Assembler H Version 2:
General Information

GC26-4035-0
File No. §370-21

Assembler H Version 2:
Program Product General Information

Program Number 5668-962

Release 1.0

This publication was produced using the
IBM Document Composition Facility
(program number 5748-XX9%9) and
the master was printed on the IBM 3800 Printing Subsystem.

First Edition (December 1981)

This edition applies to Version 2, Release 1.0, of Assembler H,
Program Product 5668-962, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments"™ following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

It ig nossible that this material may contain reference to,; or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests
for IBM publications should be made to vour IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.5.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

PREFACE

This publication describes in general terms the Assembler H
Version 2, Release 1.0, Program Product 5668-962 (hereafter
referred to as Assembler H or, simply, assembler). It contains
information about Assembler H extensions to VS Assembler, as well
as differences between Assembler H Versions 1 and 2, to help
prospective users evaluate and plan for the use of Assembler H
Version 2.

ORGANIZATION OF MANUAL
This manual contains the following chapters:

"Chapter 1. Introduction™ describes the Assembler H language and
tells how to modify it when vou add it to your system.

"Chapter 2. Macro and Conditional Assembly Language Extensions"
tells about significant enhancements in the macro and conditional
assembly language used by Assembler H.

"Chapter 3. Basic Assembler Language Extensions™ tells about
enhancements to the basic assembler language used by Assembler H.

"Chapter 4. Diagnostic Extensions™ tells about the many
diagnostic features that Assembler H provides to aid in the
location and analysis of program errors.
"Chapter 5. Factors Influencing Improved Performance" discusses
the relationship of input/output operations and machine
instructions on performance.

ASSEMBLER H READING LIST

The following documentation will be available to users of the
program when the product is available:

. Assembler H Version 2 Application Programming: Guide

. Assembler H Version 2 Application Programming: Language
Reference

. Assembler H Version 2 Installation

. Assembler H Version 2 Logic

Preface iii

SUMMARY OF AMENDMENTS

DECEMBER 1981

VERSION 2, RELEASE 1.0

New
are:

]

features provided by the Assembler H Version 2 Program Product

A program using System/370 Extended Architecture (5/7370-XA)
machine instructions may be assembled with Assembler H under
MVS/Extended Architecture (MVYS/XA), 05/V¥S52 MVS Release 3.8,
05/VS51 Release 7, MYS/SP V1, VM/XA Migration Aid, or
VM/System Product (VM/SP). However, a program using Extended
Architecture instructions can only be executed on an Extended
Architecture mode processor under MYS/XA or MVS/XA guest
operating system under VM/XA Migration Aid.

An AMODE attribute allows specification of the entry point of
the addressing mode (24-bit, 31-bit, or either 24- or 31-bit
addresses) to be associated with a control section.

An RMODE attribute allows specification of the residence mode
(in the 24-bit addressable range or anywhere) to be
associated with a control section.

New channel command word instructions: CCWl (format 1) allows
31-bit data addresses; CCW0 (format 0) allows 24-bit data
addresses.

New machine instructions for the Extended Architecture mode
processor; in addition, the System/370 (5/370) set of machine
instructions has been expanded. A changaed installation option
allows users to specify whether the 57370, Extended
Architecture, or Universal (all inclusive) instruction set
Wwill be used for assemblies.

Three new instruction types are included for the Extended
Architecture object code: E, RRE, and SSE.

An underscore character is allowed in ordinary symbols.

Operation in the CMS environment of VM/SP and VYVM/XA Migration
Aid.

iv Assembler H Version 2: General Information

®

m CONTENTS

Chapter 1. Introduction e e e e .
Improvements Over 0S5 Assembler H Versnon 1 e e
Language Compat1b111ty e e e e e e e e e e e e e
Performance . e e e e e e e e e e e e e e
System Requ1rarents e e e e e e e e e e e e e e e
Internal Design e e e e
Resolving Symbol Attrlbute References e e

Internal Text Processing

Modifying Assembler H When Addlng It to Your System
Defaults for Assembler H Options . .
Data Definition Names for Assembler H Data Sets
Instruction Set Options

Chapter 2. Macro and conditional Assembly Language Extensions

Macro Language Extensions . N
General Advantages in Using Nacros
Editing Macro Definitions e e e e e e e .
Redefining Macros e e e e e e e e e e e e
Nesting Macro Defxnltlons . P
Generated Macro Instruction 0perat1on Codes .
Arbitrary Language Input—AREAD e e e e e e e e

Listing Options e e e e
AREAD/PUNCH Input/Output Capab1lxty .o
Multilevel Sublists in Macro Instruction Operands
Redefining Conditional Assembly Operation Codes
Other Language Extensions e e .
Conditional Assembly Instruct1on Extens1on5
AIF Statements e e e e e e e

AGO Statements e e e e e e e e e e e e e e e e
SETx Statements . e e e e e
SET Symbol Format and Def1n1t1on Changes N
Created SET Symbols PN
Using SETC Variables in Arlthmetuc EXPFESSIOHS .
Attribute References . e e e e e e e . .
Forward Attribute Reference
Attribute Reference Using SETC Variables . .
Defined Attribute (D') . e e e e
Number Attributes for SET Symbols ... e .
Alternate Format in Conditional Assembly . .
System Variable Symbols e e e e e e e e e e e e
Chapter 3. Basic Assembler Language Extens1ons
Revised Assembler Operations .. .o .
OPSYN Instruction Extension . e e e e e e
EQU Instruction Extension . e e .
COPY Instruction Extension .. .

CNOP Instruction Extension .
ISEQ Instruction Extension ..
New Assembler Operations ..
Address Mode (AMODE) and Resxdence Mode (RMODE)
Channel Command Words (CCW1 and CCWO) e e e

¢« 4 e e

. e .

.
L

D A Y

Assembler Language Syntax Extensions e e e e e
Continuation Lines e e e e e e e e e e e e e e e
Symbol Length N e e e e
Levels Within EXpreSSlOnS e e e e . .

Another Language Extension e C e e . .

Underscore in Symbhols

Changes to Programming Sect1on1ng and Li kxng Controls

Use of Multiple Location Counters

L T

Revision of Q-Type Address Constants e e e e e
Number of ESD Symbols e e e e e e e e e e e e e
Chapter 4. Diagnostics Extensions C e e e e e e
Diagnostic Extensions in Regular Assembly e e e .
Error Messages .. e e e e e e e e
Diagnostic Messages in Macro Assembly e e e e e e
Sequence Field in Macro-Generated Text R .

s e s e

.

.

¢ v e s @

.

P T Y

P

P)

e e s e e e s

P S Y

« e e .

L O I T Y

.

.

L

« e v

4 s e e & o & 8 & e e & s+ e s+ s 6 & o @

« e s s e

« ¢ e e 4 e e e s

o 4 e e @

Contents

o el al ol ol ol S S S e ey o
NN UIVIUVIRUHUNNH R HOOWVOOONAOUIUTIVIUT PR DUHUWUINNNER P -

Pl el el e e e R N e
NG AD O D 00 00 02 0 00 00 00 0 6O

RPN
Nooooo

~n
(2]

NN
WA WU

\

vi

Format of Macro-Generated Text .
Error Messages for a Library Macro Def1n1t1on

Error Messages for Source Program Macro Deflnltlons

Error Messages in Macro-Generated Text
Macro Trace Facility (MHELP)
Abnormal Termination of Assembly

chapter 5. Factors Influencing Improved Performance

Index

Assembler H Version 2: General Information

23
24
2%
26
24
26

27
29

)

I na

FIGURES

OGN

Editing Inner Macro Definitions
AREAD Assembler Operation .
LOCTR Instruction Application
MHELP Control on &SYSNDX

Figures

T 21
26

vii

CHAPTER 1. INTRODUCTION

O@

Assembler H Version 2 is an IBM program product that runs under
MVS/Extended Architecture (MVYS/XA), 05/VS2 MVYS Release 3.8,
057VS1 Release 7, MVS/SP V1, VM/7XA Migration Aid, and YM/SP.
VYersion 1 of Assembler H made major extensions to the basic
assembler language processor, and Version 2 has added new
improvements that are listed in the following section.

Assembler H Version 2 is required for installation of MVS/System
Product Version 2 (MVS/SP V2) and Data Facility Product Release 1
(5665-284), and for subsequent maintenance of the MVS/XA
operating system. It is also required for installation of service
and modifications to VM/XA Migration Aid.

IMFROVEMEMTS OVER 0S ASSEMBLER H VERSION 1

Assembler H Version 2 (5668-962) enables a program using
System/370 Extended Architecture (5/370-XA) machine instructions
to be assembled with Assembler H under any of the operating
systems mentioned above. However, a program using Extended
Architecture instructions can only be exacuted on an Extended
Architecture mode processor under MVYS/XA or MVYS/XA guest
operating system under VYM/7XA Migration Aid.

Version 2 is a functional replacement for and incorporates all the
functions available in 0SS Assembler H Version 1, Release 5.0
(5734-A51).

New features in Version 2 are:

. An AMODE attribute allows specification of the entry point of
the addressing mode (24-bit, 31-bit, or either 24~ or 31-bit
addresses) to be asscciated with a control section.

. An RMODE attribute specification of the residence mode (in
the 24-bit addressable range or anywhere) to be associated
with a control section.

. New channel command word instructions: CCH1 (format 1) allows
31-bit data addresses; CCWO0 (format 0) allows 24-bit data
addresses.

. New machine instructions for the Extended Architecture mode

processor; in addition, the IBM System/370 (5/370) set of
machine instructions has been expanded. You may now specify
at installation time whether the Extended Architecture,
57370, or Universal (all inclusive) instruction set will be
used for assemblies.

. Three new instruction types are included for the Extended
Architecture object code: E, RRE, and SSE.

. An underscore character is allowed in ordinary symbols.

. Operation in the CMS environment of VM/Svstem Product (VM/SP)
and VM/Extended Architecture (VM/XA) Migration Aid.

LAMGUAGE COMPATIBILITY

The language used by Assembler H Version 2, Raelease 1.0, has
functional extensions to the language supported by VS Assembler
and 0S Assembler H Version 1, Release 5.0. Programs written for VS
‘ Assembler and 0S5 Assembler Version 1, Release 5.0, that were
0} successfully assembled with no warning or diagnostic messages,
will be assembled correctly by Assembler H Version 2, Release 1.0.

Chapter 1. Introduction 1

PERFORMANCE

SYSTEM REQUIREMENTS

INTERNAL DESIGN

M
The high-speed assembly capability of Assembler H relative to VS Q:;V
Assembler is a result of the following factors:
. All text processing is performed in virtual storage if the

region allocated to the assembler is sufficiently large.
. The number of source text passes is reduced.
. Multiple assemblies can be performed under the control of one

set of job control cards (in one job step).

. Conditional assembly instructions can be used to bypass macro
definitions included in the source text.

Operating Environments: Assembler H operates under MVYS/XA, 0S/VS
MVS 3.8, 0S/VS1 Release 7, MVS/SP V1, VM/XA Migration Aid, and
VM/SP.

Virtual Storage: Assembler H Version 2, Release 1.0, requires a
minimum of 200K bytes of main storage.

Machine Requirements: Version 2 is designed to operate on the IBM
System/370, 303x, 3081, and 43xx processors supported by the
above operating systems.

Note: One 2400 or 3400 series tape unit is required for
installation. The 2400 series tape unit is not, however,
supported by MVS/XA.

Auxiliary Storage Space: Auxiliary storage space is required for TN

the following data sets: kw
-

. System input

. Macro instruction library—either system or private or both

. An intermediate work file, which must be a direct access

device (3330,3333, 3340/334%, 3350, 3375, or 3380). Under
VM/XA Migration Aid, the intermediate work file must be
formatted as a CMS minidisk. Under VM/SP, the intermediate
work file, which must be a direct access device (3310, 3370,
or one of the devices mentioned above), must also be formatted
as a CMS minidisk.

. Print output

Library Space: In terms of the IBM 3350 Direct Access Storage
Facility, cataloged procedures for Assembler H require a maximum
of one track on SYS1.PROCLIB and the Assembler H load modules need
approximately 15 tracks on SYS1.LINKLIB or a private 1ink
library.

Installation: Version 2 is installed using System Modification
Program, Release 4 (SMP4) for installations using 05/VS52 MVS
Release 3.8, MVS/XA, MVS/SP V1, or 05/VS1l, Release 7.
Installation on CMS with VM/SP or VM/7XA Migration Aid is
accomplished by loading the program from tape with VMFPLC2 (a
standard YM/SP utility).

The internal organization of Assembler H provides for only two
source text passes, in contrast with more for other assemblers. @

The first pass of the source text by Assembler H edits and expands

macros, and builds dictionaries and the symbol table. The second
pass completes the assembly and produces the desired output.

2 Assembler H Version 2: General Information

RESOLVING SYMBOL ATTRIBUTE REFERENCES

The symbol table is built as symbols are encountered in macro
generation and open-code assembly. If an attribute reference is
made to a previously undefined symbol, Assembler H proceeds with a
forward scan, called "lookahead" mode, of the source text. It
continues the forward scan until the symbol that initiated the
scan is resolved or until the end of the source program is
encountered.

During the scan, the assembler conditionally places all other
symbols that are encountered into the symbol table. This avoids
further forward scans unless a forward reference is made to a
symbol at some point beyvond the previous forward reference. The
symbol attributes established by the forward scan are not fixed,
however, and can be overridden whern the symbol is placed in the
symbol table as a result of regular assembly. If the symbol that
initiated the forward scan is not found, a diagnostic message is
issuad.

INTERNAL TEXT PROCESSING

If the region allocated to the assembler is large enough to
contain the text, Assembler H processes all intermediate assembly
text in virtual storage. There is no limit to the region size that
can be used efficiently by Assembler H, provided that the source
module is large enough.

Within the region allocated for an assembly of a source program,
the amount of working storage Assembler H uses to perform an
operation can dynamically expand to meet the storage requirements
of that operation. When one block of working storage is filled
Wwith processed text, processing continues with the allocation of
another block from within the region acquired for the assembly.

As blocks of working storage are filled with processed text, they
are flagged to indicate whether they can be written out to the
external work file (SYSUT1). Partially filled blocks and those
blocks taken up by the symbol table must remain in virtual storage
at all times during the assembly. Those blocks that can be written
out are put on the work file, but the blocks of text are also
retained in working storage and continue to be affective for all
assembly purposes. Only when all unallocated work space within
the region is exhausted are the written-out text blocks in-working
storage reinitialized and overlaid with newly processed text.
Then, when needed, the overlaid blocks of text are accessed from
the work file.

Note: If all blocks of working storage are allocated and flagged
as resident when an operation requires additional work space, the
assembly is terminated. Such assemblies must either be broken
into subroutines or be assembled in a larger region.

MODIFYING ASSEMELER H WHEN ADDING IT TO YOUR SYSTEM

You can make several optional modifications to tailor Assembler H
to fit the requirements of your installation. These modifications
allow vou to alter the default values for assembler options, to
change the DD names for assembler data sets, and to choose the
machine instruction set you want the assembler to support. You
make the modifications when the assembler is added to vour system,
using an option—-setting routine that is provided with the
assembler. This routine is used only if you want to specify
default options other than the standard options specified in the
assembler when it is delivered to you. This section describes the
modifications you can make to Assembler H.

Chapter 1. Introduction 3

DEFAULTS FOR ASSEMBLER H OPTIONS

When vou call the assembler with the EXEC job control statement, q::x
you can specify values for assembler options in its PARM field to =
override the standard values set in the assembler. Standard

values for the options are set at delivery; howeaver, they can be
respecified by your installation when the assembler is added to

vour system. The options are:

standard value Alternate Value

DECK NODECK

NOOBJECT OBJECT

LIST NOLIST

XREF (FULL) XREF (SHORT), NOXREF

NORENT RENT

NOTEST TEST

NOBATCH BATCH

ALIGN NOALIGN

ESD NOESD

RLD NORLD

TERM NOTERM

LINECOUNT (55) LINECOUNT (a value in the range 1-99)
FLAG (0) FLAG (a value in the range 0-255)

SYSPARM () (null string) SYSPARM (a string of 1-255 characters)

Not2: Because of job control language restrictions, if vou use
the PARM field of the EXEC statement to specify a SYSPARM value,
the maximum length you can use is 56 characters.

Your installation can also remove certain options, so that they
cannot be specified. For exanple, you may want to change the
standard value from DECK to MODECK and remove DECK so that it
cannot be specified.

7N
| .
DATA DEFINITION MAMES FOR ASSEMBLER H DATA SETS N

Assembler H requires the following data set DD names:

SYSIN

SYSLIB (if library members are called by macro instructions

or COPY statements)

SYSLIN (if OBJECT is specified)

SYSPRINT (if LIST is specified)

SYSPUNCH (if DECK is specified)

SYSUTL

SYSTERM (if TERM is specified)

Any of these names can be changed when the assembler is added to

vour system. For example, you may wish to replace SYSUT1 with

WORKDOL, SYSIN with SYSINPUT, etc.

INSTRUCTIOR SET OPTICNS

The instruction set, or operation code table available to

Assembler H can be specified when the assembler is added to vour

system. Three instruction sets are available: System/370 (5370),

Extended Architecture (EXT), and Universal (UNIV), which

incorporates both of preceding sets.

The Extended Architecture object code includes three neuw

instruction types called E, RRE, and SS5E. Machine instructions of

the new types are invoked by means of mnemonics and specified like

other machine instructions. Most of the new instructions for the

Extended Architecture have the same instruction typaes as the

S$7370 instructions. However, several have one of the new types. %::%

4

Assembler H Version 2! General Information

C

CHAPTER 2. MACRO AND CONDITIONAL ASSEMBLY LAMGUAGE EXTENSTIONS

Many restrictions imposed by VS Assembler are relaxed or
eliminated by Assembler H to increase flexibility and extend
language functions. For example, many ordering restrictions are
removed from conditional assembly statements in macro definitions
and in open code.

MACRO LANGUAGE EXTENSIONS

Additional functions of the macro definition and macro
instruction provided in Assembler H improve programmer control
and coding flexibility. For example, macro definitions can appear
anywhere in your source module; they can even be nested within
other macro definitions. They can also be redefined at a later
point in your program, and macro instruction operation codes can
be generated by substitution.

Note: The only restriction Assembler H imposes on the placement
of macro definitions is that the macro definition must be
encountered before it is called.

GENERAL ADVANTAGES IN USING MACROS

You can think of a macro definition as a subroutine which can be
modified each time it is called by a macro instruction. In
modifying this subroutine, the assembler uses values passed in
the macro instruction (for symbolic parameters). Further, the
assembler uses values passed from other macros or from open code
(global SET symbols) and data attribute references. The modified
subroutine is included in your program in basic assembler
language format; the assembler then processes it in the same way
as any other source statements. By varying the symbolic
parameters and global SET symbols, vou can vary the generated
assembler instructions and the sequence in which they are
generated.

Using macros gives you a scope similar to what vou have when using
a problem-oriented language. In fact, you can use macros to create
vour own language, tailored to vour specific applications.

EDITING MACRO DEFINITIONS

The initial processing of a macro definition is called editing.
Editing of a macro involves, among other things, checking of the
syntax of the instructions and changing the source statements to
special edited text used throughout the remainder of the
assembly. The edited version of the macro definition is used to
generate assembler language statements when the macro is called
by a macro instruction. Therefore, a macro must always be edited
before it can be called by a macro instruction.

Assembler H allows vou to use conditional assembly statements to
avoid editing of certain macros. In the following example, the
macro definition for MACSHOW is bypassed and not edited if the
value of the system parameter (&SYSPARM) is NOTMACSHOW. Any macro
instructions calling the macro are invalid.

Name Operation Operand
AIF ('&SYSPARM' EQ *NOTMACSHOW').PASS
MACRO
MACSHOW

MEND
.PASS ANOP

Chapter 2. Macro and Conditional Assembly Language Extensions 5

REDEFINING MACROS

A macro definition can be redefined at any point in your source «:::
module. When a macro is redefined, the new definition is effective
for all subsequent macro instructions that call it.

Once a macro has been redefined by a macro definition, its
previous function is lost, unless, prior to redefinition, the
operation is assigned to another symbol with an OPSYN
instruction. Later, if vou wish the initial function of the
operation code to be reestablished, vou can include another OPSYN
instruction to redefine it. The following example illustrates
this:

Name Operation Operand

MACRO
MAC1 The symbol MACl is assigned as the
. name of this macro definition.
MEND
MAC2 éPSYN MAC1 MAC2 is assigned as an alias for MAC1
MACRO
MAC1 MACl is assigned as the name of this
. macro definition.
MEND
MAC1L 6PSYN MAC2 MACl is assigned to the first defini-

tion. The second definition is lost.

You can also reestablish a previous source macro definition by
issuing a conditional assembly branch (AGO or AIF) to a point
prior to the initial definition of the macro. Then that definition
will be edited and effective for subsequent macro instructions
calling it. Consider the following example:

Name operation Operand

.UP ANOP
MACRO
MAC1 Assign MACl to first macro definition.

MEND

C

MACRO
MAC1 Assign MAC1l to second definition.

MEND
AGO .UP Branch to a point prior to first
definition.

NESTING MACRC DEFINITIONS

Assembler H allows both inner macro instructions and inner macro
definitions. The inner macro definition is not edited until the
outer macro is generated as the result of a macro instruction
calling it, and then only if the inner macro definition is
encountered during the processing of the outer macro. Thus, if the
outer macro is not called, or if the inner macro is not
encountered in the generation of the outer macro, the inner macro
definition is never edited. Figure 1 on page 7 illustrates the
editing of inner macro definitions.

& sssembler H Version 2: General Information

MEND

Edited when
MAC 2is
I called and
generated

Edited when
MAC 1 is
I called and
generated

Edited when
[~ first encountered

Figure 1.

Editing Inner Macro Definitions

First MAC!l is edited, and MAC2 and MAC3 are not. When MAC1 is
called, MAC2 is edited (unless it is passed by an AIF or AGO

branch); when MAC2 is called,

MAC3 is edited. No macros can be

accessed by a macro instruction until they have been edited.

There is no limit to the number of nestings allowed for inner

macro def

GENERATED MACRO INSTRUCTION OPERATION CODES

initions.

Macro instruction operation codes can be generated by
substitution, either in open code or inside macro definitions.
Consider the following example:

Name

Ooperation
MACRO

MAC

&x

MEND
MACRO
MACALL

MEND
MAC

A’BIC

MACALL

Operand

Inner macro instruction

Quter macro instruction

Chapter 2. Macro and Conditional Assembly Language Extensions

ARBITRARY LANGUAGE INPUT—AREAD ‘:jb

The AREAD assembler operation permits a macro to "read cards"
directly from the source stream into SETC variable symbols. The
card image is assigned in the form of an 80~byte character string
to the symbol specified in the name field of the instruction.
Figure 2 illustrates how the instruction is used:

Open Code Macro Definition
. ‘D MACRO
The macro instruction MAC 0 MAC MAC
causes the macro MAC to be o JOHN L. SMITH -
processed. When the AREAD o &S AREAD

instruction is encountered,
the next sequential card

following the macro instruction MEND
g is read and assigned to the

SETC symbol &S.

&S: \JOHN, L., SMITH |
0] 6 12 80
Figure 2. AREAD Assembler Operation
Repeated AREAD statements read successive cards: Q::;
Name Operation Operand
MACRO
MAC &N
.LOOP ANOP
&K SETA &K+1 Increment loop counter
&5(&K) AREAD
AIF (&K LT &N).LOOP Check loop counter
MEND
MAC 2

JOHN L. SMITH
HECTOR S. BROWN
END

The coding in this example assigns to the SETC symbol element
&5(1) an 80-character string of JUOHN L. SMITH followed by 67
blanks; and to &5(23, HECTOR 5. BROWN followed by 65 blank
characters.

When macro instructions are nested, the cards read by AREAD always
~ave to follow the outermost macro instruction regardless of the
Tavel of nesting in which the AREAD instruction is found. Consider
the following:

8 Assembler H Version 2: General Information

C

Listing Options

MACRO
MACIN

&F AREAD

MEND
MACRO
MACOUT

MACIN
THIS CARD IS NOT READ BY AREAD

MEND
MACOUT
THIS CARD IS READ BY AREAD IN MACIN

If the macro instruction containing the AREAD instruction is
found in code included by the COPY instruction, source cards are
read from the code brought in by the COPY instruction until end of
file is reached, then from the input stream.

Note: Cards that are read in by the AREAD instruction are not
checked by the assembler. Therefore, no diagnostic will be issued
if your AREAD statements read cards that are meant to be part of
your source program. For example, if a macro containing an AREAD
statement appears immediately before the END instruction, the END
instruction is lost to the assembler.

Normally, the AREAD input cards are printed in the assembler
listing and assigned statement numbers. However, if you do not
want them printed or assigned statement numbers, vou can specify
NOPRINT or NOSTMT in the operand of the AREAD instruction.

AREAD/PUNCH InputsOutput Capability

The AREAD facility complements the PUNCH facility to provide
macros with direct input/output capability. The total
input/output capability of macros is as follows:

Implied Input: Parameter values and global SET symbol values
that are passed to the macro

Implied Output: Generated statements passed to the assembler for
later processing

Direct Input: AREAD

Direct output: MNOTE for printed messages; PUNCH for punched
cards

For example, vou can use AREAD and PUNCH to write card conversion
programs. The following macro interchanges the left and right
halves of cards placed immediately after a macro instruction
calling it. End of input is indicated with the word FINISHED in
the first columns of the last card in the input to the macro.

Name Operation operand

MACRO
SWAP
.LOOP ANOP
&CARD AREAD
AIF ('&CARD'(1,8) EQ 'FINISHED').MEND
&CARD SETC '&CARD(41,40),"&CARD'(1,40)
PUNCH &CARD
AGO .Loop
.MEND MEND

Chapter 2. Macro and Conditional Assembly Language Extensions 9

MULTILEVEL SUBLISTS IN MACRO INSTRUCTION OPERANDS

Multilevel sublists (sublists within sublists) are permitted in
macro instruction operands and in the keyword default values in
prototype statements, as shown in the following:

MACL (A,B,(W,X,(R,S,T),Y,2),C,D)
MAC2 &KEY=(1,12,(8,4),64)

The depth of this nesting is limited only by the constraint that
the total length of an individual operand cannot exceed 255
characters.

To access individual elements at any level of a multilevel
operand, you use additional subscripts atter &SYSLIST or the
symbolic parameter name. For example, if &P is the first
positional parameter and the value assigned to it in a macro
instruction is (A,(B,(C)),D), then:

&P = &SYSLISTC(1)D =(A,(B,(C)),D)
&P (1) = &SYSLIST(1,1) =A

&P(2) = &SYSLIST(1,2) =(B,(C))
&P(2,1) = &SYSLIST(1,2,1) =B
&P(2,2) = &SYSLIST(1,2,2) =(C)
&P(2,2,1) = &SYSLIST(1,2,2,1) =C
&P(2,2,2) = &SYSLIST(1,2,2,2) Znull
N'&P(2,2) = N'&SYSLIST(1,2,2) =1
N'&P(2) = NY&SYSLIST(1,2) =2
N'&P(3) = N'&SYSLIST(1,3) =1

N'&P = N'&SYSLIST(L) =3

REDEFINING CONDITIONAL ASSEMBLY OPERATION CODES

10

You can use the OPSYN instruction to redefine operation codes
anvwhere in vour source module. The new definitions of operation
codes then remain in effect for all subseguent statements,
including those generated from macros. However, the definitions
of conditional assembly statements are fixed when the macro
definition is edited. Thus, OPSYN statements placed after a
definition of a macro have no effect on the conditional assembly
statements of that macro, if it is called later in the source
code. Consider the following example:

Name Operation Operand comment

MACRO Macro header
MAC N Macro prototype
AIF
MVC
ﬁEND Macro trailer
AIF 6PSYN AGO Assign AGO properties to AIF
My C OPSYN MV T Assiagn MVI properties to MVC
ﬁAC e Macro call
[AIF e Evaluated as AIF instruction;
Generated AIFs not printed]
+ MVC . Evaluated as MVI instruction
: Open code started at this point
AIF .o Evaluated as AGO instruction
MVC v Evaluated as MVI instruction

In this example, AIF and MVC instructions are used in a macro

definition. OPSYN statements are used to assign the properties of

AGO to AIF and to assign the properties of MVI to MVC. In
subsequent generations of the macro involved, AIF is still
defined as an AIF operation, and MVC is treated as an MVI
operation. In open code following the macro call, the operations
of both instructions are derived from their new definitions
assigned by the OPSYN statements. If the macro is redefined (by

Assembler H Version 2: General Information

another macro definition), the new definitions of AIF and MVC
(that is, AGO and MVI) are fixed for any further expansions.

Note: Because the assembler does not edit inner macro definitions
until it encounters them during the processing of a macro
instruction calling the outer macro, this description does not
apply to nested macro definitions. An OPSYN statement placed
before the outer macro instruction will affect conditional
assembly statements in the inner macro definition.

OTHER LANGUAGE EXTENSIONS

The following rules apply to other language extensions of
Assembler H relative to the V5 Assembler:

. Macro names, variable symbols (including the ampersand), and
sequence symbols (including the period), can be a maximum of
63 alphameric characters. The first character must be
alphabetic, not an ampersand or a period.

L Comments (both "' and '".¥' types) can be inserted between the
macro header and the prototvpe and, for library macros,
before the macro header. Any such comments are discarded by
the macro-edit phase and are not printed with the generation
of the macro.

. Any mnemonic operation code of the 5/370, Extended
Architecture, and Universal instruction sets, or any
assembler operation code, can be defined as a macro
instruction. When one of the operation codes is redefined as a
macro instruction, subsequent use is interpreted as a macro
call.

. Any instruction, except ICTL, is permitted within a macro
definition.

CONDITIONAL ASSEMBLY INSTRUCTION EXTENSIONS

AIF STATEMENTS

The flexibility of the AIF, AGO, SETA, SETB, and SETC instructions
is increased in Assembler H. Multiple AIF statements can be merged
in one AIF statement, the AGO statement has an expanded
interpretive function, and a single SETx instruction (meaning
SETA, SETA, or SETC) can assign values to more than one alement of
a SET symbol array. Format and ordering restrictions are also
revised, and a new system variable symbol is introduced. In
addition, generated statements have new functions, and the
availability of symbol attributes is increased.

The AIF statement can include a string of logical expressions and
related sequence symbols. There is no limit to the number of
expressions and symbols that vou can use in an extended AIF
statement. The format is:

Cperation oprerand column 72
AIF (logical expression).Sl, X
(logical expression).S2, X

...»(logical expression).Sn

This is equivalent to "n" successive AIF statements. The branch is
taken to the first sequence symbol (scanning left to right) that
corresponds to a true logical expression. If none of the logical
expressions is true, control passes to the next sequential
instruction.

Chapter 2. Macro and Conditional Assembly Language Extensions 11

AGO STATEHENTS

SETX STATEMENTS

One AGO statement can contain computed branch sequence
information. The extended AGO statement has the following format:

Operation Operand

AGO (K>.51,.52,...,.5n

where "K" is a SETA arithmetic expression. If the value of "K"
lies between 1 and "n"™ inclusive, then the branch is taken to the
"Kth" sequence symbol in the list. If "K" is outside that range,
no branch is taken. The statement is exactly equivalent to the
following sequence of AIF instructions:

Operation Operand
AIF (arithmetic expression EQ 1).51
AIF (arithmetic expression EQ 2).S52
AIF (arithmetic expression EQ n).Sn

The SETA, SETB, and SETC statements are used to assign arithmetic,
binary, and character values, respectively, to SET variable
symbols. You can use the SET statement to assign lists or arrays
of values to subscripted SET symbols. For example, a list of 100
SETx values can be coded in one extended SETx statement. The
extended SETx statement has the following format:

Name Operation Operand

&SYMCK) SETx X1,X2,,X4,...,Xn

The form of the name and operation fields is the same as that used
in the VS Assembler for assignment of a dimensioned variable SET
symbol: &SYM is a dimensioned SET symbol, "K" is a SETA
arithmetic expression, and SETx is SETA, SETB, or SETC. Each of
the operands ("Xn") has the form of an ordinary SETx operand, or
may be omitted. Whenever an operand is omitted, the corresponding
element of the dimensioned variable SET symbol (&SYM) is left
unchanged.

When none of the operands is omitted, the SETx statement is
equivalent to the following sequence of statements:

Nama Operation Operand
&SYM(K) SETx X1
&§SYM(K+1) SETx X2
§SYM(K+n-1) SETx Xn

Following are examples of the use of extended SETx statements:

12 Assembler H Version 2! General Information

C

1. &X(3) SETA 3,55,,7
This is equivalent to the sequence:
&X(3) SETA 3
&X(5) SETA 5
&X(7) SETA 7

2. &X(1) SETA 1,&XC1)+1,&X(2)+1
This is equivalent to the sequence:
&X(1) SETA 1
&X(2) SETA 2
&X(3) SETA 3

3. &Y(L) SETC ry,,n!

This sets &Y(1) and &Y(3) to null values and leaves &Y(2)
unchanged.

SET SYMBOL FORMAT AND DEFINITION CHANGES

CREATED SET SYMEOLS

Assembler H extensions to SETx statements, and local and global

definition statements, are discussed in the following list:

. Global and local SET symbol declarations are processed at

generation time in the assembly process. Either a macro

definition or open code can contain more than one declaration

for a given SET symbol, as long as only one is encountered
during a given macro expansion or conditional assembly of

open code.

. A SET symbol that has not been declared in a LCLx or GBLx
statement is implicitly declared by appearing in the name

field of a SETx statement. Such a declaration is interpreted

as local, with the type determined by the SETx operator, and

the dimensionality is determined by the occurrence of a
subscript in the name field. Any explicit declaration

encountered thereafter is flagged as a duplicate declaration.

. A SET symbol can be defined as an array of values by adding a
subscript after it, when 1t is declared, either explicitly or

implicitly. All such SET symbol arrays are opan—ended; the
subscript value specified in the declaration does not limit

the size of the array. This is shown in the following example:

Nama Operation Operand

LCLA &J(50)
&J(45) SETA 415 Allowed under both assemblers
&J(89) SETA 38 Allowed only under Assembler H.

SET symbols may be created during the generation of a macro. A

created SET symbol has the form &(e), where "e" represents one or

more of the following:

. Variable symbols, optionally subscripted

. Strings of alphameric characters

. Created SET symbols

After substitution and concatenation, "e"™ must consist of a
string of 1 to 62 alphameric characters, the first being

alphabetic. This string is then used as the name of a SETx
variable. For example:

Chapter 2. Macro and Conditional Assembly Language Extensions

13

Name Operation Operand

&Y(1) SETC TALY, VA2, VA3, TAG! 4::3
§(&Y(3)) SETA 5 , _

These statements have an effect similar to &A3 SETA 5.

Created SET symbols can be used wherever ordinary SET symbols are
permitted, including declarations; they can even be nested in
other created SET symbols. The following nested variable could
generate a valid created SET symbol:

&(&(&XC(&(&Y))))

The created SET symbol can be thought of as a form of indirect

addressing. Thus, in the first example above, &Y is a variable

whose value is the name of the variable to be updated, With nested

irea}ed SET symbols, vou can get such indirect addressing to any
evel.

Created SET symbols can also offer an "associative memory"
facility. For example, a symbol table of numeric attributes can be
referenced by an expression of the form &(&S5YM) (&I) to vield the
"Ith" element of the symbol substituted for &5YM.

A related application is illustrated in the following macro
definition. This macro is designed to push an item into the
specified pushdown stack. A new stack is created for each neuw
stack name given as a parameter in the macro call. Note that &LIST
becomes as long as required.

MACRO
PUSHDOWN &STAK,&ITEM
GBLA S(&STAK) (1),&(&STAK.SIZE)
$(&STAK.SIZE) SETA §C(&STAK.SIZE)+1 B
&(&STAK) (3 (&STAK.SIZE)) SETA SITEM TN
MEND Qk);

The macro call "PUSHDOWN LIST,25" is logically equivalent to:

GBLA &LIST(1),&LISTSIZE
LISTSIZE SETA &LISTSIZE+1
LISTC(&LISTSIZE)D SETA 25

Created SET symbols also enable vou to get some of the effect of
multidimensional arrays by creating a separate named item for
each element of the array. For example, a three-dimensional array
of the form &X(&I,&J,&K) can be addressed as &(X&I.$&J.$&K). Then

&X(2,3,4) would be represented as a reference to the symbol
§X263%4.,

Note that what is being created here is a SET symbol. Both
creation and recognition occur at macro generation time. In
contrast, parameters are recognized and encoded (fixed) at macro
edit time. Consequently, if a created SET symbol name happens to
coincide with a parameter name, the fact is ignored and there is
no interaction betweaen the two.

USING SETC VARIABLES IN ARITHMETIC EXPRESSIONS

14

You can use a SETC variable as an arithmetic term if its character
string value represents a valid self-defining term. A null value
is treated as zero. This allouws vou to associate numeric values
with EBCDIC or hexadecimal characters, and can be used for such
applications as indexing, code conversion, translation, or
sorting.

For example, the following set of instructions converts a
hexadecimal value in &X into the decimal value 243 in &VAL. %:;%

Assembler H Version 2: Genheral Information

D

C

ATTRIBUTE REFERENCES

Name Operation Operand
&X SETC TXTTF3TY
&VAL SETC &X

Attributes of symbols produced by macro expansion or substitution
in open code are available immediately after the statement
referenced is generated.

Foruard Attribute Reference

If an attribute reference is made to a symbol that has not yet
been encountered, the assembler scans the socurce code either
until it finds the referenced symbol in the name field of a
statement in open code, or until it reaches the end of the source
module. The assembler makes entries for the symbol, as well as any
other not previously defined symbols it encounters during the
scan, in the symbol table. The assembler does not completely check
the syntax of the statements for which it makes entries in the
symbol table. Therefore, a valid attribute reference may result
from a forward scan, even though the statement is later found to
be in error and therefore not accepted by the assembler. Further,
vou must be careful with the contents of any AREAD input in your
source module. If the first word of an AREAD input card conflicts
with an attribute reference, and if it appears before the "true"
symbol, the forward scan will attempt to evaluate that card
instead.

Attribute Reference Using SETC Variables

The symbol referenced by an attribute reference of tvype length
(L"), type (T'), scaling (5'), integer (I'), and defined (D', see
below) can only be an ordinary symbol. The name of the ordinary
symbol can, however, be specified in three different ways:

. The name of the ordinary symbol itself

. The name of a symbolic parameter whose value is the name of
the ordinary symbol

. The name of a SETC symbol whose value is the name of the
ordinary symbol

Note: You can specify the underscore character in ordinary
symbols; that is, symbols which can be used in the name and
operand fields of machine and assembler instructions. It must not
appear in an external symbol.

Consider the following examples:

Name Operation Operand
&F SETC T*ORDSYM
ORDSYM bC H'3!

In this example, the symbol in the attribute specification
(T'ORDSYM) is the ordinary symbol itself.

Name Operation Operand
&K SETC YORDSYM!
&F SETC Tr&K
ORDSYM DC HY3?

In this example, however, the symbol in the attribute reference
(T'&K) is a variable symbol whose value is the name of the
referenced symbol (ORDSYM). The type attribute in both examples
will be the type attribute of the DC instruction named ORDSYM.

Chapter 2. Macro and Conditional Assembly Language Extensions 15

Defined Attribute (D')

The defined attribute (D') can be used in conditional assembly @i:
statements to determine if a given symbol has been defined at a 7
prior point in the source module. If the symbol is already

defined, the value of the defined attribute is one; if it has not

been defined, the value is zero. By testing a symbol for the

defined attribute, vou can avoid a forward scan of the source
code.

Number Attributes for SET Symbols

The number attribute can be applied to SETx variables to determine
the highest subscript value of a SET symbol array to which a value
has been assigned in a SETx instruction. For example, if the only
occurrences of the SETA symbol &A are:

Name Operation Operand
&ACL) SETA 0

&§A(2) SETA 0

&AC3) SETA &A(2)
&A(5) SETA 5
&A(C10) SETA 0

then N'&A is 10.

The number attribute is zero for a SET symbol that has not been
assigned any value.

ALTERNATE FORMAT IN CONDITIONAL ASSEMBLY

Alternate format allows a group of operands to be spread over
several lines of coda. Each line, except the last, is followed by
a comma, one or more blanks, and a character in column 72.
Optionally, comments are inserted between the blank and column
72. The last line terminates the series with a blank in column 72.

()

The extended AGO and AIF, GBLx, LCLx, and extended SETx statements
can also be written in alternate format, as shown in the following
examples:

Name Operation operand comment
AGO (&A).S1, comment X
.52,.53, X
.54
AIF (&L1).51, comment X
(&L2).52, X
(&L3).53
GBLA &AL, X
&B(5)
LCLC L1, comment X
L2,L3, comment X
L4 comment
&B(1) SETB 0, comment X
(&A NE 33, comment X

('SC' EQ 'XYZ")

SYSTEM VARIABLE SYMBOLS

16

Svstem variable symbols are local variable symbols that are
assigned values by the assembler when they are encountered.
&SYSLOC is identical in function to &SYSECT, except that its value
is the character string that represents the leoccation counter (as
controlled by the LOCTR statement) that is in effect at thae time

Assembler H Version 2: General Information

the macro is called. &S5YSECT gets the value of the current CSECT,
DESECT, or CCM section. If no LOCTR statement is in effect, the
value of &S5YSLOC is the same as the value of &SYSECT. &SYSLOC can
be used only in macro definitions. The LOCTR instruction is
described in "Changes to Program Sectioning and Linking
Controls."

For example, when the following statements occur in a source
program, &SYSLOC will have the character string value XYZ during
expansion of MACL.

Name operation Operand
MACRO
MACL

&C SETC t&sSysLocC!
MEND

XYZ LOCTR
MAC1

Chapter 2. Macro and Conditional Assembly Language Extensions 17

CHAPTER 3. BASIC ASSEMBLER LANGUAGE EXTENSIONS

This chapter covers the extensions to VS Assembler for
Assembler H.

REVISED ASSEMELER OPERATIONS

Several assembler operations used in VS Assembler have been
extended in Assembler H. The revised operations are described in
the following sections.

OPSYN INSTRUCTION EXTENSION

You can code OPSYN instructions anywhere in your source module.

EQU INSTRUCTION EXTENSION
Symbols appearing in the first operand of the EQU instruction need
not have been previously defined. Thus, in the following example.,
both WIDTH and LENGTH can be defined later in the source code:
Name Operation Operand

VAL EQU G0-WIDTH+LENGTH, 4, F

COPY INSTRUCTION EXTENSION

Any number of "nestings"—COPY instructions within code that has //\\
been brought into your program by another COPY instruction—is g
permitted. VKJV

CNOP INSTRUCTION EXTENSION

There is no restriction that symbols in the operand field of a
CNOP instruction must have been previously defined.

ISEQ INSTRUCTION EXTENSION

Sequence checking of any column on input cards is allowed.

NEW ASSEMBLER OPERATIONS

New assembler operations have been added to Assembler H. The new
operations are described in the following sections.

ADDRESS MODE (AMODE)} AND RESIDENCE MODE (RMODE)

The AMODE and RMODE assembler attributes are included only in the
Extended Architecture and Universal instruction sets (not in the
87370 instruction set). AMODE sets the entry point of the
addressing mode, and RMODE, that of the residence mode.

The format of the AMODE attribute contains a name field (which

associates the addressing mode with a control section), the

operation (AMODE), and one of three operands (24, 31, or ANY). 24

specifies that an addressing mode within the 24-bit range is

associated with the control section; 31, an addressing mode

within the 31-bit range; and ANY, an addressing mode within either Y
the 24~ or the 31-bit range. %;;%

18 Assembler H Version 2! General Information

The format of the RMODE attribute contains a name field (which
associates the residence mode with a control section), the
operation (RMODE), and one of two operands (24 or ANY). 24
specifies that a residence mode within tha 24-bit range is

associated with the control section, and ANY, a residence mode of
ANY.

Any field of these attributes may be generated by a macro, or by
substitution in open code.

AMODE and RMODE attributes may be specified anvwhere in the
assembly. If the name field in either attribute is left blank,
there must be an unnamed control section in the assembly. These
attributes do not initiate an unnamed control section.

CHANNEL COMMAND WORDS (CCH1 AND CCHO)

Two new assembler instructions, CCW1 and CCWO, are includead only
in the Extended Architecture and Universal instruction sets. CCW1
results in a Format 1 channel command word that allows a 31-bit
data address; CCW0 results in a Format 0 channel command word that
allows a 24-bit data address.

Notes:

1. The CCW instruction, which is included in all instruction
saets, also results in a Format 0 channel command word. The
format of the CCW1 and CCWO instructions, like that of a CCH
instruction, contains a name field, the operation, and an
operand (which has a command code, data address, flags, and
data count).

2. If EXCP or EXCPVR is used, only CCW or CCWO is valid, because
EXCP and EXCPVYR do not support 31-bit data addresses in
channel command words.

3. If RMODE ANY is used with CCW or CCWO0, an invalid data address
in the channel command word may result at execution time. Sece
the Assembler H Version 2 Application Programming: Guide for

other examplas of restrictions concerning the use of RMODE
ANY.

ASSEMBLER LANGUAGE SYNTAX EXTENSIONS

CONTIKNUATION LINES

SYMBOL LENGTH

The syntax of the assembler language deals with the structure of
individual elements of an instruction statement and with the
order in which the elements are presented in that statement.
Several syntactical elements of the VS Assembler language are
extended in the Assembler H language.

Assembler H allows as many as nine continuation lines in an
ordinary assembler language statement.

The alternate format, which allows as many continuation lines as
needed, is allowed for certain instructions. These include macro
prototype statements and macro instruction statements, as uwell as
AIF, AGO, SETx, LCLx, and GBLx instructions.'

A maximum of 63 characters can be used for a symbol. This limit
includes the ampersand for variable symbols and the period for
sequence symbols.

Because the linkage editor does not accept symbols longer than 8

characters, external symbols are limited to 8 characters.
External symbols are those used in the name field of START, CSECT,

Chapter 3. Basic Assembler Language Extensions 19

COM, and DXD statements, and in the operand field of ENTRY, EXTRN,
and WXTRN statements. Svymbols used in V- and @~-type address
constants are also restricted to 8 characters.

»

LEVELS WITHIN EXPRESSIONS

Any number of terms of levels of parentheses in an expression is
allowed.

ANOTHER LANGUAGE EXTENSION

The following language extension has been made to Version 2 of
Assembler H.

UNDERSCORE IN SYMBOLS

You can specify the underscore character in ordinary symbols,
that is, symbols which can be used in the name and operand fields
of machine and assembler instructions.

The format of an ordinary symbol contains @ one-byte alphabetic
character followed by up to 62 alphameric or underscore
characters. The underscore character must not appear in an
external symbol. See the Assembler H Version 2 Application
Programming: Guide for a list of symbol fields in which it must
not appear.

CHANGES TO PROGRAMMING SECTIONING AND LIMKING COMTROLS

Operations controlling program sectioning and linking are
extended in Assembler H to allow increased freedom of program
organization. A new instruction is available, and several others
have been revised.

)

\

USE OF MULTIPLE LOCATION COUNTERS

The assembler instruction LOCTR allows multiple location counters
to be defined within a control section during the assembly. The
format of this new instruction is:

Name Operation Operand
Any ordinary LOCTR Blank
or variable

symbol

The assembler assigns consecutive addresses to all segments of a
location counter in a control section before it continues address
assignment with the first segment of the next location counter. By
using the LOCTR instruction, you can cause your program
object-code structure to differ from the logical order appearing
in the listing. You can code sections of a program as independent
logical and sequential units. For example, you can code work areas
and constants within the section of code that requires them,
without branching around them. Figure 3 on page 21 illustrates
this procedure.

20 Assembler H Version 2: General Information

MAINCODE LOCTR

WORKAREA LOCTR Addresses follow A blod with

combined ssembled wi
XXX be XXX b sections of — consecutive
XXX DS XXX MAINCODE. addresses

MAINCODE LOCTR

Figure 3. LOCTR Instruction Application

The following rules govern applications of the LOCTR instruction:

A location counter can be interrupted by a CSECT, DSECT, COM,
or another LOCTR instruction.

A control section name that is defined by the CSECT, COM,
DSECT, or START instruction automatically names the first
location counter in that section.

A LOCTR instruction with the same name as a control section
resumes the first location counter in that section.

A LOCTR instruction with the same name as a previous LOCTR
instruction forces a return to the control section in which it
was first defined and resumes the particular counter
involved.

Resumption of a control section causes resumption of the lacst
active, not necessarily the highest valued, location counter
under that control section.

A control section name defined for the first time is in error
if it is identical to a previously defined LOCTR instruction
name.

A LOCTR instruction occurring before the first control
section will initiate an unnamed CSECT before the LOCTR
instruction is processed.

LOCTR instructions do not force location counter alignment.

REVISION OF Q-TYPE ADDRESS CONSTANTS

Q-type address constants reserve storage for the offset of an
external dummy section. Some restrictions have been relieved
under Assembler H:

DXD or DSECT names referenced in @-Type address constants do
not require previous definition.

If the relocatable symbol in a DXD statement is not used in a
Q-type address constant, the DXD symbol is not placed in the
external symbol dictionary (ESD). DXD statements without a
Q-type address constant reference are not addressable by the
program.

Chapter 3. Basic Assembler Language Extensions 21

NUMBER OF ESD SYMBOLS

There is no restriction on the number of symbols that can be q:j
contained in the external symbol dictionary (ESD). The maximum g
number of entries depends on the amount of main storage available

to the linkage editor.

22 Assembler H Version 2: General Information

[:> CHAPTER 4. DIAGMOSTICS EXTENSIOMS

Assembler H has many diagnostic features to aid in the location
and analysis of program errors. Refinement of macro and
conditional assambly diagnostics is particularly significant.
This chapter describes tihese diagnostic features.

DIAGNOSTIC EXTENSIONS IN REGULAR ASSEMBLY

ERROR MESSAGES

Assembler H prints in-line error messages in the listing and
includes at the end of the listing a total of the errors and a
table of their line numbers. Certain in-line messages include a
copy of the segment of the statement that is in error. Thus, error
conditions are spelled out as they occur with direct referaence to
a specific error. The following example illustrates this.

CSECT

COMM
**%XERRORX¥*XUNDEFINED OP CODE - COMM

DS (X+5)F
%%%ERROR¥¥XRELOCATABILITY ERROR - (%+5)F

INAME DC F'g!
¥X¥XERROR¥**SYMBOL TOO LONG, OR 1ST CHARACTER NOT A LETTER - 1NAME

&c SETC 'AGO'
8C X

*%%ERRORX*XOP CODE NOT ALLOWED TO BE GENERATED - AGO
END

DIAGHOSTIC MESSAGES IN MACRO ASSEMBLY

Diagnostic messages printed in macro-generated text are more
descriptive than those in the VS Assembler. In addition, the macro
level and the statement number of the macro definition are printed
for each programmer macro instruction. The macro level and the
first five characters (or fewer) of the macro name are printed for
library macro expansions.

SEQUENCE FIELD IN MACRO-GENERATED TEXT

When a library macro definition is processed as a result of a
macro call, the sequence field (columns 73 through 80) of the
generated statements contains the level of the macro call in the
first two columns, a hyphen in the third column, and the first
five letters of the macro-definition name in the remaining five
columns. When a line is generated from a source~program macro or a
copied library macro, the last five columns contain tha line
number of the model statement in the definition from which the
generated statement is derived. This information can be an
important diagnostic aid when analyzing output dealing with macro
calls within macro calls.

FORMAT OF MACRO-GENERATED TEXT

o Whenever possible, a generated statement is printed in the same
format as the corresponding macro—-definition (model) statement.
The starting columns of the operation, operand, and comments

Chapter 4. Diagnostics Extensions 23

ERROR MESSAGES FOR A

fields are preserved unless they are displaced by field
substitution, as shown in the following example: ((i\
S

Source Statements: &C SETC "ABCDEFGHIJK®
&C LA 1.6
Generated Statement: ABCDEFGHIJK LA 1,4

LIBRARY MACRO DEFINITION

Format errors within a particular library macro definition are
listed directly following the first call of that macro.
Subsequent calls on the library macro do not result in this type
of diagnostic. If the appropriate option of the PRINT instruction
is in effect, errors arising in the generated text of a library
macro are listed in line within the generated text. The following
example shows the placement of error messages.

ERROR MESSAGES FOR SOURCE PROGRAM MACRO DEFINITICNS

ERROR MESSAGES IN MACRO-GENERATED TEXT

MACRO TRACE FACILITY (MHELP)

MACRO
LIBMAC
iCLA A Library Macro
B SETA &A
MEND
LIBMAC 1
¥X*ERRORX¥X INVALID LCLA OPERAND First
. LIBMAC
¥XERROR X% UNDECLARED VARIABLE SYMBOL Call
LIBMAC 1
. Second
XX*XERROR XX UNDECLARED VARIABLE SYMBOL LIBMAC T
. Call C: :
Macro definitions contained in the source program are printed in
the listing, provided that the appropriate PRINT options are in
effect. In-line edit diagnostics are inserted in the listing
directly following the statement in error. Errors analyvzed during
macro generation produce in-line messages in the generated text.
Diagnostic messages in generated text generally include:
. A description of the error
. The recovery action
. The model statement number at which the error occurred
. A SET symbol name, parameter number, or value string
associated with the error
The MHELP instruction controls a set of trace and dump facilities.
Options are selected by an absolute expression in the MHELP
operand field. MHELP statements can occur anywhere in open code or
in macro definitions. MHELP options remain in effect continuously
until superseded by another MHELP statement. MHELP options are: gr“%
A

24 Assembler H Version 2: General Information

Macro Call Trace MHELP B'1' or MHELP 1

This option provides a one-line trace
for each macro call, giving the name of
the called macro, its nested depth, and
its &SYSNDX (total number of macro
calls) value. This trace is provided
upon entry into the macro. No trace is
provided if error conditions prevent
entry into the macro.

Macro Branch Trace MHELP B'10' or MHELP 2

This option provides a one-line trace
for each AGO and true AIF conditional
assembly statement within a macro. It
gives the model statement numbers of
the "branched from"” and "branched to"
statements, and the name of the macro
in which the branch occurs. This trace
option 15 suppressed for library
macros.

Macro Entry Dump MHELP B'10000' or MHELP 16

This option dumps parameter values from
the macro dictionary immediately after
a macro call is processed.

Macro Exit Dump MHELP B'1000' or MHELP 8

This option dumps SET symhol values
from the macro dictionary upon
encountering a MEND or MEXIT statement.

Macro AIF Dump MHELP B'100' or MHELP 4

This option dumps SET symbol values
from the macro dictionary immediately
before each AIF statement that is
encountered.

Glohal Suppression MHELP B'100000' or MHELP 32

This option suppresses global SET
symbols in the two preceding options,
MHELP 4 and MHELP 8.

MHELP Suppression MHELP B*10000000" or MHELP 128

This option suppresses all currently
active MHELP options.

MHELP Control on &5YSNDX MHELP operands are assembled into a

signed fullword. See the sample
hexadecimal values for the MHELP
operand (Figure 4 on page 26).

MHELP and &SYSHDX values are determined according to the
following rules:

1.

If there are any nonzero bits present in the low-order 6 bits
of the MHELP field (see Figure 3 on page 21), the
corresponding options are turned on.

&SYSNDX values are set only if the &§SYSNDX field has any
nonzero bits in it. The value of &5YSNDX is the value of the
entire fullword. If the &SYSHDX field contains only zeros,
even if there is a value in the high-order bytes to the left
of the &5YSNDX field, the &5YSNDX value is not set.

When &SYSNDX (the total number of macro calls) exceeds the
value of the fullword which contains the MHELP operand value,

Chapter 4. Diagnostics Extensions 25

/ Hexadecimal Value

Q
‘RS Q
Q\’, QV" c.,é \3
QQ/ / !Q\‘,

4869 0000 Macro call trace,
Macro AIF dump;
&SYSNDX 4869

65536 0001 |00(00 No effect
16777232 0100 |00{10 Macro entry dump
28678 0000 70|06 Macro branch trace,

Macro AIF dump;
&SYSNDX 28678

Figure 4. MHELP Control on &SYSNDX

control is forced to stay at the open-code level by, in
effect, making every statement in a macro behave like a MEXIT.
Open-code macro calls are honored, but with an immediate exit
back to open code.

When the value of the &SYSNDX reaches its limit, a diagnostic
message is issued.

Note: Multiple options can be obtained by coding the option codes
in one MHELP operand. For example, call and branch traces can be
invoked by MHELP B'11', MHELP 2+1, or MHELP 3.

ABNORMAL TERMINATION DOF ASSEMELY

26

The assembler produces a specially formatted dump whenever an

assembly cannot be completed. This may help vou in determining the

nature of the error. The dump is also useful if the abnormal
termination was caused by an error in the assemblar itself.
~

Assembler H Version 2: General Information

/\

=

D

CHAPTER 5.

FACTORS INFLUENCING IMPROVED PERFORMANCE

This chapter gives some of the factors used by Assembler H that
cause performance to be improved relative to VS Assembler. The
following list summarizes the factors that influence the number
of input/output operations and machine instructions used by
Assembler H.

. Logical text stream and tables that are a result of the
internal assembly process remain resident in virtual storage,
whenever possible, throughout the assembly.

. Two or more assemblies can be performed under the control of
one set of job control language (JCL) cards.

. Assembler H edits only the macro definitions that it
encounters during a given macro expansion or during
conditional assembly of open code, as controlled by AIF and
AGO statements.)

. Source text assembly passes are consolidated. The edit and
expansion of macro text are done on a demand basis in one pass
of the source text.

RESIDENT TABLES AND SOURCE TEXT: Performance is improved by
keeping intermediate text, macro definition text, dictionaries,
and symbol tables in main storage whenever possible. This reduces
the I/70 time required by assemblers that rely heavily on secondary
storage throughout the assembly process. Less input/output
reduces system overhead and frees channels and input/output
devices for other uses.

Certain portions must remain in virtual storage throughout the
assaembly process. The symbol table must remain resident, and it
has no overflow capacity. Also, all partially filled blocks of
text must remain resident.

MULTIPLE ASSEMBLY: Multiple or batch assemblies can be done under
the control of a single set of JCL cards. Source decks are placed
together, with no intervening "/%" card.

Batch assembly improves performance by eliminating job and step
overhead for each assembly. It is especially advantageous for
processing related assemblies such as a main program and its
subroutines.

MACRO-~-EDITING FROCESS: Assembler H edits only those macro
definitions that are encountered during a given macro expansion
or during conditional assembly of open code, as controlled by AIF
and AGO statements.

A good example of potential savings by this feature is the process
of system generation. During system generation, Assembler H edits
only the set of library macro definitions that are expanded; as a
result, Assembler H may edit up to 25% fewer library macro
definitions than previous assemblers.

COMSOLIDATING SOURCE TEXT PASSES: Consolidating assembly source
text passes and other new organization procedures reduces the
number of internal processor instructions used to handle source
text in Assembler H. This is represented in proportionate savings
in processor time. The saving is independent of the size or speed
of the system processor involved; it is a measure of the relative
efficiency of the processor.

Chapter 5. Factors Influencing Improved Performance 27

C

A

AGO instruction

alternate format 16

extended 12

tracing (see macro branch trace)
AIF instruction

alternate format 16

extended 12

macro AIF dump 25

tracing (see macro branch trace)
alternate format 16, 19
AMODE attribute 1, 19
arbitrary language input (AREAD) 8
AREAD input affecting forward scan

(see forward attribute reference)

AREAD instruction 8
arithmetic expressions, using SETC
variables in 164

assembler data set names, changing at

system generation 4
Assembler H internal design 2
Assembler operations, revised
CNOP instruction 18
COPY instruction 18
EQU instruction 18
ISEQ instruction 18
OPSYN instruction 18
Assembler options, defaults for 4
associative memory facility
(see created SET symbols)
attribute reference
forward 15
resolving (see internal design)
attribute references
defined attribute (D'} 16
number attribute (N') for SET
symbols 16
with SETC variables 15

auxiliary storage space requirements

Basic Assembler Language extensions

(o]
CCWO0 instruction 1, 19
CCH1 instruction 1, 19

2

18

character variables used in arithmetic

expressions 14
CNOP instruction 18
computed AGO instruction
(see extended AGO instruction)
conditional assembly extensions
attribute reference
defined attribute (D') 15
forward 15

number attribute (N') for SET
Symbols 15
with SETC symbols 15
created SET symbols 13
extended AIF instruction
extended SETx instruction
id=xago.extended AGO instruction
system variable symbols
&SYSLIST with multilevel
sublists 10
&SYSLOC 17
&S5YSNDX, MHELP control on 25
&§SYSPARM
conditional assembly extentions
alternate format 16, 19
continuation lines, number of 19
COPY instruction 18
created SET symbols 13

11, 16

D

data definition names

changing DD names 4§

for Assembler H data sets ¢
data set requirements 2

- DD names

(see data definition names)
declaration of SET symbols
dimensioned SET symbols 13
implicit declaration 13
multiple declaration 13

default values for assembler options

defined attribute (D") 16
design, internal 2
diagnostics

extentions 23

in regular assembly 23
diagnostics in macro assembly

error messages for library macros

error messages for source macros

dimension of SET symbol, maximum 13

DSECT, referenced in Q-type address
constant 22

DXD, referenced in Q@-type address
constant 22

E instruction type 1, 4
editing inner macro definitions 7
editing macro definitions 5
EQU instruction 18
error messages

in general 23

in library macros 2%

in source macros 2%
ESD

(see external symbol dictionary)
EXEC statement default options §&
extended

AIF instruction 11, 16

Index

12, 16

12

A

24

24

29

AGO instruction 12
SETx instruction 12, 16
Extended Architecture instruction
set 1, 4
extensions to basic assembler language
(see Basic Assembler Language
extensions)
extensions to macro language
instructions
(see conditional assembly extensions)
(see macro language extensions)
external
symbol dictionary (ESD), restrictions
on 22
symbols, length of 20
work file 3

F

forward attribute reference 15
forward scan 3

G

GBLx instruction

(see global SET symbol)
generated macro operation codes 7
generated statement

attribute reference for 15

error messages for 24

format of 24

sequence field of 23
global SET symbol

declaration 13

suppression of (in MHELP options) 25

implicit declaration of SET symbols 13
indirect addressing facility
(see created SET symbols)
inner macro
definition 7
instruction 7
input/output capability of macros 9
installation requirements 2
instruction sets 4
instruction types ¢
internal design 2
internal macro comments 11
ISEQ instruction 19

language compatibility 1
LCLx instruction
(see local SET symbol)
library macro; error messages for 24
library space requirements 2
local SET symbol

(see also implicit declaration of SET
symbols)
declaration 13
location counter, multiple 20
LOCTR instruction 20
logic of Assembler H
(see internal design)
lookahead mode
(see forward attribute reference)

M

machine requirements 2
macro
(see AREAD instruction)
input/output capability of 9
use of 5
macro AIF dump 25
macro branch trace 25
macro call trace 25
macro calls by substitution 7
macro definition
bypassing 5
editing 5
instructions allowed in 11
nested 6
placement 5
redefinition of 6
macro editing
affecting performance 27
for inner macro definitions 6
in general 5
macro entry dump 25
macro exit dump 25
macro input
(see AREAD instruction)
macro input/output capability 9
macro instruction
nested 6
nested with AREAD instructions 8
macro instruction operation code,
generated 7
macro language extensions
arbitrary language input, AREAD 8
declaration of SET symbols 13
instructions permitted in body of
macro definition 11
mnemonic operation codes redefined as
macros 11
nesting definitions 6
placement of definitions 5
redefinition of macros 6
sequence symbol length 20
substitution, macro calls by 7
symbolic parameter length
(see variable symbol length)
variable symbol length 20
macro name, length of 11
macro trace
(see MHELP instruction)
main storage requirements
(see virtual storage requirements)
MHELP instructions 25
mnhemonic operation codes used as macro
operation codes 11
model statements permitted in macro
definitions ‘
(see macro definition, instructions
allowed in)
multilevel sublists 10

30 Assembler H Version 2: General Information

®

)

multiple assembly 27
multiple declaration of SET symbols 13
multiple location counters 20

N

nested COPY instructions
(see COPY instruction)
nested macro definitions 6
nested sublists
(see multilevel sublists)
number attribute (N') for SET symbols 16

operating environment requirements 2
operation codes for macros
length of 11
redefining 6
operation codes, redefining conditional
assembly 10
(see also instruction sets)
OPSYN instruction
operation codes 18
placement 18
to redefine conditional assembly
operations 10
to rename macro 6
options
AREAD listing 8
assembler, setting defaults for ¢4
MHELP 25

parentheses, levels of, in
expressions 20
PARM field options
(see Assembler options)
performance 2
processor requirements 2
processor time 27
program macro
(see source macro, error messages for)
PUNCH output capability 9

Q

Q-type address constant 22

R

redefining conditional assembly
operation codes 10

redefining macro names 6

redefining standard operation codes as
macro names 11

RMODE attribute 1, 19

RRE instruction type 1, &

]

sectioning and linking extensions
multiple location counters 290
no restrictions on ESD items 22
Q-type address constants 22
sequence checking
(see ISEQ instruction)
sequence field in macro-generated
text 23
sequence symbol length 11
SET symbol
created 13
declaration
implicit 13
multiple 13
dimension
maximum 13
specification 13
SET symbol format and definition changes
dimensioned SET symbols 13
implicit declaration 13
multiple declaration 13
SET symbol length
(see variable symbol length)
SETC symbol
attribute reference with 15
in AREAD name field
(see AREAD instruction
in arithmetic expressions 14
SETx instruction, extended 12, 16
source macro, error messages for 264
SSE instruction type 1, 4
standard instruction sets ¢
statement numbers 1
storage reauirements 2
sublists, multilevel 10
substitution in macro instruction
operation code 7
symbol length 20
symbol table 3
symbolic parameter)
conflicting with created SET
symbol 14
length of
(see variable symbol length)
symbols 1
syntax extensions
character variables in arithmetic
expressions 14
continuation lines, number of 19
levels of parentheses
in macro instruction (see
multilevel sublists)
in ordinary assembler
expressions 19
number of terms in expression 20
symbol length 20
SYSLIST (&SYSLIST) with multilevel
sublists 10
SYSLOC (&SYSLOC)Y 17
SYSNDX (&SYSNDX), MHELP control on 25
SYSPARM (&SYSPARM) 4
system generation, modifying the
assembler at 3
system macro
(see library macro, error messages
for)

Index 31

system requirements 2

system variable symbols \' @:}
&SYSLIST with multilevel sublists 10 j
&SYSLOC 17

&SYSNDX, MHELP control on 25 variable symbol length 20
System/370 instruction set 1, 4 virtual storage requirements 2
SYSUT1L 3

W
T

work file 3
terms, number of, in expressions 20 working storage 3
text passes, number of 2
text processing 2
tracing (see macro branch trace)

U

underscore character 1, 20
Universal instruction set 1, 4
utility file

(see SYSUTI1 or work file)

~

g

32 Assembler H Version 2: General Information

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

essessnessseseseseetnsanasassssessssersesessse e

ceee

ceencen

csesessesreens

cesrcesssrensean

BRIy

veesseasen

Reader’s

Assembler H Version 2: Comment
General Information Form
GC26-4035-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4035-0

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

D R I R N I I I I I A O I I I R I I I R R R N I I R R R R R R

| ” " | NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

) 8 8 6 0680660006000 06006c0e0s 5500650 000000080060000006066000os00eassetssttseonsosdostdosssestanstostsstoetsnssosetdeosssessesossssscssoessosesrosseeestecsi t6odstestssesssesssssssacssoscssssssosses.:

(LZ-0LES "ON 8]14) UOIIBULIOJU| [BIBUBL) 1Z UOISIBA H Jojquiassy

T

=,

o

=

R R R R R R T T A S T T L N R Y I

Q.

Fold and tape Please do not staple Fold and tape S

[

n

>

o

(]

N

@

S

RN . -—— — o

[——— wW

L} -— L W) m

- R L v]]

- e— —— e o
-— -— L B A
AN GAIEREY NUNEE W .
TR ENNNEERS S v —
»

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

esecsssceserscssennse

Cessses/eesssesacassestanstanerseseosssssnne

A I N P P P sesesesras

cecsensenss

sessseane

cesessesesesssrrcarions

R R L T T T e

Reader’s

Assembler H Version 2: Comment
General Information Form
GC26-4035-0

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever informationt you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4035-0

Reader’s Comment Form

Fold and tape

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

Foid and tape

DI S N R R R R I I I R N I I R R e I I I R R R N N N R N)

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

D R I R I R I I R I N I N I R R I R S R I R N LR TR

old and tape

Please do not staple

Fold and tape

CERIRY

R R R N T O I I S N AP

cee

5060000066600 00606060s30escesscscssstostossescesssssseosssesstonssesocsasessosncssscssossssscsssosnctoscsscsecas

UOIIRWIOLU| [BIBUSE) :Z UOISIBA H J3|qUIassy

0-G€0¥-920D 'V'S'N ul paiulld (1Z-0LES ON dj!4)

®

-

NS

