
GC26-4037-1Assembler H Version 2

Language Reference

Release 1

.'

Second Edition (December 1987)

This edition replaces and makes obsolete the previous edition, GC26-4037-0, and its technical news­
letter, GN26-8318.

This edition applies to Release 1 of Assembler H Version 2, Licensed Program 5668-962, and to any
subsequent releases until otherwise indicated in new editions or technical newsletters. This manual
merges assembler information contained in OS/vS-DOS/vSE-VM/370 Assembler Language, GC33-4010,
and as Assembler H Language, GC26-3771.

The changes for this edition are summarized under "Summary of Changes" following the preface.
Specific changes are indicated by a vertical bar to the left of the change. These bars will be deleted at
any republication of the page affected. Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed
program in this publication is not intended to state or imply that only IBM's program may be used.
Any functionally equivalent program may be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be
delayed because publications are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Programming Publishing, P. O. Box 49023, San Jose,
California, U.S.A. 95161-9023. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

Preface

This manual contains language reference information for the Assembler H
Version 2, Release 1, Licensed Program 5668-962, hereafter referred to as
Assembler H or, simply, assembler.

This manual merges assembler information contained in OSIVS - DOSIVSE­
VMI370 Assembler Language, GC33-4010, and OS Assembler H Language,
GC26-3771, with the following major differences:

• 	 Only information relevant to Assembler H has been included in this manual.
DOSIVSE, OS/MFT, and OS/MVT information has been removed because it
is valid only for assemblers other than Assembler H.

• 	 New features provided by Assembler H Version 2, Release 1, have been
integrated (see the Summary of Amendments for details).

• 	 Programs may be assembled with Assembler H Version 2, Release 1, under
MVS/Extended Architecture (MVS/XA).

• 	 Information available in manuals listed below under "Related Publications"
is not included in this publication; references are made to the appropriate
manuals.

Whom This Manual Is For
This manual is for application programmers coding in the Assembler H lan­
guage, It is not intended to be used for tutorial purposes; it is for reference
only, If you are interested in learning more about assemblers, most libraries
have tutorial books on the subject.

Organization of Manual
Part 1. Assembler Language

• 	 "Chapter 1. Introduction to Assembler Language" describes what the
assembler does, tells about the language and program, gives the relation­
ship of the assembler to the operating system, and supplies some coding
aids.

• 	 "Chapter 2. Coding and Structure" describes the coding rules for and the
structure of the assembler language. It also discusses terms and
expressions.

• 	 "Chapter 3. Addressing, Program Sectioning, and Linking" describes how
to handle addressing, control and dummy sections, and symbolic linking.

• 	 "Chapter 4. Machine Instruction Statements" describes the machine
instruction types and their formats.

• 	 "Chapter 5. Assembler Instruction Statements" describes the assembler
instructions.

Preface iii

Part 2. Macro Language

• 	 "Chapter 6. Introduction to Macro Language" describes the macro instruc­
tion statement, definition, library, and so forth.

• 	 "Chapter 7. How to Prepare Macro Definitions" describes components of a
macro definition.

• 	 "Chapter 8. How to Write Macro Instructions" describes the format of oper­
ands, sublists, and levels of macro instructions.

• 	 "Chapter 9. How to Write Conditional Assembly Instructions" describes the
SET and sequence symbols, and attributes of assembly instructions.

Part 3. Appendixes

• 	 "Appendix A, Assembler Instructions and Statements" lists the related
name, operation, and operand entries.

• 	 "Appendix B, Summary of Constants" lists the constant types and gives
related information concerning each.

• 	 "Appendix C, Macro Language Summary" summarizes some of the infor­
mation contained in Part 2. information contained in Part 2.

Assembler H Version 2 Publications
• 	 Assembler H Version 2 General Information, GC26-4035, contains a brief

description of Assembler H and compares Version 2, Release 1, features
with those of Version 1, Release 5, and also compares Assembler H fea­
tures with those of the VS Assembler.

• 	 Assembler H Version 2 Installation, SC26-4030, which contains information
necessary for installation of the assembler program.

• 	 Assembler H Version 2 Programming Guide, SC26-4036, tells how to use
Assembler H, provides an explanation of each of the diagnostic and
abnormal termination messages issued by Assembler H, and suggests how
you should respond in each case.

• 	 Assembler H Version 2 Language Reference, GC26-4037, describes the basic
assembler language functions and specifications that are available with
Assembler H.

• 	 Assembler H Version 2 Logic, L Y26-3908, describes the design logic and
functional characteristics of Assembler H.

• 	 Assembler Coding Form, GX28-6509, is a form for coding the program in the
proper columns.

iv Assembler H Version 2 Language Reference

Related Publications
The following publications provide definitive information about machine
instructions:

• IBM System/370 Principles of Operation, GA22-7000

• IBM System/370 Extended Architecture Principles of Operation, SA22-7085

• IBM System/370 Vector Operations, SA22-7125

• IBM 4300 Processors Principles of Operation, GA22-7070

For quick reference, see:

• IBM System/370 Reference Summary, GX20-1850

• IBM System/370 Extended Architecture Reference Summary, GX20-0157

Preface V

Summary of Changes

I 	Release 1 Update, December 1987

Changes to the Product
• 	 Support has been added for the IBM DBCS-Host double-byte character set.

Double-byte data can be used wherever single-byte data, enclosed by apos­
trophes, is allowed. Refer to the Glossary of the Assembler H Version 2
Programming Guide for the definition of DBCS terms.

• 	 The MHELP facility has been extended. MHELP can now dump SETC
symbols and parameters in hexadecimal as well as in EBCDIC format.

• 	 New machine instructions have been added for the IBM 3090 Vector Facility.

• 	 Extended and System/370 instruction sets are now contained in the Uni­
versal instruction set.

• 	 The underscore character C) is now allowed in variable symbols and inline
macro names, as well as in ordinary symbols.

Changes to This Manual
Documentation of the above product changes, as well as miscellaneous cor­
rections to existing information, has been added.

Summary of Changes vii

~'

1

Contents

Part 1. Assembler Language

Chapter 1. Introduction to Assembler Language 3

Language Compatibility 3

Assembler Language 3

Assembler Program 4

Relationship of Assembler to Operating System 6

Coding Aids 7

Chapter 2. Coding and Structure 9

Double-Byte Data Notation 9

Assembler Language Coding Conventions 9

Field Boundaries 10

Continuation Lines 11

Comments Statement Format 14

Instruction Statement Format 14

Character Set 16

Assembler Language Structure 17

Terms and Expressions 25

Terms ... 25

Literals 36

Expressions 39

Chapter 3. Addressing, Program Sectioning, and Linking 43

Addressing 43

Addressing within Source Modules: Establishing Addressability 43

Base Register Instructions 43

Relative Addressing 48

Program Sectioning and Linking 48

Source Module 49

Control Sections 50

Location Counter Setting 51

First Control Section 53

Unnamed Control Section 55

Literal Pools In Control Sections 55

External Symbol Dictionary Entries 55

Establishing Residence and Addressing Mode 56

Defining a Control Section 59

External Dummy Sections 66

Symbolic Linkages 69

Chapter 4. Machine Instruction Statements 73

General Instructions .. . 73

Decimal Instructions .. . 74

Floating-Point Instructions 74

Control Instructions 74

Input/Output Operations 75

Branching with Extended Mnemonic Codes 75

Statement Formats 77

Contents ix

Symbolic Operation Codes
Operand Entries

Registers .
Addresses
Lengths ..
Immediate Data

Examples of Coded Machine Instructions

Chapter 5. Assembler Instruction Statements
Symbol Definition Instruction

EQU-Equate Symbol
Redefining Symbolic Operation Codes

OPSYN-Equate Operation Code
Data Definition Instructions

DC-Define Constant
OS-Define Storage
CCW or CCWO-Define Channel Command Word (Format 0)
CCW1-Define Channel Command Word (Format 1)

Program Control Instructions
ICTL-Input Format Control
ISEQ-Input Sequence Checking
PUNCH-Punch a Card
REPRO-Reproduce Following Card
PUSH Instruction
POP Instruction
ORG-Set Location Counter
LTORG-Begin Literal Pool
CNOP-Conditional No Operation
COPY-Copy Predefined Source Coding
END-End Assembly

Listing Control Instructions
TITLE-Identify Assembly Output
EJECT-Start New Page
SPACE-Space Listing
PRINT-Print Optional Data

Part 2. Macro Language

Chapter 6. Introduction to Macro Language
Using Macros
Macro Definition
Macro Instruction Statement
Source and Library Macro Definitions

Macro Library
System Macro Instructions

Conditional Assembly Language

Chapter 7. How to Prepare Macro Definitions
Where to Define a Macro in a Source Module
Open Code
Format of a Macro Definition

MACRO-Macro Definition Header
MEND-Macro Definition Trailer
Macro Instruction Prototype

78

78

79

80

83

83

84

91

92

92

94

94

96

96

127

130

131

132

132

133

134

136

137

137

138

140

143

144
 ..,
145

146

146

148

148

149

151

153

153

153

155

156

156

157

157

159

159

160

160

160

160

161
 """

Assembler H Version 2 Language Reference X

Name Field 161

Operation Field 161

Operand Field 162

Body of a Macro Definition 163

Model Statements 163

Variable Symbols as Points of Substitution 164

Listing of Generated Fields 164

Rules for Concatenation 165

Rules for Model Statement Fields 168

Symbolic Parameters 170

Positional Parameters 171

Keyword Parameters 172

Combining Positional and Keyword Parameters 174

Subscripted Symbolic Parameters 175

Processing Statements 176

Conditional Assembly Instructions 176

Inner Macro Instructions 176

COpy Instruction 176

MNOTE Instruction 176

MEXIT Instruction 179

AREAD-Assign Character String Value 181

Comments Statements 182

Ordinary Comments Statements ... 182

Internal Macro Comments Statements 182

System Variable Symbols 183

Chapter 8. How to Write Macro Instructions 193

Where Macro Instructions Can Appear . 193

Macro Instruction Format 193

Alternative Ways of Coding a Macro Instruction 194

Name Entry 194

Operation Entry 195

Operand Entry . 195

SUblists in Operands 199

Values in Operands 202

Omitted Operands 202

Special Characters 203

Nesting in Macro Definitions 206

Inner and Outer Macro Instructions 206

levels of Nesting 206

General Rules and Restrictions 206

Passing Values through Nesting levels 208

System Variable Symbols in Nested Macros 208

Chapter 9. How to Write Conditional Assembly Instructions 211

Elements and Functions 211

SET Symbols 212

Data Attributes 215

Sequence Symbols . 224

Attribute Definition and lookahead 225

Declaring SET Symbols 226

lClA, lClB, lClC-Define local Set Symbols 226

GBlA, GBlB, and GBlC Instructions 228

Assigning Values to SET Symbols 230

SETA-Set Arith metic 230

Contents xi

Appendixes

SETB-Set Binary

SETC-Set Character .. .

Extended SET Statements

Substring Notation
Branching

AIF-Conditional Branch .
AGO-Unconditional Branch
ACTR-Conditional Assembly Loop Counter
ANOP-Assembly No Operation

Open Code

MHELP-Macro Trace Facility

Appendix A. Assembler Instructions and Statements

Appendix B. Summary of Constants ..

Appendix C. Macro Language Summary

Index

236

241

248

248

251

251

253

254

255

256

257

261

263

267

269

275

..,;""

xii Assembler H Version 2 Language Reference

Figures

1. Double-Byte Data Notation . 9

2. Standard Assembler Coding Form 10

3. Character Set 16

4. Double-Byte Character Set (DBCS) 17

5. Examples Using C;:haracter Set 19

6. Assembler Language Structure 20

7. Machine Instructions 21

8. Ordinary Assembler Instruction Statements 22

9. Conditional Assembly Instructions 23

10. Macro Instructions 24

11. Summary of Terms 25

12. Transition from Assembler Language Statement to Object Code 28

13. Assignment of Length Attribute Values to Symbols in Name Fields 34

14. Differences between Literals, Constants, and Self-Defining Terms 36

15. Differences between Literals, Constants, and Self-Defining Terms 37

16. Examples of Valid Expressions 39

17. Definitions of Absolute and Relocatable Expressions 40

18. Use of Multiple Location Counters 52

19. Defining CSECTs, DSECTs, and Symbols 56

20. How the Location Counter Works 61

21. Extended Mnemonic Codes 76

22. Object Code Format 82

23. Types of Data Constants 97

24. Length Attribute Value of Symbol Naming Constants 99

25. Alignment of Constants 100

26. Type Codes for Constants 102

27. Binary Constants 108

28. Character Constants 109

29. Graphic Constants 111

30. Hexadecimal Constants 112

31. Fixed-Point Constants 114

32. Decimal Constants 116

33. A and Y Address Constants 118

34. S Address Constants 120

35. V Address Constants .. 121

36. Q Address Constants .. 122

37. Floating-Point Constants 124

38. Floating-Point External Formats 125

39. Channel Command Word, Format 0 130

40. Channel Command Word, Format 1 131

41. Building a Translate Table 139

42. CNOP Alignment 144

43. Parts of a Macro Definition 154

44. Format of a Macro Definition 160

45. Rules for Concatenation 167

46. Positional Parameters 172

47. Keyword Parameters 174

48. Combining Positional and Keyword Parameters 175

49. Rules for MNOTE Character Strings 179

50. MEXIT Operation 180

Figures xiii

51. 	 Relationship between Keyword Operands and Keyword Parameters

and Their Assigned Values 198

52. 	 Sublists in Operands 200

53. 	 Relationship between Subscripted Parameters and Sublist Entries 201

54. 	 Values in Nested Macro Calls 207

55. 	 Passing Values through Nesting Levels 209

56. 	 Features of SET Symbols and Other Types of Variable Symbols 213

57. 	 Data Attributes 216

58. 	 Attributes and Related Symbols 217

59. 	 Relationship of Integer to Length and Scaling Attributes 222

60. 	 Use of Arithmetic (SETA) Expressions 231

61. 	 Defining Arithmetic (SETA) Expressions 232

62. 	 Variable Symbols Allowed as Terms in Arithmetic Expressions 232

63. 	 Defining Logical Expressions 239

64. 	 Subscripted SETC Symbols 243

65. 	 Use of Character Expressions 244

66. 	 Substring Notation in Conditional Assembly Instructions 249

67. 	 Summary of Substring Notation 250

68. 	 Restrictions on Coding Expressions 257

69. 	 Assembler Instructions 263

70. 	 Assembler Statements .. 266

71. 	 Summary of Constants .' 267

72. 	 Macro Language Elements 270

73. 	 Conditional Assembly Expressions 271

74. 	 Attributes 272

75. 	 Variable Symbols 273

xiv Assembler H Version 2 Language Reference

Part 1. Assembler Language

• 	 "Chapter 1. Introduction to Assembler Language" describes what the
assembler does, tells about the language and program, gives the relation­
ship of the assembler to the operating system, and supplies some coding
aids.

• 	 "Chapter 2. Coding and Structure" describes the coding rules for and the
structure of the assembler language. It also discusses terms and
expressions.

• 	 "Chapter 3. Addressing, Program Sectioning, and Linking" talks about how
to handle addressing, control and dummy sections, and symbolic linking.

• 	 "Chapter 4. Machine Instruction Statements" describes the machine
instruction types and their formats.

• 	 "Chapter 5. Assembler Instruction Statements" describes the assembler
instructions.

Part 1. Assembler Language 1

Chapter 1. Introduction to Assembler Language

A computer can understand and interpret only machine language. Machine lan­
guage is in binary form and, thus, very difficult to write. The assembler lan­
guage is a symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful symbols made
up of alphabetic and numeric characters instead of just the binary digits 0 and 1
used in machine language, you can make your coding easier to read, under­
stand, and change. The assembler must translate the symbolic assembler lan­
guage into machine language before the computer can execute your program,
as explained in the following paragraph.

Your program, written in the assembler language, becomes the source module
that is input to the assembler. It can be punched into a deck of cards, or
entered through a terminal. The assembler processes your source module and
produces an object module in machine language (called object code). The
object module can be used as input to be processed by another processing
program, called the linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the computer. Once your
program is loaded, it can then be executed. Your source module and the object
code produced are printed, along with other information, on a program listing.

Language Compatibility
The language used by Assembler H Version 2, Release 1, has functional exten­
sions to the language supported by VS Assembler and OS Assembler H Version
1, Release 5. Programs written for VS Assembler and OS Assembler H Version
1, Release 5, that were successfully assembled with no warning or diagnostic
messages, will be assembled correctly by Assembler H Version 2, Release 1.

Assembler Language
The assembler language is the symbolic programming language that lies
closest to the machine language in form and content. You will, therefore, find
the assembler language useful when

• 	 you need to control your program closely, down to the byte and even the bit
level, or

• 	 you must write subroutines for functions that are not provided by other sym­
bolic programming languages, such as COBOL, FORTRAN, or PLII.

The assembler language is made up of statements that represent instructions
or comments. The instruction statements are the working part of the language
and are divided into the following three groups:

• 	 Machine instructions
• 	 Assembler instructions
• 	 Macro instructions

Chapter 1. Introduction to Assembler Language 3

Machine Instructions
A machine instruction is the symbolic representation of a machine language
instruction of the IBM System/370 architecture instruction set, or of the IBM
System/370 extended architecture instruction set. It is called a machine instruc­
tion because the assembler translates it into the machine language code the
computer can execute. Machine instructions are described in "Chapter 4.
Machine Instruction Statements."

Assembler Instructions
An assembler instruction is a request to the assembler program to perform
certain operations during the assembly of a source module; for example,
defining data constants, defining the end of the source module, and reserving
storage areas. Except for the instructions that define constants, the assembler
does not translate assembler instructions into object code. The assembler
instructions are described in "Chapter 3. Addressing, Program Sectioning, and
Linking," "Chapter 5. Assembler Instruction Statements," and "Chapter 9.
How to Write Conditional Assembly Instructions."

Macro Instructions
A macro instruction is a request to the assembler program to process a prede­
fined sequence of code called a macro definition. From this definition, the
assembler generates machine and assembler instructions, which it then proc­
esses as if they were part of the original input in the source module.

IBM supplies macro definitions for input/output, data management, and super­
visor operations that you can call for processing by coding the required macro
instruction. (These IBM-supplied macro instructions are described in the appro­
priate Macro Instructions manual.)

You can also prepare your own macro definitions, and call them, by coding the
corresponding macro instructions. Rather than code this entire sequence each
time it is needed, you can create a macro instruction to represent the sequence
and then, each time the sequence is needed, simply code the macro instruction
statement. During assembly, the sequence of instructions represented by the
macro instruction is inserted into the object program.

A complete description of the macro facility, including the macro definition, the
macro instruction, and the conditional assembly language, is given in "Part 2.
Macro Language."

Assembler Program
The assembler program, also referred to as the assembler, processes the
machine, assembler, and macro instructions you have coded (source state­
ments) in the assembler language, and produces an object module in machine
language.

Assembler H Version 2 Language Reference 4

Basic Functions
Processing involves the translation of source statements into machine lan­
guage, assignment of storage locations to instructions and other elements of
the program, and performance of auxiliary assembler functions you have desig­
nated. The output of the assembler program is the object program, a machine
language translation of the source program. The assembler furnishes a printed
listing of the source statements and object program statements and additional
information, such as error indications, that are useful in analyzing the program.
The object program is in the format required by the linkage editor.

Processing Sequence
The assembler processes the machine and assembler language instructions at
different times during its processing sequ~nce. You should be aware of the
assembler's processing sequence in order to code your program correctly.

The assembler processes most instructions on two occasions: First at preas­
sembly time and, later, at assembly time. However, it does some
processing-for example, macro processing-only at preassembly time.

The assembler also produces information for other processors. The linkage
editor uses such information at link-edit time to combine object modules into
load modules. The loader loads your program (combined load modules) into
virtual storage at program fetch time. Finally, at execution time, the computer
executes the object code produced by the assembler at assembly time.

1. 	 The assembler processes all machine instructions, and translates them into
object code at assembly time.

2. 	 Assembler instructions are divided into two main types:

• 	 Ordinary assembler instructions
• 	 Conditional assembly instructions and the macro processing

instructions (MACRO, MEND, MEXIT, MNOTE, and AREAD)

The following discusses these two main types of assembler instructions.

a. 	 The assembler processes ordinary assembler instructions at assembly
time.

• 	 The assembler evaluates absolute and relocatable expressions at
assembly time; they are sometimes called assembly-time
expressions.

• 	 Some instructions produce output for processing after assembly
time (DC, DS, CCW, CCWO, CCW1, ENTRY, EXTRN, WXTRN, PUNCH,
and REPRO).

b. 	 The assembler processes conditional assembly instructions and macro
processing instructions at preassembly time.

• 	 The assembler evaluates the conditional assembly
expressions-arithmetic, logical, and character-at preassembly
time.

• 	 The assembler processes the machine and assembler instructions
generated from preassembly processing at assembly time.

Chapter 1. Introduction to Assembler Language 5

3. 	 The assembler processes macro instructions at preassembly time.

Note: The assembler processes the machine and ordinary assembler
instructions generated from a macro definition called by a macro instruction
at assembly time.

The assembler prints in a program listing all the information it produces at the
various processing times discussed above.

Relationship of Assembler to Operating System
Assembler H operates under MVS/Extended Architecture (XA), OSIVS2 MVS 3.8,
OSIVS1 Release 7, MVS/System Product (SP) V1, VM/XA System Product
(VM/XA SP), VM/XA Systems Facility (VM/XA SF), and VM/SP. These operating
systems provide the assembler with services for:

• 	 Assembling a source module

• 	 Running the assembled object module as a program

In writing a source module, you must include instructions that request the
desired service functions from the operating system.

OSIVS provides the following services:

1. 	 For assembling the source module:

A control program
• 	 Libraries to contain source code and macro definitions
• 	 Utilities

2. 	 For preparing for the execution of the assembler program as represented
by the object module:

• 	 A control program
• 	 Storage allocation
• 	 Input and output facilities
• 	 Linkage editor
• 	 A loader

eMS provides the following services:

1. 	 For assembling the source module:

• 	 An interactive control program
• 	 Files to contain source code and macro definitions
• 	 Utilities

2. 	 For preparing for the execution of the assembler program as represented
by the object modules:

• 	 An interactive control program
• 	 Storage allocation
• 	 I nput and output faci I ities
• 	 eMS loader

6 Assembler H Version 2 Language Reference

Coding Aids
It can be very difficult to write an assembler language program using only
machine instructions. The assembler provides additional functions that make
this task easier. They are summarized below.

Symbolic Representation of Program Elements
Symbols greatly reduce programming effort and errors. You can define
symbols to represent storage addresses, displacements, constants, registers,
and almost any element that makes up the assembler language. These ele­
ments include operands, operand subfields, terms, and expressions. Symbols
are easier to remember and code than numbers; moreover, they are listed in a
symbol cross-reference table, which is printed in the program listings. Thus,
you can easily find a symbol when searching for an error in your code.

Variety in Data Representation
You can use decimal, binary, hexadecimal, or character representation of
machine language binary values in writing source statements. You select the
representation best suited to the purpose. The assembler converts your rep­
resentations into the binary values required by the machine language.

Controlling Address Assignment
If you code the appropriate assembler instruction, the assembler will compute
the displacement from a base address of any symbolic addresses you specify in
a machine instruction. It will insert this displacement, along with the base reg­
ister assigned by the assembler instruction, into the object code of the machine
instruction.

At execution time, the object code of address references must be in the base­
displacement form. The computer obtains the required address by adding the
displacement to the base address contained in the base register.

Relocatability
The assembler produces an object module that can be relocated from an ori­
ginally assigned storage area to any other suitable virtual storage area without
affecting program execution. This is made easier because most addresses are
assembled in their base-displacement form.

Sectioning a Program
You can divide a source module into one or more control sections. After
assembly, you can include or delete individual control sections from the
resulting object module before you load it for execution. Control sections can
be loaded separately into storage areas that are not contiguous. This means
that a sectioned program may be loaded and executed even though a contin­
uous block of storage large enough to accommodate the entire program may
not be available.

Chapter 1. Introduction to Assembler Language 7

,

Linkage between Source Modules

Program Listings

You can create symbolic linkages between separately assembled source
modules. This allows you to refer symbolically from one source module to data
defined in another source module. You can also use symbolic addresses to
branch between modules.

A discussion of sectioning and linking is contained in "Program Sectioning and
Linking" on page 48.

The, assembler produces a listing of your source module, including any gener­
ated statements, and the object code assembled from the source module You
can partly control the form and content of the listing.

The assembler also prints messages about actual errors and warnings about
potential errors in your source module.

Assembler H Version 2 Language Reference 8

Chapter 2. Coding and Structure

This chapter presents information about assembler language coding con­
ventions and assembler language structure.

Double-Byte Data Notation

Character(s) Represents

< shift-out (SO)

> shift-in (SI)

D1 D2D3 ... double-byte characters

DaDbDc ... double-byte characters

.A.B.C:.&., double-byte characters: A. B, C, apostrophe, ampersand and comma

eeeeeee single-byte (EBCDIC) characters

abed ... single-byte (EBCDIC) characters

xxx extended continuation indicator for macro-generated statements

+++ alternative extended continuation indicator for macro-generated state­
ments

Figure 1. Double-Byte Data Notation

Notes:

1. 	 The DBCS ampersand and apostrophe are not recognized as delimiters.

2. 	 A double-byte character that contains the value of an EBCDIC ampersand or
apostrophe in either byte is not recognized as a delimiter when enclosed by
SO and SI.

Assembler Language Coding Conventions
Figure 2 shows the format conventions used to code an assembler program.

Chapter 2. Coding and Structure 9

IBM. IBM Syoloml36D Aoumblor Codlng Form G;(2I4IOM UIM GIG·
~InU..LA.

PROGRAM PUNCHING I GRAPHIC I PAGE OFI I I I I I I
INSTRUCTIONS LI PROGRAMMER PUNCH I CARD ELECTRO NUMBERLOATE 1 L I I L l I

STATI:MENT -....._­
0.-0. - . ,. .. ".,30" " " , " " ­,

!; i : ; i i ; . . , ! ! , • ! i , ! i ! ! ! ! : i ! : ! ! I ; i ! 1 I I I I I ! i i
; , , , , : ! i I: , ' i i 1 , I ' i ' , i ! i : i I ! ! ! ! I i i i ! I I ! ! ! , i

i

! , ! : i I i ! I !l'
: i ! ' , i , i

i

I ! : , , ' iL : Ll i I iJJ i

, I , L iJ i

i

I ,
! ! , , : , ;

!

! : i ! I i I ! : 1
i. .. . , , .. . i

. ,
•

ii i ,
, i , ; . . , • i

i , ii, •!•

: , i, !
,, i , i ; , ! , : ~ i , , ! I i I ! iii. ' . ! : i '

i I ! ! i ! ! I ! i !
•

! '
:

, ! , ! i

·
, ! '

; ,
i . i ,

. , ! ! i
. ,

! ! !
;

!
.

.
,

!
.

j i ! i

,
• ; ! i ' ,

!
, ,

! !
! ! , , !

,
:

i : .
;

, i • ', i ;

· ; . • i , .i .
L . ; ; , , , . i • .. .

i ! , ! , ! ' i . , , !

.

! ii i

, '
i, ; , • i ; .. . , . . , . ,i

,
i • : ! .'... ; , . i , ! .

! ' • • i •

.
. ;i

i

C ,i. • i
,

• ! , . ,
•

· . , , i . .
~ · ; , i ; ; !. , , i i i, •

· · ; ; , ,
, i

, , , . , i. , • , •

. ; ,
, ' ! ' , ' , · . , ,

•
i •• j

!
i i •• ii

, . ,.
.

.. ­" " " " "
·A..-rt"",fgmr./5A1~_."""'fo,~__.""'""fwl\OI.

30 " ~

~1'ar_',.,_IrNm"""","Ms-r-nI.Jl!:O-..bI«'''''''',.fwwtc,r

~-.~"'-".'IIINWfIIt:~.~~t

... 162.S.I.,agLJd/ntll

Figure 2. Standard Assembler Coding Form

Field Boundaries
Assembler language statements usually occupy one 80-column line on the
standard form (for statements occupying more than 80 columns, see "Continua­
tion Lines" on page 11). Note that any printable character punched into any
column of a card, or otherwise entered as a position in a source statement, is
reproduced in the listing printed by the assembler. All characters are placed in
the line by the assembler. Whether they are printed or not depends on the
printer. Each line of the coding form is divided into three main fields:

• Statement field
• Continuation indicator field
• Identification-sequence field

Statement Field
The instructions and comments statements must be written in the statement
field. The statement field starts in the "begin" column and ends in the "end"
column. The continuation indicator field always lies in the column after the
"end" column. The identification-sequence field usually lies in the field after
the continuation indicator field. Any continuation lines needed must start in the
"continue" column and end in the "end" column.

10 Assembler H Version 2 Language Reference

http:1'ar_',.,_IrNm"""","Ms-r-nI.Jl!:O-..bI

The assembler assumes the following standard values for these columns:

• 	 The "begin" column is column 1.
• 	 The "end" column is column 71.
• 	 The "continue" column is column 16.

These standard values can be changed by using the Input Format Control (ICTL)
assembler instruction. The ICTL instruction, by changing the standard begin,
end, and continue columns can create a field before the begin column; this field
can then contain the identification-sequence field. However, all references to
the "begin," "end," and "continue" columns in this manual refer to the
standard values described above.

Continuation Indicator Field
The continuation indicator field occupies the column after the end column.
Therefore, the standard position for this field is column 72. A non-blank char­
acter in this column indicates that the current statement is continued on the
next line. This column must be blank if a statement is completed on the same
line; otherwise, the assembler will treat the statement that follows on the next
line as a continuation line of the current statement.

If the assembler is invoked with the DBCS option, then:

• 	 When an SI is placed in the end column of a continued line, and an SO is
placed in the continue column of the next line, the SI and SO are consid­
ered redundant and are removed from the statement before statement anal­
ysis is performed.

• 	 An extended continuation indicator provides the ability to extend the end
column to the left on a line-by-line basis, so that any alignment of double­
byte data in a source statement can be supported.

• 	 The double-byte delimiters SO and SI cannot be used as continuation indi­
cators.

Identification-Sequence Field
The identification-sequence field can contain identification characters or
sequence numbers or both. If the ISEQ instruction has been specified to check
this field, the assembler will verify whether or not the source statements are in
the correct sequence.

The columns checked by the ISEQ function are not restricted to columns 73
through 80, or by the boundaries determined by any ICTL instruction. The
columns specified in the ISEQ instruction can be anywhere on the input state­
ments; they can also coincide with columns that are occupied by the instruction
field.

Continuation Lines
To continue a statement on another line, the following rules apply:

1. 	 Enter a non-blank character in the continuation indicator field (column 72).
This non-blank character must not be part of the statement coding. When
more than one continuation line is needed, a non-blank character must be
entered in column 72 of each line that is to be continued.

Chapter 2. Coding and Structure 11

2. 	 Continue the statement on the next line, starting in the continue column

(column 16). Columns to the left of the continue column must be blank.

Comments may be continued after column 16.

Note that, if an operand is continued after column 16, it is taken to be a
comment. Also, if the continuation indicator field is filled in on one line and you
try to start a totally new statement after column 16 on the next line, this state­
ment will be taken as a comment belonging to the previous statement.

Unless it is one of the statement types listed below, nine continuation lines are
allowed for a single assembler language statement.

Alternative Statement Format: The alternative statement format, which allows
as many continuation lines as are needed, can be used for the following
instructions:

• 	 Prototype statement of a macro definition
• 	 Macro instruction statement
• 	 AGO conditional assembly statement
• 	 AIF conditional assembly statement
• 	 GBLA, GBLB, and GBlC conditional assembly statements
• 	 LClA, LClB, and lClC conditional assembly statements
• 	 SETA, SETB, and SETC conditional assembly statements

Examples of the alternative statement format for each of these instructions are
given with the description of the individual instruction.

Continuation of double-byte data: No special considerations apply to continua­
tion:

• 	 Where double-byte data is created by a code-generation program, and
• 	 There is no requirement for double-byte data to be readable on a device

capable of presenting OBCS characters.

A double-byte character string may be continued at any point, and SO and SI
must be balanced within a field, but not within a statement line.

Where double-byte data is created by a workstation that has the capability of
presenting OBCS characters, such as the IBM 5550 multistation, or where read­
ability of double-byte data in Assembler H source input or listings is required,
special features of the Assembler H language may be used. Assembler H,
when invoked with the OBCS option, provides sufficient flexibility to cater for
any combination of double-byte data and single-byte data. The special features
provided are:

• 	 Removal of redundant SI/SO at continuation points. When an SI is placed in
the end column of a continued line, and an SO is placed in the continue
column of the next line, the SI and SO are considered redundant and are
removed from the statement before statement analysis is performed.

• 	 An extended continuation indicator provides a flexible end column on a line­
by-line basis so that any alignment of double-byte data in a source state­
ment can be supported. The end column of continued lines may be shifted
to the left by extending the continuation indicator.

12 Assembler H Version 2 Language Reference

.~

• 	 To guard against accidental continuation caused by double-byte data ending
in the continuation indicator column, neither SO nor SI is regarded as a
continuation indicator. If either are so used, warning message IEV201 "SO
OR SIIN CONTINUATION COLUMN - NO CONTINUATION ASSUMED" is
issued.

The use of these features is illustrated by the examples below. Refer to
"Double-Byte Data Notation" on page 9 for the notation used in the examples.

Source Input Considerations

• 	 Extended continuation indicators may be used in any source statement,
including macro statements and statements included by the COPY instruc­
tion. This feature is intended for source lines containing double-byte data.

• 	 On a line with a nonblank continuation indicator, the end column will be the
first column to the left of the continuation indicator which has a value dif­
ferent from the continuation indicator.

• 	 When converting existing programs for assembly with the DBCS option,
care must be taken to ensure that continuation indicators are different from
the adjacent data in the end column.

• 	 The extended continuation indicators must not be extended into the con­
tinue column, otherwise error IEV205 "EXTENDED CONTINUATION COLUMN
MUST NOT EXTEND INTO CONTINUE COLUMN" will be issued and the
extended continuation indicators are treated as data.

• 	 For SI and SO to be removed at continuation points, the SI must be in the
end column, and the SO must be in the continue column of the next line .

Examples:

Name Operation 	 Operand Cont.

DBCSI DC 	 C'<DID2D3D4D5D6D7D8D9>XXXXXXXXXXXXXXXXXXXX

<DaDb>'

DBCS2 DC 	 C'abcdefghijklmnopqXXXXXXXXXXXXXXXXXXXXXXX

<DaDb>'

DBCS3 DC 	 C'abc<DID2D3D4D5D6D7>XXXXXXXXXXXXXXXXXXXXX

<DaDb>'

The DBCS1 constant contains 11 double-byte characters bracketed by SO and
SI. The SI and SO at the continuation point are not assembled into the
operand. The assemble value of DBCS1 is:

<DID2D3D4D5D6D7D8D9DaDb>

The DBCS2 constant contains an EBCDIC string which is followed by a double­
byte string. Since there is no space for any double-byte data on the first line,
the end column is extended three columns to the left and the double-byte data
started on the next line. The assembled value of DBCS2 is:

abcdefghijklmnopq<DaDb>

The DBCS3 constant contains 3 EBCDIC characters followed by 9 double-byte
characters. Alignment of the double-byte data requires that the end column be
extended one column to the left. The SI and SO at the continuation point are
not assembled into the operand. The assemble value of DBCS3 is:

abc<DID2D3D4D5D6D7DaDb>

Chapter 2. Coding and Structure 13

Source Listing Considerations

• 	 For source that does not contain substituted variable symbols, the listing
will exactly reflect the source input.

• 	 Double-byte data input from code-generation programs, and containing no
substituted variables, will not be made readable in the listing if the source
input was unreadable on a device capable of presenting DBCS characters.

• 	 Refer to "Listing of generated fields containing double-byte data" on
page 165 for details of extended continuation and macro-generated state­
ments.

Comments Statement Format
Comments statements are not assembled as part of the object module, but are
only printed in the assembly listing. As many comments statements as needed
can be written, subject to the following rules:

• 	 Comments statements require an asterisk in the begin column.

Note: Internal macro definition comments statements require a period in
the begin column, followed by an asterisk.

• 	 Any characters of the IBM System/370 character set, including blanks,
special characters, and double-byte characters, can be used (see "Char­
acter Set" on page 16).

• 	 Comments statements must lie in the statement field and not run over into
the continuation indicator field; otherwise, the statement following the com­
ments statement will be considered as a continuation line of that comments
statement.

• 	 Comments statements must not appear between an instruction statement
and its continuation lines.

Instruction Statement Format
Instruction statements must consist of one to four entries in the statement field.
They are:

• 	 A name entry
• 	 An operation entry
• 	 An operand entry
• 	 A remarks entry

These entries must be separated by one or more blanks, and must be written in
the order stated.

Fixed Format
The standard coding form (Figure 2 on page 10) is divided into fields that
provide fixed positions for the first three entries, as follows:

• 	 An 8-character name field starting in column 1
• 	 A 5-character operation field starting in column 10
• 	 An operand field that begins in column 16

Note: With this fixed format, one blan k separates each field.

14 Assembler H Version 2 Language Reference

/

Free Format
It is not necessary to code the name, operation, and operand entries according
to the fixed fields on the standard coding form. Instead, these entries can be
written in any position, subject to the formatting specifications below.

Formatting Specifications
Whether using fixed or free format, the following general rules apply to the
coding of an instruction statement:

1. 	 The entries must be written in the following order: name, operation,
operand, and remarks.

2. 	 The entries must be contained in the begin column (1) through the end
column (71) of the first line and, if needed, in the continue column (16)
through the end column (71) of any continuation lines.

3. 	 The entries must be separated from each other by one or more blanks.

4. 	 If used, a name entry must start in the begin column.

5. 	 The name and operation entries, each followed by at least one blank, must
be contained in the first line of an instruction statement.

6. 	 The operation entry must begin at least one column to the right of the begin
column.

A description of the name, operation, operand, and remarks entries follows:

Name Entry: The name entry is a symbol created by you to identify an instruc­
tion statement. A name entry is usually optional. It must be a valid symbol at
assembly time (after substitution for variable symbols, if specified); for an
exception, see "TITLE-Identify Assembly Output" on page 146.

The symbol must consist of 63 characters or less, and be entered with the first
character appearing in the begin column. The first character must be alpha­
betic. If the begin column is blank, the assembler program assumes no name
has been entered. No blanks or double-byte data may appear in the symbol.

Operation Entry: The operation entry is the symbolic operation code specifying
the machine, assembler, or macro instruction operation desired. The following
apply to the operation entry:

• 	 An operation entry is mandatory.

• 	 For machine and assembler instructions, it must be a valid symbol at
assembly time (after SUbstitution for variable symbols, if specified). The
standard symbolic operation codes are five characters or less (see the
appropriate principles of operation manual; or, for assembler operations,
see Appendix A, "Assembler Instructions and Statements").

The standard set of codes can be changed by OPSYN instructions (see
"OPSYN-Equate Operation Code" on page 94).

• 	 For macro instructions, it can be any valid symbol that is not identical to
any machine or assembler op-code.

Chapter 2. Coding and Structure 15

Character Set

Operand Entries: Operand entries contain one or more operands that identify
and describe data to be acted upon by the instruction, by indicating such infor­
mation as storage locations, masks, storage area lengths, or types of data. The
following rules apply to operands:

• 	 One or more operands are usually required, depending on the instruction.

• 	 Operands must be separated by commas. No blanks are allowed between
the operands and the commas that separate them.

• 	 Operands must not contain embedded blanks, because a blank normally
indicates the end of the operand entry. However, blanks are allowed if they
are included in character strings enclosed in single quotation marks, or in
logical expressions.

Remarks Entries: Remarks are used to describe the current instruction.

• 	 Remarks are optional.

• 	 They can contain any of tbe 256 valid characters (or punch combinations) of
the appropriate character set, including blanks, special characters, and
double-byte characters.

• 	 They can follow any operand entry.

• 	 In statements in which an optional operand entry is omitted but a remarks
entry is desired, the absence of the operand entry must be indicated by a
comma preceded and followed by one or more blanks, as illustrated below:

Name Operation Operand COl11l1ent

END 	 REf1ARKS

Statement Example: The following example illustrates the use of name, opera­
tion, operand, and remarks entries. A compare instruction has been named by
the symbol COMP; the operation entry (CR) is the mnemonic operation code for
a register-to-register compare operation; and the two operands (5,6) designate
the two general registers whose contents are to be compared. The remarks
entry reminds readers that "new sum" is being compared to "old" with this
instruction.

Name Operation Operand Conrnent

COMP CR 5,6 	 NEW SUM TO OLD

Terms, expressions, and character strings used to build source statements are
written with the following characters:

Alphabetic characters A through Z, and $, #, @

Digits o through 9

Special characters + - , = .• () . / & blank

Underscore character

Figure 3. Character Set

Examples showing the use of the above characters are given in Figure 5 on
page 19.

16 Assembler H Version 2 Language Reference

The term "alphameric characters" includes both alphabetic characters and
digits, but not special characters, the underscore or double-byte data.
Normally, you would use strings of alphameric characters to represent data
(see "Terms" on page 25), and special characters as:

• Arithmetic operators in 	expressions
• 	 Data or field delimiters
• 	 Indicators to the assembler for specific handling

These characters are represented by the card-punch combinations and internal
bit configurations listed in the IBM Systeml370 Reference Summary In addition,
any of the 256 punch combinations may be designated anywhere that charac­
ters can appear between paired single quotation marks, in comments, and in
macro instruction operands.

The double-byte character set (OBCS) comprises the following:

Double-byte blank 	 XX '4040 ,

Double-byte characters 	 Each double-byte character contains two bytes, each of

which must be in the range XX '41 ' to XX' FE' .

Shift codes 	 SO ("shift out," XX'OE')

SI ("shift in," XX'OF')

Figure 4. Double-Byte Character Set (DBCS)

Notes:

1. 	 SO and SI delimit DBCS data only when the assembler is invoked with the
DBCS option.

2 	 When the assembler is invoked with the DBCS option, double-byte charac­
ters may be used anywhere that EBCDIC characters enclosed by single
quotation marks can be used.

3. 	 Regardless of the invocation option, double-byte characters may be used in
remarks, comments, and the operands of AREAD and REPRO statements.

Assembler Language Structure
This section describes the structure of the assembler language, that is, the
various statements that are allowed in the language, and the elements that
make up those statements.

A source statement is composed of:

• 	 A name entry (usually optional) that is a symbol
• 	 An operation entry (required) that is a symbolic operation code repres­

enting a machine, assembler, or macro instruction
• 	 An operand entry (usually required) that is composed of one or more oper­

ands
• 	 A remarks entry (optional)

Chapter 2. Coding and Structure 17

.""'.

Source Module
made up of
Sou rce Statements

Source Statements are I

I

EITHER INSTRUCTION 	 COMMENTSOR
STATEMENTS STATEMENTS

I
Which are of three

main types l 	 I
I

I 	 I

MACHINE or ASSEMBLER or MACRO

Instructions Instructions
 Instructions

L 	 I

I
l Which are composed of I

one to four entries

I
I 	 I

OPERANDNAME OPERATION 	 REMARKS

Which,for machine instrucj
tions is composed of I Which are composed of I

EXPRESSIONS

I Which are composed of J

L L
Combination CHARACTER

TERMS or
of terms STRINGS

L I

I
IWhich are composed of charactersl

IBM SYSTEM/370
CHARACTER SET

Figure 6. Assembler Language Structure

20 Assembler H Version 2 Language Reference

NAME
Entry

OPERATION
Entry

OPERAND
Entry

I
I can be

I

I
I must be I

I

I
can be

I
A
Symbol
(or Qlank)

A symbolic
Operation
Code

One or more
operands
composed of

I I
I

I I

Expression or Exp (Exp) or
Exp(Exp,Exp)

or
Exp I, Exp)

()(

A
Literal
=H'9'

I

I
Iwhich can bel

I
L

Term or
Arithmetic
combination
of terms

Exp = Expression

I
Which can be
any of the
following

I

I
I I I

A
Symbol

e.g. HERE

Location
Counter
Reference
e.g. ~

Symbol
Length
Attribute
Reference
e.g. L'HERE

A
Self-Defining
Term

I
Decimal

I
Hexadeci maI

I

Binary

I
Which can be
any of the
following

I
I

Character

1 I
Graphic

e.g. 9 e.g. X'D9' e.g. B'1001' e.g. C 'JAN' e.g. G (.A)'

1 With DBCS option only

Figure 7. Machine Instructions

(

-' '-­

Chapter 2. Coding and Structure 21

NAME OPERATION OPERAND
Entry Entry Entry

I must be I can be I$ I I

I I

A A symbolic One or more

Symbol Operation operands

(or blank)
 Code

I
I

For Data Definition For all other
(DC and DS ordinary Assembler
Instructions) Instructions

I
Operands can be Operands can be
composed of one composed of
to four subfields

I
I I I I I

Expression Character Symbolic
Constant

Duplication Type Modifiers String Option(Nominal or
factor e.g. e.g.

Value) e.g.*+4
'TO BE NOGEN
PUNCHED'

One or more
constants of
the format...~~ below

I 12

'Decimal (Expression) 'Character 'Graphic
number' or or string' or string'

e.g. F '2' e.g. A(ADDR) e.g. C' A is B' e.g. G'(.A.B)'

1 Discussed more fully where individual instructions are described

2 With DBCS option only

Figure 8. Ordinary Assembler Instruction Statements

22 Assembler H Version 2 Language Reference

NAME OPERATION OPERAND
Entry Entry Entry

I
can be

I

I I

Sequence
Variable

Symbol or Symbol
.SEQ

& VAR
(or blank)

I L

Sequence
Symbol

or
Variable
Symbol

or

I
Arithmetic

Expression

or

&A +1

Figure 9. Conditional Assembly Instructions

I
must beI I

I
A symbolic

Operation

Code

I
Expression

or or
(Expression)

I

Which can be any
combination of
variable symbols
and other characters
that constitute an

I
I

Logical

Expression

or

&B1 OR &B2

I
can beI I

I
Zero or more

operands

composed of

I
I I

Exp:msg' (exp)seq sym
MNOTE or

(&A EQ1).SEQ3:ERROR'

Exp=Expression

I
Character
Expression

'JAN&C'

Macro instruction statements are described in Figure 10 on page 24 and dis­
cussed in "Part 2. Macro Language."

Chapter 2. Coding and Structure 23

Symbolic Symbolic Zero or more

Parameter Operation Symbolic
Code Parameters

Prototype

Statement

Macro

Instruction

NAME OPERATION OPERANDStatement
Entry Entry Entry

Zero or more
Operands
which can be

Ordinary Sublists with
Symbol Sequence Variable Operands withor or or one or more
(or blank) Symbol Symbol one value

entries

Each entry
can have a
value

Character 'Character
String or String'
(excluding (including
blanks) blanks)

Figure 10. Macro Instructions

24 Assembler H Version 2 Language Reference

Terms and Expressions

Terms

1
~

Symbols

A term is the smallest element of the assembler language that represents a
distinct and separate value. It can, therefore, be used alone or in combination
with other terms to form expressions. Terms are classified as absolute or relo­
catable, depending on the effect of program relocation upon them. Program
relocation is the loading of the object program into storage locations other than
those originally assigned by the assembler. Terms have absolute or relocat­
able values that are assigned by the assembler or that are inherent in the
terms themselves.

A term is absolute if its value does not change upon program relocation, and is
relocatable if its value changes upon relocation. Figure 11 summarizes the
various types of terms. The following text discusses each term and the rules
for its use.

Terms

Term
can be
absolute

Term
can be
relocatable

Value
is assigned
by assembler

Value
is inherent
in term

Symbols X X X

Location counter
reference

X X

Symbol length
attribute

x X

Other
data attributes

X X

Self-defining terms X X

Figure 11. Summary of Terms

You can use a symbol to represent storage 10cationsJr arbitrary values. If you
write a symbol in the name field of an instruction, you can then specify this
symbol in the operands of other instructions and thus refer to the former
instruction symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name
field of an EQU instruction with an operand whose value is absolute. This
allows you to use this symbol in instruction operands to represent registers,
displacements in explicit addresses, immediate data, lengths, and implicit
addresses with absolute values. For details of these program elements, see
"Operand Entries" on page 78.

The advantages of symbolic over numeric representation are:

1. 	 Symbols are easier to remember and use than numeric values, thus
reducing programming errors and increasing programming efficiency.

2. 	 You can use meaningful symbols to describe the program elements they
represent; for example, INPUT can name a field that is to contain input data,
or INDEX can name a register to be used for indexing .

."

Chapter 2. Coding and Structure 25

3. 	 You can change the value of one symbol (through an EQU instruction) more
easily than you can change several numeric values in many instructions.

4. 	 Symbols are entered into a cross-reference table that the assembler prints
in the program listing. This table helps you to find a symbol in a program
listing, because it lists (a) the number of the statement in which the symbol
is defined, that is, used as the name entry, and (b) the numbers of all the
statements in which the symbol is used in the operands.

Symbol Table: The assembler maintains an internal table called a symbol
table. When the assembler processes your source statements for the first time,
it assigns an absolute or relocatable value to every symbol that appears in the
name field of an instruction. The assembler enters this value, which normally
reflects the setting of the location counter, into the symbol table; it also enters
the attributes associated with the data represented by the symbol. The values
of the symbol and its attributes are available later when the assembler finds
this symbol or attribute reference used as a term in an operand or expression.
See "Symbol Length Attribute Reference" and "Self-Defining Terms" in this
chapter for more details. The three types of symbols recognized by the assem­
bler are:

• 	 Ordinary symbols
• 	 Variable symbols
• 	 Sequence symbols

Ordinary symbols can be used in the name and operand fields of machine and
assembler instruction statements. They must be coded to conform to these
rules:

• 	 The symbol must not consist of more than 63 alphameric characters. The
first character must be an alphabetic character (A through Z, $, #, or @).
The other characters may be alphabetic characters, digits, or a combination
of the two.

• 	 No special characters may be included in an ordinary symbol.

• 	 No blanks are allowed in an ordinary symbol.

• 	 No double-byte data is allowed in an ordinary symbol.

• 	 An underscore character is allowed, with the restrictions listed below.

An underscore character must not appear in an external symbol, or in the
name fierd of an OPSYN instruction. The following lists the symbol fields in
which the underscore character must not appear:

• 	 In the name field of:

a CSECT instruction

a DXD instruction

a COM instruction

an OPSYN instruction

• 	 In the operand field of:
an EXTRN instruction

- a WXTRN instruction
- an ENTRY instruction

• 	 As the nominal value in a V-type or Q-type address constant

In the following sections, the term symbol refers to the ordinary symbol.

26 Assembler H Version 2 Language Reference

The following are valid symbols:

ORDSYM#435A HERE $OPEN

K4 #8123 X

B49467LITTLENAIL @33 SAVE TOTAL

Variable symbols must begin with an & followed by an alphabetic character and,
optionally, up to 61 alphameric characters (including underscore). Variable
symbols can only be used in macro processing and conditional assembly
instructions. They allow different values to be assigned to one symbol. A com­
plete discussion of variable symbols appears in "Chapter 7. How to Prepare
Macro Definitions."

The following are valid symbols:

&VARYINGSYMABC &@ME

&F346944 &A

&EASY TO READ

Sequence symbols consist of a period (.) followed by an alphabetic character,
and up to 61 additional alphameric characters. Sequence symbols can be used
only in macro processing and conditional assembly instructions. They are used
to indicate the position of statements within the source program or macro defi ­
nition. Through their use, you can vary the sequence in which statements are
processed by the assembler program. (See the complete discussion in
"Chapter 9. How to Write Conditional Assembly Instructions. ")

The following are valid symbols:

.BLABEL84 .#359

.BRANCHTOMEFIRST .A

Symbol Definition: An ordinary symbol is considered defined when it appears
as:

• 	 The name entry in a machine or assembler instruction of the assembler lan­
guage

• 	 One of the operands of an EXTRN or WXTRN instruction

Note: Ordinary symbols that appear in instructions generated from model state­
ments at preassembly time are also considered defined.

In Figure 12 on page 28, the assembler assigns a value to the ordinary symbol
in the name fields as follows:

1. 	 According to the address of the leftmost byte of the storage field that con­

tains one of the following:

a. 	 (See (1) in Figure 12) Any machine or assembler instruction (except the
EQU or OPSYN instruction)

b. 	 (See (2) in Figure 12) A storage area defined by the OS instruction

c. 	 (See (3) in Figure 12) Any constant defined by the DC instruction

d. A 	channel command word defined by the CCW, CCWO, or CCW1 instruc­
tion

The address value thus assigned is relocatable, because the object code
assembled from these items is relocatable; the relocatability of addresses
is described "Addresses" on page 80.

Chapter 2. Coding and Structure 27

Assembler Language Address Value Object Code
Statements of Symbol in Hexadecimal

Address of
AREARelocatable

LOAD L 3 , AREA 0 LOAD 158131 0 Ixxxxi

AREA DS F • AREA--.lxx X X xxxxi

F200 DC F'200'. 0

I F2oo~,IOO 0 oocal

FULL EQU AREA}A FULL/ /
TWOO EQU F200 V TWOO/

• Absolute
R3 EQU 3 R3=3

Address

of FULL .
L R3,FULL 158 I3 I0 I

f

xxxx
\

I
A R3,TWOO 'SA' 3 , 0 I, xxxx !

Address of

TWOO

Figure 12. Transition from Assembler Language Statement to Object Code

2, 	 According to the value of the first or only expression specified in the
operand of an EQU instruction. This expression can have a relocatable (see
(4) in Figure 12) or absolute (see (5) in Figure 12) value, which is then
assigned to the ordinary symbol.

The value of an ordinary symbol must lie in the range _2 31 through +2 31 _1

Restrictions on Symbols: A symbol must be defined only once in a source
module with one or more control sections, with the following exception: The
symbol in the name field of a LOCTR instruction can be the same as the name
of a previous START, CSECT, DSECT, COM, or LOCTR instruction. It identifies
the resumption of the location counter specified by the name field.

Note: The ordinary symbol that appears in the name field of an OPSYN or a
TITLE instruction does not constitute a definition of that symbol. It can, there­
fore, be used in the name field of any other statement in a source module.

Previously Defined Symbols: If ordinary symbols appear in operand
expressions of ORG and CNOP instructions, in modifier expressions of DC, DS,
and DXD statements, in the first operand of EQU statement, or in Q-type con­
stants, they do not need to be previously defined.

28 Assembler H Version 2 Language Reference

Allowing forward reference in the above statement types creates two new kinds
of errors that you should guard against.

• Circular definition of symbols, such as:

x EQU y
y EQU x

• Circular location-counter dependency, as in this example:

A OS (B-A)C
B LR 1,2

Statement A cannot be resolved because the value of the duplication factor is
dependent on the location of S, which is, in turn, dependent upon the length of
A.

Literals may contain symbolic expressions in modifiers, but any ordinary
symbols used must have been previously defined.

Self-Defining Terms
A self-defining term allows you to specify a value explicitly. With self-defining
terms, you can specify decimal, binary, hexadecimal, or character data. If the
OSCS assembler option is invoked, you can specify a graphic self-defining term
that contains pure double-byte data, or include double-byte data in character
self-defining terms. These terms have absolute values and can be used as
absolute terms in expressions to represent bit configurations, absolute
addresses, displacements, length or other modifiers, or duplication factors.

Using Self-Defining Terms: Self-defining terms represent machine language
binary values and are absolute terms; their values do not change upon program
relocation. Some examples of self-defining terms and the binary values they
represent are given below:

Self-Defining Term Decimal Value Binary Value

15 15 1111

241 241 11110001

B'1111 ' 15 1111

B'11110001' 241 11110001

B' 100088801 ' 257 100000001

X'F' 15 1111

X'Fl' 241 11110001

X' 101 ' 257 100000001

C'l ' 241 11110001

C'A' 193 11000001

C'AB' 49,602 1100000111000010

G'<.A>' 17,oa9 100001011000001

The assembler carries the values represented by self-defining terms to 4 bytes
or 32 bits; the high-order bit is the sign bit. (A '1' in the sign bit indicates a
negative value; a '0' indicates a positive value.)

Chapter 2. Coding and Structure 29

The use of a self-defining term is distinct from the use of data constants or
literals. When a self-defining term is used in a machine instruction statement,
its value is assembled into the instruction. When a data constant is referred to
or a literal is specified in the operand of an instruction, its address is assem­
bled into the instruction. Self-defining terms are always right-justified; trun­
cation or padding with zeros, if necessary, occurs on the left.

Decimal Self-Defining Term: A decimal self-defining term is simply an unsigned
decimal number written as a sequence of decimal digits. High-order zeros may
be used (for example, 007). Limitations on the value of the term depend on its
use. For example, a decimal term that designates a general register should
have a value between 0 and 15; one that represents an address should not
exceed the size of storage. In any case, a decimal term may not consist of
more than 10 digits, or exceed 2 147483647 (2 31 _1). A decimal self-defining
term is assembled as its binary equivalent. Some examples of decimal self­
defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term: A hexadecimal self-defining term consists of 1
to 8 hexadecimal digits enclosed in single quotation marks and preceded by the
letter X; for example, X'C49'.

Each hexadecimal digit is assembled as its 4-bit binary equivalent. Thus, a
hexadecimal term used to represent an 8-bit mask would consist of 2
hexadecimal digits. The maximum value of a hexadecimal term is X'FFFFFFFF';
this allows a range of values from -2 147483648 through 2 147483647.

The hexadecimal digits and their bit patterns are as follows:

8 - 8888 4 - 8188 8 - 1888 C - 1188
1 - 8881 5 - 8181 9 - 1881 D - 1181
2 - 8818 6 - 8118 A - 1818 E - 1118
3 - 8811 7 - 8111 B - 1811 F - 1111

Note: When used as an absolute term in an expression, a hexadecimal self­
defining term has a negative value if the high-order bit is 1.

Binary Self-Defining Term: A binary self-defining term is written as an unsigned
sequence of 1s and Os enclosed in single quotation marks and preceded by the
letter B; for example, B'10001101'. This term would appear in storage as
shown, occupying 1 byte. A binary term may have up to 32 bits represented.
This allows a range of values from -2 147483 648 through 2 147483647.

Note: When used as an absolute term in an expression, a binary self-defining
term has a negative value if the high-order bit is 1.

Binary representation is used primarily in designating bit patterns of masks or
in logical operations.

The following illustrates a binary term used as a mask in a Test Under Mask
(TM) instruction. The contents of GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the binary term.

ALPHA TM GA~IMA,B '18181181'

. .. 30 Assembler H Version 2 Language Reference

Character Self-Defining Term: A character self-defining term consists of 1 to 4
characters enclosed in single quotation marks, and must be preceded by the
letter C. All letters, decimal digits, and special characters may be used in a
character term. In addition, any of the remainder of the 256 punch combina­
tions may be designated in a character self-defining term. Examples of char­
acter self-defining terms are:

C'/'
C' , (blank)
C'ABC'
C'13'

Because of the use of single quotation marks in the assembler language and
ampersands in the macro language as syntactic characters, the following rule
must be observed when using these characters in a character term.

For each single quotation mark or ampersand desired in a character self­
defining term, two single quotation marks or ampersands must be written. For
example, the character value A'# would be written as 'A"#" while a single quo­
tation mark followed by a blank and another single quotation mark would be
written as '" "'.

Each character in the character sequence is assembled as its 8-bit code equiv­
alent. The two single quotation marks or ampersands that must be used to rep­
resent a single quotation mark or ampersand within the character sequence are
assembled as a single quotation mark or ampersand. Double-byte data may
appear in a character self-defining term, if the assembler is invoked with the
DBCS option. The assembled value includes the so and SI delimiters. Hence
a character self-defining term containing double-byte data is limited to one
double-byte character delimited by SO and SI. For example, C' <.A > '.

Since the SO and SI are stored, the null double-byte character string, C' < >', is
also a valid character self-defining term.

Graphic Self-Defining Term: If the assembler is invoked with the DBCS option, a
graphic self-defining term can be specified. A graphic self-defining term con­
sists of 1 to 2 double-byte characters delimited by SO and SI, enclosed in single
quotation marks and preceded by the letter G. Any valid double-byte charac­
ters may be used. Examples of graphic self-defining terms are:

G'<.A>'
G'<.A.B>'
G'<Oa>'
G'<.A><.B>'

The SO and SI are not represented in the assembled value of the self-defining
term, hence the assembled value is pure double-byte data. A redundant SIISO
pair may be present between two double-byte characters. However, if SO and
SI without an intervening double-byte character are used, error IEV148
"SELF-DEFINING TERM LACKS ENDING QUOTE OR HAS BAD CHARACTER" will
be issued.

Chapter 2. Coding and Structure 31

Location Counter Reference
The assembler runs a location counter to assign storage addresses to your
program statements. It is the assembler's equivalent of the instruction counter
in the computer. You can refer to the current value of the location counter at
any place in a source module by specifying an asterisk as a term in an
operand.

As the instructions and constants of a source module are being assembled, the
location counter has a value that indicates a location in storage. The assem­
bler increments the location counter according to the following:

1. 	 After an instruction or constant has been assembled, the location counter
indicates the next available location.

2. 	 Before assembling the current instruction or constant, the assembler
checks the boundary alignment required for it and adjusts the location
counter, if necessary, to indicate the proper boundary.

3. 	 While the instruction or constant is being assembled, the location counter
value does not change. It indicates the location of the current data after
boundary alignment and is the value assigned to the symbol, if present, in
the name field of the statement.

4. 	 After assembling the instruction or constant, the assembler increments the
location counter by the length of the assembled data to indicate the next
available location.

These rules are illustrated below:

Location in Source
Hexadecimal Statements

000004 DONE DC CL3'ABC'
000007 BEFORE EQU *
000008 DURING DC F'200'
OOOOOC AFTER EQU *
000010 NEXT OS 0

You can specify multiple location counters for each control section in a source
module; for more details about the location counter setting in control sections,
see "Location Counter Setting" on page 51.

The assembler carries an internal location counter value as a 4-byte (32-bit)
value, but it only uses the low-order 3 bytes, which are printed in the program
listings. However, if you specify addresses greater than 224_1, you cause over­
flow into the high-order byte, and the assembler issues the error message,
"LOCATION COUNTER OVERFLOW."

You can control the setting of the location counter in a particular control section
by using the START or ORG instruction, described in "Chapter 3. Addressing,
Program Sectioning, and Linking" and "Chapter 5. Assembler Instruction
Statements," respectively. The counter affected by either of these assembler
instructions is the counter for the control section in which they appear.

You can refer to the current value of the location counter at any place in a
program by using an asterisk as a term in an operand. The asterisk can be
specified as a relocatable term according to the following rules:

32 Assembler H Version 2 Language Reference

\.

1. The asterisk can be specified only in the operands of:

• 	 Machine instructions
• 	 DC and DS instructions
• 	 EQU, ORG, and USING instructions

2. 	 It can also be specified in literal constants. See" Literals" on page 36. For
example:

THERE L 3,=A(*)

The value of the location counter reference (*) is the current value of the
location counter of the control section in which the asterisk (*) is specified as a
term. The asterisk has the same value as the address of the first byte of the
instruction in which it appears. For example:

HERE B *+B

where the address value of * is the address of HERE.

For the value of the asterisk in address constants with duplication factors, see
"Address Constants-A and Y" on page 112.

Symbol Length Attribute Reference
The length attribute of a symbol may be used as a term. Reference to the attri ­
bute is made by coding L' followed by the symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term. When you specify
a symbol length attribute reference, you obtain the length of the instruction or
data referred to by a symbol. You can use this reference as a term in instruc­
tion operands to:

• 	 Specify unknown storage area lengths.
• 	 Cause the assembler to compute length specifications for you.
• 	 Build expressions to be evaluated by the assembler.

The symbol length attribute reference must be specified according to the fol­
lowing rules:

1. 	 The format must be L' immediately followed by a valid symbol or the
location counter reference (*).

2. 	 The symbol must be defined in the same source module in which the
symbol length attribute reference is specified.

3. 	 The symbol length attribute reference can be used in the operand of any
instruction that requires an absolute term. However, it cannot be used in
the form L'* in any instruction or expression that requires a previously
defined symbol.

The value of the length attribute is normally the length in bytes of the storage
area required by an instruction, constant, or field represented by a symbol. The
assembler stores the value of the length attribute in the symbol table along with
the address value assigned to the symbol.

When the assembler encounters a symbol length attribute reference, it substi ­
tutes the value of the attribute from the symbol table entry for the symbol speci­
fied.

Chapter 2. Coding and Structure 33

The assembler assigns the length attribute values to symbols in the name field
of instructions as follows:

• 	 For machine instructions (see (1) in Figure 13), it assigns either 2,4, or 6,
depending on the format of the instruction.

For the DC and DS instructions (see (2) in Figure 13), it assigns either the
implicit or explicitly specified length. The length attribute is not affected by
a duplication factor.

• 	 For the EQU instruction, it assigns the length attribute value of the leftmost
or only term (see (3) in Figure 13) of the first expression in the first
operand, unless a specific length attribute is supplied in a second operand.

Note the length attribute values of the following terms in an EQU instruction:

• 	 Self-defining terms (see (4) in Figure 13)
• 	 Location counter reference (see (5) in Figure 13)
• 	 L'* (see (6) in Figure 13)

The length attribute of the location counter reference (L'*-see (7) in Figure 13)
is equal to the length attribute of the instruction in which the L'* appears.

Figure 13 illustrates these rules.

Value of
Symbol Length Attribute

Source Module At Assembly Time

I·IACHA IIVC TO,FROtt 	 L'I·IACHA 61
l·tACHB 3,AOCON 	 L ' ftACHB 41
HACHC LR 3,4 	 L ' flACHC 21

TO OS CL80 	 L'TO 802
FROI·t OS CL240 	 L' FROI·t 2402
AOCON DC A(OTHER) 	 L'AOCON 42
CHAR DC C'YUKON' 	 L'CHAR 52
OUPL DC 3F'200' 	 L'OUPL 42

RELOCI EQU TO' L'RELOCI 80
RELOC2 EQU TO+80 ' L'RELOC2 80
ABSOLl EQU FRON-TO' L' ABSOLl 240 '.
ABSOL2 EQU ABSOLP L'ABSOL2 240

son EQU 102' 	 L'son 14
SOT2 EQU X'FF'+A-B' 	 L'SOT2 P
SOT3 EQU C'YUK' 	 L'SOB I'

ASTERISK EQU *+10' 	 L'ASTERISK l'

LOCTREF EQU L' *3 	 L'LOCTREF I"

LENGTHl DC A(L' ") L'" 47
L'LENGTHl 47

LENGTH2 IWC TO(L' *), FRot-t L'" 67
LENGTH3 flVC TO(L'TO-20),FRON L'TO 80

Figure 13. Assignment of Length Attribute Values to Symbols in Name Fields

The following example illustrates use of the L'symbol in moving a character
constant into either the high-order or low-order end of a storage field. For ease
in following the example, the length attributes of A 1 and 82 are mentioned.
However, keep in mind that the L'symbol term makes coding such as this pos­
sible in situations where lengths are unknown.

34 Assembler H Version 2 Language Reference

Al OS CLB
B2 DC CL2'AB'
HIORD MVC AI(L'B2),B2
LOORD MVC AI+L'AI-L'B2(L'B2),B2

A1 names a storage field 8 bytes in length and is assigned a length attribute of
8. B2 names a character constant 2 bytes in length and is assigned a length
attribute of 2. The statement named HIORD moves the contents of B2 into the
leftmost 2 bytes of A1. The term L'B2 in parentheses provides the length spec­
ification required by the instruction.

The statement named LOORD moves the contents of B2 into the rightmost 2
bytes of A 1. The combination of terms A 1 + L' A 1-L'B2 results in the addition of
the length of A1 to the beginning address of A1, and the subtraction of the
length of B2 from this value. The result is the address of the seventh byte in
field A 1. The constant represented by B2 is moved into A 1 starting at this
address. L'B2 in parentheses provides length specification as in HIORD.

Note: The length attribute of the location counter reference (L'*) is equal to the
length attribute of the instruction in which the L'* appears.

Other Attribute References
There are other attributes that describe the characteristics and structure of the
data you define in a program; for example, the kind of constant you specify or
the number of characters you need to represent a value. These other attributes
are the type (1'), length (L'), scaling (S'), infeger (1'), count (K'), number (N'),
and defined (0') attributes.

Note: You can refer to these attributes only in conditional assembly instructions
and expressions; for full details, see "Data Attributes" on page 215.

Terms in Parentheses
Terms in parentheses are reduced to a single value; thus, the terms in paren­
theses, in effect, become a single term.

Arithmetically combined terms, enclosed in parentheses, may be used in com­
bination with terms outside the parentheses, as follows:

14+BETA- (GAM~lA- LAMBDA)

When the assembler program encounters terms in parentheses in combination
with other terms, it first reduces the combination of terms inside the paren­
theses to a single value which may be absolute or relocatable, depending on
the combination of terms. This value is then used in reducing the rest of the
combination to another single value.

Terms in parentheses may be included within a set of terms in parentheses:

A+B-(C+D-(E+F)+10)

The innermost set of terms in parentheses is evaluated first. Six levels of
parentheses are allowed; a level of parentheses is a left parenthesis and its
corresponding right parenthesis. Parentheses which occur as part of an
operand format do not count in this limit. An arithmetic combination of terms is
evaluated as described in the next section.

Chapter 2. Coding and Structure 35

Literals
You can use literals as operands in order to introduce data into your program.
However, you cannot use a literal as a term in an expression. The literal
represents data rather than a reference to data. This is convenient, because

• 	 The data you enter as numbers for computation, addresses, or messages to
be printed is visible in the instruction in which the literal appears .

• 	 You avoid defining constants elsewhere in your source module and then
using their symbolic names in machine instruction operands.

The assembler assembles the data specified in a literal into a "literal pool"
(described below). It then assembles the address of this literal data in the pool
into the object code of the instruction that contains the literal specification.
Thus, the assembler saves you a programming step by storing your literal data
for you. The assembler also organizes literal pools efficiently, so that the literal
data is aligned on the proper boundary alignment and occupies the minimum
amount of space.

Literals, Constants, and Self-Defining Terms
Literals, constants, and self-defining terms differ in three important ways:

1. 	 Where you can specify them in machine instructions, that is, whether they
represent data or an address of data

2. 	 Whether they have relocatable or absolute values
3. 	 What is assembled into the object code of the machine instruction in which

they appear

1. 	 A literal with a relocatable address:

3,oF'33' See note 1
3,F33 Same effect as L 3,=F'33'. See also note 2

F33 DC F'33'

2. 	 A literal with a self-defining term and a symbol with an absolute value

HVC FLAG,=X'QO' See note 1
HVI FLAG,X'OO' Same effect as HVC FLAG,=X'OO', See also note 3
IWI FLAG, ZERO Immediate data. See note 4

FLAG DS X
ZERO EQU X'OO'

3. A symbol having an absolute address value with a self-defining term

LA 4,LOCORE Absolute address. See note 4
LA 4,1000 Same effect as LA 4,LOCORE. See also note 3

LOCORE EQU 1000

Figure 14. Differences between Literals, Constants, and Self-Defining Terms

Notes to Figure 14:

1. 	 A literal represents data.
2. 	 A constant is represented by its relocatable address.

36 Assembler H Version 2 Language Reference

3. 	 A self-defining term represents data and has an absolute value.
4. 	 A symbol with an absolute value does not represent the address of a con­

stant, but represents either immediate data or an absolute address.

Compare:

A literal with a relocatable address

o
L 3,=F'33'

} same effect
L 3,F3&

F33 DC F' 33'

A Literal with a self-defining term

and a symbol with an absolute value


~~~ ~Et~.same eff~ 
FLAG DS X •
ZERO ~QU X' 00' 

A symbol having an absolute address value 


with a self-defining term • 


~~ :'I.RE }same effect: 'sa 
o 

LOCORE EQU 1000 

Figure 15. Differences between Literals, Constants, and Self-Defining Terms 

Notes to Figure 15: 

1. 	 The address of the literal, rather than the literal data itself, is assembled 
into the object code. 

2. 	 The address of a constant is assembled into the object code. 
3. 	 When a symbol with an absolute value represents immediate data, it is the 

absolute value that is assembled into the object code. 
4. 	 The absolute value of a self-defining term is assembled into the object 


code. 


Chapter 2. Coding and Structure 37 



General Rules for Literal Usage 

Literal Pool 

A literal is not a term and can be specified only as a complete operand in a 
machine instruction. In instructions with the RX format, they must not be speci­
fied in operands in which an index register is also specified. 

Because literals provide "read-only" data, they must not be used: 

• 	 In operands that represent the receiving field of an instruction that modifies 
storage 

• 	 In any shift or I/O instruction 

The assembler requires a description of the type of literal being specified as 
well as the literal itself. This descriptive information assists the assembler in 
assembling the literal correctly. The descriptive portion of the literal must indi­
cate the format of the constant. It can also specify the length of the constant. 

A literal must be coded as indicated here: 

=10XL5'F3' 

where the subfields are: 

Duplication factor 10 
Type 	 X 
Modifiers L5 
Nominal value 'F3' 

The method of describing and specifying a constant as a literal is nearly iden­
tical to the method of specifying it in the operand of a DC assembler instruction. 
The major difference is that the literal must start with an equal sign (=). which 
indicates to the assembler that a literal follows. (Refer to the discussion of the 
DC assembler instruction operand format in "Chapter 5. Assembler Instruction 
Statements" for the means of specifying a literal.) 

The instruction below shows one use of a literal. 

GA~lMA L 10,=F'274' 

The statement GAMMA is a load instruction using a literal as the second 
operand. When assembled, the second operand of the instruction will be the 
address at which the value F'274' is stored. 

In general, literals can be used wherever a storage address is permitted as an 
operand. They cannot, however, be used in any assembler instruction that 
requires the use of a previously defined symbol. Literals are considered relo­
catable because the address of the literal, rather than the liL'!ral itself, will be 
assembled in the statement that employs a literal. The assembler generates 
the literals, collects them, and places them in a specific area of storage, as 
explained under" Literal Pool." A literal is not to be confused with the imme­
diate data in an SI instruction. Immediate data is assembled into the instruc­
tion. 

The literals processed by the assembler are collected and placed in a special 
area called the literal pool. The location of the literal, rather than the literal 
itself, is assembled in the statement employing a literal. The positioning of the 
literal pool can be controlled by you, if desired. Unless otherwise specified, the 
literal pool is placed at the end of the first control section. 

38 Assembler H Version 2 Language Reference 



You can also specify that multiple literal pools be created. However, the 
sequence in which literals are ordered within the pool is controlled by the 
assembler. Further information on positioning the literal pool(s) is in 
"LTORG-Begin Literal Pool" on page 140. 

Expressions 
This section discusses the expressions used in coding operand entries for 
source statements. You can use an expressions to specify: 

• 	 An address 
• 	 An explicit length 
• 	 A modifier 
• 	 A duplication factor 
• 	 A complete operand 

Expressions have absolute and relocatable values. Whether an expression is 
absolute or relocatable depends on the value of the terms it contains. You can 
use an absolute or relocatable expression in a machine instruction or any 
assembler instruction other than a conditional assembly instruction. The 
assembler evaluates relocatable and absolute expressions at assembly time. 

Note: There are three types of expression that you can use only in conditional 
assembly instructions: arithmetic, logical, and character expressions. They are 
evaluated at preassembly time. Figure 17 on page 40 defines both absolute 
and relocatable expressions. 

An expression is composed of a single term or an arithmetic combination of 
terms. The assembler reduces multiterm expressions to single values. Thus, 
you do not have to compute these values yourself. The following are examples 
of valid expressions: 

* BETA*lO 
AREAl+X'2D' B' 101' 
*+32 C'ABC' 
N-25 29 
FIELD+332 L'FIELD 
FIELD LAIIBDA +GAt·II·IA 
(EXIT-ENTRY+l)+GO TEN/HIO 
ALPHA-BETA/(lO+AREA*L'FIELO)-lOO =F'1234' 

Figure 16. Examples of Valid Expressions 

Rules for Coding Expressions 
The rules for coding an absolute or relocatable expression are: 

1. 	 Both unary (operating on one value) and binary (operating on two values) 
operators are allowed in expressions. 

2. 	 An expression can have one or more unary operators preceding any term 
in the expression or at the beginning of the expression. 

3. 	 An expression must not begin with a binary operator, nor can it contain two 
binary operators in succession . 

1. 
4. 	 An expression must not contain two terms in succession. '-" 

Chapter 2. Coding and Structure 39 



5. 	 No blanks are allowed between an operator and a term, nor between two 
successive operators. 

6. 	 An expression can contain up to 19 unary and binary operators, and up to 6 
levels of parentheses. Note that parentheses that are part of an operand 
specification do not count toward this limit. 

7. 	 A single relocatable term is not allowed in a multiply or divide operation. 
Note that paired relocatable terms have absolute values and can be multi ­
plied and divided if they are enclosed in parentheses. 

8. 	 A literal is not a valid term and is therefore not allowed in an expression. 

Absolute 
Expression 

Values Ordinary Self- Symbol
Symbol­ Defining or LengthAbsolute or 
Value Term Attribute 

Relocatable 
Expression 

Abs. Exp 

Location 
Counter 
Reference 

Figure 17. Definitions of Absolute and Relocatable Expressions 

Operators Allowed 

Unary: 	+ Positive 
- Negative 

Binary: + Addition 
- Subtraction 
~, Multiplication 
/ Division 

Abs. Exp = Absolute Expression 

ReI. Exp = Relocatable Expression 

40 	 Assembler H Version 2 Language Reference 



Evaluation of Expressions 
A single-term expression, like 29 or BETA, takes on the value of the term 
involved. A multiterm expression, like 25'10 +AlB or BETA + 10, is reduced to a 
single value, as follows: 

1. 	 It evaluates each term. 

2. 	 It performs arithmetic operations from left to right. However, 

a. 	 It performs unary operations before binary operations. 
b. 	 It performs binary operations of multiplication and division before the 

binary operations of addition and subtraction. 

3. 	 In division, it gives an integer result; any fractional portion is dropped. Divi ­
sion by zero gives O. 

4. 	 In parenthesized expressions, the assembler evaluates the innermost 
expressions first and then considers them as terms in the next outer level 
of expressions. It continues this process until the outermost expression is 
evaluated. 

5. 	 A term or expression's intermediate value and computed result must lie in 
the range of _2 31 through +2 31 -1. 

Note: It is assumed that the assembler evaluates paired relocatable terms at 
each level of expression nesting. 

Absolute and Relocatable Expressions 
An expression is absolute if its value is unaffected by program relocation. An 
expression is relocatable if its value depends upon program relocation. The 
two types of expressions, absolute and relocatable, take on these character­
istics from the term or terms composing them. A description of the factors that 
determine whether an expression is absolute or relocatable follows. 

Absolute Expression: The assembler reduces an absolute expression to a 
single absolute value if the expression: 

1. 	 Comprises a symbol with an absolute value, a self-defining term, or a 
symbol length attribute reference, or any arithmetic combination of absolute 
terms. 

2. 	 Contains relocatable terms alone or in combination with absolute terms, 
and if all these relocatable terms are paired. 

Paired Relocatable Terms: An expression can be absolute even though it con­
tains relocatable terms, provided that all the relocatable terms are paired. The 
pairing of relocatable terms cancels the effect of relocation. 

The assembler reduces paired terms to single absolute terms in the interme­
diate stages of evaluation. The assembler considers relocatable terms as 
paired under the following conditions: 

• 	 The paired terms must be defined in the same control section of a source 
module (that is, have the same relocatability attribute). 

• 	 The paired terms must have opposite signs after all unary operators are 
resolved. In an expression, the paired terms do not have to be contiguous 
(that is, other terms can come between the paired terms). 

• 	 The value represented by the paired terms is absolute. 

Chapter 2. Coding and Structure 41 



The following examples illustrate absolute expressions. A is an absolute term; 
X and Yare relocatable terms with the same relocatability. 

A-Y+X 
A 
A*A 
X-Y+A 
*-Yl 

1 A reference to the location counter must be paired with another relocatable 
term from the same control section; that is, with the same relocatability. 

Relocatable Expression: A relocatable expression is one whose value changes 
by n if the program in which it appears is relocated n bytes away from its ori ­
ginally assigned area of storage. 

A relocatable expression can be a single relocatable term. The assembler 
reduces a relocatable expression to a single relocatable value if the 
expression: 

1. 	 Is composed of a single relocatable term, or 

2. 	 Contains relocatable terms, alone or in combination with absolute terms, 

and 


a. 	 All the relocatable terms but one are paired. Note that the unpaired 
term gives the expression a relocatable value; the paired relocatable 
terms and other absolute terms constitute increments or decrements to 
the value of the unpaired term. 

b. 	 The relocatability attribute of the whole expression is that of the 
unpaired term. 

c. 	 The sign preceding the unpaired relocatable term must be positive, 
after all unary operators have been resolved. 

The following examples illustrate relocatable expressions. A is an absolute 
term, Wand X are relocatable terms with the same relocatability attribute, and 
Y is a relocatable term with a different relocatability attribute. 

Y-32*A 	 w-X+* =F'1234' (literal) 
* 	(reference to W-X+W Y 


location counter) W-X+Y A*A+\v-W+Y 


Complex Relocatable Expressions: Complex relocatable expressions, unlike 
relocatable expressions, can contain: 

• 	 Two or more unpaired relocatable terms 
• 	 An unpaired relocatable term preceded by a negative sign 

Complex relocatable expressions can be used only in A-type and Y-type 
address constants to generate and address constant value. (For more detail, 
see "A-Type and Y-Type Address Constants" in "Chapter 5. Assembler Instruc­
tion Statements. ") V-type and S-type constants may not contain complex relo­
catable expressions. 

42 Assembler H Version 2 Language Reference 



Chapter 3. Addressing, Program Sectioning, and Linking 

Addressing 
This part of the chapter describes the techniques and instructions that allow 
you to use symbolic addresses when referring to data. You can address data 
that is defined within the same source module, or data that is defined in 
another source module. Symbolic addresses are more meaningful and easier 
to use than the corresponding object code addresses required for machine 
instructions. Also, the assembler can convert the symbolic addresses you 
specify into their object code form. 

Addressing within Source Modules: Establishing Addressability 
By establishing the addressability of a control section, you can refer to the sym­
bolic addresses defined in it in the operands of machine instructions. This is 
much easier than coding the addresses in the base-displacement form required 
by the System/370. The symbolic addresses you code in the instruction oper­
ands are called implicit addresses, and the addresses in the base-displacement 
form are called explicit addresses. 

The assembler will convert these implicit addresses for you into the explicit 
addresses required for the assembled object code of the machine instruction. 
However, you must supply the assembler with: 

1. 	 A base address from which it can compute displacements to the addresses 
within a control section 

2. 	 A base register to hold this base address 

How to Establish Addressability 
To establish the addressability of a coding section, you must, when coding: 

• 	 Specify a base address from which the assembler can compute displace­
ments. 

• 	 Assign a base register to contain this base address. 

• 	 Write the instruction that loads the base register with the base address. 

During assembly, the implicit addresses you code are converted into their 
explicit base-displacement form; then, they are assembled into the object code 
of the machine instructions in which they have been coded. 

During execution, the base address is loaded into the base register, and should 
remain there throughout the execution of your program. 

Base Register Instructions 
The USING and DROP assembler instructions enable you to use expressions 
representing implicit addresses as operands of machine instruction statements, 
leaving the assignment of base registers and the calculation of displacements 
to the assembler. 

Chapter 3. Addressing, Program Sectioning, and Linking 43 



In order to use symbols in the operand field of machine instruction statements, 
you must (1) indicate to the assembler, by means of a USING statement, that 
one or more general registers are available for use as base registers, (2) 
specify, by means of the USING statement, what value each base register con­
tains, and (3) load each base register with the value you have specified for it. 

Having the assembler determine base registers and displacements relieves you 
of the need to separate each address into a displacement value and a base 
address value. This feature of the assembler will eliminate a likely source of 
programming errors, thus reducing the time required to check out programs. 
You use the USING and DROP instructions described in this chapter to take 
advantage of this feature. The principal discussion of this feature follows the 
description of both instructions. 

USING-Use Base Address Register 
The USING instruction allows you to specify a base address and assign one or 
more base registers. If you also load the base register with the base address, 
you have established addressability in a control section. 

To use the USING instruction correctly, you should know: 

1. 	 Which locations in a control section are made addressable by the USING 
instruction 

2. 	 Where in a source module you can use these established addresses as 
implicit addresses in instruction operands 

Format of USING: 

Name Operation Operand 

A sequence USING BASE,BASEREGl[,BASEREG2] ... 
symbol or blank 

The operand, BASE, specifies a base address, which can be a relocatable or an 
absolute expression. The value of the expression must lie between _224 and 
224_1. 

The remaining operands specify from 1 to 16 base registers The operands 
must be absolute expressions whose values lie in the range 0 through 15. 

The assembler assumes that the first base register (BASEREG1) contains the 
base address BASE at execution time. If present, the subsequent operands, 
BASEREG2, BASEREG3, ... , represent registers that the assembler assumes will 
contain the address values, BASE +4096, BASE + 8192..... respectively. 

For example: 

USING BASE,9,18,11 

has the logical equivalent of: 

USING BASE,9 
USING BASE+4896,18 
USING BASE+819Z,1l 

44 Assembler H Version 2 Language Reference 



In 	another example, the following statement 

USING *,12,13 

tells the assembler it may assume that the current value of the location counter 
will be in general register 12 at object time, and that the current value of the 
location counter, incremented by 4096, will be in general register 13 at object 
time, 

If you change the value in a base register currently being used, and wish the 
assembler to compute displacement from this value, you must tell the assem­
bler the new value by means of another USING statement. In the following 
sequence, the assembler first assumes that the value of ALPHA is in register 9. 
The second statement then causes the assembler to assume that ALPHA + 1000 
is the value in register 9. 

USING ALPHA,9 

USING ALPHA+1000,9 

If you must refer to the first 4096 bytes of storage, general register 0 can be 
used as a base register, subject to the following conditions: 

• 	 The value of operand BASE must be either absolute or relocatable zero or 
simply relocatable. 

• 	 Register 0 must be specified as BASEREG1. 

The assembler assumes that register 0 contains zero. Therefore, regardless of 
the value of operand BASE, it calculates displacements as if operand BASE 
were absolute or relocatable zero. The assembler also assumes that subse­
quent registers specified in the same USING statement contain 4096, 8192, etc. 

Note: If register 0 is used as a base register, the program is not relocatable, 
despite the fact that operand BASE may be relocatable. The program can be 
made relocatable by: 

• 	 Replacing register 0 in the USING statement 
• 	 Loading the new register with a relocatable value 
• 	 Reassembling the program 

Range of a USING Instruction: The range of a USING instruction (called the 
USING range) is the 4096 bytes beginning at the base address specified in the 
USING instruction. Addresses that lie within the USING range can be converted 
from their implicit to their explicit form; those outside the USING range cannot 
be converted. 

The USING range does not depend upon the position of the USING instruction in 
the source module; rather, it depends upon the location of the base address 
specified in the USING instruction. 

Note: The USING range is the range of addresses in a control section that is 
associated with the base register specified in the USING instruction. If the 
USING instruction assigns more than one base register, the composite USING 
range is the sum of the USING ranges that would apply if the base registers 
were specified in separate USING instructions. 

Chapter 3. Addressing, Program Sectioning, and Linking 45 



Domain of a USING Instruction: The domain of a USING instruction (called the 
USING domain) begins where the USING instruction appears in a source 
module and continues to the end of the source module. (Exceptions are dis­
cussed later, under" Notes about the USING Domain. ") The assembler converts 
implicit address references into their explicit form: 

• 	 If the address reference appears in the domain of a USING instruction, and 

• 	 If the addresses referred to lie within the range of the same USING instruc­
tion. 

The assembler does not convert address references that are outside the USING 
domain. The USING domain depends on the position of the USING instruction 
in the source module after conditional assembly, if any, has·been performed. 

How to Use the USING Instruction: You should specify your USING instruction 
so that: 

• 	 All the addresses in each control section lie within a USING range. 

• 	 All the references for these addresses lie within the corresponding USING 
domain. 

You should, therefore, place all USING instructions at the beginning of the 
source module and specify a base address in each USING instruction that lies 
at the beginning of each control section. 

For Executable Control Sections: To establish the addressability of an execut­
able control section defined by a START or CSECT instruction, you specify a 
base address and assign a base register in the USING instruction. At execution 
time, the base register is loaded with the correct base address. 

If a control section is longer than 4096 bytes, you must assign more than one 
base register. This allows you to establish the addressability of the entire 
control section with one USING instruction. 

For Reference Control Sections: A dummy section is a reference control 
section defined by the DSECT instructions. To establish the addressability of a 
dummy section, you should specify the address of the first byte of the dummy 
section as the base address so that all its addresses lie within the pertinent 
USING range. The address you load into the base register must be the address 
of the storage area being formatted by the dummy section. 

Note: The assembler assumes that you are referring to the symbolic addresses 
of the dummy section, and it computes displacements accordingly. However, at 
execution time, the assembled addresses refer to the location of real data in 
the storage area. 

Notes about the USING Domain: The domain of a USING instruction continues 
until the end of a source module, except when: 

• 	 A subsequent DROP instruction specifies the same base register or regis­
ters assigned by the preceding USING instruction. 

• 	 A subsequent USING instruction specifies the same register or registers 

assigned by the preceding USING instruction. 


46 Assembler H Version 2 Language Reference 



Notes about the USING Range: Two USING ranges coincide when the same 
base address is specified in two different USING instructions, even though the 
base registers used are different. When two USING ranges coincide, the 
assembler uses the higher-numbered register for assembling the addresses 
within the common USING range. In effect, the first USING domain is termi­
nated after the second USING instruction. 

Two USING ranges overlap when the base address of one USING instruction 
lies within the range of another USING instruction. When two ranges overlap, 
the assembler computes displacements from the base address that gives the 
smallest displacement; it uses the corresponding base register when it assem­
bles the addresses within the range overlap. This applies only to implicit 
addresses that appear after the second USING instruction. 

Base Registers for Absolute Addresses: Absolute addresses used in a source 
module must also be made addressable. Absolute addresses require a base 
register other than the base register assigned to relocatable addresses (as 
described above). 

However, the assembler does not need a USING instruction to convert absolute 
implicit addresses in the range 0 through 4095 to their explicit form. The 
assembler uses register 0 as a base register. Displacements are computed 
from the base address 0, because the assembler assumes that a base or index 
of 0 implies that a zero quantity is to be used in forming the address, regard­
less of the contents of register O. The USING domain for this automatic base 
register assignment is the whole of a source module. 

For absolute implicit addresses greater than 4095, a USING instruction must be 
specified according to the following: 

• 	 With a base address representing an absolute expression 

• 	 With a base register that has not been assigned by a USING instruction in 
which a relocatable base address is specified 

This base register must be loaded with the base address specified. 

DROP-Drop Base Register 
You can use the DROP instruction to indicate to the assembler that one or more 
registers are no longer available as base registers. This allows you: 

• 	 To free base registers for other programming purposes 

• 	 To ensure that the assembler uses the base register you wish in a partic­
ular coding situation; for example, when two USING ranges overlap or coin­
cide 

Format ot DROP: 

Name Operation Operand 

A sequence DROP BASEREGl[,BASEREG2] ... 
symbol or or blank 
blank 

Chapter 3. Addressing, Program Sectioning, and Linking 47 



Up to 16 operands can be specified. They must be absolute expressions whose 
values represent the general registers 0 through 15. The expressions in the 
operand indicate general registers previously named in a USING statement that 
are now unavailable for base addressing. A DROP instruction with a blank 
operand field causes all currently active base registers assigned by USING 
instructions to be dropped. 

After a DROP instruction, the assembler will not use the registers specified in a 
DROP instruction as base registers. A register made unavailable as a base 
register by a DROP instruction can be reassigned as a base register by a sub­
sequent USING instruction. 

The following statement, for example, prevents the assembler from using regis­
ters 7 and 11: 

DROP 7,11 

A DROP instruction is not needed: 

• 	 If the base address is being changed by a new USING instruction, and the 
same base register is assigned; however, the new base address must be 
loaded into the base register. 

• 	 At the end of a source module. 

Relative Addressing 
Relative addressing is the technique of addressing instructions and data areas 
by designating their location in relation to the location counter or to some sym­
bolic location. This type of addressing is always in bytes-never in bits, words, 
or instructions. Thus, the expression' +4 specifies an address that is 4 bytes 
greater than the current value of the location counter. In the sequence of 
instructions in the following example, the location of the CR machine instruction 
can be expressed in two ways, ALPHA +2, or BETA-4, because all the mne­
monics in the example are for 2-byte instructions in the RR format. 

ALPHA 	 LR 3,4 
CR 4,6 
BCR 1,14 

BETA 	 AR 2,3 

Program Sectioning and Linking 
This part of the chapter explains how you can subdivide a large program into 
smaller parts that are easier to understand and maintain. It also explains how 
you can divide these smaller parts into convenient sections; for example, one 
section to contain your executable instructions, and another section to contain 
your data constants and areas. 

You should consider two different subdivisions when writing an assembler lan­
guage program: 

• 	 The source module 
• 	 The control section 

You can divide a program into two or more source modules. Each source 
module is assembled into a separate object module. The object modules can 
then be combined into load modules to form an executable program. 

48 Assembler H Version 2 Language Reference 



You can also divide a source module into two or more control sections. Each 
control section is assembled as part of an object module. By writing the proper 
link-edit control statements, you can select a complete object module or any 
individual control section of the object module to be link-edited and later loaded 
as an executable program. 

Size of Program Parts: If a source module becomes so large that its logic is not 
easily understood, divide it into smaller modules. 

Unless you have special programming reasons, you should write each control 
section so that the resulting object code is not larger than 4096 bytes. This is 
the largest number of by.tes that can be covered by one base register. 

Communication between Program Parts: You must be able to communicate 
between the parts of your program; that is, be able to refer to data in a different 
part or be able to branch to another part. 

To communicate between two or more source modules, you must symbolically 
link them together. 

To communicate between two or more control sections within a source module, 
you must establish the addressability of each control properly from one section 
to another regardless of the relative section. 

Source Module 
A source module is composed of source statements in the assembler language. 
You can include these statements in the source module in two ways: 

1. 	 You write them on a coding form and then enter them as input through a 
terminal or, using punched cards, through a card reader. 

2. 	 You specify one or more COPY instructions among the source statements 
being entered. When the assembler encounters a COPY instruction, it 
replaces the COpy instruction with a predetermined set of source state­
ments from a library. These statements then become a part of the source 
module. See "COPY-Copy Predefined Source Coding" on page 144 for 
more details. 

Beginning of a Source Module 
The first statement of a source module can be any assembler language state­
ment, except MEXIT and MEND, described in this manual. You can initiate the 
first control section of a source module by using the START instruction. 
However, you can write some source statements before the beginning of the 
first control statement. See" First Control Section" on page 53 for more details. 

End of a Source Module 
The END instruction usually marks the end of a source module. However, you 
can code several END instructions. The assembler stops assembling when it 
processes the first END instruction. If no END instruction is found, the assem­
bler will generate one. See "END-End Assembly" on page 145 for more 
details. 

Note: Conditional assembly processing can determine which of several substi ­
tuted END instructions is to be processed. 

Chapter 3. Addressing, Program Sectioning, and Linking 49 



Control Sections 
A control section is the smallest subdivision of a program that can be relocated 
as a unit. The assembled control sections contain the object code for machine 
instructions, data constants, and areas. 

Consider the concept of a control section at different processing times. 

At coding time: You create a control section when you write the instructions it 
contains. In addition, you establish the addressability of each control section 
within the source module, and provide any symbolic linkages between control 
sections that lie in different source modules. You also write the linkage editor 
control statements to combine the desired control sections into a load module, 
and to provide an entry point address for the beginning of program execution. 

At assembly time: The assembler translates the source statements in the 
control section into object code. Each source module is assembled into one 
object module. The entire object module and each of the control sections it 
contains are relocatable. 

At link-editing time: According to linkage editor control statements, the linkage 
editor combines the object code of one or more control sections into one load 
module. It also calculates the linkage addresses necessary for communication 
between two or more control sections from different object modules. In addi­
tion, it calculates the space needed to accommodate external dummy sections. 

At program fetch time: The control program loads the load module into virtual 
storage. All the relocatable addresses are converted to fixed locations in 
storage 

At execution time: The control program passes control to the load module now 
in virtual storage, and your program is executed. 

Note: You can specify the relocatable address of the starting point for program 
execution in a link-edit control statement or in the operand field of an END 
statement. 

Executable Control Sections 
An executable control section is one you initiate by using the START or CSECT 
instruction, and is assembled into object code. At execution time, an execut­
able control section contains the binary data assembled from your coded 
instructions and constants, and is, therefore, executable. 

An executable control section can also be initiated as "private code," without 
using the START or CSECT instruction. 

Reference Control Sections 
A reference control section is one you initiate by using the DSECT, COM, or 
DXD instruction, and is not assembled into object code. You can use a refer­
ence control section either to reserve storage areas or to describe data to 
which you can refer from executable control sections. These reference control 
sections are considered to be empty at assembly time, and the actual binary 
data to which they refer is not entered until execution time. 

50 Assembler H Version 2 Language Reference 



Location Counter Setting 
The assembler maintains a separate location counter for each control section. 
The location counter setting for each control section starts at O. The location 
values assigned to the instructions and other data in a control section are, 
therefore, relative to the location counter setting at the beginning of that control 
section. 

However, for executable control sections, the location values that appear in the 
listings do not restart at 0 for each subsequent executable control section. 
They carryon from the end of the previous control section. Your executable 
control sections are usually loaded into storage in the order in which you write 
them. You can, therefore, match the source statements and object code 
produced from them with the contents of a dump of your program. 

For reference control sections, the location values that appear in the listings 
always start from O. 

You can continue a control section that has been discontinued by another 
control section, and, thereby, intersperse code sequences from different control 
sections. Note that the location values that appear in the listings for a control 
section, divided into segments, follow from the end of one segment to the 
beginning of the subsequent segment. 

The location values, listed for the next control section defined, begin after the 
last location value assigned to the preceding control section. The length 
counter for a CSECT is incremented until it reaches its maximum capacity (224 ­

1, or FFFFFF hexadecimal bytes). The counter is then locked and remains at 
that value for the CSECT. No error condition or message is issued by Assem­
bler H Version 2 when the length counter exceeds the hexadecimal value 
FFFFFF. However, when the CSECT location counter exceeds hexadecimal 
FFFFFF, you will receive messages about other error conditions, as noted 
below. 

Note: Message IEV039 is issued for a CSECT location counter that exceeds 224 

- 1, or FFFFFF hexadecimal bytes. Message IEV067 is issued for a repeat factor 
on a OS or DC statement that exceeds 224 - 1, or FFFFFF hexadecimal bytes. 

Use of Multiple Location Counters 
Assembler H allows you to use multiple location counters for each individual 
control section. You use the LOCTR instruction (whose format and specifica­
tions are described below) to assign different location counters to different 
parts of a control section. The assembler then rearranges and assembles the 
coding together, according to the different location counters you have specified: 
All coding using the first location counter will be assembled together, then the 
coding using the second location counter will be assembled together, and so 
forth. 

A practical use of multiple location counters is illustrated in Figure 18 on 
page 52. There, executable instructions and data areas have been inter­
spersed throughout the coding in their logical sequence, each group of 
instructions preceded by a LOCTR instruction identifying the location counter 
under which it is to be assembled. The assembler will rearrange the control 
section so that the executable instructions are grouped together and the data 
areas together. 

Chapter 3. Addressing, Program Sectioning, and Linking 51 



- -

SOURCE MODULE OBJECT MODULE 
(shown in source code format I 

LR 12,15 controlled 

INST CSECT USING INST,12 bylNST
....LR 12,15 location 

USING INST,12 TM CODE,X'03' counter 
BM NEWCARD 

controlDATA LOCTR 
sectionINPUTAREA OS OCLSO 
INSTCODE OS CLI -

INPUTAREA OS OCLSO controlled

INST LOCTR CODE OS CLI by DATA 


TM CODE,X'03' 
 location
BM NEWCARD VALl DC F'56' counter 

VAL2 DC F'S4' 
DATA LOCTR 

VALl DC F'56' 

VAL2 DC F' S4' 


control 
sectionNEXT CSECT 
NEXT 

Figure 18. Use of Multiple Location Counters 

LOCTR-Multiple Location Counters 
The LOCTR instruction allows you to specify multiple location counters within a 
control section. The assembler assigns consecutive addresses to the segments 
of code using one location counter before it assigns addresses to segments of 
coding using the next location counter. 

Format of LOCTR: 

Name Operation Operand 

A variable or LOCTR blank 
ordi nary symbol 

By using the LOCTR instruction, you can code your control section in a logical 
order. For example, you can code work areas and data constants within the 
section of code, using them without having to branch around them. 

52 Assembler H Version 2 Language Reference 



Name 	 Operation Operand COl111lent 

A 	 CSECT See note 
LR 12,15 
USING A,12 

B 	 LOCTR See note 2 

C 	 LOCTR 

B 	 LOCTR See note 3 

A 	 LOCTR See note 4 

DUM 	 OSECT See note 
C 	 LOCTR See note 5 

END 

Notes: 

1. 	 The first location counter of a control section is defined by the name of the 
START, CSECT, DSECT, or COM instruction defining the section. 

2. 	 The LOCTR instruction defines a location counter. 

3. 	 The LOCTR resumes a previously defined location counter. A location 
counter remains in use until it is interrupted by a LOCTR, CSECT, DSECT, or 
COM instruction. 

4. 	 A LOCTR instruction with the same name as a control section resumes the 
first location counter of that section. 

5. 	 A LOCTR instruction with the same name as a LOCTR instruction in a pre­
vious control section causes that control section to be resumed using the 
location counter specified. 

A control section cannot have the same name as a previous LOCTR instruction. 
A LOCTR instruction placed before the first control section definition will initiate 
an unnamed control section before the LOCTR instruction is processed. 

The length attribute of a LOCTR name is 1. 

LOCTR instructions do not force alignment; code running under a location 
counter other than the first location counter of a control section will be assem­
bled starting at the next available byte after the previous segment. 

First Control Section 
The specifications below apply to the first executable control section, and not to 
a reference control section. 

Chapter 3. Addressing, Program Sectioning, and Linking 53 



Instructions that establish the first control section: Any instruction that affects 
the location counter, or uses its current value, establishes the beginning of the 
first executable control section. The instructions that establish the first control 
section include any machine instruction and the following assembler 
instructions: 

CCW, CCWO, and CC\vl DC LTORG 
CNOP DROP ORG 
(COPY) OS START 
CSECT END USING 
CXD EQU 

Notes: 

1. 	 These instructions are always considered a part of the control section in 
which they appear. 

2. 	 The statements copied into a source module by a COpy instruction deter­
mine whether it will initiate the first control section. 

3. 	 The DSECT, COM, and DXD instructions initiate reference control sections 
and do not establish the first executable control section. 

What must come before the first control section: The following instructions or 
macro definitions, if specified, belong to a source module, but must appear 
before the first control section: 

• 	 The ICTL instruction, which, if specified, must be the first statement in a 
source module 

• 	 The OPSYN instruction 

• 	 Any source macro definitions 

• 	 The COPY instruction, if the code to be copied contains only OPSYN 
instructions or complete macro definitions 

What can optionally come before the first control section: The instructions or 
groups of instructions that can optionally be specified before the first control 
section are listed below: 

• 	 The following assembler instructions: 

COPY EXTRN REPRO 
DXD ISEQ SPACE 
EJECT PRINT TITLE 
ENTRY PUNCH WXTRN 

• 	 Comments statements 
• 	 Common control sections 
• 	 Dummy control sections 
• 	 External dummy control sections 
• 	 Any conditional assembly instruction 
• 	 Macro instructions 

Notes: 

1. 	 The above instructions or groups of instructions belong to a source module, 
but are not considered as part of an executable control section. 

2. 	 Any instructions copied by a COpy instruction, or generated by the proc­
essing of a macro instruction before the first control section, must belong 
exclusively to one of the groups of instructions shown above. 

54 Assembler H Version 2 Language Reference 



3. 	 The EJECT, ISEQ, OPSYN, PRINT, SPACE, or TITLE instructions and com­
ments statements must follow the ICTL instruction, if specified. 

4. 	 All the instructions or groups of instructions listed above can also appear 
as part of a control section. 

Unnamed Control Section 
The unnamed control section is an executable control section that can be initi ­
ated in one of the following two ways: 

• 	 By coding a START or CSECT instruction without a name entry 
• 	 By coding any instruction, other than the START or CSECT instruction, that 

initiates the first executable control section 

The unnamed control section is sometimes referred to as private code. 

All control sections ought to be provided with names so that they can be 
referred to symbolically: 

• 	 Within a source module 
• 	 In EXTRN and WXTRN instructions and linkage editor control statements for 

linkage between source modules 

Notes: 

1. 	 Unnamed common control sections or dummy control sections can be 
defined if the name entry is omitted from a COM or DSECT instruction. 

2. 	 If you include an AMODE or RMODE instruction in this assembly and leave 
the name field blank, you must provide an unnamed control section. 

literal Pools In Control Sections 
Literals, collected into pools by the assembler, are assembled as part of the 
executable control section to which the pools belong. If a L TORG instruction is 
specified at the end of each control section, the literals specified for that section 
will be assembled into the pool starting at the LTORG instruction. If no L TORG 
instruction is specified, a literal pool containing all the literals used in the entire 
source module is assembled at the end of the first control section. This literal 
pool appears in the listings after the END instruction. 

Note: If any control section is divided into segments, a LTORG instruction 
should be specified at the end of each segment to create a separate literal pool 
for that segment. 

External Symbol Dictionary Entries 
The assembler keeps a record of each control section and prints the following 
information about it in an external symbol dictionary (ESD): 

• 	 Symbolic name, if one is specified 
• 	 Type code 
• 	 Individual identification 
• 	 Starting address 

Chapter 3. Addressing, Program Sectioning, and Linking 55 



Figure 19 lists the assembler instructions that define control sections and 
dummy control sections, or identify entry and external symbols, and tells their 
associated type codes. There is no limit to the number of individual control 
sections and external symbols that can be defined in a source module. 

Establishing Residence and Addressing Mode 
You may specify the addressing mode (AMODE) and/or the residence mode 
(RMODE) to be associated with control sections in the object deck. These 
modes may be specified for the following types of control sections: 

• Control section (ESD type code 00) 
• Unnamed control section (ESD type code 04) 
• Common control section (ESD type code 05) 

The assembler will set the AMODE and/or RMODE indicators in the ESD record 
for each applicable control section in an assembly, for passage to the linkage 
editor and loader. The linkage editor and loader will ensure that control is 
given to programs with the right addressing mode, and that programs are 
loaded into the correct part of virtual storage. 

Name 
Entry 

Optional 

Optional 

Optional 

Mandatory 

Figure 19. 

Instruction 

START 

CSECT 

START 

CSECT 

Any instruction that initiates 
the unnamed control section 

COM 

DSECT 

DXD 


External DSECT 


ENTRY 

EXTRN 

DC (V-type address constant) 

WXTRN 

Defining CSECTs, DSECTs, and Symbols 

Code Entered into 

External Symbol Dictionary 


SD (if name entry is present) 


SD (if name entry is present) 


PC (if name entry is omitted) 


PC (if name entry is omitted) .""" 


PC 


CM 


None 


XD 


XD 


LD 


ER 


ER 


WX 


56 Assembler H Version 2 Language Reference 



AMODE-Addressing Mode 
The AMODE instruction allows you to specify the addressing mode to be associ­
ated with control sections in the object deck. 

Format of AMODE: 

Name Operation Operand 

Any symbol AMODE 
or blank 

The name field associates the addressing mode with a control section. If there 
is a symbol in the name field, it must also appear in the name field of a START, 
CSECT, or COM instruction in this assembly. If the name field is blank, there 
must be an unnamed control section in this assembly. If the name field con­
tains a sequence symbol (see "Symbols" on page 25 for details), it is treated 
as a blank name field. 

The operand indicates which addressing mode is to be associated with the 
control section identified by the name field. The operand must be specified as 
one of the three values shown. The values cannot be replaced by expressions. 
The values specify the following: 

24 	 specifies that a 24-bit addressing mode is to be associated with a control 
section. 

31 	 specifies that a 31-bit addressing mode is to be associated with a control 
section. 

ANY specifies that the control section is not sensitive to addressing mode. 

Any field of this instruction may be generated by a macro, or by substitution in 
open code. 

Notes: 

1. 	 AMODE can be specified anywhere in the assembly. It does not initiate an 
unnamed control section. 

2. 	 An assembly can have multiple AMODE instructions; however, two AMODE 
instructions cannot have the same name field. 

3. 	 Specification of AMODE 24 and RMODE ANY for the same name field is 
invalid. All other combinations are valid. 

4. 	 AMODE or RMODE cannot be specified for an unnamed common control 
section. 

Chapter 3. Addressing, Program Sectioning, and Linking 57 



5. 	 The defaults when AM ODE and RMODE are not both specified for a name 
field are as follows: 

Specified 	 Defaulted 

Neither 	 AMODE 24, RMODE 24 

AMODE 24 RMODE 24 

AMODE 31 RMODE 24 

AMODE ANY RMODE 24 	 \, 

RMODE 24 AMODE 24 

RMODE ANY AMODE 31 

RMODE-Residence Mode 
The RMODE instruction allows you to specify the residence mode to be associ­
ated with control sections in the object deck. 

Format of RMODE: 

Name Operation Operand 

Any symbol RMODE 241ANV 
or 	blank 

The name field associates the residence mode with a control section. If there 
is a symbol in the name field, it must also appear in the name field of a START, 
CSECT, or COM instruction in this assembly. If the name field is blank, there 
must be an unnamed control section in this assembly. If the name field con­
tains a sequence symbol (see "Symbols" on page 25 for details), it is treated 
as a blank name field. 

The operand indicates which residence mode is to be associated with the 
control section identified by the name field. The operand must be specified as 
one of the two values shown. The values cannot be replaced by expressions. 
The values specify the following: 

24 	 specifies that a residence mode of 24 is to be associated with the control 
section; that is, the control section must be resident below 16 megabytes. 

ANY 	 specifies that a residence mode of either 24 or 31 is to be associated with 
the control section; that is, the control section can be resident above or 
below 16 megabytes. 

Any field of this instruction may be generated by a macro, or by sUbstitution in 
open code. 

58 Assembler H Version 2 Language Reference 
'I 



Notes: 

1. 	 RMODE can be specified anywhere in the assembly. It does not initiate an 
unnamed control section. 

2. 	 An assembly can have multiple RMODE instructions; however, two RMODE 
instructions cannot have the same name field. 

3. 	 Specification of AMODE 24 and RMODE ANY for the same name field is 
invalid. All other combinations are valid. 

4. 	 AMODE or RMODE cannot be specified for an unnamed common control 
section. 

5. 	 The defaults when AMODE and RMODE are not both specified for a name 
field are as follows: 

Specified Defaulted 

Neither AMODE 24, RMODE 24 

AMODE 24 RMODE 24 

AMODE 31 RMODE 24 

AMODE ANY RMODE 24 

RMODE 24 AMODE 24 

RMODE ANY AMODE 31 

Defining a Control Section 
You must use the instructions described below to indicate to the assembler: 

• 	 Where a control section begins 
• 	 Which type of control section is being defined 

START-Start Assembly 
The START instruction can be used only to initiate the first or only control 
section of a source module. You should use the START instruction for this 
purpose, because it allows you: 

• 	 To determine exactly where the first control section is to begin; you thereby 
avoid the accidental initiation of the first control section by some other 
instruction 

• 	 To give a symbolic name to the first control section, which can then be dis­
tinguished from the other control sections listed in the external symbol dic­
tionary 

• 	 To specify the initial setting of the location counter for the first or only 
control section 

The START instruction must be the first instruction of the first executable 
control section of a source module. It must not be preceded by any instruction 
that affects the location counter, and thereby causes the first control section to 
be initiated. 

Chapter 3. Addressing, Program Sectioning, and Linking 59 



Format of START: 

Name Operation Operand 

Any symbol START A self-defining term, 
or blank an absolute expression, or blank 

Note: If the operand of a START instruction is an absolute expression, any 
symbols referenced in it must have been previously defined. 

The symbol in the name field, if specified, identifies the first control section. It 
must be used in the name field of any CSECT instruction that indicates the con­
tinuation of the first control section. This symbol represents the address of the 
first byte of the control section, and has a length attribute value of 1. 

The assembler uses the value of the self-defining term or absolute expression 
in the operand field, if specified, to set the location counter to an initial value 
for the source module. 

All control sections are aligned on a doubleword boundary. Therefore, if the 
value specified in the operand is not divisible by 8, the assembler sets the 
initial value of the location counter to the next higher doubleword boundary. If 
the operand entry is omitted, the assembler sets the initial value to O. 

The source statements that follow the START instruction are assembled into the 
first control section. If a CSECT instruction indicates the continuation of the first 
control section, the source statements that follow this CSECT instruction are 
also assembled into the first control section. 

Any instruction that defines a new or continued control section marks the end of 
the preceding control section. The END instruction marks the end of the control 
section in effect. 

CSECT-Identify Control Section 
The CSECT instruction allows you to initiate an executable control section or 
indicate the continuation of an executable control section. 

The CSECT instruction can be used anywhere in a source module after any 
source macro definitions that are specified. If it is used to initiate the first exe­
cutable control section, it must not be preceded by any instruction that affects 
the location counter and thereby cause the first control section to be initiated. 

Format of CSECT: 

Name Operation Operand 

Any symbol CSECT Not required 
or blank 

60 Assembler H Version 2 Language Reference 



The symbol in the name field, if specified, identifies the control section. If 
several CSECT instruct,ions within a source module have the same symbol in 
the name field, the first occurrence initiates the control section, and the rest 
indicate the continuation of the control section. If the first control section is ini­
tiated by a START instruction, the symbol in the name field must be used to 
indicate any continuation of the first control section. 

Note: A CSECT instruction with a blank name field either initiates or indicates 
the continuation of the unnamed control section. 

The symbol in the name field represents the address of the first byte of the 
control section, and has a length attribute value of 1. 

The beginning of a control section is aligned on a doubleword boundary. 
However, when an interrupted control section is resumed using the CSECT 
instruction, the location counter last specified in that control section will be 
resumed. Consider the coding in Figure 20. 

ALPHA 	 START 

BALR 12,0 

USING 

BETA 	 LOCTR BETA 

NEWSECT 	 CSECT 

ALPHA 	 CSECT NEWSECT 

Figure 20. How the Location Counter Works 

The source statements following a CSECT instruction that either initiate or indi­
cate the continuation of a control section are assembled into the object code of 
the control section identified by that CSECT instruction. 

Note: The end of a control section or portion of a control section is marked by 
(a) any instruction that defines a new or continued control section, or (b) the 
END instruction. 

DSECT-Identify Dummy Section 
You can use the DSECT instruction to initiate a dummy control section or to 
indicate its continuation. 

A dummy control section is a reference control section that allows you to 
describe the layout of data in a storage area without actually reserving any 
virtual storage. 

ALPHA 

) 
) 
) ,Thl' p.rt I, .""mbl.d ""ng 

the BETA location counter 

Chapter 3. Addressing, Program Sectioning, and Linking 61 



You may wish to describe the format of an area whose storage location will not 
be determined until the program is executed. You can do so by describing the 
format of the area in a dummy section, and using symbols defined in the 
dummy section as the operands of machine instructions. 

How to use a dummy control section: A dummy control section (dummy 
section) allows you to write a sequence of assembler language statements to 
describe the layout of unformatted data located elsewhere in your source 
module. The assembler produces no object code for statements in a dummy 
control section, and it reserves no storage for it. Rather, the dummy section 
provides a symbolic format that is empty of data. However, the assembler 
assigns location values to the symbols you define in a dummy section, relative 
to its beginning. 

Therefore, to use a dummy section, you must: 

• 	 Reserve a storage area for the unformatted data 

• 	 Ensure that this data is loaded into the area at execution time 

• 	 Ensure that the locations of the symbols in the dummy section actually cor­
respond to the locations of the data being described 

• 	 Establish the addressability of the dummy section in combination with the 
storage area 

You can then refer to the unformatted data symbolically by using the symbols 
defined in the dummy section. 

The DSECT instruction identifies the beginning or continuation of a dummy 
control section. One or more dummy sections can be defined in a source 
module. 

The DSECT instruction can be used anywhere in a source module after the ICTL 
instruction, or after any source macro definitions that may be specified. 

Format of DSECT: 

Name Operation Operand 

Any symbol DSECT Not required 
or 	blank 

The symbol in the name field, if specified, identifies the dummy section. If 
several DSECT instructions within a source module have the same symbol in 
the name field, the first occurrence initiates the dummy section, and the rest 
indicate the continuation of the dummy section. 

Note: A DSECT instruction with a blank name field either initiates or indicates 
the continuation of the unnamed dummy section. 

The symbol in the name field represents the first location in the dummy section, 
and has a length attribute value of 1. 

62 Assembler H Version 2 Language Reference 



-

The location counter for a dummy section is always set to an initial value of O. 
However, when an interrupted dummy control section is resumed using the 
DSECT instruction, the location counter last specified in that control section will 
be resumed. 

The source statements that follow a DSECT instruction belong to the dummy 
section identified by that DSECT instruction. 

Notes: 

1. 	 The assembler language statements that appear in a dummy section are 

not assembled into object code. 


2. 	 When establishing the addressability of a dummy section, the symbol in the 
name field of the DSECT instruction, or any symbol defined in the dummy 
section can be specified in a USING instruction. 

3. 	 A symbol defined in a dummy section can be specified in an address con­
stant only if the symbol is paired. with another symbol from the same 
dummy section, and if the symbols have the opposite sign. 

To effect references to the storage area defined by a dummy section, do the 
following: 

• 	 Provide a USING statement specifying both a general register that the 
assembler can assign to the machine instructions as a base register and a 
value from the dummy section that the assembler may assume the register 
contains. 

• 	 Ensure that the same register is loaded with the actual address of the 

storage area. 


The values assigned to symbols defined in a dummy section are relative to the 
initial statement of the section. Thus, all machine instructions that refer to 
names defined in the dummy section will, at execution time, refer to storage 
locations relative to the address loaded into the register. 

An example is shown in the following coding. Assume that two independent 
assemblies (assembly 1 and assembly 2) have been loaded and are to be exe­
cuted as a single overall program. Assembly 1 is an input routine that places a 
record in a specified area of storage, places the address of the input area con­
taining the record in general register 3, and branches to assembly 2. Assembly 
2 processes the record. The coding shown in the example is from assembly 2. 

The input area is described in assembly 2 by the DSECT control section named 
INAREA. Portions of the input area that you want to work with are named in the 
DSECT control section as shown. The assembler instruction USING INAREA,3 
designates general register 3 as the base register to be used in addressing the 
DSECT control section, and that general register 3 is assumed to contain the 
address of INAREA. 

Assembly 1, during execution, loads the actual beginning address of the input 
area in general register 3. Because the symbols used in the DSECT section are 
defined relative to the initial statement in the section, the address values they 
represent will, at the time of program execution, be the actual storage locations 
of the input area. 

Chapter 3. Addressing, Program Sectioning, and Linking 63 



Name Operation Operand 

ASMBLY2 CSECT 
BEGIN BALR 2,0 

USING *,2 

USING INAREA,3 
CLI INCODE,C'A' 
BE ATYPE 

ATYPE 	 MVC WORKA,INPUTA 
MVC WORKB,INPUTB 

WORKA 	 DS CL20 
WORKB 	 DS CLlB 

INAREA 	 DSECT 
INCODE 	 DS CLl 
INPUTA 	 DS CL20 
INPUTB 	 DS CLlB 

END 

COM-Define Blank Common Control Section 
You can use the COM instruction to initiate a common control section, or to 
indicate its continuation. One or more common sections can be defined in a 
source module. A common control section is a reference control section that 
allows you to reserve a storage area that can be used by two or more source 
modules. 

How to use a common control section: A common control section (common 
section) allows you to describe a common storage area in one or more source 
modules. 

When the separately assembled object modules are linked as one program, the 
required storage space is reserved for the common control section. Thus, two 
or more modules share the common area. 

Only the storage area is provided; the assembler does not assemble the source 
statements that make up a common control section into object code. You must 
provide the data for the common area at execution time. 

The assembler assigns locations to the symbols you define in a common 
section relative to the beginning of that common section. This allows you to 
refer symbolically to the data that will be loaded at execution time. Note that 
you must establish the addressability of a common control section in every 
source module in which it is specified. If you code identical common sections 
in two or more source modules, you can communicate data symbolically 
between these modules through this common section. 

Note: You can also code a common control section in a source module written 
in the FORTRAN language. This allows you to communicate between assem­
bler language modules and FORTRAN modules. 

64 Assembler H Version 2 Language Reference 



The COM instruction identifies the beginning or continuation of a common 
control section. 

The COM instruction can be used anywhere in a source module after the ICTL 
instruction, or after any source macro definitions that may be specified. 

Format of COM: 

Name Operation Operand 

Any symbol COM Not required 
or blank 

The symbol in the name field, if specified, identifies the common control 
section. If several COM instructions within a source module have the same 
symbol in the name field, the first occurrence initiates the common section and 
the rest indicate the continuation of the common section. 

Note: A COM instruction with a blank name field either initiates or indicates the 
continuation of the unnamed common section. 

The symbol in the name field represents the address of the first byte in the 
common section, and has a length attribute value of 1. 

The location counter for a common section is always set to an initial value of O. 
However, when an interrupted common control section is resumed using the 
COM instruction, the location counter last specified in that control section will 
be resumed. 

If a common section with the same name (or unnamed) is specified in two or 
more source modules, the amount of storage reserved for this common section 
is equal to that required by the longest common section specified. 

The source statements that follow a COM instruction belong to the common 
section identified by that COM instruction. 

Notes: 

1. 	 The assembler language statements that appear in a common control 
section are not assembled into object code. 

2. 	 When establishing the addressability of a common section, the symbol in 
the name field of the COM instruction, or any symbol defined in the 
common section, can be specified in a USING instruction. 

In the following example, addressability to the common area of storage is 
established relative to the named statement XYZ. 

Chapter 3. Addressing, Program Sectioning, and Linking 65 



Name Operation Operand 

L l,=A(XYZ) 
USING XYZ,l 
HVC POQ(16),=4C'ABCO' 

COH 
XYZ OS 16F 
PDQ OS 16C 

No instructions or constants appearing in a common control section are assem­
bled. Data can only be placed in a common control section through execution 
of the program. A blank common control section may include any assembler 
language instructions. 

If the assignment of common storage is done in the same manner by each inde­
pendent assembly, reference to a location in common by any assembly results 
in the same location being referenced. When the blank common control section 
is assembled, the initial value of the location counter is set to zero. 

External Dummy Sections 
An external dummy section is a reference control section that allows you to 
describe storage areas for one or more source modules, to be used as: 

• Work areas for each source module 
• Communication areas between two or more source modules 

When the assembled object modules are linked and loaded, you can dynam­
ically allocate the storage required for all your external dummy sections at one 
time from one source module (for example, by using the GETMAIN macro 
instruction). This is not only convenient, but you save space and prevent frag­
mentation of virtual storage. 

To generate and use the external dummy sections, you need to specify a com­
bination of the following: 

• DXD or DSECT instruction 
• Q-type address constant 
• CXD instruction 

Generating an external dummy section: An external dummy section is gener­
ated when you specify an DXD instruction or a DSECT instruction in combina­
tion with a Q-type address constant that contains the name of the DSECT 
instruction. 

You use the Q-type address constant to reserve storage for the offset to the 
external dummy section whose name is specified in the operand. This offset is 
the distance in bytes from the beginning of the area allocated for all the 
external dummy sections to the beginning of the external dummy section speci­
fied. You can use this offset value to address the external dummy section. 

66 Assembler H Version 2 Language Reference 



Using external dummy sections: To use an external dummy section, you must 

do the following: 

1. 	 Identify and define the external dummy section. The assembler will 
compute the length and alignment required. 

2. 	 Provide a Q-type constant for each external dummy section defined. 

3. 	 Use the CXD instruction to reserve a fullword area into which the linkage 
editor or loader will insert the total length of all the external dummy 
sections that are specified in the source modules of your program. The 
linkage editor computes this length from the lengths of the individual 
external dummy sections supplied by the assembler. 

4. 	 Allocate a storage area using the computed total length. 

5. 	 Load the address of the allocated area into a register. Note that this reg­
ister must contain this address throughout the whole program. 

6. 	 Add to the address in the register the offset into the allocated area of the 
desired external dummy section. The linkage editor inserts this offset into 
the fUliword area reserved by the appropriate Q-type address constant. 

7. 	 Establish the addressability of the external dummy section in combination 
with the portion of the allocated area reserved for the external dummy 
section. 

You can now refer symbolically to the locations in the external dummy section. 
Note that the source statements in an external dummy section are not assem­
bled into object code. Thus, at execution time, you must insert the data 
described into the area reserved for the external dummy sections. 

DXD-Define External Dummy Section 
The DXD instruction allows you to identify and define an external dummy 
section. The DXD instruction can be used anywhere in a source module, after 
the ICTL instruction, or after any source macro definitions that may be speci­
fied. 

Notes: 

1. 	 An external dummy section identified by a DXD instruction will not generate 
an entry in the external symbol dictionary (ESD) unless it is referenced by a 
Q-type address constant. 

2. 	 The DSECT instruction also defines an external dummy section, but only if 
the symbol in the name field appears in a Q-type address constant in the 
same source module. Otherwise, a DSECT instruction defines a dummy 
section. 

Format of DXD: 

Name Operation Operand 

A symbol DXD Duplication factor, type, modifiers, nominal value 

Chapter 3. Addressing, Program Sectioning, and Linking 67 



The symbol in the name field must appear in the operand of a Q-type constant. 
This symbol represents the address of the first byte of the external dummy 
section defined, and has a length attribute value of 1. 

The subfields in the operand field (duplication factor, type, modifier, and 
nominal value) are specified in the same way as in a OS instruction. The 
assembler computes the amount of storage and the alignment required for an 
external dummy section from the area specified in the operand field. 

The linkage editor or loader uses the information provided by the assembler to 
compute the total length of storage required for all external dummy sections 
specified in a program. 

Note: If two or more external dummy sections for different source modules 
have the same name, the linkage editor uses the most restrictive alignment, 
and the largest section to compute the total length. 

CXD-Cumulative Length External Dummy Section 
The CXO instruction allows you to reserve a fullword area in storage. The 
linkage editor or loader will insert into this area the total length of all external 
dummy sections specified in the source modules that are assembled and linked 
into one program. 

Format of CXD: 

Name Operation Operand 

AllY symbol or CXD Not requ ired 
blank 

The symbol in the name field, if specified, represents the address of a fullword 
area aligned on a fullword boundary. This symbol has a length attribute value 
of 4. The linkage editor or loader inserts into this area the total length of 
storage required for all the external dummy sections specified in a program. 

The following example shows how external dummy sections may be used. 

ROUTINE A 

Name Operation Operand 

ALPHA DXD 2DLB 
BETA DXD 4FL4 

O~lEGA CXD 

DC Q(ALPHA) 
DC Q(BETA) 

68 Assembler H Version 2 Language Reference 



.; 

-"'" 

ROUTINE 8 

Name Operation Operand 

GAMMA DXD 50 

DELTA DXD lOF 

DC Q(GAMMA) 
DC Q(DELTA) 

ROUTINE C 

Name Operation Operand 

EPSILON DXD 4H 

DC Q(EPSILON) 

Each of the three routines is requesting an amount of work area. Routine A 
wants 2 doublewords and 4 fullwords; Routine B wants 5 doublewords and 10 
fullwords; Routine C wants 4 halfwords. At the time these routines are brought 
into storage, the sum of the individual lengths will be placed in the location of 
the CXD instruction labeled OMEGA. Routine A can then allocate the amount of 
storage that is specified in the CXD location. 

Symbolic Linkages 
Symbols may be defined in one module and referred to in another, thus 
effecting symbolic linkages between independently assembled program 
sections. The linkages can be effected only if the assembler is able to provide 
information about the linkage symbols to the linkage editor, which resolves 
these linkage references at load time. 

Establishing symbolic linkage: You must establish symbolic linkage between 
source modules so that you can refer or branch to symbolic locations defined in 
the control sections of external source modules. To establish symbolic linkage 
with an external source module, you must do the following: 

• 	 In the current source module, you must identify the symbols that are not 
defined in that source module, if you wish to use them in instruction oper­
ands. These symbols are called external symbols, because they are 
defined in another (external) source module. You identify external symbols 
in the EXTRN or WXTRN instruction, or the V-type address constant. 

• 	 In the external source modules, you must identify the symbols that are 
defined in those source modules, and to which you refer from the current 
source module. These symbols are called entry symbols, because they 
provide points of entry to a control section in a source module. You identify 
entry symbols with the ENTRY instruction . 

• 	 You must provide the A-type or V-type address constants needed by the 
assembler to reserve storage for the addresses represented by the external 
symbols. 

Chapter 3. Addressing, Program Sectioning, and Linking 69 



The assembler places information about entry and external symbols in the 
external symbol dictionary. The linkage editor uses this information to resolve 
the linkage addresses identified by the entry and external symbols. 

Referring to external data: You should use the EXTRN instruction to identify the 
external symbol that represents data in an external source module, if you wish 
to refer to this data symbolically. 

For example, you can identify the address of a data area as an external symbol 
and load the address constant specifying this symbol into a base register. 
Then, you use this base register when establishing the addressability of a 
dummy section that formats this external data. You can now refer symbolically 
to the data that the external area contains. 

You must also identify, in the source module that contains the data area, the 
address of the data as an entry symbol. 

Branching to an external address: You should use the V-type address constant 
to identify the external symbol that represents the address in an external 
source module to which you wish to branch. 

For example, you can load into a register the V-type address constant that iden­
tifies the external symbol. Using this register, you can then branch to the 
external address represented by the symbol. 

If the symbol is the name entry of a START or CSECT instruction in the other 
source module, and thus names an executable control section, it is automat­
ically identified as an entry symbol. If the symbol represents an address in the 
middle of a control section, you must identify it as an entry symbol for the 
external source module. 

You can also use a combination of an EXTRN instruction to identify, and an 
A-type address constant to contain, the external branch address. However, the 
V-type address constant is more convenient because: 

• 	 You do not have to use an EXTRN instruction . 

• 	 The symbol identified is not considered as defined in the source module, 
and can be used as the name entry for any other statement in the same 
source module. 

ENTRY-Identify Entry-Point Symbol 
The ENTRY instruction allows you to identify symbols defined in one source 
module so that they can be referred to in another source r.Ldule. These 
symbols are entry symbols. 

Format of ENTRY: 

Name 	 Operation Operand 

A sequence ENTRY One or more relocatable 
symbol or blank symbols, separated by coomas ." 

~ 

70 Assembler H Version 2 Language Reference 



The following applies to the entry symbols identified in the operand field: 

• 	 They must be valid symbols. 

• 	 They must be defined in an executable control section. 

• 	 They must not be defined in a dummy control section, a common control 
section, or an external control section. 

• 	 The length attribute value of entry symbols is the same as the length attri ­
bute value of the symbol at its point of definition. 

A symbol used as the name entry of a START or CSECT instruction is also auto­
matically considered an entry symbol, and does not have to be identified by an 
ENTRY instruction. 

The assembler lists each entry symbol of a source module in an external 
symbol dictionary, along with entries for external symbols, common control 
sections, and external control sections. 

There is no restriction on the number of control sections, external symbols, and 
external dummy sections allowed by the assembler. The maximum number 
depends on the amount of main storage available during link editing. 

EXTR N-Identify External Symbol 
The EXTRN instruction allows you to identify symbols referred to in a source 
module but defined in another source module. These symbols are external 
symbols. 

Format of EXTRN: 

Name 	 Operation Operand 

A sequence EXTRN One or more relocatable 
symbol or blank 	 symbo 1s, separated by COniliaS 

External Symbols: The following applies to the external symbols identified in 
the operand field: 

• 	 They must be valid symbols. 

• 	 They must not be used as the name entry of a source statement in the 
source module in which they are identified. 

• 	 They have a length attribute value of 1. 

• 	 They must be used alone and cannot be paired when used in an 
expression. 

The assembler lists each external symbol identified in a source module in the 
external symbol dictionary, along with entries for entry symbols, common 
control sections, and external control sections. 

There is no restriction on the number of control sections, external symbols, and 
external dummy sections allowed by the assembler. The maximum number 
depends on the amount of main storage available during link editing. 

Chapter 3. Addressing, Program Sectioning, and Linking 71 



WXTRN-Identify Weak External Symbol 
The WXTRN statement allows you to identify symbols referred to in a source 
module but defined in another source module. The WXTRN instruction differs 
from the EXTRN instruction as follows: 

• 	 The EXTRN instruction causes the linkage editor to make an automatic 
search of libraries to find the module that contains the external symbols 
that you identify in its operand field. If the module is found, linkage 
addresses are resolved; the module is then linked to your module, which 
contains the EXTRN instruction. 

• 	 The WXTRN instruction suppresses this automatic search of libraries. The 
linkage editor will only resolve the linkage addresses if the external 
symbols that you identify in the WXTRN operand field are defined: 

In 	a module that is linked and loaded along with the object module 
assembled from your source module, or 

In a module brought in from a library because of the presence of an 
EXTRN instruction in another module linked and loaded with yours. 

Format of WXTRN: 

Name 	 Operation Operand 

A sequence WXTRN One or more relocatable 
symbol or blank 	 symbol s separated by conmas 

The external symbols identified by a WXTRN instruction have the same proper­
ties as the external symbols identified by the EXTRN instruction. However, the 
type code assigned to these external symbols differs. 

Note: If a symbol, specified in a V-type address constant, is also identified by a 
WXTRN instruction, it is assigned the same type code as the symbol in the 
WXTRN instruction. 

If an external symbol is identified by both an EXTRN and WXTRN instruction in 
the same source module, the first declaration takes precedence, and subse­
quent declarations are flagged with warning messages. 

72 Assembler H Version 2 Language Reference 



Chapter 4. Machine Instruction Statements 

This chapter introduces the main functions of the machine instructions and pro­
vides general rules for coding them in their symbolic assemt:5ler language 
format. For the complete specifications of machine instructions, their object 
code format, their coding specifications, and their use of registers and virtual 
storage areas, see the appropriate principles of operation manual for your 
processor. 

At assembly time, the assembler converts the symbolic assembler language 
representation of the machine instructions to the corresponding object code. It 
is this object code that the computer processes at execution time. Thus, the 
functions described in this section can be called execution time functions. 

Also at assembly time, the assembler creates the object code of the data con­
stants and reserves storage for the areas you specify in your DC and DS 
assembler instructions (see "Data Definition Instructions" on page 96). At exe­
cution time, the machine instructions can refer to these constants and areas, 
but the constants themselves are not executed. 

As defined in the appropriate principles of operation manual, there are five cat­
egories of machine instructions: 

• General instructions 
• Decimal instructions 
• Floating-Point instructions 
• Control instructions 
• Input/Output operations 

Each is discussed in the following sections. 

General Instructions 
You use general instructions to manipulate data that resides in general regis­
ters or in storage, or that is introduced from the instruction stream. These 
instructions include fixed-point, logical, and branching instructions; in addition, 
they include unprivileged status-switching instructions. Some general 
instructions operate on data that resides in the PSW or the TOD clock. 

The general instructions treat data as being of four types: signed binary inte­
gers, unsigned binary integers, unstructured logical data, and decimal data. 
Data is treated as decimal by the conversion, packing, and unpacking 

instructions. 

For further information, see "General Instructions" in the appropriate principles 

of operation manual. 

Chapter 4. Machine Instruction Statements 73 



SS Format 

Notes: 

1. 	 Symbols used to represent immediate data (see HEX40 and TEN in the 
ALPHA2 and BETA1 instructions below) are assumed to be equated to abso­

lute values between 0 and 255. 

2. 	 Symbols used to represent implicit addresses (see IMPLICIT, KEY, and 
NEWSTATE in the BETA and GAMMA2 instructions below) can be either 

relocatable or absolute. 

3. 	 Symbols used to represent displacements (see DISPL40 in the ALPHA2 
instruction below) in explicit addresses are assumed to be equated to abso­
lute values between 0 and 4095. 

Examples: 

ALPHAI CLI 40(9),X'40' 
ALPHA2 CLI DISPL40(NINE),HEX40 
BETAI CLI IMPLICIT, TEN 
BETA2 CLI KEY,C'E' 
GAMf1Al LPSW 0(9) 
GM1f1A2 LPS\~ NEWSTATE 

When assembled, the object code for the ALPHA1 instruction, in hexadecimal, 
is: 

95409028 

where 

95 is the operation code. 

40 is the illlllediate data. 

9 is the base register. 

028 is the displacement from the base register. 


You use the instructions with the SS format mainly to move data between two 
virtual storage locations. The operand fields and subfields must, therefore, des­
ignate virtual storage addresses and the explicit data lengths you wish to 
include. However, note that, in the Shift and Round Decimal (SRP) instruction, 
a 4-bit immediate data field (see 3 in SRP instruction below), with a value 
between 0 and 9, is specified as a third operand. 

Notes: 

1. 	 Symbols used to represent base registers (see BASE8 and BASE? in the 
ALPHA2 instruction below) in explicit addresses are assumed to be equated 
to absolute values between 0 and 15. 

2. 	 Symbols used to represent explicit lengths (see NINE and SIX in the 
ALPHA2 instruction below) are assumed to be equated to absolute values 
between 0 and 256 for SS instructions with one length specification, and 
between 0 and 16 for SS instructions with two length specifications 

3. 	 Symbols used to represent implicit addresses (see FIELD1, FIELD2, and 
FIELD1 ,XX '8' in the ALPHA3 and SRP instructions below) can be either 
relocatable or absolute. 

4. 	 Symbols used to represent displacements (see DISP40 and DISP30 in the 
ALPHA5 instruction below) in explicit addresses are assumed to be equated 
to absolute values between 0 and 4095. 

88 Assembler H Version 2 Language Reference 



SSE Format 

Examples: 

ALPHA! AP 40(9,8) ,30(6,7) 
ALPHA2 AP 40(NINE,BASE8),30(SIX,BASE7) 
ALPHA3 AP FIELOl,FIEL02 
ALPHM AP AREA(9),AREA2(6) 
ALPHA5 AP OISP40(,8),OISP30(,7) 
BETAI MVC 0(80,B) ,0(7) 
BETA2 ~IVC OISP8(,B),OISP0(7) 
BETA3 MVC TO,FROM 

SRP FIEL01,X '8' ,3 

When assembled, the object code for the ALPHA1 instruction, in hexadecimal, 
is: 

FA85802870lE 

where 

FA 	 is the operation code. 
8 is length Ll. 
5 is length L2. 
8 is base register B1. 
028 is the displacement from base register B1. 
7 is base register B2. 
8lE is the displacement from base register B2. 

When assembled, the object code for the BETA1 instruction, in hexadecimal, is: 

D24F88887888 

where 

02 	 is the operation code. 
4F 	 is length L. 
8 is base register B1. 
808 is the displacement from base register B1. 
7 is base register B2. 
888 is the displacement from base register B2. 

You use the instructions with the SSE format mainly for control operations. The 
operand fields designate virtual storage addresses, encoded as base and dis­
placement. 

Examples: 

ALPHA1 LASP 48(BASE8),30(BASE7) 
ALPHA2 LASP 48(8) ,30(7) 
BETA1 TPROT LOCl,LOC2 
BETA2 TPROT OISP40(8),OISP30(8) 

Notes: 

1. 	 Symbols used to represent base registers in explicit addresses (such as 
BASE8 and BASE? in the ALPHA1 instruction) are assumed to be equated to 
absolute values between 0 and 15. 

2. 	 Symbols used to represent implicit addresses (such as LOC1,LOC2 in the 

BETA 1 instruction) can be either relocatable or absolute. 


3. 	 Symbols used to represent displacements in explicit addresses (such as 
DISP40 and DISP30 in the BETA2 instruction) are assumed to be equated to 
absolute values between 0 and 4095. 

Chapter 4. Machine Instruction Statements 89 



When assembled, the object code of the ALPHA2 instruction, in hexadecimal, is: 

ES888028701E 

where 

ESOO is the operation code. 

8 is base register Bl. 

028 is the displacement from base register Bl. 

7 is base register B2. 

OlE is the displacement from base register B2. 


90 Assembler H Version 2 Language Reference 



Chapter 5. Assembler Instruction Statements 


The following is a list of assembler instructions: 

Symbol Definition Instruction 

EQU Equate symbol 

Operation Code Definition Instruction 

OPSYN Equate operation code 

Data Definition Instructions 

CCW Define channel command word (Format 0: 24-bit data address) 

CCWO Define channel command word (Format 0: 24-bit data address) 

CCWl Define channel command word (Format 1: 31-bit data address) 

DC Define constant 

DS Define storage 


Program Sectioning and Linking Instructions (discussed in Chapter 3) 


AMODE Specify the addressing mode of a control section 

COM Identify blank common control section 

CSECT Identify control section 

CXD Cumulative length of external dummy section 

DSECT Identify dummy section 

DXD Define external dummy section 

ENTRY Identify entry-point symbol 

EXTRN Identify external symbol 

LOCTR Specify multiple location counters within a control section 

RMODE Specify the residence mode of a control section 

START Start assembly 

WXTRN Identify weak external symbol 


Base Register Instructions (discussed in Chapter 3) 


DROP Drop base address register 

USING Use base address register 


Program Control Instructions 


CNOP Conditional no operation 

COPY Copy predefined source coding 

END End assembly 

ICTL Input format control 

ISEQ Input sequence checking 

LTORG Begin literal pool 

ORG Set location counter 

POP Restore status of current PRINT or USING 

PUNCH Punch a card 

PUSH Push-down queue for current PRINT or USING 

REPRO Reproduce following card 


Listing Control Instructions 


EJECT Start new page 

PRINT Print optional data 

SPACE Space listing 

TITLE Identify assembly output 


Chapter 5. Assembler Instruction Statements 91 



Symbol Definition Instruction 

EQU-Equate Symbol 
The EQU instruction allows you to assign absolute or relocatable values to 
symbols. You can use it for the following purposes: 

1. 	 To assign single absolute values to symbols. 

2. 	 To assign the values of previously defined symbols or expressions to new 
symbols, thus allowing you to use different mnemonics for different pur­
poses. 

3. 	 To compute expressions whose values are unknown at coding time or diffi ­
cult to calculate. The value of the expressions is then assigned to a 
symbol. 

The EQU instruction can be used anywhere in a source module after the ICTL 
instruction, or after any source macro definitions that may be specified. Note, 
however, that the EQU instruction can initiate an unnamed control section 
(private code) if it is specified before the first control section (initiated by a 
START or CSECT instruction). 

Format of EQU: 

Name Operation Operand 

A variable EQU Expression-lor 
symbol or Expression-l,Expression-2 or 
ordinary Expression-l,Expression-2,Expression-3, or 
symbol Expression-l"Expression-3 

Note: The two commas in the last option above indicate the absence of 
expression 2. 

Expression 1 represents a value. It must always be specified and it may 
assume any value allowed for an assembly expression: Absolute (including 
negative), relocatable, or complexly relocatable. The assembler carries this 
value as a signed 4-byte (32-bit) number; all four bytes are printed in the 
program listings opposite the symbol. 

Any symbols used in the first operand (expression 1) need not be previously 
defined. If the expression in the first operand is complexly relocatable, the 
whole expression, rather than its value, is assigned to the symbol. During the 
evaluation of any expression that includes a complexly relocatable symbol, that 
symbol is replaced by its own defining expression. 

Consider the following example, in which A1 and A2 are defined in one control 
section, and B1 and B2 in another: 

x EQU Al+Bl 
y EQU X-A2-B2 

92 Assembler H Version 2 Language Reference 



The first EQU statement assigns a complexly relocatable expression (A1 +B1) 
to X. During the evaluation of the expression in the second EQU statement, X is 
replaced by its defining relocatable expression (A1+B1), and the assembler 
evaluates the resulting expression (A1 + B1-A2-B2) and assigns an absolute 
value to Y, because the relocatable terms in the expression are paired. 

Expression 2 represents a length attribute. It is optional, but, if specified, it 
must have an absolute value in the range of 0 to 65,535. Expression 3 repres­
ents a type attribute. It is optional, but, if specified, must be a self-defining term 
with a value in the range of 0 to 255. 

Any symbols appearing in expressions 2 and/or 3 must have been previously 
defined. 

Expression 1 (Value): The assembler assigns the relocatable or absolute value 
of expression 1 to the symbol in the name field at assembly time. If expression 
2 is omitted, the assembler also assigns a length attribute value to the symbol 
in the name field according to the length attribute value of the leftmost (or only) 
term of expression 1. The length attribute value is described in "Chapter 2. 
Coding and Structure." It is defined as follows: 

1. 	 If the leftmost term is a location cou nter reference (*), a self-defi n i ng term, 
or a symbol length attribute value reference, the length attribute is 1. Note 
that this also applies if the leftmost term is a symbol that is equated to any 
of these values. 

2. 	 If the leftmost term is a symbol that is used in the name field of a DC or OS 
instruction, the length attribute value is equal to the implicit or explicit 
length of the first (or only) constant specified in the DC or OS operand field. 

3. 	 If the leftmost term is a symbol that is used in the name field of a machine 
instruction, the length attribute value is equal to the length of the assembled 
instruction. 

4. 	 Symbols that name assembler instructions, except the DC and OS 

instructions, have a length attribute value of 1. However, the name of a 

CCW, CCWO, or CCW1 instruction has a length attribute value of 8. 


5. 	 The length attribute value assigned in cases 2 to 4 above only applies to the 
assembly-time value of the attribute. Its value at preassembly time, during 
conditional assembly processing, is always 1. 

6. 	 Further, if expression 3 is omitted, the assembler assigns a type attribute 

value of U to the symbol in the name field. 


Expression 2 (Length-Attribute Value): If expression 2 is specified, the assem­
bler assigns its value as a length attribute value to the symbol in the name 
field. This value overrides the normal length attribute value implicitly assigned 
from expression 1. If expression 2 is a self-defining term, the assembler also 
assigns the length attribute value to the symbol at preassembly time (during 
conditional assembly processing). 

Note: This expression must have been previously defined. 

Chapter 5. Assembler Instruction Statements 93 



Expression 3 (Type-Attribute Value): If expression 3 is specified, it must be a 
self-defining term. The assembler assigns its EBCDIC value as a type attribute 
value to the symbol in the name field. This value overrides the normal type 
attribute value implicitly assigned from expression 1. 

Using Preassembly Values: You can use the preassembly values assigned by 
the assembler in conditional assembly processing. 

If only expression 1 is specified, the assembler assigns a preassembly value of 
1 to the length attribute, and a preassembly value of U to the type attribute of 
the symbol. These values can be used in conditional assembly (although refer­
ences to the length attribute of the symbol will be flagged). The absolute or 
relocatable value of the symbol, however, is not assigned until assembly, and 
thus may not be used at preassembly. 

If you include expressions 2 and 3 and wish to use the explicit attribute values 
in preassembly processing, then 

• The symbol in the name field must be an ordinary symbol. 
• Expression 2 and expression 3 must be single self-defining terms. 

Symbol in the Name Field: The assembler assigns an absolute or relocatable 
value, a length attribute value, and a type attribute value to the symbol in the 
name field. 

The absolute or relocatable value of the symbol is assigned at assembly time, 
and is, therefore, not available for conditional assembly processing at preas­
sembly time. 

The type and length attribute values of the symbol are available for conditional 
assembly processing under the following conditions: 

• The symbol in the name field must be an ordinary symbol. 
• Expression 2 and expression 3 must be single self-defining terms. 

Redefining Symbolic Operation Codes 

OPSYN-Equate Operation Code 
The OPSYN instruction allows you to define your own set of symbols to repre­
sent operation codes for: 

• Machine and extended mnemonic branch instructions 
• Assembler instructions, including conditional assembly instructions 

You can also prevent the assembler from recognizing a symbol that represents 
a current operation code. 

94 Assembler H Version 2 Language Reference 



Two formats of OPSYN: 

Name Operation Operand 

Any symbol or OPSYN An operation code 
operation code 

or 

An 	 operation OPSYN Blank 
code 

The OPSYN instruction can be coded anywhere in the program to redefine an 
operation code. 

The operation code specified in the name field or the operand field must repre­
sent either: 

1. 	 The operation code of one of the assembler or machine instructions as 
described in "Chapter 3. Addressing, Program Sectioning, and Linking" on 
page 43, "Chapter 4. Machine Instruction Statements," 
"Chapter 5. Assembler Instruction Statements," or "Chapter 9. How to 
Write Conditional Assembly Instructions" on page 211 , respectively, or 

2. 	 The operation code defined by a previous OPSYN instruction. 

The OPSYN instruction assigns the properties of the operation code specified in 
the operand field to the symbol in the name field. A blank in the operand field 
causes the operation code in the name field to lose its properties as an opera­
tion code. 

Examples: 

1. 	 The symbol in the name field can represent a valid operation code. It loses 
its current properties as if it had been defined in an OPSYN instruction with 
a blank operand field. In the following example, Land LR will both possess 
the properties of the LR machine instruction operation code: 

L OPSYN LR 

2. 	 When the same symbol appears in the name field of two OPSYN 
instructions, the latest definition takes precedence. In the example below, 
STORE now represents the STH machine operation: 

STORE OPSYN ST 
STORE OPSYN STH 

Redefining Conditional Assembly Instructions: A redefinition of a conditional 
assembly operation code will have an effect only on macro definitions 
appearing after the OPSYN instruction. Thus, the new definition is not valid 
during the processing of subsequent macro instructions calling a macro that 
was defined prior to the OPSYN statement. 

Chapter 5. Assembler Instruction Statements 95 



Any OPSYN statement redefining the operation code of an instruction generated 
from a macro instruction will, however, be valid, even if the definition of the 
macro was made prior to the OPSYN statement. The following example illus­
trates this difference between conditional assembly instructions and model 
statements within macro instructions. 

MACRO Macro header 
MAC Macro prototype 
AIF 
MVC 
MEND Macro trailer 

AIF OPSYN AGO Assign AGO properties to AIF 
MVC OPSYN MVI Assign MVI properties to MVC 

MAC Macro call 
[AIF Evaluated as AIF instruction; 

generated AIFs not printed] 
MVC Evaluated as MVI instruction 

Open code started at this point 
AIF Evaluated as AGO instruction 
MVC Evaluated as MVI instruction 

AIF and MVC instructions are used in a macro definition. OPSYN instructions 
are used to assign the properties of AGO to AIF and to assign the properties of 
MVI to MVC, after the macro definition has been edited. In subsequent calls to 
that macro, AIF is still defined as an AIF operation, while MVC is treated as an 
MVI operation. In open code following the OPSYN instructions, the operations 
of both instructions are derived from their new definitions. If the macro is rede­
fined, either by means of a loop to a point before the macro definition or by a 
subsequent macro definition defining the same macro, the new definitions of 
AIF and MVC (that is, AGO and MVI) will be fixed for future expansions. 

Data Definition Instructions 
The data definition instruction statements are: Define Constant (DC), Define 
Storage (DS), and three types of Channel Command Words (CCW, CCWO, and 
CCW1). 

These statements are used to define constants, reserve storage, and specify 
the contents of channel command words, respectively. You can also provide a 
label for these instructions and then refer to the data symbolically in the oper­
ands of machine and assembler instructions. This data is generated and 
storage is reserved at assembly time, and used by the machine instructions at 
execution time. 

DC-Define Constant 
You specify the DC instruction to define the data constants you need for 
program execution. The DC instruction causes the assembler to generate the 
binary representation of the data constant you specify into a particular location 
in the assembled source module; this is done at assembly time. 

96 Assembler H Version 2 Language Reference 



The DC instruction can generate the following types of constants: 

Type of 
Constant Function Example 

Address Defines address mainly 
for the use of fixed-point ADCON 

L 
DC 

5,ADCON 
A(SmIHHERE) 

and other instructions in 
the universal instruction 
set 

Binary Defines bit patterns FLAG DC B ' 00010000 ' 

Character Defines character strings CHAR DC C'string of characters' 

or messages 

Decimal Used by decimal 
instructions PCON 

AREA 

AP 
DC 
DS 

AREA, PC ON 
P'lOO' 
P 

Fixed-point Used by the fixed-point 
and other instructions of FCOtl 

L 
DC 

3,FCON 
F' 100' 

the universal set 

Floating-point Used by floating-point 
instructions ECON 

LE 
DC 

2,ECON 
E'100.50' 

Graphic Defines character strings OBCS DC G'<.D.B.C.S .S. LR.l.tLG>' 
or messages that contain 
pure double-byte data 

Hexadecimal Defines large bit patterns PATTERN DC X' FFOOFFOO' 

Figure 23. Types of Data Constants 

Format of DC: 

Name Operation Operand 

Any symbol DC One or more operands 
or blank separated by conlllas 

The symbol in the name field represents the address of the first byte of the 
assembled constant. If several operands are specified, the first constant 
defined is addressable by the symbol in the name field. The other constants 
can be reached by relative addressing. 

Each operand in a DC instruction consists of four subfields: the first three 
describe the constant; the fourth provides the nominal value(s) for the 
constant(s) to be generated. The subfields of each DC operand are written in 
the following sequence: 

2 3 4 
Duplication Type ~1odifiers Nominal 
Factor Value(s) 

Chapter 5. Assembler Instruction Statements 97 



For example, in 

18XL2'FA' 

the four subfields are: 

• 	 Duplication factor is 10 
• 	 Type is X 
• 	 Modifier is L2 
• 	 Nominal value is FA 

If all subfields are specified, the order given above is required. The first and 
third subfields can be omitted, but the second and fourth must be specified in 
that order. 

Rules for DC Operand 
1. 	 The type subfield and the nominal value must always be specified. 

2. 	 The duplication factor and modifier subfields are optional. 

3. 	 When multiple operands are specified, they can be of different types. 

4. 	 When multiple nominal values are specified in the fourth subfield, they must 
be separated by commas and be of the same type. Multiple nominal values 
are not allowed for character constants. 

5. 	 The descriptive subfields apply to all the nominal values. 

Note: Separate constants are generated for each separate operand and 
nominal value specified. 

6. 	 No blanks are allowed: 

• 	 Between subfields. 
• 	 Between multiple operands. 
• 	 Within any subfields, unless they occur as part of the nominal value of a 

character constant, or as part of a character self-defining term in a 
modifier expression, or in the duplication factor subfield. 

Information about Constants 
Symbolic Addresses of Constants: Constants defined by the DC instruction are 
assembled into an object module at the location at which the instruction is 
specified. However, the type of constant being defined will determine whether 
the constant is to be aligned on a particular storage boundary or not (see 
"Alignment of Constants" below). The value of the symbol that names the DC 
instruction is the address of the leftmost byte (after alignment) of the first or 
only constant. 

Length Attribute Value of Symbols Naming Constants: The length attribute 
value assigned to the symbols in the name field of the constants is equal to: 

• 	 The implicit length (see (1) in Figure 24 on page 99) of the constant when 
no explicit length is specified in the operand of the constant, or 

• 	 The explicitly specified length (see (2) in Figure 24) of the constant. 

Note: If more than one operand is present, the length attribute value of the 
symbol is the length in bytes of the first constant specified, according to its 
implicitly or explicitly specified length. 

98 Assembler H Version 2 Language Reference 



....' 

Alignment of Constants: The assembler aligns constants on different bounda­
ries according to the following: 

• 	 On boundaries implicit to the type of constant (see (1) in Figure 25 on 
page 100) when no length specification is supplied . 

• 	 On byte boundaries (see (2) in Figure 25) when an explicit length specifica­
tion is made. 

Bytes that are skipped to align a constant at the proper boundary are not con­
sidered part of the constant. They are filled with zeros. 

Notes: 

1. 	 The automatic alignment of constants and areas does not occur if the 
NOALIGN assembler option has been specified when the assembler was 
invoked. 

2. 	 Alignment can be forced to any boundary by a preceding DS (or DC) 
instruction with a zero duplication factor. This occurs when either the 
ALIGN or NOALIGN option is set. 

Value of 
Type of Implicit length 
constant length' Examples Attribute' 

B as needed DC S'l 0010000' 

C as needed DC CWOW' 3 
DC Cl8'WOW'l 8 

G as needed DC G'<DaDb>' 4 
DC Gl8' < DaDb>' 8 

X as needed DC X'FFEEOO' 3 
DC Xl2'FFEE'2 2 

H 2 DC H'32' 2 
F 4 DC FL3'32'2 3 

P as needed DC P'123' 2 
DC PL4'123'2 4 

Z as needed DC Z'123' 3 
DC Z110'123'2 10 

E 4 
D 8 
L 16 

Y 2 DC Y(HERE) 2 
A 4 DC AL1(THERE) 1 

S 2 
V 2 
Q 4 

Figure 24. Length Attribute Value of Symbol Naming Constants 

Notes to Figure 24: 

1. 	 Depends on type. 
2. 	 Depends on whether or not an explicit length is specified in constant. 

~ 


Chapter 5. Assembler Instruction Statements 99 



Padding and Truncation of Values 
The nominal values specified for constants are assembled into storage. The 
amount of space available for the nominal value of a constant is determined: 

• 	 By the explicit length specified in the second operand subfield, or 

• 	 If no explicit length is specified, by the implicit length according to the type 
of constant defined (see Appendix B, "Summary of Constants" on 
page 267). 

Implicit 
Type of Boundary Boundary 
constant Alignment' Examples Alignment 

B byte 

C byte 

G byte 

X byte 

H halfword DC H'25' halfword 
DC HL3'25'2 byte 

F halfword DC F'225' fullword 
DC FL7'225'2 byte 

p byte DC P'2934' byte 
Z byte DC Z'1235' byte 

DC ZL2'1235'2 byte 

E fullword DC E'1.25' fullword 
DC EL5'1.25'2 byte 

0 doubleword DC BD'95' doubleword 
DC BDL7'95'2 byte 

L doubleword DC L'2.57E65' doubleword 

Y halfword DC Y(HERE) halfword 
A full word DC AL1(THERE)2 byte 
S halfword 
V full word 
0 fullword 

Figure 25. Alignment of Constants 

Padding: If more space is available than is needed to accommodate the binary 
representation of the nominal value, the extra space is padded: 

• 	 With binary zeros on the left for the binary (B), hexadecimal (X), fixed-point 
(H,F), packed decimal (P), and all address (A,Y,S,V,Q) constants 

• 	 With EBCDIC zeros on the left (XX'FO') for the zoned decimal (Z) constants 
• 	 With EBCDIC blanks on the right (XX '40') for the character (C) constants 

• 	 With double-byte blanks on the right (XX'4040') for the graphic (G) con­
stants 

Notes: 

1. 	 Floating-point constants (E,D,L) are also padded on the right with zeros. 

2. 	 Padding is on the left for all constants except the character constant and 
the graphic constant. 

3. 	 Padding is on the right for the character constant and the graphic constant. 

.." 


100 Assembler H Version 2 Language Reference 



Truncation: If less space is available than is needed to accommodate the 
nominal value, the nominal value is truncated and part of the constant is lost. 
Truncation of the nominal value is: 

• 	 On the left for the binary (B), hexadecimal (X), decimal (P and Z), and 
address (A and Y) constants. 

• 	 On the right for the character (C) constant and the graphic (G) constant. 

However, the fixed-point constants (H and F) will not be truncated but flagged if 
significant bits would be lost to truncation. 

Notes: 

1. 	 Floating-point constants (E,D,L) are not truncated; they are rounded. 

2. 	 The above rules for padding and truncation also apply when the bit-length 
specification is used (see "Subfield 3: Modifiers" below). 

3. 	 Double-byte data in C-type constants cannot be truncated because trun­
cation creates invalid double-byte data. Error IEV208 "TRUNCATION INTO 
DOUBLE-BYTE DATA IS NOT PERMITTED" will be issued if such truncation 
is attempted. 

4. 	 Truncation of double-byte data in G-type constants is permitted, because 
the length modifier restrictions (see "Subfield 3: Modifiers" below) will 
ensure that invalid double-byte data cannot be created by truncation. 

Subfield 1: Duplication Factor 
The d,uplication factor may be omitted. If specified, it causes the nominal value 
or multiple nominal values specified in a constant to be generated the number 
of times indicated by the factor. It is applied after the nominal value or values 
are assembled into the constant. Symbols used in subfield 1 need not be previ­
ously defined. This does not apply to literals. 

The factor can be specified by an unsigned decimal self-defining term or by an 
absolute expression enclosed in parentheses. 

The expression should have a positive value or be equal to zero. 

Notes: 

1. 	 The value of a location counter reference in a duplication factor is the value 
before any alignment to boundaries is done, according to the type of con­
stant specified. 

2. 	 A duplication factor of zero is permitted with the following results: 

• 	 No value is assembled. 
• 	 Alignment is forced according to the type of constant specified, if no 

length attribute is present (see "Alignment of Constants" above). 
• 	 The length attribute of the symbol naming the constant is established 

according to the implicitly or explicitly specified length. 

3. 	 If duplication is specified for an address constant containing a location 
counter reference, the value of the location counter reference is incre­
mented by the length of the constant before each duplication is performed 
(for examples, see "Address Constants-A and Y" on page 112. 

Chapter 5. Assembler Instruction Statements 101 



Subfield 2: Type 
The type subfield must be specified. From the type specification, the assembler 
determines how it is to interpret the constant and translate it into the appro­
priate machine format. The type is specified by a single-letter code as shown 
in Figure 26. 

Further information about these constants is provided in the discussion of the 
constants themselves under "Subfield 4: Nominal Value" on page 106. 

Code Constant Type Machine Format 

C Character 8-bit code for each character 

G Graphic 16-bit code for each character 

X Hexadecimal 4-bit code for each hexadecimal digit 

B Binary Binary format 

F Fixed-point Signed, fixed-point binary format; normally a full word 

H Fixed-point Signed, fixed-point binary format; normally a halfword 

E Floating-poi nt Short floating-point format; normally a full word 

D Floating-point Long floating-point format; normally a doubleword 

L Floating-point Extended floating-point format; normally two doublewords 

P Qecimal Packed decimal format 

Z Decimal Zoned decimal format 

A Address Value of address; normally a full word 

y Address Value of address; normally a halfword 

S Address Base register and displacement value; a halfword 

V Address Space reserved for external symbol addresses; each address 
normally a fullword 

0 Address Space reserved for external dummy section offset 

Figure 26. Type Codes for Constants 

The type specification indicates to the assembler; 

1. 	 How the nominal value(s) specified in subfield 4 is to be assembled; that is, 
which binary representation or machine format the object code of the con­
stant must have. 

2. 	 At what boundary the assembler aligns the constant, if no length specifica­
tion is present. 

3. 	 How much storage the constant is to occupy, accordin8 ,0 the implicit 
length of the constant, if no explicit length specification is present (for 
details, see" Padding and Truncation of Values" on page 100). 

Subfield 3: Modifiers 
Modifiers describe the length in bytes desired for a constant (in contrast to an 
implied length), and the scaling and exponent for the constant. 

.~~'. ....' 

102 Assembler H Version 2 Language Reference 



The three modifiers are: 

1. The length modifier (L), which explicitly defines the length in bytes desired 
for a constant. For example: 

LENGTH DC XLlO'FF' 

2. 	 The scale modifier (S), which is only used with the fixed-point or floating­

point constants (for details, see below under "Scale Modifier"). For 

example: 


SCALE DC FS8'3S.92' 

3. 	 The exponent modifier (E), that is only used with fixed-point or floating-point 
constants, and which indicates the power of 10 by which the constant is to 
be multiplied before conversion to its internal binary format. For example: 

EXPON DC EE3'3.414' 

If multiple modifiers are used, they must appear in this sequence: length, scale, 
exponent. For example: 

ALL3 DC DL7S3ESO'2.7182' 

Symbols used in subfield 3 need not be previously defined. This does not apply 
to literals. 

Length Modifier: The length modifier indicates the number of bytes of storage 
into which the constant is to be assembled. It is written as Ln, where n is 
either a decimal self-defining term or an absolute expression enclosed by 
parentheses. It must have a positive value, and any symbols it contains must 
be 	previously defined. 

When the length modifier is specified: 

• 	 Its value determines the number of bytes of storage allocated to a constant. 
It, therefore, determines whether the nominal value of a constant must be 
padded or truncated to fit into the space allocated (see "Padding and Trun­
cation of Values" on page 100). 

• 	 No boundary alignment, according to constant type, is provided (see "Align­
ment of Constants" above). 

• 	 Its value must not exceed the maximum length allowed for the various 

types of constant defined. 


• 	 The length modifier must not truncate double-byte data in a C-type constant. 

• 	 The length modifier must be a multiple of 2 in a G-type constant. 

Note: When no length is specified, for character and graphic constants, the 
whole constant is assembled into its implicit length. 

Bit-Length Specification: The length modifier can be specified to indicate the 
number of bits into which a constant is to be assembled. The bit-length specifi ­
cation is written as L.n where n is either a decimal self-defining term, or an 
absolute expression enclosed in parentheses. It must have a positive value. 
Symbols that it contains need not be previously defined. 

The value of n must lie between 1 and the number of bits (a multiple of 8) that 
are required to make up the maximum number of bytes allowed in the type of 

Chapter 5. Assembler Instruction Statements 103 

http:FS8'3S.92


constant being defined. The bit-length specification cannot be used with the G-, 
S-, V-, and Q-type constants. 

When only one operand and one nominal value are specified in a DC instruc­
tion, the following rules apply: 

1. 	 The bit-length specification allocates a field into which a constant is to be 
assembled. The field starts at a byte boundary and can run over one or 
more byte boundaries, if the bit length specified is greater than 8. 

If the field does not end at a byte boundary and if the bit length specified is 
not a multiple of 8, the remainder of the last byte is filled with zeros. 

2. The nominal value of the constant is assembled into the field: 

a. 	 Starting at the high order end for the C-, E-, D-, and L-type constants 

b. 	 Starting at the low-order end for the remaining types of constants that 
allow bit-length specification 

3. 	 The nominal value is padded or truncated to fit the field (see "Padding and 
Truncation of Values" on page 100). 

Padding of character constants is done with hexadecimal blanks, X'40'; 
other constant types are padded with zeros. 

Note: The length attribute value of the symbol naming a DC instruction with a 
specified bit length is equal to the minimum number of integral bytes needed to 
contain the bit length specified for the constant. L'TRUNCF is equal to 2. Thus, 
a reference to TRUNCF would address the entire two bytes that are assembled. 

When more than one operand is specified in a DC instruction, or more than one 
nominal value in a DC operand, the above rules about bit-length specifications 
also apply, except: 

1. 	 The first field allocated starts at a byte boundary, but the succeeding fields 
start at the next available bit. 

2. 	 After all the constants have been assembled into their respective fields, the 
bits remaining to make up the last byte are filled with zeros. 

Note: If duplication is specified, filling with zeros occurs once at the end of 
all the fields occupied by the duplicated constants. 

3. 	 The length attribute value of the symbol naming the DC instruction is equal 
to the number of integral bytes that would be needed to contain the bit 
length specified for the first constant to be assembled. _ 

Note: For double-byte data in C-type constants: If bit-length specifications are 
used, with a duplication factor greater than 1, and a bit-length which is not a 
multiple of 8, then the double-byte data will no longer be valid for devices 
capable of presenting DSCS characters. No error message will be issued. 

Storage Requirement for Constants: The total amount of storage required to 
assemble a DC instruction is the sum of: 

1. 	 The requirements for the individual DC operands specified in the instruc­
tion. The requirement of a DC operand is the product of: 

• 	 The length (implicit or explicit) 
• 	 The number of nominal values 
• 	 The duplication factor, if specified 

104 Assembler H Version 2 Language Reference 



2. 	 The number of bytes skipped for the boundary alignment between different 
operands. 

Scale Modifier: The scale modifier specifies the amount of internal scaling that 
is desired: 

• 	 Binary digits for fixed-point constants (H, F) 
• 	 Hexadecimal digits for floating-point constants (E, D, L) 

The scale modifier can be used only with the above types of constant. 

The allowable range for each type of constant is as follows: 

Fixed-point constant H -187 to 15 
Fixed-point constant F -187 to 30 
Floating-point constant E o to 5 
Floating-point constant D o to 13 
Floating-point constant L o to 27 

The scale modifier is written as Sn, where n is either a decimal self-defining 
term, or an absolute expression enclosed in parentheses. 

Both types of specification can be preceded by a sign; if no sign is r,Jresent, a 
plus sign is assumed. 

Scale Modifier for Fixed-Point Constants: The scale modifier for fixed-point con­
stants specifies the power of two by which the fixed-point constant must be 
multiplied after its nominal value has been converted to its binary represen­
tation, but before it is assembled in its final "scaled" form. Scaling causes the 
binary point to move from its assumed fixed position at the right of the right­
most bit position. 

Notes: 

1. 	 When the scale modifier has a positive value, it indicates the number of 

binary positions to be occupied by the fractional portion of the binary 

number. 


2. 	 When the scale modifier has a negative value, it indicates the number of 
binary positions to be deleted from the integer portion of the binary number. 

3. 	 When positions are lost because of scaling (or lack of scaling), rounding 
occurs in the leftmost bit of the lost portion. The rounding is reflected in the 
rightmost position saved. 

Scale Modifier for Floating-Point Constants: The scale modifier for floating-point 
constants must have a positive value. It specifies the number of hexadecimal 
positions that the fractional portion of the binary representation of a floating­
point constant is to be shifted to the right. The hexadecimal point is assumed 
to be fixed at the left of the leftmost position in the fractional field. When 
scaling is specified, it causes an un normalized hexadecimal fraction to be 
assembled (unnormalized is when the leftmost positions of the fraction contain 
hexadecimal zeros). The magnitude of the constant is retained, because the 
exponent in the characteristic portion of the constant is adjusted upward 
accordingly. When hexadecimal positions are lost, rounding occurs in the left­
most hexadecimal position of the lost portion. The rounding is reflected in the 
rightmost position saved. 

Chapter 5. Assembler Instruction Statements 105 



Exponent Modifier: The exponent modifier specifies the power of 10 by which 
the nominal value of a constant is to be multiplied before it is converted to its 
internal binary representation. It can only be used with the fixed-point (H and 
F) and floating-point (E, D, and L) constants. The exponent modifier is written 
as En, where n can be either a decimal self-defining term, or an absolute 
expression enclosed in parentheses. 

The decimal self-defining term or the expression can be preceded by a sign: If 
no sign is present, a plus sign is assumed. The range for the exponent modi­
fier is -85 to +75. 

Notes: 

1. 	 The exponent modifier is not to be confused with the exponent that can be 
specified in the nominal value subfield of fixed-point and floating-point con­
stants. 

The exponent modifier affects each nominal value specified in the operand, 
whereas the exponent written as part of the nominal value subfield only 
affects the nominal value it follows. If both types of exponent specification 
are present in a DC operand, their values are algebraically added together 
before the nominal value is converted to binary form. However, this sum 
must lie within the permissible range of -85 to + 75. 

2. 	 The value of the constant, after any exponents have been applied, must be 
contained in the implicitly or explicitly specified length of the constant to be 
assembled. 

Subfield 4: Nominal Value 
The nominal value subfield must always be specified. It defines the value of the 
constant (or constants) described and affected by the subfields that precede it. 
It is this value that is assembled into the internal binary representation of the 
constant. The formats for specifying constants are described as follows: 

Constant Single Multiple 
Type Nominal Value Nominal Value 

c 'value' not allowed 

G '<.v.a.l.u.e> ' not allowed 

B 
X 
H 
F 
P 'value' 'value,value, ...value' 
Z 
E 
D 
L 

A 
Y 
S (value) (value, value, ...value) 
Q 
V 

As the above list shows, a data constant value (any type except A, Y, S, Q, and 
V) is enclosed by apostrophes. An address constant value (type A, Y, S, Q, or 
V) is enclosed by parentheses. To specify two or more values in the subfield, 

106 Assembler H Version 2 Language Reference 



the values must be separated by commas, and the entire sequence of values 
must be enclosed by the appropriate delimiters; that is, apostrophes or paren­
theses. Multiple values are not permitted for character constants. 

How nominal values are specified and interpreted by the assembler is 
explained in each of the following subsections, starting with "Binary 
Constant-B" below. 

Literal Constants: Literal constants allow you to define and refer to data 
directly in machine instruction operands. You do not need to define a constant 
separately in another part of your source module. The difference between a 
literal, a data constant, and a self-defining term is described in "Literals" on 
page 36. 

A literal constant is specified in the same way as the operand of a DC instruc­
tion. The general rules for the operand subfields of a DC instruction also apply 
to the subfield of a literal constant. Moreover, the rules that apply to the indi­
vidual types of constants apply to literal constants as well. 

However, literal constants differ from DC operands in the following ways: 

• Literals must be preceded by an equal sign. 
• Multiple operands are not allowed. 
• The duplication factor must not be zero. 

The following text describes each of the constant types and provides examples. 
The constant types are: 

Binary 

Character 

Graphic 

Hexadecimal' 

Fixed-Point 

Decimal 

Packed Decimal 

Zoned Decimal 

Address 

Floating-Point 


Binary Constant-B: The binary constant allows you to specify the precise bit 
pattern you want assembled into storage. Each binary constant is assembled 
into the integral number of bytes (see (1) in Figure 27 on page 108) required to 
contain the bits specified. 

The following example shows the coding used to designate a binary constant. 
BCON would have a length attribute of 1. 

BCON DC B' 11011101' 

BTRUNC DC BLl '1001(:)0011 ' 

BPAD DC BLl'101' 


BTRUNC would assemble with the leftmost bit truncated, as follows: 

00100011 

BPAD would assemble with five zeros as padding, as follows: 

808001(:ll 

Chapter 5. Assembler Instruction Statements 107 

L 



--------- ------------------------------------------

Subfield 	 Value Example Result 

1. Duplication factor Allowed 

2. 	Modifiers As needed B DC B'10101111' L'B = l' 
Implicit length: C DC B'101' B'C = l' 
(length modifier 
not present) 

Alignment: Byte 

(Length modifier 

not present) 


Range for length: 	 1 to 256 
(byte length) 

.1 to .2048 
(bit length) 

Range for scale 	 Not allowed 

Range for exponent 	 Not allowed 

3. 	Nominal value 
Represented by: Binary digits 

(0 or 1) 

Enclosed by: 	 Apostrophes 

Exponent allowed: 	 No 

Number of values 	 Multiple 
per operand: 

Padding: 	 With zeros at left 

Truncation of 	 At left 
assembled value: 

Figure 27. Binary Constants 

Character Constant-C: The character constant allows you to specify character 
strings, such as error messages, identifiers, or other text, that the assembler 
will convert into their binary (EBCDIC) representation. 

Any of the valid 256 punch combinations can be designated in a character con­
stant. Each character specified in the nominal value subfield is assembled into 
one byte (~ee (1) in Figure 28 on page 109). 

Multiple nominal values are not allowed, because if a comma is specified in the 
nominal value subfield, the assembler considers the comma a valid character 
(see (2) in Figure 28) and, therefore, assembles it into its binary (EBCDIC) rep­
resentation. For example 

DC C'A,B' 

is assembled as A,B with object code C16BC2. 

Special consideration 	must be given to representing apostrophes and amper­
sands as characters. 	 Each single apostrophe or ampersand desired as a char­
acter in the constant must be represented by a pair of apostrophes or 
ampersands. They are assembled as single apostrophes and ampersands (see 
(3) in Figure 28). 

In the following example, the length attribute of FIELD is 12: 

FIELD DC C'TOTAL IS llO' 

108 Assembler H Version 2 Language Reference 



However, in this next example, the length attribute is 15, and three blanks 
appear in storage to the right of the zero: 

FIELD DC CL15'TOTAL IS 110' 

In the next example, the length attribute of FIELD is 12, although 13 characters 
appear in the operand. The two ampersands count as only one byte. 

FIELD DC C'TOTAL IS &&10' 

Note that, in the next example, a length of 4 has been specified, but there are 
five characters in the constant. 

FIELD DC 3CL4'ABCDE' 

The generated constant would be: 

ABCDABCDABCD 

On the other hand, if the length had been specified as 6 instead of 4, the gener­
ated constant would have been: 

ABC DE ABC DE ABCDE 

Subfield Value Example Result 

1. Duplication factor Allowed 

2. Modifiers As needed C DC C'LENGTH" L'C = 6 
Implicit length: 
(length modifier 
not present) 

Alignment: Byte 
(Length modifier 
not present) 

Range for length: 1 to 256 
(byte length) 

.1 to .2048 
(bit length) 

Range for scale Not allowed 

Range for exponent Not allowed 

3. Nominal value Object code 
Represented by: Characters DC CA"B' X'C17DC2'J 

(all 256 8-bit DC C'A&&B' X'C150C2'J 
combinations) 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of values One DC CAB' Object code 
per operand: X'C16BC2'2 

Padding: With blanks at right 
(X'40') 

Truncation of At right 
assembled value: 

Figure 28. Character Constants 

Note that the same constant could be specified as a literal. 

MVC AREA(12),=3CL4'ABCDE' 

Chapter 5. Assembler Instruction Statements 109 



Double-byte data in character constants: When the assembler is invoked with 
the DBCS option, double-byte data may be used in a character constant. The 
start of double-byte data is delimited by SO, and the end by SI. All characters 
between SO and SI must be valid double-byte characters. No single-byte 
meaning is drawn from the double-byte data. Hence, special characters such 
as apostrophe and ampersand are not recognized between SO and SI. The SO 
and SI are included in the assembled representation of a character constant 
containing double-byte data. 

If a duplication factor is used, SI/SO pairs at the duplication points are not 
removed. For example, the statement: 

OBCS DC 3C'<01>' 

will result in the assembled character string value of: 

<01><01><01> 

Null double-byte data (SO followed immediately by SI) is acceptable and is 
assembled into the constant value. 

Examples of character constants containing double-byte data are: 

OBCS1 DC C'<.O.B.C.S>' 
OBCS2 DC C'abc<.A.B.C>' 
OBCS3 DC C'abc<.A.B.C>def' 

The length attribute includes the SO and SI. For example, the length attribute 
of DBCS2 is 11. No truncation of double-byte character strings within C-type 
constants is allowed, since invalid double-byte data would be created. 

Graphic Constant-G: When the assembler is invoked with the DBCS option, 
the graphic (G-type) constant is supported This constant type allows the 
assembly of pure double-byte data. The graphic constant differs from a char­
acter constant containing only double-byte data in that the SO and SI delimiting 
the start and end of double-byte data are not present in the assembled value of 
the graphic constant. Because SO and SI are not assembled, if a duplication 
factor is used, no redundant SI/SO characters are created. For example, the 
statement: 

OBCS DC 3G'<01>' 

will result in the assembled character string value of: 

010101 

Examples of graphic constants are: 

OBCS1 DC G'<.A.B.C>' 
OBCS2 DC GU0'<.A.B.C>' 
DBCS3 DC GL4'<.A.B.C>' 

Because the length attribute does not include the SO and SI, the length attri­
bute of DBCS1 is 6. The length modifier of 10 for DBCS2 causes padding of 2 
double-byte blanks at the right of the nominal value. The length modifier of 4 
for DBCS3 causes truncation after the first 2 double-byte characters. The length 
attribute of a graphic constant must be a multiple of 2. 

Note: The type attribute of a Graphic constant is not G; it is @. 

110 Assembler H Version 2 Language Reference 



Subfield Value Example Result 

1. Du~lication factor Allowed Object code 
3G'<.A>' X'42C142C142C1' 

2. Modifiers As needed 
Implicit length: Twice the number GC DC G'<.A.B>' L'GC = 4 
(length modifier of DBCS charac­
n0~ present) ters 

Alignment: Byte 

Range for length: 2 to 256 (byte 
length). Must be a 
multiple of 2. Bit 
length not allowed. 

3. Nominal value Object code 
Represented by: DBCS characters DC G'<.&.'>' X '4250427D' 

delimited by SO DC G'<.A> <.B>' X '42C142C2' 
and SI 

Enclosed by: Apostrophes 

Number of values One Object code 
per operand: DC G'<.A.,.B>' X '42C1426B42C2' 

Padding: With DBCS blanks Object code 
at right DC GL6'<.A>' X'42C140404040' 

Truncation of At right Object code 
assembled value: DC GL2'<.A.B>, X'42C1 ' 

Figure 29. Graphic Constants 

Hexadecimal Constant-X: You can use hexadecimal constants to generate 
large bit patterns more conveniently than with binary constants. Also, the 
hexadecimal values you specify in a source module allow you to compare them 
directly with the hexadecimal values generated for the object code and address 
locations printed in the program listing. 

Each hexadecimal digit (see (1) in Figure 30 on page 112) specified in the 
nominal value subfield is assembled into four bits (their binary patterns can be 
found in "Self-Defining Terms" on page 29). See (2) in Figure 30. The implicit 
length in bytes of a hexadecimal constant is then half the number of 
hexadecimal digits specified (assuming that a hexadecimal zero is added to an 
odd number of digits). See (3) in Figure 30. 

An 8-digit hexadecimal constant provides a convenient way to set the bit 
pattern of a full binary word. The constant in the following example would set 
the first and third bytes of a word to 1s: 

OS OF 
TEST DC X'FFOOFFOO' 

The OS instruction sets the location counter to a fullword boundary. (See 
"OS-Define Storage" on page 127.) 

The next example uses a hexadecimal constant as a literal and inserts 1s into 
bits 24 to 31 of reg ister 5. 

IC 5,=X'FF' 

Chapter 5. Assembler Instruction Statements 111 



In the following example, the digit A is dropped, because 5 hexadecimal digits 
are specified for a length of 2 bytes: 

ALPHACON DC 3XL2'A6F4E' 

The resulting constant is 6F4E, which occupies the specified 2 bytes. It is dupli­
cated three times, as requested by the duplication factor. If it had merely been 
specified as 3X' A6F4E', the resulting constant would have a hexadecimal zero 
in the leftmost position. 

OA6F4EOA6F4EOA6F4E 

Subfield Value Example Result 

1. Duplication factor Allowed 

2. Modifiers As needed X DC X'FFOOA2' L'X = 3' 
Implicit length: Y DC X'FOOA2' X'Y = 32 

(length modifier 
not present) 

Alignment: Byte 
(Length modifier 
not present) 

Range for length: 1 to 256 
(byte length) 

.1 to.2048 
(bit length) 

Range for scale Not allowed 

Range for exponent Not allowed 

3. Nominal value Object code 
Represented by: Hexadecimal DC X'l F' X'lF" 

digits DC X'91F' X'091F'J 

(0 to 9 and 
A to F) 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of values Multiple 
per operand: 

Padding: With zeros at left 

Truncation of At left 
assembled value: 

Figure 30. Hexadecimal Constants 

Fixed-Point Constant-F and H: Fixed-point constants allow you to introduce 
data that is in a form suitable for the operations of the fixed-point machine 
instructions of the universal instruction set. The constants you define can also 
be automatically aligned to the proper fullword or halfword boundary for the 
instructions that refer to addresses on these boundaries (unless the NOALIGN 
option has been specified; see "Information about Constants" on page 98). You 
can perform algebraic functions using this type of constant because they can 
have positive or negative values. 

112 Assembler H Version 2 Language Reference 



A fixed-point constant is written as a decimal number, which can be followed by 
a decimal exponent if desired. The format of the constant is as follows: 

1. 	 The nominal value can be a signed (see (1) in Figure 31 on page 114)-plus 
is assumed if the number is unsigned-integer, fraction, or mixed number 
(see (2) Figure 31) followed by an exponent (see (3) in Figure 31): positive 
or negative. 

2. 	 The exponent must lie within the permissible range (see (4) in Figure 31). If 
an exponent modifier is also specified, the algebraic sum (see (5) in 
Figure 31) of the exponent and the exponent modifier must lie within the 
permissible range. 

Some examples of the range of values that can be assembled into fixed-point 
constants are given below: 

Range of values 
Length that can be assembled 

_263 to 263_18 
4 _2 31 to 231 -1 
2 _2 15 to 215 -1 

_27 to 27_1 

The range of values depends on the implicitly or explicitly specified length (if 
scaling is disregarded). If the value specified for a particular constant does not 
lie within the allowable range for a given length, the constant is not assembled, 
but flagged as an error. 

A fixed-point constant is assembled as follows: 

1. 	 The specified number, multiplied by any exponents, is converted to a binary 
number. 

2. 	 Scaling is performed, if specified. If a scale modifier is not provided, the 

fractional portion of the number is lost. 


3. 	 The binary value is rounded, if necessary. The resulting number will not 
differ from the exact number specified by more than one in the least signif­
icant bit position at the right. 

4. 	 A negative number is carried in twos complement form. 

5. 	 Duplication is applied after the constant has been assembled. 

A field of three fullwords is generated from the statement below. The location 
attribute of CONWRD is the address of the leftmost byte of the first word, and 
the length attribute is 4, the implied length for a fullword fixed-point constant. 
The expression CONWRD +4 could be used to address the second constant 
(second word) in the field. 

CON\IRD DC 3F'658474' 

Chapter 5. Assembler Instruction Statements 113 



Subfield 	 Value Example Result 

1. 	Duplication factor Allowed 

2. 	Modifiers Fullword: 4 bytes 
Implicit length: Halfword: 2 bytes 
(length modifier 
not present) 

Alignment: Fullword or 
(Length modifier halfword 
not present) 

Range for length: - 1 to 8 
(byte length) 

.1 to .64 
(bit length) 

Range for scale 	 F: -187 to + 30 
H: -187 to + 15 

Range for exponent 	 -85 to + 754 DC HE + 90'2E-88" value=2xlO' 

3. 	Nominal value 
Represented 	by: Decimal Fullword: 

digits DC F'-200" 
(0 to 9) DC FS4'2.25'2 

Halfword: 
DC H' +200' 
DC HS4'.25' 

Enclosed by: 	 Apostrophes 

Exponent allowed: Yes 	 Fullword: 
DC F'2E6'J 

Halfword: 
DC H '2E-6' 

Number of values 	 Multiple 
per operand: 

Padding: 	 With zeros at left 

Truncation of Not allowed 
assembled value: (error message 

issued) 

Figure 31. Fixed-Point Constants 

The next statement causes the generation of a 2-byte field containing a nega­
tive constant. Notice that scaling has been specified in order to reserve 6 bits 
for the fractional portion of the constant. 

HALFCON DC HS6'c2S.46' 

The next constant (3.50) is multiplied by 10 to the power -2 before being con­
verted to its binary format. The scale modifier reserves 12 bits for the fractional 
portion. 

FULLCON DC HS12'3.SEJE-2' 

The same constant could be specified as a literal: 

AH 7,=HS12'3.SEJE-2' 

114 Assembler H Version 2 Language Reference 

http:HS6'c2S.46


The final example specifies three constants. Notice that the scale modifier 
requests 4 bits for the fractional portion of each constant. The 4 bits are pro­
vided whether or not the fraction exists. 

THREECON DC FS4 I 10,25.3, H10 I 

Decimal Constants-P and Z: The decimal constants allow you to introduce 
data in a form suitable for the operations of the decimal feature machine 
instructions. The packed decimal constants (P-type) are used for processing by 
the decimal instructions. The zoned decimal constants (Z-type) are in the form 
(EBCDIC representation) you can use as a print image, except for the digits in 
the rightmost byte. 

The nominal value can be a signed (plus is assumed if the number is unsigned) 
decimal number. A decimal point may be written anywhere in the number, or it 
may be omitted. The placement of a decimal point in the definition does not 
affect the assembly of the constant in any way, because the decimal point is not 
assembled into the constant. 

The specified digits are assumed to constitute an integer (see (1) in Figure 32 
on page 116). You may determine proper decimal point alignment either by 
defining data so that the point is aligned or by selecting machine instructions 
that will operate on the data properly (that is, shift it for purposes of alignment). 

Decimal constants are assembled as follows: 

Packed Decimal Constants: Each digit is converted into its 4-bit binary equiv­
alent (see (2) in Figure 32). The sign indicator (see (3) in Figure 32) is assem­
bled into the rightmost four bits of the constant. 

Zoned Decimal Constants: Each digit is converted into its 8-bit EBCDIC repre­
sentation (see (4) in Figure 32). The sign indicator (see (5) in Figure 32) 
replaces the first four bits of the low-order byte of the constant. 

The range of values that can be assembled into a decimal constant is shown 
below: 

Type of Range of values 
decimal constant that can be specified 
Packed 1031 _1 to _10 31 

Zoned 1016 _1 to _10 16 

For both packed and zoned decimals, a plus sign is translated into the 
hexadecimal digit C, a minus sign into the digit D. The packed decimal con­
stants (p-type) are used for processing by the decimal instructions. 

If an even number of packed decimal digits is specified, one digit will be left 
unpaired because the rightmost digit is paired with the sign. Therefore, in the 
leftmost byte, the leftmost four bits will be set to zeros and the rightmost four 
bits will contain the odd (first) digit. 

Chapter 5. Assembler Instruction Statements 115 



Subfield Value Example Result 

1. Duplication factor Allowed 

2. Modifiers 
Implicit length: 
(length modifier 
not present) 

As needed Packed: 
P DC P'+S93 

Zoned: 
Z DC Z'-S93 

L'P = 2 

L'Z = 3 

Alignment: 
(Length modifier 
not present) 

Byte 

Range for length: 1 to 16 
(byte length) 

.1 to .128 
(bit length) 

Range for scale Not allowed 

Range for exponent Not allowed 

3. Nominal value 
Represented by: Decimal 

digits 
(0 to 9) 

Packed: 
DC P'S.S" 
DC P'SS" 
DC P' + 555" 

Object code 
X'OSSC' 
X'OSSC' 
X'SSSC'J 

Zoned: 
DC Z'-SSS'4 

Object code 
X'FSFSDS's 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of values 
per operand: 

Multiple 

Padding: Packed: 
with binary 
zeros at left 

Zoned: 
with EBCDIC 
zeros (X'FO') 
at left 

Truncation of 
assembled value: 

At left 

Figure 32. Decimal Constants 

Examples: 

DC 
DC 
DC 
DC 

P'+1.25' 
Z' -543 ' 
Z'79.68' 
PL3'79.68' 

The following statement specifies both packed and zoned decimal constants. 
The length modifier applies to each constant in the first operand (that is, to 
each packed decimal constant). Note that a literal could not specify both oper­
ands. 

116 Assembler H Version 2 Language Reference 



Cont. 

DECIMALS DC 	 PL8'+25.8,-3874, x 

+2.3',Z'+88,-3.72' 


The last example illustrates the use of a packed decimal literal. 

UNPK QUTAREA,=PL2'+25' 

Address Constants: An address constant is a storage address that is translated 
into a constant. Address constants can be used for initializing base registers to 
facilitate the addressing of storage. Furthermore, they provide a means of com­
municating between control sections of a multisection program. However, 
storage addressing and control section communication are also dependent on 
the use of the USING assembler instruction and the loading of registers. 
Coding examples illustrating these considerations are provided in "How to Use 
the USING Instruction" in "USING-Use Base Address Register" on page 44. 

An address constant, unlike other types of constants, is enclosed in paren­
theses. If two or more address constants are specified in an operand, they are 
sepqrated by commas, and the entire sequence is enclosed by parentheses. 
There are five types of address constants: A, Y, S, Q, and V. A relocatable 
address constant may not be specified with bit lengths. 

Complex Relocatable Expressions: A complex relocatable expression can only 
be used to specify an A- or Y-type address constant. These expressions 
contain two or more unpaired relocatable terms and/or negative relocatable 
terms in addition to any absolute or paired relocatable terms that may be 
present. A complex relocatable expression might consist of external symbols 
and designate an address in an independent assembly that is to be linked and 
loaded with the assembly containing the address constant. 

Address Constants-A and Y: The following sections describe how the different 
types of address constants are assembled from expressions that usually repre­
sent storage addresses, and how the constants are used for addressing within 
and between source modules. 

In the A-type and Y-type address constant, you can specify any of the three 
types of assembly-time expressions whose values the assembler then com­
putes and assembles into object code. You use this expression computation as 
follows: 

• 	 Relocatable expressions for addressing 
• 	 Absolute expressions for addressing and value computation 
• 	 Complex relocatable expressions to relate addresses in different source 


modules 


Notes: 

1. 	 No bit-length specification (see (1) in Figure 33 on page 118) is allowed 
when a relocatable or complex relocatable expression (see (2) in Figure 33) 
is specified. The only explicit lengths that can be specified with these 
addresses are: 

• 	 3 or 4 bytes for A-type constants 
• 	 2 bytes for Y-type constants 

Chapter 5. Assembler Instruction Statements 117 

http:2.3',Z'+88,-3.72


2. 	 The value of the location counter reference (*) when specified in an address 

constant varies from constant to constant, if any of the following, or a com­
bination of the following, are specified: 

• 	 Multiple operands 

• 	 Multiple nominal values (see (3) in Figure 33) 
• 	 A duplication factor (see (4) in Figure 33) 

The location counter is incremented with the length of the previously 
assembled constant. 

3. 	 When the location counter reference occurs in a literal address constant, 

the value of the location counter is the address of the first byte of the 

instruction. 


Subfield Value Example 	 Result 

1. 	Du~lication factor Allowed A DC 5AL1 ("-At Object code 
X'0001020304' 

2. 	Modifiers A-type: 4 bytes 
Implicit length: Y -type: 2 bytes 
(length modifier 
not present) 

Alignment: A-type: full word 

(Length modifier V-type: halfword 

not present) 


Range for length: 	 A-type: 

1 to 4' 

(byte length) 

.1 to .32 

(bit length) 


V-type: 
1 to 2 
(byte length) 
.1 to .16 
(bit length) 

Range for scale 	 Not allowed 

Range for exponent 	 Not allowed 

3. 	Nominal value 
Represented by: 	 Absolute, A-type: 


relocatable, DC A(ABSOL + 10) 

or complex 

relocatable Y-tytle: 

expressions 2 DC Y(RELOC+32) 


A 	 DC Y("-A: + 4)3 values=O,A+6 J 

Enclosed by: Parentheses 


Exponent allowed: No 


Number of values Multiple 

per operand: 


Padding: With zeros at left 


Truncation of At left 

assembled value: 

.....,,' 


Figure 33. A and Y Address Constants .J; 

118 Assembler H Version 2 Language Reference 



Caution: Specification of Y-type address constants with relocatable expressions 
should be avoided in programs that are to be executed on machines having 
more than 32,767 bytes of storage capacity. In any case, Y-type relocatable 
address constants should not be used in programs to be executed under IBM 
System/370 control. 

The A-type and Y -type address constants are processed as follows: If the 
nominal value is an absolute expression, it is computed to its 32-bit value and 
then truncated on the left to fit the implicit or explicit length of the constant. If 
the nominal value is a relocatable or complex relocatable expression, it is not 
completely evaluated until linkage edit time when the object modules are trans­
formed into load modules. The 24-bit (or smaller) relocated address values are 
then placed in the fields set aside for them at assembly time by the A-type and 
Y-type constants. 

In the following examples, the field generated from the statement named AeON 
contains four constants, each of which occupies four bytes. Note that there is a 
location counter reference in one. The value of the location counter will be the 
address of the first byte allocated to the fourth constant. The se'cond statement 
shows the same set of constants specified as literals (that is, address constant 
literals). 

ACON DC 

LM 

A(188,LOP,END-STRT, 
*+4896) 
4,7,=A(188,LOP,END-STRT, 
*+4896) 

Note: When the location counter reference occurs in a literal, as in the LM 
instruction above, the value of the location counter is the address of the first 
byte of the instruction. 

Address Constant-S: You can use the S-type address constant to assemble an 
explicit address; that is, an address in base-displacement form. You can 
specify the explicit address yourself or allow the assembler to compute it from 
an implicit address, using the current base register and address in its computa­
tion. 

The nominal values can be specified in two ways: 

1. 	 As one absolute or relocatable expression (see (1) in Figure 34 on 
page 120) representing an implicit address 

2. 	 As two absolute expressions (see (2) in Figure 34) the first of which repres­
ents the displacement and the second, the base register. 

The address value represented by the expression in 1 in Figure 34, will be con­
verted by the assembler into the proper base register and displacement value. 
An S-type constant is assembled as a halfword and aligned on a halfword 
boundary. The leftmost four bits of the assembled constant represent the base 
register designation; the remaining 12 bits, the displacement value. 

If length specification is used, only 2 bytes may be specified. S-type address 
constants may not be specified as literals. 

Chapter 5. Assembler Instruction Statements 119 



Address Constant-V: The V-type constant allows you to reserve storage for the 
address of a location in a control section that lies in another source module. 
You should use the V-type address constant only to branch to the external 
address specified. This use is contrasted with another method; that is, of speci­
fying an external symbol, identified by an EXTRN instruction, in an A-type 
address constant. 

Because you specify a symbol in a V-type address constant, the assembler 
assumes that it is an external symbol. A value of zero is assembled into the 
space reserved for the V-type constant; the correct relocated value of the 
address is inserted into this space by the linkage editor before your object 
program is loaded. 

The symbol specified (see (1) in Figure 35) in the nominal value subfield does 
not constitute a definition of the symbol for the source module in which the 
V-type address constant appears. 

The symbol specified in a V-type constant must not represent external data in 
an overlay program. 

Subfield Value Example Result 

1. Duplication factor Allowed 

2. Modifiers 2 bytes 
Implicit length: 
(length modifier 
not present) 

Alignment: Halfword 
(Length modifier 
not present) 

Range for length: 2 only 
(no bit 
length) 

Range for scale Not allowed 

Range for exponent Not allowed 

4. Nominal value Base Disp 
Represented by: Absolute or DC S(RELOC) C XXX 

relocatable, DC S(1024) o 400 
expression I 

Two absolute DC S(512(12)) C 200 
expressions2 

Enclosed by: Parentheses 

Exponent allowed: No 

Number of values Multiple 
per operand: 

Padding: Not applicable 

Truncation of Not applicable 
assembled value: 

Figure 34. S Address Constants 

120 Assembler H Version 2 Language Reference 



Subfield Value Example Result 

1. Duplication factor Allowed 

2. Modifiers 4 bytes 
Implicit length: 
(length modifier 
not present) 

Alignment: Fullword 
(Length modifier 
not present) 

Range for length: 4 or 3 only 
(no bit 
length) 

Range for scale Not allowed 

Range for exponent Not allowed 

3. Nominal value 
Represented by: A single DC V(MODA)' 

relocatable DC V(EXTADR)' 
symbol 

Enclosed by: Parentheses 

Exponent allowed: No 

Number of values Multiple 
per operand: 

Padding: With zeros at left 

Truncation of Not applicable 
assembled value: 

Figure 35. V Address Constants 

In the following example, 12 bytes will be reserved, because there are three 
symbols. The value of each assembled constant will be zero until the program 
is loaded. It must be emphasized that a V-type address constant of length less 
than 4 can and will be processed by the assembler, but cannot be handled by 
the linkage editor. 

VCONST DC V(SORT,MERGE,CALC) 

Address Constant-Q: You use this constant to reserve storage for the offset 
into a storage area of an external dummy section. The offset is entered into 
this space by the linkage editor. When the offset is added to the address of an 
overall block of storage set aside for external dummy sections, it allows you to 
address the desired section. 

For a description of the use of the Q-type address constant in combination with 
an external dummy section, see "External Dummy Sections" on page 66. See 
also Figure 36 for details. 

In the following example, to access VALUE, the value of A is added to the base 
address of the block of storage allocated for external dummy sections. Q-type 
address constants may not be specified in literals. 

A DC Q(VALUE) 

Note: The DXD or DSECT names referenced in the Q-type address constant 
need not be previously defined. 

Chapter 5. Assembler Instruction Statements 121 



Subfield 	 Value Example Result 

1. 	Du~lication factor Allowed .......

2. 	Modifiers 4 bytes 

Implicit length: 
(length modifier 
not present) 

Alignment: Fullword 

(Length modifier 

not present) 


Range for length: 	 1 to 4 bytes 

(no bit 

length) 


Range for scale 	 Not allowed 

Range for exponent 	 Not allowed 

3. Nominal value 
Represented by: 	 A single DC O(DUMMYEXT) 


relocatable DC V(DXDEXT) 

symbol 


Enclosed by: 	 Parentheses 

Exponent allowed: 	 No 

Number of values Multiple 

per operand: 


Padding: 	 With zeros at left 

Truncation of At left 

assembled value: 


...".,r 
Figure 36. 0 Address Constants 

Floating-Point Constants-E, D, and L: Floating-point constants allow you to 
introduce data that is in the form suitable for the operations of the floating-point 
feature instructions. These constants have the following advantages over fixed­
point constants. 

• 	 You do not have to consider the fractional portion of a value you specify, 

nor worry about the position of the decimal point when algebraic operations 

are to be performed. 


• 	 You can specify both much larger and much smaller values. 

• 	 You retain greater processing precision; that is, your values are carried in 

more significant figures. 


The nominal value can be a signed (see (1) in Figure 37 on page 124)-plus is 
assumed if the number is unsigned-integer, fraction, or mixed number (see (2) 
in Figure 37) followed by an' exponent (positive or negative). The exponent (see 
(3) in Figure 37) must lie within the permissible range. If an exponent modifier 
is also specified, the algebraic sum .of the exponent and the exponent modifier 
must lie within the permissible range. 

The format of the constant is shown in Figure 38 on page 125. 

122 Assembler H Version 2 Language Reference 



L 

The value of the constant is represented by two parts: 

• An exponent portion (see (1) in Figure 38 on page 125). followed by 
• A fractional portion (see (2) in Figure 38). 

A sign bit (see (3) in Figure 38) indicates whether a positive or negative 
number has been specified. The number specified must first be converted into 
a hexadecimal fraction before it can be assembled into the proper internal 
format. The quantity expressed is the product of the fraction (see (4) in 
Figure 38) and the number 16 raised to a power (see (5) in Figure 38). 
Figure 38 shows the external format of the three types of floating-point con­
stants. 

The range of values that can be assembled into floating-point constants is given 
below: 

Type of Range of Magnitude (M) of Values 
Constant (Positive and Negative) 

E 

o 

E,D,L 5.4 X 10_' " ~ M -; 7.2 X 10" (approximate) 

If the value specified for a particular constant does not lie within these ranges, 
the constant is not assembled, but is flagged as an error. 

Chapter 5. Assembler Instruction Statements 123 



Subfield 

1. Du~lication factor 

2. 	Modifiers 
Implicit length: 
(length modifier 
not present) 

Alignment: 
(Length modifier 
not present) 

Range for length: 

Range for scale 

Range for exponent 

3. 	Nominal value 
Represented by: 

Enclosed by: 

Exponent allowed: 

Number of values 
per operand: 

Padding: 

Truncation of 
assembled value: 

Value 

Allowed 

E-type: 4 bytes 
D-type: 8 bytes 
L-type: 16 bytes 

E-type: Fullword 
D-type: Doubleword 
L-type: Doubleword 

E-type: 
1 to 8 (byte length) 

.1 to .64 (bit length) 


D-type: 

1 to 8 (byte length) 

.1 to .64 (bit length) 


L-type: 

1 to 16 (byte length) 

.1 to .128 (bit length) 


E-type: 0 to 5 

D-type: 0 to 13 

L-type: 0 to 27 


-85 to + 75 

Decimal digits 
(0 to 9) 

Apostrophes 

Yes 

Multiple 

With hexadecimal 
zeros at left 

Not applicable 
(values are rounded) 

Example 

E-type: 

DC E' + 525" 

DC E'5.25'2 .."", 

D-type: 
DC D'-525" 
DC D' + .001 '2 

L-type: 
DC L'525' 
DC L'3.414'2 

E-type: 

DC E'l E+ 60'3 


D-type: 

DC D' -2.5E1 0'] 


L-type: 

DC L'3.712E-3'] 


Figure 37. Floating-Point Constants J 

124 Assembler H Version 2 Language Reference 



....' 	 Type Called Format 

E Short 
Floating-

Point 
31Bits 0 1 78Number 

7-bit 	 56-bitD Long 
+ Characteristic Fraction

Floating­ 4Z%%ZZZMI----~~;'tL)~~~~;~~
Point 


Number 
 Bits 0 1 78 	 63 

7-bit High-order half ofL Extended 
+ Characteristic 112-bit Fraction Floating-


Point 

Number 


~_er_i_st_iC 
16 E [1~ + 1b62+ 1~+' • • • ] 

where a,b,c .... are hexadecimal digits, and E is 


an exponent that has a positive or negative value 


indicated by the characteristic 


Figure 38. Floating-Point External Formats 

Binary Representation: The assembler assembles a floating-point constant into 
its binary representation as follows: The specified number, multiplied by any 
exponents, is converted to the required two-part format. The value is translated 
into: 

• 	 A fractional portion represented by hexadecimal digits and the sign indi­
cator. The fraction is then entered into the leftmost part of the fraction field 
of the constant (after rounding) . 

• 	 An exponent portion represented by the excess 64 binary notation, which is 
then entered into the characteristic field of the constant. 

~~I------~ 

Bits 0 1 78 

7-bit .., 
........~__l'\OO<..................................._·"1 

Bits 0 1 

Low-order half of 
112-bit Fraction 

63 

USED FOR 
SECOND HALF 
OF LCON 

__~______________________ 

Chapter 5. Assembler Instruction Statements 125 



The excess 64 binary notation is when the value of the characteristic between 
+ 127 and + 64 represents the exponents of 16 between + 63 and 0 (by sub­
tracting 64). and the value of the characteristic between + 63 and 0 represents 
the exponents of 16 between -1 and -64. 

Notes: 

1. 	 The L-type floating-point constant resembles two contiguous D-type con­
stants. The sign of the second doubleword is assumed to be the same as 
the sign of the first. 

The characteristic for the second doubleword is equal to the characteristic 
for the first minus 14 (the number of hexadecimal digits in the fractional 
portion of the first doubleword). 

2. 	 If scaling has been specified, hexadecimal zeros are added to the left of the 
normalized fraction (causing it to become unnormalized), and the exponent 
in the characteristic field is adjusted accordingly. (For further details on 
scaling, see "Subfield 3: Modifiers" on page 102.) 

3. 	 Rounding of the fraction is performed according to the implied or explicit 

length of the constant. The resulting number will not differ from the exact 

value specified by more than one in the last place. 


4. 	 Negative fractions are carried in true representation, not in the twos com­

plement form. 


5. 	 Duplication is applied after the constant has been assembled. 

6. 	 An implied length of 4 bytes is assumed for a short (E) constant and 8 bytes 
for a long (D) constant. An implied length of 16 bytes is assumed for an 
extended (L) constant. The constant is aligned at the proper word (E) or 
doubleword (D and L) boundary if a length is not specified. However, any 
length up to and including 8 bytes (E and D) or 16 bytes (L) can be specified 
by a length modifier. In this case, no boundary alignment occurs. 

Any of the following statements could be used to specify 46.415 as a positive, 
fullword, floating-point constant; the last is a machine instruction statement with 
a literal operand. Note that each of the last two constants contains an exponent 
modifier. 

DC E'46.415' 

DC E'46415E-3' 

DC E'+464.15E-1' 

DC E'+.46415E+2' 

DC EE2'.46415' 

AE 6,=EE2' .46415' 


The following would each be generated as doubleword floating-point constants. 

FLOAT DC DE+4'+46,-3.729,+473' 

126 Assembler H Version 2 Language Reference 



OS-Define Storage 
The OS instruction allows you to: 

• 	 Reserve areas of storage 
• 	 Provide labels for these areas 
• 	 Use these areas by referring to the symbols defined as labels 

The OS instruction causes no data to be assembled. Unlike the OC instruction, 
you do not have to specify the nominal value (fourth subfield) of a OS instruc­
tion operand. Therefore, the OS instruction is the best way of symbolically 
defining storage for work areas, input/output buffers, etc. 

Format of OS: 

Name Operation Operand 

Any symbol os One or more operands, separated by COl1111as, 
or blank written in the format 

described in the following text 

The format of the OS operand is identical to that of the OC operand; exactly the 
same subfields are used and are written in exactly the same sequence as they 
are in the OC operand. Although the formats are identical, there are two differ­
ences in the specification of subfields. They are: 

1. 	 The nominal value subfield is optional in a OS operand, but it is mandatory 
in a OC operand. If a nominal value is specified in a OS operand, it must 
be valid. 

2. 	 The maximum length that can be specified for the character (C) and 
hexadecimal (X) type areas is 65,535 bytes rather than 256 bytes for the 
same OC operands. The maximum length for the graphic (G) type is 65,534 
bytes. 

The label used in the name entry of a OS instruction, as with the label for a OC 
instruction: 

• 	 Has an address value of the leftmost byte of the area reserved, after any 
boundary alignment is performed 

• 	 Has a length attribute value, depending on the implicit or explicit length of 
the type of area reserved 

If the OS instruction is specified with more than one operand or more than one 
nominal value in the operand, the label addresses the area reserved for the 
field that corresponds to the first nominal value of the first operand. The length 
attribute value is equal to the length explicitly specified or implicit in the first 
operand. 

Note: Unlike the DC instruction, bytes skipped for alignment are not set to zero. 
Also, nothing is assembled into the storage area reserved by a OS instruction. 
No assumption should be made as to the contents of the reserved area. 

The size of a storage area that can be reserved by a OS instruction is limited 
only by the size of virtual storage or by the maximum value of the location 
counter, which is smaller. 

Chapter 5. Assembler Instruction Statements 127 



How to Use the OS 	Instruction 
To Reserve Storage: If you want to take advantage of automatic boundary 
alignment (if the ALIGN option is specified) and implicit length calculation, you 
should not supply a length modifier in your operand specifications. You should 
specify a type subfield that corresponds to the type of area you need for your 
instructions. 

Note: Duplication has no effect on implicit length. 

Using a length modifier can give you the advantage of explicitly specifying the 
length attribute value assigned to the label naming the area reserved. 
However, your areas will not be aligned automatically according to their type. If 
you omit the nominal value in the operand, you should use a length modifier for 
the binary (B), character (C), graphic (G), hexadecimal (X), and decimal (P and 
Z) type areas; otherwise, their labels will be given a length attribute value of 1 
(2 for G-type). 

When you need to reserve large areas, you can use a duplication factor. 
However, in this case, you can only refer to the first area by label. You can 
also use the character (C) and hexadecimal (X) field types to specify large 
areas using the length modifier. 

Although the nominal value is optional for a OS instruction, you can put it to 
good use by letting the assembler compute the length for areas of the B. C, G, 
X, and decimal (P or Z) type areas. You achieve this by specifying the general 
format of the nominal value that will be placed in the area at execution time. 

To Force Alignment: You can use the OS instruction to force alignment to a 
boundary that otherwise would not be provided. You can force the location 
counter to a doubleword, fullword, or halfword boundary by using the appro­
priate field type (for example, 0, F, or H) with a duplication factor of zero. No 
space is reserved for such an instruction, yet the data that follows is aligned on 
the desired boundary. For example, the following statements would set the 
location counter to the next doubleword boundary and reserve storage space 
for a 128-byte field (whose leftmost byte would be on a doubleword boundary). 

OS 00 
AREA os CLl28 

Note: Alignment is forced when either the ALIGN or the NOALIGN assembler 
option is set. 

To Name Fields of an Area: Using a duplication factor of zero in a OS instruc­
tion also allows you to provide a label for an area of storage without actually 
reserving the area. You can use OS or DC instructions to reserve storage for, 
and assign labels to, fields within the area. These fields can then be addressed 
symbolically. (Another way of accomplishing this is described in 
"DSECT-Identify Dummy Section" on page 61.) The whole area is addressable 
by its label. In addition, the symbolic label will have the length attribute value 
of the whole area. Within the area, each field is addressable by its label. 

128 Assembler H Version 2 Language Reference 



For example, assume that 80-character records are to be read into an area for 
processing and that each record has the following format: 

Positions 5-10 Payroll Number 
Positions 11-30 Employee Name 
Positions 31-36 Date 
Positions 47-54 Gross Wages 
Positions 55-62 Withholding Tax 

The following example illustrates how DS instructions might be used to assign a 
name to the record area, then define the fields of the area and allocate storage 
for them. Note that the first statement names the entire area by defining the 
symbol RDAREA; this statement gives RDAREA a length attribute of 80 bytes, 
but does not reserve any storage. Similarly, the fifth statement names a 6-byte 
area by defining the symbol DATE; the three subsequent statements actually 
define the fields of DATE and allocate storage for them. The second, ninth, and 
last statements are used for spacing purposes and, therefore, are not named. 

ROAREA OS OCL80 
OS CL4 


PAYNO OS CL6 

NAME OS CL20 

DATE OS OCL6 

DAY OS CL2 

tlONTH OS CL2 

YEAR OS CL2 


OS CLlO 

GROSS OS CL8 

FEOTAX OS CL8 


OS CLl8 

Additional examples of DS statements are shown below: 

ONE OS CLBO One 80-byte field, length attribute of 80 
HIO OS 80C 80 I-byte fields, length attribute of 
THREE OS 6F 6 full wo rd s , length attribute of 4 
FOUR OS 0 1 doubleword, length attribute of 8 
FIVE OS 4H 4 halfwords, length attribute of 2 
SIX OS GLBO One BO-byte field, length attribute of 80 
SEVEN OS BOG BO 2-byte fields, length attribute of 2 

To define four 10-byte fields and one 100-byte field, the respective DS state­
ments might be as follows: 

FIELD OS 4CLIO 

AREA OS CLIOO 


Although FIELD might have been specified as one 40-byte field, the preceding 
definition has the advantage of providing FIELD with a length attribute of 10. 
This would be pertinent when using FIELD as an SS machine instruction 
operand. 

Chapter 5. Assembler Instruction Statements 129 



CCW or CCWO-Define Channel Command Word (Format 0) 
You can use the CCW or CCWO instruction to define and generate an 8-byte 
channel command word aligned at a doubleword boundary for input/output 
operations. The CCW and CCWO instructions have identical functions; however, 
the CCWO instruction is not included in the S/370 instruction set. A CCW or 
CCWO will cause any bytes skipped to be zeroed. A CCW or CCWO instruction 
will result in a Format 0 channel command word which allows 24-bit data 
addresses. The internal machine format of a channel command word is shown 
in Figure 39. 

Byte Bits Usage 

0 0-7 Command code 

1-3 8-31 Address of data to operate upon 

4 32-37 Flags 

38-39 Must be specified as zeros 

5 40-47 Set to zeros by assembler 

6-7 48-63 Byte cOLint or length of data 

Figure 39. Channel Command Word, Format 0 

Format of CCW and CCWO: 

Name Operation Operand 

Any symbol CClv or CCliO Conmand code, data address, flags, 
or 	blank data count 

All 	four operands must appear. They are written, from left to right, as follows: 

1. 	 An absolute expression that specifies the command code. This 
expression's value is right-justified in byte O. 

2. 	 A relocatable or absolute expression specifying the address of the data to 
operate upon. This value is treated as a 3-byte, A-type address constant. 
The value of this expression is right-justified in bytes 1 to 3. 

3. 	 An absolute expression that specifies the flags for bits 32 to 37, and zeros 
for bits 38 and 39. The value of this expression is right-justified in byte 4. 
(Byte 5 is set to zero by the assembler.) 

4. 	 An absolute expression that specifies the byte count or length of data. The 
value of this expression is right-justified in bytes 6 and 7. 

The generated channel command word is aligned on a doubleword boundary. 
Any bytes skipped are set to zero. 

The symbol in the name field, if present, is assigned the value of the address of 
the leftmost byte of the channel command word generated. The length attribute 
value of the symbol is 8. 

The following are examples of CCW and CCWO statements: 

~IRITEl CCW 1,DATADR,X'48' ,X'50' 
~IRITE2 CCWo 1,DATADR,X'48' ,X'50' 

130 Assembler H Version 2 Language Reference 



The object code generated (in hexadecimal) for either of the above examples is: 

81 	 xxxxxx 48 88 8858 

where xxxxxx contains the address of DAT ADR, and DATADR must reside below 
16 megabytes. 

Notes: 

1. 	 If you use the EXCP access method, you must use CCW or CCWO, because 
EXCP does not support 31-bit data a-ddresses in channel command words. 

2. 	 You should use RMODE 24 with CCW or CCWO to ensure that valid data 
addresses are generated in the channel command words at execution time. 

CCW1-Define Channel Command Word (Format 1) 
You can use the CCW1 instruction to specify the object code format to be used 
for an 8-byte channel command word aligned at a doubleword boundary for 
input/output operations. The object code for a Format 1 channel command 
word allows a 31-bit data address, whereas the object code generated by a 
CCW or CCWO instruction allows only a 24-bit data address. A CCW1 will cause 
any bytes skipped to be zeroed. The internal machine format of a channel 
command word is shown in Figure 40. 

Byte Bits Usage 

0 0-7 Command code 

8-15 Flags 

2-3 16-31 Count 

4 32 Must be zero 

4-7 33-63 Data address 

Figure 40. Channel Command Word, Format 1 

Format of CCW1: 

Name Operation Operand 

Any symbol CCWI Comna"d code, data address, flags, 
or 	blank data count 

All four operands must appear. They are written. from left to right, as follows: 

1. 	 An absolute expression that specifies the command code. This 
expression's value is right-justified in byte O. 

2. 	 An expression specifying the data address. This value is treated as a 
4-byte, A-type address constant. The value of this expression is in bytes 4 
to 7, the first bit of which is set to O. 

3. 	 An absolute expression that specifies the flags for bits 8 to 15. The value of 
this expression is right-justified in byte 1. 

4. 	 An absolute expression that specifies the count. The value of this 
expression is right-justified in bytes 2 and 3. 

Chapter 5. Assembler I.nstruction Statements 131 



Note: The expression for the data address should be such that the address is 
within the range 0 to 231 _1, inclusive, after possible relocation. This will be the 
case if the expression refers to a location within one of the control sections 
which will be link-edited together. An expression such as "-1000000000 will 
yield an acceptable value only when the command control word is placed in 
storage location 1000000000 or higher. 

The generated channel command word is aligned on a doubleword boundary. 
Any bytes skipped are set to zero. 

The symbol in the name field, if present, is assigned the value of the address of 
the leftmost byte of the channel command word generated. The length attribute 
value of the symbol is 8. 

The following is an example of a CCW1 statement: 

A CCWI X'OC' ,BUFl,X'OO',L'BUFl 

The object code (in hexadecimal) generated in the above example is: 

OC 00 yy xxxxxxxx 

where yy is length of BUF1, and xxxxxxxx is BUF1 address. 

Note: BUF1 can reside anywhere in virtual storage. 

Program Control Instructions 
You use the program control instructions to: 

• Specify the end of an assembly 
• Set the location counter to a value or word boundary 
• Insert previously written coding in the program 
• Specify the placement of literals in storage 
• Check the sequence of input cards 
• Indicate statement format 
• Punch a card 

Except for the CNOP and COPY instructions, none of these assembler 
instructions generate instructions or constants in the object program. 

ICTL-Input Format Control 
The ICTL instruction allows you to change the begin, end, and continue columns 
that establish the coding format of the assembler language source statements. 

For example, with the ICTL instruction, you can increase the number of columns 
to be used for the identification or sequence checking of your source state­
ments. By changing the begin column, you can even create a field before the 
begin column to contain identification or sequence numbers. 

You can use the ICTL instruction only once, at the very beginning of a source 
program. If you do not use it, the assembler recognizes the standard values for 
the begin, end, and continue columns. 

132 Assembler H Version 2 Language Reference 



Format of leTl: 

Name Operation 	 Operand 

Blank leTL 	 1-3 decimal self-defining terms of the 
form b or b,e or b,e,c 

The operand entry must be one to three decimal self-defining terms. There are 
only three possible ways of specifying the operand entry: 

1. 	 The operand b specifies the begin column of the source statement. It must 
always be specified, and must be within the range of 1 to 40, inclusive. 

2. 	 The operand e specifies the end column of the source statement. The end 
column, when specified, must be within the range of 41 to 80, inclusive; 
when not specified, it is assumed to be 71. 

3. 	 The operand c specifies the continue column of the source statement. The 
continue column, when specified, must be within the range of 2 to 40. If the 
continue column is not specified, or if column 80 is specified as the end 
column, the assembler assumes that continuation lines are not allowed. 

If no ICTl statement is used in the source program, the assembler assumes 
that 1, 71, and 16 are the begin, end, and continue columns, respectively. 

The values specified for the three operands depend on each other. Two rules 
governing the interaction of b, e, and care: 

1. 	 The position of the end column must not be less than the position of the 
begin column +5, but must be greater than the position of the continue 
column. 

2. 	 The position of the continue column must be greater than that of the begin 
column. 

The next example designates the begin column as 25. Since the end column is 
not specified, it is assumed to be column 71. No continuation cards are recog­
nized because the continue column is not specified. 

len 25 

Note: The ICTl instruction does not affect the format of statements brought in 
by a COpy instruction or generated from a library macro definition. The 
assembler processes these statements according to the standard begin, end, 
and continue columns described in "Field Boundaries" on page 10. 

ISEQ-Input Sequence Checking 
You can use the ISEQ instruction to cause the assembler to check if the state­
ments in a source module are in sequential order. In the ISEQ instruction, you 
specify the columns between which the assembler is to check for sequence 
numbers. 

The assembler begins sequence checking with the first statement line following 
the ISEQ instruction. The assembler also checks continuation lines. 

Chapter 5. Assembler Instruction Statements 133 



Sequence numbers on adjacent statements or lines are compared according to 
the 8-bit internal EBCDIC collating sequence. When the sequence number on 
one line is not greater than the sequence number on the preceding line, a 
sequence error is flagged, and a warning message is issued, but the assembly 
is not terminated. 

Note: If the sequence field in the preceding line is blank, the assembler uses 
the last preceding line with a nonblank sequence field to make its comparison. 

Format of ISEQ: 

Name Operation 	 Operand 

Blank ISEQ 	 Two decimal self-defining terms of the 
form l,r or blank 

If the operand is two decimal self-defining terms, then ISEQ initiates sequence 
checking, beginning at the statement or line following the ISEQ instruction. 
Checking begins at the column represented by 1 and ends at the column 
represented by r. The second option of the ISEQ format terminates the 
sequence checking operation. 

If the operand is a blank, ISEQ terminates the operation. (Note that this ISEQ 
statement is also sequence checked.) Checking may be resumed with another 
ISEQ statement. 

The rules for interaction are: 

1. 	 1 specifies the leftmost column of the field to be checked, and r specifies 
the rightmost column of the field to be checked. r must be greater than or 
equal to 1. 

2. 	 1 and r can be anywhere on the cards in the input. Thus, they can also be 
between the begin and end columns. 

Note: The assembler checks only those statements that are specified in the 
coding of a source module. This includes any COPY instruction statement or 
macro instruction. 

However, the assembler does not check: 

1. 	 Statements inserted by a COPY instruction 

2. 	 Statements generated from model statements inside rr.~ ..:ro definitions or 
from model statements in open code (statement generation is discussed in 
detail in "Chapter 7. How t6 Prepare Macro Definitions" on page 159) 

3. 	 Statements in library macro definitions 

PUNCH-Punch a Card 
The PUNCH instruction allows you to punch source or other statements into a 
single card. 

....,.,i 


134 Assembler H Version 2 Language Reference 



,/ 

Code PUNCH statements in: 

• 	 a source module to produce control statements for the linkage editor. The 
linkage editor uses these control statements to process the object module. 

• 	 macro definitions to produce, for instance, source statements in other com­
puter languages or for other proce~sing phases. 

The card that is punched has a physical position immediately after the PUNCH 
instruction and before any other TXT cards of the object decks that are to 
follow. 

The PUNCH instruction causes the data in its operand to be punched into a 
card. One PUNCH instruction produces one punched card, but as many PUNCH 
instructions as necessary can be used. 

The PUNCH instruction statement can appear anywhere in a source module 
except before and between source macro definitions. If a PUNCH instruction 
occurs before the first control section, the resultant card punched will precede 
all other cards in the object deck. 

The cards punched as a result of a PUNCH instruction are not a logical part of 
the object deck. even though they can be physically interspersed in the object 
deck. 

Format of PUNCH: 

Name 	 Operation Operand 

A sequence PUNCH A character string of up to 

symbol or blank to 80 characters, enclosed in 


apostrophes 


All 256 punch combinations of the IBM System/370 character set are allowed in 
the character string of the operand field. Variable symbols are also allowed. 

The position of each character specified in the PUNCH statement corresponds 
to a column in the card to be punched. However, the following rules apply to 
ampersands and apostrophes: 

1. 	 A single ampersand initiates an attempt to identify a variable symbol and to 
substitute its current value. 

2. 	 Double ampersands or apostrophes are punched as single ampersands or 
apostrophes. 

3. 	 A single apostrophe followed by one or more blanks simply terminates the 
string of characters punched. If a nonblank character follows a single apos­
trophe, an error message is issued and nothing is punched. 

Only the characters punched, including blanks, count toward the maximum of 80 
allowed. 

Chapter 5. Assembler Instruction Statements 135 



Notes: 

1. 	 No sequence number or identification is punched into the card produced. 

2. 	 If the NODECK option is specified when the assembler is invoked, no cards 
are punched, neither for the PUNCH or REPRO instructions, nor for the 
object deck of the assembly. 

3. 	 Double-byte data is permissible in the operand field when the DBCS assem­
bler option is specified. The double-byte data must be valid. 

4. 	 The DBCS ampersand and apostrophe are not recognized as delimiters. 

5. 	 A double-byte character which contains the value of an EBCDIC ampersand 
or apostrophe in either byte is not recognized as a delimiter when enclosed 
by SO and SI. 

REPRO-Reproduce Following Card 
The REPRO instruction causes the data specified in the statement that follows 
to be punched into a card. Unlike the PUNCH instruction, the REPRO instruc­
tion does not allow values to be substituted into variable symbols before the 
card is punched. One REPRO instruction produces one punched card. 

The REPRO instruction can appear anywhere in a source module except before 
and between source macro definitions. The punched cards are not part of the 
object deck, even though they can be physically interspersed in the object deck. 

Format of REPRO: 

Name 	 Operation Operand 

A sequence REPRO Not required 
symbol or blank 

The line to be reproduced can contain any of the 256 punch characters, 
including blanks, ampersands, and apostrophes. No substitution is performed 
for variable symbols. 

Notes: 

1. 	 Sequence numbers and identification are not punched in the card. 

2. 	 If the NO DECK option is specified in the job control language for the assem­
bler program, no cards are punched: neither for the PUNCH or REPRO 
instructions, nor for the object deck of the assembly. 

3. 	 Since the text of the line following a REPRO statement is not validated or 
changed in any way, it can contain double-byte data, but this data will not 
be validated. 

136 Assembler H Version 2 Language Reference 



PUSH Instruction 

POP Instruction 

The PUSH instruction allows you to save the current PRINT or USING status in 
"push-down" storage on a last-in, first-out basis. You can restore this PRINT 
and USING status later, also on a last-in, first-out basis, by using a corre­
sponding POP instruction. 

Format of PUSH: 

Name Operation Operand 

A sequence PUSH PRINT or 
symbol or USING or 
blank PRINT,USING or 

USING, PRINT 

One of the four options for the operand entry must be specified. The PUSH 
instruction does not change the status of the current PRINT or USING 
instructions: the status is only saved. 

Note: When the PUSH instruction is used in combination with the POP instruc­
tion, a maximum of four nests of PUSH PRINT - POP PRINT or PUSH USING ­
POP USING are allowed. 

The POP instruction allows you to restore the PRINT or USING status saved by 
the most recent PUSH instruction. 

Format of POP: 

Name Operation Operand 

A sequence POP PRINT or 
symbol or USING or 
blank PRINT,USING or 

USING,PRINT 

One of the four options for the operand entry must be specified. The POP 
instruction causes the status of the current PRINT or USING instruction to be 
overridden by the PRINT or USING status saved by the last PUSH instruction. 

Note: When the POP instruction is used in combination with the PUSH instruc­
tion, a maximum of four nests of PUSH PRINT - POP PRINT or PUSH USING ­
POP USING are allowed. 

Chapter 5. Assembler Instruction Statements 137 



ORG-Set Location Counter 
You use the ORG instruction to alter the setting of the location counter and thus 
control the structure of the current control section. This allows you to redefine 
portions of a control section. 

Using Figure 41 as an example, if you wish to build a translate table (for 
example, to convert EBCDIC character code into some other internal code): 

• 	 You define the table (see (1) in Figure 41) as being filled with zeros. 

• 	 You use the ORG instruction to alter the location counter so that its counter 
value indicates a desired location (see (2) in Figure 41) within the table. 

• 	 You redefine the data (see (3) in Figure 41) to be assembled into that 
location. 

• 	 After repeating the first three steps (see (4) in Figure 41) until your trans­
late table is complete, you use an ORG instruction with a blank operand 
field to alter the location counter. The counter value then indicates the next 
available location (see (5) in Figure 41) in the current control section (after 
the end of the translate table). 

Both the assembled object code for the whole table filled with zeros, and the 
object code for the portions of the table you redefined, are printed in the 
program listings. However, the data defined later is loaded over the previously 
defined zeros and becomes part of your object program, instead of the zeros. 

In other words, the ORG instruction can cause the location to point to any part 
of a control section, even the middle of an instruction, into which you can 
assemble desired data. It can also cause the location counter to point to the 
next available location so that your program can continue to be assembled in a 
sequential fashion. 

138 Assembler H Version 2 Language Reference 



Source Module 

,....' 	 FIRST START 0 Object Code 

0 TABLE 
TABLE 	 DC XL256'OO' (in Hex) 

ORG TABLE+O +0 
DC ClOt. FO 
DC C'l' Fl 

ORG TABLE+13 +13 

DC C'D' C4 
DC C'E' C5 

0 
ORG TABLE+C'D' +196 
DC AL1(13) OD 
DC AL1(14) OE 

ORG TABLE+C'O' +240 
DC AL1(O) 00 
DC ALl (1) 01 

+255 
ORG 

GOON DS OH 

TR INPUT ,TABLE 

INPUT DS CL20 

END 

Figure 41. Building a Translate Table 

Chapter 5. Assembler Instruction Statements 139 



Format of ORG: 

Name Operation Operand 

A sequence ORG A relocatable expression or blank 
symbol or blank 

In general, symbols used in the operand field need not have been previously 
defined. However, the relocatable component of the expression (that is, the 
unpaired relocatable term) must have been previously defined in the same 
control section in which the ORG statement appears, or be equated to a previ­
ously defined value. 

The location counter is set to the value of the expression in the operand. If the 
operand is omitted, the location counter is set to the next available location for 
the current control section. 

An ORG statement cannot be used to specify a location below the beginning of 
the control section in which it appears. For example, the following is invalid if it 
appears less than 500 bytes from the beginning of the current control section. 

ORG *-500 

This is because the expression specified is then negative, and will set the 
location counter to a value larger than the assembler can process. The 
location counter will "wrap around" (the location counter is discussed in detail 
in "Location Counter Reference" on page 32). 

Note: With the ORG statement, you can give two instructions the same location 
counter values. In such a case, the second instruction will not always eliminate 
the effects of the first instruction. Consider the following example: 

ADDR DC A(LOC) 
ORG *-4 

B DC C'BETA' 

In this example, the value of B (BETA) will be destroyed by the relocation of 
ADDR during linkage editing. 

Restriction on ORG when the LOCTR Instruction is Used: If you specify multiple 
location counters with the LOCTR instruction, the ORG instruction can alter only 
the location counter in use when the instruction appears. Thus, you cannot 
control the structure of the whole control section using ORG, but only the part 
that is controlled by the current location counter. 

LTORG-Begin Literal Pool 
You use the L TORG instruction so that the assembler can collect and assemble 
literals into a literal pool. A literal pool contains the literals you specify in a 
source module either after the preceding L TORG instruction, or after the begin­
ning of the source module. 

140 Assembler H Version 2 Language Reference 



Literal Pool 

The assembler ignores the borders between control sections when it collects 
literals into pools. Therefore, you must be careful to include the literal pools in 
the control sections to which they belong (for details, see "Addressing 
Considerations" on page 142). 

The creation of a literal pool gives the following advantages: 

• 	 Automatic organization of the literal data into sections that are properly 

aligned and arranged so that no space is wasted. 


• 	 Assembling of duplicate data into the same area. 

• 	 Because all literals are cross-referenced, you can find the literal constant in 
the pool into which it has been assembled. 

Format of L TORG: 

Name Operation Operand 

Any symbol LTORG Not used 
or 	blank 

If an ordinary symbol is specified in the name field, it represents the first byte 
of the literal pool; this symbol is aligned on a doubleword boundary and has a 
length attribute value of 1. If bytes are skipped after the end of a literal pool to 
achieve alignment for the next instruction, constant, or area, the bytes are not 
filled with zeros. 

A literal pool is created immediately after a LTORG instruction or, if no LTORG 
instruction is specified, at the end of the first control section. 

Each literal pool has four segments into which the literals are stored (a) in the 
order that the literals are specified, and (b) according to their assembled 
lengths, which, for each literal, is the total explicit or implied length), as 
described below. 

• 	 The first segment contains all literal constants whose assembled lengths 

are a multiple of 8. 


o 	 The second segment contains those whose assembled lengths are a mul­
tiple of 4, but not of 8. 

• 	 The third segment contains those whose assembled lengths are even, but 
not a multiple of 4 . 

• 	 The fourth segment contains all the remaining literal constants whose 

assembled lengths are odd. 


Since each literal pool is aligned on a doubleword boundary, this guarantees 
that all literals in the first segment are doubleword aligned; in the second 
segment, fullword aligned; and, in the third, halfword aligned. No space is 
wasted except, possibly, at the origin of the pool. 

Chapter 5. Assembler Instruction Statements 141 



Literals from the following statement are in the pool, in the segments indicated 
by the parenthesized numbers: 

FIRST START 0 ..... 
MVC TO,=3F'9' (2) 

AD 2,=0'7' (1) 

IC 2,=XLl'8' (4) 


,=CL3'JAN' (4) 

,=2F'l,2' (1) 

,=H'33' (3) 

,=A(AOOR) (2) 

,=XL8'05' (1) 


Addressing Considerations 
If you specify literals in source modules with multiple control sections, you 
should: 

• 	 Write a L TORG instruction at the end of each control section, so that all the 
literals specified in the section are assembled into the one literal pool for 
that section. If a control section is divided and interspersed among other 
control sections, you should write a L TORG instruction at the end of each 
segment of the interspersed control section . 

• 	 When establishing the addressability of each control section, make sure (a) 
that the entire literal pool for that section is also addressable, by including 
it within a USING range, and (b) that the literal specifications are within the 
corresponding USING domain. The USING range and domain are described 
in "USING-Use Base ,Address Register" on page 44. 

Note: All the literals specified after the last L TORG instruction, or, if no L TORG 
instruction is specified, all the literals in a source module are assembled into a 
literal pool at the end of the first control section. You must then make this 
literal pool addressable, along with the addresses in the first control section. 
This literal pool is printed in the program listing after the END instruction.' 

Duplicate Literals 
If you specify duplicate literals within the part of the source module that is con­
trolled by a L TORG instruction, only one literal constant is assembled into the 
pertinent literal pool. This also applies to literals assembled into the literal 
pool at the end of the first or only control section of a source module that con­
tains no LTORG instructions. 

Literals are duplicates only if their specifications are identical, not if the object 
code assembled happens to be identical. 

When two literals specifying identical A-type (or Y-type) address constants 
contain a reference to the value of the location counter (*), both literals are 
assembled into the literal pool. This is because the value of the location 
counter is different in the two literals. 

142 Assembler H Version 2 Language Reference 



The following examples illustrate how the assembler stores pairs of literals, if 
the placement of each pair is controlled by the same L TORG statement. 

X'FO' Both are 
C'O' stored 

XL3'O' Both are 
HL3 '0' st{)red 

A(*+4} Both are 
A(* +4) stored 

X'FFFF' Identical, 
X'FFFF' the first is stored 

CNOP-Conditional No Operation 
You can use the CNOP instruction to align any instruction or other data on a 
specific halfword boundary. The CNOP instruction ensures an unbroken flow of 
executable instructions by generating no-operation instructions to fill the bytes 
skipped to perform the alignment that you specified. 

For example, when you code the linkage to a subroutine, you may wish to pass 
parameters to the subroutine in fields immediately following the branch and link 
instructions. These parameters-for example, channel command words-can 
require alignment on a specific boundary. 

The subroutine can then address the parameters you pass through the register 
with the return address. This is illustrated below: 

CNOP 6,S 
LINK BALR 2,10 

CCI1 l,DATADR,X'4S' ,X'50' 

Assume that the location counter is currently aligned at a doubleword 
boundary. Then the CNOP instruction causes three branch-on-conditions (no­
operations) to be generated, thus aligning the BALR instruction at the last 
halfword in a doubleword as follows: 

BCR 0,0 
BCR 0,0 
BCR 0,0 
BALR 2,10 

LINK CCW 1,DATADR,X'4S',X'50' 

After the BALR instruction is generated, the location counter is at a doubleword 
boundary, thereby ensuring that the CCW instruction immediately follows the 
branch and link instruction. 

The CNOP instruction forces the alignment of the location counter to a halfword, 
fullword, or doubleword boundary. It does not affect the location counter if the 
counter is already properly aligned. If the specified alignment requires the 
location counter to be incremented, one to three no-operation instructions (BCR 
0,0 occupying two bytes each) are generated to fill the skipped bytes. Any 
single byte skipped to achieve alignment to the first no-operation instruction is 
filled with zeros. 

Chapter 5. Assembler Instruction Statements 143 



Format of CNOP: 

Name Operation Operand 

Any symbol CNOP Two absolute expressions of 
or blank the form b,w 

The operands must be absolute expressions, and the symbols in them need not 
be previously defined. The first operand, b, specifies at which even-numbered 
byte in a fullword or doubleword the location counter is set. The second 
operand, w, specifies whether the byte is in a fullword (w=4) or a doubleword 
(w = 8). 

Valid pairs of band ware indicated below: 

b,w Specifies 

0,4 Beginning of a word 

2,4 Middle of a word 

0,8 Beginning of a doubleword 

2,8 Second halfword of a doubleword 

4,8 Middle (third halfword) of a doubleword 

6,8 Fourth halfword of a doubleword 

Figure 42 shows the position in a doubleword that each of these pairs specifies. 
Note that both 0,4 and 2,4 specify two locations in a doubleword. 

Doubleword 

Fullword Fullword 

Halfword Halfword Hal fword Ha 1f\~ord 

Byte I Byte Byte I Byte Byte I Byte Byte I Byte 

O,4 2,4 O,4 2,4 
O,B 2,8 4,8 6,8 

Figure 42. CNOP Alignment 

COPY-Copy Predefined Source Coding 
You use the COpy instruction to obtain source language coding from a library 
and include it in the programs currently being assembled. You thereby avoid 
writing the same, often-used sequence of code over and over. 

144 Assembler H Version 2 Language Reference 



Format of COPY: 

Name Operation Operand 

Blank COpy One ordinary symbol 

The operand is a symbol that identifies a partitioned data set member to be 
copied from either the system macro library or a user library concatenated to it. 

The source coding that is copied into a source module: 

• 	 Is inserted immediately after the COpy instruction 

• 	 Is inserted and processed according to the standard instruction statement 
coding format, even if an ICTl instruction has been specified 

• 	 Must not contain either an ICTl or ISEQ instruction 

• 	 Can contain other COPY statements (There are no restrictions on the 
number of levels of nested copy instructions. However, the COpy nesting 
must not be recursive. Thus, if the statement 'COPY A' is coded, and A 
contains a statement 'COPY B', B must not contain a statement 'COPY A'.) 

• 	 Can contain macro definitions 

If a source macro definition is copied into the beginning of a source module, 
both the MACRO and MEND statements that delimit the definition must be con­
tained in the same level of copied code. 

Notes: 

1. 	 The COpy instruction can also be used to copy statements into source 
macro definitions. 

2. 	 The rules that govern the occurrence of assembler language statements in 
a source module also govern the statements copied into the source module. 

END-End Assembly 
You use the END instruction to terminate the assembly of a program. You can 
also supply an address in the operand field to which control may be transferred 
after the program is loaded. The END instruction must always be the last state­
ment in the source program. 

Format of END: 

Name Operation Operand 

A sequence END A relocatable expression or blank 
symbol or expression or blank 
blank 

Chapter 5. Assembler Instruction Statements 145 



The operand specifies the point to which control may be transferred when 
loading is complete. This point is usually the address of the first executable 
instruction in the program, as shown in the following sequence. 

NAME CSECT 
AREA OS 5GF 
BEGIN BALR 2,G 

USING *,2 

END BEGIN 

If specified, the operand entry can be generated by substitution into variable 
symbols. However, after substitution, that is, at assembly time: 

• 	 It must be a relocatable expression representing an address in the source 
module delimited by the END instruction, or 

• 	 If it contains an external symbol, the external symbol must be the only term 
in the expression, or the remaining terms in the expression must reduce to 
zero. 

• 	 It must not be a literal. 

Listing Control Instructions 
The instructions described in this section request the assembler to produce 
listings and identify output cards in the object deck according to your special 
needs. They allow you to determine printing and page formatting options other 
than the ones the assembler program assumes by default. Among other things, 
you can introduce your own page headings, control line spacing, and suppress 
unwanted detail. 

TITLE-Identify Assembly Output 
The TITLE instruction allows you to: 

• 	 Provide headings for each page of the assembly listing of your source 
modules. 

• 	 Identify the assembly output cards of your object modules. You can specify 
up to 8 identification characters that the assembler will punch into all the 
output cards, beginning at column 73. The assembler punches sequence 
numbers into the columns that are left, up to column 80. 

Format of TITLE: 

Name 	 Operation Operand 

A stri ng of TITLE A character string up to 
alphameric lGG characters, enclosed in 
characters, a apostrophes 
variable symbol, a 
combination of 
above, a sequence 
symbol, or a blank 

'146 Assembler H Version 2 Language Reference 



The first three options for the name field have a special significance only for the 
first TITLE instruction in which they are specified. For subsequent TITLE 
instructions, the first three options do not apply. 

For the first TITLE instruction of a source module that has a non blank name 
entry that is not a sequence symbol, up to 8 alphameric characters can be 
specified in any combination in the name field. 

These characters are punched as identification, beginning at column 73, into all 
the output cards from the assembly, except those produced by the PUNCH and 
REPRO instructions. The assembler substitutes the current value into a vari ­
able symbol and uses the generated result as identification characters. 

If a valid ordinary symbol is specified, its appearance in the name field does 
not constitute a definition of that symbol for the source module. It can, there­
fore, be used in the name field of any other statement in the same source 
module. 

The character string in the operand field is printed as a heading at the top of 
each page of the assembly listing. The heading is printed beginning on the 
page in the listing following the page on which the TITLE instruction is speci­
fied. A new heading is printed when a subsequent TITLE instruction appears in 
the source module. 

For example, if the following statement is the first TITLE statement to appear in 
a program: 

PGtIl TITLE 'FIRST HEADING' 

then PGM1 is punched into all of the output cards (columns 73 to 76) and this 
heading appears at the top of each subsequent page: PGM1 FIRST HEADING. 

If the following statement occurs later in the program: 

TITLE 'A NEVI HEAD! NG I 

then PGM1 is still punched into the output cards, but each following page 
begins with the heading: PGM1 A NEW HEADING. 

Each inline TITLE statement causes the listing to be advanced to a new page 
before the heading is printed. If the TITLE statement appears in a macro and 
PRINT NOGEN is specified, the listing will not be advanced to a new page. 

Any printable character specified will appear in the heading, including blanks. 
Double-byte data can be used when the DBCS assembler option is specified. 
The double-byte data must be valid. Variable symbols are allowed. However, 
the following rules apply to ampersands and apostrophes: 

• 	 The DBCS ampersand and apostrophe are not recognized as delimiters. 

• 	 A double-byte character that contains the value of an EBCDIC ampersand or 
apostrophe in either byte is not recognized as a delimiter when enclosed by 
SO and SI. 

• 	 A single ampersand initiates an attempt to identify a variable symbol and to 
substitute its current value. 

• 	 Double ampersands or apostrophes specified, print as single ampersands 
or apostrophes in the heading. 

Chapter 5. Assembler Instruction Statements 147 



• 	 A single apostrophe followed by one or more blanks simply terminates the 
heading prematurely. If a non blank character follows a single apostrophe, 
the assembler issues an error message and prints no heading. 

Only the characters printed in the heading count toward the maximum of 100 
characters allowed. 

Note: The TITLE statement itself is not printed in an assembly listing. 

EJECT-Start New Page 
The EJECT instruction allows you to stop the printing of the assembler listing on 
the current page, and continue the printing on the next page. 

Format of EJECT: 

Name Operation Operand 

A sequence EJECT Not required 
symbo 1 or 
blank 

The EJECT instruction causes the next line of-the assembly listing to be printed 
at the top of a new page. If the line before the EJECT statement appears at the 
bottom of a page, the EJECT statement has no effect. An EJECT instruction 
immediately following another EJECT instruction causes a blank page in the 
listing. 

Note: The EJECT instruction statement itself is not printed in the listing. 

SPACE-Space Listing 
You can use the SPACE instruction to insert one or more blank lines in the 
listing of a source module. This allows you to separate sections of code on the 
listing page. 

Format of SPACE: 

Name Operation Operand 

A sequence SPACE A decimal self-defining 
symbol or 	 term or blank 
blank 

The operand entry specifies the number of lines to be left blank. A blank 
operand entry causes one blank line to be inserted. A blank operand causes 
one blank line to be inserted. If the operand specified has a value greater than 
the number of lines remaining on the listing page, the instruction will have the 
same effect as an EJECT statement. 

Note: The SPACE instruction itself is not printed in the listing. 

148 Assembler H Version 2 Language Reference 



PRINT-Print Optional Data 
The PRINT instruction allows you to control the amount of detail you wish 
printed in the listing of your programs. The three options that you can set are 
given in the table below: 

Hierarchy Description 

A listing is printed. 

Options 

ON 

No listing is printed. OFF 

2 All statements generated by the processing of a macro 
instruction are printed. 

GEN 

Statements generated by the processing of a macro NOGEN 
instruction are not printed. (The MNOTE instruction 
always causes a message to be printed.) 

3 Constants are printed in full in the listing. DATA 

Only the leftmost 8 bytes of constants are printed NODATA 
in the listing. 

The options are listed in hierarchic order; if OFF is specified, GEN and DATA 
will not apply. If NOGEN is specified, DATA will not apply to constants that are 
generated. The standard options inherent in the assembler program are ON, 
GEN, and NODATA. 

Format of PRINT: 

Name Operation Operand 

A sequence PRINT [ON IOFF] 
symbol or [,GENINOGEN] 
blank [,NOOATAIOATA] 

Note: Any sequence of specification is allowed. 

At least one of the operands must be specified, and at most one of the options 
from each group. The PRINT instruction can be specified any number of times 
in a source module, but only those print options actually specified in the 
instruction change the current print status. 

PRINT options can be generated by macro processing, at preassembly time. 
However, at assembly time, all options are in force until the assembler 
encounters a new and opposite option in a PRINT instruction. 

The PUSH and POP instructions, described in "PUSH Instruction" on page 137 
and "POP Instruction" on page 137, also influence the PRINT options by saving 
and restoring the PRINT status. 

Note: The option specified in a PRINT instruction takes effect after the PRINT 
instruction. If PRINT OFF is specified, the PRINT instruction itself is printed, but 
not the statements that follow it. If the NOLIST assembler option is specified 
when the assembler is invoked, the entire listing for the assembly is sup­
pressed. 

Chapter 5. Assembler Instruction Statements 149 





Part 2. Macro Language 

• 	 "Chapter 6. Introduction to Macro Language" describes the macro instruc­
tion statement, definition, library, and so on. 

• 	 "Chapter 7. How to Prepare Macro Definitions" and "Chapter 8. How to 
Write Macro Instructions" describe the basic rules for preparing macro defi­
nitions and for writing macro instructions. 

• 	 "Chapter 9. How to Write Conditional Assembly Instructions" describes the 
rules for writing conditional assembly instructions. 

Part 2. Macro Language 151 





Chapter 6. Introduction to Macro Language 


This chapter introduces the basic macro concept: what you can use the macro 
facility for, how you can prepare your own macro definitions, and how you call 
these macro definitions for processing by the assembler. 

Macro language is an extension of assembler language. It provides a conven­
ient way to generate a desired sequence of assembler language statements 
many times in one or more programs. A macro definition is written only once; 
thereafter, a single statement, a macro instruction statement, is written each 
time you want to generate the desired sequence of statements. This simplifies 
the coding of programs, reduces the chance of programming errors, and 
ensures that standard sequences of statements are used to accomplish desired 
functions. 

In addition, conditional assembly allows you to code statements that mayor 
may not be assembled, depending upon conditions evaluated at assembly time. 
These conditions are usually tests of values which may be defined, set, 
changed, and tested during assembly. Conditional assembly can be used 
without using macro instruction statements. 

Using Macros 
The main use of macros is to insert assembler language statements into a 
source program. 

You call a named sequence of statements (the macro definition) by using a 
macro instruction, or macro call. The assembler replaces the macro call by the 
statements from the macro definition and inserts them into the source module 
at the point of call. The process of inserting the text of the macro definition is 
called macro generation or macro expansion. The assembler expands a macro 
at preassembly time. 

The expanded stream of code then becomes the input for processing at 
assembly time; that is, the time at which the assembler translates the machine 
instructions into object code. 

Macro Definition 
A macro definition is a named sequence of statements you can call with a 
macro instruction. When it is called, the assembler processes and usually gen­
erates assembler language statements from the definition into the source 
module. The statements generated can be: 

• 	 Copied directly from the definition 

• 	 Modified by parameter values before generation 

• 	 Manipulated by internal macro processing to change the sequence in which 
they are generated 

Chapter 6. Introduction to Macro Language 153 



• • • • 

You can define your own macro definitions in which any combination of these 
three processes can occur. Some macro definitions, like some of those used 
for system generation, do not generate assembler language statements, but 
perform only internal processing. 

A macro definition provides the assembler with (1) the name of the macro, (2) 
the parameters used in the macro, and (3) the sequence of statements the 
assembler generates when the macro instruction appears in the source 
program. 

Every macro definition consists of a macro definition header statement 
(MACRO); a macro instruction prototype statement; one or more assembler lan­
guage statements; and a macro definition trailer statement (MEND). as shown in 
Figure 43. 

MACRO 


Prototype MAcro &PARAM1,&PARAM2 


Body of Macro 

L--------... MENO 

-
Macro Instruction MAcro OPERAN01,OPERAN02• 

Figure 43. Parts of a Macro Definition 

• 	 The macro definition header and trailer statements (MACRO and MEND) 

indicate to the assembler the beginning and end of a macro definition (see 

(1) in Figure 43). 

• The macro instruction prototype statement is used to name the macro (see 
(2) in Figure 43). and to declare its parameters (see (3) in Figure 43). In the 

operand field of the macro instruction, you can assign values (see (4) in 

Figure 43) to the parameters declared for the called macro definition . 


• 	 The body of a macro definition (see (5) in Figure 43) contains the state­

ments that will be generated when you call the macro. These statements 

are called model statements; they are usually interspersed with conditional 

assembly statements or other processing statements. 


..." 
1;:, 

154 Assembler H Version 2 Language Reference 



Model Statements 
You can also write assembler language statements as model statements. 

When it expands the macro, the assembler copies them exactly as they are 

written. You can also use variable symbols as points of substitution in a model 

statement. The assembler will enter values in place of these points of substi ­

tution each time the macro is called. 


The three types of variable symbols in the assembler language are: 


• Symbolic parameters, declared in the prototype statement 
• System variable symbols 
• SET symbols, which are part of the conditional assembly language 

The assembler processes the generated statements, with or without value sub­
stitution, at assembly time. 

Processing Statements 
Processing statements perform functions at preassembly time when macros are 
expanded, but they are not themselves generated for further processing at 
assembly time. The processing statements are: 

• Conditional assembly instructions 
• Inner macro calls 
• MNOTE instructions 
• MEXIT instructions 
• AREAD instructions 

The MNOTE instruction allows you to generate an error message with an error 
condition code attached, or to generate comments in which you can display the 
results of preassembly computation. 

The MEXIT instruction tells the assembler to stop processing a macro definition. 
The MEXIT instruction, therefore, provides an exit from the middle of a macro 
definition. 

The MEND instruction not only delimits the contents of a macro definition, but 
also provides an exit from the definition. 

The AREAD instruction allows you to assign to a SETC symbol the character 
string value of a statement that is placed immediately after a macro instruction. 

Comments Statements 
One type of comments statement describes preassembly operations and is not 
generated. The other type describes assembly-time operations and is, there­
fore, generated. 

Macro Instruction Statement 
A macro instruction statement (hereafter called a macro instruction) is a source 
program statement that you code to tell the assembler to process a particular 
macro definition. The assembler generates a sequence of assembler language 
statements for each occurrence of the same macro instruction. The generated 
statements are then processed as any other assembler language statement. 

Chapter 6. Introduction to Macro Language 155 



The macro instruction provides the assembler with: 

• 	 The name of the macro definition to be processed. 

• 	 The information or values to be passed to the macro definition. The assem­
bler uses the information either in processing the macro definition or for 
substituting values into a model statement in the definition. 

The output from a macro definition, called by a macro instruction, can be: 

• 	 A sequence of statements generated from the model statements of the 
macro for further processing at assembly time. 

• 	 Values assigned to global SET symbols. These values can be used in other 
macro definitions and in open code. 

You can call a macro definition by specifying a macro instruction anywhere in a 
source module. You can also call a macro definition from within another macro 
definition. This type of call is an inner macro call; it is said to be nested in the 
macro definition. 

Source and Library Macro Definitions 

Macro Library 

You can include a macro definition in a source module. This type of definition 
is called a source macro definition. 

You can also insert a macro definition into a system or user library (located, for 
example, on disk) by using the appropriate utility program. This type of defi ­
nition is called a library macro definition. The IBM-supplied macro definitions 
are examples of library macro definitions. 

You can call a source macro definition only from the source module in which it 
is included. You can call a library macro definition from any source module. 

Source and library macros are expanded in the same way, but syntax errors 
are handled differently. In source macros, error messages are attached to the 
statements in error. In library macros, however, error messages cannot be 
associated with the statement in error, because these macros are located and 
edited after the entire source module has been read. Therefore, the error mes­
sages are associated with the END statement. 

Because of the difficulty of finding syntax errors in library macros, a macro defi­
nition should be run and "debugged" as a source macro before it is placed in a 
macro library. 

The same macro definition may be made available to more than one source 
program by placing the macro definition in the macro library. The macro 
library is a collection of macro definitions that can be used by all the assembler 
language programs in an installation. Once a macro definition has been placed 
in the macro library, it may be used by writing its corresponding macro instruc­
tion in a source program. Macro definitions must be in the system macro 
library under the same name as the prototype. The procedure for placing 
macro definitions in the macro library is described in the appropriate utilities 
manual. 

156 Assembler H Version 2 Language Reference 



System Macro Instructions 
The macro instructions that correspond to macro definitions prepared by IBM 
are called system macro instructions. System macro instructions are described 
in the appropriate supervisor services and macro instructions and data man­
agement macro instructions manuals. 

Conditional Assembly Language 
The conditional assembly language is a programming language with most of 
the features that characterize a programming language. For example. it pro­
vides: 

• Variables 
• Data attributes 
• Expression computation 
• Assignment instructions 
• Labels for branching 
• Branching instructions 
• Substring operators that select characters from a string 

You can use the conditional assembly language in a macro definition to receive 
input from a calling macro instruction. You can produce output from the condi­
tional assembly language by using the MNOTE instruction. 

You can use the functions of the conditional assembly language to select state­
ments for generation. to determine their order of generation. and to perform 
computations that affect the content of the generated statements. 

The conditional assembly language is described in "Chapter 9. How to Write 
Conditional Assembly Instructions." 

Chapter 6. Introduction to Macro Language 157 





Chapter 7. How to Prepare Macro Definitions 

Defining a macro means preparing the statements that constitute a macro defi­
nition. To define a macro you must: 

• Give it a name 
• Declare any parameters to be used 
• Write the statements it contains 
• Establish its boundaries with a MACRO and a MEND instruction 

Except for conditional assembly instructions, this chapter describes all the 
statements that can be used to prepare macro definitions. Conditional 
assembly instructions are described in "Chapter 9. How to Write Conditional 
Assembly Instructions" on page 211. 

Where to Define a Macro in a Source Module 
Macro definitions can appear anywhere in a source module. They remain in 
effect for the rest of your source module, or until another macro definition 
defining a macro with the same operation code is encountered. Thus, you can 
redefine a macro at any point in your program. The new definition will be used 
for all subsequent calls to the macro in the program. 

This type of macro definition is called a source macro definition. A macro defi­
nition can also reside in a system library; this type of macro is called a library 
macro definition. Either type can be called from the source module by the 
appropriate macro instruction. 

Macro definitions can also appear inside other macro definitions. There is no 
limit to the levels of macro definitions permitted. 

The assembler does not process inner macro definitions until it finds the defi­
nition during the processing of a macro instruction calling the outer macro. 

Example: 

~IACRO ~lacro header for outer macro 
OUTER &A,&C= ~lacro prototype 
AIF ( I &C I EQ I ').A 
~lACRO ~lacro header for inner macro 
INNER ~lacro prototype 

MEND Macro trailer for inner macro 
.A ANOP 

HEND ~lacro trailer for outer macro 

The assembler does not process the macro definition for INNER until OUTER is 
called with a value for &C other than a null string. 

Chapter 7. How to Prepare Macro Definitions 159 



Open Code 
Open code is that part of a source module that lies outside of any source macro 
definition. At coding time, it is important to distinguish between source state­
ments that lie in open code, and those that lie inside macro definitions. 

Format of a Macro Definition 
The general format of a macro definition is shown in Figure 44. The four parts 
are described in detail below: 

Header statement 

ANYNA~lE Prototype statement 

Body of macro 

l~lEND Trailer statement 

Figure 44. Format of a Macro Definition 

MACRO-Macro Definition Header 
MACRO indicates the beginning of a macro definition. It must be the first state­
ment in every macro definition. 

Format of MACRO: 

Name Operation Operand 

MACRO 

MEND-Macro Definition Trailer 
MEND indicates the end of a macro definition. It also provides an exit when it 
is processed during macro expansion. It can appear only once within a macro 
definition and must be the last statement in every macro definition. 

160 Assembler H Version 2 Language Reference 



Format of MEND: 

Name Operation Operand 

A sequence MEND 
symbol 
or blank 

Macro Instruction Prototype 
The macro instruction prototype statement (hereafter called the prototype state­
ment) specifies the mnemonic operation code and the format of all macro 
instructions that you use to call the macro definition. 

The prototype statement must be the second noncomment statement in every 
macro definition. Only internal comments statements are allowed between the 
macro header and the macro prototype. Internal comments statements are 
listed only with the macro definition. 

Format of the prototype statement: 

Name Operation Operand 

A name field A symbol Zero or more symbolic parameters 
parameter (mandatory) parameters separated by COIunas 
or blank 

The symbolic parameters are used in the macro definition to represent the 
operands of the corresponding macro instruction. A description of symbolic 
parameters appears under "Symbolic Parameters" on page 170. 

Nall'e Field 
You can write a name field parameter, similar to the symbolic parameter, as 
the name entry of a macro prototype statement. You can then assign a value to 
this parameter from the name entry in the calling macro instruction. 

If used, the name entry must be a variable symbol. If this parameter also 
appears in the body of a macro, it will be given the value assigned to the 
parameter in the name field of the corresponding macro instruction. Note that 
the value assigned to the name field parameter has special restrictions that are 
listed in "Formatting Specifications" on page 15. 

Operation Field 
The symbol in the operation field of the prototype statement establishes the 
name by which a macro definition must be called. This name becomes the 
operation code required in any macro instruction that calls the macro. 

Chapter 7. How to Prepare Macro Definitions 161 



Any operation code can be specified in the prototype operation field. If the 
entry is the same as an assembler or a machine operation code, the new defi­
nition overrides the previous use of the symbol. The same is true if the speci­
fied operation code has been defined earlier in the progra'ril as a macro, or is 
the operation code of a library macro. 

Macros that are defined inline may use any ordinary symbol for the operation 
field. However, operating system rules may prevent some of these macros 
from being stored as member names. 

Note: The assembler requires that the member name and macro name be the 
same; otherwise, an error occurs. 

Operand Field 
The operand field in a prototype statement allows you to specify positional or 
keyword parameters. These parameters represent the values you can pass 
from the calling macro instruction to the statements within the body of a macro 
definition. 

The operand field of the macro prototype statement must contain 0 to 240 sym­
bolic parameters separated by commas. They can be positional parameters or 
keyword parameters, or both. 

If no parameters are specified in the operand field and if the absence of the 
operand entry is indicated by a comma preceded and followed by one or more 
blanks, remarks are allowed. 

The following is an example of a prototype statement: 

&NAt-IE t·lOVE &TO,&FROH 

Alternative Ways of Coding the Prototype Statement 
The prototype statement can be specified in one of the following three ways: 

• The normal way, with all the symbolic parameters preceding any remarks 
• An alternative way, allowing remarks for each parameter 
• A combination of the first two ways 

The following examples illustrate (1) the normal statement format, (2) the alter­
native statement format, and (3) a combination of both statement formats. 

Opera-
Name tion Operand COlllllent Cont. 

NAt·IEI OP} &OPERANDl,&OPERAND2,&OPERAND3 	 This is the normal x 
statement format 

NA~IE2 OP2 	 &OPERANDl, This is the alter- X 
&OPERAND2 native statement format X 

NA~IE3 OP3 	 &OPERANDl, This is a combination X 
&OPERAND2,&OPERAND3,&OPERAND4 of both X 

162 Assembler H Version 2 Language Reference 



Notes: 

1. 	 Any number of continuation lines are allowed. However, each continuation 
line must be indicated by a nonblank character in the column after the end 
column on the preceding card. 

2. 	 For each continuation line, the operand field entries (symbolic parameters) 
must begin in the continue column; otherwise, the whole line and any lines 
that follow will be considered to contain remarks. 

3. 	 The standard value for the continue column is 16, and, for the column after 
the end column, is 72. 

4. 	 A comma is required after each parameter except the last. 

5. 	 One or more blanks is required between the operand and the remarks. 

6 	 If the assembler is invoked with the DBCS option, the continuation features 
outlined in "Continuation of double-byte data" on page 12 apply to contin­
uation in the macro language. Extended continuation may be useful if a 
macro keyword parameter contains double-byte data. 

Body of a Macro Definition 
The body of a macro definition contains the sequence of statements that consti ­
tutes the working part of a macro. You can specify: 

1. 	 Model statements to be generated 

2. 	 Processing statements that, for example, can alter the content and 
sequence of the statements generated or issue error messages 

3. 	 Comments statements, some of which are generated and others which are 
not 

4. 	 Conditional assembly instructions to compute results to be displayed in the 
message created by the MNOTE instruction, without causing any assembler 
language statements to be generated 

The statements in the body of a macro definition must appear between the 
macro prototype statement and the MEND statement of the definition. Numbers 
1 through 3 in the list above are the three main types of statements allowed in 
the body of a macro. The body of a macro definition can be empty, that is, 
contain no statements. 

Note: You can include macro definitions in the body of a macro definition. This 
is explained under "Using a Macro Definition" in this chapter. 

Model Statements 
Model statements are statements from which assembler language statements 
are generated at preassembly time. They allow you to determine the form of 
the statements to be generated. By specifying variable symbols as points of 
substitution in a model statement, you can vary the contents of the statements 
generated from that model statement. You can also use model statements into 
which you substitute values in open code. 

Chapter 7. How to Prepare Macro Definitions 163 



A model statement consists of one or more fields, separated by one or more 
blanks, in columns 1 to 71. The fields are called the name, operation, operand, 
and remarks fields. 

Each field or subfield can consist of: 

• 	 An ordinary character string composed of alphameric and special charac­
ters 

• 	 A variable symbol as a point of substitution 

• 	 Any combination of ordinary character strings and variable symbols to form 
a concatenated string. 

The statements generated at preassembly time from model statements must be 
valid machine or assembler instructions, but must not be conditional assembly 
instructions. They must obey the coding rules described in "Rules for Model 
Statement Fields" on page 168 or they will be flagged as errors at assembly 
time. 

Examples: 

LABEL L 3,AREA 
LABEL L 3,20(4,5) 
&LABEL L 3,&AREA 
FIELD&A L 3,AREA&C 

Variable Symbols as Points of Substitution 
Values can be substituted for variable symbols that appear in the name, opera­
tion, and operand fields of model statements; thus, variable symbols represent 
points of substitution. The three main types of variable symbol are: 

• 	 Symbolic parameters (positional or keyword) 

• 	 System variable symbols (&SYSLlST, &SYSNDX, &SYSECT, &SYSPARM, 
&SYSDATE, &SYSLOC, and &SYSTIME) 

• 	 SET symbols (global or local SETA. SETB, or SETC symbols) 

Examples: 

&PARN1(3) 

&SYSLIST(l,3) 

&SYSLIST(2) 

&SETA(lO) 

&SETC (15) 


Note: Symbolic parameters, SET symbols, and the system variable symbol, 
&SYSLlST, can all be subscripted. The remaining system variable symbols 
(&SYSNDX, &SYSECT, &SYSPARM, &SYSDATE, &SYSLOC, and &SYSTIME) 
cannot be subscripted. 

Listing of Generated Fields 
The different fields in a macro-generated statement or a statement generated in 
open code appear in the listing in the same column as they are coded in the 
model statement, with the following exceptions: 

• 	 If the substituted value in the name or operation field is too large for the 
space available, the next field will be moved to the right with one blank sep­
arating the fields. 

164 Assembler H Version 2 Language Reference 



• 	 If the substituted value in the operand field causes the remarks field to be 
displaced, the remarks field is written on the next line, starting in the 
column where it is coded in the model statement. 

• 	 If the value substituted in the operation field of a macro-generated state­
ment contains leading blanks, the blanks are ignored. 

• 	 If the value substituted in the operation field of a model statement in open 
code contains leading blanks, the blanks will be used to move the field to 
the right. 

• 	 If the value substituted in the operand field contains leading blanks, the 
blanks will be used to move the field to the right. 

• 	 If the value substituted contains trailing blanks, the blanks are ignored. 

Listing of generated fields containing double-byte data: If the assembler is 
invoked with the DSCS option, then the following differences apply: 

• 	 Any continuation indicators present in the model statement will be dis­
carded. 

• 	 Double-byte data that must be split at a continuation point will always be 
made readable on a device capable of presenting DSCS characters-SI and 
SO will be inserted at the break point, and the break-point will always occur 
between double-byte characters. 

• 	 The continuation indicator will be extended to the left, if necessary, to fill 
space that cannot be filled with double-byte data because of alignment and 
delimiter considerations. The maximum number of columns so used is 3. 

• 	 If continuation is required and the character to the left of the continuation 
indicator is X, then + will be used as the continuation indicator so as to 
clearly distinguish the position of the end column. This will apply to any 
generated field, regardless of its contents, in order to prevent ambiguity. 

• 	 Redundant SI/SO pairs may be present in a field after substitution. If they 
occur at a continuation point, the assembler will not distinguish them from 
SI and SO inserted by the assembler to preserve readability. You must 
refer to the object code to resolve this ambiguity. 

Rules for Concatenation 
If a symbolic parameter in a model statement is immediately preceded or fol­
lowed by other characters or another symbolic parameter, the characters that 
correspond to the symbolic parameter are combined in the generated state­
ment with the other characters or the characters that correspond to the other 
symbolic parameter. This process is called concatenation. 

When variable symbols are concatenated to ordinary character strings, the fol­
lowing 	rules apply to the use of the concatenation character (a period). The 
concatenation character is mandatory when: 

(1) 	 An alphameric character is to follow a variable symbol. 

(2) 	 A left parenthesis that does not enclose a subscript is to follow a vari ­
able symbol. 

(3-4) A period (.) is to be generated. Two periods must be specified in the 
concatenated string following a variable symbol. 

Chapter 7. How to Prepare Macro Definitions 165 

L 



The concatenation character is not required when: 

(5) 	 An ordinary character string precedes a variable symbol. 

(6) 	 A special character, except a left parenthesis or a period, is to follow a 
variable symbol. 

(7) 	 A variable symbol follows another variable symbol. 

(8) 	 The concatenation character must not be used between a variable 
symbol and its subscript; otherwise, the characters will be considered a 
concatenated string and not a subscripted variable symbol. 

Figure 45 on page 167, in which the circled numbers correspond to the 
numbers in the above list, gives the rules for concatenating variable symbols to 
ordinary character strings. 

Concatenation of fields containing double-byte data: If the assembler is invoked 
with the DBCS option, then the following additional rules apply: 

• 	 Because ampersand is not recognized in double-byte data, variable 

symbols must not be present in double-byte data. 


• 	 The concatenation character is mandatory when double-byte data is to 

follow a variable symbol. 


• 	 The assembler checks for redundant SI and SO at concatenation points. If 
the byte to the left of the join is SI and the byte to the right of the join is SO, 
then the SI/SO pair is considered redundant and is removed. 

The following example illustrates these rules: 

&SYllBOL SETC '<DcDd>' 
DBCS DC C'<DaDb>&SYMBOL.<.&.S.Y.M.B.O.L>' 

The SI/SO pairs between double-byte characters Db and Dc, and Dd and .&, will 
be removed. The variable symbol &SYMBOL is recognized between the 
double-byte strings but not in the double-byte strings. The result after concat­
enation is: 

DBCS DC C'<DaDbDcDd.&.S.Y.M.B.O.L>' 

166 Assembler H Version 2 Language Reference 



• • 

Concatenated Values to be Generated 
String Substituted Result 

Variable Value 
symbol 

&FIELD.A8 	 &FIELD AREA AREAA 
&FIELDA 	 &FIELDA SUM SUM 

&DISP. (&BASE) &DISP 100 100(10)• &BASE 10 

I Concatenation character is not generated J 

DC D' [, INT .. &FRACT' &INT 99 DC D'99.88' 
I&FRACT 88 -

DC D'&INT&FRACT' 	 DC D'9988'•
DC D' &INT. &FRACT' 	 DC D'9988' 

optional

1Concatenation character is not generated J 

FIELD&A &A A FIELDA•&A+&B*3-D 	 &A A A+B*3-D 
&B B•

&A&B 	 AB•
&SYM(,&SUBSCR)} 	 &SUBSCR 10 

&SYM (10) ENTRY {ENTRY• 
Figure 45. Rules for Concatenation 

Chapter 7. How to Prepare Macro Definitions 167 

http:FIELD.A8


Rules for Model Statement Fields 
The fields that can be specified in model statements are the same fields that 
can be specified in an ordinary assembler language statement. They are the 
name, operation, operand, and remarks fields. It is also possible to specify a 
continuation-indicator field, an identification-sequence field, and a field before 
the begin column, if the appropriate ICTL instruction has been specified. Char­
acter strings in the last three fields (in the standard format only, columns 72 
through 80) are generated exactly as they appear in the model statement, and 
no values are substituted for variable symbols. 

Model statements must have an entry in the operation field, and, in most cases, 
an entry in the operand field in order to generate valid assembler language 
instructions. 

Name Field: The entries allowed in the name field of a model statement, before 
generation, are given below. 

• 	 Blank 
• 	 Ordinary symbol 
• 	 Sequence symbol 
• 	 Variable symbol 
• 	 Any combination of variable symbols and other character strings concat­

enated together 

The generated result must either be a blank or a valid ordinary symbol. 

Variable symbols must not be used to generate comments statement indicators 
(* or .*). 

Note: Restrictions on the name entry are further specified where each indi­
vidual assembler language instruction is described in this manual. 

Operation Field: The entries allowed in the operation field of a model state­
ment, before generation, are given in the following list: 

• 	 An ordinary symbol that represents the operation code for: 

Any machine instruction 
A macro instruction 
The following assembler instructions: 

AMODE DSECT PRINT 
CCI·I DXD PUNCH 
CCI18 EJECT PUSH 
CClV! END RtlODE 
CNOP ENTRY REPRO 
COt1 EQU SPACE 
COPY EXTRN START 
CSECT ISEQ TITLE 
CXD LTORG USING 
DC OPSYN WXTRN 
DROP ORG MEXIT 
OS POP MNOTE 

Note: MNOTE and MEXIT are not model statements; they are described 
in "Chapter 7. How to Prepare Macro Definitions." 

168 Assembler H Version 2 Language Reference 



A variable symbol 

A combination of variable strings concatenated together 


Operation code ICTl is not allowed inside a macro definition. The MACRO and 
MEND operation codes are not allowed in model statements; they are used only 
for delimiting macro definitions. 

If the REPRO operation code is specified in a model statement, no substitution 
is performed for the variable symbols in the statement line following the REPRO 
statement. Variable symbols can be used alone or as part of a concatenated 
string to generate operation codes for: 

• 	 Any machine instruction 
• 	 Any assembler instruction listed above, except COPY, ISEQ, REPRO, and 


MEXIT 


The generated operation code must not be an operation code for the following 
(or their OPSYN equivalents): 

• 	 A macro instruction 
• 	 A conditional assembly instruction 
• 	 The following assembler instructions: COPY, ICn, ISEQ, MACRO, MEND, 


MEXIT, and REPRO 


Operand Field: The entries allowed in the operand field of a model statement, 
before generation, are given below: 

• 	 Blank (if valid) 
• 	 An ordinary symbol 
• 	 A character string, combining alphameric and special characters (but not 

variable symbols) 
• 	 A variable symbol 
• 	 A combination of variable symbols and other character 


strings concatenated together 

• 	 If the assembler is invoked with the DBCS option, character strings may 


contain double-byte data, provided the character strings are enclosed by 

apostrophes. 


The allowable results of generation are a blank (if valid) and a character string 
that represents a valid assembler or machine instruction operand field. 

Note: VariClble symbols must not be used in the operand field of a COPY, ICll, 
or ISEQ instruction. 

Chapter 7. How to Prepare Macro Definitions 169 



Remarks Field: The remarks field of a model statement can contain any combi­
nation of characters. No substitution is performed for variable symbols 
appearing in the remarks field. Only generated statements will be printed in 
the listing. 

Note: One or more blanks must be used in a model statement to separate the 
name, operation, operand, and remarks fields from each other. Blanks cannot 
be generated between fields in order to create a complete assembler language 
statement. The exception to this rule is that a combined operand-remarks field 
can be generated with one or more blanks to separate the two fields. 

Symbolic Parameters 
Symbolic parameters allow you to pass values into the body of a macro defi­
nition from the calling macro instruction. You declare these parameters in the 
macro prototype statement. They can serve as points of substitution in the 
body of the macro definition and are replaced by the values assigned to them 
by the calling macro instruction. 

By using symbolic parameters with meaningful names, you can indicate the 
purpose for which the parameters (or substituted values) are used. 

Symbolic parameters must be valid variable symbols. A symbolic parameter 
consists of an ampersand followed by an alphabetic character and from 0 to 61 
alphameric characters. 

The following are valid symbolic parameters: 

&READER &LOOP2 

&A23456 &N 

&X4F2 &$4 


The following are invalid symbolic parameters: 

CARDAREA first character is not an ampersand 
&256B first character after ampersand is not a letter 
&BCD%34 contains a special character other than initial ampersand 
&IN AREA contains a special character [the blank] other than initial ampersand 

Symbolic parameters have a local scope; that is, the value they are assigned 
only applies to the macro definition in which they have been declared. 

The value of the parameter remains constant throughout the processing of the 
containing macro definition for every call on that definition. 

Note: Symbolic parameters must not have multiple definitions or be identical to 
any other variable symbols within the given local scope. This applies to the 
system variable symbols described in "System Variable Symbols" in this 
chapter, and to local and global SET symbols described in "SET Symbols" on 
page 212. 

170 Assembler H Version 2 Language Reference 



The two kinds of symbolic parameters are: 

• Positional parameters 
• Keyword parameters 

Each positional or keyword parameter used in the body of a macro definition 
must be declared in the prototype statement. 


The following is an example of a macro definition with symbolic parameters. 


MACRO Header 
&NAt1E 
&NAME 

t10VE 
ST 
L 

&TO,&FROM 
2,SAVE 
2,&FROM 

Prototype 
Model 
Model 

ST 2,&TO Model 
L 2,SAVE I-Iodel 
MEND Trailer 

In the following macro instruction that calls the above macro, the characters 
HERE, FIELDA, and FIELDS of the MOVE macro instruction correspond to the 
symbolic parameters &NAME, & TO, and &FROM, respectively, of the MOVE pro­
totype statement. 

HERE MOVE FIELDA,FIELDB 

If the preceding macro instruction were used in a source program, the following 
assembler language statements would be generated: 

HERE ST 2,SAVE 
L 2,FIELDB 
ST 2,FIELDA 
L 2,SAVE 

Positional Parameters 
You should use a positional parameter in a macro definition if you want to 
change the value of the parameter each time you call the macro definition. 
This is because it is easier to supply the value for a positional parameter than 
for a keyword parameter. You only have to write the value you want the 
parameter to have in the proper position in the operand of the calling macro 
instruction. 

For keyword parameters (described below), you must write the entire keyword 
and the equal sign that precedes the value to be passed. However, if you need 
a large number of parameters, you should use keyword parameters. The 
keywords make it easier to keep track of the individual values you must specify 
at each call by reminding you which parameters are being given values. 

The general specifications for symbolic parameters, described in "Symbols" on 
page 25, also apply to positional parameters. Note that the specification for 
each positional parameter declared in the prototype statement definition must 
be a valid variable symbol. Values are assigned to the positional parameters 
by the corresponding positional operands specified in the macro instruction that 
calls the definition. 

Chapter 7. How to Prepare Macro Definitions 171 



~ 

."" 

&SYSECT-Current Control Section 
You can use &SYSECT in a macro definition to generate the name of the 
current control section. The current control section is the control section in 
which the macro instruction that calls the definition appears. 

The local system variable symbol &SYSECT is assigned a read-only value each 
time a macro definition is called. 

The value assigned is the symbol that represents the name of the current 
control section from which the macro definition is called. Note that it is the 
control section in effect when the macro is called. A control section that has 
been initiated or continued by sUbstitution does not affect the value of &SYSECT 
for the expansion of the current macro. However, it does affect &SYSECT for a 
subsequent macro call. Nested macros cause the assembler to assign a value 
to &SYSECT that depends on the control section in force inside the outer macro 
when the inner macro is called. 

Notes: 

1. 	 The control section whose name is assigned to &SYSECT can be defined by 
a START, CSECT, DSECT, or COM instruction. 

2. 	 The value of the type attribute of &SYSECT (1'&SYSECT) is always U, and 
the value of the count attribute (K'&SYSECT) is equal to the number of char­
acters assigned as a value to &SYSECT. 

3. 	 Throughout the use of a macro definition, the value of &SYSECT may be 
considered a constant, independent of any CSECT or DSECT statements or 
inner macro instructions in that definition. 

The next example illustrates these rules. In it, statement 8 is the last CSECT, 
DSECT, or START statement processed before statement 9 is processed. 
Therefore, &SYSECT is assigned the value MAINPROG for macro instruction 
OUTER1 in statement 9. MAINPROG is substituted for &SYSECT when it 
appears in statement 6. 

Statement 3 is the last CSECT, DSECT, or START statement processed before 
statement 4 is processed. Therefore, &SYSECT is assigned the value CSOUT1 
for macro instruction INNER in statement 4. CSOUT1 is su bstituted for 
&SYSECT when it appears in statement 2. 

Statement 1 is used to generate a CSECT statement for statement 4. This is the 
last CSECT, DSECT, or START statement that appears before statement 5. 
Therefore, &SYSECT is assigned the value INA for macro instruction INNER in 
statement 5. INA is substituted for &SYSECT when it appears in statement 2 

184 Assembler H Version 2 Language Reference 



t·IACRO 
INNER &INCSECT 

&INCSECT CSECT Statement 
DC A(&SYSECT) Statement 2 .....' 
HEND 

HACRO 
OUTER1 
CSOUT1 CSECT Statement 3 
OS 100C 
INI'IER INA Statement 4 
INNER HIB Statement 5 
DC A(&SYSECT) Statement 6 

HEr'lD 

~1ACRO 

OUTER2 
DC A(&SYSECT) Statel11ent 7 
t'IEND 

HAHIPROG 	 CSECT Statement 8 
OS 200C 
OUTER1 Statement 9 
OUTER2 Statement 10 

t·IAI NPROG CSECT 
OS 200C 

CSOUTl CSECT 
OS lOOC 

HIA CSECT 
DC A(CSOUTl ) 

INB 	 CSECT 
DC A(INA) 
DC A(~IAINPROG) 

DC A(I NB) 

Statement 1 is used to generate a CSECT statement for statement 5. This is the 
last CSECT, DSECT, or START statement that appears before statement 10. 
Therefore, &SYSECT is assigned the value INS for macro instruction OUTER2 in 
statement 10. INS is substituted for &SYSECT when it appears in statement 7. 

&SYSLIST-Macro Instruction Operand 
You can use &SYSLIST instead of a positional parameter inside a macro defi ­
nition; for example, as a point of substitution. Sy varying the subscripts 
attached to &SYSLlST, you can refer to any sublist entry in a macro call, or any 
positional operands in a macro call. You can also refer to positional operands 
for which no corresponding positional parameter is specified in the macro pro­
totype statement. 

The local system variable symbol &SYSLIST is assigned a read-only value each 
time a macro definition is called. &SYSLIST refers to the complete list of posi­
tional operands specified in a macro instruction. &SYSLIST does not refer to 
keyword operands. However, &SYSLIST cannot be specified as &SYSLIST 
alone. One of the two following forms must be used as a point of substitution: 

1. 	 &SYSLlST(n) may be used to refer to the nth positional operand 

2. 	 If the nth operand is a sublist, then &SYSLlST(n,m) may be used to refer to 
the mth operand in the sublist. 

Chapter 7. How to Prepare Macro Definitions 185 



The subscripts nand m can be any arithmetic expression allowed in the 
operand of a SETA instruction. The subscript n must be greater than or equal 
to O. The subscript m must be greater than or equal to 1. 

When referring to multilevel (nested) sublists in operands of macro instructions, 
reference to elements of inner sublists can be made using the appropriate 
number of subscripts for &SYSLIST. 

The examples below show the values assigned to &SYSLIST according to the 
value of its subscripts nand m. 

Macro instruction: 

NNIE t'lACALL ONE,TWO,(3,4"6),,EIGHT 

Point of Substitution Value 

in Macro Definition: Substituted: See 'note: 


&SYSLIST (2) TWO 

&SYSLIST (3 ,2) 4 

&SYSLIST (4) Null 

&SYSLIST(9) Null 

&SYSLI ST (3,3) Null 	 2 

&SYSLIST(3,5) Null 	 2 

&SYSLI ST (2,1) HIO 	 3 
&SYSLIST(2,2) Null " ..." 
&SYSLI ST (8) NA~lE 	 4 
&SYSLIST (3) (3,4,,6) 

Notes: 

1. 	 If the position indicated by n refers to an omitted operand, or refers past the 
end of the list of positional operands specified, the null character string is 
substituted for &SYSLlST(n). 

2. 	 If the position (in a sublist) indicated by the second subscript, m, refers to 
an omitted entry, or refers past the end of the list of entries specified in the 
sublist referred to by the first subscript, n, the null character string is substi ­
tuted for &SYSLlST(n,m). 

3. 	 If the nth positional operand is not a sublist, &SYSLlST(n,1) refers to the 
operand but &SYSLlST(n,m), where m is greater than 1, will cause the null 
character string to be substituted. 

4. 	 If the value of subscript n is 0, then &SYSLlST(n) is assigned the value 
specified in the name field of the macro instruction, except when it is a 
sequence symbol. 

Attribute references can be made to the previously described forms of 
&SYSLIST. The attributes will be the attributes inherent in the positional oper­
ands or sublist entries to which you refer. However, the number attribute of 
&SYSLIST (N'&SYSLlST) is different from the number attribute described in 
"Data Attributes." One of two forms (N'&SYSLIST or N'&SYSLlST(n» can be 
used for the number attribute: 

186 Assembler H Version 2 Language Reference 



• 	 To indicate the number of positional operands specified in a call, you use 
the form N'&SYSLIST. 

• 	 To indicate the number of sublist entries that have been specified in a posi­
tional operand, you use the form N'&SYSLlST(n). 

Notes: 

1. 	 For N'&SYSLlST, positional operands are counted if specifically omitted by 
specifying the comma that would normally have followed the operand. 

2. 	 For N'&SYSLlST(n), sublist entries are counted if specifically omitted by 
specifying the comma that would normally have followed the entry. 

3. 	 If the operand indicated by n is not a sublist, N'&SYSLlST(n) is 1. If it is 
omitted, N'&SYSLlST(n) is o. 

Examples: 

Macro Instruction N' &SYSLI ST 

MACLST 1,2,3,4 4 
MACLST A,B, ,D,E 5 
MACLST ,A,B,C,D 5 
t-tACLST (A,B,C), (D,E,F) 2 
~IACLST o 
tlACLST KEY1=A, KEY2=B o 
t'IACLST A,B,KEY1=C 2 

N' &SYSLIST (2) 

MACSUB A, (1 ,2,3 ,4,5),B 5 
MACSUB A, (1,,3,,5),B 5 
~IACSUB A, (,2,3,4,5),B 5 
tlACSUB A,B,C 1 
~IACSUB A, ,C o 
~IACSUB A,KEY=(A,B,C) o 
MACSUB o 

&SYSNDX-Macro Instruction Index 
You can attach &SYSNDX to the end of a symbol inside a macro definition to 
generate a unique suffix for that symbol each time you call the definition. 
Although the same symbol is generated by two or more calls to the same defi ­
nition, the suffix provided by &SYSNDX produces two or more unique symbols. 
Thus you avoid an error being flagged for multiply defined symbols. 

The local system variable symbol &SYSNDX is assigned a read-only value each 
time a macro definition is called from a source module. 

The value assigned to &SYSNDX is a number from 1 to 9999999. For the 
numbers 0001 through 9999, four digits are generated. For the numbers 10000 
through 9999999, the value is generated with no zeros to the left. The value 
0001 is assigned to the first macro called by a program, and is incremented by 
one for each subsequent macro call (including nested macro calls). 

Chapter 7. How to Prepare Macro Definitions 187 





Chapter 8. How to Write Macro Instructions 

This chapter describes macro instructions: where they can be used and how 
they are specified, including details on the name, operation, and operand 
entries, and what will be generated as a result of that macro call. 

The macro instruction provides the assembler with: 

• 	 The name of the macro definition to be processed 
• 	 The information or values to be passed to the macro definition 

This information is the input to a macro definition. The assembler uses the 
information either in processing the macro definition, or for substituting values 
into a model statement in the definition. 

The output from a macro definition, called by a macro instruction, can be: 

• 	 A sequence of statements generated from the model statements of the 
macro for further processing at assembly time 

• 	 Values assigned to global SET symbols 

These values can be used in other macro definitions and in open code (see 
"SET Symbols" on page 212). 

Where Macro Instructions Can Appear 
A macro instruction can be written anywhere in your program, if the assembler 
finds its definition either in a macro library or in the source module before it 
finds the macro instruction. However, the statements generated from the called 
macro definition must be valid assembler language instructions and allowed 
where the calling macro instruction appears. A macro instruction can be 
nested inside a macro definition (see "Nesting in Macro Definitions" on 
page 206). 

Macro Instruction Format 
Format of macro instruction: 

Name Operation Operand 

Any symbol Symbol ic o through 240 operands separated by 
or blank operation separated by cOlllnas 

code 

If no operands are specified in the operand field and if the absence of the 
operand entry is indicated by a comma preceded and followed by one or more 
blanks, remarks are allowed. 

The entries in the name, operation, and operand fields correspond to entries in 
the prototype statement of the called macro definition (see "ENTRY-Identify 
Entry-Point Symbol" on page 70). 

Chapter 8. How to Write Macro Instructions 193 



Keyword Operands 

Notes: 

1. 	 An omitted operand has null character value. 

2. 	 Each positional operand can be up to 255 characters long. 

3. 	 If the assembler is invoked with the OSCS option, the positional operand 

can be a quoted string containing double-byte data. 


The following are examples of macro instructions with positional operands: 

MAC CALL VALUE,9,8 

~1ACCALL &A, 'QUOTED STRING' 

r1ACCALL EXPR+2"SYMBOL 

~1ACCALL (A,B,C,D,E),(1,2,3,4) 

MACCALL &A, '<. S. T . R. I . N. G>' 


The following shows what happens when the number of positional operands in 
the macro instruction is equal to or differs from the number of positional param­
eters declared in the prototype statement of the called macro definition: 

equal 	 Valid, if operands are correctly specified. 

greater than 	 Meaningless, unless &SYSLIST is specified in definition to refer 
to excess operands. 

less than 	 Omitted operands give null character values to corresponding 
parameters (or &SYSLIST specification). 

You can use a keyword operand to pass a value through a keyword parameter 
into a macro definition. The values you specify in keyword operands override 
the default values assigned to the keyword parameters. The default value 
should be a value you use frequently. Thus. you avoid having to write this 
value every time you code the calling macro instruction. 

When you need to change the default value, you must use the corresponding 
keyword operand in the macro instruction. The keyword can indicate the 
purpose for which the passed value is used. 

Any keyword operand specified in a macro instruction must correspond to a 
keyword parameter in the macro definition called. However, keyword operands 
do not have to be specified in any particular order. 

A keyword operand must be coded in the format shown below: 

KEY\~ORD=VALUE 

where: 	 KEYWORD has up to 62 characters without ampersalld. 

= is all equal sign. 

VALUE can be up to 255 characters. 


The corresponding keyword parameter in the called macro definition is speci­
fied as 

&KEYWORD=DEFAULT 

If a keyword operand is specified, its value overrides the default value specified 
for the corresponding keyword parameter. 

196 Assembler H Version 2 Language Reference 



If the assembler is invoked with the DBCS option, the keyword operand can be 
a quoted string containing double-byte data. 

The following examples of macro instructions have keyword operands: 

MACKEY KEYWDRD=(A,B,C,D,E) 
~lACKEY KEYl=l,KEY2=2,KEY3=3 
MACKEY KEY3=2000,KEYl=0,KEYWDRD=HALLD 
~lACKEY KEYWDRD='<.S.T.R.I.N.G>' 

To summarize the relationship of keyword operands to keyword parameters: 

• 	 The keyword of the operand corresponds (see (1) in Figure 51 on page 198) 
to a keyword parameter. The value in the operand overrides the default 
value of the parameter. 

• 	 If the keyword operand is not specified (see (2) in Figure 51), the default 
value of the parameter is used. 

• 	 If the keyword of the operand does not correspond (see (3) in Figure 51) to 
any keyword parameter, the assembler issues an error message, but the 
macro is generated using the default values of the other parameters. 

Combining Positional and Keyword Operands 
You can use positional and keyword operands in the same macro instruction: 
Use a positional operand for a value that you change often, and a keyword 
operand for a value that you change infrequently. 

Positional and keyword operands can be combined in the macro instruction 
operand field. However, the positional operands must be in the same order as 
the corresponding positional parameter in the macro prototype statement. 

Note: The system variable symbol &SYSLlST(n) refers only to the positional 
operands in a macro instruction. 

Chapter 8. How to Write Macro Instructions 197 



•Null character 
string is default 
value 

Source Module 

MACRO 

MACCORR &KEY1=DEFAULT/&KEY2~/&KEY3=123 
· 

SHOW DC C'&KEY1&KEY2&KEY3' 

· · 
MEND 

OPEN START 0 

• • •MACCORR KEYl 

MACCORR 

~SHOW DC C'DEFAULT123 

MACCORR KEY4=SYMBOL, KEY2=O ~":<ERROR':' ':' 

SHOW DC C'DEFAULT0123' 

Null default 
value of KEY 2 

END 


Figure 51. Relationship between Keyword Operands and Keyword Parameters and Their 
Assigned Values 

198 Assembler H Version 2 Language Reference 



Note: The default value specified for a keyword parameter can be the null char­
acter string (see (4) in Figure 51). The null character string is a character 
string with a length of zero; it is not a blank, because a blank occupies one 
character position. 

Sublists in Operands 
You can use a sublist in a positional or keyword operand to specify several 
values. A sublist is one or more entries separated by commas and enclosed in 
parentheses. Each entry is a value to which you can refer in a macro definition 
by coding: 

• 	 The corresponding symbolic parameter with an appropriate subscript, or 

• 	 The system variable symbol &SYSLIST with appropriate subscripts, the first 
of which refers to the positional operand, and the second to the sublist 
entry in the operand. 

&SYSLIST can refer only to sUblists in positional operands. 

Figure 52 on page 200 illustrates that the value specified in a positional or 
keyword operand can be a sublist. 

A symbolic parameter can refer to the entire sublist (see (1) in Figure 52), or to 
an individual entry of the sublist. To refer to an individual entry, the symbolic 
parameter (see (2) in Figure 52) must have a subscript whose value indicates 
the position (see (3) in Figure 52) of the entry in the sublist. The subscript must 
have a value greater than or equal to 1. 

A sublist, including the enclosing parentheses, must not contain more than 255 
characters. It consists of one or more entries separated by commas and 
enclosed in parentheses; for example, (A,B.C,D,E). () is a valid sublist with the 
null character string as the only entry. 

The following list shows the relationship between subscripted parameters and 
sublist entries if: 

1. 	 A sublist entry is omitted: &PAR(3) (1,2, ,4) 

2. 	 The subscript refers to an entry that is not in the sublist: &PAR(5) (1,2,3,4) 

3. 	 The value of the operand is not a sUblist: 

&PAR A 

&PAR(l) A 

&PAR(2) A 


4. 	 The parameter is not subscripted: &PAR () 

Chapter 8. How to Write Macro Instructions 199 



keyword 

operand 

0 

Source Module 

MACRO 

SUBLISTS (H20,H,200), (A,B,C) 

PO DC P'O' 

H20 DC H'200' 

DC A(A,B,C) 

END 

Figure 52. Sublisls in Operands 

Figure 53 shows the relationship between subscripted parameters and sublist 
entries if: 

• A sublist entry is omitted (see (1) in Figure 53). 
• The subscript refers past the end of the sublist (see (2) in Figure 53). 
• The value of the operand is not a sublist (see (3) in Figure 53). 
• The parameter is not subscripted (see (4) in Figure 53). 

Note: The system variable symbol, &SYSLlST(n,m), can also refer to sublist 
entries, but only if the sublist is specified in a positional operand. 

&KEY(l) 

&Pl (l) 

OPEN 

&KEY(2) '&KEY( 

SUBLISTS 

DC 

DC 

DC 

MEND 

START 

value in 

200 Assembler H Version 2 Language Reference 



u f 
in corresponding (or used in 
operand (or as computation) 
default value of 
keyword parameter) 

Parameter S b list speci ie d Value generated 

&PAR (3) 0(1,2,,4) Null character string 

Null character string &PAR (5) 8(1,2,3,4) 

A&PAR J(A 
&PAR(l) A 

• 
8 1:&PAR(2) Null character string 

&PAR (A) " (A) 

&PAR(l) (A) A 

&PAR(2) (A) Null character string IConsidered as 
Sublists ( ) •&PAR ( ) 

&PAR(l) () Null character string 

&PAR(3) () .. Null character string 

&PAR(2) (A'fI ,C,D) Nothing 

This blank indicates } "'RROR' 
Unmatched left end of operand field 
parentheses

&PAR(l) ( II) 
Nothing 

Positional Operands 

&POSPAR(3) A, (1,2,3,4) 3 

&SYSLIST(2,3) A, (1,2,3,4) 3 

Figure 53. Relationship between Subscripted Parameters and Sublist Entries 

Multilevel SUblists 
You can specify multilevel sUblists (sublists within sublists) in m8cro operands. 
The depth of this nesting is limited only by the constraint that the total operand 
length must not exceed 255 characters. Inner elements of the sublists are ref­
erenced using additional subscripts on symbolic parameters or on &SYSLIST. 

N'&SYSLIST with an n-element subscript array gives the number of operands in 
the indicated n-th level sublist. The number attribute (N') and a parameter 
name with an n-element subscript array gives the number of operands in the 
indicated (n + 1)th level sublist. 

Chapter 8. How to Write Macro Instructions 201 



For example, if &P is the first positional parameter and the value assigned in a 
macro instruction is (A,(B,(C)),D) then: 

&P =&SYSLIST(1) =(A,(B,(C)),D) 
&P(l) =&SYSLIST(1, 1) = A 
&P(2) =&SYSLIST(1,2) (B,(e)) 
&P(2,1) =&SYSLIST(1,2,1) B 
&P(2,2) =&SYSLIST(1,2,2) (C) 
&P(2,2,1) =&SYSLIST(1,2,2,1) e 
&P(2,2,2) =&SYSLIST(1,2,2,2) =null 
&P(3) =&SYSLIST(1,3) o 

N'&P(2,2) =N'&SYSLIST(1,2,2) =1 
N'&P(2) =N'&SYSLIST(1,2) =2 
N'&P(3) =N'&SYSLIST(1,3) =1 
N'&P =N'&SYSLIST(l) =3 

Passing Sublists to Inner Macro Instructions 
You can pass a suboperand of an outer macro instruction sublist as a sublist to 
an inner macro instruction. 

Values in Operands 
You can use a macro instruction operand to pass a value into the called macro 
definition. The two types of value you can pass are: 

• 	 Explicit values or the actual character strings you specify in the operand 

• 	 Implicit values, or the attributes inherent in the data represented by the 
explicit values 

The explicit value specified in a macro instruction operand is a character string 
that can contain one or more variable symbols. 

The character string must not be greater than 255 characters after substitution 
of values for any variable symbols. This includes a character string that consti­
tutes a sublist. 

The character string values, including sublist entries, in the operands are 
assigned to the corresponding parameters declared in the prototype statement 
of the called macro definition. A sublist entry is assigned to the corresponding 
subscripted parameter. 

Omitted Operands 
When a keyword operand is omitted, the default value specified for the corre­
sponding keyword parameter is the value assigned to the parameter. When a 
positional operand or sublist entry is omitted, the null character string is 
assigned to the parameter. 

Notes: 

1. 	 Blanks appearing between commas do not signify an omitted positional 
operand or an omitted sublist entry; they indicate the end of the operand 
field. 

2. 	 Commas indicate omission of positional operands; no comma is needed to 
indicate omission of the last positional operand. 

202 Assembler H Version 2 Language Reference 



The following example shows a macro instruction preceded by its corre­
sponding prototype statement. The macro instruction operands that correspond 
to the third and sixth operands of the prototype statement are omitted in this 
example. 

EXAt~PLE &A,&B,&C,&D,&E,&F 
EXAt·1PLE 17,*+4"AREA,FIELD(6) 

Special Characters 
Any of the 256 characters of the System/370 character set can appear in the 
value of a macro instruction operand (or sublist entry). However, the following 
characters require special consideration: 

Ampersands 
A single ampersand indicates the presence of a variable symbol. The assem­
bler substitutes the value of the variable symbol into the character string speci­
fied in a macro instruction operand. The resultant string is then the value 
passed into the macro definition. If the variable symbol is undefined, an error 
message is issued. 

Double ampersands must be specified if they are to be passed to the macro 
definition. 

Examples: 

&VAR 

&A+&B+3+&C*Hl 

'&tlESSAGE' 

&&REGISTER 


Single Quotation Marks 
A single quotation mark is used: 

• To indicate the beginning and end of a quoted string 
• In a length attribute notation that is not within a quoted string 

Examples: 

'QUOTED STRING' 
L'Sn1BOL 

Shift-out (SO) and Shift-in (SI) 
If the assembler is invoked with the DSCS option, then SO (X'OE') and SI 
(X 'OF ') are recognized as shift codes within quoted strings. SO and SI delimit 
the start and end of double-byte data respectively. Double-byte data will only 
be recognized within a quoted string. 

Quoted Strings 
A quoted string is any sequence of characters that begins and ends with a 
single quotation mark (compare with conditional assembly character 
expressions described in "Character (SETC) Expressions"). 

Two single quotation marks must be specified inside each quoted string. This 
includes substituted single quotation marks. 

Chapter 8. How to Write Macro Instructions 203 



Quoted strings can contain double-byte data, if the assembler is invoked with 
the DBCS option, The double-byte data must be bracketed by the SO and SI 
delimiters, Only valid double-byte data is recognized between the SO and SI. 
The SI may be in any byte position after the SO, If the end of the operand is 
reached before SI is found, then error IEV203 "UNBALANCED DOUBLE-BYTE 
DELIMITERS" is issued 

Macro instruction operands can have values that include one or more quoted 
strings, Each quoted string can be separated from the following quoted string 
by one or more characters, and each must contain an even number of single 
quotation marks, 

Examples: 

'L"SYIIBOL' 
'QUOTEl'AND'QUOTE2' 

Length Attribute Notation 
In macro instruction operand values, the length attribute notation with ordinary 
symbols can be used outside of quoted strings, if the length attribute notation is 
preceded by any special character except the ampersand, 

Example: 

L'SYHBOL,lO+L'AREA*L'FIELD 

Parentheses 
In macro instruction operand values. there must be an equal number of left and 
right parentheses, They must be paired, that is. to each left parenthesis 
belongs a following right parenthesis at the same level of nesting. An unpaired 
(single) left or right parenthesis can appear only in a quoted string. 

Examples: 

(PAIRED PARENTHESES) 
() 
(A(B)C)D(E) 
(IN' ('STRING) 

Blanks 
One or more blanks outside a quoted string indicates the end of the entire 
operand field of a macro instruction. Thus blanks should only be used inside 
quoted strings, 

Example: 

'BLANKS ALL0\4ED' 

204 Assembler H Version 2 Language Reference 



Commas 

Equal Signs 

Periods 

A comma outside a quoted string indicates the end of an operand value or 
sublist entry. Commas that do not delimit values can appear inside quoted 
strings or paired parentheses that do not enclose sublists. 

Examples: 

A,B,C,D 

(1,2)3'5,6' 


An equal sign can appear in the value of a macro instruction operand or sublist 
entry: 

• 	 As the first character 
• 	 Inside quoted strings 
• 	 Between paired parentheses 
• 	 In a keyword operand 
• 	 In a positional operand, provided the parameter does not resemble a 


keyword operand 


The assembler issues a warning message for a positional operand containing 
an equal sign, if the operand resembles a keyword operand. Thus, if we 
assume that the following is the prototype of a macro definition: 

t·1AC1 &F 

the following macro instruction would generate a warning message: 

tlAC1 K=L (K is a val id keyword) 

while the following macro instruction would not: 

[·IAC1 2+2=4 (2+2 is not a val id keyword) 

Examples: 

=H'201 ' 

A'='B 

C(A=B) 

2X=B 

KEY=A=B 


A period (.) can be used in the value of an operand or sublist entry. It will be 
passed as a period. However, if it is used immediately after a variable symbol, 
it becomes a concatenation character. Then, two periods are required if one is 
to be passed as a character. 

Examples: 

3.4 

&A.1 

&A •• 1 


Chapter 8. How to Write Macro Instructions 205 



Nesting in Macro Definitions 
A nested macro instruction is a macro instruction you specify as one of the 
statements in the body of a macro definition. This allows you to call for the 
expansion of a macro definition from within another macro definition. 

Inner and Outer Macro Instructions 
Any macro instruction you write in the open code of a source module is an 
outer macro instruction or call. Any macro instruction that appears within a 
macro definition is an inner macro instruction or call. 

Levels of Nesting 
The code generated by a macro definition called by an inner macro call is 
nested inside the code generated by the macro definition that contains the 
inner macro call. In the macro definition called by an inner macro call, you can 
include a macro call to another macro definition. Thus, you can nest macro 
calls at different levels. 

The zero level includes outer macro calls, calls that appear in open code; the 
first level of nesting includes inner macro calls that appear inside macro defi­
nitions called from the zero level; the second level of nesting includes inner 
macro calls inside macro definitions that are called from the first level, etc. 

Recursion 
You can also call a macro definition recursively; that is, you can write macro 
instructions inside macro definitions that are calls to the containing definition. 
This allows you to define macros to process recursive functions. 

General Rules and Restrictions 
Macro instruction statements can be written inside macro definitions. Values 
are substituted in the same way as they are for the model statements of the 
containing macro definition. The assembler processes the called macro defi ­
nition, passing to it the operand values (after substitution) from the inner macro 
instruction. In addition to the operand values described in "Values in 
Operands" on page 202, nested macro calls can specify values that include 
(see Figure 54 on page 207): 

• 	 Any of the symbolic parameters (see (1) in Figure 54) specified in the proto­
type statement of the containing macro definition 

• 	 Any SET symbols (see (2) in Figure 54) declared in the containing macro 
definition 

• 	 Any of the system variable symbols such as &SYSDATE, &SYSTIME, etc. 
(see (3) in Figure 54). 

206 Assembler H Version 2 Language Reference 



Macro Definitions 

MACRO 

Prototype OUTER 

parameters 

LCLC &C 

&C SET 

Inner call INNER &Pl,&KEY1,&C• ----
MEND 

MACRO 

Prototype OUT 

Inner call IN 

MEND 

Figure 54. Values in Nested Macro Calls 

The number of nesting levels permitted depends on the complexity and size of 
the macros at the different levels; that is, the number of operands specified, the 
number of local and global SET symbols declared, and the number of sequence 
symbols used. 

Exits taken from the different levels of nesting when a MEXIT or MEND instruc­
tion is encountered are as follows: 

1. 	 From the expansion of a macro definition called by an inner macro call, an 
exit is taken to the next sequential instruction that appears after the inner 
macro call in the containing macro definition. 

2. 	 From the expansion of a macro definition called by an outer macro, an exit 
is taken to the next sequential instruction that appears after the outer 
macro call in the open code of a source module. 

Chapter 8. How to Write Macro Instructions 207 



Passing Values through Nesting Levels 
The value contained in an outer macro instruction operand can be passed 
through one or more levels of nesting (see Figure 55 on page 209). However, 
the value specified (see (1) in Figure 55) in the inner macro instruction operand 
must be identical to the corresponding symbolic parameter (see (2) in 
Figure 55) declared in the prototype of the containing macro definition. 

Thus, a sublist can be passed (see (3) in Figure 55) and referred to (see (4) in 
Figure 55) as a sublist in the macro definition called by the inner macro call. 
Also, any symbol (see (5) in Figure 55) that is passed will carry its inherent 
attribute values through the nesting levels. 

If inner macro calls at each level are specified with symbolic parameters as 
operand values, values can be passed from open code through several levels of 
macro nesting. 

Note: If a symbolic parameter is only a part of the value specified in an inner 
macro instruction operand, only the character string value given to the param­
eter by an outer call is passed through the nesting level. Inner sublist entries 
and attributes of symbols are not available for reference in the inner macro. 

System Variable Symbols in Nested Macros 
The global read-only system variable symbols (&SYSPARM, &SYSDATE, and 
&SYSTIME) are not affected by the nesting of macros. The remaining system 
variable symbols are given local read-only values that depend on the position 
of a maoro instruction in code and the operand value specified in the macro 
instruction. 

If &SYSUST is specified in a macro definition called by an inner macro instruc­
tion, &SYSLIST refers to the positional operands of the inner macro instruction. 

The assembler increments &SYSNDX by one each time it encounters a macro 
call. It retains the incremented value throughout the expansion of the macro 
definition called, that is, within the local scope of the nesting level. 

The assembler gives &SYSECT the character string value of the name of the 
control section in force at the point at which a macro call is made. For a macro 
definition called by an inner macro call, the assembler will assign to &SYSECT 
the name of the control section generated in the macro definition that contains 
the inner macro call. The control section must be generated before the inner 
macro call is processed. 

If no control section is generated within a macro definition, the value assigned 
to &SYSECT does not change. It is the same for the next level of macro defi­
nition called by an inner macro instruction. 

The assembler gives &SYSLOC the character string value of the name of the 
location counter in use at the point at which a macro call is made. For a macro 
definition called by an inner macro call, the assembler will assign to &SYSLOC 
the name of the location counter in effect in the macro definition that contains 
the inner macro call. 

&SYSECT and&SYSLOC have local scope; their read-only values remain con­
stant throughout the expansion of the called macro definition. 

208 Assembler H Version 2 Language Reference 



Source Module 

MACRO 
Prototype OUTER "1,6'2,"3 

Call 

MEND 

MACRO 
Prototype INNER &Q,&R,&S 

L ),&Q(l»)
A 3,&Q(2) 0 
ST 3,&Q(3) 

MVC &R,&S 

MEND 

Call 

START 

OUTER 

L 3,AREA 
A 3,F200 
ST 3, SUM 

MVC TO,FROM 

END 

Figure 55. Passing Values through Nesting Levels 

Chapter 8. How to Write Macro Instructions 209 



......,' 

..." 




Chapter 9. How to Write Conditional Assembly Instructions 

This chapter describes the conditional assembly language. With the conditional 
assembly language, you can perform general arithmetic and logical computa­
tions, as well as many of the other functions you can perform with any other 
programming language. In addition, by writing conditional assembly 
instructions in combination with other assembler language statements, you can: 

• 	 Select sequences of these source statements, called model statements, 
from which machine and assembler instructions are generated 

• 	 Vary the contents of these model statements during generation 

The assembler processes the instructions and expressions of the conditional 
assembly language at preassembly time. Then, at assembly time, it processes 
the generated instructions. Conditional assembly instructions, however, are not 
processed after preassembly time. 

The conditional assembly language is more versatile when used to interact with 
symbolic parameters and the system variable symbols inside a macro defi ­
nition. However, you can also use the conditional assembly language in open 
code; that is, code in an assembler language source program. 

Elements and Functions 
The elements of the conditional assembly language are: 

• 	 SET symbols that represent data 

• 	 Attributes that represent different characteristics of data 

• 	 Sequence symbols that act as labels for branching to statements at preas­
sembly time 

The functions of the conditional assembly language are: 

• 	 Declaring SET symbols as variables for use by the conditional assembly 
language in its computations 

• 	 Assigning values to the declared SET symbols 

• 	 Evaluating conditional assembly expressions used as values for substi ­
tution, as subscripts for variable symbols, or as condition tests for branch 
instructions 

• 	 Selecting characters from strings for substitution in, and concatenation to, 
other strings; or for inspection in condition tests 

• 	 Branching and exiting from conditional assembly loops 

Chapter 9. How to Write Conditional Assembly Instructions 211 



SET Symbol Specifications 
SET symbols can be used i,n model statements, from which assembler language 
statements are generated, and in conditional assembly instructions. 

~, 	 The three types of SET symbols are: SETA, SETB, and SETC. A SET symbol 
must be a valid variable symbol. 

The rules for creating a SET symbol are: 

• 	 The first column must contain an ampersand (&) 
• 	 The second column must contain an alphabetic character 
• 	 The remaining columns must contain 0 to 61 alphameric characters, 

including underscore U 

Examples: 

&ARITHMETICVALUE439 
&BOOLEAN 
&C 
&EASY TO READ 

Local SET symbols need not be declared by explicit declarations. The assem­
bler considers any undeclared variable symbol found in the name field of a 
SETx instruction as a local SET symbol. The instruction that declares a SET 
symbol determines its scope and type. 

The features of SET symbols and other types of variable symbols are compared 
in Figure 56. 

SETA, SETB, Symbolic System Variable 
Features SETe symbols Parameters Symbols 

Can be used in: 
Open code Yes No 	 &SYSPARM 

&SYSDATE 
&SYSTIME 

Macro definitions Yes Yes 	 All 

Scope: 
Local Yes Yes 	 &SYSLIST 

&SYSECT 
&SYSLOC 
&SYSNDX 

Global Yes No 	 &SYSPARM 
&SYSDATE 
&SYSTIME 

Values can be changed Yes' No, read only No, read only 
within scope of symbol value' value' 

Figure 56. Features of SET Symbols and Other Types of Variable Symbols 

Notes to Figure 56: 

1. 	 The value assigned to a SET symbol can be changed by using the SETA, 
SETB, or SETC instruction within the declared scope of the SET symbol. 

Chapter 9. How to Write Conditional Assembly Instructions 213 



2. 	 A symbolic parameter and the system variable symbols are assigned 
values that remain fixed throughout their scope. Wherever a SET symbol 
appears in a statement, the assembler replaces the symbol with the last 
value assigned to the symbol. 

SET symbols can be used in the name and operand fields of macro instructions. 
However, the value thus passed through a symbolic parameter into a macro 
definition is considered as a character string and is generated as such. 

Subscripted SET Symbols Specifications 
Format of a subscripted SET symbol: 

&SETSYM(subscript) 

where: • &SETSYM is a variable symbol. 
'subscript' is an arit~netic expression, whose value must 
not be e or negative. 

Example: lelA &ARRAY (20) 

The subscript can be any arithmetic expression allowed in the operand field of 
a SETA instruction (see" Arithmetic (SETA) Expressions" below). 

A subscripted SET symbol can be used anywhere an unscripted SET symbol is 
allowed. However, subscripted SET symbols must be declared as subscripted 
by a previous local or global declaration instruction. 

The subscript refers to one of the many positions in an array of values identi­
fied by the SET symbol. 

The dimension (the maximum value of the subscript) of a subscripted SET 
symbol is not determined by the explicit or implicit declaration of the symbol. 
The dimension specified can be exceeded in subsequent SETx instructions. 

Note: The subscript can be a subscripted SET symbol. Five levels of subscript 
nesting are allowed. 

Created SET Symbols 
Assembler H can create SET symbols during conditional assembly processing 
from other variable symbols and character strings. A SET symbol thus created 
has the form &(e), where "e" represents one or more of the following: 

• 	 Variable symbols, optionally subscripted 
• 	 Strings of alphameric characters 
• 	 Other created SET symbols 

After substitution and concatenation, "e" must consist of a string of up to 62 
alphameric characters, the first of which is alphabetic. The assembler will con­
sider the preceding ampersand and this string as the name of a SET variable. 

You can use created SET symbols wherever ordinary SET symbols are per­
mitted, including declarations. You can also nest them in other created SET 
symbols. 

..." 
,\" 

214 Assembler H Version 2 Language Reference 



Data Attributes 

Consider the following example: 

&ABC( 1) SETC '~lKT' , '27' , '$5' 

Let &(e) equal &(&ABC(&I)QUA&I). 

&1 &ABC(&I) Created SET Symbol COlllllent 

MKT &~lKTQUAI Valid 
2 27 &27QUA2 Invalid: first character after '&' not alphabetic 
3 $5 &S5QUA3 Valid 
4 &QUM Valid 

The created SET symbol can be thought of as a form of indirect addressing. 
With nested created SET symbols, you can get this kind of indirect addressing 
to any level. 

In another sense, created SET symbols offer an associative storage facility. For 
example, a symbol table of numeric attributes can be referred to by an 
expression of the form &(&SYM)(&I) to yield the "Ith" attribute of the symbol 
name in &SYM. 

Created SET symbols also enable you to get some of the effect of multiple­
dimensioned arrays by creating a separate name for each element of the array. 
For example, a 3-dimensional array of the form &X(&I,&J,&K) could be 
addressed as &(X&I.$&J$&K). Thus, &X(2,3,4) would be represented by 
&X2$3$4. The $s guarantee that &X(2,33,55) and &X(23,35,5) are unique: 

&X(2,33,55) becomes &X2S33S55 
&X(23,35,5) becomes &X23$35$5 

The data, such as instructions, constants, and areas, which you define in a 
source module, can be described in terms of: 

• 	 Type, which distinguishes one form of data from another; for example, fixed­
point constants from floating-point constants, or machine instructions from 
macro instructions 

• 	 Length, which gives the number of bytes occupied by the object code of the 
data 

• 	 Scaling, which indicates the number of positions occupied by the fractional 
portion of fixed-point and decimal constants in their object code form 

• 	 Integer, which indicates the number of positions occupied by the integer 

portion of fixed-point and decimal constants in their object code form 


• 	 Count, which gives the number of characters that would be required to rep­
resent the data, such as a macro instruction operand, as a character string 

• 	 Number, which gives the number of sublist entries in a macro instruction 

operand 


• 	 Defined, which determines whether a symbol has been defined prior to the 
point where the attribute reference is coded 

These characteristics are called the attributes of the data. The assembler 
assigns attribute values to the ordinary symbols and variable symbols that rep­
resent the data. 

Chapter 9. How to Write Conditional Assembly Instructions 215 



Specifying attributes in conditional assembly instructions allows you to control 
conditional assembly logic, which, in turn, can control the sequence and con­
tents of the statements generated from model statements. The specific purpose 
for which you use an attribute depends on the kind of attribute being consid­
ered. The attributes and their main uses are shown below: 

Attribute 	 Purpose Main Uses 

Type 	 Gives a letter that identifies • In tests to distinguish between dif ­
type of data represented ferent data types 

• 	 For value substitution 
• 	 In macros to discover missing oper­

ands 

Length Gives number of bytes that • For substitution into length fields 
data occupies in storage • For computation of storage require­

ments 

Scaling 	 Refers to the position of the • For testing and regulating the posi­
decimal point in decimal, tion of decimal points 
fixed-point, and floating-point • For substitution into a scale modifier 
constants 

Integer 	 Is a function of the length and • To keep track of significant digits 
scaling attributes of decimal, (integers) 
fixed-point, and floating-point 
constants 

Count 	 Gives the number of charac­ • For scanning and decomposing of 
ters required to represent character strings 
data 

• 	 As indexes in substring notation 

Number' 	 Gives the number of sublist • For scanning sublists 
entries in a macro instruction 

• 	 As counter to test for end of sublist
operand sublist 

Defined 	 Indicates whether the symbol • To avoid assembling a statement 
referenced has been defined again if the symbol referenced has 
prior to the attribute refer­ been previously defined 
ence 

Figure 57. Data Attributes 

Notes to Figure 57: 

1. 	 The number attribute of &SYSLlST(m) and &SYSLlST(m,n) is described in 

U&SYSLIST-Macro Instruction Operand" on page 185. 


Format of an attribute reference: 

Attribute' Ordinary 01' 

Notation Val'iable Symbol 

Examples: 

T'SYMBOL 

L'&VAR 

K'&PARAM 


The attribute notation indicates the attribute whose value is desired. The ordi­
nary or variable symbol represents the data that possesses the attribute. The 
assembler substitutes the value of the attribute for the attribute reference. 

216 Assembler H Version 2 Language Reference 



An attribute reference to the type, scaling, integer, count, and number attributes 

can be used only in a conditional assembly instruction. The length attribute 

reference can be used both in a conditional assembly instruction and in a 

machine or assembler instruction. 

Combination with Symbols 
Figure 58 shows the seven kinds of attributes, identifying the types of symbols 

they can be combined with. 

Symbols Type Length Scaling Integer Count Number Oefined 
Specified L' S' I' K' N' 0' 

In open code: 

Ordinary Yes 	 Yes Yes Yes No No Yes 
symbols 

SET symbols Yes 	 SETC SETC SETC Yes Yes SETC 
only only only subscripted only 

System variable 
symbols 

&SYSPARM Yes No No No Yes No No 
&SYSDATE 
&SYSTIME 

In macro 
definitions: 

Ordinary Yes 	 Yes Yes Yes No No Yes 
symbols 

SET symbols Yes 	 SETC SETC SETC Yes Yes SETC 
only only only subscripted only.... 

Symbolic Yes 	 Yes Yes Yes Yes Yes Yes 
parameters 

System variable 
symbols 

&SYSLIST Yes 	 Yes Yes Yes Yes Yes Yes 

&SYSECT,&SYSLOC, 
&SYSNDX,&SYSPARM, Yes No No No Yes Yes No 
&SYSDATE,&SYSTIME 

Figure 58. Attributes and Related Symbols 

The value of an attribute for an ordinary symbol specified in an attribute refer­

ence comes from the data represented by the symbol, as shown below: 

Attribute Ordinary 
Notation Symbol 

I 
Statement-------------------Operand T' 
Labe 1 	 of EXTRN L' 

or WXTRN 5' 
instruction I I 

The symbol must appear in the name field of an assembler or machine instruc­

tion, or in the operand field of an EXTRN or WXTRN instruction. The instruction 

in which the symbol is specified must appear in open code and must not'-.' contain any variable symbols. 

Chapter 9. How to Write Conditional Assembly Instructions 217 



Type Attribute (T') 

Note: You can refer to instructions generated by conditional assembly substi ­
tution or macro expansion with attributes. However, no such reference can be 
made until the instruction is generated. 

The value of an attribute for a variable symbol specified in an attribute refer­
ence comes from the value substituted for the variable symbol as follows: 

1. 	 For SET symbols and the system variable symbols: &SYSECT, &SYSLOC, 

&SYSNDX, &SYSPARM, &SYSDATE, and &SYSTIME, the attribute values 

come from the current data value of these symbols. 


2. 	 For symbolic parameters and the system variable symbol, &SYSLlST, the 

values of the count and number attributes come from the operands of 

macro instructions. 


The values of the type, length, scaling, and integer attributes, however, 
come from the values represented by the macro instruction operands, as 
follows: 

a. 	 If the operand is a sublist, the entire sublist and each entry of the 
sublist can possess attributes; all the individual entries and the whole 
sublist have the same attributes as those of the first suboperand in the 
sublist (except for "count," which can be different, and "number," which 
is relevant only for the whole sublist). 

b. 	 If the first character or characters of the operand (or sublist entry) con­
stitute an ordinary symbol, and this symbol is followed by either an 
arithmetic operator (+, -, " or /), a left parenthesis, a comma, or a 
blank, then the value of the attributes for the operand are the same as 
for the ordinary symbol. 

c. 	 If the operand (or sublist entry) is a character string other than a sublist 
or the character string described in b above, the type attribute is unde­
fined (U) and the length, scaling, and integer attributes are invalid. 

Because attribute references are allowed only in conditional assembly 
instructions, their values are available only at preassembly time, except for the 
length attribute which can be referred to outside conditional assembly 
instructions, and is, therefore, also available at assembly time. 

Note: The system variable symbol, &SYSLlST, can be used in an attribute refer­
ence to refer to a macro instruction operand, and, in turn, to an ordinary 
symbol. Thus, any of the attribute values for macro instruction operands and 
ordinary symbols listed below can also be substituted for an attribute reference 
containing &SYSLIST. 

The type attribute has a value of a single alphabetic character that indicates the 
type of data represented by: 

• 	 An ordinary symbol 
• 	 A macro instruction operand 
• 	 A SET symbol 

The type attribute reference can be used only in the operand field of the SETC 
instruction or as one of the values used for comparison in the operand field of a 
SETB or AIF instruction. 

218 Assembler H Version 2 Language Reference 



~ 

Notes: 

1. 	 Ordinary symbols used in the name field of an EQU instruction have the 
type attribute value "U." However, the third operand of an EQU instruction 
can be used explicitly to assign a type attribute value to the symbol in the 
name field. 

2. 	 The type attribute of a sublist is set to the same value as the type attribute 
of the first element of the sublist. 

The following letters are used for the type attribute of data represented by ordi­
nary symbols and outer macro instruction operands that are symbols that name 
DC or OS statements. 

A A-type address constant, implied length, aligned (also CXO instruction 
label) 

B Binary constant 
C Character constant 
0 Long floating-point constant, implicit length, aligned 
E Short floating-point constant, implicit length, aligned 
F Fullword fixed-point constant, implicit length, aligned 
G Fixed-point constant, explicit length 
H Halfword fixed-point constant, implicit length, aligned 
K Floating-point constant, explicit length 
L Extended floating-point constant, implicit length, aligned 
P Packed decimal constant 
Q Q-type address constant, implicit length, aligned 
R A-, S-, Q-, V-, or Y-type address constant, explicit length 
S S-type address constant, implicit length, aligned 
v V-type address constant, implicit length, aligned 
x Hexadecimal constant 
Y Y-type address constant. implicit length, aligned 
Z Zoned decimal constant 
@ Graphic (G) constant 

The following letters are used for the type attribute of data represented by ordi­
nary symbols (and outer macro instruction operands that are symbols) that 
name statements other than DC or OS statements, or that appear in the 
operand field of an EXTRN or WXTRN statement. 

Machine instruction 
J Identified as a control section name 
M Macro instruction 
T Identified as an external symbol by EXTRN instruction 
W CCW, CCWO. or CCW1 instruction 
$ Identified as an external symbol by WXTRN instruction 

The following letters are used for the type attribute of data represented by inner 
and outer macro instruction operands only. 

N 	 Self-defining term or the value of a SETA or SETB variable 
o 	Omitted operand (has a value of a null character string) 

The following letter is used for symbols or macro instruction operands that 
cannot be assigned any of the above letters. 

U 	 Undefined 

Chapter 9. How to Write Conditional Assembly Instructions 219 



The type attribute value U is assigned to the following: 

• Ordinary symbols used as labels: 

For the LTORG instruction 

For the EQU instruction without a third operand 

For DC and OS statements that contain variable symbols; for example, 
U1 DC &X'1' 

That are defined more than once, even though only one label will be 
generated due to conditional assembly statements 

• SETC variable symbol 

• System variable symbols: &SYSPARM, &SYSDATE, and &SYSTIME 

• Macro instruction operands that specify literals 

• Inner macro instruction operands that are ordinary symbols 

Note: Because Assembler H allows attribute references to statements gener­
ated through substitution, certain cases in which a type attribute of U (unde­
fined) or M (macro) is given under the OSIVS Assembler, may give a valid type 
attribute under Assembler H. If the value of the SETC symbol is equal to the 
name of an instruction that can be referred to by the type attribute, Assembler 
H allows you to use the type attribute with a SETC symbol. 

Length Attribute (L') 
The length attribute has a numeric value equal to the number of bytes occupied 
by the data that is represented by the symbol specified in the attribute refer­
ence. 

If the length attribute value is desired for preassembly processing, the symbol 
specified in the attribute reference must ultimately represent the name entry of 
a statement in open code. In such a statement, the length modifier (for DC and 
OS instructions) or the length field (for a machine instruction), if specified. must 
be a self-defining term. The length modifier or length field must not be coded 
as a multiterm expression, because the assembler does not evaluate this 
expression until assembly time. 

Assembler H allows you to use the length attribute with a SETC symbol, if the 
value of the SETC symbol is equal to the name of an instruction that can be 
referenced by the length attribute. 

The length attribute can also be specified outside conditional assembly 
instructions. Then, the length attribute value is not available for conditional 
assembly processing, but is used as a value at assembly time. 

At preassembly time, an ordinary symbol used in the name field of an EQU 
instruction has a length attribute value of 1. At assembly time, the symbol has 
the same length attribute value as the first symbol of the expression in the first 
operand of the EQU instruction. However, the second operand of an EQU 
instruction can be used to assign a length attribute value to the symbol in the 
name field. 

220 Assembler H Version 2 Language Reference 



Notes: 

1. 	 The length attribute reference, when used in conditional assembly proc­
essing, can be specified only in arithmetic expressions. 

2. 	 A length attribute reference to a symbol with the type attribute value of M, 
N, 0, T, U, or $ will be flagged. The length attribute for the symbol will be 
given the default value of 1. 

Scaling Attribute (S') 
The scaling attribute can be used only when referring to fixed-point, floating­
point, or decimal constants. It has a numeric value that is assigned as shown 
below: 

Constant Type 
Types Attributes Value of Scaling 
Allowed Allowed Attribute Assigned 

Fixed-Point H, F, and G 	 Equal to the value of the scale modifier 
(-187 through + 346) 

Floating Point D, E, L, and K 	 Equal to the value of the scale modifier 
(0 through 14 - D, E) 
(0 through 28 - L) 

Decimal P and Z 	 Equal to the number of decimal digits 
specified to the right of the decimal point 
(0 through 31 - P) 
(0 through 16 - Z) 

Notes: 

1. 	 The scaling attribute reference can be used only in arithmetic expressions. 

2. 	 When no scaling attribute value can be determined, the reference is flagged 
and the scaling attribute is given the value of 1. 

3. 	 If the value of the SETC symbol is equal to the name of an instruction that 
can be referenced by the scaling attribute, Assembler H allows you to use 
the scaling attribute with a SETC symbol. 

Integer Attribute (I') 
The integer attribute has a numeric value that is a function of (depends on) the 
length and scaling attribute values of the data being referred to by the attribute 
reference. The formulas relating the integer attribute to the length and scaling 
attributes are given in Figure 59 on page 222. 

Chapter 9. How to Write Conditional Assembly Instructions 221 



Constant Formula Examples Values 
Type Relating the Of the 
Allowed I nteger to the Integer 
(attribute Length and Attribute0
value) 	 Scaling 


Attributes 


HALFCON DC HS6'-2S.93' 9 
Fixed-point S':' 2 -.6-1 } 
(H,F, and G) I'=S*L ' -S'-1 ONECON DC FSS'100.3E-2'~ 23 

8*4-S-1 

Floating-point when L' S 8 	 SHORT DC ES2'46.41S' 4 
(D,E,L, and K) 	 I'=2~HL'-I)-S' 2':'(4-1J-2 1 

LONG DC DSS'-3.729' 9 
2':'(S-11-S 1 

Only for L-Type when L' > 8 
EXTEND DC LSIO'S.312' ISI 	'=2 ':'(L I_I} -S 1-2 }2':.(16-1} -10 -2 

Decimal equal to the 

number of decimal 

digits to the left of 

the assumed decimal 

point after the 

number is assembled 


Packed (P) I' =2':'L I -S'-1 PACK DC P'+3.S13' 

2':'3-3-1 


/'.,.,-	 0 
L031s13CI 

Zoned (Z) I'=L'-S' ZONE DC Z'3.S13' 1 
4-3 

Figure 59. Relationship of Integer to Length and Scaling Attributes 

Notes to Figure 59: 

1. 	 The integer attribute reference can be used only in arithmetic expressions. 

2. 	 If the value of the SETC symbol is equal to the name of an instruction that 
can be referenced by the integer attribute, Assembler H allows you to use 
the integer attribute with a SETC symbol. 

Count Attribute (K') 
The count attribute applies only to macro instruction operands, to SET symbols, 
and to the system variable symbols. It has a numeric value equal to the 
number of characters: 

• 	 That constitute the macro instruction operand, or 

• 	 That would be required to represent as a character string the current value 
of the SET symbol or the system variable symbol. 

222 Assembler H Version 2 Language Reference 

http:HS6'-2S.93


Notes: 

1. 	 The count attribute reference can be used only in arithmetic expressions. 

2. 	 The count attribute of an omitted macro instruction operand has a default 
value of O. 

Number Attribute (N') 
The number attribute applies only to the operands of macro instructions. It has 
a numeric value equal to the number of sublist entries in the operand. 

When applied to a subscripted SET symbol, the number attribute is equal to the 
highest element to which a value has been assigned in a SETx instruction. For 
example, if the only references to &A have been 

LeLA &A (188) 
&A(5) SETA 28,,, 713 see description of 

AIF (&A(2G) GT 5G).M extended SET statements 

then N'&A is equal to 8, because &A(8) is assigned the value 70. 

Notes: 

1. 	 The number attribute reference can be used only in arithmetic expressions. 

2. 	 N'&SYSLIST refers to the number of positional operands in a macro instruc­
tion, and N'&SYSLlST(m) refers to the number of sublist entries in the m-th 
operand. 

Defined Attribute (0') 
The defined attribute indicates whether or not the symbol referenced has been 
defined prior to the attribute reference. A symbol is considered as defined if it 
has been encountered in the operand field of an EXTRN or WXTRN statement, 
or in the name field of any other statement. The value of the defined attribute 
is 1, if the symbol has been defined, or 0, if the symbol has not been defined. 

The defined attribute can reference all symbols that can be referenced by the 
scaling (S') attribute. 

The following is an example of how you can use the defined attribute: 

AIF (D'A).AROUND 
A LA 1,4 
.AROUND ANOP 

In this example, the statement at A would be assembled. since the branch 
around it would not be taken. However, if by a branch the same statement 
were processed again, the statement at A would not be assembled: 

.UP AIF (D'A).AROUND 
A LA 1,4 
.AROUND ANOP 

AGO .UP 

Chapter 9. How to Write Conditional Assembly Instructions 223 



You can save assembly time using the defined attribute. Each time the assem­
bler finds a reference (attribute or branch) to an undefined symbol, it initiates a 
forward scan until it finds that symbol or reaches the END statement. You can 
use the defined attribute in your program to prevent the assembler from making 
this time-consuming forward scan. 

Sequence Symbols 
You can use a sequence symbol in the name field of a statement to branch to 
that statement at preassembly time, thus altering the sequence in which the 
assembler processes your conditional assembly and macro instructions. You 
can thus select the model statements from which the assembler generates 
assembler language statements for processing at assembly time. 

Format of sequence symbol: 

• The first column must contain a period (.) 
• The second column must contain an alphabetic character 
• 	The remalnlng columns must contain 0 to 61 alphameric 

characters 

Examples: 

.BRANCHINGlABEll 

.A 

Sequence symbols can be specified in the name field of assembler language 
statements and model statements; however, the following lists assembler 
instructions in which sequence symbols must not be used as name entries: 

COpy GBlC lClB 
EQU ICTl lCLC 
GBlA ISEQ NACRO 
GBlB LClA OPSYN 

In addition, sequence symbols cannot be used as name entries in macro proto­
type instructions, or in any instruction that already contains an ordinary or a 
variable symbol. 

Sequence symbols can be specified in the operand field of an AIF or AGO 
instruction to branch to a statement with the same sequence symbol as a label. 

A sequence symbol has a local scope. Thus, if a sequence symbol is used in 
an AIF or an AGO instruction, the sequence symbol must be defined as a label 
in the same part of the program in which the AIF or AGO instruction appears; 
that is, in the same macro definition or in open code. 

If a sequence symbol appears in the name field of a macro instruction, and the 
corresponding prototype statement contains a symbolic parameter in the name 
field, the sequence symbol does not replace the symbolic parameter wherever 
it is used in the macro definition. 

224 Assembler H Version 2 Language Reference 



Example: 

MACRO 
~, &NAME MOVE &TO,&FROM Statement 

&NAME ST 2,SAVEAREA Statement 2 
L 2,&FROM 
ST 2,&TO 
L 2,SAVEAREA 
MEND 

.sm t10VE FIELDA,FIELDB Statement 3 

ST 2,SAVEAREA Statement 4 
L 2,FIELDB 
ST 2,FIELDA 
L 2,SAVEAREA 

The symbolic parameter &NAME is used in the name field of the prototype 
statement (statement 1) and the first model statement (statement 2). In the 
macro instruction (statement 3), a sequence symbol (.SYM) corresponds to the 
symbolic parameter &NAME. &NAME is not replaced by .SYM and, therefore, 
the generated statement (statement 4) does not contain an entry in the name 
field. 

Attribute Definition and Lookahead 
Symbol attributes are established in either definition mode or lookahead mode. 
Lookahead mode is entered when Assembler H encounters an attribute refer­
ence to a symbol that is not yet defined. 

Definition Mode: Definition occurs whenever a previously undefined symbol is 
encountered in the name field of a statement, or in the operand field of an 
EXTRN or WXTRN statement during open code processing. Symbols within a 
macro definition are defined when the macro is generated. 

Lookahead Mode: Lookahead is a sequential, statement-by-statement, forward 
scan over the source text. It is initiated when reference is made to an attribute 
(other than D') of a symbol not yet encountered, either by macro or open-code 
attribute reference, or by a forward AGO or AIF branch in open code. 

If reference is made in a macro, forward scan begins with the first source state­
ment following the outermost macro instruction. Programmer macros are 
bypassed. The text is not assembled. Lookahead attributes are tentatively 
established for all intervening undefined symbols. Tentative attributes are 
replaced and fixed when the symbol is subsequently encountered in definition 
mode. No macro expansion or open-code substitution is performed; no condi­
tional or unconditional (AIF or AGO) branches are taken. COPY instructions are 
executed during lookahead, and the copied statements are scanned. 

Lookahead ends when the desired symbol or sequence symbol is found, or 
when the END card or end of file is reached. All statements passed over by 
lookahead are saved on an internal file, and processed when the lookahead 
ends. 

Chapter 9. How to Write Conditional Assembly Instructions 225 



For purposes of attribute definition, a symbol is considered undefined if it 
depends in any way upon a symbol not yet defined. For example, if the symbol 
is defined by a forward EQU that is not yet resolved, or if a DC, DS, or DXD 
modifier expression contains symbols not yet defined, that symbol is assigned a 
type attribute of U. 

Note: Because no variable symbol substitution is performed by a lookahead, 
you should be careful when using a macro or open code substitution to gen­
erate END statements that separate source modules assembled in one job step 
(option BATCH). If a symbol is undefined within a module, lookahead will read 
in records past the point where the END statement is to be generated. All 
statements between the generated statement and the point at which lookahead 
stops (either because it finds a matching symbol, or because it finds an END 
statement) are ignored by the assembler. The next module will start at the 
point where lookahead stops. 

Lookahead Restrictions: Assembler statements are analyzed only to the extent 
necessary to establish attributes of symbols in their name fields. 

Variable symbols are not replaced. Modifier expressions are evaluated only if 
all symbols involved were defined prior to lookahead. Possible multiple or 
inconsistent definition of the same symbol is not diagnosed during lookahead 
because conditional assembly may eliminate one (or both) of the definitions. 

Lookahead does not check undefined operation codes against library (system) 
macro names. If the name field contains an ordinary symbol and the operation 
code cannot be matched with one in the current operation code table, then the 
ordinary symbol is assigned the type attribute of M. If the operation code con­
tains special characters or is a variable symbol, a type attribute of U is 
assumed. This may be wrong if the undefined operation code is later defined 
by OPSYN. OPSYN statements are not processed; thus, labels are treated in 
accordance with the operation code definitions in effect at the time of entry to 
lookahead. 

Declaring SET Symbols 
You must declare a global SET symbol before you can use it. The assembler 
assigns an initial value to a global SET symbol at its point of declaration. 

Local SET symbols need not be declared explicilly with LCLA, LCLB, or LCLC 
statements. The assembler considers any undeclared variable symbol found in 
the name field of a SETA, SETB, or SETC statement to be a local SET symbol. It 
is given the initial value specified in the operand field. If the symbol in the 
name field is subscripted, it is declared as a subscripted SET symbol. 

LCLA, LCLB, LCLC-Define Local Set Symbols 
You use the LCLA, LCLB, and LCLC instructions to declare the local SETA, 
SETB, and SETC symbols you need. The SETA, SETB, and SETC symbols are 
assigned the initial values of 0,0, and null character string, respectively. 

226 Assembler H Version 2 Language Reference 



Format of lClA, lClB, lClC: 

Name Operation Operand 

lClA, One or more variable symbols, 
lClB, or separated by COn1l1aS 
lClC 

These instructions can be used anywhere in the body of a macro definition or in 
the open code portion of a source module. 

A local SET symbol should not begin with &SYS because these characters are 
reserved for system variable symbols. 

Any variable symbols declared in the operand field have a local scope. They 
can be used as SET symbols anywhere after the pertinent LCLA, LCLB, or LCLC 
instructions, but only within the declared local scope. Multiple LCLx statements 
can declare the same variable symbol if only one declaration for a given 
symbol is encountered during the expansion of a macro. 

The following rules apply to a local SET variable symbol: 

1. 	 Within a macro definition, it must not be the same as any symbolic param­
eter declared in the prototype statement. 

2. 	 It must not be the same as any global variable symbol declared within the 
same local scope. 

3. 	 The same variable symbol must not be declared or used as two different 

types of SET symbols; for example, as a SETA and a SETB symbol, within 

the same local scope. 


Subscripted local SET Symbols: A local subscripted SET symbol is declared by 
the LCLA, LCLB, or LCLC instruction. 

Format of subscripted local SET symbol: 

Name Operation Operand 

lelA 

lCLB, or &SETSYM(dilllension) 

lClC 


where: • &SETSnl is a variable sYlllbol . 
• dimension 	must be an unsigned, decimal, 


self-defining term, but not O. 


Example: lCLB &B (If)) 

Chapter 9. How to Write Conditional Assembly Instructions 227 



There is no limit to SET symbol dimensioning. The limit specified in the explicit 
(LCLx) or implicit (SETx) declaration can also be exceeded by subsequent SETx 
statements. The dimension indicates the number of SET variables associated 
with the subscripted SET symbol. The assembler assigns an initial value to 
every variable in the array thus declared. 

Note: A subscripted local SET symbol can be used only if the declaration has a 
subscript, which represents a dimension; a nonsubscripted local SET symbol 
can be used only if the declaration had no subscript. 

Alternative Format for lClX Statements: Assembler H permits an alternative 
statement format for LCLx instructions: 

Cont. 

LCLA &LOCAL_SYMBOL_FOR_DC_GEN, x 
&COUNTER_FOR_INNER_LOOP, X 
&COUNTER_FOR_OUTER_LOOP, X 
&COUNTER FOR TRAILING LOOP- - -

GBlA, GBlB, and GBle Instructions 
You use the GBLA, GBLB, and GBLC instructions to declare the global SETA, 
SETB, and SETC symbols you need. The SETA, SETB, and SETC symbols are 
assigned the initial values of 0,0, and null character string, respectively. 

Format of GBlA, GBlB, and GBlC: 

Name Operation Operand 

GBLA, One or more variable symbols, 
GBLB, or sepa ra ted by COll111a s 
GBLC 

These instructions can be used anywhere in the body of a macro definition or in 
the open code portion of a source module. 

Any variable symbols declared in the operand field have a global scope. They 
can be used as SET symbols anywhere after the pertinent GBlA, GBlB, or 
GBLC instructions. However, they can be used only within those parts of a 
program in which they have been declared as global SET symbols; that is, in 
any macro definition and in open code. 

The assembler assigns an initial value to the SET symbol only when it proc­
esses the first GBlA, GBLB, or GBlC instruction in which the symbol appears. 
Subsequent GBLA, GBLB, or GBlC instructions do not reassign an initial value 
to the SET symbol. 

Multiple GLBx statements can declare the same variable symbol if only one 
declaration for a given symbol is encountered during the expansion of a macro, 

The following rules apply to the global SET variable symbol: 

1, 	 Within a macro definition, it must not be the same as any symbolic param­
eter declared in the prototype statement. 

228 Assembler H Version 2 Language Reference 



- --

2. 	 It must not be the same as any local variable symbol declared within the 

same local scope. 


3. 	 The same variable symbol must not be declared or used as two different 

types of global SET symbol; for example, as a SETA or SETB symbol. 


Note: A global SET symbol should not begin with the four characters &SYS, 
which are reserved for system variable symbols. 

Subscripted Global SET Symbols: A global subscripted SET symbol is declared 
by the GBLA, GBLB, or GBLC instruction. 

Format of subscripted global SET symbol: 

Name Operation Operand 

GBLA 

GBLB, or &SETSYM(dimension) 

GBLC 


where: 	 &SETSYM is a variable symbol. 

dimension must be an unsigned, decimal, self~defining term, 

but not O. 


Example: GBLA &GA 

There is no limit on the maximum subscript allowed. Also, the limit specified in 
the global declaration (GBLx) can be exceeded. The dimension indicates the 
number of SET variables associated with the subscripted SET symbol. The 
assembler assigns an initial value to every variable in the array thus declared. 

Notes: 

1. 	 Global arrays are assigned initial values only by the first global declaration 
processed, in which a global subscripted SET symbol appears. 

2. 	 A subscripted global SET symbol can be used only if the declaration has a 
subscript, which represents a dimension; a nonsubscripted global SET 
symbol can be used only if the declaration had no subscript. 

3. 	 Wherever a particular global SET symbol is declared with a dimension as a 
subscript. the dimension must be the same in each declaration. 

Alternative Format for GBLX Statements: Assembler H permits the alternate 
statement format for GBLx instructions: 

Cont. 

GBLA 	 &GLOBAL_SYMBOL_FOR_DC_GEN, x 
&LOOP_CONTRL_A, X 
&VALUE_PASSED_TO_FIDO, X 
&VALUE RETURNED FROM FIDO 

Chapter 9. How to Write Conditional Assembly Instructions 229 



Assigning Values to SET Symbols 

SeTA-Set Arithmetic 
The SETA instruction allows you to assign an arithmetic value to a SETA 
symbol. You can specify a single value or an arithmetic expression from which 
the assembler will compute the value to assign. 

You can change the values assigned to an arithmetic or SETA symbol. This 
allows you to use SETA symbols as counters, indexes, or for other repeated 
computations that require varying values. 

Format of SETA: 

Name Operation Operand 

A variable SETA An arithmetic expression 
symbol 

A global variable symbol in the name field must have been previously declared 
as a SETA symbol in a GBlA instruction. local SETA symbols need not be 
declared in a lClA instruction. The assembler considers any undeclared vari­
able symbol found in the name field of a SETA instruction as a local SET 
symbol. 

The variable symbol is assigned a type attribute value of N. 

The expression in the operand field is evaluated as a signed 32-bit arithmetic 
value that is assigned to the SETA symbol in the name field. The minimum and 
maximum allowable values of the expression are _2 31 and +2 31 _1, respectively. 

Subscripted SETA Symbols 
The SETA symbol in the name field can be subscripted, but only if the same 
SETA symbol has been previously declared in a GBlA or lClA instruction with 
an allowable dimension. 

The assembler assigns the value of the expression in the operand field to the 
position in the declared array given by the value of the subscript. The subscript 
expression must not be O. or have a negative value, or execi'd the dimension 
actually specified in the declaration. 

230 Assembler H Version 2 Language Reference 



Arithmetic (SETA) Expressions 
Arithmetic expressions can be used as shown in Figure 60. 

Used in Used as Example 

SETA instruction Operand &Al SETA &A1 + 2 

AIF or SETB instruction Comparand in AIF (&A*10 GT 30).A 
arithmetic 
relation 

Subscripted SET symbols Subscript &SETSYM(&A + 10 - &C) 

Substring notation (see L6) Subscript 'STRING'(&A*2,&A-l) 

Sublist notation Subscript Given sublist (A,B,C,D) 

if &A=l then &PARA~I (&A+1)=B 

&SYSLIST Subscript &SYSLIST(&M+l,&N-2) 

&SYSLIST(N'&SYSLIST) 

SETC instruction Character string Given &C SETC '5-10*&A" 
in operand if &A=Hl then &C=5-10*10' 

Figure 60. Use of Arithmetic (SETA) Expressions 

Note: When an arithmetic expression is used in the operand field of a SETC 
instruction (see (1) in Figure 60), the assembler assigns the character value 
representing the arithmetic expression to the SETC symbol, after substituting 
values (see (2) in Figure 60) into any variable symbols. It does not evaluate the 
arithmetic expression. 

,/ 

Chapter 9. How to Write Conditional Assembly Instructions 231 



Figure 61 defines an arithmetic expression. 

Arithmetic 
Expression 

·Operators Allowed 

Unary: + positive 
- negative 

Scaling 
Integer 
Count 

or 
Number 

Binary: 	+addition 
- subtraction
*multiplication
I division 

Arith. Exp = Arithmetic Expression 

Figure 	61. Defining Arithmetic (SETA) Expressions 

Figure 62 shows the variable symbols that are allowed as terms in an arith­
metic expression. 

Variable symbol 

SETA 

SETB 

SETC 

&SYSPARM 

Symbolic parameters 

&SYSLlST(n) 

&SYSLlST(n,m) 

&SYSNDX 

Reslriclions 

None 

None 

Value must be an unsigned 
decimal self-defining term in 
the range 0 to 2,147,483,647 

Value must be a self-defining 
term 

Corresponding operand or 
sublist entry must be a self­
defining term 

None 

Example Value 

&C 123 

&SYSPARI' 2000 

&PARAII X'Al' 

&SUBLI? T (3) C'Z' 

&SYSLIST(3) 24 

&SYSLIST(3,2) B'101' 

Figure 62. Variable Symbols Allowed as Terms in Arithmetic Expressions 

232 	 Assembler H Version 2 Language Reference 



Rules for Coding Arithmetic Expressions: The following is a summary of coding 
rules for arithmetic expressions: 

1. 	 Both unary (operating on one value) and binary (operating on two values) 

operators are allowed in arithmetic expressions. 


2. 	 An arithmetic expression can have one or more unary operators preceding 
any term in the expression or at the beginning of the expression. The 
unary operators are + (positive) and - (negative). 

3. 	 The binary operators that can be used to combine the terms of an 

expression are + (addition), - (subtraction), • (multiplication), and / (divi ­

sion). 


4. 	 An arithmetic expression must not begin with a binary operator, and it must 
not contain two binary operators in succession. 

5. 	 An arithmetic expression must not contain two terms in succession. 

6. 	 An arithmetic expression must not contain blanks between an operator and 
a term, nor between two successive operators. 

7. 	 An arithmetic expression can contain up to 24 unary and binary operators, 
and up to 255 levels of parentheses. 

Note: The parentheses required for sublist notation, substring notation, and 
subscript notation count toward this limit. 

Evaluation of Arithmetic Expressions: The assembler evaluates arithmetic 
expressions at preassembly time as follows: 

1. 	 It evaluates each arithmetic term. 

2. 	 It performs arithmetic operations from left to right. However, 

a. 	 It performs unary operations before binary operations, and 

b. 	 It performs the binary operations of multiplication and division before 
the binary operations of addition and subtraction. 

3. 	 In division, it gives an integer result; any fractional portion is dropped. Divi­
sion by zero gives a 0 result. 

4. 	 In parenthesized arithmetic expressions, the assembler evaluates the inner­
most expressions first, and then considers them as arithmetic terms in the 
next outer level of expressions. It continues this process until the outer­
most expression is evaluated. 

5. 	 The computed result, including intermediate values, must lie in the range 

_2 31 through +2 31 _1. 


Chapter 9. How to Write Conditional Assembly Instructions 233 



SETC Variables in Arithmetic Expressions: Assembler H permits a SETC vari­
able to be used as a term in an arithmetic expression if the character string 
value of the variable is a self-defining term. The value represented by the 
string is assigned to the arithmetic term. A null string is treated as zero. (The 
OSIVS Assembler allows SETC variables as arithmetic terms only if the value of 
the variable is a decimal self-defining term, not longer than 10 characters.) 

Examples: 

LCLC &C(5) 
&C (1) SETC '8' 'Ull'" 

Ie I I I&C(2) SETC 'A I 

&C(3) SETC '23 ' 
&A SETA &C(1)+&C(2)-&C(3)1 
&AA SETA &C(3)2 

Notes: 

1. Allowed only by Assembler H 

2. Allowed by the OSIVS Assembler and Assembler H 

In evaluating the arithmetic expression in the fifth statement, the first term 
(&C(1)) is assigned the binary value 101 (5). To that is added the value repres­
ented by the EBCDIC character A (hexadecimal C1, which corresponds to 
decimal 193). Then the value represented by the third term (&C(3)) is sub­
tracted, and the value of &A becomes 5+193-23=175. 

This feature allows you to associate numeric values with EBCDIC or 
hexadecimal characters to be used in such applications as indexing, code con­
version, translation, and sorting. 

Assume that &X is a character string with the value ABC. 

&1 SETC 'C ' , , . '&X ' (1,1) . ' , , , 
&VAL SETA &TRANS(&1) 

The first statement sets &1 to C' A'. The second statement extracts the 193rd 
element of & TRANS (C'A' = X'C1' = 193). 

The following code will convert a hexadecimal value in &H into a decimal value 
in &VAL: 

&X SETC 'X' '&H' , , 
&VAL SETA &X 

The following code will convert the double-byte character Da into a decimal 
value in &VAL. &VAL can then be used to find an alternative code in a sub­
scripted SETC variable: 

&DA SETC 'G' '<Da>' , , 
&VAL SETA &DA 

Note: The G-type self-defining term is valid only if the assembler is invoked 
with the DBCS option. 

An arithmetic expression must not contain two terms in succession; however, 
any term may be preceded by any number of unary operators. +&A*-&B is a 
value operand for a SETA instruction. The expression &FIELD+- is invalid 
because it has no final term. 

234 Assembler H Version 2 Language Reference 



Using SETA symbols 
The arithmetic value assigned to a SETA symbol is substituted for the SETA 
symbol when it is used in an arithmetic expression. If the SETA symbol is not 
used in an arithmetic expression, the arithmetic value is converted to an 
unsigned integer, with leading zeros removed. If the value is 0, it is converted 
to a single o. 

Example: 

r·1ACRO 
&NAtlE HOVE &TO,&FROr1 

LCLA &A,&B,&C,&D 
&A SETA 10 Statement 
&B SETA 12 Statement 2 
&C SETA &A-&B Statement 3 
&D SETA &A+&C Statement 4 
&NAHE ST 2,SAVEAREA 

L 2,&FROH&C Statement 5 
ST 2,&TO&D Statement 6 
L 2,SAVEAREA 
HE~ID 

HERE 	 HOVE FIElDA,FIElDB 

HERE 	 ST 2,SAVEAREA 
l 2,FIElDB2 
ST 2,FIElDA8 
L 2,SAVEAREA 

Statements 1 and 2 assign the arithmetic values + 10 and + 12, respectively, to 
the SETA symbols &A and &8. Therefore, statement 3 assigns the SETA 
symbol &C the arithmetic value -2. When &C is used in statement 5, the arith­
metic value -2 is converted to the unsigned integer 2. When &C is used in 
statement 4, however, the arithmetic value -2 is used. Therefore, &D is 
assigned the arithmetic value + 8. When &D is used in statement 6, the arith­
metic value + 8 is converted to the unsigned integer 8. 

The following example shows how the value assigned to a SETA symbol may be 
changed in a macro definition. 

~IACRO 

&NA~IE ~10VE &TO,&FROH 
LClA &A 

&A SETA 5 Statement 
&NAtIE ST 2,SAVEAREA 

L 2,&FROH&A Statement 2 
&A SETA 8 Statement 3 

ST 2,&TO&A Statement 4 
L 2,SAVEAREA 
~IEND 

HERE 	 ~10VE FIELDA,FIELDB 

HERE 	 ST 2,SAVEAREA 
L 2,FIELDB5 
ST 2,FIELDA8 
l 2,SAVEAREA 

Chapter 9. How to Write Conditional Assembly Instructions 235 



SETB-Set Binary 

Statement 1 assigns the arithmetic value +5 to SETA symbol &A. In statement 
2, &A is converted to the unsigned integer 5. Statement 3 assigns the arith­
metic value +8 to &A. In statement 4, therefore, &A is converted to the 
unsigned integer 8, instead of 5. 

A SETA symbol may be used with a symbolic parameter to refer to an operand 
in an operand sublist. If a SETA symbol is used for this purpose, it must have 
been assigned a positive value. 

Any expression that may be used in the operand field of a SETA instruction may 
be used to refer to an operand in an operand sublist. Sublists are described in 
"Sublists in Operands" on page 199. 

The following macro definition may be used to add the last operand in an 
operand sublist to the first operand in an operand sublist and store the result at 
the first operand. A sample macro instruction and generated statements follow 
the macro definition. 

~lACRO 

ADDX &NUI·1BER, &REG Statel1lent 
lelA &lAST 

&lAST SETA N' &NUI1BER Statement 2 
l &REG, &IIUI·IBER (1) 
A &REG,&NUMBER(&lAST) Statel1lent 3 
ST &REG, &l-IUI'lBER (1) 
rlEND 

ADDX (A,B,C,D,E) ,3 Statel1lent 4 

l 3,A 
A 3,E 
ST 3,A 

&NUMBER is the first symbolic parameter in the operand field of the prototype 
statement (statement 1). The corresponding characters (A,B,C,D,E) of the 
macro instruction (statement 4) are a sublist. Statement 2 assigns to &LAST 
the arithmetic value +5, which is equal to the number of operands in the 
sublist. Therefore, in statement 3, &NUMBER(&LAST) is replaced by the fifth 
operand of the sublist. 

You use the SETB instruction to assign a binary bit value to a SETB symbol. 
You can assign the bit values, 0 or 1, to a SETB symbol directly and use it as a 
switch. 

If you specify a logical (Boolean) expression in the operand field, the assembler 
evaluates this expression to determine whether it is true or false, and then 
assigns the value 1 or 0, respectively, to the SETB symbol. You can use this 
computed value in condition tests or for substitution. 

236 Assembler H Version 2 Language Reference 



Format of SETB: 

Nallle Operation Operand 

A variable SETB One of three options described below 
symbol 

A global variable symbol in the name field must have been previously declared 
as a SETS symbol in a GSLS instruction. Local SETS symbols need not be 
declared in a LCLS instruction. The assembler considers any undeclared vari­
able symbol found in the name field of a SETS instruction as a local SET 
symbol. The variable symbol is assigned a type attribute value of N. 

The three options that can be specified in the operand field are: 

• A binary value (0 or 1) 

• A binary value enclosed in parentheses 

Note: An arithmetic value enclosed in parentheses is allowed. This value 
can be represented by an unsigned, decimal, self-defining term: a SETA 
symbol; or an attribute reference other than the type attribute reference. If 
the value is 0, the assembler assigns a value of °to the symbol in the 
name field. If the value is not 0, the assembler assigns a value of 1. 

• A logical expression enclosed in parentheses 

A logical expression is evaluated to determine if it is true or false; the SETS 
symbol in the name field is then assigned the binary value 1 or 0, corre­
sponding to true or false, respectively. The assembler assigns the explicitly 
specified binary value (0 or 1) or the computed logical value (0 or 1) to the 
SETS symbol in the name field. 

Subscripted SETB Symbols 
The SETS symbol in the name field can be subscripted, but only if the same 
SETS symbol has been previously declared in a GSLS or LCLS instruction with 
an allowable dimension. 

The assembler assigns the binary value explicitly specified, or implicit in the 
logical expression present in the operand field, to the position in the declared 
array given by the value of the subscript. The subscript expression must not be 
0, or have a negative value, or exceed the dimension actually specified in the 
declaration. 

Logical (SETB) Expressions 
You can use a logical expression to assign a binary value to a SETS symbol. 
You can also use a logical expression to represent the condition test in an AIF 
instruction. This use allows you to code a logical expression whose value (0 or 
1) will vary according to the values substituted into the expression and thereby 
determine whether or not a branch is to be taken. 

Figure 63 on page 239 defines a logical expression. 

Chapter 9. How to Write Conditional Assembly Instructions 237 



Note: An arithmetic relation is two arithmetic expressions separated by a rela­
tional operator. A character relation is two character strings (for example, a 
character expression and a type attribute reference) separated by a relational 
operator. The relational operators are: 

EO equal 
NE not equal 
LE less than or equal 
LT less than 
GE greater than or equal 
GT greater tha n 

Rules for Coding Logical Expressions: The following is a summary of coding 
rules for logical expressions: 

1. 	 A logical expression must not contain two logical terms in succession. 

2. 	 A logical expression can begin with the logical operator NOT. 

3. 	 A logical expression can contain two logical operators in succession; 
however, the only combinations allowed are: OR NOT or AND NOT. The 
two operators must be separated from each other by one or more blanks. 

4. 	 Any logical term, relation, or inner logical expression can be optionally 

enclosed in parentheses. 


5. 	 The relational and logical operators must be immediately preceded and fol­
lowed by at least one blank or other special character. 

6. 	 A logical expression can contain up to 18 logical operators. Note that the 
relational and other operators used by the arithmetic and character 
expressions in relations do not count toward this total. There is no limit on 
the number of parentheses. 

238 Assembler H Version 2 Language Reference 



Outermost Expression 

must be enclosed in 
parentheses in SETB 

and AI F instructions 

Logical 

value 

Arithmetic 
Expression 

Figure 63. Defining Logical Expressions 

Logical Operators Allowed 

addition 

multiplication 

negation 

Optional parentheses 
around terms and 

expressions at this level 

Items optionally 
enclosed in 
parentheses 

Relational Operators Allowed 

equal 

not equal 

less than or equal 

less than 

greater than or equal 

greater than 

Must be in the 

range 0 through 

255 characters 

Must stand alone 
and not be enclosed 
in apostrophes 

Chapter 9. How to Write Conditional Assembly Instructions 239 



Evaluation of Logical Expressions: The assembler evaluates logical 
expressions as follows: 

1. 	 It evaluates each logical term, which is given a binary value of 0 or 1. 

2. 	 If the logical term is an arithmetic or character relation, the assembler eval­
uates: 

a. 	 The arithmetic or character expressions specified as values for compar­
ison in these relations, and then 

b. The arithmetic or character relation, and finally 

c. 	 The logical term, which is the result of the relation. If the relation is 
true, the logical term it represents is given a value of 1; if the relation is 
false, the term is given a value of O. 

Note: The two comparands in a character relation are compared, character 
by character, according to binary (EBCDIC) representation of the character. 
If two comparands in a character relation have character values of unequal 
length, the assembler always takes the shorter character value to be less 
than the longer one. 

3. 	 The assembler performs logical operations from left to right. However, 

a. 	 It performs logical NOTs before logical ANDs and ORs 
b. 	 It performs logical ANDs before logical ORs 

4. 	 In parenthesized logical expressions, the assembler evaluates the inner­
most expressions first, and then considers them as logical terms in the next 
outer level of expressions. It continues this process until the outermost 
expression is evaluated. 

Using SETB Symbols: The logical value assigned to a SETB symbol is used for 
the SETB symbol appearing in the operand field of an AIF instruction or another 
SETB instruction. 

If a SETB symbol is used in the operand field of a SETA instruction, or in arith­
metic relations in the operand fields of AIF and SETB instructions, the binary 
values 1 (true) and 0 (false) are converted to the arithmetic values + 1 and +0, 
respectively. 

If a SETB symbol is used in the operand field of a SETC instruction, in character 
relations in the operand fields of AIF and SETB instructions, or in any other 
statement, the binary values 1 (true) and 0 (false), are converted to the char­
acter values 1 and 0, respectively. 

240 Assembler H Version 2 Language Reference 



The following example illustrates these rules. It is assumed that L' & TO EO 4 is 
true, and S'&TO EO 0 is false. 

t·1ACRO 
&fJAt1E t~OVE &TO, &FROt~ 

LCLA &A1 
LCLB &B1,&B2 
LCLC &C1 

&B1 SETB (L'&TO EQ 4) Statement 
&B2 SETB (5'&TO EQ 8) Statement 2 
&A1 SETA &B1 Statement 3 
&C1 SETC '&B2' Statement 4 

ST 2,SAVEAREA 
L 2 , &FRot~&A1 
ST 2,&TO&C1 
L 2,SAVEAREA 
MEND 

HERE 	 FIELDA,FIELDB 

HERE 	 ST 2,SAVEAREA 
L 2,FIELDB1 
ST 2,FIELDAO 
L 2,SAVEAREA 

Because the operand field of statement 1 is true, &B1 is assigned the binary 
value 1. Therefore, the arithmetic value + 1 is substituted for &B1 in statement 
3. Because the operand field of statement 2 is false, &B2 is assigned the binary 
value O. Therefore, the character value 0 is substituted for &B2 in statement 4. 

SETC-Set Character 
The SETC instruction allows you to assign a character value to a SETC symbol. 
You can assign whole character strings, or concatenate several smaller strings 
together. The assembler will assign the composite string to your SETC symbol. 
You can also assign parts of a character string to a SETC symbol by using the 
substring notation. 

You can change the character value assigned to a SETC symbol. This allows 
you to use the same SETC symbol with different values for character compar­
isons in several places, or for substituting different values into the same model 
statement. 

Format of SETe: 

Name Operation Operand 

A variable SETC One of four options described below 
symbol 

A global variable symbol in the name field must have been previously declared 
as a SETC symbol in a GBLC instruction. Local SETC symbols need not be 
declared in a LCLC instruction. The assembler considers any undeclared vari­
able symbol found in the name field of a SETC instruction as a local SET 
symbol. The variable symbol is assigned a type attribute value of U. 

Chapter 9. How to Write Conditional Assembly Instructions 241 



The four options that can be specified in the operand field are: 

• 	 A type attribute reference 
• 	 A character expression 
• 	 A substring notation 
• 	 A concatenation of substring notations, or character expressions, or both 

The assembler assigns the character string value represented in the operand 
field to the SETC symbol in the name field. The string length must be in the 
range 0 (null character string) through 255 characters. 

Note: When a SETA or SETB symbol is specified in a character expression, the 
unsigned decimal value of the symbol (with leading zeros removed) is the char­
acter value given to the symbol. 

A duplication factor can precede any of the first three options, or any of the 
parts (character expression or substring notation) that make up the fourth 
option of the SETC instruction operand. The duplication factor can be any arith­
metic expression allowed in the operand of a SETA instruction. For example: 

&C1 SETC (3) 'ABC' 

assigns the value'ABCABCABC' to &C1. 

Notes: 

1. 	 The assembler evaluates the represented character string (in particular, the 
substring) before applying the duplication factor. The resulting character 
string is then assigned to the SETC symbol in the name field. For example: 

&C2 SETC 'ABC' .(3) 'ABCDEF' (4,3) 

assigns the value'ABCDEFDEFDEF' to &C2. 

2. 	 If the character string contains double-byte data, then redundant SI/SO 

pairs are not removed on duplication. For example: 


&C3 SETC (3) '<.A.B>' 

assigns the value '<.A.B> <.A.B> <.A.B>' to &C3. 

3. 	 To duplicate double-byte data, without including redundant SI/SO pairs, use 
the substring notation. For example: 

&C4 SETC (3) '<.A.B>' (2,4) 

assigns the value '.A.B.A.BAB' to &C4. 

Subscripted SETC Symbols: The SETC symbol (see (1) in Figure 64 on 
page 243) in the name field can be subscripted, but only if the same SETC 
symbol has been previously declared (see (2) in Figure 64) in a GBLC or an 
LCLC instruction with an allowable dimension. 

The assembler assigns the character value represented in the operand field to 
the position in the declared array (see (3) in Figure 64) given by the value of 
the subscript. The subscript expression must not be 0, or have a negative 
value, or exceed the dimension (see (4) in Figure 64) actually specified in the 
declaration. 

242 Assembler H Version 2 Language Reference 



LCLC &Cl,&C2 
LCLC &SUBSCRC(20)8 

~. 

• 
Must be in the 
range 1 th rough 
32767 

&SUBSC~C (10) SETC 'ABCDE' 

Array: 

&SUBSCRCMust be an arithmetic 
expression allowed in ~ I
the operand of a SET A 
instruction t t t 

2 10 20 

&SUBSCRC(25) SETC 'ABCDEF' ':":<ERROR';:';: No 
T Value Assigned 

Value assigned•
&Cl SETC '&SUBSCRC(lO} , &Cl=ABCDE 

Figure 64. Subscripted SETC Symbols 

Character (SETC) Expressions 
The main purpose of a character expression is to assign a character value to a 
SETC symbol. You can then use the SETC symbol to substitute the character 
string into a model statement. 

You can also use a character expression as a value for comparison in condition 
tests and logical expressions. In addition, a character expression provides the 
string from which characters can be selected by the substring notation. 

Substitution of one or more character values into a character expression allows 
you to use the character expression wherever you need to vary values for sub­
stitution or to control loops. 

Character (SETC) expressions can be used only in conditional assembly 
instructions as shown in Figure 65. 

A character expression consists of any combination of characters enclosed in 
single quotation marks. Variable symbols are allowed. The assembler substi­
tutes the representation of their values as character strings into the character 
expression before evaluating the expression. Up to 255 characters are allowed 
in a character expression. 

Note: Attribute references are not allowed in character expressions. 

Chapter 9. How to Write Conditional Assembly Instructions 243 



Used in 	 Used as Example 

SETC instruction 	 Operand &C SETC 'STRINGS' 

AIF or SETB instruction 	 Character string in char- AIF ('&C' EQ 'STRINGl').B 
acter relation 

Substring notation 	 First part of notation 'SELECT' (2.5) =ELECT 

Figure 65. Use of Character Expressions 

Evaluation of Character Expressions: The value of a character expression is the 
character string within the enclosing single quotation marks, after the assem­
bler performs any substitution for variable symbols. 

Character strings, including variable symbols, can be concatenated to each 
other within a character expression. The resultant string is the value of the 
expression used in conditional assembly operations; for example, the value 
assigned to a SETC symbol. 

Notes: 

1. 	 Two single quotation marks must be used to generate a single quotation 

mark as part of the value of a character expression. 


The following statement assigns the character value L'SYMBOL to the SETC 
symbol &LENGTH. 

&LENGTH SETC 'L"SYMBOL' 

2. 	 A double ampersand will generate a double ampersand as part of the value 
of a character expression. To generate a single ampersand in a character 
expression, use the substring notation; for example, ('&&'(1,1)). 

The following statement assigns the character value HALF&& to the SETC 
symbol &AND. 

&AND SETC 'HALF&&' 

3. 	 To generate a period, two periods must be specified after a variable 

symbol, or the variable symbol must have a period as part of its value. 


For example, if &ALPHA has been assigned the character value AB%4, the 
following statement can be used to assign the character value AB%4.RST 
to the variable symbol &GAMMA. 

&GMIMA SETC '&ALPHA •• RST' 

4. 	 Double-byte data can appear in the character string if the assembler is 
invoked with the DBCS option. The double-byte data must be bracketed by 
the SO and SI delimiters, and the double-byte data must be valid. 

5. 	 The DBCS ampersand and apostrophe are not recognized as delimiters. 

6. 	 A double-byte character that contains the value of an EBCDIC ampersand or 
apostrophe in either byte is not recognized as a delimiter when enclosed by 
SO and SI. 

244 Assembler H Version 2 Language Reference 



Concatenation of Character String Values: Character expressions can be con­
catenated to each other or to substring notations in any order. This concat­
enated string can then be used in the operand field of a SETC instruction, or as 
a value for comparison in a logical expression. The resulting value is a char­
acter string composed of the concatenated parts. 

Note: The concatenation character (a period) is needed to separate the single 
quotation mark that ends one character expression from the single quotation 
mark that begins the next. 

For example, either of the following statements may be used to assign the char­
acter value ABCDEF to the SETC symbol &BETA. 

&BETA SETC 'ABCDEF' 
&BETA SETC ,ABC' . 'DE F ' 

Concatenation of strings containing double-byte data: If the assembler is 
invoked with the DBCS option, then the following additional considerations 
apply: 

• 	 When a variable symbol adjoins double-byte data, the SO delimiting the 
double-byte data is not a valid delimiter of the variable symbol. The vari ­
able symbol must be terminated by a period. 

• 	 The assembler checks for SI and SO at concatenation points. If the byte to 
the left of the join is SI and the byte to the right of the join is SO, then the 
SI/SO pair are considered redundant and are removed. 

• 	 To create redundant SI/SO pairs at concatenation points, use the substring 
notation and SETC expressions to create additional SI and SO characters. 
By controlling the order of concatenation, it is possible to leave a redundant 
SI/SO pair at a concatenation point. 

Examples: 

&DBDA SETC '<Da>' 
&SO SETC ' &DBDA ' (1, 1) 
&S1 SETC '&DBDA' (4,1) 
&DBCS1A SETC '&DBDA.<Db>' 
&DBCS1E SETC '&DBDA<Db>' 
&DBCS2 SETC '&DBDA'. '<Db>' 
&DBCS2A SETC '&DBDA'. '<Db>'. '&DBDA' 
&DBCS3 SETC '&DBDA'. '&S1'. '&SO'. '<Db>' 
&DBCS3P SETC '&DBDA'. '&S1' 
&DBCS3Q SETC '&SO'.'<Db>' 
&DBCS3R SETC '&DBCS3P'. '&DBCS3Q' 

The substring notation is used to create variables &SO and &SI which have the 
values of SO and SI, respectively. The variable &DBCS1A is assigned the value 
<DaDb> with the SI/SO pair at the join removed. The assignment to variable 
&DBCS1E will fail with error IEV035, since the symbol &DBDA is terminated by 
SO and not by a period. The variable &DBCS2 will be assigned the value 
< DaDb >. The variable &DBCS2A will be assigned the value < DaDbDa >. In 
both cases, redundant SI/SO pairs are removed at the joins. The variable 
&DBCS3 will be assigned the value < DaDb >. Although SI and SO have been 
added at the join, the concatenation operation will remove two SI and two SO 
characters, since redundant SI/SO pairs will be found at the second and third 
concatenations. However, by using intermediate variables &DBCS3P and 
&DBCS3Q to change the order of concatenation, the string < Da > < Db > can 
be assigned to variable &DBCS3R. 

Chapter 9. How to Write Conditional Assembly Instructions 245 



Using SETC Symbols: The character value assigned to a SETC symbol is sub­
stituted for the SETC symbol when it is used in the name, operation, or operand 
field of a statement. 

For example, consider the following macro definition, macro instruction, and 
generated statements. 

t~ACRO 

&NAt1E t~OVE &TO, &FROI>1 
LCLC &PREFIX 

&PREFIX SETC 'FIELD' Statement 
&NAME ST 2,SAVEAREA 

L 2,&PREFIX&FROM Statement 2 
ST 2,&PREFIX&TO Statement 3 
L 2,SAVEAREA 
t1END 

HERE 	 MOVE A,B 

HERE 	 ST 2,SAVEAREA 
L 2,FIELDB 
ST 2,FIELDA 
L 2,SAVEAREA 

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. In 
statements 2 and 3, &PREFIX is replaced by FIELD. 

The following example shows how the value assigned to a SETC symbol may be 
changed in a macro definition. 

t1ACRO 
&NAtlE HOVE &TO,&FROM 

LCLC &PREFIX 
&PREFIX SETC 'FIELD' Statement 
&NAtlE ST 2,SAVEAREA 

L 2, &PREFI X&FROt·l Statement 2 
&PREFIX 	 SETC 'AREA' Statement 3 

ST 2,&PREFIX&TO Statement 4 
L 2,SAVEAREA 
MEND 

HERE 	 MOVE A,B 

HERE 	 ST 2,SAVEAREA 
L 2,FIELDB 
ST 2,AREAA 
L 2,SAVEAREA 

Statement 1 assigns the character value FIELD to the SETC symbol &PREFIX. 
Therefore, &PREFIX is replaced by FIELD in statement 2. Statement 3 assigns 
the character value AREA to &PREFIX. Therefore, &PREFIX is replaced by 
AREA, instead of FIELD, in statement 4. 

The following example illustrates the use of a substring notation as the operand 
field of a SETC instruction. 

246 Assembler H Version 2 Language Reference 



~, 

MACRO 
&NAHE ~10VE &TO,&FROM 

LCLC &PREFIX 
&PREFIX SETC '&TO'(1,5) Statement 
&NAME ST 2,SAVEAREA 

L 2,&PREFIX&FROM Statement 2 
ST 2,&TO 
L 2,SAVEAREA 
MEND 

HERE 	 MOVE FIELDA,B 

HERE 	 ST 2,SAVEAREA 
L 2,FIELDB 
ST 2,FIELDA 
L 2,SAVEAREA 

Statement 1 assigns the substring character value FIELD (the first five charac­
ters corresponding to symbolic parameter & TO) to the SETC symbol &PREFIX. 
Therefore, FIELD replaces &PREFIX in statement 2. 

Note: It is not possible, by specifying a string of values separated by commas 
as the operand of a SETC instruction and then using the SETC symbol as an 
operand in the macro call, to pass a string of values as parameters in a macro 
instruction. If you attempt to do this, the operand of the SETC instruction will be 
passed to the macro instruction as one parameter, not as a list of parameters. 
If the SETC operand is a sublist, it will also be passed to the macro instruction 
as one parameter. 

Concatenating Substring Notations and Character Expressions: Substring 
notations can be concatenated with character expressions in the operand field 
of a SETC instruction. If a substring notation follows a character expression, 
the two can be concatenated by placing a period between the terminating 
single quotation mark of the character expression and the opening single quo­
tation mark of the substring notation. 

For example, if &ALPHA has been assigned the character value AB%4, and 
&BETA has been assigned the character value ABCDEF, the following statement 
assigns &GAMMA the character value AB%4BCD. 

&GA~lMA 	 SETC '&ALPHA'. '&BETA' (2,3) 

If a substring notation precedes a character expression or another substring 
notation, the two can be concatenated by writing the opening single quotation 
mark of the second item immediately after the closing parenthesis of the sub­
string notation. 

Optionally, you can place a period between the closing parenthesis of a sub­
string notation and the opening single quotation mark of the next item in the 
operand field. 

If &ALPHA has been assigned the character value AB%4, and &ABC has been 
assigned the character value 5RS, either of the following statements can be 
used to assign &WORD the character value AB%45RS. 

&WORD SETC '&ALPHA'(1,4) '&ABC' 
&WORD SETC '&ALPHA' (1,4) '&ABC ' (1,3) 

Chapter 9. How to Write Conditional Assembly Instructions 247 



If a SETC symbol is used in the operand field of a SETA instruction, the char­

acter value assigned to the SETC symbol must be 1 to 8 decimal digits. 


If a SETA symbol is used in the operand field of a SETC statement, the arith­
metic value is converted to an unsigned integer with leading zeros removed. If ...." 

the value is 0, it is converted to a single O. 


Extended SET Statements 
In addition to assigning single values to SET symbols, you can assign values to 
multiple elements in an array of a subscripted SET symbol with one single SETx 
instruction. Such an instruction is called an extended SET statement. 

Format of extended SETx: 

Name Operation Operand 

A subscri pted SETA, operandl,operand2, .•. operandn 
variable SETB, or 
symbo 1 SETC 

The name field specifies the name of the SET symbol and the position in the 
array to which the first value in the operand field is to be assigned. The suc­
cessive operand values are then assigned to the successive positions in the 
array. If an operand is omitted, the corresponding element of the array is 
unchanged. Consider the following example: 

lClA &LI ST (50) 
&LIST(1l) SETA 5,10, ,20,25,30 

The first instruction declares &LlST as a subscripted local SETA symbol. The 
second instruction assigns values to certain elements of the array &LlST. Thus, 
the instruction does the same as the following sequence: 

&LIST(1l) SETA 5 

&LIST(12) SETA 10 

&LIST(14) SETA 20 

&LI ST (15) SETA 25 

&LIST(16) SETA 30 


Alternative Statement Format: You can use the alternative statement format for 
extended SETx statements. The above coding could then be written as follows: 

Name Operation Operand COI1l11ent Cont. 

&LIST(1l) SETA 5, THI SIS x 
10, , AN ARRAY X 
20,25,30 SPECIFICATION 

Substring Notation 
The substring notation allows you to refer to one or more characters within a 
character string. You can, therefore, either select characters from the string 
and use them for substitution or testing, or scan through a complete string, 
inspecting each character. By concatenating substrings with other substrings 
or character strings, you can rearrange and build your own strings. 

248 Assembler H Version 2 Language Reference 



The substring notation can be used only in conditional assembly instructions, as 
shown in Figure 66 on page 249. 

The substring notation must be specified as follows: 

'CHARACTER STRING'(e1,e2) 

where the character string is a character expression from which the substring 
is to be extracted. The first subscript indicates the first character that is to be 
extracted from the character string. The second subscript indicates the number 
of characters to be extracted from the character string, starting with the char­
acter indicated by the first subscript. Thus, the second subscript specifies the 
length of the resulting substring. 

Value 
assigned to 

Used in Used as Example SETC Symbol 

SETC instruction Operand &C1 SETC 'ABC' (1,3) ABC 
operand 

Part of 
operand 

&C2 SETC '&C1'(1,2).'DEF' ABDEF 

AIF or SETB Character value in AIF ('&STRIIIG'(1,4) EO 'AREA').SEO 
Instruction comparand of &13 SETB ('&STRltlG' (1,4). '9' [0 'FULL9') 
operand (logical character relation 
expression) 

Figure 66. Substring Notation in Conditional Assembly Instructions 

Examples: 

Value of Variable Character Value 
Examples Symbol of Substring 

'ABCDE' (1,5) 	 ABCDE 
'ABCDE'(2,3) 	 BCD 
'&C' (3,3) ABCDE CDE 
,&P ARAt'l' (3 , 3 ) ((A+3)*lO) A+3 

The character string must be a valid character expression with a length, N, in 
the range 1 through 255 characters. The length of the resulting substring must 
be within the range 0 through 255. 

The subscripts, e1 and e2, must be arithmetic expressions. The substring nota­
tion is replaced by a value that depends on the three elements: N, e1, and e2, 
as summarized in Figure 67 on page 250. 

The numbers in the following list relate to the numbers in Figure 67: 

(1) 	 In the usual case, the assembler generates a correct substring of the 
specified length. 

(2) 	 When e1 has a value of 0 or a negative value, the assembler issues an 
error message. 

(3) 	 When the value of e1 exceeds N, the assembler issues a warning 
message, and a null string is generated. 

(4) 	 When e2 has a value of 0, the assembler generates the null character 
string. Note that, if e2 is negative, the assembler issues an error 
message. 

Chapter 9. How to Write Conditional Assembly Instructions 249 



.'-'-.',',':" : , - ". 

(5) 	 When e2 indexes past the end of the character expression (that is, e1 +e2 
is greater than N +1), the assembler issues a warning message and gen­
erates a substring that includes only the characters up to the end of the 
character expression specified . 

1,;_&-4••. · •.. IIf.II.· 


Examples: Assume 0< N~ 255 

• 0<e1~N. 0<e2~N. and 
e1+e2~N+1 

'ABCDEF' (2,5) N=6 

.e1~0 
, ABCDEF' (01.··.';)

/
IValue of e2 disregardedJ 
\ 

ee1>N \ 

, ABCDEF' (7 ,I) N=S: *WARNING* 

.~i~CDEF' <I!, 0) 
~<~------------~
[value of e1 disregarded I 

•o<e1~NI 0<e2~N, but 
e1+e2>N+ 1 

'ABCDEF' (3,5) N=6 *WA:R,NING* 

, ABCDEF' (3, 4 ) 

Figure 67. Summary of Substring Notation 

Character Value 
of Substring 

BCDEF 

null 

null 

null 

CDEF 

CDEF 

250 Assembler H Version 2 Language Reference 



Branching 

AIF-Conditional Branch 
You use the AIF instruction to branch according to the results of a condition 
test. You can thus alter the sequence in which source program statements or 
macro definition statements are processed by the assembler. 

The AIF instruction also provides loop control for conditional assembly proc­
essing, which allows you to control the sequence of statements to be gener­
ated. 

It also allows you to check for error conditions and thereby to branch to the 
appropriate MNOTE instruction to issue an error message. 

Format of AIF: 

Name Operation Operand 

A sequence AIF A logical expression enclosed in 
symbol or 	 parentheses, innlediately followed by a 
blank 	 sequence symbol 

The logical expression in the operand field is evaluated at preassembly time to 
determine if it is true or false. If the expression is true (logical value = 1), the 
statement named by the sequence symbol in the operand field is the next state­
ment processed by the assembler. If the expression is false (logical value =0), 
the next sequential statement is processed by the assembler. 

In the following example, a branch is taken to the label .OUT if &C YES: 

AIF ('&C' EO 'YES').OUT 

.ERROR ANOP 


.OUT AflOP 

The sequence symbol in the operand field is a conditional assembly label that 
represents an address at preassembly time. It is the address of the statement 
to which a branch is taken if the logical expression preceding the sequence 
symbol is true. 

The statement identified by the sequence symbol referred to in the AIF instruc­
tion can appear before or after the AIF instruction. However, the statement 
must appear within the local scope of the sequence symbol. Thus, the state­
ment identified by the sequence symbol must appear: 

• 	 In open code, if the corresponding AIF instruction does, or 

• 	 In the same macro definition in which the corresponding AIF instruction 

appears. 


Chapter 9. How to Write Conditional Assembly Instructions 251 



No branch can be taken from open code into a macro definition or between 
macro definitions, regardless of nested calls to other macro definitions. 

The following macro definition may be used to generate the statements needed 
to move a fullword fixed-point number from one storage area to another. The 
statements will be generated only if the type attribute of both storage areas is 
the letter F. 

t~ACRO 

&N r~OVE &T,&F 
AIF (T'&T NE T'&F).END Statement 
AIF (T'&T NE 'F').END Statement 2 

&N ST 2,SAVEAREA Statement 3 
L 2,&F 
ST 2,&T 
L 2,SAVEAREA 

.END MEND Statement 4 

The logical expression in the operand field of statement 1 has the value true if 
the type attributes of the two macro instruction operands are not equal. If the 
type attributes are equal, the expression has the logical value false. 

Therefore, if the type attributes are not equal, statement 4 (the statement 
named by the sequence symbol .ENO) is the next statement processed by the 
assembler. If the type attributes are equal, statement 2 (the next sequential 
statement) is processed. 

The logical expression in the operand field of statement 2 has the value true if 
the type attribute of the first macro instruction operand is not the letter F. If the 
type attribute is the letter F, the expression has the logical value false. 

Therefore, if the type attribute is not the letter F, statement 4 (the statement 
named by the sequence symbol .ENO) is the next statement processed by the 
assembler. If the type attribute is the letter F, statement 3 (the next sequential 
statement) is processed. 

Extended AIF Instruction 
The extended AIF instruction allows you to combine several successive AIF 
statements into one statement. 

Format of extended AIF: 

Name Operation Operand 

A sequence AIF (logical expression).Sl, 
symbol or (logical expression).S2, ... 
blank (logical expression).Sn 

The extended AIF instruction is exactly equivalent to n successive AIF state­
ments. The branch is taken to the first sequence symbol (scanning left to right) 
whose corresponding logical expression is true. If none of the logical 
expressions is true, no branch is taken. 

252 Assembler H Version 2 Language Reference 

http:expression).Sn
http:expression).S2
http:expression).Sl


Example: 

Cont. 
AIF ( '&L' (&C, 1) EQ '$'). DOLR, X 

('&L' (&C,l) EQ ' # ') .POUND, X 
('&L'(&C,l) EQ '@').AT, X 
('&L'(&C,l) EQ '=').EQUAL, X 
('&L'(&C,l) EQ '(').LEFTPAR, X 
('&L'(&C,l) EQ '+').PLUS, X 
( '&L ' (&C ,1) EQ '-').HI NUS 

This statement looks for the occurrence of a $, #, @, =, (. +, and -, in that 
order; and causes control to branch to .DOLR, .POUND, .AT, .EQUAL, .LEFTPAR, 
.PLUS, and .MINUS, respectively, if the string being examined contains any of 
these characters. 

Alternative Statement Format: The alternative statement format is allowed for 
extended AIF instructions. The format is illustrated in the above example. 

AGO-Unconditional Branch 
The AGO instruction allows you to branch unconditionally. You can thus alter 
the sequence in which your assembler language statements are processed. 
This provides you with final exits from conditional assembly loops. 

Format of AGO: 

Name Operation Operand 

A sequence AGO A sequence symbol 
symbol or 
blank 

The statement named by the sequence symbol in the operand field is the next 
statement processed by the assembler. 

The statement identified by a sequence symbol referred to in the AGO instruc­
tion can appear before or after the AGO instruction. However, the statement 
must appear within the local scope of the sequence symbol. Thus, the state­
ment identified by the sequence symbol must appear 

• 	 In open code, if the corresponding AGO instruction does, or 

• 	 In the same macro definition in which the corresponding AGO instruction 
appears. 

Example: 

~lACRO 

&NA~1E ~10VE &T,&F 
AIF (T'&T EO 'F').FIRST Statement 1 
AGO .END 	 Statement 2 

.FIRST AIF (T'&T NE T'&F).END Statement 3 
&NAME ST 2,SAVEAREA 

L 2,&F 
ST 2,&T

f' L 2,SAVEAREA
\...- .END ~lEND Statement 4 

Chapter 9. How to Write Conditional Assembly Instructions 253 



Statement 1 is used to determine if the type attribute of the first macro instruc­
tion operand is the letter F. If the type attribute is the letter F, statement 3 is 
the next statement processed by the assembler. If the type attribute is not the 
letter F, statement 2 is the next statement processed by the assembler. 

Statement 2 is used to indicate to the assembler that the next statement to be 
processed is statement 4 (the statement named by sequence symbol .END). 

Computed AGO Instruction 
The computed AGO instruction allows you to make branches according to the 
value of an arithmetic expression specified in the operand. 

Format of computed AGO: 

Name Operation Operand 

A sequence AGO (arithmetic expression) 
symbol or .Sl,.S2, ... ,.Sn 
or blank 

If the arithmetic expression evaluates to k, where k lies between 1 and n (inclu­
sive), then the branch is taken to the "k-th" sequence symbol in the list. If k is 
outside that range, no branch is taken. 

In the following example, control passes to the statement at THIRD if &1 = 3. 
Control passes through to the statement following the AGO if &1 is less than 1 
or greater than 4. 

Cont. 
AGO (&I).FIRST,.SECOND, X 

.THIRD,.FOURTH 

Alternative Statement Format: The alternative statement format is allowed for 
computed AGO instructions. The above example could be coded as follows: 

Cont. 
AGO (&1) .FIRST, X 

.SECOND, X 

.THIRD, X 
•FOURTH 

ACTR-Conditional Assembly Loop Counter 
The ACTR instruction allows you to set a conditional assembly loop counter 
either within a macro definition or in open code. The ACTR instruction can 
appear anywhere in open code or within a macro definition. 

Each time the assembler processes an AIF or AGO branching instruction in a 
macro definition or in open code, the loop counter for that part of the program 
is decremented by one. When the number of conditional assembly branches 
taken reaches the value assigned by the ACTR instruction to the loop counter, 
the assembler exits from the macro definition or stops processing statements in 
open code. 

By using the ACTR instruction, you avoid excessive looping during conditional 
assembly processing at preassembly time. 

254 Assembler H Version 2 Language Reference 



Format of ACTR: 

Name Operation Operand 

A sequence ACTR Any valid arithmetic 
symbol or (SETA) expression 
blank 

A conditional assembly loop counter is set (or reset) to the value of the arith­
metic expression in the operand field. The loop counter has a local scope; its 
value is decremented only by AGO and AIF instructions, and reassigned only by 
ACTR instructions that appear within the same scope. Thus, the nesting of 
macros has no effect on the setting of individual loop counters. 

The assembler sets its own internal loop counter both for open code and for 
each macro definition, if neither contains an ACTR instruction. The assembler 
assigns a standard value of 4096 to each of these internal loop counters. 

Loop Counter Operations: Within the local scope of a particular loop counter 
(including the internal counters run by the assembler), the following occurs: 

1. 	 Each time an AGO or AIF branch is executed, the assembler checks the 
loop counter for zero or a negative value. 

2. 	 If the count is not zero or negative, it is decremented by one. 

3. 	 If the count is zero, before decrementing, the assembler will take one of two 
actions: 

a. 	 If it is processing instructions in open code, the assembler will process 
the remainder of the instructions in the source module as comments. 
Errors discovered in these instructions during previous passes are 
flagged. 

b. 	 If it is processing instructions inside a macro definition, the assembler 
terminates the expansion of that macro definition and processes the 
next sequential instruction after the calling macro instruction. If the 
macro definition is called by an inner macro instruction, the assembler 
processes the next sequential instruction after this inner call: that is, it 
continues processing at the next outer level of nested macros. 

Note: The assembler halves the ACTR counter value when it encounters 
serious syntax errors in conditional assembly instructions. 

ANOP-Assembly No Operation 
You can specify a sequence symbol in the name field of an ANOP instruction, 
and use the symbol as a label for branching purposes. 

The ANOP instruction performs no operation itself, but you can use it to branch 
to instructions that already have symbols in their name fields. For example, if 
you wanted to branch to a SETA, SETB, or SETC assignment instruction, which 
requires a variable symbol in the name field, you could insert a labeled ANOP 
instruction immediately before the assignment instruction. By branching to the 
ANOP instruction with an AIF or AGO instruction, you WOUld, in effect, be 
branching to the assignment instruction. 

Chapter 9. How to Write Conditional Assembly Instructions 255 



Open Code 

Format of ANOP: 

Name Operation Operand 

A sequence ANOP 
symbol or 
blank 

No operation is performed by an ANOP instruction. Instead, if a branch is taken 
to the ANOP instruction, the assembler processes the next sequential instruc­
tion. 

Example: 

MACRO 
&NAME t·l0VE &T,&F 

LCLC &TYPE 
AIF (T'&T EO 'F' ) . FTYPE Statement 1 

&TYPE SETC 	 Statement 2I EI 

. FTYPE ANOP 	 Statement 3 

&NAME ST&TYPE 2,SAVEAREA Statement 4 
L&TYPE 2,&F 
ST&TYPE 2,&T 
L&TYPE 2,SAVEAREA 
HE~ID 

Statement 1 is used to determine if the type attribute of the first macro instruc­
tion operand is the letter F. If the type attribute is not the letter F, statement 2 
is the next statement processed by the assembler. If the type attribute is the 
letter F, statement 4 should be processed next. However, since there is a vari ­
able symbol (&NAME) in the name field of statement 4, the required sequence 
symbol (.FTYPE) cannot be placed in the name field. Therefore, an ANOP 
instruction (statement 3) must be placed before statement 4. 

Then, if the type attribute of the first operand is the letter F, the next statement 
processed by the assembler is the statement named by sequence symbol 
.FTYPE. The value of &TYPE retains its initial null character value because the 
SETC instruction is not processed. Since .FTYPE names an ANOP instruction, 
the next statement processed by the assembler is statement 4, the statement 
following the ANOP instruction. 

Conditional assembly instructions in open code allow you: 

• 	 To select, at preassembly time, statements or groups of statements from 
the open code portion of a source module according to a predetermined set 
of conditions. The assembler further processes the selected statements at 
assembly time. 

• 	 To pass local variable information from open code through parameters into 
macro definitions. 

256 Assembler H Version 2 language Reference 



• 	 To control the computation in and generation of macro definitions using 
global SET symbols. 

• 	 To substitute values into the model statements in the open code of a source 
module and control the sequence of their generation. 

All the conditional assembly elements and instructions can be specified in open 
code. 

The specifications for the conditional assembly language described in this 
chapter also apply in open code. However, the following restrictions apply: 

1. 	 To attributes in open code: For ordinary symbols, only references to the 
type, length, scaling, and integer attributes are allowed. 

Note: References to the number attribute have no meaning in open code, 
because &SYSLIST is not allowed in open code and symbolic parameters 
have no meaning in open code. 

2. 	 To conditional assembly expressions in open code (see Figure 68). 

Expression 	 Must not contain 

Arithmetic • &SYSLIST 
(SETA) • Symbolic parameters 

• 	 Any attribute references to symbolic parameters, or &SYSLlST, 
&SYSECT,&SYSNDX 

Character • &SYSLlST, &SYSECT, &SYSNDX 
(SETC) • Attribute references to &SYSLlST, &SYSECT, &SYSNDX, or to sym­

bolic parameters 
• Symbolic parameters 

Logical • Arithmetic expressions with the items listed above 
(SETS) • Character expressions with the items listed above 

Figure 68. Restrictions on Coding Expressions 

MHELP-Macro Trace Facility 
The MHELP instruction controls a set of trace and dump facilities. Options are 
selected by an 	absolute expression in the MHELP operand field. MHELP state­
ments can occur anywhere in open code or in macro definitions. MHELP 
options remain in effect until superseded by another MHELP statement. 

Format of MHELP: 

Name 	 Operation Operand 

MHELP 	 AbsolLtte expression, binary or decimal options 
(see below) 

Chapter 9. How to Write Conditional Assembly Instructions 257 



MHELP B'1' or MHELP1, Macro Call Trace: This option provides a one-line 
trace listing for each macro call, giving the name of the called macro, its nested 
depth, and its &SYSNDX value. The trace is provided only upon entry into the 
macro. No trace is provided if error conditions prevent entry into the macro. 

MHELP B'10' or MHELP2, Macro Branch Trace: This option provides a one-line 
trace-listing for each AGO and AIF conditional assembly branch within a macro. 
It gives the model statement numbers of the "branched from" and the 
"branched to" statements, and the name of the macro in which the branch 
occurs. This trace option is suppressed for library macros. 

MHELP B'1oo' or MHELP 4, Macro AIF Dump: This option dumps undimen­
sioned SET symbol values from the macro dictionary immediately before each 
AIF statement that is encountered. 

MHELP B'1OO0' or MHELP 8, Macro Exit Dump: This option dumps undimen­
sioned SET symbols from the macro dictionary whenever an MEND or MEXIT 
statement is encountered. 

MHELP B'1ooo0' or MHELP 16, Macro Entry Dump: This option dumps param­
eter values from the macro dictionary immediately after a macro call is proc­
essed. 

MHELP B'1ooo00' or MHELP 32, Global Suppression: This option suppresses 
global SET symbols in two preceding options, MHELP 4 and MHELP 8. 

MHELP B'10oo0oo' or MHELP 64, Macro Hex Dump: This option, when used in 
conjunction with the Macro AIF dump, the Macro Exit dump, or the Macro Entry 
dump, will dump the parameter and SETC symbol values in EBCDIC and 
hexadecimal formats. Only positional and keyword parameters will be dumped 
in hexadecimal; system parameters will be dumped in EBCDIC. The full value 
of SETC variables or parameters is dumped in hexadecimal. 

MHELP B'1ooo00oo' or MHELP 128, MHELP Suppression: This option sup­
presses all currently active MHELP options. 

MHELP Control on &SYSNDX: the MHELP operand field is actually mapped into 
a fullword. Previously defined MHELP codes correspond to the fourth byte of 
this fullword. 

&SYSNDX control is turned on by any bit in the third byte (operand values 256 
through 65535, inclusive). Then, when &SYSNDX (total number of macro calls) 
exceeds the value of the fullword which contains the MHELP operand value, 
control is forced to stay at the open code level by, in effect, making every state­
ment in a macro behave like a MEXIT. Open code macro calls are honored, but 
with an immediate exit back to open code. When the value of &SYSNDX 
reaches its limit, the message'ACTR EXCEEDED-&SYSNDX' is issued. 

258 Assembler H Version 2 Language Reference 



Examples: 

MHELP 256 Limit &SYSNDX to 256. 

~lHELP 1 Trace macro calls. 

1'1HELP 256+1 Trace calls and linrit &SYSNDX to 257. 

MHELP 65536 No effect. No bits in bytes 3,4. 

~lHELP 65792 Limit &SYSNDX to 65792. 


Combining Options 
As shown in the example above, multiple options can be obtained by combining 
the option codes in one MHELP operand. For example, call and branch traces 
can be invoked by MHELP 8'11', MHELP 2+ 1, or MHELP 3. Substitution by 
means of variable symbols may also be used. 

Chapter 9. How to Write Conditional Assembly Instructions 259 



---- -- - ----- -- -



Appendixes 


• 	 "Appendix A, Assembler Instructions and Statements" lists the related 
name, operation, and operand entries . 

• 	 "Appendix B, Summary of Constants" lists the constant types and gives 
related information concerning each . 

• 	 "Appendix C, Macro Language Summary" summarizes some of the infor­
mation contained in Part 2. 

Appendixes 261 





Appendix A. Assembler Instructions and Statements 


.... Figure 69 summarizes assembler instructions, and Figure 70 on page 266 sum­
marizes assembler statements. 

Operation 
Entry 

ACTR 

AGO 

AIF 

AMODE 

ANOP 

AREAD 

CCW 

CCWO 

CCW1 

CNOP 

COM 

COpy 

CSECT 

CXD 

DC 

DROP 

DS 

DSECT 

DXD 

EJECT 

END 

Figure 69 

Name Entry 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

A sequence symbol or blank 

A sequence symbol or not 
present 

Any SETC symbol 

Any symbol or not present 

Any symbol or not present 

Any symbol or not present 

Any symbol or not present 

A sequence symbol or not 
present 

Must not be present 

Any symbol or not present 

Any symbol or not present 

Any symbol or not present 

A sequence symbol or not 
present 

Any symbol or not present 

A variable symbol or an ordinary 
symbol 

A symbol 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

(Part 1 of 3). Assembler Instructions 

Operand Entry 

An arithmetic SETA expression 

A sequence symbol 

A logical expression enclosed in 
parentheses, immediately followed 
by a sequence symbol 

24, 31, or ANY 

Will be taken as a remark 

One ordinary symbol 

Four operands, separated by 
commas 

Four operands, separated by 
commas 

Four operands, separated by 
commas 

Two absolute expressions, separated 
by a comma 

Will be taken as a remark 

A symbol 

Will be taken as a remark 

Will be taken as a remark 

One or more operands, separated by 
commas 

One to 16 absolute expressions, sep­
arated by commas 

One or more operands, separated by 
commas 

Will be taken as a remark 

One or more operands, separated by 
commas 

Will be taken as a remark 

A relocatable expression or not 
present 

Appendix A. Assembler Instructions and Statements 263 



Operation 
Entry 

ENTRY 

EQU 

EXTRN 

GBLA 

GBLB 

GBLC 

ICTL 

ISEQ 

LCLA 

LCLB 

LCLC 

LOCTR 

LTORG 

MACRO' 

MEND' 

MEXIP 

MHELP 

MNOTE' 

OPSYN 

Name Entry 

A sequence symbol or not 
present 

A variable symbol or an ordinary 
symbol 

A sequence symbol or not 
present 

Must not be present 

Must not be present 

Must not be present 

Must not be present 

Must not be present 

Must not be present 

Must not be present 

Must not be present 

A variable or ordinary symbol 

Any symbol or not present 

Must not be present 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

Any symbol or not present 

A sequence symbol, a variable 
symbol, or not present 

An ordinary symbol 

A machine code mnemonic 

Operand Entry 


One or more relocatable symbols, 

separated by commas 

An absolute or relocatable "'" 
expression 

One or more relocatable symbols, 
separated by commas 

One or more variable symbols that 
are to be used as SET symbols, sep­
arated by commas' 

One or more variable symbols that 
are to be used as SET symbols, sep­
arated by commas' 

One or more variable symbols that 
are to be used as SET symbols, sep­
arated by commas' 

One to three decimal values, sepa­
rated by commas 

Two decimal values, separated by a 
comma 

One or more variable symbols that 
are to be used as SET symbols, sep­
arated by commas' 

One or more variable symbols that 
are to be used as SET symbols, sep­
arated by commas' ''''+;. 

One or more variable symbols sepa- J 
rated by commas' 

Blank 

Will be taken as a remark 

Will be taken as a remark 

Will be taken as a remark 

Will be taken as a remark 

Absolute expression, binary or 
decimal options 

A severity code, followed by a 
comma, followed by any combination 
of characters (including double-byte 
characters, if the DBCS assembler 
option is specified) enclosed in single 
quotation marks 

A machine instruction mnemonic 
or an operation code defined by 
a previous OPSYN instruction 

Blank 

Figure 69 (Part 2 of 3). Assembler Instructions 

...,J 

264 Assembler H Version 2 Language Reference 



~, 

Operation 
Entry 

ORG 

POP 

PRINT 

PUNCH 

PUSH 

REPRO 

RMODE 

SETA 

SETB 

SETC 

SPACE 

START 

TITLE J 

USING 

WXTRN 

Name Entry 

A sequence symbol or not 
present 

Any symbol or not present 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

Any symbol or not present 

A sequence symbol or not 
present 

Any symbol or blank 

A SETA symbol 

A SETB symbol 

A SETC symbol 

A sequence symbol or not 
present 

Any symbol or not present 

A special symbol (0 to 4 charac­
ters), a sequence symbol, a vari ­
able symbol, or not present 

A sequence symbol or not 
present 

A sequence symbol or not 
present 

Operand Entry 

A relocatable expression or not 
present 

One or more operands, separated by 
commas 

One to three operands 

One to 80 characters (including 
double-byte characters, if the DBCS 
assembler option is specified) 
enclosed in single quotation marks 

One or more operands, separated by 
commas 

Will be taken as a remark 

24 or ANY 

An arithmetic expression 

A 0 or a 1, or logical expression 
enclosed in parentheses 

A type attribute, a character 
expression, a substring notation, or a 
concatenation of character 
expressions and substring notations. 
Double-byte characters are per­
mitted, if the DBCS assembler option 
is specified. 

A decimal self-defining term or not 
present 

A 	self-defining term or not present 

One to 100 EBCDIC characters (or 
one to 49 DBCS characters, if the 
DBCS assembler option is specified) 
enclosed in single quotation marks 

An absolute or relocatable 
expression followed by 1 to 16 abso­
lute expressions, separated by 
commas 

One or more relocatable symbols, 
separated by commas 

Figure 69 (Part 3 of 3). Assembler Instructions 

Notes to Figure 69: 

1. 	 SET symbols may be defined as subscripted SET symbols. 

2. 	 May only be used as part of a macro definition. 

3. 	 See "Chapter 5. Assembler Instruction Statements" on page 91 for a 

description of the name entry. 

Appendix A. Assembler Instructions and Statements 265 



Instruction 
Entry Name Entry Operand Entry 

Model 	 An ordinary symbol, variable Any combination of characters 
Statementsl 2 	 symbol, sequence variable (including variable symbols) 

symbol, a combination of vari ­
able symbols and other charac­
ters that is equivalent to a 
symbol, or not present 

Prototype 	 A symbolic parameter or not Zero or more operands that are 
Statement) present 	 symbolic parameters (separated 

by commas) followed by zero or 
more operands (separated by 
commas) of the form symbolic 
parameter, equal sign, optional 
standard value 

Macro Instruction 	 An ordinary symbol, a variable Zero or more positional oper­
Statement) 	 symbol, a sequence symbol, a ands (separated by commas) fol­

combination of variable symbols lowed by zero or more keyword 
and other characters that is operands (separated by 
equivalent to a symboV or not commas) of the form keyword, 
present equal sign, value' 

Assembler Lan­	 An ordinary symbol, a variable Any combination of characters 
guage Statement I 	 symbol, a sequence symbol, a (including variable symbols) 
2 	 combination of variable symbols 

and other characters that is 
equivalent to a symbol, or not 
present 

Figure 70. Assembler Statements 

Notes to Figure 70: 

1. 	 Variable symbols may be used to generate assembler language mnemonic 
operation codes (listed in "Chapter 5. Assembler Instruction Statements" 
on page 91), except ACTR, COPY, END, ICTl, CSECT, DSECT, ISEQ, PRINT, 
REPRO, and START. Variable symbols may not be used in the name and 
operand entries of: COPY, END, ICTl, or ISEQ. 

2. 	 No substitution is performed for variables in the line following a REPRO 

statement. 


3. 	 May only be used as part of a macro definition. 

4. 	 When the name field of a macro instruction contains a sequence symbol, 
the sequence symbol is not passed as a name field parameter. It only has 
meaning as a possible branch target for conditional assembly. 

5. 	 Variable symbols appearing in a macro instruction are replaced by their 

values before the macro instruction is processed. 


266 Assembler H Version 2 Language Reference 



--------- ---------- ----------- -------------------- ----------- ---------- ------------ -----------

Appendix B. Summary of Constants 

.......
' 

~ 


Imp 1icit Length No. of Truncation/ 
Length ~lodifier constants Range for Range for padding 

Type (Bytes) Ali gnment Range Spec if ied by per operand exponents scale side 

A 4 Fullwol'd .1 to 4 (2) Any expression flu It i P 1 e Left 

B As needed Byte .1 to 256 Binary digits tlult ip 1 e Left 

C As needed Byte .1 to 256 (1) Characters One Right 

D 8 Doubleword .1 to 8 Decimal digits Hult i p 1 e -85 to +75 o to 14 Right (3) 

4 Fu llword . 1 to 8 Dec ima 1 digits Hultiple -85 to +75 o to 14 Right (3) 

4 Fullwol'd .1 to 8 Decimal digits 14u 1tip 1 e -85 to +75 -187 to +346 Left (3) 


G As needed Byte 2 to 256 (4) DBCS clldracters One Right 


H 2 Ha 1fwol'd .1 to 8 Dec ima 1 digits Ilu It i P 1 e -85 to +75 -187 to +346 Le ft (3) 


16 Doub 1el'lOrd .1 to 16 Dec ima 1 digits t·lult i p 1 e -85 to +75 o to 28 Right (3) 


P As needed Byte . I to 16 Dec ima 1 digits 11u It i p 1 e Left 


Q 4 Fullword 1 to 4 Symbol naming a Ilu It i P 1 e Le ft 

DXD or DSEeT 


2 Halfword 2 only One absolute or flu 1tip 1 e 

I'e 1 ocatab 1 e 

expression or tl'/O 


I'elocatable 

expl'essions: 

exp (exp) 

V 4 Fu llword 3,4 Relocatable symbol Ilu It i P 1 e Left 

X As needed Byte .1 to 256 (1) Hex digits '·lult ip 1 e Left 

y 2 Ha 1fword .1 to 2 (2) Any expression tlul t ip 1 e Left 

Z As needed Byte .1 to 16 Dec ima 1 digits Ilu 1tip 1 e Le ft 

Figure 71. Summary of Constants 

Notes to Figure 71: 

1. 	 In a OS assembler instruction, C and X type constants can have length 
specification to 65535. 

2. 	 Bit length specification permitted with absolute expressions only; relocat­
able A-type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 
bytes only. 

3. 	 Errors will be flagged if significant bits are truncated or if the value speci­
fied cannot be contained in the implicit length of the constant. 

4. 	 The length modifier must be a multiple of 2, and may be up to 65534 in a OS 
assembler instruction. 

Appendix B. Summary of Constants 267 



....,,1 

,.)1 




Appendix C. Macro Language Summary 

This appendix summarizes the macro language described in Part 2 of this publi­
cation. Figure 72 on page 270 indicates which macro language elements may 
be used in the name and operand entries of each statement. Figure 73 on 
page 270 is a summary of the expressions that may be used in macro instruc­
tion statements. Figure 74 on page 272 is a summary of the attributes that may 
be used in each expression. Figure 75 on page 273 is a summary of the vari­
able symbols that may be used in each expression. 

Appendix C. Macro Language Summary 269 



N 
VOl ioble Symbols...... to·" 

Attributes0 C Global SET Sylltbols local SET Symb:>1$ System Variable Symbols.... I I 
CD 

}> 
(f> 
(f> 

CD 
:3 
0­
CD.., 

-..I 
I\,) 

:s::: 
III 
n .... 
0 

S~t 

~ 
MACIO 

-.......... 
StDtBnent 

I SymI>ol;c I 
Parometer 

....... 
Ope.... 

SUA I SETI I SETC I SETA I SETB I SHe I &SYSNDX I&SVSECT I &SYSUST I&SYSPARM I&SYSDATE] &SVSTIME I Ty.. I length I Scaling I Integer I Count I Nomb.. I Soq 
Symbol 

:c r 
III 

GIlA ~ 
----+--­ I I 

<
CD.., 
(f>

O· 
::J 

::J 
(C 
C 
III 

(C 
CD 

Gill 

GILe 

leLA 

0 ...... 

Ope""'" 

Operc.td 

I\,) 

r 
III 
::J 

(C 
C 
III 

m 
CD 
:3 
CD 
::J 

U; 

Lell 

leLe 

ModelSta_. ""'-
OpeJDtion 
Opemnd 

...... 
Opeootion 
Opemnd 

....... 
Operution 
OpermMt 

....... 
Operation 
Operand 

Nome 
Operation 
Operand 

Ope-rond 

Nome 
Operation 
Operand 

Operand 

No_ 
Operation 
Operand 

No_ 
Operation 
Operond 

Name No_ 
Operation Operation 
Operand Operand 

NomelOper-ation 
Operand Operand IOpe""'" 

I I I I I 

I 

I 

I 

I Name 

(C 

CD 
;U 

SETA 
o,-..iJ 

....... 
Opemnd OperancfJ OpeRJnd9 

Nome 
Operand OperondJ Operond9 Operand Operonc1 Op.mnd9 I I j IOperond IOperand IOper~d IOperand IOperand 

CD 
CD'.., 

SUI 
Ope"""" 0 ......... 

Nome 
Operond OperJ Ope,J 

Nome 
Operand Operan~ Operon.!' Operond 4 Operond6 Ope,and· I I IOp.,aod4 I0pe,aod5 1 Op..aod5 IOp..aod' IOpe,aod' 1000,aod' 

(1) 
::J 
n 

me 
Ope.nd Opeoa.,jl O .....JI 

....... 
Operand OpemrKl OperandB 

Nome 
Operand Operand Operand Operor"ld Operand Ope,""" Operand Operand 

(1) 
AI' 

0 ..,-" 0 ......... O ..mnd Operond6 Operond6 Operond Opergnd6 Operond6 Operond4 Operond 6 Operand6 Operclnd4 OperondS OperandS Operond 5 Operand 5 OperandS 
Nome 
Opergnd 

AGO I Nome 
Operand 

ACTR IOpe~"; I0........ I0 .."'"'" I0 ..,...." Operand Ope rond3 Operon~ Operand Operan'; Opergnd 2 Operand Operand Operond Operand 
-\-­

Operand 

ANDP I I I I e--........ lName 

Name AREAD 

MlXIT Nome 

M......aTE Opemnd Opeoand Oper~ Operand Oper(lfld Operand Operand Operend Operand Operend Operand Operand Operand Nome 

MEND Nom" 

au,," ...... ....... ..... Nom. Name Nome Nome Nome 

Macro Opeoand Operand Operand Operand Operand Operand Operand Operand Opemod 

1­ ...... Name ....... ....... Nom. Nom. No_ Nome Nome Name Nam. Nom. 

Macro Opemnd Opeoand Opemnd Operand Oper(lfld Operand Operand Operand Operand Operand Operand Operand Operand 

........., ....... ....... ....... Nome Nam. Nome Nome 

language Opemtion Operotion Operation Operotion Operation Opeootion 
Slot~t Opemnd Ope","" Operand Ope","" Operand Operond 

I. Variable :iYrnbols in -c1lO-in5truc:tions _ ~Ioced by their vol..,s before proceS$ing_ 
2 _ Ordy jf volue is self-clef"ming tenn. 
3. Converled to Of"itht'lwtk +1 or-tO. 
4. Only in dtoroc.... relatjCJm. 
5. ani., in oritt-tk relations. 
6. Only in oriri-etk or character reIGtion,. 
7_ Comerted to .-igned ruHer. 
8. ~edrachurocterlorO. 

9. Onl, if one to ten de<:i_1 digits 

, ,~. 



Arithmetic 	 Character Logical 
Expression 

Can 
contain 

Operations 

Range 
of values 

Used In 

Expressions 

Self-defining terms 

Length, scaling, integer, 
count, and number attributes 

SETA and SETB symbols! 

SETC symbols whose values 
are a decimal self-defining 
term! 

&SYSPARM if its value is a 
decimal self-defining term 

Symbolic parameters if the 
corresponding operand is a 
decimal self-defining term 

&SYSLIST (n) If the corre­
sponding operand is a 
decimal self-defining term 

&SYSLIST (n,m) If the corre­
sponding operand IS a 
decimal self- defining term 

&SYSNDX 

+, - (unary and binary), " 
and I; parentheses permitted 

_2 3 ! to +2 31 -1 

SETA operands 

Arithmetic relations 

Subscripted SET symbols 

&SYSLIST subscnpt(s) 

Substring notation 

Subllst notation 

Expressions 

Any combination of charac­
ters (including double-byte 
characters, if the DBCS 
assembler option is speci­
fied) enclosed in apostro­
phes 

Any variable symbol 
enclosed In apostrophes 

A concatenation of variable 
symbols and other charac­
ters enclosed in apostro­
phes 

A type attribute reference 

Concatenation, with a 
period (.) 

o through 255 characters 

SETC operands 

Character relations' 

Expressions 

A 0 or a 1 

SETB symbols 

Arithmetic relations! 

Character relations 2 

Arithmetic value 

AND, OR, and NOT 
parentheses per­
mitted 

o (false) or 1 (true) 

SETB operands 

AI F operands 

Figure 73. Conditional Assembly Expressions 

Notes to Figure 73: 

1. Values must be from 0 through 2 147483 647. 

2. 	 A character relation consists of two character expressions related by the 
operator GT, LT, EQ, NE, GE, or LE. Type attribute notation and substring 
notation may also be used in character relations. The maximum size of the 
character expressions that can be compared is 255 characters. If the two 
character expressions are of unequal size, the smaller one will always 
compare less than the larger. 

Appendix C. Macro Language Summary 271 



Nota- Can be used only if 

Attribute tion Can be used with: type attribute is: Can be used in: 


Type r Ordinary Symbols defined (May always be used) 1. SETC operand ...,in open code: symbolic fields 
parameters inside macro 
definitions: &SYSLIST (m), 
&SYSLIST (m,n), SET 

2. Character 
relations 

symbols: &SYSTIME, 
&SYSPARM, &SYSDATE, 
&SYSECT, &SYSNDX, 
&SYSLOC 

Length L' Ordinary Symbols defined Any letter except M,N,O,T Arithmetic 
in open code: symbolic and U expressions 
parameters inside macro 
definitions: &SYSLIST (m), 
and &SYSUST (m,n) 
Inside macro definitions 

Scaling S' Ordinary Symbols defined H,F,G,D,E,L,K,P, and Z Arithmetic 
in open code: symbolic expressions 
parameters inside macro 
definitions: &SYSLIST (m), 
and &SYSLIST (m,n) 
inside macro definitions 

Integer I' Ordinary Symbols defined H,F,G,D,E,L,K,P, and Z Arithmetic 
in open code: symbolic expressions 
parameters inside macro 
definitions: &SYSLIST (m), 
and &SYSLIST (m,n) 
inside macro definitions 

Count K' Symbolic parameters, Any letter Arithmetic 
&SYSLIST (m) and expressions 
&SYSLIST (m,n) inside 
macro definitions SET 
symbols: all system vari­
able symbols 

Number N' Symbolic parameters, Any letter Arithmetic 
&SYSLIST and &SYSLIST expressions 
(m) inside macro defi­
nitions 

Defined D' Ordinary Symbols defined H,F,G,D,E,L,K,P, and Z Arithmetic 
in open code: symbolic expressions 
parameters inside macro 
definitions: &SYSLIST (m), 
and &SYSLIST (m,n) 
inside macro definitions 

Figure 74. Attributes 

Refer to "Chapter 9. How to Write Conditional Assembly Instructions" on 

page 211 for usage restrictions of the attributes in Figure 74. 

"'1;, 

.J 


272 Assembler H Version 2 Language Reference 



Variable Initialized, Value changed 

Symbol Declared by: or set to: by: May be used in: 


Symbolic l Prototype Corresponding Constant Arithmetic expressions if 
parameter statement macro instruction throughout defi- operand is decimal self ­......,' 

operand 	 nition defining term 

Character expressions 

SETA 	 LCLA or 0 SETA instruction Arithmetic expressions 
GBLA 
instructton Character expressions 

SETB 	 LCLB or 0 SETB Instruc- Arithmetic expressions 
GBLB tion 
instruction Character expressions 

Logical expressions 

SETC 	 LCLC or String of length 0 SETC instruction Arithmetic expressions if 
GBLC (null) value is decimal self-
instruction defining term 

Character expressions 

&SYSNDX l 	 The assem- Macro Instruction Constant Arithmetic expressions 
bier index 	 throughout defi ­

nition: unique Character expressions 
for each macro 
instruction 

&SYSECT l 	 The assem- Control section In Constant Character expressions 
bier which macro throughout defl ­

instruction appears 	 nltion; set by 
CSECT, DSECT, 
START, and 
COM 

&SYSLIST l 	 The assem- Not applicable Not applicable N'&SYSLIST in anthmetlc 
bier expressions 

&SYSLIST 	 The assem- Corresponding Constant ArithmetiC expressions If 
(n) 1 	 bier macro InstructIOn throughout defi- operand IS decimal self ­
&SYSLIST operand nition defining term 
(n,m) 1 

Character expressions 

&SYSPARM PARM field User defined or Constant Arithmetic expression If 
null throughout value IS decimal self-

assembly defining term 

Character expression 

&SYSTIME The assem- System time Constant Character expression 
bier throughout 

assembly 

&SYSDATE The assem- System date Constant Character expression 
bier throughout 

assembly 

&SYSLOC' 	 The assem- Location counter In Constant Character expression 
bier effect where macro trlroughout defi ­

instruction appears 	 nltion: set by 
CSECT, DSECT, 
START, COM, 
and LOCTR 

Figure 75. Variable Symbols 

Note to Figure 75: 

\..,. 	 1. Can be used only in macro definitions. 

Appendix C, Macro Language Summary 273 

I 



...", , 

...", 


.J' 




Index 


Special Characters 
&SYSDATE system variable symbol 183 

&SYSECT system variable symbol 184 

&SYSLIST system variable symbol 185 

&SYSLOC system variable symbol 191 

&SYSNDX system variable symbol 187 

&SYSPARM system variable symbol 189 

&SYSTIME system variable symbol 190 


A 
A-type constant 117 

absolute addresses, base registers for 47 

ACTR instruction 254 

address constants 


A-type 117 

complex relocatable 117 

Q-type 121 

S-type 119 

V-type 120 

V-type 117 


addressability 

by means of the DROP instruction 47 

by means of the USING instruction 44 

establishing 43 

relative 48 

using base register instructions 43 


addresses, relocatable or absolute 80 

addressing mode (AMODE) 56 

AGO instruction 253 

AIF instruction 251 

AMODE 


indicators in ESD 56 

instruction to specify addressing mode 57 


ANOP instruction 255 

AREAD instruction 181 

arithmetic (SETA) expressions 


evaluation of 233 

rules for coding 233 

SETC variables in 234 

using 230 


assembler instruction statements 

base register instructions 43 


See also base register instructions 

data definition instructions 96 


See also data definition instructions 

listing control instructions 146 


See also listing control instructions 

operation code definition instruction 94 

OPSYN instruction 94 

program control instructions 132 


See also program control instructions 

program sectioning and linking instructions 48 


See also program sectioning and linking 

instructions 


assembler instruction statements (continued) 

symbol definition instruction 92 


assembler language 

assembler instruction statements 
 3 

coding aids overview 7 

coding conventions of 10 

coding form for 10 

compatibility of 3 

conditional assembly instructions 211 

introduction to 3 

machine instruction statements 3, 73 

macro instruction statements 3 

statements, summary of 266 

structure of 17 

summary of instructions 263 


assembler program 

basic functions 4 

processing sequence 5 

relationship to operating system 6 


attributes 

count (K') 222 

defined (D') 223 

definition and lookahead 225 

integer (I') 221 

length (L') 220 

number (N') 223 

scaling (S') 221 

summary of 269, 272 

type (r) 218 


attributes in combination with symbols 217 

attributes, data 215 


B 
base register instructions 


DROP instruction 47 

USING instruction 44 


base registers for absolute addresses 47 

binary constants 107 

binary self-defining term 30 

branching 251 

branching with extended mnemonic codes 75 


C 
CCW instruction 130 

CCWO instruction 130 

CCW1 instruction 131 

character (SETC) expressions, using 241 

character constants 108 

character relations in logical expressions 240 

character self-defining term 31 

character set 16 

character string values, concatenation of 245 


Index 275 




characters, special 203 

CNOP instruction 143 

coding aids overview 7 

coding conventions, assembler language 


character set 16 

comments statement 14 

continuation lines 12 

field boundaries 


continuation indicator field 10 

identification-sequence field 10 

statement field 10 


fixed format instruction statements 14 

formatting specifications 14 

free format instruction statements 14 

standard coding form 10 


COM instruction 64 

combining keyword and positional parameters 174, 


197 

comments statement format 14 

comments statements 


function of 155 

internal macro 182 

ordi nary 182 


compatibility. language 3 

computed AGO instruction 254 

concatenation of character string values 245 

concatenation of characters in model 


statements 165 

conditional assembly instructions 


ACTR instruction 254 

AGO instruction 253 

AI F instruction 251 

ANOP instruction 255 

computed AGO instruction 254 

extended AIF instruction 252 

function of 176 

GBLA instruction 228 

GBLB instruction 228 

GBLC instruction 228 

how to write 211 

LCLA instruction 226 

LCLB instruction 226 

LCLC instruction 226 

MHELP instruction 257 

SETA instruction 230 

SETB instruction 236 

SETC instruction 241 

substring notations in 248 


conditional assembly language 

overview 157 

summary of expressions 271 


constants 

address 117 

alignment of 99 

binary 107 

character 108 

decimal 115 

duplication factor 101 

fixed-point 112 


constants (continued) 
floating-point 122 

graphic 110 

hexadecimal 111 

information about 98 

length attribute value of symbols naming 98 

modifiers of 102 

nominal values of 106 

padding of values 100 

subfield 1 101 

subfield 2 102 

subfield 3 102 

subfield 4 106 

summary of 267 

symbolic addresses of 98 

truncation of values 100 

types of 97, 102 


continuation indicator field 10 

continuation lines 12 

control instructions 74 

control sections 


concept of 50 

defining a 59 

defining blank common 64 

executable 50 

first 53 

identi fying a 60 

reference 50 

unnamed 55 


COpy instruction 144, 176 

CSECT instruction 60 

CXD instruction 68 


D 

D-type floating-point constant 122 

D' defined attribute 223 

data attributes 215 

data definition instructions 


CCW instruction 130 

CCWO instruction 130 

CCW1 instruction 131 

DC instruction 96 

DS instruction 127 


data, immediate, in machine instructions 83 

DBCS 


See double-byte data 

DC instruction 96 

decimal constants 


p and z 115 

packed 115 

zoned 115 


decimal instructions 74 

decimal self-defining term 29 

double-byte character set 


See double-byte data 
double-byte data 

code conversion in the macro language 234 

concatenation in SETC expressions 245 


276 Assembler H Version 2 Language Reference 



double-byte data (continued) 
concatenation of fields 166 

continuation of 11, 12 

definition of 17 

duplication of 242 

graphic constants 97, 110 

graphic self-defining term 31 

inC-type constants 110 

in character self-defining terms 31 

in comments 14 

in keyword operands 196 

in macro comments 182 

in macro operands 169 

in MNOTE operands 178 

in positional operands 196 

in PUNCH operands 136 

in quoted strings 203 

in remarks 16 

in REPRO operands 136 

in TITLE operands 147 

listing of macro-generated fields 165 

notation 9 


DROP instruction 47 

DS instruction 127 

DSECT instruction 61 

dummy section, identifying a 61 

dummy sections, external 66 


See also external dummy sections 

duplication factor in constants 101 

DXD instruction 67 


E 
E-type floating-point constant 122 

EJECT instruction 148 

elements and functions 


data attributes 215 

sequence symbols 224 

SET symbols 212 


EN D instruction 145 

ENTRY instruction 70 

EQU instruction 92 

ESD entries 55 

expressions 


absolute 41 

arithmetic 230 

character 241 

complex relocatable 42 

conditional assembly, summary of 271 

discussion of 39 

evaluation of 41,240 
evaluation of character 244 

logical 236 

paired relocatable terms 41 

relocatable 41 

rules for coding 39, 238 


extended Al F instruction 252 

extended continuation indicator 12, 165 


extended mnemonic codes, branching with 75 

extended SET statement 248 

external dummy sections 


CXD instruction to define an 68 

discussion of 66 

DXD instruction to define an 67 


external symbol dictionary entries 55 

EXTRN instruction 71 


F 
field boundaries 


continuation indicator field 10 

identification-sequence field 10 

statement field 10 


first control section 53 

fixed format for instruction statements 14 

fixed-point constants 112 

floating-point constants 


D-type 122 

E-type 122 

l-type 122 


floating-point instructions 74 

formatting specifications 


name entry 15 

operand entries 16 

operation entry 15 

remarks entries 16 


free format for instruction statements 14 


G 
GBLA instruction 228 

GBlB instruction 228 

GBlC instruction 228 

general instructions 73 

generated fields, listing of 164 

graphic constants 110 

graphic self-defining term 31 


H 
header, macro definition 160 

hexadecimal constants 111 

hexadecimal self-defining term 30 


I' integer attribute 221 

ICTl instruction 132 

identi fication-sequence field 10 

immediate data in machine instructions 83 

inner and outer macro instructions 206 

inner macro instructions 176 

inner macro instructions, passing sublists to 202 

input/output operations 75 

instruction statement format 14 

internal macro comments statements 182 


Index 277 




L 

ISEQ instruction 133 machine instruction statements (continued) 

K 
K' count attribute 222 

keyword parameters 172, 196 


L-type floating-point constant 122 

L' length attribute 220 

LCLA instruction 226 

LCLS instruction 226 

LCLC instruction 226 

length attribute 33 

length fields in machine instructions 83 

library macro definitions 156 

linkages 


by means of the ENTRY instruction 70 

by means of the EXTRN instruction 71 

by means of the WXTRN instruction 72 

symbolic 69 


linking 48 

listing control instructions 


EJECT instruction 148 

PRINT instruction 149 

SPACE instruction 148 

TITLE instruction 146 


listing of generated fields 164 

literal pool 38, 141 

literals 


differences between constants, self-defining terms, 
and 36 


duplicate 142 

explanation of 36 

general rules for usage 38 


location counter reference 32 

location counter setting 51 

LOCTR instruction 52 

logical (SETS) expressions 236 

look ahead mode 225 

L TORG instruction 140 


M 
machine instruction formats 


RR format 84 

RRE format 84 

RS format 85 

RX format 86 

S format 87 

SI format 87 

SS format 88 

SSE format 89 


machine instruction statements 77 

addresses 80 

control 74 

decimal 74 

examples of 84 


floating-point 74 

general 73 

immediate data 83 

input/output 75 

length field in 83 

operand entries 78 

registers, use of 79 

symbolic operations codes in 78 


macro definitions 

body of a 163 

combining positional and keyword 

parameters 174 

comments statements 182 

COpy instruction 176 

format of 160 

header 160 

how to prepare 159 

inner macro instructions 176 

internal macro comments statements 182 

keyword parameters 172 

MEXIT instruction 179 

MNOTE instruction 176 

nesting in 206 

positional parameters 171 

subscripted symbolic parameters 175 

symbolic parameters 170 

trailer 160 

where to define in a source module 159 

where to define in open code 159 


macro instruction 

alternative ways of coding 193 

descri ption of 193 

format of 193 

general rules and restrictions 206 

inner and outer 206 

multilevel sublists 201 

name entry 194 

operand entry 195 

operation entry 194 

passing sublists to inner 202 

passing values through nesting levels 208 

prototype 160 


(see also prototype, macro definition) 
sublists in operands 199 

summary of 266 

values in operands 202 


macro language 

comments statements 155 

conditional assembly langlldge 157 

defining 153 

library macro definition 156 

macro instruction statement 155 

model statements 155 

processi ng statements 155 

source macro definition 156 

summary of 269 

using 153 


278 Assembler H Version 2 Language Reference 



macro library 156 

MEXIT instruction 179 

MHELP instruction 


combining options 259 

format 257 

global suppression-operand = 32 258 

macro AIF dump-operand =4 258 

macro branch trace-operand = 2 258 

macro call trace-operand = 1 258 

macro entry dump-operand = 16 258 

macro exit dump-operand = 8 258 

macro hex dump-operand = 64 258 

MHELP control on &SYSNDX 258 

MHELP suppression-operand = 128 258 


mnemonic codes, extended, branching with 75 

MNOTE instruction 176 

model statements 


explanation of 163 

function of 155 

rules for concatenation of characters in 165 

rules for specifying fields in 168 

summary of 266 

variable symbols as points of substitution in 163 


modifiers of constants 

exponent 106 

length 103 

scale 105 


multilevel sublists 201 


N 
N' number attribute 223 

name entry 15 

nested macros, system variable symbols in 208 

nesting 


levels of 206 

recursion 206 


nesting in macro definitions 206 

nesting levels, passing values through 208 

nominal values of constants (literal) 


address 117 

binary 107 

character 108 

decimal 115 

fixed-point 112 

floating-point 122 

graphic 110 

hexadecimal 111 


o 
omitted operands 202 

open code 159, 160, 256 

operand entries 


coding rules for 16 

combining positional and keyword 197 

in machine instructions 78 

keyword 196 

multilevel sublists in 201 


operand entries (continued) 

omitted 202 

positional 195 

special characters in 203 

sublists in 199 


operands 

omitted 202 

subl i sts in 199 

values in 202 


operating system, relationship to assembler 
program 6 


operation codes, symbolic 78 

operation entry 15 

OPSYN instruction 94 

ordinary comments statements 182 

ordinary symbols 26 

ORG instruction 138 


p 
parameters 


combining positional and keyword 174 

keyword 172 

positional 171 

subscripted symbolic 175 

symbolic 170 


parentheses, terms in 35 

pool, literal 


See literal pool 

POP instruction 137 

positional parameters 171, 195 

PRINT instruction 149 

processing statements 


conditional assembly instructions 176 

COPY instruction 176 

function of 155 

inner macro instructions 176 

MEXIT instruction 179 

MNOTE instruction 176 


program control instructions 

AREAD instruction 181 

CNOP instruction 143 

COPY instruction 144 

END instruction 145 

ICTL instruction 132 

ISEQ instruction 133 

LTORG instruction 140 

ORG instruction 138 

POP instruction 137 

PU NCH instruction 134 

PUSH instruction 137 

REPRO instruction 136 


program sectioning 48 

See also sectioning, program 


program sectioning and linking instructions 

AMODE instruction 57 

COM instruction 64 

CSECT instruction 60 

CXD instruction 68 


Index 279 




program sectioning and linking instructions (con­
tinued) 

DSECT instruction 

DXD instruction 67 

ENTRY instruction 70 

EXTRN instruction 71 

LOCTR instruction 52 

RMODE instruction 58 

START instruction 59 

WXTRN instruction 72 


prototype, macro instruction 

alternative ways of coding 162 

format of 161 

function of 160 

name field 161 

operand field 161 

operation field 161 

summary of 266 


PUNCH instruction 134 

PUSH instruction 137 


Q 
Q-type constant 121 


R 
registers, use of, by machine instructions 79 

relative addressing 48 

remarks entries 16 

REPRO instruction 136 

residence mode (RMODE) 56 

RMODE 


indicators in ESD 56 

instruction to specify residence mode 58 


RR format 84 

RRE format 84 

RS format 85 

RX format 86 


s 
S format 87 

S-type constant 119 

S' scaling attribute 221 

sectioning, program 


accumulating the cumulative length of external 
dummy sections with the CSD instruction 68 


control sections 50 

defining an external dummy section with a DXD 


instruction 67 

ESD entries 55 

first control section 53 

identifying a blank common control section with a 


COM instruction 64 

identifying a control section with a CSECT instruc­


identifying a dummy section with a DSECT instruc­

tion 60 


tion 61 


sectioning, program (continued) 

identifying external symbols with the EXTRN 


instruction 71 

identifying the entry-point symbol with the ENTRY 


identifying weak external symbols with the WXTRN 

instruction 70 


instruction 72 

location counter setting 51 

source module 49 

specifying multiple location counters within a 


control section with a LOCTR instruction 52 

specifying the addressing mode of a control section 


with an AMODE instruction 57 

specifying the residence mode of a control section 


with an RMODE instruction 58 

starting assembly with a START instruction 59 

unnamed control section 55 


self-defining terms 

binary 30 

character 31 

decimal 29 

graphic 31 

hexadecimal 30 

using 29 


sequence symbols 27, 224 

SET symbols 


assigning values to 230 

created 214 

declaring 226 

define global 228 

define local 226 

description of 212 

extended 248 

scope of 212 

SETA (set arithmetic) 230 

SETS (set binary) 236 

SETC (set character) 241 

specifications 212 

specifications for subscripted 214 

subscripted 212 


SETA 

arithmetic expression 230 

instruction format 230 

symbols, subscripted 230 

symbols, using 235 


SETS 

character relations in logical expressions 240 

instruction format 236 

logical expression 236 

symbols, subscripted 236 

symbols, using 240 


SETC 

character expression 241 

character expressions 243 

instruction format 241 

symbols, subscripted 241 


SI format 87 

source macro definitions 156 


280 Assembler H Version 2 Language Reference 



SPACE instruction 148 

special characters 203 

SS format 88 

SSE format 89 

START instruction 59 

statement field 10 

structure, assembler language 


symbols 25 

terms 25 


subfield 1 of constant 101 

subfield 2 of constant 102 

subfield 3 of constant 102 

subfield 4 of constant 106 

sublists in operands 199 

sublists, multilevel 201 

sublists, passing, to inner macro instructions 202 

subscripted symbolic parameters 175 

substring notation 248 

symbol definition instruction 


EOU instruction 92 

symbol table 26 

symbolic operation codes 78 

symbolic parameters 170 

symbols 


attributes in combination with 217 

defining 27 

expi an;1tion of 25 

extended SET 248 

length attribute 33 

ordinary 26 

previously defined 28 

restrictions on 28 

sequence 27, 224 

system variable 183 

variable 27 

variable, as points of substitution in model state­


ments 163 

system macro instructions 156 

system vilriable symbols 


&SYSDATE 183 

&SYSECT 184 

&SYSLIST 185 

&SYSLOC 191 

&SYSNDX 187 

&SYSPARM 189 

&SYSTI M E 190 

in nested macros 208 

summary of 273 


T 
r type attribute 218 

terms 25 


See also self-defining terms 

terms in parentheses 35 

TITLE instruction 146 

trailer, macro definition 160 

types of constants 102 


U 
underscore character 26 

unnamed control section 55 

USING instruction 


base registers for absolute addresses 47 

discussion of 44 

domain of a 46 

how to use the 46 


for executable control sections 46 

for reference control sections 46 


notes about the domain of a 46 

notes about the range of a 47 

range of a 45 


V 

V-type constant 120 

values in operands 202 

variable symbols 27 

variable symbols as points of substitution 163 

variilble symbols, system 


&SYSDATE 183 

&SYSECT 184 

&SYSLIST 185 

&SYSLOC 191 

&SYSNDX 187 

&SYSPARM 189 

&SYSTIME 190 

summary of 273 


W 
WXTRN instruction 72 


y 
Y-type constant 117 


Index 281 




Reader's 

Comment 

FormAssembler H Version 2 

Language Reference 
GC26-4037-1 

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM 
systems. You may use this form to communicate your comments about this publication, its organization, or subject matter, 
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate 
without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate. 

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not 
stocked at the address printed on the reverse side. I nstead, you should direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality. 

If you have applied any technical newsletters (TN Ls) to this book, please list them here: _______________ 

Chapter/Section __________________________________________ 

Page No. ________________________ 

Comments: 

Q) 

15 
z 

If you want a reply, please complete the following information. 

Name _____________________________ Phone No. (__)_____________ 

Company ______________________________________________ 

Address 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre­
sentative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the 
back of the title page.) 



--------- - ------- - ---- - - --------

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

NO POSTAGE 

NECESSARY 

IF MAILED 


IN THE 

UNITED STATES 


BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.V. 

POSTAGE WILL BE PAID BV ADDRESSEE 

IBM Corporation 
P.O. Box 49023 

Programming Publishing 

San Jose, California 95161-9023 


••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ,0, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Fold and tape Please do not staple Fold and tape 

---,-
® 




