEFINITION

Explanation: The value of a symbol in an
expression is dependent on itself, either directly
or indirectly, via one or more EQU statements.
For example,

A EQU B
B EQU C
C EQU A

A is circularly defined.

System Action: The value of the EQU statement
defaults to the current value of the location
counter. All other EQU statements involved in
the circularity are defaulted in terms of this one.

Programmer Response: Supply a correct defi ­
nition.

Severity: 8

124 Assembler H Version 2 Programming Guide

IEV079 	 ILLEGAL PUSH·POP

Explanation: More POP assembler instructions
than PUSH instructions have been encountered.

System Action: This POP instruction is ignored.

Programmer Response: Eliminate a POP state­
ment, or add another PUSH statement.

Severity: 8

IEV080 	 STATEMENT IS UNRESOLVABLE

Explanation: A statement cannot be resolved,
because it contains a complex relocatable
expression or because the location counter has
been circularly defined.

System Action: The statement is ignored.

Programmer Response: Untangle the forward
references or check the complex relocatable
EQU statements.

Severity: 8

IEV081 	 CREATED SET SYMBOL EXCEEDS 63
CHARACTERS

Explanation: A SET symbol created by variable
symbol substitution is longer than 63 characters
(including the ampersand as the first character).

System Action: If the symbol is in the operand
field of a SET, AIF, or AGO statement, its value is
set to zero or nUll, and the type attribute is set to
undefined (U). If the symbol is in the operand
field of a GBL, or LCL statement or the name
field of a SET statement, the macro is aborted.

Programmer Response: Shorten the symbol.

Severity: 8

IEV082 	 CREATED SET SYMBOL IS NULL

Explanation: A SET symbol created by variable
symbol substitution is null (empty string).

System Action: If the symbol is in the operand
field of a SET, AIF, or AGO statement, its value is
set to zero or nUll, and the type attribute is set to
undefined (U). If the symbol is in the operand
field of a GBL, or LCL statement or the name
field of a SET statement, the macro is aborted.

Programmer Response: Supply a valid symbol.

Severity: 8

IEV083 	 CREATED SET SYMBOL IS NOT A
VALID SYMBOL

Explanation: A SET symbol created by variable
symbol substitution or concatenation does not
consist of an ampersand followed by up to 62
alphameric characters, the first of which is
alphabetic.

System Action: If the symbol is in the operand
field of a SET, AIF, or AGO statement, its value is
set to zero or nUll, and the type attribute is set to
undefined (U). If the symbol is in the operand
field of a GBL or LCL statement or the name
field of a SET statement, the macro is aborted.

Programmer Response: Supply a valid symbol.

Severity: 8

IEV084 	 GENERATED NAME FIELD EXCEEDS
63 CHARACTERS. DISCARDED

Explanation: The name field on a generated
statement is longer than 63 characters.

System Action: The name field is not generated.
The rest of the statement is assembled normally.

Programmer Response: Shorten the generated
name to 63 characters or fewer.

Severity: 12

IEV085 	 GENERATED OPERAND FIELD IS
NULL

Explanation: The operand field of a generated
statement is null (empty).

System Action: The statement is assembled as
though no operand were specified.

Programmer Response: Provide a nonempty
operand field. If you want the statement assem­
bled with no operand, substitute a comma rather
than leave the operand blank.

Severity: 0

IEV086 	 MISSING MEND GENERATED

Explanation: A macro definition, appearing in
the source program or being read from a library
by a macro call or a COPY statement, ends
before a MEND statement is encountered to ter­
minate it.

System Action: A MEND statement is generated.

The portion of the macro definition read in will
be processed.

Programmer Response: Insert the MEND state­
ment if it was left out. Otherwise, check if all the
macro definition is on the library.

Severity: 12

IEV087 	 GENERATED OPERATION CODE IS
NUll

Explanation: The operation code of a generated
statement is null (blank).

System Action: The generated statement is
printed but not assembled.

Programmer Response: Provide a valid opera­
tion code.

Severity: 12

I EV088 	 UNBALANCED PARENTHESES IN
MACRO CALL OPERAND

Explanation: Excess left or right parentheses
occur in an operand (parameter) of a macro call
statement.

System Action: The parameter corresponding to
the operand in error is given a null (empty)
value.

Programmer Response: Balance the paren­
theses.

Severity: 8

IEV089 	 ARITHMETIC EXPRESSION CON·
TAINS ILLEGAL DELIMITER OR ENDS
PREMATURELY

Explanation: An arithmetic expression contains
an invalid character or an arithmetic subscript
ends without sufficient right parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid
expression.

Severity: 8

Appendix D. Assembler H Messages 125

IEV090 	 EXCESS RIGHT PARENTHESIS IN
MACRO CALL OPERAND

Explanation: A right parenthesis without a corre­
sponding left parenthesis was detected in an
operand of a macro instruction.

System Action: The excess right parenthesis is
ignored. The macro expansion may be incor­
rect.

Programmer Response: Insert the proper paren­
thesis.

Severity: 8

IEV091 	 SETC OR CHARACTER RELATIONAL
OPERAND OVER 255 CHARACTERS.
TRUNCATED TO 255 CHARACTERS

Explanation: The value of the operand of a SETe
statement or the character relational operand of
an AIF statement is longer than 255 characters.
This may occur before substrings are evaluated.

System Action: The first 255 characters are
used.

Programmer Response: Shorten the SETe
expression value or the operand value.

Severity: 8

IEV092 	 SUBSTRING EXPRESSION 1 POINTS
PAST STRING END DEFAULT= NULL

Explanation: The first arithmetic expression of a
SETe substring points beyond the end of the
expression character string.

System Action: The substring is given a null
value.

Programmer Response: Supply a valid
expression.

Severity: 8

IEV093 	 SUBSTRING EXPRESSION 1 LESS
THAN 1. DEFAULT=NULL

Explanation: The first arithmetic expression of a
SETe substring is less than one; that is, it points
before the expression character string.

System Action: The substring expression
defaults to null.

Programmer Response: Supply a valid
expression.

Severity: 8

IEV094 	 SUBSTRING GOES PAST STRING
END. DEFAULT=REMAINDER

Explanation: The second expression of a sub­
stri ng notation specifies a length that extends
beyond the end of the string.

System Action: The result of the substring oper­
ation is a string that ends with the last character
in the character string.

Programmer Response: Make sure the arith­
metic expression used to specify the length does
not specify characters beyond the end of the
string. Either change the first or the second
expression in the substring notation.

Severity: 0

IEV095 	 SUBSTRING EXPRESSION 2 LESS
THAN O. DEFAULT=NULL

Explanation: The second arithmetic expression
of a SETe substring is less than or equal to zero.

System Action: No characters (a null string)
from the substring character expression are
used.

Programmer Response: Supply a valid
expression.

Severity: 4

IEV096 	 UNSUBSCRIPTED SYSLIST.
DEFAULT=SYSLlST(1)

Explanation: The system variable symbol,
&SYSLlST, is not subscripted. &SYSLlST(n)
refers to the nth positional parameter in a macro
instruction. Note that N' &SYSLIST does not
have to be subscripted.

System Action: The subscript defaults to one so
that the first positional parameter will be
referred to.

Programmer Response: Supply an appropriate
subscript.

Severity: 8

126 Assembler H Version 2 Programming Guide

IEV097 	 INVALID ATTRIBUTE REFERENCE TO
SETA OR SETB SYMBOL.
DEFAULT=U OR 0

Explanation: A type (T'), length (L'), scaling
(S'), integer (I'), or defined {O'l attribute refers
to a SETA or SETB symbol.

System Action: The attributes are set to default
values: T' =U, L' =0, S' =0, and 0' =0.

Programmer Response: ChanQe or remove the
attribute reference.

Severity: 8

IEV098 	 ATTRIBUTE REFERENCE TO INVALID
SYMBOL. DEFAULT=U OR 0

Explanation: An attribute attempted to reference
an invalid symbol. (A valid symbol is 1 to 63
alphameric characters, the first of which is
alphabetic.)

System Action: For a type (T') attribute, defaults
to U. For all other attributes, defaults to O.

Programmer Response: Supply a valid symbol.

Severity: 8

IEV099 	 WRONG TYPE OF CONSTANT FOR S'
OR I' ATTRIBUTE REFERENCE.
DEFAULT=O

Explanation: An integer (I') or scaling (S ') attri ­
bute re,ferences a symbol whose type is other
than floating-point (E,O,L), decimal (P,Z), or
fixed-poi nt (H, F).

System Action: The integer or scaling attribute
defaults to zero.

Programmer Response: Remove the integer or
scaling attribute reference or change the con­
stant type.

Severity: 	 4

IEV100 	 SUBSCRIPT LESS THAN 1. DEFAULT
TO SUBSCRIPT = 1.

Explanation: The subscript of a subscripted SET
symbol in the name field of a SET statement, the
operand field of a GBL or LCL statement, or an
&SYSLIST statement is less than 1.

System Action: The subscript defaults to 1.

Programmer Response: Supply the correct sub­
script.

Severity: 8

IEV101 	 SUBSCRIPT LESS THAN 1. DEFAULT
TO VALUE = 0 OR NULL

Explanation: The subscript of a SET symbol in
the operand field is less than 1.

System Action: The subscript is set to 1.

Programmer Response: Supply a valid sub­
script.

Severity: 8

IEV102 	 ARITHMETIC TERM IS NOT
SELF-DEFINING TERM. DEFAULT=O

Explanation: A SETC term or expression used as
an arithmetic term is not a self-defining term.

System Action: The value of the SETC term or
expression is set to zero.

Programmer Response: Make the SETC a self­
defining term, such as C'A', X'1EC', 8'1101 ' , or
27. Note that the C, X, or 8 and the quotation
marks must be part of the SETC value.

Severity: 8

IEV103 	 MULTIPLICATION OVERFLOW.
DEFAULT PRODUCT=1

Explanation: A multiplication overflow occurred
in a macro definition statement.

System Action: The value of the expression up
to the point of overflow is set to one; evaluation
is resumed.

Programmer Response: Change the expression
so that overflow does not occur; break it into two
or more operations, or regroup the terms by
parentheses.

Severity: 8

IEV105 	 ARITHMETIC EXPRESSION TOO
COMPLEX

Explanation: An arithmetic expression in a
macro definition statement caused an overflow
because it is too complex; that is, it has too
many terms and/or levels.

System Action: The assembly is terminated.

Appendix D. Assembler H Messages 127

Programmer Response: Simplify the expression
or break it into two or more expressions.

Severity: 20

IEV106 	 WRONG TARGET SYMBOL TYPE.
VALUE LEFT UNCHANGED

Explanation: The SET symbol in the name field
does not match its declared type (does not
match the operation code): SETA, SETB, or
SETC.

System Action: The statement is ignored.

Programmer Response: Make the declaration
agree with the SET statement type. If you want
to store across types, store first into a SET
symbol of matching type.

Severity: 8

IEV107 	 INCONSISTENT DIMENSION ON
TARGET SYMBOL. SUBSCRIPT
IGNORED OR 1 USED

Explanation: The SET symbol in the name field
is dimensioned (subscripted), but was not
declared in a GBL or LCL statement as dimen­
sioned, or vice versa.

System Action: The subscript is ignored or a
subscript of 1 is used, in accordance with the
declaration.

Programmer Response: Make the declaration
and the usage compatible. Note that you can
declare a local SET symbol as dimensioned by
using it, subscripted, in the name field of a SET
statement.

Severity: 8

IEV108 	 INCONSISTENT DIMENSION ON SET
SYMBOL REFERENCE. DEFAULT = 0,
NULL, OR TYPE = U

Explanation: A SET symbol in the operand field
is dimensioned (subscripted), but was not
declared in a GBL or LCL statement as dimen­
sioned, or vice versa.

System Action: A value of zero or null is used
for the subscript. If the type attribute of the SET
symbol is being requested, it is set to U.

Programmer Response: Make the declaration
and the usage compatible. Note that you can
declare a SET symbol as dimensioned by using
it, subscripted, in the name field of a SET state­
ment.

Severity: 8

IEV109 	 MULTIPLE OPERANDS FOR UNDI­
MENSIONED SET SYMBOL. GETS
LAST OPERAND

Explanation: Multiple operands were assigned
to an undimensioned (unsubscripted) SET
symbol.

System Action: The SET symbol is given the
value of the last operand.

Programmer Response: Declare the SET symbol
as dimensioned, or assign only one operand to
it.

Severity: 8

IEVll0 	 LIBRARY MACRO 1ST STATEMENT
NOT - MACRO - OR COMMENT

Explanation: A statement other than a comment
statement preceded a MACRO statement in a
macro definition read from a library.

System Action: The macro definition is not read
from the library. A corresponding macro call
cannot be processed.

Programmer Response: Ensure that the library
macro definition begins with a MACRO state­
ment preceded (optionally) by comment state­
ments only.

Severity: 12

IEVlll 	 INVALID AIF OR SETB OPERAND
FIELD

Explanation: The operand of an AIF or SETB
statement either does not begin with a left
parenthesis or is missing altogether.

System Action: The statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

128 Assembler H Version 2 Programming Guide

IEV112 	 INVALID SEQUENCE SYMBOL

Explanation: One of the following errors has
occurred:

• 	 A sequence symbol doesn't begin with a

period followed by one to 62 alphameric

characters, the first being alphabetic.

• 	 A sequence symbol in the name field was

created by sUbstitution.

• 	 A sequence symbol contains an underscore
character.

• 	 Operand of AGO is blank or sequence

symbol in AIF is blank.

System Action: The sequence symbol in the
name field is ignored. A sequence symbol in the
operand field of an AIF or AGO statement
causes the entire statement to be ignored.

Programmer Response: Supply a valid
sequence symbol.

Severity: 12

IEV113 	 CONTINUE COLUMN BLANK

Explanation: A SET symbol declaration in a GBL
or LCL statement began with an ampersand in
the end column (normally column 71) of the pre­
vious card, but the continue column (normally
column 16) of this card is blank.

System Action: This card and any following
cards of the statement are ignored. Any SET
symbols appearing entirely on the previous
card(s) are processed normally.

Programmer Response: Begin this card in the
continuation column.

Severity: 12

IEV114 	 INVALID COPY OPERAND

Explanation: The operand of a COpy statement
is not a symbol of 1 to 8 alphameric characters,
the first being alphabetic.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

IEV115 	 COPY OPERAND TOO LONG

Explanation: The symbol in the operand field of
a COpy statement is more than 8 characters
long.

System Action: The COPY statement is ignored.

Programmer Response: Supply a valid operand.

Severity: 12

IEV116 	 ILLEGAL SET SYMBOL

Explanation: A SET symbol in the operand field
of a GBL or LCL statement or in the name field
of a SET statement does not consist of an
ampersand followed by one to 62 alphameric
characters, the first being alphabetic.

System Action: The invalid SET symbol and all
following SET symbols in a GBL or LCL state­
ment are ignored. The entire SET statement is
ignored.

Programmer Response: Supply a SET symbol.

Severity: 8

IEV117 	 ILLEGAL SUBSCRIPT

Explanation: The subscript following a SET
symbol contained unbalanced parentheses or an
invalid arithmetic expression.

System Action: This statement is ignored.

Programmer Response: Supply an equal
number of left and right parentheses or a valid
arithmetic expression.

Severity: 8

IEV118 	 SOURCE MACRO ENDED BY --MEND-­
IN COPY CODE

Explanation: A library member, being copied by
a COPY statement within a macro definition,
contained a MEND statement. This terminated
the definition.

System Action: The MEND statement is ignored.
No more COPY code is read. The statements
brought in before the end of the COPY code are
processed. The macro definition is resumed
with the statement following the COPY state­
ment.

Appendix D. Assembler H Messages 129

Programmer Response: Make sure that each
library member to be used as COPY code con­
tains balanced MACRO and MEND statements.

Severity: 12

IEV119 	 TOO FEW MEND STATEMENTS IN
COPY CODE

Explanation: A macro definition is started in a
library member brought in by a COPY statement
and the COPY code ends before a MEND state­
ment is encountered.

System Action: A MEND statement is generated
to terminate the macro definition. The state­
ments brought in before the end of the COPY
code are processed.

Programmer Response: Check to see if part of
the macro definition was lost. Also, ensure that
each macro definition to be used as COPY code
contains balanced MACRO and MEND state­
ments.

Severity: 12

IEV120 	 EOD WHERE CONTINUE CARD
EXPECTED

Explanation: An end-of-data occurred when a
continuation card was expected.

System Action: The portion of the statement
read in is assembled. The assembly is termi­
nated if the end-of-data is on SYSIN. If a library
member is being copied, the assembly continues
with the statement after the COPY statement.

Programmer Response: Check to determine
whether any statements were omitted from the
source program or from the COpy code.

Severity: 12

IEV121 	 INSUFFICIENT CORE FOR EDITOR
WORK AREA

Explanation: The macro editor module of the
assembler cannot get enough main storage for
its work areas.

System Action: The assembly is terminated.

Programmer Response: Split the assembly into
two or more parts or give the macro editor more
working storage. This can be done by
increasing the region size for the assembler,

130 Assembler H Version 2 Programming Guide

decreasing blocking factor or block size on the
assembler data sets, or a combination of both.

Severity: 12

IEV122 	 ILLEGAL OPERATION CODE FORMAT

Explanation: The operation code is not followed
by a blank or is missing altogether, or the first
card of a continued source statement is missing.

System Action: The statement is ignored.

Programmer Response: Ensure that the state­
ment has a valid operation code and that all
cards of the statement are present.

Severity: 12

IEV123 	 VARIABLE SYMBOL TOO LONG

Explanation: A SET symbol, symbolic parameter,
or sequence symbol contains more than 62 char­
acters following the ampersand or period.

System Action: This statement is ignored.

Programmer Response: Shorten the variable
symbol or sequence symbol.

Severity: 12

J '\!"
IEV124 	 ILLEGAL USE OF PARAMETER

Explanation: A symbolic parameter was used in
the operand field of a GBL or LCL statement or
in the name field of a SET statement. In other
words, a variable symbol has been used both as
a symbolic parameter and as a SET symbol.

System Action: The statement is ignored.

Programmer Response: Change the variable
symbol to one that is not a symbolic parameter.

Severity: 12

IEV125 	 ILLEGAL MACRO NAME - MACRO
UNCALLABLE

Explanation: The operation code of a macro pro­
totype statement is not a valid symbol; that is,
one to 63 alphameric characters, the first alpha­
betic.

System Action: The macro definition is edited.
However, since the macro name is invalid, the
macro cannot be called.

Programmer Response: Supply a valid macro
name.

Severity: 12

IEV126 LIBRARY MACRO NAME INCORRECT

Explanation: The operation code of the prototype
statement of a library macro definition is not the
same as the operation code of the macro
instruction (call). Library macro definitions are
located by their member names. However, the
assembler compares the macro instruction with
the macro prototype.

System Action: The macro definition is edited
using the operation code of the prototype state­
ment as the macro name. Thus, the definition
cannot be called by this macro instruction.

Programmer Response: Ensure that the member
name of the macro definition is the same as the
operation code of the prototype statement. This
will usually require listing the macro definition
from the library.

Severity: 12

IEV127 ILLEGAL USE OF AMPERSAND

Explanation: One of the following errors has
occurred:

• 	 An ampersand was found where all substi ­
tution should have already been performed.

• 	 The standard value of a keyword parameter
in a macro prototype statement contained a
single ampersand or a string of ampersands
whose length was odd.

• 	 An unpaired ampersand occurred in a char­
acter (C) constant.

System Action: In a macro prototype statement,
all information following the error is ignored. In
other statements, the action depends on which
field the error occurred in. If the error occurred
in the name field, the statement is processed
without a name. If the error occurred in the
operation code field, the statement is ignored. If
the error occurred in the operand field, another
message is issued to specify the default.
However, if the error occurred in a C-type con­
stant, the operand in error and the following
operands are ignored.

Programmer Response: Ensure that ampersands
used in keyword standard values or in C-type

constants occur in pairs. Also, avoid substituting
an ampersand into a statement unless there is a
double ampersand.

Severity: 12

IEV128 EXCESS RIGHT PARENTHESIS

Explanation: An unpaired right parenthesis has
been found.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored and an additional message relative to
the statement type appears. However, if the
error is in the standard value of a keyword on a
macro prototype statement, only the operands in
error and the following operands are ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

IEV129 INSUFFICIENT RIGHT PARENTHESES

Explanation: An unpaired left parenthesis has
been found. Note that parentheses must
balance at each comma in a multiple operand
statement.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored and an additional message relative to
the statement type will appear. However, if the
error is in the standard value of a keyword on a
macro prototype statement, only the operands in
error and the following operands are ignored.

Programmer Response: Make sure that all
parentheses are paired.

Severity: 12

IEV130 ILLEGAL ATTRIBUTE REFERENCE

Explanation: One of the following errors has
occurred:

• 	 The symbol following a D, I, L, S, or T attri ­
bute reference is not a valid variable symbol
or ordinary symbol.

• 	 The symbol following a K or N attribute ref­
erence is not a valid variable symbol.

• 	 The quote is missing from a T attribute refer­
ence.

System Action: The statement is ignored.

Appendix D. Assembler H Messages 131

Programmer Response: Supply a valid attribute
reference.

Severity: 12

IEV131 	 PARENTHESIS NESTING DEPTH
EXCEEDS 255

Explanation: There are more than 255 levels of
parentheses in a SETA expression.

System Action: The statement is ignored.

Programmer Response: Rewrite the SETA state­
ment using several statements to regroup the
subexpressions in the expression.

Severity: 12

IEV132 	 INVALID SETB EXPRESSION

Explanation: A SETB expression in the operand
field of a SETB statement or an AIF statement
does not consist of valid character relational
expressions, arithmetic relational expressions,
and single SETB symbols, connected by logical
operators.

System Action: The statement is ignored.

Programmer Response: Supply a valid SETB
expression.

Severity: 12

IEV133 	 ILLEGAL SUBSTRING REFERENCE

Explanation: A substring expression following a
SETC expression does not consist of two valid
SETA expressions separated by a comma and
enclosed in parentheses.

System Action: The statement is ignored.

Programmer Response: Supply a valid substring
expression.

Severity: 12

IEV134 	 INVALID RELATIONAL OPERATOR

Explanation: Characters other than EO, NE, LT,
GT, LE, or GE are used in a SETB expression
where a relational operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid relational
operator.

Severity: 12

IEV135 	 INVALID LOGICAL OPERATOR

Explanation: Characters other than AND, OR, or
NOT are used in a SETB expression where a
logical operator is expected.

System Action: The statement is ignored.

Programmer Response: Supply a valid logical
operator.

Severity: 12

IEV136 	 ILLEGAL LOGICAL/RELATIONAL
OPERATOR

Explanation: Characters other than a valid
logical or relational operator were found where
a logical or relational operator was expected.

System Action: The statement is ignored

Programmer Response: Supply a valid logical or
relational operator.

Severity: 12

IEV137 	 ILLEGAL SETC EXPRESSION

Explanation: The operand of a SETC statement
or the character value used in a character
relation is erroneous. It must be a valid type
attribute (T') reference or a valid character
expression enclosed in quotation marks.

System Action: The statement is ignored.

Programmer Response: Supply a valid
expression.

Severity: 12

IEV139 	 EOD DURING REPRO PROCESSING

Explanation: A REPRO statement was imme­
diately followed by an end-of-data so that no
valid card could be punched. The REPRO is
either the last card of source input or the last
card of a COPY member.

System Action: The REPRO statement is
ignored.

Programmer Response: Remove the REPRO or
ensure that it is followed by a card to be
punched.

Severity: 12

132 Assembler H Version 2 Programming Guide

IEV140 	 END CARD MISSING

Explanation: End-of-file on the source input data
set occurred before an END statement was read.
One of the following has occurred:

• 	 The END statement was omitted or mis­

spelled.

• 	 The END operation code was changed or
deleted by OPSYN or by definition of a
macro named END. The look-ahead phase
of the assembler marks what it thinks is the
END statement. If an OPSYN statement or a
macro definition redefines the END state­
ment, premature end-of-input may occur
because the assembler will not pass the ori ­
ginal END statement.

System Ac~ion: An END statement is generated.
It is assigned a statement number but not
printed. If any literals are waiting, they will be
processed as usual following the END statement.

Programmer Response: Check for lost cards.
Supply a valid END statement; or, if you use
OPSYN to define another symbol as END, place
it prior to possible entry into the look-ahead
phase.

Severity: 4

IEV141 	 BAD CHARACTER IN OPERATION
CODE

Explanation: The operation code contains a non­
alphameric character, that is, a character other
than A to Z, 0 to 9, $, #, or @' Embedded blanks
are not allowed.

System Action: The statement is ignored.

Programmer Response: Supply a valid operation'
code. If the operation code is formed by vari ­
able symbol substitution, check the statements
leading to substitution.

Severity: 8

IEV142 	 OPERATION CODE NOT COMPLETE
ON FIRST CARD

Explanation: The entire name and operation
code, including a trailing blank, is not contained
on the first card (before the continue
column-usually column 72) of a continued state­
ment.

System Action: The statement is ignored.

Programmer Response: Shorten the name
and/or the operation code or simplify the state­
ment by using a separate SETC statement to
create the name or operation code by substi­
tution.

Severity: 8

IEV143 	 BAD CHARACTER IN NAME FIELD

Explanation: The name field contains a nona 1­
phameric character, that is, a character other
than A to Z, 0 to 9, $, #, @, or . (Note: _ is
invalid for external names or in the name field of
an OPSYN instruction.)

System Action: If possible, the statement is
processed without a name. Otherwise, it is
ignored.

Programmer Response: Put a valid symbol in
the name field.

Severity: 8

IEV144 	 BEGIN-TO-CONTINUE COLUMNS NOT
BLANK

Explanation: On a continuation card, one or
more columns between the begin column
(usually column 1) and the continue column
(usually column 16) are not blank.

System Action: The extraneous characters are
ignored.

Programmer Response: Check whether the
operand started in the wrong column or whether
the preceding card contained an erroneous con­
tinue punch.

Severity: 8

IEV145 	 OPERATOR, RIGHT PARENTHESIS,
OR END-OF-EXPRESSION EXPECTED

Explanation: One of the following has occurred:

• 	 A letter, number, equal sign, quotation mark,
or undefined character occurred following a
term where a right parenthesis, an operator,
a comma, or a blank ending the expression
was expected.

• 	 In an assembler instruction, a left paren­

thesis followed a term.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is

Appendix D. Assembler H Messages 133

ignored and another message, relative to the
operation code, is issued.

Programmer Response: Check for an omitted or
mispunched operator. Subscripting is not
allowed on this statement.

Severity: 8

IEV146 	 SELF-DEFINING TERM TOO LONG OR
VALUE TOO LARGE

Explanation: A self-defining term is longer than
4 bytes, (8 hexadecimal digits, 32 bits, or 4 char­
acters), or the value of a decimal self-defining
term is greater than 231_1.

System Action: A machine instruction is assem­
bled as zero. An assembler instruction is
ignored. However, another message, relative to
the operation code, is issued.

Programmer Response: Reduce the size of the
self-defining term, or specify it in a DC state­
ment.

Severity: 8

IEV147 	 SYMBOL TOO LONG, OR 1ST CHAR­
ACTER NOT A LETTER

Explanation: A symbol does not begin with a
letter or is longer than 63 characters.

System Action: If the symbol is in the name
field, the statement is processed as unnamed. If
the symbol is in the operand field, an assembler
operation or a macro definition model statement
is ignored and a machine operation is assem­
bled as zero.

Programmer Response: Supply a valid symbol.

Severity: 8

IEV148 	 SELF-DEFINING TERM LACKS
ENDING QUOTE OR HAS BAD CHAR­
ACTER

Explanation: A hexadecimal or binary self­
defining term contains an invalid character or is
missing the final quotation mark, or a pure
DBCS self-defining term contains SO and SI with
no double-byte data between them.

System Action: A machine operation is assem­
bled as zero. An assembler operation is ignored

and another message, relative to the operation
code, is issued.

'" Programmer Response: Correct the invalid term. ~
Severity: 8

IEV149 	 LITERAL LENGTH EXCEEDS 256
CHARACTERS, INCLUDING EQUAL
SIGN

Explanation: A literal is longer than 256 charac­
ters.

System Action: The instruction is assembled as
zero.

Programmer Response: Shorten the literal, or
change it to a DC statement.

Severity: 8

-
IEV150 	 SYMBOL HAS NON-ALPHAMERIC

CHARACTER OR INVALID DELIMITER

Explanation: The first character following a
symbol is not a valid delimiter (plus sign, minus
sign, asterisk, slash, left or right parenthesis,
comma, or blank).

System Action: A machine operation is assem­
bled as zero. An assembler operation is
ignored, and another message, relative to this
operation code, is issued.

Programmer Response: Ensure that the symbol
does not contain a nonalphameric character or
that it is followed by a valid delimiter.

Severity: 8

IEV151 	 LITERAL EXPRESSION MODIFIERS
MUST BE ABSOLUTE AND PREDE­
FINED

Explanation: The duplication factor or length
modifier in a literal is not (1) a self-defining term
or (2) an expression using self-defining terms or
previously defined symbols.

System Action: The statement is assembled as
zero.

Programmer Response: Supply a valid self­
defining term or ensure that symbols appear in
the name field of a previous statement.

Severity: 8

134 Assembler H Version 2 Programming Guide

IEV152 	 EXTERNAL SYMBOL TOO LONG OR
UNACCEPTABLE CHARACTER

Explanation: One of the following errors has
occurred:

• 	 An external symbol is longer than 8 charac­
ters, or contains a bad character. An
external symbol might be the name of a
CSECT, START, DXD, AMODE, RMODE, or
COM statement, or the operand of an
ENTRY, EXTRN, or WXTRN statement or a
Q-type or V-type address constant.

• 	 The operand of an ENTRY, EXTRN, or
WXTRN statement or a Q-type or V-type
address constant is an expression instead of
a single term, or contains a bad character.

System Action: The symbol does not appear in
the external symbol dictionary. If the error is in
the name field, an attempt is made to process
the statement as unnamed. If the error is in the
operand field, the bad operand is ignored and, if
possible, the following operands are processed.
A bad constant is assembled as zero.

Programmer Response: Supply a shorter name
or replace the expression with a term.

Severity: 12

IEV153 	 START STATEMENT ILLEGAL - CSECT
ALREADY BEGUN

Explanation: A START statement occurred after
the beginning of a control section.

System Action: The statement is processed as a
CSECT statement; any operand is ignored.

Programmer Response: Ensure that the START
precedes all machine instructions and any
assembler instruction, such as EQU, that initiates
a control section. If you want EQU statements
before the START, place them in a dummy
section (DSECT).

Severity: 12

IEV154 	 OPERAND MUST BE ABSOLUTE, PRE­
DEFINED SYMBOLS. SET TO 0

Explanation: The operand on a START or
MHELP statement is invalid. If there is another
message with this statement, this message is
advisory. If this message appears alone, it indi­
cates one of the following:

• 	 There is a location counter reference (") in a
START operand.

• 	 An expression does not consist of absolute
terms and/or predefined symbols.

• 	 The statement is too complex. For example,
it may have too many forward references or
cause arithmetic overflow during evaluation.

• 	 The statement is circularly defined.
• 	 A relocatable term is multiplied or divided.

System Action: The operand of the statement is
treated as zero.

Programmer Response: Correct the error if it
exists. Note that paired relocatable symbols in
different LOCTRs, even though in the same
CSECT or DSECT, are not valid where an abso­
lute, predefined value is required.

Severity: 8

IEV155 	 PREVIOUS USE OF SYMBOL IS NOT
THIS SECTION TYPE

Explanation: The name on a CSECT, DSECT,
COM, or LOCTR statement has been used previ­
ously, on a different type of statement. For
example, the name on a CSECT has been used
before on a statement other than CSECT, such
as a machine instruction or a LOCTR.

System Action: This name is ignored, and the
statement is processed as unnamed.

Programmer Response: Correct the misspelled
name, or change the name to one that does not
conflict.

Severity: 12

IEV156 	 ONLY ORDINARY SYMBOLS, SEPA­
RATED BY COMMAS, ALLOWED

Explanation: The operand field of an ENTRY,
EXTRN, or WXTRN statement contains a symbol
that does not consist of 1 to 8 alphameric char­
acters, the first being alphabetic, or the oper­
ands are not separated by a comma.

System Action: The operand in error is ignored.
If other operands follow, they will be processed
normally.

Programmer Response: Supply a correct symbol
or insert the missing comma. If you want an
expression as an ENTRY statement operand
(such as SYMBOL +4), use an EQU statement to
define an additional symbol.

Appendix D. Assembler H Messages 135

Severity: 12

IEV157 	 OPERAND MUST BE A
SIMPLY-RELOCATABLE EXPRESSION

Explanation: If there is another message with
this statement, this message is advisory. If this
message appears alone, the operand of an ORG
or END statement is not a simple relocatable
expression, is too complex, or is circularly
defined. The error may also be that the END
operand symbol is not in a CSECT.

System Action: An ORG statement or the
operand of an END statement is ignored.

Programmer Response: If an error exists, supply
a correct expression. Note that paired relocat­
able symbols in different LOCTRs, even though
in the same CSECT or DSECT, may cause cir­
cular definition when used in an ORG statement.

Severity: 12

IEV158 	 OPERAND 1 EXPRESSION IS DEFEC­
TIVE. SET TO *

Explanation: The first operand of an EQU state­
ment is defective. If another message appears
with this statement, this message is advisory. If
this message appears alone, one of the following
errors has occurred:

• 	 The statement is too complex. For example,
it has too many forward references or
causes an arithmetic overflow during evalu­
ation.

• 	 The statement is circularly defined.
• 	 The statement contains a relocatable term

that is multiplied or divided.

System Action: The symbol in the name field is
equated to the current value of the location
counter n, and operands 2 and 3 of the state­
ment, if present, are ignored.

Programmer Response: If an error exists, supply
a correct expression for operand 1 of the state­
ment.

Severity: 8

IEV159 	 OPERANDS MUST BE ABSOLUTE,
PROPER MULTIPLES OF 2 OR 4

Explanation: The combination of operands of a
CNOP statement is not one of the following valid
combinations:

136 Assembler H Version 2 Programming Guide

a,4 2,4
a,8 2,8
4,8 6,8

System Action: The statement is ignored.
However, the location counter is adjusted to a
halfword boundary.

Programmer Response: Supply a valid combina··
tion of CNOP operands.

Severity: 12

IEV161 	 ONLY ONE TITLE CARD MAY HAVE A
NAME FIELD

Explanation: More than one TITLE statement has
a name field. The named TITLE statement need
not be the first one in the assembly, but it must
be the only one named.

System Action: The name on this TITLE state­
ment is ignored. The name used for deck iden­
tification is taken from the first named TITLE
statement encountered.

Programmer Response: Delete the unwanted
name.

Severity: 4

IEV162 	 PUNCH OPERAND EXCEEDS 80
COLUMNS. IGNORED

Explanation: A PUNCH statement attempted to
punch more than 80 characters into a card.

System Action: The statement is ignored. The
card is not punched.

Programmer Response: Shorten the operand to
80 characters or fewer or use more than one
PUNCH statement.

Severity: 12

IEV163 	 OPERAND NOT PROPERLY
ENCLOSED IN QUOTES

Explanation: The operand of a PUNCH or TITLE
statement does not begin with a quotation mark,
or the operand of a PUNCH, MNOTE, or TITLE
statement does not end with a quotation mark,
or the ending quotation mark is not followed by
a blank.

System Action: The statement is ignored.

Programmer Response: Supply the missing quo­
tation mark. Be sure that a quotation mark to be

punched as data is represented as two quotation

marks.

Severity: 8

IEV164 	 OPERAND IS A NULL STRING - CARD
NOT PUNCHED

Explanation: A PUNCH statement does not have
any characters between its two single quotation
marks, or a single quotation mark to be punched
as data is not represented by two single quota­
tion marks.

System Action: The statement is ignored.

Programmer Response: Correct the operand. If
you want to "punch" a blank card, the operand
of the PUNCH statement should be a blank
enclosed in single quotation marks.

Severity: 12

IEV165 	 UNEXPECTED NAME FIELD

Explanation: The assembler operation has a
name and the name field should be blank.

System Action: The name is equated to the
current value of the location counter (*).
However, if no control section has been started,
the name is equated to zero.

Programmer Response: Remove the name.
Check that the period was not omitted from a
sequence symbol.

Severity: 4

IEV166 	 SEQUENCE SYMBOL TOO LONG

Explanation: A sequence symbol contains more
than 62 characters following the period.

System Action: If the sequence symbol is in the
name field, the statement is processed without a
name. If it is in the operand field of an AIF or
AGO statement, the entire statement is ignored.

Programmer Response: Shorten the sequence
symbol.

Severity: 12

IEV167 	 REQUIRED NAME MISSING

Explanation: This statement requires a name
and has none. The name field may be blank
because an error occurred during an attempt to
create the name by substitution or because a
sequence symbol was used as the name.

System Action: The statement is ignored.

Programmer Response: Supply a valid name or
ensure that a valid name is created by substi ­
tution. If a sequence symbol is needed, put it on
an ANOP statement ahead of this one and put a
name on this statement.

Severity: 8

IEV168 	 UNDEFINED SEQUENCE SYMBOL

Explanation: The sequence symbol in the
operand field of an AIF or AGO statement
outside a macro definition is not defined; that is,
it does not appear in the name field of an appro­
priate statement.

System Action: This statement is ignored;
assembly continues with the next statement.

Programmer Response: If the sequence symbol
is misspelled or omitted, correct it. Note that,
when the sequence symbol is not previously
defined, the assembler looks ahead for the defi ­
nitions. The look-ahead stops when an END
statement or an OPSYN equivalent is encount­
ered. Be sure that OPSYN statements and
macro definitions that redefine END precede
possible entry into look-ahead.

Severity: 16

IEV170 	 INTERLUDE ERROR - LOGGING
CAPACITY EXCEEDED

Explanation: The table that the interlude phase
of the assembler uses to keep track of the errors
it detects is full. This does not stop error
detection by other phases of the assembler.

System Action: If there are additional errors,
normally detected by the interlude phase, in
other statements either before or after this one,
they will not be flagged. Statement processing
depends on the type of error.

Programmer Response: Correct the indicated
errors, and run the assembly again to diagnose
any further errors.

Appendix D. Assembler H Messages 137

Severity: 12

IEV171 	 STANDARD VALUE TOO LONG

Explanation: The standard (default) value of a
keyword parameter on a macro prototype state­
ment is longer than 255 characters.

System Action: The parameter in error and the
following parameters are ignored.

Programmer Response: Shorten the standard
value.

Severity: 12

IEV172 	 NEGATIVE DUPLICATION FACTOR.
DEFAULT 	= 1

Explanation: The duplication factor of a SETC
statement is negative.

System Action: The duplication factor is given a
default value of 1.

Programmer Response: Supply a positive dupli ­
cation factor.

Severity: 8

IEV173 	 DELIMITER ERROR, EXPECT BLANK

Explanation: Another character, such as a
comma or a quotation mark, is used where a
blank (end of operand) is required.

System Action: A machine instruction is assem­
bled as zero. An ORG statement is ignored. For
an EQU or END statement, the invalid delimiter
is ignored and the operand is processed
normally. For a CNOP statement, the location
counter is aligned to a halfword boundary.

Programmer Response: Replace the invalid
delimiter with a blank. Look for an extra
operand or a missing left parenthesis.

Severity: 12

IEV174 	 DELIMITER ERROR, EXPECT BLANK
OR COMMA

Explanation: Another character, such as a quo­
tation mark or ampersand, is used where a
blank or a comma is required.

System Action: A machine instruction is assem­
bled as zero. For a USING or DROP statement,
the invalid delimiter is ignored and the operand
is processed normally.

Programmer Response: Replace the invalid
delimiter with a blank or a comma. Look for an
extra operand or a missing left parenthesis.

Severity: 12

IEV175 	 DELIMITER ERROR, EXPECT COMMA

Explanation: Another character, such as a blank
or a parenthesis, is used where a comma is
required.

System Action: A machine instruction is assem­
bled as zero. For a CNOP statement, the
location counter is aligned to a halfword
boundary.

Programmer Response: Replace the invalid
delimiter with a comma. Be sure each
expression is syntactically correct and that no
parentheses are omitted.

Severity: 12

IEV176 	 DELIMITER ERROR, EXPECT COMMA,
OR LEFT PARENTHESIS

Explanation: Another character, such as a blank
or a right parenthesis, is used in a machine
instruction where a comma or a left parenthesis
is required.

System Action: The machine instruction is
assembled as zero.

Programmer Response: Replace the invalid
delimiter with a comma or a left parenthesis.
Look for invalid syntax or invalid base or length
fields on the first operand.

Severity: 12

IEV177 	 DELIMITER ERROR, EXPECT BLANK
OR LEFT PARENTHESIS

Explanation: Another character, such as a
comma or a right parenthesis, is used in a
machine instruction when a blank or a left
parenthesis is required.

System Action: The machine instruction is
assembled as zero.

Programmer Response: Replace the invalid
delimiter with a blank or a left parenthesis.
Look for invalid punctuation or invalid length,
index, or base field.

Severity: 12

138 Assembler H Version 2 Programming Guide

IEV178 	 DELIMITER ERROR, EXPECT COMMA
OR RIGHT PARENTHESIS

Explanation: Another character, such as a blank
or a left parenthesis, is used in a machine
instruction when a comma or a right parenthesis
is required.

System Action: The machine instruction is
assembled as zero.

Programmer Response: Replace the invalid
delimiter with a comma or a right parenthesis.
Look for a missing base field.

Severity: 12

IEV179 	 DELIMITER ERROR, EXPECT RIGHT
PARENTHESIS

Explanation: Another character, such as a blank
or a comma, is used in a machine instruction
when a right parenthesis is required.

System Action: The machine instruction is
assembled as zero.

Programmer Response: Replace the invalid
delimiter with a right parenthesis. Look for an
index field used where it is not allowed.

Severity: 12

IEV180 	 OPERAND MUST BE ABSOLUTE

Explanation: The operand of a SPACE statement
or the first, third, or fourth operand of a CCW
statement is not an absolute term.

System Action: A SPACE statement is ignored.
A CCW statement is assembled as zero.

Programmer Response: Supply an absolute
operand. Note that paired relocatable terms
may span LOCTRs but must be in the same
control section.

Severity: 12

IEV181 	 CCW OPERAND VALUE IS OUTSIDE
ALLOWABLE RANGE

Explanation: One or more operands of a CCW
statement are not within the following limits:

• 	 1st operand-O to 255
• 	 2nd operand-O to 16 777 215 (CCW, CCWO);

or 0 to 2 147483 647 (CCW1)

• 	 3rd operand-O-255 and a multiple of 8
• 	 4th operand-O-65,535

System Action: The CCW is assembled as zero.

Programmer Response: Supply valid operands.

Severity: 12

IEV182 	 OPERAND 2 MUST BE ABSOLUTE,
0-65535. IGNORED

Explanation: If there is another message with
this statement, this message is advisory. If this
message appears alone, the second operand of
an EQU statement contains one of the following
errors:

• 	 It is not an absolute term or expression

whose value is within the range of 0 to

65,535.

• 	 It contains a symbol that is not previously

defined.

• 	 It is circularly defined.
• 	 It is too complex; for example, it causes an

arithmetic overflow during evaluation.
• 	 It is derived from an absolute value.

System Action: Operand 2 is ignored, and the
length attribute of the first operand is used. If
the third operand is present, it will be processed
normally.

Programmer Response: Correct the error if it
exists. Note that paired relocatable symbols in
different LOCTRs, even though in the same
CSECT, are not valid where an absolute, prede­
fined value is required.

Severity: 8

IEV183 	 OPERAND 3 MUST BE ABSOLUTE,
0-255. IGNORED

Explanation: If there is another message with
this statement, this message is advisory. If this
message appears alone, the third operand of an
EQU statement contains one of the following
errors:

• 	 It is not an absolute term or expression
whose value is within the range of 0 to 255.

• 	 It contains a symbol that is not previously

defined.

• 	 It is circularly defined.
• 	 It is too complex; for example, it causes an

arithmetic overflow during evaluation.

Appendix D. Assembler H Messages 139

System Action: The third operand is ignored,
and the type attribute of the EQU statement is
set to U.

Programmer Response: Correct the error if it
exists. Note that paired relocatable symbols in
different LOCTRs, even though in the same
CSECT, are not valid where an absolute, prede­
fined value is required.

Severity: 8

IEV184 	 COPY DISASTER

Explanation: The assembler copied a library
member (executed a COpy statement) while
looking ahead for attribute references. However,
when the complete text was analyzed, the COPY
operation code had been changed by an OPSYN
statement or "swallowed" by an AREAD state­
ment, and the COPY should not have been exe­
cuted. (Look-ahead phase ignores OPSYN
statements.) This message will follow the first
card of the COpy code.

System Action: The library member will be
assembled. If it included an ICTL statement, the
format of that ICTL will be used.

Programmer Response: Move COpy statements,
or OPSYN statements that modify the meaning of
COPY, to a point in the assembly prior to pos­
sible entry into look-ahead mode.

Severity: 16

IEV185 	 OPERAND NO.2 IS ERRONEOUS

Explanation: The second operand is incorrect, or
two operands appear where there should be
only one.

System Action: The second operand is ignored.

Programmer Response: Remove or correct the
second operand.

Severity: 4

IEV186 	 AMODE/RMODE ALREADY SET FOR
THIS ESD ITEM

Explanation: A previous AMODE instruction nas
the same name field as this AMODE instruction,
or a previous RMODE instruction has the same
name field as this RMODE instruction.

System Action: The instruction in error is
ignored.

140 Assembler H Version 2 Programming Guide

Programmer Response: Remove the conflicting
instruction or specify the name of another
control section.

Severity: 8

IEV187 	 THE NAME FIELD IS INVALID

Explanation: The name field of an AMODE
instruction does not refer to a valid control
section in this assembly, or the name field of an
RMODE instruction does not refer to a valid
control section in this assembly.

System Action: The instruction in error is
ignored, and the name field will not appear in
the cross~reference listing.

Programmer Response: Specify a valid control
section in the name field of the AMODE or
RMODE instruction.

Severity: 8

IEV188 	 INCOMPATIBLE AMODE AND RMODE
ATTRIBUTES

Explanation: A previous AMODE 24 instruction
has the same name field as this RMODE ANY
instruction, or a previous RMODE ANY instruc­ "­

,Jtion has the same name field as this AMODE 24
instruction.

System Action: The instruction in error is
ignored.

Programmer Response: Change the AMODE and
RMODE attributes so they are no longer incom­
patible. All combinations except AMODE 24 and
RMODE ANY are valid.

Severity: 8

IEV201 	 SO OR SIIN CONTINUATION
COLUMN· NO CONTINUATION
ASSUMED

Explanation: When Assembler H is invoked with
the DBCS option, the double-byte delimiters SO
and SI are treated as blanks in the continuation
column, and not as continuation indicators.

System Action: The SO or SI in the continuation
column is assembled as a blank, and the next
line is not treated as a continuation line.

Programmer Response: If continuation is
required, then re-arrange the source line so that
a non-blank EBCDIC character can be used to

indicate continuation. If continuation is not
required, check that everything preceding the SO
or SI is complete and valid data.

Severity: 4

IEV202 	 NO DOUBLE-BYTE DATA FOUND AT
AN EXTENDED CONTINUATION
POINT

Explanation: The extended continuation indicator
feature is provided to permit continl,Jation of
double-byte data, and single-byte data adjacent
to double-byte data. If used elsewhere, this
message is issued to warn that a programming
error may have been created. The data may
have been treated unintentionally as an
extended continuation indicator.

System Action: The extended continuation indi­
cators will not be assembled as part of the
operand.

Programmer Response: Change the continuation
indicator if the unintentional truncation occurred.

Severity: 4

IEV203 	 UNBALANCED DOUBLE-BYTE DELIM­
ITERS

Explanation: A mismatched SO or SI has been
found. This could be the result of truncated or
nested double-byte data. Note that this error will
NOT occur because valid double-byte data is
truncated to fit within the explicit length specified
for C-type DC, DS, and DXD statements and
literals - this condition will produce error IEV208.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the invalid
double-byte data.

Severity: 8

IEV204 	 INVALID DOUBLE-BYTE DATA

Explanation: All data between SO and SI must
be valid double-byte characters. A valid double­
byte character is defined as either double-byte
blank (X'4040'), or two bytes each of which must
be in the range X'41' to X'FE' inclusive.

Note: This error does not apply to the oper­
ands of macro instructions.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Correct the invalid
double-byte data.

Severity: 8

IEV205 	 EXTENDED CONTINUATION COLUMN
MUST NOT EXTEND INTO CONTINUE
COLUMN

Explanation: The extended continuation indicator
extended into the continue column.

System Action: The extended continuation indi­
cator is ignored. The following record or
records may be treated as invalid. The
extended continuation indicators are treated as
part of the source statement.

Programmer Response: If the data in the
extended continuation is to be regarded as valid
input then another non-blank character must be
used in the continuation indication column to
identify the data as valid and to continue to the
next record. If the data is not to be part of the
constant then remove the characters of the
extended continuation and add the correct data
to the continue record to the point where the
extended continuation is needed. This message
may be encountered when converting code that
assembled with the NODBCS option to code that
is to be assembled with the DBCS option.

Severity: 8

IEV206 	 G-TYPE CONSTANT MUST NOT
CONTAIN SINGLE-BYTE DATA

Explanation: A G-type constant or self-defining
term, after substitution has occurred, must
consist entirely of double-byte data, correctly
delimited by SO and SI. If SO or SI are found in
any byte position other than the first and last
respectively (excepting redundant SI/SO pairs
which are removed) then this error will be
reported.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either remove the
single-byte data from the operand, or change the
constant to a C-type.

Severity: 8

Appendix D. Assembler H Messages 141

IEV207 	 LENGTH OF G·TYPE CONSTANT
MUST BE A MULTIPLE OF 2

Explanation: A G-type constant must contain
only double-byte data. If assembled with a
length modifier which is not a multiple of 2,
invalid double-byte data would be created.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either correct the length
modifier, or change the constant to a C-type.

Severity: 8

IEV208 	 TRUNCATION INTO DOUBLE-BYTE
DATA IS NOT PERMITIED

Explanation: The explicit length of a C-type con­
stant in a OS, DC or OXO statement or literal
must not cause the nominal value to be trun­
cated at any point within double-byte data.

System Action: The operand in error, and the
following operands are ignored.

Programmer Response: Either correct the length
modifier, or change the double-byte data so that
it is not truncated.

Severity: 8

IEV253 	 TOO MANY ERRORS

Explanation: No more error messages can be
issued for this statement, because the assem­
bler work area in which the errors are logged is
full.

System Action: If no more errors are detected
for this statement, the messages and/or anno­
tated text is discarded.

Programmer Response: Correct the indicated
errors, and rerun the assembly. If there are
more errors on this statement, they will be
detected in the next assembly.

Severity: 16

IEV254 	 *** MNOTE ***

Explanation: The text of an MNOTE statement,
which is appended to this message, has been
generated by your program or by a macro defi ­
nition or a library~member copied into your
program. An MNOTE statement enables a
source program or a macro definition to signal

142 Assembler H Version 2 Programming Guide

the assembler to generate an error or informa­
tional message.

System Action: None.

Programmer Response: Investigate the reason
for the MNOTE. Errors flagged by MNOTE will
often cause unsuccessful execution of the
program.

Severity: An MNOTE is assigned a severity code
of 0 to 255 by the writer of the MNOTE statement.

Abnormal Assembly Termination
Messages

Whenever an assembly cannot be completed,
Assembler H provides a message and, in some
cases, a specially formatted dump for diagnostic
information. This may indicate an assembler
malfunction or it may indicate a programmer
error. The statement causing the error is identi ­
fied and, if possible, the assembly listing up to
the point of the error is printed. The messages
in this book give enough information to enable
you to correct the error and reassemble your
program, or to determine that the error is an
assembler malfunction.

Messages

IEV950 	 END OF STATEMENT FLAG WAS
EXPECTED IN MACRO EDITED TEXT,
BUT WAS NOT FOUND· MACRO
EDITOR IS SUSPECT

IEV951 	 THE MACRO GENERA TOR HAS
ENCOUNTERED UNTRANSLATABLE
MACRO EDITED TEXT

IEV952 	 BAD SET SYMBOL NAME FIELD OR
LCLlGBL OPERAND - CHECK THE
MACRO EDITED TEXT

IEV953 	 BAD SUBSCRIPT ON SET SYMBOL·
CHECK THE MACRO EDITED TEXT

IEV954 	 CHARACTER EXPRESSION FOL­
LOWED BY BAD SUBSCRIPTS ­
CHECK THE MACRO EDITED TEXT

IEV955 	 A RIGHT PARENTHESIS WITH NO
MATCHING LEFT PARENTHESIS WAS
FOUND IN AN EXPRESSION - CHECK
THE MACRO EDITED TEXT

..j
'\

IEV956 MULTIPLE SUBSCRIPTS OR BAD SET
SYMBOL TERMINATOR - CHECK THE IEV970 STATEMENT COMPLEXITY
MACRO EDITED TEXT EXCEEDED, BREAK THE STATEMENT

IEV957 BAD TERMINATOR ON CREATED SET INTO SEGMENTS AND RERUN THE
SYMBOL - CHECK THE MACRO . ASSEMBLY
EDITED TEXT

IEV958 BAD TERMINATOR ON PARAMETER­
CHECK THE MACRO EDITED TEXT

IEV959 UNEXPECTED END OF DATA ON
H-ASSEMBLER WORK FILE (SYSUT1)
• INTERNAL CORE MANAGEMENT IS
SUSPECT

IEV960 A BAD INTERNAL FILE NUMBER HAS
BEEN PASSED TO THE xxxxx
INTERNAL CORE MANAGEMENT
ROUTINE

IEV961 AN INVALID CORE REQUEST HAS
BEEN MADE, OR THE FREE CORE
CHAIN POINTERS HAVE BEEN
DESTROYED

Explanation: The assembly is terminated
because of one of the errors described in IEV9S0
through IEV961. This usually is caused by a bug
in the assembler itself. Under certain condi­
tions, however, the assembly can be rerun suc­
cessfully.

System Action: A special abnormal termination
dump (Assembler H interrupt and diagnostic
dump) follows the message. Depending on
where the error occurred, the assembly listing
up to the bad statement may also be produced.
The dump usually indicates which statement
caused termination. It also may include contents
of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in deter­
mining the cause of the termination.

Programmer Response: Check the statement
that caused termination. Correct any errors in it
or, especially if the statement is long or
complex, rewrite it. Reassemble the program; it
may assemble correctly. However, even if it
reassembles without error, there may be a bug
in the assembler. Save the abnormal termi­
nation dump, the assembly listing (if one was
produced), and the input deck and contact your
IBM level-1 support center. Also, if the program
assembles correctly, submit a copy of the listing
and the input deck of the correct assembly. This
information may be helpful in diagnosing and
fixing the assembler bug.

Severity: 20

Explanation: The statement is too complex to be
evaluated by the macro generator phase of the
assembler. It overflowed the evaluation work
area of the assembler. Normally, there is no
assembler malfunction; the statement can be
corrected and the program reassembled suc­
cessfully.

System Action: A special abnormal termination
dump (Assembler H interrupt and diagnostic
dump) follows the message. The statement
causing termination is SETA, SETB, SETC, AGO,
or AIF. The dump does not indicate which state­
ment caused termination; however, it may show
the last statement generated in the macro. The
dump may also include contents of the assem­
bler registers and work areas and other status
information for use by IBM or your assembler
maintenance programmers in determining the
cause of the termination. However, it will not be
needed unless the error persists. This informa­
tion may be helpful in diagnosing and fixing an
assembler bug.

Programmer Response: Check the statement
that caused termination. Rewrite the statement
or split it into two or more statements. Reas­
semble the program; it should assemble cor­
rectly. However, if the error persists, there may
be an assembler malfunction. Save the
abnormal termination dump, the assembly listing
(if one was produced), and the input deck and
give them to your IBM program support repre­
sentative.

Severity: 20

IEV971 INSUFFICIENT CORE AVAILABLE
FOR MACRO EDITOR WORK AREA

IEV972 NO AVAILABLE STORAGE REMAINS·
ALLOCATE MORE CORE OR BREAK
THE INPUT INTO MULTIPLE ASSEM·
BLIES

Explanation: The assembler work areas are full
and none of the contents can be spilled onto the
auxiliary data set (SYSUT1). Note that the load
modules and fixed data areas of the assembler
require about 96K bytes of main storage. The
rest of the assembler's region is used for data
set buffers, assembler internal files, and work

Appendix D. Assembler H Messages 143

areas. Some of the internal files, like the symbol
table, must remain in main storage throughout
the assembly.

System Action: A special abnormal termination
dump (Assembler H interrupt and diagnostic
dump) follows the message. Depending on
where the error occurred, the assembly listing
up to the bad statement may also be produced.
The dump usually indicates the statement being
processed when the assembler ran out of main
storage. The other information in the dump,
such as register and work area contents, is not
needed.

Programmer Response: Increase the region size
or split the assembly into two or more assem­
blies. Check for loops in open code that cause
the symbol table to overflow. Complete informa­
tion on these and other remedies, such as
decreasing the storage used for data set buffers,
is in "Chapter 6. Calculating Storage
Requirements" and "Chapter 7. Assembler Lan­
guage Programming under CMS."

Severity: 20

IEV973 	 SYSUT1 MAXIMUM BLOCK COUNT
EXCEEDED

Explanation: The maximum block count of 65,535
has been exceeded for SYSUT1.

System Action: The assembly is terminated and
no listing is produced.

Programmer Response: Split the assembly into
two or more smaller assemblies.

Severity: 20

IEV980 SYSUT1 IS REQUIRED TO BE
ASSIGNED TO A DIRECT ACCESS
DEVICE, BUT WAS NOT

IEV981 THE DD STATEMENTS FOR SYSIN
AND SYSUT1 WERE MISSING OR
INVALID

IEV982 THE DD STATEMENT FOR SYSIN WAS
MISSING OR INVALID

IEV983 THE DD STATEMENT FOR SYSUT1
WAS MISSING OR INVALID

IEV984 MISSING DD SYSPRINT
IEV985 MISSING DD SYSPUNCH
IEV986 MISSING DD SYSLIN

Explanation: The DD statements for the data
sets indicated in IEV980 through IEV983 have not

144 Assembler H Version 2 Programming Guide

been included in the job control language for the
assembly job step or are invalid.

System Action: The assembly is not done
because the assembler does not have the
required data sets. -This message appears
alone, without any other abnormal termination
dump information.

Programmer Response: Supply a valid DD state­
ment and rerun the assembly. "Chapter 1.
Introduction" describes the assembler data sets
and the standard DD statements (inthe
IBM-supplied cataloged procedures) for them.
Be sure to check whether your installation has
changed the ddname (for example, SYSUT1 to
SYSWORK1) or one or more parameters in the
cataloged procedure statement.

Severity: 20

IEV990 	 LOCATION COUNTER DOES NOT
MATCH SYMBOL TABLE VALUE

Explanation: A difference has been detected
between the symbol table and the location
counter. The assembly is terminated and a
special abnormal termination dump (Assembler

',*H interrupt and diagnostic dump) is taken. The

listing is not completed. ~

System Action: The Assembler H interrupt and

diagnostic dump will show the statement that

was being printed when the difference between

the location counter and the symbol table was

detected. Register 8 points to the print buffer.

Register 4 plus X'44' contains the value of the

location counter. Register 5 contains the symbol

table location counter value.

Programmer Response: Reassemble the

program using NOALIGN. If alignment is

needed, use CNOP or DS to force alignment.

Severity: 20

IEV998 	 THE ASSEMBLER COULD NOT
RESUME READING A SYSLIB
MEMBER BECAUSE IT COULD NOT
FIND THE MEMBER AGAIN

Explanation: The assembly is terminated,
because the assembler cannot find a COPY
member that it has already read. This usually is
caused by a bug in the assembler itself or by an
Operating System I/O error. Under certain con­

ditions. however. the assembly can be rerun
successfu lIy.

System Action: A special abnormal termination
dump (Assembler H interrupt and diagnostic
dump) follows the message. The dump usually
indicates which statement caused termination. It
also may include contents of the assembler reg­
isters and work areas and other status informa­
tion for use by IBM or your assembler
maintenance programmers in determining the
cause of the termination.

Programmer Response: Reassemble the
program; it may assemble correctly. If it does
not reassemble without error. save the abnormal
termination dump. the assembly listing (if one
was produced). and the input deck and contact
your IBM level-1 support center.

Severity: 20

IEV999(1) 	 ASSEMBLY TERMINATED· SYNAD
EXIT TAKEN - PERMANENT I/O
ERROR ON xxx xx DATA SET

Explanation: The assembly was terminated
because of a permanent I/O error on the data
set indicated in the message. This is usually
caused by a machine or an operating system
error. The assembly usually can be rerun suc­
cessfully. This message will also appear on the
console output device.

System Action: A special abnormal termination
dump (Assembler H interrupt and diagnostic
dump) follows the message. Depending on
where the error occurred. the assembly listing
up to the bad statement may also be produced.
The dump usually indicates which statement
caused termination. It also may include contents
of the assembler registers and work areas and
other status information for use by IBM or your
assembler maintenance programmers in deter­
mining the cause of the termination.

Programmer Response: If the I/O error is on
SYSIN or SYSLlB, you may have concatenated
the input or library data sets incorrectly. Make
sure that the DO statement for the data set with
the largest block size (BLKSIZE) is placed in the
JCL before the DO statements of the data sets
concatenated to it. Also, make sure that all
input or library data sets have the same device
class (all DASD or all tape).

Reassemble the program; it may assemble cor­
rectly. If it does not reassemble without error,
save the abnormal termination dump, the
assembly listing (if one was produced), and the
input deck and give them to your IBM customer
engineer. Also, if the program assembles cor­
rectly. submit a copy of the listing and input deck
of the correct assembly.

Severity: 20

Note: The following table is referred to in
"Severity Code" under "Message Descriptions"
on page 111.

Severity
Code Explanation

o No errors detected

4 Minor errors detected; successful
program execution is probable

8 Errors detected; unsuccessful
program execution is possible

12 Serious errors detected;. unsuccessful
program execution is probable

16 Critical errors detected; normal exe­
cution is impossible

20 I/O error from which the system could
not recover occurred during
assembly, or data sets are missing;
assembly terminated

Appendix D. Assembler H Messages 145

Appendix E. Assembler H Version 2 Incompatibility with
OS/VS Assembler

Assembler H has the following incompatibilities with the OS/VS Assembler:

• TEST option

The TEST option in the OS/VS Assembler generates entries in the source
symbol table for simply relocatable EQUs, named LTORGs, named CNOPs,
and named ORGs. Assembler H does not generate source symbol table
entries for these assembler instructions.

• COpy

Assembler H scans a COPY member as a part of "look-ahead" processing
even though conditional assembly logic (AIF or AGO) may subsequently
cause a COPY instruction to be bypassed. This processing occurs regard­
less of whether or not the COPY member is a macro or source code
segment and-for macros-whether or not the macro is defined in a source
module or macro library.

Lookahead is a sequential, statement-by-statement, forward scan over the
source text; it is performed by Assembler H but not by the OS/VS Assem­
bler. During look-ahead processing, no macro expansion or open-code sub­
stitution is performed, and no AIF or AGO branches are taken.

If the COPY member does not exist in a referenced macro library, Assem­
bler H issues error message IEV060, 'COPY CODE NOT FOUND', even
though conditional assembly logic may subsequently cause the COpy
instruction to be bypassed. If the COpy member does exist and contains
errors, those errors will be diagnosed and the appropriate error messages
issued only if the COpy member is actually assembled.

The OS/VS Assembler executes a COpy assembler instruction and scans
the COpy member only if conditional assembly logic causes it to be exe­
cuted. If the COPY member does not exist and conditional assembly logic
causes the COPY instruction to be bypassed, no error message will be
issued. The one exception to this rule occurs when a macro is defined
within the source module and that macro contains a COPY statement; if the
COpy member does not exist in any referenced macro library, the OS/VS
Assembler issues message IF0068, 'COPY MEMBER xxxxxxxx NOT FOUND
IN LIBRARY'.

• &SYSNDX

Assembler H produces up to seven digits for the value of &SYSNDX. The
OS/VS Assembler produces a four-digit value.

Appendix E. Assembler H Version 2 Incompatibility with OSIVS Assembler 147

J

Appendix F. Sample Listing Containing Double-byte Data

The following listing was produced on an IBM 3800-8 system printer, using the
program MVS/SP utility-Kanji (5799-BWM). For more information, please refer
to the appropriate manuals for that utility.

Note: The listing below intends only to illustrate what double-byte data can look
like; it is not intended to be a comprehensive example of the usage of double­
byte Sllpport.

Appendix F. Sample Listing Containing Double-byte Data 149

EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TYPE ID ADDR LENGTH lD ID FLAGS ASM H V 02 16.19 08/27/87
DBCSSAMP SD 0001 000000 000219 00

SAMPLE < D U C S> PROGRAM. REQUIRES DBCS OPTION PAGE 2

LOC OBJECT CODE ADORI AODR2 STHT SOURCE STATEMENT ASM H V 02 16.19 OS/27/S7
000000 2 DBCSSAMP CSECT 00020000

3 * 00030000

4 * HANDLE SITUATION HHERE USER TRIES TO EXECUTE SAMPLE PROGRAM 00040000

5 * 00050000

6 * '<A>' --- THIS IS OBCS. 00050000

7 * 'A' ------ THIS IS EBCDIC. 00050000

8 *
000000 IBFF 9 SR 15.15 CLEAR RETURN CODE INDICATOR 00060000
000002 07FE 10 BR 14 RETURN TO CALLER 00070000

00004 11 USING *.S 00080000
12 PRINT oN,OATA 00090000

13 ** 00100000

14 * * 00110000

15 * SAMPLE USAGE OF DBCS DATA * 00120000

16 * * 00130000

17 ** 00140000
18 &LCL_CVAR SETC '< D a C s 1 >' SET A VALUE IN VARIABLE SYMBOL 00150000
19 HNDTE *.'LCL_CVAR IS &LCL_CVAR. '

+*, LCL_CVAR IS <DaCS1>

20 * 00160000
000004 42C142C2 21 G_VAR DC G·<A a >' SET UP A G TYPE CONSTANT 00170000

22 * 001S0000
OOOOOS OE42C142C20F 23 C_VAR DC c'<A B>' SET UP A C TYPE CONSTANT 00190000

24 * 00200000
042C3 25 G_EQU EQU G'<C>' SET UP A G TYPE EQUATE 00210000

26 * 00220000 J
E42C30F 	 27 C_EQU EQU c'<C>' SET UP A C TYPE EQUATE 00230000

28 ** 00240000

29 * * 00250000

30 * SAMPLE OF EXTENDED CONTINUATION USAGE * 00260000
31 * * 00270000

32 ** 00280000
OOOOOE 42C142C242C342C4 33 G_VAR2 DC G'<A BCD ErG H I J K L M N 0 P Q R STU VW x y >XXX00370000
000016 42C542C642C742C8
00001E 42C942D1420242D3
000026 4204420542064207
00002E 420S420942E242E3
000036 42E442E542E642E7
00003E 42ES42E942C142C2
000046 42C342C442C542C6
00004E 42C742C8

<ZABCDEFGH>' 00380000
00390000

000052 CIC2C3C4C5C6C7CS C'ABCDEFGHIJKUNlPQRSTUVHXY<A BCD E F G H I J K L M >XX00400000
00005A C9DI02030405D607
000062 OSD9E2E3E4E5E6E7
00006A E80E42C142C242C3
000072 42C442C542C642C7
00007A 42CS42C9420142D2
0000S2 4203420442054206
OOOOSA 42D7420842D942E2
000092 42E342E442E50FCI
00009A C2C3C4C5C6C7C8C9
COOOA2 010203

<N 0 P Q R STU V>ABCOEFGHIJKL' 00410000

Figure 20 (Part 1 of 4). Sample Listing Containing Double-byte Data

150 Assembler H Version 2 Programming Guide

3 SAMPLE < D B C S> PROGRAM, REQUIRES DBCS OPTION PAGE
LOC OBJECT CODE ADDRI AODR2 STMT SOURCE STATEMENT ASH H V 02 16.19 08/27/87

36 * 00390000
37 &C_VAR3 SETC 'ABCDEFGHIJKLMNOPQRSTUVHXY< ABC D E F G H I J K L M N >X00330000

<0 r Q R STU V W X Y Z >' 00340000
38 MNOTE *, 'C_VAR3 IS &C_VAR3.' 00350000

+*,C_VAR3 IS ABCDEFGHIJKLMNOPQRSTUVHXY<A BCD E F G H I J K L M NO P>X00350000
+ <QRSTUVWXYZ>

39 * 00360000

40 ** 00420000
41 * * 00430000

42 * SAMPLE OF MACRO USAGE * 0044000n

43 * * 004500fl')

44 ** 00460000
45 MACRO 00470000
46 &NAME SAMPLE &VAR 00480001'
47 &K_VAR SETA K'&VAR-Z COUNT OF BYTES IN PARM 0049000('
48 &L_VAR SETC '&VAR'I 2,&K_VAR J LOCAL COPY OF SYMBOLIC PARM 0050000(1
49 .* MINUS Z FOR APOSTROPHES 00510000
50 MNOTE *,'POSITIONAL PARAMETER IS &L_VAR.' 00520000
51 DC C&VAR 00530000
52 MEND 00540000

53 * 00550000
54 SAMPLE ' < 0 13 C S 1 >' 00560000
55+*,POSITIONAL PARAMETER IS < D B C S 1 > 01-00050

OOOOAS OE42C442C24ZC342 56+ DC c'<DBCS 1>' 01-00051
DOOOAD EZ42FlOF

57 * 00570000
58 SAMPLE'SBCS1<DBCS2>' 00580000
59+*,POSITIONAL PARAMETER IS SBCS1< 0 B C S 2 > 01-00050

OOOOBI EZCZC3E2F10E4ZC4 60+ DC C'SBCS1<DBCS2>' 01-00051
0000B9 42CZ4ZC342E242F2
DOOOCI OF

61 * 00590000
62 SAMPLE '< D B >XX00600000

<CS3>' 00610000
63+*,POSITIONAL PARAMETER IS < D B C S 3 > 01-000SI)

~OOOCZ OE4ZC442C242C342 64+ DC C ' < D B C S 3 >' 01-00051
DOD DCA EZ42F30F

65 * 00620000
66 SAMPLE 'SBCS2< 0 B C >XXX00630000

<S 4 >SBCS3' 00640000
67+*,POSITIONAL PARAMETER IS SBCSZ< D B C S 4 >SBCS3 01-0005U

OOOOCE E2CZC3EZFZOE4ZC4 68+ DC C'SBCS2<DBCS4>SBCS3' 01-00051
000006 4ZCZ4ZC34ZE24ZF4
DOOODE OFEZCZC3EZF3 00650000

69 *
0066000070 MACRO
0067000071 &NAMEZ SAMPLEZ &THIS='<DBCS5>'

COUNT OF CHARACTERS IN PARM 006800007Z &K_THIS SETA K'&THIS-Z
00690000LOCAL COPY OF SYMBOLIC PARM
00700000

73 &T_THIS SETC '&THIS'IZ,&K_THISJ
MNOTE *,'KEYHORD PARAMETER IS &T_THIS.'

00710000
74
75 DC C&THIS

0072000076 MEND
00730000

77 * 00740000
78 SAMPLEZ

01-0007479+*,KEYHORD PARAMETER IS < D B C S 5 >

Figure 20 (Part 2 of 4). Sample Listing Containing Double-byte Data

Appendix F. Sample Listing Containing Double-byte Data 151

.J

SAMPLE < D B C S> PROGRAM, REQUIRES DBCS OPTION 	 PAGE 4

Loe OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT ASM H V 02 16.19 08127/87
0000E4 OE42C442C242C342 80+ DC C' < D B C S 5 >' 01-00075
ODOOEC E242F50F

81 .. 00750000
82 SAMPLE2THIS='<DBCS6>' 00760000
83+" ,KEYHORD PARAMETER IS < D B C S 6 > 01-00074

OOOOFO OE42C442C242C342 84+ DC C ' < D B C S 6 >' 01-00075
0000F8 E242F60F

85 .. 00770000
86 SAMPLE2 THIS=' SBCS4< D B C S 7 >, 00780000
87+ .. ,KEYHORD PARAMETER IS SBCS4< D B C S 7 > 01-00074

OOOOFC E2C2C3E2F40E42C4 88+ DC C'SBCS4<D B C S 7 >, 01-00075
000104 42C242C342E242F7
OOOIOC OF

89 * 00790000
90 SAMPLE2 THIS=' < D B >XXX00800000

<C S 8 >' 00810000
91+* ,KEYHORD PARAMETER IS < D B C S 8 > 01-00074

~JOIOD OE42C442C242C342 92+ DC c'<DBCS8>' 01-00070;
000115 E242F8DF

93 * 00820000
94 SAMPLE2 THIS=' SBCS5< D B C >XX008300i!')

<S 9 >SBCS6' 00840000
95+*,KEYHORD PARAMETER IS SBCS5< D B C S 9 >SBCS6 01-00074

000119 E2C2C3E2F50E42C4 96+ DC C' SBCS5< D B C S 9 >SBCS6' 01-00075
000121 42C242C342E242F9
000129 OFE2C2C3E2F6

97 * 00850000
98 .. VARIABLE SYMBOL TOO LARGE FOR ONE LINE 00860000 J
99 * 00870000

100 &T_l SETC (91' < D B C S 1 0 >' 0088000n
101 T_I DC C' &T_l' 00890000

00012F OE42C442C242C342 H_l DC C' < D B C S 1 0 >< D B C S 1 0 >< D B C S 1 0 >< D B C S 1 >X00890000
000137 E242F142FOOFOE42
00013F C442C242C342E242
000147 F142FOOFOE42C442
00014F C242C342E242F142
000157 FOOFOE42C442C242
00015F C342E242F142FOOF
000167 OE42C442C242C342
00016F E242F142FOOFOE42
000177 C442C242C342E242
00017F F142FOOFOE42C442
000187 C242C342E242F142
00018F FOOFOE42C442C242
000197 C342E242F142FOOF
00019F OE42C442C242C342
OOOlA7 E242F142FOOF

+ <OxDBCSIOxDBCSIOxDBCSIOxDBCS*

+ 	 <1 0 >< D B C S 1 0 >'
00900000

DC G'&T I' 00910000

0001AD 42C442C242C342E2 DC G' < DB C S 1 0 >< D B C S 1 0 >< D B C S 1 0 >< D B C S 1 >X00910000

0001B5 42F142F042C442C2
0001BD 42C342E242F142FO
OOOlC5 42C442C242C342E2

Figure 20 (Part 3 of 4). Sample Listing Containing Double-byte Data

152 Assembler H Version 2 Programming Guide

5 SAMPLE < DB C S> PROGRAM. REQUIRES DBCS OPTION PAGE

LOC OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT ASH H V 02 16.19 08/27/87

0001CD 42F142F042C442C2
0001D5 42C342E242F142FO
0001DD 42C442C242C342E2
0001ES 42F142F042C442C2
0001ED 42C342E242F142FO
0001FS 42C442C242C342E2
0001FD 42F142F042C442C2
00020S 42C342E242F142FO
00020D 42C442C242C342E2
00021S 42F142FO

+ <OxDBCSIOxDBCSI0xDBCSIOxDBCS*
+ < 1 0 >< DB C S 1 0 >'

104 If 00920000

lOS If TYPE SPECIFICATION 00930000

106 If 00940000

107 &TT_1 SETC T'T_1 009S0000

108 &TT_2 SETC T'T_2 009&0000

109 If 00970000

110 IflOTE If. 'TYPE OF T_1 IS &TT_1. - A C-TYPE CONSTANT' 00980000

+1f.TYPE OF T_1 IS C - A C-TYPE CONSTANT 00980000
111 IflOTE If. 'TYPE OF T_2 IS &TT_2. - A G-TYPE CONSTANT' 00990000

+1f.TYPE OF T_2 IS ~ - A G-TYPE CONSTANT 00990000

112 END 01000000

CROSS REFERENCE PAGE 6
SYHBOL LEN VALUE DEFN REFERENCES ASH H V 02 16.19 08/27/87
C_EQU 00001 OE42C30F 0027
C_VAR 00006 000008 0023
C_VAR2 00083 0000S2 003S
DBCSSAMP 00001 00000000 0002
G_EQU 00001 000042C3 002S
G_VAR 00004 000004 0021
G_VAR2 0006B OOOOOE 0033
T_1 00126 00012F 0101
T_2 00108 0001AD 0103

DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE 7
ASH H V 02 16.19 08/27/87

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
OVERRIDING PARAMETERS- DBCS
OPTIONS FOR THIS ASSEMBLY

NODECK. OBJECT. LIST. XREF(FULLl. NORENT. NOTEST. NOBATCH. ALIGN. ESD. RLD. NOTERM. DBCS.
LINECOUNT(SSI. FLAGIOI. SYSPARMI l

NO OVERRIDING DD NAMES
101 CARDS FROM SYSIN o CARDS FROM SYSLIB
224 LINES OUTPUT 12 CARDS OUTPUT

Figure 20 (Part 4 of 4). Sample Listing Containing Double-byte Data

Appendix F. Sample Listing Containing Double-byte Data 153

Glossary

This glossary has three main types of definitions that
apply:

• 	 To the assembler language in particular (usually
distinguished by reference to the words "assem­
bler," "assembly," etc.)

• 	 To programming in general

• 	 To data processing as a whole

If you do not understand the meaning of a data proc­
essing term used in any of the definitions below, refer
to Vocabulary for Data Processing, Telecommuni­
cations, and Office Systems, GC20-1699.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing, which was prepared by Sub­
committee X3K5 on Terminology and Glossary of
American National Standards Committee X3. ANSI
definitions are preceded by an asterisk (*).

addressing mode (24-bit). A System/370 addressing
mode of the extended architecture that allows a
program to execute using 24-bit addresses. When
operating in 24-bit mode, S/370 addressing architec­
ture is applied. Other facilities of the extended archi­
tecture (see below) may be utilized. Only the
low-order 24 bits of an address are used; the high­
order bits are ignored.

addressing mode (31-bit). An extended architecture
addressing mode (AMODE) that allows a program to
execute using 31-bit addresses and/or other facilities
of the extended architecture. When operating in
31-bit mode, extended architecture addressing is
applied, and all but the high-order bit of an address
are used to address storage.

assemble. To prepare a machine language program
from a symbolic language program by substituting
machine operation codes for symbolic operation
codes and absolute or relocatable addresses for sym­
bolic addresses.

"assembler. A computer ;Jrogram that assembles.

assembler instruction. An assembler language source
statement that causes the assembler to perform a
specific operation. Assembler instructions are not
translated into machine instructions.

assembler language. A source language that includes
symbolic machine language statements in which there
is a one-to-one correspondence with the instruction
formats and data formats of the computer. The
assembler language also contains statements that

represent assembler instructions and macro
instructions.

bimodal program execution. A function of the
extended architecture (see "addressing mode
(31-bit)") that allows a program to execute in 24-bit or
31.-bit addressing mode. The addressing mode is
under program control.

bracketed OBCS. DBCS characters enclosed with a
shift-out (SO) character and a shift-in character (SI) to
identify them from SBCS, and containing no SBCS
characters except SO and SI.

control program. A program that is designed to
schedule and supervise the performance of data proc­
essing work by a computing system.

control section (CSECT). That part of a program spec­
ified by the programmer to be a relocatable unit, all
elements of which are to be loaded into adjoining
main storage locations.

"diagnostic. Pertaining to the detection and isolation
of a malfunction or mistake.

double-byte character set (OBCS). DBCS is a means
of providing support for Ideographic Languages which
contain too many symbols to be represented by a
single byte character set such as EBCDIC. A valid
double-byte character is defined as either DBCS blank

(X '4040'), or a pair of bytes, each of which must be in

the range X '41' to X' FE', inclusive.

double-byte data. Double-byte character strings are
commonly referred to as double-byte data.

dummy control section (OSECT). A control section
that an assembler can use to format an area of
storage without producing any object code. Synony­
mous with dummy section.

edited text. Source statements modified by the
assembler for internal use. The initial processing of
the assembler is referred to as editing.

"entry point. A location in a module to which control
can be passed from another module or from the
control program.

extended architecture. A hardware architecture for
the IBM 3081 processor. A major characteristic is
31-bit addressing. See also "addressing mode
(31-bit)."

external symbol dictionary (ESO). Control information
associated with an object or load module which identi ­
fies the external symbols in the module.

Glossary 155

global dictionary. An internal table used by the
assembler during macro generation to contain the
current values of all unique global SETA, SETB, and
SETC variables from all text segments.

global vector table. A table of pointers in the skel­
eton dictionary of each text segment showing where
the global variables are located in the global dic­
tionary.

instruction. '(1) A statement that specifies an opera­
tion and the values and locations of its operands. (2)
See also "assembler instruction," "machine instruc­
tion: and "macro instruction".

job control language (Jel). A language used to code
job control statements.

"job control statement. A statement in a jOb that is
used in identifying the job or describing its require­
ments to the operating system.

language. A set of representations, conventions, and
rules used to convey information.

"language translator. A general term for any assem­
bler, compiler, or other routine that accepts state­
ments in one language and produces equivalent
statements in another language.

library macro definition. A macro definition that is
stored in a macro library. The IBM-supplied super­
visor and data management macro definitions are
examples of library macro definitions.

linkage editor. A processing program that prepares
the output of language translators for execution. It
combines separately produced object or load
modules; resolves symbolic cross references among
them; replaces, deletes, and adds control sections;
and generates overlay structures on request; and
produces executable code (a load module) that is
ready to be fetched into main storage and executed.

load module. The output of a single linkage editor
execution. A load module is in a format suitable for
loading into virtual storage for execution.

loader. A processing program that performs the basic
editing functions of the linkage editor, and also
fetches and gives control to the processed program,
all in one job step. It accepts object modules and
load modules created by the linkage editor and gener­
ates executable code directly in storage. The loader
does not produce load modules for program libraries.

local dictionary. An internal table used by the assem­
bler during macro generation to contain the current
values of all local SET symbols. There is one local
dictionary for open code, and one for each macro
definition.

location counter. A counter whose value indicates the
assembled address Of a machine instruction or a con­
stant or the address of an area of reserved storage,
relative to the beginning of the control section.

"machine instruction. An instruction that a machine
can recognize and execute.

"machine language. A lanQuage that is used directly
by the machine.

macro definition. A set of statements that defines the
name of, format of, and conditions for generating a
sequence of assembler language statements from a
single source statement. This statement is a macro
instruction that calls the definition. (See also "library
macro definition" and "source macro definition.")

macro generation (macro expansion). An operation in
which the assembler generates a sequence of assem­
bler language statements from a single macro instruc­
tion, under conditions described by a macro definition.

macro instruction (macro call). An assembler lan­
guage statement that causes the assembler to
process a predefined set of statements (called a
macro definition). The statements normally produced
from the macro definition replace the macro instruc­
tion in the source program.

macro library. A library containing macro definitions.
The supervisor and data management macro defi­
nitions supplied by IBM (GET, LINK, etc.) are con­
tained in the system macro library. Private macro
libraries can be concatenated with the system macro
library.

main storage. All program addressable storage from
which instructions may be executed and from which
data can be loaded directly into registers.

object module.· The machine-language output of a
single execution of an assembler or a compiler. An
object module is used as input to the linkage editor or
loader.

open code. The portion of a source module that lies
outside of and after any source macro definitions thalt
may be specified.

·operating system. Software which controls the exe­
cution of computer programs and which may provide
scheduling, debugging, input/output control,
accounting, compilation, storage assignment, data
management, and related services.

ordinary symbol attribute reference dictionary. A dic­
tionary used by the assembler. The assembler puts
an entry in it for each ordinary symbol encountered in
the name field of a statement. The entry contains the
attributes (type, length, etc.) of the symbol.

J

156 Assembler H Version 2 Programming Guide

processing program. (1) A general term for any
program that is not a control program. (2) Any
program capable of operating in the problem program
state. This includes IBM-distributed language transla­
tors, application programs, service programs, and
user-written programs.

program. A general term for any combination of
statements that can be interpreted by a computer or
language translator, and that serves to perform a
specific function.

pure DBC5. DBCS characters not delimited by SO
and SI. These characters must be known to be DBCS
by some other method, such as the position in a
record, or a field type descriptor in a Database envi­
ronment.

real storage. The storage of a System/370 computer
from which the central processing unit can directly
obtain instructions and data, and to which it can
directly return results.

'relocation dictionary. The part of an object or load
module that identifies all addresses that must be
adjusted when a relocation occurs.

residence mode. An extended architecture
addressing mode (RMODE) that allows a program to
specify the residence mode (below 16 megabytes or
anywhere) to be associated with a control section.

return code. A value placed in the return code reg­
ister at the completion of a program. The value is
established by the user and may be used to influence
the execution of succeeding programs or, in the case
of an abnormal end of task, may simply be printed for
programmer analysis.

severity code. A code assigned by the assembler to
each error detected in the solirce code. The highest
code encountered during assembly becomes the
return cQde of the assembly step.

shift-in (51). The shift-in (SI) EBCDIC character
(X' OF') delimits the end of double-byte data.

shift-out (SO). The shift-out (SO) EBCDIC character

(X' OE') delimits the start of double-byte data.

skeleton dictionary. A dictionary built by the assem­
bler for each text segment. It contains the global

..

vector, the sequence symbol reference dictionary, and
the local dictionary.

source macro definition. A macro definition included
in a source module, either physically or as the result
of a COPY instruction.

source module. The source statements that consti­
tute the input to a language translator for a particular
translation.

source statement. A statement written in symbols of
a programming language.

·statement. A meaningful expression or generalized
instruction in a source language.

symbol file. A data set used by the assembler for
symbol definitions and references and literals.

symbolic parameter. In assembler programming, a
variable symbol declared in the prototype statement
of a macro definition.

system macro definition. Loosely, an IBM-supplied
library macro definition which provides access to
operating system facilities.

text segment. The range over which a local dic­
tionary has meaning. The source module is divided
into text segments with a segment for open code and
one for each macro definition.

·translate. To transform statements from one lan­
guage into another without significantly changing the
meaning.

virtual storage. Address space appearing to the user
as real storage from which instructions and data are
mapped into real storage locations. The size of
virtual storage is limited by the addressing scheme of
the computing system and by the amount of auxiliary
storage available, rather than by the actual number of
real storage locations.

ward. A set of DBCS characters which have the same
high-order byte value. The first byte of a double-byte
character is known as the ward byte. A ward contains

190 characters. Ward X '42' defines the double-byte
representation of those EBCDIC characters which are
in the range X'41' to X'FE'.

Glossary 157

Index

A
abnormal assembly termination 18

adding macro definitions to libraries 49

ALGN option 30

ALIGN option (CMS) 70

ALIGN option (OSIVS) 30

alignment of instructions and data

(see ALIGN option)

AMODE 8

ASMHC, cataloged procedure for assembly 38

ASMHCG, cataloged procedure for assembly and

loader execution 42

ASMHCL, cataloged procedure for assembly and link

editing 39

ASMHCLG, cataloged procedure for assembly, linkage

editing, and execution 42

ASSEMBLE file type, CMS 66

assembler cataloged procedures 38

assembler data sets

characteristics of 34

for CMS users 73

language features 85

list of 33

sample program 85

storage requirements 55

virtual storage requirements (CMS) 74

assembler diagnostics 112

abnormal assembly termination 18

cross-reference 12

error messages 15

facilities 15

macro trace facility (MHELP) 18

MNOTE statements 16

suppression of error messages and MNOTE state­

ments 18

assembler H messages 111

(see also error messages and assembler diagnos­

tics)

assembler listing

diagnostic cross-reference and assembler

summary 13

external symbol dictionary 7

parts of 5

relocation dictionary 11

source and object program 8

symbol and literal cross-reference 12

assembler macros under CMS 67

assembler options

default 33

list of 30

overriding statements in cataloged procedures 44

types of 29

assembler options under CMS

listing control options 70

assembler options under CMS (continued)

object module control options 70

other assembler options 70

SYSTERM options 70

assembler statistics 13

assembler summary 13

assembly and link editing, JCL for

(see ASMHCL)
assembly and loader execution, JCL for

(see ASMHCG)

assembly error diagnostic messages 112

assembly, JCL for

(see ASMHC)

assembly, link-editing, and execution, JCL for

(see ASMHCLG)

ATTACH macro instruction 52

B
BATCH option (CMS) 70

BATCH option (OSIVS) 30

BLKSIZE for assembler data set 35

buffering information (CMS) 74

C
CALL macro instruction 52

calling the assembler from a problem program 52

cataloged procedures

for assembling (ASMHC) 38

for assembling and linkage editing (ASMHCL) 39

for assembling and loader execution

(ASMHCG) 42

for assembling, linkage editing, and execution

(ASMHCLG) 42

invoking 38

overriding 44

characteristics of assembler data sets 34

CMS

ASSEMBLE file type for 66

assembler macros supported by 67

assembler options for 70

diagnostic messages 77

EDIT command for 66

editor 66

file defaults, overriding 66

HASM command error messages 77

HASM command for 66

management of assembly 64

programming aids 75

relationship to assembler 63

SYSTERM listing 75

codes
(see return codes and severity codes)

Index 159

concatenation of SYSLIB data sets 36 ESD option (CMS) 70
COND parameter 37,44
conventions for linking 50
cross-reference

(see also diagnostic cross-reference)
examples 5, 95

D
data sets, assembler

characteristics of 34
list of 33

DBCS
See double-byte data

DBCS option (CMS) 70
DBCS option (OSNS) 31
DD statements, overriding in cataloged

procedures 44
ddnames

SYSIN 36
SYSLIB 36
SYSLIN 37
SYSPRINT 36
SYSPUNCH 37
SYSTERM 37, 75
SYSUT1 36

DECK option (CMS) 70
DECK option (OSNS) 31
default options 33

overriding 44
diagnostic cross-reference and assembler

summary 13
diagnostic facilities

(see assembler diagnostics)
diagnostic messages (CMS) 77
diagnostic messages, assembly error 112
DISK option (CMS) 71
double-byte character set

See double-byte data
double-byte data

Assembler H options (CMS) 70
Assembler H options (OSNS) 31
G-type TESTRAN output 109

dynamic invocation of assembler 52
dynamic invocation of IBM-supplied program 50

E
EDIT command, CMS 66
END option

card format 107
entry point restatement 49
error diagnostic messages 77, 112
error messages

abnormal assembly termination messages 142
assembly error diagnostic 112
assembly error diagnostic messages 15
suppression of 18

(see also external symbol dictionary)

ESD card format 105

>,~,
.;ESD option (OSNS) 31

(see also external symbol dictionary)

examples
cataloged procedures coding 45
PARM coding 30
saving and restoring coding 48, 82

EXEC statements
COND parameter 37,44
overriding in cataloged procedures 44
PARM field 44, 48

external symbol dictionary (ESD)
entry types 7
examples 7, 87
listing format 7

F
FLAG option (CMS) 71
FLAG option (OSNS) 31

H
HASM command error messages 77
HASM command, CMS 66

identification-sequence field 10
invoking cataloged procedures 38
invoking the assembler from a problem program 52

J
job control language cataloged procedures

(see cataloged procedures)

L
LlNECNT option 30
LlNECOUN option (CMS) 71
LlNECOUNT option (OSNS) 31
LINKAGE macro instruction 52
linkage, object module 50
linking with IBM-supplied processing programs 50
LIST option (CMS) 71
LIST option (OSNS) 31
listing control instructions, printing of 10
listing format 7
load module modification 49
LOAD option 30
LRECL for assembler data set 35

160 Assembler H Version 2 Programming Guide

M
.i(f' macro definition libraries, additions to 49

macro trace facility (MHELP)

description 18

sample 97

macro-generated statements, format of 10

macros, error messages in 15

messages

(see assembler diagnostics)
MHELP

(see macro trace facility)
MHELP instruction

format 18

global suppression-operand = 32 18

macro AIF dump-operand = 4 18

macro branch trace-operand = 2 18

macro call trace-operand = 1 18

macro entry dump-operand = 16 18

macro exit dump-operand = 8 18

macro hex dump-operand = 64 18

MHELP control on &SYSNDX 18

MHELP suppression-operand = 128 18

MNOTE statements 16

MSGLEVEL option 30

MULT option 30

N
NCP for assembler data set 35

NOALGN option 30

NOALIGN option (CMS) 70

NOALIGN option (OSNS) 30

NOBATCH option (CMS) 70

NOBATCH option (OSNS) 30

NODBCS option (CMS) 70

NODBCS option (OSNS) 31

NODECK option (CMS) 70

NODECK option (OSNS) 31

NOESD assembler option (OSNS) 31

NOESD option (CMS) 70

NOLIST option (CMS) 71

NOLIST option (OSNS) 31

NOLOAD option 30

NOMULT option 30

NONUM option (CMS) 71

NOOBJECT option (CMS) 71

NOOBJECT option (OSNS) 31

NOPRINT option (CMS) 71

NORENT option (CMS) 72

NORENT option (OSNS) 31

NORLD option (CMS) 72

NORLD option (OSNS) 31

NOSTMT option (CMS) 72

NOTERM option (CMS) 72

NOTERM option (OSNS) 32

NOTEST option (CMS) 73

NOTEST option (OSNS) 32

NOXREF option (CMS) 73

NOXREF option (OSNS) 32

NUM option (CMS) 71

number of channel programs (NCP) selection for

assembler data sets 37

o
object module linkage 50

OBJECT option (CMS) 71

OBJECT option (OSNS) 31

options, assembler

default 33

list of 29

overriding defaults 33, 44

sample of use 87

output format listing 7

overriding default options 33, 44

overriding statements in cataloged procedures 44

P
PARM field 29, 48

PRINT option (CMS) 71

printing of listing control instructions 71

procedures

(see cataloged procedures)

program termination 48, 82

programming considerations 47,81

R
RECFM for assembler data set 35

registers, saving and restoring 47, 52, 81

relocation dictionary

examples 7, 94

listing format 11

RENT option (CMS) 72

RENT option (OSNS) 31

restoring registers 47, 81

return codes 37

(see also FLAG option)

RETURN macro instruction 47, 81

RLD option (CMS) 72

(see also relocation dictionary)

RLD card format 106

RLD option (OSNS) 31

(see also relocation dictionary)

RMODE 8

S
sample programs and listings

assembler language features 85

assembler listing description 7

diagnostic error messages 17

MHELP 97

SAVE macro instruction 47, 81

Index 161

saving registers 47, 81
sequence number 10
severity codes 15,37,111,146

(see also FLAG option)
source and object program assembler listing

format 8
statistics, assembler 13
STMT option (CMS) 72
storage estimates

auxiliary storage
for SYSUT1 60
on UNKUB and PROCUB 60

variable storage 57
storage requirements

fixed 55
main 55

suppression of error messages and MNOTE state­
ments 18

SYM option
card format 108

SYSIN data set 33, 36
SYSUB data set 33, 36
SYSLIN data set 33, 37
SYSPARM option (CMS) 72
SYSPARM option (OSNS) 32
SYSPRINT data set 33, 36
SYSPUNCH data set 33,37
SYSTERM data set 33, 37
SYSUT1 data set 33, 36

T
TERM option (CMS) 72
TERM option (OSNS) 32
termination

abnormal assembly 18
program 48, 82

TEST option (CMS) 73
TEST option (OSNS) 3~

TESTRAN (SYM) card format 108
TXT option

card format 106

U
unaligned operands 30
using the assembler 23
utility data set 33

XCTL macro instruction 52
XREF option (CMS) 73
XREF option (OSNS) 32
XREF option, using old format for 30

162 Assembler H Version 2 Programming Guide

X

Reader's

Comment

FormAssembler H Version 2

Programming Guide

SC26·4036·2

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: De not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the ad"re. printed on tha reverse side. I nstead, you should direct any requests for copies of publications, or for
_istance in using your I.M system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN LsI to this book, please list them here: ______________

Chapter/Section ___

Page No. ______________

Comments:

If you want a reply, please complete the following information.

Nama __
 Phone No. (__1__________

Company __

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre·
sentative will be happy to forward your comments or you may mail directly to the address In the Edition Notice on the
back of the title page.)

- ----- - - --------

Reader's Comment Form

Fold and tape

F old and tape

--..- ­---.­
-'~-- -. --­
----,-

®

Please do not staple F old and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

I I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

•

Please do not staple FOld and tape

