Assembler H Version 2 GC26-4037-1

Language Reference

Release 1

Second Edition (December 1987)

This edition replaces and makes obsolete the previous edition, GC26-4037-0, and its technical news-
letter, GN26-8318.

This edition applies to Release 1 of Assembler H Version 2, Licensed Program 5668-962, and to any
subsequent releases until otherwise indicated in new editions or technical newsletters. This manual
merges assembler information contained in OS/VS-DOS/VSE-VYM/370 Assembler Language, GC33-4010,
and OS Assembler H Language, GC26-3771.

The changes for this edition are summarized under “Summary of Changes” following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any republication of the page affected. Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM Systemn/370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM cperates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM’s pregram may be used.
Any functionally equivalent program may be used instead.

Reguests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader’'s Comment Form is provided at the back of this publication. Ifthe form has been removed,
cemments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.5.A. 95161-3023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1382, 1987

[4

\

Preface

This manual contains language reference information for the Assembler H
Version 2, Release 1, Licensed Program 5668-962, hereafter referred to as
Assembler H or, simply, assembler.

This manual merges assembler information contained in OS/VS —DOS/VSE —
VM/370 Assembler Language, GC33-4010, and OS Assembler H Language,
GC26-3771, with the following major differences:

= Only information relevant to Assembler H has been included in this manual.

DOS/VSE, OS/MFT, and OS/MVT information has been removed because it
is valid only for assemblers other than Assembler H.

New features provided by Assembler H Version 2, Release 1, have been
integrated (see the Summary of Amendments for details).

Programs may be assembled with Assembler H Version 2, Release 1, under
MVS/Extended Architecture (MVS/XA).

Information available in manuals listed below under “Related Publications™
is not included in this publication; references are made to the appropriate
manuals.

Whom This Manual Is For

This manual is for application programmers coding in the Assembler H lan-
guage. It is not intended to be used for tutorial purposes; it is for reference
only. If you are interested in learning more about assemblers, most libraries
have tutorial books on the subject.

Organization of Manual

Part 1. Assembler Language

“Chapter 1. Introduction to Assembler Language” describes what the
assembler does, tells about the language and program, gives the relation-
ship of the assembler to the operating system, and supplies some coding
aids.

“Chapter 2. Coding and Structure” describes the coding rules for and the
structure of the assembler language. it also discusses terms and
expressions.

“Chapter 3. Addressing, Program Sectioning, and Linking” describes how
to handle addressing, control and dummy sections, and symbolic linking.

“Chapter 4. Machine Instruction Statements” describes the machine
instruction types and their formats.

“Chapter 5. Assembler Instruction Statements” describes the assembler
instructions.

Preface iii

Part 2. Macro Language

= “Chapter 6. Introduction to Macro Language” describes the macro instruc-
tion slatement, definiticn, library, and so forth.

= “Chapter 7. How to Prepare Macro Definitions™ describes componenis of a
macro definition.

« “Chapter 8. How to Write Macro Instructions" describes the format of oper-
ands, sublists, and levels of macro instructions.

« "Chapter 9. How to Write Conditional Assembly Instructions” describes the
SET and sequence symbols, and attributes of assembly instruclions.
Part 3. Appendixes

« “Appendix A, Assembler Insiructions and Statements™ lists the related
name, operation, and operand entries.

* “Appendix B, Summary of Constants” lists the constant iypes and gives
related information concerning each.

= "Appendix C, Macro Language Summary” summarizes some of the infor-
mation contained in Part 2. information contained in Part 2.

Assembler H Version 2 Publications

s Assemblier H Version 2 General information, GC26-4035, contains a brief
description of Assembler H and compares Version 2, Release 1, features
with those of Version 1, Release 5, and also compares Assembler H fea-
tures with those of the VS Assembler.

« Assembler H Version 2 Installation, SC26-4030, which contains information
necessary for installation of the assembler program.

* Assembler H Version 2 Programming Guide, SC26-4036, tells how to use
Assembler H, provides an explanation of each of the diagnostic and
abnormal termination messages issued by Assembler H, and suggests how
you should respond in each case.

* Assembler H Version 2 Language Reference, GC26-4037, describes the basic
assembler language functions and specifications that are available with
Assembler H.

* Assembler H Version 2 Logic, LY26-3908, describes the design logic and
functional characteristics of Assembler H.

* Assembler Coding Form, GX28-6509, is a form for coding the program in the
proper columns.

iV Assembler H Version 2 Language Reference

Related Publications

The following publications provide definitive information about machine

o instructions:
= [BM System/370 Principles of Operation, GA22-7000
| » |BM System/370 Extended Archifecture Principles of Operation, SA22-7085
| « |[BM System/370 Vector Operations, SA22-7125
* |BM 4300 Processors Principles of Operation, GA22-7070
For guick reference, see:
« [BM System/370 Reference Summary, GX20-1850
* [BM System/370 Extended Architecture Reference Summary, GX20-0157
- -
rd
b v

Preface

v

~

Summary of Changes

| Release 1 Update, December 1987

Changes to the Product

Support has been added for the IBM DBCS-Host double-byte character set.
Double-byte data can be used wherever single-byte data, enclosed by apos-
trophes, is allowed. Refer to the Glossary of the Assembler H Version 2
Programming Guide for the definition of DBCS terms.

The MHELP facility has been extended. MHELP can now dump SETC
symbols and parameters in hexadecimal as well as in EBCDIC format.

New machine instructions have been added for the IBM 3090 Vector Facility.

Extended and System/370 instruction sets are now contained in the Uni-
versal instruction set.

The underscore character (_) is now allowed in variable symbols and inline
macro names, as well as in ordinary symbols.

Changes to This Manual

Documentation of the above product changes, as well as miscellaneous cor-
rections to existing information, has been added.

Summary of Changes Vii

Contents

Part 1. Assembler Language 1
Chapter 1. Introduction to Assembler Language 3
Language Compatibility 3
Assembler Language e 3
Assembler Program L L 4
Relationship of Assembler 1o Operating System 6
Coding Aids e 7
Chapter 2. Coding and Structure 9
Double-Byte Data Notation 9
Assembler Language Coding Conventions 9

Field Boundaries 10
Continuation Lines 11
Commenls Statement Format 14
Instruction Statemenl Format L. 14
Character Set 16
Assembler Language Structureo oL L L oL 17
Terms and Expressions 25
Terms . . o 25
Literals 36
Expressions L. 39
Chapter 3. Addressing, Program Sectioning, and Linking 43
Addressing L 43
Addressing within Source Modules: Establishing Addressability 43
Base Register Instructionso oL o L 43
Relative Addressing 48
Program Sectioning and Linking 48
Source Module L 49
Control Sections 50
Location Counter Setting 51
First Conlrol Section 53
Unnamed Control Section 55
Literal Pools In Control Sections 55
External Symbol Dictionary Entries 55
Establishing Residence and Addressing Mode 56
Defining a Control Section 59
External Dummy Seclions L o 66
Symbolic Linkages L 69
Chapter 4. Machine Instruction Statements 73
General Instruclions e 73
Decimal Instruclions 74
Floating-Point Instructions 74
Conftrol Instructions 74
Input/Outpul Operalions 75
Branching with Extended Mnemonic Codes 75
Statement Formatso 77

Contents iX

Symbolic Operation Codes 78

Operand Entries 78
Reqgisters L 79
Addresses L 80
Lengths L 83
Immediate Data 83

Examples of Coded Machine instructions §4

Chapter 5. Assembler Instruction Statements 91

Symbol Definition Instruction L. 92
EQU—Equate Symbol 92

Redefining Symbolic Operation Codes 94
OPSYN—Equate Operation Code 94

Data Definition Instructions 96
DC—Define Constant 96
DS—Define Storage 127
CCW or CCW0—Define Channel Command Word (Format0) 130
CCW1—Define Channel Command Word (Format 1) 131

Program Control Instructions 132
ICTL—Input Format Control 132
ISEQ—Input Sequence Checking 133
PUNCH—Punch aCard 134
REPRO—Reproduce Following Card 136
PUSH Instruction 137
POP Instruction 137
ORG—Set Location Counter 138
LTORG—Begin Literal Pool 140
CNOP—Conditional No Operation 143
COPY—Copy Predefined Source Coding 144
END—End Assembly 145

Listing Control Instructionso 146
TITLE—Identify Assembly Qutput 146
EJECT—Start New Page 148
SPACE—Space Listing 148
PRINT—Print Optional Data 149

Part 2. Macro Language L 151

Chapter 6. Introduction to Macro Language 153

Using Macros L 153

Macro Definition L 153

Macro Instruction Statemento oL 155

Source and Library Macro Definitions oL L. 156
Macro Library e 156
System Macro Instructions L Lo 157

Conditional Assembly Language 157

Chapter 7. How to Prepare Macro Definitions 159
Where to Define a Macro in a Source Module 159
Open Codeo . 160
Format of a Macro Definition, . 160

MACRO—Macro Definition Header 160

MEND—Macro Definition Trailer 160

Macro Instruction Prototype oL 161

X Assembler H Version 2 Language Reference

Name Field 161

Operation Field 161
Operand Field 162
Body of a Macro Definition 163
Model Statements oL 163
Variable Symbols as Points of Substitutien 164
Listing of Generated Fields 164
Rules for Concatenation 165
Rules for Model Statement Fields, 168
Symbolic Parameters 170
Positional Parameters 171
Keyword Parameters L 172
Combining Positional and Keyword Parameters, 174
Subscripted Symbolic Parameters 175
Processing Statements L L 176
Conditional Assembly Instructions 176
Inner Macro Instructions 176
COPY Instruction 176
MNOTE Instruction 176
MEXIT Instruction 179
AREAD—Assign Character String Value 181
Comments Statements L 182
Ordinary Comments Statlements 0000 182
Internal Macro Comments Statements 182
System Variable Symbolso 183
Chapter 8. How to Write Macro Instructions 193
Where Macro Instructions Can Appear 193
Macre Instruction Format oL 193
Alternative Ways of Coding a Macro Instruction 194
Name Entry 194
Operation Entry 195
Operand Entry 195
Sublists in Operands 199
Values in Operands 202
Omitted Operands 202
Special Characters 203
Nesting in Macro Definitions 206
Inner and Outer Macro Instructions, .. 206
Levels of Nesting L 206
General Rules and Restrictions 206
Passing Values through Nesting Levels 208
System Variable Symbols in Nested Macros 208
Chapter 9. How to Write Conditional Assembly Instructions 211
Elements and Funclions 21
SET Symbols 212
Data Attributes 215
Sequence Symbolso 224
Attribute Definition and Lookahead 225
Declaring SET Symbolso 226
LCLA, LCLB, LCLC—Define Local Set Symbols 226
GBLA, GBLB, and GBLC Instructions 228
Assigning Values to SET Symbols 230
SETA—Set Arithmetic L 230

Contents Xi

SETB—Set Binary 236

SETC—Set Character 241
Extended SET Statements L. 248
Substring Notation 248
Branching 251
AlF—Conditional Branch oo 251
AGO—Unconditional Branch oL 253
ACTR—Conditional Assembly Loop Counter 254
ANOP—Assembly No Operation 255
Open Code 256
MHELP—Macro Trace Facility 257
Appendixes . ., 261
Appendix A. Assembler Instructions and Statements 263
Appendix B. Summaryof Constants 267
Appendix C. Macro Language Summary 269
Index 275

Xii Assembler H Version 2 Language Reference

n b b bbb b bbb b W W W WwWWwWwWwWRoRRDRDDODRODRDDR =2 32 a2 aaaa
COBNTURUNACOSNOONEORNISOENSTRUNIOOINDO R0

Double-Byle Data Notation, 9
Standard Assembler Coding Form, 10
Character Set e 16
Double-Byte Characier Set (DBCS) 17
Examples Using Character Set, 19
Assembler Language Structureo oL 20
Machine Instructions 21
Crdinary Assembler Instruction Statements 22
Conditional Assembly Instructions 23
Macro Instructions L e 24
Summary of Terms 25
Transition from Assembler Language Siatement to Object Code ... 28
Assignment of Length Attribute Values to Symbols in Name Fields .. 34
Differences between Literals, Constants, and Self-Defining Terms . . . 36
Differences belween Literals, Constants, and Self-Defining Terms . . . 37
Examples of Valid Expressions 39
Definitions of Absolute and Relocatable Expressions 40
Use of Multiple Location Counters 52
Defining CSECTs, DSECTs, and Symbols 56
How the Location Counter Works 61
Extended Mnemonic Codes 76
Object Code Formal 82
Types of Data Constants 97
Length Altribute Value of Symbol Naming Constants 99
Alignmenl of Constants oo 100
Type Codes for Constants 102
Binary Constants 108
Character Constants 109
Graphic Constants e 111
Hexadecimal Constants 112
Fixed-Point Constants, 114
Decimal Constants 116
A and Y Address Constants 118
S Address Constants 120
V Address Constants L 121
Q Address Constants 122
Floating-Point Constants 124
Floating-Point External Formats 125
Channel Command Word, Format0 130
Channe!l Command Word, Format1 131
Building a Translate Table 139
CNOP Alignment 144
Parts of a Macro Definition 154
Format of a Macro Definition 160
Rules for Concatenation 167
Positional Parameters 172
Keyword Parameters 174
Combining Positional and Keyword Parameters 175
Rules for MNOTE Character Strings 179
MEXIT Operation 180

Figures Xiii

51.

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74,
75.

Relationship between Keyword Operands and Keyword Parameters

and Their Assigned Values
Sublists in Operands

Relationship between Subscripted Parameters and Sublist Entries

Values in Nested Macro Calls
Passing Values through Nesting Levels

Features of SET Symbols and Other Types of Variable Symbols

Data Attributes
Attributes and Related Symbols L.
Relationship of Integer to Length and Scaling Attributes
Use of Arithmetic (SETA) Expressions
Defining Arithmetic (SETA) Expressions

Variable Symbols Allowed as Terms in Arithmetic Expressions

Defining Logical Expressions
Subscripted SETC Symbols
Use of Character Expressions
Substring Notation in Conditional Assembly Instructions
Summary of Substring Notation, ...,
Restrictions on Coding Expressions
Assembler Instructions L
Assembler Statements L
Summary of Constants
Macro Language Elements oo
Conditional Assembly Expressions
Attributes L
Variable Symbols

XiV Assembler H Version 2 Language Reference

Part 1. Assembler Language

“Chapter 1. Introduction to Assembler Language” describes what the
assembler does, tells about the language and program, gives the relation-
ship of the assembler to the operating system, and supplies some coding
aids.

“Chapter 2. Coding and Structure” describes the coding rules for and the
structure of the assembler language. It also discusses terms and
expressions.

“Chapter 3. Addressing, Program Sectioning, and Linking” talks about how
to handle addressing, control and dummy sections, and symbolic linking.

“Chapter 4. Machine Instruction Statements” describes the machine
instruction types and their formats.

“Chapter 5. Assembler Instruction Statements” describes the assembler
instructions.

Part 1. Assembler Language 1

(\

Chapter 1. Introduction to Assembler Language

A computer can understand and interpret only machine language. Machine lan-
guage is in binary form and, thus, very difficult to write. The assembler lan-
guage is a symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful symbols made
up of alphabetic and numeric characters instead of just the binary digits 0 and 1
used in machine language, you can make your coding easier to read, under-
stand, and change. The assembler must translate the symbolic assembler lan-
guage into machine language before the computer can execute your program,
as explained in the following paragraph.

Your program, written in the assembler language, becomes the source module
that is input to the assembler. It can be punched into a deck of cards, or
entered through a terminal. The assembler processes your source module and
produces an object module in machine language (called object code). The
object module can be used as input to be processed by another processing
program, called the linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the computer. Once your
program is loaded, it can then be executed. Your source module and the object
code produced are printed, along with other information, on a program listing.

Language Compatibility

The language used by Assembler H Version 2, Release 1, has functional exten-
sions to the language supported by VS Assembler and OS Assembler H Version
1, Release 5. Programs written for VS Assembler and OS Assembler H Version
1, Release 5, that were successfully assembled with no warning or diagnostic
messages, will be assembled correctly by Assembler H Version 2, Release 1.

Assembler Language

The assembler language is the symbolic programming language that lies
closest to the machine language in form and content. You will, therefore, find
the assembler language useful when

* you need to control your program closely, down to the byte and even the bit
level, or

= you must write subroutines for functions that are not provided by other sym-
bolic programming languages, such as COBOL, FORTRAN, or PL/I.

The assembler language is made up of statements that represent instructions
or comments. The instruction statements are the working part of the language
and are divided into the following three groups:

* Machine instructions
» Assembler instructions
e Macro instructions

Chapter 1. Introduction to Assembler Language 3

Machine Instructions
A machine instruction is the symbolic representation of a machine language
instruction of the IBM System/370 architecture instruction set, or of the IBM
System/370 extended architecture instruction set. It is called a machine instruc-
tion because the assembler translates it into the machine language code the
computer can execute. Machine instructions are described in "Chapter 4.
Machine Inslruction Statements.”

Assembiler Instructions
An assembler instruction is a request to the assembler program to perform
certain operations during the assembly of a source module; for example,
defining data constants, defining the end of the source module, and reserving
storage areas. Except for the instructions lthat define constants, the assembler
does not translate assembler instruclions inlo object code. The assembler
instruclions are described in "Chapter 3. Addressing, Program Sectioning, and
Linking,” “Chapter 5. Assembler Instruction Statements,” and “Chapter 8.
How to Wrile Conditional Assembly Instructions.”

Macro Instructions
A macro instruction is a request to the assembler program to process a prede-
fined sequence of code called a macro definition. From this definition, the
assembler generates machine and assembler instructions, which it then proc-
esses as if they were part of the original input in the source module.

IBM supplies macro definitions for input/output, data management, and super-
visor operations that you can call for processing by coding the required macro
instruction. (These IBM-supplied macro instructions are described in the appro-
priate Macro Instructions manual.)

You can also prepare your own macro defimitions, and call them, by coding the
corresponding macro instructions. Rather than code this entire sequence each
time it is needed, you can create a macro instruction to represent the sequence
and then, each time the sequence is needed, simply code the macro instruction
statement. During assembly, the sequence of instructions represented by the
macro instruction is inserted into the object program.

A complele description of the macro facility, including the macro definition, the
macro instruction, and the conditional assembly language, is given in “Part 2.
Macro Language.”

Assembler Program

The assembler program, also referred to as the assembler, processes the
machine, assembler, and macro instructions you have coded (source state-
mentsj in the assembler language, and produces an object module in machine
language.

4 Assembler H Version 2 Language Reference

Basic Functions

Processing involves the transiation of source statements into machine lan-
guage, assignment of storage locations to instructions and other elements of
the program, and performance of auxiliary assembler functions you have desig-
nated. The output of the assembler program is the object program, a machine
language translation of the source program. The assembler furnishes a printed
listing of the source statements and object program statements and additional
information, such as error indications, that are useful in analyzing the program.
The object program is in the formal required by the linkage editor.

Processing Sequence

The assembler processes the machine and assembler language instructions at
different times during its processing sequence. You should be aware of the
assembler’s processing sequence in order to code your program correctly.

The assembier processes mosl instructions on two occasions: First at preas-
sembly time and, later, at assembly time, However, it does some
processing—for example, macro processing—only at preassembly time.

The assembler also produces information for other processors. The linkage
edilor uses such information at link-edit time to combine object modules into
load modules. The loader loads your program (combined load modules) into
virtual storage at program fetch time. Finally, at execution time, the computer
executes the object code produced by the assembler at assembly time,

1. The assembler processes all machine instructions, and translates them into
object code at assembly time.

2. Assembler instructions are divided info two main types:

* Ordinary assembler insiructions
= Conditional assembly instructions and the macro processing
instructions (MACRO, MEND, MEXIT, MNOTE, and AREAD)

The following discusses these two main types of assembler instructions.

a. The assembler processes ordinary assembler instructions at assembly
time.

= The assembler evaluates absolute and relocatable expressions at
assembly time; they are sometimes called assembly-time
expressions.

+« Some instructions produce output for processing after assembly
time {DC, DS, CCW, CCWO0, CCW1, ENTRY, EXTRN, WXTRN, PUNCH,
and REPRO).

b. The assembler processes conditional assembly instructions and macro
processing instructlions al preassembly time.

= The assembler evaluates the conditional assembly
expressions—arithmetic, logical, and character—at preassembly
time.

* The assembler processes the machine and assembler insiructions
generated from preassembly processing at assembly time.

Chapter 1. Introduction to Assembler Language 5

3. The assembler processes macro instructions at preassembly time.

Note: The assembler processes the machine and ordinary assembler
instructions generated from a macro definition called by a macro instruction
al assembly time,

The assembler prints in a program listing all the information it produces at the
various processing times discussed above.

Relationship of Assembler to Operating System

Assembler H operates under MVS/Extended Architeclure (XA), 0OS/VS52 MVS 3.8,
05/VS1 Release 7, MVS/System Product {SP) V1, VM/XA System Product
{VM/XA SP), VM/XA Systems Facility (VM/XA SF), and VM/SP. These operating
systems provide the assembier with services for;

= Assembling a source module

* Running the assembled object module as a program
In writing a source module, you must include instructions that request the
desired service functions from the operating system.
0S/VS provides the following services:

1. For assembling the source module:

= A control program
= Libraries to contain source code and macro definitions
= Utilities

2. For preparing for the execution of the assembler program as represented
by the object module:

= A control program

= Storage allocation

= Input and output facilities
« Linkage editor

* A loader

CMS provides the following services:

1. For assembling the source module:

« An interactive control program
= Files to contain source code and macro definitions
= Ulilities
2. For preparing for the execution of the assembler program as represented
by the object modules:

* An interactive control program
* Storage allocation

* Input and output facilities

= CMS loader

6 Assembler H Versien 2 Language Reference

Coding Aids

It can be very difficult to write an assembler language program using only
machine instructions. The assembler provides additional functions that make
this task easier. They are summarized below.

Symbolic Representation of Program Elements
Symbols greatly reduce pregramming effort and errors. You can define
symbols to represent storage addresses, displacements, constants, registers,
and almost any element that makes up the assembler language. These ele-
ments include operands, operand sublields, terms, and expressions. Symboils
are easier to remember and code than numbers; moreover, they are listed in a
symbol cross-reference table, which is printed in the program listings. Thus,
you can easily find a symbol when searching for an error in your code.

Variety in Data Representation
You can use decimal, binary, hexadecimal, or character representation of
machine language binary values in writing source statements. You select the
representation best suited to the purpose. The assembler converls your rep-
resenlations into the binary values required by the machine language.

Controlling Address Assignment
If you code the appropriate assembler instruction, the assembler will compute
the displacement from a base address of any symbolic addresses you specily in
a machine instruction. It will inserl this displacement, along with the base reg-
ister assigned by the assembler instruction. into the object code of the machine
instruction.

At execution lime, the object code of address references must be in the base-
displacement form. The compuler oblains the required address by adding the
displacement to the base address contained in the base regisler.

Relocatability
The assembler produces an object module that can be relocated from an ori-
ginally assigned storage area to any olher suitable virtual storage area without
affecting program execution. This is made easier because most addresses are
assembled in their base-displacement form.

Sectioning a Program
You can divide a source module into one or more control sections. After
assembly, you can include or delete individual control sections Irom the
resulting object module before you load it for execution. Control sections can
be loaded separately inlo storage areas that are not contiguous. This means
that a sectioned program may be loaded and executed even though a contin-
uous block of storage large enough 10 accommodate the entire program may
not be available.

Chapter 1. Introduction to Assembler Language 7

Linkage between Source Modules
You can creale symbolic linkages between separately assembled source
modules. This allows you to refer symbolically from one source module to cata
defined in another source medule. You can also use symbolic addresses to
branch between modules.

A discussion of sectioning and linking is contained in "Program Sectioning anc
Linking" on page 48.

Program Listings
The-assembler produces a listing of your source module, including any gener-
aled statements, and the object code assembled from the source module You
can partly control the form and content of the listing.

The assembler also prints messages aboul actual errors and warnings about
potential errors in your source module.

8 Assembler H Version 2 Language Reference

Chapter 2. Coding and Structure

This chapter presents information aboul assembler language coding con-
venlions and assembler language structure.

 Double-Byte Data Notation

Character(s) Represents

< shift-out (SQ)

> shift-in (S1)

D1D2D3... double-byte characlers

DaDbDec... double-byte characters

AB.CUA&, double-byleicharaclers: A, B, C, apostrophe, ampersand and comma
eceeeee single-byte (EBCDIC) characters

abcd... single-byte (EBCDIC) characters R B
XXX extended conltinuation indicator for macro-generated statements

++ + alternative ex.(lended continuation indicator for macro-generated state-

ments

Figure 1. Double-Byte Data Notation

Notes:

1. The DBCS ampersand and apostirophe are not recognized as delimiters.

2. A double-byte characler thal contains the value of an EBCDIC ampersand or
apostrophe in either byte is not recognized as a delimiter when enclosed by

SO and SI.

Assembler Language Coding Conventions

Figure 2 shows the format conventions used to code an assembler program.

Chapter 2. Cading and Structure 9

IBM

M Syutem/360 Aapambler Cedlng Parm

H O L ™
e b LRS-
PROGAAN PUNCHING ZAGE o
1 L 10RY
PROGRAMME R CATE TRV CARD ALACTRO NUMBER
STATEMENT
— o [Do
! «w u_ " » ™ 0 - - »| |n -
v T T ¥ T T T T - - — —
i REEE I EENEN KN RN KR Pl RERAN e [ehr]rieh: "i!-=
a —1 H T ' R [
[[1y | i} N N TR 1T | I HE] E] HEREE E
""" oy I t . i i i K [I v T T . R - H -
L :] ! v, N i g P NN Ped]ies
¥
7
:
' i] . T il : T R
v . B L i
! vt ' { Lo tad i o
T -
i . i
| L 1
d
T 3
. N '
i I 1at 1
]
|
[]
I | i r
+ .] E w] E3 x N] o - T n ®
"-—l-ﬁ:h-\.’ﬂ:ﬂn.l—l&’—“ﬂn‘“ln—uh
Lt e d ol wh LN Fymir 300 smm—hios arvpangt efertam) p——— L]
n-—-b'-ub:';uu-—u-—, Pe——— B v gy i e vy gy,

A
ot B, 185 G Lidmged 8, Semntien,

Figure 2. Standard Assembler Coding Form

Field Boundaries

Statement Field

Assembler language statements usually occupy one 80-column line on the
standard form (for statements occupying more than 80 columns, see "Continua-
tion Lines™ on page 11). Nole that any printable character punched into any
column of a card, or otherwise entered as a position in a source statement, is
reproduced in the listing printed by the assembler. All characters are placed in
the line by the assembler. Whether they are printed or not depends on the
printer. Each line ol the coding lorm is divided into three main fields:

* Stalement field

* Continuation indicator field
= Identification-sequence field

The instructions and comments statements must be written in the statement
field. The statement field starts in the "begin™ cotumn and ends in the “end”
coclumn. The continuation indicator field always lies in the column afier the
"end"” column, The identification-sequence field usually lies in the field after
the continuation indicator field. Any continuation lines needed mus! stlarl in the

“continue” column and end in the “end™ column.

10 Assembler H Version 2 Language Reference

http:1'ar_',.,_IrNm"""","Ms-r-nI.Jl!:O-..bI

The assembler assumes the following standard values for these columns:

* The "begin™ column is column 1.
= The "end"” column is column 71.
* The “continue” column is column 16.

These standard values can be changed by using the Input Format Control {ICTL)
assembler instruction. The ICTL instruction, by changing the standard begin,
end, and continue columns can create a field before the begin column; this field
can then contain the identification-sequence field. However, all references 1o
the “begin,” "end,” and “continue” columns in this manual refer to the
standard values described above.

Continuation Indicator Field
The continuation indicator field occupies the column afier the end column.
Therefore, the standard position for this field is column 72. A non-blank char-
acter in this column indicates that the current statement is continued on the
next line. This column must be blank if a statement is completed on the same
line; otherwise, the assembler will treat the statement that follows on the next
line as a continuation line of the current statement.

If the assembler is invoked with the DBCS option, then:

= When an Sl is placed in the end column of a continued line, and an 50 is
placed in the continue column of the next line, the S| and SO are consid-
ered redundant and are removed from the statement before stalement anal-
ysis is performed.

+« An exlended continualion indicator provides the ability to extend the end
column to the left on a line-by-line basis, so that any alignment of double-
byte data in a source slatement can be supported.

+« The double-byte delimiters SO and Sl cannot be used as continuation indi-
cators.

Identification-Sequence Field
The identification-sequence field can coniain identification characters or
sequence numbers or both. If the ISEQ instruction has been specified to check
this field, the assembler will verify whether or not the source statements are in
the correct sequence.

The columns checked by the ISEQ function are not restricted to columns 73
through 80, or by the boundaries determined by any ICTL instruction. The
columns specified in the ISEQ instruction can be anywhere on the input state-
ments; they can also coincide with columns that are occupied by the instruction
field.

Continuation Lines
To continue a statement on another line, the following rules apply:

1. Enter a non-blank character in the continuation indicator field {(column 72).
This non-blank character musl not be part of the statement coding. When
more than one contlinualion line is needed, a non-blank character must be
entered in column 72 of each line that is to be continued.

Chapter 2. Coding and Structure 11

2. Conlinue the statement on the nexi line, starting in the continue column
{column 16). Columns to the lefl of the continue column must be blank.
Comments may be continued after column 16.

Note that, if an operand is continued after column 16, it is taken to be a
comment. Also, if the continvation indicator field is filled in on one line and you
try to stanrt a totally new statement afier column 18 on the next line, this state-~
ment will be taken as a comment belonging to the previous statement.

Unless it is one of the statement types listed below, nine continuation lines are
allowed for a single assembler language statement,

Alternative Statement Format: The alternative statement format, which allows
as many continuation lines as are needed, can be used for the following
instructions:

« Prototype statement of a macro definition

« Macro instruction statement

= AGO conditional assembly statement

* AIF conditional assembly statement

« GBLA, GBLB, and GBLC congitional assembly statemenis
* LCLA. LCLB, and LCLC conditional assembly statemenis
« SETA, SETB, and SETC conditional assembly statemenis

Examples of the alternative statement format for each of these insiructions are
given with the description of the indwvidual instruction.

Continuation of double-byte data: No special considerations apply to continua-
tion.

= Where double-byte data is created by a code-generation program, and
* There is no requirement for double-byte data lo be readable on a device
capable of presenting OBCS characlers.

A double-byte character string may be continved at any point, and SO and Sl
must be balanced within a field. but not within a statement line.

Where double-byte data is created by a workstation that has the capabilily of
presenting OBCS characters, such as the IBM 5550 multistation, or where read-
ability of double-byte data in Assembler H source input or listings (s required,
special features of the Assembter H language may be used. Assembler H,
when invoked with the DBCS option, provides sufficient flexibility to cater for
anpy combination of double-byte data and single-byte dala. The special features
provided are:

* Removal of redundant SI/SO at continuation points. When an Sl is placed in
the end column of a continued line, and an SO is placed in the continue
column of the next line, the Sl and SO are considered redundant and are
removed from the statement before stalement analysis is performeg.

e« An extended continuation ingicalor provigdes a flexible end column on a line-
by-line basis so that any alignmenli of double-byte dala in a source state-
ment ¢an be supported. The end column of continued lines may be shifted
to the left by exiending the conlinuation indicator.

12 Assembler H Version 2 Language Reference

» To guard against accidental continuation caused by double-byte data ending
in the continuation indicator column, neither SO nor Sl is regarded as a
continuation indicator. If either are so used, warning message IEV201 “SO
OR Sl [N CONTINUATION COLUMN - NO CONTINUATION ASSUMED" is
issued.

The use of these features is illustrated by the examples below. Refer to
“Double-Byte Data Notation” on page 9 for the notation used in the examples.

Source Input Considerations

* Extended continuation indicators may be used in any source statement,
including macro statements and statements included by the COPY instruc-
tion. This feature is intended for source lines containing double-byte data.

= On a line with a nonblank continuation indicator, the end column will be the
first column to the left of the continuation indicator which has a value dif-
ferent from the continuation indicator.

* When converting existing programs for assembly with the DBCS option,
care must be taken to ensure that continuation indicators are different from
the adjacent data in the end column.

* The extended continuation indicators must not be extended into the con-
tinue column, otherwise error IEV205 “EXTENDED CONTINUATION COLUMN
MUST NOT EXTEND INTO CONTINUE COLUMN" will be issued and the
extended continuation indicators are treated as data.

* For Sl and SO to be removed at continuation points, the S| must be in the
end column, and the SO must be in the continue column of the next line.

Examples:

Name Operation Operand Cont.

DBCS1 DC C'<D1D2D3D4D5D6D7DBDI>XXXXXXXXXXXX XXX XXX XX
<DaDb>'

DBCS2 DC C'abcdefghijkImnopgXXXXXXXXXXXXXXXXXXXXXXX
<DaDb>'

DBCS3 DC C'abc<D1D203D4D5SDED7>XXXXXXXXXXXXXXXXXX XXX
<DaDb>"

The DBCS1 constant contains 11 double-byte characters bracketed by SO and
Sl. The Sl and SO at the continuation point are not assembled into the
operand. The assemble value of DBCS1 is:

<D10203D4D5060708D9DaDb>
The DBCS2 constant contains an EBCDIC string which is followed by a double-
byte string. Since there is no space for any double-byte data on the first line,

the end column is extended three columns to the left and the double-byte data
started on the next line. The assembled value of DBCS2 is:

abcdefghi jkImnopg<DaDb>
The DBCS3 constant contains 3 EBCDIC characters followed by 9 double-byte
characters. Alignment of the double-byte data requires that the end column be

extended one column to the left. The Si and SO at the continuation point are
not assembled into the operand. The assemble value of DBCS3 is:

abc<D102D3D4D5D6D7DaDb>

Chapter 2. Coding and Structure 13

Source Listing Considerations

* For source that does not contain substituled variable symbols, the listing
will exaclly reflect the source input.

» Double-byte data input from code-generation programs, and confaining no
substituted variables, will not be made readable in the listing if the source
input was unreadable on a device capable of presenting DBCS characters.

» Refer to "Listing of generated fields containing double-byte data” on
page 165 for details of extended continuation and macro-generated state-
ments.

Comments Statement Format

Comments statements are not assembled as part of the object module, but are
only printed in the assembly listing. As many comments statements as needed
can be wntten, subject to the following rules:

« Commenis statements require an asierisk in the begin column,

Note: Internal macro definition comments statements require a period in
the begin column, followed by an asterisk.

e Any characters of the IBM System/370 character sel, including blanks.
special characters, and double-byte characters. can be used {see “"Char-
acter Set” on page 18)

e Comments statements must lie in the statement field ang not run over into
the continuation indicator field; otherwise, the statement following the com-
ments statement will be considered as a continuation line of that comments
statement.

» Comments statements must not appear between an instruction stalement
and its continuation lines.

Instruction Statement Format

Fixed Format

Instruction statements must consist of one to four entries in the statement field.
They are:

e A name entry

= An operation éentry
* An operand entry
= A remarks entry

These entries must be separated by one or more blanks, and must be wntten in
the order stated.

The standard coging form {Figure 2 on page 10) is gdivided into fields that
provide fixed positions for the first three entries, as follows:

*= An 8-character name field starting in column 1
e A S-character operation field starting in column 10
e An operand field that begins in column 18

Note: With this fixed formatl, one blank separates each field.

Free Format

It is not necessary 1o code the name, operation, and operand eniries according

‘ to the fixed fields on the standard coding form. Instead, these entries can be

\ written in any position, subject to the formatting specificatlions below.

Formatling Specifications
Whether using fixed or free format, the foliowing general rules apply to the
coding of an instruction statement:

1.

The entries must be wrillen in the following order: name, operation,
operand, and remarks.

. The entries must be contained in the begin column (1) through the end

column (71) of the first line and, if needed, in the continue column (16)
through the end column (71) of any continualion lines.

The entries must be separated from each other by one or more blanks.

If used, a name entry must start in the begin column.

The name and operation entries, each followed by at least one blank, must

be contained in the first line of an instruction statement.

column.

A description of the name, operation, operand, and remarks entries follows:

. The operation entry must begin at least one column to the right of the begin

Name Entry: The name entry is a symbol crealed by you to identify an instruc-
tion statementl. A name entry is usually optional. It must be a valid symbol at
assembly time (after subslitution for variable symbols, if specified); for an
exception, see “TITLE—Idenlify Assembly Outlpul™ on page 146.

characler appearing in the begin column. The first character must be alpha-
betic. If the begin column is blank, the assembler program assumes no name

has been entered. No blanks or double-byte data may appear in the symbol.

The symbol must consist of 63 characters or less, and be entered with the first

Operation Entry: The operation entry is the symbolic operation code specifying
the machine, assembler, or macro instruction operation desired. The following
apply to the operation entry:

An operation entry is mandatory.

For machine and assembler instructions, it must be a valid symbol at
assembly time (afler substitution for variable symbols, if specified). The
standard symbolic operation codes are five characters or less (see the
appropriate principles of operation manual; or, for assembler operations,
see Appendix A, "Assembler Instructions and Statements”).

The standard set of codes can be changed by OPSYN instructions (see
“OPSYN—Equate Operation Code” on page 94).

For macro instructions, it can be any valid symbol that is not identical to
any machine or assembler op-code.

Chapter 2. Coding and Structure

15

Operand Entries: Operand entries contain one or more operands that identify
and describe data to be acted upon by the instruclion, by indicating such infor-
mation as storage localions, masks, slorage area lenglhs, or lypes of data. The
following rules apply lo operands:

» One or more operands are usually required, depending on the instruclion.

= Operands must be separated by commas. No blanks are allowed between
the operands and the commas that separale them.

+ Operangs musl nol conlain embedded blanks, because a3 blank normally
indicates the end of \he operand entry. However, blanks are allowed if lhey
are included in character sirings enclosed in single quotalion marks, or in
logical expressions.

Remarks Entries: Remarks are used to gescribe the currenl instruclion.
* Remarks are oplional.

« They can conlain any of lhe 256 valig characters (or punch combinations) of
\he appropriale character set, including blanks, special characlers, and
double-byte characters.

* They can follow any operand entry.

» In stalements in which an oplional operand entry 1S omilted bul a remarks
entry is desired, the absence of the operand entry must be indicated by a
comma preceded and followed by one or moré blanks, as Wustrated below:

Name Operation Operand Comment

END , REMNARKS

Statement Example: The following example ilfustrates the use of name, opera-
tion, operand, and remarks entries. A compare insiruction has been named by
the symbol COMP; the operalion eptry (CR) is the mnemonic operation code for
a regisler-lo-register compare operalion; and the two operands (5.6) designale
the two general regisiers whose contenis are 1o be compared. The remarks
enlry reminds readers that “new sum” is being cornpared o "old" with 1his

instruction.
Name Cperation Operand Corment
COMP CR 5,6 NEW SUM TG OLO

Character Set
Terms, expressions, and character sirings used 1o build source sialemenis are
wrillen with the following characlers:

Alphabelic characters A through Z. and §. #. @
Digits 0 through 9
Special characters + -, = _*() '/ &Dblank

Underscore character

Figure 3. Character Set

Examples showing the use of the above characiers are given in Figure 5 on
page 19.

16 Assembler R Version 2 Language Reference

"

The term “alphameric characters™ includes both alphabetic characters and
digits, but not special characlers, the underscore or double-byte data.
Normally, you would use strings of alphameric characters to represent data
{see "Terms” on page 25), and special characlers as:

« Arithmetic operators in expressions
+ Data or field delimiters
+ Indicalors to the assembler for specific handling

These characters are represented by the card-punch combinations and internal
bit configurations listed in the /BM Syslem/370 Reference Summary. In addition,
any of the 256 punch combinations may be designated anywhere that charac-
ters can appear between paired single quotation marks, in comments, and in
macro insiruclion operands.

The double-byte character set (DBCS) comprises the following:

Double-byte blank XX 4040

Double-byte characters Each double-byte character contains two bytes, each of
which must be in the range XX'41"' to XX'FE".

Shift codes SO ("shiflt out,” XX'OE")
S| ("shift in,” XX'OF")

Figure 4. Double-Byte Character Set (DBCS)

Notes:

1. SO and Sl delimit DBCS data only when the assembler is invoked with the
DBCS option.

2. When the assembler is invoked with the DBCS option, double-byte charac-
ters may be used anywhere that EBCDIC characters enclosed by single
guotation marks can be used.

3. Regardiess of the invocation option, double-byte characters may be used in
remarks, comments, and the operands of AREAD and REPRO statements.

Assembler Language Structure

This section describes the structure of the assembler language, that is, the
various statements that are allowed in the language, and the elements that
make up those statements.

A source statement is composed of:

= A name entry {usually optional) that is a symbol

= An operation entry (required) that is a symbolic operation code repres-
enting a machine, assembler, or macro instruction

= An operand entry (usually required) that is composed of one or more oper-
ands

+ A remarks entry (oplional)

Chapter 2. Coding and Structure 17

Source Module
made up of
Source Statemenis

Source Statements are

=

|

EITHER INSTRUCTION OR COMMENTS
STATEMENTS STATEMENTS
Which are of three
main Iypes
MACHINE or ASSEMBLER or MACRO
Instructions Instructions Instructions
Which are composed i
ane te four entries
NAME OPERATION OPERAND REMARKS

Which for machine instruc-
tions, is composed of

EXPRESSIONS

-

| Which are composed of |

[Which are composed of I

Combinatian

TERMS or of terms

CHARACTER
STRINGS

ll

[which are composed of characters]

IBM SYSTEM/370
CHARACTER SET

Figure 6. Assembler Language Structure

20 Assembler H Version 2 Language Reference

NAME
Entry

Entry

OPERATION

OPERAND
Entry

! With DBCS option only

A A symbolic One or more
Symbol Operation operands
{or bjank) Code composed of
Exp(Exp,Exp) A
Expression or Exp (Exp) or or or Literal
Exp (,Exp) =H'Q’
Arithmetic Exp = E .
Term or combination P xpression
of terms
Which can be]
any of the
following
Symbol
A Location Lingth A
Symbol Dafini
ym (F";o;mter Attribute Self-Defining
eference Reference Term
e.0. HERE g * e.q. L'HERE
Which can be
any of the
following
ll 1 l
Decimal Hexadecimal Binary Character Graphic
e.q 9 e.g X 'D9 eg. B 1001 e.g. C "JAN’ e.q.G ((A)

Figure 7. Machine Instructions

Chapter 2. Coding and Structure 21

NAME OPERATION OPERAND
Enury Entry Entry
e [onoe]
A A symbolic Qne or more
Symbol Operation operands
{or blank) Code
For Datwa Definition Far all other
{DC and DS ordinary Assembler
Instructions) Instructions
H
OCperands can be Operands can be
composed of one composed of
1o four subfields
Expressiol i
Lo . Constant prERR0n Cha-racter SVI'TTbOHI:
Dugplication Type Medifiers (Nominal ar String Option
factor Value) e +d g eg.
TO BE NCGEN
PUNCHED’
One or more
constants of
the format
e.g. 10 F L3 :200; below
2
"Decimal {E xpression) "Characier ‘Graphic
number’ or or | sring’ or | string’
eg. F'2 e.0, A[ADDR) eg. C'Ais B e.g G'L.ABY

! Discussed more fully where individual instructions are described

2 with DBES option only

Figure 8. Ordinary Assembler Instruction Statements

22 Assembler H Version 2 Language Reference

{&A EQ1)SEQ

Exp=Expression

NAME OPERATION OPERAND
Entry Entry Entry
j@ can be
Sequence Variable A symbolic Zero or more
Symbol .
SEQ or Symbol QOperation operands
’ & VAR Cade composed of
{or blank)
Expression Exp,’msg’
. explsaq sym
Sequence or ;’ana:;lle or or or MNOTE or {exp)saq sy
Symbeot ym (Expression) 3/ERROR’
Which can be any
combination of
variable symbols
and other characters
that constitute an
Arithmetic Logicel Character
Ex pression or Expression or Expression
&A +1 &B1 OR &B2 "JAN&C

Figure 9. Conditional Assembly Instructions

Macro instruction statements are described in Figure 10 on page 24 and dis-
cussed in “Part 2. Macro Language.”

Chapter 2. Coding and Structure 23

Symbolic Symbolic Zero or more
Parameter Operation Symbolic
Code Parameters
Prototype
Statement
can be can be
Macro
Instruction
Statement NAME OPERATION OPERAND
Eatry Entry Entry
Zero or more
can be | Operands
which can be
Ordinary)) Subfists with
Symbol or Sequence o Variable Operands with | of one or more
{or blank} Symbol Symbot one value entries
Each entry
can have a
value
Values
can be
Character "Character
Swing or String’
(excluding {including
blanks) blanks)

Figure 10. Macro Instructions

24 Assembler H Version 2 Language Reference

Terms and Expressions

Terms

Symbols

A term is the smallest element of the assembler language that represents a
distinct and separate value. It can, therefore, be used alone or in combination
with other terms to form expressions. Terms are classified as absolute or relo-
catable, depending on the effect of program relocation upon them. Program
relocation is the loading of the object program into storage locations other than
those originally assigned by the assembler. Terms have absolute or relocat-
able values that are assigned by the assembler or that are inherent in the
terms themselves.

A term is absolute if its value does not change upon program relocation, and is
relocatable if its value changes upon relocation. Figure 11 summarizes the
various types of terms. The following text discusses each term and the rules
for its use.

Term Term Value Value

can be can be is assigned is inherent
Terms absolute relocatable by assembler interm
Symbols X X X
Location counter X X
reference
Symbol length X X
attribute
Other X X
data attributes
Self-defining terms X X

Figure 11. Summary of Terms

3

You can use a symbol to represent storage locations or arbitrary values. If you
write a symbol in the name field of an instruction, you can then specify this
symbol in the operands of other instructions and thus refer to the former
instruction symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name
field of an EQU instruction with an operand whose value is absolute. This
allows you to use this symbol in instruction operands to represent registers,
displacements in explicit addresses, immediate data, lengths, and implicit
addresses with absolute values. For details of these program elements, see
“Operand Entries” on page 78.

The advantages of symbolic over numeric representation are:

1. Symbols are easier to remember and use than numeric values, thus
reducing programming errors and increasing programming efficiency.

2. You can use meaningful symbols to describe the program elements they
represent; for example, INPUT can name a field that is to contain input data,
or INDEX can name a register to be used for indexing.

Chapter 2. Coding and Structure 25

3. You can change the value of one symbol (through an EQU instruction) more
easily than you can change several numeric values in many instructions.

4. Symbols are entered into a cross-reference table that the assembler prints
in the program listing. This table helps you lo find a symbol in a program
listing, because 1t lists {a) the number of the statement in which the symbol
is defined, thal is, used as the name entry, and {b) the numbers of all the
statermments in which the symbol is used in the operands.

Symbol Table: The assembler maintains an internal table called a symbaol
table. When the assembler processes your source stalements for the {irst time,
it assigns an absolute or relocatable value to every symbol that appears in the
name field of an instruction. The assembler enters this value, which normally
reflects the setting of the location counter, inta the symbol table; it also enters
the atlributes associated with the data represenied by the symbol The values
of the symbol and its attributes are availlable later when the assembler finds
this symbol or atiribute reference used as a term in an operand or expression.
See "Symbol Length Attribute Reference” and "Self-Defining Terms” in this
chapter for more details. The three types of symbols recognized by the assem-
bler are:

* Ordinary symbols
« Variable symbols
* Sequence symbols

Ordinary symbols can be used in the name and operand fields of machine and
assembler instruction statements. They must be coded to conform to these
rules:

= The symbol must not consist of more than 63 alphameric characters. The
first character must be an alphabetic character {A through Z, $, &, or @).
The other characters may be alphabetic characters, digils, or a combination
of the two.

= No special characters may be included in an ordinary symbol.
* No blanks are allowed in an ordinary symbol.
* No double-byte data is allowed in an ordinary symbol

= An underscore character is allowed, with the restrictions listed below.

An underscore character must nof appear in an external symbol, or in the
name field of an OPSYN instruction. The following lists the symbol fields In
which the underscore character must not appear:

* In the name field of:
— a CSECT instruction
— a DXD instruction
— a COM instruction
— an OPSYN instruction
* In the operand field of:
— an EXTRN instruction
— a WXTRN instruction
— an ENTRY instruction
* As the nominal value in a V-type or Q-type address constant

In the following sections, the term symbol refers lo the ordinary symbol.

26 Assembler H Version 2 Language Reference

The following are valid symbols:

ORDSYM#435A HERE $OPEN
K4 #0123 X
B49467LITTLENAIL @33 SAVE_TOTAL

Variable symbols must begin with an & followed by an alphabetic character and,
optionally, up to 61 alphameric characters (including underscore). Variable
symbols can only be used in macro processing and conditional assembly
instructions. They allow different values to be assigned to one symbol. A com-
plete discussion of variable symbols appears in “Chapter 7. How to Prepare
Macro Definitions.”

The following are valid symbols:

&VARYINGSYNMABC &@ME
&F346944 8A
&EASY_TO_READ

Sequence symbols consist of a period {(.) followed by an alphabetic character,
and up to 61 additional alphameric characters. Sequence symbols can be used
only in macro processing and conditional assembly instructions. They are used
to indicate the position of statements within the source program or macro defi-
nition. Through their use, you can vary the sequence in which statements are
processed by the assembler program. (See the complete discussion in
“Chapter 9. How to Write Conditional Assembly Instructions.”)

The following are valid symbols:

.BLABELO4 .#359
.BRANCHTOMEFIRST A

Symbol Definition: An ordinary symbol is considered defined when it appears
as:

* The name entry in a machine or assembler instruction of the assembler lan-
guage

* One of the operands of an EXTRN or WXTRN instruction
Note: Ordinary symbols that appear in instructions generated from model state-
ments at preassembly time are also considered defined.
In Figure 12 on page 28, the assembler assigns a value to the ordinary symbol

in the name fields as follows:

1. According to the address of the leftmost byte of the storage field that con-
tains one of the following:

a. {See (1) in Figure 12) Any machine or assembler instruction (except the
EQU or OPSYN instruction)

b. (See (2) in Figure 12) A storage area defined by the DS instruction
c. (See (3) in Figure 12) Any constant defined by the DC instruction

d. A channel command word defined by the CCW, CCWO0, or CCW1 instruc-
tion

The address value thus assigned is relocatable, because the object code
assembled from these items is relocatable; the relocatability of addresses
is described “Addresses” on page 80.

Chapter 2. Coding and Structure 27

Assembler Language Address Value Object Code

Statements of Symbol in Hexadecimal
Address of
Relocatable AREA
LOAD L 3,AREA LOAD—T@J 3] 0] xxxx]|
AREA DS F 0 AREA— [XX X X XXXX|
F200 DC F'200" G F200 [00 0 0 0o0C8]|
FULL EQU AREA o FULL//
TWOO EQU F200 TWOO
Absolute
R3 EQU 3 0 R3=3
Address
of FULL
P e,
L R3,FULL 58 |30 |xxxx
A R3,TWO0O S5A[310 [xxxxX
e —
Address of
TWO0O0

Figure 12. Transition from Assembler Language Statement to Object Code

2. According to the value of the first or only expression specified in the
operand of an EQU instruction. This expression can have a relocatable (see
(4) in Figure 12) or absolute {see (5) in Figure 12) value, which is then
assigned to the ordinary symbol.

The value of an ordinary symbol must lie in the range -2°' through +2%'-1.

Restrictions on Symbols: A symbol must be defined only once in a source
module with one or more control sections, with the following exception: The
symbol in the name field of a LOCTR instruction can be the same as the name
of a previous START, CSECT, DSECT, COM, or LOCTR instruction. It identifies
the resumption of the location counter specified by the name field.

Note: The ordinary symbol that appears in the name field of an OPSYN or a
TITLE instruction does not constitute a definition of that symbol. it can, there-
fore, be used in the name field of any other statement in a source module.

Previously Defined Symbols: If ordinary symbols appear in operand
expressions of ORG and CNOP instructions, in modifier expressions of DC, DS,
and DXD statements, in the first operand of EQU statement, or in Q-type con-
stants, they do not need to be previously defined.

28 Assembler H Version 2 Language Reference

("\

Allowing forward reference in the above statement types creales two new Kinds
of errors that you should guard against.

= Circular definition of symbols, such as:

X EQU ¥
¥ EQU X

» Circular location-counter dependency, as in this example:

A DS (B-a)C
B LR 1,2

Statement A cannot be resolved because the value of the duplication factor is
dependent on the location of B, which is, in turn, dependent upon the length of
A.

Literals may contain symbolic expressions in modifiers, but any ordinary
symbols used must have been previously defined.

Self-Defining Terms
A self-defining term allows you to specify a value explicitly. With self-defining
terms, you can specify decimal, binary, hexadecimal, or character data. If the
DBCS assembler option is invoked, you can specify a graphic self-defining term
that contains pure double-byle data, or include double-byte data in character
self-defining terms. These lerms have absolute values and can be used as
absolute terms in expressions to represent bit configurations, absolute
addresses, displacements, length or other modifiers, or duplication factors.

Using Self-Defining Terms: Self-defining terms represent machine language
binary values and are absolute terms; their values do not change upon program
relocation. Some examples of self-defining terms and the binary values they
represent are given below:

Sell-Defining Term Decimal Value Binary Value

15 15 1111
241 241 11116001
B'1111" 15 1111
‘B'llllGElGl‘ 241 111100861
B'l06o06601" 257 100000001
X'F* 15 1111
X'F1! 241 11110081
x'io1! 257 100000001
c'l’ 241 11110001
c'a 193 11000001
C'AB' 49,607 1100000111000016
G'<.A>' 17,089 100001011000001

The assembler carries the values represented by self-defining terms 1o 4 byles
or 32 bits; the high-order bit is the sign bit. (A "1’ in the sign bit indicates a
negative value; a ‘0’ indicates a positive value.)

Chapter 2. Coding and Structure 29

The use of a self-defining term is distinct from the use of data constants or
literals. When a self-defining term is used in a machine instruction statement,
its value is assembled into the instruction. When a data constant is referred to
or a literal is specified in the operand of an instruction, its address is assem-
bled into the instruction. Self-defining terms are always right-justified; trun-
cation or padding with zeros, if necessary, occurs on the left.

Decimal Self-Defining Term: A decimal self-defining term is simply an unsigned
decimal number written as a sequence of decimal digits. High-order zeros may
be used (for example, 007). Limitations on the value of the term depend on its
use. For example, a decimal term that designates a general register should
have a value between 0 and 15; one that represents an address should not
exceed the size of storage. In any case, a decimal term may not consist of
more than 10 digits, or exceed 2 147 483 647 (2°!-1). A decimal self-defining
term is assembled as its binary equivalent. Some examples of decimal self-
defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term: A hexadecimal self-defining term consists of 1
to 8 hexadecimal digits enclosed in single quotation marks and preceded by the
letter X; for example, X'C49’.

Each hexadecimal digit is assembled as its 4-bit binary equivalent. Thus, a
hexadecimal term used to represent an 8-bit mask would consist of 2
hexadecimal digits. The maximum value of a hexadecimal term is X’"FFFFFFFF’,
this allows a range of values from -2 147 483 648 through 2 147 483 647.

The hexadecimal digits and their bit patterns are as follows:

O - 0000 4 -0100 8 -10006 C - 1100
1 -0001 5 -0101 9 -1001 D - 1101
2 - 0010 6 -0110 A -10106 E - 1110
3 - 0011 7 -0111 B - 1011 F - 1111

Note: When used as an absolute term in an expression, a hexadecimal self-
defining term has a negative value if the high-order bit is 1.

Binary Self-Defining Term: A binary self-defining term is written as an unsigned
sequence of 1s and Os enclosed in single quotation marks and preceded by the
letter B; for example, B°10001101°. This term would appear in storage as
shown, occupying 1 byte. A binary term may have up to 32 bits represented.
This allows a range of values from -2 147 483 648 through 2 147 483 647.

Note: When used as an absolute term in an expression, a binary seif-defining
term has a negative value if the high-order bit is 1.

Binary representation is used primarily in designating bit patterns of masks or
in logical operations.

The following illustrates a binary term used as a mask in a Test Under Mask
(TM) instruction. The contents of GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the binary term.

ALPHA ™ GAMMA,B'10101101"

.30 Assembler H Version 2 Language Reference

(\

Character Sell-Defining Term: A character self-defining term consists of 1 to 4
characters enclosed in single quotation marks, and must be preceded by the
letter C. All letters, decimal digits, and special characters may be used in a
character term. In addition, any of the remainder of the 256 punch combina-
tions may be designated in a character seli-defining term. Examples of char-
acter self-defining terms are:

'/

c' * (blank)

c'aBC'

c'13!

Because of the use of single quotation marks in the assembier language and
ampersands in the macro language as syntactic characters, the [ollowing rule
must be observed when using these characters in a character term.

For each single quolation mark or ampersand desired in a character self-
defining term, two single quotation marks or ampersands must be written. For
example, the character value A'# would be written as "A’"#’, while a single quo-
tation mark followed by a blank and another single guotation mark would be
written as """ """,

Each character in the character sequence is assembled as ils 8-bil code equiv-
alent. The two single quolation marks or ampersands that must be used to rep-
resent a single gquotation mark or ampersand within the character sequence are
assembled as a single quolation mark or ampersand. Double-byte data may
appear in a character self-defining term, if the assembler is invoked with the
DBCS option. The assembled value includes the SO and Sl delimiters. Hence
a character self-defining term containing double-byte data is limited to one
double-byte character delimited by SO and SI. For example, C"< . A>",

Since the SO and Sl are stored, the null double-byte character string, C'< >, is
also a valid character self-defining term.

Graphic Self-Defining Term: If the assembler is invoked with the DBCS oplion, a
graphic self-defining term can be specified. A graphic self-defining term con-
sists of 110 2 double-byle characters delimited by SO and Sl, enclosed in single
quotation marks and preceded by the letter G. Any valid double-byte charac-
ters may be used. Examples of graphic self-defining terms are:

G'<.A>'

G'<.A.B>'

G'<Da>'

G'<.A><.B>'

The SO and Sl are not represented in the assembled value of the self-defining
term, hence the assembled value is pure double-byte data. A redundant SI/S0O
pair may be present belween iwo double-byte characters. However, if SO and
S| without an intervening double-byte character are used, error [EV148
“SELF-DEFINING TERM LACKS ENDING QUOTE OR HAS BAD CHARACTER" will
be issued.

Chapter 2. Ceding and Structure 31

Location Counter Reference
The assembler runs a location counter to assign storage addresses to your
program statements. It is the assembler’s equivalent of the instruction counter
in the computer. You can refer to the current value of the location counter at
any place in a source module by specifying an asterisk as a term in an
operand.

As the instructions and constants of a source module are being assembled, the
location counter has a value that indicates a location in storage. The assem-
bler increments the location counter according to the lollowing:

1. After an instruction or constant has been assembled, the location counter
indicates the next available location.

2. Before assembling the current instruction or constant, the assembler
checks the boundary alignmenl required for it and adjusts the location
counter, if necessary, to indicate the proper boundary.

3. While the instruction or constant is being assembled, the location counter
value does not change. It indicates the location of the current data after
boundary alignment and is the value assigned to the symbol, if present, in
the name field of the statement.

4 After assembling the instruction or constant, the assembler increments the
location counter by the length of the assembled data to indicate the next
available location.

These rules are illustrated below;

Location in Source
Hexadecimal Statements
oppoea DONE DC CL3'ABC'
popoe;? BEFORE EQU *
000008 OURING pc F'z200'
0eoeeoc AFTER EQU *
009019 NEXT DS D

You can specify multiple location counters for each control section in a source
module; for more details about the location counter setting in control sections,
see “Location Counter Selling” on page 51.

The assembler carries an internal location counter value as a 4-byte {32-bit)
value, bul it only uses the low-order 3 bytes, which are printed in the program
listings. However, if you specily addresses greater than 2¢*-1, you cause over-
flow into the high-order byte, and the assembler issues the error message,
“LOCATION COUNTER OVERFLOW.”

You can control the selting of the location counter in a particular control section
by using the START or ORG instruction, described in "Chapler 3. Addressing,
Program Sectioning, and Linking™ and “"Chapier 5. Assembler Instruction
Statements,” respectively. The counter affecled by either of these assembler
instructions is the counter for the contral section in which they appear.

You can refer to the current value of the location counter at any place in a

program by using an asterisk as a term in an operand. The asterisk can be
specified as a relocatable term according to the following rules:

32 Assembler K Version 2 Language Reference

('\

1. The asterisk can be specified only in the operands of:

* Machine instructions
*« DC and DS instructions
* EQU, ORG, and USING instructions

2. It can also be specified in literal constants. See "Literals” on page 36. For
example:

THERE L 3,=A(*)

The value of the location counter reference (*) is the current value of the
location counter of the control section in which the asterisk (*) is specified as a
term. The asterisk has the same value as the address of the first byte of the
instruction in which it appears. For example:

HERE B *+8

where the address value of * is the address of HERE.

For the value of the asterisk in address constants with duplication factors, see
“Address Constants—A and Y" on page 112.

Symbol Length Attribute Reference
The length attribute of a symbol may be used as a term. Reference to the attri-

bute is made by coding L’ followed by the symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term. When you specify
a symbol length attribute reference, you obtain the length of the instruction or
data referred to by a symbol. You can use this reference as a term in instruc-

tion operands to:

* Specify unknown storage area lengths.
* Cause the assembler to compute length specifications for you.
¢ Build expressions to be evaluated by the assembler.

The symbol length attribute reference must be specified according to the fol-
lowing rules:

1. The format must be L immediately followed by a valid symbol or the
location counter reference (*).

2. The symbol must be defined in the same source module in which the
symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in the operand of any
instruction that requires an absolute term. However, it cannot be used in
the form L’* in any instruction or expression that requires a previously
defined symbol.

The value of the length attribute is normally the length in bytes of the storage
area required by an instruction, constant, or field represented by a symbol. The
assembler stores the value of the length attribute in the symbol table along with
the address value assigned to the symbol.

When the assembler encounters a symbol length attribute reference, it substi-
tutes the value of the attribute from the symbol table entry for the symbol speci-

fied.

Chapter 2. Coding and Structure 33

The assembler assigns the length attribute values to symbols in the name field
ol instructions as follows:

» For machine instructions (see (1) in Figure 13), it assigns either 2, 4, or 6,
depending on the format of the instruction. -

= For the DC and DS instructicns (see (2) in Figure 13), it assigns either the
implicit or explicitly specified length. The length attribute is not affected by
a duplication factor.

= For the EQU instruction, it assigns the length attribute value of the leftmost
or only term (see (3) In Figure 13) of the first expression in the first
operand, unless a specific length attribule is supplied in a second operand.

Note the length attribute values of the following terms in an EQU instruction:

» Self-defining terms (see (4) in Figure 13)
= Location counter reference (see (5) in Figure 13)
= L’ (see (6) in Figure 13)

The length attribute of the location counter reference (L""—see (7) in Figure 13)
is equal to the length aitribute of the instruction in which the L'* appears.

Figure 13 illustrates these rules.

Value of

Symbal Length Attribute
Source Module At Assembly Time
HACHA HVC 1O, FROM L' HACHA 6
HACHE L 3,ADCON L HACHS 4
MACHC LR 3,4 L' HACHC 2

-

0 0S €180 L'T0 go?
FROM 0S (L2490 L'FROH 2402
ADCON DC A(OTHER) L *ADCON 42
CHAR DC O YUKON' L' CHAR 52
ouPL 0C 3F'200° L' DUPL 42
RELOCL QU TO? L'RELOCL 80
RELOCZ £QU TO+B0? L RELOCZ 80
ABSOLL £QU FROM-TO® L'ABSOLL 240
ABSOL2 EQU ABSOLI® L'ABSOL2 240
5071 EQU 1022 L's0TL 14
5012 EQU X'FF’+A-B? L'sp12 1+
SDT3 EQU C'YUK® L’5DT3 14
ASTERISK £QU *+10? L'ASTERLSK 1S
LOCTREF EQU L'=} L'LOCTREF 18
LENGTHI DE A(L'*) L* 47

L'LENGTHI 47
LENGTH2 HNC TO(L'*),FROH L+ 67
LENGTHI INC TO(L*T0-20),fROM L’10 80
Figure 13. Assignment af Length Attribute Values ta Symbols in Name Fields
The following example illustrales use of the L'symbol in moving a character
constant into either the high-order or low-order end of a siorage field. For ease
in following the example, the length attributes of A1 and B2 are menticned.
However, keep in mind that the L'symbol term makes coding such as this pos- s
sible in situations where lengths are unknown. -

34 Assembler H Version 2 Language Reference

(\

Al DS CL8

B2 D¢ CL2'AB"
RIORD MVC Al1(L'B2),B2
LOORD MVC Al+L‘A1-L'82(L'B2),B2

A1 names a storage field 8 bytes in length and is assigned a length attribute of
8. B2 names a character constant 2 bytes in length and is assigned a length
attribute of 2. The statement named HIORD moves the contents of B2 into the
leftmost 2 bytes of A1. The term L'B2 in parentheses provides the length spec-
ification required by the instruction.

The statement named LOORD moves the contents of B2 into the righlmost 2
bytes of A1. The combination of terms A1+ L"A1-L'B2 results in the addition of
the length of A1 1o the beginning address of A1, and the subtraction of the
length of B2 from this value. The result is the address of the seventh byte in
field A1. The constant represented by B2 is moved into A1 starling at this
address. L'B2 in parentheses provides length specification as in HIORD.

Note: The length attribute of the location counter reference (L™*) is equal to the
length attribute of the instruction in which the L' appears.

Other Attribute References
There are other attributes that describe the characteristics and struclure of the
data you define in a program; for example, the kind of constant you specily or
the number of characlers you need to represent a value. These other attribules
are the lype (T"), length (L’), scaling (5"}, infeger (I"), count (K’), number {N),
and defined (D") attributes.

Note: You can refer lo these attributes only in conditional assembly instructions
and expressions; for full details, see "Data Attributes™ on page 215.

Terms in Parentheses
Terms in parentheses are reduced to a single value; thus, the terms in paren-
theses, in effect, become a single term.

Arithmetically combined terms, enclesed in parentheses, may be used in com-
bination with terms oulside the parentheses, as follows:

14+BETA- (GAMMA-LAMBOA)

When the assembler program enccounters terms in parentheses in combination
with other terms, it first reduces the combination of terms inside the paren-
theses 10 a single value which may be absolute or relecatable, depending on
the combination of terms. This value 1s then used in reducing the rest of the
combinatlion to another single value.

Terms in parentheses may be included within a set of terms in parentheses:
A+B-(C+D- (E+F)+10)

The innermost set of terms in parentheses is evaluated first. Six levels of
parentheses are allowed; a level of parentheses is a left parenthesis and its
corresponding right parenthesis. Parentheses which occur as part of an
operand formal do not count in this limit. An arithmetic combination of terms is
evaluated as described in the nexi seclion.

Chapter 2. Coding and Structure 35

Literals
You can use literals as operands in order 1o introduce data into your program.
However, you cannot use a literal as a term in an expression, The literal
represenls dala rather than a reference 1o data. This is convenient, because

= The data you enter as numbers for computation, addresses, or messages to
be printed is visible in the insiruclion in which the literal appears.

* You avoid defining constants elsewhere in your source module and then
using their symbolic names in machine instruction operands.

The assembler assembles the data specified in a literal into a “literal pool”
(described befow) [t then assembles the address of this literal data in the pool
into the object code of the instruction that contains the literal specification.
Thus, the assembler saves you a programming step by storing your literal data
for you. The assembler also organizes literal pools efficiently, so that the literal
data Is aligned on the proper boundary alignment and occupies the minimum
amount of space.

Literals, Constants, and Self-Defining Terms
Literals, conslants, and self-defining terms giffer in three important ways:

1. Where you can specify them in machine instructions, that is, whether they
represent data or an address of data

2. Whether they have relocalable or absolule values

3. What is assembled into the object code of the machine instruction in which
they appear

1. Aliteral with a relocalable address:

L 3,=F'33" See note 1
L 3,F33 Same effect as L 3,=F'33'. See also note 2

F33 b Fray
2. A literal with a self-defining term and a symbol with an absolute value
HVC FLAG,=X'00" See note 1

MVl FLAG,X'00' Same effect as MVC FLAG,=X*0D'. See also note 3
HV1 FLAG,ZERD Inmediate data. See note 4
FLAG Ds X

ZERD [Qu x'oo*

3. A symbol having an absolute address value with a self-defining term

LA 4,LOCORE Absolute address. See note 4
LA 4,1000 Same effect as LA 4,LOCORE. See also note 3

LOCORE €Qu 1000

Figure 14. Differences between Literals, Constants, and Self-Defining Terms

Notes to Figure 14:

1. A literal represenis data.
2. A constant is represented by its relocatable address.

36 Assembler H Version 2 Language Reference

3. A self-defining term represents data and has an absolute value.
4. A symbol with an absolute value does not represent the address of a con-
stant, but represents either immediate data or an absolute address.

Compare:

A literal with a relocatable address

E g';g;BB']same effect
2
F33 DC F'33?

A Literal with a self-defining term
and a symbol with an absolute value

MVC FLAG,=X'UO'1
MVI FLAG,¥*80%same effect
MVI FLAG, ZEROEN

FLAG DS X
ZERO EQU X'00°

A symbol having an absolute address value
with a self-defining term

LA 4,LOCORE same effect
LA 4,1008

LOCORE EQU 1000

Figure 15. Differences between Lilerals, Constants, and Self-Defining Terms

Notes to Figure 15:

1. The address of the literal, rather than the literal data itself, is assembled
into the object code.

2. The address of a constant is assembled into the object code.

3. When a symbol with an absolute value represents immediate data, it is the
absolule value that is assembled into the object code.

4. The absolute value of a self-defining term is assembled into the objecl
code.

Chapter 2. Coding and Structure 37

General Rules for Literal Usage
A literal is not a term and can be specified only as a complete operand in a
machine instruction. In instructions with the RX format, they must not be speci-
fied in operands in which an index regisler is also specified.

Because literals provide “read-only” data, they must not be used:

= In operands that represent the receiving field of an instruction that modifies
slorage
* In any shift or /O instruction

The assembler requires a description of the type of literal being specified as
well as the literal itself. This descriptive information assists the assemblerin
assembling the literal correctly. The descriplive portion of the literal must indi-
cale the formal of the constant. It can also specify the length of the constant.

A literal must be coded as indicated here:
=10XL5'F3°
where the subfields are:

Duplication factor 10

Type X
Modifiers L5
Nominal value "F3!

The method of describing and specifying a constant as a literal is nearly iden-
tical 1o the method of specifying it in the operand of a CC assembler insiruction.
The major difference is that the literal must start with an equal sign (=), which
indicales to the assembler that a literal follows (Refer to the discussion of the
DC assembler instruction operand format in "Chapter 5. Assembler Instruction
Statements” for the means of specifying a literal.)

The instruction below shows one use of a literal.
GAMMA L 10,=F'274"

The statement GAMMA is a load instruction using a literal as the second
operand. When assembled, the second operand of the instruction will be the
address at which the value F'274° 1s slored.

In general, literals can be used wherever a slorage address is permitted as an
operand. They cannot, however, be used in any assembler instruction that
requires the use of a previously defined symbol. Literals are considered relo-
catable because the address of the hiteral, rather than the li*~ral itself, will be
assembled in the statement that employs a literal. The assembler generates
the literals, collects them, and places them in a specific area of storage, as
explained under “Literal Pool." A literal is not to be confused with the imme-
diate data in an Sl instruction. Immediate data is assembled into the instruc-
tion.

Literal Pool
The literals processed by the assembler are collected and placed in a special
area called the literal pool. The location of the literal, rather than the literal
itself, is assembled in the statement employing a literal. The positioning of the
literal pool can be controlled by you, if desired. Unless otherwise specified, the
literal pool is placed at the end of the first control section.

38 Assembler H Version 2 Language Reference

(\

Expressions

You can also specily that multiple literal pools be created. However, the
sequence in which literals are ordered within the pool is controlled by the
assembler. Further information on positioning the literal pool(s) is in
“LTORG—Begin Literal Pool” on page 140.

This seclion discusses the expressions used in coding operand entries for
source slatements. You can use an expressions to specify:

* An address

* An explicit length

+ A modifier

+ A duplication factor
* A complete operand

Expressions have absclule and relocatable values. Whether an expression is
absolute or relocatable depends on the value of the terms it contains. You can
use an absolute or relocatable expression in a machine instruction or any
assembler instruction other than a conditional assembly instruction. The
assembler evaluates relocatable and absolute expressions al assembly lime.

Note: There are three lypes of expression that you can use only in conditional
assembly instructions: arithmetic, logical, and characler expressions. They are
evaluated at preassembly time. Figure 17 on page 40 defines both absolute
and relocatable expressions.

An expression is composed of a single term or an arithmetic combination of
terms. The assembler reduces multiterm expressions to single values. Thus,
you do not have to compute these values yoursell. The following are examples
of valid expressions:

* BETA*10
AREAL+X' 20" B'101"

*+32 C'ABC’

H-25 29

FTELD+332 L*'FTELD
FIELD LAHBDA+GAHHA
(EXIT-ENTRY+1)+GO TEN/TWO
ALPHA-BETA/ (10+AREA*L FLELDY-100 =F1234"

Figure 16. Examples of Valid Expressions

Rules for Coding Expressions

The rules for coding an absoclute or relocatable expression are:

1. Bolh unary (operating on cne value) and binary {operating on two values)
operators are allowed in expressions.

2. An expression can have one or more unary operators preceding any term
in the expression or at the beginning of the expression.

3. An expression must not begin with a binary operator, nor can it contain two
binary operators in succession.

4, An expression must not contain two terms in succession.

Chapter 2. Coding and Structure 39

5. No blanks are allowed between an operator ang a term, nor between two
successive operators.

6. An expression can contain up 1o 19 unary and binary operators, and up 10 6
levels of parentheses. Noie that parentheses thal are part of an cperand
specificalion do not count towarg this limit.

7. A single relocatable term is nol allowed in a multiply or divide operation.
Note that paired relocatable terms have absolule values and can be multi-
plied and divided if they are enclosed in parentheses,

8. A literal is not a valid term and is therefore not allowed in an expression.

Absolute
Expression

754

Rel. Exp. Abs. Exp Abs. Exp Abs. Exp Abs.Exp
- of or + or - of % or / or| (Abs.Exp) |or| + Abs. Exp|or [~ Abs. Exp
Rel. Exp. Abs.Exp Abs. Exp | Abs. Exp Abs.Exp "
Pairing ol
Relocatable
Valoes Salf- Symbol
or| Defining |or|Length
Term Attribute
Relocatable Ogperators Allowed
Expression
R Unary: + Posrtive
— Negative
Binary: « Addition
— Subtraction
Re).Exp Rel, Exp] ¥ Muoltiplication
+ or - or| (Rel. Exp) |or| + Rel. Exp |or|s: Rel. Exp / Division
Abs, Exp Abs. Exp % . "
Abs. Exp = Absolute Expression
Rel. Exp = Relocatable Expression
Location Unary operators
Relocatable |°" Counter
Value Reference

Figure 17. Definitions of Absolute and Relocatable Expressions

40 Assembler K Version 2 Language Reference

(\,

Evaluation of Expressions
A single-term expression, like 29 or BETA, takes on the value of the term
involved. A multiterm expression, like 25"10+ A/B or BETA +10, is reduced to a
single value, as iollows:

1. It evaluates each term.
2. It performs arithmetic operations from lefl to right. However,

a. It performs unary operations before binary operations.
b. It performs binary operations of multiplication and division before the
binary operations of addition and subtraction.

3. In division, it gives an inleger result; any fracticnal portion is dropped. Divi-
sion by zero gives 0.

4. In parenthesized expressions, the assembler evaluales the innermost
expressions first and then considers them as terms in the next outer level
of expressions. It continues this process until the outermost expression is
evaluated.

5. A term or expression’s intermediate value and computed result must lie in
the range of -2°! through +2°!-1,

Note: Il is assumed that the assembler evaluates paired relocatlable terms at
each level of expression nesting.

Absolute and Relocatable Expressions
An expression is absolufe if its value is unaffected by program relocation. An
expression is refocatable if its value depends upon program relocation. The
two types of expressions, absolute and relocatable, take on these characler-
istics from the term or terms composing them. A description of the factors that
determine whether an expression is absolute or relocatable follows.

Absolute Expression: The assembler reduces an absolute expression to a
single absolute value if the expression:

1. Comprises a symbol with an absolute value, a self-defining term, or a
symbol length attribute reference, or any arithmelic combination of absolute
terms.

2. Contains relocatable terms alone or in combination with absolute terms,
and if all these relocatable terms are paired.

Paired Relocatable Terms: An expression can be absolute even though it con-
tains relocatable terms, provided that all the relocatable terms are paired. The
pairing of relocatable terms cancels the effect of relocation.

The assembler reduces paired terms to single absolute terms in the interme-
diate stages of evaluation. The assembler considers relocatable terms as
paired under the following conditions:

* The paired terms must be defined in the same control section of a source
module (that is, have the same relocatability attribute).

* The paired terms must have opposite signs after all unary operators are
resolved. In an expression, the paired terms do not have to be contiguous
(that is, other terms can come between the paired terms).

* The value represented by the paired terms is absolute.

Chapter 2. Coding and Structure 41

The following examples illustrate absolute expressions. A is an absolute lerm;
X and Y are relocatable terms with the same relocatability.

A-Y+X

A

A*A

X-Y+A

i_Yl
U A reference to the location counter must be paired with another relocatable
term from the same control section; that is, with the same relocatability.

Relocatable Expression: A relocalable expression is one whose value changes
by n if the program in which il appears is relocated n bytes away from its ori-
ginally assigned area of slorage.

A relocatable expression can be a single relocalable term. The assembler
reduces a relocatable expression to a single relocatable value if the
expression:

1. Is composed of a single relocatable term, or

2. Contains relocatable terms, alone or in combination with absolute lerms,
and

a. All the relocatable terms but one are paired. Note lhatl the unpaired
lerm gives the expression a relocatable value; the paired relocatable
lerms and olher absolute terms constitute incremenis or decrements to
the value of the vnpaired term.

b. The relocalability attribute of the whole expression is thal of the
vnpaired term.

c. The sign preceding the unpaired rejocatable term must be positive,
afler all unary operalors have been resolved.

The following examples illustrale relocatlable expressions. A is an absolute
term, W and X are relocatable terms wilh the same relocatabilily attribute, and
Y is a relocatable term with a different relocatabilily aliribule,

Y-32%A W-X4% =F*1234" (literal)
% (reference to W-X+W \
Jocation counter) W-XeY ASAel-WaY

Complex Relocatable Expressions: Complex relocatable expressions, unlike
relocatable expressions, can contain:

* Two or more unpaired relocatable terms
= An unpaired relocatable lerm preceded by a negative sign

Complex relocatable expressions can be used only in A-type ang Y-iype
address constants to generate and address consiani value (For more delail,
see "A-Type ang Y-Type Address Constanis” in “Chapter 5. Assembfer Instruc-
tion Statements.”) V-type and S-type conslanis may not contain complex relo-
calable expressions.

42 Assembler H Version 2 Language Reference

Chapter 3. Addressing, Program Sectioning, and Linking

Addressing

This part of the chapter describes the technigues and instructions that allow
yau to use symbolic addresses when referring to data. You can address dala
that is defined within the same source module, or dala that is defined in
another source module. Symbolic addresses are more meaningful and easier
to use than the corresponding object code addresses required for machine
instructions. Also, the assembler can convert the symbolic addresses you
specify into their object code form.

Addressing within Source Modules: Establishing Addressability
By establishing the addressability of a control section, you can refer to the sym-
bolic addresses defined in it in the operands of machine instructions. This is
much easier than coding the addresses in the base-displacement form required
by the System/370. The symbolic addresses you code in the instruction oper-
ands are called implicit addresses, and the addresses in the base-displacement
form are called explicit addresses

The assembler will convert these implicil addresses for you into the explicit
addresses required for the assembled object code of the machine instruction.
However, you must supply the assembler with:

1. A base address from which it can compute displacements to the addresses
within a control section

2. A base register to hold this base address

How to Establish Addressability
To establish the addressabilily of a coding section, you must, when coding:

* Specily a base address from which the assembler can compute displace-
ments,

= Assign a base register to contain this base address.

* Write the instruction that loads the base register with the base address.

During assembly, the implicil addresses you code are converted into their
explicit base-displacement form; then, they are assembled into the object code
of the machine instructions in which they have been coded.

During execulion, the base address is loaded into the base register, and should
remain there throughout the execution of your program.

Base Register Instructions
The USING and DROP assembler instructions enable you 10 use expressions
representing implicil addresses as operands of machine instruction statements,
leaving the assignment of base registers and the calculation of displacements
lo the assembler.

Chapter 3. Addressing, Program Sectioning, and Linking 43

In order 10 use symbols in the operand field of machine instruclion stalements,
you must {1) indicate 1o the assembler, by means of a USING staterment, that
one or more general regislers are avallable for use as base registers, (2)
specify, by means of the USING stalerment, what value each base regisier con-
tains, and (3) load each base regisler with 1he value you have specified for it.

Having the assembler determine base registers and displacements relieves you
of the need 1o separate each address inlo a displacement value and a base
address value. This leature of the assembler will eliminate a likely source of
programming errors, thus reducing the time required 1o check out prograrns
You use the USING and DROP instructions described in this chapter 1o 1ake
advantage of this feature. The principal discussion of this feature follows the
description of bolh inslructions.

USING—Use Base Address Register
The USING instruction allows you 1o specify a base address and assign one or
more base registers. If you also load the base register with the base address,
you have established addressability in a control section.

To use the USING instruction correctly, you should know:

1. Which locations in a control section are made addressable by the USING
instruclion

2. Where 1in a source module you can use these established addresses as
implicit addresses in instruction operands

Format of USING:

Name Operation Operand

A sequence USING BASE ,BASFREGL[,BASFREGZ]. ..
syimbol or blank

The operand. BASE, specifies a base address, which can be a relocatable or an
absolute expression. The value of the expression must lie between -2%* and
2241,

The remaining operands specify from 110 16 base registers. The operands
must be absolute expressions whose values lie in the range 0 through 15.

The assembler assumes thal the first base register (BASEREG1) conlains the
base address BASE at execution lime. If presenl, the subsequent cperands,
BASEREG2, BASEREG3, ..., represent registers Lhal the assembler assumes will
contain the address values, BASE + 4096, BASE +8192,..., respeclively.

For example:
USING BASE,S,10,11

has the logical equivalent of:

USING BASE,S
USING BASE+4096,10
USING BASE+B192,11

44 Assembler K Version 2 Language Reference

(\

In another example, the following statement

USING *,12,13

tells the assembler it may assume that the current value of the location counter
will be in general register 12 at object time. and that the current value of the
location counter, incremented by 4096, will be in general register 13 at object
time.

If you change the value in a base register currently being used, and wish the
assembler to compute displacement from this value, you must tell the assem-
bler the new value by means of another USING statement. In the following
sequence, the assembler first assumes that the value of ALPHA is in regisler 9.
The second statement then causes the assembler to assume that ALPHA + 1000
is the value in register 9.

USTNG ALPHA,Q

USING ALPHA+1000,9

If you must refer to the first 4096 bytes of storage, general register 0 can be
used as a base register, subject to the following conditions:

= The value of operand BASE must be either absolute or relocatable zero or
simply relocatable.

* Register 0 must be specified as BASEREG1.

The assembler assumes that register 0 contains zero. Therefore, regardless of
the value of operand BASE, it calculates displacements as if operand BASE
were absolute or relocatable zero. The assembler also assumes that subse-
quent registers specified in the same USING slatement contain 4096, 81982, elc.

Note: If register 0 is used as a base register, the program is not relocatable,
despite the fact that operand BASE may be relocatable. The program can be
made relocatable by:

= Replacing register 0 in the USING statement
* Loading the new register with a relocatable value
»= Reassembling the program

Range of a USING Instruction: The range of a USING instruction (called the
USING range) is the 4096 bytes beginning at the base address specified in the
USING instruction. Addresses that lie within the USING range can be converted
from their implicil to their explicit form; those outside the USING range cannot
be converted.

The USING range does not depend upon the position of the USING instruclion in
the source module; rather, it depends upon the location of the base address
specified in the USING instruction.

Note: The USING range is the range of addresses in a conlrol section thal is
associated with the base regisier specified in the USING instruction. If the
USING instruction assigns more than one base register, the composile USING
range is the sum of the USING ranges that would apply if the base registers
were specified in separate USING instructions.

Chapter 3. Addressing, Program Sectioning, and Linking 45

Domain of a USING Instruction: The domain of a USING insiruction {(called the
USING domain) begins where the USING instruction appears in a source
module and continues to the end of the scurce module. (Exceptions are dis-
cussed laler, under "Noles about the USING Domain ") The assembler converts
implicil address references into their explicit form-

* |f the address reference appears in the domain of a USING instruction, and

= If the addresses referred 1o lie within the range of the same USING instruc-
tion.

The assembler does not convert address references that are outside the USING
domain. The USING domain depends on the position of the USING instruction
in ihe source module afler conditional assembly, if any, has-been performed.

How to Use the USING Instruction: You should specily your USING instruction
so that:

* All the addresses in each control section lie within a USING range.

= Ali the references for these addresses lie within the corresponding USING
domain,

You should, therefore, place all USING instructions at the beginning of the
source module and specify a base address in each USING instruction thal lies
al the beginning of each conlrol section.

For Executable Contro! Sections: To eslablish the addressability of an execul-
able control section defined by a START or CSECT instruction, you specify a
base address and assign a base register in the USING instruction. At execution
time, the base register is loaded with the correct base address.

If a control section is longer than 4086 bytes, you must assign more than cne
base register. This allows you to establish the addressability of the entire
control section with one USING instruction.

For Reference Conltrol Sections: A dummy section is a reference control
seclion defined by the DSECT instructions. To establish the addressability of a
dummy section, you should specily the address of the first byle of the dummy
seclion as the base address sc that all its addresses lie within the pertinent
USING range. The address you load into the base register must be the address
of the slorage area being formatted by the durmmy section.

Note: The assembler assumes that you are referring to the symbolic addresses
of the dummy section, and it computes displacements accordingly. However, at
execulion time, the assembled addresses refer to the location of real data in
the storage area.

Notes about the USING Domain: The domain of a USING instruction continues
until the end of a source module, excepl when;

= A subseguent DROP instruclion speciflies the same base register or regls-
ters assigned by the preceding USING instruclion.

= A subsequent USING instruction specifies the same regisler or registers
assigned by the preceding USING instruction.

46 Assembler H Version 2 Language Reference

(’ ™

Notes about the USING Range: Two USING ranges coincide when the same
base address is specified in two different USING instructions, even though the
base registers used are different. When two USING ranges coincide, the
assembler uses the higher-numbered register for assembling the addresses
within the common USING range. In effect, the first USING domain is termi-
nated after the second USING instruction.

Two USING ranges overlap when the base address of one USING instruction
lies within the range of another USING instruction. When two ranges overlap,
the assembler computes displacements from the base address that gives the
smallest displacement; it uses the corresponding base register when it assem-
bles the addresses within the range overlap. This applies only to implicit
addresses that appear after the second USING instruction.

Base Registers for Absolute Addresses: Absolute addresses used in a source
module must also be made addressable. Absolute addresses require a base
register other than the base register assigned 1o relocatable addresses (as
described above).

However, the assembler does not need a USING instruction to convert absolute
implicit addresses in the range O through 4095 to their explicit form. The
assembler uses register 0 as a base register. Displacements are computed
from the base address 0, because the assembler assumes that a base or index
of 0 implies that a zero quantity is to be used in forming the address, regard-
less of the contents of register 0. The USING domain for this automatic base
register assignment is the whole of a source module.

For absolute implicit addresses greater than 4095, a USING instruction must be
specified according to the following:

» With a base address representing an absolute expression

» With a base register that has not been assigned by a USING instruction in

which a relocatable base address is specified

This base register must be loaded with the base address specified.

DROP—Drop Base Register

You can use the DROP instruction 1o indicate to the assembler that one or more
registers are no longer available as base registers. This allows you:

* To free base registers for other programming purposes

* To ensure that the assembler uses the base register you wish in a partic-
ular coding situation; for example, when two USING ranges overlap or coin-
cide

Format of DROP:

Name Operation Operand

A sequence DROP BASEREG1[,BASEREG2]. ..
synmbol or or blank

blank

Chapter 3. Addressing, Program Sectioning, and Linking 47

Up to 16 operands can be specified. They must be absolute expressions whose

values represent the general registers 0 through 15. The expressions in the

operand indicate general registers previously named in a USING statement that

are now unavailable for base addressing. A DROP instruction with a blank —
operand field causes all currently active base registers assigned by USING

instructions to be droppec.

After a DROP instruction, the assembler will not use the registers specified in a
DROP instruction as base registers. A register made unavailable as a base
register by a DROP instruction can be reassigned as a base register by a sub-
sequent USING instruction.

The following statement, for example, prevents the assembler from using regis-
ters 7 and 11:

DROP 7,11

A DROP instruction is nof needed:

= Il the base address is being changed by a new USING instruction, and the
same base register is assigned; however, the new base address must be
loaded info the base register.

= At the end of a source module.

Relative Addressing
Relative addressing is the technique of addressing instructions and dala areas
by designating their location in relation to the location counter or to some sym-
bolic location. This type of addressing is always in bytes—never in bits, words,
or instructions. Thus, the expression "+ 4 specifies an address that is 4 byles p—
greater than the current value of the location counter. In the sequence of
instructions in the following example, the location of the CR machine instruction
can be expressed in two ways, ALPHA +2 or BETA-4, because all the mne-
monics in the example are for 2-byte instructions in the RR format.

ALPHA LR 3,4
CR 4,6
BCR 1,14
BETA AR 2,3

Program Sectioning and Linking

This part of the chapter explains how you can subdivide a large praogram into
smaller parls that are easier 1o understand and maintain. It also explains how
you can divide these smaller parts into convenien! sections; for example, one
section to contain your executable instructions, and another section to contain
your data constants and areas,

You should consider two different subdivisions when writing an assembler lan-
guage program:
* The source module

* The control section

You can divide a program into two or more source modules. Each source
module is assembled into a separate object module. The object modules can v
then be combined into load madules 1o form an executable program.

48 Assembler H Version 2 Language Reference

(\

Source Module

You can also divide a source module inlo two or more control sections. Each
control seclion is assembled as part of an object module. By wriling the proper
link-edil control statements, you can selecl a complele object module or any
individual control section of the object module 1o be link-edited and later loaded
as an executable program.

Size of Program Parts: If a source module becomes so large that its logic is not
easily understood, divide il into smaller modules.

Unless you have special programming reasons, you should write each control
section so that the resulting object code is not larger than 4096 bytes. This is
the largest number of bytes that can be covered by one base register.

Communication between Program Parts: You must be able 1o communicate
between the parts of your program; thal is, be able to refer to data in a different
part or be able to branch to another part.

To communicate between two or more source modules, you must symbolically
link them together.

To communicate between two or more control sections within a source module,
you must establish the addressability of each control properly from one section
lo anolher regardless of the relative section.

A source module is composed of source statemenls in the assembler language.
You can include these stalements in the source module in lwo ways:

1. You write them on a coding form and then enter them as input through a
terminal or, using punched cards, through a card reader.

2. You specify one or more COPY instructions among the source statements
being entered. When the assembler encounters a COPY instruchion, it
replaces the COPY instruction with a predelermined sel of source slale-
menls from a library. These stalemenls then become a part of the source
module. See "COPY—Copy Predefined Source Coding™” on page 144 for
more details.

Beginning of a Source Module

The first statement of a source module can be any assembler language state-
menl, except MEXIT and MEND, described in this manual, You can initiate the
first control section of a source module by using the START instruction.
However, you canh wrile some source statemenis before the beginning of the
first control statement. See “First Control Section™ on page 53 for more details.

End of a Source Module

The END instruction usually marks the end of a source module. However, you
can code several END instructions. The assembler slops assembling when it
processes the first END instruction. If no END instruction is found, the assem-
bler will generate one. See "END—End Assembly” on page 145 for more
details.

Note: Conditional assembly processing can determine which of several subsli-
tuted END instruclions is to be processed.

Chapter 3. Addressing, Program Sectioning, and Linking 49

Control Sections

A control section is the smallest subdivision of a program that can be relocated
as a unit. The assembled control sections contain the object code for machine
instructions, data constants, and areas.

Consider the concept of a control section at different processing times.

At coding time: You create a control section when you write the instructions it
contains. In addition, you establish the addressability of each control section

within the source module, and provide any symbolic linkages between control
sections that lie in different source modules. You also write the linkage editor
control statements to combine the desired control sections into a load module,
and to provide an entry point address for the beginning of program execution.

At assembly time: The assembler translates the source statements in the
control section into object code. Each source module is assembled into one
object module. The entire object module and each of the control sections it
contains are relocatable.

At link-editing time: According to linkage editor control statements, the linkage
editor combines the object code of one or more control sections into one load
module. It also calculates the linkage addresses necessary for communication
between two or more control sections from different object modules. In addi-
tion, it calculates the space needed to accommodate external dummy sections.

At program fetch time: The control program loads the load module into virtual
storage. All the relocatable addresses are converted to fixed locations in
storage.

At execution time: The control program passes control to the load module now
in virtual storage, and your program is executed.

Note: You can specify the relocatable address of the starting point for program
execution in a link-edit control statement or in the operand field of an END
statement.

Executable Control Sections

An executable control section is one you initiate by using the START or CSECT
instruction, and is assembled into object code. At execution time, an execut-
able control section contains the binary data assembled from your coded
instructions and constants, and is, therefore, executable.

An executable control section can also be initiated as “private code,” without
using the START or CSECT instruction.

Reference Control Sections

A reference control section is one you initiate by using the DSECT, COM, or
DXD instruction, and is not assembled into object code. You can use a refer-
ence control section either to reserve storage areas or to describe data to
which you can refer from executable control sections. These reference control
sections are considered to be empty at assembly time, and the actual binary
data to which they refer is not entered until execution time.

50 Assembler H Version 2 Language Reference

(\

Location Counter Setting
The assembler maintains a separate location counter for each control section.
The location counter setting for each control section starts at 0. The localion
values assigned to the instructions and other data in a control section are,
therefore, relative to the location counter setling at the beginning of that control
section.

However, for executable control seclions, the location values thal appear in the
listings do not restart at 0 for each subsequent executable control section.
They carry on from the end of the previous control seclion. Your executable
control sections are usually loaded into storage in the order in which you write
them. You can, therefore, malch the source statements and object code
procduced from them with the contents of a dump of your program.

For reference control sections, the location values that appear in the listings
always start from 0.

You can conlinue a control section that has been discontinued by another
control section, and, thereby, intersperse code sequences from different control
sections. Note that the location values that appear in the listings for a control
section, divided into segments, [ollow from the end of one segment to the
beginning of the subsequent segment.

The location values, listed for the next control section defined, begin after the
lasl location value assigned to the preceding control section. The length
counler for a CSECT is incremented until it reaches its maximum capacity {2** -
1, or FFFFFF hexadecimal bytes). The counter is then locked and remains at
that value for the CSECT. Mo error condition or message is issued by Assem-
bler H Version 2 when the length counter exceeds the hexadecimal value
FFFFFF. However, when the CSECT location counier exceeds hexadecimal
FFFFFF, you will receive messages aboul other error conditions, as noted
below.

Note: Message IEV039 is issued for a CSECT location counter that exceeds 2**
- 1, or FFFFFF hexadecimal byles. Message IEVOB7 is issued for a repeat factor
on a DS or DC statement that exceeds 2%* - 1, or FFFFFF hexadecimal bytes.

Use of Multiple Location Counters
Assembler H allows you to use multiple location counlers for each individual
control secticn. You use the LOCTR instruclion {(whose format and specifica-
tions are described below) to assign dilferent location counters to different
parts of a control section. The assembler then rearranges and assembles the
coding together, according to the different location counters you have specified:
All coding using the first location counter will be assembled 1ogether, then the
coding using the second localion counter will be assembled together, and so
forth.

A practical use of multiple location counters is illustrated in Figure 18 on
page 52. There, executable instructions and data areas have been inter-
spersed throughout the ceding in their logical sequence, each group of
instructions preceded by a LOCTR instruction identifying the location counter
under which il is 1o be assembled. The assembler will rearrange the control
section so that the executable instructions are grouped logether and the data
areas logether.

Chapter 3. Addressing, Program Sectioning, and Linking 51

SOURCE MODULE OBJECT MODULE

{shown in source code format)

_— S LR 12,15 controlled
LR 12,15 — USING INST. 12 o
USING INST,12 | __— T™ CODE,X'03" | counter
. BM NEWCARD
DATA LOCTR /' control
INPUTAREA DS 0CL80O section
CODE DS cLl) o _ INST
. T— INPUTAREA DS 0CL80 controlled
INST LOCTR ' CODE DS CLl by DATA
™ CODE,X'03" . location
BM NEWCARD / VALL DC F'S56" counter
. VALZ2 DC F'84'
DATA LOCTR —Y
VAL2 DC F'g84’
] control
NEXT CSECT section
NEXT

Figure 18. Use of Mulliple Location Counters

LOCTR—Multiple Location Counters
The LOCTR instruction allows you to specify multiple location counters within a
control section. The assembler assigns consecutive addresses to the segments
of code using one location counter before it assigns addresses to segments of
coding using the next location counter.

Format of LOCTR:

Name Operation Operand

A variable or LOCTR blank
ordinary symbol

By using the LOCTR instruction, you can code your control section in a logical
order. For example, you can code work areas and data constants within the
section of code, using them without having to branch around them.

52 Assembler H Version 2 Language Reference

Name Operation Operand Comment

A CSECT See note 1
LR 12,15
USING A,12
B LOCTR See note 2
C LOCTR
B LOCTR See note 3
A LOCTR See note 4
DUM DSECT See note 1
C LOCTR See note 5
END
Notes:

1. The first location counter of a control section is defined by the name of the
START. CSECT, DSECT, or COM instruction defining the section.

2. The LOCTR instruction defines a location counter.

3. The LOCTR resumes a previously defined location counter. A location
counter remains in use until it is interrupted by a LOCTR, CSECT, DSECT, or
COM instruction.

4. A LOCTR instruction with the same name as a control section resumes the
first location counter of that section.

5. A LOCTR instruction with the same name as a LOCTR instruction in a pre-
vious control section causes that control section to be resumed using the
location counter specified.

A control section cannot have the same name as a previous LOCTR instruction.
A LOCTR instruction placed before the first control section definition will initiate
an unnamed control section before the LOCTR instruction is processed.

The length attribute of a LOCTR name is 1.
LOCTR instructions do not force alignment; code running under a location

counter other than the first location counter of a control section will be assem-
bled starting at the next available byte after the previous segment.

First Control Section

The specifications below apply to the first executable control section, and not to
a reference control section.

Chapter 3. Addressing, Program Sectioning, and Linking 53

Instructions thal establish the first control section: Any instruction that affects
the location counler, or uses ils current value, establishes the beginning of the
first executable control seclion. The instructions that esiablish the first control
seclion include any machine instruction and the following assembler
instructions:

CCW, CCWa, and CCW] De LTORG
CNOP DROP ORG
(CoPY) DS START
CSECT END USING
CXD EQU

Notes:

1. These instructions are always considered a part of the conlrol section in
which they appear

2. The statements copied into a socurce module by a COPY instruction deter-
mine whether it will initiate the first control section.

3. The DSECT, CCM, and DXD instruclions initiate reference control seclions
and do not eslablish the first executable control sectian.

What must come before the first conftrol section: The following instructions or
macro definitions, if specified, belong to a source module, bul must appear
before the first contrcl section.

= The ICTL instruction, which, if specified, must be the first statement in a
source module

* The OPSYN instructicn
= Any source macra definilions
= The COPY insiruction, if the code to be copied contains only OPSYN

instructions or complele macro definilions

What can optionally come before the first control section: The instructions or
groups of instructions that can optionally be specified before the first control
section are listed below:

* The following assembler instructions:

COPY EXTRN REPRO
Dx0 1SEQ SPACE
EJECT PRINT TITLE
ENTRY PUNCH WXTRN

» Commenls statements

= Common control sections

* Dummy conlrol sections

= External dummy control sections

* Any conditional assembly instruction
*» Macro instructions

Notes:

1. The above instruclions or groups of instructions belong to a source madule,
but are not considered as parl of an execulable control section,

2. Any instructions copied by a COPY inslruction, or generated by the proc-
essing of a macro instruction before the first control section, must belong
exclusively to one of the groups of instructions shown above.

54 Assembler H Version 2 Language Relerence

3. The EJECT, ISEQ, OPSYN, PRINT, SPACE, or TITLE instructions and com-
ments statements must follow the ICTL instruction, if specified.

4. All the instructions or groups of instructions listed above can also appear
as part of a control section.

Unnamed Control Section
The unnamed control section is an executable control section that can be initi-

ated in one of the following two ways:

¢ By coding a START or CSECT instruction without a name entry
» By coding any instruction, other than the START or CSECT instruction, that
initiates the first executable control section

The unnamed control section is sometimes referred to as private code.

All control sections ought to be provided with names so that they can be
referred to symbolically:

* Within a source module
* In EXTRN and WXTRN instructions and linkage editor control statements for
linkage between source modules

Notes:

1. Unnamed common control sections or dummy control sections can be
defined if the name entry is omitted from a COM or DSECT instruction.

2. If you include an AMODE or RMODE instruction in this assembly and leave
the name field blank, you must provide an unnamed control section.

Literal Pools In Control Sections
Literals, collected into pools by the assembler, are assembled as part of the
executable control section to which the pools belong. If a LTORG instruction is
specified at the end of each control section, the literals specified for that section
will be assembied into the pool starting at the LTORG instruction. If no LTORG
instruction is specified, a literal pool containing all the literals used in the entire
source module is assembled at the end of the first control section. This literal
pool appears in the listings after the END instruction.

Note: If any control section is divided into segments, a LTORG instruction
should be specified at the end of each segment to create a separate literal pool
for that segment.

External Symbol Dictionary Entries
The assembler keeps a record of each control section and prints the following
information about it in an external symbol dictionary (ESD):

* Symbolic name, if one is specified
* Type code

* Individual identification

* Starting address

Chapter 3. Addressing, Program Sectioning, and Linking 595

Figure 19 lists the assembler instructions that define control seclions and
dummy control sections, or identify entry and external symbols, and tells their
associated type codes. There is no limit to the number of individual control
seclions and external symbols that can be defined in a source module.

Establishing Residence and Addressing Mode

You may specify the addressing mode (AMODE) and/or the residence mode
(RMODE) 10 be associated with control sections in the object deck. These
modes may be specified for the following types of control sections:

* Control section (ESD type code 00)
= Unnamed control section (ESD type code 04)
» Common control section (ESD type code 05)

The assembler will set the AMODE and/or RMODE indicators in the £SD record
for each applicable control section in an assembly, for passage to the linkage
editor and (cader. The linkage edilor and loader will ensure that control is
given 1o programs with the right addressing mode, and that programs are
loaded into the correct part of virtual storage.

Name Code Entered into
Entry Instruction External Symbol Dictionary
Optional START SD (if pame enlry is presen)
CSECT SD (if name enlry is preseni)
START PC (if name enlry is omitted)
CSECT PC (if name enlry is omitted)
Any instruction that initiates PC
the unnamed conlrol section
Optional COM CM
Optional DSECY None
Mandatory DXD XD
External DSECT XD
ENTRY LO
EXTRN ER
OC (V-type address constant) ER
WXTRN WX

Figure 19. Defining CSECTs, DSECTs, and Symbols

56 Assembler H Version 2 Language Reference

AMODE—Addressing Mode
The AMODE instruction allows you to specify the addressing mode to be associ-
ated with control sections in the object deck.

Format of AMODE:

Namne Operation Operand
Any symbol AMODE 24|31 ANY
or blank

The name field associates the addressing mode with a control section. If there
is a symbol in the name field, it must also appear in the name field of a START,
CSECT, or COM instruction in this assembly. If the name field is blank, there
must be an unnamed control section in this assembly. If the name field con-
tains a sequence symbol (see "Symbols™ on page 25 for details), il is treated
as a blank name field.

The operand indicates which addressing mode is to be associated with the
control section identified by the name field. The operand must be specified as
one of the three values shown. The values cannot be replaced by expressions.
The values specify the following:

24 specifies that a 24-bit addressing mode is to be associated with a control
section.

31 specifies that a 31-bit addressing mode is to be associated with a control
section.

ANY specifies that the control section is not sensitive to addressing mode.
Any field of this instruction may be generated by a macro, or by substitution in
open code.

Notes:

1. AMODE can be specified anywhere in the assembly. It does not initiate an
unnamed control section.

2. An assembly can have multiple AMODE instructions; however, two AMODE
instructions cannot have the same name field.

3. Specification of AMODE 24 and RMODE ANY for the same name field is
invalid. All other combinations are valid.

4. AMODE or RMODE cannot be specified for an unnamed common control
section.

Chapter 3. Addressing, Program Sectioning, and Linking 57

5. The defaults when AMODE and RMODE are not both specified for a name
field are as follows:

Specified Defaulted

Neither AMODE 24, RMOOE 24
AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

RMODE—Residence Mode
The RMODE instruction allows you to specify the residence mode to be associ-
aled with control seclions in the object deck.

Format of RMODE:

Name Operation Operand
Any symbol RMODE 24| ANY
or blank

The name field associates the residence mode with a control section. If there
is a symbol in the name field, it must also appear in the name field of a START,
CSECT, or COM instruction in this assembly Il the name field is blank, there
must be an unnamed control section in this assembly. If the name flield con-
tains a sequence symbol (see "Symbcels” on page 25 lor details), it is treated
as a blank name field.

The operand indicates which residence mode is to be associated with the
control section identified by the name field. The operang must be specified as
one of the two values shown. The values cannot be replaced by expressions.
The values specify the following:

24 specifies that a residence mode of 24 is to be associated with the control
section; that is, the control section must be resident below 16 megabytes.

ANY specifies that a residence mode of either 24 or 31 is 10 be associated with
the control section; that is, the control section can be resident above or
below 16 megabytes.

Any field of this instruction may be generated by a macro, or by substitution in
open code.

\n

58 Assembler H Version 2 Language Reference

Notes:

1.

RMODE can be specified anywhere in the assembly. It does not initiate an
unnamed control section.

. An assembly can have multiple RMODE instructions; however, two RMODE

instructions cannot have the same name field.

Specification of AMODE 24 and RMODE ANY for the same name field is
invalid. All other combinations are valid.

. AMODE or RMODE cannot be specified for an unnamed common control

section.

. The defaults when AMODE and RMODE are not both specified for a name

field are as follows:

Specified Defaulted

Neither AMODE 24, RMODE 24
AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

Defining a Control Section

You must use the instructions described below to indicate to the assembler:

Where a control section begins
Which type of control section is being defined

START—Start Assembly
The START instruction can be used only to initiate the first or only control
section of a source module. You should use the START instruction for this
purpose, because it allows you:

To determine exactly where the first control section is to begin; you thereby
avoid the accidental initiation of the first control section by some other
instruction

To give a symbolic name to the first control section, which can then be dis-
tinguished from the other control sections listed in the external symbol dic-
tionary

To specify the initial setting of the location counter for the first or only
control section

The START instruction must be the first instruction of the first executable
control section of a source module. It must not be preceded by any instruction
that affects the location counter, and thereby causes the first control section to
be initiated.

Chapter 3. Addressing, Program Sectioning, and Linking 59

Format of START:

Name Operation Operand
Any symbol START A self-defining term,
or blank an absclute expression, or blank

Note: |f the cperand of a START inslruction i1s an absolute expression, any
symbols referenced in it must have been previously defined.

The symbol in the name field, if specified, idenlifies 1he first conircl section. It

must be used in the name field of any CSECT instruction 1ha! indicales the con-
tinuation of the first control section. This symbol represents the address of the
first byte of the control section, and has a lenglh atiribule value of 1.

The assembler uses the value of the self-defining term or absolute expressicn
in the operand field, if specified, 1o set the location counter te an initial value
for the source module.

All centrol sections are aligned on a doubleword boundary. Therefore, if the
value specified in the operand is not divisible by 8, the assembler sets the
initial value of the location counter 1o the next higher doubleword boundary. |If
the operand eniry is omitted, the assembler sets the initial value to Q.

The source statements that follow the START inslruction are assembled inlo the
first control section. If a CSECT instruction indicates the continuation of the first
conirol section, the source statements that follow this CSECT instruclicon are
also assembled into the first control section.

Any instruction thal defines a new or continued control section marks the end of
the preceding control section. The END instruction marks the end of the control
section in effect.

CSECT—Identify Control Section
The CSECT instruction allows you to iniliate an executable control secticn or
indicate the conlinuation of an executable control section.

The CSECT instruction can be used anywhere in a source module after any
source macro definiticns lhat are specified. ITit is used te initiate the first exe-
cutable conirol section, it must not be preceded by any instructicn that affects
the locatien counter and thereby cause the first control section to be iniliated.

Format of CSECT:

Name Operation Operand
Any symbol CSECT Not reguired
or blank

60 Assembler H Version 2 Language Reference

The symbol in the name field, if specified, identifies the control section. If
several CSECT instructions within a source module have the same symbol in
the name field, the first occurrence initiates the control section, and the rest
indicate the continuation of the control section. If the first control section is ini-
tiated by a START instruction, the symbol in the name field must be used to
indicate any continuation of the first control section.

Note: A CSECT instruction with a blank name field either initiates or indicates
the continuation of the unnamed control section.

The symbol in the name field represents the address of the first byte of the
control section, and has a length attribute value of 1.

The beginning of a control section is aligned on a doubleword boundary.
However, when an interrupted control section is resumed using the CSECT
instruction, the location counter last specified in that control section will be
resumed. Consider the coding in Figure 20.

ALPHA

BETA

NEWSECT

ALPHA

CSECT

CSECT

ALPHA
12’0 /

_This part is assembled using NEWSECT
the BETA location counter

Figure 20. How the Location Counter Works

The source statements following a CSECT instruction that either initiate or indi-
cate the continuation of a control section are assembled into the object code of
the control section identified by that CSECT instruction.

Note: The end of a control section or portion of a control section is marked by
(a) any instruction that defines a new or continued control section, or (b) the
END instruction.

DSECT—Identify Dummy Section

You can use the DSECT instruction to initiate a dummy control section or to
indicate its continuation.

A dummy control section is a reference control section that allows you to

describe the layout of data in a storage area without actually reserving any
virtual storage.

Chapter 3. Addressing, Program Sectioning, and Linking 61

You may wish 1o describe the format of an area whose storage location will not
be determined until the program is executed. You can do so by describing the
format of the area in a dummy section, and using symbols defined in the
dummy section as the operands of machine instructions.

How to use a dummy conlrol section: A dummy control section {dummy
seclion) allows you to write a sequence of assembler language statements to
describe the layout of unformatied data located elsewhere in your source
module. The assembler produces no object code for statements in a dummy
control section, and it reserves no storage for it. Rather, the dummy section
provides a symbolic format that is empty of data. However, the assembler
assigns location values 1o the symbols you define in a dummy section, relative
to its beginning.

Therelore, to use a dummy section, you must;
» Reserve a slorage area for the unformatled data

= Ensure that this data is loaded into the area at execution lime

» Ensure that the locations of the symbols in the dummy section actually cor-
respond to the locations of the data being described

» Establish the addressability of the dummy seclion in combination with the
storage area

You can then refer to the unformatted data symbolically by using the symbols
defined in the dummy section.

The DSECT instruction identifies the beginning or continuation of a dummy
control section. Cne or more dummy sections can be defined in a source

module.

The DSECT instruction can be used anywhere in a source module after the ICTL
instruction, or after any source macro definitions that may be specified.

Format of DSECT:

Name Operation Operand
Any synhol DSECT Not required
or blank

The symbol in the name field, if specified, identifies the dummy section. If
several DSECT instructions within a source module have the same symbol in
the name field, the first occurrence initiales the dummy section, and the rest
indicate the continuation of the dummy section.

Note: A DSECT instruction with a blank name field either initiates or indicates
the continuation of the unnamed dummy section.

The symbol in the name field represents the first location in the dummy section,
and has a length attribute value of 1.

62 Assembler H Version 2 Language Reference

The location counter for a dummy seclion is always set to an initial value of 0.
However, when an interrupted dummy control section is resumed using the
DSECT instruction, the location counter last specified in that control section will
be resumed.

The source statements that follow a DSECT instruction belong to the dummy
section identified by that DSECT instruction.

Notes:

1. The assembler language slatements that appear in a dummy seclion are
not assembled into object code.

2. When establishing the addressability of a dummy section, the symbol in the
name field of the DSECT instruction, or any symbol defined in the dummy
section can be specified in a USING instruction.

3. A symbol defined in a dummy section can be specified in an address con-
stant only if the symbol is paired with another symbol from the same
dummy section, and if the symbols have the opposite sign.

To effect references to the slorage area defined by a dummy section, do the
following:

*» Provide a USING statemenl specifying both a general register that the
assembler can assign to the machine instructions as a base register and a
value from the dummy section that the assembler may assume the register
contains.

= Ensure that the same register is loaded with the actual address of the
storage area.

The values assigned lo symbols defined in a dummy section are relative to the
initial statement of the section. Thus, all machine instructions that refer to
names defined in the dummy section will, at execulion time, refer to storage
locations relative to the address loaded into the register.

An example is shown in the following coding. Assume thal two independent
assemblies {assembly 1 and assembly 2) have been loaded and are 1o be exe-
cuted as a single overall program. Assembly 1 is an input routine that places a
record in a specified area of storage, places the address of the input area con-
taining the record in general register 3, and branches to assembly 2. Assembly
2 processes the record. The coding shown in the example is from assembly 2.

The inpul area is described in assembly 2 by the DSECT contro! sectlion named
INAREA. Portions of the input area that you want o work wilth are named in the
DSECT control seclion as shown. The assembler instruction USING INAREA.3
designates general register 3 as the base register to be used in addressing the
DSECT control section, and that general register 3 is assumed to contain the
address of INAREA,

Assembly 1, during execution, loads the actual beginning address of the input
area in general register 3. Because the symbols used in the DSECT section are
defined relative to the initial statement in the section, the address values they
represent will, at the time of program execution, be the actual storage locations
of the input area.

Chapter 3. Addressing, Program Sectioning, and Linking 63

Name Operation Operand

ASMBLYZ CSECT

BEGIN BALR 2,0
USING *,2
USING INAREA,3
CLI INCOOE,C’A"
8E ATYPE
ATYPE MvC WORKA, [NPUTA
MVC WORK8 , [NPUTB
WORKA DS CL20
WORKB DS cL18

1NAREA DSECT

INCOOE 0s (I}

INPUTA DS cL2o

INPUTB 0s cLi8
END

COM—Define Blank Common Control Section
You can use the COM instruction 1o iniliate a common control section, or to
indicate its continuation. One or more common sections can be delined in a
source module. A common conirol section is a reference control section that
allows you to reserve a storage area that can be used by two or more source
modules.

How to use a common control section. A common control section (common
section) allows you to describe a common storage area in one or more source
modules.

When the separately assembled object modules are (inked as one program, the
required storage space is reserved for the common control section, Thus, two
or more modules share the common area.

Only the slorage area is provided; the assembler does not assemble the source
statements that make up a common conlrol seclion inlo object code. You must
provide the data for the common area at execution lime.

The assembler assigns locations to the symbols you define in a common
section relative to the beginning of that common section. This allows you to
refer symbolically to the data that will be loaded at execution time. Note that
you must establish the addressability of a common control section in every
source module in which it is specified. If you code identical common seclions
in two or more source modules, you can communpnicale data symbolically
belween these modules through this common section.

Note: You can also code a common control section in a source module writien
in the FORTRAN language. This allows you to commupnicate between assem-
bler language modules and FORTRAN modvules.

64 Assembler K Version 2 Language Reference

The COM instruction identifies the beginning or continuation of a common
control section.

The COM instruction can be used anywhere in a source module afler the ICTL
instruction, or after any source macro delfinitions that may be specified.

Format of COM:

Name Operation Operand
Any symbol COoM Not reguired
ar blank

The symbol in the name field, if specified, identifies the common control
section. If several COM instructions within a source module have the same
symbol in the name lield, the first occurrence initiates the common section and
ihe rest indicate the continuation of the common seclion.

Note: A COM instruction with a blank name field either initiates or indicales the
continuation of the unnamed common section.

The symbol in the name field represents the address of the first byte in the
common seclion, and has a length atiribute value of 1.

The location counter for a common section is always sel 1o an initial value of 0.
However, when an interrupted common control section is resumed using the
COM instruction, the location counter last specified in that coniro! section will
be resumed.

If a common seclion with the same name (or unnamed) is specified in two or
more source modules, the amount of slorage reserved for lhis common section
is equal o that required by the longest common section specified.

The source statements that follow a COM instruction belong 1o the common
sectlion identified by that COM instruction.
Notes:

1. The assembler language slatements that appear in a common control
section are not assembled inlo object code.

2. When establishing the addressability of a common section, the symbol in
the name field of the COM instruction, or any symbol defined in the
common seclion, can be specified in a USING instruction.

In the following example, addressability to the common area of storage is
eslablished relative 1o the named statement XYZ.

Chapter 3. Addressing, Program Sectioning, and Linking 695

Name Operation Operand

L 1,=A(XYZ)

USING XYz,1
MvC PDQ(16),=4C'ABCD'
COoM

XYZ DS 16F

PDQ DS 16C

No instructions or constants appearing in a common control section are assem-
bled. Data can only be placed in a common control section through execution
of the program. A blank common control section may include any assembler
language instructions.

If the assignment of common storage is done in the same manner by each inde-
pendent assembly, reference to a location in common by any assembly resulits
in the same location being referenced. When the blank common control section
is assembled, the initial value of the location counter is set to zero.

External Dummy Sections
An external dummy section is a reference control section that allows you to
describe storage areas for one or more source modules, to be used as:

* Work areas for each source module
= Communication areas between two or more source modules

When the assembled object modules are linked and loaded, you can dynam-
ically allocate the storage required for all your external dummy sections at one
time from one source module (for example, by using the GETMAIN macro
instruction). This is not only convenient, but you save space and prevent frag-
mentation of virtual storage.

To generate and use the external dummy sections, you need to specify a com-
bination of the following:

e DXD or DSECT instruction
* Q-type address constant
= CXD instruction

Generating an external dummy section. An external dummy section is gener-
ated when you specify an DXD instruction or a DSECT instruction in combina-
tion with a Q-type address constant that contains the name of the DSECT
instruction.

You use the Q-type address constant to reserve storage for the offset to the
external dummy section whose name is specified in the operand. This offset is
the distance in bytes from the beginning of the area allocated for all the
external dummy sections to the beginning of the external dummy section speci-
fied. You can use this offset value to address the external dummy section.

66 Assembler H Version 2 Language Reference

Using external dummy sections: To use an external dummy section, you must
do the following:

1. Identify and deline the external dummy section. The assembler will
compute the length and alignment required.

2. Provide a Q-type constant for each external dummy section defined.

3. Use the CXD instruction to reserve a fullword area into which the linkage
editor or loader will insert the total length of all the external dummy
sections that are specified in the source modules of your program. The
linkage editor computes this length from the lengths of the individual
external dummy seclions supplied by the assembler.

4. Allocale a storage area using the computed total length.

5. Load the address of the allocated area into a register. Note that this reg-
ister must contain this address throughout the whole program.

6. Add to the address in the regisler the offset into the allocated area of the
desired external dummy section. The linkage editor inserts this offset into
the fullword area reserved by the appropriate Q-type address constant.

7. Eslablish the addressability of the external dummy section in combination
with the portion of the allocated area reserved for the external dummy
section.

You can now refer symbolically to the locations in the external dummy section.
Note that the source statements in an external dummy section are not assem-
bled into object code. Thus, at execution time, you must insert the data
described into the area reserved for the external dummy sections.

DXD—Define External Dummy Section
The DXD instruction allows you to idenlify and define an external dummy
section. The DXD instruction can be used anywhere in a source module, after
the ICTL instruction, or after any source macro definitions that may be speci-
fied.

Notes:

1. An external dummy section identified by a DXD instruction will not generate
an entry in the external symbol dictionary {(ESD) unless il is referenced by a
Q-type address constant.

2. The DSECT instruction also defines an external dummmy section, but only if
the symbol in the name field appears in a Q-type address constant in the
same source module. Otherwise, a DSECT instruction defines a dummy
section.

Format of DXD:

Name Operation Operand

A symbol DXD Duplication factor, type, modifiers, nominal value

Chapter 3. Addressing, Program Secticning, and Linking 67

The symbol in the name field must appear in the operand of a Q-type constant.
This symbol represents the address of the first byte of the external dummy
section defined, and has a length attribute value of 1.

The subfields in the operand field (duplication factor, type, modifier, and
nominal vatue) are specified in the same way as in a DS instruction. The
assembler computes the amount of storage and the alignment required for an
external dummy section from the area specified in the operand field.

The linkage editor or loader uses the information provided by the assembler to
compute the total length of storage required for all external dummy sections
specified in a program.

Note: If two or more external dummy sections for different source modules
have the same name, the linkage editor uses the most restrictive alignment,
and the largest section to compute the total length.

CXD—Cumulative Length External Dummy Section
The CXD instruction allows you to reserve a fullword area in storage. The
linkage editor or loader will insert into this area the total length of all external
dummy sections specified in the source modules that are assembled and linked
into one program.

Format of CXD:

Name Operation Operand
Any symbol or CXD Not required
blank

The symbol in the name field, if specified, represents the address of a fullword
area aligned on a fullword boundary. This symbol has a length attribute value
of 4. The linkage editor or loader inserts into this area the total length of
storage required for all the external dummy sections specified in a program.

The following example shows how external dummy sections may be used.

ROUTINE A
Naie Operation Operand
ALPHA DXD 2DL8
BETA DXD 4FL4
OMEGA CXD

0C Q{ALPHA)
0C Q(BETA)

68 Assembler H Version 2 Language Reference

ROUTINE B

Name Operation Operand
GAMMA DXD 50
DELTA DXD 10F
DC Q(GAMMA)
DC Q(DELTA)
ROUTINE C
Name Operation Operand
EPSILON DXD 4H
DC Q(EPSILON)

Each of the three routines is requesting an amount of work area. Routine A
wants 2 doublewords and 4 fullwords; Routine B wants 5 doublewords and 10
fullwords; Routine C wants 4 halfwords. At the time these routines are brought
into storage, the sum of the individual lengths will be placed in the location of
the CXD instruction labeled OMEGA. Routine A can then allocate the amount of
storage that is specified in the CXD location.

Symbolic Linkages
Symbols may be defined in one module and referred to in another, thus
effecting symbolic linkages between independently assembled program
sections. The linkages can be effected only if the assembler is able to provide
information about the linkage symbols to the linkage editor, which resolves
these linkage references at load time.

Establishing symbolic linkage: You must establish symbolic linkage between
source modules so that you can refer or branch to symbolic locations defined in
the control sections of external source modules. To establish symbolic linkage
with an external source module, you must do the following:

* In the current source module, you must identify the symbols that are not
defined in that source module, if you wish to use them in instruction oper-
ands. These symbols are called external symbols, because they are
defined in another (external) source module. You identify external symbols
in the EXTRN or WXTRN instruction, or the V-type address constant.

* In the external source modules, you must identify the symbols that are
defined in those source modules, and to which you refer from the current
source module. These symbols are called entry symbols, because they
provide points of entry to a control section in a source module. You identify
entry symbols with the ENTRY instruction.

* You must provide the A-type or V-type address constants needed by the
assembler to reserve storage for the addresses represented by the external
symbols.

Chapter 3. Addressing, Program Sectioning, and Linking 69

The assembler places information about entry and external symbols in the
external symbol dictionary. The linkage editor uses this information to resolve
the linkage addresses identified by the entry and external symbols.

Referring to external data: You should use the EXTRN instruction to identify the
external symbol that represents data in an external source module, if you wish
to refer to this data symbolically.

For example, you can identify the address of a data area as an external symbol
and load the address constant specifying this symbol into a base register.
Then, you use this base register when establishing the addressability of a
dummy section that formats this external data. You can now refer symbolically
to the data that the external area contains.

You must also identify, in the source module that contains the data area, the
address of the data as an entry symbol.

Branching to an external address: You should use the V-type address constant
to identify the external symbol that represents the address in an external
source module to which you wish to branch.

For example, you can load into a register the V-type address constant that iden-
tifies the external symbol. Using this register, you can then branch to the
external address represented by the symbol.

If the symbol is the name entry of a START or CSECT instruction in the other
source module, and thus names an executable control section, it is automat-
ically identified as an entry symbol. If the symbol represents an address in the
middle of a control section, you must identify it as an entry symbol for the
external source module.

You can also use a combination of an EXTRN instruction to identify, and an
A-type address constant to contain, the external branch address. However, the
V-type address constant is more convenient because:

* You do not have to use an EXTRN instruction.

* The symbol identified is not considered as defined in the source module,
and can be used as the name entry for any other statement in the same
source module.

ENTRY—Identify Entry-Point Symbol

70

The ENTRY instruction allows you to identify symbols defined in one source
module so that they can be referred to in another source m._dule. These
symbols are entry symbols.

Format of ENTRY:

Name Operation Operand
A sequence ENTRY One or more relocatable
symbol or blank symbols, separated by commas

Assembler H Version 2 Language Reference

The following applies to the entry symbols identified in the operand field:
*+ They must be valid symbols.
+ They must be defined in an executable control section.

* They must not be defined in a dummy control section, a common control
section, or an external control section,

+ The length atiribute value of entry symbols is the same as the length attri-
bute value of the symbol at its point of definition.

A symbol used as the name entry of a START or CSECT instruction is also auto-
matically considered an entry symbol, and does not have to be identified by an
ENTRY instruction.

The assembler lists each entry symbol of a source module in an external
symbol dictionary, along with entries for external symbols, common control
sections, and external control sections.

There is no restriction on the number of control sections, external symbols, and
external dummy sections allowed by the assembler. The maximum number
depends on the amount of main storage available during link editing.

EXTRN—Identify External Symbol
The EXTRN instruclion allows you to identify symbols referred to in a source
module but defined in another source module. These symbols are external
symbols.

Format of EXTRN:

Name Qperation Uperand
A sequence EXTRN One or nore relocatahle
symbol or blank symbols, separated by conmas

External Symbols: The following applies to the external symbols identified in
the operand field;

+ They must be valid symbols.

* They musl not be used as the name entry of a source statement in the
source module in which they are identified.

* They have a length attribute value of 1.
*» They must be used alone and cannot be paired when used in an

expression.

The assembler lists each external symbol identified in a source module in the
external symbol dictionary, along with entries for entry symbols, common
control sections, and external control sections.

There is no restriction on the number of control sections, external symbols, and

external dummy sections allowed by the assembler. The maximum number
depends on the amount of main storage available during link editing.

Chapter 3. Addressing, Program Sectioning, and Linking 71

WXTRN—Identify Weak External Symbol
The WXTRN statement allows you to identify symbols referred to in a source
module but defined in another source module. The WXTRN instruction differs
from the EXTRN instruction as follows:

e The EXTRN instruction causes the linkage editor to make an automatic
search of libraries to find the module that contains the external symbols
that you identify in its operand field. If the module is found, linkage
addresses are resolved; the module is then linked to your module, which
contains the EXTRN instruction.

¢ The WXTRN instruction suppresses this automatic search of libraries. The
linkage editor will only resolve the linkage addresses if the external
symbols that you identify in the WXTRN operand field are defined:

— In a module that is linked and loaded along with the object module
assembled from your source module, or

— In a module brought in from a library because of the presence of an
EXTRN instruction in another module linked and loaded with yours.

Format of WXTRN:

Name Operation Operand
A sequence WXTRN One or more relocatable
symbol or blank symbols separated by conmas

The external symbols identified by a WXTRN instruction have the same proper-
ties as the external symbols identified by the EXTRN instruction. However, the
type code assigned to these external symbols differs.

Note: If a symbol. specified in a V-type address constant, is also identified by a
WXTRN instruction, it is assigned the same type code as the symbol in the
WXTRN instruction.

If an external symbol is identified by both an EXTRN and WXTRN instruction in

the same source module, the first declaration takes precedence, and subse-
guent declarations are flagged with warning messages.

72 Assembler H Version 2 Language Reference

4
L 2

Chapter 4. Machine Instruction Statements

This chapter introduces the main functions of the machine instructions and pro-
vides general rules for coding them in their symbolic assembler language
format. For the complete specifications of machine instructions, their object
code format, their coding specifications, and their use of registers and virtual
storage areas, see the appropriate principles of operation manual for your
processor.

At assembly time, the assembler converts the symbolic assembler language
representation of the machine instructions to the corresponding object code. It
is this object code that the computer processes at execution time. Thus, the
functions described in this section can be called execution time functions.

Also at assembly time, the assembler creates the object code of the data con-
stants and reserves storage for the areas you specify in your DC and DS
assembler instructions (see “Data Definition Instructions™ on page 96). At exe-
cution time, the machine instructions can refer to these constants and areas,
but the constants themselves are not executed.

As defined in the appropriate principles of operation manual, there are five cat-
egories of machine instructions:

* General instructions

» Decimal instructions

e Floating-Point instructions
» Control instructions

< Input/Output operations

Each is discussed in the following sections.

General Instructions

You use general instructions to manipulate data that resides in general regis-
ters or in storage, or that is introduced from the instruction stream. These
instructions include fixed-point, logical, and branching instructions; in addition,
they include unprivileged status-switching instructions. Some general
instructions operate on data that resides in the PSW or the TOD clock.

The general instructions treat data as being of four types: signed binary inte-
gers, unsigned binary integers, unstructured logical data, and decimal data.
Data is treated as decimal by the conversion, packing, and unpacking
instructions.

For further information, see “General Instructions” in the appropriate principles
of operation manual.

Chapter 4. Machine Instruction Statements 73

SS Format

Notes:

1. Symbols used 1o represent immediate data (see HEX40 and TEN in the
ALPHA? and BETA1 instructions below) are assumed to be equated to abso-
lute values between 0 and 255.

2. Symbols used lo represent implicit addresses (see IMPLICIT, KEY, and
NEWSTATE in the BETA and GAMMAZ2 instructions below) can be either
relocatable or absolute.

3. Symbols used to represent displacements (see DISPL40 in the ALPHAZ
instruction below) in explicil addresses are assumed to be equaled to abso-
lute values between 0 and 4095,

Examples:
ALPHAL CLI 40(9),x'40'
ALPHAZ CLI DISPLAO(NINE) ,HEX4D
BETAL CLI IMPLICIT,TEN
BETAZ CLI KEY,C'E'
GAMMA] LPSW B(9)
GAMMAZ LPSW NEWSTATE

When assembled, the object code lor the ALPHA1 instruction, in hexadecimal,
1s:
95409028

where

05 is the operation code.

40 is the immediate data.

9 is the base register,

028 is the displacement from the base register,

You use the instructions with the §S format mainly to move data between two
virtual slorage locations. The operand fields and subfields must. therefore, des-
ignate virtual storage addresses and the explicit data lengths you wish to
include. However, note that, in the Shift and Round Decimal (SRF) instruction,
a 4-bit immediate data field (see 3 in SRP instruction below), with a value
between 0 and 9, is specified as a third operand.

Notes:

1. Symbols used to represent base registers (see BASES and BASE7 in the
ALPHAZ instruction below) in explicit addresses are assumed {o be equated
lo absolute values between 0 and 15.

2. Symbols used to represent explicit lengths (see NINE and S1X in the
ALPHAZ instruction below) are assumed 10 be equated o absolute values
between 0 and 256 for SS instructions with one length specification, and
between 0 and 16 for SS instructions with two length specifications.

3. Bymbols used o represent implicit addresses (see FIELD1, FIELD2, and
FIELD1,XX'8" in the ALPHA3 and SRP instruclions below) can be eilher
relocatable or absolute.

4. Symbols used lo represent displacements (see DISP40 and DISP30 in the

ALPHAS instruction below} in explicit addresses are assumed to be equated
to absolute values between 0 and 4095,

88 Assembler H Version 2 Language Reference

¢

Examples:

ALPHAl AP 40(9,8),30(6,7)
ALPHA2 AP 40(NINE,BASES),30(SIX,BASET)
ALPHA3 AP FIELD1,FIELD2
ALPHA4 AP AREA(9) ,AREA2(6)
ALPHAS AP DISP40(,8),DISP30(,7)
BETAI MVC 0(80,8),0(7)
BETA2 MVC DISPO(,8),DISPO(7)
BETA3 MVC T0,FROM
SRP FIELD1,X'8",3

When assembled, the object code for the ALPHA1 instruction, in hexadecimal,

IS:

FA858028701E

where

FA is the operation code.

8 is length LI.

5 is length L2.

8 is base register Bl.

028 is the displacement from base register Bl.
7 is base register B2.

01E is the displacement from base register B2.

When assembled, the object code for the BETA1 instruction, in hexadecimal, is:

D24F80007000

where

SSE Format

D2 is the operation code.

4F is length L.

8 is base register BIl.

000 is the displacement from base register Bl.
7 is base register B2.

000 is the displacement from base register B2.

You use the instructions with the SSE format mainly for control operations. The
operand fields designate virtual storage addresses, encoded as base and dis-

placement.

Examples:
ALPHA1 LASP 40(BASES),30(BASE7)
ALPHA2 LASP 40(8),30(7)
BETA] TPROT LOC1,L0C2
BETA2 TPROT DISP40(8),DISP30(8)

Notes:

1. Symbols used to represent base registers in explicit addresses (such as

3.

BASE8 and BASE7 in the ALPHA1 instruction) are assumed to be equated to
absolute values between 0 and 15.

. Symbols used to represent implicit addresses (such as LOC1,LOC2 in the

BETA1 instruction) can be either relocatable or absolute.

Symbols used to represent displacements in explicit addresses (such as
DISP40 and DISP30 in the BETA2 instruction) are assumed to be equated to
absolute values between 0 and 4095.

89

Chapter 4. Machine Instruction Statements

When assembled, the object code of the ALPHA2 instruction, in hexadecimal, is:
E5D08028701E

where

E5S0D is the operation code.

8 is base register Bl.

028 is the displacement from base register Bl.
7 is base register BZ.

Q1E is the displacement from base register BZ.

90 Assembler H Version 2 Language Reference

Chapter 5. Assembler Instruction Statements

The following is a list of assembler instructions:

Symbol Definition Instruction

EQU

Equate symbol

Operation Code Definition Instruction

OPSYN

Equate operation code

Data Definition Instructions

cCw
CCwWo
ccwi
DC
DS

Define channel command word (Format 0: 24-bit data address)
Define channel command word (Format 0: 24-bit data address)
Define channel command word (Format 1: 31-bit data address)
Define constant
Define storage

Program Sectioning and Linking Instructions (discussed in Chapter 3)

AMODE
COM
CSECT
CXD
DSECT
DXD
ENTRY
EXTRN
LOCTR
RMODE
START
WXTRN

Specify the addressing mode of a control section
Identify blank common control section

Identify control section

Cumulative length of external dummy section
Identify dummy section

Define external dummy section

Identify entry-point symbol

identify external symbol

Specify multiple location counters within a control section
Specify the residence mode of a control section
Start assembly

Identify weak external symbol

Base Register Instructions (discussed in Chapter 3)

DROP
USING

Drop base address register
Use base address register

Program Control Instructions

CNOP
COPY
END
ICTL
ISEQ
LTORG
ORG
POP
PUNCH
PUSH
REPRO

Conditional no operation

Copy predefined source coding

End assembly

Input format control

input sequence checking

Begin literal pool

Set location counter

Restore status of current PRINT or USING
Punch a card

Push-down queue for current PRINT or USING
Reproduce following card

Listing Control Instructions

EJECT

PRINT

SPACE
TITLE

Start new page
Print optional data

Space listing

identify assembly output

Chapter 5. Assembler Instruction Statements

91

Symbol Definition Instruction

EQU—Equate Symbol
The EQU nstruction allows you to assign absolute or relocatable values to
symbols. You can use it for the following purposes:

1. To assign single absolute values to symbols

2. To assign the values of previously defined symbols or expressions to new
symbols, thus allowing you to use different mnemonics for ddferent pur-
poses.

3. To compute expressions whose values are unknown at coding time or diffi-
cult to calculate. The value of the expressions is then assigned lo a
symbol.

The EQU instruction can be used anywhere in a source module afier the ICTL
instruction, or aller any source macro definitions that may be specified. Note,
however, that the EQU instruction can (nitiate an vnnamed control section
(private code) if it is specified before the first control section {initiated by a
START or CSECT instruction).

Format of EQU:

Name Cperation Cperand

A variable €QU Expression-1 or

symbo) or Expression-1 Expression-2 or

ordinary Expression-1,Expression-2,Expression-3, or
symbol Expression-1, ,E£xpression-J

Note: The two commas in the last oplion above indicate the absence of
expression 2.

Expression 1 represents a valuoe, I must always be specified and it may
assume any value zllowed for an assembly expression: Absolute {including
negative), relocatable, or complexly relocatable. The assembler carries this
value as a signed 4-byte (32-bit) number; all four bytes are printed in the
program listings opposite the symbol.

Any symbols used in the first operand (expression 1) need not be previously
defined. |f the expression in the first operand 1s complexly relocatable, the
whole expression, rather than its value, is assigned to the symbol. During the
evaluation of any expression that includes a complexly relocatable symbol. that
symbol is replaced by its own defining expression.

Consider the following example, in which A1 and A2 are defined in one control
seclion, and B1 and B2 in another:

X EQU Al+B)
Y £QU X-A2-82

92 Assembler H Version 2 Language Reference

The first EQU statement assigns a complexly relocatable expression (A1 +B1)
to X. During the evaluation of the expression in the second EQU statement, X is
replaced by its defining relocatable expression {A1+B1), and the assembler
evaluates the resulling expression (A1+ B1-A2-B2) and assigns an absolute
value 1o Y, because the relocatable terms in the expression are paired.

Expression 2 represents a length attribute. it is optional, but, if specified, it
musl have an absolute value in the range of 0 to 65,535, Expression 3 repres-
ents a type attribute. It is optional, but, if specified, must be a self-defining term
with a value in the range of 0 to 255.

Any symbols appearing in expressions 2 and/or 3 must have been previously
defined.

Expression 1 (Value): The assembler assigns the relocatable or absolute value
of expression 1 to the symbol in the name field at assembly time. If expression
2 is omitted, the assembler also assigns a length attribute value to the symbol
in the name field according to the length attribute value of the leftmost {or only)
term of expression 1. The length attribute value is described in "Chapter 2.
Coding and Structure.” It is defined as follows:

1. If the lefimost term is a location counter reference (™), a self-defining term,
or a symbol length attribute value reference, the length atfribute is 1. Note
that this also applies if the leftmost term is a symbol that is equated to any
of these values.

2. If the leftmost term is a symbol that is used in the name field of a DC or DS
instruction, the length attribute value is equal to the implicit or explicit
length of the firs! (or only) constant specified in the DC or DS cperand field.

3. If the leftmost term is a symbol that is used in the name field of a machine
instruction, the length altribule value is equal lo the fength of the assembled
instruction.

4. Symbols that name assembler instructions, except the DC and DS
instructions, have a length attribute value of 1. However, the name of a
CCW, CCWO, or CCW1 instruclion has a length attribute value of 8.

5. The length attribute value assigned in cases 2 to 4 above only applies to the
assembly-time value of the attribute. Its value at preassembly time, during
conditional assembly processing, is always 1.

6. Further, if expression 3 is omilled, the assembler assigns a type attribute
value of U 1o the symbol in the name field.

Expression 2 (Length-Attribute Value): If expression 2 is specified, the assem-
bler assigns its value as a fength attribute value to the symbol in the name
field. This value overrides the normal lengih attribute value implicitly assigned
from expression 1. If expression 2 is a self-defining term, the assembler also
assigns the length attribute value to the symbol at preassembly time (during
conditicnal assembly processing).

Note: This expression must have been previously defined.

Chapter 5. Assembler Instruction Statements 93

Expression 3 (Type-Attribute Value): If expression 3 is specified, it must be a
self-defining term. The assembler assigns its EBCDIC value as a type attribute
value to the symbol in the name field. This value overrides the normal type
attribute value implicitly assigned from expression 1.

Using Preassembly Values: You can use the preassembly values assigned by
the assembler in conditional assembly processing.

If only expression 1 is specified, the assembler assigns a preassembly value of
1 to the length attribute, and a preassembly value of U to the type attribute of
the symbol. These values can be used in conditional assembly (although refer-
ences to the length attribute of the symbol will be flagged). The absolute or
relocatable value of the symbol, however, is not assigned until assembly, and
thus may not be used at preassembly.

If you include expressions 2 and 3 and wish to use the explicit attribute values
in preassembly processing, then

= The symbol in the name field must be an ordinary symbol.
» Expression 2 and expression 3 must be single self-defining terms.

Symbol in the Name Field: The assembler assigns an absolute or relocatable
value, a length attribute value, and a type attribute value to the symbol in the
name field.

The absolute or relocatable value of the symbol is assigned at assembly time,
and is, therefore, not available for conditional assembly processing at preas-
sembly time.

The type and length attribute values of the symbol are available for conditional
assembly processing under the following conditions:

« The symbol in the name field must be an ordinary symbol.
* Expression 2 and expression 3 must be single self-defining terms.

Redefining Symbolic Operation Codes

OPSYN—Equate Operation Code
The OPSYN instruction allows you to define your own set of symbols to repre-
sent operation codes for:

* Machine and extended mnemonic branch instructions
« Assembler instructions, including conditional assembly instructions

You can also prevent the assembler from recognizing a symbol that represents
a current operation code.

94 Assembler H Version 2 Language Reference

Two formats of OPSYN:

Name Operation Operand

Any symbol or OPSYN An operation code
operation code

or

An operation 0PSYN Blank
code

The OPSYN instruction can be coded anywhere in the program to redefine an
operation code.

The operation code specified in the name field or the operand field must repre-
sent either:

1. The operation code of one of the assembler or machine instructions as
described in “Chapter 3. Addressing, Program Sectioning, and Linking™ on
page 43, "Chapter 4. Machine Instruction Statements,”

“Chapter 5. Assembler Instruction Statements,” or “Chapter 3. How to
Write Conditional Assembly Instructions™ on page 211 |, respectively, or

2. The operation code defined by a previous OPSYN instruction.

The OPSYN instruction assigns the properties of the operation code specified in
the operand field to the symbol in the name field. A blank in the operand field

causes the operation code in the name field to lose its properties as an opera-

tion code.

Examples:

1. The symbol in the name field can represent a valid operation code. It loses
its current properties as if it had been defined in an OPSYN instruction with
a blank operand field. In the following example, L and LR will both possess
the properties of the LR machine instruction operation code:

L OPSYN LR

2. When the same symbol appears in the name field of two OPSYN
instructions, the latest definition takes precedence. In the example below,
STORE now represents the STH machine operation:

STORE OPSYN ST
STORE OPSYN STH

Redefining Conditional Assembly Instructions: A redefinition of a conditional
assembly operation code will have an effect only on macro definitions
appearing after the OPSYN instruction. Thus, the new definition is not valid
during the processing of subsequent macro instructions calling a macro that
was defined prior to the OPSYN statement.

Chapter 5. Assembler Instruction Statements 95

Any OPSYN statement redefining the operation code of an instruction generated
from a macro instruction will, however, be valid, even if the definition of the
macro was made prior to the OPSYN statement. The following example illus-
trates this difference between conditional assembly instructions and model
statements within macro instructions.

MACRO Macro header
MAC . Macro prototype
AIF
MvC
MEND Macro trailer
AIF OPSYN AGO Assign AGO properties to AIF
MvC OPSYN MVI Assign MVI properties to MVC
MAC eee Macro call
[AIF Evaluated as AIF instruction;
generated AIFs not printed]
MVC Evaluated as MVI instruction
. Open code started at this point
AIF Evaluated as AGO instruction
MVC Evaluated as MVI instruction

AIF and MVC instructions are used in a macro definition. OPSYN instructions
are used to assign the properties of AGO to AIF and to assign the properties of
MVI to MVC, after the macro definition has been edited. In subsequent calls to
that macro, AIF is still defined as an AIF operation, while MVC is treated as an
MVI operation. In open code following the OPSYN instructions, the operations
of both instructions are derived from their new definitions. If the macro is rede-
fined, either by means of a loop to a point before the macro definition or by a
subsequent macro definition defining the same macro, the new definitions of
AIF and MVC (that is, AGO and MVI) will be fixed for future expansions.

Data Definition Instructions

The data definition instruction statements are: Define Constant (DC), Define
Storage (DS), and three types of Channel Command Words (CCW, CCWG0, and
CCw1).

These statements are used to define constants, reserve storage, and specify
the contents of channel command words, respectively. You can also provide a
label for these instructions and then refer to the data symbolically in the oper-
ands of machine and assembler instructions. This data is generated and
storage is reserved at assembly time, and used by the machine instructions at
execution time.

DC—Define Constant
You specify the DC instruction to define the data constants you need for
program execution. The DC instruction causes the assembler to generate the
binary representation of the data constant you specify into a particular location
in the assembled source module; this is done at assembly time.

96 Assembler H Version 2 Language Reference

The DC instruction can generate the following lypes of constants:

Type of
Constant Function Example
Address Defines address mainly L 5,A0CON
for lhe use of fixed-poinl ADCON OC A(SOHVWHERE)
and other instructions in
the universal instruction
set
Binary Defines bil palterns FLAG DC B'00010000°
Character Defines character strings CHAR DC C'string of characters’
or messages
Decimal Used by decimal AP AREA, PCOM
instruclions PCOM 6C Pr100
AREA £s P
Fixed-point Used by the fixed-point L 3,FCON
and other instructions of FCON 6C Frl00
the universal set
Floating-point Used by floating-point LE 2,ECON
instructions ECON bC ET100.50°
Graphic Defines character sirings 0BCS D¢ 6'<,0.B.C.S .S.T.R.L[.N.G>’
or messages that contain
pure double-byte data
Hexadecimal Cefines large bit patterns PATTERN 0C X'FFOOFFOD’
Figure 23. Types of Data Constants
Format of DC:
Hame Operation Operand
Any symbol DcC One or more operands
or bhlank separated by conmas

The symbol in the name field represents the address of the first byte of the
assembled constant. If several operands are specified, the first constant
defined is addressable by the symbaol in the name field. The other constants
can be reached by relative addressing.

Each operand in a DC instruction consists of four subfields: the first three
describe the constant; the fourth provides the nominal value(s) for the

constant(s) to be generated. The subfields of each DC operand are written in

the following sequence:

1

Duplication

Factor

2 3 4

Type HModifiers Nominal

Value(s)

Chapter 5. Assembler Instruction Stalements

97

For example, in
10XL2'FA'

the four subfields are:

¢ Duplication factor is 10
e Typeis X

¢ Modifier is L2

¢ Nominal value is FA

If all subfields are specified, the order given above is required. The first and
third subfields can be omitted, but the second and fourth must be specified in
that order.

Rules for DC Operand
1. The type subfield and the nominal value must always be specified.

2. The duplication factor and modifier subfields are optional.
3. When multiple operands are specified, they can be of different types.
4

. When multiple nominal values are specified in the fourth subfield, they must
be separated by commas and be of the same type. Multiple nominal values
are not allowed for character constants.

5. The descriptive subfields apply to all the nominal values.

Note: Separate constants are generated for each separate operand and
nominal value specified.

6. No blanks are allowed:

* Between subfields.

* Between multiple operands.

e Within any subfields, unless they occur as part of the nominal value of a
character constant, or as part of a character self-defining term in a
modifier expression, or in the duplication factor subfield.

Information about Constants
Symbolic Addresses of Constants: Constants defined by the DC instruction are
assembled into an object module at the location at which the instruction is
specified. However, the type of constant being defined will determine whether
the constant is to be aligned on a particular storage boundary or not (see
“Alignment of Constants” below). The value of the symbol that names the DC
instruction is the address of the leftmost byte (after alignment) of the first or
only constant.

Length Attribute Value of Symbols Naming Constants: The length attribute
value assigned to the symbols in the name field of the constants is equal to:

e The implicit length (see (1) in Figure 24 on page 99) of the constant when
no explicit length is specified in the operand of the constant, or

¢ The explicitly specified length (see (2) in Figure 24) of the constant.

Note: If more than one operand is present, the length attribute value of the
symbol is the length in bytes of the first constant specified, according to its
implicitly or explicitly specified length.

98 Assembler H Version 2 Language Reference

Alignment of Constants: The assembler aligns constants on different bounda-

ries according to the following:

* On boundaries implicit to the type of constant (see (1) in Figure 25 on

page 100) when no length specification is supplied.

* On byte boundaries (see (2) in Figure 25) when an explicit length specifica-
tion is made.

Bytes that are skipped to align a constant at the proper boundary are not con-

sidered part of the constant. They are filled with zeros.

Notes:

1. The automatic alignment of constants and areas does not occur if the
NOALIGN assembler option has been specified when the assembler was

invoked.

2. Alignment can be forced to any boundary by a preceding DS (or DC)
instruction with a zero duplication factor. This occurs when either the
ALIGN or NOALIGN option is set.

Value of

Type of Implicit Length
constant Length® Examples Attribute*
B as needed DC B"10010000° 1
C as needed DC C'wWOow’ 3

DC CL8'WOW'? 8
G as needed DC G <DaDb>" 4

DC GL8 <DaDb>" 8
X as needed DC X'FFEEOQ0O’ 3

DC XL2'FFEE’? 2
H 2 DC H'32° 2
F 4 DC FL332? 3
P as needed DC P'123 2

DC PL4'1232 4
Zz as needed DC Z'12% 3

DC ZL10°123°? 10
E 4
D 8
L 16
Y 2 DC Y(HERE) 2
A 4 DC AL1(THERE) 1
S 2
Y/ 2
Q 4

Figure 24. Length Attribute Value of Symbol Naming Constants

Notes to Figure 24:

1. Depends on type.
2. Depends on whether or not an explicit length is specified in constant.

Chapter 5. Assembler Instruction Statements 99

Padding and Truncation of Values
The nominal values specified for constants are assembled into slorage. The
amount of space available for the nominal value of a constant is delermined:

+ By the explicit length specilied in the second operand subfield, or

+ If no explicit length is specified, by the implicit length according to the type
of constant defined (see Appendix B, “"Summary of Constants™ on

page 267).
Implicit
Type of Boundary Boundary
constant Alignment' Examples Alignment
byte

c byte

G byte

X byte

H halfword DC H'25 halfword
DC HL3'25°* byte

F halfword DC F225° fullword
DC FL7°225" byvtle

P byte DC P29234 byte

z byte DC Z'123% byte
DC ZL2°12357 byte

E fullword DC E"1.25 fullword
DC EL571.25°7 byle

D doubleword DC 8D'8% doubleword
DC 8DL7'95" byte

L doubleword DC L'2.57E65" doubleword

Y halfword DC Y(HERE) halfword

A fullword DC ALY(THERE)? byte

S halfword

v futlword

Q fullword

Frgure 25. Alignment of Constants

Padding: If more space is available than is needed lo accommodate the binary
represeniation of the nominal value, the extra space is padded:

+ With binary zeros on Llhe left for the binary (B), hexadecimal (X), fixed-point
(H.F), packed decimal (P), and all address {A.Y.5.V.Q) constanis

= With EBCDIC zeros on the left (XX'FO') for the zoned decimal (Z) consianis

* With EBCDIC blanks cn the right {XX'40"') for the character (C) constants

* With double-byte blanks on the right (XX'4040') for the graphic {G) con-
stants

Notes:

1. Floating-point conslanls {E.D,L) are alsc padded cn the right with zeros.

2. Padding is cn the lefi for all constanis except the character constant and
lhe graphic constant.

3. Padding is on the right lor the character constant and the graphic constant.

100 Assembler H Version 2 Language Reference

Truncation: If less space is available than is needed to accommodate the
nominal value, the nominal value is truncated and part of the constant is lost.
Truncation of the nominal value is:

* On the left for the binary (B), hexadecimal (X), decimal (P and Z), and
address (A and Y) constants.

e On the right for the character (C) constant and the graphic (G) constant.
However, the fixed-point constants (H and F) will not be truncated but flagged if
significant bits would be lost to truncation.

Notes:

1. Floating-point constants (E,D,L) are not truncated; they are rounded.

2. The above rules for padding and truncation also apply when the bit-length
specification is used (see “Subfield 3: Modifiers™ below).

3. Double-byte data in C-type constants cannot be truncated because trun-
cation creates invalid double-byte data. Error IEV208 “"TRUNCATION INTO
DOUBLE-BYTE DATA IS NOT PERMITTED” will be issued if such truncation
is attempted.

4. Truncation of double-byte data in G-type constants is permitted, because
the length modifier restrictions (see “Subfield 3: Modifiers” below) will
ensure that invalid double-byte data cannot be created by truncation.

Subfield 1: Duplication Factor

The duplication factor may be omitted. If specified, it causes the nominal value
or multiple nominal values specified in a constant to be generated the number
of times indicated by the factor. It is applied after the nominal value or values
are assembled into the constant. Symbols used in subfield 1 need not be previ-
ously defined. This does not apply to literals.

The factor can be specified by an unsigned decimal self-defining term or by an
absolute expression enclosed in parentheses.

The expression should have a positive value or be equal to zero.

Notes:

1. The value of a location counter reference in a duplication factor is the value
before any alignment to boundaries is done, according to the type of con-
stant specified.

2. A duplication factor of zero is permitted with the following results:

* No value is assembled.

* Alignment is forced according to the type of constant specified, if no
length attribute is present (see “Alignment of Constants” above).

* The length attribute of the symbol naming the constant is established
according to the implicitly or explicitly specified length.

3. If duplication is specified for an address constant containing a location
counter reference, the value of the location counter reference is incre-
mented by the length of the constant before each duplication is performed
(for examples, see “Address Constants—A and Y” on page 112.

Chapter 5. Assembler Instruction Statements 101

Subfield 2: Type

The type subfield must be specified. From the type specification, the assembler
determines how it is to interpret the constant and translate it into the appro-
priate machine format. The type is specified by a single-letter code as shown
in Figure 26.

Further information about these constants is provided in the discussion of the
constants themselves under “Subfield 4: Nominal Value” on page 106.

0
°
o
o

Constant Type

Machine Format

Character

8-bit code for each character

Graphic

16-bit code for each character

Hexadecimal

4-bit code for each hexadecimal digit

Binary

Binary format

Fixed-point

Signed, fixed-point binary format; normally a fullword

Fixed-point

Signed, fixed-point binary format; normally a halfword

Floating-point

Short floating-point format; normally a fullword

Floating-point

Long floating-point format; normally a doubleword

Floating-point

Extended floating-point format; normally two doublewords

Decimal

Packed decimal format

Decimal

Zoned decimal format

Address

Value of address; normally a fullword

Address

Value of address; normally a halfword

Address

Base register and displacement value; a halfword

|| <|PIN|D|rFrjolm|T|TMM|@|X[O]O

Address

Space reserved for external symbol addresses; each address
normally a fullword

Q

Address

Space reserved for external dummy section offset

Figure 26. Type Codes for Constants

The type specification indicates to the assembler:

1. How the nominal value(s) specified in subfield 4 is to be assembled; that is,
which binary representation or machine format the object code of the con-

Subfield 3: Modifiers

stant must have.

At what boundary the assembler aligns the constant, if no length specifica-

tion is present.

How much storage the constant is to occupy, accordinyg o the implicit
length of the constant, if no explicit length specification is present (for
details, see "Padding and Truncation of Values” on page 100).

Modifiers describe the length in bytes desired for a constant (in contrast to an
implied length), and the scaling and exponent for the constant.

102 Assembler H Version 2 Language Reference

\l

The three modifiers are:

1. The length modifier (L), which explicitly defines the length in bytes desired
for a constant. For example:

LENGTH DC XL10'FF'

2. The scale modifier (S), which is only used with the fixed-point or floating-
point constants (for details, see below under “Scale Modifier”). For
example:

SCALE bc FS8'35.92'

3. The exponent modifier (E), that is only used with fixed-point or floating-point
constants, and which indicates the power of 10 by which the constant is to
be multiplied before conversion to its internal binary format. For example:

EXPON DC EE3'3.414'

If multiple modifiers are used, they must appear in this sequence: length, scale,
exponent. For example:

ALL3 bC DL7S3E50'2.7182'

Symbols used in subfield 3 need not be previously defined. This does not apply
to literals.

Length Modifier: The length modifier indicates the number of bytes of storage
into which the constant is to be assembled. It is written as Ln, where n is
either a decimal self-defining term or an absolute expression enclosed by
parentheses. It must have a positive value, and any symbols it contains must
be previously defined.

When the length modifier is specified:

¢ Its value determines the number of bytes of storage allocated to a constant.
It, therefore, determines whether the nominal value of a constant must be
padded or truncated to fit into the space allocated (see “Padding and Trun-
cation of Values” on page 100).

¢« No boundary alignment, according to constant type, is provided (see “Align-
ment of Constants” above).

e Its value must not exceed the maximum length allowed for the various
types of constant defined.

¢ The length modifier must not truncate double-byte data in a C-type constant.
* The length modifier must be a multiple of 2 in a G-type constant.
Note: When no length is specified, for character and graphic constants, the

whole constant is assembled into its implicit length.

Bit-Length Specification: The length modifier can be specified to indicate the
number of bits into which a constant is to be assembled. The bit-length specifi-
cation is written as L.n where n is either a decimal self-defining term, or an
absolute expression enclosed in parentheses. It must have a positive value.
Symbols that it contains need not be previously defined.

The value of n must lie between 1 and the number of bits (a multiple of 8) that
are required to make up the maximum number of bytes allowed in the type of

Chapter 5. Assembler Instruction Statements 103

http:FS8'3S.92

constant being defined. The bit-length specification cannot be used with the G-,
S-, V-, and Q-type constants.

When only one operand and one nominal value are specified in a DC instruc-
tion, the following rules apply:

1. The bit-length specification allocates a field into which a constant is to be
assembled. The field starts at a byte boundary and can run over one or
more byte boundaries, if the bit length specified is greater than 8.

If the field does not end at a byte boundary and if the bit length specified is
not a multiple of 8, the remainder of the last byte is filled with zeros.

2. The nominal value of the constant is assembled into the field:
a. Starting at the high order end for the C-, E-, D-, and L-type constants

b. Starting at the low-order end for the remaining types of constants that
allow bit-length specification

3. The nominal value is padded or truncated to fit the field (see “Padding and
Truncation of Values” on page 100).

Padding of character constants is done with hexadecimal blanks, X"407;
other constant types are padded with zeros.

Note: The length attribute value of the symbol naming a DC instruction with a

specified bit length is equal to the minimum number of integral bytes needed to
contain the bit length specified for the constant. L’'TRUNCEF is equal to 2. Thus,
a reference to TRUNCF would address the entire two bytes that are assembled.

When more than one operand is specified in a DC instruction, or more than one
nominal value in a DC operand, the above rules about bit-length specifications
also apply, except:

1. The first field allocated starts at a byte boundary, but the succeeding fields
start at the next available bit.

2. After all the constants have been assembled into their respective fields, the
bits remaining to make up the last byte are filled with zeros.

Note: If duplication is specified, filling with zeros occurs once at the end of
all the fields occupied by the duplicated constants.

3. The length attribute value of the symbol naming the DC instruction is equal
to the number of integral bytes that would be needed to contain the bit
length specified for the first constant to be assembled. «

Note: For double-byte data in C-type constants: If bit-length specifications are
used, with a duplication factor greater than 1, and a bit-length which is not a
multiple of 8, then the double-byte data will no longer be valid for devices
capable of presenting DBCS characters. No error message will be issued.

Storage Requirement for Constants: The total amount of storage required to
assemble a DC instruction is the sum of:

1. The requirements for the individual DC operands specified in the instruc-
tion. The requirement of a DC operand is the product of:

¢ The length (implicit or explicit)
e The number of nominal values
* The duplication factor, if specified

104 Assembler H Version 2 Language Reference

2. The number of bytes skipped for the boundary alignment between different
operands.

Scale Modifier: The scale modifier specifies the amount of internal scaling that
is desired:

* Binary digits for fixed-point constants (H, F)
* Hexadecimal digits for floating-point constants (E, D, L)

The scale modifier can be used only with the above types of constant.

The allowable range for each type of constant is as follows:

Fixed-point constant H -187 to 15
Fixed-point constant F -187 to 30
Floating-point constant E Oto 5
Floating-point constant D Oto 13
Floating-point constant L 0to 27

The scale modifier is written as Sn, where n is either a decimal self-defining
term, or an absolute expression enclosed in parentheses.

Both types of specification can be preceded by a sign; if no sign is present, a
plus sign is assumed.

Scale Modifier for Fixed-Point Constants: The scale modifier for fixed-point con-
stants specifies the power of two by which the fixed-point constant must be
multiplied after its nominal value has been converted to its binary represen-
tation, but before it is assembled in its final “scaled™ form. Scaling causes the
binary point to move from its assumed fixed position at the right of the right-
most bit position.

Notes:

1. When the scale modifier has a positive value, it indicates the number of
binary positions to be occupied by the fractional portion of the binary
number.

2. When the scale modifier has a negative value, it indicates the number of
binary positions to be deleted from the integer portion of the binary number.

3. When positions are lost because of scaling (or lack of scaling), rounding
occurs in the leftmost bit of the lost portion. The rounding is reflected in the
rightmost position saved.

Scale Modifier for Floating-Point Constants: The scale modifier for floating-point
constants must have a positive value. It specifies the number of hexadecimal
positions that the fractional portion of the binary representation of a floating-
point constant is to be shifted to the right. The hexadecimal point is assumed
to be fixed at the left of the leftmost position in the fractional field. When
scaling is specified, it causes an unnormalized hexadecimal fraction to be
assembled (unnormalized is when the leftmost positions of the fraction contain
hexadecimal zeros). The magnitude of the constant is retained, because the
exponent in the characteristic portion of the constant is adjusted upward
accordingly. When hexadecimal positions are lost, rounding occurs in the left-
most hexadecimal position of the lost portion. The rounding is reflected in the
rightmost position saved.

Chapter 5. Assembler Instruction Statements 105

Exponent Modifier: The exponent modifier specifies the power of 10 by which
the nominal value of a constant is to be multiplied before it is converted to its
internal binary representation. It can only be used with the fixed-point (H and
F) and floating-point (E, D, and L) constants. The exponent modifier is written
as En, where n can be either a decimal self-defining term, or an absolute
expression enclosed in parentheses.

The decimal self-defining term or the expression can be preceded by a sign: If
no sign is present, a plus sign is assumed. The range for the exponent modi-
fier is -85 to +75.

Notes:

1. The exponent modifier is not to be confused with the exponent that can be
specified in the nominal value subfield of fixed-point and floating-point con-
stants.

The exponent modifier affects each nominal value specified in the operand,
whereas the exponent written as part of the nominal value subfield only
affects the nominal value it follows. If both types of exponent specification
are present in a DC operand, their values are algebraically added together
before the nominal value is converted to binary form. However, this sum
must lie within the permissible range of -85 to +75.

2. The value of the constant, after any exponents have been applied, must be
contained in the implicitly or explicitly specified length of the constant to be
assembled.

Subfield 4: Nominal Value
The nominal value subfield must always be specified. It defines the value of the
constant (or constants) described and affected by the subfields that precede it.
It is this value that is assembled into the internal binary representation of the
constant. The formats for specifying constants are described as follows:

Constant Single Multiple

Type Nominal Value Nominal Value

C ‘value’ not allowed

G ‘<.wv.alue>’ not allowed

B

X

H

F

P ‘value’ ‘value,value,...value’
Z

E

D

L

A

Y

S (value) (value,value,...value)
Q

\Y

As the above list shows, a data constant value (any type except A, Y, S, Q, and
V) is enclosed by apostrophes. An address constant value (type A, Y, S, Q, or
V) is enclosed by parentheses. To specify two or more values in the subfield,

106 Assembler H Version 2 Language Reference

the values must be separated by commas, and the entire sequence of values
must be enclosed by the appropriate delimiters; that is, apostrophes or paren-
theses. Multiple values are not permitted for character constants.

How nominal values are specified and interpreted by the assembler is
explained in each of the following subsections, starting with “Binary
Constant—B"” below.

Literal Constants: Literal constants allow you to define and refer to data
directly in machine instruction operands. You do not need to define a constant
separately in another part of your source module. The difference between a
literal, a data constant, and a self-defining term is described in “Literals” on
page 36.

A literal constant is specified in the same way as the operand of a DC instruc-
tion. The general rules for the operand subfields of a DC instruction also apply
to the subfield of a literal constant. Moreover, the rules that apply to the indi-
vidual types of constants apply to literal constants as well.

However, literal constants differ from DC operands in the following ways:

» Literals must be preceded by an equal sign.
* Multiple operands are not allowed.
¢ The duplication factor must not be zero.

The following text describes each of the constant types and provides examples.
The constant types are:

Binary
Character
Graphic
Hexadecimal-
Fixed-Point
Decimal

Packed Decimal
Zoned Decimal
Address
Floating-Point

Binary Constant—B: The binary constant allows you to specify the precise bit
pattern you want assembled into storage. Each binary constant is assembled
into the integral number of bytes (see (1) in Figure 27 on page 108) required to
contain the bits specified.

The following example shows the coding used to designate a binary constant.
BCON would have a length attribute of 1.

BCON bC B'llelllel’
BTRUNC DC BL1'le0160011"
BPAD neC BL1'101"

BTRUNC would assemble with the leftmost bit truncated, as follows:
00100011

BPAD would assembile with five zeros as padding, as follows:
00600101

Chapter 5. Assembler Instruction Statements 107

Subfield Value Example Result
1. Duplication factor Allowed
2. Modifiers As needed B DC B’10101111" L'B = 1!
Implicit length: C DC B’1071° B'C = 1!
(length modifier
not present)
Alignment: Byte
(Length modifier
not present)
Range for length: 1 to 256

(byte length)

.1 to .2048
(bit length)

Range for scale

Not allowed

Range for exponent

Not allowed

3. Nominal value

Represented by: Binary digits
(0 or1)

Enclosed by: Apostrophes

Exponent allowed: No

Number of values Multiple

per operand:

Padding:

With zeros at left

Truncation of
assembled value:

At left

Figure 27. Binary Constants

Character Constant—C:

The character constant allows you to specify character
strings, such as error messages, identifiers, or other text, that the assembler

will convert into their binary (EBCDIC) representation.

Any of the valid 256 punch combinations can be designated in a character con-
stant. Each character specified in the nominal value subfield is assembled into

one byte (see (1) in Figure 28 on page 109).

Multiple nominal values are not allowed, because if a comma is specified in the
nominal value subfield, the assembler considers the comma a valid character
(see (2) in Figure 28) and, therefore, assembles it into its binary (EBCDIC) rep-

resentation. For example

0C

C'A,B'

is assembled as A,B with object code C16BC2.

Special consideration must be given to representing apostrophes and amper-
sands as characters. Each single apostrophe or ampersand desired as a char-

acter in the constant must be represented by a pair of apostrophes or

ampersands. They are assembled as single apostrophes and ampersands (see

(3) in Figure 28).

In the following example, the length attribute of FIELD is 12:

FIELD DC

108 Assembler H Version 2 Language Reference

C'TOTAL IS 110

However, in this next example, the length attribute is 15, and three blanks
appear in storage to the right of the zero:

FIELD DC CL15'TOTAL IS 110'

In the next example, the length attribute of FIELD is 12, although 13 characters
appear in the operand. The two ampersands count as only one byte.

FIELD bC C'TOTAL IS &&l0'

Note that, in the next example, a length of 4 has been specified, but there are
five characters in the constant.

FIELD DC 3CL4"'ABCDE"

The generated constant would be:
ABCDABCDABCD

On the other hand, if the length had been specified as 6 instead of 4, the gener-
ated constant would have been:

ABCDE ABCDE ABCDE

Subfield Value Example Result
1. Duplication factor Allowed
2. Madifiers As needed C DC C’LENGTH'' LC =6
Implicit length:
(length modifier
not present)
Alignment: Byte
(Length modifier
not present)
Range for length: 1 to 256

(byte length)

per operand:

.1 to .2048
(bit length)

Range for scale Not allowed

Range for exponent Not allowed

3. Nominal value Object code

Represented by: Characters DC C'A”B’ X'C17DC2’?
(all 256 8-bit DC C'A&&B’ X'C150C2"?
combinations)

Enclosed by: Apostrophes

Exponent allowed: No

Number of values One DC C'AB’ Object code

X'C16BC2?

Padding:

With blanks at right
(X’407)

Truncation of
assembled value:

At right

Figure 28. Character Constants

Note that the same constant could be specified as a literal.
AREA(12),=3CL4'ABCDE'

MvVC

Chapter 5. Assembler Instruction Statements

109

Double-byte data in character constants: When the assembler is invoked with
the DBCS option, double-byte data may be used in a character constant. The
start of double-byte data is delimited by SO, and the end by SI. All characters
between SO and S| must be valid double-byte characters. No single-byte
meaning is drawn from the double-byte data. Hence, special characters such
as apostrophe and ampersand are not recognized between SO and SI. The SO
and S| are included in the assembled representation of a character constant
containing double-byte data.

If a duplication factor is used, SI/SO pairs at the duplication points are not
removed. For example, the statement:

DBCS DC 3C'<D1>'

will result in the assembled character string value of:

<D1><D1><D1>

Null double-byte data (SO followed immediately by Sl) is acceptable and is
assembled into the constant value.

Examples of character constants containing double-byte data are:

DBCS1 DC C'<.D.B.C.S>'
DBCS2 DC C'abc<.A.B.C>'
DBCS3 DC C'abc<.A.B.C>def’

The length attribute includes the SO and SI. For example, the length attribute
of DBCS2 is 11. No truncation of double-byte character strings within C-type
constants is allowed, since invalid double-byte data would be created.

Graphic Constant—G: When the assembler is invoked with the DBCS option,
the graphic (G-type) constant is supported. This constant type allows the
assembly of pure double-byte data. The graphic constant differs from a char-
acter constant containing only double-byte data in that the SO and Sl delimiting
the start and end of double-byte data are not present in the assembled value of
the graphic constant. Because SO and S| are not assembled, if a duplication
factor is used, no redundant SI/SO characters are created. For example, the
statement:

DBCS DC 3G'<D1>"

will result in the assembled character string value of:

D1D1D1

Examples of graphic constants are:

DBCS1 DC G'<.A.B.C>'
DBCS2 DC GL10'<.A.B.C>'
DBCS3 DC GL4'<.A.B.C>'

Because the length attribute does not include the SO and SI, the length attri-
bute of DBCS1 is 6. The length modifier of 10 for DBCS2 causes padding of 2
double-byte blanks at the right of the nominal value. The length modifier of 4
for DBCS3 causes truncation after the first 2 double-byte characters. The length
attribute of a graphic constant must be a multiple of 2.

Note: The type attribute of a Graphic constant is not G; it is @.

110 Assembler H Version 2 Language Reference

Subfield Value Example Result
1. Duplication factor Allowed Object code
3G'<.A>’ X'42C142C142C1"
2. Modifiers As needed
Implicit length: Twice the number GC DC G'<.AB>" L'GC =4

(length modifier
nut present)

of DBCS charac-
ters

Alignment:

Byte

Range for length:

2 to 256 (byte
length). Must be a
multiple of 2. Bit
length not allowed.

3. Nominal value

Object code

Represented by: DBCS characters DC G'<.&’'>" X'4250427D"
delimited by SO DC G'<.A><.B>" x140C142C2"
and Sl

Enclosed by: Apostrophes

Number of values One Object code

per operand:

DC G'<.A., B>’

X'42C1426B42C2"'

Padding: With DBCS blanks Object code
at right DC GL6'<.A>’ X'42C140404040'
Truncation of At right Object code

assembled value:

DC GL2’<.A.B>"

X'42C1'

Figure 29. Graphic Constants

Hexadecimal Constant—X: You can use hexadecimal constants to generate
large bit patterns more conveniently than with binary constants. Also, the

hexadecimal values you specify in a source module allow you to compare them
directly with the hexadecimal values generated for the object code and address
locations printed in the program listing.

Each hexadecimal digit (see (1) in Figure 30 on page 112) specified in the
nominal value subfield is assembled into four bits (their binary patterns can be
found in “Self-Defining Terms" on page 29). See (2) in Figure 30. The implicit
length in bytes of a hexadecimal constant is then half the number of
hexadecimal digits specified (assuming that a hexadecimal zero is added to an
odd number of digits). See (3) in Figure 30.

An 8-digit hexadecimal constant provides a convenient way to set the bit
pattern of a full binary word. The constant in the following example would set
the first and third bytes of a word to 1s:

DS 0F
TEST DC X'FFooFFoe'

The DS instruction sets the location counter to a fullword boundary. (See
“DS—Define Storage” on page 127.)

The next example uses a hexadecimal constant as a literal and inserts 1s into
bits 24 to 3l of register 5.

Ic 5,=X'FF'

Chapter 5. Assembler Instruction Statements 111

In the following example, the digit A is dropped, because 5 hexadecimal digits
are specified for a length of 2 bytes:

ALPHACON DC 3XL2'AGF4E’

The resulting constant is 6F4E, which occupies the specified 2 bytes. It is dupli-
cated three times, as requested by the duplication factor. If it had merely been
specified as 3X"A6F4E’, the resulting constant would have a hexadecimal zero

in the leftmost position.

OAGFAEOABFAEOABFAE
Subfield Value Example Result
1. Duplication factor Allowed
2. Madifiers As needed X DC X'FFO0A2’ L'X = 32
Implicit length: Y DC X'FO0A2’ Xy = 3?2
(length modifier
not present)
Alignment: Byte
(Length modifier
not present)
Range for length: 1 to 256
(byte length)
.1 to .2048
(bit length)
Range for scale Not allowed
Range for exponent Not allowed
3. Nominal value Object code
Represented by: Hexadecimal DC X'1F’ X"1F!
digits DC X'91F X'091F"?
(0 to 9 and
A to F)
Enclosed by: Apostrophes
Exponent allowed: No
Number of values Multiple

per operand:

Padding:

With zeros at left

Truncation of
assembled value:

At left

Figure 30. Hexadecimal Constants

Fixed-Point Constant—F and H: Fixed-point constants allow you to introduce
data that is in a form suitable for the operations of the fixed-point machine
instructions of the universal instruction set. The constants you define can also
be automatically aligned to the proper fullword or halfword boundary for the
instructions that refer to addresses on these boundaries (uniess the NOALIGN
option has been specified; see “Information about Constants” on page 98). You
can perform algebraic functions using this type of constant because they can
have positive or negative values.

112 Assembler H Version 2 Language Reference

A fixed-point constant is written as a decimal number, which can be followed by
a decimal exponent if desired. The format of the constant is as follows:

1. The nominal value can be a signed (see (1) in Figure 31 on page 114)—plus
is assumed if the number is unsigned—integer, fraction, or mixed number
(see (2) Figure 31) followed by an exponent (see (3) in Figure 31): positive
or negative.

2. The exponent must lie within the permissible range (see (4) in Figure 31). If
an exponent modifier is also specified, the algebraic sum (see (5) in
Figure 31) of the exponent and the exponent modifier must lie within the
permissible range.

Some examples of the range of values that can be assembled into fixed-point
constants are given below:

Range of values
Length that can be assembled

8 -2°3 1o 2931
4 -2%1 t0 2*1-1
2 -2'5 10 2151
1 -27 t0 27-1

The range of values depends on the implicitly or explicitly specified length (if
scaling is disregarded). If the value specified for a particular constant does not
lie within the allowable range for a given length, the constant is not assembled,
but flagged as an error.

A fixed-point constant is assembled as follows:

1. The specified number, multiplied by any exponents, is converted to a binary
number.

2. Scaling is performed, if specified. If a scale modifier is not provided, the
fractional portion of the number is lost.

3. The binary value is rounded, if necessary. The resulting number will not
differ from the exact number specified by more than one in the least signif-
icant bit position at the right.

4. A negative number is carried in twos complement form.

5. Duplication is applied after the constant has been assembled.

A field of three fullwords is generated from the statement below. The location
attribute of CONWRD is the address of the leftmost byte of the first word, and
the length attribute is 4, the implied length for a fullword fixed-point constant.
The expression CONWRD +4 could be used to address the second constant
(second word) in the field.

CONWRD DC 3F'658474"

Chapter 5. Assembler Instruction Statements 113

Subfield Value Example Result

1. Duplication factor Allowed
2. Modifiers Fullword: 4 bytes
Implicit length: Halfword: 2 bytes

(length modifier
not present)

Alignment: Fullword or
{Length modifier halfword
not present)

Range for length: ~ 1to8
(byte length)

.1to .64
(bit length)
Range for scale F: -187 to +30
H: -187 to +15
Range for exponent -85 to +75° DC HE+90°2E-88"° value =2x10?
3. Nominal value
Represented by: Decimal Fullword:
digits DC F’-200""
(0 to 9) DC FS4'2.25?
Halfword:
DC H’+200’
DC HS4'.25
Enclosed by: Apostrophes
Exponent allowed: Yes Fullword:
DC F'2E6™
Halfword:
DC H "2E-6’
Number of values Multiple
per operand:
Padding: With zeros at left
Truncation of Not allowed
assembled value: (error message
issued)

Figure 31. Fixed-Point Constants

The next statement causes the generation of a 2-byte field containing a nega-
tive constant. Notice that scaling has been specified in order to reserve 6 bits
for the fractional portion of the constant.

HALFCON DC HS6'-25.46"

The next constant (3.50) is multiplied by 10 to the power -2 before being con-
verted to its binary format. The scale modifier reserves 12 bits for the fractional
portion.

FULLCON DC HS12'3.50E-2"

The same constant could be specified as a literal:
AH 7,=HS12'3.50E-2"'

114 Assembler H Version 2 Language Reference

http:HS6'c2S.46

The final example specifies three constants. Notice that the scale modifier
requests 4 bits for the fractional portion of each constant. The 4 bits are pro-
vided whether or not the fraction exists.

THREECON DC Fs4'10,25.3,100'

Decimal Constants—P and Z: The decimal constants allow you to introduce
data in a form suitable for the operations of the decimal feature machine
instructions. The packed decimal constants (P-type) are used for processing by
the decimal instructions. The zoned decimal constants (Z-type) are in the form
(EBCDIC representation) you can use as a print image, except for the digits in
the rightmost byte.

The nominal value can be a signed (plus is assumed if the number is unsigned)
decimal number. A decimal point may be written anywhere in the number, or it
may be omitted. The placement of a decimal point in the definition does not
affect the assembly of the constant in any way, because the decimal point is not
assembled into the constant.

The specified digits are assumed to constitute an integer (see (1) in Figure 32
on page 116). You may determine proper decimal point alignment either by
defining data so that the point is aligned or by selecting machine instructions
that will operate on the data properly (that is, shift it for purposes of alignment).

Decimal constants are assembled as follows:

Packed Decimal Constants: Each digit is converted into its 4-bit binary equiv-
alent (see (2) in Figure 32). The sign indicator (see (3) in Figure 32) is assem-
bled into the rightmost four bits of the constant.

Zoned Decimal Constants: Each digit is converted into its 8-bit EBCDIC repre-
sentation (see (4) in Figure 32). The sign indicator (see (5) in Figure 32)
replaces the first four bits of the low-order byte of the constant.

The range of values that can be assembled into a decimal constant is shown
below:

Type of Range of values
decimal constant that can be specified
Packed 10°'-1 to -10%!
Zoned 10'%-1 to -10'®

For both packed and zoned decimals, a plus sign is translated into the
hexadecimal digit C, a minus sign into the digit D. The packed decimal con-
stants (P-type) are used for processing by the decimal instructions.

If an even number of packed decimal digits is specified, one digit will be left
unpaired because the rightmost digit is paired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will be set to zeros and the rightmost four
bits will contain the odd (first) digit.

Chapter 5. Assembler Instruction Statements 115

Subfield Value Example Result
1. Duplication factor Allowed
2. Maodifiers As needed Packed:
Implicit length: P DC P’ +593 L'P =2
(length modifier
not present) Zoned:
Z DC Z°-593 L'z =3
Alignment: Byte
(Length modifier
not present)
Range for length: 1to 16

(byte length)

.1to .128
(bit length)
Range for scale Not allowed
Range for exponent Not allowed
3. Nominal value
Represented by: Decimal Packed: Object code
digits DC P’5.5! X'055C’
(0 to 9) DC P’55" X055C’
DC P’ +555? X’555C"*
Zoned: Object code
DC Z°-555¢ X'F5F5D5°3
Enclosed by: Apostrophes
Exponent allowed: No
Number of values Multiple
per operand:
Padding: Packed:
with binary

zeros at left

Zoned:
with EBCDIC
zeros (X'FO’)
at left

Truncation of
assembled value:

At left

Figure 32. Decimal Constants

Examples:

DC
DC
DC
DC

P'+1.25'
7'-543'
7'79.68'
PL3'79.68'

The following statement specifies both packed and zoned decimal constants.
The length modifier applies to each constant in the first operand (that is, to

each packed decimal constant). Note that a literal could not specify both oper-

ands.

116 Assembler H Version 2 Language Reference

Cont.

DECIMALS DC PL8'+25.8,-3874, X
+2.3',2'+80,-3.72'

The last example illustrates the use of a packed decimal literal.
UNPK OUTAREA,=PL2'+25"

Address Constants: An address constant is a storage address that is translated
into a constant. Address constants can be used for initializing base registers to
facilitate the addressing of storage. Furthermore, they provide a means of com-
municating between control sections of a multisection program. However,
storage addressing and control section communication are also dependent on
the use of the USING assembler instruction and the loading of registers.

Coding examples illustrating these considerations are provided in “How to Use
the USING Instruction” in “USING—Use Base Address Register” on page 44.

An address constant, unlike other types of constants, is enclosed in paren-
theses. If two or more address constants are specified in an operand, they are
separated by commas, and the entire sequence is enclosed by parentheses.
There are five types of address constants: A, Y, S, Q, and V. A relocatable
address constant may not be specified with bit lengths.

Complex Relocatable Expressions: A complex relocatable expression can only
be used to specify an A- or Y-type address constant. These expressions
contain two or more unpaired relocatable terms and/or negative relocatable
terms in addition to any absolute or paired relocatable terms that may be
present. A complex relocatable expression might consist of external symbols
and designate an address in an independent assembly that is to be linked and
loaded with the assembly containing the address constant.

Address Constants—A and Y: The following sections describe how the different
types of address constants are assembled from expressions that usually repre-
sent storage addresses, and how the constants are used for addressing within
and between source modules.

In the A-type and Y-type address constant, you can specify any of the three
types of assembly-time expressions whose values the assembler then com-
putes and assembles into object code. You use this expression computation as
follows:

* Relocatable expressions for addressing

e Absolute expressions for addressing and value computation

« Complex relocatable expressions to relate addresses in different source
modules

Notes:

1. No bit-length specification (see (1) in Figure 33 on page 118) is allowed
when a relocatable or complex relocatable expression (see (2) in Figure 33)
is specified. The only explicit lengths that can be specified with these
addresses are:

* 3 or 4 bytes for A-type constants
* 2 bytes for Y-type constants

Chapter 5. Assembler Instruction Statements 117

http:2.3',Z'+88,-3.72

2. The value of the location counter reference (*) when specified in an address
constant varies from constant to constant, if any of the following, or a com-
bination of the following, are specified:

* Multiple operands
* Multiple nominal values (see (3) in Figure 33)
* A duplication factor (see (4) in Figure 33)

The location counter is incremented with the length of the previously
assembled constant.

3. When the location counter reference occurs in a literal address constant,
the value of the location counter is the address of the first byte of the

instruction.
Subfield Value Example Result
1. Duplication factor Allowed A DC 5AL1(*-A)* Object code

X'0001020304"

2. Madifiers
Implicit length:
(length modifier
not present)

A-type: 4 bytes
Y-type: 2 bytes

Alignment:
(Length modifier
not present)

A-type: fullword
Y-type: halfword

Range for length:

A-type:

1 to 4!

(byte length)
.110.32

(bit length)

Y-type:
1to?2

(byte length)
1to .16

(bit length)

Range for scale

Not allowed

Range for exponent

Not allowed

3. Nominal value
Represented by:

Absolute,
relocatable,
or complex
relocatable
expressions?

A-type:
DC A(ABSOL+10)

Y-type:
DC Y(RELOC+32)
A DC Y(*-A,*+4)°

values=0A+6°

Enclosed by: Parentheses
Exponent allowed: No
Number of values Multiple

per operand:

Padding:

With zeros at left

Truncation of
assembled value:

At left

Figure 33. A and Y Address Constants

118 Assembler H Version 2 Language Reference

Caution: Specification of Y-type address constants with relocatable expressions
should be avoided in programs that are to be executed on machines having
more than 32,767 bytes of storage capacity. In any case, Y-type relocatable
address constants should not be used in programs to be executed under IBM
System/370 control.

The A-type and Y-type address constants are processed as follows: If the
nominal value is an absolute expression, it is computed to its 32-bit value and
then truncated on the left to fit the implicit or explicit length of the constant. If
the nominal value is a relocatable or complex relocatable expression, it is not
completely evaluated until linkage edit time when the object modules are trans-
formed into load modules. The 24-bit (or smaller) relocated address values are
then placed in the fields set aside for them at assembly time by the A-type and
Y-type constants.

In the following examples, the field generated from the statement named ACON
contains four constants, each of which occupies four bytes. Note that there is a
location counter reference in one. The value of the location counter will be the
address of the first byte allocated to the fourth constant. The second statement
shows the same set of constants specified as literals (that is, address constant
literals).

ACON DC A(108,L0P,END-STRT,
%+4096)
LM 4,7,=A(108,L0P,END-STRT,
*+4096)

Note: When the location counter reference occurs in a literal, as in the LM
instruction above, the value of the location counter is the address of the first
byte of the instruction.

Address Constant—S: You can use the S-type address constant to assemble an
explicit address; that is, an address in base-displacement form. You can
specify the explicit address yourself or allow the assembler to compute it from
an implicit address, using the current base register and address in its computa-
tion.

The nominal values can be specified in two ways:

1. As one absolute or relocatable expression (see (1) in Figure 34 on
page 120) representing an implicit address

2. As two absolute expressions (see (2) in Figure 34) the first of which repres-
ents the displacement and the second, the base register.

The address value represented by the expression in 1 in Figure 34, will be con-
verted by the assembler into the proper base register and displacement value.
An S-type constant is assembled as a halfword and aligned on a halfword
boundary. The leftmost four bits of the assembled constant represent the base
register designation; the remaining 12 bits, the displacement value.

If length specification is used, only 2 bytes may be specified. S-type address
constants may not be specified as literals.

Chapter 5. Assembler Instruction Statements 119

Address Constant—V: The V-type constant allows you to reserve storage for the
address of a location in a control section that lies in another source module.
You should use the V-type address constant only to branch to the external
address specified. This use is contrasted with another method; that is, of speci-
fying an external symbol, identified by an EXTRN instruction, in an A-type
address constant.

Because you specify a symbol in a V-type address constant, the assembler
assumes that it is an external symbol. A value of zero is assembled into the
space reserved for the V-type constant; the correct relocated value of the
address is inserted into this space by the linkage editor before your object
program is loaded.

The symbol specified (see (1) in Figure 35) in the nominal value subfield does
not constitute a definition of the symbol for the source module in which the
V-type address constant appears.

The symbol specified in a V-type constant must not represent external data in
an overlay program.

Subfield Value Example Result
1. Duplication factor Allowed
2. Madifiers 2 bytes

Implicit length:

(length modifier
not present)

Alignment: Halfword
(Length modifier
not present)

Range for length: 2 only
(no bit
length)
Range for scale Not allowed

Range for exponent Not allowed

4. Nominal value Base Disp

Represented by: Absolute or DC S(RELOC) C XXX
relocatable, DC S(1024) 0 400
expression'
Two absolute DC S(512(12)) C 200
expressions?

Enclosed by: Parentheses

Exponent allowed: No

Number of values Multiple

per operand:

Padding: Not applicable

Truncation of Not applicable

assembled value:

Figure 34. S Address Constants

120 Assembler H Version 2 Language Reference

Subfield Value Example Result

1. Duplication factor Allowed
2. Modifiers 4 bytes
Implicit length:

(length modifier
not present)

Alignment: Fullword
(Length modifier
not present)

Range for length: 4 or 3 only
(no bit
length)

Range for scale Not allowed

Range for exponent Not allowed

3. Nominal value

Represented by: A single DC V(MODA)!
relocatable DC V(EXTADR)!
symbol

Enclosed by: Parentheses

Exponent allowed: No

Number of values Multiple

per operand:

Padding: With zeros at left

Truncation of Not applicable
assembled value:

Figure 35. V Address Constants

In the following example, 12 bytes will be reserved, because there are three
symbols. The value of each assembled constant will be zero until the program
is loaded. It must be emphasized that a V-type address constant of length less
than 4 can and will be processed by the assembler, but cannot be handled by
the linkage editor.

VCONST DC V(SORT ,MERGE,CALC)

Address Constant—Q: You use this constant to reserve storage for the offset
into a storage area of an external dummy section. The offset is entered into
this space by the linkage editor. When the offset is added to the address of an
overall block of storage set aside for external dummy sections, it allows you to
address the desired section.

For a description of the use of the Q-type address constant in combination with
an external dummy section, see “"External Dummy Sections” on page 66. See
also Figure 36 for details.

In the following example, to access VALUE, the value of A is added to the base
address of the block of storage allocated for external dummy sections. Q-type
address constants may not be specified in literals.

A DC Q(VALUE)

Note: The DXD or DSECT names referenced in the Q-type address constant
need not be previously defined.

Chapter 5. Assembler Instruction Statements 121

Subfield Value Example Result

1. Duplication factor Allowed

2. Madifiers 4 bytes
Implicit length:
(length modifier
not present)

Alignment: Fullword
(Length modifier
not present)

Range for length: 1 to 4 bytes
(no bit
length)

Range for scale Not allowed

Range for exponent Not allowed

3. Nominal value

Represented by: A single DC Q(DUMMYEXT)
relocatable DC V(DXDEXT)
symbol

Enclosed by: Parentheses

Exponent allowed: No

Number of values Multiple

per operand:

Padding: With zeros at left

Truncation of At left

assembled value:

Figure 36. Q Address Constants

Floating-Point Constants—E, D, and L: Floating-point constants allow you to
introduce data that is in the form suitable for the operations of the floating-point
feature instructions. These constants have the following advantages over fixed-
point constants.

* You do not have to consider the fractional portion of a value you specify,
nor worry about the position of the decimal point when algebraic operations
are to be performed.

* You can specify both much larger and much smaller values.

* You retain greater processing precision; that is, your values are carried in
more significant figures.

The nominal value can be a signed (see (1) in Figure 37 on page 124)—plus is
assumed if the number is unsigned—integer, fraction, or mixed number (see (2)
in Figure 37) followed by an’exponent (positive or negative). The exponent (see
(3) in Figure 37) must lie within the permissible range. If an exponent modifier
is also specified, the algebraic sum.of the exponent and the exponent modifier
must lie within the permissible range.

The format of the constant is shown in Figure 38 on page 125.

122 Assembler H Version 2 Language Reference

The value of the constant is represented by two parts:

* An exponent portion (see (1) in Figure 38 on page 125), followed by
* A fractional portion (see (2) in Figure 38).

A sign bit (see (3) in Figure 38) indicates whether a positive or negative
number has been specified. The number specified must first be converted into
a hexadecimal fraction before it can be assembled into the proper internal
format. The quantity expressed is the product of the fraction (see (4) in

Figure 38) and the number 16 raised to a power (see (5) in Figure 38).

Figure 38 shows the external format of the three types of floating-point con-
stants.

The range of values that can be assembled into floating-point constants is given
below:

Type of Range of Magnitude (M) of Values
Constant (Positive and Negative)

E 16-°* < M < (1-16-°) x 16°*

D 16-°* < M < (1-16-'%) x 16°°

L 16-°* < M < (1-16-2%) x 16°°

ED,L 54x10-77 < M = 7.2 x 107° (approximate)

If the value specified for a particular constant does not lie within these ranges,
the constant is not assembled, but is flagged as an error.

Chapter 5. Assembler Instruction Statements 123

Subfield Value Example
1. Duplication factor Allowed
2. Madifiers E-type: 4 bytes
Implicit length: D-type: 8 bytes
(length modifier L-type: 16 bytes
not present)
Alignment: E-type: Fullword
(Length maodifier D-type: Doubleword
not present) L-type: Doubleword
Range for length: E-type:
1 to 8 (byte length)
.1 to .64 (bit length)
D-type:
1 to 8 (byte length)
.1 to .64 (bit length)
L-type:
1 to 16 (byte length)
.1 to .128 (bit length)
Range for scale E-type: 0 to 5
D-type: 0 to 13
L-type: 0 to 27
Range for exponent -85to +75
3. Nominal value
Represented by: Decimal digits E-type:
(0to 9) DC FE +525"
DC FE’5.25°2
D-type:
DC D’-525'!
DC D'+.0012
L-type:
DC L’'525
DC L'3.414
Enclosed by: Apostrophes
Exponent allowed: Yes E-type:
DC E1E+60*
D-type:
DC D’-2.5E10°?
L-type:
DC L'3.712E-3"*
Number of values Multiple

per operand:

Padding:

With hexadecimal
zeros at left

Truncation of
assembled value:

Not applicable
(values are rounded)

Figure 37. Floating-Point Constants

124 Assembler H Version 2 Language Reference

Type | Called Format
E Short “/’_int;tl?it40>
. ractton
Flc?atlng- r 104]
Point
Number 78 31
D Long 7-bit 56-bit
Floating- Characteristic Fraction _
boint 9 77A(3]
oi _
L Extended 7-bit High-order half of
Floating- + Characteristic 112-bit Fraction
Point s)| K]
Number Bits 0 1 78 63
7-bit 56 bits .
+ Characteristic 7]
A _ ¢ |
Bits 0 1 78 63
Low-order half of
USED FOR 112-bit Fraction
SECOND HALF
OF LCON
I
Characteristic | [Hexadecimal Fraction
I
16E)I(\é+£+i+....
| Db 162 1
|
where a,b,c. . . . are hexadecimal digits, and E is

an exponent that has a positive or negative value
indicated by the characteristic

Figure 38. Floating-Point External Formats

Binary Representation. The assembler assembles a floating-point constant into
its binary representation as follows: The specified number, multiplied by any
exponents, is converted to the required two-part format. The value is translated

into:

* A fractional portion represented by hexadecimal digits and the sign indi-
cator. The fraction is then entered into the leftmost part of the fraction field
of the constant (after rounding).

* An exponent portion represented by the excess 64 binary notation, which is
then entered into the characteristic field of the constant.

Chapter 5. Assembler Instruction Statements

125

The excess 64 binary notation is when the value of the characteristic between
+127 and +64 represents the exponents of 16 between +63 and 0 (by sub-
tracting 64), and the value of the characteristic between +63 and O represents
the exponents of 16 between -1 and -64.

Notes:

1. The L-type floating-point constant resembles two contiguous D-type con-
stants. The sign of the second doubleword is assumed to be the same as
the sign of the first.

The characteristic for the second doubleword is equal to the characteristic
for the first minus 14 (the number of hexadecimal digits in the fractional
portion of the first doubleword).

2. If scaling has been specified, hexadecimal zeros are added to the left of the
normalized fraction (causing it to become unnormalized), and the exponent
in the characteristic field is adjusted accordingly. (For further details on
scaling, see “Subfield 3: Modifiers” on page 102.)

3. Rounding of the fraction is performed according to the implied or explicit
length of the constant. The resulting number will not differ from the exact
value specified by more than one in the last place.

4. Negative fractions are carried in true representation, not in the twos com-
plement form.

5. Duplication is applied after the constant has been assembled.

6. An implied length of 4 bytes is assumed for a short (E) constant and 8 bytes
for a long (D) constant. An implied length of 16 bytes is assumed for an
extended (L) constant. The constant is aligned at the proper word (E) or
doubleword (D and L) boundary if a length is not specified. However, any
length up to and including 8 bytes (E and D) or 16 bytes (L) can be specified
by a length modifier. In this case, no boundary alignment occurs.

Any of the following statements could be used to specify 46.415 as a positive,
fullword, floating-point constant; the last is a machine instruction statement with
a literal operand. Note that each of the last two constants contains an exponent

modifier.
DC E'46.415"
DC E'46415E-3"'
DC E'+464.15E-1"
DC E'+.46415E+2"
DC EE2'.46415"'
AE 6,=EE2"'.46415"

The following would each be generated as doubleword floating-point constants.
FLOAT DC DE+4'+46,-3.729,+473"'

126 Assembler H Version 2 Language Reference

DS—Define Storage

The DS instruction allows you to:

¢ Reserve areas of storage
* Provide labels for these areas
» Use these areas by referring to the symbols defined as labels

The DS instruction causes no data to be assembled. Unlike the DC instruction,
you do not have to specify the nominal value (fourth subfield) of a DS instruc-
tion operand. Therefore, the DS instruction is the best way of symbolically
defining storage for work areas, input/output buffers, etc.

Format of DS:

Name Operation Operand
Any symbol DS One or more operands, separated by conmas,
or blank written in the format

described in the following text

The format of the DS operand is identical to that of the DC operand; exactly the
same subfields are used and are written in exactly the same sequence as they
are in the DC operand. Although the formats are identical, there are two differ-
ences in the specification of subfields. They are:

1. The nominal value subfield is optional in a DS operand, but it is mandatory
in a DC operand. If a nominal value is specified in a DS operand, it must
be valid.

2. The maximum length that can be specified for the character (C) and
hexadecimal (X) type areas is 65,535 bytes rather than 256 bytes for the
same DC operands. The maximum length for the graphic (G) type is 65,534
bytes.

The label used in the name entry of a DS instruction, as with the label for a DC
instruction:

* Has an address value of the leftmost byte of the area reserved, after any
boundary alignment is performed

* Has a length attribute value, depending on the implicit or explicit length of
the type of area reserved

If the DS instruction is specified with more than one operand or more than one
nominal value in the operand, the label addresses the area reserved for the
field that corresponds to the first nominal value of the first operand. The length
attribute value is equal to the length explicitly specified or implicit in the first
operand.

Note: Unlike the DC instruction, bytes skipped for alignment are not set to zero.
Also, nothing is assembled into the storage area reserved by a DS instruction.
No assumption should be made as to the contents of the reserved area.

The size of a storage area that can be reserved by a DS instruction is limited

only by the size of virtual storage or by the maximum value of the location
counter, which is smaller.

Chapter 5. Assembler Instruction Statements 127

How to Use the DS Instruction
To Reserve Storage: If you want to take advantage of automatic boundary
alignment (if the ALIGN option is specified) and implicit length calculation, you
should not supply a length modifier in your operand specifications. You should
specify a type subfield that corresponds to the type of area you need for your
instructions.

Note: Duplication has no effect on implicit length.

Using a length modifier can give you the advantage of explicitly specifying the
length attribute value assigned to the label naming the area reserved.

However, your areas will not be aligned automatically according to their type. If
you omit the nominal value in the operand, you should use a length modifier for
the binary (B), character (C), graphic (G), hexadecimal (X), and decimal (P and
Z) type areas; otherwise, their labels will be given a length attribute value of 1
(2 for G-type).

When you need to reserve large areas, you can use a duplication factor.
However, in this case, you can only refer to the first area by label. You can
also use the character (C) and hexadecimal (X) field types to specify large
areas using the length modifier.

Although the nominal value is optional for a DS instruction, you can put it to
good use by letting the assembler compute the length for areas of the B, C, G,
X, and decimal (P or Z) type areas. You achieve this by specifying the general
format of the nominal value that will be placed in the area at execution time.

To Force Alignment: You can use the DS instruction to force alignment to a

boundary that otherwise would not be provided. You can force the location -
counter to a doubleword, fullword, or halfword boundary by using the appro-

priate field type (for example, D, F, or H) with a duplication factor of zero. No

space is reserved for such an instruction, yet the data that follows is aligned on

the desired boundary. For example, the following statements would set the

location counter to the next doubleword boundary and reserve storage space

for a 128-byte field (whose leftmost byte would be on a doubleword boundary).

DN 0D
AREA DS CL128

Note: Alignment is forced when either the ALIGN or the NOALIGN assembler
option is set.

To Name Fields of an Area: Using a duplication factor of zero in a DS instruc-
tion also allows you to provide a label for an area of storage without actually
reserving the area. You can use DS or DC instructions to reserve storage for,
and assign labels to, fields within the area. These fields can then be addressed
symbolically. (Another way of accomplishing this is described in
“DSECT—Identify Dummy Section” on page 61.) The whole area is addressable
by its label. In addition, the symbolic label will have the length attribute value
of the whole area. Within the area, each field is addressable by its label.

128 Assembler H Version 2 Language Reference

For example, assume that 80-character records are to be read into an area for

processing and that each record has the following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll Number
Employee Name
Date

Gross Wages
Withholding Tax

The following example illustrates how DS instructions might be used to assign a
name to the record area, then define the fields of the area and allocate storage
for them. Note that the first statement names the entire area by defining the
symbol RDAREA; this statement gives RDAREA a length attribute of 80 bytes,
but does not reserve any storage. Similarly, the fifth statement names a 6-byte
area by defining the symbol DATE; the three subsequent statements actually
define the fields of DATE and allocate storage for them. The second, ninth, and
last statements are used for spacing purposes and, therefore, are not named.

RDAREA DS 0CL8O
DS CL4
PAYNO DS CL6
NAME DS CL20
DATE DS 0CLb
DAY DS CL2
MONTH DS CL2
YEAR DN CL2
DS CcL1e
GROSS DS CL8
FEDTAX DS CL8
DS CL18

Additional examples of DS statements are shown below:

ONE DS CL80O One 80-byte field, Tength attribute of 80
TWO DS 80C 80 1-byte fields, length attribute of 1
THREE DS 6F 6 fullwords, length attribute of 4

FOUR DS D 1 doubleword, length attribute of 8

FIVE DS 4H 4 halfwords, length attribute of 2

SIX DS GL8O One 80-byte field, length attribute of 80
SEVEN DS 80G 80 2-byte fields, length attribute of 2

To define four 10-byte fields and one 100-byte field, the respective DS state-
ments might be as follows:

FIELD DS 4CL10
AREA DS CL100

Although FIELD might have been specified as one 40-byte field, the preceding
definition has the advantage of providing FIELD with a length attribute of 10.
This would be pertinent when using FIELD as an SS machine instruction
operand.

Chapter 5. Assembler Instruction Statements 129

CCW or CCW0—Define Channel Command Word (Format 0)

You can use the CCW or CCWO instruction to define and generate an 8-byte
channel command word aligned at a doubleword boundary for input/output
operations. The CCW and CCWO instructions have identical functions; however,
the CCWO instruction is not included in the S/370 instruction set. A CCW or
CCWQO will cause any bytes skipped to be zeroed. A CCW or CCWO instruction
will result in a Format O channel command word which allows 24-bit data
addresses. The internal machine format of a channel command word is shown

in Figure 39.
Byte Bits Usage
0 0-7 Command code
1-3 8-31 Address of data to operate upon
4 32-37 Flags
38-39 Must be specified as zeros
5 40-47 Set to zeros by assembler
6-7 48-63 Byte count or length of data

Figure 39. Channel Command Word, Format 0

Format of CCW and CCWO:

Name Operation Operand
Any symbol CCW or CCWO Command code, data address, flags,
or blank data count

All four operands must appear. They are written, from left to right, as follows:

1. An absolute expression that specifies the command code. This
expression’s value is right-justified in byte O.

2. A relocatable or absolute expression specifying the address of the data to
operate upon. This value is treated as a 3-byte, A-type address constant.
The value of this expression is right-justified in bytes 1 to 3.

3. An absolute expression that specifies the flags for bits 32 to 37, and zeros
for bits 38 and 39. The value of this expression is right-justified in byte 4.
(Byte 5 is set to zero by the assembler.)

4. An absolute expression that specifies the byte count or length of data. The
value of this expression is right-justified in bytes 6 and 7.

The generated channel command word is aligned on a doubleword boundary.
Any bytes skipped are set to zero.

The symbol in the name field, if present, is assigned the value of the address of
the leftmost byte of the channel command word generated. The length attribute
value of the symbol is 8.

The following are examples of CCW and CCWO statements:

WRITEL Ccw 1,DATADR,X'48',X'50"
WRITE2 CCwWo 1,DATADR,X'48',X'50"

130 Assembler H Version 2 Language Reference

The object code generated (in hexadecimal) for either of the above examples is:

01 xxxxxx 48 00 0050

where xxxxxx contains the address of DATADR, and DATADR must reside below
16 megabytes.

Notes:

1. If you use the EXCP access method, you must use CCW or CCWO, because
EXCP does not support 31-bit data addresses in channel command words.

2. You should use RMODE 24 with CCW or CCWO to ensure that valid data
addresses are generated in the channel command words at execution time.

CCW1—Define Channel Command Word (Format 1)
You can use the CCW1 instruction to specify the object code format to be used
for an 8-byte channel command word aligned at a doubleword boundary for
input/output operations. The object code for a Format 1 channel command
word allows a 31-bit data address, whereas the object code generated by a
CCW or CCWO instruction allows only a 24-bit data address. A CCW1 will cause
any bytes skipped to be zeroed. The internal machine format of a channel
command word is shown in Figure 40.

Byte Bits Usage

0 0-7 Command code
1 8-15 Flags

2-3 16-31 Count

4 32 Must be zero
4-7 33-63 Data address

Figure 40. Channel Command Word, Format 1

Format of CCW1:

Name Operation Operand
Any symbol CCW1 Conmand code, data address, flags,
or blank data count

All four operands must appear. They are written, from left to right, as follows:

1. An absolute expression that specifies the command code. This
expression’s value is right-justified in byte O.

2. An expression specifying the data address. This value is treated as a
4-byte, A-type address constant. The value of this expression is in bytes 4
to 7, the first bit of which is set to 0.

3. An absolute expression that specifies the flags for bits 8 to 15. The value of
this expression is right-justified in byte 1.

4. An absolute expression that specifies the count. The value of this
expression is right-justified in bytes 2 and 3.

Chapter 5. Assembler Instruction Statements 131

Note: The expression for the data address should be such that the address is
within the range 0 to 23!-1, inclusive, after possible relocation. This will be the
case if the expression refers to a location within one of the control sections
which will be link-edited together. An expression such as *-1000000000 will
yield an acceptable value only when the command control word is placed in
storage location 1000000000 or higher.

The generated channel command word is aligned on a doubleword boundary.
Any bytes skipped are set to zero.

The symbol in the name field, if present, is assigned the value of the address of
the leftmost byte of the channel command word generated. The length attribute
value of the symbol is 8.

The following is an example of a CCW1 statement:
A CCW1 X'oC',BUF1,X'00',L'BUF1

The object code (in hexadecimal) generated in the above example is:

0C 00 yy XXXXXXXX
where yy is length of BUF1, and xxxxxxxx is BUF1 address.

Note: BUF1 can reside anywhere in virtual storage.

Program Control Instructions
You use the program control instructions to:

* Specify the end of an assembly

* Set the location counter to a value or word boundary
e Insert previously written coding in the program

* Specify the placement of literals in storage

e Check the sequence of input cards

¢ Indicate statement format

e Punch a card

Except for the CNOP and COPY instructions, none of these assembler
instructions generate instructions or constants in the object program.

ICTL—Input Format Control
The ICTL instruction allows you to change the begin, end, and continue columns
that establish the coding format of the assembler language source statements.

For example, with the ICTL instruction, you can increase the number of columns
to be used for the identification or sequence checking of your source state-
ments. By changing the begin column, you can even create a field before the
begin column to contain identification or sequence numbers.

You can use the ICTL instruction only once, at the very beginning of a source

program. If you do not use it, the assembler recognizes the standard values for
the begin, end, and continue columns.

132 Assembler H Version 2 Language Reference

Format of ICTL.:

Name Operation Operand

Blank ICTL 1-3 decimal self-defining terms of the
form b or b,e or h,e,c

The operand entry must be one to three decimal self-defining terms. There are
only three possible ways of specifying the operand entry:

1. The operand b specifies the begin column of the source statement. It must
always be specified, and must be within the range of 1 to 40, inclusive.

2. The operand e specifies the end column of the source statement. The end
column, when specified, must be within the range of 41 to 80, inclusive;
when not specified, it is assumed to be 71.

3. The operand c specifies the continue column of the source statement. The
continue column, when specified, must be within the range of 2 to 40. If the
continue column is not specified, or if column 80 is specified as the end
column, the assembler assumes that continuation lines are not allowed.

If no ICTL statement is used in the source program, the assembler assumes
that 1, 71, and 16 are the begin, end, and continue columns, respectively.

The values specified for the three operands depend on each other. Two rules
governing the interaction of b, e, and c are:

1. The position of the end column must not be less than the position of the
begin column +5, but must be greater than the position of the continue
column.

2. The position of the continue column must be greater than that of the begin
column.

The next example designates the begin column as 25. Since the end column is
not specified, it is assumed to be column 71. No continuation cards are recog-
nized because the continue column is not specified.

ICTL 25

Note: The ICTL instruction does not affect the format of statements brought in
by a COPY instruction or generated from a library macro definition. The
assembler processes these statements according to the standard begin, end,
and continue columns described in “Field Boundaries” on page 10.

ISEQ—Input Sequence Checking
You can use the ISEQ instruction to cause the assembler to check if the state-
ments in a source module are in sequential order. In the ISEQ instruction, you
specify the columns between which the assembler is to check for sequence
numbers.

The assembler begins sequence checking with the first statement line following
the ISEQ instruction. The assembler also checks continuation lines.

Chapter 5. Assembler Instruction Statements 133

Sequence numbers on adjacent statements or lines are compared according to
the 8-bit internal EBCDIC collating sequence. When the sequence number on
one line is not greater than the sequence number on the preceding line, a
sequence error is flagged, and a warning message is issued, but the assembly
is not terminated.

Note: If the sequence field in the preceding line is blank, the assembler uses
the last preceding line with a nonblank sequence field to make its comparison.

Format of ISEQ:

Name Operation Operand

Blank ISEQ Two decimal self-defining terms of the
form 1,r or blank

If the operand is two decimal self-defining terms, then ISEQ initiates sequence
checking, beginning at the statement or line following the ISEQ instruction.
Checking begins at the column represented by 1 and ends at the column
represented by r. The second option of the ISEQ format terminates the
sequence checking operation.

If the operand is a blank, ISEQ terminates the operation. (Note that this ISEQ
statement is also sequence checked.) Checking may be resumed with another
ISEQ statement.

The rules for interaction are:

1. 1 specifies the leftmost column of the field to be checked, and r specifies
the rightmost column of the field to be checked. r must be greater than or
equal to 1.

2. 1 and r can be anywhere on the cards in the input. Thus, they can also be
between the begin and end columns.

Note: The assembler checks only those statements that are specified in the
coding of a source module. This includes any COPY instruction statement or
macro instruction.
However, the assembler does not check:

1. Statements inserted by a COPY instruction

2. Statements generated from model statements inside m: cro definitions or
from model statements in open code (statement generation is discussed in
detail in “"Chapter 7. How to Prepare Macro Definitions” on page 159)

3. Statements in library macro definitions

PUNCH—Punch a Card
The PUNCH instruction allows you to punch source or other statements into a
single card.

134 Assembler H Version 2 Language Reference

Code PUNCH statements in:

e a source module to produce control statements for the linkage editor. The
linkage editor uses these control statements to process the object module.

* macro definitions to produce, for instance, source statements in other com-
puter languages or for other processing phases.

The card that is punched has a physical position immediately after the PUNCH
instruction and before any other TXT cards of the object decks that are to
follow.

The PUNCH instruction causes the data in its operand to be punched into a
card. One PUNCH instruction produces one punched card, but as many PUNCH
instructions as necessary can be used.

The PUNCH instruction statement can appear anywhere in a source module
except before and between source macro definitions. If a PUNCH instruction
occurs before the first control section, the resultant card punched will precede
all other cards in the object deck.

The cards punched as a result of a PUNCH instruction are not a logical part of
the object deck, even though they can be physically interspersed in the object
deck.

Format of PUNCH:

Name Operation Operand

A sequence PUNCH A character string of up to

symbol or blank to 80 characters, enclosed in
apostrophes

All 256 punch combinations of the IBM System/370 character set are allowed in
the character string of the operand field. Variable symbols are also allowed.

The position of each character specified in the PUNCH statement corresponds
to a column in the card to be punched. However, the following rules apply to
ampersands and apostrophes:

1. A single ampersand initiates an attempt to identify a variable symbol and to
substitute its current value.

2. Double ampersands or apostrophes are punched as single ampersands or
apostrophes.

3. A single apostrophe followed by one or more blanks simply terminates the
string of characters punched. If a nonblank character follows a single apos-
trophe, an error message is issued and nothing is punched.

Only the characters punched, including blanks, count toward the maximum of 80
allowed.

Chapter 5. Assembler Instruction Statements 135

Notes:
1. No sequence number or identification is punched into the card produced.

2. If the NODECK option is specified when the assembler is invoked, no cards
are punched, neither for the PUNCH or REPRO instructions, nor for the
object deck of the assembly.

3. Double-byte data is permissible in the operand field when the DBCS assem-
bler option is specified. The double-byte data must be valid.

4. The DBCS ampersand and apostrophe are not recognized as delimiters.

5. A double-byte character which contains the value of an EBCDIC ampersand
or apostrophe in either byte is not recognized as a delimiter when enclosed
by SO and SI.

REPRO—Reproduce Following Card
The REPRO instruction causes the data specified in the statement that follows
to be punched into a card. Unlike the PUNCH instruction, the REPRO instruc-
tion does not allow values to be substituted into variable symbols before the
card is punched. One REPRO instruction produces one punched card.

The REPRO instruction can appear anywhere in a source module except before
and between source macro definitions. The punched cards are not part of the

object deck, even though they can be physically interspersed in the object deck.

Format of REPRO:

Name Operation Operand

A sequence REPRO Not required
symbol or blank

The line to be reproduced can contain any of the 256 punch characters,
including blanks, ampersands, and apostrophes. No substitution is performed
for variable symbols.

Notes:

1. Sequence numbers and identification are not punched in the card.

2. If the NODECK option is specified in the job control language for the assem-
bler program, no cards are punched: neither for the PUNCH or REPRO
instructions, nor for the object deck of the assembly.

3. Since the text of the line following a REPRO statement is not validated or
changed in any way, it can contain double-byte data, but this data will not
be validated.

136 Assembler H Version 2 Language Reference

PUSH Instruction

POP Instruction

The PUSH instruction allows you to save the current PRINT or USING status in
“push-down” storage on a last-in, first-out basis. You can restore this PRINT
and USING status later, also on a last-in, first-out basis, by using a corre-
sponding POP instruction.

Format of PUSH:

Name Operation Operand

A sequence PUSH PRINT or

symbol or USING or

bTank PRINT,USING or
USING,PRINT

One of the four options for the operand entry must be specified. The PUSH
instruction does not change the status of the current PRINT or USING
instructions; the status is only saved.

Note: When the PUSH instruction is used in combination with the POP instruc-
tion, a maximum of four nests of PUSH PRINT - POP PRINT or PUSH USING -
POP USING are allowed.

The POP instruction allows you to restore the PRINT or USING status saved by
the most recent PUSH instruction.

Format of POP:

Name Operation Operand

A sequence POP PRINT or

symbol or USING or

blank PRINT,USING or
USING,PRINT

One of the four options for the operand entry must be specified. The POP
instruction causes the status of the current PRINT or USING instruction to be
overridden by the PRINT or USING status saved by the last PUSH instruction.

Note: When the POP instruction is used in combination with the PUSH instruc-
tion, a maximum of four nests of PUSH PRINT - POP PRINT or PUSH USING -
POP USING are allowed.

Chapter 5. Assembler Instruction Statements 137

ORG—Set Location Counter
You use the ORG instruction to alter the setting of the location counter and thus
control the structure of the current control section. This allows you to redefine
portions of a control section.

Using Figure 41 as an example, if you wish to build a translate table (for
example, to convert EBCDIC character code into some other internal code):

* You define the table (see (1) in Figure 41) as being filled with zeros.

* You use the ORG instruction to alter the location counter so that its counter
value indicates a desired location (see (2) in Figure 41) within the table.

* You redefine the data (see (3) in Figure 41) to be assembled into that
location.

« After repeating the first three steps (see (4) in Figure 41) until your trans-
late table is complete, you use an ORG instruction with a blank operand
field to alter the location counter. The counter value then indicates the next
available location (see (5) in Figure 41) in the current control section (after
the end of the translate table).

Both the assembled object code for the whole table filled with zeros, and the
object code for the portions of the table you redefined, are printed in the
program listings. However, the data defined later is loaded over the previously
defined zeros and becomes part of your object program, instead of the zeros.

In other words, the ORG instruction can cause the location to point to any part
of a control section, even the middle of an instruction, into which you can
assemble desired data. It can also cause the location counter to point to the
next available location so that your program can continue to be assembled in a
sequential fashion.

138 Assembler H Version 2 Language Reference

FIRST

TABLE

5

l

GOON

INPUT

Source Module

START

DC
ORG
DC
DC

ORG

DC
DC

ORG
DC
DC

ORG
DC
DC

ORG
DS

TR

DS

END

0 Object Code
0 TABLE
XL256'00! (in Hex)
TABLE+0 d +0
c'o’ FO
c'1l’ Fl
TABLE+13 +13
c'D! C4
c'e' C5
A
Mﬂ-q
TABLE+C'D'f +196
AL1(13) 0D
AL1(14) OE
TABLE+C'(Q'l +240
AL1(0) 00
AL1 (1) 01
+255
OH
INPUT, TABLE
CL20

Figure 41. Building a Translate Table

Chapter 5. Assembler Instruction Statements

139

Format of ORG:

Name Operation Operand

A sequence 0RG A relocatable expression or bhlank
symbol or blank

In general, symbols used in the operand field need not have been previously
defined. However, the relocatable component of the expression (that is, the
unpaired relocatable term) must have been previously defined in the same
control section in which the ORG statement appears, or be equated to a previ-
ously defined value.

The location counter is set to the value of the expression in the operand. If the
operand is omitted, the location counter is set to the next available location for
the current control section.

An ORG statement cannot be used to specify a location below the beginning of
the control section in which it appears. For example, the following is invalid if it
appears less than 500 bytes from the beginning of the current control section.

ORG *-500

This is because the expression specified is then negative, and will set the
location counter to a value larger than the assembler can process. The
location counter will “wrap around” (the location counter is discussed in detail
in “Location Counter Reference” on page 32).

Note: With the ORG statement, you can give two instructions the same location
counter values. In such a case, the second instruction will not always eliminate
the effects of the first instruction. Consider the following example:

ADDR 0C A(LOC)
ORG x4
B nC C'BETA

In this example, the value of B (BETA) will be destroyed by the relocation of
ADDR during linkage editing.

Restriction on ORG when the LOCTR Instruction is Used: If you specify multiple
location counters with the LOCTR instruction, the ORG instruction can alter only
the location counter in use when the instruction appears. Thus, you cannot
control the structure of the whole control section using ORG, but only the part
that is controlled by the current location counter.

LTORG—Begin Literal Pool
You use the LTORG instruction so that the assembler can collect and assemble
literals into a literal pool. A literal pool contains the literals you specify in a
source module either after the preceding LTORG instruction, or after the begin-
ning of the source module.

140 Assembler H Version 2 Language Reference

Literal Pool

The assembler ignores the borders between control sections when it collects
literals into pools. Therefore, you must be careful to include the literal pools in
the control sections to which they belong (for details, see “Addressing
Considerations™ on page 142).

The creation of a literal pool gives the following advantages:

e Automatic organization of the literal data into sections that are properly
aligned and arranged so that no space is wasted.

e Assembling of duplicate data into the same area.
e Because all literals are cross-referenced, you can find the literal constant in

the pool into which it has been assembled.

Format of LTORG:

Name Operation Operand
Any symbol LTORG Not used
or blank

If an ordinary symbol is specified in the name field, it represents the first byte

of the literal pool; this symbol is aligned on a doubleword boundary and has a

length attribute value of 1. If bytes are skipped after the end of a literal pool to
achieve alignment for the next instruction, constant, or area, the bytes are not

filled with zeros.

A literal pool is created immediately after a LTORG instruction or, if no LTORG
instruction is specified, at the end of the first control section.

Each literal pool has four segments into which the literals are stored (a) in the
order that the literals are specified, and (b) according to their assembled
lengths, which, for each literal, is the total explicit or implied length), as
described below.

* The first segment contains all literal constants whose assembled lengths
are a multiple of 8.

* The second segment contains those whose assembled lengths are a mul-
tiple of 4, but not of 8.

* The third segment contains those whose assembled lengths are even, but
not a multiple of 4.

* The fourth segment contains all the remaining literal constants whose
assembled lengths are odd.

Since each literal pool is aligned on a doubleword boundary, this guarantees
that all literals in the first segment are doubleword aligned; in the second
segment, fullword aligned; and, in the third, halfword aligned. No space is
wasted except, possibly, at the origin of the pool.

Chapter 5. Assembler Instruction Statements 141

Literals from the following statement are in the pool, in the segments indicated
by the parenthesized numbers:

FIRST START 0
MVC T0,=3F'9" (2)
AD 2,=D'7" (1)
Ic 2,=XL1'8" (4)
,=CL3'JAN' (4)
,=2F'1,20 (1)
,=H'33" (3)

,=A(ADDR) (2)
,=XL8'05' (1)

Addressing Considerations
If you specify literals in source modules with multiple control sections, you
should:

* Write a LTORG instruction at the end of each control section, so that all the
literals specified in the section are assembled into the one literal pool for
that section. If a control section is divided and interspersed among other
control sections, you should write a LTORG instruction at the end of each
segment of the interspersed control section.

¢« When establishing the addressability of each control section, make sure (a)
that the entire literal pool for that section is also addressable, by including
it within a USING range, and (b) that the literal specifications are within the
corresponding USING domain. The USING range and domain are described
in “USING—Use Base ‘Address Register” on page 44.

Note: All the literals specified after the last LTORG instruction, or, if no LTORG
instruction is specified, all the literals in a source module are assembled into a
literal pool at the end of the first control section. You must then make this
literal pool addressable, along with the addresses in the first control section.
This literal pool is printed in the program listing after the END instruction.

Duplicate Literals
If you specify duplicate literals within the part of the source module that is con-
trolled by a LTORG instruction, only one literal constant is assembled into the
pertinent literal pool. This also applies to literals assembled into the literal
pool at the end of the first or only control section of a source module that con-
tains no LTORG instructions.

Literals are duplicates only if their specifications are identical, not if the object
code assembled happens to be identical.

When two literals specifying identical A-type (or Y-type) address constants
contain a reference to the value of the location counter (*), both literals are
assembled into the literal pool. This is because the value of the location
counter is different in the two literals.

142 Assembler H Version 2 Language Reference

The following examples illustrate how the assembler stores pairs of literals, if
the placement of each pair is controlled by the same LTORG statement.

X'FO' Both are

c'o' stored

XL3'e' Both are

HL3'0' stored

A(*+4) Both are

A(*+4) stored

X'FFFF!' Identical,

X'FFFF!' the first is stored

CNOP—Conditional No Operation

You can use the CNOP instruction to align any instruction or other data on a
specific halfword boundary. The CNOP instruction ensures an unbroken flow of
executable instructions by generating no-operation instructions to fill the bytes
skipped to perform the alignment that you specified.

For example, when you code the linkage to a subroutine, you may wish to pass
parameters to the subroutine in fields immediately following the branch and link
instructions. These parameters—for example, channel command words—can
require alignment on a specific boundary.

The subroutine can then address the parameters you pass through the register
with the return address. This is illustrated below:

CNOP 6,8
LINK BALR 2,10
CCw 1,DATADR,X'48"',X'50"

Assume that the location counter is currently aligned at a doubleword
boundary. Then the CNOP instruction causes three branch-on-conditions (no-
operations) to be generated, thus aligning the BALR instruction at the last
halfword in a doubleword as follows:

BCR 0,0
BCR 8,0
BCR 0,0
BALR 2,10
LINK CCW 1,DATADR,X'48"',X'50"

After the BALR instruction is generated, the location counter is at a doubleword
boundary, thereby ensuring that the CCW instruction immediately follows the
branch and link instruction.

The CNOP instruction forces the alignment of the location counter to a halfword,
fullword, or doubleword boundary. It does not affect the location counter if the
counter is already properly aligned. [f the specified alignment requires the
location counter to be incremented, one to three no-operation instructions (BCR
0,0 occupying two bytes each) are generated to fill the skipped bytes. Any
single byte skipped to achieve alignment to the first no-operation instruction is
filled with zeros.

Chapter 5. Assembler Instruction Statements 143

Format of CNOP:

Name Operation Operand
Any symbol CNOP Two absolute expressions of
or blank the form b,w

The operands must be absolute expressions, and the symbols in them need not
be previously defined. The first operand, b, specifies at which even-numbered
byte in a fullword or doubleword the location counter is set. The second
operand, w, specifies whether the byte is in a fullword {w =4) or a doubleword
{w=28).

Valid pairs of b and w are indicated below:

b,w Specifies

0,4 Beginning of a word

24 Middle of a word

0,8 Beginning of a doubleword

2,8 Second halfword of a doubleword

4.8 Middle (third halfword) of a doubleword
6,8 Fourth halfword of a doubleword

Figure 42 shows the position in a doubleword that each of these pairs specifies.
Note that both 0,4 and 2,4 specify two locations in a doubleword.

Doubleword

Fullword Fullword

Halfword Halfword Halfword Halfword

Byte Byte Byte Byte Byte Byte Byte Byte

2,4
2,8

w e
@ &

2,4
6,8

(ol o)
-
&~ o

Figure 42. CNOP Alignment

COPY—Copy Predefined Source Coding

You use the COPY instruction to obtain source language coding from a library
and include it in the programs currently being assembled. You thereby avoid
writing the same, often-used sequence of code over and over.

144 Assembler H Version 2 Language Reference

Format of COPY:

- Name Operation Operand

Blank CoPY One ordinary symbol

The operand is a symbol that identifies a partitioned data set member to be
copied from either the system macro library or a user library concatenated to it.
The source coding that is copied into a source module:

« Is inserted immediately after the COPY instruction

* Is inserted and processed according to the standard instruction statement
coding format, even if an ICTL instruction has been specified

* Must not contain either an ICTL or ISEQ instruction

* Can contain other COPY statements (There are no restrictions on the
number of levels of nested copy instructions. However, the COPY nesting
must not be recursive. Thus, if the statement "COPY A’ is coded, and A
contains a statement "COPY B’, B must not contain a statement "COPY A"))

« Can contain macro definitions
If a source macro definition is copied into the beginning of a source module,

both the MACRO and MEND statements that delimit the definition must be con-
tained in the same level of copied code.

- Notes:
1. The COPY instruction can also be used to copy statements into source
macro definitions.
2. The rules that govern the occurrence of assembler language statements in
a source module also govern the statements copied into the source module.
END—EnNnd Assembly
You use the END instruction to terminate the assembly of a program. You can
also supply an address in the operand field to which control may be transferred
after the program is loaded. The END instruction must always be the last state-
ment in the source program.
Format of END:
Name Operation Operand
A sequence END A relocatable expression or blank
symbol or expression or blank
blank
-

Chapter 5. Assembler Instruction Statements 145

The operand specifies the point to which control may be transferred when
loading is complete. This point is usually the address of the first executable
instruction in the program, as shown in the following sequence.

NAME CSECT

AREA DS 50F

BEGIN BALR 2,0
USING *,2
END BEGIN

If specified, the operand entry can be generated by substitution into variable
symbols. However, after substitution, that is, at assembly time:

* It must be a relocatable expression representing an address in the source
module delimited by the END instruction, or

» |f it contains an external symbol, the external symbol must be the only term
in the expression, or the remaining terms in the expression must reduce to
zero.

* |t must not be a literal.

Listing Control Instructions

The instructions described in this section request the assembler to produce
listings and identify output cards in the object deck according to your special
needs. They allow you to determine printing and page formatting options other
than the ones the assembler program assumes by default. Among other things,
you can introduce your own page headings, control line spacing, and suppress
unwanted detail.

TITLE—Identify Assembly Output

The TITLE instruction allows you to:

* Provide headings for each page of the assembly listing of your source
modules.

+ |dentify the assembly output cards of your object modules. You can specify
up to 8 identification characters that the assembler will punch into all the
output cards, beginning at column 73. The assembler punches sequence
numbers into the columns that are left, up to column 80.

Format of TITLE:

Name Operation Operand

A string of TITLE A character string up to
alphameric 100 characters, enclosed in
characters, a apostrophes

variable symbol, a
combination of
above, a sequence
symbol, or a blank

145 Assembler H Version 2 Language Reference

The first three options for the name field have a special significance only for the
first TITLE instruction in which they are specified. For subsequent TITLE
instructions, the first three options do not apply.

For the first TITLE instruction of a source module that has a nonblank name
entry that is not a sequence symbol, up to 8 alphameric characters can be
specified in any combination in the name field.

These characters are punched as identification, beginning at column 73, into all
the output cards from the assembly, except those produced by the PUNCH and
REPRO instructions. The assembler substitutes the current value into a vari-
able symbol and uses the generated result as identification characters.

If a valid ordinary symbol is specified, its appearance in the name field does
not constitute a definition of that symbol for the source module. It can, there-
fore, be used in the name field of any other statement in the same source
module.

The character string in the operand field is printed as a heading at the top of
each page of the assembly listing. The heading is printed beginning on the
page in the listing following the page on which the TITLE instruction is speci-
fied. A new heading is printed when a subsequent TITLE instruction appears in
the source module.

For example, if the following statement is the first TITLE statement to appear in
a program:

PGM1 TITLE "FIRST HEADING'

then PGM1 is punched into all of the output cards (columns 73 to 76) and this
heading appears at the top of each subsequent page: PGM1 FIRST HEADING.

If the following statement occurs later in the program:
TITLE '"A NEW HEADING'

then PGM1 is still punched into the output cards, but each following page
begins with the heading: PGM1 A NEW HEADING.

Each inline TITLE statement causes the listing to be advanced to a new page
before the heading is printed. If the TITLE statement appears in a macro and
PRINT NOGEN is specified, the listing will not be advanced to a new page.

Any printable character specified will appear in the heading, including blanks.
Double-byte data can be used when the DBCS assembler option is specified.
The double-byte data must be valid. Variable symbols are allowed. However,
the following rules apply to ampersands and apostrophes:

* The DBCS ampersand and apostrophe are not recognized as delimiters.

* A double-byte character that contains the value of an EBCDIC ampersand or
apostrophe in either byte is not recognized as a delimiter when enclosed by
SO and SI.

* A single ampersand initiates an attempt to identify a variable symbol and to
substitute its current value.

* Double ampersands or apostrophes specified, print as single ampersands
or apostrophes in the heading.

Chapter 5. Assembler Instruction Statements 147

* A single apostrophe followed by one or more blanks simply terminates the
heading prematurely. If a nonblank character follows a single apostrophe,
the assembler issues an error message and prints no heading.

Only the characters printed in the heading count toward the maximum of 100
characters allowed.

Note: The TITLE statement itself is not printed in an assembly listing.

EJECT—Start New Page

The EJECT instruction allows you to stop the printing of the assembler listing on
the current page, and continue the printing on the next page.

Format of EJECT:

Name Operation Operand

A sequence EJECT Not required
symbol or

blank

The EJECT instruction causes the next line of-the assembly listing to be printed
at the top of a new page. If the line before the EJECT statement appears at the
bottom of a page, the EJECT statement has no effect. An EJECT instruction
immediately following another EJECT instruction causes a blank page in the
listing.

Note: The EJECT instruction statement itself is not printed in the listing.

SPACE—Space Listing

You can use the SPACE instruction to insert one or more blank lines in the
listing of a source module. This allows you to separate sections of code on the
listing page.

Format of SPACE:

Name Operation Operand

A sequence SPACE A decimal self-defining
symbol or term or blank

blank

The operand entry specifies the number of lines to be left blank. A blank
operand entry causes one blank line to be inserted. A blank operand causes
one blank line to be inserted. If the operand specified has a value greater than
the number of lines remaining on the listing page, the instruction will have the
same effect as an EJECT statement.

Note: The SPACE instruction itself is not printed in the listing.

148 Assembler H Version 2 Language Reference

PRINT—Print Optional Data

The PRINT instruction allows you to control the amount of detail you wish
printed in the listing of your programs. The three options that you can set are
given in the table below:

Hierarchy Description Options
1 A listing is printed. ON

No listing is printed. OFF
2 All statements generated by the processing of a macro GEN

instruction are printed.

Statements generated by the processing of a macro NOGEN
instruction are not printed. (The MNOTE instruction
always causes a message to be printed.)

3 Constants are printed in full in the listing. DATA
Only the leftmost 8 bytes of constants are printed NODATA
in the listing.

The options are listed in hierarchic order; if OFF is specified, GEN and DATA
will not apply. If NOGEN is specified, DATA will not apply to constants that are
generated. The standard options inherent in the assembler program are ON,
GEN, and NODATA.

Format of PRINT:

Name Operation Operand

A sequence PRINT [ON| OFF]
symbol or [,GEN|NOGEN]
blank [,NODATA|DATA]

Note: Any sequence of specification is allowed.

At least one of the operands must be specified, and at most one of the options
from each group. The PRINT instruction can be specified any number of times
in a source module, but only those print options actually specified in the
instruction change the current print status.

PRINT options can be generated by macro processing, at preassembly time.
However, at assembly time, all options are in force until the assembler
encounters a new and opposite option in a PRINT instruction.

The PUSH and POP instructions, described in “PUSH Instruction” on page 137
and “POP Instruction” on page 137, also influence the PRINT options by saving
and restoring the PRINT status.

Note: The option specified in a PRINT instruction takes effect after the PRINT
instruction. If PRINT OFF is specified, the PRINT instruction itself is printed, but
not the statements that follow it. If the NOLIST assembler option is specified
when the assembler is invoked, the entire listing for the assembly is sup-
pressed.

Chapter 5. Assembler Instruction Statements 149

Part 2. Macro Language

¢ “Chapter 6. Introduction to Macro Language” describes the macro instruc-
tion statement, definition, library, and so on.

e “Chapter 7. How to Prepare Macro Definitions” and “Chapter 8. How to
Write Macro Instructions” describe the basic rules for preparing macro defi-
nitions and for writing macro instructions.

¢ “Chapter 9. How to Write Conditional Assembly Instructions” describes the

rules for writing conditional assembly instructions.

Part 2. Macro Language 151

Chapter 6. Introduction to Macro Language

This chapter introduces the basic macro concept: what you can use the macro
facility for, how you can prepare your own macro definitions, and how you call
these macro definitions for processing by the assembler.

Macro language is an extension of assembler language. It provides a conven-
ient way to generate a desired sequence of assembler language statements
many times in one or more programs. A macro definition is written only once;
thereafter, a single statement, a macro instruction statement, is written each
time you want to generate the desired sequence of statements. This simplifies
the coding of programs, reduces the chance of programming errors, and
ensures that standard sequences of statements are used to accomplish desired
functions.

In addition, conditional assembly allows you to code statements that may or
may not be assembled, depending upon conditions evaluated at assembly time.
These conditions are usually tests of values which may be defined, set,
changed, and tested during assembly. Conditional assembly can be used
without using macro instruction statements.

Using Macros

The main use of macros is to insert assembler language statements into a
source program.

You call a named sequence of statements (the macro definition) by using a
macro instruction, or macro call. The assembler replaces the macro call by the
statements from the macro definition and inserts them into the source module
at the point of call. The process of inserting the text of the macro definition is
called macro generation or macro expansion. The assembler expands a macro
at preassembly time.

The expanded stream of code then becomes the input for processing at
assembly time; that is, the time at which the assembler translates the machine
instructions into object code.

Macro Definition

A macro definition is a named sequence of statements you can call with a
macro instruction. When it is called, the assembler processes and usually gen-
erates assembler language statements from the definition into the source
module. The statements generated can be:

e Copied directly from the definition
* Modified by parameter values before generation

* Manipulated by internal macro processing to change the sequence in which
they are generated

Chapter 6. Introduction to Macro Language 153

You can define your own macro definitions in which any combination of these
three processes can occur. Some macro definitions, like some of those used
for system generation, do not generate assembler language statements, but
perform only internal processing.

A macro definition provides the assembler with (1) the name of the macro, (2)
the parameters used in the macro, and (3) the sequence of statements the
assembler generates when the macro instruction appears in the source
program.

Every macro definition consists of a macro definition header statement
(MACRO); a macro instruction prototype statement; one or more assembler lan-
guage statements; and a macro definition trailer statement (MEND), as shown in
Figure 43.

®» MaACRO
Prototype MACID &PARAMI,&PARAM2

|- V)
Vv

n 0* Body of Macro

-+ MEND

Macro Instruction MACID OPERANDI1,OPERAND2

Figure 43. Parts of a Macro Definition

* The macro definition header and trailer statements (MACRO and MEND)
indicate to the assembler the beginning and end of a macro definition (see
(1) in Figure 43).

 The macro instruction prototype statement is used to name the macro (see
(2) in Figure 43), and to declare its parameters (see (3) in Figure 43). In the
operand field of the macro instruction, you can assign values (see (4) in
Figure 43) to the parameters declared for the called macro definition.

* The body of a macro definition (see (5) in Figure 43) contains the state-
ments that will be generated when you call the macro. These statements
are called model statements; they are usually interspersed with conditional
assembly statements or other processing statements.

154 Assembler H Version 2 Language Reference

Model Statements

You can also write assembler language statements as model statements.
When it expands the macro, the assembler copies them exactly as they are
written. You can also use variable symbols as points of substitution in a model
statement. The assembler will enter values in place of these points of substi-
tution each time the macro is called.

The three types of variable symbols in the assembler language are:

* Symbolic parameters, declared in the prototype statement
* System variable symbols
* SET symbols, which are part of the conditional assembly language

The assembler processes the generated statements, with or without value sub-
stitution, at assembly time.

Processing Statements

Processing statements perform functions at preassembly time when macros are
expanded, but they are not themselves generated for further processing at
assembly time. The processing statements are:

¢ Conditional assembly instructions
* [nner macro calls

¢ MNOTE instructions

* MEXIT instructions

¢« AREAD instructions

The MNOTE instruction allows you to generate an error message with an error
condition code attached, or to generate comments in which you can display the
results of preassembly computation.

The MEXIT instruction tells the assembler to stop processing a macro definition.
The MEXIT instruction, therefore, provides an exit from the middle of a macro
definition.

The MEND instruction not only delimits the contents of a macro definition, but
also provides an exit from the definition.

The AREAD instruction allows you to assign to a SETC symbol the character
string value of a statement that is placed immediately after a macro instruction.

Comments Statements

One type of comments statement describes preassembly operations and is not
generated. The other type describes assembly-time operations and is, there-
fore, generated.

Macro Instruction Statement

A macro instruction statement (hereafter called a macro instruction) is a source
program statement that you code to tell the assembler to process a particular
macro definition. The assembler generates a sequence of assembler language
statements for each occurrence of the same macro instruction. The generated
statements are then processed as any other assembler language statement.

Chapter 6. Introduction to Macro Language 155

The macro instruction provides the assembler with:
* The name of the macro definition to be processed.

* The information or values to be passed to the macro definition. The assem-
bler uses the information either in processing the macro definition or for
substituting values into a model statement in the definition.

The output from a macro definition, called by a macro instruction, can be:

* A sequence of statements generated from the model statements of the
macro for further processing at assembly time.

* Values assigned to global SET symbols. These values can be used in other
macro definitions and in open code.

You can call a macro definition by specifying a macro instruction anywhere in a
source module. You can also call a macro definition from within another macro
definition. This type of call is an inner macro call; it is said to be nested in the
macro definition.

Source and Library Macro Definitions

You can include a macro definition in a source module. This type of definition
is called a source macro definition.

You can also insert a macro definition into a system or user library (located, for
example, on disk) by using the appropriate utility program. This type of defi-
nition is called a library macro definition. The I1BM-supplied macro definitions
are examples of library macro definitions.

You can call a source macro definition only from the source module in which it
is included. You can call a library macro definition from any source module.

Source and library macros are expanded in the same way, but syntax errors
are handled differently. In source macros, error messages are attached to the
statements in error. In library macros, however, error messages cannot be
associated with the statement in error, because these macros are located and
edited after the entire source module has been read. Therefore, the error mes-
sages are associated with the END statement.

Because of the difficulty of finding syntax errors in library macros, a macro defi-
nition should be run and “debugged” as a source macro before it is placed in a
macro library.

Macro Library
The same macro definition may be made available to more than one source
program by placing the macro definition in the macro library. The macro
library is a collection of macro definitions that can be used by all the assembler
language programs in an installation. Once a macro definition has been placed
in the macro library, it may be used by writing its corresponding macro instruc-
tion in a source program. Macro definitions must be in the system macro
library under the same name as the prototype. The procedure for placing
macro definitions in the macro library is described in the appropriate utilities
manual.

156 Assembler H Version 2 Language Reference

System Macro Instructions
The macro instructions that correspond to macro definitions prepared by IBM
are called system macro instructions. System macro instructions are described
in the appropriate supervisor services and macro instructions and data man-
agement macro instructions manuals.

Conditional Assembly Language

The conditional assembly language is a programming language with most of
the features that characterize a programming language. For example, it pro-
vides:

e Variables

* Data attributes

* Expression computation

e Assignment instructions

e Labels for branching

¢ Branching instructions

e Substring operators that select characters from a string

You can use the conditional assembly language in a macro definition to receive
input from a calling macro instruction. You can produce output from the condi-
tional assembly language by using the MNOTE instruction.

You can use the functions of the conditional assembly language to select state-
ments for generation, to determine their order of generation, and to perform

computations that affect the content of the generated statements.

The conditional assembly language is described in “Chapter 9. How to Write
Conditional Assembly Instructions.”

Chapter 6. Introduction to Macro Language 157

Chapter 7. How to Prepare Macro Definitions

Defining a macro means preparing the statements that constitute a macro defi-
nition. To define a macro you must:

¢ Give it a name

¢ Declare any parameters to be used

* Write the statements it contains

e Establish its boundaries with a MACRO and a MEND instruction

Except for conditional assembly instructions, this chapter describes all the
statements that can be used to prepare macro definitions. Conditional
assembly instructions are described in “Chapter 9. How to Write Conditional
Assembly Instructions” on page 211.

Where to Define a Macro in a Source Module
Macro definitions can appear anywhere in a source module. They remain in
effect for the rest of your source module, or until another macro definition
defining a macro with the same operation code is encountered. Thus, you can
redefine a macro at any point in your program. The new definition will be used
for all subsequent calls to the macro in the program.

This type of macro definition is called a source macro definition. A macro defi-
nition can also reside in a system library; this type of macro is called a library
macro definition. Either type can be called from the source module by the
appropriate macro instruction.

Macro definitions can also appear inside other macro definitions. There is no
limit to the levels of macro definitions permitted.

The assembler does not process inner macro definitions until it finds the defi-
nition during the processing of a macro instruction calling the outer macro.

Example:
MACRO Macro header for outer macro
OUTER 8A,&C= Macro prototype
AIF ('&C' EQ '").A
MACRO Macro header for inner macro
INNER Macro prototype
MEND Macro trailer for inner macro
A ANOP
MEND Macro trailer for outer macro

The assembler does not process the macro definition for INNER until OUTER is
called with a value for &C other than a null string.

Chapter 7. How to Prepare Macro Definitions 159

Open Code
Open code is that part of a source module that lies outside of any source macro
definition. At coding time, it is important to distinguish between source state-
ments that lie in open code, and those that lie inside macro definitions.

Format of a Macro Definition
The general format of a macro definition is shown in Figure 44. The four parts
are described in detail below:

MACRO Header statement

ANYNAME Prototype statement

Body of macro

MEND Trailer statement

Figure 44. Format of a Macro Definition

MACRO—Macro Definition Header

MACRO indicates the beginning of a macro definition. It must be the first state-
ment in every macro definition.

Format of MACRO:

Name Operation Operand

MACRO

MEND—Macro Definition Trailer

MEND indicates the end of a macro definition. It also provides an exit when it
is processed during macro expansion. It can appear only once within a macro
definition and must be the last statement in every macro definition.

160 Assembler H Version 2 Language Reference

Format of MEND:

Name Operation Operand

A sequence MEND
symbol
or blank

Macro Instruction Prototype

Name Field

Operation Field

The macro instruction prototype statement (hereafter called the prototype state-
ment) specifies the mnemonic operation code and the format of all macro
instructions that you use to call the macro definition.

The prototype statement must be the second noncomment statement in every
macro definition. Only internal comments statements are allowed between the
macro header and the macro prototype. Internal comments statements are
listed only with the macro definition.

Format of the prototype statement:

Name Operation Operand

A name field A symbol Zero or more symbolic parameters
parameter (mandatory) parameters separated by conmas
or bhlank

The symbolic parameters are used in the macro definition to represent the
operands of the corresponding macro instruction. A description of symbolic
parameters appears under “Symbolic Parameters” on page 170.

You can write a name field parameter, similar to the symbolic parameter, as
the name entry of a macro prototype statement. You can then assign a value to
this parameter from the name entry in the calling macro instruction.

If used, the name entry must be a variable symbol. If this parameter also
appears in the body of a macro, it will be given the value assigned to the
parameter in the name field of the corresponding macro instruction. Note that
the value assigned to the name field parameter has special restrictions that are
listed in “Formatting Specifications” on page 15.

The symbol in the operation field of the prototype statement establishes the
name by which a macro definition must be called. This name becomes the
operation code required in any macro instruction that calls the macro.

Chapter 7. How to Prepare Macro Definitions 161

Operand Field

Any operation code can be specified in the prototype operation field. If the
entry is the same as an assembler or a machine operation code, the new defi-
nition overrides the previous use of the symbol. The same is true if the speci-
fied operation code has been defined earlier in the program as a macro, or is
the operation code of a library macro.

Macros that are defined inline may use any ordinary symbol for the operation
field. However, operating system rules may prevent some of these macros
from being stored as member names.

Note: The assembler requires that the member name and macro name be the
same; otherwise, an error occurs.

The operand field in a prototype statement allows you to specify positional or
keyword parameters. These parameters represent the values you can pass
from the calling macro instruction to the statements within the body of a macro
definition.

The operand field of the macro prototype statement must contain 0 to 240 sym-
bolic parameters separated by commas. They can be positional parameters or
keyword parameters, or both.

If no parameters are specified in the operand field and if the absence of the
operand entry is indicated by a comma preceded and followed by one or more
blanks, remarks are allowed.

The following is an example of a prototype statement:
&NAME MOVE &T0,&FROM

Alternative Ways of Coding the Prototype Statement

The prototype statement can be specified in one of the following three ways:

* The normal way, with all the symbolic parameters preceding any remarks
* An alternative way, allowing remarks for each parameter
e A combination of the first two ways

The following examples illustrate (1) the normal statement format, (2) the alter-
native statement format, and (3) a combination of both statement formats.

Opera-
Name tion Operand Conment Cont.
NAME1 OP1 &0PERAND1,&0PERAND2,&0PERAND3 This is the normal X
statement format

NAME2 0P2 &OPERAND1, This is the alter- X
&OPERAND?2 native statement format X

NAME3 0P3 &0PERAND1, This is a combination X
&0PERAND2,&0PERAND3, &0PERAND4 of bhoth X

162 Assembler H Version 2 Language Reference

Notes:

1. Any number of continuation lines are allowed. However, each continuation
line must be indicated by a nonblank character in the column after the end
column on the preceding card.

2. For each continuation line, the operand field entries (symbolic parameters)
must begin in the continue column; otherwise, the whole line and any lines
that follow will be considered to contain remarks.

3. The standard value for the continue column is 16, and, for the column after
the end column, is 72.

4. A comma is required after each parameter except the last.
5. One or more blanks is required between the operand and the remarks.

6. If the assembler is invoked with the DBCS option, the continuation features
outlined in “Continuation of double-byte data” on page 12 apply to contin-
uation in the macro language. Extended continuation may be useful if a
macro keyword parameter contains double-byte data.

Body of a Macro Definition

The body of a macro definition contains the sequence of statements that consti-
tutes the working part of a macro. You can specify:

1. Model statements to be generated

2. Processing statements that, for example, can alter the content and
sequence of the statements generated or issue error messages

3. Comments statements, some of which are generated and others which are
not

4. Conditional assembly instructions to compute results to be displayed in the
message created by the MNOTE instruction, without causing any assembler
language statements to be generated

The statements in the body of a macro definition must appear between the
macro prototype statement and the MEND statement of the definition. Numbers
1 through 3 in the list above are the three main types of statements allowed in
the body of a macro. The body of a macro definition can be empty, that is,
contain no statements.

Note: You can include macro definitions in the body of a macro definition. This
is explained under “Using a Macro Definition” in this chapter.

Model Statements

Model statements are statements from which assembler language statements
are generated at preassembly time. They allow you to determine the form of
the statements to be generated. By specifying variable symbols as points of
substitution in a model statement, you can vary the contents of the statements
generated from that model statement. You can also use model statements into
which you substitute values in open code.

Chapter 7. How to Prepare Macro Definitions 163

A model statement consists of one or more fields, separated by one or more
blanks, in columns 1to 71. The fields are called the name, operation, operand,
and remarks fields.

Each field or subfield can consist of:

e An ordinary character string composed of alphameric and special charac-
ters

e A variable symbol as a point of substitution

* Any combination of ordinary character strings and variable symbols to form
a concatenated string.

The statements generated at preassembly time from model statements must be
valid machine or assembler instructions, but must not be conditional assembly
instructions. They must obey the coding rules described in “Rules for Model
Statement Fields” on page 168 or they will be flagged as errors at assembly

time.

Examples:
LABEL L 3,AREA
LABEL L 3,20(4,5)
&LABEL L 3,8&AREA
FIELD&A L 3,AREA&C

Variable Symbols as Points of Substitution

Values can be substituted for variable symbols that appear in the name, opera-
tion, and operand fields of model statements; thus, variable symbols represent
points of substitution. The three main types of variable symbol are:

* Symbolic parameters (positional or keyword)

e System variable symbols (&SYSLIST, &SYSNDX, &SYSECT, &SYSPARM,
&SYSDATE, &SYSLOC, and &SYSTIME)

e SET symbols (global or local SETA, SETB, or SETC symbols)

Examples:

&PARAM(3)
&SYSLIST(1,3)
&SYSLIST(2)
&SETA(10)
&SETC(15)

Note: Symbolic parameters, SET symbols, and the system variable symbol,
&SYSLIST, can all be subscripted. The remaining system variable symbols
(&SYSNDX, &SYSECT, &SYSPARM, &SYSDATE, &SYSLOC, and &SYSTIME)
cannot be subscripted.

Listing of Generated Fields

164

The different fields in a macro-generated statement or a statement generated in
open code appear in the listing in the same column as they are coded in the
model statement, with the following exceptions:

e If the substituted value in the name or operation field is too large for the
space available, the next field will be moved to the right with one blank sep-
arating the fields.

Assembler H Version 2 Language Reference

If the substituted value in the operand field causes the remarks field to be
displaced, the remarks field is written on the next line, starting in the
column where it is coded in the model statement.

If the value substituted in the operation field of a macro-generated state-
ment contains leading blanks, the blanks are ignored.

If the value substituted in the operation field of a model statement in open
code contains leading blanks, the blanks will be used to move the field to
the right.

If the value substituted in the operand field contains leading blanks, the
blanks will be used to move the field to the right.

If the value substituted contains trailing blanks, the blanks are ignored.

Listing of generated fields containing double-byte data: If the assembler is
invoked with the DBCS option, then the following differences apply:

Any continuation indicators present in the model statement will be dis-
carded.

Double-byte data that must be split at a continuation point will always be
made readable on a device capable of presenting DBCS characters—SI| and
SO will be inserted at the break point, and the break-point will always occur
between double-byte characters.

The continuation indicator will be extended to the left, if necessary, to fill
space that cannot be filled with double-byte data because of alignment and
delimiter considerations. The maximum number of columns so used is 3.

If continuation is required and the character to the left of the continuation
indicator is X, then + will be used as the continuation indicator so as to
clearly distinguish the position of the end column. This will apply to any
generated field, regardless of its contents, in order to prevent ambiguity.

Redundant SI/SO pairs may be present in a field after substitution. If they
occur at a continuation point, the assembler will not distinguish them from
Sl and SO inserted by the assembler to preserve readability. You must
refer to the object code to resolve this ambiguity.

Rules for Concatenation
If a symbolic parameter in a model statement is immediately preceded or fol-
lowed by other characters or another symbolic parameter, the characters that
correspond to the symbolic parameter are combined in the generated state-
ment with the other characters or the characters that correspond to the other
symbolic parameter. This process is called concatenation.

When variable symbols are concatenated to ordinary character strings, the fol-
lowing rules apply to the use of the concatenation character (a period). The
concatenation character is mandatory when:

M
(2

An alphameric character is to follow a variable symbol.

A left parenthesis that does not enclose a subscript is to follow a vari-
able symbol.

(3-4) A period () is to be generated. Two periods must be specified in the

concatenated string following a variable symbol.

Chapter 7. How to Prepare Macro Definitions 165

The concatenation character is not required when:
(5) An ordinary character string precedes a variable symbol.

(6) A special character, except a left parenthesis or a period, is to follow a
variable symbol.

(7) A variable symbol follows another variable symbol.

(8) The concatenation character must not be used between a variable
symbol and its subscript; otherwise, the characters will be considered a
concatenated string and not a subscripted variable symbol.

Figure 45 on page 167, in which the circled numbers correspond to the
numbers in the above list, gives the rules for concatenating variable symbols to
ordinary character strings.

Concatenation of fields containing double-byte data: If the assembler is invoked
with the DBCS option, then the following additional rules apply:

* Because ampersand is not recognized in double-byte data, variable
symbols must not be present in double-byte data.

* The concatenation character is mandatory when double-byte data is to
follow a variable symbol.

* The assembler checks for redundant SI and SO at concatenation points. If
the byte to the left of the join is S| and the byte to the right of the join is SO,
then the SI/SO pair is considered redundant and is removed.

The following example illustrates these rules:

&SYMBOL SETC '<DcDd>"
DBCS DC C'<DaDb>&SYMBOL.<.&.S.Y.M.B.0.L>'

The SI/SO pairs between double-byte characters Db and Dc, and Dd and .&, will
be removed. The variable symbol &SYMBOL is recognized between the
double-byte strings but not in the double-byte strings. The result after concat-
enation is:

DBCS DC C'<DaDbDcDd.&.S.Y.M.B.0.L>'

166 Assembler H Version 2 Language Reference

Concatenated Values to be Generated

String Substituted Result

Variable Value
symbol

&FIELD .Ao &FIELD AREA AREAA

&FIELDA &FIELDA SUM SUM

&DISP. (&BASE) &DISP 100 100(10)
&BASE 10
Concatenation character is not generated

DC D'&INT_.".‘&FRACT"&INT 99 DC D'99.88"
o &FRACT 88 é
DC D'& INT&FRACT' DC D'9988"
DC D'&INT.&FRACT'| | DC D'9988"'
optional

Concatenation character is not generated

FIELD&A &A A FIELDA
&A-t&B/*3-D &A A A+B*3-D
&B B
&A&B AB
&SYM(&SUBSCR)} &SUBSCR 10
0 &SYM(10) ENTRY ENTRY

Figure 45. Rules for Concatenation

Chapter 7. How to Prepare Macro Definitions 167

http:FIELD.A8

Rules for Model Statement Fields
The fields that can be specified in model statements are the same fields that
can be specified in an ordinary assembler language statement. They are the
name, operation, operand, and remarks fields. It is also possible to specify a
continuation-indicator field, an identification-sequence field, and a field before
the begin column, if the appropriate ICTL instruction has been specified. Char-
acter strings in the last three fields (in the standard format only, columns 72
through 80) are generated exactly as they appear in the model statement, and
no values are substituted for variable symbols.

Model statements must have an entry in the operation field, and, in most cases,
an entry in the operand field in order to generate valid assembler language
instructions.

Name Field: The entries allowed in the name field of a model statement, before
generation, are given below.

* Blank

* Ordinary symbol

* Sequence symbol

e Variable symbol

e Any combination of variable symbols and other character strings concat-
enated together

The generated result must either be a blank or a valid ordinary symbol.
Variable symbols must not be used to generate comments statement indicators
(*or.").
Note: Restrictions on the name entry are further specified where each indi-
vidual assembler language instruction is described in this manual.
Operation Field: The entries allowed in the operation field of a model state-
ment, before generation, are given in the following list:

¢ An ordinary symbol that represents the operation code for:

— Any machine instruction
— A macro instruction
— The following assembler instructions:

AMODE DSECT PRINT

ccw DXD PUNCH
CCvo EJECT PUSH
CCW1 END RMODE
CNOP ENTRY REPRO
CoM EQU SPACE

COPY EXTRN START
CSECT ISEQ TITLE

CXD LTORG USING
DC OPSYN WXTRN
DROP ORG MEXIT
DS POP MNOTE

Note: MNOTE and MEXIT are not model statements; they are described
in “Chapter 7. How to Prepare Macro Definitions.”

168 Assembler H Version 2 Language Reference

— A variable symbol
— A combination of variable strings concatenated together

Operation code ICTL is not allowed inside a macro definition. The MACRO and
MEND operation codes are not allowed in model statements; they are used only
for delimiting macro definitions.

If the REPRO operation code is specified in a model statement, no substitution
is performed for the variable symbols in the statement line following the REPRO
statement. Variable symbols can be used alone or as part of a concatenated
string to generate operation codes for:

¢ Any machine instruction
* Any assembler instruction listed above, except COPY, ISEQ, REPRO, and
MEXIT

The generated operation code must not be an operation code for the following
(or their OPSYN equivalents):

* A macro instruction

* A conditional assembly instruction

* The following assembler instructions: COPY, ICTL, ISEQ, MACRO, MEND,
MEXIT, and REPRO

Operand Field: The entries allowed in the operand field of a model statement,
before generation, are given below:

e Blank (if valid)

e An ordinary symbol

e A character string, combining alphameric and special characters (but not
variable symbols)

e A variable symbol

¢ A combination of variable symbols and other character
strings concatenated together

* |If the assembler is invoked with the DBCS option, character strings may
contain double-byte data, provided the character strings are enclosed by
apostrophes.

The allowable results of generation are a blank (if valid) and a character string
that represents a valid assembler or machine instruction operand field.

Note: Variable symbols must not be used in the operand field of a COPY, ICTL,
or ISEQ instruction.

Chapter 7. How to Prepare Macro Definitions 169

Remarks Field: The remarks field of a model statement can contain any combi-
nation of characters. No substitution is performed for variable symbols
appearing in the remarks field. Only generated statements will be printed in
the listing.

Note: One or more blanks must be used in a model statement to separate the
name, operation, operand, and remarks fields from each other. Blanks cannot
be generated between fields in order to create a complete assembler language
statement. The exception to this rule is that a combined operand-remarks field
can be generated with one or more blanks to separate the two fields.

Symbolic Parameters

Symbolic parameters allow you to pass values into the body of a macro defi-
nition from the calling macro instruction. You declare these parameters in the
macro prototype statement. They can serve as points of substitution in the
body of the macro definition and are replaced by the values assigned to them
by the calling macro instruction.

By using symbolic parameters with meaningful names, you can indicate the
purpose for which the parameters (or substituted values) are used.

Symbolic parameters must be valid variable symbols. A symbolic parameter
consists of an ampersand followed by an alphabetic character and from 0 to 61
alphameric characters.

The following are valid symbolic parameters:

&READER &LO0P2
&A23456 &N
&X4F2 &4

The following are invalid symbolic parameters:

CARDAREA first character is not an ampersand

&256B first character after ampersand is not a Tetter
&BCD%34 contains a special character other than initial ampersand

&IN AREA contains a special character [the blank] other than initial ampersand

Symbolic parameters have a local scope; that is, the value they are assigned
only applies to the macro definition in which they have been declared.

The value of the parameter remains constant throughout the processing of the
containing macro definition for every call on that definition.

Note: Symbolic parameters must not have muitiple definitions or be identical to
any other variable symbols within the given local scope. This applies to the
system variable symbols described in “System Variable Symbols” in this
chapter, and to local and global SET symbols described in “"SET Symbols” on
page 212.

170 Assembler H Version 2 Language Reference

The two kinds of symbolic parameters are:

* Positional parameters
* Keyword parameters

Each positional or keyword parameter used in the body of a macro definition
must be declared in the prototype statement.

The following is an example of a macro definition with symbolic parameters.

MACRO Header
&NAME MOVE &T0,&FROM Prototype
&NAME ST 2,SAVE Model

L 2,&FROM Model

ST 2,&70 Mode]

L 2,SAVE Model

MEND Trailer

In the following macro instruction that calls the above macro, the characters
HERE, FIELDA, and FIELDB of the MOVE macro instruction correspond to the
symbolic parameters &NAME, &TO, and &FROM, respectively, of the MOVE pro-
totype statement.

HERE MOVE FIELDA,FIELDB

If the preceding macro instruction were used in a source program, the following
assembler language statements would be generated:

HERE ST 2,SAVE
L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

Positional Parameters

You should use a positional parameter in a macro definition if you want to
change the value of the parameter each time you call the macro definition.
This is because it is easier to supply the value for a positional parameter than
for a keyword parameter. You only have to write the value you want the
parameter to have in the proper position in the operand of the calling macro
instruction.

For keyword parameters (described below), you must write the entire keyword
and the equal sign that precedes the value to be passed. However, if you need
a large number of parameters, you should use keyword parameters. The
keywords make it easier to keep track of the individual values you must specify
at each call by reminding you which parameters are being given values.

The general specifications for symbolic parameters, described in “Symbols” on
page 25, also apply to positional parameters. Note that the specification for
each positional parameter declared in the prototype statement definition must
be a valid variable symbol. Values are assigned to the positional parameters
by the corresponding positional operands specified in the macro instruction that
calis the definition.

Chapter 7. How to Prepare Macro Definitions 171

&SYSECT—Current Control Section

You can use &SYSECT in a macro definition to generate the name of the ‘
current control section. The current control section is the control section in
which the macro instruction that calls the definition appears.

The local system variable symbol &SYSECT is assigned a read-only value each
time a macro definition is called.

The value assigned is the symbol that represents the name of the current
control section from which the macro definition is called. Note that it is the
control section in effect when the macro is called. A control section that has
been initiated or continued by substitution does not affect the value of &SYSECT
for the expansion of the current macro. However, it does affect &SYSECT for a
subsequent macro call. Nested macros cause the assembler to assign a value
to &SYSECT that depends on the control section in force inside the outer macro
when the inner macro is called.

Notes:

1. The control section whose name is assigned to &SYSECT can be defined by
a START, CSECT, DSECT, or COM instruction.

2. The value of the type attribute of &SYSECT (T'&SYSECT) is always U, and
the value of the count attribute (K'&SYSECT) is equal to the number of char-
acters assigned as a value to &SYSECT.

3. Throughout the use of a macro definition, the value of &SYSECT may be
considered a constant, independent of any CSECT or DSECT statements or
inner macro instructions in that definition.

The next example illustrates these rules. In it, statement 8 is the last CSECT,
DSECT, or START statement processed before statement 9 is processed.
Therefore, &SYSECT is assigned the value MAINPROG for macro instruction
OUTER1 in statement 9. MAINPROG is substituted for &SYSECT when it
appears in statement 6.

Statement 3 is the last CSECT, DSECT, or START statement processed before
statement 4 is processed. Therefore, &SYSECT is assigned the value CSOUT1

for macro instruction INNER in statement 4. CSOUT1 is substituted for
&SYSECT when it appears in statement 2.

Statement 1 is used to generate a CSECT statement for statement 4. This is the
tast CSECT, DSECT, or START statement that appears before statement 5.

Therefore, &SYSECT is assigned the value INA for macro instruction INNER in
statement 5. INA is substituted for &SYSECT when it appears in statement 2.

184 Assembler H Version 2 Language Reference

MACRO

INNER &INCSECT

&INCSECT CSECT Statement 1
DC A(&SYSECT) Statement 2
MEND
MACRO
OUTER1
CSOUT1 CSECT Statement 3
DS 100C
INHER INA Statement 4
INNER INB Statement 5
DC A(&SYSECT) Statement 6
MEND
MACRO
OUTER?2
DC A(&SYSECT) Statement 7
MEND

MAINPROG CSECT Statement 8
DS 200C
OUTER1 Statement 9
OUTER2 Statement 10

MAINPROG CSECT

DS 200C
CSOUT1 CSECT
DS 100C
INA CSECT
DC A(CSOUT1)
INB CSECT
DC A(INA)
DC A(MAINPROG)
nC A(INB)

Statement 1 is used to generate a CSECT statement for statement 5. This is the
last CSECT, DSECT, or START statement that appears before statement 10.
Therefore, &SYSECT is assigned the value INB for macro instruction OUTER?2 in
statement 10. INB is substituted for &SYSECT when it appears in statement 7.

&SYSLIST—Macro Instruction Operand

You can use &SYSLIST instead of a positional parameter inside a macro defi-
nition; for example, as a point of substitution. By varying the subscripts
attached to &SYSLIST, you can refer to any sublist entry in @ macro call, or any
positional operands in a macro call. You can also refer to positional operands
for which no corresponding positional parameter is specified in the macro pro-
totype statement.

The local system variable symbol &SYSLIST is assigned a read-only value each
time a macro definition is called. &SYSLIST refers to the complete list of posi-
tional operands specified in a macro instruction. &SYSLIST does not refer to
keyword operands. However, &SYSLIST cannot be specified as &SYSLIST
alone. One of the two following forms must be used as a point of substitution:

1. &SYSLIST(n) may be used to refer to the nth positional operand

2. If the nth operand is a sublist, then &SYSLIST(n,m) may be used to refer to
the mth operand in the sublist.

Chapter 7. How to Prepare Macro Definitions 185

The subscripts n and m can be any arithmetic expression allowed in the
operand of a SETA instruction. The subscript n must be greater than or equal
to 0. The subscript m must be greater than or equal to 1.

When referring to multilevel (nested) sublists in operands of macro instructions,
reference to elements of inner sublists can be made using the appropriate
number of subscripts for &SYSLIST.

The examples below show the values assigned to &SYSLIST according to the
value of its subscripts n and m.

Macro instruction:

NAME MACALL ONE,TWO0,(3,4,,6), ,EIGHT

Point of Substitution Value

in Macro Definition: Substituted: See note:
&SYSLIST(2) TWO
&SYSLIST(3,2) 4
&SYSLIST(4) NuTl 1
&SYSLIST(9) Null 1
&SYSLIST(3,3) Null 2
&SYSLIST(3,5) Null 2
&SYSLIST(2,1) THO 3
&SYSLIST(2,2) Null
&SYSLIST(0) NAME 4
&SYSLIST(3) (3,4,,6)

Notes:

1. If the position indicated by n refers to an omitted operand, or refers past the
end of the list of positional operands specified, the null character string is
substituted for &SYSLIST(n).

2. If the position (in a sublist) indicated by the second subscript, m, refers to
an omitted entry, or refers past the end of the list of entries specified in the
sublist referred to by the first subscript, n, the null character string is substi-
tuted for &SYSLIST(n,m).

3. If the nth positional operand is not a sublist, &SYSLIST(n,1) refers to the
operand but &SYSLIST(n,m), where m is greater than 1, will cause the null
character string to be substituted.

4. If the value of subscript n is 0, then &SYSLIST(n) is assigned the value
specified in the name field of the macro instruction, except when it is a
sequence symbol.

Attribute references can be made to the previously described forms of
&SYSLIST. The attributes will be the attributes inherent in the positional oper-
ands or sublist entries to which you refer. However, the number attribute of
&SYSLIST (N’&SYSLIST) is different from the number attribute described in
“Data Attributes.” One of two forms (N’&SYSLIST or N'&SYSLIST(n)) can be
used for the number attribute:

186 Assembler H Version 2 Language Reference

(‘\

« To indicate the number of positional operands specified in a call, you use
the form N’&SYSLIST.

* To indicate the number of sublist entries that have been specified in a posi-
tional operand, you use the form N'&SYSLIST(n).

Notes:

1. For N'&SYSLIST, positional operands are counted if specifically omitted by
specifying the comma that would normally have followed the operand.

2. For N'&SYSLIST(n), sublist entries are counted if specifically omitted by
specifying the comma that would normally have followed the entry.

3. If the operand indicated by n is not a sublist, N'&SYSLIST(n) is 1. If it is
omitted, N'&SYSLIST(n) is O.

Examples:
Macro Instruction N'&SYSLIST
MACLST 3,4

1,2,3,
MACLST A,B,,D,E

MACLST ,A,B,C,D

MACLST (A,B,C),(D,E,F)
MACLST

MACLST KEY1=A,KEY2-B
MACLST A,B,KEY1=C

nNoOoO oo NS

N'&SYSLIST(2)

MACSUB A, (1,2,3,4,5),B 5
MACSUB A,(1,,3,,5),8 5
MACSUB A, (,2,3,4,5),8B 5
MACSUB A,B,C 1
MACSUB A, ,C 0
MACSUB A,KEY=(A,B,C) 0
MACSUB 0

&SYSNDX—Macro Instruction Index
You can attach &SYSNDX to the end of a symbol inside a macro definition to
generate a unique suffix for that symbol each time you call the definition.
Although the same symbol is generated by two or more calls to the same defi-
nition, the suffix provided by &SYSNDX produces two or more unique symbols.
Thus you avoid an error being flagged for multiply defined symbols.

The local system variable symbol &SYSNDX is assigned a read-only value each
time a macro definition is called from a source module.

The value assigned to &SYSNDX is a number from 1 to 9999999. For the
numbers 0001 through 9999, four digits are generated. For the numbers 10000
through 9999999, the value is generated with no zeros to the left. The value
0001 is assigned to the first macro called by a program, and is incremented by
one for each subsequent macro call (including nested macro calls).

Chapter 7. How to Prepare Macro Definitions 187

¢

Chapter 8. How to Write Macro Instructions

This chapter describes macro instructions: where they can be used and how
they are specified, including details on the name, operation, and operand
entries, and what will be generated as a result of that macro call.

The macro instruction provides the assembler with:

*« The name of the macro definition to be processed
e The information or values to be passed to the macro definition

This information is the input to a macro definition. The assembler uses the
information either in processing the macro definition, or for substituting values
into a model statement in the definition.

The output from a macro definition, called by a macro instruction, can be:

* A sequence of statements generated from the model statements of the
macro for further processing at assembly time
e Values assigned to global SET symbols

These values can be used in other macro definitions and in open code (see
“SET Symbols” on page 212).

Where Macro Instructions Can Appear
A macro instruction can be written anywhere in your program, if the assembler
finds its definition either in a macro library or in the source module before it
finds the macro instruction. However, the statements generated from the called
macro definition must be valid assembler language instructions and allowed
where the calling macro instruction appears. A macro instruction can be
nested inside a macro definition (see “Nesting in Macro Definitions™ on
page 206).

Macro Instruction Format

Format of macro instruction:

Name Operation Operand
Any symbol Symbolic 0 through 240 operands separated by
or blank operation separated by commas

code

If no operands are specified in the operand field and if the absence of the
operand entry is indicated by a comma preceded and followed by one or more
blanks, remarks are allowed.

The entries in the name, operation, and operand fields correspond to entries in

the prototype statement of the called macro definition (see “ENTRY—Identify
Entry-Point Symbol” on page 70).

Chapter 8. How to Write Macro Instructions 193

Keyword Operands

Notes:
1. An omitted operand has null character value.
2. Each positional operand can be up to 255 characters long.
3. If the assembler is invoked with the DBCS option, the positional operand

can be a quoted string containing double-byte data.

The following are examples of macro instructions with positional operands:

MACCALL VALUE,9,8

MACCALL &A, 'QUOTED STRING'
MACCALL EXPR+2, , SYMBOL
MACCALL (A,B,C,D,E),(1,2,3,4)
MACCALL &A,'<.S.T.R.I.N.G>'

The following shows what happens when the number of positional operands in
the macro instruction is equal to or differs from the number of positional param-
eters declared in the prototype statement of the called macro definition:

equal Valid, if operands are correctly specified.

greater than Meaningless, unless &SYSLIST is specified in definition to refer
to excess operands.

less than Omitted operands give null character values to corresponding
parameters (or &SYSLIST specification).

You can use a keyword operand to pass a value through a keyword parameter
into a macro definition. The values you specify in keyword operands override
the default values assigned to the keyword parameters. The default value
should be a value you use frequently. Thus, you avoid having to write this
value every time you code the calling macro instruction.

When you need to change the default value, you must use the corresponding
keyword operand in the macro instruction. The keyword can indicate the
purpose for which the passed value is used.

Any keyword operand specified in a macro instruction must correspond to a
keyword parameter in the macro definition called. However, keyword operands
do not have to be specified in any particular order.

A keyword operand must be coded in the format shown below:
KEYWORD=VALUE
where: KEYWORD has up to 62 characters without ampersand.

= is an equal sign.
VALUE can be up to 255 characters.

The corresponding keyword parameter in the called macro definition is speci-
fied as:

&KEYWORD=DEFAULT

If a keyword operand is specified, its value overrides the default value specified
for the corresponding keyword parameter.

196 Assembler H Version 2 Language Reference

If the assembler is invoked with the DBCS option, the keyword operand can be
a quoted string containing double-byte data.

The following examples of macro instructions have keyword operands:

MACKEY KEYWORD=(A,B,C,D,E)

MACKEY KEY1=1,KEY2=2,KEY3=3

MACKEY KEY3=2000,KEY1=0,KEYWORD=HALLO
MACKEY KEYWORD='<.S.T.R.I.N.G>"'

To summarize the relationship of keyword operands to keyword parameters:

* The keyword of the operand corresponds (see (1) in Figure 51 on page 198)
to a keyword parameter. The value in the operand overrides the default
value of the parameter.

* If the keyword operand is not specified (see (2) in Figure 51), the default
value of the parameter is used.

* If the keyword of the operand does not correspond (see (3) in Figure 51) to
any keyword parameter, the assembler issues an error message, but the
macro is generated using the default values of the other parameters.

Combining Positional and Keyword Operands
You can use positional and keyword operands in the same macro instruction:
Use a positional operand for a value that you change often, and a keyword
operand for a value that you change infrequently.

Positional and keyword operands can be combined in the macro instruction
operand field. However, the positional operands must be in the same order as
the corresponding positional parameter in the macro prototype statement.

Note: The system variable symbol &SYSLIST(n) refers only to the positional
operands in a macro instruction.

Chapter 8. How to Write Macro Instructions 197

Null character
o string is default

value

Source Module

MACRO l
MACCORR &KEY1=DEFAULT,&KEY2=,&KEY3=123

SHOW DC C'&KEY1&KEY2&KEY3'

OPEN START O

MACCORR KEY1=OVERRIDE,KEY2=0,KEY3=456
b 4
TN

SHOW DC C'OVERRIDEU456"

MACCORR e

Null

SHOW DC C'DEFAULT123

MACCORR KEY4=SYMBOL,KEY2=(0 #*%ERRORS 3

SHOW DC C'DEFAULTO0123'

MACCORR KEY1l=,KEY3=456"

. " (]
SHOW DC c‘fs?

END

Null default
value of KEY 2

Figure 51. Relationship between Keyword Operands and Keyword Parameters and Their
Assigned Values

198 Assembler H Version 2 Language Reference

Note: The default value specified for a keyword parameter can be the null char-
acter string (see (4) in Figure 51). The null character string is a character
string with a length of zero; it is not a blank, because a blank occupies one
character position.

Sublists in Operands

You can use a sublist in a positional or keyword operand to specify several
values. A sublist is one or more entries separated by commas and enclosed in
parentheses. Each entry is a value to which you can refer in a macro definition
by coding:

* The corresponding symbolic parameter with an appropriate subscript, or

* The system variable symbol &SYSLIST with appropriate subscripts, the first
of which refers to the positional operand, and the second to the sublist
entry in the operand.

&SYSLIST can refer only to sublists in positional operands.

Figure 52 on page 200 illustrates that the value specified in a positional or
keyword operand can be a sublist.

A symbolic parameter can refer to the entire sublist (see (1) in Figure 52), or to
an individual entry of the sublist. To refer to an individual entry, the symbolic
parameter (see (2) in Figure 52) must have a subscript whose value indicates
the position (see (3) in Figure 52) of the entry in the sublist. The subscript must
have a value greater than or equal to 1.

A sublist, including the enclosing parentheses, must not contain more than 255
characters. It consists of one or more entries separated by commas and
enclosed in parentheses; for example, (A,B.C,D,E). () is a valid sublist with the
null character string as the only entry.

The following list shows the relationship between subscripted parameters and
sublist entries if:

1. A sublist entry is omitted: &PAR(3) (1,2,,4)

2. The subscript refers to an entry that is not in the sublist: &PAR(5) (1,2,3,4)

3. The value of the operand is not a sublist:

&PAR A
&PAR(1) A
&PAR(2) A

4. The parameter is not subscripted: &PAR ()

Chapter 8. How to Write Macro Instructions 199

Source Module
MACRO
SUBLISTS &Pl,&P2,&KEY=(FO,F, (})

: 0 Refers to
)/ default

&KEY (1) DC &KEY(2)'&KEY(3)'

value in
1 t
&P1(1) DC.: &P1(2)'&P1(3) Refers to keywo:jd
DC A&P2 0 value in operan
' positional
operand
MEND ‘ 0

OPEN START O

e,
SUBLISTS (H20,H,200),(A,B,C)

FO DC F'0O°

H20 DC H'200'

DC A(A,B,C)

END

Figure 52. Sublists in Operands

Figure 53 shows the relationship between subscripted parameters and sublist
entries if:

* A sublist entry is omitted (see (1) in Figure 53).

* The subscript refers past the end of the sublist (see (2) in Figure 53).
* The value of the operand is not a sublist (see (3) in Figure 53).

» The parameter is not subscripted (see (4) in Figure 53).

Note: The system variable symbol, &SYSLIST(n,m), can also refer to sublist
entries, but only if the sublist is specified in a positional operand.

200 Assembler H Version 2 Language Reference

Multilevel Sublists

Parameter Sublist specified Value generated
in corresponding (or used in
operand (or as computation)
default value of
keyword parameter)

&PAR(3) 0 (1,2,,4) Null character string

&PAR(5) o (1,2,3,4) Null character string

&PAR (A A

&PAR (1) 0 A A

&PAR(2) lA Null character string

&PAR o (A)Y (A)

&PAR (1) (a) A

&PAR (2) 0 (a) Null character string

, Considered as

&PAR () Sublists ()

&PAR(1) () Null character string

&PAR(3) () J Null character string

&PAR(2) (a,, ,C,D) Nothing

This blank indicates *ERROR*
end of operand field Unmatched left
parentheses
A

&PAR (1) (") Nothing
Positional Operands

&POSPAR(3) A,(1,2,3,4) 3

&SYSLIST(2,3)| A,(1,2,3,4) 3

Figure 53. Relationship between Subscripted Parameters and Sublist Entries

You can specify multilevel sublists (sublists within sublists) in macro operands.
The depth of this nesting is limited only by the constraint that the total operand
length must not exceed 255 characters. Inner elements of the sublists are ref-
erenced using additional subscripts on symbolic parameters or on &SYSLIST.

N’&SYSLIST with an n-element subscript array gives the number of operands in

the indicated n-th level sublist. The number attribute (N") and a parameter

name with an n-element subscript array gives the number of operands in the
indicated (n+1)th level sublist.

Chapter 8. How to Write Macro Instructions

201

For example, if &P is the first positional parameter and the value assigned in a
macro instruction is (A,(B,(C)),D) then:

&P =&SYSLIST(1) =(A, (B,(C)),D)
&P (1) =&SYSLIST(1,1) = A

&P(2) =&SYSLIST(1,2) = (8,(C))
&P (2,1) =&SYSLIST(1,2,1) = B

&P (2,2) =&SYSLIST(1,2,2) = (€)

&P (2,2,1) =&SYSLIST(1,2,2,1) = C
&P(2,2,2) =&SYSLIST(1,2,2,2) =null

&P (3) =&SYSLIST(1,3) = D
N'&P(2,2) =N'&SYSLIST(1,2,2) =1

N'&P(2) =N'&SYSLIST(1,2) 2

N'&P(3) =N'&SYSLIST(1,3) =1

N'&P =N'&SYSLIST(1) -3

Passing Sublists to Inner Macro Instructions
You can pass a suboperand of an outer macro instruction sublist as a sublist to
an inner macro instruction.

Values in Operands

You can use a macro instruction operand to pass a value into the called macro
definition. The two types of value you can pass are:

* Explicit values or the actual character strings you specify in the operand

* Implicit values, or the attributes inherent in the data represented by the
explicit values

The explicit value specified in a macro instruction operand is a character string
that can contain one or more variable symbols.

The character string must not be greater than 255 characters after substitution
of values for any variable symbols. This includes a character string that consti-
tutes a sublist.

The character string values, including sublist entries, in the operands are
assigned to the corresponding parameters declared in the prototype statement
of the called macro definition. A sublist entry is assigned to the corresponding
subscripted parameter.

Omitted Operands
When a keyword operand is omitted, the default value specified for the corre-
sponding keyword parameter is the value assigned to the parameter. When a
positional operand or sublist entry is omitted, the null character string is
assigned to the parameter.

Notes:

1. Blanks appearing between commas do not signify an omitted positional
operand or an omitted sublist entry; they indicate the end of the operand
field.

2. Commas indicate omission of positional operands; no comma is needed to
indicate omission of the last positional operand.

202 Assembler H Version 2 Language Reference

The following example shows a macro instruction preceded by its corre-
sponding prototype statement. The macro instruction operands that correspond
to the third and sixth operands of the prototype statement are omitted in this
example.

EXAMPLE &A,8&B,&C,&D,&E,&F
EXAMPLE 17,*+4, ,AREA,FIELD(6)

Special Characters
Any of the 256 characters of the System/370 character set can appear in the
value of a macro instruction operand (or sublist entry). However, the following
characters require special consideration:

Ampersands
A single ampersand indicates the presence of a variable symbol. The assem-
bler substitutes the value of the variable symbol into the character string speci-
fied in a macro instruction operand. The resultant string is then the value
passed into the macro definition. If the variable symbol is undefined, an error
message is issued.

Double ampersands must be specified if they are to be passed to the macro
definition.

Examples:

&VAR
8A+&B+3+&C*10
'&MESSAGE '
&®ISTER

Single Quotation Marks
A single quotation mark is used:

¢ To indicate the beginning and end of a quoted string
* In a length attribute notation that is not within a quoted string

Examples:

'QUOTED STRING'
L'SYMBOL

| Shift-out (SO) and Shift-in (SI)

| If the assembler is invoked with the DBCS option, then SO (X'0E') and SI

| (X'OF') are recognized as shift codes within quoted strings. SO and Si delimit
| the start and end of double-byte data respectively. Double-byte data will only
| be recognized within a quoted string.

Quoted Strings
A quoted string is any sequence of characters that begins and ends with a
single quotation mark (compare with conditional assembly character
expressions described in “Character (SETC) Expressions™).

Two single quotation marks must be specified inside each quoted string. This
includes substituted single quotation marks.

Chapter 8. How to Write Macro Instructions 203

Quoted strings can contain double-byte data, if the assembler is invoked with
the DBCS option. The double-byte data must be bracketed by the SO and Sl

delimiters. Only valid double-byte data is recognized between the SO and Si.
The S| may be in any byte position after the SO. If the end of the operand is

reached before Sl is found, then error IEV203 “UNBALANCED DOUBLE-BYTE

DELIMITERS" is issued.

Macro instruction operands can have values that include one or more quoted
strings. Each quoted string can be separated from the following quoted string
by one or more characters, and each must contain an even number of single

quotation marks.

Examples:

'L*'SYHBOL'
'QUOTE1"AND'QUOTE2'

Length Attribute Notation

Parentheses

Blanks

In macro instruction operand values, the length attribute notation with ordinary
symbols can be used outside of quoted strings, if the length attribute notation is
preceded by any special character except the ampersand.

Example:

L"SYMBOL,10+L"'AREA*L'FIELD

In macro instruction operand values. there must be an equal number of left and
right parentheses. They must be paired, that is, to each left parenthesis
belongs a following right parenthesis at the same level of nesting. An unpaired
(single) left or right parenthesis can appear only in a quoted string.

Examples:
PAIRED PARENTHESES)

)C)D(E)

(
0
(A(B
(IN'('STRING)

One or more blanks outside a quoted string indicates the end of the entire
operand field of a macro instruction. Thus blanks should only be used inside
quoted strings.

Example:

'"BLANKS ALLOWED'

204 Assembler H Version 2 Language Reference

Commas

Equal Signs

Periods

A comma outside a quoted string indicates the end of an operand value or
sublist entry. Commas that do not delimit values can appear inside quoted
strings or paired parentheses that do not enclose sublists.

Examples:

A,B,C,D
(1,2)3'5,6"

An equal sign can appear in the value of a macro instruction operand or sublist
entry:

* As the first character

* Inside quoted strings

* Between paired parentheses

¢ In a keyword operand

* In.a positional operand, provided the parameter does not resemble a
keyword operand

The assembler issues a warning message for a positional operand containing
an equal sign, if the operand resembles a keyword operand. Thus, if we
assume that the following is the prototype of a macro definition:

MAC1 &F

the following macro instruction would generate a warning message:
MAC1 K=L (K is a valid keyword)

while the following macro instruction would not:
MAC1 2+2=4 (2+2 is not a valid keyword)

Examples:
=H'201"
A'='B
C(A=B)
2X=B
KEY=A=B

A period (.) can be used in the value of an operand or sublist entry. It will be
passed as a period. However, if it is used immediately after a variable symbol,
it becomes a concatenation character. Then, two periods are required if one is
to be passed as a character.

Examples:

3.4
&A.1
BA..1

Chapter 8. How to Write Macro Instructions 205

Nesting in Macro Definitions

A nested macro instruction is a macro instruction you specify as one of the
statements in the body of a macro definition. This allows you to call for the
expansion of a macro definition from within another macro definition.

Inner and Outer Macro Instructions

Levels of Nesting

Recursion

Any macro instruction you write in the open code of a source module is an
outer macro instruction or call. Any macro instruction that appears within a
macro definition is an inner macro instruction or call.

The code generated by a macro definition called by an inner macro call is
nested inside the code generated by the macro definition that contains the
inner macro call. In the macro definition called by an inner macro call, you can
include a macro call to another macro definition. Thus, you can nest macro
calls at different levels.

The zero level includes outer macro calls, calls that appear in open code; the
first level of nesting includes inner macro calls that appear inside macro defi-
nitions called from the zero level; the second level of nesting includes inner
macro calls inside macro definitions that are called from the first level, etc.

You can also call a macro definition recursively; that is, you can write macro
instructions inside macro definitions that are calls to the containing definition.
This allows you to define macros to process recursive functions.

General Rules and Restrictions

Macro instruction statements can be written inside macro definitions. Values
are substituted in the same way as they are for the model statements of the
containing macro definition. The assembler processes the called macro defi-
nition, passing to it the operand values (after substitution) from the inner macro
instruction. In addition to the operand values described in “Values in
Operands” on page 202, nested macro calls can specify values that include
(see Figure 54 on page 207):

¢ Any of the symbolic parameters (see (1) in Figure 54) specified in the proto-
type statement of the containing macro definition

* Any SET symbols (see (2) in Figure 54) declared in the containing macro
definition

* Any of the system variable symbols such as &SYSDATE, &SYSTIME, etc.
(see (3) in Figure 54).

206 Assembler H Version 2 Language Reference

Macro Definitions

These are parameters

MACRO
Prototype OUTER &P1,&P2,&KEY1=VALUE
LCLC &C \
p These are operands
&C SET 'ABC' \
p——— ——
Inner call INNER &P1l,&KEY1,&C
MEND
MACRO
e = /?\
Inner call IN &SYSLIST(3),&SYSECT,A&SYSNDX

MEND

Figure 54. Values in Nested Macro Calls

The number of nesting levels permitted depends on the complexity and size of

the macros at the different levels; that is, the number of operands specified, the
number of local and global SET symbols declared, and the number of sequence
symbols used.

Exits taken from the different levels of nesting when a MEXIT or MEND instruc-
tion is encountered are as follows:

1. From the expansion of a macro definition called by an inner macro call, an
exit is taken to the next sequential instruction that appears after the inner
macro call in the containing macro definition.

2. From the expansion of a macro definition called by an outer macro, an exit
is taken to the next sequential instruction that appears after the outer
macro call in the open code of a source module.

Chapter 8. How to Write Macro Instructions

207

Passing Values through Nesting Levels
The value contained in an outer macro instruction operand can be passed
through one or more levels of nesting (see Figure 55 on page 209). However,
the value specified (see (1) in Figure 55) in the inner macro instruction operand
must be identical to the corresponding symbolic parameter (see (2) in
Figure 55) declared in the prototype of the containing macro definition.

Thus, a sublist can be passed (see (3) in Figure 55) and referred to (see (4) in
Figure 55) as a sublist in the macro definition called by the inner macro call.
Also, any symbol (see (5) in Figure 55) that is passed will carry its inherent
attribute values through the nesting levels.

If inner macro calls at each level are specified with symbolic parameters as
operand values, values can be passed from open code through several levels of
macro nesting.

Note: If a symbolic parameter is only a part of the value specified in an inner
macro instruction operand, only the character string value given to the param-
eter by an outer call is passed through the nesting level. Inner sublist entries
and attributes of symbols are not available for reference in the inner macro.

System Variable Symbols in Nested Macros
The global read-only system variable symbols (&SYSPARM, &SYSDATE, and
&SYSTIME) are not affected by the nesting of macros. The remaining system
variable symbols are given local read-only values that depend on the position
of a macro instruction in code and the operand value specified in the macro
instruction.

If &SYSLIST is specified in a macro definition called by an inner macro instruc-
tion, &SYSLIST refers to the positional operands of the inner macro instruction.

The assembler increments &SYSNDX by one each time it encounters a macro
call. It retains the incremented value throughout the expansion of the macro
definition called, that is, within the local scope of the nesting level.

The assembler gives &SYSECT the character string value of the name of the
control section in force at the point at which a macro call is made. For a macro
definition called by an inner macro call, the assembler will assign to &SYSECT
the name of the control section generated in the macro definition that contains
the inner macro call. The control section must be generated before the inner
macro call is processed.

If no control section is generated within a macro definition, the value assigned
to &SYSECT does not change. It is the same for the next level of macro defi-
nition called by an inner macro instruction.

The assembler gives &SYSLOC the character string value of the name of the
location counter in use at the point at which a macro call is made. For a macro
definition called by an inner macro call, the assembler will assign to &SYSLOC
the name of the location counter in effect in the macro definition that contains
the inner macro call.

&SYSECT and &SYSLOC have local scope; their read-only values remain con-
stant throughout the expansion of the called macro definition.

208 Assembler H Version 2 Language Reference

Prototype

Call

Prototype

Call

Source Module

MACRO _

OUTER &Pl,&P2,

&P3

INNER &Pl,8P2,

aP3 |

|

\,

MEND

MACRO

INNER &Q,&R,&S

L 3,&Q(1)
A 3,80(2)
ST 3,&Q(3)
MVC &R, &S
MEND

START O

Passed Values /P

OUTER (AREA,PFP20

0,80m) , 20, PRodl

°

INNER

.
&P1,4P2,803

&Q &R &S

L 3,AREA
A 3,F200
ST 3,SUM

MVC TO,FROM

END

|

Figure 55. Passing Values through Nesting Levels

Chapter 8. How to Write Macro Instructions

209

Chapter 9. How to Write Conditional Assembly Instructions

This chapter describes the conditional assembly language. With the conditional
assembly language, you can perform general arithmetic and logical computa-
tions, as well as many of the other functions you can perform with any other
programming language. In addition, by writing conditional assembly
instructions in combination with other assembler language statements, you can:

» Select sequences of these source statements, called model statements,
from which machine and assembler instructions are generated

e Vary the contents of these model statements during generation

The assembler processes the instructions and expressions of the conditional
assembly language at preassembly time. Then, at assembly time, it processes
the generated instructions. Conditional assembly instructions, however, are not
processed after preassembly time.

The conditional assembly language is more versatile when used to interact with
symbolic parameters and the system variable symbols inside a macro defi-
nition. However, you can also use the conditional assembly language in open
code; that is, code in an assembler language source program.

Elements and Functions
The elements of the conditional assembly language are:
* SET symbols that represent data
e Attributes that represent different characteristics of data
* Sequence symbols that act as labels for branching to statements at preas-
sembly time
The functions of the conditional assembly language are:

* Declaring SET symbols as variables for use by the conditional assembly
language in its computations

* Assigning values to the declared SET symbols

* Evaluating conditional assembly expressions used as values for substi-
tution, as subscripts for variable symbols, or as condition tests for branch
instructions

» Selecting characters from strings for substitution in, and concatenation to,
other strings; or for inspection in condition tests

* Branching and exiting from conditional assembly loops

Chapter 9. How to Write Conditional Assembly Instructions 211

SET Symbol Specifications
SET symbols can be used in model statements, from which assembler language
statements are generated, and in conditional assembly instructions.
The three types of SET symbols are: SETA, SETB, and SETC. A SET symbol
must be a valid variable symbol.

The rules for creating a SET symbol are:

¢ The first column must contain an ampersand (&)

¢ The second column must contain an alphabetic character

¢ The remaining columns must contain O to 61 alphameric characters,
including underscore ()

Examples:

&ARITHHMETICVALUE439
&BOOLEAN

&C

&EASY_TO_READ

Local SET symbols need not be declared by explicit declarations. The assem-
bler considers any undeclared variable symbol found in the name field of a
SETx instruction as a local SET symbol. The instruction that declares a SET
symbol determines its scope and type.

The features of SET symbols and other types of variable symbols are compared

in Figure 56.
SETA, SETB, Symbolic System Variable
Features SETC symbols Parameters Symbols
Can be used in:
Open code Yes No &SYSPARM
&SYSDATE
&SYSTIME
Macro definitions Yes Yes All
Scope:
Local Yes Yes &SYSLIST
&SYSECT
&SYSLOC
&SYSNDX
Global Yes No &SYSPARM
&SYSDATE
&SYSTIME
Values can be changed Yes! No, read only No, read only
within scope of symbol value? value?

Figure 56. Features of SET Symbols and Other Types of Variable Symbols

Notes to Figure 56:

1. The value assigned to a SET symbol can be changed by using the SETA,
SETB, or SETC instruction within the declared scope of the SET symbol.

Chapter 9. How to Write Conditional Assembly Instructions 213

2. A symbolic parameter and the system variable symbols are assigned
values that remain fixed throughout their scope. Wherever a SET symbol
appears in a statement, the assembler replaces the symbol with the last
value assigned to the symbol.

SET symbols can be used in the name and operand fields of macro instructions.
However, the value thus passed through a symbolic parameter into a macro
definition is considered as a character string and is generated as such.

Subscripted SET Symbols Specifications
Format of a subscripted SET symbol:

&SETSYM(subscript)

where: * &SETSYM is a variable symbol.
* 'subscript’ is an arithmetic expression, whose value must
not be 0 or negative.

Example: LCLA &ARRAY(20)

The subscript can be any arithmetic expression allowed in the operand field of
a SETA instruction (see "Arithmetic (SETA) Expressions” below).

A subscripted SET symbol can be used anywhere an unscripted SET symbol is
allowed. However, subscripted SET symbols must be declared as subscripted
by a previous local or global declaration instruction.

The subscript refers to one of the many positions in an array of values identi-
fied by the SET symbol.

The dimension (the maximum value of the subscript) of a subscripted SET
symbol is not determined by the explicit or implicit declaration of the symbol.
The dimension specified can be exceeded in subsequent SETx instructions.

Note: The subscript can be a subscripted SET symbol. Five levels of subscript
nesting are allowed.

Created SET Symbols
Assembler H can create SET symbols during conditional assembly processing
from other variable symbols and character strings. A SET symbol thus created
has the form &(e), where “e” represents one or more of the following:

« Variable symbols, optionally subscripted
e Strings of alphameric characters
* Other created SET symbols

After substitution and concatenation, “e” must consist of a string of up to 62
alphameric characters, the first of which is alphabetic. The assembler will con-
sider the preceding ampersand and this string as the name of a SET variable.

You can use created SET symbols wherever ordinary SET symbols are per-

mitted, including declarations. You can also nest them in other created SET
symbols.

214 Assembler H Version 2 Language Reference

Data Attributes

Consider the following example:
&ABC(1) SETC 'MKT', '27','$5"

Let &(e) equal &(&ABC(&I)QUAA&I).
&I &ABC(&I) Created SET Symbel Conmment

1 MKT &MKTQUAL Valid
2 27 &27QUA2 Invalid: first character after '&' not alphabetic
3 %5 &55QUA3 Valid
4 &QUA4 Valid

The created SET symbol can be thought of as a form of indirect addressing.
With nested created SET symbols, you can get this kind of indirect addressing
to any level.

In another sense, created SET symbols offer an associative storage facility. For
example, a symbol table of numeric attributes can be referred to by an
expression of the form &(&SYM)(&I) to yield the “Ith” attribute of the symbol
name in &SYM.

Created SET symbols also enable you to get some of the effect of multiple-
dimensioned arrays by creating a separate name for each element of the array.
For example, a 3-dimensional array of the form &X(&l,&J,&K) could be
addressed as &(X&1.$&J.$&K). Thus, &X(2,3,4) would be represented by
&X23%$3%4. The $s guarantee that &X{2,33,55) and &X(23,35,5) are unique:

&X(2,33,55) becomes &X2$33$55
&X(23,35,5) becomes 8&X23$35$5

The data, such as instructions, constants, and areas, which you define in a
source module, can be described in terms of:

* Type, which distinguishes one form of data from another; for example, fixed-
point constants from floating-point constants, or machine instructions from
macro instructions

« Length, which gives the number of bytes occupied by the object code of the
data

« Scaling, which indicates the number of positions occupied by the fractional
portion of fixed-point and decimal constants in their object code form

* Integer, which indicates the number of positions occupied by the integer
portion of fixed-point and decimal constants in their object code form

« Count, which gives the number of characters that would be required to rep-
resent the data, such as a macro instruction operand, as a character string

* Number, which gives the number of sublist entries in a macro instruction
operand

¢ Defined, which determines whether a symbol has been defined prior to the
point where the attribute reference is coded

These characteristics are called the attributes of the data. The assembler
assigns attribute values to the ordinary symbols and variable symbols that rep-
resent the data.

Chapter 9. How to Write Conditional Assembly Instructions 215

Specifying attributes in conditional assembly instructions allows you to control
conditional assembly logic, which, in turn, can control the sequence and con-
tents of the statements generated from model statements. The specific purpose

for which you use an attribute depends on the kind of attribute being consid-
ered. The attributes and their main uses are shown below:

Attribute Purpose Main Uses
Type Gives a letter that identifies * In tests to distinguish between dif-
type of data represented ferent data types
¢ For value substitution
* In macros to discover missing oper-
ands
Length Gives number of bytes that * For substitution into length fields
data occupies in storage * For computation of storage require-
ments
Scaling Refers to the position of the * For testing and regulating the posi-
decimal point in decimal, tion of decimal points
fixed-point, and floating-point * For substitution into a scale modifier
constants
Integer Is a function of the length and * To keep track of significant digits
scaling attributes of decimal, (integers)
fixed-point, and floating-point
constants
Count Gives the number of charac- * For scanning and decomposing of
ters required to represent character strings
dat
ala * As indexes in substring notation
Number! Gives the number of sublist * For scanning sublists
entries in a macro instruction * As counter to test for end of sublist
operand sublist
Defined indicates whether the symbol * To avoid assembling a statement

referenced has been defined
prior to the attribute refer-
ence

again if the symbol referenced has
been previously defined

Figure 57. Data Attributes

Notes to Figure 57:

1. The number attribute of &SYSLIST(m) and &SYSLIST(m,n) is described in
“&SYSLIST—Macro Instruction Operand” on page 185.

Format of an attribute reference:

Attribute '
Notation

Ordinary or
Variable Symbol

Examples:

T'SYMBOL
L '&VAR
K'&PARAM

The attribute notation indicates the attribute whose value is desired. The ordi-
nary or variable symbol represents the data that possesses the attribute. The
assembler substitutes the value of the attribute for the attribute reference.

216 Assembler H Version 2 Language Reference

An attribute reference to the type, scaling, integer, count, and number attributes
can be used only in a conditional assembly instruction. The length attribute
reference can be used both in a conditional assembly instruction and in a
machine or assembler instruction.

Combination with Symbols

Figure 58 shows the seven kinds of attributes, identifying the types of symbols
they can be combined with.

Symbols Type Length Scaling Integer Count Number Defined
Specified L' S’ " K' N' D'
In open code:
Ordinary Yes Yes Yes Yes No No Yes
symbols
SET symbols Yes SETC SETC SETC Yes Yes SETC
only only only subscripted only
System variable
symbols
&SYSPARM Yes No No No Yes No No
&SYSDATE
&SYSTIME
In macro
definitions:
Ordinary Yes Yes Yes Yes No No Yes
symbols
SET symbols Yes SETC SETC SETC Yes Yes SETC
only only only subscripted only
Symbolic Yes Yes Yes Yes Yes Yes Yes
parameters
System variable
symbols
&SYSLIST Yes Yes Yes Yes Yes Yes Yes
&SYSECT,&SYSLOC,
&SYSNDX,&SYSPARM, Yes No No No Yes Yes No

&SYSDATE,&SYSTIME

Figure 58. Attributes and Related Symbols

The value of an attribute for an ordinary symbol specified in an attribute refer-
ence comes from the data represented by the symbol, as shown below:

Attribute Ordinary

Notation Symbol
Statement------------------- Operand T
Label of EXTRN L'

or WXTRN S!
instruction I'

The symbol must appear in the name field of an assembler or machine instruc-
tion, or in the operand field of an EXTRN or WXTRN instruction. The instruction
in which the symbol is specified must appear in open code and must not
contain any variable symboils.

Chapter 9. How to Write Conditional Assembly Instructions 217

Note: You can refer to instructions generated by conditional assembly substi-
tution or macro expansion with attributes. However, no such reference can be
made until the instruction is generated.

The value of an attribute for a variable symbol specified in an attribute refer-
ence comes from the value substituted for the variable symbol as follows:

1. For SET symbols and the system variable symbols: &SYSECT, &SYSLOC,
&SYSNDX, &SYSPARM, &SYSDATE, and &SYSTIME, the attribute values
come from the current data value of these symbols.

2. For symbolic parameters and the system variable symbol, &SYSLIST, the
values of the count and number attributes come from the operands of
macro instructions.

The values of the type, length, scaling, and integer attributes, however,
come from the values represented by the macro instruction operands, as
follows:

a. If the operand is a sublist, the entire sublist and each entry of the
sublist can possess attributes; all the individual entries and the whole
sublist have the same attributes as those of the first suboperand in the
sublist (except for “count,” which can be different, and “number,” which
is relevant only for the whole sublist).

b. If the first character or characters of the operand (or sublist entry) con-
stitute an ordinary symbol, and this symbol is followed by either an
arithmetic operator (+, -, *, or /), a left parenthesis, a comma, or a
blank, then the value of the attributes for the operand are the same as
for the ordinary symbol.

c. If the operand (or sublist entry) is a character string other than a sublist P
or the character string described in b above, the type attribute is unde-
fined (U) and the length, scaling, and integer attributes are invalid.

Because attribute references are allowed only in conditional assembly
instructions, their values are available only at preassembly time, except for the
length attribute which can be referred to outside conditional assembly
instructions, and is, therefore, also available at assembly time.

Note: The system variable symbol, &SYSLIST, can be used in an attribute refer-
ence to refer to a macro instruction operand, and, in turn, to an ordinary
symbol. Thus, any of the attribute values for macro instruction operands and
ordinary symbols listed below can also be substituted for an attribute reference
containing &SYSLIST.

Type Attribute (T’)
The type attribute has a value of a single alphabetic character that indicates the
type of data represented by:

* An ordinary symbol
¢ A macro instruction operand
e A SET symbol

The type attribute reference can be used only in the operand field of the SETC
instruction or as one of the values used for comparison in the operand field of a

SETB or AIF instruction. i

218 Assembler H Version 2 Language Reference

Notes:

1. Ordinary symbols used in the name field of an EQU instruction have the
type attribute value “U.” However, the third operand of an EQU instruction
can be used explicitly to assign a type attribute value to the symbol in the
name field.

2. The type attribute of a sublist is set to the same value as the type attribute
of the first element of the sublist.

The following letters are used for the type attribute of data represented by ordi-
nary symbols and outer macro instruction operands that are symbols that name
DC or DS statements.

A A-type address constant, implied length, aligned (also CXD instruction
label)

Binary constant

Character constant

Long floating-point constant, implicit length, aligned
Short floating-point constant, implicit length, aligned
Fullword fixed-point constant, implicit length, aligned
Fixed-point constant, explicit length

Halfword fixed-point constant, implicit length, aligned
Floating-point constant, explicit length

Extended floating-point constant, implicit length, aligned
Packed decimal constant

Q-type address constant, implicit length, aligned

A-, S-, Q-, V-, or Y-type address constant, explicit length
S-type address constant, implicit length, aligned

V-type address constant, implicit length, aligned
Hexadecimal constant

Y-type address constant, implicit length, aligned

Zoned decimal constant

Graphic (G) constant

/NSKX<OTOTERXIOTMTMODO®

The following letters are used for the type attribute of data represented by ordi-
nary symbols (and outer macro instruction operands that are symbols) that
name statements other than DC or DS statements, or that appear in the
operand field of an EXTRN or WXTRN statement.

Machine instruction

Identified as a control section name

Macro instruction

Identified as an external symbol by EXTRN instruction
CCW, CCWO, or CCWH1 instruction

Identified as an external symbol by WXTRN instruction

e?g—qg;-

The following letters are used for the type attribute of data represented by inner
and outer macro instruction operands only.

N Self-defining term or the value of a SETA or SETB variable
O Omitted operand (has a value of a null character string)
The following letter is used for symbols or macro instruction operands that

cannot be assigned any of the above letters.

U Undefined

Chapter 9. How to Write Conditional Assembly Instructions 219

The type attribute value U is assigned to the following:
e Ordinary symbols used as labels:
— For the LTORG instruction
— For the EQU instruction without a third operand

— For DC and DS statements that contain variable symbols; for example,
U1 DC &X'1’

— That are defined more than once, even though only one label will be
generated due to conditional assembly statements

e SETC variable symbol

e System variable symbols: &SYSPARM, &SYSDATE, and &SYSTIME
* Macro instruction operands that specify literals

e Inner macro instruction operands that are ordinary symbols

Note: Because Assembler H allows attribute references to statements gener-
ated through substitution, certain cases in which a type attribute of U (unde-
fined) or M (macro) is given under the OS/VS Assembler, may give a valid type
attribute under Assembler H. If the value of the SETC symbol is equal to the
name of an instruction that can be referred to by the type attribute, Assembler
H allows you to use the type attribute with a SETC symbol.

Length Attribute (L’)
The length attribute has a numeric value equal to the number of bytes occupied
by the data that is represented by the symbol specified in the attribute refer-
ence.

If the length attribute value is desired for preassembly processing, the symbol
specified in the attribute reference must ultimately represent the name entry of
a statement in open code. In such a statement, the length modifier (for DC and
DS instructions) or the length field (for a machine instruction), if specified, must
be a self-defining term. The length modifier or length field must not be coded
as a multiterm expression, because the assembler does not evaluate this
expression until assembly time.

Assembler H allows you to use the length attribute with a SETC symbol, if the
value of the SETC symbol is equal to the name of an instruction that can be
referenced by the length attribute.

The length attribute can also be specified outside conditional assembly
instructions. Then, the length attribute value is not available for conditional
assembly processing, but is used as a value at assembly time.

At preassembly time, an ordinary symbol used in the name field of an EQU
instruction has a length attribute value of 1. At assembly time, the symbol has
the same length attribute value as the first symbol of the expression in the first
operand of the EQU instruction. However, the second operand of an EQU
instruction can be used to assign a length attribute value to the symbol in the
name field.

220 Assembler H Version 2 Language Reference

Notes:

1. The length attribute reference, when used in conditional assembly proc-
essing, can be specified only in arithmetic expressions.

2. A length attribute reference to a symbol with the type attribute value of M,
N, O, T, U, or $ will be flagged. The length attribute for the symbol will be

given the default value of 1.

Scaling Attribute (S’)

The scaling attribute can be used only when referring to fixed-point, floating-
point, or decimal constants. It has a numeric value that is assigned as shown

below:

Constant Type

Types Attributes Value of Scaling

Allowed Allowed Attribute Assigned

Fixed-Point H, F, and G Equal to the value of the scale modifier
(-187 through + 346)

Floating Point D, E L, and K Equal to the value of the scale modifier
(0 through 14 - D, E)
(0 through 28 - L)

Decimal P and Z Equal to the number of decimal digits
specified to the right of the decimal point
(0 through 31 - P)
(0 through 16 - 2Z)

Notes:

1. The scaling attribute reference can be used only in arithmetic expressions.

2. When no scaling attribute value can be determined, the reference is flagged
and the scaling attribute is given the value of 1.

3. If the value of the SETC symbol is equal to the name of an instruction that
can be referenced by the scaling attribute, Assembler H allows you to use
the scaling attribute with a SETC symbol.

Integer Attribute (I’)

The integer attribute has a numeric value that is a function of (depends on) the
length and scaling attribute values of the data being referred to by the attribute
reference. The formulas relating the integer attribute to the length and scaling
attributes are given in Figure 59 on page 222.

Chapter 9. How to Write Conditional Assembly Instructions 221

Constant Formula Examples Values

Type Relating the Of the

Allowed Integer to the Integer

(attribute Length and 0 Attribute

value) Scaling

Attributes
HALFCON DC HS6'~=25.93" } 9

Fixed-point 8x2-6-1

(H,F, and G) '=8xL'-S'-1 ONECON DC F88'100.3E—2'} 23
8x%4-8-1

Floating-point when L' <8 SHORT DC ES2'46.,415" } 4

(D,E,L, and K) I'=2+(L'-1)=-S" 2%(4-1) -2

LONG DC DS5'-3.729"' } 9
2%(8=-1)-=5
ly fi - h '>8 -

Only for L-Type T iL'~1)-g'~p | EXTEND DC LS10'5.312" } 18
2#%(16-1)-10 -2

Decimal equal to the

number of decimal

digits to the left of

the assumed decimal

point after the

number is assembled

Packed (P) '=2x%L'-S'-1 PACK DC P'+3,513" 2
2%3-3-1] ;\

Zoned (2) I'sL'-s' ZONE DC Z'3,513" 1
4-3

Count Attribute (K’)

Notes to Figure 59:

Figure 59. Relationship of Integer to Length and Scaling Attributes

1. The integer attribute reference can be used only in arithmetic expressions.

2. If the value of the SETC symbol is equal to the name of an instruction that
can be referenced by the integer attribute, Assembler H allows you to use
the integer attribute with a SETC symbol.

The count attribute applies only to macro instruction operands, to SET symbols,
and to the system variable symbols. It has a numeric value equal to the

number of characters:

* That constitute the macro instruction operand, or

* That would be required to represent as a character string the current value
of the SET symbol or the system variable symbol.

222 Assembler H Version 2 Language Reference

http:HS6'-2S.93

Notes:
1. The count attribute reference can be used only in arithmetic expressions.

2. The count attribute of an omitted macro instruction operand has a default
value of 0.

Number Attribute (N’)
The number attribute applies only to the operands of macro instructions. It has
a numeric value equal to the number of sublist entries in the operand.

When applied to a subscripted SET symbol, the number attribute is equal to the
highest element to which a value has been assigned in a SETx instruction. For
example, if the only references to &A have been

LCLA &A(100)
&A(5) SETA 20,,,70 see description of
AIF (&A(20) GT 508).M extended SET statements

then N’&A is equal to 8, because &A(8) is assigned the value 70.

Notes:
1. The number attribute reference can be used only in arithmetic expressions.

2. N'&SYSLIST refers to the number of positional operands in a macro instruc-
tion, and N’&SYSLIST(m) refers to the number of sublist entries in the m-th
operand.

Defined Attribute (D)
The defined attribute indicates whether or not the symbol referenced has been
defined prior to the attribute reference. A symbol is considered as defined if it
has been encountered in the operand field of an EXTRN or WXTRN statement,
or in the name field of any other statement. The value of the defined attribute
is 1, if the symbol has been defined, or 0, if the symbol has not been defined.

The defined attribute can reference all symbols that can be referenced by the
scaling (S’) attribute.

The following is an example of how you can use the defined attribute:

ATF (D'A) .AROUND
A LA 1,4
.AROUND ANOP

In this example, the statement at A would be assembled. since the branch
around it would not be taken. However, if by a branch the same statement
were processed again, the statement at A would not be assembled:

.UP ALF (D'A) . AROUND
A LA 1,4
.AROUND ANOP

AGO .UP

Chapter 9. How to Write Conditional Assembly Instructions 223

You can save assembly time using the defined attribute. Each time the assem-
bler finds a reference (attribute or branch) to an undefined symbol, it initiates a
forward scan until it finds that symbol or reaches the END statement. You can
use the defined attribute in your program to prevent the assembler from making
this time-consuming forward scan.

Sequence Symbols
You can use a sequence symbol in the name field of a statement to branch to
that statement at preassembly time, thus altering the sequence in which the
assembler processes your conditional assembly and macro instructions. You
can thus select the model statements from which the assembler generates
assembler language statements for processing at assembly time.

Format of sequence symbol:

* The first column must contain a period {.)

* The second column must contain an alphabetic character

* The remaining columns must contain @ to 61 alphameric
characters

Examples:

.BRANCHINGLABEL1
A

Sequence symbols can be specified in the name field of assembler language
statements and model statements; however, the following lists assembler
instructions in which sequence symbols must not be used as name entries:

CoPY GBLC LCLB
EQU ICTL LCLC
GBLA ISEQ MACRO
GBLB LCLA OPSYN

In addition, sequence symbols cannot be used as name entries in macro proto-
type instructions, or in any instruction that already contains an ordinary or a
variable symbol.

Sequence symbols can be specified in the operand field of an AIF or AGO
instruction to branch to a statement with the same sequence symbol as a label.

A sequence symbol has a local scope. Thus, if a sequence symbol is used in
an AIF or an AGO instruction, the sequence symbol must be defined as a label
in the same part of the program in which the AIF or AGO instruction appears;
that is, in the same macro definition or in open code.

If a sequence symbol appears in the name field of a macro instruction, and the
corresponding prototype statement contains a symbolic parameter in the name
field, the sequence symbol does not replace the symbolic parameter wherever
it is used in the macro definition.

224 Assembler H Version 2 Language Reference

Example:

MACRO

&NAME MOVE &T0,&FROM Statement 1

&NAME ST 2,SAVEAREA Statement 2
L 2,&FROM
ST 2,8&T0
L 2,SAVEAREA
MEND

SYM MOVE FIELDA,FIELDB Statement 3

ST 2,SAVEAREA Statement 4
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

The symbolic parameter &NAME is used in the name field of the prototype
statement (statement 1) and the first model statement (statement 2). In the
macro instruction (statement 3), a sequence symbol (.SYM) corresponds to the
symbolic parameter &NAME. &NAME is not replaced by .SYM and, therefore,
the generated statement (statement 4) does not contain an entry in the name
field.

Attribute Definition and Lookahead

Symbol attributes are established in either definition mode or lookahead mode.
Lookahead mode is entered when Assembler H encounters an attribute refer-
ence to a symbol that is not yet defined.

Definition Mode: Definition occurs whenever a previously undefined symbol is
encountered in the name field of a statement, or in the operand field of an
EXTRN or WXTRN statement during open code processing. Symbols within a
macro definition are defined when the macro is generated.

Lookahead Mode: Lookahead is a sequential, statement-by-statement, forward
scan over the source text. It is initiated when reference is made to an attribute
(other than D’) of a symbol not yet encountered, either by macro or open-code
attribute reference, or by a forward AGO or AIF branch in open code.

If reference is made in a macro, forward scan begins with the first source state-
ment following the outermost macro instruction. Programmer macros are
bypassed. The text is not assembled. Lookahead attributes are tentatively
established for all intervening undefined symbols. Tentative attributes are
replaced and fixed when the symbol is subsequently encountered in definition
mode. No macro expansion or open-code substitution is performed; no condi-
tional or unconditional (AIF or AGQO) branches are taken. COPY instructions are
executed during lookahead, and the copied statements are scanned.

Lookahead ends when the desired symbol or sequence symbol is found, or
when the END card or end of file is reached. All statements passed over by
lookahead are saved on an internal file, and processed when the lookahead
ends.

Chapter 9. How to Write Conditional Assembly Instructions 225

For purposes of attribute definition, a symbol is considered undefined if it
depends in any way upon a symbol not yet defined. For example, if the symbol
is defined by a forward EQU that is not yet resolved, or if a DC, DS, or DXD
modifier expression contains symbols not yet defined, that symbol is assigned a
type attribute of U.

Note: Because no variable symbol substitution is performed by a lookahead,
you should be careful when using a macro or open code substitution to gen-
erate END statements that separate source modules assembled in one job step
(option BATCH). If a symbol is undefined within a module, lookahead will read
in records past the point where the END statement is to be generated. All
statements between the generated statement and the point at which lookahead
stops (either because it finds a matching symbol, or because it finds an END
statement) are ignored by the assembler. The next module will start at the
point where lookahead stops.

Lookahead Restrictions: Assembler statements are analyzed only to the extent
necessary to establish attributes of symbols in their name fields.

Variable symbols are not replaced. Modifier expressions are evaluated only if
all symbols involved were defined prior to lookahead. Possible multiple or
inconsistent definition of the same symbol is not diagnosed during lookahead
because conditional assembly may eliminate one (or both) of the definitions.

Lookahead does not check undefined operation codes against library (system)
macro names. If the name field contains an ordinary symbol and the operation
code cannot be matched with one in the current operation code table, then the
ordinary symbol is assigned the type attribute of M. If the operation code con-
tains special characters or is a variable symbol, a type attribute of U is
assumed. This may be wrong if the undefined operation code is later defined
by OPSYN. OPSYN statements are not processed; thus, labels are treated in
accordance with the operation code definitions in effect at the time of entry to
lookahead.

Declaring SET Symbols

You must declare a global SET symbol before you can use it. The assembler
assigns an initial value to a global SET symbol at its point of declaration.

Local SET symbols need not be declared explicitly with LCLA, LCLB, or LCLC
statements. The assembler considers any undeclared variable symbol found in
the name field of a SETA, SETB, or SETC statement to be a local SET symbol. It
is given the initial value specified in the operand field. If the symbol in the
name field is subscripted, it is declared as a subscripted SET symbol.

LCLA, LCLB, LCLC—Define Local Set Symbols
You use the LCLA, LCLB, and LCLC instructions to declare the local SETA,
SETB, and SETC symbols you need. The SETA, SETB, and SETC symbols are
assigned the initial values of 0, 0, and null character string, respectively.

226 Assembler H Version 2 Language Reference

Format of LCLA, LCLB, LCLC:

Name Operation Operand
LCLA, One or more variable symbols,
LCLB, or separated by commas
LCLC

These instructions can be used anywhere in the body of a macro definition or in
the open code portion of a source module.

A local SET symbol should not begin with &SYS because these characters are
reserved for system variable symbols.

Any variable symbols declared in the operand field have a local scope. They
can be used as SET symbols anywhere after the pertinent LCLA, LCLB, or LCLC
instructions, but only within the declared local scope. Multiple LCLx statements
can declare the same variable symbol if only one declaration for a given
symbol is encountered during the expansion of a macro.

The following rules apply to a local SET variable symbol:

1. Within a macro definition, it must not be the same as any symbolic param-
eter declared in the prototype statement.

2. It must not be the same as any global variable symbol declared within the
same local scope.

3. The same variable symbol must not be declared or used as two different
types of SET symbols; for example, as a SETA and a SETB symbol, within
the same local scope.

Subscripted Local SET Symbols: A local subscripted SET symbol is declared by
the LCLA, LCLB, or LCLC instruction.

Format of subscripted local SET symbol:

Name Operation Operand
LCLA
LCLB, or &SETSYM(dimension)
LCLC

where: « &SETSYM is a variable symbol.
e dimension must be an unsigned, decimal,
self-defining term, but not 0.

Example: LCLB 8&B(10)

Chapter 9. How to Write Conditional Assembly Instructions 227

There is no limit to SET symbol dimensioning. The limit specified in the explicit
(LCLx) or implicit (SETx) declaration can also be exceeded by subsequent SETx
statements. The dimension indicates the number of SET variables associated
with the subscripted SET symbol. The assembler assigns an initial value to
every variable in the array thus declared.

Note: A subscripted local SET symbol can be used only if the declaration has a
subscript, which represents a dimension; a nonsubscripted local SET symbol
can be used only if the declaration had no subscript.

Alternative Format for LCLX Statements: Assembler H permits an alternative
statement format for LCLx instructions:

Cont.
LCLA &LOCAL_SYMBOL_FOR_DC_GEN, X
&COUNTER_FOR_INNER_LOOP, X
&COUNTER_FOR_OUTER_LOOP, X

&COUNTER_FOR_TRAILING_LOOP

GBLA, GBLB, and GBLC Instructions
You use the GBLA, GBLB, and GBLC instructions to declare the global SETA,
SETB, and SETC symbols you need. The SETA, SETB, and SETC symbols are
assigned the initial values of 0, 0, and null character string, respectively.

Format of GBLA, GBLB, and GBLC:

Name Operation Operand
GBLA, One or more variable symbols,
GBLB, or separated by commas
GBLC

These instructions can be used anywhere in the body of a macro definition or in
the open code portion of a source module.

Any variable symbols declared in the operand field have a global scope. They
can be used as SET symbols anywhere after the pertinent GBLA, GBLB, or
GBLC instructions. However, they can be used only within those parts of a
program in which they have been declared as global SET symbols; that is, in
any macro definition and in open code.

The assembler assigns an initial value to the SET symbol only when it proc-
esses the first GBLA, GBLB, or GBLC instruction in which the symbol appears.
Subsequent GBLA, GBLB, or GBLC instructions do not reassign an initial value
to the SET symbol.

Multiple GLBx statements can declare the same variable symbol if only one
declaration for a given symbol is encountered during the expansion of a macro.

The following rules apply to the global SET variable symbol:

1. Within a macro definition, it must not be the same as any symbolic param-
eter declared in the prototype statement.

228 Assembler H Version 2 Language Reference

C

2. It must not be the same as any local variable symbol declared within the
same local scope.

3. The same variable symbol must not be declared or used as two different
types of global SET symbol; for example, as a SETA or SETB symbol.

Note: A global SET symbol should not begin with the four characters &SYS,
which are reserved for system variable symbols.

Subscripted Global SET Symbols: A global subscripted SET symbol is declared
by the GBLA, GBLB, or GBLC instruction.

Format of subscripted global SET symbol:

Name Operation Operand
GBLA
GBLB, or &SETSYM(dimension)
GBLC

where: &SETSYM is a variable symbol.
dimension must be an unsigned, decimal, self-defining term,
but not 0.

Example: GBLA &GA

There is no limit on the maximum subscript allowed. Also, the limit specified in
the global declaration (GBLx) can be exceeded. The dimension indicates the
number of SET variables associated with the subscripted SET symbol. The
assembler assigns an initial value to every variable in the array thus declared.

Notes:

1. Global arrays are assigned initial values only by the first global declaration
processed, in which a global subscripted SET symbol appears.

2. A subscripted global SET symbol can be used only if the declaration has a
subscript, which represents a dimension; a nonsubscripted global SET
symbol can be used only if the declaration had no subscript.

3. Wherever a particular global SET symbol is declared with a dimension as a
subscript, the dimension must be the same in each declaration.

Alternative Format for GBLX Statements: Assembler H permits the alternate
statement format for GBLx instructions:

Cont.
GBLA &GLOBAL_SYMBOL FOR_DC_GEN, X
&LOOP_CONTRL_A, X
&VALUE_PASSED_TO_FIDO, X

&VALUE_RETURNED_FROM FIDO

Chapter 9. How to Write Conditional Assembly Instructions 229

Assigning Values to SET Symbols

SETA—Set Arithmetic
The SETA instruction allows you to assign an arithmetic value to a SETA
symbol. You can specify a single value or an arithmetic expression from which
the assembler will compute the value to assign.

You can change the values assigned to an arithmetic or SETA symbol. This
allows you to use SETA symbols as counters, indexes, or for other repeated

computations that require varying values.

Format of SETA:

Name Operation Operand
A variable SETA An arithmetic expression
symbol

A global variable symbol in the name field must have been previously declared
as a SETA symbol in a GBLA instruction. Local SETA symbols need not be
declared in a LCLA instruction. The assembler considers any undeclared vari-
able symbol found in the name field of a SETA instruction as a local SET
symbol.

The variable symbol is assigned a type attribute value of N.

The expression in the operand field is evaluated as a signed 32-bit arithmetic
value that is assigned to the SETA symbol in the name field. The minimum and
maximum allowable values of the expression are -2°! and +2°!-1, respectively.

Subscripted SETA Symbols
The SETA symbol in the name field can be subscripted, but only if the same
SETA symbol has been previously declared in a GBLA or LCLA instruction with
an allowable dimension.

The assembler assigns the value of the expression in the operand field to the
position in the declared array given by the value of the subscript. The subscript
expression must not be 0, or have a negative value, or exceed the dimension
actually specified in the declaration.

230 Assembler H Version 2 Language Reference

Arithmetic (SETA) Expressions

Arithmetic expressions can be used as shown in Figure 60.

Used in Used as Example
SETA instruction Operand &A1 SETA 8&Al + 2
AIF or SETB instruction Comparand in AIF (&A*10 GT 30).A
arithmetic
relation
Subscripted SET symbols Subscript &SETSYM(&A + 10 - &C)
Substring notation (see L6) Subscript 'STRING' (8A*2,8A-1)
Sublist notation Subscript Given sublist (A,B,C,D)
if 8A=1 then &PARAM(&A+1)=B
&SYSLIST Subscript &SYSLIST(&M+1,8&N-2)
&SYSLIST(N'&SYSLIST)
SETC instruction Character string Given & SETC '5-10%8A'!
in operand if 8A=10 then &C=5-10%10?

Figure 60. Use of Arithmetic (SETA) Expressions

Note: When an arithmetic expression is used in the operand field of a SETC
instruction (see (1) in Figure 60), the assembler assigns the character value
representing the arithmetic expression to the SETC symbol, after substituting
values (see (2) in Figure 60) into any variable symbols. It does not evaluate the
arithmetic expression.

Chapter 9. How to Write Conditional Assembly Instructions 231

Figure 61 defines an arithmetic expression.

Arithmetic
Expression

1Arithmetic
Term

Variable
Symbol

Arith.Exp Arith, Exp

-+

Arith, Exp Arith_. Exp

or or

Arith. Exp Arith, Exp}

or / or KArith, ExpNor
Arith, Exp. Arith, Exp

e
%

H-Arith. Exp

or

Arith. Exp}

Self-]
Defining [or |Attribute
Term Reference

Length
Scaling
Integer
Count
or
Number

Operators Allowed

Unary: + positive
- negative

Binary: + addition

- subtraction

% multiplication
/ division

Arith. Exp = Arithmetic Expression

Figure 61. Defining Arithmetic (SETA) Expressions

Figure 62 shows the variable symbols that are allowed as terms in an arith-

metic expression.

Variable symbol Restrictions Example Value
SETA None - -
SETB None - -
SETC Value must be an unsigned &C 123
decimal self-defining term in
&SYSPARM the range O to 2,147,483,647 &SYSPARM 2000
Symbolic parameters Value must be a self-defining &PARAN X'Al"
term
&SUBLIST(3) c'z
&SYSLIST(n) Corresponding operand or &SYSLIST(3) 24
sublist entry must be a self-
&SYSLIST(n,m) defining term 8&SYSLIST(3,2) B'101°

&SYSNDX

None

Figure 62. Variable Symbols Allowed as Terms in Arithmetic Expressions

232 Assembler H Version 2 Language Reference

Rules for Coding Arithmetic Expressions: The following is a summary of coding
rules for arithmetic expressions:

1. Both unary (operating on one value) and binary (operating on two values)
operators are allowed in arithmetic expressions.

2. An arithmetic expression can have one or more unary operators preceding
any term in the expression or at the beginning of the expression. The
unary operators are + (positive) and - (negative).

3. The binary operators that can be used to combine the terms of an
expression are + (addition), - (subtraction), * (multiplication), and / (divi-
sion).

4. An arithmetic expression must not begin with a binary operator, and it must
not contain two binary operators in succession.

5. An arithmetic expression must not contain two terms in succession.

6. An arithmetic expression must not contain blanks between an operator and
a term, nor between two successive operators.

7. An arithmetic expression can contain up to 24 unary and binary operators,
and up to 255 levels of parentheses.

Note: The parentheses required for sublist notation, substring notation, and
subscript notation count toward this limit.
Evaluation of Arithmetic Expressions: The assembler evaluates arithmetic
expressions at preassembly time as follows:
1. It evaluates each arithmetic term.
2. It performs arithmetic operations from left to right. However,
a. It performs unary operations before binary operations, and

b. It performs the binary operations of multiplication and division before
the binary operations of addition and subtraction.

3. In division, it gives an integer result; any fractional portion is dropped. Divi-
sion by zero gives a O result.

4. In parenthesized arithmetic expressions, the assembler evaluates the inner-
most expressions first, and then considers them as arithmetic terms in the
next outer level of expressions. It continues this process until the outer-
most expression is evaluated.

The computed result, including intermediate values, must lie in the range
-23! through +23'1.

(Sl

Chapter 9. How to Write Conditional Assembly Instructions 233

SETC Variables in Arithmetic Expressions: Assembler H permits a SETC vari-
able to be used as a term in an arithmetic expression if the character string
value of the variable is a self-defining term. The value represented by the
string is assigned to the arithmetic term. A null string is treated as zero. (The
0OS/VS Assembler allows SETC variables as arithmetic terms only if the value of
the variable is a decimal self-defining term, not longer than 10 characters.)

Examples:
LCLC &C(5)
&C(1) SETC 'B''101' !
&C(2) SETC 'C''A" !
&C(3) SETC 123"
&A SETA &C(1)+&C(2)-&C(3)?
&AA SETA &C(3)2
Notes:

1. Allowed only by Assembler H
2. Allowed by the OS/VS Assembler and Assembler H

In evaluating the arithmetic expression in the fifth statement, the first term
(&C(1)) is assigned the binary value 101 (5). To that is added the value repres-
ented by the EBCDIC character A (hexadecimal C1, which corresponds to
decimal 193). Then the value represented by the third term (&C(3)) is sub-
tracted, and the value of &A becomes 5+193-23 =175.

This feature allows you to associate numeric values with EBCDIC or
hexadecimal characters to be used in such applications as indexing, code con-
version, translation, and sorting.

Assume that &X is a character string with the value ABC.
&I SETC CrULURX(L,)
&VAL SETA &TRANS (&1)

The first statement sets &l to C’'A’. The second statement extracts the 193rd
element of &TRANS (C'A” = X'C1" = 193).

The following code will convert a hexadecimal value in &H into a decimal value

in &VAL:
&X SETC 'X''&H' !
&VAL SETA &X

The following code will convert the double-byte character Da into a decimal
value in &VAL. &VAL can then be used to find an alternative code in a sub-
scripted SETC variable:

&DA SETC 'G''<Da>"""
&VAL SETA &DA

Note: The G-type self-defining term is valid only if the assembler is invoked
with the DBCS option.

An arithmetic expression must not contain two terms in succession; however,
any term may be preceded by any number of unary operators. +&A*-&B is a
value operand for a SETA instruction. The expression &FIELD +- is invalid
because it has no final term.

234 Assembler H Version 2 Language Reference

Using SETA symbols
The arithmetic value assigned to a SETA symbol is substituted for the SETA
symbol when it is used in an arithmetic expression. If the SETA symbol is not
used in an arithmetic expression, the arithmetic value is converted to an
unsigned integer, with leading zeros removed. If the value is 0, it is converted
to a single 0.

Example:
MACRO
&MAME MOVE &T0,&FROM
LCLA &A,&B,8&C,&D
&A SETA 10 Statement 1
&B SETA 12 Statement 2
&C SETA &A-&B Statement 3
&D SETA &A+&C Statement 4
&NAME ST 2,SAVEAREA
L 2 ,&FROM&C Statement 5
ST 2,&T08&D Statement 6
L 2 ,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDB2
ST 2,FIELDA8
L 2,SAVEAREA

Statements 1 and 2 assign the arithmetic values +10 and + 12, respectively, to
the SETA symbols &A and &B. Therefore, statement 3 assigns the SETA
symbol &C the arithmetic value -2. When &C is used in statement 5, the arith-
metic value -2 is converted to the unsigned integer 2. When &C is used in
statement 4, however, the arithmetic value -2 is used. Therefore, &D is
assigned the arithmetic value +8. When &D is used in statement 6, the arith-
metic value +8 is converted to the unsigned integer 8.

The following example shows how the value assigned to a SETA symbol may be
changed in a macro definition.

MACRO
&NAME MOVE &T0,&FROM
LCLA 8A
&A SETA 5 Statement 1
&NAME ST 2,SAVEAREA
L 2 ,&FROM&A Statement 2
&A SETA 8 Statement 3
ST 2,&T08A Statement 4
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDBS
ST 2,FIELDAS
L 2,SAVEAREA

Chapter 9. How to Write Conditional Assembly Instructions 235

Statement 1 assigns the arithmetic value +5 to SETA symbol &A. In statement
2, &A is converted to the unsigned integer 5. Statement 3 assigns the arith-
metic value +8 to &A. In statement 4, therefore, &A is converted to the
unsigned integer 8, instead of 5.

A SETA symbol may be used with a symbolic parameter to refer to an operand
in an operand sublist. If a SETA symbol is used for this purpose, it must have
been assigned a positive value.

Any expression that may be used in the operand field of a SETA instruction may
be used to refer to an operand in an operand sublist. Sublists are described in
“Sublists in Operands” on page 199.

The following macro definition may be used to add the last operand in an
operand sublist to the first operand in an operand sublist and store the resuit at
the first operand. A sample macro instruction and generated statements follow
the macro definition.

MACRO
ADDX &NUMBER, ® Statement 1
LCLA &LAST

&LAST SETA N'&NUMBER Statement 2
L ®,&NUMBER(1)
A ®,&NUMBER(&LAST) Statement 3
ST ®, &HUMBER (1)
MEND
ADDX (A,8,C,D,E),3 Statement 4
L 3,A
A 3,E
ST 3,A

&NUMBER is the first symbolic parameter in the operand field of the prototype
statement (statement 1). The corresponding characters (A,B,C,D.E) of the
macro instruction (statement 4) are a sublist. Statement 2 assigns to &LAST
the arithmetic value +5, which is equal to the number of operands in the
sublist. Therefore, in statement 3, &NUMBER(&LAST) is replaced by the fifth
operand of the sublist.

SETB—Set Binary
You use the SETB instruction to assign a binary bit value to a SETB symbol.
You can assign the bit values, 0 or 1, to a SETB symbol directly and use it as a
switch.

If you specify a logical (Boolean) expression in the operand field, the assembler
evaluates this expression to determine whether it is true or false, and then
assigns the value 1 or 0, respectively, to the SETB symbol. You can use this
computed value in condition tests or for substitution.

236 Assembler H Version 2 Language Reference

Format of SETB:

Name Operation Operand
A variable SETB One of three options described below
symbol

A global variable symbol in the name field must have been previously declared
as a SETB symbol in a GBLB instruction. Local SETB symbols need not be
declared in a LCLB instruction. The assembler considers any undeclared vari-
able symbol found in the name field of a SETB instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of N.

The three options that can be specified in the operand field are:
* A binary value (0 or 1)
* A binary value enclosed in parentheses

Note: An arithmetic value enclosed in parentheses is allowed. This value
can be represented by an unsigned, decimal, self-defining term; a SETA
symbol; or an attribute reference other than the type attribute reference. If
the value is 0, the assembler assigns a value of 0 to the symbol in the
name field. If the value is not 0, the assembler assigns a value of 1.

* A logical expression enclosed in parentheses

A logical expression is evaluated to determine if it is true or false; the SETB
symbol in the name field is then assigned the binary value 1 or 0, corre-
sponding to true or false, respectively. The assembler assigns the explicitly
specified binary value (0 or 1) or the computed logical value (0 or 1) to the
SETB symbol in the name field.

Subscripted SETB Symbols
The SETB symbol in the name field can be subscripted, but only if the same
SETB symbol has been previously declared in a GBLB or LCLB instruction with
an allowable dimension.

The assembler assigns the binary value explicitly specified, or implicit in the
logical expression present in the operand field, to the position in the declared
array given by the value of the subscript. The subscript expression must not be
0, or have a negative value, or exceed the dimension actually specified in the
declaration.

Logical (SETB) Expressions
You can use a logical expression to assign a binary value to a SETB symbol.
You can also use a logical expression to represent the condition test in an AIF
instruction. This use allows you to code a logical expression whose value (0 or
1) will vary according to the values substituted into the expression and thereby
determine whether or not a branch is to be taken.

Figure 63 on page 239 defines a logical expression.

Chapter 9. How to Write Conditional Assembly Instructions 237

Note: An arithmetic relation is two arithmetic expressions separated by a rela-
tional operator. A character relation is two character strings (for example, a
character expression and a type attribute reference) separated by a relational
operator. The relational operators are:

EQ
NE
LE
LT
GE
GT

equal

not equal

less than or equal
less than

greater than or equal
greater than

Rules for Coding Logical Expressions: The following is a summary of coding
rules for logical expressions:

1.

N

wW

A logical expression must not contain two logical terms in succession.
A logical expression can begin with the logical operator NOT.

A logical expression can contain two logical operators in succession;
however, the only combinations allowed are: OR NOT or AND NOT. The
two operators must be separated from each other by one or more blanks.

. Any logical term, relation, or inner logical expression can be optionally

enclosed in parentheses.

. The relational and logical operators must be immediately preceded and fol-

lowed by at least one blank or other special character.

A logical expression can contain up to 18 logical operators. Note that the
relational and other operators used by the arithmetic and character
expressions in relations do not count toward this total. There is no limit on
the number of parentheses.

238 Assembler H Version 2 Language Reference

¢

Logical
Expression

Outermost Expression
must be enclosed in
parentheses in SETB
and AIF instructions

Allowed

Logical Operators

OR addition

AND

multiplication

NOT negation

Optional parentheses
around terms and
expressions at this level

Logical Logical Logical Logical : l
=} Term or | Expression Term Expression : r
. OS only) \
35
Arithmetic | Logical SET,B
value or| Relation or | Variable ~or 0 or 1 —
Symbol
- J

Arithmetic
Comparand

Arithmetic
Relation

Arithmetic
Expression

Arithmetic
Comparand

Items optionally
enclosed in
parentheses

Relational Operators Allowed

Character equal
Relation not equal
i less than or equal
’ less than
greater than or equal
greater than
Character Character Must be in the
Comparand Comparand range O through
ot 255 characters
|
Concatenation
Character Substring TVD? of Char?cter
. or . or Attribute or |Expression
Expression Notation i
4 Reference and Substring
Notation

Must stand alone
and not be enclosed
in apostrophes

Figure 63. Defining Logical Expressions

Chapter 9. How to Write Conditional Assembly Instructions

239

Evaluation of Logical Expressions: The assembler evaluates logical
expressions as follows:

1. It evaluates each logical term, which is given a binary value of 0 or 1.

2. If the logical term is an arithmetic or character relation, the assembler eval-
uates:

a. The arithmetic or character expressions specified as values for compar-
ison in these relations, and then

b. The arithmetic or character relation, and finally

c. The logical term, which is the result of the relation. If the relation is
true, the logical term it represents is given a value of 1; if the relation is
false, the term is given a value of 0.

Note: The two comparands in a character relation are compared, character
by character, according to binary (EBCDIC) representation of the character.
If two comparands in a character relation have character values of unequal
length, the assembler always takes the shorter character value to be less
than the longer one.

3. The assembler performs logical operations from left to right. However,

a. It performs logical NOTs before logical ANDs and ORs
b. It performs logical ANDs before logical ORs

4. In parenthesized logical expressions, the assembler evaluates the inner-
most expressions first, and then considers them as logical terms in the next
outer level of expressions. It continues this process until the outermost
expression is evaluated.

Using SETB Symbols: The logical value assigned to a SETB symbol is used for
the SETB symbol appearing in the operand field of an AIF instruction or another
SETB instruction.

If a SETB symbol is used in the operand field of a SETA instruction, or in arith-
metic relations in the operand fields of AIF and SETB instructions, the binary
values 1 (true) and O (false) are converted to the arithmetic values +1 and +0,
respectively.

If a SETB symbol is used in the operand field of a SETC instruction, in character
relations in the operand fields of AIF and SETB instructions, or in any other
statement, the binary values 1 (true) and O (false), are converted to the char-
acter values 1 and O, respectively.

240 Assembler H Version 2 Language Reference

The following example illustrates these rules. It is assumed that L'&TO EQ 4 is
true, and S’&TO EQ 0 is false.

MACRO
&NAME MOVE &T0,&FROM

LCLA &A1

LCLB &B1,8&B2

LCLC &C1
&B1 SETB (L'&T0 EQ 4) Statement 1
&B2 SETB (S'&T0 EQ Q) Statement 2
&A1 SETA &B1 Statement 3
&C1 SETC '&B2" Statement 4

ST 2, SAVEAREA

L 2,&FROMRAL

ST 2,&T0&C1

L 2,SAVEAREA

MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA

L 2,FIELDB1

ST 2,FIELDAQ

L 2,SAVEAREA

Because the operand field of statement 1 is true, &B1 is assigned the binary
value 1. Therefore, the arithmetic value +1 is substituted for &B1 in statement
3. Because the operand field of statement 2 is false, &B2 is assigned the binary
value 0. Therefore, the character value 0 is substituted for &B?2 in statement 4.

SETC—Set Character

The SETC instruction allows you to assign a character value to a SETC symbol.
You can assign whole character strings, or concatenate several smaller strings
together. The assembler will assign the composite string to your SETC symbol.
You can also assign parts of a character string to a SETC symbol by using the
substring notation.

You can change the character value assigned to a SETC symbol. This allows
you to use the same SETC symbol with different values for character compar-
isons in several places, or for substituting different values into the same model
statement.

Format of SETC:

Name Operation Operand
A variable SETC One of four options described below
symbol

A global variable symbol in the name field must have been previously declared
as a SETC symbol in a GBLC instruction. Local SETC symbols need not be
declared in a LCLC instruction. The assembler considers any undeclared vari-
able symbol found in the name field of a SETC instruction as a local SET
symbol. The variable symbol is assigned a type attribute value of U.

Chapter 9. How to Write Conditional Assembly Instructions 241

The four options that can be specified in the operand field are:

* A type attribute reference

* A character expression

* A substring notation

* A concatenation of substring notations, or character expressions, or both

The assembler assigns the character string value represented in the operand
field to the SETC symbol in the name field. The string length must be in the
range 0 (null character string) through 255 characters.

Note: When a SETA or SETB symbol is specified in a character expression, the
unsigned decimal value of the symbol (with leading zeros removed) is the char-
acter value given to the symbol.

A duplication factor can precede any of the first three options, or any of the
parts (character expression or substring notation) that make up the fourth
option of the SETC instruction operand. The duplication factor can be any arith-
metic expression allowed in the operand of a SETA instruction. For example:

&C1 SETC (3)'ABC'
assigns the value "ABCABCABC’ to &C1.

Notes:

1. The assembler evaluates the represented character string (in particular, the
substring) before applying the duplication factor. The resulting character
string is then assigned to the SETC symbol in the name field. For example:

&C2 SETC "ABC'.(3)'ABCDEF'(4,3)
assigns the value "ABCDEFDEFDEF’ to &C2.
2. If the character string contains double-byte data, then redundant SI/SO
pairs are not removed on duplication. For example:
&C3 SETC (3)'<.A.B>"

assigns the value "<.AB><.AB><.AB>’to &C3.

3. To duplicate double-byte data, without including redundant SI/SO pairs, use
the substring notation. For example:

&C4 SETC (3)'<.A.B>'(2,4)
assigns the value ".A.B.A.B.A.B’ to &CA4.

Subscripted SETC Symbols: The SETC symbol (see (1) in Figure 64 on
page 243) in the name field can be subscripted, but only if the same SETC
symbol has been previously declared (see (2) in Figure 64) in a GBLC or an
LCLC instruction with an allowable dimension.

The assembler assigns the character value represented in the operand field to
the position in the declared array (see (3) in Figure 64) given by the value of
the subscript. The subscript expression must not be 0, or have a negative
value, or exceed the dimension (see (4) in Figure 64) actually specified in the
declaration.

242 Assembler H Version 2 Language Reference

LCLC &C1l,&C2
LCLC &SUBSCRC (20)

Must be in the

range 1 through
0 32767

&SUBSCRC(10) SETC 'ABCDE'
Array: o '
Must be an arithmetic &SUBSCRC
expression allowed in |ABCDE]—E % |
the operand of a SETA
instruction 1 1 1
1 2 10 20

&SUBSCRC (25) SETC 'ABCDEF' :#*ERROR*%* NoO
o’ Value Assigned

Value assigned
&C1=ABCDE

&Cl SETC ' & SUBSCRC (10) '

Figure 64. Subscripted SETC Symbols

Character (SETC) Expressions
The main purpose of a character expression is to assign a character value to a
SETC symbol. You can then use the SETC symbol to substitute the character
string into a model statement.

You can also use a character expression as a value for comparison in condition
tests and logical expressions. In addition, a character expression provides the
string from which characters can be selected by the substring notation.

Substitution of one or more character values into a character expression allows
you to use the character expression wherever you need to vary values for sub-
stitution or to control loops.

Character (SETC) expressions can be used only in conditional assembly
instructions as shown in Figure 65.

A character expression consists of any combination of characters enclosed in
single quotation marks. Variable symbols are allowed. The assembler substi-
tutes the representation of their values as character strings into the character
expression before evaluating the expression. Up to 255 characters are allowed
in a character expression.

Note: Attribute references are not allowed in character expressions.

Chapter 9. How to Write Conditional Assembly Instructions 243

Used in Used as Example

SETC instruction Operand &C SETC 'STRINGO'

AIF or SETB instruction Character string in char- AIF ('&C' EQ 'STRING1').B

acter relation

Substring notation First part of notation 'SELECT'(2,5)=ELECT

Figure 65. Use of Character Expressions

Evaluation of Character Expressions: The value of a character expression is the
character string within the enclosing single quotation marks, after the assem-
bler performs any substitution for variable symbols.

Character strings, including variable symbols, can be concatenated to each
other within a character expression. The resultant string is the value of the
expression used in conditional assembly operations; for example, the value
assigned to a SETC symbol.

Notes:

1.

Two single quotation marks must be used to generate a single quotation
mark as part of the value of a character expression.

The following statement assigns the character value L’'SYMBOL to the SETC
symbol &LENGTH.

&LENGTH SETC 'L''SYMBOL'

. A double ampersand will generate a double ampersand as part of the value

of a character expression. To generate a single ampersand in a character
expression, use the substring notation; for example, ('&&°(1,1)).

The following statement assigns the character value HALF&& to the SETC
symbol &AND.

&AND SETC '"HALF&&'

. To generate a period, two periods must be specified after a variable

symbol, or the variable symbol must have a period as part of its value.

For example, if &ALPHA has been assigned the character value AB%4, the
following statement can be used to assign the character value AB%4.RST
to the variable symbol &GAMMA.

&GAMMA SETC "@ALPHA. .RST'

. Double-byte data can appear in the character string if the assembler is

invoked with the DBCS option. The double-byte data must be bracketed by
the SO and Sl delimiters, and the double-byte data must be valid.

. The DBCS ampersand and apostrophe are not recognized as delimiters.

A double-byte character that contains the value of an EBCDIC ampersand or
apostrophe in either byte is not recognized as a delimiter when enclosed by
SO and SlI.

244 Assembler H Version 2 Language Reference

Concatenation of Character String Values: Character expressions can be con-
catenated to each other or to substring notations in any order. This concat-
enated string can then be used in the operand field of a SETC instruction, or as
a value for comparison in a logical expression. The resulting value is a char-
acter string composed of the concatenated parts.

Note: The concatenation character (a period) is needed to separate the single
quotation mark that ends one character expression from the single quotation
mark that begins the next.

For example, either of the following statements may be used to assign the char-
acter value ABCDEF to the SETC symbol &BETA.

&BETA SETC 'ABCDEF'
&BETA SETC 'ABC'. 'DEF'

Concatenation of strings containing double-byte data: If the assembler is
invoked with the DBCS option, then the following additional considerations

apply:

* When a variable symbol adjoins double-byte data, the SO delimiting the
double-byte data is not a valid delimiter of the variable symbol. The vari-
able symbol must be terminated by a period.

* The assembler checks for Sl and SO at concatenation points. If the byte to
the left of the join is Sl and the byte to the right of the join is SO, then the
S1/SO pair are considered redundant and are removed.

e To create redundant SI/SO pairs at concatenation points, use the substring
notation and SETC expressions to create additional S| and SO characters.
By controlling the order of concatenation, it is possible to leave a redundant
SI/SO pair at a concatenation point.

Examples:
&DBDA SETC '<Da>'
&S0 SETC '&DBDA' (1,1)
&SI SETC "&DBDA' (4,1)
&DBCS1A SETC '&DBDA.<Db>'
&DBCS1E SETC '&DBDA<Db>"
&DBCS2 SETC '&DBDA"'. '<Db>'
&DBCS2A SETC ‘&DBDA'. '<Db>'. '&DBDA'
&DBCS3 SETC '&DBDA "' . '&ST'.'&S0"'. '<Db>"'
&DBCS3P SETC '&DBDA"'. '&SI'
&DBCS3Q SETC '&S0"'. '<Db>"
&DBCS3R SETC '&DBCS3P"'. '&DBCS3Q"

The substring notation is used to create variables &SO and &SI which have the
values of SO and SI, respectively. The variable &DBCS1A is assigned the value
<DaDb> with the SI/SO pair at the join removed. The assignment to variable
&DBCS1E will fail with error IEV035, since the symbol &DBDA is terminated by
SO and not by a period. The variable &DBCS2 will be assigned the value
<DaDb>. The variable &DBCS2A will be assigned the value <DaDbDa>. In
both cases, redundant SI/SO pairs are removed at the joins. The variable
&DBCS3 will be assigned the value <DaDb>. Although Sl and SO have been
added at the join, the concatenation operation will remove two S| and two SO
characters, since redundant SI/SO pairs will be found at the second and third
concatenations. However, by using intermediate variables &DBCS3P and
&DBCS3Q to change the order of concatenation, the string <Da> <Db> can
be assigned to variable &DBCS3R.

Chapter 9. How to Write Conditional Assembly Instructions 245

Using SETC Symbols: The character value assigned to a SETC symbol is sub-
stituted for the SETC symbol when it is used in the name, operation, or operand

field of a statement.

For example, consider the following macro definition, macro instruction, and

generated statements.

MACRO
&NAME MOVE

LCLC
&PREFIX SETC
&NAME ST

&T0,&FROM
&PREFIX
'FIELD'

2, SAVEAREA

2, &PREFIX&FROM
2,&PREFIX&TO
2, SAVEAREA

Statement 1

Statement 2
Statement 3

2,SAVEAREA
2,FIELDB
2,FIELDA
2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. In
statements 2 and 3, &PREFIX is replaced by FIELD.

The following example shows how the value assigned to a SETC symbol may be
changed in a macro definition.

MACRO
&NAME MOVE

LCLC
&PREFIX SETC
&NAME ST

&PREFIX SETC

&T0,&FROM
&PREFIX
'FIELD'

2, SAVEAREA
2,&PREFIX&FROM
"AREA’
2,&PREFIX&TO
2, SAVEAREA

Statement 1

Statement 2
Statement 3
Statement 4

2,SAVEAREA
2,FIELDB
2,AREAA
2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX.
Therefore, &PREFIX is replaced by FIELD in statement 2. Statement 3 assigns
the character value AREA to &PREFIX. Therefore, &PREFIX is replaced by
AREA, instead of FIELD, in statement 4.

The following example illustrates the use of a substring notation as the operand

field of a SETC instruction.

246 Assembler H Version 2 Language Reference

&NAME MOVE &T0,&FROM
LCLC &PREFIX
&PREFIX SETC '&T0'(1,5) Statement 1
&NAME ST 2,SAVEAREA
L 2 ,&PREFIX&FROM Statement 2
ST 2,870
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assigns the substring character value FIELD (the first five charac-
ters corresponding to symbolic parameter &TO) to the SETC symbol &PREFIX.
Therefore, FIELD replaces &PREFIX in statement 2.

Note: It is not possible, by specifying a string of values separated by commas
as the operand of a SETC instruction and then using the SETC symbol as an
operand in the macro call, to pass a string of values as parameters in a macro
instruction. If you attempt to do this, the operand of the SETC instruction will be
passed to the macro instruction as one parameter, not as a list of parameters.
If the SETC operand is a sublist, it will also be passed to the macro instruction
as one parameter.

Concatenating Substring Notations and Character Expressions: Substring
notations can be concatenated with character expressions in the operand field
of a SETC instruction. If a substring notation follows a character expression,
the two can be concatenated by placing a period between the terminating
single quotation mark of the character expression and the opening single quo-
tation mark of the substring notation.

For example, if &ALPHA has been assigned the character value AB%4, and
&BETA has been assigned the character value ABCDEF, the following statement
assigns &GAMMA the character value AB%4BCD.

&GAMMA SETC "&ALPHA'. '&BETA'(2,3)

If a substring notation precedes a character expression or another substring
notation, the two can be concatenated by writing the opening single quotation
mark of the second item immediately after the closing parenthesis of the sub-
string notation.

Optionally, you can place a period between the closing parenthesis of a sub-
string notation and the opening single quotation mark of the next item in the
operand field.

If &ALPHA has been assigned the character value AB%4, and &ABC has been
assigned the character value 5RS, either of the following statements can be
used to assign &WORD the character value AB%45RS.

&WORD SETC '8&ALPHA'(1,4) '&ABC'
&WORD SETC "&ALPHA' (1,4) '&ABC'(1,3)

Chapter 9. How to Write Conditional Assembly Instructions 247

If a SETC symbol is used in the operand field of a SETA instruction, the char-
acter value assigned to the SETC symbol must be 1 to 8 decimal digits.

If a SETA symbol is used in the operand field of a SETC statement, the arith-
metic value is converted to an unsigned integer with leading zeros removed. If
the value is O, it is converted to a single O.

Extended SET Statements
In addition to assigning single values to SET symbols, you can assign values to
multiple elements in an array of a subscripted SET symbol with one single SETx
instruction. Such an instruction is called an extended SET statement.

Format of extended SETx:

Name Operation Operand

A subscripted SETA, operandl,operand?2,...operandn
variable SETB, or

symbol SETC

The name field specifies the name of the SET symbol and the position in the
array to which the first value in the operand field is to be assigned. The suc-
cessive operand values are then assigned to the successive positions in the
array. If an operand is omitted, the corresponding element of the array is
unchanged. Consider the following example:

LCLA &LIST(50)
&LIST(11) SETA 5,10,,20,25,30

The first instruction declares &LIST as a subscripted local SETA symbol. The
second instruction assigns values to certain elements of the array &LIST. Thus,
the instruction does the same as the following sequence:

&LIST(11) SETA 5
&LIST(12) SETA 10
&LIST(14) SETA 20
&LIST(15) SETA 25
&LIST(16) SETA 30

Alternative Statement Format: You can use the alternative statement format for
extended SETx statements. The above coding could then be written as follows:

Name Operation Operand Comment Cont.

&LIST(11) SETA 3, THIS IS X
10,, AN ARRAY X
20,25,30 SPECIFICATION

Substring Notation

The substring notation allows you to refer to one or more characters within a
character string. You can, therefore, either select characters from the string
and use them for substitution or testing, or scan through a complete string,
inspecting each character. By concatenating substrings with other substrings
or character strings, you can rearrange and build your own strings.

248 Assembler H Version 2 Language Reference

The substring notation can be used only in conditional assembly instructions, as
shown in Figure 66 on page 249.

The substring notation must be specified as follows:

'CHARACTER STRING'(el,e2)

where the character string is a character expression from which the substring
is to be extracted. The first subscript indicates the first character that is to be
extracted from the character string. The second subscript indicates the number
of characters to be extracted from the character string, starting with the char-
acter indicated by the first subscript. Thus, the second subscript specifies the
length of the resulting substring.

Value
assigned to
Used in Used as Example SETC Symbol
SETC instruction Operand &C1 SETC ‘'ABC'(1,3) ABC
operand
Part of &C2 SETC '&C1°'(1,2).'DEF’ ABDEF
operand
AlIF or SETB Character value in ALF (*&STRING' (1,4) EQ 'AREA').SEQ -
instruction comparand of &8 SETB ('&STRING'(1,4).'9' EQ 'FULLY')
operand (logical character relation
expression)

Figure 66. Substring Notation in Conditional Assembly Instructions

Examples:

Value of Variable Character Value
Examples Symbol of Substring
"ABCDE'(1,5) ABCDE
'ABCDE'(2,3) BCD
‘&C'(3,3) ABCDE CDE
'&PARAM'(3,3) ((A+3)*10) A+3

The character string must be a valid character expression with a length, N, in
the range 1 through 255 characters. The length of the resulting substring must
be within the range O through 255.

The subscripts, e1 and e2, must be arithmetic expressions. The substring nota-
tion is replaced by a value that depends on the three elements: N, e1, and e2,
as summarized in Figure 67 on page 250.

The numbers in the following list relate to the numbers in Figure 67:

(1) In the usual case, the assembler generates a correct substring of the
specified length.

(2) When e1 has a value of 0 or a negative value, the assembler issues an
error message.

(3) When the value of e1 exceeds N, the assembler issues a warning
message, and a null string is generated.

(4) When e2 has a value of 0, the assembler generates the null character
string. Note that, if €2 is negative, the assembler issues an error
message.

Chapter 9. How to Write Conditional Assembly Instructions 249

(5) When e2 indexes past the end of the character expression (that is, e1+¢2
is greater than N+ 1), the assembler issues a warning message and gen-
erates a substring that includes only the characters up to the end of the

character expression specified.

Character Expression

Arithmetic

of length N Expressions
'CHARACTER STRING' h
Examples: Assume O<N=255 Character Value
of Substring
a0<e15 N, 0<e2=N, and
el+e2=<N+1
*ABCDEF' (2,5) N=6 BCDEF
eus 0
"ABCDEF' (0,5) 4xERROR%* null
|Value of e2 disregarded |
AN
Oel >N \
L} g
ABCDEF ' (7 ,3) N=€ "-WARNING* null
e2=0)
o'ABCDEF '/(;3 +0) null
| Value of e1 disregarded |
0<el1=<N, 0<e2=N, but
el+e2>N+1
"ABCDEF'(3,5) N=6 *WARNING* | cpgp
'ABCDEF' (3,4) CDEF

Figure 67. Summary of Substring Notation

250 Assembier H Version 2 Language Reference

Branching

AIF—Conditional Branch
You use the AIF instruction to branch according to the results of a condition
test. You can thus alter the sequence in which source program statements or
macro definition statements are processed by the assembler.

The AIF instruction also provides loop control for conditional assembly proc-
essing, which allows you to control the sequence of statements to be gener-
ated.

It also allows you to check for error conditions and thereby to branch to the
appropriate MNOTE instruction to issue an error message.

Format of AIF:
Name Operation Operand
A sequence AIF A logical expression enclosed in
symbol or parentheses, inmediately followed by a
blank sequence symbol

The logical expression in the operand field is evaluated at preassembly time to
determine if it is true or false. If the expression is true (logical value =1), the
statement named by the sequence symbol in the operand field is the next state-
ment processed by the assembler. If the expression is false (logical value =0),
the next sequential statement is processed by the assembler.

In the following example, a branch is taken to the label .OUT if &C = YES:

AIF ('&C" EQ 'YES').OUT
.ERROR ANOP
.0uT ANOP

The sequence symbol in the operand field is a conditional assembly label that
represents an address at preassembly time. It is the address of the statement
to which a branch is taken if the logical expression preceding the sequence
symbol is true.

The statement identified by the sequence symbol referred to in the AIF instruc-
tion can appear before or after the AIF instruction. However, the statement
must appear within the local scope of the sequence symbol. Thus, the state-
ment identified by the sequence symbol must appear:

* In open code, if the corresponding AIF instruction does, or

* In the same macro definition in which the corresponding AIF instruction
appears.

Chapter 9. How to Write Conditional Assembly Instructions 251

No branch can be taken from open code into a macro definition or between
macro definitions, regardless of nested calls to other macro definitions.

The following macro definition may be used to generate the statements needed
to move a fullword fixed-point number from one storage area to another. The
statements will be generated only if the type attribute of both storage areas is

the letter F.

MACRO

&N MOVE &T,&F
AIF (T'&T NE T'&F).END Statement 1
ATIF (T'&T NE 'F').END Statement 2

&N ST 2,SAVEAREA Statement 3
L 2,&F
ST 2,847
L 2,SAVEAREA

.END MEND Statement 4

The logical expression in the operand field of statement 1 has the value true if
the type attributes of the two macro instruction operands are not equal. If the
type attributes are equal, the expression has the logical value false.

Therefore, if the type attributes are not equal, statement 4 (the statement
named by the sequence symbol .END) is the next statement processed by the
assembler. If the type attributes are equal, statement 2 (the next sequential
statement) is processed.

The logical expression in the operand field of statement 2 has the value true if
the type attribute of the first macro instruction operand is not the letter F. If the
type attribute is the letter F, the expression has the logical value false.

Therefore, if the type attribute is not the letter F, statement 4 (the statement
named by the sequence symbol .END) is the next statement processed by the
assembler. If the type attribute is the letter F, statement 3 (the next sequential
statement) is processed.

Extended AIF Instruction
The extended AIF instruction allows you to combine several successive AlF
statements into one statement.

Format of extended AIF:

Name Operation Operand

A sequence AIF (logical expression).S1,
symbol or (Togical expression).S2,...
blank (Togical expression).Sn

The extended AIF instruction is exactly equivalent to n successive AlF state-
ments. The branch is taken to the first sequence symbol (scanning left to right)
whose corresponding logical expression is true. If none of the logical
expressions is true, no branch is taken.

252 Assembler H Version 2 Language Reference

http:expression).Sn
http:expression).S2
http:expression).Sl

Example:

Cont.

AIF ('&L'(&C,1) EQ '$').DOLR, X
('&L'(&C,1) EQ ' # ').POUND, X
('&L'(&C,1) EQ '@').AT, X
(*&L'(&C,1) EQ '=').EQUAL, X
('&L'(&C,1) EQ '(').LEFTPAR, X
('&L'(&C,1) EQ '+').PLUS, X
("&L'(&C,1) EQ '-').MINUS

This statement looks for the occurrence of a §, #, @, =, (, +. and -, in that

order; and causes control to branch to .DOLR, .POUND, .AT, .EQUAL, .LEFTPAR,
.PLUS, and .MINUS, respectively, if the string being examined contains any of
these characters.

Alternative Statement Format: The alternative statement format is allowed for
extended AIF instructions. The format is illustrated in the above example.

AGO—Unconditional Branch

The AGO instruction allows you to branch unconditionally. You can thus alter
the sequence in which your assembler language statements are processed.
This provides you with final exits from conditional assembly loops.

Format of AGO:

Name Operation Operand

A sequence AGO A sequence symbol
symbol or

bTank

The statement named by the sequence symbol in the operand field is the next
statement processed by the assembler.

The statement identified by a sequence symbol referred to in the AGO instruc-
tion can appear before or after the AGO instruction. However, the statement
must appear within the local scope of the sequence symbol. Thus, the state-
ment identified by the sequence symbol must appear

* |In open code, if the corresponding AGO instruction does, or

¢ In the same macro definition in which the corresponding AGO instruction

appears.
Example:
MACRO
&NAME MOVE &T,&F
AIF (T'&T EQ 'F').FIRST Statement 1
AGO .END Statement 2
.FIRST AIF (T'&T NE T'&F).END Statement 3
&NAME ST 2,SAVEAREA
L 2,8&F
ST 2,8&T
L 2,SAVEAREA
.END MEND Statement 4

Chapter 9. How to Write Conditional Assembly Instructions 253

Statement 1 is used to determine if the type attribute of the first macro instruc-
tion operand is the letter F. If the type attribute is the letter F, statement 3 is
the next statement processed by the assembler. If the type attribute is not the
letter F, statement 2 is the next statement processed by the assembler.

Statement 2 is used to indicate to the assembler that the next statement to be
processed is statement 4 (the statement named by sequence symbol .END).

Computed AGO Instruction
The computed AGO instruction allows you to make branches according to the
value of an arithmetic expression specified in the operand.

Format of computed AGO:

Name Operation Operand

A sequence AGO (arithmetic expression)
symbol or .S1,.52,...,.5n

or blank

If the arithmetic expression evaluates to k, where k lies between 1 and n (inclu-
sive), then the branch is taken to the “k-th” sequence symbol in the list. If k is
outside that range, no branch is taken.

In the following example, control passes to the statement at THIRD if &1 =3.
Control passes through to the statement following the AGO if &l is less than 1
or greater than 4.

Cont.
AGO (&I).FIRST,.SECOND, X
.THIRD, .FOURTH

Alternative Statement Format: The alternative statement format is allowed for
computed AGO instructions. The above example could be coded as follows:

Cont.
AGO (&I).FIRST, X
.SECOND, X
.THIRD, X

.FOURTH

ACTR—Conditional Assembly Loop Counter
The ACTR instruction allows you to set a conditional assembly loop counter
either within a macro definition or in open code. The ACTR instruction can
appear anywhere in open code or within a macro definition.

Each time the assembler processes an AIF or AGO branching instruction in a
macro definition or in open code, the loop counter for that part of the program
is decremented by one. When the number of conditional assembly branches
taken reaches the value assigned by the ACTR instruction to the loop counter,
the assembler exits from the macro definition or stops processing statements in
open code.

By using the ACTR instruction, you avoid excessive looping during conditional
assembly processing at preassembly time.

254 Assembler H Version 2 Language Reference

e

Format of ACTR:

Name Operation Operand

A sequence ACTR Any valid arithmetic
symbol or (SETA) expression
blank

A conditional assembly loop counter is set (or reset) to the value of the arith-
metic expression in the operand field. The loop counter has a local scope; its
value is decremented only by AGO and AIF instructions, and reassigned only by
ACTR instructions that appear within the same scope. Thus, the nesting of
macros has no effect on the setting of individual loop counters.

The assembler sets its own internal loop counter both for open code and for
each macro definition, if neither contains an ACTR instruction. The assembler
assigns a standard value of 4096 to each of these internal loop counters.

Loop Counter Operations: Within the local scope of a particular loop counter
(including the internal counters run by the assembler), the following occurs:

1. Each time an AGO or AIF branch is executed, the assembler checks the
loop counter for zero or a negative value.

2. If the count is not zero or negative, it is decremented by one.

3. If the count is zero, before decrementing, the assembler will take one of two
actions:

a. If it is processing instructions in open code, the assembler will process
the remainder of the instructions in the source module as comments.
Errors discovered in these instructions during previous passes are
flagged.

b. If it is processing instructions inside a macro definition, the assembler
terminates the expansion of that macro definition and processes the
next sequential instruction after the calling macro instruction. If the
macro definition is called by an inner macro instruction, the assembler
processes the next sequential instruction after this inner call; that is, it
continues processing at the next outer level of nested macros.

Note: The assembler halves the ACTR counter value when it encounters
serious syntax errors in conditional assembly instructions.

ANOP—Assembly No Operation

You can specify a sequence symbol in the name field of an ANOP instruction,
and use the symbol as a label for branching purposes.

The ANOP instruction performs no operation itself, but you can use it to branch
to instructions that already have symbols in their name fields. For example, if
you wanted to branch to a SETA, SETB, or SETC assignment instruction, which
requires a variable symbol in the name field, you could insert a labeled ANOP
instruction immediately before the assignment instruction. By branching to the
ANOP instruction with an AIF or AGO instruction, you would, in effect, be
branching to the assignment instruction.

Chapter 9. How to Write Conditional Assembly Instructions 255

Format of ANOP:

Name Operation Operand
A sequence ANOP

symbol or

blank

No operation is performed by an ANOP instruction. Instead, if a branch is taken
to the ANOP instruction, the assembler processes the next sequential instruc-

tion.
Example:
MACRO
&NAME MOVE &T,&F
LCLC &TYPE
ATF (T'&T EQ 'F').FTYPE Statement 1
&TYPE SETC 'E! Statement 2
.FTYPE ANOP Statement 3
&NAME ST&TYPE 2,SAVEAREA Statement 4
L&TYPE 2,8&F
ST&TYPE 2,&T
L&TYPE 2,SAVEAREA
MEND

Statement 1 is used to determine if the type attribute of the first macro instruc-
tion operand is the letter F. If the type attribute is not the letter F, statement 2
is the next statement processed by the assembler. If the type attribute is the
letter F, statement 4 should be processed next. However, since there is a vari-
able symbol (&NAME) in the name field of statement 4, the required sequence
symbol (.FTYPE) cannot be placed in the name field. Therefore, an ANOP
instruction (statement 3) must be placed before statement 4.

Then, if the type attribute of the first operand is the letter F, the next statement
processed by the assembler is the statement named by sequence symbol
FTYPE. The value of &TYPE retains its initial null character value because the
SETC instruction is not processed. Since .FTYPE names an ANOP instruction,
the next statement processed by the assembler is statement 4, the statement
following the ANOP instruction.

Open Code
Conditional assembly instructions in open code allow you:

« To select, at preassembly time, statements or groups of statements from
the open code portion of a source module according to a predetermined set
of conditions. The assembler further processes the selected statements at
assembly time.

* To pass local variable information from open code through parameters into
macro definitions.

256 Assembler H Version 2 Language Reference

* To control the computation in and generation of macro definitions using
global SET symbols.

* To substitute values into the model statements in the open code of a source

module and control the sequence of their generation.

All the conditional assembly elements and instructions can be specified in open
code.

The specifications for the conditional assembly language described in this
chapter also apply in open code. However, the following restrictions apply:

1. To attributes in open code: For ordinary symbols, only references to the
type, length, scaling, and integer attributes are allowed.

Note: References to the number attribute have no meaning in open code,
because &SYSLIST is not allowed in open code and symbolic parameters
have no meaning in open code.

2. To conditional assembly expressions in open code (see Figure 68).

Expression Must not contain
Arithmetic * &SYSLIST
(SETA) * Symbolic parameters

* Any attribute references to symbolic parameters, or &SYSLIST,
&SYSECT, &SYSNDX

Character * &SYSLIST, &SYSECT, &SYSNDX
(SETC) * Attribute references to &SYSLIST, &SYSECT, &SYSNDX, or to sym-
bolic parameters
¢ Symbolic parameters

Logical e Arithmetic expressions with the items listed above
(SETB) * Character expressions with the items listed above

Figure 68. Restrictions on Coding Expressions

MHELP—Macro Trace Facility

The MHELP instruction controls a set of trace and dump facilities. Options are
selected by an absolute expression in the MHELP operand field. MHELP state-
ments can occur anywhere in open code or in macro definitions. MHELP
options remain in effect until superseded by another MHELP statement.

Format of MHELP:

Name Operation Operand

MHELP Absolute expression, binary or decimal options
(see below)

Chapter 9. How to Write Conditional Assembly Instructions 257

MHELP B’1” or MHELP1, Macro Call Trace: This option provides a one-line
trace listing for each macro call, giving the name of the called macro, its nested
depth, and its &SYSNDX value. The trace is provided only upon entry into the
macro. No trace is provided if error conditions prevent entry into the macro.

MHELP B’10" or MHELP2, Macro Branch Trace: This option provides a one-line
trace-listing for each AGO and AIF conditional assembly branch within a macro.
It gives the model statement numbers of the “branched from” and the
“branched to" statements, and the name of the macro in which the branch
occurs. This trace option is suppressed for library macros.

MHELP B’100” or MHELP 4, Macro AIF Dump: This option dumps undimen-
sioned SET symbol values from the macro dictionary immediately before each
AIF statement that is encountered.

MHELP B’1000" or MHELP 8, Macro Exit Dump: This option dumps undimen-
sioned SET symbols from the macro dictionary whenever an MEND or MEXIT
statement is encountered.

MHELP B’10000" or MHELP 16, Macro Entry Dump: This option dumps param-
eter values from the macro dictionary immediately after a macro call is proc-
essed.

MHELP B’100000" or MHELP 32, Global Suppression: This option suppresses
global SET symbols in two preceding options, MHELP 4 and MHELP 8.

MHELP B’1000000" or MHELP 64, Macro Hex Dump: This option, when used in
conjunction with the Macro AIF dump, the Macro Exit dump, or the Macro Entry
dump, will dump the parameter and SETC symbol values in EBCDIC and
hexadecimal formats. Only positional and keyword parameters will be dumped
in hexadecimal; system parameters will be dumped in EBCDIC. The full value
of SETC variables or parameters is dumped in hexadecimal.

MHELP B’10000000" or MHELP 128, MHELP Suppression: This option sup-
presses all currently active MHELP options.

MHELP Control on &SYSNDX: The MHELP operand field is actually mapped into
a fullword. Previously defined MHELP codes correspond to the fourth byte of
this fullword.

&SYSNDX control is turned on by any bit in the third byte (operand values 256
through 65535, inclusive). Then, when &SYSNDX (total number of macro calls)
exceeds the value of the fullword which contains the MHELP operand value,
control is forced to stay at the open code level by, in effect, making every state-
ment in a macro behave like a MEXIT. Open code macro calls are honored, but
with an immediate exit back to open code. When the value of &SYSNDX
reaches its limit, the message "ACTR EXCEEDED—&SYSNDX’ is issued.

258 Assembler H Version 2 Language Reference

Examples:

MHELP 256
MHELP 1
MHELP 256+1
MHELP 65536
MHELP 65792

Combining Options

Limit &SYSMDX to 256.

Trace macro calls.

Trace calls and limit &SYSNDX to 257.
No effect. No bits in bytes 3,4.
Limit &SYSMDX to 65792.

As shown in the example above, multiple options can be obtained by combining
the option codes in one MHELP operand. For example, call and branch traces
can be invoked by MHELP B"11", MHELP 2+ 1, or MHELP 3. Substitution by
means of variable symbols may also be used.

Chapter 9. How to Write Conditional Assembly Instructions 259

Appendixes

= “Appendix A, Assembler Instructions and Statements” lists the related
name, operation, and operand entries.

* “Appendix B, Summary of Constants™ lists the constant types and gives
related information concerning each.

* “Appendix C, Macro Language Summary” summarizes some of the infor-
mation contained in Part 2.

Appendixes 261

Appendix A. Assembler Instructions and Statements

Figure 69 summarizes assembler instructions, and Figure 70 on page 266 sum-
marizes assembler statements.

Operation
Entry

Name Entry

Operand Entry

ACTR

A sequence symbol or not
present

An arithmetic SETA expression

AGO

A sequence symbol or not
present

A sequence symbol

AlF

A sequence symbol or not
present

A logical expression enclosed in
parentheses, immediately followed
by a sequence symbol

AMODE

A sequence symbol or blank

24, 31, or ANY

ANOP

A sequence symbol or not
present

Will be taken as a remark

AREAD

Any SETC symbol

One ordinary symbol

cCcw

Any symbol or not present

Four operands, separated by
commas

CCWo

Any symbol or not present

Four operands, separated by
commas

CCWi1

Any symbol or not present

Four operands, separated by
commas

CNOP

Any symbol or not present

Two absolute expressions, separated
by a comma

COM

A sequence symbol or not
present

Will be taken as a remark

COoPY

Must not be present

A symbol

CSECT

Any symbol or not present

Will be taken as a remark

CXD

Any symbol or not present

Will be taken as a remark

DC

Any symbol or not present

One or more operands, separated by
commas

DROP

A sequence symbol or not
present

One to 16 absolute expressions, sep-
arated by commas

DS

Any symbol or not present

One or more operands, separated by
commas

DSECT

A variable symbol or an ordinary
symbol

Will be taken as a remark

DXD

A symbol

One or more operands, separated by
commas

EJECT

A sequence symbol or not
present

Will be taken as a remark

END

A sequence symbol or not
present

A relocatable expression or not
present

Figure 69 (Part 1 of 3). Assembler Instructions

Appendix A. Assembler Instructions and Statements

263

Operation
Entry

Name Entry

Operand Entry

ENTRY

A sequence symbol or not
present

One or more relocatable symbols,
separated by commas

EQU

A variable symbol or an ordinary

symbol

An absolute or relocatable
expression

EXTRN

A sequence symbol or not
present

One or more relocatable symbols,
separated by commas

GBLA

Must not be present

One or more variable symbols that
are to be used as SET symbols, sep-
arated by commas'

GBLB

Must not be present

One or more variable symbols that
are to be used as SET symbols, sep-
arated by commas'

GBLC

Must not be present

One or more variable symbols that
are to be used as SET symbols, sep-
arated by commas'

ICTL

Must not be present

One to three decimal values, sepa-
rated by commas

ISEQ

Must not be present

Two decimal values, separated by a
comma

LCLA

Must not be present

One or more variable symbols that
are to be used as SET symbols, sep-
arated by commas'

LCLB

Must not be present

One or more variable symbols that
are to be used as SET symbols, sep-
arated by commas'

LCLC

Must not be present

One or more variable symbols sepa-
rated by commas'

LOCTR

A variable or ordinary symbol

Blank

LTORG

Any symbol or not present

Will be taken as a remark

MACRO?

Must not be present

Will be taken as a remark

MEND?

A sequence symbol or not
present

Will be taken as a remark

MEXIT?

A sequence symbol or not
present

Will be taken as a remark

MHELP

Any symbol or not present

Absolute expression, binary or
decimal options

MNOTE?

A sequence symbol, a variable
symbol, or not present

A severity code, followed by a
comma, followed by any combination
of characters (including double-byte
characters, if the DBCS assembler
option is specified) enclosed in single
quotation marks

OPSYN

An ordinary symbol

A machine code mnemonic

A machine instruction mnemonic
or an operation code defined by
a previous OPSYN instruction

Blank

Figure 69 (Part 2 of 3). Assembler Instructions

264 Assembler H Version 2 Language Reference

Operation

Entry Name Entry Operand Entry
ORG A sequence symbol or not A relocatable expression or not
present present
POP Any symbol or not present One or more operands, separated by
commas
PRINT A sequence symbol or not One to three operands
present
PUNCH A sequence symbol or not One to 80 characters (including
present double-byte characters, if the DBCS
assembler option is specified)
enclosed in single quotation marks
PUSH Any symbol or not present One or more operands, separated by
commas
REPRO A sequence symbol or not Will be taken as a remark
present
RMODE Any symbol or blank 24 or ANY
SETA A SETA symbol An arithmetic expression
SETB A SETB symbol A 0 or a1, or logical expression
enclosed in parentheses
SETC A SETC symbol A type attribute, a character
expression, a substring notation, or a
concatenation of character
expressions and substring notations.
Double-byte characters are per-
mitted, if the DBCS assembler option
is specified.
SPACE A sequence symbol or not A decimal self-defining term or not
present present
START Any symbol or not present A self-defining term or not present
TITLE’ A special symbol (0 to 4 charac- One to 100 EBCDIC characters (or
ters), a sequence symbol, a vari- one to 49 DBCS characters, if the
able symbol, or not present DBCS assembler option is specified)
enclosed in single quotation marks
USING A sequence symbol or not An absolute or relocatable
present expression followed by 1 to 16 abso-
lute expressions, separated by
commas
WXTRN A sequence symbol or not One or more relocatable symbols,

present

separated by commas

Figure 69 (Part 3 of 3). Assembler Instructions

Notes to Figure 69:

1. SET symbols may be defined as subscripted SET symbols.

2. May only be used as part of a macro definition.

3. See “Chapter 5. Assembler Instruction Statements” on page 91 for a
description of the name entry.

Appendix A. Assembler Instructions and Statements 265

Instruction
Entry

Name Entry

Operand Entry

Model
Statements' ?

An ordinary symbol, variable
symbol, sequence variable
symbol, a combination of vari-
able symbols and other charac-
ters that is equivalent to a
symbol, or not present

Any combination of characters
(including variable symbols)

Prototype
Statement?

A symbolic parameter or not
present

Zero or more operands that are
symbolic parameters (separated
by commas) followed by zero or
more operands (separated by
commas) of the form symbolic
parameter, equal sign, optional
standard value

Macro Instruction
Statement?

An ordinary symbol, a variable
symbol, a sequence symbol, a
combination of variable symbols
and other characters that is
equivalent to a symbol,* or not
present

Zero or more positional oper-
ands (separated by commas) fol-
lowed by zero or more keyword
operands (separated by
commas) of the form keyword,
equal sign, value®

Assembler Lan-
guage Statement’
2

An ordinary symbol, a variable
symbol, a sequence symbol, a
combination of variable symbols
and other characters that is
equivalent to a symbol, or not
present

Any combination of characters
(including variable symbols)

Figure 70. Assembler Statements

Notes to Figure 70:

1. Variable symbols may be used to generate assembler language mnemonic
operation codes (listed in “Chapter 5. Assembler Instruction Statements”
on page 91), except ACTR, COPY, END, ICTL, CSECT, DSECT, ISEQ, PRINT,
REPRO, and START. Variable symbols may not be used in the name and

operand entries of: COPY, END, ICTL, or ISEQ.

2. No substitution is performed for variables in the line following a REPRO

statement.

3. May only be used as part of a macro definition.

4. When the name field of a macro instruction contains a sequence symbol,
the sequence symbol is not passed as a name field parameter. It only has
meaning as a possible branch target for conditional assembly.

5. Variable symbols appearing in a macro instruction are replaced by their
values before the macro instruction is processed.

266 Assembler H Version 2 Language Reference

5

Appendix B. Summary of Constants

Implicit

Length
Type (Bytes)
A 4

B As needed

C As needed

D 8
E 4
Foo4

G As needed

H 2

L 16

P As needed

Q 4
S 2
v 4

X As needed

Y 2

z As needed

Alignment

Fullword
Byte

Byte
Doubleword
Fullword
Fullword
Byte
Halfword
Doubleword
Byte

Fullword

Halfword

Fullword
Byte
Halfword

Byte

Length
Modifier
Range

.1 to 4 (2)
.1 to 256

.1 to 256 (1)
.1to8
.1to8

.1 to8

2 to 256 (4)
.1to8

.1 to 16

.1 to 16

1to4

2 only

3,4
.1 to 256 (1)
.1 to 2 (2)

.1 to 16

Specified by

Any expression
Binary digits
Characters
Decimal digits
Decimal digits
Decimal digits
DBCS characters
Decimal digits
Decimal digits
Decimal digits

Symbol naming a
DXD or DSECT

One absolute or
relocatahle
expression or two
relocatable
expressions:

exp (exp)
Relocatable symbol
Hex digits

Any expression

Decimal digits

No. of
constants
per operand

Multiple
Hultiple
One

Multiple
Hultiple
Hultiple
One

Multiple
Hultiple
Multiple

Multiple

Multiple

Hultiple
Multiple
Hultiple

Multiple

Range for
exponents

-85 to +75
-85 to +75

-85 to +75

-85 to +75

-85 to +75

Range for
scale

0 to 14
0to 14

-187 to +346

-187 to +346

0 to 28

Truncation/
padding
side

Left

Left
Right
Right (3)
Right (3)
Left (3)
Right
Left (3)
Right (3)
Left

Left

Left
Left
Left

Left

Figure 71. Summary of Constants

Notes to Figure 71:

1.

In a DS assembler instruction, C and X type constants can have length
specification to 65535.

Bit length specification permitted with absolute expressions only; relocat-
able A-type constants, 3 or 4 bytes only; relocatable Y-type constants, 2

bytes only.

Errors will be flagged if significant bits are truncated or if the value speci-
fied cannot be contained in the implicit length of the constant.

The length modifier must be a multiple of 2, and may be up to 65534 in a DS
assembler instruction.

Appendix B. Summary of Constants

267

Appendix C.

Macro Language Summary

This appendix summarizes the macro language described in Part 2 of this publi-
cation. Figure 72 on page 270 indicates which macro language elements may
be used in the name and operand entries of each statement. Figure 73 on
page 270 is a summary of the expressions that may be used in macro instruc-
tion statements. Figure 74 on page 272 is a summary of the attributes that may
be used in each expression. Figure 75 on page 273 is a summary of the vari-
able symbols that may be used in each expression.

Appendix C. Macro Language Summary 269

sjuawa|3 abenbue osoepy ‘g, ainbiy

@ouaIajoy dbenbue g UOISIaA H Jojquassy /2

Vorioble Symbols
A
Global SET Symbols Local SET Symbols System Variable Symbals fiributes
Symbolic Sequence
Statement | Porometer | SETA SETB SETC SETA SETB SETC | &SYSNDX | ASYSECT | &SYSLIST | &SYSPARM | &SYSDATE| &SYSTIME | Type Length Scaling | Integer Count | Number | Symbol
MACRO
Prototype | Name
Stotement Operond
GBLA Operand
GBLB Operond
Gac Operand
LCLA Operand
tat) Operand
[tats Operand
Model Nome Naome Name Nome Nome Name Naome Nome Nome Name Name Name
Statement Operation | Operation | Operation | Operation | Operation | Operati Operation | Operation | Operation|Operation | Operation
Operand | Operand | Operand | Operand | Operand | Operond | Operand | Operand | Operand |Operand | Operand | Operand | Operand
SETA Name Name
Operond? | Operand | Operand3 | Operand® | Operand [Operand® | Operand® | Operand Operand? | Operand” Operand | Operand | Operond | Operond | Operand
SET® Name Nome
Operand® | Operand® | Operand | Operond® | Operand® | Operand | Operand® | Operand® | Operand* |Operand® | Operand® Operand# | Operand® | Operand® | Operand® | Operand® | Operand®
SETC Name o | Neme
Opesand | Operond” | Operand® | Operand | Operand” | Operand® | Operand | Operand | Operand |Operond | Operand | Operand | Operand | Operand
Al 4 4 5 5 5 5 5 | Name
Operand® | Operund® | Operand | Operond® | Operond® |Operand | Operand® | Operand® | Operand* |[Operand® | Operand Operand? | Operand” | Operand® | Operond® | Operand® |Operana® | Operand
AGO Name
Operand
P 2
ACTR Operond? | Operond | Operond® | Operand? | Operand | Operand3 | Operand? | Operand Operand? | Operand Operand | Operand | Operand | Operand |Operand
ANOP Nome
Name AREAD
MEXIT Nome
MNOTE Operand | Operand Operand | Operand | Operond | Operand Operand | Operand Operand |Operand Operand Operand | Operand Name
MEND Nome
Outer Name Name Name Nome Nome Name Nome Name
Macro Operand Operand | Operand |Operond | Operand Operand Operand Operand | Operand
Inner Nome Name Name Name Nome Nome Name Name Name |Name Name . Name
Mocro Operand | Operond Operand | Operand | Operond | Operand Operand | Operand Operand [Operand Operand Operand | Operand
Assembler Nome Name Name Nome Nome Name Name
Longuoge Operation | Operation | Operation | Operatian | Operati: Operati
Statement Operond | Operand | Operand | Operond | Operand | Operand

1. Voriable symbols in mocro-instructions are reploced by their values before processing .
. Only if volue is self-defining term.

. Converted to orithmetic +1 or +0.

Only in chorocter relotions.

Only in arithmetic relations.

. Only in arithmetic o character relations.

. Converted to unsigned number .

. Converted to character | or 0.

- Only if ane to ten decimal digits

Arithmetic Character Logical
Expression Expressions Expressions Expressions
| Can Self-defining terms Any combination of charac- A Oor a1
| contain ters (including double-byte
| Length, scaling, integer, characters, if the DBCS SETB symbols
| count, and number attributes assembler option is speci-
| fied) enclosed in apostro- Arithmetic relations’
| SETA and SETB symbols' phes
Character relations?
SETC symbols whose values Any variable symbol
are a decimal self-defining enclosed in apostrophes Arithmetic value
term’
A concatenation of variable
&SYSPARM if its value is a symbols and other charac-
decimal self-defining term ters enclosed in apostro-
phes
Symbolic parameters if the
corresponding operand is a A type attribute reference
decimal self-defining term
&SYSLIST (n) if the corre-
sponding operand is a
decimal self-defining term
&SYSLIST (n,m) if the corre-
sponding operand is a
decimal self- defining term
&SYSNDX
Operations +, - (unary and binary), *, Concatenation, with a AND, OR, and NOT
and /: parentheses permitted period (.) parentheses per-
mitted
Range 2% to +2%11 0 through 255 characters 0 (false) or 1 (true)
of values
Used in SETA operands SETC operands SETB operands
Arithmetic relations Character relations? AIF operands
Subscripted SET symbols
&SYSLIST subscript(s)
Substring notation
Sublist notation
Figure 73. Conditional Assembly Expressions

Notes to Figure 73:
1. Values must be from O through 2 147 483 647.

2. A character relation consists of two character expressions related by the
operator GT, LT, EQ, NE, GE, or LE. Type attribute notation and substring
notation may also be used in character relations. The maximum size of the
character expressions that can be compared is 255 characters. If the two
character expressions are of unequal size, the smaller one will always
compare less than the larger.

Appendix C. Macro Language Summary 271

Attribute

Nota-
tion

Can be used with:

Can be used only if
type attribute is:

Can be used in:

Type

T

Ordinary Symbols defined
in open code: symbolic
parameters inside macro
definitions: &SYSLIST (m),
&SYSLIST (m,n), SET
symbols; &SYSTIME,
&SYSPARM, &SYSDATE,
&SYSECT, &SYSNDX,
&SYSLOC

(May always be used)

1. SETC operand
fields

2. Character
relations

Length

Ordinary Symbols defined
in open code; symbolic
parameters inside macro
definitions; &SYSLIST (m),
and &SYSLIST (m,n)
inside macro definitions

Any letter except M,N,O,T
and U

Arithmetic
expressions

Scaling

Ordinary Symbols defined
in open code: symbolic
parameters inside macro
definitions: &SYSLIST (m),
and &SYSLIST (m,n)
inside macro definitions

H,F,G,D,E,LK,P, and 2

Arithmetic
expressions

Integer

Ordinary Symbols defined
in open code: symbolic
parameters inside macro
definitions; &SYSLIST (m),
and &SYSLIST (m,n)
inside macro definitions

H,F,G,D,E,L,K,P, and Z

Arithmetic
expressions

Count

Symbolic parameters,
&SYSLIST (m) and
&SYSLIST (m,n) inside
macro definitions SET
symbols; all system vari-
able symbols

Any letter

Arithmetic
expressions

Number

Symbolic parameters,
&SYSLIST and &SYSLIST
(m) Inside macro defi-
nitions

Any letter

Arithmetic
expressions

Defined

Ordinary Symbols defined
in open code: symbolic
parameters inside macro
definitions: &SYSLIST (m),
and &SYSLIST (m,n)
inside macro definitions

H,F,G,D,E,L,K,P, and Z

Arithmetic
expressions

Figure 74. Attributes

Refer to “Chapter 9. How to Write Conditional Assembly Instructions” on
page 211 for usage restrictions of the attributes in Figure 74.

272 Assembler H Version 2 Language Reference

Variable Initialized, Value changed
Symbol Declared by: or set to: by: May be used in:
Symbolic! Prototype Corresponding Constant Arithmetic expressions if
parameter statement macro instruction throughout defi- operand is decimal self-
operand nition defining term
Character expressions
SETA LCLA or 0 SETA instruction Arithmetic expressions
GBLA
instruction Character expressions
SETB LCLB or 0 SETB instruc- Arithmetic expressions
GBLB tion
instruction Character expressions
Logical expressions
SETC LCLC or String of length 0 SETC Instruction Arithmetic expressions if
GBLC (null) value is decimal self-
instruction defining term
Character expressions
&SYSNDX' The assem- Macro instruction Constant Arithmetic expressions
bler index throughout defi-
nition: unique Character expressions
for each macro
instruction
&SYSECT! The assem- Control section in Constant Character expressions
bler which macro throughout defi-
instruction appears nition; set by
CSECT, DSECT,
START, and
COM
&SYSLIST' The assem- Not applicable Not applicable N'&SYSLIST in arithmetic
bler expressions
&SYSLIST The assem- Corresponding Constant Arithmetic expressions If
(n ! bler macro instruction throughout defi- operand I1s decimal self-
&SYSLIST operand nition defining term
(nm)
Character expressions
&SYSPARM PARM field User defined or Constant Arithmetic expression if
null throughout value Is decimal self-
assembly defining term
Character expression
&SYSTIME The assem- System time Constant Character expression
bler throughout
assembly
&SYSDATE The assem- System date Constant Character expression
bler throughout
assembly
&SYSLOC! The assem- Location counter In Constant Character expression
bler effect where macro throughout defi-

instruction appears

nition; set by
CSECT, DSECT,
START, COM,
and LOCTR

Figure 75. Variable Symbols

(\

Note to Figure 75:

1. Can be used only in macro definitions.

Appendix C. Macro Language Summary 273

C

Index

Special Characters
&SYSDATE system variable symbol 183
&SYSECT system variable symbol 184
&SYSLIST system variable symbol 185
&SYSLOC system variable symbol 191
&SYSNDX system variable symbol 187
&SYSPARM system variable symbol 189
&SYSTIME system variable symbol 190

A

A-type constant 117

absolute addresses, base registers for 47
ACTR instruction 254

address constants

A-type 117
complex relocatable 117
Q-type 121
S-type 119
V-type 120
Y-type 117

addressability
by means of the DROP instruction 47
by means of the USING instruction 44
establishing 43
relative 48
using base register instructions 43
addresses, relocatable or absolute 80
addressing mode (AMODE) 56
AGO instruction 253
AIF instruction 251
AMODE
indicators in ESD 56
instruction to specify addressing mode 57
ANOP instruction 255
AREAD instruction 181
arithmetic (SETA) expressions
evaluation of 233
rules for coding 233
SETC variables in 234
using 230
assembler instruction statements
base register instructions 43
See also base register instructions
data definition instructions 96
See also data definition instructions
listing control instructions 146
See also listing control instructions
operation code definition instruction 94
OPSYN instruction 94
program control instructions 132
See also program control instructions
program sectioning and linking instructions 48
See also program sectioning and linking
instructions

assembler instruction statements (continued)

symbol definition instruction 92
assembler language

assembler instruction statements 3

coding aids overview 7

coding conventions of 10

coding form for 10

compatibility of 3

conditional assembly instructions 211

introduction to 3

machine instruction statements 3, 73

macro instruction statements 3

statements, summary of 266

structure of 17

summary of instructions 263
assembler program

basic functions 4

processing sequence 5

relationship to operating system 6
attributes

count (K’) 222

defined (D) 223

definition and lookahead 225

integer (I') 221

length (L) 220

number (N") 223

scaling (§") 221

summary of 269, 272

type (T') 218
attributes in combination with symbols 217
attributes, data 215

B
base register instructions
DROP instruction 47
USING instruction 44
base registers for absolute addresses 47
binary constants 107
binary self-defining term 30
branching 251
branching with extended mnemonic codes 75

C

CCW instruction 130

CCWO instruction 130

CCW1 instruction 131

character (SETC) expressions, using 241
character constants 108

character relations in logical expressions 240
character self-defining term 31

character set 16

character string values, concatenation of 245

Index

275

characters, special 203
CNOP instruction 143
coding aids overview 7
coding conventions, assembler language
character set 16
comments statement 14
continuation lines 12
field boundaries
continuation indicator field 10
identification-sequence field 10
statement field 10
fixed format instruction statements 14
formatting specifications 14
free format instruction statements 14
standard coding form 10
COM instruction 64

combining keyword and positional parameters 174,

197

comments statement format 14
comments statements

function of 155

internal macro 182

ordinary 182
compatibility, language 3
computed AGO instruction 254
concatenation of character string values 245
concatenation of characters in model

statements 165

conditional assembly instructions

ACTR instruction 254

AGO instruction 253

AIF instruction 251

ANOP instruction 255

computed AGO instruction 254

extended AIF instruction 252

function of 176

GBLA instruction 228

GBLB instruction 228

GBLC instruction 228

how to write 211

LCLA instruction 226

LCLB instruction 226

LCLC instruction 226

MHELP instruction 257

SETA instruction 230

SETB instruction 236

SETC instruction 241

substring notations in 248
conditional assembly language

overview 157

summary of expressions 271
constants

address 117

alignment of 99

binary 107

character 108

decimal 115

duplication factor 101

fixed-point 112

276 Assembler H Version 2 Language Reference

constants (continued)
floating-point 122
graphic 110
hexadecimal 111
information about 98
length attribute value of symbols naming 98
modifiers of 102
nominal values of 106
padding of values 100
subfield 1 101
subfield 2 102
subfield 3 102
subfield 4 106
summary of 267
symbolic addresses of 98
truncation of values 100
types of 97, 102
continuation indicator field 10
continuation lines 12
control instructions 74
control sections
concept of 50
defining a 59
defining blank common 64
executable 50
first 53
identifying a 60
reference 50
unnamed 55
COPY instruction 144, 176
CSECT instruction 60
CXD instruction 68

D
D-type floating-point constant 122
D’ defined attribute 223
data attributes 215
data definition instructions
CCW instruction 130
CCWO instruction 130
CCW1 instruction 131
DC instruction 96
DS instruction 127
data, immediate, in machine instructions 83
DBCS
See double-byte data
DC instruction 96
decimal constants

pandz 115
packed 115
zoned 115

decimal instructions 74

decimal self-defining term 29

double-byte character set
See double-byte data

double-byte data
code conversion in the macro language 234
concatenation in SETC expressions 245

double-byte data (continued)
concatenation of fields 166
continuation of 11, 12
definition of 17
duplication of 242
graphic constants 97, 110
graphic self-defining term 31
in C-type constants 110
in character self-defining terms 31
in comments 14
in keyword operands 196
in macro comments 182
in macro operands 169
in MNOTE operands 178
in positional operands 196
in PUNCH operands 136
in quoted strings 203
in remarks 16
in REPRO operands 136
in TITLE operands 147
listing of macro-generated fields 165
notation 9
DROP instruction 47
DS instruction 127
DSECT instruction 61
dummy section, identifying a 61
dummy sections, external 66
See also external dummy sections
duplication factor in constants 101
DXD instruction 67

E

E-type floating-point constant 122
EJECT instruction 148
elements and functions
data attributes 215
sequence symbols 224
SET symbols 212
END instruction 145
ENTRY instruction 70
EQU instruction 92
ESD entries 55
expressions
absolute 41
arithmetic 230
character 241
complex relocatable 42
conditional assembly, summary of 271
discussion of 39
evaluation of 41, 240
evaluation of character 244
logical 236
paired relocatable terms 41
relocatable 41
rules for coding 39, 238
extended AIlF instruction 252
extended continuation indicator 12, 165

extended mnemonic codes, branching with 75

extended SET statement 248
external dummy sections

CXD instruction to define an 68

discussion of 66

DXD instruction to define an 67
external symbol dictionary entries 55
EXTRN instruction 71

F

field boundaries
continuation indicator field 10
identification-sequence field 10
statement field 10

first control section 53

fixed format for instruction statements 14

fixed-point constants 112

floating-point constants

D-type 122
E-type 122
L-type 122

floating-point instructions 74
formatting specifications
name entry 15
operand entries 16
operation entry 15
remarks entries 16
free format for instruction statements 14

G

GBLA instruction 228

GBLB instruction 228

GBLC instruction 228

general instructions 73
generated fields, listing of 164
graphic constants 110

graphic self-defining term 31

H

header, macro definition 160
hexadecimal constants 111
hexadecimal self-defining term 30

|

I” integer attribute 221

ICTL instruction 132
identification-sequence field 10
immediate data in machine instructions 83
inner and outer macro instructions 206
inner macro instructions 176

inner macro instructions, passing sublists to 202
input/output operations 75
instruction statement format 14
internal macro comments statements 182
Index

277

ISEQ instruction 133

K
K’ count attribute 222
keyword parameters 172, 196

L

L-type floating-point constant 122
L length attribute 220
LCLA instruction 226
LCLB instruction 226
LCLC instruction 226
length attribute 33
length fields in machine instructions 83
library macro definitions 156
linkages
by means of the ENTRY instruction 70
by means of the EXTRN instruction 71
by means of the WXTRN instruction 72
symbolic 69
linking 48
listing control instructions
EJECT instruction 148
PRINT instruction 149
SPACE instruction 148
TITLE instruction 146
listing of generated fields 164
literal pool 38, 141
literals

differences between constants, self-defining terms,

and 36

duplicate 142

explanation of 36

general rules for usage 38
location counter reference 32
location counter setting 51
LOCTR instruction 52
logical (SETB) expressions 236
lookahead mode 225
LTORG instruction 140

M
machine instruction formats
RR format 84
RRE format 84
RS format 85
RX format 86
S format 87
S| format 87
SS format 88
SSE format 89
machine instruction statements 77
addresses 80
control 74
decimal 74
examples of 84

278 Assembler H Version 2 Language Reference

machine instruction statements (continued)

floating-point 74

general 73

immediate data 83

input/output 75

length field in 83

operand entries 78

registers, use of 79

symbolic operations codes in 78
macro definitions

body of a 163

combining positional and keyword

parameters 174

comments statements 182

COPY instruction 176

format of 160

header 160

how to prepare 159

inner macro instructions 176

internal macro comments statements 182

keyword parameters 172

MEXIT instruction 179

MNOTE instruction 176

nesting in 206

positional parameters 171

subscripted symbolic parameters 175

symbolic parameters 170

trailer 160

where to define in a source module 159

where to define in open code 159
macro instruction

alternative ways of coding 193

description of 193

format of 193

general rules and restrictions 206

inner and outer 206

multilevel sublists 201

name entry 194

operand entry 195

operation entry 194

passing sublists to inner 202

passing values through nesting levels 208

prototype 160
(see also prototype, macro definition)

sublists in operands 199
summary of 266
values in operands 202

macro language
comments statements 155
conditional assembly language 157
defining 153
library macro definition 156
macro instruction statement 155
model statements 155
processing statements 155
source macro definition 156
summary of 269
using 153

macro library 156
MEXIT instruction 179
MHELP instruction
combining options 259
format 257
global suppression—operand=32 258
macro AlF dump—operand=4 258
macro branch trace—operand=2 258
macro call trace—operand=1 258
macro entry dump—operand=16 258
macro exit dump—operand=8 258
macro hex dump—operand =64 258
MHELP control on &SYSNDX 258
MHELP suppression—operand=128 258
mnemonic codes, extended, branching with 75
MNOTE instruction 176
model statements
explanation of 163
function of 155
rules for concatenation of characters in 165
rules for specifying fields in 168
summary of 266
variable symbols as points of substitution in 163
modifiers of constants
exponent 106
length 103
scale 105
multilevel sublists 201

N’ number attribute 223
name entry 15
nested macros, system variable symbols in 208
nesting
levels of 206
recursion 206
nesting in macro definitions 206
nesting levels, passing values through 208
nominal values of constants (literal)
address 117
binary 107
character 108
decimal 115
fixed-point 112
floating-point 122
graphic 110
hexadecimal 111

o

omitted operands 202
open code 159, 160, 256
operand entries
coding rules for 16
combining positional and keyword 197
in machine instructions 78
keyword 196
multilevel sublists in 201

operand entries (continued)
omitted 202
positional 195
special characters in 203
sublists in 199
operands
omitted 202
sublists in 199
values in 202
operating system, relationship to assembler
program 6
operation codes, symbolic 78
operation entry 15
OPSYN instruction 94
ordinary comments statements 182
ordinary symbols 26
ORG instruction 138

P

parameters
combining positional and keyword 174
keyword 172
positional 171
subscripted symbolic 175

symbolic 170
parentheses, terms in 35
pool, literal

See literal pool
POP instruction 137
positional parameters
PRINT instruction 149
processing statements

conditional assembly instructions 176

COPY instruction 176

function of 155

inner macro instructions 176

MEXIT instruction 179

MNOTE instruction 176
program control instructions

AREAD instruction 181

CNOP instruction 143

COPY instruction 144

END instruction 145

ICTL instruction 132

ISEQ instruction 133

LTORG instruction 140

ORG instruction 138

POP instruction 137

PUNCH instruction 134

PUSH instruction 137

REPRO instruction 136
program sectioning 48

See also sectioning, program
program sectioning and linking instructions

AMODE instruction 57

COM instruction 64

CSECT instruction 60

CXD instruction 68

171, 195

Index

279

program sectioning and linking instructions (con-
tinued)
DSECT instruction
DXD instruction 67
ENTRY instruction 70
EXTRN instruction 71
LOCTR instruction 52
RMODE instruction 58
START instruction 59
WXTRN instruction 72
prototype, macro instruction
alternative ways of coding 162
format of 161
function of 160
name field 161
operand field 161
operation field 161
summary of 266
PUNCH instruction 134
PUSH instruction 137

Q

Q-type constant 121

R

registers, use of, by machine instructions 79
relative addressing 48
remarks entries 16
REPRO instruction 136
residence mode (RMODE) 56
RMODE
indicators in ESD 56
instruction to specify residence mode 58
RR format 84
RRE format 84
RS format 85
RX format 86

S
S format 87
S-type constant 119
S’ scaling attribute 221
sectioning, program
accumulating the cumulative length of external
dummy sections with the CSD instruction 68
control sections 50
defining an external dummy section with a DXD
instruction 67
ESD entries 55
first control section 53
identifying a blank common control section with a
COM instruction 64
identifying a control section with a CSECT instruc-
tion 60
identifying a dummy section with a DSECT instruc-
tion 61

280 Assembler H Version 2 Language Reference

sectioning, program (continued)

identifying external symbols with the EXTRN
instruction 71

identifying the entry-point symbol with the ENTRY
instruction 70 R

identifying weak external symbols with the WXTRN
instruction 72

location counter setting 51

source module 49

specifying muitiple location counters within a
control section with a LOCTR instruction 52

specifying the addressing mode of a control section
with an AMODE instruction 57

specifying the residence mode of a control section
with an RMODE instruction 58

starting assembly with a START instruction 59

unnamed control section 55

self-defining terms

binary 30

character 31

decimal 29

graphic 31
hexadecimal 30
using 29
sequence symbols 27, 224
SET symbols

assigning values to 230
created 214
declaring 226
define global 228
define local 226
description of 212
extended 248 ;
scope of 212 -
SETA (set arithmetic) 230
SETB (set binary) 236
SETC (set character) 241
specifications 212
specifications for subscripted 214
subscripted 212

SETA
arithmetic expression 230
instruction format 230
symbols, subscripted 230
symbols, using 235

SETB
character relations in logical expressions 240
instruction format 236
logical expression 236
symbols, subscripted 236
symbols, using 240

SETC
character expression 241
character expressions 243
instruction format 241
symbols, subscripted 241

S| format 87

source macro definitions 156

SPACE instruction 148
special characters 203
SS format 88
SSE format 89
START instruction 59
statement field 10
structure, assembler language
symbols 25
terms 25
subfield 1 of constant 101
subfield 2 of constant 102
subfield 3 of constant 102
subfield 4 of constant 106
sublists in operands 199
sublists, multilevel 201
sublists, passing, to inner macro instructions 202
subscripted symbolic parameters 175
substring notation 248
symbol definition instruction
EQU instruction 92
symbol table 26
symbolic operation codes 78
symbolic parameters 170

symbols
attributes in combination with 217
defining 27

explanation of 25
extended SET 248
length attribute 33
ordinary 26
previously defined 28
restrictions on 28
sequence 27, 224
system variable 183
variable 27
variable, as points of substitution in model state-
ments 163
system macro instructions 156
system variable symbols
&SYSDATE 183
&SYSECT 184
&SYSLIST 185
&SYSLOC 191
&SYSNDX 187
&SYSPARM 189
&SYSTIME 190
in nested macros 208
summary of 273

T

T’ type attribute 218
terms 25

See also self-defining terms
terms in parentheses 35
TITLE instruction 146
trailer, macro definition 160
types of constants 102

U

underscore cha

racter 26

unnamed control section
USING instruction

base registers for absolute addresses

discussion of 44

domain of a

46

how to use the 46

for executable control sections 46

55

for reference control sections

notes about the domain of a

46

notes about the range of a 47
range of a 45

\'

V-type constant
values in opera
variable symbo

variable symbols as points of substitution

variable symbo
&SYSDATE
&SYSECT 1
&SYSLIST

120
nds 202
Is 27

Is, system
183

84

185

&SYSLOC 191
&SYSNDX 187

&SYSPARM
&SYSTIME
summary of

w

WXTRN instruct

Y

Y-type constant

189
190
273

ion 72

17

46

47

163

Index

281

Staples can cause problems with automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

Reader’s

Comment
Assembler H Version 2 Form
Language Reference
GC26-4037-1

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of |1BM
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter,

with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed appropriate.
Note: Do not use this form to request IBM publications. |If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance in using your IBM system, to your |BM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Chapter/Section

Page No.
Comments:
If you want a reply, please complete the following information.
Name Phone No. ()
Company
Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an |IBM office or repre-
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the
back of the title page.)

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape
‘ “ || | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
—
BUSINESS REPLY MAIL —
EE—
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
——
POSTAGE WILL BE PAID BY ADDRESSEE —
R
]
.
; S
IBM Corporation
S
P.O. Box 49023 ——
Programming Publishing N
. :]
San Jose, California 95161-9023
]
]
L
Fold and tape Please do not staple Fold and tape

'llll

[jun]
1
1
oM

