

SQL/Data System
Application
Programming for
VM/System Product

Release 3
Program Number 5748-XXJ
SH24-5068-0

First Edition (December 1984)

This edition, SH24-5068-0, is a new book based on SH24-5018-2. This edition applies to
the Structured Query Language/Data System (SQL/DS) in a Virtual Machine/System
Product (VM/SP) system environment. This edition applies to the Structured Query
Language/Data System until otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest JBM System/370 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Throughout this manual are illustrations in which names are used. These names are
fanciful and fictitious, created by the author, and are used solely for illustrative purposes
and not for the identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead. :

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader’s comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming)
Publications, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM may use or
distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

(\.

Summary of Changes

\

This is a list of technical changes for Release 3 of SQL/DS that affect this manual.
For a complete list of technical changes for Release 3, see SQL/Data System
Concepts and Facilities for VM /SP, GH24-5065.
Performance Improvements
o Specifying the Isolation Level
Programmers can now specify whether other users can update data that the
program has finished reading in its current logical unit of work. Programmers
can tell SQL /DS either to lock all the data that the current logical unit of work
has read, or to lock just the row or page of data that a cursor is currently
pointing to.
« Dispatcher Enhancements
The SQL/DS dispatcher has been enhanced to give priority to short requests.
o FETCH and INSERT Blocking
Allows programmers to specify that a program retrieve and insert rows in
groups. This can improve performance for programs running in multiple user
mode which do multiple-row inserts or multiple-row SELECTs.
Enhancements for National Languages
o Specifying Character Sets
Lets an installation specify an alternative character set for national languages.

« Mixing Double-Byte Character Set (DBCS) Data and EBCDIC Data

SQL/DS Release 3 can interpret identifiers and character string constants that
contain both DBCS and EBCDIC data.

Summary of Changes 1iii

Miscellaneous Enhancements
« Using Labels for Tables and Columns

Lets users define labels, which can be used as common display names, for table
and column names.

« COMMENT Enhancements

Enhanced so that users can specify comments for more than one column in a
single command.

o Nonrecoverable Storage Pools
Allows users to define nonrecoverable storage pools for improved performance
when loading large amounts of data. With nonrecoverable storage pools,
however, users must do their own data recovery.
Changes to the SQL/DS Library
« Independent Library for VM/SP users

For Release 3, separate libraries of SQL/DS manuals are available for VSE
and VM/SP users.

« New Diagnostic Manuals
Two new manuals have been added to the library:
— SQL/Data System Diagnosis Guide for VM/SP, SY24-5230
— SQL/Data System Diagnosis Reference for VM/SP, SY24-5232

These manuals help in diagnosing problems in SQL/DS. They replace the
SQL/Data System Logic manuals.

« Technical and Editorial Changes

In addition to documenting major changes to the product, this revision
incorporates minor technical and editorial changes.

iv SQL/Data System Application Programming for VM/SP

~

(\

Preface

This book is for application programmers writing in COBOL, PL/I, FORTRAN, or
Assembler Language. It tells how to write application programs that use the
Structured Query Language (SQL) to access data stored in Structured Query
Language/Data System (SQL/DS) tables. Programmers writing in APL2 should
refer to APL2 Programming: Using Structured Query Language.

Chapter 1 covers the basics of SQL programming for beginners, starting with an
introduction to SQL program design. Then it explains some of the most common
SQL commands. After that, there is an overview on preparing and running the
program, followed by an introduction to testing and debugging concerns. The
chapter ends with a section describing administrative tasks for your application
program. This last section also describes the SQL /DS catalogs.

Each section in Chapter 1 has a quiz at the beginning. By taking the quiz, you can
check to see how much of the material in the section you already know. Depending
on your success, you may elect to skip the section after taking the quiz.

Chapter 2 expands on Chapter 1 by going into more detail and by introducing
other statements in the SQL programming language. It begins by giving a detailed
description of a framework for coding SQL programs. The next section explains
less-common SQL commands that may be useful in coding the application. After
that is a section devoted to the details of preparing and running the program. Next
is a section on error handling, describing how you can use return codes set by
SQL/DS to branch to error handling routines in your program. The chapter ends
with a detailed description of administration considerations (including
authorization, data control, and data definition).

Since Chapter 2 contains advanced information, there are no quizzes at the
beginnings of the sections to check your prior knowledge.

Chapter 3 is a reference to SQL commands used in applications programming.

When you are ready to start coding, you should read about your own host language
in one of the appendixes:

Appendix C, “PL/I Considerations”
Appendix D, “COBOL Considerations”
Appendix E, “Assembler Considerations”

Appendix F, “FORTRAN Considerations.”

Preface V

vi

Other appendixes list SQL/DS reserved words and SQL /DS “maximums” (such as
the maximum number of columns in a table or the maximum length of one SQL
statement).

Also in the back of the book is a foldout. The foldout contains tables that are used
in examples throughout this book.

This book assumes that you can write programs in either Assembler, PL/1,
COBOL, or FORTRAN for the Virtual Machine/System Product (VM/SP).
Before you read this book, you may also find it useful to know how to use the
Conversational Monitor System (CMS) for VM/SP systems. SQL/Data System
Concepts and Facilities for VM /SP, GH24-50635, is a prerequisite for this manual.
You will need a copy of SQL/Data System Messages and Codes for VM /SP,
SH24-5070; that manual explains all the return codes passed to the program by
SQL/DS.

Another suggested book is the SQL/Data System Terminal User’s Guide for

VM /SP, SH24-5045, which is written in a tutorial style. It is much easier to learn
SQL/DS by reading that book before you read this one.

Further suggested publications include:

e SQL/Data System Installation for VM/SP, SH24-5044

e VM/SP CMS Command and Macro Reference, SC19-6209

o VM/SP CMS User’s Guide, SC19-6210

o« VM/SP CMS Primer, SC24-5236.

SQL/Data System Application Programming for VM/SP

(“\

Contents

Chapter 1. Getting Startedocvvivvvvnvennneees 1

Designing the Programc.ototiuittiiresseeiteciesseaseannans 3
(@) (11 11 P 3
Section QUIZt e e e e e 4
Answerstothe Section Quiz it e 5
Introduction to SQL e s 6
SQL Within a Programming Environment 7
Introduction to a Framework for Coding Programs 8
Sample Tablest e e 9
Codingthe Programocetiiiueieceneroaeescssseasacnnns 11
(@03 ¢ 171 1 11 P 11
Section QUIZ i e e e 12
Answers to the Section Quiz i 13
Introduction to SQL Program Coding, 14
Retrieving One Row of Data from a Table: SELECT /INTO 14
Retrieving or Inserting Datawitha Cursor 19
Predicates e e 27
Host Variables and Constantsc.0utiitinnineneennennnnn 28
Using Expressions as Search Conditions 30
Built-In Functions ittt e 31
Putting a New Row into a Table: INSERTccccvuen... 34
Deleting Data from a Table: DELETE0t iiiuennn. 36
Changing Dataina Table: UPDATEciitiiiiniernnnn. 37
Preprocessing and Running the Programcciiiiiiivinnennns 41
COM NS ..ot e et 41
Section QUiz e e e 42
Answerstothe Section Quiz i 43
Introduction e e 44
Preprocessing the Program ittt iiiriinrenneennnns 44
Compiling the Program0.tttiiiittrnnneinnneeennnns 45
Link-Editing and Loading the Program 45
Running the Program i i 45
Testing and Debugging Concernscceeiiieeeennenscsncnaans 47
(0003 111 11 N 47
Section QUIZottt e e e 48
Answerstothe Section QUizttt 49
Introduction e e e 50

Contents Vil

Using ISQL to Test SQL Statements Before Coding 50

Introduction to the SQL. Communications Area (SQLCA) 51
Putting the Program into Productionc.cvo... 53
(@007 51 7=) 11 £ 53
Section QUIZ 55
Answers tothe SectionQuiz 56
Authorization 57
Data Controlt e 70
Data Definition ittt e 74
SQL/DS Catalogs . ..o vt it i et et e e 78
Chapter 2. Advanced SQL Programming 83
Designingthe Programc..iiiiiiiiinnniinneconnnnnnnas 85
COMteNES . ..ttt e 85
Application Prolog 86
Application Body e 92
Application Epilog e e 93
SUMMATY . ..ttt e e e e e 94
Sample Application Programst 95
Codingthe Programcciiiuetiiiiineriienenenencesaonnas 97
(070 11173 1113 97
More About Search Conditions00t tiritenrnnnnnen. 99
Additions to the SELECT Statement 0iunn... 107
More About Cursor Managementc.ououuuirennnennnnnns 134
More About Data Manipulation iteiiiireennn. 136
Use of VieWS i e e 140
Indicator Variables i e 146
Dynamically Defined Statements 147
Preprocessing and Running the Program 183
L0703 4 1) 1113 183
Introduction e e 184
VM/SP Connect Considerationsouui it ueeeeannnnn. 186
Initializing Your User Machine0 iiiiinnnennn. 186
Preprocessing the Program0 i 187
Compiling the Program 0t 196
Link-Editing and Loading the Program 197
Running your Programttt i 198
Testing and Debugging Concernsccoiiiietiiienennnnas 201
L@ 1 1=) 1 11 201
Error Handling 202
Monitoring Execution Performance, 209
Putting the Program into Production, 211
(@03 3113 + 1 1~ 211
Authorizationt e 213
Data Control i e e e e 226
Data Definition it e e 237
Performance Considerationsc.uieittninenennnnnnn 250

viii SQL/Data System Application Programming for VM/SP

(?-\

Including External Source Files i, 255
Including Secondary Input i 255

Chapter 3. SQL Programming Language Reference Summary ... 257

How to Interpret SQL Formatccciiiittnnnecsnnnssonns 259
SQL Statement Reference Summaryc.ccveteeeteeeecscnnnns 261
(@00 11:5 4| - 261
ACQUIRE DBSPACEttt it ittt et 263
ALTER DBSPACE ittt it e 265
ALTER TABLE ittt et ettt i e e 267
BEGIN DECLARE SECTION ittt i 268
CLOSE .. e e 269
COMMENT ...t et it ettt ettt et e 270
COMMIT WORKttt it ettt ettt et et e 272
CONNECT ...ttt e et e et et ettt e e 273
CREATE INDEX ittt ettt e e 274
CREATE SYNONYM ... et e et e 276
CREATETABLEttt ittt e ieaianens 277
CREATE VIEWt et sttt et 279
DECLARE CURSOR ittt e e e eeenes 281
DELETE ... e e e e e 284
DESCRIBE it e ettt e e 286
DROP DBSPACE ot e e et e et et eiaeens 288
DROP INDEX ... i e e et 289
DROP PROGRAM ... i et et e et 290
DROP SYNONYM ... e e e e e 291
DROP TABLEttt ittt et e e e 292
DROP VIEW . e e e e e 293
END DECLARE SECTION it 294
EXECUTE ... et e ettt ey 295
EXECUTE IMMEDIATE ittt 296
EXPLAIN .. e e e e 297
FETCH e e e e e et e ettt 299
GRANT . e e e e e 300
INSE R T o e e e e e e 305
LABEL ... e e e 309
LOCK .o e e e e e 312
OPEN .. e e e e e 313
PREPARE e e e e e 314
PUT e e e e 316
REVOKE ...t e e et e e e 317
ROLLBACK WORK ittt i e st et e it e i 321
SELECT ..t e e e e e 322
UPDATE .. e e e e e e 324
UPDATE STATISTICS e ettt e e e 328
WHENEVER ... e e e 329
Chapter 4. Extended Dynamic Statementsc..... 331
L070) 41731 - 331
Purpose and Use of Extended Dynamic Statements 332

Contents iX

An Example of Extended Dynamic Statements 336

Logical Unit of Work Considerations 344
Extended Dynamic Statement Descriptionscovu..... 348
Appendix A. SQL/DS Reserved Wordsciiieeneennnnnnnn. 363
Appendix B. SQL/DS Maximumsc.coveitneerenncacncnnonns 365
Appendix C. PL/I Considerationso000ueeecncecncncannnans 367
ARISPLIC --PL/ISample Programcocivivnrnenennn.. 367
Rules for Using SQL in PL/Ittt iiiieiiie e, 375
SQLErrorHandling0 ittt ittt 380
Dynamic SQL Statements in PL/Iccotiirinirninennn... 381
Data Ty PES & ittt ittt e e e e e e e e e e 383
Additional PL/I Program EXamplesvvuvrvneuneennennn. 383
Appendix D. COBOL Considerationscce00ceeeetvenscsocscaas 397
ARISCBLC -- COBOL Sample Programcovvtenunnnnnnn. 397
Rules for Using SQLin COBOLc.cciiiriiitnennnnennnnns 410
SQLErrorHandlingttt 415
Dynamic SQL Statementsin COBOLcciiinieenn.. 416
Data Ty PeS - oottt e e e e e 417
Additional COBOL Program Examplecuuviurennnenenns 419
Appendix E. Assembler Considerationsccieeeeeeneeccnnns 423
Acquiring the SQLDSECT Areac..iitiinirennnneennnnnnnn 423
Performance Considerations for the SQLDSECT Area 424
ARISASMC -- Assembler Sample Program 426
Rules for Using SQL in Assemblercitiiiiitiinnn .. 441
SQLErrorHandling0t iitiiiiiniiiiinannnnann 444
Dynamic SQL Statements in Assembler 445
Data TyPeS . ..ottt ittt et e e i e 446
Reentrant Programsc.citiiintoerennnennnnnneneneas 447
Appendix F. FORTRAN Considerationscc0iiitiiieneecrones 453
ARISFTN -- FORTRAN Sample Programccoiveeiruennn. 453
Rules for Using SQL in FORTRAN iititiiininrenenennns 461
SQLErmorHandling ittt 465
Dynamic SQL Statements in FORTRANo, 466
Data TYPES . i i ettt it e e e e e 466
INdeX ... vitiiinernnneennnecasonenoresesosseessasnssassnssansns 469

X SQL/Data System Application Programming for VM/SP

Figures

o
AN A O S ol

NN NDNDNNDNDNNRE =R s s
PAFPRERON SO0 RITU AW

29.
30.

31.
32.

33.
34.
35.
36.
37.
38.
39.
40.

INVENTORY Tablet 6
Form of Embedded SQL. Statements 14
Format of the SELECT Statementc..cv.uvnn.. 15
USINE @ CUISOT . o v vttt ettt e ettt ettt e e et e s 21
Breakdown of Search Conditions and Predicates 27
Breakdown of an Expression 30
Hierarchy of SQL/DS Authorityo eiinieaan.. 61
Privileges You Can Grant 00 iiunenn... 63
Locking Summary for PRIVATEDBSPACEs 71
Locking Summary for PUBLIC DBSPACEs 72
SQL/DS Data TYPES ...\ vvvit ittt ettt ettt 76
SQL/DS Data Conversion Chartoviinnnnn . 77
Examples of Host Variable Declarations 88
Examples of Embedded SQL Statements 90
SQL Declarative Statementsc...uiutinieinernnn.. 92
Pseudo Code Framework for Coding Programs 95
Truth Table for Null Values, 102
Values Returned in Indicator Variables 146
SQLDA Structure (inPseudo Code) 152
Data Codes Returned in SQLTYPE 155
SQLDA Initialization 167
Using a Cursor with Dynamically Defined Statements 179
SQL/DS Modes of Operationc.cvvrriiruineennen.. 185
SQLCA Structure (in Pseudo Code) 202
Pseudo-Code Error Handling Routine 208
Default Table Placement i iciviur... 240
Variable Names for Specifying Mixed Isolation Levels 252
Relationship Between Extended Dynamic Statements Expressed Using

Host Program Variables 334
Dynamic vs. Extended Dynamic Statements 335
An Example of an Interpretive Support Program for Building and

Executing SQL Statements in an Access Module 337
Preprocessing and Assembly of a Two-Part Support Program 340
Preprocessing and Execution of an End-User Program by a Two-Part
Support Program 341
Pseudo-Code Example of Preprocessing End-User ProgramP 343
Pseudo-Code Example of Execution of End-User Program P 344
Placement of Extended Dynamic Statements in Logical Units of Work . 346
Ranges of Numeric Valuest s 365
SQLCA Structure (in PL/T) i 380
SQLDA Structure (in PL/I)ttt 381
SQLDAX Structure (in PL/I) i 381
SQL/DS Data Types for PL/T 0.0, 383

41. SQLCA Structure (in COBOL), 416

42. SQL/DS Data Typesfor COBOLccitiiiirinnnnnn 417
43. Acquiring the SQLDSECT Area for VM/SP Applications 423
44. SQLCA Structure (in Assembler) iiiiiiin.. 444
45. SQLDA Structure (in Assembler)cceiieiiiinnnnn.. 445
46. SQL/DS Data Types for Assemblercoiuiinevnn... 446
47. SQL Statements Supported in FORTRAN 461
48. SQLCA Structure (in FORTRAN) ..., 466
49. SQL/DS Data Types rFORTRANcccieuunn. 466

Xii SQL/Data System Application Programming for VM/SP

Chapter 1. Getting Started

This chapter teaches you the basics of how to develop an application program in
Structured Query Language/Data System (SQL/DS). It is divided according to the
tasks that you, as an application programmer, are likely to perform. Chapter 2
contains advanced information on each of these tasks. If you need to know more
about a particular task, you can just refer to the advanced version of your section
in Chapter 2. For instance, if you are reading about designing your program, and
you would like to know more about designing before you begin reading about
coding your program, you can skip to the advanced version of Designing the
Program in Chapter 2.

Each of the sections in this chapter is preceded by a section quiz. The quizzes are
to help you determine how much of the information in the section you already
know. If you think the quiz is easy, skip that section and proceed to the next one.
Because the material in Chapter 2 is more advanced, Chapter 2 does not have any
section quizzes.

Chapter 1. Getting Started 1

2 SQL/Data System Application Programming for VM/SP

e

Designing the Program

This section begins with an introduction to SQL. It goes on to discuss SQL within
a programming environment, and concludes with an introduction to the form that

SQL programs usually take.
Contents

Section QUIZ it e e e e e 4
Answerstothe Section Quiz it i i 5
Introduction to SQL e e 6
SQL Within a Programming Environment 7
Introduction to a Framework for Coding Programs 8
Sample Tablest e e e 9

Designing the Program 3

Section Quiz

If you can answer most or all the following questions, then you probably do not
have to read this section. You could browse through the section for review, or you
could skip to “Coding the Program’ on page 11. If you have trouble answering
the questions in this quiz, proceed to “Introduction to SQL” on the next page.

1.

2.

What is the form that SQL/DS data takes?
SQL commands can be embedded in host language programs written in:

a.

b.

(Four different programming languages).
What are the five steps or tasks to developing an application program?

What are the three steps you must do to prepare your program before running
it?

What must you place in the application prolog?
What needs to be coded in the application epilog?

What part of the program contains the SQL statements?

4 SQL/Data System Application Programming for VM/SP

p
- . :
Answers to the Section Quiz
1. Tables
2. FORTRAN, COBOL, PL/I, and Assembler language

3. 1. Designing, 2. Coding, 3. Preparing and Running, 4. Error Handling, 5.
Administrating

4. 1.Preprocess, 2. Compile, 3. Load

5. Statements that provide for error handling, declare host variables, and establish
a connection between your program and SQL/DS

6. Statements that tell SQL/DS what to do with changes made to data, and
release the program’s connection to SQL/DS

7. The application body.

Designing the Program 5

Introduction to SQL

The Structured Query Language/Data System (SQL/DS) is a data base
management system that uses the relational data model of data. You can think of a
relational data model as being a collection of tables where a relation in this model is
one of these tables. A table in the relational data model is no different than any
other simple two-dimensional table. It has a specific number of columns and some
number of unordered rows, and a specific item of data at the intersection of every
column and row. Data is accessed in terms of tables and operations on tables.
That is, you can get SQL/DS data just by knowing the names of the table and the
column that it is in. This provides for an easy-to-use set of commands which let
you work with the data, without having to bother with the way in which the data is
actually stored in the system.

Look at the sample tables in the foldout in the back of the book. These are
examples of tables in SQL/DS. We will be referring to them in examples
throughout the book. The INVENTORY table, shown in Figure 1, has columns
named PARTNO, DESCRIPTION, and QONHAND.

PARTNO (| DESCRIPTION | QONHAND

207 GEAR 75

209 CAM 50

221 BOLT 650
222 BOLT 1250
231 NUT 700
232 NUT 1100
241 WASHER 6000
285 WHEEL 350
295 BELT 85

Figure 1. INVENTORY Table

Suppose, for example, you wanted to get a listing of all the different part names
(descriptions) of the parts that your company stocked. You could get this data
simply by knowing the name of the table, INVENTORY, and the name of the
column, DESCRIPTION, that the data was in. Then you would code this in an
appropriate SQL statement.

The language for handling SQL/DS data is called the Structured Query Language
(SQL). This language contains commands that retrieve, delete, and update tables
in the SQL /DS data base. You can embed these commands in application
programs written in COBOL, FORTRAN, PL/I, or Assembler Language. These
commands do all the data handling on SQL/DS data. With them, you use the
power of SQL/DS and decrease the data handling done by the programs
themselves. Programs that access SQL /DS data can also access data from other
sources, such as CMS files.

You can use SQL/DS under the Virtual Machine/System Product (VM/SP)
operating system. Application programs can be:

6 SQL/Data System Application Programming for VM/SP

(“\

« Online programs operating in virtual machines. These programs are controlled
by the Conversational Monitor System (CMS).

« Non-interactive programs operating in virtual machines in VM/SP.

SQL Within a Programming Environment

Programs that use SQL /DS can be written in COBOL, PL/I, FORTRAN, or
Assembler Language. These languages are called host languages because they act
as hosts for SQL. Application programs work with SQL/DS data through SQL
statements that you embed in the programs. How you embed SQL statements
varies slightly for each of the four languages that SQL /DS supports.

The core of SQL is the same for each of the host languages. For this reason, SQL
is presented throughout this book in basic form, unless otherwise noted. That is,
the SQL statements are shown without any of the language-dependent delimiters.
The SQL syntax and examples in this book are language independent.

Examples that have combinations of SQL statements and host language statements
are also shown in a language-independent form called pseudo code. Pseudo code
shows program logic but must be re-coded in a specific programming language
before it can be used. When SQL statements are shown in pseudo code examples,
they are preceded by EXEC SQL to help you distinguish the SQL statements from
the pseudo code. When shown by themselves, SQL statements are not preceded by
EXEC SQL.

For you to use SQL in a particular programming language, you must be familiar
with the rules for embedding SQL statements in that language. These language
rules are discussed in the appendixes; each programming language has a separate
appendix devoted to it:

Appendix C, “PL/I Considerations.”
Appendix D, “COBOL Considerations.”
Appendix E, “Assembler Considerations.”
Appendix F, “FORTRAN Considerations.”

You should glance over the appendix of the programming language that you will be
using before you continue reading. Don’t worry right now about understanding the
SQL statements coded in the example programs in the appendixes. Just try to get a
general feel for how the statements are embedded. The SQL language is explained
in the first two chapters of this book. Once you are ready to code your first
SQL/DS application, you will probably need to refer to the appendixes again to
help you code. At that point, you can refer to the third chapter of this book,
“Chapter 3. SQL Programming Language Reference Summary” on page 257 for
reference information on each of the SQL statements that you learned.

Writing your program consists of a series of steps or tasks. This book is organized
according to these tasks.

Designing the Program 7

1. The first step is designing your program, or determining what you want the
program to do. This also includes choosing the type of application and
developing the structure or framework of the program. This information is
covered in the “‘Designing the Program” sections of both Chapters 1 and 2.
Chapter 1 contains basic information; Chapter 2 is for advanced programmers.

2. The second step is coding your SQL program. This consists of using the SQL
statements and tools to access and work with SQL/DS data, according to the
purpose set forth in your design. The second section of both Chapters 1 and 2
presents the various SQL statements and tells you how to use them.

3. The third step in developing your program is to get it ready to be run. This
includes:)

a. Preprocessing the SQL code using one of the SQL /DS preprocessors

b. Compiling the code using the compiler of your host language to produce an
object program

c. Loading the object program to be run
d. Executing the program to carry out operations on the tables.

The ““Preprocessing and Running the Program” sections of both Chapters 1
and 2 tell you how to get your program ready to be run.

4. The fourth step is to debug the program. This involves testing for errors that
may become apparent during preprocessing, compiling, loading or during
execution. The “Testing and Debugging Concerns” sections help you with this
task.

5. Finally, you must act as an administrator. You must control who can run your
program and who can use the data that your program accesses. You may have
to create your own data. You may need information about your data tables,
such as who first created them, or who else can access them. All this
information is in the “Putting the Program into Production” sections.

Also, once you have mastered the SQL language, you will probably need reminders
on the syntax or parameters of an SQL statement. The third chapter of this book is
written for this purpose.

Introduction to a Framework for Coding Programs

You can think of an SQL/DS application program as containing three main parts:
the prolog, the body and the epilog. You must place certain SQL statements at the
beginning and end of the program to handle the transition from the host language
to the embedded SQL statements. For instance, your program must establish a
connection to SQL/DS before the SQL statements can access data. Similarly, your
program must also release this connection after it is done using the data base.

Also, every SQL /DS application must provide for error handling. Statements to do
these things are put in the application prolog and the application epilog.

8 SQL/Data System Application Programming for VM/SP

Sample Tables

The application prolog should be at the beginning of every SQL program. In the
prolog, you must place SQL statements that do the following:

« Provide for error handling by setting up a communications area.

o Declare special variables (host variables) that SQL /DS uses to interact with
the host program. Host variables are really just normal host program variables
that are used in SQL statements. The only difference is that when they are
coded in an SQL statement, these variables must be preceded by a colon (:).
But they work just like regular program variables.

« Establish a connection between your program and SQL/DS.

The statements that do these things are described in ‘“Designing the Program,”
Chapter 2.

The application body is where you place the SQL statements that operate on
SQL /DS tables. These statements are covered in the “Coding the Program”
sections of this book.

The application epilog is at the end of every SQL application program. It must
contain SQL statements that:

o Tell SQL/DS what to do with changes made to data. Changes can either be
saved (“committed”) or ignored (‘‘rolled back”).

o Release the program’s connection to SQL/DS.

Again, the statements that do these things are detailed in the advanced version of
this section, ‘‘Designing the Program,” Chapter 2.

The foldout at the end of the book contains a set of tables. These tables are used
in an inventory control application for a small manufacturing company. They are
used throughout the book for SQL statement examples.

The INVENTORY table lists the part number, description, and quantity on hand of
each part in the inventory. The SUPPLIERS table lists the supplier number, name,
and address of the various companies that supply parts. The QUOTATIONS table
lists the part numbers that can be obtained from each supplier, together with the
current price and delivery time (in days) promised by the supplier for the given
part. The QUOTATIONS table also lists the quantity on order for each part from
a given supplier.

Next to the INVENTORY table is a list of all the columns with their corresponding
SQL/DS data types. Examples in subsequent chapters refer to these data types.

Designing the Program 9

10 SQL/Data System Application Programming for VM/SP

(\

Coding the Program

Contents

This section tells you how to code data retrieval (SELECT) statements and data
manipulation (INSERT, DELETE, and UPDATE) statements in SQL. This
section also shows you some other things that you can use in SQL statements, such
as constants, host variables, and built-in functions.

SeCtionN QUIZ v it e e 12
Answers to the SectionQuiz i i, 13
Introduction to SQL Program Coding 14
Retrieving One Row of Data from a Table: SELECT /INTO 14
SELECT Clause: Expressing Desired Results 15
INTO Clause: Returninga Single Row 17
FROM Clause: Specifyinga Table Name 18
WHERE Clause: Searching on Conditions 19
Retrieving or Inserting Data withaCursor 19
DECLARE CURSOR Statementccuttiimmuuennnenn. 22
OPEN Statementc.iiiiuerennneeernneeeennneeeninns 23
FETCH Statementc.cuuutiuuintrreneeenneeeneannn 23
PUT Statementiiiiiiiiiiineiniieeeeeeneennn 25
CLOSE Statementuvuiutmteeneennenenneenaeeneenns 26
Predicates ittt e e e e e 27
Host Variablesand Constants iiiiure.... 28
Using Expressions as Search Conditions 30
Built-In Functionst 31
Putting a New Row into a Table: INSERT 34
Deleting Data from a Table: DELETE 36
Changing Datain a Table: UPDATE0 iiiirenn.. 37

Coding the Program 11

Section Quiz

The following questions cover the high points of “Coding the Program.” If you can
answer all of these questions, you probably do not need to read this section. If you
decide to skip ahead, proceed to ‘‘Preprocessing and Running the Program” on
page 41. If you have trouble answering these questions, you should read the whole
section.

1.

Write an SQL statement that would retrieve the part number and price from
the QUOTATIONS table for all the parts supplied by supplier number 54.

You should use the DECLARE CURSOR format since more than one row will
be returned. Choose your own cursor name. (Refer to the sample tables in the
foldout in the back of the book.)

Write an SQL statement that would retrieve the part number, price and
delivery time from the QUOTATIONS table where the supplier number is 53
and the part number is 232. Unless you are a FORTRAN coder, you should
use the SELECT / INTO format with this one, since only one row will be
returned. If you use FORTRAN, you should answer with the DECLLARE
cursor format. Make up your own names for the host variables or cursor.

Suppose you just coded the following DECLARE CURSOR statement:

DECLARE CCC CURSOR FOR
SELECT SUPPNO, PARTNO
FROM QUOTATIONS

WHERE PRICE > 10.00
ORDER BY PRICE

Write three statements that will first open the cursor, then put the first row of
the active set into host variables SUPP and PART, and then close the cursor
once again. You do not need to begin your statements with EXEC SQL for
this exercise.

Write an SQL statement that will find the amount you will have to pay supplier
number 53 when part number 222 arrives. Include a 7% sales tax.

Write a statement that finds the difference between the maximum and the
minimum price for part number 221. Name the cursor anything you like.

Write an SQL statement that would delete all the rows from the INVENTORY
table that have a part number greater than 270.

Write a statement that would put a new row into the INVENTORY table. Let
the new row describe a part number 252 that has a description of LEVER and
a quantity on hand of 25.

Write a statement that would change the address of SKY PARTS to 310
SATURN ST., MILKYWAY NY.

12 SQL/Data System Application Programming for VM/SP

L Answers to the Section Quiz

DECLARE C1 CURSOR FOR
SELECT PARTNO, PRICE
FROM QUOTATIONS

WHERE SUPPNO = 54

SELECT PARTNO, PRICE, DELIVERY TIME
INTO :PART, :PRI, :DEL

FROM QUOTATIONS

WHERE SUPPNO=53 AND PARTNO=232

or

DECLARE C2 CURSOR FOR

SELECT PARTNO, PRICE, DELIVERY_TIME
FROM QUOTATIONS

WHERE SUPPNO=53 AND PARTNO=232

OPEN CCC
FETCH CCC INTO :SUPP, :PART
CLOSE CccC

SELECT QONORDER*PRICE + QONORDER*PRICE#*.07
INTO :COST

FROM QUOTATIONS

WHERE SUPPNO=53 AND PARTNO=222

or

DECLARE C3 CURSOR FOR

SELECT QONORDER*PRICE + QONORDER*PRICE*.,07
FROM QUOTATIONS

WHERE SUPPNO=53 AND PARTNO=222

SELECT MAX (PRICE)-MIN (PRICE)
INTO :RANGE

FROM QUOTATIONS

WHERE PARTNO=221

or

DECLARE C4 CURSOR FOR
SELECT MAX (PRICE)-MIN(PRICE)
FROM QUOTATIONS

WHERE PARTNO=221

DELETE FROM INVENTORY
WHERE PARTNO > 270

INSERT INTO INVENTORY
VALUES (252, 'LEVER', 25)

UPDATE SUPPLIERS
SET ADDRESS = '310 SATURN ST., MILKYWAY NY'
WHERE NAME = 'SKY PARTS'’

Coding the Program

13

Introduction to SQL Program Coding

Application programmers using SQL /DS have some very useful statements for
retrieving and manipulating data at their disposal. As mentioned earlier, the coding
task in the SQL/DS application program consists of embedding these statements
into the host language code. The delimiters for SQL statements differ for each host
language. In each language, SQL statements are prefixed by “EXEC SQL”. But,
in COBOL, the end of the command is denoted by “END-EXEC”, while in PL/I,
the usual semi-colon (;) is used. There is no trailing delimiter for Assembler or
FORTRAN. Examples of the general form of embedded SQL commands are
shown in the following chart for each host language:

Host Language Format of Embedded Statement
COBOL EXEC SQL sql-statement END-EXEC
PL/I EXEC SQL sql-statement;

Assembler EXEC SQL sql-statement

FORTRAN EXEC SQL sql-statement

Figure 2. Form of Embedded SQL Statements

The exact rules of placement, continuation and delimiting of SQL statements are in
the host language appendixes. This section, ‘‘Coding the SQL Program,” contains
explanations of how to code SQL /DS data retrieval and manipulation commands
for one or more rows of data from an SQL/DS table, without going into the details
of the different host languages.

One of the most common things an SQL application programmer must do is
retrieve data from the data base. In SQL, this is achieved through the use of the
SELECT statement. The SELECT statement is a form of query. It searches the
SQL /DS data base to see if any rows of any tables in the data base meet search
conditions specified in the SELECT statement. If any such rows exist, the data is
retrieved from the data base and put into specified variables in the host program.
Then the program can use this data for whatever it was designed to do.

There are two types of SELECT statements. The first, the SELECT/INTO
version, is used to retrieve only a single row of data from the data base. The
second, the DECLARE cursor version, is used to retrieve more than one row of
data. The SELECT/INTO statement cannot be used in FORTRAN programs.
Instead, for FORTRAN, the DECLARE cursor version is used to retrieve one or
more rows of data.

Retrieving One Row of Data from a Table: SELECT / INTO

The SELECT statement for retrieving one row of data is made up of four clauses:
the SELECT clause, the INTO clause, the FROM clause and the WHERE clause.
You must specify the clauses in that order.

14 SQL/Data System Application Programming for VM/SP

SELECT select-list

INTO one-or-more-host-variables
FROM table-name

[WHERE search-condition]

Figure 3. Format of the SELECT Statement

Note: Remember that the SELECT / INTO statement cannot be used in
FORTRAN programs. Instead, you must use a cursor to retrieve data from one or
more rows in a table. Cursors (the DECLARE CURSOR statement) are described
under “Retrieving or Inserting Data with a Cursor” on page 19.

The SELECT / INTO statement finds one row of the table specified in the FROM
clause that satisfies the given search condition. From this row SQL/DS selects the
columns that you have supplied in the select-list. The results are delivered into the
host variables that you have listed in the INTO clause. For example, the following
statement selects the part number, description, and quantity on hand from the
INVENTORY table where the description of the part is ‘BOLT’. It places the
result into the host variables PART, DESC, and QUANT:

SELECT PARTNO, DESCRIPTION, QONHAND
INTO :PART, :DESC, :QUANT

FROM INVENTORY

WHERE DESCRIPTION = 'BOLT'

The SELECT, INTO and FROM clauses are required for every SELECT statement
that you code. The WHERE clause is the only one of the four that is optional. If
you do not supply a WHERE clause, all rows of the table qualify.

Now let’s take a look at each of the four SELECT statement clauses in more detail.

SELECT Clause: Expressing Desired Results

SELECT select-list

INTO one-or-more-host-variables
FROM table-name

[WHERE search-condition]

The SELECT clause is the first part of a SELECT statement. It consists of the
keyword SELECT followed by a select-list.

The select-list is made up of one or more column names or expressions separated
by commas. (Expressions will be expiained in detail under section ‘‘Using

Expressions as Search Conditions’ on page 30.)

The following are examples of select-lists that might occur in queries to the
example tables in the foldout:

Coding the Program 15

SELECT DESCRIPTION, QONHAND
SELECT QONHAND - :X, PARTNO
SELECT DELIVERY_TIME + 10
SELECT 250

SELECT PRICE * .85

If you specify DISTINCT immediately after the word SELECT, SQL/DS
eliminates duplicates from the query-result. (You can use DISTINCT only once in
any query.) For example, the SELECT clause below returns the set of different
supplier numbers in the rows that satisfy the search condition.

SELECT DISTINCT SUPPNO

SUPPNO
55 < SQL/DS returns
55 < only one of these.
56
57

Similarly, the following SELECT clause returns the set of different pairs of supplier
numbers and part numbers from rows that satisfy the search condition.

SELECT DISTINCT SUPPNO, PARTNO

SUPPNO PARTNO

55
55
55
55

206
207
207
208

<e—| SQL/DS returns
<—| only one of
these.

ALL indicates that duplicates are not to be eliminated, and is the default.

SQL provides a special shorthand notation for selecting all the fields of a row:

SELECT *

For example, the following statement returns the entire row from the SUPPLIERS
table for supplier number 51:

SELECT *
INTO :SUPPNO, :NAME, :ADDR
FROM SUPPLIERS WHERE SUPPNO=51

If you specify a constant as a select-list expression, that constant occurs in every
row returned by the query. For example, the following figure shows a query that
returns a constant and all the supplier names.

16 SQL/Data System Application Programming for VM/SP

(%\

C

SELECT 'NAME IS', NAME
FROM SUPPLIERS

are discussed later in

EXPRESSION 1 NAME
NAME 1S DEFECTO PARTS
NAME 1S VESUVIUS, INC.
NAME 1S ATLANTIS CO.
NAME 1S TITANIC PARTS
NAME IS EAGLE HARDWARE
NAME IS SKY PARTS
NAME 1S KNIGHT LTD.

Note: Remember that the SELECT/INTO version of the SELECT statement can only be used to
retrieve a single row of data from the data base. Since the above statement returns more than
one row, you would have to declare a cursor to retrieve these rows to your program. Cursors

this section.

Note the difference between constants and SQL identifiers in select-lists. An
alphabetic constant (such as ‘NAME IS’ in the above example) is always enclosed
within single quotes (') when used in an SQL statement. A numeric constant does
not have to be enclosed within single quotes. An SQL identifier must be enclosed
within double quotes (') when it contains blanks or special symbols (such as
“SALARY COLUMN?”). See ‘““General Rules for Naming Data Objects’” on

page 74 for additional information.

INTO Clause: Returning a Single Row

SELECT select-list

INTO one-or-more-host-variables
FROM table-name

[WHERE search-condition]

Note: The INTO clause is not supported for FORTRAN. Instead, you must use a
cursor to fetch the row.

You can think of the result of a SELECT statement as a table having rows and
columns, much like a table in the data base. If the SELECT statement returns only
one row, SQL/DS delivers the results directly into the host variables specified in
the INTO clause. If the SELECT statement returns more than one row, you must
use a cursor to fetch the rows one at a time. Cursors are described under
“Retrieving or Inserting Data with a Cursor” on page 19. For the remainder of
this section, assume that the SELECT statement returns a single row. The
following are several examples of this type of SELECT statement:

SELECT ADDRESS

INTO :X

FROM SUPPLIERS

WHERE NAME='EAGLE HARDWARE'

Coding the Program 17

SELECT QONHAND + 100
INTO :Q

FROM INVENTORY
WHERE PARTNO = 221

SELECT PRICE, DELIVERY_TIME
INTO :P, :D

FROM QUOTATIONS

WHERE SUPPNO=:X AND PARTNO=:Y

If the number of expressions in the select-list is not equal to the number of main
host variables provided in the INTO clause, a warning flag (called SQLWARN3) in
the SQLCA is set to ‘W’. (See “Error Handling”’ on page 202 for a description of
the SQLCA.) The number of values returned is either the number of expressions
in the select-list or the number of host variables in the INTO clause (whichever is
smaller).

The host variables in the INTO clause must be compatible with the expressions in
the select-list. Integers, small integers, decimal numbers, and floating point
numbers are compatible; fixed-length, varying-length, and LONG VARCHAR
character strings are compatible; and fixed-length, varying-length, and LONG
VARGRAPHIC DBCS character strings are compatible.

Just before delivering each selected item into its associated host variable, SQL/DS
converts the selected item (if necessary) to the data type of the host variable.
Conversion from decimal or floating point to integer is done by truncation (for
example, 2.75 is truncated to 2). Whenever a floating point number is converted to
decimal, the decimal number acquires a precision of 15 and the maximum scale that
allows the integer part of the number to be represented without loss of either
significance or accuracy. Any necessary truncation is toward zero; that is, all losses
are on the right.

If the data value is too large for successful conversion (as when a decimal value is
larger than the largest representable integer), SQL/DS indicates a conversion error
by returning a negative SQLCODE in the SQLCA. When a conversion error
occurs, the contents of the host variable are unpredictable. Thus, if you are doing
your own error handling, you should always check SQLCODE after executing a
SELECT statement. When a decimal number is assigned to a decimal variable, the
number is converted, if necessary, to the precision and scale of the target.
SQL/DS data conversion is summarized under ‘“Data Conversion” on page 76.

FROM Clause: Specifying a Table Name

SELECT select-list

INTO one-or-more-host-variables
FROM table-name

[WHERE search-condition]

Use the FROM clause to specify the name of the table from which you want to
retrieve data. If the table is owned by another user, you can access it, if you are so
authorized, by concatenating with a period the userid of the owner of the table to

18 SQL/Data System Application Programming for VM/SP

(*-\

the table-name itself. For example, to specify table SUPPLIERS owned by user
SMITH:

FROM SMITH.SUPPLIERS
Because any number of users can define a table with the same name, it is strongly

recommended that you always use fully qualified table names. This avoids
confusion if you are writing a program that someone else will preprocess.

WHERE Clause: Searching on Conditions

SELECT select-list

INTO one-or-more-host-variables
FROM table—-name

[WHERE search-condition]

The WHERE clause is the place to specify your search conditions. If you don’t
specify a WHERE clause, all the rows of the table are used to compute the
expressions in the select-list. Here are some examples of WHERE clauses:

WHERE ITEM = :X

WHERE QONORDER < :R1
AND :FLAG = O

If more than one row satisfies the search condition in a SELECT / INTO
statement, an error condition occurs and no rows are returned.

For more information on search conditions, see ‘“More About Search Conditions”
on page 99.

Retrieving or Inserting Data with a Cursor

The previous section showed how to use a SELECT statement in COBOL, PL/I,
and Assembler language programs to retrieve certain fields from a single row of a
table. In FORTRAN programs, an SQL/DS cursor must be used to retrieve data
from one or more rows of a table. In COBOL, PL/I and Assembler language,
cursors must be used for queries that could return more than one row of a table.

A cursor, in general terms, is a pointer to the data base. SQL /DS cursors should
not be confused with the cursors found on display terminals.

The SQL DECLARE CURSOR statement defines a cursor by associating a name
of your own choosing with a query. The query may return many rows from the

data base. The rows of the result are called the active set of the cursor.

A cursor can be in an open state or a closed state. When the cursor is in the open
state, it maintains a position in its active set in one of three places:

Coding the Program 19

1. On a certain row (called the current row);
2. Between two rows; or
3. Before the first row.

Once you have defined a cursor, you can manipulate it using the following
statements:

OPEN If the cursor is a query-cursor (a cursor defined in terms of a SELECT
statement), the OPEN statement examines the contents of the host
variables, if any, in the WHERE clause of the query associated with
the cursor. The host variables of the WHERE clause are called input
host variables because they furnish information needed in the
processing of the query. By evaluating the input host variables, the
OPEN statement determines the set of rows that satisfy the query.

The cursor is placed in the open state and its active set becomes the
set of rows that satisfy the WHERE clause. However, none of these
rows is actually retrieved from the data base yet (this is done by
FETCH). The cursor is placed just before the first row of the active
set. Once you have opened a cursor, the input host variables are not
re-examined (and hence no change occurs to the contents of the active
set) until you close and re-open the cursor.

If the cursor is defined in terms of an INSERT statement, and your
program is blocking, the OPEN statement tells SQL /DS to prepare to
block. (Blocking is discussed in detail under “To Block or Not to
Block?”” on page 254.) Even if your program is not blocking, you
should still OPEN and CLOSE every cursor, including insert-cursors.

FETCH Advances the position of the cursor to the next row of its active set
and delivers the selected fields of that row into the output host
variables. The output host variables are designated in the FETCH
statement. (No INTO clause is used in the SELECT statement
associated with the cursor.) When there are no rows remaining to be
fetched in the active set, SQL/DS returns the “not found’’ result code
(SQLCODE=100).

PUT If your program is blocking, the PUT statement inserts the contents of
the input host variables into the insert-block. The input host variables
are defined in the VALUES clause of the DECLARE CURSOR
statement. After the PUT statement is executed, you can redefine the
input host variables to add another row to the insert-block. Rows are
not inserted into the data base until the block is full, or until a CLOSE
statement is issued. If blocking is not in effect, the PUT statement
simply inserts one row of data directly into a table as determined by
the insert-cursor.

DELETE Deletes one row of a table determined by the current position of the
cursor in the active set. This statement does not directly affect the
position of the cursor, but because the row it was positioned on is
deleted, the cursor is left in the between position. The cursor cannot

20 SQL/Data System Application Programming for VM/SP

be used for further deletions or updates until it is repositioned by a
FETCH statement.

UPDATE Updates one row of a table determined by the current position of the
cursor in the active set. This statement does not affect the position of
the cursor.

CLOSE Closes the cursor; the active set of the cursor becomes undefined. No
FETCH or PUT statements can be issued against the cursor until it is
re-opened. Note that both the COMMIT WORK and ROLLBACK
work statements automatically close all cursors. It is recommended,
however, that you always explicitly close all cursors when they are no
longer needed.

Figure 4, which is a pseudo code program fragment, illustrates the use of a cursor
named C1. Cl1 finds the part numbers and prices of all the rows of the
QUOTATIONS table whose supplier number matches host variable SUPP.
FETCH statements retrieve the selected fields successively into host variables
PART and PRICE. Once retrieved, the results are displayed on the console.

SUPP = 51 <---- Initialize SUPP (the input host variable).
EXEC SQL DECLARE C1 CURSOR FOR
SELECT PARTNO, PRICE ---- Declare cursor
FROM QUOTATIONS WHERE SUPPNO=:SUPP C1.
ORDER BY PARTNO
EXEC SQL OPEN C1 <======—- Open the cursor.
EXEC SQL FETCH C1 INTO :PART, :PRICE
DO WHILE (SQLCODE=0) Fetch the next row of the
DISPLAY (PART, PRICE) active set into the output
EXEC SQL FETCH C1 INTO :PART, :PRICE <-- host variables and display
END-DO them.
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1 <--- When the active set is empty,
close the cursor.

Figure 4. Using a Cursor

Recall that SQLCODE is set to 100 when there are no rows remaining to be
fetched.

The formats of the statements for cursor management, and the details of their use,
are described below.

Coding the Program 21

DECLARE CURSOR Statement

Format I:

DECLARE cursor-name CURSOR FOR select-statement

ORDER BY o-spec [ASC|DESC] [, o-spec [ASCIDESC]] ...
FOR UPDATE OF column-name-1 [, column-name-2] ..
Format 2:

DECLARE cursor-name CURSOR FOR insert-statement

Example (Format 1):

DECLARE C1 CURSOR FOR SELECT PARTNO, PRICE
FROM QUOTATIONS WHERE SUPPNO=:SUPP
ORDER BY PARTNO

Example (Format 2):

DECLARE C2 CURSOR FOR INSERT INTO INVENTORY
(PARTNO, DESCRIPTION, QONHAND)
VALUES (:PART, :DESC, :QUAN)

Authorization:

Anyone connected to SQL/DS can issue this statement. You must, however, be authorized to access
the tables referenced in the SELECT or INSERT statement. (See the statement authorization
descriptions for these statements.)

This statement defines a cursor by associating a cursor-name with the specified

select-statement or insert-statement. Cursor names must be unique in a logical unit
of work. The DECLARE CURSOR statement should not be confused with a host
variable declaration. The SQL DECLARE CURSOR statement should never be

placed within the host variable declare section.

A cursor-name must begin with a letter, $, #, or @. It can contain up to 18 letters,

$, #, @, underscores, and numbers. Unlike other SQL identifiers, cursor names

must never be enclosed in either single (') or double (") quotes; thus, cursor names
cannot contain embedded blanks. Cursor names can, however, be SQL reserved

words. For example:

DECLARE DELETE CURSOR FOR SELECT PARTNO FROM INVENTORY

Note that the cursor name above (DELETE) is nor enclosed in double quotes. If

you refer to such a cursor name in an UPDATE statement, however, you must
enclose the cursor name in double quotes. (See Format 2 of the UPDATE
statement in the next chapter.)

22 SQL/Data System Application Programming for VM/SP

C

OPEN Statement

The select-statement or insert-statement is actually a part of the DECLARE
CURSOR statement, so you must not precede SELECT or INSERT with EXEC
SQL. (However, EXEC SQL is placed in front of the DECLARE.)

Format:

OPEN cursor—name

Example:

OPEN C1

FETCH Statement

If you are opening a query-cursor, this statement examines the input host variables
(if any) used in the definition of the cursor, determines the active set for the cursor,
and leaves it in the open state, as described earlier. When SQL /DS executes an
OPEN statement for a query-cursor, it positions the cursor before the first row of
the active set. After the query-cursor is opened, SQL/DS does not re-examine its
input variables until you close and re-open the cursor. No rows in the active set are
actually fetched to the host program until a FETCH statement is executed.

If you are opening an insert-cursor and your program is blocking, this statement
simply tells SQL/DS to prepare to block the rows that are to be inserted. With an
insert-cursor, you can change the values of the input host variables between inserts.
That is, you do not have to close and re-open the cursor in order to change the
values to be inserted. Even if your program is not blocking, you should OPEN and
CLOSE every insert-cursor.

Additional uses of the OPEN statement are described under ‘‘Dynamically Defined
Statements” on page 147.

Format:

FETCH cursor-name INTO host-list

Example:

FETCH C1 INTO :NAME,

:ADDR, :PHONE:PHONI

The FETCH statement can be executed only when the indicated cursor is in the
open state. The position of the cursor is advanced to the next row of the active set,
and the selected fields of this row are delivered into the output host variables

Coding the Program 23

specified in the host-list. Output host variables in this list must be separated by
commas, and must be immediately preceded by colons.

If the active set of the cursor is empty, or if all its rows have already been fetched,
SQL /DS returns the “not found”” SQL code (SQLCODE=100). To perform
further operations via the cursor, you must close and re-open it.

Notice that the INTO clause on this statement is not optional; you must specify the
output host variables in the FETCH statement, not in the cursor declaration. For
example, the following is an invalid construction:

DECLARE QUERY1 CURSOR FOR

SELECT SUPPNO, PRICE*1.10

INTO :SUPP, :NEWPR e
FROM QUOTATIONS
WHERE PARTNO = 221

Invalid. You should
OPEN QUERY1 not use an INTO clause
FETCH QUERY1 in a cursor declaration.

This is the correct way to specify the output host variables:

DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PRICE*1.10
FROM QUOTATIONS

WHERE PARTNO = 221

OPEN QUERY1 Correct. The values
FETCH QUERY1 INTO :S1, :P1 == are returned in these
host variables.

A cursor can move “forward’ only when in its active set; SQL/DS provides no
facilities for returning to rows that have already been fetched (other than closing
the cursor and re-opening it).

It is possible for two or more rows in the active set to have exactly the same values.
(For example, many rows of the QUOTATIONS table may have the same
PARTNO, and you might define a cursor that selects only PARTNO from the
table.) These duplicate values are not eliminated from the active set unless you
specify DISTINCT in the SELECT clause of the DECLARE CURSOR statement.

You can use indicator variables in the INTO clause. In the above example,
:PHONE:PHONI is a host variable (:PHONE) with an associated indicator
variable (:PHONI). (See “Indicator Variables” on page 146 for a complete
description.) Where nulls are applicable for a column, the value that SQL/DS
returns in an indicator variable is coded as follows:

0 Denotes that the returned value is not null, and has been placed in the
associated main variable.

<0 Denotes that the returned value is null. The main variable should be ignored.

24 SQL/Data System Application Programming for VM/SP

e

PUT Statement

>0 Denotes that the returned value was truncated because the main variable was
not of sufficient length.

In addition, if the truncated item was a DBCS or a character string, the
indicator variable contains the length in characters before truncation. The
SQLWARNI1 warning flag in the SQLCA is set to ‘W’ whenever a returned
character string is truncated. (See ‘“‘Error Handling’ on page 202 for a
description of the SQLCA..)

Each main variable in the INTO clause may or may not have an associated
indicator variable, at your option. If a null value is returned, and you haven’t
provided an indicator variable, a negative SQLCODE is returned to your program.
If your data is truncated and there is no indicator variable, no error condition
results.

Note that both the COMMIT WORK and ROLLBACK WORK statements
automatically close all cursors.

When blocking is in effect, after a block of rows have been successfully retrieved
from the data base, the variable SQLERRD(3) in the SQLCA indicates the number
of rows retrieved. When blocking is not in effect, SQLERRD(3) is set to 1 after
each successful FETCH. If the returned SQLCODE is non-zero, indicating
unsuccessful completion of the statement, the content of SQLERRD(3) is
unpredictable.

Additional uses of FETCH are discussed under ‘‘Dynamically Defined Statements”
on page 147.

Format:

PUT cursor-name

Example:

PUT C1

The PUT statement inserts one row of data into a table as defined by a cursor.
This cursor must be defined in terms of an INSERT statement. The contents of
input host variables (defined in the INSERT clause of the DECLARE CURSOR
statement) are delivered to SQL/DS. These values are placed in the columns of
the table that you specified.

For instance, the following statements insert a new row of data into the
QUOTATIONS table. The values represented by the host variables :SUPP and
:PART are placed in the SUPPNO and PARTNO columns of the new row. The
other columns are assigned the null value.

Coding the Program 25

CLOSE Statement

DECLARE CC CURSOR FOR
INSERT INTO QUOTATIONS (SUPPNO, PARTNO)
VALUES (:SUPP, :PART)

OPEN CC
PUT CC

If you wish to, you can place constants in the VALUES clause of the DECLARE
CURSOR statement, instead of host variables. However, this causes identical rows
to be inserted for each PUT.

The PUT statement is used mostly for inserting multiple rows of data into a table in
groups or blocks. However, the PUT statement also works with non-blocked
inserts. Blocked inserts are specified with the BLOCK preprocessor parameter. If
blocking is in effect, rows are not inserted into the data base until the block is full,
or until a CLOSE statement is issued. For more information on blocking, see “To
Block or Not to Block?” on page 254. For information on how to preprocess your
program with the BLOCK option specified, see ‘“Preprocessing the Program’ on
page 187.

The PUT statement can be executed only when the indicated cursor is in the OPEN
state, otherwise SQL/DS returns a negative SQLCODE. Note that both the
COMMIT WORK and ROLLBACK WORK statements automatically close all
CUrsors.

After a block of rows have been successfully inserted using PUT statements, the
variable SQLERRD(3) in the SQLCA indicates the number of rows inserted.
When blocking is not in effect, SQLERRD(3) is set to 1 after each successful PUT.
If the returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Additional uses of the PUT statement are discussed under ‘“PUT Statement for
Dynamically Defined Inserts™ on page 181.

Format:

CLOSE cursor—name

Example:

CLOSE C1

The indicated cursor leaves the open state, and its active set becomes undefined.
No FETCH or PUT statement can be executed on the cursor, and no DELETE or
UPDATE statement can refer to its current position, until the cursor is reopened by
an OPEN statement. CLOSE permits SQL /DS to release the resources associated
with maintaining an open cursor. CLOSE should be placed in your program so that
it is executed as soon as the program is finished using a cursor.

26 SQL/Data System Application Programming for VM/SP

(F‘\

Predicates

If your program is blocking, closing an insert-cursor with an incomplete block will
normally insert the remaining rows into the data base. Closing a query-cursor in
this case will return the remaining rows in the incomplete block to the program.

It is recommended that you explicitly close all cursors before issuing a COMMIT
WORK, especially when blocking.

One of the most common operations in SQL. is to search through a table, choosing
certain rows for processing. A search condition is the criterion for choosing rows.

A search condition is a collection of one or more predicates. Each predicate
specifies a test that SQL /DS applies to the rows of the table. You can connect
predicates with the logical operators AND and OR. For example:

predicatel AND predicate2 OR predicate3

The keyword NOT can be used to negate a predicate:

predicatel AND NOT predicate2

The precedence rule among the keywords is as follows: first NOT is applied,
followed by AND, followed by OR. You can use parentheses to override this
precedence rule if necessary. For example, the search condition in Figure 5
contains three predicates; it could be used to find the rows of the QUOTATIONS
table pertaining to supplier number 61 and part number 221 or 222:

Search Condition:

SUPPNO = 61 AND (PARTNO = 221 OR PARTNO = 222)

L Predicate 3
> Predicate 2
> Predicate 1

Predicate 1:

SUPPNO = 61

| _I————-> expression
> comparison operator

> expression

Figure 5. Breakdown of Search Conditions and Predicates

Figure 5 also shows that the format of a predicate is a comparison between two
values or expressions. This format is represented as follows:

expression comparison-operator expression

A comparison-operator may be any of the following:

Coding the Program 27

= "equal to" .

-= "not equal to"

> "greatexr than"

>= "greater than or equal to"
< "less than”

<= "less than or equal to"

The above symbols are the only comparison operators that you can use in SQL/DS
statements. For example, SQL/DS does not recognize ‘‘#”’ even if supported in
the host language. The correct representation of inequality is “~=."

Host Variables and Constants

You know that a host variable is just a normal program variable by which SQL/DS
interacts with the host program. You also know that they can be coded in the
INTO clauses of SELECT statements or in the FETCH statements associated with
cursors, in order to receive values selected from SQL /DS tables. But there are
other places that you can use host variables. You can use them in WHERE clauses,
for instance:

DECLARE C CURSOR FOR

SELECT SUPPNO

FROM QUOTATIONS

WHERE PRICE < :PRLIM AND PARTNO = :PART

You can also use them in other types of statements. For example, in a DELETE
statement:

DELETE FROM QUOTATIONS
WHERE PARTNO = :XXX

(DELETE statements are discussed later in this chapter.)

When would you use the DECLARE CURSOR example above? Suppose that you
had a list of part numbers and a corresponding list of the upper limits on prices that
your company wants to pay for each part. Then you wanted to know which
suppliers sell this part at a reasonable price. You could code the above statement
in a loop which changes the part number and price limit on each pass. Then, for
each pass through the loop, you would have a list of the supplier numbers that sell
that part below your price limit.

Constants (also called literals or literal constants) can be numeric or character data.
They are fixed values that can be coded into SQL statements. Like host variables,
they are used in the SELECT and WHERE clauses of the SELECT and
DECLARE CURSOR statements.

Numeric data can be integer, decimal or floating point data. Integer constants
consist of a number with an optional sign, such as -56, 103, or +786. (If you do
not include a sign, SQL/DS assumes that the number is positive.) Decimal data
consists of a number with a decimal point, such as 78.9687, -.00132, 64570., or
+1672.80. If you do not supply a decimal point, SQL /DS interprets the constant
as an integer. A floating point number is an integer or a decimal constant followed
by an exponent marked by the letter E. E must be followed by an exponent. EQ is

28 SQL/Data System Application Programming for VM/SP

acceptable and evaluates to 1. All these are permissible floating point constants:
-2ES, 2.2E-1, .2E6, +5E+2 or 4EO.

Character string constants are strings of letters or numbers, such as ‘SMITH’, ‘52°,
or ‘k@r -5B’. They are considered varying-length character strings by SQL/DS.
(Data types are discussed later in this chapter.) Character string constants must be
put in single quotes when coded in an SQL statement. The following example
shows a character string constant coded in a WHERE clause.

DECLARE C CURSOR FOR

SELECT *

FROM SUPPLIERS

WHERE NAME = 'DEFECTO PARTS'

Numeric constants can also be coded in the WHERE clause.

If you want to represent a single quote inside of a character string constant, use
two single quote marks. SQL/DS interprets the constant:

'DON''T GO'
as:
DON'T GO

Constants, both character and numeric, can also be used in the SELECT clause.
The effect of this is to set up a new column in the resulting display, which has the
specified constant in each of its data fields. For example, the statement:

DECLARE C CURSOR FOR
SELECT NAME, 'WOW', 98.6
FROM SUPPLIERS

WHERE SUPPNO < 60

would have the following active set:

NAME EXPRESSION 1 EXPRESSION 2
DEFECTO PARTS WOW 98.6
VESUVIUS, INC. WOW 98.6
ATLANTIS, CO. WOW 98.6
TITANIC PARTS WOow 98.6
EAGLE HARDWARE WOW 98.6

For more information on constants and data types, see “Data Types” on page 75.
Also see ‘“Additional Types of Constants” on page 99 for a discussion of other
types of constants that you can use within expressions.

Coding the Program 29

Using Expressions as Search Conditions

In addition to column names, constants and host variables, any combination of
these, connected by arithmetic operators, can also be used in SELECT and
WHERE clauses. These are called expressions. An expression can be a column
name, a constant, a host variable, or any arithmetic combination of these.
Expressions allow you to do calculations on data as part of a query. The
calculations are performed before SQL./DS returns the data to your program.

Figure 6 shows a simple expression:

Expression:
(PRICE — :MARKDOWN) * .80

—L> constant

> host variable
> column name

Figure 6. Breakdown of an Expression

There are four arithmetic operators that you can use:
multiplication

division

addition

subtraction

I+ ®

Usually, SQL /DS reads the expression from right to left, first applying any
negations, then any multiplication or division operations, then finally carrying out
additions and subtractions. You can change this order or precedence by using
parentheses, For instance, in the above example, if it were coded

PRICE - :MARKDOWN * .80

SQL/DS would take the value of the host variable MARKDOWN, multiply it by
.80, and then subtract the result from the price. As the statement was originally
coded, SQL /DS first subtracts MARKDOWN from PRICE and then multiplies the
result by .80. The two results would probably end up being quite different.

You can use parentheses in an expression if you want to establish precedence
among the operators. The default precedence rule is: negation is applied first,
followed by multiplication and division, followed by addition and subtraction.

Host variables, as noted earlier, can be used in expressions either alone or in
combination with other things. For instance

: QUANTITY

is a valid expression and so is

PRICE * :QUANTITY + 1.44

30 SQL/Data System Application Programming for VM/SP

As mentioned earlier, you must precede the names of the host variables by a colon
(:) to distinguish them from column names. That is, SQL/DS interprets

: PARTNO

as a host variable, but interprets

PARTNO
as a column name.

Numeric constants can stand alone or be used in arithmetic combination with other
constants or host variables or column names, Thus, all three of the following are
valid expressions:

200 -798.9768 PRICE * :QUANTITY + 1.44

On the other hand, alphabetic constants are only valid as expressions when they
stand alone. They cannot be used in arithmetic combinations. Thus, these are two
valid expressions using character constants:

'PLEASE DON''T EAT THE CANDY' 'BOLT'

whereas this is not a valid expression:

' FUDGE' * ' GUMDROP '+ ' LEMON'

However, character constants can be used in comparisons in WHERE clauses.
Thus,

WHERE NAME <= 'BOLT'

is a legitimate WHERE clause. In the above example, NAME represents a column
name and ‘BOLT”’ is a character constant. Remember that all character constants
must be surrounded by single quotes.

If you attempt to combine, with arithmetic operators, two pieces of data that do not
have compatible data types, SQL/DS will return an error code. All numeric data
types are compatible with each other. SQL/DS performs data conversion on
different types of data that are compatible. See ‘““Data Conversion” on page 76
for more information on data conversion and compatibility.

Built-In Functions

You can also use the SQL/DS Built-In functions in the SELECT and WHERE
clause(s) of SELECT statements. The built-in functions perform handy
calculations for you, and present your program with the results, just like it was
information retrieved from the data base.

SQL/DS has five built-in functions that you can use in expressions in select-lists:

AVG MAX MIN SUM COUNT

Coding the Program 31

b

-

The argument of a built-in function may be a column name (optionally preceded by
DISTINCT or ALL -- ALL is the default), or an expression. The argument follows
the function and must be enclosed in parentheses.

DISTINCT indicates that duplicate values are to be eliminated before the function
is applied. For example,

SELECT COUNT(DISTINCT PARTNO)

computes the number of different part numbers in the rows that satisfy the search
condition. ALL indicates that duplicates are not to be eliminated.

The following are examples of SELECT statements using built-in functions:

SELECT AVG (PRICE)
INTO :MEAN

FROM QUOTATIONS
WHERE PARTNO = 222

SELECT MAX(PRICE) - MIN(PRICE)
INTO :DIFF

FROM QUOTATIONS

WHERE PARTNO = :PART

SELECT MAX (QONHAND+15)
INTO :MAXIMUM
FROM INVENTORY

SELECT MAX(PRICE * :DISCOUNT) -
INTO :MAXDISC
FROM QUOTATIONS

SELECT COUNT (DISTINCT PARTNO)
INTO :NUM
FROM QUOTATIONS

SELECT MIN(PRICE), MAX(PRICE), MAX(PRICE) - MIN(PRICE)
INTO :H, :L, :SPREAD

FROM QUOTATIONS

WHERE PARTNO = 222

A special built-in function, COUNT(*), is also provided to count how many rows
satisfy the search-condition. For example, the following query counts the rows of
the QUOTATIONS table that apply to part number 222:

SELECT COUNT (*)
INTO :N
FROM QUOTATIONS WHERE PARTNO=222

You must follow these rules when using built-in functions:

1. In a select-list, built-in functions cannot be mixed with expressions that do not
contain built-in functions. For example, SELECT PARTNO, AVG(PRICE) is
an error. Exceptions to this rule are permitted in “giouping” type queries,
which are described under ‘“Grouping” on page 113.

-y

2. In computing built-in functions such as AVG, SUM, MAX, and MIN, SQL/DS
ignores null values. However, if SQL/DS encounters nulls in computing a

32 SQL/Data System Application Programming for VM/SP

built-in function, it sets a warning flag (called SQLWARN?2) in the SQLCA.
The function COUNT(*) counts all rows that satisfy the search-condition,
regardless of whether they contain null values.

If a built-in function is computed over an empty set (that is, if no rows satisfy
the search condition), the following value is returned: COUNT returns zero;
AVG, SUM, MAX, and MIN return the null value. (You should have an
indicator variable to handle this condition.)

The built-in functions AVG and SUM can be applied to numeric columns
(INTEGER, SMALLINT, DECIMAL or FLOAT type) only. If the data type
of the operand is DECIMAL or FLOAT, the result of the function is the same
data type as the operand column. If the data type of the operand is INTEGER
or SMALLINT, the data type of the result is INTEGER. (In this case, if the
true average is not an integer, the fractional part is truncated.) If the operand
of SUM or AVG is DECIMAL with precision p and scale s, the result is
precision 15. For SUM, the resulting scale is s. For AVG, the resulting scale
is:

15 - p + s

For example, suppose you average a column having a data type of DECIMAL
(5,2). The precision (p) is 5, and the scale (s) is 2. When SQL/DS averages

the number, the resultant precision is 15 and the scale is (15-5)+2. Thus, the
resultant scale is 12.

The built-in functions MAX and MIN may be applied to columns of any type.
The result of these functions is always the same data type as the argument. If
applied to a column of character-string type, dictionary ordering is used to find
the MAX or MIN. For example:

'A' < 'B'
'A' < 'ABLE'
'z' < '35"
'A1' < 'B'

The built-in function COUNT can be used in only two ways:
a. COUNT(*) returns the number of rows that satisfy the WHERE clause.

b. COUNT(DISTINCT column-name) returns the number of different values
of the given column in those rows that satisfy the WHERE clause. For
example, COUNT(DISTINCT PARTNO) returns the number of different
part numbers.

Note that you cannot apply COUNT to a column uniess you also specify
DISTINCT. For example, COUNT(PARTNO) results in an error. This is
because the number of part numbers including duplicates is equal to the
number of rows that satisfy the WHERE clause, which is correctly expressed
by COUNT(*). The result of COUNT is always an integer. If the host
variable into which the result of COUNT is placed does not have a data type of
INTEGER, SQL/DS attempts to convert the result of COUNT into the data
type of the host variable. (See “Data Conversion” on page 76.)

Coding the Program 33

7. In a select-list, you can use the term DISTINCT only once. DISTINCT can be

used to eliminate duplicates from the query result as a whole (SELECT

DISTINCT PARTNO,PRICE). Alternatively, it can be used to eliminate
duplicates from the argument of a function (SELECT COUNT(DISTINCT
PARTNO)). However, you cannot mix these usages.

8. If you use DISTINCT inside the argument of a function, the argument must be
a simple column name, not an expression. (For example, COUNT(DISTINCT

QONHAND/?2) is not permitted.) Also, a function with DISTINCT in its
argument must stand alone, and cannot be used inside an expression such as
COUNT(DISTINCT PARTNO)+10.

9. Although COUNT(*) includes the number of rows whose values are null,
COUNT(DISTINCT...), AVG, MAX, MIN, and SUM ignore null values.

Putting a New Row into a Table: INSERT

Format 1 INSERT:

INSERT INTO [creator.]table-name [(list-of-column-names)]
VALUES (list-of-data-items)

Examples:

INSERT INTO JONES.INVENTORY (PARTNO,DESCRIPTION,QONHAND)
VALUES (251,'GEAR',:QOH:IND1)
INSERT INTO QUOTATIONS VALUES (:A,:B,:C:CI,:D:DI,:E:EI)
INSERT INTO QUOTATIONS VALUES (68,209,18.00,14,0)
INSERT INTO WEATHER (DATE, LOCATION, TEMPERATURE)
VALUES ('JANUARY 13, 1981','ENDICOTT',-15)

Authorization:

You can insert data into any table you create. You can insert data into another user’s table if you are
given the INSERT privilege on that table, or if you have DBA authority.

Format 1 of the INSERT statement adds a single row of data into an existing table.

The statement consists of two clauses: the INSERT clause and the VALUES
clause. In the INSERT clause, specify the name of a table (table-name) and
(optionally) a list of column names (/ist-of-column-names) that the data is to be

inserted into. In the VALUES clause, place the values that you want added to the

table in the list-of-data-items. Separate each item with a comma.

SQL/DS forms new rows by placing the various data-items into the specified
columns in the order named:

34 SQL/Data System Application Programming for VM/SP

INSERT INTO SUPPLIERS (SUPPNO, NAME)
VALUES (68, 'EAGLE HARDWARE')

In the example above, SQL /DS places 68 in SUPPNO and ‘EAGLE
HARDWARE' in NAME. You do not have to list the column names in the same
sequence that they were named when the table was created. For example, this
statement is equivalent to the previous one:

INSERT INTO SUPPLIERS (NAME, SUPPNO)
VALUES ('EAGLE HARDWARE', 68)

Omitting the list of column names is the same as naming all the columns in the
order that they were named when the table was created. If you do include the list
of column names, all columns of the given table that you do not name receive the
null value. You can also insert null values into a table by using the NULL
keyword:

INSERT INTO INVENTORY
VALUES (291, 'LEVER',NULL)

In the above example, omission of the column-list denotes that all columns
participate; but the last column, QONHAND, receives a null value because of the
NULL keyword in the list of data-items. If you attempt to insert nulls into a
column that does not permit nulls, SQL/DS returns an error code in the SQLCA.

For the list-of-data-items, you can use constant (literal) values such as ‘JOHN
DOE’ or -750. You can also use host variables such as :X or :PART.

The data types of the values to be inserted (source data type) do not necessarily
have to match the data types defined for the columns (target data type). However,
the data types must be compatible, that is, character to character, numeric to
numeric, or DBCS to DBCS. SQL/DS automatically does data conversion on
compatible data types. (See ‘“‘Data Conversion” on page 76 for more
information.)

SQL/DS uses no logical ordering on the rows of 4 table. Therefore, you cannot
specify a ‘“‘position” in the table for the new row. SQL/DS just associates the new
row with the rest of the table. When a SELECT statement is next issued on that
table, SQL/DS determines the row’s position by checking available indexes on the
table and by following sort instructions listed in the SELECT statement. (Indexes
and SELECT sort instructions are discussed in Chapter 2.)

Coding the Program 35

Deleting Data from a Table: DELETE

Formar 1 DELETE:

DELETE FROM [creator.]table-name
[WHERE search-condition]

Examples:

DELETE FROM QUOTATIONS WHERE SUPPNO = 53

DELETE FROM QUOTATIONS WHERE DELIVERY_TIME IS NULL
DELETE FROM QUOTATIONS WHERE PARTNO = :X AND PRICE > :Y
DELETE FROM SCOTT.INVENTORY WHERE DESCRIPTION = 'PISTON'

Authorization:

You can delete rows from any table you create. You can delete rows from another user’s table if you
are given the DELETE privilege on that table, or if you have DBA authority.

You can delete one or more rows of data from a table by using the DELETE
statement. SQL/DS deletes all rows of the named table that satisfy the search
conditions that you specify. For instance, the following example deletes all the
rows in the QUOTATIONS table that have a supplier number of 53.

DELETE FROM QUOTATIONS
WHERE SUPPNO = 53

The DELETE statement has two clauses: the DELETE clause and the WHERE
clause. The DELETE clause consists of the keywords DELETE FROM followed
by the name of the table that you want the rows deleted from. The WHERE clause
is made up of the keyword WHERE followed by a search condition. This WHERE

clause is just like the WHERE clause in the SELECT statement. The
search-condition simply describes the rows that you want SQL /DS to search for

and, in this case, delete. For more information on the WHERE clause and search

conditions, see “WHERE Clause: Searching on Conditions” on page 19.

If you omit the WHERE clause, SQL /DS deletes all the rows from the indicated
table. For instance, the statement

DELETE FROM SUPPLIERS

would delete all the rows from the SUPPLIERS table. The table would still

‘“exist,” but would be empty until you issue a DROP TABLE statement. When this

happens, SQL/DS sets a warning indicator in the SQLCA (SQLWARN4). You

can check this warning indicator to detect unintentional deletions and, if necessary,

you can undo these deletions before they are permanently committed to the data
base. (See “ROLLBACK WORK” on page 233 and “Error Handling” on
page 202 for more information.)

36 SQL/Data System Application Programming for VM/SP

If no rows satisfy the search condition, SQL/DS returns a message
(SQLCODE=100) in the communications area that you declared in your
application prolog. It does not delete any rows.

If SQL/DS detects an error in your DELETE statement after some rows have
already been deleted, SQL/DS stops processing the statement and returns an error
code in the SQLCA.

After successful completion of a DELETE statement, the variable SQLERRD(3) in
the return code structure indicates the number of rows that were deleted. If the
returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Changing Data in a Table: UPDATE

Formar 1 UPDATE:

UPDATE [creator.]table-name

SET column-name-1 = expression-1
[, column-name-2 = expression-2]
[WHERE search-condition]

Example:

UPDATE EMPLOYEES

SET SALARY = 65000.00,
POSITION = 'RETIRED'

WHERE NAME = 'J. B. ROBINSON'

UPDATE SUPPLIERS

SET NAME = :NAM:INAM,
ADDRESS = :ADDR:IADDR

WHERE SUPPNO = :SNO

Authorization:

You can update tables you create. You can update columns in other user’s tables if you are given the
UPDATE privilege on the columns, or if you have DBA authority.

A Format 1 UPDATE statement changes the values of one or more fields in one or
more rows of a table. All rows that satisfy the search condition are updated. For
example, the following statement adds the content of variable X to the
QONORDER field of the row for part number 231 in the QUOTATIONS table:

UPDATE QUOTATIONS
SET QONORDER QONORDER + :X
WHERE PARTNO 231

Coding the Program 37

The UPDATE statement consists of three clauses: the UPDATE clause, the SET
clause and the WHERE clause.

The UPDATE clause contains the name of the table that you wish to update. If
this table belongs to another user, you must concatenate the owner’s userid to the
table name.

The SET clause specifies the changes you wish to make to particular columns of the
chosen row(s). One or more fields in each row have their values replaced by the
value of an expression. An expression can be a constant, a host variable, a column
name, or any combination of three, joined by the arithmetic operators +, -, *, and

/.

The following example sets the PRICE field to 2500.00/ QONORDER and then
sets the QONORDER field to zero of the row for part number 525 in the
QUOTATIONS table:

UPDATE QUOTATIONS
SET PRICE = 2500.00 / QONORDER, QONORDER = 0
WHERE PARTNO = 525

The above example also illustrates the following rule: SQL/DS computes all
update values before any updates become effective. Thus, SQL/DS computes the
new value of PRICE before setting QONORDER to zero, regardless of the order
in which you list the individual updates in the SET clause.

As with the INSERT statement, if data types in the SET clause are compatible but
not identical, SQL/DS applies data conversion. Data conversion rules are
discussed under ‘‘Data Conversion’” on page 76.

The WHERE clause is just like the WHERE clause in a SELECT statement -- it
specifies which rows are to be updated. If you omit the search condition, SQL/DS
updates all the rows in the named table. However, when this happens, SQL/DS
sets a warning indicator in SQLWARN4 of the SQLCA so that you can detect
unintentional updates and, if necessary, undo these changes before they are
permanently committed to the data base. (See ‘ROLLBACK WORK” on

page 234 and “Error Handling” on page 202 for more information.)

If no rows satisfy the search condition, the ‘“not found” code (SQLCODE=100) is
returned in the SQLCA. No rows are updated.

If SQL/DS detects an error in your UPDATE statement after some rows have
been updated (for example, an attempt to update a NOT NULL field to NULL),
SQL /DS stops processing the statement and returns an error code in the SQLCA.

You can set the contents of a field to the null value by writing colump-name =
NULL in the SET clause of an UPDATE statement. You can also set a field’s
contents to null by using an indicator variable. The following example updates the
INVENTORY table and sets the QONHAND field to null for a certain part:

UPDATE INVENTORY

SET DESCRIPTION = 'INACTIVE',
QONHAND = NULL

WHERE PARTNO = 801

38 SQL/Data System Application Programming for VM/SP

<

You can improve the performance of UPDATE statements if you do not update the
same column on which you are searching. Suppose there is a tabie EMP that
contains a column NAME and a column NUMBER. Each name has a unique
person-number. If you want to update the name field, you should code the update
as:

UPDATE EMP SET NAME='new name' <---- Fast
WHERE NUMBER=value

The above statement is much faster than this one:

UPDATE EMP SET NAME='new name' <--—-- Slow
WHERE NAME='old name'

After successful completion of an UPDATE statement, the variable SQLERRD(3)
in the SQLCA indicates the number of updated rows. If the returned SQLCODE
is non-zero, indicating unsuccessful completion of the statement, the content of
SQLERRD(3) is unpredictable.

Coding the Program 39

40 SQL/Data System Application Programming for VM/SP

Preprocessing and Running the Program

Contents

This section gives you an introduction to the steps it takes to prepare and run your
program. It tells you what it means to preprocess, compile, load and run an
SQL/DS application program.

Note: Readers should already know how to compile, load and execute programs in
their host languages. This section, and the corresponding “Preprocessing and
Running the Program” in Chapter 2, only cover the peculiarities of compiling,
loading and executing SQL/DS application programs.

SeCtionN QUIZ ...ttt e e e e e 42
Answers to the Section Quiz i i i, 43
Introduction i e 44
Preprocessing the Program e 44
Compiling the Program i, 45
Link-Editing and Loading the Program 45
Running the Program it 45

Preprocessing and Running the Program 41

Section Quiz

The questions in this quiz cover the high points of this section. If you can answer
most or all of these questions, you probably do not need to read this section. If you
decide to skip ahead, proceed to ‘“Testing and Debugging Concerns” on page 47.
If you have trouble answering these questions, you should read the whole section.

1.

2.

What are the four steps necessary to prepare and run your program?
What are the two things that preprocessing your program does?

TRUE or FALSE: Compiling an SQL /DS application program is no different
than compiling an ordinary program in your host language?

What is an access module?

What is the difference between multiple user mode and single user mode?

42 SQL/Data System Application Programming for VM/SP

s

| &

Answers to the Section Quiz

1. 1. Preprocessing the SQL code, 2. Compiling the program, 3. Link-editing
and loading the program, 4. Running the program.

2. It changes the SQL source code so that it can be processed during host
language compiling and converts the SQL statements into an “access module”
that is stored in the SQL/DS data base.

3. TRUE. However, there are some minor exceptions. See ‘“Preprocessing and
Running the Program” on page 183 for an account of these exceptions.

4. An access module is a machine code version of the SQL requests made by your
program, stored in the SQL /DS data base.

S. Multiple user mode allows one or more users or programs to access the same

data base at the same time. Single user mode only allows one user or program
to access the data base at a time.

Preprocessing and Running the Program 43

Introduction

Once your program is coded, you must get it ready to be run. In SQL, this involves
a series of steps. The number of steps varies depending on the host language of the
program and the environment in which the program is running. There are,
however, four steps that are common in each case. In order to run your SQL
application program you must:

1. Preprocess the SQL code.

2. Compile the program.

3. Link-edit and load the program.
4. Run the program.

Now let’s look at each of these steps in a little more detail.

Preprocessing the Program

Preprocessing your SQL code does two things:

« It changes the SQL source code so that it can be processed during host
language compiling.

» It converts the SQL statements into an “‘access module” that is stored in the
SQL/DS data base.

The preprocessor replaces all the SQL statements in the program with host
language code that invokes the new access module. The new version of the
program also contains the SQL statements in comment form. The access module
contains machine code to carry out the SQL requests made by the program.
SQL /DS chooses the best access path to the data for each SQL command in the
program, basing its choice on available indexes and data statistics that SQL/DS
keeps track of.

When the program is run, the new code calls the module to handle each SQL
command. It also links the program to SQL/DS and translates messages and
commands between the two.

If the preprocessor encounters a severe error in an SQL statement, only syntactical

checking is performed on subsequent SQL statements. It also puts statements in
the preprocessed program which will cause a subsequent compile to fail.

44 SQL/Data System Application Programming for VM/SP

k Compiling the Program

Once you have successfully preprocessed your program, you can compile it using
your normal host language compiler. By preprocessing the program, you have
already done all the translating that the program needed. Just use the new code
that you got after you preprocessed. Compile this code just like you would any
other program, using the usual compilers.

You should know how to compile a program in your host language already. This
book does not cover the specifics of compiling your host-language code. However,
there are a couple of special rules for SQL programs, depending on the host
language, that you must follow. These rules are discussed in ‘“Compiling the
Program” on page 196.

Link-Editing and Loading the Program

After compilation, programs must be link-edited and loaded before they can be
run. To allow your program to communicate with SQL/DS, you must link-edit
your program with one or more SQL/DS TEXT files. One of these TEXT files is
called the resource manager stub. Every SQL/DS application program must be
link-edited with this stub. FORTRAN and COBOL programs need to link-edit
with an additional TEXT file. Also, depending on the nature of your program, you
may have to link-edit with others.

One way to link-edit these TEXT file(s) successfully to your program is to
INCLUDE the TEXT filename(s) after your program name in the CMS LOAD
command. Then, when you load your program, the CMS linkage editor
automatically links your program to the TEXT files that you specified and resolves
virtual storage addresses between files.

See Chapter 2 for more information on link-editing and loading.

Running the Program

Once you have loaded your program, it is ready to be run. You can run your
program in either single user mode or multiple user mode. In single user mode,
SQL/DS, its preprocessors, and your application programs all run in a single
VM/SP virtual machine. This is also sometimes referred to as single virtual
machine mode. Multiple user mode allows one or more users or programs to access
the same data base at the same time. This is sometimes referred to as multiple
virtual machine mode.

How you execute your SQL/DS program depends on the mode in which SQL/DS
is running. You can find the details of this under ‘“‘Running your Program’ on
page 198.

(The access module that the preprocessors stored in the data base actually carries
out the SQL request. When SQL /DS loads the access module, it checks to see that

Preprocessing and Running the Program 45

the access module is still valid. An access module may not be valid if it lost some J
dependency. For example, some index that the access module uses may have been

dropped. SQL/DS has an internal change management facility that keeps track of

which access modules are valid and which are not valid.

If the access module is valid, SQL/DS begins running the program. If the access
module is not valid, SQL /DS tries to recreate it. The original SQL statements are
stored with the access module when you preprocess the program. SQL/DS uses
these SQL statements to try to automatically preprocess the program again. It does
this dynamically; that is, as it is running. If this “‘re-preprocessing’’ works, a new
access module is created and stored in the data base. SQL/DS then continues
execution of the program. If the re-preprocessing does not work, SQL /DS returns
an error code to the program in the SQLCA, and the program stops running.

The re-preprocessing, if it succeeds, has no negative effect on your program except
for a slight delay in processing your first SQL statement.

All the details of getting your program ready to be run are in *‘Preprocessing and
Running the Program” on page 183.

46 SQL/Data System Application Programming for VM/SP

Testing and Debugging Concerns

Contents

This section gives you an introduction to two methods of testing and debugging
your SQL /DS application. The first method is testing SQL commands online,
before you actually code them into the program. The second method makes use of
the SQL Communications Area (SQLCA), which is the automatic SQL/DS error
handling facility.

Section QUIizZ e 48
Answers tothe Section QUIZ i e e 49
Introduction e 50
Using ISQL to Test SQL Statements Before Coding 50
Introduction to the SQL Communications Area (SQLCA) 51

Testing and Debugging Concerns 47

Section Quiz

1. What online SQL/DS facility allows you to test commands to see if they are
valid, before you code them in your application program?

2. What is a logical unit of work?

3. What are the two steps you must do to tell SQL/DS what action to take when
it comes across an SQL error?

4, What does an SQLCODE of 0 mean? What does a negative SQLCODE
mean? A positive SQLCODE?

48 SQL/Data System Application Programming for VM/SP

L Answers to the Section Quiz

1. ISQL

2. A group of SQL statements, possibly with intervening host language code, that
are treated as a single unit or entity.

3. You must declare an SQL Communications Area and code an SQL
WHENEVER statement.

4. An SQLCODE of 0 means that an SQL statement has executed successfully.
SQL /DS indicates error conditions by returning a negative SQLCODE. A
positive SQLCODE indicates normal conditions experienced while executing
the statement (such as end-of-file).

Testing and Debugging Concerns 49

Introduction

Of course, even the best programmers make mistakes in coding. Unfortunately,
you have to correct these errors before the program will run correctly. Thus, you
must have methods for checking your code, to make sure it is valid.

In SQL, there are many ways to test your SQL statements and debug them. Some
of these methods are done automatically by SQL. For example, during
preprocessing, if the preprocessor comes across an SQL error, it inserts statements
in the new source code that show this. Then when you try to assemble or compile
that code, these error statements halt the compilation and tell you there was an
€rTor.

Using ISQL to Test SQL Statements Before Coding

There are other methods of error testing that you can do on your own. One such
method is using the Interactive Structured Query Language (ISQL) facility to test
your SQL statements before you code them into the program. This method lets
you see the results of a command on the screen as you work interactively with the
SQL/DS data base. This way you can’t disrupt your program during testing. All
your testing is done on the screen. If the command works, code it in your program,;
if not, debug it right on your terminal until it does work.

In ISQL, all commands are entered at the terminal in basic form. None of the host
language delimiters are added. Also, you cannot enter any cursor commands of
any kind (DECLARE, OPEN, FETCH, PUT, or CLOSE). In addition,
“programming-only”’ statements such as declarative statements and
dynamically-defined statements cannot be entered in ISQL.

The statements that you would most often want to test through ISQL are:

« SELECT
« INSERT
« UPDATE
« DELETE

On the other hand, you may wish to handle most of your data definition,
authorization, and data control tasks through ISQL. It is often easier to define the
tables and store the data for your program first, through ISQL, and then to operate
on that data, through programs, later. Also, in most cases, it is recommended that
you grant and revoke authorizations on tables and programs through ISQL, and not
through application programs.

For a tutorial on how to use ISQL, refer to SQL/Data System Terminal User’s
Guide for VM/SP, SH24-5045. In addition, SQL/Data System Terminal User’s
Reference for VM /SP, SH24-5067, contains reference information on all the
commands that you can issue in ISQL.

You can also use SQL in the control data set of the Data Base Services (DBS)
utility. This is discussed in the SQL/Data System Data Base Services Utility for

50 SQL/Data System Application Programming for VM/SP

VM/SP, SH24-5069 manual. In addition to its data loading and unloading
capabilities, the DBS utility processes SQL statements in a manner similar to ISQL,
although not interactively. You can use either ISQL or the DBS utility to create
test tables for your programs. /

Introduction to the SOL Communications Area (SQLCA)

Every SQL application program must provide for error handling by declaring an
SQL Communications Area. This area receives messages that SQL /DS sends to
the program. By testing certain fields of this area, you can test for certain
conditions during the program’s execution.

Error handling is important in SQL/DS because it helps protect the integrity of the
data base when a program fails. For example, consider the two-step operation
needed to transfer $500 from one account to another in a bank:

1. Subtract $500 from account A
2. Add $500 to account B.

If the system or your program fails after the first statement is executed, some
customer has just “lost’” $500. This type of incomplete update is said to leave the
data base in an inconsistent state.

You can avoid an inconsistent state by using a logical unit of work. A logical unit
of work is a group of related SQL statements, possibly with intervening host
language code, that you wish to treat as a unit. The two steps in the previous
example would make up a single logical unit of work.

Logical units of work prevent inconsistent states from system or SQL statement
errors. For system errors, SQL/DS automatically restores all changes made during
the logical unit of work in which it encountered the error. This is called a roll back.
For SQL errors, you must tell SQL/DS what action to take when it comes across
an SQL error. This involves two steps:

1. Declaring an SQL Communications Area
2. Coding an SQL WHENEVER statement.

To declare the SQL Communications Area (SQLCA), code this statement in your
program:

INCLUDE SQLCA

When you preprocess your program, SQL/DS inserts host language variable
declarations in place of the INCLUDE SQLCA statement. This group of variables
is how SQL communicates with your program. SQL/DS uses the variables for
warning flags, error codes and diagnostic information. All the variables are
discussed under “Error Handling” in Chapter 5. The only variable you need be
concerned with now is SQLCODE.

Testing and Debugging Concerns 51

52

SQL/DS returns a result code in SQLCODE after executing each SQL statement.
SQLCODE, return code, and result code are all terms that mean the same thing:
the integer value that summarizes how your SQL statement executed. When a
statement executes successfully, SQLCODE is set to 0. SQL/DS indicates error
conditions by returning a negative SQLCODE. A positive SQLCODE indicates
normal conditions experienced while executing the statement (such as end-of-file).

The WHENEVER statement below tells SQL/DS what to do when it encounters
an SQL error (that is, a negative SQLCODE):

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to a subroutine named ERRCHK. This subroutine should include logic
to analyze the error indicators in the SQLCA. Depending on how ERRCHK is
defined, action may be taken to execute the next sequential program instruction, to
carry out some special functions, or, as in most cases, to roll back the current
logical unit of work and end the program.

You can have any number of logical units of work in a program. For the simplest
case (which is being discussed here) the whole program is a single logical unit of
work. Either the program runs successfully and the changes are made to the data
base, or it doesn’t and no changes are made.

SQL /DS begins a logical unit of work implicitly. That is, you don’t have to code a
statement to start a logical unit of work. SQL/DS starts one when it encounters
your first executable SQL statement.

You must tell SQL/DS when to end the logical unit of work. ‘“Application Epilog”
on page 93 explains how to do this. There are times when SQL implicitly ends a
logical unit of work. When this occurs, the SQLWARNO and SQLWARNG6
indicators are set to ‘W’.

SQL/Data System Application Programming for VM/SP

Putting the Program into Production

Putting your program into production involves creating and controlling the data
that your program works with. This also involves, optionally, granting privileges to
other users to work with your data or run your program, and revoking these
privileges when they are no longer necessary or useful. You must also keep track
of which pieces of data, including programs, you own and which users have
authority to access those pieces of data. All of these topics are introduced in this
section.

Most data administration can be done using the Interactive SQL facility (ISQL).
For more information on this facility, see SQL/Data System Terminal User’s Guide

for VM/SP.
Contents

Section QUIZ i e e 55
Answerstothe Section Quiz 56
AUthorizationt e e 57
Privileges on Tables and Viewsot . 57
Privileges on Programs e 58
Special Privileges 60
Granting Privileges to Other Userscciiiitinennnnne.n. 62
Revoking Privileges from Other Usersot 66
Data Controlttt e e e e e 70
How the Data Base Is Structured, 70
Logical Unitsof Work i, 72
Dropping a Programiiitiittii i 73
Data Definition e 74
General Rules for Naming Data Objects, 74
Data TYPeS . oottt e e e 75
Data CONVEISIONttt vttt ittt et it nnens 76
Qualifying Table Names0iuniiiiimiiiniitninnnnnnns 78
SQL/DS Catalogs . ..o iit ettt et e e e e 78
Catalogs that Record Privileges 79
SYSUSERAUTHt e e 79
SYSUSERLIST ... i e e e e e e 79
SYSPROGAUTH ottt e i e e e 80
SYSTABAUTH ... e i e e e e e e 80
SYSCOLAUTH e e e e 80
Catalogs that Record the Contents of the DataBase 80
SYSDBSPACES ... e e 80
SYSCATALOG ...t e e e e e e 81

Putting the Program into Production 53

SYSACCESS . it e e e e e 81
SYSVIEWS . e e e e e 81
SYSCOLUMNS ... i it it e et e 81
Catalogs that Record Indexes and Synonyms 81
SYSINDEXES ... ittt ittt ettt 81
SYSSYNONYMS . it i ittt e e 81
Miscellaneous Catalogscciiitiiiennreneenneennennns 81
SYSUSAGEci ittt ittt ittt ii et it et 81
) €33 2.0) 82
SYSCHARSETS ...ttt ittt ittt it eetaernennannennens 82
SYSOPTIONS .. i e e e e et 82

54 SQL/Data System Application Programming for VM/SP

S

Section Quiz

If you can answer most of the following questions, then you probably do not have
to read this section. If you choose to skip ahead, proceed to Chapter 2. If you
have trouble answering the questions in this quiz, proceed to ““Authorization” on
the next page.

1.

Write an SQL statement that would grant the RUN privilege on a program
called LISTING to user KIM. Also give KIM the privilege to grant RUN
authority on this program to other users.

Write an SQL statement that would take away from user JULIE the privilege
to insert rows into your ACCOUNTS table.

Write an SQL statement that would delete a program called BANKING from
your DBSPACE.

What is the maximum length (in characters) of a table name? What is the
maximum length (in characters) of a program name?

With which characters must an SQL identifier begin?
Which SQL/DS catalog contains information on the privileges of users to run

programs? Which catalog would you look at to get a complete list of the
programs that you own?

Putting the Program into Production 55

Answers to the Section Quiz

1. GRANT RUN ON LISTING TO KIM WITH GRANT OPTION
2. REVOKE INSERT ON ACCOUNTS FROM JULIE

3. DROP PROGRAM BANKING

4. 18;8

5. An uppercase letter (A-Z), $, #, or @. (If an identifier is enclosed in double
quotes, it may also begin with a number.)

6. SYSPROGAUTH; SYSACCESS

56 SQL/Data System Application Programming for VM/SP

-

Authorization

SQL /DS keeps track of which privileges each user has, and makes sure that each
user performs only authorized operations on the data base.

SQL /DS makes it easy for authorized users to create and drop tables, and to
compile and run programs that operate on these tables. An individual who creates
a table or compiles a program can selectively share the use of that table or program
with other users.

When SQL /DS is installed, at least one person is given Data Base Administrator
(DBA) authority. A user having DBA authority has control of SQL /DS resources
and of all privileges to use SQL/DS. One of these privileges is the ability to pass
on DBA authority to other users; thus, there may be many users with DBA
authority in your installation.

Before you can perform any data base operations, you must be authorized to use
SQL/DS. This special privilege is called CONNECT authority. Normally, you get
CONNECT authority by having a DBA grant it to you, but a DBA can also grant
CONNECT to “ALLUSERS”. This makes it possible for anyone to be implicitly
connected, but has some significant limitations. Implicit connect is discussed under
“VM/SP Connect Considerations” on page 186.

Other privileges you need vary depending on what SQL/DS operations you want to
perform. There are three categories of privileges: privileges on tables and views,
privileges on programs, and special privileges. The following sections discuss each
category.

Privileges on Tables and Views

You can have any or all of the following privileges on specific tables and views:
SELECT Privilege to retrieve data

INSERT Privilege to insert new rows

DELETE Privilege to delete rows

UPDATE Privilege to change field values

ALTER Privilege to add new columns to a table (does not apply to views or
DBSPACEs)

INDEX Privilege to create new indexes on a table (does not apply to views).

When you create a new table, you are automatically given full privileges on the
table. SQL/DS also gives you the GRANT option on each privilege. You can
grant these individual privileges, or any combination of them, to other users by a
GRANT statement (described later). When you grant a privilege to another user,
you may include the GRANT option. If you do, the user will be able to grant the
privilege to others. Once granted, you may revoke a privilege by issuing a
REVOKE statement (also described later). If you revoke a privilege from User A,

Putting the Program into Production 57

you automatically revoke it from all users to whom User A granted it. If the other
users have another independent source for the same privilege, they are unaffected
by the revocation.

For each privilege, you can also hold the GRANT option. Having the GRANT
option means that you can grant the privilege to other users and exercise it
yourself.

You may exercise any privilege that you hold on a table directly through ISQL (via
the terminal) and the DBS utility as well as application programs.

Except for ALTER and INDEX, the same kinds of privileges that apply to tables
also apply to views. As with tables, the user who defined the view gets certain
privileges that can be selectively shared with other users.

Users’ privileges on tables and views are listed in the SQL /DS catalogs
SYSTABAUTH and SYSCOLAUTH. All SQL/DS catalogs are described in the
SQL/Data System Planning and Administration for VM /SP manual. You can find
out which privileges you hold, and which privileges you have granted to other users,
by making suitable queries on these catalog tables.

Privileges on Programs

58

All SQL/DS application programs must be preprocessed. The preprocessor creates
an access module and stores it in the data base. Access modules contain machine
code to carry out SQL requests made by the application program; for SQL/DS, it
is the essence of the application program.

When you successfully preprocess a program, you receive the RUN privilege on
your program. This means that you may at any time run your program, which in
turn loads and executes the appropriate access module. SQL/DS considers the
creator (or author) of a program to be the value specified in the USERID
preprocessor parameter. This creator is considered to be the connected user at the
time that the program is preprocessed. The USERID preprocessor parameter
establishes the userid that is to be checked for authorization to do the SQL/DS
functions that are found in the program by the preprocessor.

Normally, authorization to perform SQL /DS functions is checked and found to be
valid at preprocessing time. Even if some authorization is not found at
preprocessing time, the author is still given RUN authority for the program. The
missing authority is automatically rechecked at run time. If the required authority
is still not in place at run time, execution is not permitted. A program containing
an unauthorized statement runs successfully as long as it does not attempt to
execute the unauthorized statement.

If the creator of a program receives authorization required by the program between
the time of its being preprocessed and its being executed, SQL/DS commands
affected by the newly granted authorization will execute more slowly than they
would it the authorization had been available at the time of preprocessing. This
slower processing can also be avoided by repeating the preprocessing of the
program after the authorization is granted.

SQL/Data System Application Programming for VM/SP

Generally speaking, if the program contains no statements that require DBA
authority, and if the creator of the program:

1. Has all the privileges required for all the SQL statements in the program,
2. Has the GRANT option on all these privileges,

then the creator receives the RUN privilege on the program with the GRANT
option. (See ‘‘Putting the Program into Production’ on page 211 in Chapter 2 for
additional information.) This enables the creator to grant the RUN privilege on
that program to other users, thus providing authorization control on an application
basis.

For example, suppose user Smith has the privilege to update employee salaries.
Smith wants to authorize Jones to update salaries in a particular way, with certain
record-keeping and validity checking. Smith can write a program that updates
salaries subject to the desired constraints, and grant the RUN privilege on the
program to Jones. Now Jones can update salaries by running the program, but
does not have an unconstrained update privilege on salaries. What is really granted
to Jones is the ability to invoke the access module for the indicated program. Note
that SQL /DS protects only the access module (which implements the SQL
statements in the program), not the logic of the program itself.

It is important to understand this distinction between the creator (author) of a
program and the user who runs the program. The runner is the user who executes
the program and therefore invokes the access modules associated with it. The
runner is identified to SQL/DS through the CONNECT statement in the program
or through the equivalent implicit connect function in the VM/SP environment.
Generally, the authorization of the creator determines whether a particular
SQL/DS statement may be executed. The only exception to this is in dynamically
defined statements. Because the statements are processed at execution time,
SQL/DS bases the authorization checking for these statements on the runner’s
userid (not the creator’s).

In some cases you receive the RUN privilege with the GRANT option only if you
explicitly have all the needed authority. Explicit authority means that there is an
explicit entry in the SQL/DS catalogs recording the authority for the object.
Suppose, for example, that you have DBA authority and preprocess a program that
creates an INDEX for another user. If the user does not grant you INDEX
authority, you receive only the RUN privilege. You do not receive the GRANT
option because you do not explicitly have all the needed privileges. You will,
however, be able to successfully execute your program because of your DBA
authority.

In other cases the creator of a program may receive RUN privilege with the
GRANT option even if that creator does not have the required privilege when the
program is preprocessed. In this case the creator of the program, or anyone
granted the RUN privilege, can run the program, once the privileges have been
obtained from the creator. Refer to “Putting the Program into Production’ on
page 211 for decision tables that show this determination for each SQL statement
type.

Putting the Program into Production 59

Special Privileges

If you write a program that operates on some table that does not exist at
preprocessing time (for example, a program to load data into a table that has not
yet been created), it will not prevent you from receiving RUN privilege on the
program. However, when the program is run, the table in question must exist, and
you must have the necessary privileges to operate on it.

All the RUN privileges held by users on programs are listed in the SQL/DS catalog
SYSPROGAUTH. By querying SYSPROGAUTH, you can find out which
programs you are entitled to run, and which programs you have granted to other
users. If you have DBA authority, you can run any program regardiess of what is
indicated in SYSPROGAUTH. All SQL/DS catalogs are described in the
SQL/Data System Planning and Administration for VM /SP manual.

Note: Some SQL statements do not require an access module to be created by the
preprocessor; therefore, RUN authority may not apply (if the access module is not
created). The following SQL statements do not involve an access module when
they are preprocessed:

CONNECT Extended DESCRIBE
Extended PREPARE CREATE PROGRAM
Extended DECLARE CURSOR DROP STATEMENT

Extended OPEN/CLOSE/FETCH/PUT WHENEVER

If you need more details about how SQL/DS authorizes programs, see ‘‘Putting the
Program into Production” on page 211. That appendix contains decision tables
for SQL statements that affect program authorization.

In addition to privileges on tables and programs, SQL/DS recognizes some special
privileges: CONNECT, SCHEDULE, RESOURCE, and DBA authority. As
discussed above, CONNECT authority is the privilege of being recognized by
SQL/DS for purposes of using the system. It means that there is a userid recorded
in the SQL/DS catalogs for purposes of recognition. There may also be a
password recorded with the userid. If there is a password with the userid, an
explicit CONNECT statement is permitted. Without a password, only implicit
connects are possible. (See “VM/SP Connect Considerations” on page 186 for
more information on implicit connects.) Only a user with DBA authority can grant
CONNECT authority to SQL/DS users.

SCHEDULE authority is the privilege to connect users without specifying a
password. Although it is possible to grant and revoke SCHEDULE authority,
SQL/DS ensures that only resource managers can use it. The SQL/DS online
resource manager uses SCHEDULE authority when it connects a user to SQL/DS
implicitly. More information about SCHEDULE authority is in the SQL/Data
System Planning and Administration for VM /SP manual.

Resource authority permits you to create tables in PUBLIC DBSPACEs and
acquire PRIVATE DBSPACESs. Resource authority is not required to create tables
in your own PRIVATE DBSPACE.

A DBA can allow table creation by:

60 SQL/Data System Application Programming for VM/SP

1. Granting RESOURCE authority to a user, or
2. Creating a PRIVATE DBSPACE for a user.
The latter offers more limited capability.

Only a DBA can create tables in PRIVATE DBSPACEs owned by another user or
acquire PUBLIC DBSPACEs.

Holders of DBA authority automatically hold RESOURCE and CONNECT
authority as illustrated in Figure 7.

If granted DBA authority,
DBA the user also automatically
receives RESOURCE and CONNECT.

RESOURCE CONNECT

Figure 7. Hierarchy of SQL/DS Authority

Any holder of DBA authority may grant or revoke RESOURCE, CONNECT, or
DBA authority to or from any other user. However, holders of RESOURCE
authority without DBA authority cannot grant (or revoke) RESOURCE or
CONNECT authority to (or from) other users.

DBA authority is the highest level of authorization provided in SQL./DS. If you
have DBA authority, you are “immune” to the SQL/DS authorization mechanism;
you can perform any operation on any table, or run any program. In addition,
there are certain privileges that are available only to users with DBA authority.
These privileges are listed in the SQL/Data System Planning and Administration for
VM /SP manual.

If you hold DBA authority you may perform operations that are otherwise
unauthorized, but you cannot grant or revoke these operations. For example, you
may update the QUOTATIONS table even though you do not own this privilege
explicitly, but you cannot grant or revoke this privilege unless you own it explicitly
with the GRANT option. Similarly, if you preprocess a program containing some
operation that you would not be authorized to perform except for your DBA
authority, you receive RUN privilege on the program without the GRANT option.
There is no entry in the SQL/DS catalog SYSPROGAUTH in this case.

The DBA functions are potentially dangerous to the integrity of the data base if
misused. Therefore, an installation should carefully control the set of users who
possess DBA authority, and a user with DBA authority should be very cautious in
the use of those special powers. If you are granted DBA authority, you should read
the SQL/Data System Planning and Administration for VM /SP manual.

Putting the Program into Production 61

The users who hold special privileges are listed in the SQL/DS catalog
SYSUSERAUTH. Only users with DBA authority are allowed to access
SYSUSERAUTH because the catalog contains userids and passwords. Other users

can query the catalog through a view called SQLDBA.SYSUSERLIST. (Passwords
are not seen in the view.)

Granting Privileges to Other Users

The GRANT statement allows you to pass privileges to other users. The most
common and most convenient use of GRANT is via ISQL or the DBS utility. You
can code GRANT statements within a program; however, because the userid and
passwords in the GRANT statements can’t be host variables, the statements have
limited use. The GRANT statement has three formats:

Format 1 (for privileges on tables and views):

[~ A
ALTER B
DELETE
INDEX
GRANT & | INSERT >
SELECT

UPDATE [(col-name-list)]

—

_ ALL [PRIVILEGES] y

ON [creator.] {table-name | view-name}
TO { PUBLIC | useridl [,userid2] ... } [WITH GRANT OPTION]

Note: ALTER, INDEX, and ALL [PRIVILEGES] do not apply to views.

Examples:

GRANT UPDATE (PARTNO, SUPPNO) ON QUOTATIONS TO SCOTT
GRANT SELECT, INSERT ON QUOTATIONS TO SMITH, JONES
GRANT ALL PRIVILEGES ON INVENTORY TO SCOTT WITH GRANT OPTION

Authorization:

You must possess the privilege with the GRANT option before you can grant that privilege to
someone else.

Format 1 allows you to grant privileges on tables and views to other users. The
grantor is considered to be the user who preprocessed the program in which this
statement appears. (Certain exceptions to this rule are explained under
“Dynamically Defined Statements” on page 147.) The grantor is considered to be
the user who preprocessed the program in which this statement appears. (Certain

62 SQL/Data System Application Programming for VM/SP

exceptions to this rule are explained under “Dynamically Defined Statements” on
page 147.) A grant to PUBLIC is the same as a grant to all users.

The privileges you can grant are shown in Figure 8.

ALTER (to add new columns) <

DELETE (to delete rows) —| Only for tables
INDEX (to create indexes) < (not for views)
INSERT (to insert rows)

SELECT (to retrieve data)
UPDATE (to change field values)

Figure 8. Privileges You Can Grant

Note especially that the ALTER privilege applies only to tables -- not to views or
DBSPACESs. (That s, it applies to the ALTER TABLE statement, but not the
ALTER DBSPACE statement.)

You can specify more than one privilege. If you do, you can specify them in any
order, but you must separate them with commas. To grant all six privileges, you
can write ALL [PRIVILEGES] instead of listing all six. (Note that you can’t grant
ALL PRIVILEGES on a view; INDEX and ALTER privileges do not apply to
views.) The PRIVILEGES keyword is both optional and non-functional; you can
include it to improve readability. Thus, all of these statements are equivalent:

GRANT ALTER, DELETE, INDEX, INSERT, SELECT, UPDATE
ON QUOTATIONS TO SCOTT

GRANT DELETE, INDEX, ALTER, SELECT, UPDATE, INSERT
ON QUOTATIONS TO SCOTT

GRANT ALL PRIVILEGES
ON QUOTATIONS TO SCOTT

GRANT ALL
ON QUOTATIONS TO SCOTT

When you grant the UPDATE privilege on a table, you can optionally specify a list
of column names. When you do, the grantee gets the power to update only those
columns listed. If you choose not to specify a list of column names or if you
specify ALL [PRIVILEGES], the grantee may update all columns of the table,
even those created later via the ALTER TABLE statement.

If you specify WITH GRANT OPTION, the grantee may pass the granted
privileges to other users.

Note that only the user who creates a table or view (or a user with DBA authority)
can drop it. You can’t grant a “drop’’ privilege to another user.

Before you grant privileges on views, you should read “Use of Views” on
page 140.

Putting the Program into Production 63

Format 2 (for privileges on programs):

GRANT RUN ON [creator.]program-name
TO { PUBLIC | useridl [,userid2] ... } [WITH GRANT OPTION]

Examples:

GRANT RUN ON TRANS1 TO EDWARDS WITH GRANT OPTION
GRANT RUN ON JOB338 TO PUBLIC

Authorization:

You must possess the RUN privilege with the GRANT option before you can grant that privilege to
someone else.

Format 2 allows you to grant privileges on programs to other users. The grantor is
considered to be the user who preprocessed the program in which this statement

appears. (Certain exceptions to this rule are explained under ‘“Dynamically

Defined Statements” on page 147.) A grant to PUBLIC is the same as a grant to

all users.

The only privilege you can grant on a program is the RUN privilege, which lets

another user run the indicated program. You can, however, pass on the RUN
privilege with the GRANT option, just as you can with table privileges. The
GRANT option permits the grantee to pass on that RUN privilege to others.

Note that only the user who preprocesses a program (or a user with DBA

authority) can drop its access module from the data base. You can’t grant a
“drop” privilege to another user.

64 SQL/Data System Application Programming for VM/SP

Format 3 (for special privileges):

GRANT

SCHEDULE >

l TO useridil[,userid2...] [IDENTIFIED BY passl1[,pass2]]

Examples:

GRANT DBA TO BRUCE
GRANT CONNECT TO SMITH, JONES IDENTIFIED BY SECRET1, SECRET2
GRANT RESOURCE TO MARY, JIM, JOE

Authorization:

Generally, you must possess DBA authority to issue this statement. The exception is that can change
your own password as explained below.

Format 3 allows a user having DBA authority to grant special privileges to other
users. The grantor is considered to be the user who preprocessed the program in
which this statement appears. (Certain exceptions to this rule are explained under
“Dynamically Defined Statements” on page 147.)

The IDENTIFIED BY clause is optional when granting any of the special
privileges. If the clause is included, a password is added or changed for each user
specified. If the password is the same as currently exists for the user, the change
has no real effect. If no passwords are given, none are assigned and previously
assigned passwords are retained. If you have not been given a password, you
cannot explicitly CONNECT to SQL /DS, but you may still have the capability of
being implicitly connected. (See “VM/SP Connect Considerations” on

page 186.)

Userids and passwords are limited to eight characters. They can be entered in
double quotes to bypass checking under the rules of SQL identifier naming. (See
“General Rules for Naming Data Objects” on page 74.) Embedded blanks are not
permitted, even in double quotes. If you specify IDENTIFIED BY, you must
include a password for every userid specified. The passwords and userids must
correspond as indicated in the statement format above.

Granting any one of the special privileges to a user who does not already have the
CONNECT authority causes that user to be granted CONNECT authority. For
example, if a user currently has no special privileges and that user is granted
RESOURCE authority, the user will have both RESOURCE and CONNECT
authority.

A user can change his/her own password by using the GRANT CONNECT

... IDENTIFIED BY ... form of this command without requiring any special
authority. To do this, the user need only have CONNECT authority, and may or
may not have already been assigned a password.

Putting the Program into Production 65

Granting CONNECT to ALLUSERS is a special case that establishes implicit
connect capability for all users in the system when operating under VM/SP. (See
“VM/SP Connect Considerations” on page 186.)

Granting a special privilege that a user already possesses has no additional effect
except for changing passwords if they are specified.

You should not grant CONNECT authority to SYSTEM or PUBLIC. They are
used internally.

Note that a grant of SCHEDULE authority to a user is meaningless because
SQL/DS allows only resource managers to use it.

Revoking Privileges from Other Users

66

The REVOKE statement allows you to take away the privileges of other users.
(You can never revoke a privilege from yourself.) The most common and most
convenient way to use REVOKE is via ISQL or the DBS utility. You can code
REVOKE statements within a program; however, because the userid and
passwords in the REVOKE statements can’t be host variables, the statements have
limited use.

If you attempt to revoke a privilege currently in use by a running program, the
REVOKE statement is queued until the running program ends its current logical
unit of work. Logical units of work are related groups of SQL statements (possibly
with intervening host language code) that programmers define in their code. Thus,
if you revoke the UPDATE privilege from user MARY, but MARY’s program is
running and is already making updates, your REVOKE statement won’t take effect
until MARY’s updates are finished. Logical units of work are discussed more
completely under “Data Control” on page 70.

When you revoke a privilege on a table, view, or program from a user X, SQL/DS
automatically revokes it from all users to whom X has granted it, unless they have
some other source for the privilege that is not dependent on user X.

Special privileges, which can be granted and revoked only by a user with DBA
authority, are handled slightly differently. That is, if you have DBA authority, and
revoke a special privilege (such as RESOURCE authority) from a user X, no other
users are affected. In addition, if a user with DBA authority revokes RUN
authority from user X, no other users are affected. (The “cascade” effect
described earlier for the RUN privilege does not apply to users with DBA
authority.)

In some cases, SQL/DS automatically revokes the RUN privilege from a number of
users. Suppose a user GENE has preprocessed a program that makes use of some-
privilege, such as SELECT. GENE receives the RUN privilege on the program
with the GRANT option, and perhaps he may grant this privilege to other users. If
the SELECT privilege is now revoked from GENE, the access module associated
with the program is automatically marked invalid. When the program is next run
(by GENE or by any other user), SQL/DS attempts to regenerate a valid (fully
authorized) access module. At the time of this regeneration process, the following
outcomes are possible:

SQL/Data System Application Programming for VM/SP

1. GENE has all the privileges required by the program, and furthermore has the
GRANT option on all these privileges. In this case, the access module is
regenerated, all existing grants of the RUN privilege on the program remain in
effect, and execution proceeds normally.

2. For some SQL statement in the program, GENE lacks the necessary privilege,
or has the privilege without the GRANT option. In this case, GENE retains
the RUN privilege on the program, but all existing grants of the RUN privilege
are revoked. When the program is run, those SQL statements for which
GENE has the necessary privilege execute successfully, and other SQL
statements return error codes.

SQL/DS can also automatically revoke privileges on views or drop the view
definition. Suppose BILL grants GENE the SELECT privilege with the GRANT
option on the EMPLOYEES table. GENE then defines a view called SALARY on
the EMPLOYEES table, and grants the SELECT privilege on that view to other
users. After some time, BILL decides to revoke the SELECT privilege on the
EMPLOYEES table from GENE. When BILL revokes the SELECT privilege on
the table, SQL/DS automatically revokes the SELECT privilege from SALARY
also, including all SELECT privileges on SALARY that GENE passed on. If, after
this process, GENE holds no privileges on SALARY, the definition of SALARY is
dropped from SQL/DS.

The REVOKE statement has three formats:

Format 1 (for privileges on tables and views):

(- A
ALTER
DELETE
INDEX
REVOKE < INSERT > ON [creator.] {table-name | view-name}
SELECT FROM { PUBLIC | useridl [,userid2] ... }
UPDATE i

\. ALL [PRIVILEGES] /

Note: ALTER, and INDEX, do not apply to views. ALL [PRIVILEGES] does apply, however. (See
following text.)

Examples:

REVOKE SELECT, INSERT ON QUOTATIONS FROM SMITH, JONES
REVOKE UPDATE ON INVENTORY FROM PUBLIC
REVOKE ALL ON SUPPLIERS FROM SCOTT

Putting the Program into Production 67

granted.

Authorization:

You can revoke only those privileges you have granted to other users, not those another user has

Format 1 allows you to revoke privileges you have granted on tables and views.
The revoker is considered to be the user who preprocessed the program in which
this statement appears. (Certain exceptions to this rule are explained under
“Dynamically Defined Statements” on page 147.) When you revoke authority
from PUBLIC, SQL/DS revokes the indicated privileges you have explicitly
granted to PUBLIC (via GRANT ... TO PUBLIC). It does nor revoke all your
grants of the indicated privilege. For example, if you grant UPDATE on
QUOTATIONS to SMITH, JONES, and PUBLIC, and then revoke this privilege
from PUBLIC, the privilege is still held by SMITH and JONES.

You can specify more than one privilege that you wish to revoke. If you do, you
can specify them in any order, but you must separate them with commas. If you
specify ALL [PRIVILEGES] instead of listing the privileges, all table (or view)
privileges you have granted to the indicated user(s) are revoked. You can use ALL
[PRIVILEGES] even if you have not granted all six table privileges to the user.
“REVOKE ALL PRIVILEGES” means “revoke all table privileges granted by this
grantor to this grantee,” regardless of whether the grantee has a complete list of
privileges. The revokee still retains any privileges obtained from another source.
The PRIVILEGES keyword is optional and non-functional; you can include it to
improve readability.

Recall that in the GRANT statement you can specify a list of columns when you
granted the UPDATE privilege. When revoking an UPDATE privilege, you cannot
list specific columns for which you want to revoke the privilege. “REVOKE
UPDATE” means ‘revoke all those update privileges granted by this grantor to this
grantee” (regardless of whether you originally specified a column list when you
granted the privilege).

Note that the only way to revoke the GRANT option on a privilege is to revoke the
privilege itself. (Of course, you can then re-grant the privilege without the
GRANT option.)

Format 2 (for privileges on programs):

REVOKE RUN ON [creator.]program-name FROM { PUBLIC | useridl [,userid2] ... }

Example:

REVOKE RUN ON TRANS1 FROM SMITH

68 SQL/Data System Application Programming for VM/SP

Authorization:

You can revoke the RUN privilege from only those users to whom you have granted it.

Format 2 allows you to revoke the RUN privilege you have granted on programs.
The revoker is considered to be the user who preprocessed the program in which
this statement appears. (Certain exceptions to this rule are explained under
“Dynamically Defined Statements” on page 147.) When you revoke the RUN
privilege from PUBLIC, SQL/DS revokes the privilege you have explicitly granted
to PUBLIC (via GRANT RUN ON ... TO PUBLIC). It does not revoke all your
grants of the RUN privilege. For example, if you grant RUN on TRANSI to
SMITH, JONES, and PUBLIC, and then revoke this privilege from PUBLIC, users
SMITH and JONES are still able to run the TRANS1 program.

If you have granted the RUN privilege with the GRANT option, the only way to
revoke the GRANT option is to revoke the RUN privilege itself (of course, you can
then re-grant the RUN privilege without the GRANT option).

Format 3 (for special privileges):

REVOKE {CONNECT | RESOURCE | SCHEDULE | DBA} FROM useridl [,userid2]

Example:

REVOKE DBA FROM SMITH

Authorization:

You must possess DBA authority to issue this statement.

Format 3 allows a user having DBA authority to revoke special privileges from other
users. The revoker is considered to be the user who preprocessed the program in
which this statement appears. (Certain exceptions to this rule are explained under
“Dynamically Defined Statements” on page 147.)

A user with DBA authority may revoke any special privilege from any user,
regardless of who originally granted the privilege. The only two exceptions are:

1. A user having DBA authority cannot revoke any authority from himself, and

2. No one can revoke RESOURCE authority from a user that has DBA authority.
If you issue REVOKE for a special privilege that the user doesn’t have, the
revocation is ignored for that privilege. Revoking CONNECT causes all special
privileges to be revoked with it and the user is deleted from the SQL /DS catalog

SYSUSERAUTH. Revoking CONNECT does not cause objects owned by that
user to be dropped. A user with DBA authority can drop them.

Putting the Program into Production 69

Revoking DBA authority automatically causes all special privileges to be revoked
except CONNECT. Revoking RESOURCE authority implies no other
revocations.

Data Control

SQL Data Control statements manage DBSPACEs, which are units of space, and
logical units of work, which are sequences of SQL statements that SQL /DS treats
as a single entity.

How the Data Base Is Structured

A DBSPACE is a portion of the data base that can contain one or more tables and
any associated indexes. Each table stored in SQL/DS is placed in some particular
DBSPACE chosen by the creator of the table.

DBSPACE:s are defined when the data base is generated and may be added later
via the ADD DBSPACE function. Each DBSPACE remains as an unnamed
“available” DBSPACE until it is “acquired” by means of an ACQUIRE
DBSPACE statement.

The user who acquires the DBSPACE (generally the DBA) may specify a storage
pool from which SQL/DS is to acquire the DBSPACE, or may allow SQL/DS to
choose the storage pool by default. A storage pool is a collection of data sets
called DBEXTENTS. Storage pools are numbered from 1 to 999. They allow for
the controlling of the distribution of the data base across DASDs.

Storage pools can be recoverable or non-recoverable. Recoverable storage pools
protect their data using the SQL /DS automatic recovery for data updates.
“Non-recoverable” means that if there is a system failure, some data may be lost.
But, when data is non-recoverable, system overhead is reduced. See the
SQL/Data System Planning and Administration for VM /SP manual for more
information about storage pools.

The acquiring user gives a name to the DBSPACE, and defines certain
characteristics for it. If the type of DBSPACE is PRIVATE, the user who acquired
it becomes its owner; if it is type PUBLIC, its owner becomes PUBLIC. An
acquired DBSPACE may later be returned to the list of available DBSPACEs by
the DROP DBSPACE statement.

A user holding RESOURCE authority may create new tables in any PUBLIC
DBSPACE, or in any PRIVATE DBSPACE owned by that user. A user who does
not have RESOURCE authority may also create tables in any PRIVATE
DBSPACE that was acquired for that user by the DBA. Only users having DBA
authority can create tables in a PRIVATE DBSPACE owned by another user.

Your ability to access and update tables of another user is controlled by SQL/DS.

If you are authorized, you can access and update tables in any DBSPACE of any
type, (except for SQL/DS catalogs, which you can read but not update). To refer

70 SQL/Data System Application Programming for VM/SP

to a table created by another user, use the creator’s userid as a prefix to the table
name (for example, SMITH.INVENTORY).

Even though you may be authorized to access data in someone else’s DBSPACE,
you may not be permitted to access the data if the DBSPACE is in use.

An attempt to read data in a PRIVATE DBSPACE results in a negative
SQLCODE if any data in the DBSPACE has been modified by a still-active logical
unit of work. An attempt to modify data in a PRIVATE DBSPACE results in a
negative SQLCODE if any data in the DBSPACE has been read or modified by a
still-active logical unit of work. Note the difference between the two
DBSPACE-types in terms of their locking behavior. If you attempt to access
locked data in a PUBLIC DBSPACE, your program waits and does not regain
control until the lock is freed. (This waiting period is ‘“‘transparent” to your
application program.) If you attempt to update locked data in a PRIVATE
DBSPACE, SQL/DS immediately returns control to your program with a negative
SQLCODE.

The size of the space that is locked is called the lock size. The lock size on a
PRIVATE DBSPACE is always the entire DBSPACE. The default lock size on a
PUBLIC DBSPACE, however, is somewhat smaller to allow more concurrency.
Thus, you should place tables in a PUBLIC DBSPACE if you expect that more
than one user may need concurrent access to them. On the other hand, because
operations on PRIVATE DBSPACEs do not pay the overhead of acquiring
individual locks within the DBSPACE, a PRIVATE DBSPACE is an efficient place
to store tables for the exclusive use by one user at a time. The cost of smaller locks
is higher overhead. Figure 9 and Figure 10 summarize the SQL /DS locking
mechanism.

If you attempt to: | But another user has already:

read the data modified the data

(acquired a share (acquired an

lock) exclusive lock)
read data You are allowed You receive a

to read the data. negative SQLCODE.

modify data You receive a You receive a
negative SQLCODE. negative SQLCODE.

The lock size for a PRIVATE DBSPACE is always the entire
DBSPACE.

Figure 9. Locking Summary for PRIVATE DBSPACEs

Putting the Program into Production 71

If you attempt to: | But another user has already:
read the data modified the data
(acquired a share (acquired an
lock) exclusive lock)
read data You are allowed Your program
to read the data. waits.
modify data Your program Your program
waits. waits.

The lock size of a PUBLIC DBSPACE defaults to a page (4096
bytes). The lock size can be changed by the ACQUIRE
DBSPACE or ALTER DBSPACE statements.

Figure 10. Locking Summary for PUBLIC DBSPACEs

Logical Units of Work

A logical unit of work is a sequence of SQL statements (possibly with intervening
host language code) that SQL/DS treats as a single entity.

SQL/DS ensures the consistency of data at the logical unit of work level. That is,
SQL/DS ensures that either a// operations within a logical unit of work are
completed, or none of them are completed. Suppose, for example, that money is to
be deducted from one account and added to another. If both these updates are
placed in a single logical unit of work, the data will not be left in an inconsistent
state. If a failure of the system or a user program occurs while a logical unit of
work is in progress, the data is automatically restored to its state before the logical
unit of work began. (When a program fails, SQL /DS restores the data after
detecting the error. See ‘“Error Handling” on page 202 for more information.
When the system fails, the data is restored when SQL/DS is restarted.)

A logical unit of work is begun implicitly when the first executable SQL statement is
encountered (except a CONNECT statement). A logical unit of work is ended by
either a COMMIT WORK or ROLLBACK WORK statement. If there is no
COMMIT or ROLLBACK WORK, the logical unit of work ends when the
program ends.

These SQL declarative statements do not start a logical unit of work:

BEGIN DECLARE SECTION DECLARE CURSOR
END DECLARE SECTION INCLUDE SQLCA
WHENEVER INCLUDE SQLDA

Executable SQL statements always occur within a logical unit of work. This is
because any executable SQL statement (except CONNECT) encountered after you
end a logical unit of work automatically starts another.

The ROLLBACK WORK statement described later allows a program to explicitly
call for the restoring of the logical unit of work and associated data.

72 SQL/Data System Application Programming for VM/SP

- Dropping a Program

Format:

DROP PROGRAM [creator.]program-name

Examples:

DROP PROGRAM PAYROLL2
DROP PROGRAM SALLY.RUNRUN
DROP PROGRAM :CREATOR. :PROGNAME

Authorization:

You can only drop programs that you have preprocessed. (That is, you must be the creator of the
program you wish to drop.) To drop another user’s program, you must have DBA authority.

The DROP PROGRAM statement deletes the access module associated with the
named program from the data base. Once you drop an access module, you cannot
run the program.

If a running program drops its own access module, it receives a negative return
- code when it attempts to begin the next logical unit of work.

To re-create an access module, preprocess the program. Once the access module is
created, you’ll be able to run the program.

You can specify both the creator and program-name as host variables (fixed length,
eight characters, padded to the right with blanks) or as constants. If host variables
are used, you can provide either value at the time the program is run.

Note: The program-name is the name specified in the PREPNAME parameter
when the program is preprocessed. If the program name is an SQL/DS reserved
word, you must enclose it in double quotes ('') when used in the DROP
PROGRAM statement. When used in the PREPNAME preprocessor parameter,
however, the name should not be enclosed in double quotes. For example, when
preprocessing a program you can specify:

PREPNAME=SELECT

When dropping that program, however, you must specify:

DROP PROGRAM "SELECT"
See “‘Preprocessing and Running the Program”™ on page 183 in Chapter 2 for more

information about preprocessor parameters. Appendix A, “SQL/DS Reserved
Words” on page 363 contains a list of SQL/DS reserved words.

Putting the Program into Production 73

Data Definition

SQL Data Definition statements manage tables and things you can associate with
tables (such as indexes, synonyms, and comments).

General Rules for Naming Data Objects
In general, the following SQL identifiers must conform to specific naming rules:

Table names

View names
Column names
Index names
Synonyms
DBSPACE names
Program names
Cursor names
Statement names
10. Host variable names
11. Userids/creator names
12. Passwords

WHONAU AW =

Folding from lowercase to uppercase is always performed for identifier types 1
through 7 above, as long as the identifiers are not enclosed in quotes.

The naming rules are:

1. A name may begin with an uppercase letter (A-Z), $, #, or @. A name may
begin with a number (0-9) if it is enclosed in double quotes.

2. It may contain uppercase letters (A-Z), $, #, @, numbers (0-9), or underscores

).
As a general rule, the length is 1-18 characters. Exceptions are as follows:
1. Program names are 1-8 characters.

2. Userids and passwords: Constants are 1-8 characters; host variables are 8
characters, padded to the right with blanks when the value is less than 8.
Lowercase characters, special characters, and Double-Byte Character Set
(DBCS) characters should not be used in SQL userids or passwords.

3. Host variables are limited to 18 characters, unless the host language has a
lesser restriction. Note that FORTRAN permits only six-character host
variable names. Examples in this manual sometimes exceed the FORTRAN
limitation.

When identifiers are stored in host variables and then referred to in SQL
statements, they are generally treated by SQL/DS as if they were entered in double
quotes. That is, the general identifier rules are not checked when they appear in
host variables. An example is the CONNECT statement, where the userid (and

74 SQL/Data System Application Programming for VM/SP

Data Types

password) must be in host variables. The host variable(s) in this case may contain
any eight characters.

Some exceptions to the identifier naming rules should be noted.

1. Where the host language has restrictions on variable names, those rules will
further restrict the SQL naming rules as applied to host variable names. In
COBOL, host variables may contain dashes (-) in lieu of the underscore (_).

2. Generally, SQL reserved words cannot be used as data object names. These
are listed in Appendix A.

3. For SQL/DS installations that use an EBCDIC character set other than
English, the two naming rules and the folding rule stated above may change
slightly. Refer to the SQL/Data System Planning and Administration for
VM/SP for more information.

The above rules for naming may be bypassed in most cases by including the name
in double quotes. In this way, lowercase letters, special characters, blanks, and
reserved words may be used in identifiers. For example,

"quotations" "DAVE'S TABLE" "SELECT COLUMN"

You cannot use the double quote (') character within a double quoted string:

"EMP"13"TABLE" ——=—- Not Vvalid

Leading blanks cannot be used in double quoted strings. If they are, an error will
result.

" TABLEX" ====- Not Valid
There are a few cases that do not permit use of double quoted identifiers:

Host variable names
Program names
Cursor names
Statement names.

LN

If you use Double-Byte Character Set data, and if the DBCS option is set to YES,
both unquoted and quoted identifiers can have DBCS characters enclosed by so
and si. The length limit (in bytes) applies to the total length of EBCDIC portions,
DBCS portions and shift characters. The folding rule does not apply to the DBCS
portions. With the DBCS option set to YES, an apostrophe (X‘7F’) in a DBCS
character does not terminate a quoted identifier.

Each column of every SQL/DS table is given an SQL data type when the table is
created. There are ten of these SQL/DS data types. The data types for
Double-Byte Character Set (DBCS) data support character sets that require two
bytes of storage for each character in the character set. Kanji is one example of
such a character set. Figure 11 shows the ten SQL/DS data types and how they
are stored internally:

Putting the Program into Production 75

Data Conversion

SQL/DS Data Type | How Stored

INTEGER Stored as a 31-bit binary integer.

SMALLINT Stored as a 15-bit binary integer.

DECIMAL(m,[n]) Stored as a packed decimal number of precision m and
scale n. Precision is the total number of digits. Scale
is the number of digits to the right of the decimal
point. For example, 251.66 fits in a DECIMAL(5,2)
data area. The default scale is 0. If an even value is
specified for m, SQL/DS rounds that value to the next
higher odd value to best utilize internal storage.

FLOAT Stored as a double-precision (8-byte) floating-point
number in standard System/370 floating-point format.

CHAR(n) Stored as an EBCDIC character string of fixed length
n. (ncannot be larger than 254.)

VARCHAR(n) Stored as a varying-length EBCDIC character string
of maximum length n. (n cannot be larger than 254.)

LONG VARCHAR | Stored as a varying-length EBCDIC character string
of maximum length 32767.

GRAPHIC(n) Stored as a Double-Byte Character Set (DBCS)
character string of fixed length n. (n cannot be larger
than 127.)

VARGRAPHIC(n) Stored as a varying-length DBCS character string of
maximum length n. (n cannot be larger than 127.)

LONG Stored as a varying-length DBCS character string of

VARGRAPHIC maximum length 16383.

Figure 11. SQL/DS Data Types

Whenever SQL /DS moves data from one field to another, or from a host variable
to a field, or from a field to a host variable, it attempts to perform data conversion
if the data types do not match. Whether or not the conversion is successful
depends on the data types of source value and the target value.

For example, suppose you issue a SELECT statement that retrieves INTEGER
data (source data) into a host variable that was declared SMALLINT (target

variable). If the INTEGER value is small enough, SQL/DS performs the operation
successfully. If the INTEGER value is larger than the largest value that can fit in a
SMALLINT variable, however, an overflow results and SQL /DS indicates a
conversion error by returning a negative SQLCODE.

SQL /DS data conversion is summarized in Figure 12. YES indicates that
SQL/DS does the conversion. NO indicates that the conversion is not done, and
SQL. /DS returns an error code to your program. Notice that overflow (loss on the
left) or truncation (loss on the right) may occur on some conversion attempts.

76 SQL/Data System Application Programming for VM/SP

Overflows always cause an SQL error (negative SQLCODE). Truncations are
handled differently for numeric and character data:

« Numeric data: Truncation of zeros on the left or truncation of the fractional
part of decimal or floating point values takes place without error or warning.
Any other loss of data on conversion is considered an overflow error.

o Character Data (EBCDIC and DBCS): When output from SQL/DS does not
fit into a host variable, a warning condition exits. SQLWARNI is set to
indicate truncation. In this case, if you provide an indicator variable, the value
within it denotes the actual length of the variable in characters before
truncation. Indicator variables are discussed under “‘Indicator Variables” on
page 146.

When an input character string value does not fit into an SQL/DS field, an
error results.

TARGET DATA TYPE.

LONG LONG

SOURCE INTE- SMALL- | DEC- VAR VAR- VAR- VAR-
DATA TYPE: | GER INT IMAL FLOAT | CHAR3 | CHAR3 | CHAR4 |GRAPHIC3 | GRAPHIC® | GRAPHIC*

INTEGER | YES YES! YES YES NO NO NO NO NO NO

SMALLINT | YES YES YES YES NO NO NO NO NO NO

DECIMAL | YES'? | YES'2 | YESS YES6 NO NO NO NO NO NO

FLOAT YES'2 | YES'2 | YESB® | YES NO NO NO NQO NO NO

CHAR NO NO NO NO YES YES YES NO NO NO

VARCHAR | NO NO NO NO YES YES YES NO NO NO

LONG NO NO NO NO YES YES YES NO NO NO

VARCHAR

GRAPHIC | NO NO NO NO NO NO NO YES YES YES

VAR- NO NO NO NO NO NO NO YES YES YES

GRAPHIC

LONG VAR-| NO NO NO NO NO NO NO YES YES YES

GRAPHIC

Figure 12. SQL/DS Data Conversion Chart
Notes:
1. Overflow may result.
2. The fractional part of the value is dropped.
3. For output host variables, if the length of the target is smaller than the length
of the source, truncation occurs and SQLWARNTI is set. If an indicator
variable is given for an output value, it is set to the actual SQL /DS field length.

For input host variables that exceed the length of the target field, an error
results.

4. Note the restrictions under “Use of Long Fields” on page 236.

Putting the Program into Production 77

5. SQL/DS automatically aligns the decimal point. Overflow of the integer part
may result. The fractional part may be truncated.

6. SQL/DS attempts to create the “best possible” result in converting from
System/370 floating point to scaled fixed point decimal.

If you need more information about how computations are performed internally, or
how overflows can occur, refer to the ‘““Arithmetic Operations” section of the
SQL/Data System Planning and Administration for VM /SP manual.

Qualifying Table Names

If a data object (such as a table) is owned by another user, you need to qualify
references to the object by concatenating the creator’s user identifier:

SMITH.INVENTORY

S tniedet bttt > table name
--------------------- > creator of the table

The period (.) is the SQL/DS concatenation symbol.

You can access another user’s table only if you know that person’s user identifier
and have the appropriate SQL/DS authorization to access that table.

When you concatenate a userid to a table name, you fully qualify the table. A table
is fully qualified when a userid is concatenated to it. That is, a ‘“userid.table-name”
uniquely identifies a table in the data base. For example, there can never be two
SMITH.INVENTORY tables in the data base at the same time.

You should use fully qualified table names until you gain some experience using
SQL/DS. By fully qualifying table names, you avoid confusion and errors. This is
especially true if you are coding programs that are to be preprocessed by another
user.

SQL/DS Catalogs

SQL/DS automatically maintains information about the data base in a set of tables
called catalogs. These catalogs are created automatically during data base
generation. They describe tables, columns, indexes, programs, authorization, and
other objects in the data base.

Since the SQL/DS catalogs are defined as normal tables with public read
authorization, you can use SQL query statements to retrieve information in the
catalogs. For example, this SQL statement finds what column names in table EMP
TABLE begin with the letter ‘D’:

78 SQL/Data System Application Programming for VM/SP

SELECT CNAME Note that when a table

FROM SYSTEM.SYSCOLUMNS name is used as a constant,
WHERE TNAME = 'EMP TABLE' ¥ it is enclosed in single
AND CNAME LIKE 'D%' quotes ('), not double (").

SYSTEM is the owner of all catalog tables; you must qualify all catalog tables with
that name, unless you have a synonym defined.

The only information in the tables not available to everyone is password
information; you must have DBA authority to access the catalog that contains
passwords (SYSUSERAUTH). A view, called SYSUSERLIST, is defined on
SYSUSERAUTH when the catalogs are created. The creator of the view is
SQLDBA,; thus, you must refer to the view as SQLDBA.SYSUSERLIST. This
view is accessible to all users and contains all the columns of SYSUSERAUTH
except the passwords. If you do not have DBA authority, you must query the view
(SYSUSERLIST) instead of the underlying table (SYSUSERAUTH).

Some of the information in the catalogs is of little interest to most users. Statistics
maintained in the catalogs, for example, are used by SQL/DS to determine optimal
access paths -- to you, these statistics may be quite meaningless. If you wish, you
can define views on the catalog tables containing only columns that are meaningful
to you.

SQL/DS updates its catalogs during normal operation in response to SQL data
definition and control statements. Additionally, if you have DBA authority you can
create and maintain your own installation-dependent catalog columns using SQL
INSERT, DELETE, UPDATE, ALTER, and COMMENT statements.

The catalogs are completely described in the SQL/Data System Planning and
Administration for VM /SP manual. A brief description of each catalog is given
below.

Catalogs that Record Privileges

SYSUSERAUTH

SYSUSERLIST

SQL/DS uses SYSUSERAUTH to record special privileges. The special privileges
are DBA, RESOURCE, SCHEDULE, and CONNECT authority. Asin
SYSTABAUTH, an entry in SYSUSERAUTH denotes either a special privilege
held by a user or a special privilege exercised by a program.

Only users with DBA authority can access SYSUSERAUTH; other users must
access the view SYSUSERLIST. The creator of the view is SQLDBA; thus, you
must refer to the view as SQLDBA.SYSUSERLIST. The SYSUSERLIST view
contains all columns of SYSUSERAUTH except PASSWORD.

Putting the Program into Production 79

SYSPROGAUTH

SYSTABAUTH

SYSCOLAUTH

SYSPROGAUTH records privileges of users to run programs, and to grant these
privileges to other users.

SYSTABAUTH has two purposes:

1. It records privileges owned by users to access tables and views. For each such
privilege, it also records the source of the privilege (for example, a grant from
another user).

2. It records the privileges on tables and views that are exercised by various
preprocessed programs. Each such privilege appears in SYSTABAUTH as if it
were granted to the program by the user who preprocessed the program.

SQL /DS uses this type of SYSTABAUTH entry to find and invalidate access
modules when the necessary privileges are revoked from the creators of the
program.

SYSCOLAUTH records grants of the UPDATE privilege on tables and views when
the privilege is granted on a column-by-column basis. Each entry in
SYSCOLAUTH has a corresponding entry in SYSTABAUTH with a matching
timestamp. (SYSTABAUTH records privileges granted on entire tables, but not on
individual columns.) A SYSCOLAUTH entry identifies a particular column on
which an UPDATE privilege has been granted. For example, if the UPDATE
privilege is granted on several columns in one GRANT statement, the grant is
represented as one entry in SYSTABAUTH, and several entries in
SYSCOLAUTH, all having matching timestamps.

Some of the entries in SYSCOLAUTH represent privileges that are exercised by
preprocessed programs. These entries appear as though the creator of the program
(that is, the user who preprocessed the program) granted the privilege to the
program itself.

Catalogs that Record the Contents of the Data Base

SYSDBSPACES

The SYSDBSPACES catalog contains a row for each DBSPACE in the data base,
including those DBSPACEs that no user has yet acquired. The number of
DBSPACEs available is determined during data base generation. The size of each
DBSPACE is also specified at that time.

Additional DBSPACEs may be added from time to time by the ADD DBSPACE
utility programs; refer to the SQL/Data System Planning and Administration for
VM /SP manual for more information about these utilities.

80 SQL/Data System Application Programming for VM/SP

SYSCATALOG

SYSACCESS

SYSVIEWS

SYSCOLUMNS

The SYSCATALOG table contains a row for each table or view in the data base,
including itself and other catalog tables.

SQL /DS uses SYSACCESS to record the access modules that have been created
for user programs by the SQL /DS preprocessor. Some entries in SYSACCESS are
also used to record view definitions in a form for internal use.

The SYSVIEWS catalog contains the definitions of all views known to SQL/DS.
The views are stored in the form of the original SQL statements that defined the
views,

The SYSCOLUMNS catalog contains a more detailed description of the data base
than that contained in SYSCATALOG. Recall that SYSCATALOG contains a
row for each table or view in the data base; SYSCOLUMNS contains a row for
every column of every table or view in the data base (including the columns of the
SQL/DS catalogs).

Catalogs that Record Indexes and Synonyms

SYSINDEXES

SYSSYNONYMS

The SYSINDEXES catalog contains a row for every index currently in existence,
including the indexes that SQL /DS maintains on its own catalogs.

The SYSSYNONYMS catalog contains a row for every synonym that is currently in
effect. Note that each synonym is effective for only the user who defined it.

Miscellaneous Catalogs

SYSUSAGE

SYSUSAGE records dependencies of one SQL /DS object on another. For
example, an access module is dependent on the tables and indexes that it uses, or a
view is dependent on the tables on which it is defined. Each entry in SYSUSAGE
describes one dependent object and one base object. (The base object is the object
that is depended upon.)

Putting the Program into Production 81

SYSDROP

This catalog forms part of the mechanism used by SQL/DS to drop tables and
DBSPACE:s from the data base. When a DBSPACE or table is dropped, its
description is dropped from the SQL /DS catalogs immediately, but the underlying
Data Base Storage System (DBSS) objects are not dropped until the end of a
logical unit of work. (The DBSS is an internal component of SQL/DS.)
SYSDROP contains a list of the DBSS objects that are waiting to be dropped.

SYSCHARSETS
Contains a column for the EBCDIC character classification table (to identify valid
characters) and a column for the EBCDIC character translation table (for folding
to uppercase).

SYSOPTIONS

Records whether or not Double-Byte Character Set data can be used for identifiers
and character string constants. Also records what EBCDIC character set SQL
statements are written in.

82 SQL/Data System Application Programming for VM/SP

Chapter 2. Advanced SQL Programming

This chapter builds off the information contained in Chapter 1. For each of the
five tasks described in Chapter 1, a corresponding section exists in this chapter,
containing more detailed information.

The first section of this chapter, ‘“Designing the Program,” contains a detailed
explanation of the framework for coding SQL application programs. This
framework was introduced in Chapter 1. This section also describes the SQL
statements that must be included in the prolog and epilog sections of the program.

The second section, ‘‘Coding the Program,” describes advanced SQL statements
and clauses that you might wish to use in your programs.

The third section of this chapter, ‘‘Preprocessing and Running the Program,” gives
detailed descriptions of the steps necessary to run your program.

The fourth section, ‘“Testing and Debugging Concerns,” tells you how to handle
errors that arise during the execution of your program.

The fifth section, * Putting the Program into Production,” contains advanced
information that may be useful to you from an administrative standpoint.

Because this chapter contains advanced information, and because most of the

topics are self-contained, there are no section quizzes to determine whether you
need to read the sections.

Chapter 2. Advanced SQL Programming 83

84 SQL/Data System Application Programming for VM/SP

Designing the Program

Contents

Application Prolog e 86
Declaring the SQLCA i e 86
Host Variables 87
Connecting to SQL/DS e 91

Application Body e 92

Application Epilog e 93
CMS ApDLCAtIONS ...ttt ettt e e e e 93

SUMMAIYttt i i e e e e e 94

Sample Application Programsttt 95

Designing the Program 85

Application Prolog

At the beginning of every SQL/DS program, you must place SQL statements that:

» Declare a SQL Communications Area (SQLCA) and provide for error
handling

o Declare special variables (host variables) that SQL/DS uses to interact with
the host program

» Establish a connection between your program and SQL/DS.

Declaring the SQLCA

To declare the SQL Communications Area (SQLCA), code this statement in your
program:

INCLUDE SQLCA

When you preprocess your program, SQL/DS inserts host language variable
declarations in place of the INCLUDE SQLCA statement. This group of variables
is how SQL communicates with your program. SQL/DS uses the variables for
warning flags, error codes and diagnostic information. All the variables are
discussed under “Testing and Debugging Concerns” on page 201. The only
variable you need be concerned with now is SQLCODE.

SQL./DS returns a result code in SQLCODE after executing each SQL statement.
SQLCODE, return code, and result code are all terms that mean the same thing:
the integer value that summarizes how your SQL statement executed. When a
statement executes successfully, SQLCODE is set to 0. SQL/DS indicates error
conditions by returning a negative SQLCODE. A positive SQLCODE indicates
normal conditions experienced while executing the statement (such as end-of-file).

The WHENEVER statement below tells SQL/DS what to do when it encounters
an SQL error (that is, a negative SQLCODE):

WHENEVER SQLERROR GO TO ERRCHK

That is, whenever an SQL error (SQLERROR) occurs, program control is
transferred to a subroutine named ERRCHK. This subroutine should include logic
to analyze the error indicators in the SQLCA. Depending upon how ERRCHK is
defined, action may be taken to execute the next sequential program instruction, to
perform some special functions, or, as in most cases, to roll back the current logical
unit of work and terminate the program.

You can have any number of logical units of work in a program. For the simplest
case (which is being discussed here) the whole program is a single logical unit of
work. Either the program runs successfully and the changes are made to the data
base, or it doesn’t and no changes are made.

SQL./DS begins a logical unit of work implicitly. That is, you don’t have to code a
statement to start a logical unit of work. SQL/DS starts one when it encounters

86 SQL/Data System Application Programming for VM/SP

Host Variables

your first executable SQL statement. (‘“‘Logical Units of Work” on page 72 gives
a more precise description of when logical units of work begin.)

You must tell SQL/DS when to end the logical unit of‘work. “Application Epilog”
on page 93 explains how to do this. There are times when SQL implicitly ends a
logical unit of work. When this occurs, the SQLWARNO and SQLWARNG6
indicators are set to ‘W’.

You must declare all host variables. In addition, you must surround the host
variable declarations with two SQL statements:

BEGIN DECLARE SECTION
[)
[)

(host variable declarations)
[]
[]

END DECLARE SECTION

The data declaration statements vary from language to language. To determine
what the data declarations should be, you need to be familiar with SQL /DS data

types.

Consider the following SELECT statement:
SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT

FROM INVENTORY
WHERE PARTNO = :PART

The statement contains three host variables: DESC, QUANT, and PART. The
host variables interact with columns of the SQL/DS INVENTORY table. Each
column of every SQL /DS table is given an SQL data type when the table is
created. There are ten of these SQL/DS data types. Figure 11 on page 76 shows
the ten SQL /DS data types and how they are stored internally.

Each SQL /DS data type can be related to a host language data type. For example,
the INTEGER SQL./DS data type is a 31-bit binary integer. In COBOL this is
equivalent to a data description entry of:

01 wvariable-name PICTURE S9(9) COMPUTATIONAL.

In PL/I, the INTEGER data type equates to:

DCL variable-name BINARY FIXED(31)

In FORTRAN, this equates to:

INTEGER variable-name

And, in Assembler:

variable-name DS F

Designing the Program 87

All the host language equivalents for a particular SQL /DS data type are listed in
the host language appendixes. The charts are at the end of each host language
appendix. See Figure 40 on page 383, Figure 42 on page 417, Figure 46 on
page 446, or Figure 49 on page 464.

It is a simple matter to see which host variables interact with which columns. Here
is the SELECT statement again:

SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT

FROM INVENTORY

WHERE PARTNO = :PART

The DESCRIPTION column of the selected row is returned in DESC. The
QONHAND column is returned in QUANT. The PARTNO column is compared
to the PART host variable.

Once you determine which column a host variable interacts with, you need to find
what SQL/DS data type that column has. The SQL/DS data types for the example
table are listed in the upper right hand corner of the foldout (along with the tables).
DESCRIPTION is VARCHAR(24), QONHAND is INTEGER, and PARTNO is
SMALLINT. (For now, you can ignore the “NOT NULL” in the chart.)

When you are coding an actual program, you can find out what data type a given
column has by asking the person who created the table. Alternatively, you can
query the SQL /DS catalogs. The catalogs are tables maintained by SQL/DS.
They contain information about all the tables created in the data base. The
catalogs are completely described in the SQL/Data System Planning and
Administration for VM /SP manual.

Having determined the SQL/DS data types, you can refer to the conversion charts
at the end of the host language appendixes and code the appropriate declarations.
Figure 13 shows the declarations in each host language.

12

I

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
1 DESC.

49 D-LENGTH PICTURE S9(4) COMPUTATIONAL.

49 D-VALUE PICTURE X(24).
01 QUANT PICTURE S9(9) COMPUTATIONAL.
01 PART PICTURE S9(4) COMPUTATIONAL.
EXEC SQL END DECLARE SECTION END-EXEC.

COBOL Cols.

Figure 13 (Part 1 of 2). Examples of Host Variable Declarations

88 SQL/Data System Application Programming for VM/SP

PL/I

EXEC SQL BEGIN DECLARE SECTION;
DCL DESC CHARACTER(24) VARYING;
DCL QUANT BINARY FIXED (31);

DCL PART BINARY FIXED (15);
EXEC SQL END DECLARE SECTION;

Assembler

EXEC SQL BEGIN DECLARE SECTION
DESC DS H,CL(24)
QUANT DS F
PART DS H

EXEC SQL END DECLARE SECTION

FORTRAN

Col. 7
|
EXEC SQL BEGIN DECLARE SECTION
CHARACTER*24 DESC
INTEGER QUANT
INTEGER*2 PART
EXEC SQL END DECLARE SECTION

Figure 13 (Part 2 of 2). Examples of Host Variable Declarations

The above example also shows the BEGIN and END DECLARE SECTION
statements. Observe how the delimiters for SQL statements differ for each
language. In all languages, the actual SQL statement is preceded by “EXEC
SQL”. In COBOL, the end of the command is denoted by “END-EXEC.” In
PL/1, the usual semicolon (;) is used. There is no trailing delimiter for Assembler

or FORTRAN.

The exact rules of placement, continuation, and delimiting of SQL statements are
in the host language appendixes. Figure 14 is another example of embedded SQL
statements. The INCLUDE SQLCA, WHENEVER, and SELECT statements are

shown in each language:

Designing the Program 89

COBOL

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
[]
(host variable declarations)
L]
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
EXEC SQL WHENEVER SQLERROR STOP END-EXEC.
EXEC SQL SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART END-EXEC.

PL/I

EXEC SQL BEGIN DECLARE SECTION;
[]
({host variable declarations)
[]
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR STOP;

EXEC SQL SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART;

Assembler

EXEC SQL BEGIN DECLARE SECTION

(host variable declarations)
[]

EXEC SQL END DECLARE SECTION Col. 72 ---

EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR STOP
EXEC SQL SELECT DESCRIPTION, QONHAND
INTO :DESC, :QUANT
FROM INVENTORY
WHERE PARTNO = :PART

Figure 14 (Part 1 of 2). Examples of Embedded SQL Statements

90 SQL/Data System Application Programming for VM/SP

FORTRAN

Col. 6 --EXEC SQL INCLUDE SQLCA

1000 CALL ERROUT

EXEC SQL BEGIN DECLARE SECTION

(host variable declarations)
[]

EXEC SQL END DECLARE SECTION

|EXEC SQL WHENEVER SQLERROR

*GO TO 1000

EXEC SQL DECLARE C1 CURSOR FOR

* SELECT DESCRIPTION, QONHAND
* FROM INVENTORY

* WHERE PARTNO = :PART

EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :DESC, :QUANT
EXEC SQL CLOSE C1

Figure 14 (Part 2 of 2).

Examples of Embedded SQL Statements

Note: PL/I, COBOL, and Assembler language programs can also be coded using
the “DECLARE-OPEN-FETCH-CLOSE” cursor format required for FORTRAN
programs.

Connecting to SQL/DS

In VM/SP environments, the SQL/DS CONNECT statement is not required to
establish a connection between SQL/DS and your program. Userid and password
checking by VM/SP may be sufficient. SQL/DS does implicit connecting for those
environments when an explicit CONNECT is not found.

For explicit CONNECTS, SQL/DS supports the following statement:

CONNECT userid IDENTIFIED BY password

Both the userid and password must be host variables and must be declared as
fixed-length character strings of length 8. For example,

CONNECT :USER IDENTIFIED BY :PW

“USER” and ‘“PW” are host variables and might contain the following:

JONES <====—-- USER
JONESPW <-—-==—--- PW
12345678 <----—--- character positions

Note that unused positions to the right are padded with blanks.

You must initialize the host variables before the CONNECT statement is executed.
To do this, you should code the program to get values for these values via an input
file (for example, SYSIN) or via input parameters. When the variables are set from
an external source, your program can be executed only by those who know a valid
userid and password to provide as input.

Designing the Program 91

CONNECT identifies the user to SQL/DS. In the case where a previously 4
preprocessed program is to be executed, the CONNECT statement in that program

identifies the user that is to run the program. This may be the same or a different

user than the one that preprocessed it. In either case, the user must have

CONNECT authority for the explicit CONNECT, as well as RUN authority for the

specific program. The conditions for acquiring authority are discussed in the

section, ‘‘Authorization” on page 213 in Chapter 2.

Generally speaking, if a CONNECT statement is necessary, it must be the first
SQL statement executed in your program. Only SQL declarative statements and
host language code may precede a CONNECT statement. Figure 15 shows these
declarative statements.

BEGIN DECLARE SECTION
END DECLARE SECTION
WHENEVER

DECLARE CURSOR
INCLUDE SQLCA

INCLUDE SQLDA

Note: SQL declarative statements can also follow the CONNECT
statement in some languages.

Figure 15. SQL Declarative Statements

Both the SQLCA structure and the host variable declarations may precede the
CONNECT statement. -

A CONNECT statement is not required for VM/SP. More information about the
implicit connect for VM/SP is contained under “VM/SP Connect Considerations”

on page 186.

The CONNECT statement ends the application prolog.

Application Body

The application body is where you place the SQL statements that operate on
SQL/DS tables. While there are many SQL statements, most of the day-to-day
operations are done using a small subset:

e« SELECT -- for data retrieval. When more than one row of a table is retrieved,
you must use a cursor to retrieve each row. In FORTRAN programs, a cursor
must always be used for data retrieval. Cursors are explained under
“Retrieving or Inserting Data with a Cursor” on page 19.

« INSERT -- to add new rows to an existing table.

o« DELETE -- to delete rows from a table.

« UPDATE -- to change existing rows of a table.

92 SQL/Data System Application Programming for VM/SP

Remember to declare all host variables used in SQL statements, and to properly
delimit the statements for the host language.

Application Epilog

CMS Applications

The application epilog is the logical end of your SQL/DS application program. To
properly end your program:

1. End the current logical unit of work (if one is in progress). You should always
explicitly end your logical units of work. If you want the changes to be
committed, code it explicitly. If you want the changes to be rolled back, code it
explicitly.

2. Release your connection to SQL/DS. Others can then use the SQL/DS
resources.

You can issue COMMIT WORK or ROLLBACK WORK explicitly. The unit of
termination is the end of a CMS command or the termination of the user virtual
machine. It is at these points where an implicit COMMIT or ROLLBACK WORK
may be invoked.

The implicit COMMIT or ROLLBACK WORK is automatic for any application
that accesses SQL/DS. If an SQL/DS application program is not executed through
an EXEC, it is considered a ‘“‘command’ and normal, explicit
COMMIT/ROLLBACK WORK procedures apply. If an SQL/DS application
program is executed through an EXEC, COMMIT/ROLLBACK WORK
processing does not occur until the EXEC completes.

When implicit COMMIT or ROLLBACK WORK is invoked at a unit of
termination, either a COMMIT or a ROLLBACK of the logical unit of work
occurs, depending upon whether the termination was normal or abnormal.

An application is considered to have terminated normally when it has returned to
CMS; or, in single virtual machine mode, when it returns to the SQL /DS calling
routine. Any other kind of termination such as HX, CMS abend, program check,
or any user machine termination is considered an abnormal termination.

In the VM/SP environment, user written interactive SQL applications are provided
with an inherent facility to cancel an SQL command without terminating the
running application. This cancel facility is invoked via the SQLHX immediate
command that is established by SQL/DS. The only special processing required of
the application is that it be sensitive to the -914 SQLCODE.

The terminal operator can cancel long-running SQL commands by entering
“SQLHX" from the keyboard. This will cause the logical unit of work to be rolled
back and an SQLCODE of -914 to be returned to the application. If the userid
and password were established with an explicit SQL CONNECT, it will be
necessary to reissue the CONNECT or the userid and password will revert to the
value established by the implicit CONNECT.

Designing the Program 93

The application can modify the basic cancel facility by defining additional names
for the SQL/DS-defined SQLHX command or by requesting SQL /DS to remove
the SQLHX command and the exit it invokes. These modifications are done using
the ARIRCAN macro. For more detail on the ARIRCAN macro interface, see
“Recovery Concepts” in the SQL/Data System Planning and Administration for
VM /SP manual.

For more information on CMS, consult the Virtual Machine/System Product: CMS
User’s Guide or the Virtual Machine/System Product: CMS Command and Macro
Reference manual.

Summary

Figure 16 summarizes what has been covered so far in this chapter. The pseudo
code illustrates a general framework for an SQL/DS application. This framework
must, of course, be tailored to suit your own program.

Remember that when used in an SQL statement, host variables must be preceded

by a colon. Be sure to declare the host variables used in the CONNECT statement
as character strings of fixed length 8.

94 sQL/Data System Application Programming for VM/SP

Start Program

EXEC SQL BEGIN DECLARE SECTION
DECLARE USERID FIXED CHARACTER .8)
DECLARE PASS FIXED CHARACTER (8)

L]
L]
(other host variable declarations)
[]
L]
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
EXEC SQL WHENEVER SQLERROR GO TO ERRCHK
READ FROM SYSIPT USERID, PASS

L]

EXEC SQL SELECT

EXEC SQL INSERT

EXEC SQL DELETE

EXEC SQL UPDATE
L]
L]

EXEC SQL COMMIT WORK RELEASE

L]
L]

End Program.

cursor format:

[]

[]
EXEC SQL OPEN cursor—-name
EXEC SQL FETCH cursor-name INTO
EXEC SQL CLOSE cursor-name

EXEC SQL CONNECT :USERID IDENTIFIED BY :PASS

Note: For FORTRAN applications, the EXEC SQL SELECT... statement
must be defined with a cursor. FORTRAN programs require the following

EXEC SQL DECLARE cursor-name CURSOR FOR SELECT ...

Application
Prolog

Application
Body (SQL
statements)

Application
Epilog

Figure 16. Pseudo Code Framework for Coding Programs

Sample Application Programs

IBM ships five system-dependent sample applications with SQL/DS. The

applications are:

ARISAMDB A Data Base Services utility control file. This control file
contains commands that create, load, and print sample tables
similar to those in the foldout. The control file is shown in the
SQL/Data System Installation for VM/SP manual.

Designing the Program 95

ARISASMC An Assembler language program that manipulates data in the
tables created by ARISAMDB and prints results. The source
code for the program (ARISASMC) is shown in Appendix
E, “Assembler Considerations.”

ARISCBLC A COBOL program that manipulates data in the tables created
by ARISAMDB and prints results. The source code for the
program (ARISCBLC) is shown in Appendix D, “COBOL
Considerations.”

ARISFTN A FORTRAN program that manipulates data in the tables
created by ARISAMDB and prints results. The source code is
shown in Appendix F, “FORTRAN Considerations.”

ARISPLIC A PL/I program that manipulates data in the tables created by
ARISAMDRB and prints results. The source code for the program
(ARISPLIC) is shown in Appendix C, “PL/I Considerations.”

Each program is an example of using SQL within application programs. You may
wish to model your initial programs from the sample applications. IBM supplies
EXECs to preprocess, compile, link-edit, and run the sample programs on VM/SP
systems.,

Each of the following examples assumes that the user (userid) is SQLDBA with a
password of SQLDBAPW. If the samples are run under a userid other than
SQLDBA, or if SQLDBAPW has been changed, the parameters in the following
examples must also be changed. Along with these changes, the host variables used
by the CONNECT statement in the sample programs must also be modified to
reflect a new userid and/or password.

In operational programs it is generally a better security practice to obtain the userid
and password from external parameters, rather than from initialized values of host
variables used by CONNECT.

The following is a list of the IBM-supplied EXECs that can be used to preprocess,
compile, link-edit, and run the SQL/DS sample programs.

SQLASMC EXEC Q The SQL/DS sample Assembler program EXEC.
SQLCBLC EXEC Q The SQL/DS sample COBOL program EXEC.

SQLPLI EXECQ The SQL/DS sample PL/I program EXEC.

SQLFTN EXEC Q The SQL/DS sample FORTRAN program EXEC.

For example, to preprocess (via the SQL/DS COBOL preprocessor), compile, link

edit, and run the SQL /DS sample COBOL program from an SQL/DS user
machine, enter the following command:

SQLCBLC

96 SQL/Data System Application Programming for VM/SP

Coding the Program

Contents

More About Search Conditions iiirrenennnn.. 99
Additional Typesof Constantsciiiirrennnnnnnn. 99
Double-Byte Character Set (DBCS) Constants 99
Mixing EBCDIC and DBCS Data in Character String Constants 100
Hexadecimal Constantscciitiiiutnnrenneennnn 100
The USER Keyword 100
NULLS .. e e 101
Notes on Constructing Search Conditions 103
Rules for Evaluating Predicates 103
Additional Search Predicates 0., 104
BETWEEN Predicate uiinnnnnnnnn.. 104
INPredicate it e 105
NULL Predicate00 iiiiien.s 105
LIKE Predicatettt itrttietnnnnnnnnnnns 106
Additions to the SELECT Statementvtiiuueennn.. 107
Joining Tables e 107
HowtoJoin Tablest 107
How SQL/DS Joins Tablesottt i 107

A Simple Join QUEryt 108
Joining Another User’s Tables u... 108
Analyzing HowaJoin Works 109
Nulls Within Join Conditionsc. vt 110
JoiningaTabletoItself0t iiiinrin. 110
Limits on JOIns e 112
SELECT * AsUsedinalJoin, 112
Ordering the Resultsof aJoin 112
GIOUDINE ..ot e e e 113
Nulls within Groupsot e e e 114
Rules for Select-Lists of Grouping Queries 114
Using a WHERE Clause with a GROUP BY Clause 115
The HAVING Clausettt 116
Combining Joins, WHERE, GROUP BY, HAVING, and ORDER BY . 117
An EXercise e 117
Nesting a Query into AnotherQueryccu.... 119
Subqueries That Return a Single Value 122
Subqueries That Returna Null Value 122
Subqueries That Return Many Values 122
Using the IN Predicate witha Subquery 123

Coding the Program 97

Other Subquery Considerationsc..... 123

Subqueries That Are Executed Repeatedly: Correlation 124
How to Write a Correlated Subquery 125
How SQL/DS Does Correlationccoiuiuenenon.. 126
An ExXerciseci i e e 127

Testing for Existence i, 131

Combining Queries into a Single Query: UNION 132

More About Cursor Managementc.cciiuiiiinnnennn.. 134
ORDER BY Clause of the DECLARE CURSOR Statement 134
FOR UPDATE Clause of the DECLARE CURSOR Statement 135

More About Data Manipulation, 136

Use of VieWSot et ettt e e e e 140

Creatinga View i i 140

Querying Tables Througha View 142

Modifying Tables Througha View 143

Dropping a View e e 145

Indicator Variablesttt 146

Dynamically Defined Statements o.... 147

Non-Query Statementso.eeutenetnneeneenneeneennn. 148

Dynamically Defined Queries 151

Parameterized Queriesttt . 159

Parameterized Non-Query Statementscvu.... 163

An Alternative for Parameterized Statements 164

Dynamic Data Conversioncciitiiuinninnnnnnn.. 165

The SQL Descriptor Area (SQLDA)ttt 167

PREPARE i e e e 172

EXECUTE ... i e e e e e e 175

EXECUTEIMMEDIATE ittt 176

DESCRIBE i e e e 177

DECLARE CURSOR Statement for Dynamically Defined Queries 179

OPEN Statement with USING Option 180

FETCH Statement for Dynamically Defined Queries 181

PUT Statement for Dynamically Defined Inserts 181

98 SQL/Data System Application Programming for VM/SP

.~ More About Search Conditions

Additional Types of Constants

There are other types of constants that you can use within expressions, besides the
ones discussed in Chapter 1. This section discusses Double-Byte Character Set
(DBCS) data, hexadecimal data, and the USER keyword, as used within SQL
expressions.

Double-Byte Character Set (DBCS) Constants

Note: If you are not already familiar with the Double-Byte Character Set, and you
don’t intend to use it, you should skip this section.

Double-Byte Character Set (DBCS) constants can be used in COBOL and PL/I
programs, but with two different formats. The SQL/DS preprocessors for COBOL
and PL/I also support these constants. DBCS constants are not supported in
FORTRAN or Assembler language.

The SQL form of the DBCS constant can be used in dynamic SQL statements and
COBOL programs. The SQL form of the DBCS constant is:

G'so...si'

A\ The shift-out and shift-in characters (‘‘so” and “‘si’’) are single-byte characters,
X‘OE’ and X‘OF’ respectively. The ellipsis represents any DBCS string. Because
they are not within the so/si delimiters, the letter G and the apostrophes (*) are
single-byte EBCDIC characters, X‘C7’ and X‘7D’ respectively. The left byte of a
DBCS byte-pair must not be X‘OF’, since this would signal exit from DBCS
encoding. There must be an even number of bytes between the so and the si
delimiters. Although character constants require doubling of internal apostrophes
to get single apostrophes, no DBCS characters require such doubling.

For PL/I programs, the PL/I form of the DBCS constant must be used for DBCS
constants embedded in SQL statements. The DBCS constant for PL/I programs
is:

‘... 'Gsi

SO
Unlike the SQL form, the letter G and the apostrophes (’) appear inside the so/si
delimiters. Therefore they are encoded as DBCS characters. Apostrophe is
X‘427D’ and G is X‘42C7’. The so and si are single-byte characters, X‘OE’ and
X‘OF’ respectively. In the PL/I form of the DBCS constant, DBCS apostrophes
(X‘427D’) must be doubled to obtain a single DBCS apostrophe, similar to the
character string constant case for the EBCDIC apostrophe.

The SQL. /DS PL/1I preprocessor converts PL/I format literals into SQL form
constants when they appear in SQL statements. This is done before passing the
SQL statement to SQL/DS for processing. Therefore, some SQL/DS messages for
“'\' incorrect syntax may refer to the SQL form of the constant.

Coding the Program 99

Mixing EBCDIC and DBCS Data in Character String Constants

Hexadecimal Constants

The USER Keyword

When the DBCS option is set to YES, a character string constant can contain both
EBCDIC and DBCS data. The DBCS strings must be enclosed by so and si. For
example:

'kkkgo, , ,Sikk*g0,, ,Sikkk!

where the asterisks (***) represent EBCDIC data and the dots (...) represent
DBCS data.

The so...si portions of the data strings must not span across a line. As with
unmixed DBCS data, DBCS portions of mixed EBCDIC and DBCS strings do not
double the EBCDIC apostrophe (X‘7D’). However, X‘7D’ must be doubled in the
EBCDIC portions of the mixed strings.

For more information on mixed EBCDIC and DBCS strings, refer to the “Data
Types of Character Strings Constants” section of the SQL/Data System Planning
and Administration for VM /SP manual.

The hexadecimal representation of a constant value must be enclosed within single
quote marks, such as:

X'2D' X'cicac3cs! X'4256457D'

Each pair of hexadecimal numbers (0-9, A-F) represents a single byte. (Either
uppercase or lowercase letters may be used.) Therefore, the number of

hexadecimal numbers must be an even number and, when representing a DBCS
constant, a multiple of 4 (each DBCS character occupies two bytes in storage).

Hexadecimal constants can be used only to represent character and DBCS data
types. The maximum length for hexadecimal constants is 254 hexadecimal
numbers; that is, 127 EBCDIC characters or 63 DBCS characters.

Note the following restrictions for hexadecimal constants:

1. They are always treated as VARCHAR data in a SELECT-list.

2. They must not be associated with a host variable in a dynamic statement.

3. They must not be used in an IN predicate.

USER is an SQL keyword. It evaluates to the userid of the person who is running
the program, regardless of who preprocessed it. That is, USER evaluates to the
userid specified in the CONNECT statement. USER behaves exactly like a
fixed-length character string constant of length 8, with trailing blanks if the userid
has less than eight characters.

This keyword has limited use, however. In particular:

100 SQL/Data System Application Programming for VM/SP

(%..

Nulls

1. You cannot use it in an arithmetic expression (for example, USER+3).

2. You cannot use it in select-lists. (Select-lists are described in the following
discussion of the SELECT statement.)

3. Youcan use it in a predicate where you compare it to a character string (for
example, USER = ‘JIM’).

4. You can, with some restrictions, use it in the SET clause of an UPDATE
statement, or in the VALUES clause of an INSERT statement.

Below are valid expressions that incorporate the three data types just discussed:

USER

¢ ®F¥T -4

.

X's0c2!’

si

SQL/DS allows the existence of nulls in fields of a table. A nullis a
‘“non-existent” value; that is, it represents a value that is unknown or not
applicable. You can think of a null value as an empty space, or a space reserved
for later insertion of data.

When null values occur within expressions, the value of the expression is also null.
For example, in this predicate either or both QONORDER and QONHAND may
be a null value:

QONHAND + QONORDER < 100

expression] expression2

If either QONHAND or QONORDER is null, SQL /DS considers expressionl
above as null.

When one of the expressions in a predicate evaluates to null, the truth-value of the
predicate is unknown. (That is, it is unknown whether a null value is less than
100.) If you combine this predicate with other predicates by using AND, OR, and
NOT operators, SQL/DS processes the unknown truth value according to the truth
tables in Figure 17. (‘““?” represents the unknown truth value.)

Coding the Program 101

102

I | I
AND | T F 2?2 OR | T F ? NOT |
| l I
—————— |——————=—= - —————— -
I ! |
T | T F ? T | T T T T | F
! | I
F | F F F F I T F ? F | T
i I I
2 | ? F ? 7 1 T ? 2 2] 2
| | !

Figure 17. Truth Table for Null Values

In any query or data manipulation statement, if the truth-value of the search
condition as applied to some row is ‘‘unknown,”’ the row does not qualify. (That is,
it does not satisfy the search condition and SQL/DS does not select or change it.)
For example, suppose that SQL /DS is searching through a table for rows that
satisfy the following condition:

PRICE+5.25 < 20.00 AND SUPPNO = 51

Now consider what happens when SQL /DS encounters a row in which the PRICE
field is null, but the SUPPNO field is 51:

PRICE+5.25 < 20.00 AND SUPPNO = 51

"UNKNOWN" AND "TRUE"

Because PRICE is null, the expression “PRICE+5.25” is null, thus causing the
truth value of the first predicate to be unknown. The SUPPNO field for that
particular row is 51, so the second predicate is true. By referring to the truth
tables, you can tell whether the row satisfies the search condition:

TRUE
|
|
\Y
|
AND | T F ?
———— I _____________
I
T | T F ?
I
F o F F F
|
UNKNOWN —_——=> ?2 | ? F ?
I

“UNKNOWN AND TRUE” evaluate to “UNKNOWN"; the row, therefore, does
not satisfy the search condition.

SQL/Data System Application Programming for VM/SP

Notes on Constructing Search Conditions

When you are constructing search conditions, there are other considerations you
should keep in mind. For example, you should be careful to perform arithmetic
only on numeric data types (INTEGER, DECIMAL, SMALLINT, or FLOAT) and
to make comparisons only between compatible data types (INTEGER, DECIMAL,
SMALLINT, and FLOAT are compatible; all fixed and varying-length character
strings are compatible, regardless of length). DBCS data types are only compatible
with other DBCS data types. Note also that you can not use columns of the type
LONG VARCHAR or LONG VARGRAPHIC in your predicates. If you use a
host variable in an expression, its host language data type must be compatible with
the rest of the expression.

Whenever an arithmetic or comparison operator has operands of two different
types, SQL/DS evaluates it in the “greater” of the two types. (FLOAT takes
precedence over DECIMAL, DECIMAL takes precedence over INTEGER, and
INTEGER takes precedence over SMALLINT.) For example, if the PRICE
column is of INTEGER type and has the value 25, the expression PRICE*.5 will
evaluate to 12.5, a decimal value. The predicate PRICE*.5=12 is false, because
the decimal value forces the predicate to be evaluated in decimal. (Decimal values
are stored in System/370 packed decimal format.)

SQL /DS computes all floating point values in normalized form as described in the
System/370 Principles of Operation, GA22-7000. When a floating point value is
stored in a table, it may not be stored exactly as entered. For example, an SQL
INSERT statement could specifically insert the constant 3EQ into a field.
Internally, however, the value might actually be stored as 2.9999. Floating point
values may become even more imprecise when arithmetic operations are performed
on them. It is recommended that you use the BETWEEN predicate (described
later) when comparing floating point values.

Arithmetic operations between two items of type SMALLINT produce a result of
type INTEGER, in order to avoid possible overflow problems (as might easily
occur in multiplication). When INTEGER or SMALLINT values are used in a
division computation, the result is of type INTEGER, and any remainder is
dropped. (See ‘“‘Data Conversion” on page 76 for more information about data
conversion.)

Rules for Evaluating Predicates

SQL/DS observes the following rules when evaluating predicates:

1. When comparing two character strings, SQL /DS uses dictionary ordering. For
example:

IAI < IBI
'A' < 'ABLE'
IZI < l35l
'Al' < 'B'

2. When comparing two character strings of fixed length, SQL/DS pads the

shorter string on the right with blanks until it equals the length of the longer
string. (DBCS strings are padded with X‘4040°.) SQL/DS then does the

Coding the Program 103

comparison. For example, if the NAME column of a table is of type
CHAR(10), you may write NAME=‘SMITH’ in your search condition, and the
condition will be satisfied by the data base value:

'SMITH

When comparing two character strings of varying length, SQL/DS performs no
padding. To be considered equal, two varying-length strings must have the
same length and the same content. For example, ‘AA’ is not equal to ‘AA .

In performing an arithmetic operation, if either of the operands is null, the
result of the operation is null.

No predicates are permitted on data of the type LONG VARCHAR or LONG
VARGRAPHIC. Further restrictions on usage of these data types are given in
the section ‘“Use of Long Fields” on page 236.

When decimal numbers of different scales are compared, the shorter scale is
considered extended with trailing zeros sufficient to match the scale of the
larger number. For example, 25.45 is equal to 25.4500.

When comparing two DBCS character strings, SQL/DS compares the value of
the respective data fields in a manner similar to that used for character data
types. This single character sequencing is generally of no value for DBCS
ordering. Therefore, it is the user’s responsibility to specify the sequencing
criteria for DBCS data comparisons other than equal or not equal.

Additional Search Predicates

BETWEEN Predicate

SQL provides four additional types of predicates that you may use in search
conditions. These predicates can be used in addition to the standard predicates
that compare two expressions. These predicates, described below, are denoted by
the keywords BETWEEN, IN, NULL, and LIKE.

You may use the four predicates BETWEEN, IN, NULL, and LIKE alone or with
other predicates by using the keywords AND, OR, and NOT to form a search
condition.

Format:

expressionl [NOT] BETWEEN expression2 AND expression3

104 SQL/Data System Application Programming for VM/SP

Examples:

PRICE BETWEEN 18.00 AND 25.00
QONHAND + QONORDER BETWEEN :LIMIT1 AND :LIMIT2

IN Predicate

The three expressions in a BETWEEN predicate are standard expressions
constructed from column names, constants, and host variables. The BETWEEN
predicate is satisfied if the following condition is true:

expression2 <= expressionl <= expression3

The BETWEEN predicate is particularly useful in comparing floating point values.
The predicate below determines if a value in a column of floating point numbers
(called YVALUE) is approximately equal to 3:

YVALUE BETWEEN 2.85EO0 AND 3.15EO

A NOT BETWEEN predicate is true if the corresponding BETWEEN predicate is
false.

Format:

expression [NOT] IN (list-of-items)

Example:

PARTNO IN (221,

:P3, :P4)

NULL Predicate

This predicate enables you to quickly compare the value of an expression with a list
of items. The predicate is satisfied if the expression is equal to any of the items in
the list (or, if the NOT option is used, not equal to any of the listed items). The
items may be constants (for example, 27 or ‘BOLT’) or host variables (for
example, :X). There must be more than one item in the list; separate each item
with a comma. A hexadecimal constant cannot be used either as an expression or a
list-of -items.

Format:

column-name IS

[NOT] NULL

Coding the Program 105

Example:

PARTNO IS NULL

LIKE Predicate

A row of a table satisfies this predicate if the value of the designated column is (or
is not) null. This predicate provides a way for you to explicitly look for null values
in tables, or exclude null values from consideration.

Note: You can’t use only the NULL keyword in a normal predicate. That is,
“WHERE PAY=NULL” is incorrect; but “WHERE PAY IS NULL"” is correct.

Similarly, you can’t use the NULL keyword in the IN predicate. For example,
“WHERE PAY IN (5000,NULL,8000)" is incorrect. You should write “WHERE
PAY IN (5000,8000) OR PAY IS NULL.”

In addition, you can’t use the NULL keyword in a select-list.

Format:

column-name [NOT]

LIKE {guoted-string | host-variable}

The LIKE predicate enables you to search for character string data that partially
matches a given string.

The column you specify must be of fixed-length or varying-length character or
DBCS type. (LONG VARCHAR and LONG VARGRAPHIC are not permitted.)
The quoted string or variable on the right side of the LIKE is called a pattern. The
pattern must have a data type that is compatible with the named column, that is,
character to character, DBCS to DBCS, and hexadecimal to either. The pattern
may contain any character string, with special meanings for the characters **_ ”
(*__"orX'426D’ in DBCS) and “%” (*0/0” or X'426C’ in DBCS). The “__”
character (or equivalent DBCS value X‘426D’) represents ‘“‘any single character.”
The “%?” character (or equivalent DBCS value) represents ‘“any string of zero or
more characters.” You can use these two special characters within patterns in any
combination. The following examples illustrate use of the LIKE predicate:

NAME LIKE ‘% ANNE%’
(Searches for any name that contains the word ANNE; for example,
“LIZANNE,” “ANNETTE,” or “ANNE.”)

NAME LIKE X‘426C4F5848F2426C’
(Searches for any occurrence of DBCS character strings containing
X‘4F5848F2’. Note that the above character string contains the DBCS
value X‘426C’ as the first and last item in the character string. This value is
equivalent to the %" character in the preceding example.)

106 SQL/Data System Application Programming for VM/SP

Vs

NAMELIKEG' %# %% °
This example accomplishes the same as the preceding example, using a
DBCS constant.

NAME LIKE *_A_’
(Searches for any three-character name that has A as its second letter. To
satisfy this pattern, a data value must be of length three, for example,
“PAT,” “DAN,” or “PAM.” Its data type may be either fixed-length or

varying-length character.)

NAME LIKE :X
(Your program defines a pattern in host variable :X. The pattern may have
any combination of “%” and *“ ’ characters. You may change the pattern

in the host variable each time the SQL statement containing this predicate is
executed. Note that when you use a host variable in a LIKE predicate, the
host variable usually should be declared as a varying-length character string.)

A NOT LIKE predicate is true if the corresponding LIKE predicate is false.

Additions to the SELECT Statement

Joining Tables

How to Join Tables

Joins allow you to write a query against the combined data of two or more tables.
(You can also join views. They are discussed under ‘“Use of Views” on page 140.)

To join tables, follow these two steps:
1. List in the FROM clause all the tables you wish to join.

2. Specify in the WHERE clause a join condition. A join condition expresses
some relationship between the tables to be joined.

Note that the data types of the fields involved in the join condition do not have
to be identical; they must, however, be compatible. The join condition is
evaluated the same as any other search condition, and the same rules for
comparisons apply. (These rules are discussed under ‘‘Using Expressions as
Search Conditions” on page 30.)

How SQL/DS Joins Tables

Conceptually, SQL/DS forms all possible combinations of rows from the indicated
tables. For each combination, it tests the join condition. If you don’t specify a join
condition, SQL /DS returns all possible combinations of rows from tables listed in
the FROM clause, even though the rows may be completely unrelated.

Coding the Program 107

A Simple Join Query

The following join query finds the part, description, and price of all parts supplied
by supplier 51:

DECLARE C1 CURSOR FOR

SELECT INVENTORY.PARTNO, DESCRIPTION, PRICE
FROM QUOTATIONS, INVENTORY

WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO <— JOin

AND SUPPNO = 51 condition.
OPEN C1

FETCH C1 INTO :X, :Y:YIND, :Z:ZIND

CLOSE C1

The WHERE clause above expresses a join condition. If a row from one of the
participating tables doesn’t satisfy the join condition, that row does not appear in
the result of the join. So, if a PARTNO in the INVENTORY table has no
matching PARTNO in the QUOTATIONS table (or vice versa), that row does not
appear in your result.

Note that more than one table in a join may have a common column name. To
identify exactly which column you are referring to, you must use the table name as
a prefix, as in the example above. Unique column names don’t require a table
name prefix.

Here is the query result (based on the example tables shown in the foldout):

PARTNO DESCRIPTION PRICE

221 BOLT .30
231 NUT .10

Joining Another User’'s Tables

If you are referring to another user’s table, you still must prefix the table name with
the userid. Suppose, for example, the tables in the query above belonged to
JONES, you would write:

DECLARE C1 CURSOR FOR

SELECT JONES.INVENTORY.PARTNO, DESCRIPTION, PRICE

FROM JONES.QUOTATIONS, JONES.INVENTORY

WHERE JONES.INVENTORY.PARTNO = JONES.QUOTATIONS.PARTNO
AND SUPPNO = 51 —=mm— —mmmmmmeem oo

OPEN C1 | I |__ column name
FETCH C1 INTO :X, :Y:YIND, :Z2:ZIND I | table name
CLOSE C1 I creator

108 SQL/Data System Application Programming for VM/SP

C

Analyzing How a Join Works

When writing a join query, it is often helpful to mentally go through the query to
see what the intermediate results look like.

For example, study the previous SELECT statement. The statement refers to the
INVENTORY and QUOTATIONS tables in the foldout. The result of just the join
condition looks like this:

SUPPNO

PARTNO

209

PRICE DELIVERY TIME QONORDER DESCRIPTION QONHAND

.30 10 50 BOLT 650
.10 10 0 NUT 700
.25 15 0 BOLT 1250
.10 15 200 NUT 1100
.08 15 0 WASHER 6000
18.00 21 0 CAM 50
.10 30 150 BOLT 650
.04 30 200 NUT 700
.02 30 200 WASHER 6000
21.00 14 0 WHEEL 350
8.50 21 24 BELT 85
.20 21 0 BOLT 650
.20 21 200 BOLT 1250
.05 21 0 WASHER 6000
29.00 14 20 GEAR 75
19.50 7 7 CAM 50

Each PARTNO in QUOTATIONS was compared to every PARTNO in
INVENTORY. When the PARTNO field of both tables matched, a row was
formed. The new row contains the combined fields of the ‘“matching’ rows.
Notice that the only column name that is common to both tables is PARTNO. If
the name of the PARTNO column was different in each table, then the PARTNO
column of the conceptual result above could have been called either name. This is
because of the equality expressed in the join condition. In fact, the select-list could
have specified QUOTATIONS.PARTNO instead of INVENTORY.PARTNO, and
SQL/DS would have produced identical results.

Now consider what happens when the second part of the WHERE clause (AND
SUPPNO=51) is applied:

51
51

221
231

SUPPNO PARTNO PRICE DELIVERY TIME QONORDER DESCRIPTION QONHAND

.30 10 50 BOLT 650
.10 10 0 NUT 700

The result is further reduced so that only the rows with a supplier number of 51
remain. The entire search condition is now satisfied. Here are the columns that
SQL/DS returns based on the select-list:

Coding the Program 109

PARTNO DESCRIPTION PRICE

221 BOLT .30
231 NUT .10

Nulls Within Join Conditions

Like other predicates, a join condition is never satisfied by a null value. For
example, if a row in the INVENTORY table and a row in the QUOTATIONS table
both have a null PARTNO, neither row will appear in the result of the join.

Joining a Table to Itself

You can write a query in which you join a table to itself. To join a table to itself,
repeat the table name two or more times in the FROM clause. This tells SQL/DS
that the join consists of combinations of rows from the same table. When you
repeat a table name in the FROM clause, it is no longer unique. Thus, you must
give each table name in the FROM clause a unique join variable (sometimes called
a table label).

A join variable can be any string of up to 18 characters beginning with a letter.
You use the join variables to resolve column name ambiguities in the select-list and
the WHERE clause. For example, the following query finds pairs of quotations for
the same part in which the prices differ by more than a factor of two:

DECLARE C1 CURSOR FOR

SELECT X.PARTNO, X.SUPPNO, X.PRICE, Y.SUPPNC, Y.PRICE
FROM QUOTATIONS X, QUOTATIONS Y

WHERE X.PARTNO = Y.PARTNO

AND X.PRICE > 2 * Y.PRICE

OPEN C1
FETCH C1 INTO :PART, :HISUPPNO, :HIPRICE, :LOSUPPNO, :LOPRICE
CLOSE C1

If the table is owned by another user, the table name must be qualified in the usual
fashion. For example, here is how to write the above query if the creator of the
QUOTATIONS table is SCOTT:

DECLARE C1 CURSOR FOR

SELECT X.PARTNO, X.SUPPNO, X.PRICE, Y.SUPPNC, Y.PRICE
FROM SCOTT.QUOTATIONS X, SCOTT.QUOTATIONS Y

WHERE X.PARTNO = Y.PARTNO

AND X ®RICE > 2 * Y.PRICE

OPEN C1

FETCH C1 INTO :PART, :HISUPPNO, :HIPRICE, :LOSUPPNO, :LOPRICE
CLOSE C1

110 SQL/Data System Application Programming for VM/SP

This type of join query can also be easily visualized. First, assume there are two
tables, X and Y, that are identical to the QUOTATIONS table in the foldout. A
partial result of the first join condition (X.PARTNO = Y.PARTNO) looks like
this:

X.QUOTATIONS

| | |——-‘-— Y.QUOTATIONS
| |

v v v v v v v
DEL [VERY DELIVERY
SUPPNO PARTNO PRICE TIME QONORDER SUPPNO PRICE TIME ~QONORDER
51 221 .30 10 50 51 .30 10 50
51 221 .30 10 50 54 .10 30 150
51 221 .30 10 50 61 .20 21 0
51 231 .10 10 0 51 .10 10 0
51 231 .10 10 0 54 .04 30 200
53 222 .25 15 0 53 .25 15 0
53 222 .25 15 0 61 .20 21 200
53 232 .10 15 200 53 .10 15 200
53 241 .08 15 0 53 .08 15 0
L] [L[] L[] [L] L] L] L]

This table was formed by taking the PARTNO of the first row of
X.QUOTATIONS and comparing it to the PARTNO of the first row of
Y.QUOTATIONS. Naturally, they matched (because the X and Y tables are
identical), so a row that combined the fields of both was formed. The first row of
X was then compared to the second row of Y, and so on, until the end of the Y
table was reached. Each time a PARTNO matched, a row was formed in the above
table. Every PARTNO of the X table was compared with all the rows of the Y
table in a similar fashion, thus completing the first part of the join. (This process is
conceptual; you can think of it as nested loops in a normal program.) Note, once
again, that PARTNO is the logical meeting point of the tables and could belong to
either X.QUOTATIONS or Y.QUOTATIONS.

Now the second join condition (X.PRICE > 2 * Y.PRICE) is applied, producing
this result:

Coding the Program 111

X.QUOTATIONS

| | |—T Y.QUOTATIONS

v v v v v v v
DELIVERY_ DELIVERY_
SUPPNO PARTNO PRICE TIME QONORDER SUPPNO PRICE TIME QONORDER
51 221 .30 10 50 54 .10 30 150
51 231 .10 10 0 54 .04 30 200
53 241 .08 15 C 54 .02 30 200
61 24 .05 21 0 54 .02 30 200

Limits on Joins

Four rows remain in the join table, and from these rows SQL /DS derives your final
result via the select-list:

X.PARTNO X.SUPPNO X.PRICE Y.SUPPNO Y.PRICE

221 51 .30 54 10
231 51 .10 54 04
241 53 .08 54 02
241 61 .05 54 02

Note that the previous example had two join conditions, one relating the two rows
by PARTNO, the other by PRICE; a query can have any number of join
conditions. Also note that previous examples joined two tables; you can join up to
16 tables.

SELECT * As Used in a Join

The notation “SELECT *” in a join query means “select all the columns of the first
table, followed by all the columns of the second table, etc.” However, it is not
recommended that you use SELECT * for join queries written in programs. It is
possible that someone may add a new column to the first table in the join (by an
ALTER TABLE statement). If this happens, the columns of the second table are
no longer delivered into the correct host variables. By using a normal select-list,
however, you avoid this problem.

Ordering the Results of a Join

If a join query uses a qualified column name in its select-list, you can use the same
qualified column name in an ORDER BY clause within a cursor definition. For
example, SQL/DS accepts ORDER BY X.PARTNO and ORDER BY
QUOTATIONS.PARTNO.

112 SQL/Data System Application Programming for VM/SP

& Grouping

An earlier section showed how to apply the five built-in functions (SUM, AVG,
MIN, MAX, and COUNT) to a table. Previously, however, you could apply the
function only to particular fields in rows that satisfied a search condition. For
example, the following statement finds the average price of all the parts supplied by
supplier number 61:

DECLARE C1 CURSOR FOR
SELECT AVG(PRICE)
FROM QUOTATIONS

WHERE SUPPNO = 61

OPEN C1
FETCH C1 INTO :AVG
CLOSE C1

The grouping feaiure of SQL/DS permits you to conceptually divide a table into
groups of rows with matching values in one or more columns. You can then apply
a function to each group. For example, to find the average price of all the parts
supplied by each supplier:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, AVG(PRICE)
\‘ FROM QUOTATIONS

GROUP BY SUPPNO

OPEN C1
FETCH C1 INTO :SUPP, :AVGPRICE
CLOSE C1

The query yields this result (based on the example tables presented in the foldout):

SUPPNO AVG(PRICE)
51 .20 (The DECIMAL value returned by AVG
53 Lk in this example is an approximation.
Sh 4 .54 The actual values returned when AVG
57 14.75 is used with a column having a DECIMAL
61 .15 data type is discussed in the "Built-
64 24.25 In Functions'' section of Chapter 1.)

You can group by any column in the table; consider the QUOTATIONS table as
grouped by PARTNO:

Coding the Program 113

SUPPNO PARTNO PRICE DEL IVERY_TIME QONORDER
51 221 .30 10 50
S4 221 .10 30 150 <
61 221 .20 21 o]
(Groups
51 231 .10 10 0| < by
54 231 .04 30 200 PARTNO)
53 222 .25 15 0 <
61 222 .20 21 200
[] [] [] L] []
[] L] [] [] L]
[] [] L] L] []

(Note that the blank space between the groups does not really exist.)

One or more built-in functions can be applied to the groups. The following query
finds the maximum, minimum, and average quoted price for each part number
group, along with the count of the number of rows in each group (the built-in
function COUNT(*) evaluates to the number of rows in the group):

DECLARE C1 CURSOR FOR

SELECT PARTNO, MAX(PRICE), MIN(PRICE), AVG(PRICE), COUNT(*)
FROM QUOTATIONS

GROUP BY PARTNO

OPEN C1
FETCH C1 INTO :PART, :HI, :LO, :MID, :NUM
CLOSE C1

Nulls within Groups
If any row has a null value in the column you are grouping by (in the previous
example, PARTNO), SQL/DS considers each such row as a separate group
containing one row.

Rules for Select-Lists of Grouping Queries

When you use the GROUP BY clause in a query, SQL/DS returns only one result
row for each group. Therefore, the select-list of such a query can contain only:

« Columns you group by
e Built-in functions on any columns.

For example, this statement is incorrect:

114 SQL/Data System Application Programming for VM/SP

DECLARE C1 CURSOR FOR
v

SELECT SUPPNO, | PARTNO, | AVG(PRICE)

FROM QUOTATIONS Wrong!
GROUP BY SUPPNO

OPEN C1
FETCH C1 INTO :SUPPNO, :PARTNO, :AVERAGE
CLOSE C1

You cannot include PARTNO in the select-list because PARTNO does not occur in
the GROUP BY clause, and is not the operand of some built-in function. Aside
from breaking language rules, the above statement is incorrect because a given
supplier may supply many parts. It is as though you were asking SQL/DS to return
multiple values to the same variable at the same time:

SUPPNO PARTNO AVG(PRICE)
51 221 .20 An impossible
231 result
53 222 .14
232
241

Using a WHERE Clause with a GROUP BY Clause

A grouping query can have a standard WHERE clause that eliminates
non-qualifying rows before the groups are formed and the built-in functions are
computed. Write the WHERE clause before the GROUP BY clause. The
following example query finds the average and minimum price for each part,
considering only quotations whose delivery time is less than 30 days:

DECLARE C1 CURSOR FOR

SELECT PARTNO, AVG(PRICE), MIN(PRICE)
FROM QUOTATIONS

WHERE DELIVERY_TIME < 30

GROUP BY PARTNO

OPEN C1
FETCH C1 INTO :PART, :A, :B
CLOSE C1

Coding the Program 115

The HAVING Clause

You can also apply a qualifying condition to groups, causing SQL /DS to return a
result only for those groups that satisfy the condition. This is done by the
HAVING clause. You can write the HAVING clause after the GROUP BY clause.
A HAVING clause can contain one or more group-qualifying predicates, connected
by ANDs and ORs. Each group-qualifying predicate compares some property of
the group, such as MAX(PRICE), with:

1.

2.

3.

Another property of the group (HAVING MAX(PRICE) > 2 *
MIN(PRICE)); or,

A constant (HAVING MAX(PRICE) > 3.00); or,

A host variable (HAVING MAX(PRICE) > :LIMIT).

The following example query finds the maximum and minimum prices for various
parts in the QUOTATIONS table. The query considers only parts that have at
least three quotations and for which the maximum price is more than twice the
minimum price:

DECLARE C1 CURSOR FOR

SELECT PARTNO, MAX(PRICE), MIN(PRICE)
FROM QUOTATIONS

GROUP BY PARTNO

HAVING COUNT(*) >= 3

AND MAX(PRICE) > 2 * MIN(PRICE)

OPEN C1
FETCH C1 INTO :PART, :HI, :LO
CLOSE C1

You can specify DISTINCT as part of the argument of a built-in function in the
HAVING clause. Recall that DISTINCT causes SQL/DS to eliminate duplicate
values before a function is applied. Thus, COUNT(DISTINCT PARTNO)
computes the number of different part numbers. You cannot use DISTINCT in
both the select-list and HAVING clause; you can use it only once in a query.

It is possible (though unusual) for a query to have a HAVING clause but no
GROUP BY clause. In this case, SQL/DS treats the entire table as one group.
Since the table is treated as a single group, it is possible to have, at most, one result
row. If the HAVING condition is true for the table as a whole, the selected result
(which must consist entirely of built-in functions) is returned; otherwise the ‘“‘not
found” code (SQLCODE = 100) is returned.

116 SQL/Data System Application Programming for VM/SP

‘ Combining Joins, WHERE, GROUP BY, HAVING, and ORDER BY

You can use the various query techniques together in any combination. A query
can join two or more tables and can also have a WHERE clause, a GROUP BY
clause, a HAVING clause, and, if defined in a cursor, an ORDER BY clause. The
precedence of these operations is shown below. Observe that the clauses are
applied in the order in which you are to write them:

1. Conceptually, all possible combinations of rows from the listed tables are
formed.

2. The WHERE clause, which may contain join conditions, is applied to filter the
rows of the conceptual table.

3. The GROUP BY clause is applied to form groups from the surviving rows.

4. The HAVING clause is applied to filter the groups. Only the surviving groups
will return a result.

5. The ORDER BY clause determines the order in which the query result is
returned.

The actual method used by SQL /DS to arrive at the same result is controlled by
the SQL /DS preprocessor.

An Exercise
-
By now you may be wondering when you need to use which feature. Consider this
problem:

Write a query that lists the quantity on hand and minimum quoted price for
various parts. Consider only quotations whose delivery time is less than 30
days, and include only parts that have at least two such quotations.

The first thing that must be done is to find in the example tables the names of the
columns that contain the requested information so a select-list can be created:

e ‘“quantity on hand” is the QONHAND column of the INVENTORY table.

e ‘“quoted price” is the PRICE column of the QUOTATIONS table, but the
problem requests the minimum quoted price so the built-in function
MIN(PRICE) must be used in the select-list. Notice that the minimum price
for a particular part is needed, this means the query will have to group by
PARTNO later.

o ‘“various parts’’ implies PARTNO, but from which table? Observe that the
other two items in the select-list are from different tables, so a join is needed,
and PARTNO is, obviously, the common field. It must be determined how the
PARTNOs are related so a join condition can be written. The problem
statement does not express any relationship between the PARTNO fields of
the two tables that implies they should be different. Thus, it can be safely

L assumed that the PARTNOs are related by equality, and that the join condition
can be expressed as INVENTORY.PARTNO = QUOTATIONS.PARTNO.

Coding the Program 117

Since the join condition expresses equality, either PARTNO can be used in the '
select-list. In this example, assume INVENTORY.PARTNO is used to
represent the ‘“various parts.”

First, the cursor(s) to be used in your program must be defined:

DECLARE C1 CURSOR FOR

A SELECT clause can now be written:

SELECT INVENTORY.PARTNO, QONHAND, MIN(PRICE)

The FROM clause must list the two tables used in the join:

FROM INVENTORY, QUOTATIONS

A WHERE clause is needed because of the join condition:

WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO

However, the problem states that for each part only those that have a delivery time
of less than 30 days should be considered. This condition needs to be added to the
WHERE clause:

AND DELIVERY_TIME < 30

Note that DELIVERY _ TIME is a column in the QUOTATIONS table and is
unique among all the column names of the two joined tables, so it does not have to ,
be qualified. So far, the SQL statement is: -

DECLARE C1 CURSOR FOR
SELECT INVENTORY .PARTNO, QONHAND, MIN(PRICE)

FROM INVENTORY, QUOTATIONS
WHERE INVENTORY .PARTNO = QUOTATIONS.PARTNO
AND DELIVERY_TIME < 30

Next it’s necessary to group by PARTNO to find the minimum price for each part,
but QONHAND is also in the select-list, so it must be listed in the GROUP BY
clause (recall the rules for grouping). Including QONHAND in the GROUP BY
clause does not affect the formation of the groups, however, because QONHAND
is a property of a given PARTNO. The GROUP BY clause is:

GROUP BY INVENTORY.PARTNO, QONHAND

Note that you can group by QUOTATIONS.PARTNO if you choose, because of
the equality expressed between QUOTATIONS.PARTNO and
INVENTORY.PARTNO in the join condition. If you use
QUOTATIONS.PARTNO in the GROUP BY clause, however, you must also use
it in the select-list:

DECLARE C1 CURSOR FOR

SELECT QUOTATIONS.PARTNO, QONHAND, MIN (PRICE)
FROM INVENTORY, QUOTATIONS

WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO
AND DELIVERY_TIME < 30

GROUP BY QUOTATIONS.PARTNO, QONHAND

118 SQL/Data System Application Programming for VM/SP

The problem requests that there be at least two quotations for the part if that part
is to be included in the query result; a HAVING clause is needed to filter out the
unwanted groups:

HAVING COUNT (*) >= 2

Finally, a nice embellishment is to have SQL/DS return the results in PARTNO
order.

SELECT INVENTORY .PARTNO, QONHAND, MIN (PRICE)

FROM INVENTORY, QUOTATIONS
WHERE INVENTORY .PARTNO = QUOTATIONS.PARTNO
AND DELIVERY_TIME < 30

GROUP BY INVENTORY.PARTNO, QONHAND
HAVING COUNT (*) >= 2
ORDER BY 1

Now you must position the cursor(s) and identify the corresponding host variables
used in your program:

OPEN C1

FETCH C1 INTO :PART, :Q, :PRICE
CLOSE C1

The complete statement is:

DECLARE C1 CURSOR FOR
SELECT INVENTORY .PARTNO, QONHAND, MIN(PRICE)

FROM INVENTORY, QUOTATIONS
WHERE INVENTORY.PARTNO = QUOTATIONS.PARTNO
AND DELIVERY_TIME < 30

GROUP BY INVENTORY.PARTNO, QONHAND
HAVING COUNT (*) >= 2
ORDER BY 1

OPEN C1
FETCH C1 INTO :PART, :Q, :PRICE
CLOSE C1

Nesting a Query into Another Query

In all previous queries, the WHERE clause contained search conditions that
SQL/DS used to choose rows for computing expressions in the select-list.
SQL/DS also allows a query to refer to a value or set of values computed by
another query (called a subquery).

Consider this query that finds those quotations for part number 221 in which the
price is more than ten cents:

Coding the Program 119

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS

WHERE PARTNO = 221
AND PRICE > .10

OPEN C1
FETCH C1 INTO :S, :P
CLOSE C1

Suppose that you want to modify the query so it finds those quotations for part
number 221 in which the price is more than twice the minimum quoted price for
that part. The problem implies two queries:

1. Find twice the minimum quoted
price for part number 221:

DECLARE C1 CURSOR FOR

SELECT | 2 * MIN(PRICE)

FROM QUOTAT | ONS
WHERE PARTNQ = 221

OPEN C1
FETCH C1 INTO :HIPRICE
CLOSE C1

2. Find quotations for part number 221
in which the price is greater than
the result of the above query:

DECLARE C2 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTAT IONS

WHERE PARTNO = 221

AND PRICE > 7 |x

OPEN C2
FETCH C2 INTO :S, :P
CLOSE C2

A pseudo code solution for the problem is as follows:

120 SQL/Data System Application Programming for VM/SP

EXEC SQL DECLARE CURSOR1 CURSOR FOR

SELECT SUPPNO, PRICE Declare cursor
FROM QUOTATIONS «+—_ | that retrieves
WHERE PARTNO = 221 qguotations.

AND PRICE > :HIPRICE
EXEC SQL DECLARE CURSOR2 CURSOR FOR
SELECT 2 * MIN(PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221
EXEC SQL OPEN CURSORZ2 Initialize
EXEC SQL FETCH CURSORZ2 INTO :HIPRICE -«———HIPRICE.

EXEC SQL OPEN CURSOR1
EXEC SQL FETCH CURSOR1 INTO :S, :P --——— Retrieve
DO WHILE (SQLCODE=0) qguotations.
DISPLAY (S, P)
EXEC SQL FETCH CURSOR1 INTO :S, :P
END-DO
DISPLAY ('END OF LIST'")
EXEC SQL CLOSE CURSOR1
EXEC SQL CLOSE CURSORZ2

You can arrive at the same result by using a single query with a subquery.
Subqueries must be enclosed in parentheses and may appear in a WHERE clause or
a HAVING clause. The result of the subquery is substituted directly into the
outer-level predicate in which the subquery appears; thus, there must not be an
INTO clause in a subquery. For example, this query solves the above problem:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE >

(SELECT 2 * MIN(PRICE)]

————— Outer-Level Query

FROM QUOTATIONS
WHERE PARTNO = 221)

————— Subquery

OPEN C1
FETCH C1 INTO :S, :P
CLOSE C1

The example subquery above is indented for ease of reading. Remember, however,
that the syntax of SQL is fully linear and no syntactic meaning is carried by
indentation or by breaking a query into several lines. By using a subquery, the
pseudo code is simplified:

EXEC SQL DECLARE C1 CURSOR FOR

SELECT SUPPNO, PRICE Declare cursor using
FROM QUOTATIONS <¢————— a subquery that
WHERE PARTNO = 221 retrieves quotations.

AND PRICE >
(SELECT 2 * MIN(PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221)
EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :S, :P <4————47Retrieve quotations.]
DO WHILE (SQLCODE=0)
DISPLAY (S, P)
EXEC SQL FETCH C1 INTO :S, :P
END-DO
DISPLAY ('END OF LIST'")
EXEC SQL CLOSE C1

Coding the Program 121

The subquery above returned a single value (2 ¥ MIN(PRICE)) to the outer-level
query. Subqueries can return either a single value, a null value, or a set of values;
each variation has different considerations. In any case, a subquery must have only
a single column or expression in its select-list, and must not have an ORDER BY
clause.

Subqueries That Return a Single Value

Subqueries That Return

Subqueries That Return

If the subquery returns a single value, as the subquery above did, you can use it on
the right side of any predicate in the WHERE clause or HAVING clause.
(Exception: Subqueries are not permitted in BETWEEN predicates.)

a Null Value

If a subquery returns the null value, the outer-level predicate containing the
subquery evaluates to the ‘“‘unknown” truth-value. How SQL/DS handles
“unknown” truth-values is discussed under ‘‘Using Expressions as Search
Conditions” on page 30.

Many Values

If a subquery returns more than one value, you must modify the comparison
operators in your predicate (=, ==, >, >=, <, <=) by attaching the suffix ALL
or ANY. These suffixes determine how the set of values returned is to be treated
in the outer-level predicate. The > comparison operator is used as an example (the
remarks below apply to the other operators as well):

expression > (subquery)
denotes that the subquery must return exactly one value (otherwise an error
condition results). The predicate is true if the given field is greater than the
value returned by the subquery.

expression >ALL (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given field is greater than each individual value in the
returned set. If the subquery returns no values, the predicate is true.

expression >ANY (subquery)
denotes that the subquery may return a set of zero, one, or more values. The
predicate is true if the given field is greater than at least one of the values in
the set. If the subquery returns no values, the predicate is false.

The following example uses a >ALL comparison to find those quotations having a
quoted price greater than all quotations from supplier number 51:

122 SQL/Data System Application Programming for VM/SP

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS
WHERE PRICE >ALL
(SELECT PRICE
FROM QUOTATIONS
WHERE SUPPNO = 51)

OPEN C1
FETCH C1 INTO :S, :P, :Q
CLOSE C1

Using the IN Predicate with a Subquery

Your query can also use the operators IN and NOT IN when a subquery returns a
set of values. For example, the following query lists quotations for those parts
having a quantity on hand less than 100:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE, DELIVERY_ TIME
FROM QUOTATIONS
WHERE PARTNO IN
(SELECT PARTNO
FROM INVENTORY
WHERE QONHAND < 100)

OPEN C1
FETCH C1 INTO :SUPPNO, :PARTNO, :PRICE, :DELIVERY
CLOSE C1

The subquery is evaluated once, and the resulting list is substituted directly into the
outer-level query. For example, if the subquery above evaluates to part numbers
207, 209, and 295, the outer-level query is evaluated as if its WHERE clause were:

WHERE PARTNO IN (207,209,295)

The list of values returned by the subquery can contain zero, one, or more values.
The operator IN is equivalent to =ANY, and NOT IN is equivalent to ~=ALL.

Other Subquery Considerations

If you link a subquery to an outer query by an unmodified comparison operator
such as = or >, the subquery must not contain a GROUP BY or HAVING clause.
The operator implies that only one value will be returned, but a GROUP BY clause
implies that more than one value may be returned. However, a subquery may
contain a GROUP BY or HAVING clause if it is linked by a comparison operator
modified by ALL or ANY, or by a [NOT] IN or [NOT] EXISTS predicate.
(EXISTS is described in a following section.)

A subquery may include a join, a grouping, or one or more inner-level subqueries.
You may include many subqueries in the same outer-level query, each in its own
predicate and enclosed in parentheses

The following example shows how a join and a subquery might be combined to

solve a complex problem. The query lists supplier names, addresses, and quoted
prices for those parts having a description of ‘BOLT’.

Coding the Program 123

DECLARE C1 CURSOR FOR
SELECT NAME, ADDRESS, PARTNO, PRICE

FROM SUPPLIERS, QUOTATIONS
WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO
AND PARTNO IN
(SELECT PARTNO
FROM INVENTORY
WHERE DESCRIPTION = 'BOLT')
OPEN C1
FETCH C1 INTO :N, :A, :PART, :PRICE
CLOSE C1

Subqueries That Are Executed Repeatedly: Correlation

In all the examples of subqueries above, the subquery is evaluated once and the
resulting value or set of values is substituted into the outer-level predicate. For
example, recall this query from the previous section:

DECLARE C1 CURSOR FOR
SELECT SUPPNO, PRICE
FROM QUOTATIONS
WHERE PARTNO = 221
AND PRICE >
(SELECT 2 * MIN (PRICE)
FROM QUOTATIONS
WHERE PARTNO = 221)

OPEN C1
FETCH C1 INTO :S, :P
CLOSE C1

The query finds those quotations for part number 221 in which the price is more
than twice the minimum quoted price for that part number. Now consider the
following problem:

Find those quotations for every part number in which the price is more than twice
the minimum quoted price for that part number

The subquery needs to be evaluated once for every part number. You can do this
by using the correlation capability of SQL. Correlation permits you to write a
subquery that is executed repeatedly, once for each row of the table identified in the
outer-level query. This type of “correlated subquery” is used to compute some
property of each row of the outer-level table that is needed to evaluate a predicate.

In the first query, the subquery was evaluated once for a particular part. In the new
problem, the subquery must be evaluated once for every part number. One way to
solve the problem is to place the query in a cursor definition and open the cursor
once for each different part number. The part numbers are determined by using a
separate cursor. Here is a pseudo code solution:

124 SQL/Data System Application Programming for VM/SP

Retrieve all part numbers
EXEC SQL DECLARE QUERY1 CURSOR FOR listed in QUOTATIONS
SELECT DISTINCT PARTNO -%— (eliminate duplicates).

FROM QUOTATIONS

EXEC SQL DECLARE QUERY2 CURSOR FOR

SELECT SUPPNO, PRICE Retrieve SUPPNO and
FROM QUOTATIONS PRICE for parts that are
WHERE PARTNO = :PARTNO < twice the minimum quoted
AND PRICE > price for that part.

(SELECT 2 * MIN(PRICE)

FROM QUOTATIONS

WHERE PARTNO = :PARTNO)
EXEC SQL OPEN QUERY1

EXEC SQL FETCH QUERY1 INTO :PARTNO‘<h———{Get a part number.

DO WHILE (SQLCODE = 0)
EXEC SQL OPEN QUERY2 -

EXEC SQL FETCH QUERY2
INTO :SUPPNO, :PRICE Evaluate the query
DO WHILE (SQLCODE = 0) for that part.

DISPLAY (SUPPNO, PARTNO, PRICE)
EXEC SQL FETCH QUERY2 INTO :SUPPNO, :PRICE
END-DO
EXEC SQL CLOSE QUERY2
SQLCODE = 0

EXEC SQL FETCH QUERY1 INTO :PARTNO -=——— Get the next
END-DO part number.

EXEC SQL CLOSE QUERY1
DISPLAY ('END OF LIST')

By using a correlated subquery, you can let SQL /DS do the work for you and
reduce the amount of code you need to write.

How to Write a Correlated Subquery

To write a query with a correlated subquery, you use the same basic format as an
ordinary outer query with a subquery. However, in the FROM clause of the outer
query, just after the table name, you place a correlation variable (any identifier of
up to 18 characters, starting with a letter). The subquery may then contain column
references qualified by the correlation variable. For example, if X is a correlation
variable, then “X.PARTNO” means ‘‘the PARTNO value of the current row of the
table in the outer query.” The subquery is (conceptually) re-evaluated for each row
of the table in the outer query.

The following query solves the problem presented earlier. That is, it finds the
quotations for every part number in which the price is more than twice the
minimum quoted price for that part number. (Notice that the correlation variable is
written in a manner similar to a join variable.)

EXEC SQL DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE PRICE >

(SELECT 2 * MIN(PRICE)

FROM QUOTATIONS

WHERE PARTNO = X.PARTNO)
EXEC SQL OPEN QUERY1
EXEC SQL FETCH QUERY

INTO :S, :P, :PRICE
EXEC SQL CLOSE QUERY1

Coding the Program 125

The pseudo code for the correlated subquery solution is:

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE PRICE >
(SELECT 2 * MIN(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)
EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :SUPPNO, :PARTNO, :PRICE
DO WHILE (SQLCODE=0)
DISPLAY (SUPPNO, PARTNO, PRICE)
EXEC SQL FETCH QUERY INTO :SUPPNO, :PARTNO, :PRICE
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE QUERY

How SQL/DS Does Correlation
Conceptually, the query is evaluated as follows:

1. QUOTATIONS, the table identified with the correlation variable X, is placed
to the side for reference. Let this table be called X, since it is the ““correlation
table.”

2. SQL/DS identifies X.PARTNO with the X table, and uses the values in that
column to evaluate the query. (The entire query is evaluated once for every
PARTNO in the X table.)

EXEC SQL DECLARE QUERY CURSOR FOR

SELECT SUPPNO, PARTNO, PRICE ------ > X
FROM QUOTATIONS X | mmmmm e
WHERE PRICE > | SUPPNO PARTNO DPRICE

(SELECT 2 * MIN(PRICE) | === === =

EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :S, :P
EXEC SQL CLOSE QUERY

FROM QUOTATIONS = —=-——- | === 221 30
WHERE PARTNO = X.PARTNO) | | 51 231 10
———————— | | 53 222 25
| | | . . .
| ° ° .

|

Note that PARTNO = X.PARTNO isn’t used in the WHERE clause of the
outer-level query as it was in the normal subquery; this is because SQL /DS keeps
track of which X.PARTNO it is currently evaluating the query for.

Suppose another condition is added to the problem:

Find those quotations for each part number that has a delivery time greater than 20
days, and for which the price is more than twice the minimum quoted price for that

part number.

The new query is:

126 SQL/Data System Application Programming for VM/SP

An Exercise

EXEC SQL DECLARE QUERY CURSOR FOR
SELECT SUPPNO, PARTNO, PRICE
FROM QUOTATIONS X
WHERE DELIVERY_TIME > 20
AND PRICE >
(SELECT 2 * MIN(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)
EXEC SQL OPEN QUERY
EXEC SQL FETCH QUERY INTO :S, :P, :PRICE
EXEC SQL CLOSE QUERY

The X table in this query is slightly different. Conceptually, whenever there are
other conditions besides the one containing the subquery, they are applied to the
“correlation table” first. Thus, the X table that is derived from the QUOTATIONS
table is:

SUPPNO PARTNO PRICE DELIVERY_TIME QONORDER Only rows
having a

54 209 18.00 21 0 DELIVERY_TIME
54 221 .10 30 150 greater than
54 231 .04 30 200 20 are
o4 241 .02 30 200 included
57 295 8.50 21 24 in this
61 221 .10 21 0 ""eorrelation
61 222 .20 21 200 table''.
61 241 .05 21 0

The values 209, 221, 231, 241, 295, and 222 are used for X.PARTNO. Similarly,
if you include a GROUP BY clause in the outer-level query, that grouping is
applied to the conceptual correlation table first. Thus, if you use a correlated
subquery in a HAVING clause, it is evaluated once per group of the conceptual
table (as defined by the outer-level query’s GROUP BY clause). When you use a
correlated subquery in a HAVING clause, the correlated column-reference in the
subquery must be a property of each group (that is, must be either the *“grouper”
column or some other column used with a built-in function).

The use of a built-in function with a correlated reference in a subquery is called a
correlated function. The argument of a correlated function must be exactly one
correlated column (for example, X.PRICE), not an expression. A correlated
function may specify the DISTINCT option -- for example, COUNT(DISTINCT
X.PARTNO). If so, the DISTINCT counts as the single permitted DISTINCT
specification for the outer-level query block (remember that each query-block may
use DISTINCT only once).

When would you want to use a correlated subquery? The use of a built-in function
is sometimes a clue. Consider this problem:

List quotations whose price is less than the average price for that part
number.

Coding the Program 127

First you need to determine the select-list items. The problem says to ‘‘List J
quotations.” This implies that the query should return at least the number of the

supplier making the price quotation, the part number, and the price quotation itself.

If you examine the example tables, you’ll find that, conveniently enough, all three

items (SUPPNO, PARTNO, and QUOTATION) are in the same table

(QUOTATIONS). A part of the query can now be constructed:

SELECT SUPPNO, PARTNO, PRICE (Assuming only one row
INTO :SUPPNO, :PARTNO, :PRICE <.——— is returned).
FROM QUOTATIONS In FORTRAN, a cursor

is required.

Next, a search condition (WHERE clause) is needed. The problem statement says,
‘“...whose price is less than the average price for that part number.” This means
that for each part number in the table, the average price of that part number must
be computed. This statement fits exactly the description of a correlated subquery.
Some property (average price of the current part number) is being computed for
each row. A correlation variable is needed on the QUOTATIONS table:

SELECT SUPPNO, PARTNO, PRICE
INTO :SUPPNO, :PARTNO, :PRICE
FROM QUOTATIONS X

The subquery needed is simple; it computes the average price for each part
number:

SELECT AVG({PRICE) This clause tells SQL/DS to
FROM QUOTATIONS compute the subguery once
WHERE PARTNO = X.PARTNO .«— for each PARTNO in the
outer-level guery table.

The complete SQL statement is:

SELECT SUPPNO, PARTNO, PRICE
INTO :SUPPNO, :PARTNO, :PRICE
FROM QUOTATIONS X
WHERE PRICE <

(SELECT AVG(PRICE)

FROM QUOTATIONS

WHERE PARTNO = X.PARTNO)

Suppose that instead of listing only the supplier number, part number, and price
quoted, that you also list the supplier’s name and address. A glance at the example
data base will tell you that the information you need (NAME and ADDRESS) is in
a separate table (SUPPLIERS). The outer-level query that defines a correlation
variable can also be a join query.

When you use joins in an outer-level query, list the tables to be joined in the
FROM clause and place the correlation variable next to one of these table names.

To modify the query to list the supplier’s name and address, add ADDRESS and }

NAME to the select-list and change SUPPNO to SUPPLIERS.SUPPNO (to clarify
which SUPPNO SQL./DS is to retrieve). The FROM clause must now also include

128 SQL/Data System Application Programming for VM/SP

the SUPPLIERS table, and the WHERE clause must express the appropriate join
condition. Here is the modified query:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, :NAME, :ADDRESS, :PARTNO, ;:PRICE
FROM QUOTATIONS X, SUPPLIERS
WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO
AND PRICE <
(SELECT AVG (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

The above examples show that the correlation variable used in a subquery must be
defined in the FROM clause of some query that contains the correlated subquery.
However, this containment may involve several levels of nesting. Suppose that the
average price of some of the parts may be misleading since some parts only have a
few price quotations available. Suppose also that if there are at least three
quotations in the data base for a given part, then the average price is a meaningful
number to compare a supplier’s quotation against. The new statement of the
problem is:

List quotations whose price is less than the average price for that part
number, but only if there are at least three price quotations for that part in
the data base.

The problem implies another subquery, because for each part number in the
outer-level query a count of how many exist in the entire QUOTATIONS table is
needed:

SELECT COUNT (*)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO

Only if the count is greater than or equal to 3 is an average to be computed:

SELECT AVG(PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO
AND 3 <=
(SELECT COUNT (*)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO)

Finally, only those quotations whose price is less than the average price for that
part are to be listed:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, :NAME, :ADDRESS, :PARTNO, :PRICE
FROM QUOTATIONS X, SUPPLIERS
WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO
AND PRICE <
(SELECT AVG (PRICE)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO
AND 3 <=
(SELECT COUNT (*)
FROM QUOTATIONS
WHERE PARTNO = X.PARTNO))

Coding the Program 129

If you study the above query, you’ll note that it is different from the previous
correlated subqueries in that the first subquery may return a null value. Suppose
the query is being evaluated for part number 222 and that there are only two
quotations for that part in the data base. Working from the bottom to the top, the
following occurs:

SELECT SUPPLIERS.SUPPNO, NAME, ADDRESS, PARTNO, PRICE
INTO :SUPPNO, :NAME, :ADDRESS, :PARTNO, :PRICE

FROM QUOTATIONS X, SUPPLIERS

WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO

AND PRICE < |NULL - .4————~fpredicate is nuli]

(SELECT |AVG(PRICE4

FROM QUOTATIONS
WHERE PARTNO = X.PARTNO

Predicate is false

N
A

AND 3 <=

(SELECT COUNT (*)

FROM QUOTATIONS

WHERE PARTNO = 222)

The inner-most subquery evaluates to 2. Thus, the expression “AND 3 <= 2" is
false. Because that expression is false, no rows satisfy the search condition of the
next subquery, and no average is computed; a null value is returned to the
outer-most query. This causes the predicate “PRICE < (subquery)” to evaluate to
the unknown truth value. The join condition “SUPPLIERS.SUPPNO =
QUOTATIONS.SUPPNO”, however, is always true:

WHERE SUPPLIERS.SUPPNO = QUOTATIONS.SUPPNO AND PRICE < (subquery)

"UNKNOWN"

130

The following figure is the “AND" truth table for search conditions; “TRUE AND
UNKNOWN?" causes the search condition in the query to be “UNKNOWN,” as
indicated above.

SQL/Data System Application Programming for VM/SP

That is, no rows of the data base satisfy the search condition, and no quotation is
listed for part number 222 -- exactly the result desired in this case.

Testing for Existence

Format:

[NOT] EXISTS (subgquery)

You can use a subquery to test for the existence of a row satisfying some condition.
In this case, the subquery is linked to the outer-level query by the predicate
EXISTS or NOT EXISTS.

When you link a subquery to an outer query by an EXISTS predicate, the subquery
does not return a value. Rather, the EXISTS predicate is true if the answer set of
the subquery contains one or more rows, and is false if the answer set of the
subquery contains no rows.

The EXISTS predicate is often used with correlated subqueries. The example
below lists the suppliers that currently have no entries in the QUOTATIONS table:

ORDER BY

OPEN C1
FETCH C1
CLOSE C1

T

DECLARE C1 CURSOR FOR
SELECT
FROM

WHERE

SUPPNO, NAME

SUPPLIERS X

NOT EXISTS

(SELECT *

FROM QUOTATIONS

WHERE SUPPNO = X.SUPPNO)
SUPPNO

INTO :S, :N

Coding the Program 131

You may connect the EXISTS and NOT EXISTS predicates to other predicates by
using AND and OR in the WHERE clause of the outer-level query.

Combining Queries into a Single Query: UNION

The UNION operator lets you combine two or more outer-level queries into a
single query. Each of the queries connected by UNION is executed to produce an
answer set; these answer sets are then combined and duplicate rows are eliminated
from the result. If you are using the ORDER BY clause, you must write it after the
last query in the UNION. SQL/DS applies the ordering to the combined answer
set before it delivers the results to your program via the usual cursor mechanism.
None of the queries should have an INTO clause when you are using a cursor.

In COBOL, PL/I, and Assembler language programs, it is possible (though
unusual) to write a query using the UNION operator that does not return results
via a cursor. In this instance, only one row must be retrieved from the tables and
an INTO clause must be placed only in the first query.

The UNION operator is useful when you want to merge lists of values derived from
two or more tables. In the following example, the query returns a list of part
numbers that are either on order or have a quantity on hand greater than 1000:

SELECT PARTNO

INTO :P:PIND <¢—— Use INTO only if the query
FROM QUOTATIONS returns one row; otherwise, use
WHERE QONORDER>0 a cursor. In FORTRAN programs,

a cursor must always be used.

UNION

SELECT PARTNO

FROM INVENTORY
WHERE QONHAND > 1000

ORDER BY 1

By referring to the example tables in the foldout, it can be seen that the only part
not on order is 285. Consequently, the first query returns this answer set:

>[PARTNO
SELECT | PARTNO |——
221

FROM QUOTATIONS 232
WHERE QONORDER>0 221

o 231
. 241
. 295
222
207
209

132 SQL/Data System Application Programming for VM/SP

The second query returns the part numbers having a quantity on hand greater than
1000:

>[PARTNO
SELECT | PARTNO |—

222

FROM INVENTORY 232

WHERE QONHAND > 1000 241
L]

SQL /DS then combines the results of both queries, eliminates the duplicates, and
returns the final result in ascending order:

PARTNO

207
209
221
222
231
232
241
295

To connect queries by the UNION operator, you must ensure that the queries
adhere to the following rules:

1. The data types of corresponding items in the select-lists of all the queries must
be identical. For example, if the first item of the select-list of the first query
names a column of type INTEGER that permits null values, then the first item
of the select-list of each query must be an integer column with null values
permitted.

SQL./DS strictly enforces the identity of data types for unions: INTEGER is
not compatible with SMALLINT, DECIMAL, or FLOAT; character or DBCS
columns of different widths are not compatible; and, a column that permits
nulls is not compatible with a column that does not permit nulls. However,
corresponding items in the select-lists need not have the same name. For
example, a query beginning:

SELECT X

may be in union with a query that begins:

SELECT Y

Coding the Program 133

provided that X and Y have the same data type.

2. If character constants (literals) are used in the SELECT-clause(s), the
constants must be enclosed in single quotes. If the character constant
corresponds to another character constant, the shorter constant must be
padded with blanks to the length of the longer constant. If the character
constant corresponds to a table column, the column must be defined as
VARCHAR NOT NULL and the character constant must be padded with
blanks to the maximum length defined for that column.

3. If numeric constants are used in the SELECT-clause(s), the constants must be
integers. If the numeric constant corresponds to a table column, the column
must be defined as INTEGER NOT NULL.

4. An ORDER BY clause, if used, must be placed after the last query in the
union. The order-list must contain only integers, not column names. In the
example query above, ORDER BY 1 is acceptable but ORDER BY PARTNO
is not acceptable.

5. None of the queries in a union may select data of type LONG VARCHAR or
LONG VARGRAPHIC.

6. A UNION may not occur inside a subquery.

7. A UNION may not be used in the definition of a view. (Views are discussed in
a later section.)

More About Cursor Management

ORDER BY Clause of the DECLARE CURSOR Statement

The ORDER BY clause causes SQL/DS to deliver the rows of the active set in the
order specified. You can indicate orderings by specifying an “order specification”
(called o-spec in the statement syntax). The o-spec is a list of column names or
integers that refer to select-list items. For example, ORDER BY 3,5 denotes
ordering primarily by the third item and secondarily by the fifth item in the
select-list. By using integers in the ORDER BY clause, you can order the query
result by some selected expression that is not a simple column name. The following
query returns results ordered by the expression PRICE*1.10:

DECLARE QUERY1 CURSOR FOR
SELECT SUPPNO, PRICE*1.10
FROM QUOTATIONS

WHERE PARTNO = 221

ORDER BY 2

You cannot specify ordering by a column that is not in the select-list.

When specifying column names for o-spec, the column name must be used within
the select-list and must not occur within an expression. For example:

134 SQL/Data System Application Programming for VM/SP

DECLARE QUERY2 CURSOR FOR
SELECT PARTNO, PRICE

FROM QUOTATIONS

ORDER BY PARTNO

The optional word DESC indicates descending order. ORDER BY 2,5 DESC
indicates ascending order on item 2 and descending order on item 5. ASC indicates
ascending order, and is the default. Dictionary ordering is used for character-type
data. Null values sort last in ascending order; first in descending order. If you do
not specify an ORDER BY clause, rows are delivered in an order determined by
SQL/DS.

FOR UPDATE Clause of the DECLARE CURSOR Statement

The FOR UPDATE clause tells SQL/DS that you might want to update some
columns of the active set. Updating via a cursor is done using the WHERE
CURRENT OF clause in an UPDATE statement, which is explained under
“Changing Data in a Table: UPDATE” on page 37. You can update only those
columns that you list in the FOR UPDATE clause. It is not necessary for a column
to appear in the select-list for it to appear in the FOR UPDATE clause. You can
update columns that are not explicitly retrieved by the cursor. The FOR UPDATE
clause is not required for deletion of the current row of a cursor. Deletion via a
cursor is done using the WHERE CURRENT OF clause in a DELETE statement,
which is explained under “Deleting Data from a Table: DELETE” on page 36.

You cannot include both the ORDER BY clause and the FOR UPDATE clause in
the same DECLARE CURSOR statement.

Your program may contain many DECLARE CURSOR statements that define
different cursors and associate them with different queries. During processing of a
program, several of these cursors may be in the open state at one time. The
DECLARE CURSOR statement that defines a cursor must occur earlier in the
program than any statement operating on that cursor. The DECLARE CURSOR
statement does not result in any actual processing when the program is executed
(that is, it does not automatically open the cursor).

The “scope” of a cursor-definition is an entire program. Therefore it is an error for
two DECLARE CURSOR statements in the same program to use the same
cursor-name, even if they are in different blocks or procedures.

You can use DELETE and UPDATE statements to manipulate the data in the
current row of the cursor, but only under certain circumstances. The cursor must
be open and positioned on a row of the active set before you can attempt a
DELETE or UPDATE. For example, a cursor called C1 may be open and
positioned on a row of the QUOTATIONS table. When it is in such a state,
statements such as the following can be executed:

DELETE FROM QUOTATIONS
WHERE CURRENT OF C1

UPDATE QUOTATIONS

SET PRICE = PRICE + :DELTA
WHERE CURRENT OF C1

Coding the Program 135

Each such statement deletes or updates exactly one row of the data base: the row
that is the current position of cursor C1. If C1 is not correctly positioned on a row
of the specified table (for example, if it is not open, or if it is positioned between
two rows, or if it is defined on some table other than the one mentioned in the
DELETE or UPDATE), the DELETE or UPDATE fails and SQL/DS returns an
error code in SQLCODE.

Additional uses of the DECLARE CURSOR statement are discussed under
“Dynamically Defined Statements’ on page 147.

More About Data Manipulation

Format 2 INSERT:

select-statement

INSERT INTO [creator.]table-name [(list-of-column-names)]

Example:

INSERT INTO MYPARTS

SELECT PARTNO, DESCRIPTION, PRICE
FROM SCOTT.PARTS
WHERE DESCRIPTION = 'PISTON'

Authorization:

You can insert data into any table you create. You can insert data into another user’s table if you are
given the INSERT privilege on that table, or if you have DBA authority. You must have proper
SELECT authorization on those tables referenced in the select-statement.

Format 2 of the INSERT statement inserts into an existing table one or more rows.
These rows are selected or computed from other tables by a SELECT statement.
A SELECT statement used in an INSERT must not have an INTO clause. This is
because the destination of the selected items is another table -- not a list of host
variables.

When you use a SELECT statement in an INSERT statement, al/ the selected rows
are inserted into the target table. SQL/DS does not eliminate duplicate rows
before insertion. For example, suppose that you create a table called BOLTS,
having columns PARTNO and QONHAND. Suppose also that the new table is
presently empty. The following statement inserts into the BOLTS table the
relevant values of all rows of the INVENTORY table having a DESCRIPTION of
‘BOLT”:

INSERT INTO BOLTS
SELECT PARTNO,QONHAND
FROM INVENTORY WHERE DESCRIPTION = 'BOLT'

136 SQL/Data System Application Programming for VM/SP

To eliminate duplicate rows, specify the DISTINCT keyword in the SELECT
statement.

An INSERT does not affect any existing rows in the target table or any rows of the
table from which the inserted rows were computed (INVENTORY in the above
example). If the number of columns selected by the SELECT statement is not
equal to the number of columns needed for the insertion, an error results.

In addition, the columns selected must be type-compatible with the columns into
which they are to be inserted. If you insert decimal data into a column of type
INTEGER or SMALLINT, the fractional part of the data is truncated before
insertion. If you assign a decimal variable to a decimal column, the number is
converted to the precision and scale of the target column. (Extra scale positions
are truncated.) A value to be inserted into a column of CHAR or GRAPHIC data
type is padded on the right with blanks (X‘40’ for CHAR data types; X‘4040’ for
GRAPHIC data types) to the correct length before insertion. No padding is
performed on values inserted into columns of varying length (VARCHAR or
VARGRAPHIC). (SQL/DS conversion rules are summarized under “Data
Conversion” on page 76.) You cannot use Format 2 of the INSERT statement to
insert data of type LONG VARCHAR or LONG VARGRAPHIC.

Even though SQL/DS does data conversion, you should (if possible) code Format
2 INSERT statements so that there is little or no data conversion involved. When
SQL/DS does data conversion from source values to target values, it uses more
storage internally. It is possible for SQL/DS to exhaust its temporary internal
storage when performing operations that involve a large number of data
conversions.

The nested SELECT statement must not select rows from the same table that is the
subject of the INSERT, since this might lead to a non-terminating result. If you
code such an INSERT statement, SQL/DS returns an error.

If SQL/DS detects an error in a Format 2 INSERT statement after some rows have
been inserted (for example, an attempt to insert a null value into a NOT NULL
column), SQL/DS stops processing the statement, and returns an error code in the
SQLCA. If you coded WHENEVER SQLERROR STOP, SQL /DS rolls back the
current logical unit of work. (The STOP condition cannot be used in FORTRAN
applications.) If you are handling negative return codes via a routine you have
coded within the application program (as discussed in the next chapter), the rows
that were inserted before the error was detected remain in the table unless you
explicitly issue a ROLLBACK WORK.

Additional uses of Format 2 of the INSERT statement are discussed in the next
chapter.

SQL/DS does not impose any logical ordering on the rows of a table; therefore, no
facility is provided to specify the ‘“‘position” in the table of the newly inserted rows.
(That is, rows are inserted in SQL/DS-determined order.) You must not use an
ORDER BY clause in a SELECT statement that is associated with a Format 2
INSERT statement.

After successful completion of an INSERT statement, the variable SQLERRD(3)
in the return code structure indicates the number of rows that were inserted. If the

Coding the Program 137

returned SQLCODE is non-zero, indicating unsuccessful completion of the
statement, the content of SQLERRD(3) is unpredictable.

Format 2 DELETE:

DELETE FROM [creator.]table-name WHERE CURRENT OF cursor-name

Example:

DELETE FROM INVENTORY WHERE CURRENT OF CURSOR2

Authorization:

Authorization depends on the table specified in the cursor declaration. You can delete rows of the
table named in the cursor declaration if you created that table. If you are not the creator of the table
in the cursor declaration, you must be given the DELETE privilege on that table or you must have
DBA authority.

Format 2 of the DELETE statement deletes exactly one row of a table. The
current position of the cursor determines the row to be deleted. If the cursor name
is a reserved keyword, you must use double quotes (') around the cursor name in
the DELETE statement. (Notice that the double quotes are not used when the
cursor is declared.)

The cursor must be open and positioned on a row of the table. In addition, the
cursor must meet certain other requirements before you can use it to delete a row
as follows:

1. It must be a SELECT statement on one table (not a join).

2. If it contains a subquery, the subquery must not be on the same table as the
outer-level query.

3. It must not include DISTINCT or GROUP BY or ORDER BY or UNION or
any built-in function such as AVG(PRICE).

4. If you use the BLOCK option on all CREATE PROGRAMSs, and you wish to
execute a prepared Format 2 DELETE dynamically, the cursor must be a
SELECT...FOR UPDATE statement, even if you do not plan to execute any
Format 2 UPDATESs with the cursor. The FOR UPDATE clause is needed to
tell SQL /DS that blocking should be overridden when the SELECT statement
is prepared. If you do not use the FOR UPDATE clause in this instance, an
error will occur on your DELETE statement.

When the statement is executed, SQL /DS deletes the row indicated by the position
of the cursor. The cursor goes into a between state in which it remains open but has
no current row until you reposition it by a FETCH statement. You cannot use the
cursor for further deletions or updates while it is in the between state.

Note that both the COMMIT WORK and ROLLBACK WORK statements
automatically close all cursors. A common mistake is to delete a row via a cursor,

138 SQL/Data System Application Programming for VM/SP

commit that change, and then loop backwards to repeat the process. This type of
programming construction fails because the first COMMIT WORK closes the

cursor.

Format 2 UPDATE:

UPDATE [creator.]table-name
SET column-name-1 = expression-1
[, column-name-2 = expression-2]
WHERE CURRENT OF cursor-name

Example:

UPDATE JONES.EMPLOYEE

SET SALARY = 0.00,
POSITION = 'FIRED'

WHERE CURRENT OF CURSORI1

Authorization:

Authorization depends on the table specified in the cursor declaration. You can update rows of the
table named in the cursor declaration if you created the named table. If you are not the creator of the
table in the cursor declaration, you must be given the UPDATE privilege on those columns you wish

to update, or you must have DBA authority.

Format 2 updates exactly one row -- the current row of the indicated cursor. If the
cursor name is a reserved keyword, you must use double quotes (') around the
cursor name in the UPDATE statement. (Notice that the double quotes are not
used when the cursor is declared.)

The cursor must be open and positioned on a row of the named table. (Note that
both the COMMIT WORK and ROLLBACK WORK statements automatically
close all cursors.) The UPDATE statement does not affect the position of the
cursor.

The rules for evaluating the SET clause expressions for Format 2 UPDATE
statements are identical to those for Format 1. For example, this statement
updates the current row of cursor C5. It sets the PRICE field to
2500.00/QONORDER, and then sets the QONORDER field to zero:

UPDATE QUOTATIONS
SET PRICE = 2500.00 / QONORDER, QONORDER = O
WHERE CURRENT OF C5

Like Format 1, SQL/DS computes all update values before any updates become
effective. Thus, SQL/DS computes the new value of PRICE before setting
QONORDER to zero, regardless of the order in which you list the individual
updates in the SET clause.

To use an UPDATE statement of Format 2, the named cursor must adhere to these
rules:

1. It must be a SELECT statement on one table (not a join).

Coding the Program 139

Use of Views

Creating a View

2. 1If it contains a subquery, the subquery must not be on the same table as the
outer-level query.

3. It must not include DISTINCT or GROUP BY or ORDER BY or UNION or
any built-in function such as AVG(PRICE).

4. If a particular field of the current row of a cursor is to be updated (for
example, PRICE in the UPDATE QUOTATIONS example), that field must
have been included in a FOR UPDATE clause in the DECLARE CURSOR
statement that defined the cursor.

Views allow different users to see different presentations of the same data. For
example, several users may be operating on a table of data about employees. The
first user may see data about some employees but not others; the second user may
see data about all employees but none of their salaries; and the third user may see
data about employees joined together with some data from another table. Each of
the users in this example is operating on a view derived from the real table of data
about employees. Each view appears to be a table, and each view has a name of its
own.

You can use views with authorization statements to control access to sensitive data.
For example, you might use a view based on a GROUP BY query to give a user
access to the average salary of employees in each department. The view prevents
the user from seeing any individual employee salaries.

A view is a dynamic “window” on tables. That is, when you update a real table,
you can see the updates through a view. Similarly, when you update a view,
SQL /DS updates the real table underlying the view. There are, however,
restrictions on modifying tables through a view. “Modifying Tables Through a
View” on page 143 covers these restrictions.

Because SQL/DS does not physically store views, you cannot create an index on a
view. However, if you create an index on the real table underlying a view, you will
improve the performance of queries on the view.

Format:

CREATE VIEW [creator.]view-name [(column-name-list)]
AS select-statement

140 SQL/Data System Application Programming for VM/SP

Example:

CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY_TIME
FROM QUOTATIONS WHERE DELIVERY TIME < 10

Authorization:

You must have the SELECT privilege on the underlying tables to create a view.

The CREATE VIEW statement causes the indicated select-statement to be stored
as the definition of a new view. The statement also gives a name to the view, and
(optionally) to each column in the view. If you don’t specify the column names,
the columns of the view inherit the names of the columns from which they are
derived.

You must specify new names for the columns of the view if some column of the
view is not derived directly from a data field (that is, if a view column is defined as
AVG(SALARY) or SALARY +COMMISSION). Columns derived in this manner
are often called virtual columns. (Virtual columns, naturally, contain virtual data.)
You must also specify new column names if the selected fields of the view do not
have unique names (for example, the view is a join of two tables, each of which has
a column named PARTNO).

The data types of the columns of the view are inherited from the columns on which
they are defined. If a view column is defined by a built-in function such as
AVG(SALARY), the data type of the view column is INTEGER, FLOAT, or
DECIMAL. (See “Built-In Functions” on page 31 for a more precise description.)

Here are some other considerations for creating views:

« Internal SQL/DS limitations restrict a view to approximately 140 columns.
The number of referenced tables, lengths of column names, and WHERE
clauses all further reduce this number.

« If the select-statement in a view definition has a “SELECT *”’ clause, the view
has as many columns as the underlying table. If columns are later added to the
underlying table by ALTER statements, the new columns will not appear in the
view (unless you drop and re-create the view).

« The name of the view must be unique among all the tables, views, and
synonyms that you have already created. You can refer to another user’s
views, if so authorized, by using the person’s userid as a prefix (for example,
SMITH.FASTQUOTES).

e You can define a view in terms of another view. In other words, the
select-statement that defines a view may make reference to one or more other
views. In this case, you must observe the limitations listed under “Querying
Tables Through a View” on page 142.

Coding the Program 141

e The select-statement in a view definition must not have an ORDER BY clause.
Like a table, a view is considered to have no intrinsic ordering. Of course, you
can specify an ORDER BY clause when you write queries against the view.

» A select-statement in a view definition cannot contain a UNION operator.

+ Host variables are not permitted in a CREATE VIEW statement. (For
example, predicates such as PRICE = :X are not permitted.)

o The creator of the view is considered to be the user who preprocessed the
program. (Certain exceptions are described under “Dynamically Defined
Statements’ on page 147.)

« When you define a new view, you receive the same privileges that you had on
the underlying table. If you possess these privileges with the GRANT option,
you can grant privileges on your view to other users. (See ‘“‘Granting Privileges
to Other Users” on page 62.) If the view is derived from more than one
underlying table, you receive only the SELECT privilege, because multi-table
views do not permit insertion, deletion, or update. You receive the SELECT
privilege on a multi-table view only if you have the SELECT privilege on all
the tables from which it is derived. If you have no privileges on the underlying
table(s), the CREATE VIEW statement returns an error code.

o The special keyword USER, which always evaluates to the userid of the person
running the program, can be used in the definition of a view. For example, the
following view might be defined on the SQL /DS catalog table
SYSCATALOG:

CREATE VIEW MYTABLES AS
SELECT * FROM SYSTEM.SYSCATALOG
WHERE CREATOR = USER

This view contains only those rows of SYSCATALOG for which the creator is
the current user.

The select-statements that define the various views known to the SQL /DS are kept
in a catalog called SYSVIEWS. Also, descriptions of views and their columns are
kept in SYSCATALOG and SYSCOLUMNS. View names may appear in many
other places in the catalogs in place of table names (for example, in
SYSTABAUTH). All SQL/DS catalogs are described in the SQL/Data System
Planning and Administration for VM /SP manual.

Querying Tables Through a View

You can write queries (SELECT statements) against views exactly as if the views
were real tables. When you make a query against a view, SQL/DS combines the
query with the definition of the view to produce a new query against real stored
tables. SQL/DS then processes this query in the usual way. For example, the
following query might be written against the view FASTQUOTES that was defined
in an example under “CREATE VIEW”’:

142 SQL/Data System Application Programming for VM/SP

View Definition for FASTQUOTES:

CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY TIME*
FROM QUOTATIONS WHERE DELIVERY_TIME < 10

SELECT PART,DAYS
FROM FASTQUOTES
WHERE MFR = 51
ORDER BY 2

SQL/DS combines this query with the definition of FASTQUOTES and processes
the resultant query:

SELECT PARTNO, DELIVERY_TIME
FROM QUOTATIONS

WHERE DELIVERY_TIME < 10

AND SUPPNO = 51

ORDER BY 2

During the processing of a query on a view, SQL/DS may detect and report errors
(via a negative SQLCODE) in either of two phases:

1. The combining of the query with the view-definition (example error: attempt
to add together two fields of character-type).

2. The execution of the resulting query on real tables (example error: attempt to
fetch a null value when no indicator variable is provided).

You can write almost any kind of query against almost any kind of view.
Techniques such as joining, grouping, and nesting can be combined in arbitrary
ways, subject to the following limitations:

1. A view column whose definition involves a built-in function cannot be referred
to in a WHERE clause, or as the argument of another built-in function in the
SELECT clause of a query.

2. A view whose definition involves a GROUP BY cannot be joined with another
table or view.

3. A UNION operator cannot be used in the definition of a view.

Modifying Tables Through a View

Like SELECT statements, INSERT, DELETE, and UPDATE statements can be
applied to a view just as though it were a real stored table. As described above, the
SQL statement that operates on the view is combined with the definition of the
view to form a new SQL statement that operates on a stored table. Any data
modification made by such a statement is visible to users of the view, or the
underlying table, or other views defined on the same table (if the views ‘“‘overlap”
in the modified area).

Coding the Program 143

The following is an example of an update applied to the view FASTQUOTES,
showing how the update would be modified by SQL/DS to operate on the real
table QUOTATIONS:

View Definition for FASTQUOTES:

CREATE VIEW FASTQUOTES (MFR,PART,DAYS) AS
SELECT SUPPNO, PARTNO, DELIVERY_ TIME
FROM QUOTATIONS WHERE DELIVERY_TIME < 10

UPDATE FASTQUOTES
SET DAYS = 5
WHERE MFR = 61
AND PART = 241

becomes:

UPDATE QUOTATIONS

SET DELIVERY _TIME = 5
WHERE SUPPNO = 61

AND PARTNO = 241

AND DELIVERY_ TIME < 10

You must observe the following limitations when modifying tables through a view:

1. INSERT, DELETE, and UPDATE of the view are not permitted if the view
involves any of the following operations: join, GROUP BY, DISTINCT, or
any built-in function such as AVG. If one or more of these operations is
present in the view definition, the creator of the view does not receive
INSERT, DELETE, or UPDATE privileges on the view. Even a user having
DBA authority attempting an operation of this type receives a negative
SQLCODE.

2. A column of a view can be updated only if it is derived directly from a column
of a stored table. Columns defined by expressions such as
QONHAND +QONORDER or QONHAND-50 cannot be updated. (These
columns are sometimes called virtual columns.) If a view is defined containing
one or more such columns, the definer does not receive the UPDATE privilege
on these columns. INSERT statements are not permitted on views containing
such columns, but DELETE statements are permitted.

3. The ALTER TABLE, CREATE INDEX, and UPDATE STATISTICS
statements cannot be applied to a view.

You can use an INSERT statement with a view that does not contain all the
columns of the stored table on which it is based. For example, you can insert rows
into the view FASTQUOTES even though it does not contain the PRICE and
QONORDER columns of the underlying table QUOTATIONS. When such an
insert is done, the ‘“‘invisible”’ columns receive the null value. If a column that does
not permit null values is missing from the view, SQL/DS does not permit insertions
to the view.

Note that you can insert or update rows of a view in such a way that they do not

satisfy the definition of the view. For example, the view FASTQUOTES is defined
by the condition DELIVERY__TIME<10. It is possible to insert rows into

144 SQL/Data System Application Programming for VM/SP

Dropping a View

FASTQUOTES having a value greater than 10 in the DAYS field (the field defined
on DELIVERY__TIME), or to update a row of FASTQUOTES in such a way that
its DAYS value becomes greater than 10. These insertions and updates take effect
on the underlying table, QUOTATIONS, but they are not visible in the view
FASTQUOTES because the resulting rows do not satisfy the definition of
FASTQUOTES. In fact, an update to FASTQUOTES that sets DAYS=12 causes
a row to ‘““vanish” from FASTQUOTES (a cursor positioned on the row retains its
position, but later scans through FASTQUOTES do not see this row).

Be extremely careful when updating tables through views that may contain
duplicate rows. For example, suppose a view PARTS is defined on the
INVENTORY table, containing only the columns DESCRIPTION and
QONHAND. Since PARTNO is not included in the view, and many parts may
have the same description, the user of the view cannot tell which PARTNO
corresponds to a given row of the view. If the user positions a cursor on some row
where DESCRIPTION = ‘BOLT’, and then updates the current row of this cursor,
some row of the stored INVENTORY table is updated. However, since there may
be many bolts in the INVENTORY table, and the unique qualifier PARTNO is not
part of the view, the user cannot control which bolt is updated. This is not a
recommended usage of views.

Format:

DROP VIEW [creator.]view-name

Example:

DROP VIEW FASTQUOTES

Authorization:

You can drop only those views that you have created. You can drop another user’s views only if you

have DBA authority.

The DROP VIEW statement drops the definition of the indicated view from the
data base. When you drop a view, SQL /DS also:

1. Drops all other views defined in terms of the indicated view. (The underlying
tables on which the views are defined are not affected.)

2. Deletes all privileges on the dropped view(s) from the authorization catalogs.
3. Marks invalid all access modules that refer to the dropped views.
The invalid access modules remain in the data base until they are explicitly

dropped by a DROP PROGRAM statement. When an invalid access module is
next invoked, SQL/DS attempts to regenerate it and restore its validity.

Coding the Program 145

However, if the program contains any SQL statement that refers to a
DBSPACE, table, or view that has been dropped, that SQL statement returns
an error code at execution time.

If a DROP VIEW statement attempts to drop a view currently in use by another
running logical unit of work, SQL/DS queues the DROP VIEW statement until the
running logical unit of work terminates.

Indicator Variables

146

Along with each host variable, you may optionally provide a second variable called
an indicator variable. Indicator variables can be used to indicate null values on
input to SQL/DS (UPDATE and INSERT statements), or output from SQL/DS
(INTO-clause of a SELECT statement). These are the rules for using indicator
variables:

1. The indicator variable must be of a host language data type equivalent to an
SQL/DS SMALLINT.

2. The indicator variable must follow a host variable (called the main variable).

3. All indicator variables must be declared in an SQL declare section before they
are referred to in SQL statements.

4. Like main variables, you must also precede the indicator variable by a colon

().

5. If an indicator variable is provided but it is not applicable (for example, if nulls
are not allowed for the column), the indicator variable is ignored.

For example:

SELECT NAME, ADDRESS
INTO :NAME:NAMEIND, :ADDR:ADDRIND
FROM SUPPLIERS WHERE SUPPNO = 51

In this example, :NAMEIND serves as the indicator variable for the main variable
:NAME, and :ADDRIND serves as the indicator variable for the main variable
:ADDR. The value returned in an indicator variable is coded as shown in

Figure 18.

Value

Returned Meaning

0 Denotes that the returned value is not null, and has been
placed in the associated main variable.

Figure 18 (Part 1 of 2). Values Returned in Indicator Variables

SOT./DNata Svstem Annlication Programming for VM /SP

Value

Returned Meaning

<0 Denotes that the returned value is null. The main variable
should be ignored.

>0 Denotes that SQL/DS truncated the returned value because

the main variable was not of sufficient length.

In addition, if the truncated item was a DBCS or character
string, the indicator variable contains the length in characters
before truncation. The SQLWARN1 warning flag in the
SQLCA is set to ‘W’ whenever a returned character or DBCS
string is truncated.

Figure 18 (Part 2 of 2). Values Returned in Indicator Variables

For input (INSERT or UPDATE statements), indicator variables can be used to
indicate that a field is to be set to null (when the indicator variable is a negative
value). If you provide an indicator variable and assign it a negative value, SQL/DS
inserts the null value in the row. A zero or positive value in the indicator causes
SQL/DS to insert the value of the main variable. Truncation does not apply to
input variables.

Indicator variables are optional. However, if a null value is returned, and you
haven’t provided an indicator variable, a negative SQLCODE is returned to your
program. If your data is truncated and there is no indicator variable, no error
condition results (for numeric data). See “Data Conversion” on page 76 for more
about truncation.

Do not use indicator variables in search conditions (WHERE clauses). The correct
way to test for nulls is via the NULL predicate (described earlier):

WHERE QONHAND IS NOT NULL Correct

WHERE QONHAND = :SUPP:SIND Incorrect

If you use an indicator variable in a WHERE clause, SQL/DS returns a negative
SQLCODE to your program.

Dynamically Defined Statements

Note: This topic is more advanced than previous sections. The techniques
discussed here are not needed by most application programs. It should also be
noted that these dynamically defined statements cannot be used in FORTRAN
programs.

Previous sections have described how to code various SQL statements directly into

a program and have SQL/DS preprocess them. For some kinds of applications,
however, it is desirable to execute SQL statements that are not known until the

Coding the Program 147

preprocessed; the preprocessed statement is also given a name of your choosing.
(This name should not be declared as a host variable.) The second step
(EXECUTE) causes the statement to be executed using values that you supply for
the parameters. Once a statement is prepared, it can be executed many times.
Here is the pseudo code:

[]
[]
° Preprocess the DELETE
READ DSTRING FROM TERMINAL statement and call it
EXEC SQL PREPARE S1 FROM :DSTRING w— S1.
READ PART FROM TERMINAL
DO WHILE (PART -= 0)
EXEC SQL EXECUTE S1 USING :PART =
READ PART FROM TERMINAL I

END-DO Execute S1 (the DELETE
° statement) repeatedly
° using different values
° for PART.

You should not execute a dynamically defined statement after ending the logical
unit of work in which the statement was prepared. If you do, the results are
unpredictable.

In routines similar to the above example, the number of parameters and their data
types must be known because the host variables that provide input data are
declared when the program is being written.

Naturally, this greatly limits the number of different SQL statements that you can
read in. In the above example, the only SQL statements that can be executed are
those containing a single parameter. This single parameter must be used knowing
that it is defined as an integer halfword in the program. For example, the pseudo
code above can also process the statements below. (At the terminal, the user types
in a statement followed by values for the ‘“?”’ parameters.)

INSERT INTO INVENTORY (PARTNO) VALUES (?)

For each value you provide for “?”’, the INSERT statement is executed, and a
new row is inserted into INVENTORY. The value you enter for “?” is placed
in the PARTNO field. The other fields of the table are given the null value.

UPDATE INVENTORY SET DESCRIPTION = 'GEAR' WHERE PARTNO = ?

For each value you provide for “?”’, the UPDATE statement is executed, and
the DESCRIPTION column of the INVENTORY table is set to ‘GEAR’.

UPDATE INVENTORY SET QONHAND = O WHERE PARTNO = ?

For each value you provide for “?”’, the UPDATE statement is executed, and
the QONHAND column of the INVENTORY table is set to 0.

Obviously, there are some applications for this kind of dynamic statement
processing, but they are quite specialized. Suppose new parts are added to the
inventory. Each part is a different kind of gear, and none of the parts are yet in the
warehouse. The input stream for the pseudo code above would be as follows:

“--=¢am Annlication Programming for VM/SP

INSERT INTO INVENTORY (PARTNO) VALUES (?)

301

302

303

304

0

UPDATE INVENTORY SET DESCRIPTION = 'GEAR' WHERE PARTNO = ?
301

302

303

304

0

UPDATE INVENTORY SET QONHAND = O WHERE PARTNO = ?
301

302

303

304

0

Dynamically Defined Queries

A somewhat more complex facility is needed for executing a dynamically defined
SELECT statement. Usually a SELECT statement returns the result of a query
into one or more host variables. When the query is read from a terminal at
run-time, you cannot know in advance how many and what type of variables to
allocate to receive the query result. Therefore, SQL/DS provides a special
statement called DESCRIBE, by which a program can obtain a description of the
data types of a query result. After using the DESCRIBE statement, the program
can dynamically allocate storage areas of the correct size and type to receive the
result of the query. If DESCRIBE is used on a prepared SQL statement that was
not a SELECT, DESCRIBE returns a special ‘“non-query” indication.

To handle a run-time query, the program first uses the PREPARE statement. As in
the previous section, the PREPARE statement preprocesses the SQL statement.
The PREPARE step also associates a statement-name with the query. The
DESCRIBE statement is then used to obtain a description of the answer set. On
the basis of this description, the program dynamically allocates a storage area
suitable to hold one row of the result. The program then reads the query result by
associating the name of the statement with a cursor and using cursor manipulation
statements (OPEN, FETCH, and CLOSE).

The rest of this section describes some techniques for executing dynamically
defined queries. The descriptions are not meant to be comprehensive; specific
restrictions and statement descriptions are located in a following section.

Dynamically defined queries center around a structure called the SQL Descriptor
Area (SQLDA). The SQLDA is usually a based structure; that is, storage for it is
allocated dynamically at run time. Figure 19 is a representation of the SQLDA
structure with host language independent data type descriptions. Each host
language has different considerations for the SQLDA structure. You should read
the section on dynamic statements in the appropriate appendix before you attempt
to code a program that uses the SQLDA.

Coding the Program 151

SQLDA -- a based structure composed of:
SQLDAID -- character string of length 8
SQLDABC -- 31-bit binary integer
SQLN -- 15-bit binary integer
SQLD -- 15-bit binary integer
SQLVAR -- an array composed of:
SQLTYPE -- 15-bit binary integer
SQLLEN -- 15-bit binary integer
SQLPRCSN -- 1-byte (used for DECIMAL)
SQLSCALE -- 1-byte (used for DECIMAL)
SQLDATA -- 31-bit binary integer (pointer)
SQLIND -- 31-bit binary integer (pointer)
SQLNAME -- varying-length character string
of up to 30 characters

Figure 19. SQLDA Structure (in Pseudo Code)

Note that the SQLLEN field is divided into two sub-fields. The sub-fields are used
only when working with DECIMAL values. Such usage is described in the
following discussion.

To include the descriptor area in your program, specify:

INCLUDE SQLDA

The INCLUDE SQLDA statement must not be placed in the SQL declare section.
As with the SQLCA, you can code this structure directly instead of using the
INCLUDE SQLDA statement. If you choose to declare the structure directly, you
can specify any name for it. For example, you can call it SPACE1 or DAREA
instead of SQLDA.

The following text describes how to process a run-time query. First, you must
declare the SQLDA structure. Below is an illustration showing the SQLDA
structure as a box; similar illustrations are used in following examples. Remember
that SQLDA is a based structure (or, in Assembler, a DSECT); no storage has
actually been allocated yet.

SQLDAID
SQLDABC SQLN [SQLD
SQLVAR
(1) SQLTYPE (1) | (2) | SQLDATA
(2) SQLLEN .

SQLIND 11

11 is the length

of the character
string in SQLNAME.
SQLNAME is a 30-byte
area immediately
following 11.

152 SQL/Data System Application Programming for VM/SP

The meanings of the various fields are described as they are used. A summary of
the meanings of the fields of the SQLDA is presented later for quick reference.

Suppose that a SELECT statement is assigned to a variable called QSTRING. The
SELECT statement can be read in from a terminal or SYSIPT, or it can be assigned
within the program itself. In this example, the following SELECT statement, which
retrieves information from the example tables in the foldout, is read in from the
terminal:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO=221

Notice that the SELECT statement has no INTO clause. All SELECT statements
that are to be dynamically executed must not have an INTO clause (regardless of
whether they return more than one result row).

When the statement is read in, it is assigned to the host variable QSTRING.
QSTRING is then preprocessed via the PREPARE statement:

READ QSTRING FROM TERMINAL
EXEC SQL PREPARE S1 FROM :QSTRING

Now you can allocate storage for the SQLDA. The techniques for acquiring
storage are language dependent. (Refer to the appropriate compiler or Assembler
manual.)

Note: The usage of the SQLDA depends on the USING clause option of the
DESCRIBE statement. In this section, it is assumed that the NAMES option of the
USING clause has been specified. See “DESCRIBE” on page 177 for more detail
on the DESCRIBE statement. The amount of storage you need to allocate depends
upon how many elements you want to have in the SQLVAR array. Each select-list
item must have a corresponding SQLVAR array element. Therefore, the number
of select-list items determines how many SQLVAR array elements you should
allocate. However, since SELECT statements are specified at run time, it is
impossible to know how many select-list items there will be. Consequently, you
must guess. Suppose, in this example, that no more than three items are ever
expected in the select-list. This means that the SQLVAR array should have a
dimension of three, since each item in a select-list must have a corresponding entry
in SQLVAR.

Having allocated an SQLDA of what you hope will be adequate size, you must now
initialize the SQLDA field called SQLN. SQLN is set to the number of SQLVAR
array elements you have allocated. That is, SQLN is the dimension of the
SQLVAR array. In this example, you must set SQLN to three. Here’s the pseudo
code for what was done so far:

Allocate an SQLDA of size 3
SQLN = 3

Having allocated storage, you can now DESCRIBE the statement. (Make sure that
SQLN is set before the DESCRIBE.)

DESCRIBE S1 INTO SQLDA

When the DESCRIBE is executed, SQL/DS places values in the SQLDA for you,
these values provide information about the select-list.

Coding the Program 153

154

The figure below shows the contents of the SQLDA after the DESCRIBE is
executed for the example SELECT statement. The third SQLVAR element is not
shown because it wasn’t used:

Eye—catchers —> S Q L D A SQLN and SQLD
> 148 3 2 <
Li9g 24
1M D E

SQLVAR L
Element 1 < S CR I P T I O

N

—_ 497 4

SQLVAR
Element 2 < D

SQLDAID and SQLDABC are eye-catcher fields initialized by SQL/DS when a
DESCRIBE is executed; you can ignore these for now.

SQLN is not altered by SQL/DS unless you didn’t allocate a large enough SQLDA.
Suppose, for example, that the SELECT statement contained four select-list
expressions instead of two. The SQLDA was allocated with an SQLVAR
dimension of three. Naturally, SQL/DS cannot describe the entire select list
because there is not enough storage. In this case, SQL/DS sets SQLD to the actual
number of select-list expressions; the rest of the structure is ignored. Thus, after a
DESCRIBE it is a good practice to check SQLN. If SQLN is less than SQLD, you
need to allocate a larger SQLDA based on the value in SQLD:

EXEC SQL DESCRIBE S1 INTO SQLDA

IF (SQLN < SQLD)
Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF

For the example SELECT statement, however, the SQLDA was of adequate size.
SQLVAR has a dimension of three, and there are only two select-list expressions.
SQLN remains set to 3, and SQL/DS sets SQLD to 2.

If you use DESCRIBE on a non-SELECT statement, SQL /DS sets SQLD to O.
Thus, if your program is designed to process both query and non-query statements,
you can describe each statement (after it is prepared) to determine whether it is a
query. This example routine is designed to process only query statements, so no
test is provided.

SQL/Data System Application Programming for VM/SP

Your program must now analyze the elements of SQLVAR. Remember that each
element describes a single select-list expression. Consider, again, the SELECT
statement that is being processed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO=221

The first item in the select-list is DESCRIPTION. As illustrated in the beginning
of this section, each SQLVAR element contains the fields SQLTYPE, SQLLEN,
SQLDATA, SQLIND, and SQLNAME. SQL/DS returns in SQLTYPE a code
that describes the data type of the expression and tells whether nulls are applicable.
Figure 20 shows how to interpret the codes returned in SQLTYPE:

Data Code Data Type Do Nulls Apply?
496 INTEGER NO
497 INTEGER YES
500 SMALLINT NO
501 SMALLINT YES
484 DECIMAL NO
485 DECIMAL YES
480 FLOAT NO
481 FLOAT YES
448 VARCHAR NO
449 VARCHAR YES
452 CHAR NO
453 CHAR YES
456 LONG VARCHAR NO
457 LONG VARCHAR YES
468 GRAPHIC NO
469 GRAPHIC YES
464 VARGRAPHIC NO
465 VARGRAPHIC YES
472 LONG VARGRAPHIC| NO
473 LONG VARGRAPHIC| YES

Figure 20. Data Codes Returned in SQLTYPE

For example, SQL/DS set SQLTYPE to 449 in the first SQLVAR element. This
indicates that DESCRIPTION is a VARCHAR column and that nulls are permitted
in the column.

SQL/DS sets SQLLEN to the length of the column. For character or DBCS
strings, SQLLEN is set to the maximum length in characters of the string. For
decimal data, the precision and scale are returned in the first and second bytes,
respectively. (Recall that the SQLLEN field has two sub-fields called SQLPRCSN
and SQLSCALE for this purpose.) For other data types, SQLLEN is set as
follows:

SMALLINT -- SQLLEN = 2
INTEGER -- SQLLEN = 4
FLOAT -- SQLLEN = 8

Coding the Program 155

Since the data type of DESCRIPTION is VARCHAR, SQL/DS sets SQLLEN
equal to the maximum length of the character string. For DESCRIPTION, that
length is 24. Thus, when the SELECT statement is later executed, a storage area
large enough to hold a VARCHAR(24) string will be needed. In addition, because
nulls are permitted in DESCRIPTION, a storage area for a null indicator variable
will also be needed.

The last field in an SQLVAR element is a varying-length character string called
SQLNAME. The first two bytes of SQLNAME contain the length of the character
data. The character data itself is usually the name of the field used in the select-list
expression (DESCRIPTION in the above example). The exceptions to this are
select-list items that are unnamed, such as functions (for example,
SUM(SALARIES)) and expressions (A+B-C). These exceptions are described in
greater detail under ‘“The SQL Descriptor Area (SQLDA)” on page 167.

The second SQLVAR element in the above example contains the information for
the QONHAND select-list item. The 497 code in SQLTYPE indicates that
QONHAND is an INTEGER column that permits nulls. For an INTEGER data
type, SQL/DS sets SQLLEN to 4. SQLNAME contains the character string
“QONHAND?”, and has the length byte set to 7.

After analyzing the result of the DESCRIBE, you can allocate storage for variables
that will contain the result of the SELECT statement. For DESCRIPTION, a
varying character field of length 24 must be allocated; for QONHAND a binary
integer of 31 bits (plus sign) must be allocated. Both QONHAND and
DESCRIPTION permit nulls, so you must allocate two additional halfwords to
function as indicator variables.

Once the storage is allocated, you must set SQLDATA and SQLIND to point to
the appropriate areas. For each element of the SQLVAR array, SQLDATA points
to the location where the results are to be placed. SQLIND points to the location
where the null indicator is to be placed. Here is what the structure now looks like:

156 SQL/Data System Application Programming for VM/SP

148 3 2 Main Variable:

Lyg | 24 . >| Varying Char. (24)

. 11 D E Indicator:

w
o
v

Halfword

N Main Variable:

>| Binary Integer Fullword

497 | 4

. . Indicator:

v

Halfword

7 'Q 0 N H
1

This is the pseudo code for what was done so far:

EXEC SQL INCLUDE SQLDA
L]
L]

READ QSTRING FROM TERMINAL

EXEC SQL PREPARE S1 FROM :QSTRING

Allocate an SQLDA of size 3.

SQLN = 3

EXEC SQL DESCRIBE S1 INTO SQLDA

IF (SQLN < SQLD)
Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF

Analyze the results of the DESCRIBE.

Allocate storage to hold select-list results,

Set SQLDATA and SQLIND for each select-list item.

Now comes the easy part: retrieving the query result. Dynamically defined queries,
as noted earlier, must not have an INTO clause. Thus, all dynamically defined
queries must use a cursor. Special forms of the DECLARE, OPEN, and FETCH
are used for dynamically defined queries.

The DECLARE CURSOR statement for the example query is as follows:

DECLARE C1 CURSOR FOR S1

As you can see, the only difference is that the name of the prepared SELECT
statement (S1) is used instead of the SELECT statement itself. The dynamic
statement must be prepared before a cursor is declared for it. (It does not,
however, have to be described.)

The actual retrieval of result rows is as follows:

Coding the Program 157

EXEC SQL OPEN CI1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)
DISPLAY (results pointed to by SQLDATA and SQLIND
for all pertinent SQLVAR elements)
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

The cursor is opened, and the active set is evaluated. (Note that there are no input
host variables needed for the example query. Methods of providing input host
variables are discussed later.) The query result rows are then returned using a
FETCH. On the FETCH statement there is no list of output host variables.
Rather, the FETCH statement tells SQL /DS to return results into the descriptor
called SQLDA. The same SQLDA that was set up by DESCRIBE is now being
used for the outpur of the SELECT statement. In particular, the results are
returned into the storage areas pointed to by the SQLDATA and SQLIND fields of
the SQLVAR elements. The meaning of the halfword pointed to by SQLIND is
the same as any other indicator variable:

0 Denotes that the returned value is not null.
<0 Denotes that the returned value is null.

>0 Denotes that the returned value was truncated because the storage area
provided was not large enough. If the truncated item was a DBCS or
character string, the indicator variable contains the length in characters before
truncation.

SQL/DS does not allow you to declare a (non-dynamic) cursor in a program, and
then execute dynamically defined statements against it. For example, suppose you
code this non-dynamic cursor in your program:

DECLARE C1 CURSOR FOR
SELECT PARTNO, PRICE
FROM QUOTATIONS
WHERE SUPPNO = :SUPP
FOR UPDATE OF PRICE

Naturally, you can open C1 and execute statements such as these:

UPDATE QUOTATIONS
SET PRICE = PRICE + .10
WHERE CURRENT OF C1

DELETE FROM QUOTATIONS
WHERE CURRENT OF C1

However, you cannot read in the above statements at run time and dynamically
prepare and execute them. Dynamically defined UPDATE and DELETE
statement containing WHERE CURRENT OF clauses will not work when the
cursor declaration is non-dynamic.

The next section describes a more general routine in which you can process queries
that have parameters in the WHERE clause. It is recommended that you do not

158 SQL/Data System Application Programming for VM/SP

read that section until you have coded some of the simpler dynamic queries
discussed thus far.

Parameterized Queries

In the example above, the query that was dynamically executed had no parameters
(input host variables) in the WHERE clause:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = 221

Suppose you wanted to execute the same query a number of times using different
values for PARTNO. A parameterized SQL statement (as described under
“Non-Query Statements” on page 148) is needed:

SELECT DESCRIPTION, QONHAND FROM INVENTORY WHERE PARTNO = ?

In previous parameterized SQL statements, the number of parameters and their
data types had to be known. What if they are unknown? The DESCRIBE
statement, at first glance, is not feasible because it describes only select-lists. With
some additional programming, however, you can use the DESCRIBE statement to
obtain information about the “?”’ parameters. Specifically, the code must scan the
FROM and WHERE clauses to determine which table and column a ““?” parameter
is associated with. The code can then construct a SELECT statement using those
column names in the select-list. For the parameterized statement above, this query
can be generated:

SELECT PARTNO FROM INVENTORY

The query (assigned to WSTRING below) can then be preprocessed and described:

Allocate an SQLDA of size 3.

SQLN = 3

EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA

Don’t forget to allocate an SQLDA of adequate size and to initialize SQLN. In the
example above, it is assumed that no more than three items would appear in the
select-list. This means that there can be only three ‘“?”’ parameters in the WHERE
clause since each “?” is equivalent to a select-list expression. (In truth, the
scanning routine can easily determine the exact amount of “?”’ parameters.) Code
to allow for re-allocation of a larger structure is appropriate if you believe there
may be more than three ‘“?”’ parameters:

EXEC SQL DESCRIBE S2 INTO SQLDA

IF (SQLN < SQLD)
Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S2 INTO SQLDA

END-IF

Here is what the SQLDA looks like after the fabricated SELECT statement is

described. Only the first element of SQLVAR is shown since the others aren’t
used:

Coding the Program 159

Eyecatchers —> S Q L D A SQLN and SQLD

> 148 3 1 <

500 2 (SQLDATA)
(sqLIND) | 6 P A
SQLVAR 1
Element 1 < R T N O

An analysis of the SQLDA shows that there is only one “?”’ parameter, and that
parameter is associated with PARTNO. The SQLTYPE value (500) indicates that
PARTNO contains integer halfwords. Thus, you need to allocate a binary integer
halfword for the ““?”’ variable. SQLDATA must then be set to point to this area.

Previously, the SQLDA was used in a FETCH statement and SQL /DS returned
query results into the storage areas pointed to by SQLDATA and SQLIND. In
other words, the SQLDA was used for output. Now, the SQLDA is going to be
used to provide input values for the WHERE clause via an OPEN statement. When
the SQLDA is being used for input, you must assign values to the dynamically
allocated storage areas pointed to by SQLDATA. SQLIND is never applicable
because you can’t use indicator variables in WHERE clauses. In fact, if the
SQLTYPE value returned by DESCRIBE shows that the field permits nulls, you
should reset SQLTYPE to indicate that nulls are not permitted. For example, if the
SQLTYPE returned by DESCRIBE is 501, you should set it to 500 before using
the SQLDA to provide input. Once the storage for the “?”’ parameters is allocated
you should read in values and assign them to those areas. Here is the completed
SQLDA (assuming 221 is read in for “?”):

Eyecatchers —> S Q L D A SQLN and SQLD
> 148 3 1 <
500 2 -— Value for "'?'":
(SQLIND) |6 P A >| 221
SQLVAR 1
Element 1 < R T N O

Once an SQLDA is set up in this fashion, it can be referred to in an OPEN
statement that contains a USING clause. For example, a previously declared cursor
called C1 is opened using SQLDA:

160 SQL/Data System Application Programming for VM/SP

OPEN C1 USING DESCRIPTOR SQLDA

Since SQLDA currently has 221 in the field pointed to by SQLDATA, C1 is
evaluated using that value.

Below is the pseudo code for the complete example. Two SQLDA-like structures
are used. One is called SQLDA, and is the usual structure; the other (declared
directly) is called SQLDA1. The fields of SQLDA1 are suffixed with a “1”; for
example, SQLDATA1 and SQLN1. An asterisk in position 1 of the pseudo code
denotes a comment.

Coding the Program 161

162

* *

LR B R

L I B R K BR

EXEC SQL INCLUDE SQLDA

Directly declare SQLDA1.
L]
[]

Read in a parameterized query.
READ QSTRING FROM TERMINAL
PREPARE and DESCRIBE the query; set up the output SQLDA.

EXEC SQL PREPARE S1 FROM :QSTRING

Allocate an SQLDA of size 3.

SQLN = 3

EXEC SQL DESCRIBE S1 INTO SQLDA

IF (SQLN < SQLD)
Allocate a larger SQLDA using the value of SQLD.
Reset SQLN to the larger value.
EXEC SQL DESCRIBE S1 INTO SQLDA

END-IF

Analyze the results of the DESCRIBE.

Allocate storage to hold select list results.

Set SQLDATA and SQLIND for each select-list item.

Declare a cursor.
EXEC SQL DECLARE C1 CURSOR FOR S1

Fabricate a query so PREPARE and DESCRIBE can be used to
set up the input SQLDA1.

Scan the FROM clause and the WHERE clause of QSTRING for "?2"
parameters and generate an appropriate query in WSTRING.
Allocate an SQLDA1 of size 1 (1 was obtained from the scan).

SQLN1 = 1

EXEC SQL PREPARE S2 FROM :WSTRING

EXEC SQL DESCRIBE S2 INTO SQLDA1

Analyze the results of the DESCRIBE.

Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).
Set SQLDATA1 for each "?" parameter value.

Read in input parameters and retrieve the query results via
cursor C1. Note that the pseudo code reads in only one "?2"
parameter. Your actual code must provide for the possibility
that more than one "?" parameter might be provided.

READ PARM FROM TERMINAL
DO WHILE (PARM —= 0)
Assign PARM to area pointed to by SQLDATAT.
EXEC SQL OPEN C1 USING DESCRIPTOR SQLDA1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)
DISPLAY (results pointed to by SQLDATA and SQLIND)
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
END-DO
EXEC SQL CLOSE C1
DISPLAY ('ENTER ANOTHER VALUE OR 0')
READ PARM FROM TERMINAL
END-DO
DISPLAY ('END OF QUERY')

Of course, the pseudo code above must be modified to suit your own purposes.

SQL/Data System Application Programming for VM/SP

A\

Parameterized Non-Query Statements

In “Non-Query Statements’ on page 148, parameterized statements were
introduced; it was necessary, however, to know the number of “?” parameters and
their data types before run-time. In the preceding section it was shown how you
might analyze a parameterized query so that a SELECT statement could be
generated and subsequently described.

The same principle can be used for parameterized non-query statements. For
example, suppose this DELETE statement is read from the terminal and assigned
to DSTRING:

DELETE FROM QUOTATIONS WHERE PARTNO = ? AND SUPPNO = ?

Suppose also that the amount of *“?”’ parameters and their corresponding data types
are unknown before run time. The same routine that you coded to scan the FROM
and WHERE clauses of SELECT statements can be used to scan the above
DELETE statement. Then, a SELECT statement containing the relevant columns
can be constructed:

SELECT PARTNO, SUPPNO FROM QUOTATIONS

This SELECT statement is then prepared and described as in the previous section.
The setup of the SQLDA is also identical: once the SQLDA is analyzed, space to
hold the “?” values is allocated, and the ““?”’ values are read in and assigned to
these locations. Once again, the SQLDA will be used for input to the WHERE
clause of the SQL statement; no indicator variables are allowed. Because the
statement is a non-query statement, the SQLDA is pointed to in the EXECUTE
statement. (There is no OPEN for non-queries.) Here is the pseudo code for a
parameterized non-query statement.

EXEC SQL INCLUDE SQLDA

L]

[]
READ DSTRING FROM TERMINAL
Scan the FROM clause and the WHERE clause of DSTRING for "?2"

parameters and generate an appropriate query in WSTRING.

Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).
Set SQLDATA for each "?" parameter value.

EXEC SQL PREPARE S1 FROM :DSTRING
Read "?" parameter values from the terminal.
* A zero parameter value terminates the DO loop.
DO WHILE (parameters == 0)
Assign the values to the storage allocated for
input variables.
EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA
Prompt user for more values.
Read "?" parameter values from the terminal.
END-DO
L]
®

Coding the Program 163

Note that you may need a more complex scanning routine depending on how many
different non-query statements you wish to process. For example, the above
routine would have to be modified if you wanted to process INSERT statements.
In that case, you would have to scan the INTO clause. Note also that indicator
variables are permitted when providing input to the INSERT statement via
EXECUTE. This is because a normal (not dynamically defined) INSERT
statement also permits indicators. If indicator variables are permitted in normal
usage, they are permitted in the dynamically defined case.

An Alternative for Parameterized Statements

Previous sections on parameterized statements (both query and non-query) relied
on a scanning routine that generated a query. Once this query was generated,
DESCRIBE was used to obtain information about the columns and expressions
associated with a ““?”’ parameter.

If you have not coded a scanning routine that generates a query, there is a simple
alternative: have the user describe the “?”’ parameters for you, and fill in the
SQLDA yourself. There is no rule that says you must use a DESCRIBE to fill in
the SQLDA. When using the SQLDA for input or output, SQL/DS doesn’t care
who filled in the SQLDA, as long as the needed values are there.

When you use the SQLDA for input (which is always the case for “?” parameters),
not all fields have to be filled in. Specifically, SQLDAID, SQLDABC, and the
SQLVAR field called SQLNAME need not be filled in. Thus, if you choose this
method, you will need to ask the user for the following:

1. How many “?”’ parameters are there?

2. What are the data types of these parameters (and lengths, if character)?

3. Do you want an indicator variable?

In addition, if the routine is to handle both query and non-query statements, you
may want to ask the user what category of statement it is. (Alternatively, you can

write code to look for the SELECT keyword.)

The code that interrogates the user and sets up the SQLDA would take the place of
the scanning routine and DESCRIBE in the previous sections:

164 SQL/Data System Application Programming for VM/SP

With a Scanning Routine:

[

[]
READ DSTRING FROM TERMINAL
Scan the FROM and WHERE clauses of DSTRING for "?"

parameters and generate an appropriate query in WSTRING.

Allocate an SQLDA of size 2 (2 was obtained from the scan).
SQLN = 2
EXEC SQL PREPARE S2 FROM :WSTRING
EXEC SQL DESCRIBE S2 INTO SQLDA
Analyze the results of the DESCRIBE.
Reset SQLTYPE to reflect that there is no indicator variable.
Allocate storage to hold the input values (the "?" values).

Set SQLDATA for each "?" parameter value.
[]

Without a Scanning Routine:

L]
[]
READ DSTRING FROM TERMINAL
Interrogate user for number of "?" parameters.
Allocate an SQLDA of that size.
Set SQLN and SQLD to the number of "?" parameters.
For each "?" parameter:
Interrogate user for data types, lengths, and
indicators.
Set SQLTYPE and SQLLEN.
Allocate storage to hold the input values
(the "?" values).
Set SQLDATA and SQLIND (if applicable) for each
"?" parameter.

The statement can then be processed in the usual manner.

Dynamic Data Conversion

In previous uses of the SQLDA for input or output, SQLTYPE always described
the data type of the storage area pointed to by SQLDATA. In the following
example, the type code 500 (originally obtained via a DESCRIBE of the SELECT
statement) describes the data type of the main variable.

SELECT | PARTNO

FROM INVENTORY

WHERE DESCRIPTION = 'GEAR' |

FETCH USING DESCRIPTOR

SQLDA v Binary Halfword
Main Variable:

500 [JESEE———

Coding the Program 165

In previous sections, the select-list item, the type code, and the data type of the
storage area allocated for holding query results were all equivalent. That is, in the
above example, PARTNO is a SMALLINT column (with no nulls permitted), 500
is the type code meaning SMALLINT NOT NULL, and the area allocated is a
binary integer halfword. To force a data conversion, you must allocate a storage
area having a different data type and then change SQLTYPE in the SQLDA.
Suppose that you wanted to select the SMALLINT part numbers into an integer
area. Here is the sequence of instructions needed:

EXEC SQL PREPARE S1 FROM :STRING

EXEC SQL DESCRIBE S1 INTO SQLDA

Allocate a binary integer fullword of storage.
Set SQLDATA to point to it.

SQLTYPE = 496

When the FETCH is executed, SQL/DS performs the SMALLINT to INTEGER
conversion automatically. Similarly, you could have converted the retrieved
PARTNO values to FLOAT merely by setting SQLTYPE to 480 and by allocating
a floating point word of storage.

This conversion can be done when the SQLDA is used for input also. Consider the
normal case:

EXECUTE USING DESCRIPTOR <

VALUES | (2) | <

INSERT INTO INVENTORY (PARTNO) SQLDA Binary Halfword

Main Variable:

500 [JS—

As before, PARTNO is SMALLINT. The main variable is also allocated as
SMALLINT (binary integer halfword), and the SQLTYPE that describes the main
variable represents a SMALLINT. To perform data conversion on input, you need
to change only the SQLTYPE and the type of storage allocated to hold the input
values. This is done exactly as in the previous example. To insert a floating point
variable into the SMALLINT PARTNO column, for example, these steps are
needed:

EXEC SQL PREPARE S1 FROM :STRING

EXEC SQL DESCRIBE S1 INTO SQLDA

Allocate an 8-byte floating point area.

Set SQLDATA to point to it.

Assign a floating point number to the area.
SQLTYPE = 480

EXEC SQL EXECUTE S1 USING DESCRIPTOR SQLDA

All dynamic data conversion is done according to the rules summarized under
“Data Conversion” on page 76. Note especially that character to numeric or
numeric to character conversions are not allowed.

166 SQL/Data System Application Programming for VM/SP

Should you change the SQLTYPE code and then allocate a storage area of an
incorrect type, SQL/DS treats the storage area as though it were of the type
indicated by SQLTYPE. For example, suppose SQLTYPE indicates that the
storage area pointed to by SQLDATA is an INTEGER, but that the actual area
allocated is a binary integer halfword (SMALLINT). SQL/DS treats the field as
though it were an INTEGER, not a SMALLINT. This type of error may yield
confusing results.

Distressing results are also obtained if SQLTYPE indicates that there is an
indicator variable, but you do not allocate one.

The SQL Descriptor Area (SQLDA)

This section summarizes, for your reference, the SQLDA structure and related
information.

As you have learned in the previous sections, the SQLDA can be used in any
number of ways. In general, the fields within the SQLDA must be initialized either
by using a DESCRIBE statement or by user code. Once the fields are initialized,
the SQLDA can be used for input (in EXECUTE and OPEN) or for output (in
FETCH).

Figure 21 summarizes the sequence of events needed to initialize the SQLDA for
use in processing dynamically defined statements. In any case, you must always
initialize SQLN before the DESCRIBE.

Sequence of Events >
First, Then Next, if you in— EXECUTE,
SQLDA DESCRIBE you must tend to use the OPEN, and
Fields: initializes: initialize: SQLDA for input FETCH use:
(EXECUTE or
SQLDAID X OPEN), you must
SQLDABC X place values in
SQLN? the locations X
SQLD X pointed to by X
SQLDATA and
SQLVAR SQLIND. When
the SQLDA is
SQLTYPE X used for output X
SQLLEN X (FETCH), SQL/DS X
SQLDATA X will place X
SQL IND2 X values in those X
SQLNAME X areas.

Figure 21. SQLDA Initialization
Notes:
1. You must set SQLN before the DESCRIBE.

2. Only provide indicators if they are allowed in the non-dynamic case. (See the
previous sections.)

Coding the Program 167

If you do not use a DESCRIBE to set up the SQLDA, you need only fill in those
fields that are actually used the OPEN, FETCH, or EXECUTE.

The meanings of the fields within the SQLDA are as follows:

SQLDAID When the SQLDA is used for input or output, SQLDAID does not
apply. This field serves only as an SQLDA eye-catcher. It is set to
‘SQLDA ’ by SQL/DS when a DESCRIBE is first executed.
(You never have to fill in SQLDAID.)

SQLDABC When the SQLDA is used for input or output, SQLDABC does not
apply. This field is another eye-catcher field. It is set to the length
of the SQLDA by SQL/DS when a DESCRIBE is executed. (You
never have to fill in SQLDABC.)

SQLN Indicates the number of variables represented by SQLVAR.
(SQLN acts as a dimension of the SQLVAR array.) You should
always set this value when the structure is allocated. When the
USING clause of the DESCRIBE statement is set to NAMES,
LABELS, or ANY, you should specify the maximum number of
expected select-list items. When you set the USING clause option
to BOTH, you should specify twice the number of expected
select-list items.

SQLD Indicates the pertinent number of elements in the SQLVAR array.

When used with a DESCRIBE statement, SQL/DS returns a zero in
SQLD if the statement being described is not a SELECT statement.
If the statement is a SELECT statement, SQL /DS sets SQLD to
indicate the number of SQLVAR elements. The number of
SQLVAR elements is either the number of select-list elements
(when the USING clause of the DESCRIBE statement is set to
NAMES, LABELS, or ANY), or twice the number of select-list
elements (if the USING clause is set to BOTH). If (after a
DESCRIBE) SQLD is greater than SQLN, the SQLVAR array is
not large enough to contain descriptions for all the select-list items.
In this case, you must allocate a larger SQLDA based on the value
of SQLD.

If you set the value of SQLD yourself, and you set it less than
SQLN, the excess elements of the SQLVAR array are ignored.

SQLVAR The individual entries in this array describe the characteristics of
dynamically allocated storage areas. These storage areas are
intended to hold either the values for ““?”” parameters (if the
SQLDA is used for input) or the values returned from a query (if
the SQLDA was used for output). The entries in this array are
bound, in order, to the ‘“?’’ parameters of the prepared statement or
to the select-list items (whichever is applicable).

Here is a breakdown of an element of the SQLVAR array; to avoid confusion,

keep in mind the distinction between input (OPEN, EXECUTE) and output
(DESCRIBE):

168 SQL/Data System Application Programming for VM/SP

SQLTYPE In the case of input, SQLTYPE describes the data type of the
allocated storage area and tells whether you are also providing an
area for an indicator variable. The data type identified here must be
type-compatible with the storage area’s use in the prepared
statement. (SMALLINT, INTEGER, DECIMAL, and FLOAT are
compatible; CHAR, VARCHAR, and LONG VARCHAR are
compatible; and GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC are compatible). A method for forcing data
conversion was discussed under ‘“‘Data Conversion” on page 76.
In the case of output, the types are set by SQL/DS to indicate the
column types specified in the SELECT-list of the prepared
statement.

These are the data codes:

Data Code Data Type Indicator Variable?
496 INTEGER NO
497 INTEGER YES
500 SMALLINT NO
501 SMALLINT YES
484 DECIMAL NO
485 DECIMAL YES
480 FLOAT NO
481 FLOAT YES
448 VARCHAR NO
449 VARCHAR YES
452 CHAR NO
453 CHAR YES
456 LONG VARCHAR NO
457 LONG VARCHAR YES
468 GRAPHIC NO
469 GRAPHIC YES
464 VARGRAPHIC NO
465 VARGRAPHIC YES
472 LONG VARGRAPHIC| NO
473 LONG VARGRAPHIC| YES

SQLLEN This field contains the length of the storage area allocated. For

DBCS data types, SQLLEN is set to the number of DBCS
characters (each DBCS character occupies two bytes in storage).
SQLLEN is determined by what is indicated by SQLTYPE.

Coding the Program 169

If SQLTYPE is: SQLLEN contains:

VARCHAR the maximum length of the string.

VARGRAPHIC the maximum number of DBCS characters in the
string.

CHAR the length of the string (fixed).

GRAPHIC the number of DBCS characters in the string
(fixed).

INTEGER 4

SMALLINT 2

FLOAT 8

DECIMAL precision and scale are in the first (SQLPRCSN)
and second (SQLSCALE) bytes, respectively.

SQLDATA This field is never initialized by SQL/DS. You must place in this

SQLIND

SQLNAME

field a pointer to the storage area that either holds the parameter
value (if SQLDA is used for input) or is to hold a select-list result
(if the SQLDA is used for output). For varying-length character
strings, the actual data should be preceded by a half-word field that
specifies the length of the character string. (The value you specify
should not include the length of the half-word.) The data must be
aligned on a half-word boundary.

This field is never initialized by SQL/DS. SQLIND must point to
the indicator variable if you have opted to provide one. The
indicator variable must be declared as a 15-bit binary integer. If
you are using the SQLDA for input, you must provide an
appropriate value in the indicator as shown below. (Only null or
not null apply to input to SQL/DS.) Note that indicators should
not be used when providing input to a WHERE clause. If you are
using the SQLDA for output, SQL/DS fills in the indicator using
these same values:

0 Denotes that the parameter is not null, and is in the associated
storage area.

<0 Denotes that the parameter value is null.

>0 Denotes that a returned value was truncated because the
storage area provided was not large enough. If the truncated
item was a DBCS or character string, the indicator variable
contains the length in characters before truncation. (Applies
only for the FETCH statement.)

As indicated in the chart at the beginning of this section, it is never
necessary for you to fill in SQLNAME. (SQLNAME is not used in
a FETCH, OPEN, or EXECUTE.) When a DESCRIBE is
executed, however, SQL /DS fills SQLNAME with information that
may be useful in analyzing the select-list items. (Especially when a
routine is used to generate a query from a parameterized WHERE
clause.)

170 SQL/Data System Application Programming for VM/SP

In general, depending on the option specified in the USING clause
of the DESCRIBE statement, either the name or the label
associated with the column used in the select-list is returned in
positions 1-n of SQLNAME. (The USING clause is described in
detail under “DESCRIBE” on page 177.) The exceptions to this
are select-list items that are unnamed, such as functions (for
example, SUM(SALARIES)), constants (‘ABC’), and expressions
(A+B-C). In these cases, position 1 of SQLNAME is blank
(hexadecimal ‘40’) and positions 3-30 contain a description of the
unnamed field. (The value in position 2 varies.) Since a blank
(hexadecimal ‘40’) is not allowed in the first byte of SQL
identifiers, the application program can tell whether a column name
is returned. These rules apply:

Case 1: Basic function. SQLNAME contains the name of the
function followed by the column name in parentheses (for example,
SUM(SALARIES)). Position 2 of SQLNAME is blank.

Case 2: DISTINCT object of a function. If the keyword
DISTINCT is used in the function, it appears before the column
name (for example, SUM(DISTINCT SALARIES)). If the column
name is large, the whole description may not fit in positions 3-30.
In this case, the description is truncated, and hexadecimal ‘FF’ is set
in position 2 of SQLNAME.

Case 3: If the select-list item involves an expression, SQL /DS sets
positions 3-n of SQLNAME to this character string:

EXPRESSION m

where m is a number that identifies the mth expression in the
select-list. For example, for the sixth expression in the select-list,
SQL /DS sets positions 3-n of SQLNAME to EXPRESSION 6.
Position 2 of SQLNAME is blank. The above is true for all
expressions, even those that contain a built-in function.
Expressions include constants, such as ‘ABC’.

Case 4. If the object of a function is an expression (for example,
SUM(SALARIES+10)), SQL /DS returns in positions 3-n of
SQLNAME the name of the function followed by EXPRESSION m
in parentheses (for example, SUM(EXPRESSION 7)). Position 2
of SQLNAME is blank.

Coding the Program 171

PREPARE

Format:

PREPARE statement-name FROM string-spec

Examples:

PREPARE STAT2 FROM :XSTRING
PREPARE STAT3 FROM 'DELETE FROM QUOTATIONS WHERE PARTNO = ?'

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL /DS via the PREPARE and EXECUTE
facility have their authorization checked against the privileges of the user who is currently running the
program, not the user who preprocesses the program.

This statement preprocesses the statement identified by string-spec for later
execution. String-spec can be either a character constant or a host variable. If
string-spec is a host variable, the variable must be declared as fixed- or
varying-length character. (If a host variable is used in Assembler or COBOL, it
must be varying-length. Fixed-length strings aren’t allowed for string-spec in those
preprocessors.) String-spec represents a run-time SQL statement.

The “prepared” statement is given the statement-name you specify.
Statement-name must begin with a letter, $, #, or @. It can contain up to 18
letters, numbers, $, #, @, and underscores. Unlike other SQL identifiers, the
statement-name must never be enclosed in either single (') or double (') quotes;
thus, the statement-name cannot contain embedded blanks. Statement-names can,
however, be SQL reserved words. For example:

PREPARE SELECT FROM :STRING
Note that the statement-name above (SELECT) is not enclosed in double quotes.
The host variable does not require a colon preceding it; the colon is optional in this

statement.

Assembler language programs cannot specify a constant for string-spec. A host
variable must be used.

The SQL statements you cannot use for string-spec are:

INCLUDE SQLCA ROLLBACK WORK
INCLUDE SQLDA COMMIT WORK
WHENEVER CONNECT

OPEN PREPARE

CLOSE EXECUTE

FETCH EXECUTE IMMEDIATE
DECLARE CURSOR DESCRIBE

172 SQL/Data System Application Programming for VM/SP

The SQL statements must not include host language delimiters or contain any
references to host variables. If the SQL statement is a SELECT statement, it must
not have an INTO clause. (A cursor is used to retrieve results when the statement
is executed.)

Although a statement to be ‘‘prepared’ can not contain any host variables, it can
contain parameters to be filled in when the statement is executed. These
parameters are denoted by question marks (?). You can specify parameters only in
places where a data value could be used. (A parameter can not represent the name
of a table or a column.) In the pseudo code example below, an INSERT statement
that has two parameters is prepared:

QSTRING='INSERT INTO SUPPLIERS (SUPPNO,NAME) VALUES (?,?)'

PREPARE S1 FROM :QSTRING

Each time S1 is executed, values must be supplied for the two parameters that were
specified with question marks.

Note that you must supply host language dependent delimiters for the PREPARE
statement, but not for the statement that is a value in QSTRING. In PL/I the
above example is written:

QSTRING='INSERT INTO SUPPLIERS (SUPPNO,NAME) VALUES (?2,?)"';

EXEC SQL PREPARE S1 FROM :QSTRING;

A semicolon is added to the end of the first statement because ordinary PL/I
statements are separated by semicolons. The “EXEC SQL” and semicolon on the
second statement are the host language delimiters for SQL statements in PL/1L.

If your PL/I program constructs dynamic SQL statements by manipulating quoted
strings, remember that both SQL and PL/I use two quote marks to represent a
single quote mark inside a quoted string. The following PL/I example illustrates
this rule:

EXEC SQL PREPARE S1 FROM 'INSERT INTO SUPPLIERS (SUPPNO,NAME)
VALUES (75,''SMITH'')';

In this example, the text beginning with INSERT and ending with SMITH'! is
considered to be a PL/I constant string. PL/I will collapse each of the quote pairs
around SMITH into a single quote before the string is processed by SQL.

In COBOL, a constant string-spec is treated as a COBOL character string and is
affected by the QUOTE/APOST option. This option determines the character
string delimiters. If you use the same character (' or ') in the constant string-spec
as the QUOTE/APOST option establishes for the outer string delimiters,
unexpected string termination may result.

It is best to avoid using a constant string-spec whenever it may contain quotes.
Instead, you should build the SQL statement as a host variable string-spec, using
the known host language rules for character strings. You must be especially careful
of SQL statements that contain DBCS constants, because some DBCS characters
may contain the encodings for EBCDIC quote. This could cause unintentional
termination of host language strings that contain DBCS-type constants.

Coding the Program 173

A question mark can appear in an SQL statement to be ‘“‘prepared” in any place
that a host variable may appear, with the following exceptions:

1. A question mark can not be used in a select-list or FROM-clause (but it may
be used in the WHERE clause of a SELECT statement).

2. Two question marks can not appear directly within the same arithmetic or
comparison operation: ?+? or ?=? are invalid.

3. If a column name or a literal does not appear to the left of an IN clause, the
first item in the list of items to the right of the IN cannot be a ? host variable.

4. There are additional restrictions on the use of ? host variables with
hexadecimal literals in comparison predicates. For more information, refer to
the description of SQLCODE -422 in the SQL/Data System Messages and

Codes for VM /SP manual.

The following examples may help clarify when ? variables can and cannot be used.
The first set of examples can be successfully processed by SQL/DS PREPARE and

EXECUTE statements:

UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?
UPDATE QUOTATIONS SET QONORDER=?

WHERE
WHERE
WHERE
WHERE
WHERE
WHERE

PARTNO+?=?
?+PARTNO="?
PARTNO IN (?,?)
PARTNO+? IN (?,?)
?+PARTNO IN (?,?)
? IN (0,?)

This set of examples cannot be successfully processed by SQL/DS PREPARE and

EXECUTE statements:

UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO IN (?)
UPDATE QUOTATIONS SET QONORDER=? WHERE PARTNO=:PART
UPDATE QUOTATIONS SET QONORDER=? WHERE ? IN (?,?)
UPDATE QUOTATIONS SET QONORDER=? WHERE ? IN (?,0)

174 SQL/Data System Application Programming for VM/SP

-

EXECUTE

Format 1:

Formar 2:

EXECUTE statement-name [USING input-list]

EXECUTE statement-name [USING DESCRIPTOR input-structure]

Examples:

EXECUTE S1 USING :X,
EXECUTE S1 USING DESCRIPTOR SQLDA
EXECUTE S1 USING DESCRIPTOR STUFF

:Y:YIND

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL/DS via the PREPARE and EXECUTE
facility have their authorization checked against the privileges of the user who is currently running the
program, not the user who preprocessed the program.

Format 1 of the EXECUTE statement causes SQL /DS to execute a statement
(identified by statement-name) that was “prepared’” previously. When the
statement is executed, the host variables you list are substituted, in order, into the
statement in place of its ““?’’ parameters. Each variable must be of a data type that
is compatible with its usage in the ‘‘prepared” SQL statement. Each variable can
also have an indicator variable if the statement syntax permits them. That is,
indicators are permitted for dynamically defined statements if they are permitted in
the non-dynamic case. In particular, indicator variables are not allowed in
WHERE clauses. All indicator variables must be defined as two-byte integers. A
negative value in an indicator variable represents a null value.

You should not execute a dynamically defined statement after ending the logical
unit of work in which the statement was prepared. If you do, the results are
unpredictable.

You can use PREPARE and EXECUTE to create new objects in the data base.
Whenever a new object is created in this manner, the creator or owner of that
object is the user who is presently running the program, rather than the user who
preprocessed the program. This permits an interactive user at a terminal to create
new tables, for example, in the user’s own name rather than in the name of the
person who preprocessed the program.

If an error occurs during the execution of an SQL PREPARE statement and the
statement name is subsequently executed via an SQL EXECUTE statement, the
EXECUTE statement fails.

Format 1 of the EXECUTE statement is used when you know the number and
data types of the parameters of the prepared statement. Format 2 permits you to

Coding the Program 175

dynamically specify the “?” parameters of the prepared statement. If you use
Format 2, you must use an SQL /DS descriptor (called SQLDA) to specify the
required parameters. For each variable represented by a ‘“?”’ in the prepared
statement, you must specify information such as length and location in the
descriptor. General usage techniques for the SQLDA were discussed in earlier
sections.

EXECUTE IMMEDIATE

Format:

EXECUTE IMMEDIATE string-spec

Example:

EXECUTE IMMEDIATE :QSTRING

Authorization:

Any user with CONNECT authority can code this statement in an application program and
preprocess the program. SQL statements submitted to SQL /DS via EXECUTE IMMEDIATE have
their authorization checked against the privileges of the user who is currently running the program,
not the user who preprocessed the program.

This statement is a short-hand form for preparing and executing SQL statements
having no parameters. (See PREPARE for string-spec syntax rules.) The
statement

EXECUTE IMMEDIATE string-spec

is exactly equivalent to the following two statements:
PREPARE statement-name FROM string-spec

EXECUTE statement-name
EXECUTE IMMEDIATE should be used when the SQL statement is to be
executed only once. If a given SQL statement is to be prepared once and executed

repeatedly, the non-immediate form of EXECUTE should be used.

If string-spec is a host variable, it does not require a colon preceding it; the colon is
optional in this statement.

176 SQL/Data System Application Programming for VM/SP

\. DESCRIBE

Format.

DESCRIBE statement-name INTO output-spec
[USING {NAMES | LABELS | BOTH | ANY}]

Examples:

DESCRIBE Q1 INTO SQLDA
DESCRIBE S1 INTO STRI1

Authorization:

You can use DESCRIBE for any statement you have successfully prepared.

The DESCRIBE statement obtains information about a statement that has been
prepared. Structure-spec should name an SQLDA structure. If the prepared
statement is a SELECT statement, DESCRIBE returns the number of fields in the
answer set, and the data types, lengths, and names of these fields. If the prepared
statement is not a SELECT statement, DESCRIBE sets the SQLDA field called
SQLD to zero.

All fields in the SQLDA were described under “The SQL Descriptor Area
(SQLDA)” on page 167. General usage techniques are described under
“Dynamically Defined Queries’” on page 151.

You should not attempt to DESCRIBE a statement that was prepared in a different
logical unit of work. If you do, the results are unpredictable.

The USING clause can be used to return column labels. You can specify one of
four parameters with the USING clause to tell SQL/DS which values to return in

the SQLNAME field of the SQLDA. The NAMES parameter is the default. It
tells SQL/DS to return column names but no column labels.

The LABELS parameter tells SQL/DS to return column labels but no column
names. The BOTH parameter specifies that both column labels and column names
are to be returned. In this case, the value returned in SQLDA is twice the number
of columns (N) in the select-list. The values returned in SQLVAR elements are as
follows:
1. Elements 1 through N

The same as when only column names are returned.
2. Elements N+1 through 2N

a. SQLTYPE: 0

b. SQLLEN: 0

Coding the Program 177

c. SQLDATA: 0
d. SQLIND: 0
e. SQLNAME: column label

Column labels are given in a sequence which corresponds with the
sequence in which column names are given in the first N SQLVAR
elements.

If a label exists for a column, the ANY parameter of the USING clause tells
SQL/DS to return it in the SQLNAME field. If not, the column name is returned.
A label is considered not to exist if the length of the label is zero or if the value of
the label is null.

If either LABELS or BOTH is specified in the USING clause and a label does not
exist, SQLNAME is set to a length of zero, and the field is cleared to 30 blanks.
Therefore, when either LABELS or BOTH is specified, your program must be
prepared to receive a zero-length label in the SQLNAME field. That is, if you wish
to move a label from an SQLNAME field into a user work area using the length
returned in the SQLDA, you must first make sure that the length is not zero.

While column names cannot start with a blank, column labels can start with
anything. Therefore, the program cannot tell whether the select-list element is a
built-in function, an expression, or a label. The ANY option should be avoided on
a data base where this situation might arise.

If the described SELECT statement contains a union, column labels of the first
SELECT are returned.

If the select-list contains a built-in function, the label is returned in SQLNAME
with the built-in function, as it is for a column name. However, unlike for a column
name, the first two bytes are not used as the flag bytes (hexadecimal ‘4040’ or
‘40FF’) for a label. That is, all thirty bytes are used for the built-in function and
the label.

If a literal is used in the select-list when LABELS is specified, the literal is treated
as a nonexistent column label. If either NAMES or ANY is specified, a two byte
flag plus “EXPRESSION m” is returned. If BOTH is specified, the two byte flag
plus “EXPRESSION m” is returned as the name, and the label is treated as
nonexistent.

If the DBCS option is set to YES, SO/SI pairing is guaranteed in SQLNAME, not

only when truncation occurs but also when the original value has an un-matching
SO for both column names and column labels.

178 SQL/Data System Application Programming for VM/SP

- DECLARE CURSOR Statement for Dynamically Defined Queries

Format.

DECLARE cursor-name CURSOR FOR statement-name

Example:

DECLARE CUR10 CURSOR FOR STAT1

Before you can execute a “prepared”’ SELECT or INSERT statement and fetch or
insert its results, you must declare a cursor. For dynamically defined SELECT or
INSERT statements, you must use the variation of the SQL DECLARE CURSOR
statement that is shown above.

Cursor-name must begin with a letter, $, #, or @. It can contain up to 18 letters,
numbers, $, #, @, and underscores. Unlike other SQL identifiers, the cursor-name
must never be enclosed in either single (*) or double (') quotes; thus, the
cursor-name cannot contain embedded blanks. Cursor-names can, however, be
SQL reserved words. For example:

DECLARE UPDATE CURSOR FOR STATMI1
Note that the cursor-name above (UPDATE) is not enclosed in double quotes.

Cursor names must be unique in the same logical unit of work. If they are not, an
error will result. If a cursor name is the same as a statement-name in the same
access module, unpredictable results may occur.

Here is another example of a query-cursor declaration that associates cursor C1
with a SELECT statement called QUERY1:

DECLARE C1 CURSOR FOR QUERY1

QUERY1 must be “prepared” before the cursor is declared. The actual retrieval of
result rows is shown in Figure 22.

EXEC SQL OPEN C1
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
DO WHILE (SQLCODE = 0)
DISPLAY (results pointed to by SQLDATA and SQLIND
for all pertinent SQLVAR elements)
EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA
END-DO
DISPLAY ('END OF LIST')
EXEC SQL CLOSE C1

Figure 22. Using a Cursor with Dynamically Defined Statements

Coding the Program 179

You should not attempt to declare a cursor for a statement that was prepared in a -’
different logical unit of work. If you do, the results are unpredictable.

Refer to ‘“Dynamically Defined Queries” on page 151 if you need more
information about processing a run time query.

OPEN Statement with USING Option

Format 1:

OPEN cursor-name [USING host-variable-list]

Format 2:

OPEN cursor-name [USING DESCRIPTOR structure-spec]

Examples:

OPEN C1 USING :X, :Y
OPEN C2 USING DESCRIPTOR SQLDA
OPEN C3

An option on the OPEN statement allows you to open a cursor on a ‘“‘prepared”’ —
SELECT statement, and to bind the values of the “?”’ parameters. For example,
suppose statement S1 is prepared using the following query:

SELECT PRICE FROM QUOTATIONS WHERE PARTNO=? AND SUPPNO=?

When you open a cursor to fetch the results of the query, you must provide two
variables that supply the missing part number and supplier number. You can do
this by listing host variables (Format 1) or by allocating a suitable SQLDA
structure (Format 2). You can not use indicator variables in the OPEN statement.
The use of the SQLDA structure is described in earlier sections.

To change the values of the host variables and hence the active set, you must close
and re-open the query. (This does not cause the query to be ‘“‘prepared’ again,

however.)

Note: When you are opening an insert-cursor, you should not specify the USING
option.

180 SQL/Data System Application Programming for VM/SP

/_ FETCH Statement for Dynamically Defined Queries

Format 1.

FETCH cursor-name INTO host-variable-list

Format 2:

FETCH cursor-name USING DESCRIPTOR structure-spec

Examples:

FETCH C1 INTO :X, :Y:YIND
FETCH C1 USING DESCRIPTOR SQLDA

The FETCH statement retrieves one row of a query result defined by a PREPARE
statement. The indicated cursor must be declared and opened. The places into
which the individual fields are to be fetched are indicated by a list of host variables
(optionally with indicator variables for null values), or by the SQLDA. General
usage techniques for the SQLDA were described in earlier sections. If no rows
remain in the active set of the cursor used in a FETCH statement, the “not found”
condition (SQLCODE=100) is returned.

W . .
PUT Statement for Dynamically Defined Inserts
Format 1:
PUT cursor-name FROM host-variable-list
Format 2:
PUT cursor-name USING DESCRIPTOR structure-spec
Examples:
PUT C1 FROM :X, :Y
PUT C1 USING DESCRIPTOR SQLDA
The PUT statement inserts one row of data defined by a PREPARE statement.
The indicated cursor must be declared and opened. The sources of the data to be
inserted are indicated by a list of host variables or by the SQLDA. The host
variables or the SQLDA supply values for ? parameters in the INSERT statement
that was either prepared or defined with a DECLARE CURSOR. General usage
‘ techniques for the SQLDA were described in earlier sections.
|

Coding the Program 181

182 SQL/Data System Application Programming for VM/SP

Preprocessing and Running the Program

Contents

Introduction e
VM/SP Connect Considerationsu oo,
Initializing Your User Machine
Preprocessing the Program i ...
Compiling the Program e
Link-Editing and Loading the Program
Running your Program e

Multiple User Mode e

Single User Mode i

Specifying User Parameters i,

Preprocessing and Running the Program 183

Introduction

This section discusses considerations for running application programs that access
SQL/DS. Topics described in this section are:

Initializing a user machine
Preprocessing

Compiling

Loading

Executing

You can run applications in either single user mode or multiple user mode. In
either case, you must have access to the SQL/DS production (Q) minidisk. Refer
to the SQL/Data System Installation for VM/SP and SQL/Data System Planning
and Administration for VM /SP manuals. In addition, you may have a choice of
SQL /DS data bases in which to preprocess and run your program.

1.

Single User Mode

In single user mode, SQL /DS, its preprocessors, and your application programs
run in a single virtual machine. A parameter in the SQL/DS startup EXEC,
SQLSTART, defines this mode (SYSMODE=S). Because both SQL/DS and
the user application run in the same virtual machine, single user mode is
sometimes referred to as single virtual machine mode.

Multiple User Mode

In multiple user mode, one or more users or applications concurrently access
the same data base. For this mode of operation, SQL/DS runs in a virtual
machine while one or more SQL/DS application programs or preprocessors
operate in other virtual machines. Multiple user mode is sometimes referred to
as multiple virtual machine mode. This mode is defined by the initialization
parameter, SYSMODE=M.

Multiple Data Base Operation

Multiple data base operation refers to operating more than one SQL/DS data
base machine in multiple user mode on the same VM/SP system. This implies
multiple data bases being accessed concurrently by many users. When starting
SQL/DS in single user mode, you may also have a choice of data bases;
however, in single user mode, the data base is not shared and you may not
change it without restarting SQL/DS.

SQL /DS Data Base Machine
The SQL/DS data base machine is a VM/SP virtual machine that owns

minidisks that make up one or more SQL/DS data bases (each data base has
an assigned name). A data base machine is active for only one data base at a

184 SQL/Data System Application Programming for VM/SP

time; the SQL/DS data base machine is initiated by an SQLSTART EXEC
and terminated by an SQLEND operator command. The SQLSTART EXEC
not only has a parameter for the DBNAME (SQL/DS data base), but also has
a parameter for the mode (multiple or single user). Once a data base machine
has been activated in multiple user mode, it is possible for multiple users to
access the SQL/DS data base. In order to do this users normally must have:

» Proper SQL/DS authorization
« A VM/SP IUCV path to the data base machine
» Read access to the SQL /DS production disk

« Executed the SQLINIT EXEC at some time, as described below. This
establishes the current data base association.

These modes of operation are illustrated in Figure 23.

Example 1 Example 2 Example 3

User Virtual Machines

== - ——
- m—mesTEEs

Data Base Machines

Data Bases

X Y 4
[~==== =T
} t

M N 0 P Q

Figure 23. SQL/DS Modes of Operation

In the first example, an SQLSTART EXEC has activated SQL/DS data base L in
single user mode (W is the data base machine for data base L).

In the second example, an SQLSTART EXEC has activated the SQL/DS data
base M in multiple user mode (X is the data base machine for data base M). User
virtual machines A and B have used the SQLINIT EXEC to select M as their
SQL/DS data base.

In the third example, SQLSTART EXECs have started data base O from data base
machine Y and data base Q from data base machine Z. Note that Y also owns data
bases N and P, but only one data base may be activated concurrently. Users in
virtual machines C, D, E, and F may choose between the two active data bases (O
and Q) via an SQLINIT EXEC. Currently, only one user (F) has chosen data base
Q; the remainder have chosen data base O.

Preprocessing and Running the Program 185

VM/SP Connect Considerations

Although explicit CONNECT is supported in the VM/SP environment, it is not
required. When a CONNECT statement is omitted, SQL /DS accepts the password
verification of the VM/SP virtual machine and uses the VM/SP userid as the
SQL/DS userid. This SQL/DS support is called “implicit connect.” Implicit
connect requires one of the following authorizations:

1. The special userid “ALLUSERS” must have been granted CONNECT
authority, or

2. The individual users must have been granted CONNECT authority.

Passwords are not necessary in the GRANT commands that establish the above
connect authorizations (passwords are necessary only when explicit connects are
required).

For example, assume the following GRANT command:

GRANT CONNECT TO A, B, C, ALLUSERS

After this command, any VM/SP user may be implicitly connected to SQL/DS.
However, if the following command is used:

REVOKE CONNECT FROM ALLUSERS
only users A, B, C can be implicitly connected to SQL/DS.

Thus the special userid “ALLUSERS” can be used to selectively turn the implicit
connect capability on or off for the total user set, while individual users can retain
the implicit connect privilege.

SQL/DS in a VM/SP environment supports muitiple data base machines and
access to multiple data bases. From an application program standpoint, the
connect function is the final step in the process of linking to a particular SQL/DS
data base. Provision for specifying a data base machine is not included in the
CONNECT statement since it is determined by user or operator actions prior to
running the program. This is discussed in the SQL/Data System Planning and
Administration for VM/SP manual.

Initializing Your User Machine

Format:

SQLINIT [Dbname (dbname) [dcssID(dcss-id)]]

186 SQL/Data System Application Programming for VM/SP

Example:

SQLINIT DBNAME (SQLDBA)

The parameters of SQLINIT are as follows:

Dbname(dbname)
DBNAME identifies the SQL/DS data base to be accessed. DBNAME is an
optional parameter; if no entry is provided, SQLDBA is the default data
base. The abbreviation for DBNAME is D.

dcessID(dess-id)
DCSSID is an optional parameter. It should be specified only if there are
discontiguous saved segments for the SQL /DS code. The abbreviation for
DCSSID is ID.

When you preprocess a program or run an SQL/DS application program in
multiple user mode, you must first establish the data base that you want the
program to access. This is done by using a VM/SP EXEC called SQLINIT. It is
provided by SQL/DS. You invoke this EXEC by logging on to your user virtual
machine, IPLing CMS, and invoking the EXEC. You need only to do this once, as
long as you continue to operate the same data base. Even if you log off and back
on to your virtual machine, you retain your association with the data base that was
established by the SQLINIT EXEC (the association is recorded on your A-disk).
The only exception to this is when the data base machine that is associated with the
data base is changed. If you decide to change to a different data base, you must
use the SQLINIT EXEC again, specifying the new data base.

For additional information on the SQLINIT EXEC, refer to the SQL/Data System
Planning and Administration for VM /SP manual.

Preprocessing the Program

Once a data base is established, you may preprocess programs that use the data
base by invoking the VM/SP EXEC, SQLPREP, that is provided by SQL/DS. In
multiple user mode, the data base machine that owns the selected data base must
have been started. This is normally a function of a data base administrator or their
representative.

In single user mode, you also use the SQLPREP EXEC, but in this case, it does
more work for you. It establishes an SQL/DS data base machine in your virtual
machine, where you are the sole user of the data base. You must choose the data
base you want to access, through the DBNAME= parameter. In fact, when you
specify the data base name as a parameter to the SQLPREP EXEC, you are also
indicating that you want to run in single user mode. The SQLPREP EXEC does
the SQLSTART for you.

For additional information, refer to the Operations Chapter in the SQL/Data
System Planning and Administration for VM/SP manual.

Preprocessing and Running the Program 187

There are four preprocessors supplied with SQL/DS. They have the following
program names:

PLI -- PL/I Preprocessor

ASM -- Assembler Preprocessor

COBOL -- COBOL Preprocessor

FORTRAN -- FORTRAN Preprocessor
The preprocessor takes SYSIN source program input and produces a modified
source program. The modified source program output is put to SYSPUNCH and
printed output is put to SYSPRINT. The SQLPREP EXEC allows you to direct
SYSIN, SYSPUNCH, and SYSPRINT to various virtual devices and CMS files.
If the preprocessor encounters a severe error in an SQL statement, only syntactic
checking is performed on subsequent SQL statements. (That is, all errors may not
be found on the first pass.) If successful, the preprocessor places an entry in the

catalog SYSTEM.SYSACCESS to record the newly-created access module.

The format for the SQLPREP EXEC follows:

188 SQL/Data System Application Programming for VM/SP

Format:

SQLPREP { PLI | COBol | ASM | FORTran }

PrepParm(PREPname=program-name
[,USERid=userid/password]

[{ ,KEEP | ,REVOKE }]
[{ ,NOCHECK | ,CHECK }]
[{ ,NOGRaphic | ,GRaphic }] (for PL/I and COBOL only)
[{ ,PRint | ,NOPRint }]
[{ ,PUnch | ,NOPUnch } 1
[{ ,Quote | ,APOST } 1 (for COBOL only)
[,LineCount (integer) |
[,IsOLation(RR | CS | USER)]
[{ ,BLocK | ,NOBLocK }])
[sysIN({ filename [filetype [filemode]] | Reader })]
[sysPRint({ filename [filetype [filemode]] | Printer |
Terminal })]
[sysPUnch({ filename [filetype [filemode]] | Punch })]
[Dbname (dbname) (Note: Specify for
[dessID(dcss-id) | Single User Mode only)
[LOGmode (Y | A | N)]

[PARMID(filename)]]

Note: Abbreviations for keywords are in upper-case letters.

Examples:
Single User Mode:

SQLPREP COB PP (PREP=MYJOB,USERID=JERRY/SECRET,KEEP, CHECK,
PRINT,PUNCH,LC(66)) DBNAME (MYDB) IN(MYINPUT) LOG(A)

Multiple User Mode:

SQLPREP COB PP (PREP=MYJOB,USERID=JERRY/SECRET,KEEP,CHECK,
PRINT,PUNCH,LC(66)) IN(MYINPUT)

The parameters of the SQLPREP EXEC are:

PLI | COBOL | ASM | FORTRAN

This parameter identifies to the EXEC which preprocessor is to be executed.
This parameter is required and must be specified first. The abbreviation for
COBOL is COB and FORTRAN is FORT. The order in which you specify
the other keywords is not important.

Preprocessing and Running the Program 189

PREPPARM

PrepParm(PREPname=program-name
[,USERid=userid/password]
[{ , KEEP | ,REVOKE }]
[{ , NOCHECK | ,CHECK }]
[{ NOGRaphic | ,GRaphic }{ | (for PL/I and COBOL only)
[{,PRint | ,NOPRint }]
[{,PUnch | ,NOPUnch i}l
[{,Quote | ,APOST }] (for COBOL only)
[,LineCount(integer)]
[,ISOLation(RR | CS | USER)]
[$,BLocK | ,NOBLocK 1)
These parameters are used to specify the preprocessor options. The
abbreviation for PREPPARM is PP.

PREPNAME-=program-name
program-name is the name by which SQL /DS will know the access
module. The length of program-name is limited to eight characters. In
addition, program-name cannot contain the character #. Otherwise,
program-name follows the rules for formulating table and column
names (as described under “General Rules for Naming Data Objects”
on page 74. PREPNAME is a required parameter and can be
abbreviated PREP.

USERID=userid/password
userid identifies the creator of the access module to the SQL/DS data
base. The password, if specified, should agree with the one
established for this userid by an SQL/DS GRANT statement. This
information may be used in executing a CONNECT statement to gain
access to the SQL /DS data base which will determine if proper
authorization exists for the SQL /DS statements contained in the
program. The abbreviation for USERID is USER.

If the USERID option is not specified, then the VM logon userid will
be used as the creator of the access module to the SQL /DS data base.
The VM logon userid will be implicitly connected to the SQL/DS data
base. All the SQL/DS statements in the program will have their
authorization checked against the implicitly connected userid.

KEEP | REVOKE
These parameters are applicable if this program has previously been
preprocessed, and the creator has granted the RUN privilege on the
resulting access module to some other users. The KEEP parameter
causes these grants of the RUN privilege to remain in in effect when
the preprocessor produces the new access module. If you specify the
REVOKE parameter, or if the creator of the program is not entitled to
grant all the privileges embodied in the program, the preprocessor
removes all existing grants of the RUN privilege. KEEP and
REVOKE are optional; the default is KEEP. KEEP and REVOKE
have no abbreviations.

190 SQL/Data System Application Programming for VM/SP

CHECK | NOCHECK
When the NOCHECK parameter is specified, this causes the
preprocessor to execute normally, that is, to generate modified source
code and perform access module functions. If CHECK is specified,
this parameter causes the preprocessor to check all SQL statements for
validity and generate error messages if necessary. However, the
preprocessor does not generate an access module or modified source
code. CHECK and NOCHECK are optional parameters; the default
is NOCHECK. CHECK and NOCHECK have no abbreviations.

GRAPHIC | NOGRAPHIC (PL/I and COBOL preprocessors only)
GRAPHIC indicates that the preprocessor should scan for DBCS
constants in the source statements and comments, including SQL/DS
statements. GRAPHIC must be specified if DBCS data is used in the
host language or SQL statements. GRAPHIC and NOGRAPHIC are
optional parameters; NOGRAPHIC is the default. The abbreviation
for GRAPHIC is GR and NOGRAPHIC is NOGR.

PRINT | NOPRINT
When the NOPRINT parameter is specified, this causes the
preprocessor listing output to be suppressed except for the summary
messages which are normally printed at the end of the preprocessor
listing output. PRINT specifies that the preprocessor modified source
listing output, including the summary messages, should be produced.
PRINT and NOPRINT are optional parameters; PRINT is the default.
The abbreviation for PRINT is PR and NOPRINT is NOPR.

PUNCH | NOPUNCH
When the NOPUNCH parameter is specified, this causes the
preprocessor modified source output to be suppressed. PUNCH
specifies that the preprocessor modified source output should be
produced. PUNCH and NOPUNCH are optional parameters;
PUNCH is the default. The abbreviation for PUNCH is PU and
NOPUNCH is NOPU.

QUOTE | APOST (COBOL preprocessor only)
The QUOTE preprocessor parameter should be used whenever the
QUOTE parameter is used in the COBOL compiler.

QUOTE causes the preprocessor to use double quotes (') as constant
delimiters in the VALUE clauses of the declarations it generates. The
use of a single-quote (') or a double-quote (') in SQL statements is
not affected by this parameter. If you do not specify this parameter,
the COBOL preprocessor defaults to APOST and generates
apostrophes or single-quote (') delimiters for its internal source
declarations. The abbreviation for QUOTE is Q.

LINECOUNT(integer)
The LINECOUNT option allows you to specify how many lines per
page are to be printed by the preprocessor in the output listing. The
value, integer specifies the number of lines per page value. The valid
range for this value is 10 to 32767. If no value is specified, or if there
is an error in the specification of the LINECOUNT parameter, then

Preprocessing and Running the Program 191

192

the default LINECOUNT value of 60 is used. The abbreviation for
LINECOUNT is LC.

ISOLATION (RR | CS | USER)
The ISOLATION option allows you to specify the isolation level that
your program will run at. If RR (repeatable read) is specified,
SQL/DS will hold a lock on all data read by the program in the
current logical unit of work. If CS (cursor stability) is specified,
SQL/DS will only hold a lock on the row or page of data pointed to
by a cursor. If USER is specified, the application program will control
its isolation level. The default is RR. The abbreviation for
ISOLATION is ISOL. See ‘‘Selecting the Isolation Level” on
page 251 for guidelines on choosing the isolation level for your
program.

BLOCK | NOBLOCK
When the BLOCK parameter is specified, SQL/DS inserts and
retrieves rows in groups. This improves performance for programs
running in multiple user mode where many rows will be inserted or
retrieved. NOBLOCK tells SQL/DS not to group rows. The
abbreviation for BLOCK is BLK; for NOBLOCK it is NOBLK. The
default is NOBLOCK. BLOCK and NOBLOCK are optional
parameters. See “To Block or Not to Block?” on page 254 for
guidelines on deciding which programs to specify blocking for.

Assume, for example, you wanted to specify these preprocessor parameters:
prepname = SAMPLE], userid = USER1, password = PW, NOPRINT,
KEEP, and default values for the remaining options. The following
parameters would be used:

PREPPARM (PREP=SAMPLE1 ,USER=USER1/PW, NOPRINT, KEEP)

Now, if you wanted to have a linecount of 70 and REVOKE instead of
KEEP the command would look like this:

PREPPARM (PREP=SAMPLE1,USER=USER1/PW, NOPRINT, REVOKE,LC(70))

SYSIN
Two choices exist:

1. SYSIN(filename [filetype [filemode] 1)

This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the
preprocessor source input. The filetype specification will default to the
following;:

PLI -- “PLISQL ”

COBOL -- “COBSQL ”’

ASM -- “ASMSQL ”

FORTRAN -- “FORTSQL ”

SQL/Data System Application Programming for VM/SP

C

The filemode specification will default to A.

If this form of the SYSIN parameter is supplied, the following CMS
FILEDEF command is issued for the preprocessor source input file:

FILEDEF SYSIN DISK fn ft fm (RECFM FB LRECL 80 BLOCK 800

2. SYSIN(READER)

This specification of the SYSIN optional parameter identifies that the
preprocessor source input file is a virtual reader file. If
SYSIN(READER) is specified, the following CMS FILEDEF command
is issued for the preprocessor source input file:

FILEDEF SYSIN READER (RECFM F LRECL 80
The abbreviation for READER is: R, RE, REA, READ, or READE.
If the SYSIN information is not specified, then the user must issue a CMS

FILEDEF command for the preprocessor source input (ddname=SYSIN)
before the SQLPREP EXEC is issued. The abbreviation for SYSIN is IN.

SYSPRINT

Three choices exist:
1. SYSPRINT(filename [filetype [filemode]])

This optional parameter identifies the filename (fn) and optionally the
Siletype (ft) and filemode (fm) of the CMS file containing the
preprocessor source output listing. The filetype specification will default
to LISTPREP and the filemode specification will default to A.

If this form of the SYSPRINT parameter is supplied, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT DISK fn ft fm . . .
(RECFM FBA LRECL 121 BLOCK 1210
2. SYSPRINT(PRINTER)

This specification of the SYSPRINT optional parameter identifies that
the preprocessor source output listing file is directed to a virtual printer
file. If SYSPRINT(PRINTER) is specified, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

The abbreviation for PRINTER is: P, PR, PRI, PRIN, PRINT, or
PRINTE.

Preprocessing and Running the Program 193

3. SYSPRINT(TERMINAL)

This specification of the SYSPRINT optional parameter identifies that
the preprocessor source output listing file is directed to the console
terminal. If SYSPRINT(TERMINAL) is specified, the following CMS
FILEDEF command is issued for the preprocessor source output listing
file:

FILEDEF SYSPRINT TERM (RECFM FA LRECL 121

The abbreviation for TERMINAL is: T, TE, TER, TERM, TERMI,
TERMIN, or TERMINA.

If the SYSPRINT information is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor source
output listing file is assigned to the virtual printer via the CMS FILEDEF
command described above.

If the SYSPRINT parameter is not specified and the preprocessor source
input file was assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor source output listing file:

FILEDEF SYSPRINT DISK fn LISTPREP A . . .
(RECFM FBA LRECL 121 BLOCK 1210

where:

[n is the filename specification used for the preprocessor source input file
and filemode is defaulted to A.

If neither SYSIN nor SYSPRINT information is specified, then the user must
issue a CMS FILEDEF command for the preprocessor source output listing
file (ddname=SYSPRINT) before the SQLPREP EXEC is issued. The
abbreviation for SYSPRINT is PR.

SYSPUNCH
Two choices exist:

1. SYSPUNCH(filename [filetype [filemode]])

This optional parameter identifies the filename (fn) and optionally the
filetype (ft) and filemode (fm) of the CMS file containing the
preprocessor modified source output. The filetype specification will
default to a value based on the preprocessor invoked, as follows:

PLI -- “PLIOPT ”

COBOL -- “COBOL ~

ASM -- “ASSEMBLE”

FORTRAN -- “FORTRAN ”

The filemode specification will default to A.

194 SQL/Data System Application Programming for VM/SP

If this form of the SYSPUNCH parameter is supplied, the following
CMS FILEDEF command is issued for the preprocessor modified source
output file:

FILEDEF SYSPUNCH DISK fn ft fm . .
(RECFM FB LRECL 80 BLOCK 800

2. SYSPUNCH(PUNCH)

This specification of the SYSPUNCH optional parameter identifies that
the preprocessor modified source output file is to a virtual punch file. If
SYSPUNCH(PUNCH) is specified, the following CMS FILEDEF
command is issued for the preprocessor modified source output file:

FILEDEF SYSPUNCH PUNCH (RECFM F LRECL 80
The abbreviation for PUNCH is: P, PU, PUN, or PUNC.

If the SYSPUNCH information is not specified and the preprocessor source
input file was assigned to the virtual reader, then the preprocessor modified
source output file is assigned to the virtual punch via the CMS FILEDEF
command described above.

If the SYSPUNCH parameter is not specified and the preprocessor source
input file was assigned to a CMS file, then the following default CMS
FILEDEF command is issued for the preprocessor modified source output
file:

FILEDEF SYSPUNCH DISK fn ft A . . .
(RECFM FB LRECL 80 BLOCK 800

where:

Jn is the filename specification used for the preprocessor source input file
and filemode is defaulted to A. ftis the default filetype as determined by the
previously mentioned method.

If neither SYSIN nor SYSPUNCH information is specified, then the user
must issue a CMS FILEDEF command for the preprocessor modified source
output file (ddname=SYSPUNCH) before the SQLPREP EXEC is issued.
The abbreviation for SYSPUNCH is PU.

DBNAME(dbname)
This parameter indicates that the preprocessor being invoked is to execute in
SQL /DS single user mode. It also identifies the name of the SQL/DS data
base to be accessed by the SQL statements contained in the preprocessor
source input file.

If this parameter is specified, it will be used as the DBNAME parameter for
the SQLSTART EXEC that is executed for you to start up SQL/DS in
single user mode. The SQL /DS system initialization parameters
SYSMODE=S, and PROGNAME=progname (where progname varies
according to which preprocessor is being invoked) will also be supplied in the
PARM parameter of the SQLSTART EXEC. The abbreviation for
DBNAME is: D, DB, DBN, DBNA, or DBNAM.

Preprocessing and Running the Program 195

DCSSID(dcssid)
This applies only when running a preprocessor in SQL/DS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. This parameter identifies the method in which all SQL/DS System
modules will be loaded for execution.

If this parameter is specified, it will be used as the DCSSID parameter for
the SQLSTART EXEC. If this parameter is omitted, then no DCSSID
parameter will be passed to the SQLSTART EXEC. The abbreviation for
DCSSID is ID.

Refer to the SQL/Data System Planning and Administration for VM/SP
manual for a further description of the SQL/DS System DCSSID parameter.

LOGMODE(Y | A [N)
This applies only when running a preprocessor in SQL/DS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. It identifies the value to be used for the SQL /DS system
initialization LOGMODE parameter when SQL/DS is started in single user
mode.

If this parameter is omitted and the DBNAME parameter is specified, the
LOGMODE parameter will not be supplied as an SQL /DS system
initialization parameter in the SQLSTART EXEC. The abbreviation for
LOGMODE is LOG.

Refer to the SQL/Data System Planning and Administration for VM /SP
manual for a further description of the SQL/DS System LOGMODE
parameter and the log mode considerations.

PARMID(filename)
This applies only when running a preprocessor in SQL/DS single user mode.
The parameter can only be specified if the DBNAME parameter is also
specified. This parameter identifies filename of a CMS file that contains
SQL/DS initialization parameters.

If this parameter is omitted and the DBNAME parameter is used, the
PARMID parameter will not be passed as an SQL/DS initialization
parameter to the SQLSTART EXEC. PARMID has no abbreviation.

Refer to the SQL/Data System Planning and Administration for VM /SP
manual for a further description of the SQL/DS System PARMID
parameter.

Compiling the Program

Once you have successfully preprocessed your program, you can use the standard

compilers to create an object code program. Use the modified source output from
the SQL/DS preprocessor as input to the compiler. Except as noted below, there

are no extra compiler options or procedures. necessary for compiling preprocessed
SQL/DS application programs.

196 SQL/Data System Application Programming for VM/SP

If your PL/1 application program contains DBCS data, you must specify the
GRAPHIC option for the compiler. If your COBOL application program contains
DBCS data, the output of the SQL /DS preprocessor must be processed by the
COBOL Kanji Processing function of OS/VS Ultility Program -- Kanji, Program
Product number 5799-BBA, RPQ reference number 7F0095.

If the QUOTE option is used for the SQL/DS COBOL preprocessor, it should also
be used for the COBOL compiler.

Link-Editing and Loading the Program

After compilation, programs must be loaded before they can be executed. When
loading any SQL /DS application, you must link-edit extra SQL/DS TEXT file(s).
The resource manager stub is one TEXT file that must be link-edited with all
SQL/DS application programs. The application program communicates with
SQL/DS through the resource manager stub.

The resource manager stub routine has a filename of ARIRVSTC. This stub
routine is invoked, however, by its CSECT name ARIPRDI. To link-edit this stub
routine successfully with the user program, you must INCLUDE ARIVRSTC or
place the TEXT files in a CMS TXTLIB, which will make the entry point
ARIPRDI known to the link-edit process.

To INCLUDE a TEXT file, place the included TEXT filename(s) after the user’s
program name in the CMS LOAD command. Note that the CMS LOAD
command will automatically load the needed TEXT files if the user machine has
READ access to the production minidisk. That is, the CMS LOAD command
automatically searches all accessed CMS minidisks in ascending order (A through
Z) for TEXT files that it needs. For additional information about CMS LOAD, see
the VM /SP CMS Command and Macro Reference manual.

A way to avoid specifying ARIRVSTC in the CMS LOAD command is to put
ARIRVSTC and all your application TEXT files into a TXTLIB. To create a
TXTLIB, issue the following command:

TXTLIB GEN my-1lib ARIRVSTC program-name

To add new programs to a TXTLIB, issue the following command:

TXTLIB ADD my-lib program-name2 program-name?3

Once a program is in a TXTLIB, issue the following commands to perform the
link-edit:

GLOBAL TXTLIB my-1lib
LOAD program-name

For more information about TXTLIB, see the VM/SP CMS Command and Macro
Reference manual.

« For all programs written in FORTRAN, you must also link-edit the TEXT file
ARIPEIFA.

Preprocessing and Running the Program 197

« For all programs written in COBOL, you must also link-edit the TEXT file
ARIPADR.

« For all programs that include the DBS utility, you must also link-edit the TEXT
files ARISYSDC, ARIDSQLA, and ARIDDFP.

All of these TEXT files are on the SQL /DS production minidisk (Q-disk). After
loading the SQL /DS application, you should create a module by issuing the CMS
GENMOD command. This module can be used in multiple user mode, but is not
required; it is required, however, to run in single user mode. For example, if you
wanted to create a module for a SQL/DS Assembler application program called
SAMPLE]1 that has been compiled and added to a TXTLIB called LIBRARY1,
you would issue the following commands:

GLOBAL TXTLIB LIBRARY1
LOAD SAMPLE1
GENMOD SAMPLE1

After these commands have been issued, a CMS file with a filename of SAMPLE1
and a filetype of MODULE is created.

Running your Program

How you execute SQL /DS applications varies according to the mode in which
SQL /DS is running.

Multiple User Mode

When SQL /DS has been started in multiple user mode, the user machine should
have IPLed CMS and been initialized (via the SQLINIT EXEC).

File definitions may be required if the program has any input or output files. The
CMS FILEDEF command is described in the VM /SP CMS Command and Macro
Reference manual.

If a module was created, you can execute the program by specifying the name of
the module followed by any user program parameters. For example, the following
illustrates starting an Assembler program named SAMPLEI! in multiple user mode.
The user parameters are passed directly to the program:

SAMPLE1 parm1 parm2

If a module was not created, you can execute the program by specifying the CMS
LOAD command, as described in the previous section, then specify the CMS
START command. For example, we can execute the previous program named
SAMPLEI1 with the following commands:

198 SQL/Data System Application Programming for VM/SP

Single User Mode

LOAD SAMPLE1 ARIRVSTC
START SAMPLE1 parm] parm2

Single user mode application programs are programs that run in the same machine
as the SQL/DS code and that are under the control of SQL/DS. (In this case, the
user machine and the data base machine are actually the same machine.)

Single user mode programs are invoked by starting SQL/DS via the SQLSTART
EXEC, provided by IBM. (Before invoking SQL/DS, you must issue IPL. CMS.)
You must specify both the mode (SYSMODE=S) and your program name
(PROGNAME=name) when you issue the SQLSTART EXEC.

When SQLSTART is invoked, SQL/DS loads the program (identified by the
PROGNAME parameter) and passes control to it once SQL /DS is initialized. For
single user mode, only the module needs to be available.

The SQL/Data System Operation for VM /SP manual lists all the initialization
parameters you can specify when you start SQL/DS in single user mode.
However, a system programmer might determine what the best initialization
parameters for your system are, and pass these on to you.

Following is an example of the SQLSTART EXEC for invoking programs in single
user mode with no user parameters:

SQLSTART DB(SQLDBA) PARM(SYSMODE=S, LOGMODE=A, PROGNAME=SAMPLE1)

If your program or SQL/DS ends abnormally, you may receive a ‘“minidump”
(depending on what initialization parameters were specified). ‘“Mini-dumps” are
described in the SQL/Data System Planning and Administration for VM/SP
manual.

Specifying User Parameters

When starting SQL /DS in single user mode, you can also specify parameters to be
passed to your application program. You should use the PARM keyword of the
SQLSTART EXEC for parameter input. The SQLSTART EXEC purges the CMS
program and console stacks. Therefore, any program run in single user mode
cannot rely on console or program stack input.

You must place a slash (/) between the SQL /DS parameters and the application
program parameters, as shown below:

Preprocessing and Running the Program 199

SQLSTART DB(SQLDBA) PARM(SYSMODE=S, LOGMODE=A, PROGNAME=SAMPLE1/parmi, parm2)

Note: CMS reads only the first 130 characters of the command line. If you must
specify many SQL /DS initialization parameters and user parameters, they will not
fit on the command line. Therefore, you must use a CMS file for some of the
parameters. Remember that SQL /DS does not permit you to specify user
parameters in a CMS file. Thus, you should specify the SQL/DS initialization
parameters in the CMS file, and the user parameters on the command line.

Further information and examples of installing VM/SP applications can be found
in the SQL/Data System Installation for VM /SP manual.

200 SQL/Data System Application Programming for VM/SP

Testing and Debugging Concerns

Contents
Error Handling0 i, 202
WHENEVER e e e 206
Monitoring Execution Performance 209

Testing and Debugging Concerns 201

Error Handling

As mentioned previously, SQL/DS returns a result code in the SQLCA after
executing almost every SQL statement. The only statements that do not return
SQLCODE:s are SQL declarative statements. (Declarative statements aren’t
executed; therefore, no SQLCODE can be returned.) BEGIN and END
DECLARE SECTION, INCLUDE SQLCA, INCLUDE SQLDA, DECLARE
CURSOR, and WHENEVER statements are all declarative. INCLUDE SQLDA is
described under ‘‘Dynamically Defined Statements” on page 147; WHENEVER is
discussed after this section. Never test for an SQLCODE after a declarative
statement.

Figure 24 is a representation of the SQLCA structure with host-language
independent data type descriptions. (Refer to the appendixes for the SQLCA data
types of a particular programming language.)

SQLCA -- a structure composed of:
SQLCAID -- character string of length 8
SQLCABC -- 31-bit binary integer
SQLCODE -- 31-bit binary integer
SQLERRM -- varying character string of maximum length 70
SQLERRP -- character string of length 8
SQLERRD -- an array composed of:
SQLERRD (1) -- 31-bit binary integer
SQLERRD(2) -- 31-bit binary integer
SQLERRD (3) -- 31-bit binary integer
SQLERRD (4) -- 4-byte floating point number
SQLERRD (5) -- 31-bit binary integer
SQLERRD (6) -- 31-bit binary integer
SQLWARN -- a sub-structure composed of:
SQLWARNO -- single character
SQLWARN1 -- single character
SQLWARN2 -- single character
SQLWARN3 -- single character
SQLWARN4 -- single character
SQLWARNS -- single character
SQLWARN6 -- single character
SQLWARN7 -- single character
SQLWARN8 -- single character
SQLWARNY9 -- single character
SQLWARNA =-- single character
SQLEXT ~-- character string of length 5
Note: In FORTRAN, the SQLCA structure is different. See Figure 48 on page 464 for additional
information.

Figure 24. SQLCA Structure (in Pseudo Code)

The meanings of the various fields in the SQLCA are as follows:

202 SQL/Data System Application Programming for VM/SP

SQLCAID

SQLCABC

SQLCODE

SQLERRM

SQLERRP

SQLERRD

SQL/DS sets this 8-byte field to ‘SQLCA ’ when your program
first uses the structure. The SQLCAID field is an eye-catcher for
programmers when a dump is used for problem determination.

Length of SQLCA, set by SQL/DS when your program first uses
the structure.)

Summarizes the result of executing the statement. In general, zero
denotes successful execution. Codes greater than zero denote
normal conditions experienced while executing the statement, such
as an end of file or some specific warning conditions. Negative
codes represent various abnormal conditions, which may have been
caused by either an error in your program or a system failure. You
should not continue if a severe error occurs. (These severe errors
are documented in the SQL/Data System Messages and Codes for
VM /SP manual.)

May contain one or more character strings, separated by a X‘FF’ (a
hexadecimal character of all ‘1’ bits). SQL/DS uses these character
strings internally when generating messages for its own functions.
(For example, SQL /DS uses SQLERRM when generating SQL
messages that result from executing the preprocessor or the Data
Base Services utility.) Note that applications receive SQLCODEs,
not messages.

The message text associated with a particular SQLCODE can be
found in the SQL/Data System Messages and Codes for VM /SP
manual. These message texts, however, often have variables in
them (for example, &1, &2, and &3). For these cases, the
SQLERRM tokens go in the SQLCODE descriptive text. Thus, in
addition to the SQLCODE, you should also print the contents of
SQLERRM if you are handling SQL errors in a common routine.

The first two bytes of SQLERRM contain the total length of the
string (remember that SQLERRM is varying-length).

If the SQLCODE is negative, SQLERRP contains the name of the
SQL/DS routine that discovered the error. Together with
SQLERRD, this information may be helpful in diagnosing failures.

A collection of six variables that describe the current internal state
of SQL/DS. This information is helpful in diagnosing SQL /DS
failures or processing status. Only variables 1-4 are used by
SQL/DS; the last two are reserved:

1. Relational Data System (RDS) or Resource Manager return
code. (RDS and the Resource Manager are internal
components of SQL/DS.)

2. Data Base Storage System (DBSS) or Resource Manager return

code. (DBSS and the Resource Manager are internal
components of SQL/DS.)

Testing and Debugging Concerns 203

3. Number of rows processed, where applicable. J

4. SQL/DS cost estimate: A relative value incorporating I/0
requirements with a weighted factor of processor requirements
for a query. When preparing a dynamically defined SQL
statement, you can use this field to determine expected relative
performance of the prepared SQL statement.

SQLWARN Characters that warn of various conditions encountered during the
processing of your statement. Alternatively, specific warnings may
be indicated by positive values in the SQLCA field, SQLCODE.
For example, a warning indicator is set when SQL/DS ignores null
values in computing an average. When SQL/DS encounters a
particular condition, it sets the corresponding warning character to
‘W’; otherwise it sets the character to blank. One or more warning
characters may be set to ‘W’ regardless of the code returned in
SQLCODE. The meanings of the warning characters are:

SQLWARNO Set to ‘W’ if one or more other warning characters is
equal to ‘W’. Provides a quick test for the existence
of any warning. Set to ‘S’ if SQLWARNEG is set to
‘S).

SQLWARNI1 One or more of the requested data items was
truncated because of insufficient space in the host
variable you provided for output. This flag is set
only for character data items; SQL/DS truncates
certain numeric data items without setting a warning
flag or returning a negative SQLCODE. (See “Data
Conversion” on page 76 for more information.)
The data items that were truncated can be found by
examining the null indicator variables of the data
items returned. A positive value in the null indicator
denotes the actual length of the variable before
truncation.

SQLWARN2 Null values were ignored in the computation of a
built-in function (AVG, SUM, MAX, or MIN). This
flag is set only during preprocessing, never at
run-time.

SQLWARN3 The number of items in the SELECT list is not equal
to the number of target variables in the INTO
clause. The number of items returned is the
minimum of these two numbers.

SQLWARN4 An UPDATE or DELETE statement has been used
without a WHERE clause. You should verify that
the update or deletion was intended unconditionally
on the entire table.

This flag is set only during preprocessing, never at J
run-time.

204 SQL/Data System Application Programming for VM/SP

(\

SQLWARNS

SQLWARNG6

SQLWARN?7

SQLWARNS

SQLWARNY9

A WHERE clause, represented internally by one or
more search arguments, associated with a SELECT
statement has exceeded an SQL /DS internal
limitation. This means that a performance
degradation will result because SQL/DS will not
internally convert eligible predicates to search
arguments. SQL /DS may still choose to use indexes
for eligible predicates, but if not, degradation may
further be increased since a DBSPACE scan would
be used to retrieve query data.

Decreasing the number of predicates, such as by
removing unnecessary conditions which may exist in
the WHERE clause of the SELECT statement, may
alleviate this condition.

Set to ‘W’ if the last SQL statement executed caused
SQL/DS to terminate a logical unit of work. This
flag is not set after a ROLLBACK WORK
statement, but is set by SQL/DS when the rollback
of the logical unit of work is implicit. For example,
SQLWARNG is set when a logical unit of work is
backed out due to a deadlock. (Deadlocks are
explained under “SQL/DS Automatic Locking
Mechanism” on page 232.)

Set to ‘S’ when SQL /DS issues an SQLCODE which
is considered “severe.”’ The list of severe

SQLCODE:s includes:

-805 -932 -938
-806 -933 -940
-807 -934 -941
-902 -935

-931 -937

Severe errors are those that place SQL/DS in an
unusable state. Therefore, any further attempts by
the application to access SQL /DS will cause the
application to be abnormally terminated.

Reserved for SQL/DS use.

A statement has been disqualified for blocking for
reasons other than storage. For example,
SQLWARNS is set if long fields or a FOR UPDATE
clause were used in a statement. (See ‘““To Block or
Not to Block?”’ on page 254 for more information
on blocking.)

Blocking was cancelled for a cursor because of
insufficient storage in the user virtual machine.

Testing and Debugging Concerns 205

SQLWARNA Blocking was cancelled for a cursor because a
blocking factor of at least two rows could not be
maintained.

SQLEXT Reserved for SQL/DS use.

Because there is only one return code structure in each program, you should copy
out of the structure any information that you wish to save before the next SQL
statement is executed. Of particular note are the SQLCODE and the warning
indicators (SQLWARN). An SQL statement (called WHENEVER) allows you to
detect abnormal conditions and take appropriate action.

WHENEVER

Formats:
WHENEVER SQLERROR {STOP | CONTINUE | {GO TO|GOTO} statement-label}
WHENEVER SQLWARNING {STOP | CONTINUE | {GO TOIGOTO} statement-label}

WHENEVER NOT FOUND {CONTINUE | {GO TO|GOTO} statement-label}

Note: The STOP condition is not valid for FORTRAN applications.

Examples:

WHENEVER SQLERROR GOTO ERRORX
WHENEVER SQLWARNING CONTINUE
WHENEVER NOT FOUND CONTINUE

Authorization:

Anyone connected to SQL /DS can issue this statement.

The WHENEVER statement lets you specify an action to be taken depending on
what SQL /DS returns in the SQLCA. The WHENEVER statement is declarative;
it is not executed at run-time and returns no SQLCODE.

The keywords SQLERROR, SQLWARNING, and NOT FOUND in the statement
syntax above identify some SQLCA condition. The SQLERROR condition exists
when SQL/DS has set SQLCODE to a negative value. The SQLWARNING
condition exists when SQL/DS sets SQLWARNO to ‘W’. The NOT FOUND
condition exists when SQLCODE is set to 100.

The braced keywords define the action to be taken whenever the specified SQLCA
condition occurs:

206 SQL/Data System Application Programming for VM/SP

STOP causes program termination. If a logical unit of work is in
progress, it is rolled back. Note that you can’t specify STOP
for WHENEVER NOT FOUND or in FORTRAN
applications.

CONTINUE causes the next sequential program instruction to be executed.
(The SQLCA condition is ignored.) If a fatal error is
encountered, however, the program should go no further.
Fatal errors are documented in the SQL/Data System
Messages and Codes for VM /SP manual.

GO TO (or GOTO) causes control to pass to the statement at the specified label.
The statement label cannot exceed 18 characters unless the
host language has additional limitations.

If you don’t write a WHENEVER statement, SQL /DS acts as if you had coded the
following statements in your program:

WHENEVER SQLERROR CONTINUE
WHENEVER SQLWARNING CONTINUE
WHENEVER NOT FOUND CONTINUE

The scope of a WHENEVER statement is determined by its position in the source
program listing, not by its placement in the logic flow. (This is because
WHENEVER is a declarative statement.) For example:

DO WHILE (X > Y)
EXEC SQL CREATE INDEX I1 ON SUPPLIERS (NAME)
[]
(host language code)
[]
[]
EXEC SQL DELETE FROM QUOTATIONS
WHERE PRICE > 2000
EXEC SQL WHENEVER SQLERROR STOP
[]
(host language code)
[]
[]
EXEC SQL SELECT SUPPNO, NAME FROM SUPPLIERS ...
[]
(host language code)
[]
[]
EXEC SQL WHENEVER SQLERROR CONTINUE
END-DO
EXEC SQL DROP INDEX I1

In the pseudo code program fragment above, the scope of the first WHENEVER is
only the SELECT statement. The second WHENEVER applies to the DROP
INDEX statement (and to all SQL statements that follow it -- until another
WHENEVER is encountered). The CREATE INDEX and DELETE statements
are not covered by a WHENEVER (there is no preceding WHENEVER);
therefore, the default SQLERROR CONTINUE action applies. Note that the
scope of the WHENEVER is independent of the execution sequence of statements.

You can test the elements of the SQLCA for general or specific warning or error
conditions in addition to or instead of using the WHENEVER statement. To do

Testing and Debugging Concerns 207

208

this, use a WHENEVER statement with a CONTINUE or GOTO somewhere in
the source program before the SQL statements for which you want to directly
examine the SQLCA. For example, Figure 25 shows pseudo code for a typical
error handling routine:

EXEC SQL WHENEVER SQLERROR GOTO LABX

LABX SAVE SQLCODE
EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL ROLLBACK WORK RELEASE
DISPLAY ('PROGRAM TERMINATED. SQLCODE IS:')
DISPLAY (SAVE)
STOP

Figure 25. Pseudo-Code Error Handling Routine

On an SQLERROR condition, control passes to LABX. The SQLCODE is
immediately saved because SQLCODE is changed when the ROLLBACK WORK
is executed. (WHENEVER statements never return an SQLCODE.) The
WHENEVER SQLERROR CONTINUE statement prevents a program loop
resulting from ROLLBACK WORK producing an error. Once the logical unit of
work is rolled back, informational messages are displayed and the program
terminates.

As noted earlier, SQL declarative statements never return an SQLCODE. You
should never test for an SQLCODE after these statements. You should, however,
examine the SQLCA for all data manipulation statements. INSERT and UPDATE
statements, in particular, can fail after processing some rows of a table. In that
case, you would usually issue a ROLLBACK WORK before you terminate your
program so the data base isn’t left in a partially updated state. If you omit the
WHERE clause in a DELETE statement, SQL /DS sets SQLWARN4 on so that
you have a chance to verify that all the rows of the table are to be deleted.

Another reason an application might want to process the SQLERROR condition is
for graceful cleanup and termination. An example of this is the SQL/DS ISGL
transaction. Rather than terminating the ISQL session, the user is given an error
message and allowed to proceed. In fact, in some cases, the terminal user is given
the opportunity to indicate whether backout is necessary or not.

Refer to the SQL/Data System Messages and Codes for VM /SP manual for all
SQLCODE descriptions.

SQL/Data System Application Programming for VM/SP

J

k' Monitoring Execution Performance

You can use an EXPLAIN command to retrieve information about the structure
and execution performance of SQL commands. The EXPLAIN command can be
coded into COBOL, PL/I, Assembler, and FORTRAN programs. (It can also be
issued via the DBS utility or ISQL.)

The EXPLAIN command accepts as an argument another SQL command. When
executed, the EXPLAIN command analyzes the performance and structure of an
SQL command and places the information into one or more SQL /DS explanation
tables. This information can be used to:

Analyze request loads

Estimate the size of responses

Separate queries into their subquery structures
Obtain costs for statements

Assist in data base design

Determine when a program needs to be preprocessed again.

The format for the EXPLAIN command is as follows:

EXPLAIN explain-spec

[SET QUERYNO = small-integer-value] FOR sqgl-command

explain-spec

is the name of the explanation table(s) into which information is to be
placed. explain-spec may include one or more of the following options,
separated by commas:

REFERENCE for information contained in the REFERENCE__ TABLE

STRUCTURE for information contained in the STRUCTURE__ TABLE

COST for information contained in the COST__ TABLE
PLAN for information contained in the PLAN__TABLE
ALL for information contained in all of the above tables.

small-integer-value

('\

is an integer constant that can fit into a SMALLINT field. The SET
QUERYNO clause allows you to place an integer value into the QUERYNO
fields of the rows in the explanation tables. Assigning a different number on
each EXPLAIN will make it easier to identify information collected.

Testing and Debugging Concerns 209

sql-command J
is the SQL command to be analyzed. You can analyze UPDATE, DELETE,
and INSERT commands as well as SELECT commands. (SELECT
commands are considered the primary candidates for EXPLAIN analysis).
sql-command is not a quoted string and must not be put in a host variable.

The length of the SQL statement is limited to about 8000 characters.

To use the EXPLAIN command, you must own an explanation table for each of
the specified explain-spec options. For example, if you use the COST and
STRUCTURE options, you must own a COST__ TABLE and a
STRUCTURE__TABLE. If you don’t own the needed tables, EXPLAIN has no
effect, and returns an error code.

The result tables built by the EXPLAIN command are created during preprocessing
of the containing program. After preprocessing, execution of an EXPLAIN
command has no meaning and the results are unpredictable. Nevertheless, you can
PREPARE/EXECUTE or EXECUTE IMMEDIATE an EXPLAIN command.

For additional information on using the EXPLAIN command, refer to the
SQL/Data System Planning and Administration for VM /SP manual.

210 SQL/Data System Application Programming for VM/SP

Putting the Program into Production

Contents

Authorizationt e et e e 213
When Does a Creator Get the RUN Privilege? 213
When Does a Creator Get the GRANT Option? 214
How SQL/DS Uses the Catalogs for Program Authorization 215
How SQL/DS Implements Program Authorization 216
Decision Tables Used to Determine Program Authorization 216
ACQUIREDBSPACE it e e e e e e 217
ALTER DBSPACE it e et 217
ALTER TABLE i e e e i e e eens 218
COMMENT ... i e e e e e et e e 218
CREATE INDEXttt et 219
CREATE TABLE ittt et 219
DELETE ... e e e 220
INSERT . e e e e 221
SELECT i e e 222
UPDATE . . e e e e 224
LOCK DBSPACE ... it e e e e 225
LOCKTABLE i e e e e 226

Data Control e e 226
Acquiring a DBSPACE e e 227
Dropping a DBSPACE e 230
Changing DBSPACE CharacteristicsScouietiiirnennn. 231
SQL/DS Automatic Locking Mechanism 232
Ending the Logical Unitof Work 232
COMMIT WORK ... i e e et e e 233
ROLLBACK WORK ... it e e e 234
Using the LOCK Statement to Override Automatic Locking 235
Useof LongFields it 236
Updating Internal Statistics 237
Data Definition i e e 237
Creatinga Table ittt 238
Adding a ColumntoaTable iiiieeieeno.. 241
DroppingaTable0 it 241
CreatinganIndex ittt nnnnns 242
DroppinganIndex e 245
Creating a SYNONYMttt e e e e eiineare e e 245
Dropping a SYNONYMttt e e e 246
Putting Comments into SQL/DS Catalogs 247

Putting the Program into Production 211

Putting Labels on Tablesor Columnsc..uuvunn... 249

Performance Considerations it irnnnnn 250
Selecting the Isolation Level e, 251
To Blockor Notto Block? it 254

Including External Source Files i, 255

Including Secondary Input it e e 255

212 SOQL/Data System Application Programming for VM/SP

&v Authorization

As you know, all SQL /DS programs must be preprocessed before they are
compiled or assembled. As a result of a preprocessor run, SQL/DS creates an
access module. SQL/DS uses the access module to satisfy data base requests at
run time. When a program is preprocessed, SQL/DS also determines who has the
capability to run the access module. SQL/DS bases this determination on the type
of access requested. That is, SQL/DS considers the statement used, the ownership
of the accessed objects, and other factors when determining who can run an access
module, and who can’t. This section describes this determination process.

When Does a Creator Get the RUN Privilege?

At the completion of the preprocessor run, SQL /DS tells the creator whether or
not an access module was generated. SQL/DS generates an access module and
gives the creator the RUN privilege for it if:

1. All referenced objects exist when the program is preprocessed; and,

2. The creator has explicit authorization for all SQL statements used in the access
module.

There are other cases where the RUN privilege is possible. In these cases,
however, successful execution depends on the existence of the objects and the
authority of the creator at run time. This is because SQL/DS marks certain
statements for re-checking at run time if the above requirements for the RUN
privilege are not met when the program is preprocessed. Here are a few specific
examples of operations that allow the RUN privilege (with a subsequent re-check):

« A non-existing table (at preprocess time) is referenced, and an explicit qualifier
is used to indicate the creator of the table. The creator specified is not the
creator of the program.

e A creator with DBA authority creates an index on a non-existing (at
preprocess time) table.

o A creator with DBA authority codes INSERT, DELETE, UPDATE, or
SELECT statements that refer to a non-existing (at preprocess time) table.

e A creator with DBA authority refers to a table in a WHERE clause. The
creator, however, lacks explicit authority.

How SQL/DS determines whether to grant the RUN privilege in such cases is not

covered by a single formula. Rather, decision tables are used for each SQL
statement. The decision tables are presented in a later section.

Putting the Program into Production 213

When Does a Creator Get the GRANT Option?
In addition to the RUN privilege, SQL/DS may also give a creator the GRANT
option. The GRANT option is also a privilege of sorts. The GRANT option allows
the creator to grant the RUN privilege of the access module to other users. In
following discussions, the RUN privilege with the GRANT option is called the
GRANT RUN privilege.

As with RUN authority, SQL /DS uses decision tables to determine when a creator
receives the GRANT RUN privilege. These decision tables are in a later section.

Following are some of the circumstances that allow a creator to gain the GRANT
RUN privilege:

+ SQL statements in the program require RESOURCE authority, and the creator
has RESOURCE authority.

« All objects that are referred to in the program exist when the program is
preprocessed.

« The creator has the necessary authority (with the GRANT option) to access
any referenced object that the creator does not own.

o The preprocessor run did not result in any error diagnostics.

« No statements required DBA authority. The following are examples of
operations that require DBA authority:

— Acquiring a PUBLIC DBSPACE
— Creating a table in another user’s DBSPACE or in a SYSTEM DBSPACE
— Acquiring a DBSPACE for another user

— Altering another user’s table when the creator doesn’t have explicit
ALTER authority on the table

— Locking another user’s DBSPACE
— Commenting on another user’s table
— Dropping another user’s object

— Locking another user’s table

— Altering another user’s DBSPACE

— Creating an index on another user’s table when the creator doesn’t have
explicit INDEX authority on that table

— Creating a table for another user

214 SQL/Data System Application Programming for VM/SP

— Inserting, deleting, or updating another user’s table when the creator
doesn’t have the explicit authority to do so.

Note: The following statements also require DBA authority. These statements,
however, do not affect the RUN privilege, because they are not checked until
execution time:

« ALTER DBSPACE when the creator qualifier is not given
« LOCK DBSPACE when the creator qualifier is not given
« DROP DBSPACE when the creator qualifier is not given

« CREATE TABLE in someone else’s DBSPACE or in a SYSTEM DBSPACE
when the DBSPACE creator qualifier is not given.

How SQL/DS Uses the Catalogs for Program Authorization

SQL/DS records the current RUN and GRANT RUN privileges held by all users in
the SYSPROGAUTH SQL/DS catalog. The entries in the catalog identify:

« The grantor
o The grantee
e The access module that is the subject of the RUN privilege

o A marker indicating that the grantee holds either RUN (‘Y’) or GRANT RUN
(‘G’) authority.

The entries are added to the catalog when a preprocessor run completes. The
entries made depend, of course, on whether the program satisfies the various
conditions described in the preceding sections. SQL/DS also makes entries in the
SYSPROGAUTH catalog when a user grants the RUN privilege to another user.

SQL/DS also updates the SYSUSERAUTH, SYSCOLAUTH, and SYSTABAUTH
catalogs. In these catalogs, SQL/DS records the program’s dependency on some
authorization. For example, when a program requires RESOURCE authority to
execute successfully, SQL/DS makes an entry in SYSUSERAUTH to reflect that
dependency. The catalog entries help SQL /DS keep track of which access modules
are valid, and which are invalid.

It should be noted that SYSTEM is the owner of all catalog tables; you must
qualify all catalog tables with that name, unless you have a synonym defined. All
SQL/DS catalogs are described in the SQL/Data System Planning and
Administration for VM/SP manual.

Putting the Program into Production 215

How SQL/DS Implements Program Authorization J

As noted earlier, SQL/DS uses decision tables to determine whether the creator is
authorized to execute a given statement. At preprocess time, SQL/DS evaluates
each statement and assigns it an authorization “‘score.” At the end of the
preprocessor run, SQL/DS picks the lowest “score” of all the statements.

SQL /DS uses the low score as the program’s authorization. There are three
possible scores for each statement:

‘G’ means that the creator has the necessary authorization for this
statement such that the creator can receive the GRANT RUN
privilege.

Y’ means that the creator has the necessary authorization for this

statement such that the creator can receive the RUN privilege, but not
the GRANT option.

‘D means that the creator must have DBA authority to execute the
program containing this statement. No entry is made in the
authorization catalogs.

‘G’ is the highest score, followed by ‘Y", followed by ‘D’. For example, suppose a
program contains three statements. On two of the statements, the creator receives
a ‘G’, but on the third statement, the creator receives a ‘Y’. In this case, SQL/DS
assigns the program a ‘Y’ (the lowest score). The ‘Y’ means that the creator can
run the program, but cannot grant the RUN privilege on the program to another

user. J

‘G’, 'Y’, and ‘D’ are used in the following decision tables. In addition, “N/A” is
used. “N/A" siands for “Not Applicable.”

Some entries in the decision tables indicate a letter value, but also indicate that a
negative SQLCODE will be returned. In these cases, the statement still receives
the letter “score,” but the negative SQLCODE means that SQL/DS will re-check
the statement at execution time.

Note: -204 SQLCODE results in an ARIS87I message during a preprocessor run.

Decision Tables Used to Determine Program Authorization
This section contains the decision tables that SQL/DS uses to determine whether
to grant the RUN privilege. A decision table is presented for each applicable SQL

statement.

When reading the following charts, remember that the creator (or author) is the
user who preprocessed the program.

216 SQL/Data System Application Programming for VM/SP

.

ACQUIRE DBSPACE

ALTER DBSPACE

DBSPACE Owner

1 2 3
Authority
of PRIVATE
Creator >
Owner is Owner is not
v PUBLIC Creator Creator
A DBA D G D
B RESOURCE G and G G and
-551 SQLCODE -551 SQLCODE
C None of the G and G and G and
Above -551 SQLCODE | =552 SQLCODE | =551 SQLCODE

For cases A2 and B2, SQL/DS makes an entry in the SYSUSERAUTH catalog

with RESOURCE set to ‘Y’. The entry indicates the program’s dependency.

DBSPACE

Owner 1 2 3
Authority

of L——-> No Owner Creator Creator is
Creator: Specified is Owner | not Owner
A | DBA G G D
B Non-DBA G G G and =551
SQLCODE

Putting the Program into Production

217

ALTER TABLE

Owner of 1 2 3 4
Table
Owner is Owner is
> NOT the the
Authority creator of creator of | Table
of this this does not
Creator: SYSTEM program program exist
A | DBA and no D D N/A D
ALTER authority
B | ALTER authority | N/A Y N/A N/A
C | ALTER authority | N/A G G N/A
with GRANT
option.
D | No DBA and G and G and N/A G and
no ALTER -552 =551 =551
authority SQLCODE | SQLCODE SQLCODE

For cases B2, C2, and C3, SQL/DS makes entries in the SYSTABAUTH catalog
with the ALTERAUTH columns set to 'Y’. The entries represent this program’s
dependency on ALTER authority.

COMMENT

0b ject

Owner 1 2
Authority L__

of > Creator is Creator is
Creator: not Owner Owner
A DBA D G
B Non-DBA G and =551 G
SQLCODE

218 SQL/Data System Application Programming for VM/SP

CREATE INDEX

Table on which

1

3 4

Table Exists

Table Not Created

index is based >
[: Creator Creator Creator Creator
Authority > is is not is is not
of Creator: Owner Owner Owner Owner
A | DBA, no INDEX N/A D G and Y and
authority -204 =204
SQLCODE SQLCODE
B | Non=DBA, INDEX author- G G N/A N/A
ity with GRANT option
C Non-DBA, INDEX N/A Y N/A N/A
authority
D Non-DBA, no INDEX N/A G and G and Y and
authority =551 =204 =204
SQLCODE SQLCODE SQLCODE

For cases B1, B2, and B3, SQL/DS makes an entry in the SYSTABAUTH catalog
with the INDEXAUTH column set to “Y’.

Note that it is possible for an owner of a table to create an index on that table in
the name of another user. This is true even if the table owner does not have DBA

authority.
CREATE TABLE
Owner of
TABLE 1 2 3
Authority L—————> Creator is Creator is Creator is
of Creator: SYSTEM Owner not Owner
A | DBA -550 G D
SQLCODE
B Non-DBA =550 G G and =551
SQLCODE SQLCODE

In cases Al and B1 SQL/DS no access module is created.

Putting the Program into Production

219

DELETE

There are two decision tables that apply to DELETE:

Table from Which DELETE Is Made

Table to
which DELETE 1 2 3 4 5 6
is applied
Table not
> | Owner is System Table Exists Created
> | TNAME TNAME is | Author | Author | Author | Author
Authority is SYS— | not SYS— is is not is is not
of Author: CATALOG | CATALOG Owner Owner Owner Owner
A | DBA, no D G and N/A D G and Y and
DELETE -823 =204 =204
authority SQLCODE SQLCODE| SQLCODE
B | Non-DBA, N/A G and G G N/A N/A
DELETE -823
with GRANT SQLCODE
Option
o Non-DBA, N/A G and N/A Y N/A N/A
DELETE -823
authority SQLCODE
D Non-DBA, G and G and N/A G and G and Y and
no DELETE | -552 -823 =551 -204 -204
authority | SQLCODE | SQLCODE SQLCODE| SQLCODE| SQLCODE

In cases B3, B4, and C4, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the DELETEAUTH column set to ‘Y’ to indicate the program’s
dependency.

For cases Al, A2, A3, and A4, the SYSPROGAUTH entry is made, but the -823
SQLCODE indicates that the statement will always fail on subsequent re-checks

during execution.

Tables Referonced in the WHERE Clause: Note that the authorization

checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS

applies the lowest level of authorization gained from the two decision tables.

220 SQL/Data System Application Programming for VM/SP

INSERT

1 2 3 4
Table in
WHERE clause Table Exists Table Not Created
> Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no SELECT N/A Y G and Y and
authority =204 =204
SQLCODE . SQLCODE
B | Non-DBA, SELECT G G N/A N/A
authority with GRANT
option
C | Non-DBA, SELECT N/A Y N/A N/A
authority
D | Non-DBA, no SELECT N/A G and G and Y and
authority -551 —204 =204
SQLCODE SQLCODE SQLCODE

In cases B1, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECTAUTH column set to ‘Y’ to indicate the program’s

dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program’s dependency on DBA authority.

There are two decision tables that apply to INSERT:

Table into Which the INSERT Is Made

Table to which

INSERT is 1 2 3 4 5
applied
Table Exists Table Not Created
>
Owner Author Author Author Author
Authority is is is not is is not
of Author: SYSTEM Owner Owner Owner Owner
A | DBA, no INSERT D N/A D G and Y and
authority -204 =204
SQLCODE SQLCODE
B | Non=DBA, INSERT G and G G N/A N/A
authority with —-552
GRANT Option SQLCODE
o Non-DBA, INSERT G and N/A Y N/A N/A
authority =552
SQLCODE
D | Non-DBA, no G and N/A G and G and Y and
INSERT authority -552 =551 -204 ~204
SQLCODE SQLCODE SQLCODE | SQLCODE

Putting the Program into Production

221

SELECT

In cases B2, B3, and C3, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the INSERTAUTH column set to ‘Y’ to indicate the program’s
dependencies.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

1 2 3 4
Table in
WHERE clause Table Exists Table Not Created
> Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no SELECT N/A Y G and Y and
authority -204 -204
SQLCODE SQLCODE
B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option
c Non-DBA, SELECT N/A Y N/A N/A
authority
D | Non-DBA, no SELECT N/A G and G and Y and
authority =551 =204 —204
SQLCODE SQLCODE SQLCODE

In cases B1, B2, and C2, SQL /DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECTAUTH column set to ‘Y’ to indicate the program’s
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program’s dependency on DBA authority.

There are two decision tables that apply to SELECT:

Tables in the FROM List

222 SQL/Data System Application Programming for VM/SP

1 2 3 4
Tables in the
FROM list Table Exists Table Not Created
Author Author Author ‘Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no SELECT N/A Y G and Y and
authority ~204 =204
SQLCODE SQLCODE
B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option
C Non-DBA, SELECT N/A Y N/A N/A
authority
D | Non-DBA, no SELECT N/A G and G and Y and
authority ~551 -204 -204
SQLCODE SQLCODE SQLCODE

In cases B1, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the SELECTAUTH column set to ‘Y’ to indicate the program’s

dependency.

In case A2, there are some instances where a ‘Y’ entry is made in the DBAAUTH

field of the SYSUSERAUTH catalog, showing program dependencies on DBA

authority.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

1 2 3 4
Table in
WHERE clause Table Exists Table Not Created
Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no SELECT N/A Y G and Y and
authority =204 ~204
SQLCODE SQLCODE
B Non-DBA, SELECT G G N/A N/A
authority with GRANT
option
o Non-DBA, SELECT N/A Y N/A N/A
authority
D | Non-DBA, no SELECT N/A G and G and Y and
authority =551 =204 —204
SQLCODE SQLCODE SQLCODE

Putting the Program into Production

223

UPDATE

In cases B1, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECTAUTH column set to ‘Y’ to indicate the program’s
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program’s dependency on DBA authority.

There are two decision tables that apply to UPDATE:

Tables on Which the Update Is Made

! 2 3 4
Table on which
UPDATE is made Table Exists Table Not Created
> Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no UPDATE N/A D G and Y and
authority =204 =204
SQLCODE SQLCODE
B Non-DBA, UPDATE G G N/A N/A
authority with GRANT
option
o Non-=DBA, UPDATE N/A Y N/A N/A
authority
D | Non-DBA, no UPDATE N/A G and G and Y and
authority —551 -204 =204

SQLCODE SQLCODE SQLCODE

In cases B1, B2, and C2, SQL /DS makes entries in the SYSCOLAUTH catalog
and the SYSTABAUTH catalog. These entries show that the program depends on
UPDATE authority (the UPDATEAUTH column) for specific columns. SQL/DS
makes the entries without setting the GRANT option to ‘Y’.

Tables Referenced in the WHERE Clause: Note that the authorization
checking in the previous decision table precedes the logic of this table. If the first
decision table yields a negative SQLLCODE, processing stops. Otherwise, SQL/DS
applies the lowest level of authorization gained from the two decision tables.

224 SQL/Data System Application Programming for VM/SP

i 2 3 4

Table in
WHERE clause Table Exists Table Not Created
> Author Author Author Author
Authority is is not is is not
of Author: Owner Owner Owner Owner
A | DBA, no SELECT N/A Y G and Y and
authority =204 =204
SQLCODE SQLCODE
B | Non-DBA, SELECT G G N/A N/A
authority with GRANT
option
c Non-DBA, SELECT N/A Y N/A N/A
authority
D | Non=DBA, no SELECT N/A G and G and Y and
authority =551 —204 —-204
SQLCODE SQLCODE SQLCODE

In cases B1, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
These entries have the SELECTAUTH column set to ‘Y’ to indicate the program’s
dependency.

In case A2, SQL/DS makes an entry in the SYSUSERAUTH catalog to show the
program’s dependency on DBA authority.

LOCK DBSPACE

DBSPACE
Owner 1 2
Authority > | Author is Author is
of Author: Owner not Owner
A | DBA G D
B Not DBA G G and =551
SQLCODE

Putting the Program into Production 225

LOCK TABLE

Owner of
Table 1 2 3
Authority
of L——-> Owner is Owner is Table does
Author: Author not Author not Exist
A | DBA, and no N/A D D
SELECT authority
B Non-DBA, SELECT | G G N/A
authority with
GRANT option
c Non-DBA, SELECT N/A Y N/A
authority
D Non=DBA, no N/A G and =551 G and =551
SELECT SQLCODE SQLCODE
authority

For cases B1, B2, and C2, SQL/DS makes entries in the SYSTABAUTH catalog.
The entries have the SELECTAUTH column set to ‘Y’ to show the program’s

dependency.

Data Control

SQL Data Control statements manage logical units of work and DBSPACEs, which
are units of space. More specifically, with data control statements you can:

Thus, data control statements affect the areas in which your tables and program
access modules reside. They also affect the way in which programs work with the

Acquire and drop DBSPACEs (ACQUIRE DBSPACE and DROP DBSPACE)

Change DBSPACE characteristics (ALTER DBSPACE)

End a logical unit of work and either commit or rollback the changes you made
(COMMIT WORK and ROLLBACK WORK)

Override the SQL /DS automatic locking mechanism (LOCK)

Update internal statistics (UPDATE STATISTICS).

data base.

226 SQL/Data System Application Programming for VM/SP

Acquiring a DBSPACE

Format:

=

ACQUIRE

NAMED [owner.]dbspace-name

(

The LOCK parameter is applicable to PUBLIC DBSPACE:s only.

{PUBLIC | PRIVATE} DBSPACE

-
NHEADER = {8]|integer})
PAGES = {128|integer}
PCTINDEX = {33|integer}
PCTFREE = {15|integer}

LOCK = {PAGE|size}
STORPOOL = {integer}

Example:

ACQUIRE PRIVATE DBSPACE NAMED MFBSPACE

(STORPOOL=3, PCTFREE=25)

Authorization:

You must have DBA authority to acquire either a PUBLIC DBSPACE or a DBSPACE for another
user. You must have RESOURCE authority to acquire a PRIVATE DBSPACE.

The ACQUIRE DBSPACE statement causes SQL /DS to find an available
DBSPACE of the requested type (PUBLIC or PRIVATE) and give it the
dbspace-name you specify. The dbspace-name must be an SQL identifier, as
described in Chapter 1; you can use it to refer to the DBSPACE in other SQL
statements, such as CREATE TABLE.

If the DBSPACE type is PUBLIC, its owner becomes PUBLIC; if the type is
PRIVATE, its owner becomes the user who preprocessed the program in which the
ACQUIRE DBSPACE is embedded. DBSPACE names must be unique within all
the DBSPACEs owned by the same user, but may duplicate the name of a
DBSPACE owned by another user.

If you have DBA authority, you can acquire a DBSPACE for another user by
concatenating the userid to the dbspace-name:

ACQUIRE PRIVATE DBSPACE NAMED JONES.SPACELl

In the above statement, the owner of the DBSPACE is user JONES. User JONES
can refer to it as simply SPACEL.

Putting the Program into Production 227

You can optionally specify the following properties of a DBSPACE. If you specify
more than one, you can specify them in any order. You must separate the
parameters with commas.

NHEADER Number of Header Pages. The number of 4096-byte logical
pages in the DBSPACE that SGL/DS reserves for header pages.
SQL/DS uses header pages to record information about the
contents of the DBSPACE.

Notes:
1. NHEADER cannot be larger than eight pages.
2. If NHEADER is not specified, the default is eight pages.

3. You cannot change NHEADER after the DBSPACE has been
acquired. If you choose a small number for NHEADER, it
may limit the number of different tables that can be created in
the DBSPACE.

PAGES Number of Pages. The minimum number of 4096-byte logical
pages you require for this DBSPACE.

Notes:

1. SQL/DS may actually give you more pages than you request
because it acquires storage in units of 128 pages. However, of
the available DBSPACE:s, the one chosen will be the smallest
that will satisfy the size specified for PAGES. SQL/DS
determines the number of pages you receive by rounding the
number you specify to the next higher multiple of 128 pages.
For example, if you specify PAGES=53, SQL/DS acquires a
block of 128 pages. If you specify PAGES=130, SQL/DS
acquires 256 pages.

2. If you do not specify PAGES, SQL/DS acquires the smallest
available DBSPACE (128 pages) by default.

PCTINDEX Percentage of Index Pages. The percentage of all pages in the
DBSPACE that SQL/DS is to reserve for the construction of
indexes.

Notes:
1. If you don’t specify PCTINDEX, the default is 33 percent.

2. You cannot change PCTINDEX after the DBSPACE has been
acquired. If you choose a small number for PCTINDEX, it
may limit the number of indexes that can be created on tables
in the DBSPACE. (If you find that the PCTINDEX is too
small, you can acquire another DBSPACE and move the data
toit.)

228 SQL/Data System Application Programming for VM/SP

PCTFREE

LOCK

Percentage of Free Space. The percentage of the space on each
page that SQL/DS is to keep empty when data is inserted into
the DBSPACE.

Notes:

1.

2.

If you don’t specify PCTFREE, the default is 15 percent.

Typically a user might acquire a DBSPACE with PCTFREE
set to some value such as 25 percent. The DBSPACE is then
loaded with data via the Data Base Services utility (described in
the SQL/Data System Data Base Services Utility for VM/SP
manual). SQL/DS ensures that at least 25 percent of the
space on each page is left empty. After the initial loading of
the DBSPACE, the user can set PCTFREE to zero by means
of the ALTER DBSPACE statement (described later). Then,
in subsequent insertions, SQL/DS is free to place new data in
the space reserved during initial loading. Using reserved free
space in this way results in a more favorable physical clustering
of data on pages when the data is loaded, and, therefore,
improves access time. The SQL/Data System Planning and
Administration for VM /SP manual discusses data clustering in
more detail.

The value of PCTFREE is critical during mass insertion of
data into a DBSPACE (for example, a DBS Utility
DATALOAD command). Refer to the appendix “Estimating
the Number of Data Pages Required”’ in SQL/Data System
Planning and Administration for VM /SP for more information
on the DBSPACE percent free specification.

Lock Size. Applicable to PUBLIC DBSPACE:s only.
(PRIVATE always locks a DBSPACE.) The valid specifications
for size are DBSPACE, PAGE, and ROW.

Notes:

L

The lock size determines the size of the locks that SQL/DS
acquires when a user reads or updates data. If you specify
ROW, SQL/DS locks only an individual row in the table;
PAGE or DBSPACE cause the smallest lockable unit to be a
page (4096 bytes) or a DBSPACE, respectively. Key level
locking is used for indexes or tables in DBSPACE:s for which
row level locking is specified.

In general, larger locking units (for example, DBSPACE)
cause less overhead to be spent in acquiring locks, but also limit

concurrency.

The default LOCK for each PUBLIC DBSPACE is PAGE.

Putting the Program into Production 229

STORPOOL Storage Pool Number. This parameter indicates that SQL/DS
must acquire this DBSPACE from the specified storage pool.

Notes:

1. If a DBSPACE of the specified type and size is not available in
this storage pool, the ACQUIRE DBSPACE is not successful;
SQL/DS returns a negative SQLCODE.

2. If you don’t specify STORPOOL, SQL/DS acquires a
DBSPACE of the correct type and size from any recoverable
storage pool. To acquire a DBSPACE from a non-recoverable
storage pool, you must specify the STORPOOL parameter.

3. You can also define storage pools that are not recoverable.
Non-recoverable data reduces system overhead. This is done at
the expense of automatic recovery for data update. That is, the
burden of recovery is placed on the user. Non-recoverable
storage pools are particularly useful in cases where large
amounts of data are loaded from an external source, and that
data is never modified thereafter. See SQL/Data System
Planning and Administration for VM/SP for more
information.

Dropping a DBSPACE

Format:.

DROP DBSPACE [owner.]dbspace-name

Examples:

DROP DBSPACE MFBSPACE
DROP DBSPACE MIKE.MFBSPACE
DROP DBSPACE PUBLIC.SPACE10

Authorization:

A DBSPACE may be dropped only by its owner or by a user having DBA authority. You must have
DBA authority to drop a PUBLIC DBSPACE. No user, even with DBA authority, can drop the
DBSPACE containing the SQL/DS catalogs.

The DROP DBSPACE statement destroys the contents of a DBSPACE and returns
the DBSPACE to an “available” state. The DROP DBSPACE statement is a much
faster way to destroy the contents of a DBSPACE than by deleting the data one
row at a time or one table at a time. You can use DROP DBSPACE with both
PUBLIC and PRIVATE DBSPACEs.

All existing access modules for programs that operate on the dropped DBSPACE
are automatically marked “invalid.” If one of these programs is currently running,

230 SOQL./Data System Application Programming for VM/SP

SQL/DS does not drop the DBSPACE until the running program ends its current
logical unit of work. The invalid access modules remain in the data base until they
are explicitly dropped via a DROP PROGRAM statement (described in the
previous chapter). When an invalid access module is invoked, SQL/DS attempts to
regenerate it and restore its validity. However, if the program contains any SQL
statement that refers to a DBSPACE or table that has been dropped, that SQL
statement returns a negative SQLCODE at execution time.

Changing DBSPACE Characteristics

Format:

PCTFREE = integer
ALTER DBSPACE [owner.]dbspace-name ()
LOCK = size

The LOCK parameter is applicable to PUBLIC DBSPACEs only.

Examples:

ALTER DBSPACE MFBSPACE (PCTFREE = 0)
ALTER DBSPACE PUBLIC.SPACE (LOCK = PAGE,PCTFREE=3)

Authorization:

To alter a PRIVATE DBSPACE, you must either own the DBSPACE, or have DBA authority. You
must have DBA authority to alter a PUBLIC DBSPACE.

The ALTER DBSPACE statement allows you to alter the percentage of free space
that SQL/DS reserves on each data page when records are inserted into a PUBLIC
or PRIVATE DBSPACE. It also allows you to alter the lock size of a PUBLIC
DBSPACE. (You can’t alter the lock size of a PRIVATE DBSPACE.)

When you acquire a DBSPACE, you should set the percentage of free space to
some number greater than zero (the default is 15 percent). A typical use of
ALTER DBSPACE is to set the percentage of free space to zero (PCTFREE=0)
after initial loading of data into a DBSPACE. Subsequent insertions can then take
advantage of the free space that SQL/DS reserves during the loading process. It is
also possible to increase PCTFREE again for a later loading phase.

To alter the lock size of a PUBLIC DBSPACE at any time, use the LOCK
parameter. You can specify both the PCTFREE and LOCK parameters when
altering a PUBLIC DBSPACE. If you specify both, you can specify them in any
order, but you must separate them with a comma. (See the example above.) The
valid lock sizes are ROW, PAGE, and DBSPACE, as described under the
ACQUIRE DBSPACE statement. When an ALTER DBSPACE statement is

Putting the Program into Production 231

SQL/DS Automatic

executed to alter the lock size of a DBSPACE, SQL/DS acquires an exclusive lock
on the entire DBSPACE and holds the lock until the end of the current logical unit
of work. The newly selected lock size then becomes effective for subsequent
logical units of work.

Locking Mechanism

Recall from the SQL/Data System Concepts and Facilities for VM /SP manual that
SQL/DS can operate in either multiple user or single user mode. When you use
SQL/DS in single user mode, there is no contention from other users when you
attempt to access data. In multiple user mode, however, other users may be
accessing data that you are trying to access. SQL/DS provides for concurrent
access via a locking mechanism.

Internally, SQL/DS acquires locks on data accessed by a logical unit of work.
There are two types of locks, called share locks and exclusive locks. All logical units
of work automatically acquire exclusive locks on all data that they modify and
acquire share locks on data that they read. Exclusive locks prevent other users
from reading or modifying the data. Share locks permit other users to read, but
prevent them from modifying, the data. In general, locks are held to the end of the
logical unit of work in which they are acquired.

SQL/DS automatically detects and corrects potential deadlocks. A deadlock
occurs when two logical units of work are each waiting to access data that the other
has locked. Fortunately, SQL /DS detects these situations and ‘‘backs out” the
youngest logical unit of work. A ‘‘back out” means that SQL/DS restores all
changes made to the data base during that logical unit of work, and then releases
the lock that was acquired for it. The other application can then proceed. If your
logical unit of work is backed out, SQL/DS returns a negative SQLCODE and sets
on a warning flag (SQLWARNS6).

SQL /DS locking is fully automatic and requires no user intervention. However,
certain statements permit knowledgeable users to adjust or override the normal
locking. The size of the lockable data units can be adjusted by the LOCK option
of the ACQUIRE DBSPACE and ALTER DBSPACE statements. Also, you can
override automatic locking and explicitly acquire certain kinds of locks by the
LOCK statement. All of these statements are discussed in the following sections.

The only way to run SQL/DS with locking inhibited is in single user mode.

Ending the Logical Unit of Work

When you end a logical unit of work, you must tell SQL/DS what to do with
changes made to the data. The data changes can either be saved (‘“‘committed”) or
ignored (“rolled back’’). The COMMIT WORK and ROLLBACK WORK
commands in your program tell SQL/DS to either save the data changes or ignore
them.

232 SQL/Data System Application Programming for VM/SP

4 COMMIT WORK

Format:

COMMIT WORK [RELEASE]

Authorization:

Anyone connected to SQL /DS can issue this statement.

The COMMIT WORK statement ends the current logical unit of work if one is in
progress. SQL/DS commits any changes made during the logical unit of work to
the data base.

It is strongly recommended that each application program explicitly end its logical
unit of work before terminating. If you don’t explicitly end the logical unit of
work, SQL/DS automatically commits (upon successful termination of the
program) all changes made by the program during its pending logical unit of work.

Note: 1f you don’t specify COMMIT WORK in SQL/DS Release 1 single user
mode batch applications, SQL/DS rolls back the changes. This exception is
removed in SQL/DS Release 2.

See “Application Epilog” on page 93 and “Error Handling” on page 202 for more
information about program termination.

If you use the RELEASE option in a VM/SP environment, your default userid
established by implicit connect is re-established for a subsequent logical unit of
work. If you had overridden this defauit userid with an explicit CONNECT in the
terminating logical unit of work, that explicitly established userid is replaced by the
default userid. If the RELEASE option is omitted, the userid in effect at
termination of the logical unit of work is retained for a subsequent logical unit of
work. (See #“VM/SP Connect Considerations” on page 186.)

COMMIT WORK has no effect on the contents of host variables or on the control
flow of the host program.

Putting the Program into Production 233

ROLLBACK WORK

Format:

ROLLBACK WORK [RELEASE]

Authorization:

Anyone connected to SQL/DS can issue this statement.

The ROLLBACK WORK statement restores the data base to its state prior to the
current logical unit of work. SQL/DS terminates the current logical unit of work
(if any).

If you use the RELEASE option in a VM/SP environment, your default userid
established by implicit connect is re-established for a subsequent logical unit of
work. If you had overridden this default userid with an explicit CONNECT in the
terminating logical unit of work, that explicitly established userid is replaced by the
default userid. If the RELEASE option is omitted, the userid in effect at
termination of the logical unit of work is retained for a subsequent logical unit of
work. (See “VM/SP Connect Considerations” on page 186.)

ROLLBACK WORK has no effect on the contents of host variables or on the
control flow of the host program.

Under some circumstances, SQL/DS automatically backs out of a logical unit of
work. See “SQL/DS Automatic Locking Mechanism” on page 232 for more
information.

Note: If you use a ROLLBACK WORK in a routine that was entered because of
an error or warning and you used the SQL. WHENEVER statement, specify
WHENEVER SQLERROR CONTINUE and WHENEVER SQLWARNING
CONTINUE before the ROLLBACK WORK. This avoids a program loop if the
ROLLBACK WORK fails with an error or warning.

234 SQL/Data System Application Programming for VM/SP

\ 4

Using the LOCK Statement to Override Automatic Locking

Format:

LOCK {TABLE [creator.]table-name|DBSPACE [owner.]dbspace-name}
IN {SHARE|EXCLUSIVE} MODE

Examples:

LOCK TABLE PARTS IN EXCLUSIVE MODE
LOCK DBSPACE DSP3 IN SHARE MODE

Authorization:

To <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>