GC26-3830-4
File No. $370-30

0S/VS2 System
Programming Library:
Systems Data Management

Release 3.8

This publication was produced using the
IBM Document Composition Facility
- o (program number 5748-XX9%) and -
the master was prlnted oh the IBM 3800 Prlntlng Subsystem

Fifth Edition (October 1981)

This is-a-major.revision of, and makes obsolete, GC26-3830-3, its

technical newsletters GN26-0942, GN26-0945, GN26-0950, GN26-0983,

8326 2986,0and GN26 0997, and the System Ltbrary Supplement,
26-6017-

This ed1tion appltes to Release 3 8 of 0S/VS2 MVS and to any
subsequent releases unt11 otherwlse vndlcated in new editions or
technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are indicated
by a vertical bar -to the left of the change. These bars will be
daleted at any subsequent republication of the page affected.
Edltgrlal changes that have no techn1cal 51gn1f1cance are not
note

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Btb1lo$raphy. GC20- 0001, for the edlt!ons that are applicable and
curren

It is possible that this material may contain reference to, or
information about,.IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
servuces ln your country.

Publtcatwons are. not stocked. at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch off1ce 5erv1ng your locallty

A form for reader G- comments is provided at the: back of this
publication. If the form has been removed, comments may be =
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S5.A. 95150. IBM may use or
distribute any of the information vou supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

® Copyright International Business Machines Corporation 1974,
:1975, 1976, 1977, 1981

e

C

PREFACE

This publication provides,informétion on how to modify and extend
the data management capabilities of the MVS system control
program; the intended audience is system programmers.

Some topics included are:

[

Using catalog management macro instructions
Maintaining the volume table of contents
Executing your own channel programs

Using XDAP to read and write data sets on direct-access
davices

Password protecting vour data sets

The MVS system control program provides simpler ways (for
example, access-method services, job control language, utility .
programs, access-method routines) to do each of these things. The
information presented in this book (consisting of macro
specifications and how-to information) is intended to provide
greater flexibility in using the data management capabilities of

MVS.

Othef topics presented are:

L]

PREREQUISITE READING

Using system macro instructions to refer to, valldate, and
modify system data areas. Other system macro instructions
described allow you to obtain device characteristics, modify
a job file control block, protect data by verifying the data
extent block, stop the processing of 1/0 requests, and
perform track capacity calculations.

Adding to the image library and retrieving FCB images
JES2 printer support

Perform special processing before or after certain macro
instructions

How storage management routines control space on
direct-access volumeaes

Readers are expected to understand how to:

Code programs in assembler language as described
0S/VS—D0OS/VS—VM/370 Assembler Language, GC33-4010.

Use the standard linkage conventions as described in 05/VS2
Supervisor Services and Macro Instructions, GC28-06383.

Maintain the catalog and VTOC as described in 05/VS2 Access
Method Services, GC26-3841, 05/VS2 MVS Utilities, GC26-3902,
and 0S/VYS2 MVS Data Management Services Guide, GCZ6-3875.

Use the access methods to do input/output using thae data
management macros as described in .05/V52 MVS Data Managemen
Services Guide, GC26-3875, and 05/VS2 MVS Data Management
Macro Instructions, GC26-3873.

Protect data sets as described under "IEHPROGM" in 05/VYS2 MVS
Utilities, 6GC26-3902.

Preface iii

More specific prerequisite reading is listed at the beginning of

each chapter, as it relates to the particular topic.

RELATED READING

iv

All of the chapters of this publication refer to 05/VS52 System
Programming Library: Debugginag Handbook, Volume 1, GC28-0708,

057VS52 System Programming Library: Debugging Handbook, Volume 2,

GC28-0709, and 05/YS System Programming Library: Debugging
Handbook, Volume 3, GC28-0710, which contain detailed

descriptions of system control blocks and common work areas. More
specific related reading is listed at the beginning of each
chapter, as it relates to the topic under discussion.

Other publications referenced in this manual are:

IBM System/370 Principles of Operation, GA22-7000

IBM 2821 Control Unit Component Description, GA24-3312

IBM 3203 Printer Component Description and Operator's Guide,
GA33-1515

IBM 3211 Printer, 3216'Irterchangeab1e Train Cartridge, and
3811 Printer Control Unit Component Description _and
Operator's Guide, GA26¢-3543

IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

MVS/System Product Release 2 Installation, Initialization,
and Tuning: JES2 Component, SC23-0046

0S/VS2 MVS Checkpoint/Restart, GC26-3877

05/VS2 DADSM Loqgic, SY26-3828 N

[
Data Facility Device Support: User's Guide and Reference, ~.
SC26-3952

Device Support Facilities, GC35-0033

05/VS2 1/0 Supervisor Logic, 5Y26-3823
0SssVY52 JCL, GC28-0692

057VS Message Library: V82 System Messaqes, GC38-1002
05,VS2 MVS CVOL Processor, GC26-3864

05/VS52 MYS Resource Access Control Facility (RACF): General
Information Manual, GC28-0722

05/VS2 Open/Close/EQV Loqic, SY26~-3827

057VS2 System Programming Library: Initialization and Tuning
Guide, GC28-0681

05/VS52 MVS System Programming Library: JES2, GC23-0002

05/VS2 System Programming Libraryv: JES3, GC28-0608

Svstem Programming Library: Network Job Entry Facility for
JES2, 5C23-0003

05/VS52 System Programming Library: Supervisor, GC28-0628

05/VS52 System Programming Library: System Generation
Reference, GC26-3792

0S/VS Tape Labels, GC26-3795 (::
0S/VS2 TS50 Command Language Reference, GC28-0646

057VS2 System Programming Library: Data Management

c

HOW TO USE THIS BOOK

U 05/7VS Virtual Storage Access Method (VS5AM) Programmer's
Guida, GC26-3838

. 0S5/VS Linkage Editor and Loader, GC26-3813

You can use the chapter on catalog management macro instructions
to retrieve catalog information or add, delete, and update
catalog entries for non-YSAM data sets.

If you want to read a data set control block, rename a data set,
or delete a data set using the system macros, the chapter on
maintaining the volume table of contents (VTOC) provides macro
specifications, coding examples, and how-to information.

If vou want to code your own channel programs to modify the
control program or to provide support for unsupported I/0
devices, the chapter on using EXCP provides detailed descriptions
of the control blocks you must provide and the functions you must
perform.

Macro specifications and how-to information are provided for
using the XDAP macro instruction to read from and write to
direct-access devices without using access—-method routines (SAM,
ISAM, or BDAM).

If vou want to use data set protection for your facility, the
chapter on data set protection:

. Tells how to build a PASSWORD data set.

¢ Describes how the system control program responds to job
control language and IEHPROGM utility statements in
maintaining the PASSWORD data set.

. Tells you how to use the PROTECT macro instruction to maintain
(add records to, delete records from, changes records in) and
read the PASSWORD data set.

The chapter on system macro instructions providaes how-to
information and macro specifications for:

. Using system mapping macros to allow you to access system
control blocks and work areas using symbolic names.

. Examining device-type information in unit control blocks
(UCBs) .

. Modifying a job file control block (JFCB) before opening a
data set.

. Stopping the processing of specified I/70 requests,
paermanently or temporarily.

U Protecting your data sets by verifying data extent blocks.
. Performing track capacity calculations.

You can use the coding examples and how-to information in the
chapter on adding and retrieving from the image library to help
vou add a universal character set (UCS) image or a forms control
buffer (FCB) image to the system image library (S5YS1.IMAGELIB).
Other topics presented are:

. 1403, 3203-5, and 3211 printers JES2 support

U OPEN and EOV macro user exits form when a format-1 DSCB cannot
be found

Preface v

vi

. How you can perform special processing before and after the
CATALOG, SCRATCH, and RENAME macros by replacing the supplied
dummy modules :

U How the direct access device storage,ménagement (DADSM)
routines control space on DASD volumes.

In this manual, any references made to an IBM program product are
not intended to state or imply that IBM's program product only may
be used; any functionally equivalent program may be used instead.
This manual has references to the following IBM program product:

RACF - Resource Access Confrol Facflity,
Program Number 5740-XXH

05/7VS2 System Progfamming Library: Data Management

@

SUMMARY OF AMENDMENTS

SAM-E_ENHANCEMENTS

The section "Specifying Buffer Numbers fof SAM-E DASD Data Sets"
has been added.

DATA FACILITY DEVICE SUPPORT——3375 SUPPORT

The information received from issuing the DEVTYPE macro for the
IBM 3375 has been included.

'OTHER CHANGES

The section "Controlling Space on DASD Volumes" has been added.
This information was previously contained in 05/V52 DADSM Logic.

The explanation of return code 8 from the TRKCALC macro has been
updated.

0S/VS2 MVS DATA FACILITY DEVICE SUPPORY ENHANCEMENTS

Information to support the above has been added to the section
"Initiation of the Channel Program."”

0S/VS2 MVS DATA FACILITY DEVICE SUPPORT (DFDS) PROGRAM PRODUCT

The information to support CVAF (Common VTOC Access Facility),
and the IBM 3375 and 3380 Disk Storage is included. For more
information see, Data Facility Device Support: User's Guide and
Reference, 5C26-3952, Introduction to 3375 Direct Access Storage,
Gﬁzg-i626, and Introduction to 3380 Direct Access Storage,
GA26-1662.

0S/VS2 MVS 3800 ENHANCEMEMTS

IEBIMAGE can now be used to build library character set modules to
be stored in SYS1.IMAGELIB.

NEW PROGRAMMING SUPPORT

The information to support the IBM 3203 model 5 is now included.
For additional information about the IBM 3203 Printer, see 1BM
3203 Printer Component Description and Operator's Guide,
GA33-1515.

The figure "Output Obtained from Issuing DEVTYPE Macro" now
includes the 3203 Printer.

The sections "Adding to the Image Library and Retrieving FCB
Images,” "Adding a UCS Image to the Image Library," and "Adding an
FCB Image to the Image Library" have been updated to include the
3203 Printer.

The figure "Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB"
has been added.

© Summary of Amendments vii

SERVICE CHANGES

viii

The following sections have been updated:

&

Catalog Order of Search
Retrieving Information from a V52 Catalog

Retrieving Information by Data Set Name (LOCATE and CAMLST
NAME)

Retrieving Information by Generation Data Set Name (LOCATE
and CAMLST NAME)

Deleting a Data Set (SCRATCH and CAMLST SCRATCH)
Renaming a Data Set (RENAME and CAMLST RENAME)
Interruption Handling and Error Recovery Procedures
Start I/0 (SI0) Appendage

Program Controlled Interruption (PCI) Appendage

ATLAS-Assigning an Alternate Track and Copying Data from the
Defective Track

Executing Fixed Channel Programs in Real Storage (EXCPVR)

Page Fix List Processing

Mapping System Data Areas

IEFUCBOB-Mapping the UCB

IEFJFCBN-Mapping the JFCB P
CVT-Mapping the CVT N
DEVTYPE Macro Specification

Reading and Modifying a Job File Control Block

Adding a UCS Image to the Image Library

The figures:

- Sample Code to Add a 1403 UCS Image to SYS1.IMAGELIB

- Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB

Adding an FCB Image to the Image Library

The figures:

- Sample of the Standard FCB Image STDI

- Sample of the Standard FCB Image STD2

- Sample Code to Assemble and Add an FCB Load Module to
SYS1.IMAGELIB

Two new figures have been added:

L J

Generation Index Pointer Entry

Alias Entry

05/7VS2 System Programming Library: Data Management

0S/VS MVS DATA MANAGEMENT SUPPORT FOR MASS STORAGE SYSTEM (MSS) EXTENSIONS PROGRAM
PRODUCT

The MSS Extensions Program Product is supported by the addition of

the section "Scratch Dummy Module."

Summary of Amendments

ix

CONTENTS

Using Ccatalog Management Macro Instructions .« o
Catalog Order of Search . C e e e e e e e e e e
Return Code Considerations e e e
Retrieving Information from an MVS Catalog
Retrieving Information by Data Set Name (LOCATE and
CAMLST NAME) . . e e e .
Retrieving Infomnatlon by Generatlon Data Set Name
(LOCATE and CAMLST NAME) .
Retrieving Information by Alvas (LOCATE and CAMLST NAME)
Reading a Block by Relative Block Address (LOCATE and

e e e 0
.
.
.
.

b et b .
CBNOPOUID U OO0 U N NN -

CAMLST BLOCK) .o e e e e e e
Building and Deleting Indexes e e e e e e e e e
Building an Index (INDEX and CANLST BLDX) e e e e .
Building a Generation Index (INDEX and CAMLST BLDG) .« e 1
Deleting an Index (INDEX and CAMLST DLTX) . . . 1
Assigning an Alias for an Index (INDEX and CAMLST BLDA) 1
Deleting an Alias for an Index (INDEX and CAMLST DLTA) . 1
Connecting and Disconnecting Control Volumes . . e e e
Connecting Control Volumes (INDEX and CAMLST LNKX) e e e
Disconnecting Control Volumes (INDEX and CAMLST DRPX) .
Working with NonVSAM Data Set Catalog Entries . .
Cataloging a NonVSAM Data Set (CATALOG and CAMLST CAT) . 19

Programming Considerations for Multiple-Ster Jobs e e 19
Uncataloging a NonVSAM Data Set (CATALOG and CAMLST UNCAT) 21
Recataloging @ NonVSAM Data Set (CATALOG and CAMLST RECAT) 22

CVOL Catalog Entry Formats .. PO . e . . e e . 26
Volume Index Control Entry e e e e e e e e e e e e e e 26
Index Control Entry . e e e e e e e e e 25
Index Link Entry and Index POInter Entry . . 26
Data Set Pointer Entry . . e . . 27
Volume Control Block Pointer Entry e e . . . 28
Volume Control Block 29
Control Volume (CVOL) Povnter Entry e e e e e e e e . 30
Control Volume Pointer Entry (OLD) e h e e e e e 30
Generation Index Pointer Entry e e e e e e e e e e 31
Alias Name 32

Maintaining the volume Table of Cantents e e e e o s s e s e 33

—~Introduction “ e e . 33
Reading a DSCB by Actual Dev1ce Address (OBTAIN and
CAMLST SEEK) . e e e e e 35
Deleting a Data Set (SCRATCH and CAMLST SCRATCH) e e e . 37
Renaming a Data Set (RENAME and CAMLST RENAME) e e e e e 40

Executing Your Own Channel Programs (EXCP) e s s e e o e o 46

Executing Channel Programs in System and Problem Programs 44
System Use of EXCP . . e e e e e e e e e e e e e e 45
Use of EXCP in Problem Programs . e e e e e e e e e 45
EXCP Operations in a Nonpageable Address Space e e e e e e 46

EXCP Requirements e 46
Channel Program et e e e e e e e e e e e e e e e e e e e 46
Control Blocks . e e e e e e e e e e e 47

Input/Output Block (IOB) e e . . R 47
Event Control Block (ECB) . e 47
Data Control Block (DCB) e e e e 47
Data Extent Block (DEB) . . e . . . 47

Channel Program Execution . e e e e e e e e . 47
Initiation of the Channel Program e e e e e e e e . 47
Modification of a Channel Program During Execution e e 48
Completion of Execution . e e e e e e e e e 49
Interruption Handling and Error Recovery Procedures e e %9

Appendages e e e e e e e e e e e e e e e e e 50
Start-1/0 (SIO) Appendage e e e e e 51
Program Controlled Interruptlon (PCI) Appendage e e e e e 51
End-of-Extent (EOE) Appendage o e . e e e e e 53
Channel-End (CHE) Appendage e e e e e e e e e e e e e e 53
Abnormal-End (ABE) Appendage e e e e e e e e e e e e e 564

Contents xi

xii

Making Your Appendages Part of the System
The Authorized Appendage List (IEAAFP0O) e v v .
Block Multiplexor Channel Programming Notes - e .

Macro Specifications for Use With EXCP e e e e e e e e
DCB—Define Data Control Block for EXCP Y e e e e e e .
Foundation Block Parameters . . e e e e e e e e e
EXCP Interface Parameters . . .
Foundation Block Extension and Common Interface
Parameters e e e e e e e e e e

Device- Dependent Parameters . .

DSORG Parameter of the DCBD Macro e e e e e e e e
OPEN—Initialize Data Control Block e e e e e e e
EXCP—Execute Channel Program
ATLAS—Assigning an Alternate Track and Copymg Data

DR I BT)
DR I R]

from the Defective Track . e e e e . .
Using ATLAS e e e e e e e e e e e e
Operation of the ATLAS Program e e e e e e e e e e

EOV—End of Volume . e e e e e e e e e
CLOSE—Restore Data Control Block e h e e e e e e e e
Control Block Fields .. . e e et e e e e e e e

Input/0Output Block Flelds .
Executing Fixed Channel Programs ln Real Storage (EXCPVR)
Building the List of Data Areas to be Fixed e e e

Page Fix (PGFX) and Start-I/0 (SIO) Appendage v e e e
Page Fix List Processing - .. e e e “ e e e .
SI10 Appendage e e e e e e e e e
Using XDAP to Read and Hrite to Direct-Access Devices .« .
Introduction . e e e e e e e e e e e e e e e e e .
XDAP Requi rements . e e e e e e e e e e
Macro Svecifications for Use w\th XDAP e e e e e e e e
DCB—Define Data Control Block . e e e e e e e e e e
OPEN—Initialize Data Control Block e e e e e e e e e
XDAP—Execute Direct-Access Program e e e e e e e e e
Direct-Access Channel Program . . e .
Conversion of Relative Track Address to Actual Dev1ce
Address “ e .

Conversion of Actual Dev1ce Address to Relatxve Track
Address

Obtaining Sector Number of a Block on a Dev:ce w1th the RPS
Feature e e e e

. e * o

Password Protecting Your Data Sets .

Introduction . e e e e e e .
PASSWORD Data Set Charac’cemstvcs C e e e e e e e e
Creating Protected Data Sets e e e e e .

Tape Volumes Containing More Than One
Password-Protected Data Set . e ..
Protection Feature Operating Charactemstlcs e e e e
Termination of Processing e e e e e e e e e e e e e e
Volume Switching e e e e e e e e e e e e e e e e e e e
Data Set Concatenation e e e e e e e e e e e
SCRATCH and RENAME Funct1ons e e e e e e e e e e
Counter Maintenance . e .

Using the PROTECT Macro Instruct\on to Nalntaln the
PASSWORD Data Set .
PASSHMORD Data Set Characterlstlcs and Record Format Nhen

You Use the PROTECT Macro Instruction . e e e e
Number of Records for Each Protected Data Set e e e e
Protection Mode Indicator . . e e e e e e

PROTECT Macro Specification .. e e e e e e e e e e
Return Codes From the PROTECT Macro e e e e e e e e e
system Macro Instructions c s e s s s s e s e s s e e e
Introduction . e e e e et e e e e e e e e e e e
Mapping System Data Areas Ve e e e e e e e e e e e e .
IEFUCBOB—Mapping the UCB e e e e e e e e e e e e e e
IEFJFCBN—Mapping the JFCB e e v e e e e e e e e e e e
CYT—Mapping the CVT . e v v e e e e e e e e
Obtaining 1/0 Device Characterlstlcs e e e e e e e e e e
DEVTYPE Macro Specification .. e e e e e e e e e e e
Device Characteristics Informatvon e e e e e e e e

05/7V52 System Programming Library: Data Management

« ¢ ¢ o s 8 e

o ¢ e e e s

/‘\

OPEN—Initialize Data Control Block for Processung the

JFCB o . . .
PURGE—Halt or Fvnlsh I/O Request Process:ng e e e
Modifying the I0B Chain . e e e e .
RESTORE—Reprocess I/0 Requests e e e e e e e e e e

TRKCALC—Perform Track Calculations e e e e e e e e e
TRKCALC—Standard Form . . e e e e e e e e e e e
Input Register Usage e e e e e e e e e e e e . .
Qutput from TRKCALC e e e e e e e e e e e .
TRKCALC—List Form e e et e e e e e e e e e e e e e e
TRKCALC—Execute Form e e e e e e e e e e e e e e
TRKCALC—DSECT Only e e e e e e e e e e e e e e e e
TRKCALC Macro Examples e e e e e e e e e e e e e e e

Adding to the Images Library and Retriaving FCB Images .

Adding a UCS Image to the Image Library e e e e e e e e .

Adding an FCB Image to the Imaqe L1brary e e e e e e e

Retrieving an FCB Image .. e e e e e e e

JES2 Support for the IBM 1403; 3203 5. and 3211 Prlnters

UCS Alias Names e e .

The 3211 Indexing Feature s e e e e e e e e e e e e

3203-5 Printer . . e e e e e e e e e e e e e e e

Format-1 DSCB~Not-Found User Exit in OPEN and EGV. ...
CATALOG, SCRATCH, and RENAME Dummy Modules e s s e e o s
SCRATdHDummyHodule
tontrolling Space on DASD Volumes e o 4 v e o e s o s s e

Introduction . c e e e e e e e e e e e
DADSM Routines

Allocating and ﬁeleasung Space on DIrect Access Volumes)

VT0C-Related Service Routines .

The Volume Table of Contents . I
Size of the Volume Table of Contents e e e e e e e
Volume Table of Contents Integrity e e e e e .

DADSM Interrupt Recording Facility (DIRF)

specifying Buffer Numbaers for SAM-E DASD Data Sets . . .
Performance Considerations e e e e . e e e .

Index R T T T T T S Y

Contents

-113

122
123
124
124
125
127
127
128
128
129
129

130
130
135
136

139
139
139
140

141
143
144

145
145
145
146
147
147
152
152
153

154
154

155

xiii

FIGURES

« o o o

. .

WVOONAUTDUWN =

The Volume Index Control Entry e e e e e e e e e e

The Index Control Entry e e e e e
The Index Link and Index Po:nter Entrles e e e e .
The Data Set Pointer Entry . e e e e e e e
The Volume Control Block Ponnter Entry e e e e e e
The Volume Control Block . e e e e e e e
The Control Volume (CVOL) P01nter Entry c e e e e e
Generation Index Pointer Entry e e e e e e e e

Alias Name e e e e e
Entry Points, Returns, and Avallable Nork Registers
for Appendages “ e e e
Data Control Block Format for EXCP (After OPEN) e e .
Input/Qutput Block Format .
Event Control Block After Postxng of Completion Code
(EXCP) . .
Even; Control Block After Post1ng of Completlon Code
XDAP) e e e e .
The XDAP Channel Programs . e e e e b e e e e s
Parameter List for ADD FunctIOn e e e e e e e e e e
Parameter List for REPLACE Function C e e e e e e e
Parameter List for DELETE Function e e e e e e e e
Parameter List for LIST Function . . .
Return Codes from the PROTECT Macro. Instructlon
Output Obtained from Issuing DEVTYPE Macro e e .
Sample Code Using RDJFCB Macro .

Macro Definition, JCL, and Utility Statements for
Adding PURGE Macro to Your Macro Library

Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to Your Macro Library . e .
The PIRL .and I0B Chain .

Sample Code to Add a 1403 UCS Image to SYSl IMAGELIB
Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB
Sample Code to Add a 3203 UCS Image to SYS1. IMAGELIB
Sample of the Standard FCB Image STD1 e e .
Sample of the Standard FCB Image STD2 .
Sample Code to Assemble and Add an FCB Load Module to
SYS1.IMAGELIB
Locating the Volume Table of Contents (VTOC) e e e
Data Set Control Block (DSCB) Format Types and Use
Contents of VTOC—DSCBs Describing Data Sets e e

xiv 0S/VS2 System Programming Librafyf Data Management

o 4 s & e 0 o s e

* e o e

137

138
148
149
151

)

USING CATALOG MANAGEMENT MACRO INSTRUCTIONS R

Using catalog management macro 1nstructlon5, vou can do the
followlng thlngs . .

. Retrieve information from an MVS catalag Three kinds of
catalogs qualify as MVS catalogs: the MVS master catalog,
VSAM user catalogs, and 0S5 CVOLs (control volumes).

N Catalog non-VSAM data sets.

. Uncatalog non-VSAM data sets.

. Recatalog non-VSAM dataiseté.

« Read a block from a CVOL.

¢ . Build an‘index in a CVOL.

. Build a generation index in a CVOL.

. Delete>an index.

. Assign an altas to a h)gh level lndex in a cvoL.

L] Delete an index allas from a CVOL

. Connect two CVOLs.
e . Disconnect two CVOLs.

Baefore using the.lnformatlon 1n‘th15 chapter, yvou should be

familiar with the" 1nformat10n contained in the following

»publtcatlons

. 05/V5~D0S/VS—VYM/370 Assembler Language, which contains
information you will nead to code programs in the assembler
language. .

. 05/7VS2 Access Method Services, uhich‘tells how to use

programs that offer some of the same services as catalog
management macros plus additional services that catalog
management macros cannot provide.

. 05/7VS2 JCL, which tells how to catalog and uncatalog data sets
using job control language statements.

. 057VS2 MVS CVY0L Processor, which tells how to use CV0OLs in the
MVS environment.

Specifications for coding the macro instructions are presented
with each function to be performed. Accompanying the descriptions
are coding examples and programming notes; exception return codes
follow the coding examples. In the functional descriptions,
offsets into data areas are numbered from zero (the first byte is
byte zero).

CATALOG ORDER OF SEARCH

A CVOL is identified in the master catalog as a non-VY5AM data set
with a name of the form SYSCTLG.yyy where yyy is any unique
string, unless the CAMLST CVOL operand is to be specified in CVOL
requests. If CVOL is specified, the CVOL must be defined in the
MVS master catalog as a non~VYSAM data set with the name
SYSCTLG.Vyvyvyy where yyyyvy is the volumae serial number of the
CVOL. The high level data set name is defined as an alias of the
CVOL entry.

Using Catalog Management Macro ‘Instructions -1

The volume serial of a CYOL may be specified as the third operand
of the CAMLST macro (described later in this section). If this
operand is specified, searching begins directly with the
specified CVOL. Searching may continue on the other CV0OLs if these
CVOLs have been connected with the CAMLST LNKX macro with the
high-level qualifier of the data set name. Searching will never go
to any VSAM format catalogs when the CV0OL volume operand is
specified.

If the CVOL volume operand is not specified, searching begins in
the JOBCAT or STEPCAT catalog if specified. If not found or no
JOBCAT/STEPCAT Catalog was specified, searching continues in the
mastar catalog.

In the master catalog, a search is made to determine if the first
qualifier of the data set name is the name of a (VSAM) user
catalog or the alias of a private catalog (either a V5AM user
catalog or a CVOL).

If the first qualifier‘is the namae or alias of a private catalog,
the search continues in the private catalog. Otherwise, the
process terminates in the master catalog.

For information about how CVOLs are defined, identified, and
searched, see 05/VS2 MVS CVOL Processor.

RETURN CODE CONSIDERATIONS

The intarpretation of catalog management return codes depends on
whether the request is initiated using a CAMLST or a VSAM
parameter list, and whether the request is satisfied in a VSAM
catalog or a CVOL.

If a CAMLST is used and the request is satisfied in a CVOL,
register 15 contains the CVOL return code and registers 0 and 1
may further describe the return code meaning. If a CTAMLST is used
and the request is satisfied in a VS5AM catalog, register 15
contains the CVOL return code, register 0 the VSAM return code,
and register 1 is zero.

If a V5AM parameter list is used and the request is satisfied in a
CVOL, register 15 contains the VSAM return code, register 0 is not
meaningful, and register 1 is nonzero. If a VSAM parameter list is
used and the request is satisfied in a V5AM catalog, registers 15
and 0 contain a VS5AM return code and a VS5AM reason code
respectively. These codes are explained in 05/VS Message Library:
VS2 System Messages under message IDCO0SI.

Note that regardless of which parameter list is used, if the
request is satisfied in a VSAM catalog, register 1 is zero, and if
the request is satisfied in a CVOL, register 1 contains X'08"* in
the high-order byte and may contain return information in the
low-order bvte.

RETRIEVING INFORMATION FROM AN MVS CATALOG

2

To read an entry from an MVS catalog, use the LOCATE and CAMLST
macro instructions. You may specify the entry vou want to read
into your work area by using either (1) the fully or partially
qualified name of a data set, or (2) the relative block address
(TTR) of the block within a CVOL containing the entry. If you
specify a fully qualified data set name, a list of volumes on
which the data set resides will be read into your work area. This
volume list always begins with a 2-byte entry that is the number
of volumes in the list. If the data set resides on more than 20
volumes and is cataloged in a CVOL, the address of a volume
control block will follow the volume list entries.

If yvou specify a partially qualified data set name, the first
block in the CVOL catalog pointed to by the lowest-level index
specified will be read into your work area. This is true if you

0S/VS2 System Programming Library: Data Management

N

-

specify two or more qualifiers, or if you specify the CVOL
parameter in the CAMLST macro. Register 15 will contain the return
code 12. If you specify a single qualifier and do not include the
CVOL parameter, the CVOL identifier 'SYSCTLG.Vyvvyyy' is read
into your work area. You may then insert 'vyyyyy' as the CVOL
parameter in the CAMLST and reissue the LOCATE.

If you specify a relative block address (TTR), the block at that
relative address in the CVOL catalog will be read into your work
area.

For MVS, you must add a step when specifying either an unqualified
name or the highest level of a partially qualified name to
retrieve information from a CY0OL. Because the search of the VSAM
master catalog is different from the search for the 05/V¥S1 and
05/7V52 Release 1 system catalog, vou do not receive the volume
information or the index block from the CVOL as you might expect.
You receive, instead, the volume information for the CVOL that is
found in the VSAM master catalog. In addition, the*single
qualifier name that you specified is replaced by the
SYSCTLG.Vyvvyyy name. You may then use that information to
specify the CVOL volume serial number in your CAMLST so that the
searc? ztarts in the CVOL and gives vou the information that vou
expected.

See Figure 1 on page 24 through Figure 8 on page 31 for
descriptions of the contents of volume control block and the other
catalog data areas.

RETRIEVING INFORMATION BY DATA SET NAME (LOCATE AND CAMLST NANE)

When you specify a data set name, a volume list is built in your
work area. A volume list consists of an entry for each volume on
which part of the data set resides; it is preceded by a 2~byte
field that contains a count of the number of volumes in the list.
The count field is followed by a variable number of 12-byte
entries. Each 12-byte entry consists of a 4-byte device code, a
6-byte volume serial number, and a 2-byte data set sequence
number. As many as 20 of these 12~byte entries can be built in
your work area. (Device codes are presented in the UCBTYP data
area description of 05/VS2 System Programming Librarv: Debugging
Handbook.)

If the named data set is stored on only one volume, bytes 252
through 254 of your area may contain the relative track address of
the DSCB for that data set; otherwise, these bytes are zero. Byte
255 contains zeros.

If the data set is cataloged in a CVOL and resides on more than
five volumes, the volume list in your work area is really a volume
control block (VCB) that has been read into your work area. In a
VCB, the count field contains the number of volume entries in this
VCB and any following VCBs. Thus a count of 41 indicates two
following VCBs with counts of 21 and one, respectively. The
relative track address (TTR) of the next VCB is in bytes 252
through 254 of your work area. The last VCB for a data set has
binary zeros in bytes 252 through 254.

The forma{ of the parameter list of this macro is described in
0S5/VS2 System Programming Library: Debuqging Handbook in the

section "SVC Summary."

The format is:

[symbol]l LOCATE list-addrx
listname CAMLST NAME
sdsname-relexp
ylcvol-relexpl
sarea-relexp

Using Catalog Management Macro Instructions 3

lf

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

NAME
this operand must be coded as shown to retrieve information
from an MVS catalog by name.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the CVOL catalog to wuhich this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Ordar of
Search" earlier in this section.

area-relexp
specifies the virtual storage location of your 265-byte work
area, which you must define. The work area must begin on a
doubleword boundary.

Example: In the following example, the catalog entry containing a
list of the volumes on which data set A.B resides is read into
virtual storage.

LOCATE INDAB
Chack Returns

* READ CATALOG ENTRY

INDAB CAMLST NAME, AB,, LOCAREA FOR DATA SET A.B.

AB DC CL44"A.B" INTO VIRTUAL STORAGE

LOCAREA DS 0D AREA NAMED LOCAREA.
DS 265C LOCAREA MAY ALSO

¥ CONTAIN A 3-BYTE

* TTR AND THE 6-BYTE

CVOL SERIAL

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search for a catalog entry using the name of a
data set. AB, the second operand, specifies the virtual storage
location of a %4-byte area into which vou have placed the fully
qualified name of a data set. LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte areé
contains a volume list or a volume control block for the data set
A.B.

Control will be returned to your program at the next executable
instruction after the LOCATE macro instruction. If the block has
been successfully read from the catalog, register 15 will contain
zeros. Otherwise, register 15 will contain one of the following
return codes.

0S/V52 System Programming Library: Data Management

/'*\

Code

12

16

20
24

28

32

Heaning

Either the required catalog does not exist or it cannot be
opened or there is a closed chain of CVOL pointers.

One of the following happened:
. The entry was not found. Register 0 contains the number
of valid index levels if in a CVOL. Register 0 contains

the V5AM catalog return code if in a VSAM catalog.

. The usar is not authorized to perform this operation.
Register 0 contains 56 (decimal).

. A GDG alias was found (VSAM catalog only). Register 0
contains the number of valid index levels. The alias
name was replaced by the true name.

One of the following happened:

. An index or generation base entry was found when the
list of qualified names was exhausted. Register 0
contains the number of valid index levels. The work
area contains the first block of the specified index.

. An alias entry was found. The alias name was replaced by
the true name.

. An invalid low level GDG name was found.

A data set exists at other than the lowest index level
specified. Register 0 contains the number of the index
level where the data set was encountered.

A syntax error exists in the name.

One of the following happened:

. Permanent I1/0 error occurred. Register 0 contains the
VSAM return code or 8 if in a CVOL.

. Unrecoverable error occurred. Register 0 contains the
VSAM return code or 0 if in a CVOL.

. Nonzero ESTAE return code.
. Error in parameter list.

Relative track address supplied to LOCATE routine is
outside of the SYSCTLG data set extents.

Reserved.

RETRIEVING INFORMATION BY GENERATION DATA SET NAME (LOCATE AHD CAMLST NAME)

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation
number of the data set. The value of a relative generation number
reflects the position of a data set in a generation data group.
The following values can be used:

. Zero—specifies the latest data set (highest generation
number) cataloged in a generation data group.

. Negative number—specifies a data set cataloged before the

latest data set.

Positive numher—specifies a data set not yvet cataloged in
the generation data group.

Using Catalog Management Macro Instructions 5

When you use zero or a negative number as the relative generation
number, a volume list (or a volume control block) is placed in
yvour work area, and the relative generation number is replaced by
the absolute generation name.

When you use a positive number as the relative generation number,
an absolute generation name is created and replaces the relative
generation number. Zeros are read into the first 256 bytes of your
work area, because there are no entries in the catalog.

The format of the parameter list of this macro is described in
05/VS2 System Programming Libraryv: Debugaing Handbook in the
section "SVC Summary."

The format is:

[symboll LOCATE list-addrx
listname CAMLST MANE
sdsname-relex
slcvol-relexpl
sarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

NAME
this operand must be coded as shown in order to read a block
from the catalog by generation data set name.

dsname-relexp
specifies the virtual storage location of the name of the
generation index and the relative generation number. The
area that contains these must be %% bytes long. The name may
be defined by a C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ earlier in this section.

area-relexp

specifies the virtual storage location of your 265-byte work
area, which you must define. The work area must begin on a
doubleword boundary. The first 256 bytas of the work area
will contain a volume list that is built from the catalog. If
the data set resides on one volume, bytes 252 through 254 may
contain the relative track address of the DSCB. This address
is relative to the beginning of the volume.

Example: In the following example, the list of volumes that
contain generation data set A.PAY(-3) is read into virtual
storage.

LOCATE INDGX Egén CATALOG ENTRY
*
check Returns
INDGX CAMLST NAME, APAY, , LOCAREA DATA SET A.PAY (-3)°
APAY DC CL4G"A.PAY(-3)" INTO YOUR STORAGE
LOCAREA gs gDsc AREA NAMED LOCAREA.
S 6

05/VS2 System Programming Library: Data Management

()

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for a catalog entry by using
the name of a data set. APAY, the second operand, specifies the
virtual storage location of a 44-byte area into which you have
placed the name of the generation index and the relative
generation number of a data set in the generation data group.
LOCAREA, the fourth operand, specifies a 265~byte area you have
reserved to receive the catalog information.

After execution of these macro instructions, the system will have
replaced the relative generation number that you specified in
vour 44-byte area with the data set's absolute generation name.
Control will be returned to your program at the next executable
instruction after the LOCATE macro instruction. If the entry has
been located and read successfully, register 15 will contain
zeros. Otherwise, register 15 will contain a return code. For a
description of the contents of the work area or the meaning of the
exception return codes, see "Retrieving Information by Data Set
Name (LOCATE and CAMLST NAME)."

RETRIEVING INFORMATION BY ALIAS (LOCATE AND CAMLST NAME)

For each of the preceding functions, you can specify an alias as
the name of a data set. Each function is performed exactly as
previously described, with one exception: the alias name
specified is replaced by the true name. Note: Aliases are not
allowed for generation data sets (GDGs) cataloged in CVOLs.

The format of the parameter list of this macro is described in
0S/VS2 System Programming Library: Debuqging Handbook in the
section "SYC Summary."

The format is:

[symboll LOCATE list-addrx
listname CAMLST NANE
ydsname-relexp
ylevol-relexpl
rarea-relexp

list-addrx

T points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

NAME '
this opaerand must be coded as shouwn to retrieve information
from an MVS catalog.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name, the first or only name of which is the alias.
The area that contains the name must be 44 bytes long. The
name may be defined by a C-type Define Constant (DC)
instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section.

area-relexp
specifies the virtual storage location of vour 265-byte work
area, which you must define. The work area must begin on a
doubleword boundary. The first 256 bytes of the work area
will contain a volume list that is read from a V52 catalog.
If the data set resides on one volume, bytes 252 through 254%

Using Catalog Management Macro Instructions 7

may contain the relative track address of the DSCB. This
address is relative to the beginning of the volume.

Example: In the following example, the catalog entry containing a
list of the volumes on which data set A.B.C resides is read into
virtual storage. (Data set A.B.C, however, is addressed by an
alias name, X.B.C.)

LOCATE INDAB ’ RgAD CATALOG ENTRY
* FOR
Ccheck Returns
INDAB CAMLST NAME, ABC, , LOCAREA DATA SET X.B.C INTO
ABC DC CL44'X.B.C.!' VIRTUAL STORAGE AREA
LOCAREA DS 0C NAMED LOCAREA.
DS 265C

The LOCATE macro instruction points to the CAMLST macro
instruction. NAME, the first operand of CAMLST, specifies that
the system is to search the catalog for an entry using the name of
a data set. ABC, the second operand, specifies the virtual storage
location of a 44-byte area into which you have placed the fully
qualified name of a data set. (In this case, data set A.B.C is
addressed by its alias X.B.C.) LOCAREA, the fourth operand,
specifies a 265-byte area you have reserved in virtual storage.

For information on return codes and the contents of vour work area
after execution, see the section "Retrieving Information by Data
Set Name (LOCATE and CAMLST NAME)."

READING A BLOCK BY RELATIVE BLOCK ADDRESS (LOCATE AND CAMLST BLOCK)

8

You can read any block in a CV0L catalog by specifying, in the
form TTR, the identification of the block and its location
relative to the beginning of the catalog. TT is the number of
tracks from the beginning of the catalog; R is the record number
of the desired block on the track.

The format of the parameter list of this macro is described in
05/7VS2 System Programming Library: Debuqging Handbook in the
section "SVC Summary."

The format is:

[symboll LOCATE list-addrx
listname CAINLST BLOCK
sttr-relexp
scvol-relexp
sarea-relexp

list-addrx

points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

BLOCK
vou must code this operand as showun.

ttr-relexp

: specifies the virtual storage location of a 3-byte relative
block address (TTR). This address indicates the position
relative to the beginning of the catalog data set, of the
track containing the block (TT), and the block
identification (R) on that track.

0S/7VS2 System Programming Library: Data Management

c

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number for the volume to be processed.

area-relexp
specifies the virtual storage location of vour 265-byte work
area, which you must define. The work area must begin on a
doubleword boundary. The first 256 bytes of the work area
will contain the block that is read from the catalog, and the
last 6 bytes will contain the serial number of the volume on
which the block was found. If the data set resides on one
volume, bytes 252 through 254 will contain the relative
track address of the DSCB.

Example: In the following example, the block at the location
indicated by TTR is read into virtual storage.

LOCATE BLK

Check Exceptional Returns

BLK CAMLST BLOCK, TTR,VOLSER,LOCAREA
* - READ A BLOCK INTO
¥ : VIRTUAL STORAGE. AREA
TTR bC H'5? NAMED LOCAREA
DC X'03! RELATIVE TRACK 5
VOLSER DC crii1iiyy BLOCK 3 ON TRACK
LOCAREA DS 0D VOLUME SERIAL OF CVOL
DS 265¢C LOCAREA ALSO CONTAINS

6-BYTE SERIAL NO.

The LOCATE macro instruction points to the CAMLST macro
instruction. BLOCK, the first oparand of CAMLST, specifies that
the system is to search the catalog for the block indicated by
TTR, the second operand. VOLSER, the third operand, specifies the,
virtual storage location of a 6-byte volume serial number for the
volume to be processed. LOCAREA, the fourth operand, specifies a
265-byte area you have reserved in virtual storage.

After execution of these macro instructions, the 265-byte area
contains: the 256-byte block and the 6-byte serial number of the
volume on which the block was found (in bytes 259 through 264).

Control will be returned to your program at the next executable
instruction following thae LOCATE macro instruction. If the index
block at the address you specified has been successfully located
and read into your uwork area, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exception return
codes daescribed in "Retrieving Information by Data Set Name
(LOCATE and CAMLST NAME)."

BUILDING AND DELETING INDEXES

You handle CVOL indexes—build them, delete them, and so
forth—by using combinations of the INDEX and CAMLST macro
instructions.)

BUILDING AN INDEX (INDEX AND CAMLST BLDX)

To build a new index structure and add it to the catalog, vou may
create each level of the index separately. (You can also create
index levels while you are cataloging a data set onto those index
levels. To create each level of the index, use the INDEX and
CAMLST macro instructions.) .

Using Catalog Management Macro Instructions 9

These two macro instructions can also be used to add index levels
to existing index structures.

The format of the parameter list of this macro is described in
05/VS2 System Programming Library: Debugging Handbook in the
section "SVC Summary.”

The format is:

fsymboll INDEX list-addrx
listname CANMLST BLDX
shamerelexp

[ycvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

BLDX
this operand must be coded as shoun.

namerelexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name cannot
exceed 44 characters. If the name is less than 44 characters,
it must be followed by blanks. The name may be defined by a
C-tvpe define constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section.

Example: In the following example, index structure A.B.C is built
on the control volume whose serial number is 000045.

INDEX INDEXA BUILD INDEX A
Check Exceptional Returns
INDEX INDEXB BUILD INDEX STRUCTURE
* A.B
Check Exceptional Returns
INDEX INDEXC RUgLD INDEX STRUCTURE
¥
Check Exceptional Returns
INDEXA CAMLST BLDX,ALEVEL, VOLNUM
INDEXB CAMLST BLDX,BLEVEL,VOLNUM
INDEXC CAMLST BLDX,CLEVEL,VOLNUM
VOLNUM DC CL6'000045" VOLUME SERIAL NUMBER
ALEVEL DC CL2'A? INDEX STRUCTURE NAMES
BLEVEL DC CLG'A.B? FOLLOWED BY A BLANK
CLEVEL DC CL6'A.B.C? WHICH DELIMITS FIELDS

Each INDEX macro instruction points to an associated CAMLST macro
instruction. BLDX, the first operand of CAMLST, specifies that an
index level be built. The second operand specifies the virtual
storage location of the area into which you have placed the fully
qualified name of an index level. The third operand specifies the
virtual storage location of the area into which you have placed

10 05/7VS2 System Programming Library: Data Management

the 6-byte serial number of the volume on which the index level is
to be built.

Control will be returned to vour program at the next executable
instruction following the INDEX macro instruction. If the index
has been built successfully, register 15 will contain zeros.
Otherwise, register 15 will contain one of the following
exception return codes:

code Interpretation
4 The CVOL does not exist or cannot be opened.
8 One of the following happened:

. The existing catalog structure is inconsistent with the
operation requested. If the error was detected uhile
processing in a CV0L, register 0 has the number of valid
index levels and register 1 has the return code that
would have resulted if a LOCATE macro had been issued on
the same entry name. If the error was detected during
master catalog processing, register 0 contains the VSAM
catalog return code and register 1 contains zero.

. The user is not authorized to perform the operation.
Register 0 contains 56 (decimal); register 1 contains
0.

12 An attempt was made to delete an index or generation index
that has an alias or has indexes or data sets cataloged
under it. The index is unchanged.

16 The qualified name specified when building an index or
generation index implies an index structure that does not
exist; the high level index, specified when connecting
control volumes, does not exist.

20 Space is not available on the specified control volume.
26 Not used with the INDEX macro instruction.

28 A permanent I/0 error was found when processing the
catalog, or a nonzero return code from ESTAE was
encountered.

BUILDING A GENERATION INDEX (INDEX AND CAMLST BLDG)

You build a generation index in a CVOL by using the INDEX and
CAMLST macro instructions. All higher levels of the index must
exist. If the higher levels of the index are not in the catalog,
you must build them. How to build an index has been explained
previously.

The format of the parameter list of this macro is described in
05/VS2 System Programming Libraryv: Debugging Handbook in the
section "SVC Summary."

The format is:

[symboll INDEX list-addrx
listname CAMLST BLDG
snamerelexp

s[cvol-relexpl
» s [IDELETE]
» [EMPTY1

snumber-absex

Using Catalog Management Macro Instructions 11

12

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

~ 'BLDG
this operand must be coded as shoun.

hamerelexp
' specifies the virtual storage location of the fully
qualified name of a data set or index level. The name cannot
" exceed 44 characters. If the name is less, it must be
followed by blanks. The name may be defined by a C-type
define constant (DC) instruction.

cvol-relexp o
specifies the virtual storage location of a 6-byte volume: -
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section.

DELETE

specifies that all data sets on direct-access volumes that
are removed from a generation data group are to be deleted,
that is, the space allocated to the data set(s) is to be made
available for reallocation. A SCRATCH macro instruction will
be issued by the catalog management routines to delete the
data set, which will be deleted from the volume if there are
no conditions preventing deletion (for example, expiration
date not passed, password not verified, volume not mounted,
permanent I/0 error encountered while trying to delete the
data set).

EMPTY
specifies that references to all data sets in a generation
data group cataloged in the generation index are to be
removed from the index when the number of entries specified
is exceeded.

number-absexp
specifies the number of data sets to be included in a
generation data group. This number must be specified, and
cannot exceed 255.

Exarple: In this example, generation index D is built on the
control volume, serial number 000045. The higher level indexes
A.B.C already exist. When the number of generation data sets in
the generation index D exceeds four, the oldest data set is
uncataloged. WNhen the data set has been successfully uncataloged
and the DELETE operand has been specified, the catalog management
routines issue a SCRATCH macro (see "Maintaining the Volume Table
of Contents") to delete the data set. If there are no conditions
preventing the data set from baing deleted (for example, the
expiration date was not passed, the password could not be
verified, or a permanent I/0 error was encountered when trying to
delete the data set), the data set will be deleted.

INDEX GENINDX BUILD GENERATION INDEX
Check Exceptional Returns
GENINDX CAMLST BLDG,DLEVEL,VOLNUM, ,DELETE, , 4%

DLEVEL DC CL8'A.B.C.D' ONE BLANK, DELIMITER
VOLNUM DC CL6'000045"

The INDEX macro instruction points to the CAMLST macro
instruction. BLDG, operand of CAMLST, specifies that a generation
index be built. DLEVEL specifies the virtual storage location of

0S/7VS2 System Programming Library: Data Management

)

an area into which vou have placed the fully qualified name of a
generation index. VOLNUM specifies the virtual storage location
of the area into which vou have placed the 6-byte serial number of
the volume on which the generation indaex is to be built. DELETE
specifies that all data sets dropped from the generation data
group are to be deleted. The final operand, 4%, specifies the
number of data sets that are to be maintained in the generation
data group. Control will be returned to your program at the next
executable instruction following the INDEX macro instruction. If
the generation index was built successfully, register 15 contains
zeros. Otheruise, register 15 will contain one of the exception
return codes described under "Building an Index (INDEX and CAMLST
BLDX)."

DELETING AN INDEX (INDEX AND CAMLST DLTX)

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately.
Generation indexes are also removed this way. (You can also delete
index levels automatically when you uncatalog a data set.) You
delete each level of the index by using the INDEX and CAMLST macro
instructions.

If an index level either has an alias, or has other index levels
or data sets cataloged under it, it cannot be deleted.

The format of the parameter list of this macro is described in
05/VS2 System Programming Librarv: Debuqging Handbook in the
section “SVC Summary."

The format is:

[symboll INDEX list-addrx
listname CAMLST DLTX
shamerelexp

[ycvol-relexpl

list-addrx

points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

DLTX
this operand must be coded as shouwn.

name-relexp

specifies the virtual storage location of the fully
qualified name of a data set or index level. The name cannot
exceed 44 characters, If the name is less than 44 characters,
it must be followed by blanks. The name may be defined by a
C-type Define Constant (DC) instruction.

cvol-relexp

specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section.

Example: In the following example, index level C is deleted from
index structure A.B.C.

Using Catalog Management Macro Instructions 13

INDEX DELETE DELETE INDEX LEVEL
* C FROM INDEX STRUCTURE
b A.B.C
check Exceptional Returns
DELETE CAMLST DLTX,LEVELC
LEVELC DC CL6'A.B.C? ONE BLANK FOR
¥ DELIMITER

The INDEX macro instruction points to the CAMLST macro
instruction. DLTX, the first operand of CAMLST, specifies that an
index level be deleted. LEVELC, the second operand, specifies the
virtual storage location of the area into which you have placed
the fully qualified name of the index structure whose lowest level
is to be deleted. Control will be returned to your program at the
next executable instruction following the INDEX macro
instruction. If the index level(s) was successfully deleted,
reagister 15 contains zeros. Otherwise, register 15 contains one
of the exception return codes described in "Building an Index
(INDEX and CAMLST BLDX)."

ASSIGNIHNG AN ALIAS FOR AN IHDEX (INDEX AND CAMLST BLDA)

14

You assign an alias to an index level by using the INDEX and
CAMLST macro instructions. An alias can be assigned only to a high
level index; for example, index A of index structure A.B.C can
have an alias, but index B cannot. Assigning an alias to a high
lavel index effectively provides aliases for all data sets
cataloged under that index. An alias cannot be assigned to a
generation index.

The format of the parameter list of this macro is described in
05/VS52 Svystem Programming Library: Debugging Handbook in the
section "SVC Summary."

The format is:

[symboll INDEX list-addrx
listname CANLST BLDA
yindex namerelexp

[rcvol-relexpl
salias namerelexp

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

BLDA
this operand must be coded as shoun.

index namerelaxp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be 8
bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search'" earlier in this section.

05/7VS2 System Programming Library: Data Management

()

-

C

alias name-relexp

specifies the virtual storage location of the name that is to
be used as an alias for a high-level index. The area that
contains the name must be 8 bytes long. The name may be
defined by a C-type Define Constant (DC) instruction.

Example: In the following example, index level A is assigned an
alias of X.

INDEX ALIAS BUILD AN ALIAS FOR
% A HIGH LEVEL INDEX
Check Exceptional Returns
ALIAS CAMLST BLDA,DSNAME, , DSALIAS
DSNAME DC CL8'A? MUST BE 8-BYTE FIELDS
DSALIAS DC cL8'X? “

The INDEX macro instruction points to the CAMLST macro
instruction. BLDA, the first operand of CAMLST, specifies that an
alias be built. DSNAME, the second operand, specifies the virtual
storage location of an 8-byte area into which you have placed the
name af the high-level index to be assigned an alias. DSALIAS, the
fourth operand, specifies the virtual storage location of an
8-byte area into which you have placed the alias to be assigned.

Control will be returned to vour program at the next executable
instruction following the INDEX macro instruction. If the alias
has been successfully assigned, register 15 will contain zeros.
Otherwise, register 15 will contain one of the exception return
codes described in "Building an Index (INDEX and CAMLST BLDX)."

DELETING AN ALIAS FOR AN INDEX (INDEX AND CAMLST DLTA)

You can delete an alias previously assigned to a high level index
by using the INDEX and CAMLST macro instructions.

The format of the parameter list of this macro is described in
05/VS2 System Programming Library: Debugging Handbook in the
saection "SVC Summary."

The format is:

{symboll INDEX list-addrx
listname CAMLST PLTA

salias namerelexp
[,cvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

DLTA
this operand must be coded as shoun.

alias namerelexp
spacifies the virtual storage location of the name that is to
be used as an alias for a high-level index. The area that
contains the name must be 8 bytes long. The name may be
defined by a C-type Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog

Using Catalog Management Macro Instructions 15

request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™ earlier in this section.

Example: In the following example, alias X, previously assigned
as an alias for index level A, is deleted.

INDEX DELALIAS DELETE AN ALIAS FOR
* A HIGH LEVEL INDEX

Check Exceptional Returns

DELALIAS CAMLST DLTA,ALIAS
ALIAS DC cL8'X"' MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro

instruction. DLTA, the first operand of CAMLST, specifies that an

alias be deleted. ALIAS, the second operand, specifies the
virtual storage location of the 8-byte area into which vou have
placed the alias to be deleted.

COMNECTING AND DISCONNECTING CONTROL VOLUMES

You connect and disconnect control volumes by using combinations
of the INDEX and CAMLST macro instructions.

CONNECTING CONTROL VOLUMES (INDEX AND CAMLST LHKX)

16

You connect two control volumes (CVOLs) by using the INDEX AND
CAMLST macro instructions.

You must supply the serial number of the volume to be connected
and the high-level index name that will be used to associate the

two volumes. If the index name is an alias of a CVY0L pointer entry
in the master catalog, then the serial number of the "from" volume

may be omitted. Otherwise, vou must supply the serial numbers of
both volumes and the name of a high-level index associated with
the volume to be connected.

The result of connecting control volumes is that the volume serial

number of the control volume connected and the name of a
high-level index are entered into the volume index of the volume
to which it was connected. This entry is called a control volume
pointer.

The format of the parameter list of this macro is described in
05/V52 System Programming Library: Debugging Handbook in the
section "SVC Summary."

The format is:

[symboll INDEX list-addrx
listname CAMLST LNKX
sindex _namerelexp

slcvol-relexpl
shew cvol-relexp

list-addrx
points to the parameter list (labeled listname) set up by the

CAMLST macro instruction.

LNKX
this operand must be coded as shown.

05/7VS52 System Programming Library: Data Management

TN

4

C

index name relexp
srecifies the virtual storage location of the name of a
high-level index. The area that contains the name must be 8
bytes long. The name may be defined by a C-typa Define
Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search™" earlier in this section.

new cvol-relexp
specifies the virtual storage location of the 4-byte device
code and 6-byte volume serial number of the control volume
that is to be connected to another control volume.

Example: In the following example, the control volume whose
sarial number 1s 001555 is connected to the control volume
numbered 000155. The name of the high-level index is HIGHINDX.

INDEX CONNECT CONNECT TWO CONTROL
% VOLUMES

check Exceptional Returns

CONNECT CAMLST LNKS, INDXNAME, OLDCVOL
* WHOSE SERIAL NUMBERS

INDXNAME DC CL8'HIGHINDX' ARE 000155 ARD 001555.

oLDCVOL DC CL6'000155"

NEWCVOL DC X'30€02008" 2314 DISK DEVICE CODE
. DC CL6'001555"

The INDEX macro instruction points to the CAMLST macro
instruction. LNKX, the first operand of CAMLST, specifies that
control volumes be connected. INDXNAME, the second operand.
specifies the virtual storage location of the 8-bvte area into
which you have placed the name of the high-level index of the
volume to be connected. OLDCVOL, the third operand, specifies the
virtual storage location of a 6-byte area into which vou have
placed the serial number of the volume to which you are
connecting.

NEWCVOL, the fourth operand, specifies the virtual storage
location of a 10-byte area into which vou have placed the 4~-byte
binary device code of the volume to be connected followed by the
6-byte area to contain the volume serial number of the volume to
"be connected.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the control
volumes have been successfully connected, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
exception return codes described in the section "Building an
Index (INDEX and CAMLST BLDX)."

DISCONNECTING CONTROL VOLUMES (INDEX AND CAMLST DRPX)

You disconnect two control volumes by using the INDEX and CAMLST
macro instructions.

The result of disconpecting control volumes is that the control

volume pointer is removed from the volume index of the volume from
which you are disconnecting.

Using Catalog Management Macro Instructions 17

The format of the parameter list of this macro is described in
057VS2 Svstem Programming Library: Debugging Handbook in the P
saection "SVC Summary."

“
The format is:
[symboll INDEX list-addrx
listname CAMLST DRPX
yindex namerelexp
[rcvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

DRPX
this operand must be coded as shoun.

index namerelexp
specifies the virtual storage location of the name of a
high-level index. The area that contains the name must be 8
bytes long. The name may be defined by a C-type Define
Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of a 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section. i

Example: In the following example, the control volume that

contains the high-level index HIGHINDX is disconnected from the

CVOL pointed to by the entry 'HIGHINDX' in the master catalog. -

INDEX DISCNECT DISCONNECT TWO
¥ CONTROL VOLUMES

check Exceptional Returns

DISCNECT CAMLST DRPX, INDXNAME
INDXHNAME DC CL8'HIGHINDX' MUST BE 8-BYTE FIELD

The INDEX macro instruction points to the CAMLST macro
instruction. DRPX, the first operand of CAMLST, specifies that
control volumes be disconnected. INDEXNAME, the second operand,
specifies the virtual storage location of the 8-byte area into
which you have placed the name of the high-level index of the
control volume to be disconnected.

Control will be returned to your program at the next executable
instruction following the INDEX macro instruction. If the control
volumes were successfully disconnected, register 15 will contain
zeros. Dtherwise, register 15 will contain one of the exception
return codes described in the section "Building an Index (INDEX
and CAMLST BLDXO."

HORKING WITH NONVSAM DATA SET CATALOG ENTRIES

You can catalog, uncatalog, and recatalog non-VSAM data sets by

using combinations of the CATALOG and CAMLST macro instructions.

CATALOG macro instructions are used to point to CAMLST macro o
instructions; CAMLST macroe instructions are used to specify

cataloging options. \\

18 05/V52 System Programming Library: Data Management

CATALOGING A NONVSAM DATA SET (CATALOG AND CAMLST CAT)

The format of the parameter list of this macro is described in
0S5/VS2 System Programming Library: Debugging Handbook in the
section "SVC Summary."

The format of the CATALOG and CAMLST macros is:

[symboll CATALOG ist-addrx
listname CANLST CATIBX]
sname-relexp

slecvol-relexpl
svol list-relexp

[,DSCBTTR=dscb ttr-relexpl

list-addrx

points to the parameter list (labeled listname) set up by the
CAMLST macro instruction. “

CAT(BX]
this operand must be coded as shown. Either CAT or CATBX may
be coded but in either case missing indexes within a CV0L are
always automatically created.

name-relexp

specifies the virtual storage location of the fully
qualified name of a data set. The name cannot exceed %4
characters. If the name is less than 44 characters, it must
be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp

specifies the virtual storaae location of the 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search" earlier in this section.

vol list-relexp

specifies the virtual storagae location of an area that
contains a volume list. The list must begin on a halfword
boundary and consist of an entry for each volume on which the
data set is stored. The first two bytes of the list indicate
the number of entries in the volume list; the number cannot
be zero. Each 12-byte volume list entry consists of a 4-byte
device code, a 6-byte volume serial number, and a 2-byte data
set sequence number. The sequence number is always zero for
direct access volumes. (Device codes are presented in 05/VS2
Svstem Programming Library: Debugging Handbook.)

DSCBTTR=dscbh ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the format-1 data set
control block (DSCB) for a data set that resides on only one
volume. The address is relative to the beginning of the
volume.

Programming Considerations for Multiple-Step Jobs

When vou are executing multiple-step jobs, it is preferable to
catalog or uncatalog data sets using JCL, instead of using
IEHPROGM or a user program. Since ALLOCATION/UNALLOCATION"
monitors data sets during job execution, and it is not aware of
the functions performed by the user programs, conflicting
functions can be performed or GDG orientation can be lost.

UNALLOCATION re-catalogs existing cataloged data sets at job
termination. This action occurs because the data set is opened
sometime during the job and the DSCB TTR was not found in the
catalog entry. Therefore, if you are using the CAMLST macro to

Using Catalog Management Macro Instructions 19

20

uncatalog and then catalog data sets with new volume information,

be sure to include the DSCB TTR.

Examrple: In the following example, the non-VSAM data set named
A.B.C is cataloged. The data set is stored on two volumes.

CATALOG ADDABC

Check Returns
CAT,DSNAME, , VOLUMES

ADDABC CAMLST
DSNAME DC
VOLUMES DC

DC

DC

DC

DC

DC

DC

CL6'A.B.C!
H'2'

X'30C02008"
CL6'000016"
H'O'

X'30C02008"
CL6'000015"
H'O' '

CATALOG DATA SET A.B.C.

ONE BLANK FOR DELIMITER
DATA SET ON TWO VOLUMES
2314 DISK DEVICE CODE
VOLUME SERIAL NUMBER
DATA SET SEQUENCE NUMBER
2314 DISK DEVICE CODE

"VOLUME SERIAL NUMBER

SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro

instruction. CAT, the first operand of CAMLST, specifies that a
data set is to be cataloged. DSNAME, the second operand, specifies
the virtual storage location of the area in which the name A.B.C

was placed. VOLUMES, the fourth operand, specifies the virtual
storage location of the volume list that was built.

Control will be returned at the instruction following the CATALOG
macro instruction. If A.B.C was successfully cataloged, register
15 will contain zeros. Otherwise, register 15 will contain one of

the following return codes:

code Meaning

4 Either the required catalog does not exist, it is not open,

or the "do not allocate” bit is on.

8 One of the following happened:

. The existing catalog structure is inconsistent with the
If the error was detected while
processing in a CVOL, register 0 has the number of valid

operation requested.

index levels and register 1 has the return code that

would have resulted if a LOCATE macro had been issued

for the same entry name. If the error was detected in a

VSAM catalog, register 0 contains the VSAM catalog
return code and register 1 contains zero.

[The user 15 not authorized to perform the operation.

Register 0 contains decimal 56 and register 1 contains

Zero.

12 Not used with the CATALOG macro instruction.

16 The index structure necessary to catalog the data set does
not exist.

20 There is insufficient space on the catalog data set.

24 An attempt was made to catalog an improperly named

generation data set, or the generation index is full and the

named data set is older than any currently in the index.

28 One of the following happened:

. A permanent I/0 or unrecoverable error was encountered.

05/7VS2 System Programming Library: Data Management

=

—~

N

. An error was found in a parameter list.
(:d . An I/0 error occurred in a CVOL.

U There was a nonzero return code from ESTAE.

UNCATALOGING A NONVSAM DATA SET (CATALOG AND CAMLST UNCAT)

- When the UNCAT or UCATDX operand of the CAMLST macro instruction
is used, a data set reference and unneeded indexes, with the
exception of the highest-level index, are removed.

- The format of the parameter list of this macro is described in
05/VS2 System Programming Library: Debuqging Handbook in the
section "SVC Summary."

fhe format of the CATALOG and CAMLST macros is:

[symboll CATALOG list-addrx
listname CAMLST UNCAT or UCATDX
shame-relexp
[ycvol-relexpl

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

UNCAT or UCATDX
this operand must be coded as shown. Either UNCAT or UCATDX
may be coded but in either case unneeded indexes, with the
exception of the highest-level index, are always removed
along with the data set reference.

name-relexp
specifies the virtual storage location of the fully
qualified name of a data set or index level. The name cannot
exceed 44 characters. If the name is less than 44 characters,
it must be followed by blanks. The name may be defined by a
C-typa Define Constant (DC) instruction.

cvol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effact of
specifying or omitting this operand, see "Catalog Order of
Search"” earlier in this section.

In the following example, the catalog entry for data set A.B.C is
removed from an MVS catalog. In a CVOL, index B is removed unless
it contains references to other data sets. Index A remains because
it is the highest level index.

CATALOG REMOVE REMOVE REFERENCES TO
* DATA SET A.B.C FROM
* CATALOG
check Returns
REMOVE CAMLST UNCAT, DSNAME
DSNAME pC CL6'A.B.C! ONE BLANK FOR DELIMITER

- The CATALOG macro instruction points to the CAMLST macro
instruction. UNCAT specifies that references to a data set be
) removed from the catalog. DSNAME specifies the virtual storage

Using Catalog Management Macro Instructions 21

location of the area into which you have placed the fully .
qualified name of the data set whose references are to be removed.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If vour data set has been
succaessfully uncataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described in the section "Cataloging a NonVSAM Data Set (CATALOG
and CAMLST CAT)."

RECATALOGING A NONVSAM DATA SET (CATALOG AND CAMLST RECAT)

You can recatalog a cataloged non-VYSAM data set by using the’
CATALOG and CAMLST macro instructions. Recataloging is usually
necessary if a data set is extended to a new volume.

“As in the original cataloging procedure, you must build a complete
volume list in virtual storage. This volume list consists of an
entry for each volume on which the data set resides. The first 2
bytes of the list indicate the number of entries in the list; the
number may not be zero. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte
data set sequence number. The sequence number is always zero for
direct access volumes. (Device codes are presented in 05/VS2
System Programming Library: Debugging Handbook.)

The format of the parameter list of this macro is described in
05/VS2 System Programming Library: Debugging Handbook in the
section "SVC Summary."

The format of the CATALOG and CAMLST macros is:

[symboll CATALOG list-addrx

listname CAMLST RECAT

sname-relexp
slcvol-relexpl

»vol list-relexp
[,DSCBTTR=dschb ttr-relexpl

list-addrx

points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

RECAT
this operand must be coded as shown.

name-relexp
spacifies the virtual storage location of the fully
aqualified name of a data set. The name cannot exceed 44
characters. If the name is less then 44 characters, it must
be followed by blanks. The name may be defined by a C-type
Define Constant (DC) instruction.

cvol-relexp ;
specifies the virtual storage location of the 6-byte volume
serial number of the CVOL catalog to which this catalog
request is directed. For a discussion of the effect of
specifying or omitting this operand, see "Catalog Order of
Search"™ earlier in this section.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a half-word
boundary.

DSCBTTR=dscb_ttr-relexp
specifies the virtual storage location of the 3-byte
relative track address (TTR) of the identifier (format-1)
DSCB for a data set that resides on only one volume. The
address is relative to the beginning of the volume.

05/7VS2 System Programming Library: Data Management

S

o

Example: In the following example, the two-volume data set named
A.B.C is recataloged to add a third volume. An entry is added to
the volume list, which previously contained only two entries.

CATALOG RECATLG RECATALOG DATA SET

X A.B.C. ADDING A NEW
* VOLUME

Check Returns
RECATLG CAMLST RECAT,DSNAME, , VOLUMES

DSNAME DC CL6'A.B.C' EO%NTER TO THE VOLUME
* IST.
VOLUMES DC H'3' FOR DELIMITER ONE BLANK
* THREE VOLUMES.
DC X'30C02008" 2314 DISK DEVICE CODE
DC CL6'000014" VOLUME SERIAL NUMBER
DC H'O' SEQUENCE NUMBER
DC X'30C02008" 2314 DISK DEVICE CODE
DC CL6'000015°" VOLUME SERIAL NUMBER
DC H'O! SEQUENCE NUMBER
DC X'30C02008" 2314 DISK DEVICE CODE
DC CL6'000016" VOLUME SERIAL NUMBER
DC H'O" SEQUENCE NUMBER

The CATALOG macro instruction points to the CAMLST macro
instruction. RECAT, the first operand of CAMLST, specifies that a
data set be recataloged. DSNAME, the second operand, specifies
the virtual storage location of an area into which vou have placed
the fully qualified name of the data set to be recataloged.
VOLUMES, the fourth operand, specifies the virtual storage
location of the volume list you have built.

Control will be returned to your program at the instruction
following the CATALOG macro instruction. If the data set has been
successfully recataloged, register 15 will contain zeros.
Otherwise, register 15 will contain one of the return codes
described in the section "Cataloging a NonVSAM Data Set (CATALOG
and CAMLST CAT)."™

Using Catalog Management Macro Instructions 23

CVOL CATALOG ENTRY FORMATS

This section describes the format and contents of each of the
entries that may appear in the catalog.

VOLUME INDEX CONTROL ENTRY

Field 1 Field 2 Field 3
X'0000000000000001" 05
Name TIR of last Count
block in
volume index
] 8 11 12
Field 4 Field 5 Field 6 Field 7 Field 8
00 00
TTR of TTR of first Unused
last block unused block bytes
in SYSCTLG in SYSCTLG
data set data set

12 15 16 » 19 20

< Total Length: 22 Bytes >

Fiald 1: Name (8 bytes)—contains only a binary one to ensure that this entry is the
first entry in the first block of the index. ‘

Field 2: Last-block address (3 bytes)—contains the relative track address (TTR) of

' the last block in the volume index.

Field 3: Halfuword count (1'byte)—contains a binary five to indicate that five
halfwords follow. _

Field 4: Catalog upper limit (3 bytes)—contains the relative track address (TTR) of
the last block in the catalog data set.

Field 5: Zero field (1 byte)—contains binary zeros.

Field 6: First—available-block address (3 bytes)—contains the relative track
address (TTR) of the unused block in the catalog that is closest to the
beginning of the catalog data set.

Field 7: Zero field (1 byte)—contains binary zeros.

Field 8: Unused (2 bytes)

Figure 1. The Volume Index Control Entry

26 05/V52 System Programming Library: Data Management

0)

C

INDEX CONTROL ENTRY

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
X'00000000000000001" 03
Hame TTR of Count TTR of Alias Unused
last first count bytes
block in block in
this this
index index
0 8 11 12 15 16
< Total Length: 18 Bytes >

This index control entry is quite similar to a volume index control entry, but it only

contains information about the index, which it begins.
contains six fields.

It is 18 bytes long and

Name (8 bytes)—contains only a binary one to ensure that this entry,
because it has the lowest binary name value, is the first entry in the

Last block address (3 bytes)—contains the relative track address (TTR) of
the last block assigned to this index.

Halfuword count (1 byte)—contains a binary three to indicate that 3

Index lower limit (3 bytes)—contains the relative track address (TTR) of

the block in which this entry appears.

Number of aliases (1 byte)—contains the binary count of the number of
aliases assigned to the index. If the index is not a high level index, this

Field 1:
first block of the index.
Field 2:
Field 3:
halfuwords follow.
Field 4:
Field 5:
field is zero.
Field 6: Unused (2 bytes)
Figure 2. The Index Control Entry

Using Catalog Management Macro Instructions 25

"INDEX LINK ENTRY:AND INDEX POINTER ENTRY

Index Link Entry

Field 1 Field 2 Field 3

X'FFFFFFFFFFFFFFFFY ‘ 00
Name TTR of next block Count

in index (or zero
if no next block)

0 8 11

< Total Length: 12 Bytes >
Index Pointer Entry

Field 1 Field 2 Fiald 3

Index name (padded to TTR of index ggunt

right with blanks if

necessary)
0 8 11
< Total Length: 12 Bytes >

The index link and index pointer entries are quite similar. An index link entry is used
to chain several blocks of an index together, and an index pointer entry is used to
chain an index to the next lower level index. An index link entry is always the last
entry in any index block. These blocks contain three fields and are 12 bytes long.

Field 1: Name (8 bytes)——contains the name of the index to which this entry points.

If the entry is an index link entry, the name field contains X'FF FF FF FF
FF FF FF FF'.

Field 2: Address (3 bytes)—contains either the relative block address (TTR) of the
first block of the next level index if it is an index pointer entry, or the
relative block address (TTR) of the next block of the same level index if
it is-an index link entry.

Field 3: Halfword count (1 byte)—contains 1 byte of binary zeros to indicate that
the entry ends here.

Figure 3. The Index Link and Index Pointer Entries

26 05/V52 System Programming Library: Data Management

DATA SET POINTER ENTRY

Field 1 Field 2 Field 3 Field 4
Lowest level name of DSCB Count Volume
data set or complemented{ TTR or count
generation number zaros
(if part ‘of GDG)
0 ‘ 8 11 12 14
Field 5 Field 6 Field 7
Device Serial number Data set
Code of volume on sequence
which data number (zero
set resides for direct
access
14 18 26

. v
Repeated for each volume

< / 7/ Total Length: 26 to 74 Bytes >

The data set pointer entry can appear in any index. It contains the simple name of a
data set and from one to five 12-byte fields, each of which identifies a volume on
which the named data set resides. If the data set resides on more than five volumes, a
volume control block pointer entry is substituted for the data set pointer entry. A
volume control block pointer entry points to a volume control block or chain of volume
control blocks that point to the volumes that contain the data set.

The data set pointer entry varies in length. The length is determined by the formula 14
+ 12m, whera m is the number of volumes containing the data set. The variable m can be
from one to five. The data set pointer entry can appear in any index, and it contains
five fields.

Field 1: Name (8 bytes)—contains the simple name of the data set whose volumes are
identified in field 5. If part of a 6DG, these names have the format
OxxxxV00, where xxxx is the complement of the GDG number.

Field 2: DSCB TTR (3 bytes)—contains the track address (TTR) of the data set
control block if the data set resides on one volume. If the data set
resides on more than one volume, this field contains binary zeros.

Field 3: Halfword count (1 byte)—contains the binary count of the number of
hal fuords that follow. The number is found by the formula 6m + 1, wherem is
the number of volumes on which the data set resides. The variable m can be
from one to five.

Field 4: Volume count (2 bytes)—contains the binary count of the number of volumes
identified in field 5 of this entry.

Fiald 5: Davice code (4 bytes)—contains the device code of the device‘on which the
volume with the volume serial number in field 6 can be mounted.

Field 6: Volume serial number (6 bytes)—-contains the volume serial number of one of
the volumes of the data set.

Field 7: Volume sequence number (2 bytes)—contains the sequence number of the data
set on a magnetic tape volume. It is zero for any other device class.

Figure 4. The Data Set Pointer Entry

Using Catalog Management Macro Instructions 27

VOLUME CONTROL BLOCK POINTER ENTRY

Field 1

Lowest level
of data set
name

Field 2

TTR of
volume

control

block

Field 3
01

Count

Field ¢
0000
Dummy
data

_entry

]
<

The volume control block pointer entry is used instead of a data set pointer entry when
the data set resides on more than five volumes. This entry points to a volume control
block, which, in turn, describes the data set. The entry is 14 bytes long.

Field 1: Name (8 bytes)—contains the last name of the qualified name of the data
set identified by this entry.

Field 2: Address (3 bytes)—contains the relative block address (TTR) of the volume
‘ control block identifying the volumes containing the data set named in
field 1.

Field 3: Halfword count (1 byte)—contains a binary one to indicate that one

Total Length:

halfword follows.

14 ByteQ

Field 4: Zero f\eld (2 bytes)—contains b1nary zeros.

Flgure 5 The Volume Control Block Pointer Entry

28 0S/7VS2 System Programming Library: Data Management

.

VOLUNE CONTROL BLOCK

Field 1 Field 2 Field 3 Field 4
Count Device Serial Data set sequence
Code number number for the
of volume n volume described
in field 5. Zero
for direct access
0 m m+4 m+10
' y
Repeated once for each volume; maximum of 20
Field 5o Field 6 Field 7
: 00
Ten bytes TTR of next
of zeros volume control
block, or =zero
if none
2642 252 255
< Total Length: 256 Bytes— / 7/ >

A volume control block contains the description of all the volumes of a data set that
residas on more than five volumes. If a data set residaes on less than six volumes, a
volume control block is not built and the volumes are described in a data set pointer
entry. One volume control block can describe as many as 20 volumes. Volume control
blocks may be chained together to catalog a data set residing on more than 20 volumes.

The volume control block is always 256 bytes long, regardless of the number of volumes:

described.

Field 1:

Fields 2, 3, 4:

Field 5:
Field 6:

Field 7:

Volume count (2 bytes)—the first volume control block contains the
binary count of the total number of volumes on which the data set
resides. The value of this field is reduced by 20 for each
subsequent volume control block. If, for example, the data set
resides on 61 volumes, thera will be four volume control blocks for
the data set. The volume count field of each will contain 61, 41,
21, or 1, respectively.

Volume identification (12 to 240 bytes)—contains from one to
twenty each of which identifies a volume on which the data set
resides. Each entry contains a 4-byte device code, a 6~byte volume
serial number, and a 2-byte data set sequence number. The data set
sequence nhumber is zero for data sets on direct-access volumes.

Zero field (10 bytes)—contains binary zeros.

Chain address (3 bytes)-—contains the relative block address (TTR)
of the next volume control block, if additional blocks are needed to
describe the data set. If this is the last volume control block for
the data set, this field will be set to binary zeros.

Zero field (1 byte)—contains binary zeros.

Figure 6. The Volume Control Block

Using Catalog Management Macro Instructions 29

CONTROL VOLUME (CVOL) POINTER ENTRY

TN
N s
Field 1 Field 2 Field 3
Name of index on Dummy pointer 22unt
other control volume field: zeros
0 8 11 12
Field 4 Field 5
Device code of Serial number of
control volume control volume
12 16
< Total Length: 22 Bytes >

Note: Prior to Release 17, the control volume pointer entry contained a count of 03
and did not have a device code field (field 4).

The CVOL pointer entry is used to indicate that a particular index resides on a volume
other than the system residence volume. Control volume pointer entries can exist only
in the volume index. They are 22 bytes long.

Field 1: Name (8 bytes)—contains a high-level index name that appears in the volume
index of the control volume identified in fields 4 and 5.

Field 2: Address (3 bytes)—contains zeros, because this entry references no other
entry in the catalog.

Field 3: Halfword count (1 byte)—contains the number 5 to indicate that five <
halfwords follow.

Field 4: CVOL device code (4 bytes)—This field contains the device code of the
spacified control volume.

Field 5: CVOL volume serial number (6 bytes)—contains the volume serial number of
the contrel volume which has an entry in its volume index of the same name
as this entry.

Figure 7. The Control Volume (CVOL) Pointer Entry

CONTROL VOLUNME POINTER ENTRY (OLD)

Until Release 17 of 0S MFT/MVT, the control volume pointer entry
was the same as the present control volume pointer, except that
there was no field ¢ (device code). The old CVOL pointer entry was
18 bytes long; after Release 17, it is 22 bytes long. Since some
control volumes may still contain entries in the old format, and
since the catalog management routines still check for it, it is
mentioned here.

- 30 0S/7VS2 System Programming Library: Data Management

GENERATION INDEX POINTER ENTRY

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Name TTR Count Flags Maximum Current
Count Count
0 8 11 12 13 14
< Total Length: 16 Bytes >

A generation index pointer entry is the entry that identifies a generation data group
(GDG). It represents the next to the lowest level of a group of generation data set
names. It is created by using the BLDG macro.

Field 1: Name (8 bytes)—this name represents the GDG level that is next to the
lowest level of GDG data set names.

Field 2: Address (3 bytes)—contains the relative track address (TTR) of the first
block of the lavel containing the lowest level GDG names. These names have
the format GxxxxV00, where x is a complement of the GDG number.

Field 3: Count (1 byte)—X'02' identifies this entry and indicates the number of
halfuwords that follow this field.

Field 4: Flags (1 byte)—indicates the options specified by the creator of the GDG.
X'02'=DELETE option.
X'01'=EMPTY option.

Field 5: Maximum Count (1 byte)—a binary number that specifies the maximum number
of generations allowed in the generation index at one time.

Field 6: Current Count (2 bytes)—the binary count of the number of generations
currently cataloged in the generation data group (GDG).

Figure 8. Generation Index Pointer Entry

Using Catalog Management Macro Instructions 31

ALIAS NAME

Field 1 Field 2 Field 3 Field 4
Alias “ame TTR é;g:; True Name
: pointer
0 8 11 12
< Total Length: 20 Bytes >

An alias entry defines an alternate name for the high-level qualifier of a data set
name.

Field 1: Name (8 bytes)—contains the alias of the high-level index whose relative
track address is found at field 2.

Field 2: Address (3 bytes)—contains the relative track address (TTR) of the first
block of the index named in field 4.

Field 3: Halfword count (1 byte)—identifies this entry and contains the binary
count of the number of halfwords that follow. The number is X'04".

Field §: True name (8 bytes)—contains the name of the index whose alias appears in
: field 1. :

Figure 9. Alias Name

32 057Vs2 System Programming Library: Data Management

a

MAINTAINING THE VOLUME TABLE OF CONTENTS

INTRODUCTION

This chapter contains information on how to read and change the
volume table of contents (VT0OC) used on direct-access storage
device volumes. The information consists of how-to information,
macro specifications, and coding examples for the OBTAIN,
SCRATCH, and RENAME macro instructions.

More detailed information about how the routines called by these
macros work is available in 05/VS2 DADSM Logic. .

Before using the information in this chapter you should be
familiar with the information contained in the following
publications:

. 05/VS—DOS/VS-YM/3708 Assembler Language, which contains
information you will need in order to code programs in the
assembler language.

. 05,VS2 MYS Data Management Services Guide, contains a general
description of direct-access device characteristics and the
volume table of contents.

e 05/VS2 MVS Utilities, tells how to use utility programs to
maintain the volume table of contents.

. 0S5/VS2 System Programming Library: Debugging Handbook, which
contains descriptions of (1) the data set control block
(DSCB) formats and (2) the contents of the fields of each
DSCB.

. Data Facility Device Support: User's Guide and Reference
contains information about VT0C indexes.

In the sama way that the catalog management routines keep track of
cataloged data sets, the direct-access device space management
(DADSM) routines maintain the volume table of contents (VTOC) on
direct-access storage devices. This chapter tells how to use the
OBTAIN, SCRATCH, and RENAME macro instructions. These macros are
most commonly used by the system control program and the data set
utility programs (IEHMOVE, IEBCOPY, and IEHPROGM), but you may
use them in your own routines. The functions you can perform with
these macros are:

. Reading a data set control block from the VIOC—O0OBTAIN
. Deleting a data set—SCRATCH
. Changing the name of a data set—RENAME

You can read a data set control block (DSCB) into virtual storage
by using the OBTAIN and CAMLST macro instructions. There are two
wavs to specify the DSCB that vou want to read: by using the name
of the data set associated with the DSCB, or by using the absolute
track address of the DSCB. You must provide a 140-byte data area
in virtual storage, into which the DSCB will be read. When vou
speci Ty the name of the data set, an identifier (format-1 or
format-4) DSCB is read into virtual storage. To read a BSCB other
than a format-1 or a format-4 DSCB, you must specify an absolute
track address (see second example). (DSCB formats and field
descriptions are contained in 05/VS2 System Programming Library:
Debugqing Handbook.)

You can delete a data set by using the SCRATCH and CAMLST macro
instructions. This causes the DSCBs for the data set to be
deleted.

Maintaining the Volume Table of Contents 33

You can change a data set name by usina the RENAME and CAMLST
macro instructions. This causes the data set name in the
identifier (format-1) DSCB for the data set to be replaced with
new name,

Accompanying the descriptions of the macro instructions are
coding examples, programming notes, and exception return code
descriptions.

Note: OBTAIN, SCRATCH, and RENAME macro instructions cannot ka
used with a SYSIN or SYSOUT data set.

READING A DSCB BY NAME (OBTAIN AND CAMLST SEARCH)

If vou specify a data set name using OBTAIN and the CAMLST SEARCH
option, the 96-byte data portion of the identifier (format-1)
DSCB and the absolute track address of the DSCB are read into
virtual storage. The absolute track address is a 5-byte field in
the form CCHHR. The absolute track address field will contain
zeros for VSAM and VIO data sets.

The format of the parameter list of this macro is described in
05/VS52 System Programming Library: Debugging Handbook in the
section "SVC Summary."”

The format is:

[symboll OBTAIN list-addrx
listname CAMLST SEARCH

sdsname-relexp
svol-relex

ruwkarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

SEARCH
this operand must be coded as showuwn.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long.

Note: A DSNAME of 64 bytes of X'04' can be used to read a
format-4 DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp
specifies the virtual storage location of a 140-byte work
area that you must define.

Example: In the following example, the identifier (format-1) DSCB
for data set A.B.C is read into virtual storage using the SEARCH

option. The serial number of the volume containing the DSCB is
770655.

34 0S/7VS2 System Programming Library: Data Management

OBTAIN DSCBABC READ DSCB FOR DATA
¥ SET A.B.C INTO DATA
¥ AREA NAMED WORKAREA

Check Returns
DSCBABC CAMLST SEARCH,DSABC, VOLNUM, WORKAREA

DSABC DC CL4G'A.B.C! DATA SET NAME
VOLNUM DC CL6'770655" VOLUME SERIAL NUMBER
WORKAREA DS 140C 140-BYTE WORK AREA

The OBTAIN macro instruction points to the CAMLST macro
instruction. SEARCH, the first operand of CAMLST, specifies that
a DSCB be read into virtual storage, using the data set name you
have supplied at the address indicated in the second operand.
DSABC, the second operand, specifies the virtual storage location
of a 44-byte area into which you have placed the fully qualified
name of the data set whose format-1 DSCB is to be read. VOLNUM,
the third operand, specifies the virtual storage location of a
t-byte area into which you have placed the serial number of the
volume containing the required DSCB. WORKAREA, the fourth
operand, specifies the virtual storage location of a 140-byte
work area into which the DSCB is to be returned.

Control will be returned to your program at the next executable
instruction following the GBTAIN macro instruction. If the DSCB
has been successfully read into vour work area, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes:

code Meaning
4 The required volume was not mounted.

12 A permanent I/0 error was encountered, or an invalid
format-1 DSCB was found when processing the specified
volume, or an unexpected error return code was received
from CVAF (Common VTO0C Access Facility).

16 Invalid work area pointer.

After execution of these macro instructions, the first 96 bytes of
the work area contain the data portion of the identifier (format-1
or format-4) DS5CB; the next 5 bytes contain the absolute track
address (CCHHR) of the DSCB. These 5 bytes will contain zeros for
VSAM or VIO data sets.

READING A DSCB BY ACTUAL DEVICE ADDRESS (OBTAIN AND CAMLST SEEK)

You can read any DSCB from a VT0C using OBTAIN and the CAMLST SEEK
option. You specify the SEEK option by coding SEEK as the first
operand of the CAMLST macro and by providing the absolute device
address of the DSCB you want to read, unless the DSCB is for a VIO
data set. Only the SEARCH option can be used to read the DSCB of a
VIO data set.

The format of the parameter list of this macro is described in
0S/VS2 System Programming Library: Debugging Handbook in the
saction "SVC Summary.”

Maintaining the Volume Table of Contents 35

36

The format is:

[symboll OBTAIN list-addrx
listname CAHLST SEEK

scchhr-relexp
svol-relex

swkarea-relexp

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

SEEK
this operand must be coded as shoun.

cchhr-relexp
specifies the virtual storage location of the 5- byte
absolute davice address (CCHHR) of a DSCB.

vol-relexp
specifies the virtual storage location of the 6-byte volume
serial number of the volume on which the DSCB is located.

wkarea-relexp

specifies the virtual storage location of a 140~byte work
area that you must define.

Example: In the following example, the DSCB at actual-device
address X'00 00 00 01 07' is returned in the virtual storage
location READAREA, using the SEEK option. The DSCB resides on the
volume with the volume serial number 108745.

OBTAIN ACTADDR READ DSCB FROM
LOCATION SHOWN IN CCHHR
INTO STORAGE AT LOCATION
NAMED READAREA

X XK X

check Returns
ACTADDR CAMLST SEEK, CCHHR, VOLSER,READAREA

CCHHR DC XL5'0000000107% ABSOLUTE TRACK ADDRESS
VOLSER bC CL6'108745" VOLUME SERIAL NUMBER
READAREA DS 140C 140-BYTE WORK AREA

The OBTAIN macro points to the CAMLST macro. SEEK, the first
operand of CAMLST, specifies that a DSCB be read into virtual
storage. CCHHR, the second operand, specifies the storage
location that contains the 5-byte actual-device address of the
DSCB. VOLSER, the third operand specifies the storage location
that contains the volume serial number of the volume on which the
DSCB resides. The fourth operand, READAREA, specifies the storage
location to which the 140-byte DSCB is to be returned.

Control will be returned to vour program at the next executable
instruction following the OBTAIN macro instruction. If the DSCB
has been successfully read into vour work area, register 15 will
contain zeros. Otherwise, register 15 will contain one of the
following return codes:

0S/7VS2 System Programming Library: Data Management

AN

Code Meaning

4 The required volume was not mounted.

8 The format-1 DSCB was not found in the VT0C of the specified
volume.

12 A permanent 170 error was encountered, or an invalid

format-% DSCB was found when processing the specified
volume, or an unexpected error return code was received
from CVAF (Common VTOC Access Facility).

16 Invalid work area pointer.

20 The SEEK option was specified and the absolute track
address (CCHH) is not within the boundaries of the VTO0C.

DELETING A DATA SET (SCRATCH AND CAMLST SCRATCH)

You delete a data set stored on direct-access volumas by using the
SCRATCH and CAMLST macro instructions. This causaes all data set
control blocks (DSCBs) for the data set to be deleted, and all
space occupied by the data set to be made available for
reallocation. If you want to scratch a data set being processed
using virtual input/output (VI0), the data set must have been
allocated for use by vour job. Scratching VIO data sets not
allocated to your job is not allowed.

If the data set to be deleted is sharing one or more cylinders
Wwith one or more data sets (a split-cylinder data set), the space
will not be made available for reallocation until all data sets on
the shared cylinders are deleted.

A data set cannot be deleted if the expiration date in the
identifier (format-1) DSCB has not passed, unless yau choose to
ighore the expiration date. You specify that the expiration date
is to be ignored by using the OVRD option in the CAMLST macro
instruction.

Refer to 05/V52 MVS Resource Access Control Facility (RACF):
General Information Manual for information on RACF-defined data
sets. You may only scratch a RACF-defined data set (that is, the
DSCB indicates RACF-defined) if you have alter access authority
to either the data set/volume serial in the DATASET class, or to
the volume serial in the DASDVOL class (if the volume is
RACF-defined).

Refer to Data Facility Device Support: User's Guide and Reference
for information on scratching a VTOC index data set.

If a data set to be deleted is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. In addition, all other
required volumes must be serially mountable.

When deleting a data set, you must build a volume list in virtual
storage. This volume list consists of an entry for each volume on
which the data set resides. The first two bytes of the list
indicate the number of entries in the list. Each 12-byte entry
consists of a 4-byte device code, a 6-byte volume serial number,
and a 2-byte scratch status code which should be initialized to
zero. Device codes are praesented in 05/VS2 System Programming
Library: Debugging Handbook.

Volumes are processed in the order that they appear in the volume
list. The volume at the beginning of the list is processed first.
If a volume is not mounted, a message is issued to the operator
requesting him to mount the volume. (A volume mount message will
not be issued for an MSS virtual volume; however, a status code
will be returned to your program.) This is only done if yvou
indicate the direct access device on which unmounted volumes are

Maintaining the Volume Table of Contents 37

to be mounted by loading register 0 with the address of the UCB

associated with the device to be used. (The device must be .
allocated to your job.) If you do not load register 0 with a UCB -
address, its contents must be zero, and at least one of the
volumes in the volume list must be mounted before the SCRATCH
macro instruction is issued.

If the operator cannot mount the regquested volume, he issues a
reply indicating that he cannot fulfill the request. A condition
code is then set in the last byte of the volume pointer (the
second byte of the scratch status code) for the unavailable
volume, and the next volume indicated in the volume list is
processed.

The format is:

[symboll SCRATCH list-addrx
listname CANLST SCRATCH
ydsname-relexp

rovol list-relexp
[,,OVRDJ

list-addrx

points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

SCRATCH
this operand must be coded as shoun.

dsname-relexp
specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type Define
Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

OVRD

when coded as shown, specifies that the expiration date in
the DSCB should be ignored.

Example: In the following example, data set A.B.C is deleted from
two volumes. The expiration date in the identifier (format-1)
DSCB is ignored.

SR 0,0 SET REG 0 TO ZERO

SCRATCH DELABC DELETE DATA SET A.B.C.
FROM TWO VOLUMES,
IGNORING EXPIRATION
DATE IN THE DSCB

XK XK K

Check Returns
DELABC CAMLST SCRATCH,DSABC, ,VOLIST,,0VRD

DSABC DC CL44'A.B.C' DATA SET NAMES

VOLIST DC H'2!' NUMBER OF VOLUMES
DC X'30C02008" 2314 DISK DEVICE CODE
DC CL6'000017" VOLUME SERIAL NO.
DC H'O! SCRATCH STATUS CODE
DC X'30C02008" 2314 DISK DEVICE CODE
bDC cL6'000018" VOLUME SERIAL NO.
DC H'O? SCRATCH STATUS CODE

2

38 0S/VS2 System Programming Library: Data Management

The SCRATCH macro instruction points to the CAMLST macro
instruction. SCRATCH, the first operand of CAMLST, specifies that
a data set be deleted. DSABC, the second operand, specifies the
virtual storage location of a 44-byte area into which you have
placed the fully qualified name of the data set to be deleted.
VOLIST, the fourth operand, specifies the virtual storage
location of the volume list you have built. OVRD, the sixth
operand, specifies that the expiration date in the DSCB of the
data set to be deleted be ignored.

When you attempt to delete a password-protected data set which is
not also RACF-protected, the operating system issues a message
(IEC301A) to ask the operator at the console or terminal operator
of a remote console to enter the password. The data set will be
scratched only if the password supplied is associated with a WRITE
protection mode indicator. The protection mode indicator is
described in the chapter titled "Data Set Protection."

Control is returned to vour program at the next exetutable
instruction following the SCRATCH macro instruction. If the data
set has been successfully deleted, register 15 will contain zeros
and the scratch status code in the volume list entry for each
volume will be set to zero. Otherwise, register 15 will contain
one of the return codes that follow. To determine whether the data
set has been successfully deleted from each volume on which it
resides, you must examine the scratch status code, the last byte
of each entry in the volume list.

Return
Code in .
Reg. 15 Meaning

4 No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set. The data set may be a VIO data set that was
not allocated during your job. (This return code is
accompanied by a scratch status code of 5 in each entry
of the volume list.)

8 An unusual condition was encountered on one or more
volumes.
12 The volume list passed was invalid. The scratch status

code, the last byte of each volume list entry, will not
have been modified during scratch processing.

After the SCRATCH macro instruction is executed, the last byte of
each 12-byte antry in the volume list indicates the following
conditions in binary codes:

scratch

status .

Code Meaning

0 All DSCBs for the data set have been deleted from the
VT0C on the volume pointed to.

1 The VTOC of this volume does not contain the format-1
DSCB for the data set to be deleted.

2 The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or an
attempt was made to scratch a VSAM data space.

3 The data set was not deleted from this volume because
either the QOVRD option was not specified or the
retention cycle has not expired.

4 A permanent I/0 error was encountered, or an invalid

format-1 DSCB was found when processing this volume, or
an unexpected error return code was received from CVAF
(Common VTOC Access Facility).

Maintaining the Volume Table of Contents 39

5 It could not be verified that this volume was mounted,
and no device was available on which this volume could
be mounted.

6 The operator was unable to mount this volume. For MSS, a
volume mount failure occurred. For a JES3-managed
virtual volume, JES3 would not allow the volume to be
mounted.

7 The specified data set could not be scratched because
it was being used.

8 The DSCB indicates the data set is defined to RACF but
either the accessor is not authorized to the data set or
to the volume, or the data set is a V5AM data space, or
the data set is not defined to RACF.

9 The data set is defined to RACF but its definition could
not be deleted by RACF.

RENAMING A DATA SET (RENAME AND CAMLST RENAME)

You rename a data set stored on one or more direct-access volumes
by using the RENAME and CAMLST macro instructions. This causes the
data set name in all identifier (format-1) DSCBs for the data set
to be replaced by the new name that you supply. (VIO data sets
cannot be renamed.)

If a data set to be renamed is stored on more than one volume,
either a device must be available on which to mount the volumes,
or at least one volume must be mounted. In addition, all other
volumes of the data set must be serially mountable.

Refer to 03/VS2 MVS Resource Access Control Facility (RACF):
General Information Manual for information on RACF-defined data

sets. Only an accessor with alter access authority may rename a
RACF-defined data set.

Refer to Data Facility Device Support: User's Guide and Reference
for information on renaming a VTOC index data set.

When renaming a data set, you must build a volume list in virtual
storage. This volume list consists of an entry for each volume on
which the data set resides. The first two bytes of the list
indicate the number of entries in the list. Each 12-byte volume
list entry consists of a 4-byte device code, a 6-byte volume
serial number, and a 2-byte rename status code which should be
initialized to zero. Device codes are presented in 05/VS2 Svstem
Programming Library: Debuqqging Handbook. Volumes are procassed in
the order they appear in the volume list. The first volume on the
list is processed first. If a volume is not mounted, a message is
issued to the operator requesting him to mount the volume. (A
volume mount message will not be issued for an MSS volume;
however, a status code will be returned to vour program.) This is
only done if vyou indicate the direct-access device on which
unmounted volumes are to be mounted by loading register 0 with the
address of the UCB associated with the device to be used. (The
device must be allocated to your job.) If you do not load register
0 with a UCB address, its contents must be zero, and at least one
of the volumes in the volume list must be mounted before the
RENAME macro instruction is executed.

If the operator cannot mount a volume in the volume list, he
issues a reply indicating that he cannot fulfill the request. A
condition code is then set in the last byte of the volume list
entry (the second byte of the rename status code) for the
unavailable volume, and the next volume indicated in the volume
list is processed or requested.

50 0S/VS2 System Programming Library: Data Management

/‘\

)

The format is:

[symboll RENAME list-addrx
listname CAMLST RENANE
sdsname-relexp
snew_name-relexp
svol list-relex

list-addrx
points to the parameter list (labeled listname) set up by the
CAMLST macro instruction.

RENAME
this operand must be coded as shoun.

dsname-relexp

specifies the virtual storage location of a fully qualified
data set name. The area that contains the name must be 44
bytes long. The name must be defined by a C-type Define
Constant (DC) instruction.

new name-relexp
specifies the virtual storage location of a fully qualified
data set name that is to be used as the new name. The area
that contains the name must be 44 bytes long. The name must
be defined by a C-type Define Constant (DC) instruction.

vol list-relexp
specifies the virtual storage location of an area that
contains a volume list. The area must begin on a halfword
boundary.

Example: In the following example, data set A.B.C is renamed
D.E.F. The data set resides on two volumes.

SR 0,0 SET REG 0 TO ZERGO
RENAME DSABC) CHANGE DATA SET
NAME A.B.C. T0 D.E.F
Check Returns

DSABC CAMLST RENAME, OLDNAME, NEWMNAME, VOLIST

OLDNAME DC CL44"A.B.C" OLD DATA SET NAME
NEWNAME DC CL44'D.E.F' NEW DATA SET NAME
VOLIST DC H2" TWO VOLUMES

DC X'30C02008" 2314 DISK DEVICE CODE

DC CL6'000017" VOLUME SERIAL NO.

DC H'O!' RENAME STATUS CODE

DC X'30C02008" 2314 DISK DEVICE CODE

DC CL6'000018" VOLUME SERIAL WO.

bC H'0' - RENAME STATUS CODE

The RENAME macro instruction points to the CAMLST macro
instruction. RENAME, the first operand of CAMLST, specifies that
a data set be renamed. OLDHAME, the second operand, specifies the
virtual storage location of a 44-byte area into which vou have
placed the fully qualified name of the data set to be renamed.
NEWNAME, the third operand, specifies the virtual storage
location of a 44-byte area into which you have placed the new name
of the data set. VOLIST, the fourth operand, specifies the virtual
storage location of the volume list you have built. '

Control is returned to your program at the next executable
instruction following the RENAME macro instruction. If the data
set has been successfully renamed, register 15 will contain
zeros, and the rename status code in the volume list entry for

Maintaining the Volume Table of Contents 41

42

each volume will be set to zero. Otherwise, register 15 will
contain one of the return codes that follow. To determine whether
the data set has been successfully renamed on each volume on which
it resides, you must examine the rename status code, the last byte
of each entry in the volume list.

Return
Code in
Reg. 15

4

12

Meaning

No volumes containing any part of the data set were
mounted, nor did register 0 contain the address of a
unit that was available for mounting a volume of the
data set to be renamed. The data set may be a VIO data
set, which can't be renamed. (This return code is
accompanied by a rename status code of 5 in each entry
of the volume list.)

An unusual condition was encountered on one or more
volumes.

The volume list passed was invalid. The rename status
code, the last byte of each volume list entry, will not
have been modified during rename processing.

After the RENAME macro instruction is executed, the last byte of
each 12-byte entry in the volume list indicates one of the
following conditions in binary code:

Rename
status
Code

0

Heaning

The format-1 DSCB for the data set has been renamed in
the VTOC on the volume pointed to.

The VTOC of this volume does not contain the format-1
DSCB for the data set to be renamed.

The macro instruction failed when the correct password
was not supplied in the two attempts allowed, or the
user tried to rename a VS5SAM data space.

A data set with the new name already exists on this
volume.

A permanent I/70 error was encountered, or an invalid

format-1 DSCB was found when trying to rename the data
set on this volume, or an unexpected error return code
was received from CVAF (Common VTOC Access Facility).

It could not be verified that the volume was mounted,
and no device was available on which the volume could be
mounted.

The operator was unable to mount this volume. For MSS, a
volume mount failure occurred. For a JES3-managed
virtual volume, JES3 would not allow the volume to be
mounted.

The specified data set could not be renamed on this
volume because it was being'used. :

The data set is defined to RACF but either the accessor
is not alter authorized to the data set or the data set
is defined to RACF on multiple volumes.

05/V52 System Programming Library: Data Management

/“\

When you attempt to rename a password-protected data set, the
operating system issues a message (IEC301A) to ask the operator or
remote console operator to verify the password. The data set will
be renamed only if the password supplied is associated with a
WRITE protection mode indicator. The chapter titled "Password
Protecting Your Data Sets" provides a description of the
protection mode indicator.

Maintaining the Volume Table of Contents 43

EXECUTING YOUR OWN CHANNEL PROGRAMS (EXCP)

The execute-channel-program (EXCP) macro instruction provides you
with device dependence in organizing data and controlling I/0
devices. This chapter contains a general description of the
function and application of the EXCP macro instruction,
accompanied by descriptions of specific control blocks and macro
instructions used with EXCP. Factors that affect the operation of
EXCP, such as device variations and program modification, are
also discussed.

Before reading this chapter, vou should be familiar with system
functions and with the structure of control blocks, as well as
with the operational characteristics of the 1/0 devices required
by vour channel programs. Operational characteristics of specific
I/0 devices are contained in IBM publications for each device.

To understand this chapter, you need to understand the
information in these pubLications=

. 05/7VS52 MVS Data Management Services Guide, which explains the
standard procedures for 1/0 processing under the operating
system.

. 0S/VYS—D0S/VS—VM/370 Assembler Lanquage, which contains the
information necessary to code programs in the assembler
language.

. 05/7VS52 MVS Data Management Macro Instructions, which
describes the system macro instructions that can be used in
programs coded in the assembler language.

) 0S5/VS2 System Programming Library: Debuqgging Handbook, which
contains format and field descriptions of the system control
blocks referred to in this chapter.

The execute-channel-program (EXCP) macro instruction causes a
supervisor-call interruption to pass control to the 1/0
supervisor. (I1/0 supervisor is the name this chapter uses for two
V52 components, the EXCP processor and the I/0 supervisor. For
vour purposes, it's unnecessary to understand how input/output
processing is divided between the two.) EXCP also provides the 170
supervisor with control information regarding a channel program
to be executed. When an IBM access method is being used, an
access—method routine is responsible for issuing EXCP. If vou are
not using an IBM access method, vou must issue EXCP in yvour
program. (The EXCP macro instruction cannot be used to process
SYSIN, SYSOUT, or VSAM data sets.)

You issue EXCP primarily for 170 programming situations to which
the standard access methods do not apply. If you are writing your
own access method, you must include EXCP for 1/0 operations. EXCP
must also be used for processing nonstandard labels, including

reading and writing labels and positioning magnetic tape volumes.

To issue EXCP, you must provide a channel program (a list of
channel command words) and several control blocks in your program
area. The 1/0 supervisor then schedules 1/0 requests for the

" device you have specified, executes the specified I/0 commands,
handles I/0 interruptions, directs error recovery procedures, and
posts the results of the I/0 requests.

EXECUTING CHANNEL PROGRAMS IN SYSTEM AND PROBLEM PROGRAMS

This section briefly explains the procedures performed by the
system and the programmer when EXCP is issued by the routines of
IBM access methods. The additional procedures that you must

44 0S5/7VS52 System Programming Library: Data Management

C

SYSTEM USE OF EXCP

perform when issuing EXCP yourself are then described by direct
comparison.

When using an IBM access method to perform I/0 operations, the
programmer is relieved of coding channel programs and
constructing the control blocks necessary for the execution of
channel programs. To permit I/0 operations to be handled by an
access method, the programmer need only issue the following macro
instructions:

L A DCB macro instruction, which produces a data control block
(DCB) for the data set to be retrieved or stored.

. An OPEN macro instruction that initializes the data control
block and produces a data extent block (DEB) for the data set.

. A macro instruction (for example, GET, WRITE) that requests
I1/0 operations.

Access method routines will then:

1. Create a channel program that contains channel commands for
the 170 operations on the appropriate device.

2. Construct an input/output block (I0OB) that contains
information about the channel program.

3. Construct an eveht control block (ECB) that is later posted
with a completion code each time the channel program
terminates.

4. Issue an EXCP macro instruction to pass the address of the I0B
to the routines that initiate and supervise the I/0
operations.

The I/0 supervisor will then:

5. Construct a request queue element (RQE) for scheduling the
request.

6. If the requestor is in a pageable address space, fix the
buffers so that they cannot be paged out and translate the
requestor's virtual channel program into a real channel
program.

7. Issue a start input/output (SI0) instruction to cause the
channel to executa the real channel program.

8. Process I/0 interruptions and schedule error recovery
procedures when necessary.

9. Post a completion code in the event control block after the
channel program has been executed.

Note: If the requestor is in a nonpageable address space, he
provides a real channel program, so item 6 is not performed.

The programmer is not concerned with these procedures and does not
know the status of I/0 operations until they are completed.
Device-dependent operations are limited to those provided by the
macro instructions of the particular access method selected.

USE OF EXCP IN PROBLEM PROGRAMS

To issue the EXCP macro instruction directly, vou must perform the
procedures that the access methods perform, as summarized in

items 1 through 4 of the preceding discussion. You must, in
addition to constructing and opening the data control block with
the DCB and OPEN macro instructions, construct a channel program,

Executing Your Own Channel Programs (EXCP) 45

EXCP OPERATIONS IN A

EXCP REQUIREMENTS

CHANNEL PROGRAM

an input/output block, and an event control block before vou can
issue EXCP. The I/0 supervisor always handles items 5 through 9.

After issuing EXCP, vou should issue a WAIT macro instruction,
specifying the address of the event control block, to determine
whether the channel program has terminated. If volume switching
is necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

HONPAGEABLE ADDRESS SPACE

User-constructed channel programs for I/0 operations in a
nonpageable address space are not translated. Because the address
space is nonpageable, any CCWs created by the user have correct
real data addresses. (Translation would only recreate the user's
channel program, so the CClls are used directly.)

Modification of an active channel program by data read in or by
CPU instructions is legitimate in a nonpageable address space,
but not in a pageable address space.

This section describes the channel program that you must provide
in order to issue EXCP. The control blocks that you must either
construct directly, or cause to be constructed by use of macro
instructions, are also described.

The channel program supplied by you and executed through EXCP is
composed of channel command words (CCWs) on doubleword
boundaries. Each channel command word specifies a command to be
executed and, for commands initiating data transfer, the area to
or from which the data is to be transferred.

Channel command word formats used with specific I/0 devices can be
found in IBM publications for those devices. All channel command
words described in these publications can be used, with the
exception of REWIND and UNLOAD (RUN). In addition, both data
chaining and command chaining may be used.

Chaining is the successive loading of channel command words into a
channel from contiguous doubleword locations in real storage.
Data chaining occurs when a new channel command word loaded into
the channel defines a new storage area for the original I/0
operation. Command chaining occurs when the new channel command
word specifies a new I/0 operation. For detailed information
about chaining, refer to IBM Svstem/370 Principles of Operation.

To specify either data chaining or command chaining, you must set
appropriate bits in the channel command word, and indicate the
type of chaining in the input/output block. Both data and command
chaining should not be specified in the same channel command word;
if they are, data chaining takes precedence.

If a channel program includes a list of channel command words that
chain data for reading operations, no channel command word may
alter the contents of another channel command wword in the same
list. (If such alteration were allowed, specifications could be
placed into a channel command word without being checked for
validity. If the specifications were incorrect, the error could
not be detected until the chain was completed. Data could be read
into incorrect locations and the system could not correct the
error.)

46 05/VS2 System Programming Library: Data Management

)

CONTROL BLOCKS

When using EXCP, yvou must be familiar with the function and
structure of the input/output block (I0OB), the event control
block (ECB), the data control block (DCB), and the data extent
block (DEB). IOB and ECB fields are illustrated in the section
"Control Block Fields." DCB fields are illustrated in the section
"Macro Specifications for Use with EXCP." Brief descriptions of
these control blocks follow.

Input/output Block (IOB)

The input/output block is used for communication between the
problem program and the system. It provides the addresses of other
control blocks, and maintains information about the channel
program, such as the type of chaining and the progress of 1/0
operations. You must define the input/output block and specify
its address as the only parameter of the EXCP macro instruction.

Event control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or
without error. A WAIT macro instruction, which can be used to
synchronize I/0 operations with the problem program, must
identify the event control block. You must define the event
control block and specify its address in the input/output block.

Data Control ﬁlock (DCB)

The data control block provides the system with information about
the characteristics and processing requirements of a data set to
be read or written by the channel program. A data control block
must be produced by a DCB macro instruction that includes
parameters for EXCP. If appendages are not being used, a short DCB
is constructed. Such a DCB does not support reduced error
recovery. You specify the address of the data control block in the
input/output block.

Data Extent Block (DEB)

The data extent block contains one or more extent entries for the
associated data set, as well as other control information. An
extent defines all or part of the physical boundaries on an I/0
device occupied by, or reserved for, a particular data set. Each
extent entry contains the address of a unit control block (UCB),
which provides information about the tvype and location of an 1I/0
davice. More than one extent entry can contain the same UCB
address. For all 170 devices supported by the operating system,
the data extent block is produced during execution of the OPEN
macro instruction for the data control block. The system places
the address of the data extent block into the data control block.

CHANNEL PROGRAM EXECUTION

This section explains how the system uses your channel program and
control blocks after you issue EXCP.

INITIATION OF THE CHANNEL PROGRAM

By issuing EXCP, vou request the execution of the channel program
specified in the input/output block. The 170 supervisor validates
the request by checking certain fields of the control blocks
associated with this request. If the I/0 supervisor detects
invalid information in a control block, it initiates abnormal
termination procedures.

Executing Your Own Channel Programs (EXCP) 47

The 170 supervisor gets:

. The address of the data control block froh the input/output
block

. The address of the data extent block from the data control
block

. The address of the unit control block from the data extent
block

It places the I0B, TCB, DEB, and UCB addresses and other
information about the channel program into an area called a
request queue element (RQE). (Unless you are providing appendage
routines—described in the section "Appendages"-——you should not
be concerned with the contents of RQEs.)

If you have provided a start I/0 (SI0) appendage, the I/0
supervisor now passes control to it. The return address from the
SI0 appendage determines whether the I/0 supervisor must:

. Execute the I/0 operation normally, or
. Skip the I/70 operation.

See "Appendages" in this chapter for a description of the SIO
appendage and its linkage to the I/0 supervisor.

If you are issuing EXCP from in a pageable address space, the
channel program you construct contains virtual addresses. Because
channels cannot use virtual addresses, the 1/0 supervisor must:

. Translate your virtual channel program into one that uses
only real addresses.

. Fix in real storage the pages used as I/0 areas for the data
transfer operations specified in your channel program.

The I/0 supervisor builds the translated (real) channel program
in a portion of real storage called the system queue area. If the
I/0 device is other than a direct-access device or a magnetic tape
device, the I/0 supervisor then places the address of the
translated channel program into the channel address word (CAW)
and issues a start input/output (5I0) instruction.

For direct-access devices, specify the seek address in the
input/output block. The I/0 supervisor constructs a command chain
to issue the seek, set the file mask specified in the data extent
block, and pass control to vour real channel program. If yvour
channel program begins with a locate-record command, the 1/0
supervisor builds a define-extent command and passes control to
your real channel program. (You cannot issue the initial seek, set
the file mask, or define extent vourself. The file mask is set to
prohibit seek-cylinder commands, or, if space is allocated by
tracks, seek-head commands. If the data set is open for INPUT or
RDBACK, write commands are also prohibited.)

Before issuing SI0 for a magnetic tape device, the I/0 supervisor
constructs a command chain to set the mode specified in the data
extent block and passes control to your real channel program. (You
cannot set the mode yourself.)

MODIFICATION OF A CHANNEL PROGRAM DURING EXECUTION

48

Any problem program that modifies an active channel program with
CPU instructions or with data read in by an 1/0 operation must be
run inh a nonpageable address space. It cannot run in a pageable
address space because of the channel program translation
performed by the I/0 supervisor. (In a pageable address space, an
attempt to modify an active channel program affects only the
virtual image of the channel program, not the real channel program
being executed by the channel.)

0S/VS2 System Programming Library= Data Management

A program of this type can be changed to run in a pageable address
space by issuing another EXCP macro for the modified portion of
the channel program.

COMPLETION OF EXECUTION

The system considers the channel program completed when it
receives an indication of a channel end condition in the channel
status word (CSW). Unless a channhel-end or abnormal-end appendage
directs otherwise, the request queue element for tha channel
program is made available, and a completion code is placed into
the event control block. The completion code indicates whether
errors are associated with channel end. If device end occurs
simultaneously with channel end, errors associated nith device
end (that is, unit exception or unit check) are also accounted
for.

If device end occurs after channel end, and an error is associated
with device end, the completion code in the event control block
does not indicate the error. However, the status of tha unit and
channel is saved in the unit control block (UCB) for the devica,
and the UCB is marked as intercepted. The input/output block for
the next request directed to the I/0 device is also marked as
intercepted. The error is assumed to be permanent, and the
completion code in the event control block for the intercepted
request indicates interception. The DCBIFLGS field of the data
control block is also flagged to indicate a permanent error. Note
that if a write-tape-mark or erase-long-gap CCH is the last or
only CCW in your channel program, the I/0 supervisor will not
attempt recovery procedures for device end errors. In these
circumstances, command chaining a NOP CCW to your urite-tape-mark
or erase-long-gap CCW ensures initiation of device-end error
recovery procedures.

To be prepared for device-end errors, you should be familiar with
device characteristics that can cause such errors. After one of
vour channel programs has terminated, you should not release
buffer space until you have determined that your next request for
the device has not been intercepted. You may reissue an
intercepted request.

INTERRUPTION HANDLING AND ERROR RECOVERY PROCEDURES

An I/0 interruption allows the CPU to respond to signals from an
I/0 device which indicate either termination of a phase of 1/0
operations or external action on the device. A complete
explanation of I/0 interruptions is contained in IBM System/370
Principles of Operation. For descriptions of interruptions by
specific devices, refer to IBM publications for each device.

If error conditions are associated with an interruption, the 1/0
supervisor schedules the appropriate device-dependent error
routine. The channel is then restarted with another request that
is not related to the channel program in error. (The paragraphs
following this one under this topic discuss "related" channel
programs.) If the error recovery procedures fail to correct the
error, the system places ones in the first two bit positions of
the IFLGS field of the data control block. You are informed of the
e;roa by an error code that the system puts in the event control
block.

If a channel program depends on the successful completion of a
previous channel program—as when ona channel program retrieves
data to be used in building another—the previous channel program
is called a "related" request. Such a request must be identified
to the I/0 supervisor. To find out how, see "Input/OQutput Control
Block Fields" in the section "Control Block Fields."

Executing Your Own Channel Programs (EXCP) %9

APPENDAGES

If a permanent error occurs in the channel program of a related
request, the I/0 supervisor does the following:

. Removes the request queue elements for all dependent channel
programs from their queue and makes them available.

L Chains together the I0Bs (input/output blocks) for the
dependent channel programs.

The I0B chain reflects the order in which request queue elements
are removed from their queue.

For all requests dependent on the channel program in error, the
system places completion codes into the event control blocks. The
DCBIFLGS field of the data control block is also flagged. Any
requests for a data control block with error flags are posted
complete without execution. To reissue requests dependent on the
channel program in error, you must reset the first two bits of the
DCBIFLGS field of the data control block to zeros. You then
reissue EXCP for each channel program desired.

With 3800 Enhancements, a cancel key or a system restart required
paper jam causes both a lost data indicator to be set in DCBIFLGS
and a lost page count and channel page identifier to be stored in
the UCB extension. (See also 05/VS]1 System Data Areas and
Reference Manual for the IBM 3800 Printing Subsystem.)

An appendage is a programmer-written routine that provides
additional control over I/0 operations. By using appendages, yvou
can examine the status of I/0 operations and determine the actions
to be taken for various conditions. An appendage may recaive
control when one of the following occurs:

. Start I/0

. Program controlled interruption
. End of extent

. Channel end

. Abnormal end

Appendages get control in supervisor state, receiving the
following pointers from the I/0 supervisor:

. Register 1: Points to the request queue element for the
channel program.

. Register 2: Points to the input/output block (IO0B).
. Register 3: Points to the data extent block (DEB).
. Register 4: Points to the data control block (DCB).

U Register 6: Points to the seek address if control is given to
an end-of-extent appendage.

. Register 7: Points to the unit control block (UCB).

. Register 13: Points to a 16-word area you can use to save
input registers or data.

. Register 14: Points to the location in the 1/0 supervisor to
which control is to be returned after execution of an
appendage. When returning control to the I/0 supervisor, you
may use displacements from the return address in register 14.
Allowable displacements are summarized in Figure 10 on page
52 and described later for each appendage.

50 0S5/7VS52 System Programming Library: Data Management

()

c

. Register 15: Points to the entry point of the appendage.

The processing done by appendages is subject to these
requirements and restrictions:

. Register 9, if used, must be set to binary zeros before
control is returned to the system. All other registers,
except those indicated in the descriptions of each appendage.,
must be saved and restored if they are used. Figure 10 on page
52 summarizes register conventions.

. No SVC instructions or instructions that change the status of
the system (for example, WT0, LPSW, or any privileged
instructions) can be issued.

. Loops that test for the completion of I/0 operations must not
be used.

. Storage used by the supervisor or 170 supervisor‘mugt not be
altered.

The types of appendages are described in the following sections,
with explanations of when they are created, how they return
control to the system, and which registers they may use without
saving and restoring their contents.

START-1/0 (SID) APPENDAGE

Unless an error procedure is in control, the I/0 supervisor passes
control to the SI0 appendage just before the I/0 supervisor
translates your channel program. If I/0 activity is not initiated
because of a busy condition and the I/0 request has not been
translated, the appendage is not reentered before the SIO
instruction is issued.

Optional return vectors give the I/70 requestor the following
choices:

Reg. 14 + 0

Normal return. Normal channel program translation and SIO
instruction execution occur.

Reg. 14 + 6
Skip the I/0 operation. The channel program is not posted
complete, but the request queue element is made available.
You may post the channel program as follows:
1. Save necessary registers.

2. Put the address of the post routine—found at CVTOPTO01
in the communications vector table—in register 15.

3. Place ECB address from the I0B in register 11.

4, Set the completion code in register 10. These are the
four bytes of an ECB.

5. Go to the post routine using BALR 14,15.

PROGRAM CONTROLLED INTERRUPTION (PCI) APPENDAGE

This appendage is entered at least once if the channel finds one
or more PCI bits on in a channel program, and may be entered as
many times as the channel finds PCI bits on. Before the appendage
is entered, the contents of the channel status word are placed in
the "channel status word" field of the input/output block.

A PCI appendage will be reentered if an error recovery procedure
is retrying a channel program in which a PCI bit is on. The 10B
error flag is set when the error recovery procedure is in control
(IOBFLAGL = X'20'). (Refer to the topic "Block Multiplexor

Executing Your Owun Channel Programs (EXCP) 51

Entry

Appendages Point Returns Available Hork Reg!

EOE Reg 15 Reg 14 + 0 Return
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Try Again

SI0 Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13
Reg 14 + ¢ Skip

PGFX Reg 15 Reg 14 + 0 Normal Reg. 10, 11, and 13

PCI Reg 15 Reg 16 + 0 Normal Reg. 10, 11, 12, and 13

CHE Reg 15 Reg 14 + 0 Normal
Reg 14 + 6 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

ABE Reg 15 Reg 164 + 0 Normal
Reg 14 + 4 Skip Reg. 10, 11, 12, and 13
Reg 14 + 8 Re-EXCP
Reg 14 + 12 By-Pass

1 Certain register conventions for passing parameters from appendages to the 170
supervisor must be followed. These conventions are described in the appendage
descriptions.

Figure 10. Entry Points, Returns, and Available Work Registers for Appendages

Channel Programming Notes" later in this chapter for special PCI
conditions encountered with command retry.)

To post the channel program from a PCI appendage, the procedure
described for the start-1/0 appendage is used if the step is
running ADDRSPC=VIRT. If the step is running ADDRSPC=REAL or SVC
114(EXCPVR) was issued, the PCI appendage uses real storage
addresses and the following procedure is used to post the channel
program from the PCI appendage.

1. Put the completion code in register 10.

2. Put X'80' in the high-order byte of register 11 and the
address of the ECB in the low-order bytes. This BR 14 must be
in storage which is addressable from any address space (for
example, CVTBRET).

3. Put X'80' in the high-order byte of register 12 and the
address of a BR 14 instruction in the low-order bytes.

4. Put the address of the ASCB in register 13.
5. Put thé requestor's key in register 0.

The next two paragraphs describe how to obtain the ASCB
address and are followed by sample instructions to illustrate
the procedure.

Get the SRB address associated with the 1/0 operation from the
RQE field, RQESRB (the RQE address was in register 1 when the
appendage was given control). Get the I0SB address from
SRBPARM. From that I0SB get the ldentlfxer field, IOSASID
Multiply IOSASID by four.

Get the pointer to the ASVT (address space vector table) found
at CVTASVT. The address of the ASCB can be found in the ASVT,
using the field ASVTENTY-4¢ indexed by the value obtained from
the SRBPASID.

52 05/7VS2 System Programming Library: Data Management

ESING RQE, 1

Y,RQESRB
USING SRBSECT,Y
LH Y, SRBPARM
USING I0SB,Y
LH Y,I0SASID
SLA Y,2
L X,16
USING CVT,X
L X,CVTASVT

USING ASVT,X
L 13, ASVTENTY-4(Y)

Note: X and Y are work registers.

6. Put the address of the post routine—found at CVTOPTOLl in the
communications vector table—in register 15.

7. Go to the post routine using BALR 14,15. Upon return, only
registers 9 and 14 are valid.

This procedure can be used even if the PCI appendage uses virtual
storage addresses, but performance may be slightly slower. For
more information on the POST routine, see 05/V52 System
Programming Library: Supervisor.

To return control to the I/0 supervisor for normal interruption
processing, use the return address in register 14.

END-OF-EXTENT (EOE) APPENDAGE

This appendage is entered when the seek address specified in the
input/zoutput block is outside the allocated extent limits
indicated in the data extent block.

If you use the return address in register 14 to return control to
the system, the abnormal-end appendage is entered. An
end-of-extent error code (X'42') is placed in the "ECB code" field
of the input/output block for subsequent posting in the ECB.

You may use the following optional return addresses:

. Contents of register 14 plus 4—The channel program is posted
complete; its request element is returned to the available
queue.

. Contents of register 14 plus 8—The request is tried again.

You may use registers 10 through 13 in an end-of-extent appendage
without saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the
I/0 supervisor updates the seek address to the next higher
cvlinder or track address, and reexecutes the request. If the new
saeek address is within the data set's extent, the request is
axecuted; if the new seek address is not within the data set's
extent, the end-of-extent appendage is entered. If yvou wish to try

- the request in the next extent, you must move the new seek address

to the location pointed to by register 6.

If a file protect is caused by a full seek (command code=07)
embedded within a channel program, the request is flagged as a
permanent error, and the abnormal end appendage is entered.

CHANNEL-END (CHE) APPENDAGE

This appendage is entered when a channel end (CHE), unit exception
(UEX) with or without channel end, or channel end with wrong
length record (WLR) occurs without any other abnormal-end
conditions.

Executing Your Own Channel Programs (EXCP) 53

If vou use the return address in register 14 to return control to
the 170 supervisor, the channel program is posted complete, and
its request element is made available. In the case of unit
exception or wrong length record, the error recovery procedure is N
performed before the channel program is posted complete, and the

IOBEX flag (X'04') in IOBFLAGL is set on. The CSW status may be

obtained from the I0OBCSW field.

o

If the appendage takes care of the wrong length record and/or unit
exception, it may turn off the IOBEX (X'04') flag in IOBFLAG1 and
return normally. The event will then be posted complete
(completion code X'"7F' under normal conditions, taken from the
high-order byte of the IOBECBCC field). If the appendage returns
normally without resetting the I0BEX flag to zero, the request
Wwill be routed to the associated device error routine, and then
the abnormal-end appendage will be immediately entered with the
completion code in IOBECBCC set to X'41"'.

You may use the following optional return addresses:

. Contents of register 14 plus 4—The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling sequence
described under the start-1/0 appendage. This is especially
useful if you wish to post an ECB other than the ECB in the
input/output block.

. Contents of register 14 plus 8—The channel program is not
posted complete, and its request element is placed back on the
request queue so that the 1/0 operation can be retried. For
correct reexecution of the channel program, you must
reinitialize the IOBFLAGL, IOBFLAG2, and IOBFLAG3 fields of
the input/output block and set the "Error Counts" field to
zero. As an added precaution, the IOBSENSO, IOBSENSL, and
IOBCSW fields should be cleared.

. Contents of register 14 plus 12—The channel program is not -

posted complete, and its request element is not made

available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

You may use registers 10 through 13 in a channel-end appendage
without saving and restoring their contents.

ABHORMAL-END (ABE) APPENDAGE

This appendage may be entered on abnormal conditions, such as:
unit check, unit exception, wrong length indication, program
check, protection check, channel data check, channel control
check, interface control check, chaining check, out-of-extent
error, and intercept condition (that is, device end error). It may
also be entered when an EXCP is issued for a request queue element
that has already been purged.

1. When this appendage is entered because of a unit exception
and/or wrong length record indication, IOBECBCC is set to
X'41'. For further information on these conditions see
“"Channel-End (CHE) Appendage."

2. When the appendage is entered because of an out-of-extent
error, the IOBECBCC is set to X'42'.

3. When this appendage is entered with IOBECBCC set to X'4B', it
is because of:

a. The tape ERP encountering an unexpected load point, or

b. The tape ERP finding zeros in the command address field of

the CSW. C

5% 0S5/VS2 System Programming Library: Data Management

4. When the appendage is first entered because of an intercept
condition, the IOBECBCC is set to X'"7E'. If it is then
determined that the error condition is permanent, the
appendage will be entered a second time with the IOBECBCC set
to X'44'. The intercept condition signals that an error was
detect:d at device end after channel end on the previous
request.

5. When the appendage is entered because of an EXCP being issued
to an already purged request queue element, this request will
enter the abnormal end appendage with the I0BECBCC set to
X'48' . This applies only to related requests.

6. If the appendage is entered with IOBECBCC set to X'7F', it may
be because of a unit check, program check, protection check,
channel data check, channel control check, interface control
check, or chaining check. If the IOBECBCC is X'7F', it is the
first detection of an error in the associated channel
program. If the IOBEX flag (bit 5 of the IOBFLAGL) is on, the
IOBECBCC field will contain a 41, 42, 48, 4B, or 4F in
hexadecimal, indicating a permanent I/0 error.

To determine if an error is permanent, you should check the
IOBECBCC field of the IOB. To determine the type of error, check
the channel status word and the sense information in the IOB.
However, when the IOBECBCC is X'42', X'48', or X'4F', these fields
are not applicable. For X'44' the CSW is applicable, but the sense
is va;id only if the unit check bit is set.

If you use the return address in register 14 to return control to
the system, the channel program is posted complete, and its
request element is made available. You may use the following
optional return addresses:

U Contents of register 14 plus 4—The channel program is not
posted complete, but its request element is made available.
You may post the channel program by using the calling sequence
described under the start-I/0 appendage.

. Contents of register 14 plus 8—The channel program is not
posted complete, and its request element is placed back on the
request queue so that the request can be retried. For correct
reexecution of the channel program, you must reinitialize the
IOBFLAGL, IOBFLAG2, and IOBFLAG3 fields of the input/output
block and set the IOBERRCT field to zero. As an added
precaution, the IOBSENSO, IOBSENS1, and I0BCSW fields should
be cleared.

. Contents of register 14 plus 12—The channel program is not
posted complete, and its request element is not made
available. (This return must be used if, and only if, the
appendage has passed the RQE to the exit effector for use in
scheduling an asynchronous routine.)

You may use registers 10 through 13 in an abnormal-end appendage
without saving and restoring their contents.

MAKING YOUR APPENDAGES PART OF THE SYSTEM

Before your appendages can be executed, they must become members
of either the SYS1.LPALIB or SYS1.SVCLIB data set. There are two
ways to put appendages into SYS1.LPALIB or SYS1.SVCLIB: they can
be included at system generation using the DATASET macro
instruction (a full explanation appears in 05/VS2 System
Programming Library: System Gencration Reference, or they can be
link-edited into SYS1.LPALIB or SYS1.SVCLIB after the system has
been generated. Each appendage must have an 8-character member
name, the first six characters being 1IGG019, the last two being
anything in the range of characters from WA to Z29. Note, however,
if your program runs in a hon-pageable address space and uses a
PCI appendage, the PCI appendage and any appendage that the PCI
appendage refers to cannot be placed in SYS1.LPALIB. Instead,

Executing Your Own Channel Programs (EXCP) 55

these appendages must be placed in either SYS1.SVCLIB or the fixed
link pack area (LPA). For information on providing a list of"
programs to be fixed in storage, see 05/YS52 System Programming
Library: Initialization and Tuning Guide.

THE AUTHORIZED APPENDAGE LIST (IEAAPP0O)

56

If an "unauthorized" program opans a DCB to be used with an EXCP
macro instruction, the names of any appendages associated with
the DCB must be listed in the IEAAPPO0O member of SYS1.PARMLIB. (An
"authorized" program is one that runs in a protection key less
than 8 or one that has been marked as authorized by the Authorized
Program Facility.)

If your appendages were put in SYS1.LPALIB or SYS1.SVCLIB at
system generation, their names are automatically put in IEAAPPOO.
If yvour appendages were added to SYS1.LPALIB or SYS1.5VCLIB after
system generation, yvyou can add IEAAPP0O0 to SYS1.PARMLIB and put
the names of the appendages in it in one job step with the
IEBUPDTE utility.

Here is an example of JCL statements and IEBUPDTE input that will
add IEAAPPOO0 to SYS1.PARMLIB and put the names of one EOE
appendage, two SI0 appendages, two CHE appendages, and one ABE
appendage in IEAAPPOO:

7/ EXEC IEBUPDTE

//SYSPRINT DD SYSOUT=A
/775YSUT2 DD DSN=5YS1.PARMLIB,DISP=0LD
/7/7SYSIN DD X

/ ADD NAME=IEAAPPOO,LIST=ALL

EQEAPP WA,
SIOAPP X1,X2,
CHEAPP Z3,24,
ABEAPP 22

/%

Note the following about the IEBUPDTE input:

. The type of appendage is identified by six characters that
begin in column 1. EOEAPP identifies an EOE appendage, SIOAPP
an SI0 appendage, CHEAPP a CHE appendage, and ABEAPP an ABE
appendage. (The PCI appendage identifier, PCIAPP, is not
?Ezzppg%c%use the example adds no PCI appendage name to

. Only the last two characters in an appendage's name are
specified, beginning in column 8.

. Each statement that identifies one or more appendage names
ends in a comma, except the last statement.

05/7VS2 System Programming Library: Data Management

You can also use IEBUPDTE to add appendage names later or delete
appendage names. Here is an example of JCL statements and IEBUPDTE
input that adds the names of a PCI and ABE appendage to the
IEAAPPOO appendage list that was created in the preceding

example, and deletes the name of an SI0 appendage from that list:

Va4 EXEC IEBUPDTE

7/SYSPRINT DD SYSQUT=A

7/5YSUT2 DD DSN=SYS1.PARMLIB,DISP=0LD
7/5YSIN DD *

./ REPL NAME=IEAPP0O,LIST=ALL
PCIAPP Y1,

EQEAPP WA,

SIOAPP X1,

CHEAPP 23,24,
ABEAPP 22,24
7 ¥
Note the following about the IEBUPDTE input:
. The command to IEBUPDTE in this case is REPL (replace).

. All the appendage names that are to remain in IEAAPPOO are
repeated.

. IGG01924 is both a CHE and ABE appendage.

BLOCK MULTIPLEXOR CHANNEL PROGRAMMING NOTES

Command retry is a function of the block multiplexor channel
supporting the 2305, 3330,/3333, 3340/3344%, 3350, 3375, and 3380
direct-access devices. When the channel receives a retry request,
it repeats the execution of the channel command word (CCH)
requiring no additional input/Zoutput interrupts. For example, a
control unit may initiate a retry procedure to recover from a
transient error.

A command retry during the execution of a channel program may
cause any of the following conditions to be detected by the
initiating program:

L Modifying CCWs: A CCW used in a channel program must not be
modified before the CCW operation has been successfully
completed. Without the command retry function, a command was
fetched only once from storage by a channel. Therefore, a
program could determine through condition codes or program
controlled interruptions (PCI) that a CCW had been fetched
and accepted by the channel. This permitted the CCW to be
modi fied before reexecution. With the command retry function,
this cannot be done, since the channel will fetch the CCW from
storage again on a command retry sequence. In the case of data
chaining, the channel will retry commands starting with the
first CCW in the data chain.

. Program Controlled Interrupts: A CCW containing a PCI flag
may cause multiple program controlled interruptions to occur.
This happens if the PCI~-flagged CCl was retried during a
command retry procedure, and a PCI could be generated each
time the CCW is reexecuted.

. Residual Count: If a channel program is prematurely
terminated during the retry of a command, the residual count
in the channel status word (CSW) will not necessarily
indicate how much storage was used. For example, if the
control unit detects a "wrong length record” error condition,
an erroneous residual count is stored in the CSW until the
command retry is successful. When the retry is successful,
the residual in the CSW reflects the correct length of the
data transfer.

Executing Your Own Channel Programs (EXCP) 57

U Command Address: When data chaining with command retry, the
CSW may not indicate how many CCWs have been executed at the
time of a PCI. For example:

CCH# cChannel Program

1 Read, data chain

2 Read, data chain

3 Read, data chain, PCI
4 Read, command chain

In this example, assume that the control unit signals command
retry on Read #3 and the CPU accepts the PCI after the channel
resets the command address to Read #1 because of command
retry. The CSW stored for the PCI will contain the command

2dd£es§ o§ Read #1, when actually the channel has progressed
o Read #3. ’

. Testing Buffer Contents on Data Read: Any program that tests
a buffer to determine when a CCW has been executed and
continues to execute based on this data may get incorrect
results if an error is detected and the CCW is retried.

MACRO SPECIFICATIONS FOR USE WITH EXCP

If vou are using the EXCP macro instruction, you must also use
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instruction.
The parameters of these macro instructions and the EXCP macro
instructions are explained here. A diagram of the data control
block is included with the description of the DCB macro
instruction.

DCB—DEFINE DATA CONTROL BLOCK FOR EXCP

58

The EXCP form of the DCB macro instruction produces a data control
block that can be used with the EXCP macro instruction. You must
issue a DCB macro instruction for each data set to be processed by
your channel programs. Notation conventions and format
illustrations of the DCB macro instruction are given in 05/VYS2 MVS
Data Management Macro Instructions. DCB parameters that apply to
EXCP may be divided into four categories, depending on the
following portions of the data control block that are generated
when they are specified:

. Foundation block. This portion is required and is aluays 12
bytes in length. You must specify two of the parameters in
this category.

. EXCP interface. This portion is optional. If you specify any
parameter in this category, 20 bytes are generated.

. Foundation block extension and common interface. This
portion is optional and is always 20 bytes in length. If this
portion is generated, the device-dependent portion is also
generated.

. Device dependent. This portion is optional and is generated
only if the foundation block extension and common interface
portion is generated. Its size ranges from ¢ to 20 bytes,
depending on specifications in the DEVD parameter. However,
if you do not specify the DEVD parameter (and the foundation
extension and common interface portion is generated), the
maximum 20 bytes for this portion are generated.

Some of the procedures performed by the system when the data
control block is opened and closed (such as uriting file marks for
output data sets on direct-access volumes) require information
from optional data control block fields. You should make sure that
the data control block is large enough to provide all information
necessary for the procedures you want the system to handle.

0S/VS52 System Programming Library: Data Management

C

Figure 11 shows the relative position of each portion of an opened
data control block. The fields corresponding to each parameter.of
the DCB macro instruction are also designated, with the exception
of DDNAME, which is not included in a data control block that has
been opened. The fields identified in parentheses represent
system information that is not associated with parameters of the
DCB macro instruction.

Sources of information for data control block fields other than
the DCB macro instruction are data definition (DD) statements,
data set labels, and data control block modification routines.
You may use any of these sources to specify DCB parameters.
However, if a portion of the data control block i5 not generated
by the DCB macro instruction, the system does not accept
information intended for that portion from any alternative
source.

0 f—
The device dependent portion of the data control

_ block varies in length and format according to _

. specifications in the DSORG and DEVD parameters. _ > Device
Illustrations of this portion for each device Dependent
type are included in the description of the DEVD
parameter. —

20 —
BUFNO BUFCB
26 > Common
BUFL DSORG Interface
28
I0OBAD —
32 BFTEK,
BFALN EODAD —] Foundation
HIARC > Block
Extension
36
RECFM EXLST —
40 -
(TIOT) MACRF
44 > Foundation
(IFLGS) (DEB Address) Block
48 _J
(OFLGS) Reserved
52 -
OPTCD Reserved
56
Reserved
60 > EXCP
EOEA PCIA Interface
64
SIO0A CENDA
68
XENDA Reserved —

Figure 1l1. Data Control Block Format for EXCP (After OPEN)

Executing Your Own Channel Programs (EXCP) 59

Foundatwn Block Parameters

DDNAME symbol
The name of the data definition (DD) statement that

describes the data set to be processed. This parameter must
be given.

NACRF (E)

The EXCP macro instruction is to ba used in processing the
data set. This operand must be coded.

REPOS={YIN}
Magnetic tape volumes This parameter indicates to the DDR

routine whether the user is keeping an accurate block count.

If the user is keeping an accurate block count, the DDR
routine can attempt to swap the volume. (You must maintain
the block count in the DCBBLKCT field.)

Y—The user is keeping an accurate block count and the DDR
routine can attempt to swap the volume.

N—The block count is unreliable and the DDR routine cannot
and will not attempt to swap the volume.

- If the operand is omitted, N is assumed.

EXCP Interface Parameters

EOEA =symbol

2-byte identification of an EOE appendage that you have
entered into the LPA library.

PCIA=symbol

2-hyte xdentifrcatlon of a PCI appendage that vou have
entered into the LPA library.

SI0A=symbol

2-byte 1dent1f1cat1on of a SI0 appendage that you have
entered into the LPA library.

CENDA symbol

2-byte identification of a CHE appendage that you have
entered into the LPA library.

XENDA=symbol

2-byte identification of an ABE appendage that you have
entered into the LPA library.

OPTCD=2
indicates that for magnetic tape (input only) a reduced
error recovery procedure (5 reads only) will occur when a
data check is encountered. It should be specified only when
the tape is known to contain errors and the application does
not require that all records be processed. Its proper use

would include error frequency analysis in the SYNAD routine.

Spacification of this parameter will also cause generation
of a foundation block extension. This parameter is ignored
unless it was selected at system generation.

IMSK=value

Any specxflcatIOn indicates that the system will not use
IBM-supplied error routtnes

Foundation Block Extension and Common Interface Parameters

60

EXLST=address
the address of an exit 11st that vou have uritten for
exceptional conditions. The format of this exit list is
given in 05/VS2 MVS Data Management Services Guida.

0S/7VS52 System Programming Library: Data Management

S~
N

-

EODAD=address
the address of your end-of-data set routine for input data
sets. If this routine is not available when it is required,
the task is abnormally terminated.

DSORG={PS|PO|DA] IS}
the data set organization (one of the following codes), Each
code indicates that the format of the device-dependent
portion of the data control block is to be similar to that
generated for a particular access method:

Code DCB Format for

PS QSAM or BSAM
PO BPAM

DA BDAM

IS QISAM or BISAM

For direct-access devices, if you specify PS or PO, you must
maintain the following fields of the device-dependent
portion of the data control block so that the system can
write a file mark for output data sets:

. The track balance (DCBTRBAL) field, which contains a
2-byte binary number that indicates the remaining number
of bytes on the current track.

. The full disk address (DCBFDAD) field, which indicates
the location of the current record. The address is in the
form MBBCCHHR.

These fields are written into the format-1 DSCB and are used
by Open routines for staging MSS data sets. Staging is done
only up through the last cylinder specified by these fields
if the data set is reopened for OUTPUT, INOUT, OUTIN, OUTINX
or EXTEND.

If you specify PO for a direct-access device, the DCBDIRCT
field will not be updated. Therefore, you should be careful
when using EXCP with the STOW macro.

I0BAD=address
the address of an input/output block (I0OB). If a pointer to
the current I0B is not required, you may use this field for
any purpose.

The following parameters are not used by the EXCP routines. They
provide additional information that the system will store for
later use by access methods that read or update the data set.

RECFM=code
the record format of the data set. Record format codes are
given in 05/VS2 MVS Data Management Macro Instructions. blhen
writing a data set to be read later, the RECFM, LRECL, and
BLKSIZE should be specified to identify the data set
attributes. LRECL and BLKSIZE can only be specified in a DD
Etatement, since these fields do not exist in a DCB used by
XCP.

BFTEK={S|E}
the buffer technique, either simple or exchange.

BFALN={F|D}
the word boundary alignment of each buffer, either fullword
or doubleword.

BUFL=length
§he7length in bytes of each buffer; the maximum length is
2,767.

BUFNO=numbar
the number of buffers assigned to the associated data set:
the maximum number is 255.

Executing Your Own Channel Programs (EXCP) 61

BUFCB=address ,
the address of a buffer pool control block, that is, the
8-byte field preceding the buffers in a buffer pool.

Device-Dependent Parameters
DEVD=code
the device on which the data set may reside. The codes are
listed in order of descending space requirements for the
data control block:

code Device

DA Direct access
TA Magnetic tape
PT Paper tape

PR Printer
PC Card punch
RD Card reader

Note: For MSS virtual volumes, DA should be used.

If you do not uwish to select a specific device until job set-up
time, vou should specify the device type requiring the largest
area.

The following diagrams illustrate the device-dependent portion of
the data control block for each combination of device type
specified in the DEVD parameter and data set organization
specified in the DSORG parameter. Fields that correspond to
device-dependent parameters in addition to DEVD are indicated by
the parameter name. For special services, you may have to maintain
the fields shown in parentheses. The special serviceas are
explained in the note that follows the diagram.

Device-dependent portion of data control block when DEVD=DA and
DSORG=PS:

4 5
Reserved DCBFDAD

13
DCBDVTBL

16 17 18
DCBKEYLE DCBDEVT DCBTRBAL

For output data sets, the system uses the contents of the full
disk address (DCBFDAD) field plus one to write a file mark when
the data control block is closed, provided the track balance
(DCBTRBAL) field indicates that space is available. You must
maintain the contents of these two fields vourself if the system
is to write a file mark. OPEN will initialize DCBDVIBL and
DCBDEVT.

62 05/7VS2 System Programming Library: Data Management

Device-dependent portion of data control block when DEVD=DA and
DSORG=DA:

16 18
DCBKEYLE Reserved

Device-dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCBBLKCT

16 17 18 19
DCBTRTCH Reserved DCBDEN Reserved

=

The system uses the contents of the block count (DCBBLKCT) field
to write the block count in trailer labels when the data control
block is closed or when the EOV macro instruction is issued. You
must maintain the contents of this field vourself if the system is
to have the correct block count. (Note: The I/0 supervisor
increments this field hy the contents of the IOBINCAM field at the
completion of each I70 request.)

When using EXCP to process a tape data set open at a checkpoint,
you must be careful to maintain the correct count; otherwise, the
system may position the data set incorrectly when restart occurs.
If REPOS=Y, the count must be maintained by you for repositioning
during dynamic device reconfiguration.

Device-dependent portion of data control block when DEVD=PT and
DSORG=PS:

18
DCBCODE Reserved

Device-dependent portion of data control block when DEVD=PR and
DSORG=PS:

16 18

DCBPRTSP Reserved

Device-dependent portion of data control block when DEVD=PC or RD
and DSORG=PS:

18
DCBMODE, DCBSTACK Reserved

The following DCB operands pertain to specific devices and may be
specified only when the DEVD parameter is specified.

KEYLEN=lenath
for direct-access devices, the length in bytes of the key of
a physical record, with a maximum value of 255. When a block
is read or written, the number of bytes transmitted is the
key length plus the record length.

Executing Your Own Channel Programs (EXCP) 63

64

CODE=value
for paper tape, the code in khich records are punched:

value Code

IBM BCD

Friden

Burroughs

National Cash Register

ASCII

Teletype!

no conversion (format-F records only)

ZHP>OW T

If this parameter is omitted, N is assumed.

DEN=value
for magnetic tape, the tape recording density in bits per
inch:
Value: . Density: .
7-track tape device 9-track tape device
0 200 (2400 only) _
1 556 —_
2 800 800(NRZI)
3 — 1600(PE)
4 — 6250(GCR)

NRZI—Non-return-to-zaero change to ones recording
PE—phase encoded recording
GCR—group coded recording

If this parameter is omitted, the highest density available
on the device is assumed.

TRTCH=value
for 7-track magnetic tape, the tape recording technique:

value Tape Recording Technique

C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is
assumed.)
T BCDIC to EBCDIC translation is required.
MODE=value

for a card reader or punch, the mode of operation. Either C
(column binary mode) or E (EBCDIC code) may be specified.

STACK=value
for a card punch or card reader, the stacker bin to receive
cards, either 1 or 2.

PRTSP=value
for a printer, the line spacing, either 0, 1, 2, or 3.

Trademark of Teletype Corporation

05/7V52 System Programming Library: Data Management

o

DSORG Parameter of the DCBD Macro

In addition to the operands described in 05/Y52 MVS Data
Management Macro Instructions, for the DSORG parameter of the
DCBD macro, you may specify the following operands.

DSORG=

XA specifies a DCB with the EXCP interface section
(including appendage names)

XE specifies a DCB with the foundation block extension

OPEN—INITIALIZE DATA CONTROL BLOCK
The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. You
must issue OPEN for all data control blocks that are to be used by
vour channel programs. (A dummy data set may not be opened for
EXCP.) Some of the procedures performed when OPEN is executed are:

. Reading in the JFCB (job file control block)—unless the
TYPE=J option of the macro instruction was coded.

. Construction of the data extent block (DEB).

. Transfer of information from the JFCB and data set labels to
the DCB.

. Verification or creation of standard labhels.
. Tape positioning.
. Loading of your appendage routines.

The parameters of the OPEN macro instruction are:

[symboll OPEN (dcb_address
s[{optionsll,...)

dcb _address—A-type address or (2-12)
the address of the data control block to be initialized.
(More than one data control block may be specified.)

optionl
the intended method of I/0 processing of the data set. You
may specify this parameter as either INPUT, RDBACK, OUTPUT,
or EXTEND. For each of these, label processing when QOPEN is
executed is as follows:

INPUT Header labels are verified.
RDBACK Trailer labels are verified.
QUTPUT Header labels are created.
EXTEND Header labels are created.

If this parameter is omitted, INPUT is assumed.

option2
the volume disposition that is to be provided when volume
switching occurs. The operand values and meanings are as
follows:
REREAD Reposition the volume to process the data set again.

LEAVE No additional positioning is performed at
end‘of-yolume processing.

DISP Specifies that a tape volume is to be disposed of in

the manner implied by the DD statement associated
with the data set. Direct-access volume positioning

Executing Your Own Channel Programs (EXCP) 65

66

and disposition are not affected by this parameter
of the OPEN macro instruction. There are several
dispositions that can be specified in the DISP
parameter of the DD statement:

DISP=PASS, DELETE, KEEP, CATLG, or UNCATLG. Only
DISP=PASS has significance at the time an ’
end-of-volume condition is encountered. The
end-of-volume condition may result from the issuance
of an FEOV macro instruction or may be the result of
reaching the end of a volume.

If DISP=PASS waes coded in the DD statement, the tape
will be spaced forward to the logical end of the data
set on the current volume.

If a DISP option other than DISP=PASS is coded on the
DD statement, the action taken when an end-of-volume
condition occurs depends (1) on how many tape units
are allocated to the data set and (2) on how many
volumes are specified for the data set in the DD
statement. This is determined by the UNIT= and
VOLUME= operands of the DD statement associated with
the data set. If the number of volumes is greater
than the number of units allocated, the current
volume will be rewound and unloaded. If the number
of volumes is less than or equal to the number of
units, the current volume is merely rewound.

If you intend to process a multivolume direct data set, you must
cause Open routines to build a data extent block for each volume
and issue mount messages for them. This can be done by reading in
the JFCB with a RDJFCB macro instruction and opening each volume
of the data set. The following piece of code illustrates the
procedure:

05/7VS52 System Programming Library: Data Management

)

RDJFCB DCB1 READS IN THE JFCB

SR R3,R3 CLEARS REG 3; IT WILL
¥* HOLD COUNT OF VOLS TO
% BE OPENED

IC R3,JFCBNVOL PUTS # OF VOLS
* IN REG 3

LA R4,DCBL R4 POINTS TO DCB FOR
* VOL TO BE OPENED

LA R5,1 PUTS SEQUENCE & OF
* FIRST VOL TO BE
* OPENED IN REG 5
LoQP EQU *

STH R5,JFCBVLSQ PUTS SEQ # OF VOL
¥ 70 BE OPENED WHERE
¥ OPEN RTNS LOOK

OPEN ((R4%),0UTPUT),TYPE=J OPENS ONE VOL

* NOTE THAT THE TYPE=J OPTION OF THE MACRO MUST BE USED
LA R4,DCB2-DCB1(R4) INCREMENT REG & TO

X POINT 70 THE DCB FOR
¥ THE NEXT vOoL TO BE
¥ OPENED
LA R5,1(R5) INCREMENT TO SEQ # OF
¥ NEXT VOL TO BE OPENED
BCT R3,L00P LOOP UNTIL ALL VOLS
X OPEN
JFCB DS CL176 JFCB READ IN HERE
ORG JECB+70
JFCBVLSQ DS H SEQ # OF VvOL TO BE
¥ OPENED
O0RG JFCB+117
JFCBNVOL DS FL1 # OF VOLS IN DATA SET
ORG

¥ MAPPING MACRO IEFJFCBN MAY ALSO BE USED

DCB1 DCB DDNAME=SYSUT!1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB2 DCB DDNAME=SYSUT1,MACRF=(E), EXLST=EXITS,DSORG=PS
DCB3 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB4 DCB DDNAME=SYSUT1,MACRF=(E),EXLST=EXITS,DSORG=PS
DCB5 DCB DDNAME=SYSUT!,MACRF=(E),EXLST=EXITS,DSORG=PS
¥ THIS PROCEDURE WORKS FOR 5 VOLS OR LESS; THE JFCB

¥ EXTENSION, WHICH IDENTIFIES ADDITIONAL VOLS, CAN'T
¥ BE READ IN

EXITS DS 0F

DC X'87',AL3(JFCB) 87 IDENTIFIES THIS AS
* THE EXIT LIST ENTRY
¥ THAT SHOWS WHERE JFCB
* WILL BE READ IN

Use of the RDJFCB macro instruction and the OPEN macro instruction
with the TYPE=J option is explained in detail in "Reading and
Modifying a Job File Control Block."”

EXCP—EXECUTE CHANNEL PROGRAN

The EXCP macro instruction requests the initiation of the I/0
operations of a channel program. You must issue EXCP whenever you
want to execute one of your channel programs. The format of the
EXCP macro instruction is:

[symboll EXCP iob-address

Executing Your Own Channel Programs (EXCP) 67

iob-address—A-type address, (2-12), or (1)
the address of the input/output block of the channel program
to be executed.

ATLAS—ASSIGNING AN ALTERNATE TRACK AND COPYING DATA FROM THE DEFECTIVE TRACK

68

A program that uses the EXCP macro instruction for input and
output and is APF authorized may use the ATLAS macro instruction,
during the execution of the program, to obtain an alternate track
and to copy a defective track onto the alternate track. With the
use of ATLAS, the program can recover from permanent (hard) errors
encountered in the execution of the following tvypes of 1/0
commands:

. Search ID.

o Write. (The error condition must be confirmed during the
execution of the channel program by a CCH that checks the data
written.)

. Read count. Errors in the CCHHR part of the count area can be
recovered from unless the record is the home address or record
zero. Errors in the KDD part of the count area cannot be
recovered from unless the user has identified the defective
record.

Note: ATLAS may be used for all direct-access devices with the
exception of MSS volumes (3330V).

Your DCB must include the DCBRECFM field, and the field must show
whether the data set is in the track overflow format., If it is,
recovery from errors in last records on tracks depends on your
identifying the track overflow record segments.

Recovery takes the form of obtaining an alternate good track and
copying the defective track onto the good alternate one. Unless a
reexecution of the channel program by ATLAS can correct the
defect, the user should examine, and if necessary replace,
defective records in a subsequent job if the data set is to be
processed again.

The format is:

Isymboll | ATLAS PARMADR={address}
[,CHANPRGS {RI 11
[,CNTPTR= {P]F

[,HRITS={YES |NO}]

PARMADR)
Address of a parameter address list of the following format:

Z I\
Parameter list

7|\ I0OB for the channel program that encountered
the error

/N
Count area field

08/VS2 System Programming Library: Data Management

8

The count area field contains the CCHHRKDD of a defective
record or the CCHH of a track that is to be copied.

<\~ address—A-type address, (2-12), or (1)

CHANPRG={R [NR} '
specifies whether the channel program that encountered the
error can be executed again.

- R Channel program may be executed again by ATLAS. before
permitting reexecution of the channel program by ATLAS,
yvou must reset the error indications of the previous
execution fields in the DCBIFLGS. (See the example of
the use of ATLAS below.)

NR Channel program may not be executed again.

If this parameter is omitted, R is assumed.

CNTPTR
specifies whether the count area field contains a full count
area (CCHHRKDD) or a partial count area (CCHH).

p Part of the count area (the CCHH address of the track to
be copied).

F Full count area (CCHHRKDD count of the record that was
found defective).

If this parameter is omitted, P is assumed.

WRITS : '
track overflow segment identification.

If your'data set is in the track overflow format, this
‘ identification determines recovery from errors in last
<~ records on tracks. :

- YES If this is the last record on the track, it is a segment
other than the last of a track overflow record.

NO‘ If this is the last record on the track, it is the last
or only segment of a track overflow record.

If this parameter is omitted, it is assumed that it cannot be
established whether a last record is a segment of an overflow
record.

Using ATLAS

If a channel program encounters a unit check condition (shown in
the CSW) in its execution, the 1/0 supervisor program will place
the sense bytes in the I0B. ATLAS can be used to recover from
sense conditions shown by the following bit settings:

IOBSENSO X108 Data check (except in the count area)
TOBSENS1 X'80°" Data check in the count area
IOBSENS1 Xro2° Missing address marker (see the following

for combinations of this bit setting
which ATLAS cannot handle).

However, defects in the home address record or the record zero
record cannot be recovered from through the use of ATLAS. Thase
conditions are shown by:

I0OBSENS1 X'02' and IOBSENSO X'01'—homa address defect.

o IOBSENS1 X'0A'—record zero defect, or, home address cannot
be located.

Executing Your Own Channel Programs (EXCP) 69

Also, before using ATLAS, you must reset error indications as
follows:

NI. DCBIFLGS,X'3F' Reset the DCBIFLGS error indications.

The ATLAS program will attempt to find a good alternate track and
will attempt to copy the defective track onto the good track,
including all error conditions in either key or data areas. The
error conditions may be rectified by reexecuting the channel
program or through the use of the IEHATLAS utility program in a
subsequent step.

Example: The following illustrates the use of the ATLAS macro
instruction.

EXCP MYIOB
WAIT ECB=MYECB
™ MYECB,X'7F' TEST FOR I/0 ERROR
BO NEXT NO, SUCCESSFUL, GO TO
b v ANOTHER ROUTINE
™ IOBCSW+3,X'02" UNIT CHECK
BZ OTHER NO, DO OTHER ERROR
¥ PROCESSING
™ IOBSENSO0,X'08" DATA CHECK
BO ATLASGO YES, VALID ERROR
™ TOBSENS1,X'80" DATA CHECK IN COUNT
BO ATLASGO YES, VALID ERROR
™ IOBSENS1,X'0A" MISSING ADDRESS
* MARKER AND NOD RECORD
* FOUND
¥ YES, ATLAS CANNOT
BO OTHER HANDLE ERROR; DO
ATLASGD EQU * OTHER ERROR -
¥ PROCESSING.
* NO, MISSING ADDRESS
* MARKER QHLY.
NI DCBIFLGS,X'3F? RESET ERROR
¥ INDICATORS

ATLAS PARMADR=THERE, CHANPRG=R

operation of the ATLAS Program
The ATLAS program (SVC 86):

. Establishes the availability and address of the'next
alternate track from the format-4 DSCB of the VTOC.

. Brings all count fields from the defective track into storage
to establish the description of the track.

. Initializes the alternate track. (Writes the home address and
record zero.)

. Brings the key and data areas of each record into storage, one
at a time, and combines them with their new count area to
write the complete record onto the alternate track.

. When the copying is finished, chains the alternate to the
defective track and updates the VTOC.

Control is returned to your program at the next executable
instruction following the ATLAS macro instruction. The success of
the ATLAS macro instruction can be determined by examining the
contents of register 15, which will contain one of the return
codes described below. If register 15 contains 0, 36, 40, or 64,
the contents of register 0 may be significant.

70 05/7V52 System Programming Library: Data Management

P

becimal
Return
Code

0

16

20

24

28

32

36

40

44

Meaning

Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. The only error encountered was in the record
identified by the user's CCHHRKDD value.

If the channel program is reexecutable, it has been
successfully reexecuted.

This device type does not have alternate tracks that
can be assigned by programming.

All alternate tracks for the device have been assigned.

A request for storage (GETMAIN macro instruction) could
not be satisfied.

All attempts to initialize and transfer data to an
alternate track failed. The number of attempts made is
equal to 10% of the assigned alternates for the device.

The type of error shown by the sense byte cannot be
handled through the use of the ATLAS macro instruction.
The condition is other than a data check (in the count
or data areas) or a missing address marker.

The format-4 DSCB of the VTOC cannot be read; therefore
alternate track information is not available to ATLAS.

The record specified by the user was the format-4 DSCB
and it could not be read.

An error found in count area of last record on the track
cannot be handled because last-record-on-track
identification is not supplied.

An error was encountered when reading or writing the
home address record or record zero. No error recovery
has taken place. If register 0 contains X'01 00 00 0O0°',
the defect is in record zero.

Successful completion. Key and data areas have been
copied from the defective track onto a good alternate
one. However, the alternate track may have records with
defective key or data areas. Register 0 identifies the
first three found defective as follows:

n RRR

n—The number of record numbers that follow (0, 1, 2, or
3.

R—The number of the record found defective but copied
anyhow.

If the channel program is reexecutable, it has been
successfully reexecuted.

Error/Errors encountered and no alternate track has
been assighed. The return parameter register (ragister
0) will contain the R of a maximum of three error
records.

Error conditions that return this code are:

1. ATLAS received an error indication for a record
with a data length in the count field of zero.
Recovery was not possible because a distinction
cannot be made between an E0F record and an invalid
data length.

Executing Your Own Channel Programs (EXCP) 71

2. An error occurred while reading the count field of
a record and the KDD (key length- data length) was
found to be defactive.

3. More than three records on the specified track
contained errors in their count fields.

48 No errors found on the track, no alternate assigned.
ATLAS will not assign an alternate unless a track has at
least one defective record.

52 I/0 error in reexecuting user's channel program. A good
alternate is chained to the defective track and data
has been transferred. The user's control blocks will
give indication of the error condition causing failure
in reexecution of the channel program.

56 The DCB reflects a track overflow data set, but the UCB
device type shows that the device does not support
track overflouw.

60 The CCHH of the user-specified count area is not within
the extents of the data set.

64 The device is an MSS virtual device, which is not
supported.

EOV—END OF VOLUNE

72

The EOV macro instruction identifies end-of-volume and
end-of-data set conditions. For an end-of-volume condition, EOV
causes switching of volumes and verification or creation of
standard labels. For an end-of-data set condition, EOV causes
vour end-of-data set routine to be entered. Before processing
trailer labels on a tape input data set, you must decrement the —
DCBBLKCT field. You issue EOV if switching of magnetic tape or
direct-access volumes is necessary, or if secondary allocation is
to be performed for a direct-access data set opened for output.

For magnetic tape, you must issue EQOV when either a tapemark is
read or a reflective spot is written over. In these cases, bit
settings in the 1-byte DCBOFLGS field of the data control block
determine the action to be taken when EQV is executed. Before
issuing EOV for magnetic tape, you must make sure that appropriate
bits are set in DCBOFLGS. Bit positions 2,3,6, and 7 of DCBOFLGS
are used only by the system; yvou are concerned with bit positions
0,%i4. and 5. The use of these DCBOFLGS bit positions is as
follows:

Bit o

set to 1 indicates that a write command was executed and that
a tape mark is to be written.

Bit 1
indicates that a backward read was the last 1/0 operation.
Bit 4
indicates that data sets of unlike attributes are to be
concatenated.
Bit 5

indicates that a tape mark has been read.

If bits 0 and 5 of DCBOFLGS are both off when EOV is executed, the
tape is spaced past a tapemark, and standard labels, if present,
are verified on both the old and new volumes. The direction of
spacing depends on bit 1. If bit 1 is off, the tape is spaced
forward; if bit 1 is on, the tape is backspaced.

If bit0 is on when EOV is executed, a tapemark is written)
immediately following the last data record of the data set.

05/7VS2 System Programming Library: Data Management

Standard labels, if specified, are created on the old and the new
volume.

()

After issuing EOV for sequentially organized output data sets on
direct-access volumes, you can determine whether additional space
was obtained on the same or a different volume. You do this by
examining the data extent block (DEB) and the unit control block

. (UCB). If neither the address of the UCB, as shown in the DEB, nor
. the volume serial number, as showun in the UCB, have changed,
additional space was obtained on the same volume. Otheruise,
space was obtained on a different volume.

The only parameter of the EOV macro instruction is:

[symbol]l EQV decb _address

dcb address—A-type addfess, (2-12), or (1)
the address of the data control block that is opened for the
data set. If this parameter is specified as (1), register 1
must contain this address.

Note: To learn how the system disposes of a tape volume uhen an
EOV macro is issued, see the description of the DISP parameter in
"OPEN—Initialize Data Control Block."

CLOSE—RESTORE DATA CONTROL BLOCK

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data control blocks that
were used by your channel programs. Some of the procedures
performed when CLOSE is executed are:

(; . Release of data extent block (DEB)

. Removal of information transferred to data control block
fields when OPEN was executed

. Verification or creation of standard labels
. Volume disposition
. Release of programmer-uritten appendage routines

When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the DCBOFLGS
field of the data control block. Before issuing CLOSE for magnetic
tape, you must set the appropriate bits in DCBOFLGS. The DCBOFLGS
bit positions that you are concerned with are listed in the EOV
macro instruction description.

For information about the forms of the CLOSE macro and their
parameters, refer to 05/VS52 MVS Data Management Macro
Instructions.

CONTROL BLOCK FIELDS

The fields of the input/output block, event control block, and
data extent block are illustrated and explained here; the data
control block fields have been described with the parameters of
the DCB macro instruction in the section "EXCP Programming
Specifications."

INPUT/0UTPUT BLOCK FIELDS

(:; The input/butput block (IOB) is not automatically constructed by
y a macro instruction; it must be defined as a series of constants
and must be on a fullword boundary. For unit-record and tape

Executing Your Owun Channel Programs (EXCP) 73

devices, the I0OB is 32 bytes in length. For direct-access,
teleprocessing, and graphic devices, 8 additional bytes must be
provided. You may want to use the system mapping macro IEZIOB,
which expands into a DSECT, to help in constructing an I0B.

In Figure 12 the diagonally-ruled areas indicate fields in which
yvou must specify information; the hyphen areas indicate fields in
which you may specify information. The other fields are used by
the system and must be defined as all zeros. You may not place
information into these fields, but you may examine them.

0¢0)/] [71- -- -
777777 10BFLAGL]| /7|~ --1IOBFLAG?2 IOBSENSO IOBSENS1
772777 171- -
4(4) L7777 7777777777777 7772/7777777777/777777
IOBECBCC /7777777727777 77 10BECBPT 7777777777777
‘ L1077/ 7777777777772 777772772727 7272777
8(8)
IOBFLAG3
IOBCSH
12(C)
> All
16(10) LIPII27 2777777777777 7077777777777 7777 Devices
I0OBSIOCC 177777772777 777 10BSTART /777777777777
SIS/
20(14) L7777/ P77 7777777777777 7/77/777777
Reserved /7772777277777 7 10BDCBPTY 7777777777777
LI I7 7727722777777 70770077777720777777277
26(18)
IOBRESTR IOBRESTR+1
28BCLC)Y /7777777772777 7777727777777
/777777727777 10BINCAM 2777777777 TIOBERRCT
SO0 777/ _—
32C20) 77772777777 |
/777 ~ I0BSEEK /7 > Direct Access, Teleprocessing, and
/7 (first byte, M) |- Graphic Devices

33CQ2L) /7777777772777 72777727777727272727777

L1772 7277777777727 7777777777277/7772727777 Direct

LIS IIII P77 7777772777777 720777777772772777 Access

/77 I0OBSEEK /777 > Storage
/1707472777772 7777777777 (second through eighth bytes, /777 Devices
LIV LII PSPPI 77777777 BBCCHHR) /7777 (DASD)
LI 7L7 77727727727 7777777772027722777727772727277772722/7727727 39(27)

Figure 12. Input/Output Block Format

74 05/VS2 System Programming Library: Data Management

IOBFLAGL (1 byte)
You must set bit positions 0, 1, and 6. One-bits in positions
0 and 1 indicate data chaining and command chaining,
respectively. (If both data chaining and command chaining
are specified, the system does not use error recovery
routines except for the 2671, 1052, 2150 and the
direct-access devices.) A one-bit in position 6 indicates
that the channel program is not a 'related' request; that is,
the channel program is not related to any other channel
program. If you intend to issue an EXCP macro with a BSAM,
QSAM, or BPAM data control block, you may want to turn on bit
7 to prevent access—-method appendages from processing the
I/0 request.

IOBFLAGZ (1 byte)
If you set bit 6 in the IOBFLAG] field to zero, then bits 2
and 3 in this field must be set to:

U 00, if any channel program or appendage associated with
a related request might modify this I0B or channel
program.

. 01, if the conditions requiring a 00 setting don't

apply, but the CHE or ABE appendage might retry this
channel program if it completes normally or with the
unit-exception or wrong-length-record bits on in the
CSW.

. 10 in all other cases.

The three combinations of bits 2 and 3 represent the three
kinds of related requests, known as type 1 (00), type 2 (01),
and type 3 (10). The type you use determines how much the 1I/0
supervisor can overlap the processing of related requests.
Type 3 allows the greatest overlap, normally making it
possible to quickly reuse a device after a channel-end
interruption. (Related requests that were executed on an
earlier system are executed as type-1 requests if not
modified.)

IOBSENSO and IOBSENSL (2 bytes)
are placed into the input/output block by the system when a
unit check occurs. On occasion the system is unable to obtain
any sense bytes because of unit checks when sense commands
are issued. In this case the system simulates sense bytes by
moving X'10FE' to IOBSENSO and IOBSENSI.

IOBECBCC (1 byte)
the first byte of the completion code for the channel
program. The system places this code in the high-order byte
of the event control block when the channel program is posted
complete. The completion codes and their meanings are listed
under "Event Control Block Fields."

IOBECBPT (3 bytes)
the address of the 4-byte event control block that you have
provided.

IOBFLAG3 (1 byte)
is used only by the system.

IOBCSW (7 bytes)
the low-order seven bytes of the channel status word, which
are placed into this field each time a channel-end or PCI
interruption occurs.

IOBSIOCC (1 byte)
in bits 0 and 1, the instruction-length code; in bits 2 and
3, the start I/70 (SI0) condition code for the SIO instruction
the system issues to start the channel program; and in bits 4
through 7, the program mask. d

Executing Your Own Channel Programs (EXCP) 75

IOBSTART (3 bytes)
the starting address of the channel program to be executed.

Reserved (1 byte)
used only by the system.

JIOBDCBPT (3 bytes) :
the address of the data control block of the data set to be
read or written by the channel program.

IOBRESTR (1 byte)
used by the system for volume repositioning in error
recovery procedures.

IOBRESTR+1 (3 bytes) :
used by the system, if a related channel program is
permanently in error, to chain together I0Bs that represent
dependent channel programs. To learn more about the
conditions under which the chain is built, refer to
"Interruption Handling and Error Recovery Procedures."

IOBINCAM (2 bytes)
for magnetic tape, the amount by which the block count
(DCBBLKCT) field in the device-dependent portion of the data
control block is to be incremented. You may alter these bytes
at any time. For forward operations, these bytes should
contain a binary positive integer (usually +1); for backward
operations, they should contain a binary negative integer.
When these bytes are not used, all zeros must be specified.

Reserved (2 bytes)
used only by the system.

JOBSEEK (first byte, M)
for direct-access devices, the extent entry in the data
extent block that is associated with the channel program (0
indicates the first entry; 1 indicates the second, etc.).
For teleprocessing and graphic devices, it contains the UCB
index. :

IOBSEEK (last 7 bytes, BBCCHHR)
for direct-access devices, the seek address for your channel
program.

EVENT CONTROL BLOCK FIELDS

You must define an event control block (ECB) as a 4-byte area on a
fullword boundary. When the channel program has been completed,
the input/output supervisor places a completion code containing
status information into the ECB (Figure 13 on page 77). Before
examining this information, you must test for the setting of the
"complete bit." If the complete bit is not on, and your problem
proaram cannot perform other useful operations, vou should issue
a WAIT macro instruction that specifies the event control block.
Under no circumstances should you construct a program loop that
tests for the complete bit.

DATA EXTENT BLOCK FIELDS

The data extent block (DEB) is constructed by the system when an
OPEN macro instruction is issued for the data control block. You
‘may not modify the fields of the DEB, but vou may examine them.
The DEB format and field descriptions are contained in 05/VS2
System Programming Library: Debugging Handbook.

76 05/VS2 System Programming.Library: Data Management

WAIT bit=0 COMPLETE bit=1 Remainder of completion code

bit

0 1 2 31

Wait bit
A one-bit in this position indicates that the WAIT macro instruction has been
issued, but the channel program has not been completed.

Complete bit
A one-bit in this position indicates that the channel program has been completed;
if it has not been completed, a zero-bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the following
4~byte hexadecimal expressions:
Code Meaning
7F000000 The channel program has terminated without error.
41000000 The channel program has terminated with a permanent error.

42000000 The channel program has terminated because a direct-access extent
address has been violated.

44000000 The channel program has been intercepted because of a permanent error
associated with a device end for the previous request. You may reissue
the EXCP macro instruction to restart the channel program.

48000000 The request queue element for a channel program has been made available
after it has been purged.

4B000000 One of the following errors occurred during error recovery processing
for a tape device.

. The CSW command address in the 1I0B is zeros.
. An unexpected load point was encountered.

4F000000 Error recovery routines have been entered because of direct-access
error but are unable to read the home address or record 0.

Figure 13. Event Control Block After Posting of Completion Code (EXCP)

EXECUTING FIXED CHANNEL PROGRAMS IN REAL STORAGE (EXCPVR]

The EXCPVR macro instruction provides you with the same functions
as the EXCP macro instruction (that is, a device-dependent means
of performing input/output operations). In addition, it allows
your program to improve the efficiency of the I/0 operations in a
paging environment by translating its own virtual channel
programs to real channel programs. Authorized programs are
allowed to execute in a pageable area and provide the 170
supervisor with real channel programs. This eliminates the
translation of channel programs by the I/0 supervisor. The
program issuing the EXCPVR must remain in authorized state until
the completion of the channel programs.

Problem programs are _authorized to use the EXCPVYR macro
instruction under the authorized program facility (APF). A
daescription of how to authorize a program can be found in the
0S5,VS52 System Programming Library: Supervisor.

Executing Your Own Channel Programs (EXCP) 77

[symboll EXCPVR

job-address -

-

N

iob-address—A-type address, (2-12), or (1) .
the address of the input/output block of the channel program
to be executed.

To use EXCPVR, yvou must do all the things you would do to execute
an EXCP request; in addition you must:

1. Code PGFX=YES in the DCB associated with the EXCPVR requests
and provide a page-fix (PGFX) appendage by specifying
SI0A=symbol in the DCB. .

2. Fix the data area that contains your channel program, the data
areas that are referred to by vour channel program, your PCI
appendage (if your program can generate program controlled
interrupts), and any area referred to by your PCI appendage.
You fix these data areas by building a list that contains
these addresses of these areas. You should build the list in
vour PGFX appendage.

3. Determine whether the data areas in virtual storage specified
in the address fields of your CCWs cross page boundaries. If
they do, you must build an indirect address list (IDAL) and
put the address of the IDAL in the affected CCW.

4. Translate the addresses in your CCWs from virtual to real
addresses.

Items 3 and 4 must be done in your start-1/0 (SI0) appendage. A
description of the SI0 appendage is presented in the section
titled "Appendages."™

There is no advantage in using EXCPVR with a virtuai input/output
(VI0) data set. If EXCPVR is used, then virtual addresses must be
uifd in the CCWs and indirect address lists (IDALs) are not
allowed, '

BUILDING THE LIST OF DATA AREAS TO BE FIXED

The I/0 supervisor expects programs using the EXCPVR macro
instruction to pass a list of data areas to be fixed. This list is
to be built in the PGFX appendage, as described below.

The data areas vou must fix in real storage (if not already fixed
in real storage) are:

1. The channel program. If the channel program is already in a .
fixed subpool, it does not have to be fixed.

2. The data areas from which your channel program will be writing
and to which your channel program will be reading. If the data
areas are already in a fixed subpool, they do not have to be
fixed.

3. The PCI appendage.

4. Any control blocks or other areas referred to in your PCI
appendage (as well as, the DEB). Control blocks can be divided
into two groups—system control blocks and user control
blocks. The control blocks can be fixed or not fixed. If the
c:ntrol blocks are not fixed, they must be fixed in real
storage.

You need not fix areas that have already been fixed, such as the
modules that reside in the fixed link pack area (LPA).

78 05/VS2 System Programming Library: Data Management

c

PAGE FIX (PGFX) AND START-I/0 (SI0O) APPENDAGE

This appendage comprises two essentially independent appendages.
The complete appendage can be viewed as a reenterable subroutine
having two entry points, one for the SI0 appendage and one for the
PGFX appendage.

The SI0 entry point is located at offset 0 in the subroutine; any
other location in the appendage may be branched to from this entry
point. The entry point of the PGFX appendage is at offset +4 in
the SI0 subroutine, which is set in register 15 as the entry point
of the PGFX appendage.

Page Fix (PGFX) Appendage: The purpose of this appendage is to
list all of the areas that must be fixed to prevent paging
exceptions during the execution of the current I/0 request. This
appendage may be entered more than once. However, each time it is
entered, it must create the same list of areas to be fixed. The
appendage may use the l6-word save area pointed to by register 13.
Registers 10, 11, and 13 may be used as work registers.

PAGE FIX LIST PROCESSING

SI0 Appendage

Each page fix entry placed in the list by the appendage must have
the following doubleword format:

X'00°" Starting virtual X'00° Ending virtual
address of area address of
to be fixed area to be fixed
+ 1
<--1 byte-->|<~----3 bytes—--->|<--1 byte-->|<----3 bytes-—--->

On return from your PGFX appendage to the 170 supervisor (via the
return address provided in register 14), register 10 must point to
the first page-fix entry and register 11 must contain the number
of page-fix entries in the work area. The 170 supervisor then
fixes the pages corresponding to the areas listed by the PGFX
appendage. The pages remain flxed until the associated 1I/0
request terminates.

If either the channel end appendage or the abnormal end appendage
returns via the return address in register 14 plus 8, the PGFX
appendage is not normally reentered. Instead, the 510 appendage
is entered, and the page fix list built by the PGFX appendage is
still active. However, the PGFX appendage is entered after either
the channel end appendage or the.abnormal end appendage returns
via the return address in register 14 plus 8 when a PURGE macro
has been issued (for instance, when a memory swap has occurred).
In this case, when I/0 is restored, the PGFX appendage is entered.

Note: The page-fix list must be in page-fixed storage.

If you are using EXCPVR to execute your channel program, you must
translate the virtual addresses in the operands of your channel
program to real addresses. This should be done in your SIO
appendage. If indirect addressing is requirced, the SI0 appendage
should also build the IDALs and turn on the IDAL indicators in the
associated CCUs.

Translating virtual Addresses and Building the IDAL: You can use
the load real address (LRA) instruction to convert the virtual
addresses in the channel program to real addresses. You must also
check the areas whose addresses appear in bits 8-31 of your CCWs
to determine whether the data areas cross page boundaries. If they

Executing Your Own Channel Programs (EXCP) 79

80

do, you must provide an entry in the indirect address list (IDAL)
for each page boundary crossed. The channel uses the IDAL to
identify the address at which it will continue reading or writing
when a page boundary is crossed during a read or write operation.
If each buffer page is accessed, causing the page to be paged in,
the LRA instruction can be used to translate the virtual addresses
in tha IDAL to real addressaes. The IDAL must contain real
addresses when it is processed by the channel.

CCW
Command Address of the 04 VIS0 024044 Byte
Code IDAL /117777777 Count
0 78 31 32 39 40 47 648
IDAL
S
0
First Indirect Address
4
Second Indirect Address
8
- Subsequent Indirect _
Address T
Notes:

1. You must put one entry in the IDAL for each 2K-byte page
boundary your data area crosses.

2. If the CCW has an IDAL address rather than a data address, bit
37 must be set to signal this to the channel.

3. The maximum number of entries needed in the IDAL is determined
from the count in the CCW as follows:

Number of IDAL entries=((CCW count - 1)/72048) + 1.
(Round up division to next highest integer if remainder is not
zero.) :

The number of IDAL entries required ultimately depends on whether
the data crosses a 2K-byte page boundary. For example, if your
data is 800 bytes long and does not cross a 2K-byte page boundary,
no IDAL entries are required. If vour data crosses a 2K-byte page
boundary, then two IDAL entries are required. If your data is 3000
bytes long, at least two IDAL entries are required. If vour data
crosses two 2K-byte page boundaries, three IDAL entries are
required.

The first indirect address is the real address of the first byte
of the data area. The second and subsequent indirect addraesses are
the real addresses of the second and subsequent pages (on a page
boundary of 2048 or X'800') of the data area.

For example, if the data area real address is X'707FF' and the
byte count is X'802' the IDAL would contain the following real
addresses (assuming the real addresses are contiguous, which may
not always be the case):

707FF
70800
71000

05/7VS2 System Programming Library: Data Management

AN

If the data area real address is X'707FF' and the byte count is
X'800' the IDAL would contain the following addresses:

<; 707FF
B 70800

Executing Your Own Channel Programs (EXCP)

81

USING XDAP TO READ AND WRITE TO DIRECT-ACCESS DEVICES

INTRODUCTION

XDAP REQUIREMEMNTS

The execute direct-access program (XDAP) macro instruction
provides vou with a means of reading, verifying, or updating
blocks on direct-access volumes without using an access method
and without writing yvour own channel program. This chapter
explains what the XDAP macro instruction does and how vou can use
it. The control block generated when XDAP is issued and the macro
instruction used with XDAP are also discussed.

Since most of the specifications for XDAP are similar to those for
the execute channel program (EXCP) macro instruction, you should
be familiar with the "Executing Your Own Channel Programs (EXCP)"
chapter of this publication, as well as with the information
contained in 05/VS52 MVS Data Management Services Guide, which
provides how-to information for using the access method routines
of the system control program.

Execute direct-access program (XDAP) is a macro instruction that
vou may use to read, verify, or update a block on a direct-access
volume. If you are not using the standard IBM data access methods,
vou can, by issuing XDAP, generate the control information and
channel program necessary for reading or updating the records of a
data set. (XDAP cannot be used, however, to read, verify, or
update a SYSIN, SYSOUT, or VSAM data set.)

You cannot use XDAP to add blocks to a data set, but you can use it
to change the keys of existing blocks. Any block configuration and
any data set organization can be read or updated.

Although the use of XDAP requires less storage than do the
standard access methods, it does not provide many of the control
program services that are included in the access methods. For
example, when XDAP is issued, the system does not block or deblock
raecords and does not verify block length.

To issue XDAP, you must provide the actual device address of the
track containing the block to be processed. You must also provide
either the block identification or the key of the block, and
specify which of these is to be used to locate the block. If a
block is located by identification, both the key and data portions
of the block may be read or updated. If a block is located by key,
only the data portion can be processed.

For additional control over 170 operations, vou may urite
appendages, which must be entered into the LPA library.
Descriptions of these routines and their coding specifications
are contained in the "Executing Your Own Channel Programs (EXCP)"
section of this publication.

When using the XDAP macro instruction, you must, somewhere in vour
program, code a DCB macro instruction, which produces a data
contrel block (DCB) for the data set to be read or updated. You
must also code an OPEN macro instruction, which initializes the
data control block and produces a data extent block (DEB). The
OPEN macro instruction must be executed before any XDAP macro
instructions are executed.

82 05/7VS2 System Programming Library: Data Management

e

C

When the XDAP macro instruction is assembled, a control block and
executable code are generated. This control block may be
logically divided into three sections:

. An event control block (ECB), which is supplied with a
completion code each time the direct—-access channel program
is terminated.

. An input/output block (IOB), which contains information about
the diract-access channel program.

. A direct-access channel program, which consists of three or
four channel command words (CClWs). The tvpe of channel
program generated depends on specifications in the parameters
of the XDAP macro instruction. When executed, it locates a
block by either its actual address or its key and reads,
updates, or verifies the block.

When the channel program has terminated, a completion code is
placed into the event control block. After issuing XDAP, vou
should therefore issue a WAIT macro instruction, specifying the
address of the event control block, to regain control when the
direct-access program has terminated. If volume suwitching is
necessary, you must issue an EOV macro instruction. When
processing of the data set has been completed, you must issue a
CLOSE macro instruction to restore the data control block.

MACRO SPECIFICATIONS FOR USE WITH XDAP

When you are using the XDAP macro instruction, you must also code
DCB, OPEN, CLOSE, and, in some cases, the EOV macro instructions.
The parameters of the XDAP macro instruction are listed and
described here. For the other required macro instructions,
special requirements or options are explained, but vou should
refer to "Macro Specifications for Use with EXCP" for listings of
their parameters.

DCB——DEFINE DATA CONTROL BLOCK

You must issue a DCB macro instruction for each data set to be
read, updated, or verified by the direct-access channel program.
Refer to "DCB——Define Data Control Block for EXCP" to learn which
macro instruction parameters to code.

OPEN—INITIALIZE DATA CONTROL BLOCK

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed. Yc¢ -
must issue OPEN for all data control blocks that are to be used by
the direct-access program. Some of the procedures performed when
OPEN is executed are:

. Construction of data extent block (DEB).

. Transfer of information from DD statements and data set
labels to the data control block.

U Verification or creation of standard labels.

. Loading of programmer-written appendage routines.

The two parameters of the OPEN macro instruction are the
address(es) of the data control block(s) to be initialized, and
the intended method of I/0 processing of the data set. The method

of processing may be specified as INPUT, OUTPUT, EXTEND; however,
if nothing is specified, INPUT is assumed.

Using XDAP to Read and Write to Direct-Access Devices 83

XDAP—EXECUTE DIRECT~ACCESS PROGRAM

The XDAP macro instruction produces the XDAP control block (that
is, the ECB, I0OB, and channel program) and executes the
direct-access channel program. The format of the XDAP macro
instruction is:

[symbol]l XDAP ecb-symbol
stype
sdeb-addr

yarea-addr

slength-value
yLlkey-addr,kevlength-value)l
sblkref-addr
y[sector-addrl

[LHF={E[L)]

ecb-symbol—symbol or (2-12)
the symbolic name to be assigned to the XDAP event control
block. Registers can be used only with MF=E.

type——{RI |RKIHI IHK]IVI|IVK}
the type of 170 operation intended for the data set and the
method by which blocks of the data set are to be located. One
of the combinations shown must be coded in this field.

The codes and their meanings are:
R Read a block.
W Update a block.

v Verify that the device is able to read the contents of a
block, but do not transfer data.

I Locate a bIock by identification. (The key portion, if
present, and the data portion of the block are read,
updated, or verified.)

K Locate a block by key. (0Only the data portion of the
block is read, updated, or verified.) If vou code this
value, you must code the key-addr key-length-value
operands.

dcbh-addr—A-type address or (2-12)
the address of the data control block for the data set. If
this data control block is also being used by a sequential
access method (BSAM, BPAM, QSAM), you must reassemble the
XDAP macro instruction. Otherwise, sequential access method
appendages will be called at the conclusion of the XDAP
channel program.

area—addr—A-type address or (2-12)

the address of an input or output area for a block of the
data set.

length-value—absexp or (2-12)
the number of bytes to be transferred to or from the input or
output area. If blocks are to be located by identification
and the data set contains keys, the value must include the

length of the key. The maximum number of bytes transferred is
32,767. :

key-addr—RX-type address or (2-12)
when blocks are to be located by key, the address of a
virtual.storage field that contains the key of the block to
be read, updated, or verified.

keylength-value—absexp or (2-12)

when blocks are to be located by key, the length of the key.
The maximum length is 255 bytes.

84 05/7VS2 System Programming Library: Data Management

blkref-addr—RX-tvpe address or (2-12)
the address of a field in virtual storage containing the
‘ actual device address of the track containing the block to be

(\’ located. The actual address of a block is in the form
HHBBCCHHR, where M indicates which extent entry in the data
extent block is associated with the direct-access program;
BB is not used but must be zero; CC indicates the cylinder
address; HH indicates the actual track address; and R
indicates the block identification. R is not used when

n blocks are to be located by key. (See "Conversion of Relative
Block Address to Actual Device Address" later in this
chapter for more detailed information.)

. sector-addr—RX-type addrass or (2-12)
the address of a 1-byte field containing a sector value. The
sector-address parameter is used for rotational position
sensing (RPS) devices only. The parameter is optional, but
its use Will improve channel performance. When the parameter
is coded, a set-sector CCW (using the sector value indicated
by the data address field) precedes the Search-ID-Equal
command in the channel program. The sector-address parameter
is ignored if the type parameter is coded as RK, WK, or VK.
If a sector-address is specified in the execute form of thea
macro, then a sector-address, not necessarily the same, must
be specified in the list form. The sector address in the
executable form will be used.

Note: No validity check is made on either the address or the
sector value when the XDAP macro is issued. However, a unit
check/command reject interruption will occur during
channel-program exaecution if the sector value is invalid for
the device or if the sector-addr operand is used when
accessing a device without RPS. (See "Obtaining Sector
Number of a Block on a Device with the RPS Feature" later in
this chapter for more detailed information.)

‘ MF=
(; yvou may use the L-form of the XDAP macro instruction for a
macro expansion consisting of only a parameter list, or the
E~-form for a macro expansion consisting of only executable
instructions.

MF=E
The first operand (ecb-symbol) is required and may be coded
as a symbol or supplied in registers 2 through 12. The type,
dcb-addr, area-addr, and length-value operands may be
supplied in either the L- or E-form. The blkref-addr operand
may be supplied in the E-form or moved into the IOBSEEK field
by you. The sector-addr is optional; it may be coded either
in both the L~ and E-form or in neither.

MF=L

The first two operands (ecb-symbol and type) are required
and must be coded as symbols. If you choose to code
length-value or kevlength-value, they must be absolute
expressions. Other operands, if coded, must be A-type
addresses. (blkref-addr is ignored if coded.)

The dcb-addr, area-addr, blkref-addr, and sector-value operands
may be coded as RX-type addresses or supplied in registers 2
through 12. The length-value and kevlength-value operands can be
specifiaed as an absolute expression or decimal integer or
supplied in registers 2 through 12.

Using XDAP to Read and Write to Direct-Access Devices 85

EQV—END OF VOLUME

The EOV macro instruction identifies end-of-volume and
end-of-data set conditions. For an end-of-volume condition, EQV
causes switching of volumes and verification or creation of
standard labels. For an end-of-data set condition, EOV causes
your end-of-data set routine to be entered. When using XDAP, you
issue EOV if switching of direct-access volumes is necessary, or
if secondary allocation is to be performed for a direct-access
data set opened for output.

The only parameter of the EOV macro instruction is the address of
the data control block of the data set.

CLOSE—RESTORE DATA CONTROL BLOCK

The CLOSE macro instruction restores one or more data control
blocks so that processing of their associated data sets can be
terminated. You must issue CLOSE for all data sets that were used
by the direct-access channel program. Some of the procedures
paerformed when CLOSE is executed are:

e Release of data extent block (DEB)

. Removal of information transferred to data control block
fields when OPEN was executed

U Verification or creation of standard labels

. Release of programmer-written appendage routines

The CLOSE macro instruction must identify the address of at least
one data control block to be restored, and may specify other

options. See 05/VS52 MVS Data Management Macro Instructions to
1earn‘what these options are and how they are specified.

CONTROL BLOCKS USED WITH XDAP

EVENT CONTROL BLOCK

INPUT/0UTPUT BLOCK

The three control blocks generated during execution of the XDAP
macro instruction are described here.

The event control block (ECB) begins on a fullword boundary and

‘occupies the first ¢ bytes of the XDAP control block. Each time

the direct-access channel program terminates, the I/0 supervisor
places a completion code containing status information into the
evant control block (Figure 14 on page 87). Before examining this
information, you must wait for the completion of the channel
program by issuing a WAIT macro instruction that specifies the
address of the event control block.

The input/output block (IOB) is 40 bytes in length and immediately
follows the event control block. The "Control Block Fields"
section in the EXCP section of this publication contains a diagram
of the input/output block (Figure 1% on page 87). You may wish to
examine the IOBSENSO, IOBSENS1l, and IOBCSW fields if the ECB is
posted with X'41"'.,

86 AOS[VSZVSystem Programming Library: Data Management

SN

<\/» WALIT bit COMPLETE bit Completion code
bit
0

1 2 31

Wait bit

A one bit in this position indicates that the direct-access channel program has
not been completed.)

Complete bit
A one bit in this position indicates that the channel program has been completed;
if it has not been completed, a zero bit is in this position.

Completion code
This code, which includes the wait and complete bits, may be one of the following
4-byte hexadecimal expressions:
Code Interpretation
7F000000 Direct-access program has terminated without error.

41000000 Direct-access program has terminated with permanent error.

42000000 Direct-access program has terminated because a direct-access extaent
address has been violated.

4F000000 Error recovery routines have been entered because of direct-access
error but are unable to read home address or record 0.

Figure 14. Event Control Block After Posting of Completion Code (XDAP)

(l,/ DIRECT-ACCESS CHANNEL PROGRAM

The direct-access channel program is 24 bytes in length (except
when set sector is used for RPS devices) and immediately follouws
the input/output block. Depending on the type of 170 operation
specified in the XDAP macro instruction, one of four channel
programs may be generated. The three channel command words for
each of the four possible channel programs are shown in Figure 15.

Type of I/0 Operation CCH command Code
Read by identification Search ID Equal
Transfer in Channel
Verify by identification? Read Key and Data
Read by key Search Key Equal
Transfer in Channel
Read Data

Search ID Equal
Transfer in Channel
Write Key and Data

Verify by key!

Write by identification

Write by key - Search Key Equal
Transfer in Channel

Write Data

LN N N GINF

lFor verifying operations, the third CCW is flagged to suppress
the transfer of information to virtual storage.

C:; e Figure 15. The XDAP Channel Programs

Using XDAP to Read and Write to Direct-Access Devices 87

When a sector address is specified with an RI, VI, or WI
operation, the channel program is 32 bytes in length. Each of the
channel programs in Figure 15 on page 87 would be, in this case,
preceded by a set sector command.

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL DEVICE ADDRESS

88

To issue XDAP, vou must provide the actual device address of the
track containing the block to be processed. If you know only the
relative track address, yvou can convert it to the actual address
by using a resident system routine. The entry point to this
conversion routine is labeled IECPCNVT. The address of the entry
point (CVTPCHNVT) is in the communication vector table (CVT). The
address of the CVT is in location 16. (For the displacements and
descriptions of the CVT fields, see 05/VYS52 Svstem Programming
Library: Debuqgqging Handbook.)

The conversion routine does all its work in general registers. You
must load registers 0, 1, 2, 14, and 15 with input to the routine.
Register usage is as follows:

Register Use

0 Must be loaded with a ¢-byte value of the form TTRN,
where 7T is the number of the track relative to the
beginning of the data set, R is the identification of
the block on that track, and N is the concatenation
number of a BPAM data set. (0 indicates the first data
set in the concatenation, an unconcatenated BPAM data
set, or a non—-BPAM data set.)

1 Must be loaded with the address of the data extent block
(DEB) of the data set.

2 Must be loaded with the address of an 8-byte area that
is to receive the actual address of the block to be
processed. The converted address is of the form
MBBCCHHR, where M indicates which extent entry in the
data extent block is associated with the direct~access
program (0 indicates the first extent, 1 indicates the
second, etc.); BB is two bytes of zeros; CC is the
cvlinder address; HH is the actual track address; and R
is the block number.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not
restored.

14 Must be loaded with the address to which control is to

be returned after execution of the conversion routine.

15 Is used by the conversion routine as a base register and
must be loaded with the address at which the conversion
routine is to receive control.

When control is returned to your program, register 15 will contain
one of the following return codes:

Code Meaning
0 Successful conversion.

4 The relative block address converts to an actual device
address outside the extents defined in the DEB.

0S7VS2 System Programming Library: Data Management

@

™)

CONVERSION OF ACTUAL DEVICE ADDRESS TO RELATIVE TRACK ADDRESS

To get the relative track address when you know the actual device
, address, you can use the conversion routine labeled IECPRLTV. The

address of the entry point (CVTPRLTV) is in the communication

vactor table (CVT). The address of the CVT is in location 16.

The conversion routine does all its work in general registers. You
must load registers 1, 2, 14, and 15 with input to the routine.
- Register usage is as follows:

Register Use

0 Will be loaded with the resulting TTRO to be passed back
to the caller.

1 Must be loaded with the address of the data extent block
(DEB) of the data set.

2 Must be loaded with the address of an 8-byte area
containing the actual address to be converted to a TTR.
The actual address is of the form MBBCCHHR.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not
restored.

14 Must be loaded with the address to which control is to

be returned after execution of the conversion routine.

15 Is used by the conversion routine as a base register and
must be loaded with the address at which the conversion
routine is to receive control.

<;—J OBTAINING SECTOR NUMBER OF A BLOCK ON A DEVICE WITH THE RPS FEATURE

To obtain the performance improvement given by rotational
position sensing, you should specify the sector-addr parameter in
the XDAP macro. For programs that can be used with both RPS and
non—-RPS devices, the UCBRPS bit (bit 3 at an offset of 17 byvtes
into the UCB) should be tested to determine whether the device has
rotational position sensing. If the UCBRPS bit is off, a channel
zrogram with a "set sector" command must not be issued to the
evice.

The sector-addr parameter on the XDAP macro specifies the address
of a one byte field in vyour region. You must store the sector
number of the block to be located in this field. You can obtain
the sector number of the block by using a resident conversion
routine, IECOSCR1. The address of this routine is in field
CVTOSCR1 of the CVT, and the address of the CVT is in location 16.
‘The routine should be invoked via a BALR 14,15 instruction. If you
are passing the track balance to the routine, you invoke the
routine using a BAL 14,8(15).

Using XDAP to Read and Write to Direct-Access Devices 89

90

For RPS devices, the conversion routine does all its work in
general registers. You must load registers 0, 2, 14, and 15 with
input to the routine. Register usage is as follows:

Register Use

0 For fixed, standard blocks or fixed, unblocked records
not in a partitioned data set: Register 0 must be
loaded with a 4-byte value in the form XXKR, where XX
is a 2-byte field containing the physical block size,
K is a l1-byte field containing the key length, and R is
a l-byte field containing the number of the record for
which a sector value is desired. The high-order hit of
register 0 must be turned off (set to 0) to indicate
fixed-length records.

Passing the track balance: Register 0 must be loaded
with the 4-byte value of the track balance of the
record preceding the required record.

For all other cases: Register 0 must be loaded with a
4-byte value in the form BBIR, where BB is the total
number of key and data bytes on the track up to, but
not including, the target record; I is a 1-byte key
indicator (1 for keyed records, 0 for records without
keys); and R is a 1-byte field containing the number of
the record for which a sector value is desired. The
high-order bit of register 0 must be turned on (set to
1) to indicate variable-length records.

1 Not used by the sector-convert routine.

2 Must be loaded with a 4-byte field in which the first
byte is the UCB device type code for the device
(obtainable from UCB+19), and the remaining three
bytes are the address of a 1-byte area that is to
receive the sector value.

3-8,12,13 Not used.

9-11 Used by the convert routine and are not saved or
restored.

14 Must be loaded with the address to which control is to
be returned after execution of the sector conversion
routine.

15 Used by the conversion routine as a base register and

must be loaded with the address of the entry point to
the conversion routine.

05/VS2 System Programming Library: Data Management

)

S~

PASSHORD PROTECTING YOUR DATA SETS

INTRODUCTION

0S/7VS password protection does not apply to VSAM data sets.
Information about VSAM data set protection is in 0S/VS Virtual
Storage Access Method (VSAM) Programmer's Guide and 05/VS2 Access
Method Services. Refer to 05/V52 MVS Resource Access Control
Facility (RACF): General Information Manual for information on
RACF and its relationship to password protection. To use the data
set protection feature of the operating system, vou must create
and maintain a PASSWORD data set consisting of records that
associate the names of the protected data sets with the passuword
assigned to each data set. There are four ways to maintain the
PASSWORD data set:

. You can write your own routines.
U You can use the PROTECT macro instruction.

. You can use the utility control statements of the IEHPROGM
utility program.

. For 05/VS2 systems with TS50, you can use the TS50 PROTECT
command.

This chapter discusses only the first two of the four ways—it
provides technical detail about the PASSWORD data set that is
necessary for writing your own routines, and it describes how to
use the PROTECT macro instruction. (The last two of the four ways
are discussed in other publications, as indicated in the list of
publications below.)

Before using the information in this chapter, you should be
familiar with information in several related publications. The
following publications are recommended:

. 0S/7VS2 MVS Data Management Services Guide, which contains a
general description of the data set protection feature.

. 05/YS Message Lihrarv: V52 System Messages, which contains a
description of the operator messages and replies associated
with the data set protection feature for VS52.

. 05/VS2 JCL, which contains a description of the data
definition (DD) statement parameter used to indicate that a
data set is to be password protected.

. 05/VS82 DADSM Logic, which contains a description of the
PASSWORD data set record format.

. 0S/V¥s2 MVS Utilities, which contains a description of how to
maintain the PASSWORD data set using the utility control
statements of the IEHPROGM utility program.

. 05752 150 Command Lanquage Reference, which describes the
use of the TS0 PROTECT command.

In addition to the usual label protection that prevents opening of
a data set without the correct data set name, the operating system
provides data set security options that prevent unauthorized
access to confidential data. Password protection prevents access
to data sets, until a correct password is entered by the system
operator, or, for 750, a remote terminal operator.

Password Protecting Your Data Sets 91

The following are the types of access allowed to password
protected data sets:

. PWREAD/PWWRITE—A passuword is required to read or write.

. PWREAD/NOWRITE—A password is required to read. Writing is
not allowed.

. NOPWREAD/PWWRITE—Reading is allowed without a password. A
password is required to uwrite.

To prepare for use of the data set protection feature of the
operating system, you place a sequential data set, named
PASSWORD, on the system residence volume. This data set must
contain at least one record for each data set placed under
protection. In turn, each record contains a data set name, a
passuword for that data set, a counter field, a protection mode
indicator, and a field for recording any information you desire to
log. On the system residence volume, these records are formatted
as a "key area" (data set name and password) and a "data area”
(counter field, protection mode indicator, and logging field).
The data set is searched on the "key area."

Note: The area allocated to the data set should not have been
previously used for a PASSWORD data set as this may cause
unpredictable results when adding records to the data set.

You can write routines to create and maintain the PASSWORD data
set. If you use the PROTECT macro instruction to maintain the
PASSWORD data set, see the section in this chapter called "Using
the PROTECT Macro Instruction to Maintain the PASSWORD Data Set."
If you use the IEHPROGM utility program to maintain the PASSWORD
data set, see 05/VS2 Utilities. These routines may be placed in
vour own library or the system's library (SYS1.LINKLIB). You may
use a data management access method or EXCP programming to read
from and write to the PASSWORD data set.

If a data set is to be placed under protection, it must have a
protection indicator set in its label (format-1 DSCB or header 1
tape label). This is done by the operating system when the data
set is created, by the IEHPROGM utility program, or, by the
PROTECT macro when creating or adding the control password. The
protection indicator is set in response to a value in the LABEL=
operand of the DD statement associated with the data set being
placed under protection. 05/VS2 JCL describes the LABEL operand.

Note: Data sets on magnetic tape are protected only when standard
labels are used.

Password-protected data sets can only be accessed by programs
that can supply the correct password. When the system control
program receives a request to open a protected data set, it first
checks to see if the data set has already been opened for this job
step. If so0, only the access mode will be checked to determine
whether it is compatible with the protection mode under which it
was previously openaed. If the data set has not been previously
opened by this job step, or if the access mode is not compatible
with the protection mode under which it was previously opened, a
message is issued that asks for the password. The message goes to
the operator console, or, if the program requesting that the data
set be opened is running under TS0 in the foreground, to the TS0
terminal operator. If yvou want the password supplied by another
method in your installation, you can modify the READPSHD source
module or code a new routine to replace READPSWD in SYS1.LPALIB.

PASSWHORD DATA SET CHARACTERISTICS

The PASSWORD data set must reside on the same volume as vour
operating system. The space you allocate to the PASSWORD data set
must be contiguous, that is, its DSCB must indicate only one
extent. The amount of space you allocate depends on the number of
data sets your installation wants to protect. Each entry in the

92 0S/VS2 System Programming Library: Data Management

PASSWORD data set requires 132 bytes of space. The organization of
the PASSWORD data set is physical sequential, the record format is
unblocked, fixed-length records (RECFM=F). These records are 80
bytes long (LRECL=80,BLKSIZE=80) and form the data area of the
PASSWORD data set records on direct-access storage. In these
direct-access storage records, the data area is preceded by a key
area of 52 bytes (KEYLEN=52). The key area contains the fully
qualified data set name of up to 44 bytes and a password of one to
eight bytes, left justified with blanks added to fill the areas.
The password assigned may be from one to eight alphameric
characters in length. 05/V52 DADSM Logic describes the PASSWORD
data set record format.

You can protect the PASSWORD data set itself by creating a
passuword record for it when your program initially builds the data
set. Thereafter, the PASSWORD data set cannot be opened (except by
the operating system routines that scan the data set) unless the
operator enters the password.

Note: If a problem occurs on a password-protected system data
set, maintenance personnel must be provided with the password in
order to access the data set and resolve the problem.

CREATING PROTECTED DATA SETS

A data definition (DD) statement parameter (LABEL=) is used to
indicate that a data set is to be placed under protection.
Operating procedures at yvour installation must ensure that
password records for all data sets currently under protection are
entered in the PASSWORD data set. You may, for example, create a
data set and set the protection indicator in its label, without
entering a password record for it in the PASSWORD data set.
However, once the data set is closed, any subsequent attempt to
open results in termination of the program attempting to open the
data set, unless the passuwerd record is available and the operator
can honor the request for the password. (Note that if the
protection mode is NOPWREAD and the request is to open the data
set for input, no password will be required.)

Tape Volumes Containing More Than One Passuord-Protected Data Set

To password-protect a data set on a tape volume containing other
data sets, vou must password-protect all the data sets on the
volume. (Standard Labels—SL, SUL, AL, or AUL—are required. See
05/VS Tape Labels for definitions of these label types and the
protection-mode indicators that can be used.)

If you issue an OPEN macro instruction to create a data set
following an existing, passuword-protected data set, the password
of the existing data set will be verified during open processing
for the new data set. The password supplied must be associated
with a PWWRITE protection—-mode indicator.

PROTECTION FEATURE OPERATING CHARACTERISTICS

The topics that follow provide information concerning actions of
the protection feature in relation to termination of processing,
volume switching, data set concatenation, SCRATCH and RENAME
functions, and counter maintenance.

Termination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the
protected data set being opened after two tries.

2. A password record does not exist in the PASSWORD data set for
tha protected data set being opened.

Password Protecting Your Data Sets 93

3. The protection mode indicator in the password record, and the
method of 170 processing specified in the Open routine do not
agree, for example, QUTPUT specified against a read-only
protection mode indicator.

4, There is a mismatch in data set names for a data set involved
in a volume switching operation. This is discussed in the next
paragraph.

Volume suitching

The system ensures a continuation of password protection when
volumes of a multivolume data set are switched. It accepts a
newly-mounted tape volume, to be used for input, or a
newly-mounted direct-access volume, regardless of its use, if
these conditions are met:

. The data set name in the password record for the data set is
the same as the data set name in the JFCB. (This ensures that
the problem program has not changed the data set name in the
JFCB since the data set was opened.)

J The protection-mode indicator in the password record is
compatible with the processing mode and a valid password has
been supplied.

The system accepts a newly—-mounted tape volume to bhe used for
output under any of these conditions:

. The security indicator in the HDR1 label indicates password
protection, the data set name in the password record is the
same as the data set name in the JFCB, and the protection-mode
indicator is compatlble with the processing mode. (If the
data set name in the JFCB has been changed, a neuw passuord is
requested from the operator.)

. The security indicator in the HDR1 label does not indicate
password protection. (A new label will be written with the
security indicator indicating password protection.)

. Only a volume label exists. (A HDR1 label will be written with
the security indicator indicating password protection.)

Data set Concatenation

A password is requested for every protected data set that is
involved in a concatenation of data sets, regardless of whether
the other data sets involved are protected or not.

SCRATCH and REMAME Functions

To delete or rename a protected data set, it is necessary that the
job step making the request be able to supply the password. The
system first checks to see if the job step is currently authorized
to write to the data set. If not, message IEC301A is issued to
request the password. The password provided must be associated
with a "WRITE" protection-mode indicator.

tounter Maintenance

The operating system increments the counter in the password
record on each usage, but no overflow indication will be given
(overflow after 65,535 openings). You must provide a counter
maintenance routine to check and, if necessary, reset this
counter.

94 05/VS2 System Programming Library: Data Manageﬁent

Vd

C

USING THE PROTECT MACRO INSTRUCTION TO MAINTAIN THE PASSWORD DATA SET

To use the PROTECT macro instruction, your PASSWORD data set must

be on the system residence volume. The PROTECT macro can be used
to:

U Add an entry to the PASSWORD data set.
. Replace an entry in the PASSWORD data set.
. Delete an entry from the PASSWORD data set.

. Provide a list of information about an entry in the PASSWORD
data set; this list will contain the security counter, access
type, and the 77 bytes of security information in the "data
area" of the entry.

In addition, the PROTECT macro, updates the DSCB of a protected
direct-access data set to reflect its protection status; this
feature eliminates the need for you to use job control language
whenever you protect a data set.

PASSUORD DATA SET CHARACTERISTICS AND RECORD FORMAT WHEN YOU USE THE PROTECT MACRO
INSTRUCTION

When you use the PROTECT macro, the record format and
characteristics of the PASSWORD data set are no different from the
record format and characteristics that apply when you use your oun
routines to maintain it.

Number of Records for Each Protected Data Set

When you use the PROTECT macro, the PASSWORD data set must contain
at least one record for each protected data set. The passuord (the
last 8 bvtes of the "key area') that you assign when you protect
the data set for the first time is called the control password. In
addition, you may create as many secondary records for the same
protected data set as you need. The passuwords assigned to these
additional records are called secondary passwords. This feature
is helpful if you want several users to have access to the same
protaected data set, but you also want to control the manner in
which they can use it. For example: One user could be assigned a
passuword that allowed the data set to be read and written, and
another user could be assigned a password that allowed the data
set to be read only.

Note: The PROTECT macro will update the protection mode indicator
in the format-1 DSCB in the protected data set only when you issue
it for adding, replacing, or deleting a control password.

Protection Mode Indicator

You can set the protection mode indicator in the password record
to four different values:

. X'00' to indicate that the password is a secondary password
and the protected data set is to be read only (PWREAD).

. X'80' to indicate that the passuword is the control password
and the protected data set is to be read only (PWREAD).

. X'01'" to indicate that the password is a secondary password
and the protected data set is to be read and written
(PWREAD/PUWRITE).

. X'81' to indicate that the password is the control password
and the protected data set is to be read and written
(PWREAD/PWRITE).

Password Protecting Your Data Sats 95

Because the DSCB of the protected data set is updated only when
the control password is changed, vou may request protection
attributes for secondary passwords that conflict with the
protection attributes of the control password.

Because of the sequence in which the protection status of a data
set is checked, the following defaults will occur:

If control passuword is: secondary password must ba:

1. PWREAD/PWRITE or PWREAD/PWWRITE or
PWREAD/NOWRITE PWREAD/NOWRITE

2. NOPWREAD/PWWRITE NOPWREAD/PWWRITE

If the control password is set to either of the settings in item 1
above, the secondary password will be set to To PUREAD/PWRITE if
vou try to set it to NOPWREAD/PWWRITE.

If the control password is changed from either of the settings in
item 1 to the setting in item 2 above, the secondary password will
be automatically reset to NOPWREAD/PWWRITE.

If the control password is changed from the setting in item 2 to
either of the settings in item 1 above, the secondary passuword is
set by the system to PWREAD/PWWRITE.

PROTECT MACRO SPECIFICATION

96

The format is:

[symboll PROTECT parameter list address

parameter list address—A-type address, (2-12), or (1)
indicates the location of the parameter list. The parameter
list must be set up before the PROTECT macro is issued. The
address of the parameter list may be passed in register 1, in
registers 2 through 12, or as an A-type address. The first
byte of the parameter list must be used to identify the
function (add, replace, delete, or list) yvou want to
perform. See Figure 16 on page 97 through Figure 19 on page
101 for the parameter lists and codes used to identify the
functions.

0S/7VS2 System Programming Library: Data Management

4

O

0 1

X'01 00 00 00
4 5

Length of data set name Pointer to data set name
8 9

00 00 00 00
12 13

00) Pointer to control password
16 17

Number of volumes Pointer to volume list
20 21

Protection code Pointer to new password
24 25

String length Pointer to string

0 X'01°* -

Entry code indicating ADD function.

13 Pointer to control password.
The control password is the password assigned when the data set was placed under
protection for the first time. The pointer can be 3 bytes of binary zeros if the
new password is the control password.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, vou
have to specify the number of volumes in this field. A zero indicates that the
catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, vou
provide the address of a list of volume serial numbers in this field. Zeros
indicate that the catalog information should be used.

20 Protection code.
A one~byte number indicating the type of protection: X'00' indicates default
protection (for the ADD function; the default protection is the type of
protection specified in the control password record of the data set); X'01°"
indicates that the data set is to be read and written; X'02' indicates that the
data set is to be read only; and X'03' indicates that the data set can be read
without a password, but a password is needed to write into it. The PROTECT macro
Will use the protection code value, specified in the parametaer list, to set the
protection mode indicator in the password record.

Figure 16 (Part 1 of 2). Parameter List for ADD Function

Password Protecting Your Data Sets 97

21 Pointer to new password.
If the data set is being placed under protection for the first time, the new
passuword becomes the control password. If you are adding a secondary entry, the
new password is different from the control password.

24 String length. _
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. If vou don't want to add
information, set this field to zero.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field. If yvou don't want to add additional information, set this
field to zero.

Figure 16 (Part 2 of 2). Parameter List for ADD Function

98 05/VS2 System Programming Library: Data Management

N

(Y

0 1
Xro2' 00 00 00
4 5
Length of data set name Pointer to data set name
8 9
00 Pointer to current password
12 13
00 Pointer to control password
16 17
Number of volumes Pointer to volume list
20 21
Protection code Pointer to new password
264 25
String length Pointer to string
0 X'02"'.

Entry code indicating REPLACE function.

9 Pointer to current password.
The address of the password that is going to be replaced.

13 Pointer to control password.
The address of the passuword assigned to the data set when 1t was first placed
under protection. The pointer can be set to 3 bytes of binary zeros if the current
password is the control passuord.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, vou
have to specify the number of volumes in this field. A zero indicates that the
catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If
this field is zero, the catalog information will be used.

20 Protection code.
A one-byte number indicating the type of protection: X'00' indicates that the
protection is default protection (for the REPLACE function the default protection
is the protection specified in the current password record of the data set);
X'01"' indicates that the data set is to be read and written; X'02' indicates that
the data set is to be read only; and X'03' indicates that the data set can be read
without a password, but a password is needed to write into the data set.

21 Pointer to new password.
The address of the password-that you want to replace the current password.

Figure 17 (Part 1 of 2). Parameter List for REPLACE Function

Password Protecting_Your}Data Sats 99

24 String length. .
The length of the character string (maximum 77 bytes) that you want to place in
the optional information field of the password record. Set this field to zero if
yvou don't want to add additional information.

25 Pointer to string.
The address of the character string that is going to be put in the optional
information field of the password record. Set the address to zero if vou don't
want to add additional information.

Figure 17 (Part 2 of 2). Parameter List for REPLACE Function

1

X'03" 00 0O 0O
4 5

Length of data set name Pointer to data set name
8 9

00 Pointer to current password
12 13

00 Pointer to control password
16 17

Number of volumes Pointer to volume list

0 X'03"'.
Entry code indicating DELETE function.

9 Pointer to current password.

The address of the password that you want to delete. You can delete either a
control entry or a secondary entry.

13 Pointer to control password.
The address of the password assigned to the data set when it was placed under
protection for the first time. The pointer can be 2 bytes of binary zeros if the
current password is also the control passuword.

16 Number of volumes.
If the data set is not cataloged and you want to have it flagged as protected, you
have to specify the number of volumes in this field. A zero indicates that the
catalog information should be used.

17 Pointer to volume list.
If the data set is not cataloged and you want to have it flagged as protected, you
have to provide the address of a list of volume serial numbers in this field. If
this field is zero, the catalog information will be used.

Figure 18. Parameter List for DELETE Function

100 05/7VS2 System Programming Library: Data Management

C I 1
' X'04" Pointer to 80 byte buffer
4 5
Length of data set name Pointer to data set name
8 : 9
00 Pointer to current password
0 X'04°'.

Entry code indicating LIST function.

1 Address of 80-byte buffer.
The address of a buffer where the list of information can be returned to vour
program by the macro instruction.

9 Pointer to current password.
The address of the password of the record that you want listed.

Figure 19. Parameter List for LIST Function

Password Protecting Your Data Sets 101

RETURN CODES FROM THE PROTECT MACRO

When the PROTECT macro finishes processing, register 15 contains
a return code that indicates what happened during the processing.
Figure 20 contains the return codes and their meanings. —

Register 15 Meaning
0 The updating of the PASSWORD data set was successfully completed.
4 The PASSWORD of the data set name was already in the password data set.
8 The password of the data set name was not in the PASSWORD data set.
12 A control passuord is required or the one supplied is fncorrect.
16 The supplied parameter list was incomplete or incorrect.
20 There was an I/0 error in the PASSNGRD data set.
24! The PASSWORD data set was full.
28 The validity check of the buffer address failed.
322 The LOCATE macro failed. LOCATE's return code is in register 1, and the
number of indexes searched is in register 0.
362 Tha OBTAIN macro failed. OBTAIN's return code is in register 1.
402 The DSCB could not be updated.
46 The PASSWORD data set does not exist.
482 Tape data set cannot be protected.
522 Data set in use. ‘Ci\

1For this return code, a message is written to the console indicating that the
PASSWORD data set is full.

2For these return codes, the PASSWORD data set has been updated, but the DSCB has not
been flagged to indicate the protected status of the data set.

Figure 20. Return Codes from the PROTECT Macro Instruction

102 0S7VS2 System Programming Library: Data Management

C

SYSTEM MACRO INSTRUCTIQONS

INTRODUCTION

This chapter describes miscellaneous macro instructions that
allow you either to modify control blocks, obtain information
from control blocks and system tables, or to parform track
capacity calculations.

Before reading this chapter, vou should be familiar with the
information in the following publications:

. 05/V5—D0S/VS—VYM/370 Assembler lLanguage, which contains the
information necessary to code programs in the assembler
language.

. 0S/VS2 System Programming Library: Debuggaing Handbook, which
contains format and field descriptions of the data areas
referred to in this chapter.

The system macro instructions are described in these functional
groupings:

° Mapping (IEFUCBOB, IEFJFCBN, and CVT)
. Obtaining device characteristics (DEVTYPE)
° Manipulating the JFCB (RDJFCB)

K Data security (DEBCHK)

. Manipulating queues (PURGE and RESTORE)

. Performing track capacity calculations (TRKCALC)

MAPPING SYSTEM DATA AREAS

The IEFUCBOB, IEFJFCBN, and CVT macro instructions are used as
DSECT expansions that define the symbolic names of fields within
the unit control block (UCB), job file control block (JFCB), and
communication vector table (CVT), respectively.

The CVT, IEFUCBOB, and IEFJFCBN macro definitions are in a
distribution library named 5YS51.AMODGEN. Before you can issue the
macros, you must copy them from SYS1.AMODGEN into SYS1.MACLIB
(the IEBCOPY utility can be used to copy the macros), or
SYS1.AMODGEN may be concatenated to the macro library before
reference can be made to it.

The fields in these blocks are shown and described in 05/VS2
Svstem Programming Library: Debugging Handbook.

IEFUCBOB—MAPPING THE UCB

This macro instruction defines the symbolic names of the fields in
the unit control block (UCB). The macro does not include a DSECT
statement. However, if you specify PREFIX=YES, the DSECT
statement is provided.

The format is:

[symboll | IEFUCBOB| [LIST={NO]Y
[, PREFIX=(N

ES}]
0]YES}]

System Macro Instructions 103

LIST={NOIYES}

NO
specifies that only the UCB prolog is to be printed.

YES ’ :
specifies that the UCB prolog and the rest of the UCB
are to be printed.

PREFIX={NO|YES}

NO .
specifies that no prefix is to be printed.

YES
specifies that the prefix and main body of the UCB are
to be printed. A DSECT statement is included if you
specify PREFIX=YES.

IEFJFCBN—MAPPING THE JFCB
This macro instruction defines the symbolic names of the fields in
the job file control block '(JFCB). The macro does not include a
DSECT statement. Code a DSECT statement before the macro
statement if you require this.

The format is:

[symboll | IEFJFCBN| [LIST={NO]YES}]

LIST={NO|YES}

NO
specifies that only the JFCB prolog is to be printed.

YES
specifies that the JFCB prolog and the rest of the JFCB
are to be printed.

CVT—MAPPING THE CVT

This macro instruction defines the symbolic names of all fields in
the communication vector table (CVT).

The format is:

[symboll | CVT [DSECT={NO|YES}]
[,LIST={NDO]YES)}]

DSECT={NO|YES}

HNO
specifies that you do not want a DSECT.
YES
specifies that you want a DSECT.
LIST={NO]YESY}
NO
specifies that only the CVT prologlis to be printed.
YES

specifies that the CVT prolog and the rest of the CVT
are to be printed.

106 05/7VS2 System Programming Library: Data Management

OBTAINING XI/0 DEVICE CHARACTERISTICS

Use the DEVTYPE macro instruction to request information relating
to the characteristics of an I/0 device, and to cause this
information to be placed into a specified area. (The results of a
DEVTYPE macro instruction executed before a checkpoint is taken
should not be considered valid after a checkpoint/restart
occurs.)

The topics that follow discuss the macro itself, device
characteristics, and particular output for particular devices.

DEVTYPE MACRO SPECIFICATION

The format is:

[symbol]l DEVTYPE ddloc-addrx
yarea-addrx
[,DEVTAB]
[,RP31]

ddloc-addrx
the name of an 8-byte field that contains the symbolic name
of the DD statement to which the device is assigned. The name
must be left justified in the 8-byte field, and must be
followed by blanks if the name is less than eight characters.
The doubleword need not be on a doubleword boundary.

area-addrx
the name of an area into which the device information is to
be placed. The area can be two, five, or six fullwords,
depending on whether or not the DEVTAB and RPS operands are
spaecified. The area must be on a fullword boundary.

DEVTAB
This operand is only required for direct-access devices. If
DEVTAB is specified, the following number of words of
information is placed in your area:

4 For direct-access devices - 5 words
U For non-direct-access devices - 2 words

If you do not code DEVTAB, one word of information is placed
in your area if the reference is to a graphics or
teleprocessing devicaes; for any other type of device, two
words of information are placed in your area.

RPS
If RPS is specified, DEVTAB must also be specified. The RPS
parameter causes one additional full word of RPS information
to be included with the DEVTAB information.

Note: Any reference for a DUMMY data set in the DEVTYPE macro
instruction will cause eight bytes of zeroes to be placed in the
output area. Any reference to a SYSIN or SYSOUT data set causes
X'00000102' to be placed in word 0 and 32,760 (X'00007FF8') to be
placed in word 1 in the output area. Any reference to a file
allocated to a TS0 terminal causes X'00000101' to be placed in
word 0 and 32,760 (X'00007FF8') to be placed in word 1 in the
output area.

System Macro Instructions 105

DEVICE CHARACTERISTICS INFORMATION

The following information is placed into your area as a result of
issuing a DEVTYPE macro:

Word 0
Describes the device as defined in the UCBTYP field of the
UCB. For a complete description of this field, refer to
05/VY52 System Programming Library: Debugging Handbook.

Word 1
Maximum blocksize. For direct-access davices, this value is
the smaller of either the maximum size of an unkeyved block or
the maximum blocksize allowed by the operating system; for
magnetic or paper tape devices, this value is the maximum
blocksize allowed by the operating system. For all other

devices, this value is the maximum blocksize accepted by the
device.

If DEVTAB is specified, the next three fulluwords contain the
following information about direct-access devices:

Word 2
Bytes 0-1 The number of physical cylinders on the device.

Bytes 2-3 The number of tracks per cylinder.
Hord 3

Bytes 0-1 Maximum track length. Note that for the 2305,
333073333 Model 1 or 11, 3340,3344, 3350, 3375,
and 3380 direct-access devices, this value is
not equal to the value in word one (maximum
blocksize) as it is for other IBM direct-access

devices.
Note: Before using bytes 2 and 3, please read the description of
word 4.

Byte 2 Block overhead, keyved block—the number of bytes
required for gaps and check bits for each keyed
block other than the last block on a track.

Byte 3 Block overhead—the number of bytes required for

gaps and check bits for a keyed. block that is the
last block on a track.

Bytes 2-3 Block overhead—the number of bytes required for
gaps and check bits for any keyed block on a
track including the last block. Use of this form
is indicated by a one in bit 4, byte 1 of word 4.

Basic overhead—the number of bytes required for
the count field. Use of this form is indicated
by a one in bit 3, byte 1 of word 4.

Word 4
Byte 0 Block overhead, block without key—the number of
bytes to be subtracted from word 3, bytes 2 and
3, if a block is not keyed.
If bit 3, byte 1 of word 4 is one, this byte
contains the modulo factor for a modulo device.
Byte 1

bit 0 If on, the number of cylinders, as
indicated in word 2, bytes 0-1 are
invalid. This bit will be on only
for 3340 devices.

106 0S/7VS2 System Programming Library: Data Management

/ﬁ\

bits 1-2 Reserved.

bit 3 If on, indicates a modulo device
(3375, 3380). To calculate the
number of data bytes required for a
data block for a modulo device, see
the device formulas in 05/VS2 MVS
Data Management Services Guide.

bit ¢ If on, bytes 2 and 3 of word 3
contain a halfword giving the block
overhead for any block on a track,
including the last block.

bits 5-6 Reserved.

bit 7 If on, a tolerance factor must be
applied to all blocks except the
last block on the track.

Bytes 2-3 Tolerance factor—this factor is used to
calculate the effective length of a block. The
calculation should be performed as follows:

Step 1 add the block's key length to the
block's data length.

Step 2 test bit 7 of bvyte 1 of word 4. If
bit 7 is 0, perform step 3. If bit 7
is 1, multiply the sum computed in
step 1 by the tolerance factor.
Shift the result of the
multiplication nine bits to the
right.

Step 3 add the appropriate block overhead
to the value obtained above.

If bit 3, byte 1l of word 4 is one, bytes (2-3)
contain the overhead for the data or key field.

If DEVTAB and RPS are specified, the next fullword contains the
following information:

Word 5
Bytes 0-1 RO overhead for sector calculations
Byte 2 Number of sectors for the device
Byte 3 Number of data sectors for the device

Figure 21 on page 108 shows the actual output for each device type
that results from issuing of the DEVTYPE macro.

Control is returned to your program at the next executable
instruction following the DEVTYPE macro instruction. If the
information concerning the ddname you specified has been
successfully moved to your work area, register 15 will contain
zeros. Dtherwise, register 15 nill contain X'04', indicating that
the ddname was not found.

System Macro Instructions 107

Printer-Keyboard

Devicel Maximum DEVTAB (Words 2, 3, and RPS (Word 5,

Record Size %, In Hexadecimal) In.

(Word 1, In Hexadecimal)

Dpacimal) _
25640 Reader 80 Not Applicable Not Applicable
2540 Reader w/Cl 80 Not Applicable Not Applicable
2540 Punch 80 Not Applicable Not Applicable
25640 Punch w/CI 80 Not Applicable Not Applicable
2501 Reader 80 Not Applicable Not Applicable
2501 Reader w/CI 80 Not Applicable Not Applicable
2520 Reader-Punch 80 Not Applicable Not Applicable
33%2 Reader~Punch 80 Not Applicable Not Applicable
2520 B2-B3 80 Not Applicable Not Applicable
2520 B2-B3 w/CI -80 Not Applicable Not Applicable
1287 Optical Reader 80 Not Applicable Not Applicable
1288 Optical Reader 80 | Not Applicable Not Applicable
3886 Optical Reader 80 Not Applicable Not Applicable
3890 Document 80 Not Applicable Not Applicable
Processor '
141971275 80 Not Applicable Not Applicable
Reader/Sorter
3505 Reader 80 Not Applicable Not Applicable
3505 Reader w/CI 80 Not Applicable Not Applicable
3525 Punch 80 Not Applicable Not Applicable
3525 Punch w/CI 80 Not Applicable Mot Applicable
1403 Printer 1202 Not Applicable Not Applicable
1403 w/UCS 1202 Not Applicable Not Applicable
1404 Printer 1202 Not Applicable Not Applicable
1443 Printer 1202 Not Applicable Not Applicéble
3203-5 Printer 132 Not Applicable Not Applicable
3211 Printer 1322, Not Applicable Not Applicable
3800 Printing 1363 Not Applicable Not Applicable
Subsystem
2671 Paper Tape 32760 Not Applicable Not Applicable
Reader
1052 130 Not Applicable Not Applicable

1053 Printer

Not Applicable

Not Applicable

108

Figure 21 (Part 1 of 3).

Output Obtained from Issuing DEVTYPE Macro

05/7VS52 System Programming Library: Data Management

a

C

Figure 21 (Part 2 of 3).

Devicel Maximum DEVTAB (Words 2, 3, and RPS (Hord 5,
Record Size %, In Hexadecimal) In i
(Hord 1, In Hexadecimal)
Decimal)
3210 130 Not Applicable Not Applicable
Printer-Keyboard
3215 130 Not Applicable Not Applicable
Printer-Keyboard
3895 Reader 76 Not Applicable Not Applicable
Inscriber
26400 (9-track) 32760 Not Applicable Not Applicable
2400 (9-track, p.e.) 32760 Not Applicable Not Applicable
2600 (9-track, d.d.) 32760 Not Applicable Not Applicable
2400 (7-track) 32760 Not Applicable Not Applicable
2400 (Z-track, d.c.) 32760 Not Applicable Not Applicable
2495 Tape Cartridge 0 Not Applicable Not Applicable
Reader
3400 (9-track, p.e.) 32760 Not Applicable Not Applicable
3400 (9-track, d.d.) 32760 Not Applicable Not Applicable
3400 (7 track) 32760 Not Applicable Not Applicable
231472319 DAS 7294 00CB00141C7E922D2D010216 Not Abplicable
Facility
2305-1 Fixed-Head 14660 0030000838E8027ACA080200 02985A57
Storage
2305-2 Fixed-Head 14660 006000083A0A01215B080200 0140B4B1
Storage
333073333 Disk 13030 019B0013336DBFBF38000200 00ED807C
Storage
3330V MSS Virtual 13030 019B0013336DC1C13A010200 00ED807C
Volume
3330-1 C(or 3333-11) 13030 032F0013336DBFBF38000200 00ED807C
Disk Storage
3340 Disk Storage 8368 015D000C2157F2F24B000200 01254030
(35 megabytes)
334073344 Disk 8368 0230001E4B36010B52080200 0125403D
Storage (70
megabytes)
3350 Disk Storage 19069 0230001E4B36010B52080200 01853078
3375 Disk Storage 32760 03BFOOOC8CAOOOE0201000BF 0340C4BB
3380 Disk Storage 32760 0376000FBB6001002010010B 04EODED6
2250-1 Display Unit Not Applicable Not Applicable
2250-2 Display Unit Not Applicable Not Applicable

Qutput Obtained from Issuing DEVTYPE Macro

System Macro Instructions

109

Davicel Haximum DEVTAB (Words 2, 3, and RPS (Hord 5,

: Record Size %, In Hexadecimal) In .
(Word 1, In Hexadecimal)
Decimal)

2253-3 Display Unit Not Applicable | Not Applicable

Comrunication : Record Size

Equipment .

1030,1050,83B3, Not Applicable

TWX,2250,5360

1060,115A,1130 Not Applicable

2780 Not Applicable

27460 ' Not Applicable

Figure 21 (Part 3 of 3). Output Obtained from Issuing DEVTYPE Macro
Notes to Figure 21 on page 108 :
1. ClI-card image feature, d.c.-data conversion, d.d.-dual
density, p.e.-phase encoding, UCS5-universal character set,
w/-uith

2. Device codes are presented in 05/VS2 System Programming
Library: Debugging Handbook.

3. Although certain models can have a larger line size, the
minimum line size is assumed.

4., The IBM 3800 Printing Subsystem can print 136 characters per
line at 10-pitch, 163 characters per line at 12-pitch, and 204
characters per line at 15-pitch. The machine default is 136
characters per line at 10-pitch.

READING AND MODIFYING A JOB FILE CONTROL BLOCK

To accomplish the functions that are performed as a result of an
OPEN macro instruction, the Open routine requires access to
information that you have supplied in a data definition (DD)
statement. This information is stored by the system in a job file
control block (JFCB).

In certain applications, you may find it necessary to modify the.
contents of a JFCB before issuing an OPEN macro instruction. For
example, suppose you are adding records to the end of a sequential
data set. You might want to add a secondary allocation quantity to
allow the existing data set to be extended when the space
currently allocated is exhausted. To assist you, the system
provides the RDJFCB macro instruction. This macro instruction
causes a specified JFCB to be moved from the SWA (scheduler work
area), where it is stored, to an area specified in an exit list.
(The use of the RDJFCB macro instruction with an exit list is
shown under "RDJFCB—Read a Job File Control Block." The symbolic
names and field descriptions of the JFCB are contained in 0S/VS2
System Programming Library: Debugqing Handbook.) When you
subsequently issue the OPEN macro instruction, vou must indicate,
by specifying the TYPE=J operand, that you want to open the data
set using the JFCB in the area you specified.

At the conclusion of open processing, the JFCB is moved back to
the SWA, unless you set the bit JFCNWRIT in the field JFCBTSDM to
one before you issue the OPEN macro instruction.

110 05/VS52 System Programming Library: Data Management

caution: If the JFCB which the system used to open the data set is
not available in SWA during EOV or CLOSE processing, errors may
occur.

Some of the modifications that are commonly made to the JFCB
include:

. Moving the creation and expiration date fields of the DSCB
into the JFCB (see "Using RDJFCB for MSS Virtual Volumes"
below).

U Moving the secondary allocation quantity from the DSCB into
the JFCB (see "Using RDJFCB for MSS Virtual Volumes" below).

° Moving the DCB fields from the DSCB into the JFCB.

. Adding volume serial numbers to the JFCB (see "Using RDJFCB
for MS5S Virtual Volumes" and "RDJFCB Security" below).

. Modifying the data set sequence number field in the JFCB.

. Modifying the number-of-volumes field in the JFCB (see "Using
RDJFCB for MSS Virtual Volumes' below).

. Setting bit JFCDQDSP in field JFCBFLG3 to invoke the tape
volume DEQ at demount facility (see "DEQ at Demount Facility
for Tape Volumes"™ below for a discussion of the facility).

USING RDJFCB FOR MSS VIRTUAL VOLUMES: Care must be taken in using
RDJFCB if the data set resides on MSS virtual volumes such that:

. The expiration date added does not conflict with other
volumes within the specified MSVGP.

. The secondary allocation quantity should be in cylinder
increments and be a multiple of the primary allocation
quantity to avoid fragmentation.

. The number of volumes must not exceed the number available in
the specified MSVGP.

° Any volume serial numbers added to the JFCB should exist in
the MSVGP.

RDJFCB SECURITY: The volume serial numbers specified in the
user-supplied JFCB will be compared with the volume serial
numbers in the system JFCB located in the SWA. Each different
volume serial number will be enqueued exclusively. The volumes
will stay enqueued until the job step terminates since the close
routines will not dequeue the volumes. If the job step already has
the volume open, OPEN TYPE=J will continue. If the volume is
enqueued by another job step, a 413 System Code abnormal end will
occur with a return code of 04.

Some JFCB modifications can compromise the security of existing,
password-protected data sets. The following modifications are
specifically not allowed, unless the program making the
modifications is authorized or can supply the password:

. Changing the disposition of a password-protected data set
from OLD or MOD to NEW.

. Changing the data set name or one or more of the volume serial
numbers when the disposition is NEW.

. Changing the label processing specifications to bypass label
processing.

MNote: An authorized program is one that is either in supervisor

state, executing in one of the system protection keys (keys 0
through 7), or authorized under the Authorized Program Facility.

System Macro Instructions 111

112

RDJFCB USE BY AUTHORIZED PROGRAMS: If you change the data set in
the JFCB, you should do a system enqueue on the major name of
"SYSDSN" for the substituted data set name. To use the correct
interface with other system functions (for example, partial
release), the ENQUEUE macro should include the TCB of the
initiator and the length of the data set name (with no trailing
blanks). When you complete processing of the data set, vou should
use the DEQ macro to release the resources.

If you rewrite the JFCB, you must set bit X'80' at JFCBMASK + 4 to
one.

DEQ AT DEMOUNT FACILITY FOR TAPE VOLUMES: This facility is
intended to be used by long-running programs which create an
indefinitely long-running tape data set (such as a log tape). Use
of this facility by such a program permits the processed volumes
to be allocated to another job for processing (such as data
reduction). This processing is otherwise prohibited in MVS unless
the indefinitely long data set is closed and dynamically
unallocated.

You may invoke this facility only through the RDJFCB/0OFPEN TYPE=J
interface by setting bit JFCDQDSP (bit 0) in field JFCBFLG3
(offset 163 or X'A3') to 1. The volume serial of the tape is DEQed
when the volume is demounted by OPEN or EQOV with message IEC502E
when all of the following conditions are present:

. "The tape volume is verified for use by OPEN or EOV.

. JFCDQDSP is set to 1.

. The program is APF authorized (protect key and
supervisor/problem state are not relevant).

. The tape volume is to be immediately processed for output.
That is, either OPEN verifies the volume and the OPEN option
is OUTPUT, OUTIN, or OUTINX; or EOV verifies the volume and
the DCB is opened for OUTPUT, OQUTIN, INOUT, or EXTEND, and the
last operation against the data set was an output operation
(DCBOFLWR is set to 1).

Note that in order for EOQOV to find JFCDQDSP set to 1, the program
must not inhibit the rewrite of the JFCB by setting bit 4 of
JFCBTSDM to 1.

The tape volume is considered verified after file protect, label
type, and density conflicts have been resolved. The volume is
DEQRed when demounted after this verification, even if further in
OPEN or EQOV processing the volume is rejected becausae of
expiration date, security protection, checkpoint data set
protection, or an I/0 error.

When the volume serial is DEQed, the volume becomes available for
allocation to another job. However, since the volume DEQ is
performed without unallocating the volume, care must be exercised
both by the authorized program and the installation to prevent
mifuse of the DEQ at demount facility. A discussion of such misuse
follows.

1. The authorized program must not close and reopen the data set
using the tape volume DEQ at demount facility. If it does, one
of the following can occur. :

a. The DEQed volume may be mounted and in use by another job.
When the volume is requested for mounting for the
authorized program, the operator is unable to satisfy the
mount. Therefore, the operator must either cancel the
requesting job, cancel the job using the volume, wait for
the requesting job to time out, or wait for the job using
the volume to terminate.

b. The DEQed volume may be allocated to another job but not
vet in use. The operator mounts the volume to satisfy the

05/7VS2 System Programming Library: Data Management

@

mount request of the authorized job. When the volume is
requested for mounting by the other job, the operator is
unable to satisfy the mount request, and is faced with the
same choices as in a) above.

c. The DEQed volume may not vet be allocated to another job
and the volume is mounted to satisfy the mount request of
the authorized job. Another job may allocate the volume
and when the volume is requested for mounting, the
situation is the same as in b) above.

It is the responsibility of the installation which paermits a
program to run with APF authorization to ensure that it does not
close and reopen a data set using the DEQ at demount facility.

2. Care should be exercised when an authorized program uses the
DEQ at demount facility (data set 1) but processes another
tape data set (data set 2). Assume the same volume serial
numbers have been coded in the DD statements for data set 1
and data set 2. As the volumes of data set 1 are demounted,
they are DEQed even though those volumes may vet be requested
for data set 2. All of the problems explained in a), b), and
c) in 1 above may occur as data set 2 and another job contend
for a DEQed volume.

This problem should not occur, given the intended use of the
DEQ at demount facility. That is, a long-running application
creating an indefinitely long tape data set. This type of
application is not normally invoked through batch execution
with user-written DD statements.

3. Once a volume has been demounted and DEQed because of the DEQ
at demount facility, the volume is not automatically rejected
by the control program when mounted in response to a specific
or non—-specific mount request. Without the use of the
facility, the control program can recognize (by the ENQ) that
the volume is in use, and reject the volume. Therefore,
operations procedures in effect to prevent incorrect volumes
from being mounted should be reviewed in the light of reduced
control program protection from such errors when the DEQ at
demount facility is used. Specifically, if a volume is
ramounted for an authorized program and the volume had been
used previously by that authorized program, duplicate volume
serial numbers will exist in the JFCB and the control program
will be unable to release the volume during EOV processing.

4. Checkpoint/restart considerations are discussed in 05/VYS52 MVS
Checkpoint/Restart. ‘

OPEN—INITIALIZE DATA CONTROL BLOCK FOR PROCESSING THE JFCB

The OPEN macro instruction initializes one or more data control
blocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro instruction,
except for the TYPE=J option, is contained in 05/VYS2 MVS Data
Management Macro Instructions. The TYPE=J option, because it is
used in conjunction with modifying a JFCB, should be used only by
the system programmer or only under the system programmer's
supervision.

[symboll OPEN {dcbh-addr
»[{optionsll,...)
[,TYPE=J]

TYPE=J
specifies that for each data control block referred to, yvou
have supplied a job fila control block (JFCB) to be used
during initialization. A JFCB is an internal representation
of information in a DD statement.

System Macro Instructions 113

During initialization of a data control block, its
associated JFCB may be modified with information from the
data control block or an existing data set label or with
system control information.

The system always creates a job file control block for each
DD control statement. The job file control block is placed in
the SWA (scheduler work area). Its position, in relation to
other JFCBs created for the same job step, is noted in a
table in virtual storage.

When this operand is specified, you must also supply a DD
statement. However, the amount of information given in the
DD statement is at your discretion because vou can modify
many fields of the system-created job file control block. If
you specify DUMMY on your DD statement, the Open routine will
ignore the JFCB DSNAME and open the data set as Dummy. (See
the examples of the RDJFCB macro instruction for a coding
example that modifies a system-created JFCB.)

Note: The DD statement must specify at least:

. Device allocation (refer to 05/VS2 JCL for methods of
preventing share status).

. A ddname corresponding to the associated data control block
DCBDDNAM field.

RDJFCB—READ A JOB FILE CONTROL BLCCK

The RDJFCB macro instruction causes a job file control block
(JFCB) to be moved from the SWA (scheduler work area) into an area
of your choice for each data control block specified.

[symboll RDJFCB (decb-address
s[lloptionsll,...)

deb-address, (options) _
(same as the dcbaddress, optionl, and option2 operands of
the OPEN macro instruction, as shown in 05/VS52 MVS Data
Management Macro Instructions).

Although the option operands are not meaningful during the
execution of the RDJFCB macro instruction, these operands
can appear in the list form of either the RDJFCB or OPEN
macro instruction to generate identical parameter lists,
which can be referred to with the execute form of either
macro instruction.

Examples: In Figure 22 on page 115, the macro instruction at EX1
creates a parameter list for two data control blocks: INVEN and
MASTER. In creating the list, both data control blocks are assumed
to be opened for input; option2 for both blocks is assumed to be
DISP. The macro instruction at EX2 reads the system-created JFCBs
for INVEN and MASTER from the SWA into the area vou specified,
thus making the JFCBs available to your problem program for
modification. The macro instruction at EX3 modifies the parameter
list entry for the data control block named INVEN and indicates,
through the TYPE=J operand, that the problem program is supplving
the JFCBs for system use.

05/VS2 System Programming Library: Data Management

/—‘\

EX1 RDJFCB (INVEN, ,MASTER),MF=L
EX2 RDJFCB MF=(E,EX1)
EX3 OPEN (,(RDBACK,LEAVE)),TYPE=J,MF=(E, EX1)
INVEN DCB EXLST=LSTA,...
MASTER DCB EXLST=LSTB,...
LSTA DS OF
DC X'07"
DC AL3CJFCBAREA)
JFCBAREA DS 0F,176C
LSTB DS OF

Figure 22. Sample Code Using RDJFCB Macro

Multiple data control block addresses and associated options may
be specified in the RDJFCB macro instruction. This facility makeaes
it possible to read several job file control blocks in parallel.

An exit list address must be provided in each data control block
specified by an RDJFCB macro instruction. Each exit list must
contain an active entry that specifies the virtual storage
address of the area into which a JFCB is to be placed. A full
discussion of the exit list and its use is contained in 05/VS2 MVS
Data Management Services Guide. The format of the job file control
block exit list entry is as follous:

Types of Hexadecimal contents of Exit List Entry

Exit List Code (the lou-order bytes)

Entry (high-order

byte)

Job file 07 Address of a 176-byte area to

control be provided if the RDJFCB or

block OPEN (TYPE=J) macro
instruction is used. This
area must begin on a fullword
boundary and must be located
within the user's region.

The virtual storage area into which the JFCB is read must be at
least 176 bytes long.

The data control block may be open or closed when this macro
instruction is executed.

If the JFCB is read successfully for all DCBs in the parameter

list, a return code of zero is placed in register 15. If the JFCB
is not read for any of the DCBs because the DDNAME is blank or a DD

System Macro Instructions 115

statement is not provided, then a return code of ¢ is placed in
register 15.

7
cautions: The following errors cause the results indicated: */
Error Result
A DD statement has not been A return code of & is
provided. placed in register 15.
DDNAME field in DCB is A write-to-programmer is
blank. issued, the request for

this DCB is ignored, and a
return code of % is placed
in register 15.

A virtual storage address Abnormal termination of
has not been provided. task.

Note that if vou want to open a VTOC data set to change its
contents (that is, open it for QUTPUT, OUTIN, INOUT, UPDAT,
OUTINX, or EXTEND), vour program must be authorized under the
Authorized Program Facility (APF). APF provides security and
integrity for your data sets and programs. Details on how vou
authorize vour program are provided in 05/VS2 System Programming
Library: Supervisor.

If the RDJFCB routine fails while processing a DCB associated with
your RDJFCB request, vour task is abnormally terminated. None of
the options available through the DCB ABEND exit, as described in
05/VS2 MVS Data Management Services Guide, is available whan an
RDJFCB macro instruction is issued.

When using concatenated data sets, the RDJFCB routine will modify B
only the first JFCB. Y

ENSURING DATA SECURITY BY VALIDATING THE DATA EXTENT BLOCK

116

Protecting one user's data from inadvertent or malicious access
by an unauthorized user depends on protection of the data extent
block (DEB). The DEB is a critical control block because it
contains information about the device a data set is mounted on and
describes the location of data sets on direct-access device
storage volumes. The DEB also contains the address of the
appendage vector table (AVT). Using the AVT, a user with malicious
intent can modify the AVT to give control to a routine in
supervisor state to read from and write to data sets to which
access would otherwise be denied.

To guarantee protection of the DEB, the DEBCHK macro instruction
is provided. The DEBCHK macro instruction can be found in '
SYS1.AMODGEN. The DEBCHK macro is issued by several components of
the system control program. For example:

. The Open access method executors issue the macro to add the
address of a DEB they have built to a list of valid addresses
called the DEB table. The DEB validity checking routine
builds and maintains a DEB table for each job step.

. The 170 supervisor uses the macro to verify that the DEB
passed with each EXCP request is in the DEB table.

. The Close component issues the macro to remove a DEB from the
DEB table.

If you code a routine that builds a DEB, you must add the address
of the DEB yvou built to the DEB table. If you code a routine that
depends on the validity of a DEB that is passed to vour routine, N
vou should verify that the DEB passed to your routine has a valid

057VS52 System Programming Library: Data Management

entry in the DEB table. Use the TYPE=ADD and the TYPE=VERIFY
(:J operands of the macro, respectively.

To prevent an asynchronous routine from changing, deleting, or
assigning a new DEB to a DCB, you must hold the local lock. To do
this you must use the branch entry to the DEBCHK verify routine.

Additional details about the functions provided by the DEB

validity checking routine and about the contents of the DEB table

are available in 05/VS2 Open/Close/EQV Logic.

The DEBCHK macro instruction provides four functions:

Adds the address of a DEB to the DEB table, which is located
in protected storage. The DEB table contains the address of
every user DEB associated with a given job step. Every system
control program component that builds a user DEB must add the
address of that DEB to a DEB table.

Verifies that the DEB table associated with a given job step
contains the address of a valid DEB. Any system control
program component or problem program can use this function to
verify that a DEB is valid.

Deletes the address of a DEB from the DEB table. Any program
that deletes a user DEB must, before it deletes the DEB, issue
a DEBCHK macro with a TYPE=DELETE operand to delete the
address of the DEB from the DEB table. If the DEB validity
checking routine encounters an error while deleting the
address from the DEB table, the job step is abnormally
terminated.

Deletes the address of a DEB from the DEB table in the same
way as the preceding function, except that, instead of
terminating the job step, this function merely returns an
error code in register 15. This function is provided to
prevent recurring abnormal termination. The format of the
DEBCHK and a description of the operands follow:

DEBCHK—MACRO SPECIFICATION

[symboll DEBCHK

cbaddr

[, TYPE={VERIFY!ADD|DELETE|PURGE}]
[,AM={amtypel (amaddr)| ({amreq))}]
[,BRANCH={HO|YES}]

[, TCBADDR=address]l
[,KEYADDR=addressl

[,SAVREG=reql

[,MF=L1

cbaddr

for BRANCH=NO
RX-type address, (2-12), or (1)

A control block address passed to the DEBCHK routine. This
operand is ignored if MF=L is coded. For verify, add, and
delete requests, cbaddr is the address of a data control
block (DCB) that points to the DEB whose address is either
verified to be in the DEB table, added to the DEB table, or
deleted from the DEB table. For the purge function, cbaddr is
the address of the DEB whose pointer is to be purged from the
table: no reference is made to the DCB.

for BRANCH=YES
The A-type address of a 4 byta field, or a register (1)
or (3-12), that points to the DCB containing the DEB to
be verified.

System Macro Instructions 117

TYPE={VERIFY[ADD|DELETE|PURGE}
indicates the function to be performed. If MF=L is coded,
TYPE is ignored. The functions are:

VERIFY

This function is assumed if the TYPE operand is not
coded. The control program checks the DEB table to
determine whether the DEB pointer is in the table at the

- location indicated by the DEBTBLOF field of the DEB;
the DEBAMTYP field in the DEB is compared to the AM
operand value, if given. The two must be equal.
TYPE=VERIFY can be issued in either supervisor or
problem state.

)

ADD :
Before the DEB pointar can be added to the table, the
DEB itself must be queued on the current TCB DEB chain
(the TCBDEB field contains the address of the first DEB
in the chain). The DEB address is added to the DEB table
at some offset into the table. That offset value is
placed in the DEBTBLOF field of the DEB, and the access
method type is inserted into the DEBAMTYP field of the
DEB. A zero is placed in the DEBAMTYP field if the AM
operand is not coded. TYPE=ADD can be issued only in
supervisor state.

DELETE
The DEB and the DCB must point to each other before the
DEB address can be deleted from the DEB table.
TYPE=DELETE can be issued only in supervisor state.

PURGE
The DEB pointer is removed from the DEB tabhle without
checking the DCB. TYPE=PURGE can be issued only in
supervisor state.

AM z
specifies an access method value. Each value corresponds to

a particular access method type (note that BPAM and SAM have
the same values):

Type vValue
TCAMAP X'84"
SUBSYS X'81’
ISAM X'80"
BDAM X'40°’
SAM X120
BPAM X'20°"
TAM X'10°"
GAM X'08"
TCAM X'046!
EXCP Xro2*
VSAM X'01"
NONE X100"

The operand can be coded in one of the following three ways,
only the first of which is valid for the list form (HFSL) of
the instruction.

amtvpe
refers to the access method: ISAM, BDAM, SAM, BPANM, TAM
(which refers to BTAM only), GAM, TCAM, EXCP, or VSAM.
TCAHAP identifies a TCAM application-program DEB.
SUBSYS identifies a subsystem of the system control
program, such as a job entry subsystem. NONE indicates
that no access method or subsystem is specified.

amaddr
is the RS-type address of the access method value. This -
format may not be coded when MFZL is used. (

118 05/V52 System Programming Library: Data Management

amreg
is one of the general registers 1-14 that contains the
access method value in its low-order byte (bit
positions 24-31). The high-order bytes are not
inspected. This form may not be used when MF=L is coded.

The use of amaddr and amreg should be restricted to those
cases where the access method value has been generated
previously by the MF=L form of DEBCHK. If MF=L is not coded,
the significance of the AM operand depends upon the TYPE.

If TYPE is ADD and AM is specified, the access method value
is inserted in the DEBAMTYP field of the DEB, and all
subsequent DEBCHK macros referring to this DEB must either
specify the same AM or omit the operand. When the AM operand
is omitted for TYPE=ADD, a null value (0) is placed in the
DEB and all subsequent DEBCHK macros must omit the AM
operand.

If AM is specified when the TYPE is PURGE, DELETE, or VERIFY,
the access method value is compared to the value in the
DEBAMTYP field of the DEB. If AM is omitted, no comparison is
made.

BRAMNCH={NO| YES}

specifies whether you want to use the branch entry to the
DEBCHK verify routines.

NO
specifies branch entry is not to be used. The operands
SAVREG, TCBADDR, and KEYADDR are ignored.

YES
specifies the branch entry is to be used. TYPE=VERIFY
must be implicitly or explicitly specified. The
operands TCBADDR and KEYADDR are required. AM and MF
are ignored. Notes for BRANCH=YES:

° Registers 1, 2, 10, 11, 14, and 15 must not be used
for SAVREG=.

. Registers 1, 2, 10, 11, 14, 15, and the register
specified for SAVREG= must not be used for chaddr,
TCBADDR=, or KEYADDR=.

. The contents of registers 10, 11, and 14 are
unpredictable on completion. Also, if you do not
specify SAVREG= the contents of register 2 are
unpredictable.

. At completion time, register 1 contains the address
of the DEB, and register 15 contains either 0, 4, or
16 (see below for codes and their meanings).

TCBADDR=address—A-type address or (3-12)

specifies the location or register containing the address of
the TCB to be used by the DEBCHK verify routine. Use this
operand only when BRANCH=YES.

KEYADDR=address—A-type address or (3-12)

specifies the location, or a register pointing to the
location of a field containing the key to be used when
accessing the DCB. Use this operand only when BRANCH=YES.

SAVREG=reg

MF

specifies the register in which register 2 is to be saved.
Use this operand only when BRANCH=YES.

indicates the list form of the DEBCHK macro instruction.
When MF=L is coded, a parameter list is built consisting of
the access method value that corresponds to the AM keyword.
This value may be referenced by name in another DEBCHK macro

System Macro Instructions 119

by coding AM=(amaddr), or it may be inserted into the
low-order byte of a register before issuing another DEBCHK
macro by coding AM=((amreg)]).

If the DEBCHK routine completes successfully, register 15 will be
set to 0 and register 1 will contain the address of the DEB when
control is returned to your program. Otherwise, register 15 will
contain one of the following decimal codes:

Code
A

12
16

20
24
28

32

Meaning

Either (a) the DEB table associated with the job step does
not exist; or (b) the DEBTBLOF field of the DEB was set to
zero or a negative number, or was larger than the DEB table;
or (c¢) register 1 did not contain the same address as the
DEB table entry.

An invalid TYPE was specified. (The DEBCHK routine was
entered by a branch, not by the macro.)

Your program was not authorized and TYPE was not VERIFY.

DEBDCBAD did not contain the address of the DCB that was
passed to the DEBCHK routine.

The AM value does not equal the value in the DEBAMTYP field.
The DEB is not on the DEB chain and TYPE=ADD was specified.

TYPE=ADD was specified for a DEB that was already entered in
the DEB table.

The DEB table exceeded the maximum size (32,760 bytes) and
TYPE=ADD.

PURGING AND RESTORING I/0 REQUESTS

120

The system's purge routines, guided by a parameter list you pass
them, perform either a halt or a guiesce operation. In a halt
operation, the purge routines stop the processing of specified
I/0 requests that were initiated with an EXCP macro instruction.
In a quiesce operation, the purge routines:

. Allow the completion of I/0 requests that were initiated wuith
an EXCP macro instruction and are currently controlled by the
I/0 supervisor.

. Stop the processing of those requests that are not vet
controlled by the 170 supervisor, but save the 1I0Bs of the
requests so that they can be reprocessed (restored) later.

The system's restore routines make it possible to reprocess 170
requests that are quiesced. (Note: Not covered here is the purge
and restore processing that takes in I/70 requests not initiated by
an EXCP macro instruction. See 0S/VS2 I/0 Supervisor Loqic if you
want to know the full scope of purge and restore processing.)

You can give control to the purge and restore routines in two

ways:

(1) by loading register 1 with the address of the parameter

list and issuing SVC instructions or (2) by issuing the PURGE and
RESTORE macro instructions. If your installation requires the use
of macro instructions, you must add the macro definitions to the
macro library (S5YS1.MACLIB) or place them in a partitioned data
set and concatenate this data set to the macro library. The macro
definitions, JCL, and utility statements needed to add the macros
to your macro library are presented in Figure 23 on page 121 and
Figure 2% on page 121. Whether vou issue the macro instructions or
the SVC instructions, vou must first build a parameter list. The
SVC instructions are SVC 16 for PURGE and SVC 17 for RESTORE.

0S7V52 System Programming Library: Data Management

c

C

PURGE Macro Definition

MACRO
&NAME PURGE &LIST

AIF ("&LISTTEQ'").El
&NAME IHBINNRA &LIST

SVC 16

MEXIT
.El IHBERMAC 01,147

MEND

control Statements Required

//jobname JOB {parameterl}
//stepname EXEC

//7SYSPRINT DD SYSOUT=A
/7/75YSUT2 DD

/7/75YSIN DD - :

./ ADD NAME=PURGE, LIST=ALL

.

PURGE macro definition

./ ENDUP
/%

Figure 23. Macro Definition, JCL, and Utility Statements for
Adding PURGE Macro to Your Macro Library

LOAD REG 1

LIST ADDR MISSING

PGM=IEBUPDTE, PARM=NEW
DSNAME=SYS1.MACLIB,DISP=0LD
*

RESTORE Macro Definition

MACRO
&NAME RESTORE &LIST

AIF ('&LIST'EQ'').El
&NAME IHBINNRA SLIST

SVC 17

MEXIT
.El IHBERMAC 01,150

MEND

control Statements Required

//3jobname JOB {parameters}
/7/stepname EXEC

/7/SYSPRINT DD SYSOUT=A
/7/75YSUT2 DD

//7SYSIN DD DATA

.7/ ADD NAME=RESTORE,LIST=ALL

RESTORE macro definition

./ ENDUP
/%

Figure 24. Macro Definition, JCL, and Utility Statements for
Adding RESTORE Macro to Your Macro Library

LOAD REG 1
ISSUE SVC FOR RESTORE

LIST ADDR MISSING

PGM=IEBUPDTE, PARM=NEW
DSNAME=SYS1.MACLIB,DISP=0LD

System Macro Instructions

121

PURGE—HALT OR FINISH I/O-REQUEST PROCESSING

122

The macro instruction used to call the purge routines is coded as

follows:
[symboll PURGE parameter-list address
parameter list address—RX-type address, (2-12) or (1)

address of a parameter list, 12 or 16 bytes long, that you
have built on a fullword boundary in vour storage. The
parameter list address can be specified as an RX-type
constant or in registers 2 through 12 or 1.

The format

Byte
0

9,10,11

and contents of the parameter list are as follows:
contents
A byte in which you specify what the purge routines will
do. These are the bit settings and their meanings:
1... Purge 170 requests to a single data set.
0... ... Either purge 1/0 requests associated with a
TCB or address space, or purge I/70 requests
to more than one data set.
I Post ECBs associated with purged 170
requests.
R Halt 1/0-request processing. (Quiesce
I/0-request processing if 0.)
D R Purge related requests only. (Valid only if
a data-set purge is requested.)
R ¢ BN Reserved-—must be zero.
R R Do not purge the TCB's request-block chain
of asynchronously scheduled processing.
vee .1 Purge I/0 requests associated with a TCB.
I | This is a 16-byte parameter list.
Additional purge options are specified in
bytes 12-15. (If this bit is off, the purge
routines don't put a return code in byte 4§
of this list or in register 15.)
The address of a DEB if vou're purging 170 requests to a

single data set. The address of the first DEB in a chain
of DEBs if vou're purging I70 requests to more than one
data set. (The second word of each DEB but the last must
point to the next DEB in the chain; the second word of
the last DEB must contain zeros.)

A byte of zeros. (If bit 7 of byte 0 is on, the purge
routines will put a code in this byte: X'7F' if the
purge operation is successful; X'40' if it isn't.)

The address of the TCB associatéd with the I/0 requests
vou want purged (but only if vou turned on bit 6 of byte
0). May be zeros if the TCB is the one vou're running
under.

A bvte of zeros.
The address of a word in vour storage or the address of

the DEBUSPRG field (which is X'11' bytes more than the
DEB address in this parameter list). At whichever

address yvou specify, the purge routines store a pointer

05/7VS2 System Programming Library: Data Management

to the purged I/0 restore list, or PIRL. In the PIRL is
a pointer to the first I0OB in the chain of I0Bs. The
location of the pointer and format of the chain are
shown in Figure 25 on page 124.

12 A byte in which you can specify additional purge
options. These are the bit settings and their meanings:
S Purge I/0 requests associated with an
address space. (You must be in supervisor
state.)

I Check the validity of all the DEBs
associated with the puroge operation if this
is a data-set purge. Validate this
parameter list, whatever the type of purge
operation, by ensuring that there are no
inconsistencies in the selectjon of purge
options. (If the caller is in problem
state, these actions are taken regardless
of the bit setting.)

cees 1o Ensure that 170 requests will be
reprocessed (restored) under their
original TCB. (If zero and this byte is
meaningful (bit 7 of byte 0 is on), the I/0
requests will be reprocessed under the TCB
of the program making the resotre request.)

0. Must be zero.
13 A byte of zeros.
14,15 The two-bvte ID of the address space associated with

the I/0 requests you want purged. (Only meaningful if
bit 2 of byte 12 is on.)

Control will be returned to vour program at the instruction
following the PURGE macro instruction. If the purge operation was
successful, register 15 will contain zeros. Otherwise, register
15 will contain one of the following hexadecimal return codes:

Code Meaning

4 Your request to purge I/0 requests associated with a given
TCB was not honored because that TCB did not point to the
job step TCB, as it must when the requestor is in problem
state.

8 Either you requested an address—-space purge operation but
were not in supervisor state or you requested a data-set
purge operation but supplied no data-area address in bytes
1, 2, and 3 of the purge parameter list.

14 Another purge request has preempted your request. You may
want to reissue your purge request in a time-controlled
loop.

Note: Register 15 will contain zeros, regardless of the outcome
of the purge operation, if vou set bit 7 in byte 0 of the
parameter list to zero.

MODIFYING THE IOB CHAIN

If you want to change the order in which purged I/0 requests will
be restored or prevent a purged request from beina restored, you
may change the sequence of I0Bs in the I0E chain or remove an I0B
from the chain. The address of the I0B chain can be obtained from
the PIRL (see Figure 25 on page 124). (The address of the PIRL
Wwill be at the location pointed to by bytes 9 through 11 of the
purge parameter list.)

System Macro Instructions 123

RESTORE—REPROCESS I/0 REQUESTS

The RESTORE macro is coded as follous: 7
AN

[symbol] RESTORE restore address

restore address—RX-type address, (2-12) or (1)
address you specified at byte 9 of the purge parameter list.

PIRL

PIRRSTR 20(14)

Pointer to the first I0OB. If 1's,
no I/0 request was quiesced.

——>I0B(1) (where 1 is first I0B in chain)

IOBRESTR 25(19)

Pointer to the next I0OB in the
' chain.

[———>IOB(n) (where n is last I0OB in chain)

/ TN
IOBRESTR 25(19) ~
Contains 1's.
Figure 25. The PIRL and IOB Chain
JRKCALC—PERFORM TRACK CALCULATIONS
The TRKCALC macro performs track capacity calculations. The
standard, list, execute, and DSECT form of the macro are
described. Examples of the TRKCALC macro follow the macro
descriptions. Using TRKCALC you may do the following:
. Perform track capacity calculations
. Determine the number of records of a given size which can be
written on a fulltrack or the remainder of a track
. Perform track balance calculations as follows:
- Determine if a given record size can be Wwritten in the
space remaining on the track and return the new track
balance. .
- Determine the maximum size record which can be written on o
the track if the given record does not fit.

124 057VS2 System Programming Library: Data Management

- Determine the track balance if the last physical record
is removed from the track.

TRKCALC—STANDARD FORM
The format of the TRKCALC macro is:

[symboll | TRKCALC | FUNCTN={TRKBAL|TRKCAP}
{DEVTAB=addr|,,UCB=addr|, TYPE=addr}
[,BALANCE=addr] I
[,REMOVE={YES[NO}]
[,MAXSIZE={YES|HO}]
t{,RKDD=addr|,R=addr,K=addr,DD=addr}l
[,REGSAVE={ YES |NOJ]

[,MF=I]

FUNCTN={TRKBAL | TRKCAP}
specifies the function to be performed.

Note: You must specify one of the three keywords, DEVTAB,
UCB, or TYPE, to provide the macro a source for information.

TRKBAL
calculates the new track balance. Depending upon
whether the record fits on the track, one of the
following occurs:

. The record fits on the track. Register 0 contains
the new track balance.

. If the record does not fit on the track and
MAXSIZE=YES is not specified, a "record does not
fit" return code is given.

. If the record does not fit and MAXSIZE=YES is
specified, one of the following happens:

- The data length of the largest record that fits

in the remaining space is returned in register
0. :

- A code is returned that indicates no record
fits in the remaining space.

TRKCAP
calculates the number of fixed length records that can
be written on a whole track or the number of records
that could be added to a partial track of R # 1 (record
number # 1 in the R or RKDD kevwords).

DEVTAB=addr—RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the Device
Characteristics Table Entry (DCTE). If you specify a
register, it contains the address of the DCTE, not the
address of a word containing the address of the DCTE.

UCB=addr—RX-type address, (2-12), (0), (14)
addr specifies a word that contains the address of the UCB.
If vou specify a register, it contains the address of the

UCB, not the address of a word containing the address of the
UCB.

TYPE=addr—RX-type address, (2-12), (0), (14)
You may specify the address of the UCB device type
(UCBTBYT4%4), or you may specify the one-byte UCB device type
in the low-order byte of a register.

BALAMCE=addr—RX~-type address, (2-12), (0), (14)

.You may specify either the address of a halfuord containing
the current track balance or you may specify the balance in

System Macro Instructions 125

126

the low-order two bytes of a register. The value specified is
the value returned wuhen you last issued TRKCALC ifR # 1. If
R # 1 the balance is reset to track capacity by TRKCALC.

REMOVE={YES |ND2}
indicates if a record is to be deleted from the track.

YES
specifies the record number (specified in the R
keyword) is being removed from the track. The track
balance is incremented instead of decremented.

Note: YES is valid only on a FUNCTN=TRKBAL call.

NO
specifies a record is not to be deleted from the track.
NO is the default.

MAXSIZE={YES |NO}

YES
If the specified record does not fit, the largest
length of a record with the specified key length that
fits is returned (register 0).
Note: YES is valid only on a FUNCTN=TRKBAL call.

NO

Maximum size is not returned. NO is the default.

RKDD=addr—RX-type address, (2-12), (0), (14)
addr specifies a word containing a record number (1 byte),
kevlength (1 byte), and data length (2 bytes) (bytes 0, 1,
and 2 and 3, respectively) or a register containing the
record number, key length, and data length. R, K, and DD may
be specified by this keyword, or you may use the following
three keywords instead.

R=addr—RX-type address, (2-12), (0), (14), or n
vou may specify either the address of the cords's key length,
or you may specify the key length using the low-order byte of
a register or immediate data (n). Specify a decimal digit for
n (immediate data).

K=addr—RX-type address, (2-12), (0), (14), or n
yvou may specify either the address of the record's key
length, or you -may specify the record's data length using the
low-order two bytes of a register or immediate data (n).
Spacify a decimal digit for n (immediate data).

DD=addr—RX-type address, (2-12), (0), (14), or n
vou may specify either the address of the record's data
length, or vou may specify the record's data length using the
low-order two bytes of a register or immediately date (n).

Specify a decimal digit for n (immediate data).

REGSAVE={YES |NO}

YES
specifies registers 1-14 are saved and restored in the
caller-provided save area (pointed to by register 13)
across the TRKCALC call. Otherwise, registers 1, 9,
10, 11, and 14 are modified. Registers 0 and 15 are
always modified by a TRKCALC call.

NO

specifies registers are not saved across a TRKCALC
call. NO is the default.

MF=IX
specifies to define the storage for the TRKCALC parameter
list and initialize the parameter list using the given
keyuwords and call the TRKCALC function. MF=I is the default.

05/VS2 System Programming Library: Data Management

Y

—

C

INPUT REGISTER USAGE

OUTPUT FROM TRKCALC

Registers 0, 2-12, and 14 are available to provide input for
keywords.

Register 1 is used only to provide the address of the parameter
list for an MF=E call.

Register 13 may be used as input for keywords if REGSAVE=YES is
not specified.

Register 15 is used as a work register to build the TRKCALC
parameter list for the MF=E call. Not available as an input
register.

FUNCTH=TRKEAL

Register 15=0
The record fits on the track. Register 0 contains the
new track balance.

Register 15=4
Record does fit on the track. If MAXSIZE=YES is
specified, a partial record does not fit either.
Register 0 is set to zero.

Register 15=8
Record does not fit on the track. MAXSIZE=YES is
specified and a partial record does fit. Register 0 is
set to the maximum number of data bytes that fit on the
remainder of the track with the specified keylength.

Note:. The kevlength is excluded from the count of
maximum data bytes.

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is first set to the
calculated input track balance or the specified record
number is 1. STARBAL is updated to the new (output)
track balance if the record does not fit. Otherwise,
STARBAL is left with the input track balance value.

FUNCTN=TRKCAP

Register 15=0
Register 0 contains the number of records that fit on
the track if R =1, or the number of records that fit on
the remainder of the track if R # 1.

Register 154
No records of the length specified fit on a full track
(R = 1) or a partial track (R # 1). Register 0 is set to
zero.

STARBAL
This is the track balance field of the TRKCALC
parameter list. This field is set to the calculated
input track balance if you do not provide the balance,
or the specified record number is one.

System Macro Instructions 127

TRKCALC—LIST FORM

The list form of the TRKCALC macro is used to construct an empty,
in-line parameter list. By coding only MF=L you construct a
parameter list and the actual values can be supplied by the
execute form of the TRKCALC macro. Any parameters other than MF=L
are ignored,

[symboll TRKCALC MF=L

TRKCALC—EXECUTE FORM

A remote parameter list is referred to and can be modified by the
execute form of the TRKCALC macro. The TRKCALC routine is called.
The description of the standard form of the macro provides the
explanation of the function of each operand.

[symboll TRKCALC FUNCTN={TRKBAL | TRKCAP}]

{,DEVTAB=addr|,UCB=addr |, TYPE=addr}]
rBALANCE-addr]
14
?
{
?

[
E
E REMOVE={YES INO}]
[
[
)}

MAXSIZE={YES[NO}1
»RKDD=addr |,R=addr,K=addr,DD=addr}}
REGSAVE= {YESlNO}]
{FS(E,{parameter list address|(1)}]

FUNCTN={TRKBAL | TRKCAP}
It is coded as shown in the standard form. If this keyword is
omitted, any specification of REMOVE, MAXSIZE, LAST, and the
RX form of BALANCE, is ignored. In addition, DEVTAB is
assumed if UCB is coded and a failure occurs if TYPE is
specified. When you use FUNCTN, one of the keyuords (DEVTAB,
UCB, or TYPE) must be specified to provide an information
source.

DEVTAB=addr | ¥—RX~-type address, (2-12), (0), (14)
It is coded as shown in the standard form except for the ¥
subparameter. Specify an ¥ when you have inserted the
address of the Device Characteristics Table Entry (DCTE) in
the parameter list.

UCB=addr | ¥—RX-type address, (2-12), (0), (14)
It is coded as shown in the standard form except for the *
subparameter. Specify an ¥ when you have inserted the
address of the UCB in the parameter list.

TYPE=addr | ¥—RX-type address, (2-12), (0), (14)
It is coded as shown in the standard form except for the *
subparameter. Specify an ¥ when you have inserted the
address of the UCB type (UCBTYP) in the parameter list.

BALANCE=addr | ¥—RX-type address, (2-12), (0), (14)
It 1s coded as shown in the standard form except for the ¥
subparameter. Specify an ¥ when you have inserted the
balance in the parameter list.

REMOVE={ YES [NO}
It is coded as shown in the standard form.

MAXSIZE={YES INO}
It is coded as shoun in the standard form.

RKDD=addr—RX-type address, (2-12), (0), (14)
It is coded as shown in the standard form.

R=addr—RX-type address, (2-12), (0), (14) or pn
It is coded as shown in the standard form.

128 05/7VS2 System Programming Library: Data Management

()

K=addr—RX-type address, (2-12), (0), (14), or n
It is coded as shown in the standard form.

<;“ DD=addr—RX-type address, (2-12), (0), (14), or n
It is coded as shown in the standard form.

REGSAVE={YES |NO}
It is coded as shouwn in the standard form.

. MF=(E,{parameter list address|(1}}}
This operand specifies that the execute form of the TRKCALC
macro instruction is used, and an existing data management
parameter list is used.

E—Coded as shouwn

parameter list address—RX-type address, (2-12), (0), (14),
or (1)

TRKCALC—DSECT ONLY

This call gives a symbolic expansion of the parameter list for the
TRKCALC macro. No DSECT statement is generated. If a name is
specified on the macro call, it applies to the beginning of the
list, after any necessary boundary alignment. The macro generated
symbols all begin with "STAR"™.

[symboll TRKCALC MF=D

TRKCALC MACRO EXAMPLES
In this example, TRKCALC is coded to determine how many records of
a given size with 10-byte keys fit on a 3330 track. After issuing
B the macro, the number of records is saved in NUMREC:

TRKCALC FUNCTN=TRKCAP,TYPE=UTYPE,R=1,K=10,DD=DL

ST 0, NUMREC SAVE NUMBER OF RECORDS

CcL DC H'xxxx"' DATA LENGTH
UTYPE DC X'09'
NUMREC BS F MAX # OF RECORDS

In this example, TRKCALC is coded to determine if another record
can fit on a track of a 3350, given a track balance.

TRKCALC FUNCTN=TRKBAL,TYPE=UTYPE,R=REC,K=KL,DD=DD,BALANCE=BAL

UTYPE DC X'0B'

REC pC X'xx!'
KL DC X'xx'
DD DC HYxxxx"
BAL DC HYxxxx "'

After issuing the macro you would receive either:
Register 15=0. Register 0 contains the new balance.
Register 15=4. Register 020 (record did not fit).

Registaer 15=8. Register 0 contains the maximum data length.

System Macro Instructions 129

ADDING 7O THE IMAGE LIBRARY AND RETRIEVING FCB IMAGES

)

a

This chapter provides a detailed description of how to add either
an IBM UCS (universal character set) image or an IBM FCB (forms
control buffer) image to SYS1.IMAGELIB. It also describes a
procedure that can be used to read an FCB image into virtual
storage for the purpose of modifying it before loading it into the
forms control buffer.

For the IBM 3800 Printing Subsystem, a utility, IEBIMAGE, is
provided to build the 3800 control modules (character arrangement
table modules, forms control buffer modules, graphic character
modification modules, and copy modification modules) and store
them in SYS1.IMAGELIB. With 3800 Enhancements, IEBIMAGE can also
be used to build library character set modules to be stored in
SYS1.IMAGELIB. For additional information, see IBM 3800 Printing
Subsystem Programmer's Guida.)

Before reading this section, you should be familiar with the
information in these publications:

. IBM 2821 Control Unit Component Description contains the
information necessary to create a user-designed chains/train
for the 1403 Printer.

. 0S/VS2 MVS Data Management Macro Instructions describes the
SETPRT macro instruction that loads a UCS image and an FCB
image into their respective buffers.

. 05/VS2 JCL describes the UCB and FCB parameters that can be
specified in a DD statement to load the UCS and FCB buffers
when they are opened.

. IBM 3203 Printer Component Description and Operator's Guide
contains the information necessary to create a user-designed
train for the 3203 Printer.

. IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and
3811 Printer Control Unit Component Description and
Operator's Guide contains the information necessary to create
a user-designed train for the 3211 Printer.

. 05/VS2 MVS System Programming Library: JES2 or System
Programming Library: Network Job Entry Facility for JES2 for
reference information for JES2.

. 05/7VS2 System Programming Library: JES3 for reference
information for JES3.

ADBING A UCS IMAGE TO THE IHAGE LIBRARY

All IBM standard character set images are included in
SYS1.IMAGELIB at system generation, when you code the DATAMGT
macro. You may subsequently add a character set image to
SYS1.IMAGELIB by following these rules:

1. The member name must be either the four characters UCS1 for
the 1403,1UCS2 for the 3211, or UCS3 for the 3203 printer. The
member name must be followed by a unique character set code
that is one to four characters long. This character set code
can be any valid combination of letters and numbers according
to the rules for assembler language symbols. The single
letters U or C should not be used as a character set coda,
since they are symbols for special conditions recognized by
the system. The assigned character set code must be specified
on the DD statement or SETPRT macro instruction to load the
image into the UCS buffer.

130 0S5/VS2 System Programming Library: Data Management

2. The first byte in the load module of a character set image

specifies whether or not the image is a default. (Default
images may be used by the system for jobs that do not request
a specific image.) You may specify the following in the first
byte if vou have JES2:

JES2
X'80' indicates a default image
X'40" indicates the output is to be folded
X'C0' indicates default image and folding
X'00' indicates that the image is not to be used as a
default
non-JES2

X'80' indicates a default image
X'00"' indicates that the image is not to be used as a
default

3. The second byte of the load module indicates the number of
lines (n) to be printed for image verification.

%. Each byte of the next n bvtes indicates tha number of
characters to be printed on each verification line. (Note:
For the 3211 printer, the maximum number of characters
printed per line is 48; the associative bytes are not printed
during verification.)

5. A 240-byte 1403 UCS image, a 240~-byte 3203 UCS image, or a
512-byte 3211 UCS image must follow the previously described
fields. (A 3211 UCS image has 432 characters, followed by 15
bytes of X'00', 6% bytes of associative bits, and a reserved
byte (the 512th byte) of X'00'. A 3203 UCS image has 240
characters followed by 64 bytes of associative bits.) Two
apostrophaes or two ampersands must be coded to represent a
single apostrophe or a single ampersand, respectively, which
is a part of a character set image.

Figure 26 on page 132 is an example of adding a 1403 UCS image,
IM, to the image library.

Figure 27 on page 133 shows the code used to add a 3211 UCS image
(IMG) to the image library. Two ampersands must be coded to
fepresent a single ampersand that is part of the character set
image.

The 64 bytes of associative bits must be coded to avoid data
checks. To determine how to code these bits for a particular
train, see IBM 3211 Printer, 3216 Interchangeable Train
Cartridge, and 3811 Printer Control Unit Component Description
and Operator's Guide.

Figure 28 on page 134 shows the code used to add a 3203 UCS image
(YN) to the image library. A 3203 UCS image has 240 characters,
followed by 64 bytes of associative bits. Two ampersands or two
apostrophes must be coded to represent a single ampersand or a
si:g}e apostrophe, respectively, that is part of the character
set image.

The 64 bytes of associative bits must be coded to avoid data

checks. To determine how to code these bits for a particular

grain, see IBM 3203 Printer Component Description and Operator's
uide.

Notes:

1. Executing the ASMFCL procedure does not actually generate
executable code. The assembler/linkage editor is used as a
vehicle to load the UCS image into the image library.

2. The SPACE parameter is overridden here because the
IBM-distributed ASMFCL cataloged procedure has secondary
allocation specified. All members must reside completely in
the first extent.

Adding to the Image Library and Retrieving FCB Images 131

//7ADDIM JOB MSGLEVEL=1

//STEP EXEC PROC=ASMFCL,PARM.ASM="NODECK,LOAD',

/77 PARM.LKED="LIST,0L,REFR,RENT,XREF' (See note)
//7ASM.SYSIN DD *)

UCS1IM CSECT

DC X'80" (THIS IS A DEFAULT IMAGE)

DC AL1(6) (NUMBER OF LINES TO BE PRINTED)

BDC AL1(39) (39 CHARACTERS PRINTED ON 1ST LINE)

DC AL1(42) (42 CHARACTERS PRINTED ON 2ND LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 3RD LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 4TH LINE)

DC AL1(42) (42 CHARACTERS PRINTED ON 5TH LINE)

DC AL1(39) (39 CHARACTERS PRINTED ON 6TH LINE)

DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZX, . '

DC C€'1234567890STABCDEFGHIJKLMNOPQRSTUVIWXYZx*, . #-$"'

DC C'1236567890STABCDEFGHIJKLMNOPQRSTUVIHXYZX, '
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZX, .
DC C€'1234567890STABCDEFGHIJKLMNOPQRSTUVKXYZX, . #-$"
DC C'1234567890STABCDEFGHIJKLMNOPQRSTUVWXYZX, .*
END

/*

//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS1IM),DISP=0LD,SPACE=

Nota: The RENT and REFR linkage editor attributes are used for performance
considerations in a paging environment and may be omitted.

Figure 26. Sample Code to ddd a 1403 UCS Image to SYS1.IMAGELIB

132 0S/7VS2 System Programming Library: Data Management

/7/ADDIMG
//STEP

V4
//ASM.SYSIN
UCS2IMG

KX

/%

//LKED.SYSLMOD

JOB MSGLEVEL=1

EXEC PROC=ASMFCL,PARM.ASM="NODECK,LOAD",
PARM.LKED='LIST,0L,REFR,RENT,XREF' (See note)
DD * .

CSECT

DC X'8¢0' (THIS IS A DEFAULT IMAGE)

DC AL1(9) (NUMBER OF LINES 7O BE PRINTED)

DC AL1(48) (48 CHARACTERS PRINTED ON 1ST LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 2ND LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 3RD LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON &4TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 5TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 6TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 7TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 8TH LINE)
DC AL1(48) (48 CHARACTERS PRINTED ON 9TH LINE)

THE FOLLOWING NINE LINES REPRESENT

THE TRAIN IMAGE
DC C'1<.+IHGFEDCBAXS-RQPONMLKJ%,&&ZYXUVUTS/7a#0987656432"
DC C'1<.+IHGFEDCBAX$-RQPONMLKJ%,&&ZYXWVUTS/a#0987656¢32"
DC C'1<.+IHGFEDBCAXS-RQPONMLKJ%,&&ZYXWVUTS/2%098765432"
DC C'1<,+IHGFEDCBAX$-RQPONMLKJI%,&&ZYXWVUTS/Q#098765432"
DC C'1<.+IHGFEDBCAX$-RQPONMLKJ%, &&ZYXWVUTS/a8098765432"
DC C'1<.+IHGFEDCBAX$-RQPORMLKJIX, &&ZYXUWVUTS/a$#098765432"
DC C'1<.+IHGFEDBCAXS-RQPONMLKJ%, &&ZYXWVUTS/3#098765432"
DC C'1<.+IHGFEDCBA¥S-RQPONMLKJX,&&ZYXWVUTS/a#0987656432"
DC C'1<.+IHGFEDBCAX$~RQPONMLKJX%, &&ZYXWVUTS/a#0987656432"
DC 15X'00" RESERVED FIELD, BITS 433-44%7

. THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 448-511

DC X'C01010101010101010100040404240004010"
DC X'101010101010101010004041000040401010""
DC X'101010101010004040000000101010101010°
DC X'10101010004040444800"'

pDC X'00'° RESERVED FIELD, BYTE 512

END

DD DSNAME=SYS1.IMAGELIB(UCS2IMG?Y,DISP=0LD,SPACE=

Note: The RENT and REFR linkage editor attributes are used for performance
considerations in a paging environment and may be omitted.

Figure 27.

Sample Code to Add a 3211 UCS Image to SYS1.IMAGELIB

Adding to the Image Library and Retrieving FCB Images

133

//ADYN3203 JOB MSGLEVEL=1

//STEP EXEC PROC=ASMFCL,PARM.ASM="NODECK,LOAD",
/7 PARM.LKED="LIST,OL,REFR,RENT,XREF' (See note)
//7ASM.SYSIN DD %
UCS3YN CSECT
DC X'80° (THIS IS A DEFAULT IMAGE)
DC AL1(6) (NUMBER OF LINES T0 BE PRINTED)
DC AL1(39) (39 CHARACTERS PRINTED ON 1ST LINE)
DC AL1(42) (42 CHARACTERS PRINTED ON 2ND LINE)
BC AL1(39) (39 CHARACTERS PRINTED ON 3RD LINE)
DC AL1(39) (39 CHARACTERS PRINTED ON 4TH LINE)
DC AL1(42) (42 CHARACTERS FRINTED ON 5TH LINE)
DC AL1(39) (39 CHARACTERS PRINTED ON 6TH LINE)
* THE FOLLOWING SIX LINES REPRESENT
¥ THE TRAIN IMAGE

BC C€'1234567890STABCDEFGHIJKLMNOPQRUVWIXYZX%, .

DC C'1234567890STABCDEFGHIJKLMNOPQRUVIWXYZX, . #-$"'

DC C€'1234567890STABCDEFGHIJKLMNOPQRUVWXYZx, ."'

DC C€'1234567890STABCDEFGHIJKLMNOPQRUVWXYZ%, .

DC C€'1234567890STABCDEFGHIJKLMNOPQRUVIWXYZX, . #-$"*

DC C€'1234567890STABCDEFGHIJKLMNOPQRUVWXYZX%, .
THE FOLLOWING FOUR DC INSTRUCTIONS DEFINE THE ASSOCIATIVE BITS,
UCSB BYTE POSITIONS 241-304

DC X'C01010101010101010100040000000000010°

DC X'101010101010101000404000000040001010°"

X X

DC X'1010101010100040600000001010610101010"
DC X'10101010004000000000"
END
7% _
//LKED.SYSLMOD DD DSNAME=SYS1.IMAGELIB(UCS3YN),DISP=0LD,SPACE=

Note: The RENT and REFR linkage editor attributes are used for performance
considerations in a paging environment and may be omitted.

Figure 28. Sample Code to Add a 3203 UCS Image to SYS1.IMAGELIB

®

134 0S5/VS52 System Programming Library: Data Management

C

ADDING AN FCB IMAGE TO THE IMAGE LIBRARY

For the 3800 Printing Subsystem, refer to the IBM 3800 Printing
Subsystem Programmer's Guide.

Two standard FCB images, STD1l and STD2, can be included in
SYS1.IMAGELIB during system generation for a 3211 or 3203 printer
(see Figure 29 on page 136 and Figure 30 on page 137 for a sample
of STD1 and STD2 images). STD1l prints six lines per inch on an
8-1/72-inch form. STD2 prints six lines per inch on an 11-inch
form. Channels for both images are evenly spaced, with channel one
on the fourth line and channel nine on the last line.

In addition to the IBM-supplied images, user images can be
defined. Each user image is added to the image library as part of
a load module. To add an FCB image to the image library, follou
these rules:

1. The member name cannot exceed eight bytes. The first four
characters of this member name must be FCB2. The characters
that follow FCB2 identify the FCB image and are referred to as
the image identifier. Any combination of characters that are
valid in assembler language can be used with the exception of
a single "C" or a single "U" as an image identifier. The image
identifier must be specified in a DD statement or in the
SETPRT macro instruction to load the image in the FCB buffer.

2. The first byte of the load module of a forms control image
speci fies whether or not the image is a default. A default
image is indicated by X'80"' and is used for all jobs that do
not have the FCB parameter coded on the DD statement; X'00'
indicates that the image is not to be used as a default.

3. The second byte of the load module indicates the number of
bytes to be transferred to the control unit to load the FCB
image. This count includes the byte, if used, for the print
position indexing feature.

4. The third byte of the load module (the first byte of the FCB
image) is either the print position indexing byte or the lines
per inch byte. The print position indexing byte is optional
and, when used, precedes the lines per inch byte. A
description of the print position indexing feature and its
use may be found in IBM 3211 Printer, 3216 Interchangeable
Train Cartridge, and 3811 Printer Control Unit Component
Description and Operator's Guide.

The form image begins with the lines per inch (LPI) byte. The
LFI byte defines the number of lines per inch (6 or 8), and
also represents the first line of the page. It may or may not
contain a channel identifier.

Tvpically, the length of an FCB image is constant with the
length of the form it represents. For example, an 8-1/72-inch
form to be printed at 6 LPI has an FCB image which is 51 bytes
in length (8-1/2-inches times 6 LPI).

. X'1In' means eight lines are printed per inch.
. X'0n' means six lines are printed per inch.

5. All remaining bytes (lines) must contain X'0n' except the
last byte. The last byte must be X'In'. The letter n can be a
hexadecimal value from 1 to C, representing a channel (one to
twelve); or it can be zero (0), which means no channel is
indicated.

In Figure 29 on page 136, an FCB load module is assembled and
added to SYS1.IMAGELIB. The image defines a print density of eight
lines per inch on an ll-inch form with a right shift of 15 line
character positions (1-1/72 inches).

Adding to the Image Library and Retrieving FCB Images 135

FCB2STD1

Figure 29.

CSECT

DC
DC
DC

END

-« 4 % « @ @« @ « Al -
PO 2D D e -
o Lo
o ~r
(=]
-

HMIUHKAHKHKAHKNHK KKK
OO0 ODOORM
CSPRPOUONORHOAND

>
o
[8))

X'000000°
X'06"
X'000000°
X'07"
Yranoaane

X'000000°
XT0A"
X'000000°
X'0B'

X'0000000000000000°

X'0C?
X'00"
X'19°'

DEFA
FCB

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

ULT

IMAGE LENGTH =
1)2)3

4 CHANNEL
5,6,7

8 CHANNEL
9,10,11

12 CHANNEL
13,14,15

16 CHANNEL
17,18,19

20 CHANNEL
21,22,23

26 CHANNEL
25,26,27

28 CHANNEL
29,320,231

32 CHANNEL
33,34,35

36 CHANNEL
37,38,39

40 CHANNEL
41,642,43,644,45,
49 CHANNEL
50

51 CHANNEL

Sample of the Standard FCB Image STDI1

66,47,48
12

9—END OF FCB IMAGE

RETRIEVING AN FCB IMAGE

136

If vou want to modify an FCB image in virtual storage before

loading it into a forms control buffer, you can use this sequence
of macro instructions to read the FCB image into virtual storage:

1. An IMGLIB macro instruction, with the OPEN parameter.

2. A BLDL macro instruction, to determine whether the FCB image

you want is in the image library.

3. A LOAD macro instruction,

storage.

After the image has been read in,

to load the image into virtual

it's necessary to issue another

IMGLIB macro, but this time with the CLOSE parameter and the.

address of the DCB that was built by the first IMGLIB macro. A
SETPRT macro instruction can be used to load the forms control
buffer with the modified image.

The format of the BLDL and the SETPRT macros is given in 05/VS52
MVS Data Management Macro Instructions;

the format of the LOAD

macro is given in 05/VS2 Supervisor Services and Macro
Shown here is the format of the IMGLIB macro:

Instructions.

[symboll

INGLIB

{OPEN|CLOSE, addr}

OPEN

specifies that a DCB is to be built for SYS1.IMAGELIB and

that SYS1.IMAGELIB is to be opened. The address of the DCB is

returned in register 1.

0S/7VS2 System Programming Library: Data Management

C

C

FCB2STD2 CSECT
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
bC
DC
DC
DC
DC
DC
DC
DC
-DC
DC
DC
DC
DC
END

X'80°"

AL1(66)
X'000000°
X'gl’
X'0000000000"
Xrg2’
X'0000000000°
X'03"
X'0000000000°"
Xr'04"
X'0000000000°
X'05"
X'0000000000°"
X'06"
X'0000000000"
X'07"
X'0000000000"
X'08'
X'0000000000"
X'0A"
X'0000000000"
X'0B"
X'0000000000"
X'gC?

X'00"

X'19!

DEFAULT IMAGE

FCB IMAGE LENGTH = 66
LINES 1,2,3

LINE 4 CHANNEL 1
LINE 5,6,7,8,9

LINE 10 CHANNEL 2
LINE 11,12,13,14,15
LINE 16 CHANNEL 3
LINE 17,18,19,20,21
LINE 22 CHANNEL 4
LINE 23,24,25,26,27
LINE 28 CHANNEL 5
LINE 29,30,31,32,33
LINE 34 CHANNEL 6
LINE 35,36,37,38,39
LINE 40 CHANNEL 7
LINE 41,42,43,4%,45

LINE 46 CHANNEL 8

LINE 47,48,49,50,51

LINE 52 CHANNEL 10

LINE 53,54,55,56,57

LINE 58 CHANNEL 11

LINE 59,60,61,62,63

LINE 64 CHANNEL 12

LINE 65

LINE 66 CHANNEL 9—END OF FORM

Figure 30. Sample of the Standard FCB Image STD2

CLOSE

specifies that SYS1.IMAGELIB is to be closed.

addr

RX-type address of word that points to the DCB. If coded in
the form (1-12), then the register contains the address of
the DCB, not the address of the fullword.

Return codes for IMGLIB OPEN:

Decimal
Return Code

0
4

12

Heaning
Successful.

Either the volume containing SYS1.IMAGELIB is not
mounted or a required catalog volume was not
mounted.

Either SYS1.IMAGELIB does not exist on the volume
to which the catalog points, or it is not
cataloged.

An error occurred in reading the catalog or VTO0C.

BLDL and LOAD are the only macros that may refer to the DCB built
by the IMGLIB macro.

Adding to the Image Library and Retrieving FCB Images 137

//ADDFCB JOB MSGLEVEL=1

//STEP EXEC PROC=ASMFCL,PARM.ASM="NODECK,LOAD",
7/ PARM.LKED='LIST,O0L,REFR,RENT,XREF' (See note)
/7/ASM,.SYSIN DD X

FCB2ID1 CSECT

¥THIS EXAMPLE IS FOR A FORM LENGTH OF 11 INCHES
¥WITH 8 LINES OF PRINT PER INCH (88 LINES)

DC Xr80' THIS IS A DEFAULT IMAGE
DC AL1(89) LENGTH OF FCB IMAGE
DC X'8F! OFFSET PRINT LINE 15
¥CHARACTER POSITIONS TO THE RIGHT
DC Xrio! 8 LINES PER INCH-NO CHANNEL FOR LINE 1
bC XL4'0° 4 LINES NO CHANNEL
bC X'01" CHANNEL 1 IN LINE 6
DC XL6'0" 6 LINES NO CHANNEL
DC Xrg2 CHANNEL 2 IN LINE 13
DC XL6'0T
DC X'03!
DC XL6'0"
bC X'04"
DC XL6'0"
DC X'g5"
DC XLé6'o’
DC X'06"
DC XL6'0"
DC X'07!
DC XL6'0"
DC X'08"
DC XL6'0"
DC X'09!
DC XL6'0?
DC X'0A"
DC XL6'0"
DC X'0B!
DC XL6'0"
DC X'oC! CHANNEL 12 IN LINE 83
DC XL4'0" 4 LINES NO CHANNEL
DC X'10" LINE 88--LAST LINE IN IMAGE
END
/*
//LKED.SYSLMOD DD DSNAME=5YS1.IMAGELIB(FCB2ID1),DISP=0LD,SPACE=

Note: The RENT and REFR linkage editor attributes are used for performance
considerations in a paging environment and may be omitted.

Figure 31. Sample Code to Assemble and Add an FCB Load Module to SYS1.IMAGELIB

138 05/V52 System Programming Library: Data Management

C

JES2 SUPPORT FOR THE IBM 1603, 3203-5, AND 3211 PRINTERS

UCS ALIAS MAMES

The system assigns an alias for each installation-standard print
chain not actually defined on a given printer. This provides JES2
with flexibility in scheduling printers for SYSOUT data sets. For
example, a request for the 1403 TN train would be assianed the T11
train, if the data set were printed on a 3211. The assigned alias
names, which follow the naming conventions currently used in
SYS1.IMAGELIB, are:

IMAGE ALIAS

UCS1AN UCS1All
UCS1HN UCS1HI1
UCS1PN UCS1Pll
UCSLTN UCS1T11
UCS2A11 UCS2AN
UCS2H11 UCS2HN
UCS2P11 UCS2PN,UCS2RN,UCS2QN
UCS2TL11 UCS2TN

The image and alias names are included in SYS1.IMAGELIB at system
generation. (See the DATAMGT Macro in 0S5/VS2 System Programming
Library: System Generation Reference.)

Some trains, such as SN and Gl11, do not have aliases because
neither has an equivalent train on the other printer. An
installation can assign an alias, if it so chooses. (See 0S5/VS
Linkage Editor and Loader for details about the ALIAS statement.)

If an alias is supplied, JES52 will use it. If an alias is not
supplied, an installation-defined SYSOUT class or a printer
routing code (specified via the DEST parameter) should be used to
assign the data set to the correct printer. If a SYSOUT class or a
printer routing code is not used, and JES2 is directed to print a
data set on a printer for which the proper image is not supplied,
JES2 notifies the operator. The operator can then print the data
set with a valid train or redirect the data set to the proper
printer via the "SE' command.

If an installation defines a new train, it can supply an alias
name for that train, via the linkage editor ALIAS statement, when
including the image in SYS1.IMAGELIB.

JHE 3211 INDEXING FEATURE

JES2 supports the 3211 Indexing Feature in two ways:
1. Specification of the INDEX parameter on the /XQUTPUT card.
2. The extended FCB image:

JES2 supplies two special FCBs: FCB26 for 6 lines/inch and
FCB28 for 8 lines/inch (specified as FCB=6 and FCB=8,
respectively). These FCBs contgin a channel 1 indication in
position 1, a special index flag in the third byte, and the
number of lines/inch in the fourth byte of the image.

The special index flag in the third byte of FCB26 and FCB28
contains X'80"' plus a binary index value, in the range 1-32
(default=1). The index value sets the left-hand margin (1
indicates flush-left position; other values cause indentation
of the print line by N-1 position).

JES2 Support for the IBM 1403, 3203-5, and 3211 Printers 139

If any other FCB images are to be used by JES2, they must
specify channel 1 in position 1; otherwise JES2 incorrectly
positions the forms in the printer. (STD1 and STD2 do not
specify channel 1 in position 1 and therefore must not be
specified, unless altered, for JES2.)

If the third byte of any other FCB image contains a data
character (specifying the number of lines/inch) other than
X'80', JES2 uses that specification and supplies an index
value of 1.

3203-5 PRINTER

140

The 3203-5 Printer is treated the same as a 3211 printer by JES2
and JES2 NJE, except that the 3203-5 does not support the 3211
indexing feature, and any indexing commands from JES2 or JES2 NJE
are ignored by the 3203-5. The 3203-5 uses 3211 FCB images and its
own unique UCS images. UCS images are listed in 05/VS2 System
Programming Library: System Generation Reference.

0S/7VS2 System Programming Library: Data Management

e

c

FORMAT-1 DSCB-NOT-FOUND USER EXIT IN OPEN AND ECV

The function of the Format-1 DSCB-not-found user exit in OPEN and
EQOV is to determine if a missing DSCB (such as a data set which
has been migrated to another volume) can be restored to the
volume. If your exit module restores the DSCB, it indicates this
when it returns control to the control program. The exit module,
IFGOEXOA, is given control whenever OPEN or EQV fails to find a
format-1 DSCB on a volume. There is an IBM-supplied exit module,
IFGOEXOA, in SYS1.PALIB. If vou wish to use your own exit module,
you must replace IFGOEXOA. Your exit module must have an entry
point name of IFGOEXOA. If you do not write your own exit module,
processing continues normally as the IBM-supplied exit returns a
zero return code.

The exit is taken even under conditions where abnormal
termination ordinarily would not occur. Two examples of these
conditions follow:

1. When you have specified DISP=MOD and error recovery
processing is taking place because the last volume specified
in the JFCB does not contain the DSCB, but an earlier volume
does. For this case, if vour return code from IFGOEX0A is zero
or if your return code is ¢ and the DSCB has not been
restored, OPEN and EOV search the other volumes for the DSCB
after the exit is taken.

2. Another condition occurs during EOV output mhen space has not
vet been allocated on the new volume. Space is allocated after
the exit is taken if vour return code from IFGOEXQA is zero or
if your return code is 4 and the DSCB has not been restored.

lWhen a DSCB is not found, IFGOEXOA is given control as follows:

. In system protect key 5 (data management key)

. In supervisor state

. The system resource represented by the SYSZTIOT major name is
enqueued for shared control (this ENQ prevents the exit from
invoking system functions such as SCRATCH, RENAME, dynamic
allocation, or LOCATE).

Standard register linkage conventions are used when IFGOEX0A is

given control as follows:

Register cContents

0 Unpredictable

1 Address of parameter list

2-12 Unpredictable

13 Address of 18-word save area

14 Return address

15 Address of entry point IFGOEXOA

The parameter list pointed to by register 1 consists of two
fullwords. The first fulluword contains the address of the UCB for
the volume on which the DSCB was not found. The second fullword
contains the address of the 44-byte data set name, left justified,
and padded with blanks. Bit zero of the second fullword is set to
one, indicating the last word in the parameter list. The data set
name must not be modified by the exit. The parameter list, save
area, and data set name are in protect key 5 virtual storage,

Format-1 DSCB-Not-Found User Exit in OPEN and EQV 141

which is not fetch protected. IFGOEXOA must be reenterable. All
work areas obtained through GETMAIN must be released through

FREEMAIN. The return from your module, IFGOEX0A, to OPEN or EOV
must be made as follows: N

. Using the return address passed to you in register 14

. Registers 2-12 restored

. In protect key 5

. In supervisor state

. With a return code of 0, %, or 8 in register 15

The return code you set in register 15 has the following meanings:

0 Processing continues normally. This return code is given if
the exit does not restore the DSCB. Zero is the return code
always given by the IBM supplied exit module.

4 The volume is searched one more time by OPEN or EOV for the
DSCB. This return code is given if IFGOEXOA restores the DSCB
to the volume. If the DSCB is again not found, IFGOEX0A is
not given control and processing continues normally.

8 The task is abnormally terminated without attempting to
determine if DISP=MOD error recovery or allocation on the
new volume should occur. This return code is given if
IFGOEXO0A encounters an error and vou wish no further
processing to occur.

You should have IFGOEXOA establish its own error recovery
environment (such as through an ESTAE), intercept any
. indeterminate errors, and return to the control program with
return code 8. Problem determination is the responsibility of
your exit module. A write-to-programmer (WTO with routing code
11) or a TPUT (if a TS0 region) may be used to issue an
informative mnéssage.

During a parallel OPEN when two or more DCBs are being opened at
the same time, and two of the DCBs are opening the same data set,
the DSCB may be missing. If IFGOEXOA is called for the first of
the two DCBs and restores the DSCB, the channel program attempting
to read the DSCB for the second DCB may have been executed before
the restoration of the DSCB was complete. IFGOEXOA is then called
for the second DCB even though the DSCB has already been restored.
Return from IFGOEXOA with a return code 4 is appropriate in this
case.

IFGOEXOA is not given control when you are processing a VSAM data:
set with an ACB; however, it is given control when you are
processing a VSAM data space with a DCB. IFGOEX0A is bypassed if
the format-4 DSCB is not found on a volume, even if the OPEN is to
the VT0OC data set name (data set name of 4% bytes of X'04').

142 05/7VS2 System Programming Library: Data Management

CATALOG, SCRATCH,

AND RENAME DUHMY MODULES

The load modules for CATALOG (SVC 26), SCRATCH (SVC 29), and
RENAME (SVC 30) contain as their entry points the dummy modules
IGG026DU, IGGD29DU, and IGGO30DU, respectively. These dummy
modules immediately pass control to the first processing module
for their respective SVCs without performing any processing
themselves. The CATALOG dummy module 1GG026DU receives control
from SVC 26 and immediately passes control to module IGC0002F. The
SCRATCH dummy module IGG029DU receives control from SVC 29 and
immediately passes control to module IGC0002I. The RENAME dummy
module, IGG030DU, receives control from SVC 30 and immediately
passes control to IGC00030.

If you require special processing either before or after SVC 26,
29, or 30, vou replace the appropriate dummy module(s) with your
own module(s). Your replacement modules must follow all the
characteristics and programming conventions for SVC routines. For
information on writing SVC routines, characteristics of SVC
routines, programming conventions for SVC routines, and inserting
SVC routines into MVS, see 05/VS52 Svystem Programming Library:
Supervisor. Your modules may replace I1GG026DU, IGG029DU, and
IGGO30DU in SYS1.AQ0SDO prior to system generation, or you may
replace the dummy modules in SYS1.LPALIB after system generation.
Information on how to replace the dummy modules with your modules
can be obtained from the appropriate link-edit step of the STAGE I
system generation output. You may also obtain link-edit
information from the STAGE I system generation macro SGIEC4DM in
SYS1.AGENLIB. You may apply PTFs to CATALOG, SCRATCH, or RENAME
with SMP without modifying your own versions of 16G6026DU,
I1GG029DU, and IGGO30DU.

The prolog of each of the dummy modules contains register
conventions and other information about these modules.

CATALOG, SCRATCH, and RENAME Dummy Modules 143

SCRATCH DUMMY MODULE

The load module for SCRATCH(SVC29) contains the dummy module
IGG029DM. The SCRATCH dummy module IGG029DM receives control from
IGG0290D, when an error return code of ¢ or 8 is indicated, and
igmediately passes control to the location pointed to by register

If special error processing is required after SVC29, the dummy
module can be replaced with your own module. Your replacement
module must follow all the characteristics and programming
conventions for SVC routines. For information on writing SVC
routines, characteristics of SVC routines, programming
conventions for SVC routines, and inserting SYC routines into MVS
see 0S5/VS2 Svstem Programming Library: Supervisor. Your module
may replace IGG029DM in SYS1.A0SDO prior teo system generation, or
vou may replace the dummy module in SYS1.LPALIB after system
generation. Information on how to replace the dummy module with
vour module can be obtained from the appropriate link-edit step of
the STAGE I system generation output. You may also obtain
link-edit information from the STAGE I system generation macro
SGIEC4DM in SYS1.AGENLIB. You may apply PTFs to SCRATCH with SMP
without modifying your own version of 1GG029DM.

The prolog of the dummy module contains register conventions and
other information about this module.

144 0S/VS2 System Programming Library: Data Management

)

CONTROLLING SPACE ON DASD VOLUMES

INTRODUCTION

DADSM ROUTIMNES

The direct access device storage management (DADSM) routines
control allocation of space on direct-access volumes through the
volume table of contents (VTOC) of that volume. The VTOC is built
when the volume is initialized by the direct-access storage
device initialization (Device Support Facilities, IEHDASDR or
IBCDASDI) utility program. See "The Volume Table of Contents" in
this section for more information about thea VTOC.

The VTOC is a collection of data set control blocks (DSCBs). The
different types of DSCBs are:

1. Free VT0OC record DSCB—format-0
Identifier DSCB—Fformat-1
Index DSCB—format-2

Extension DSCB—format-3

VTOC DSCB—format-4

o o w N
.

Free space DSCB—format-5
7. Shared extent DSCB—format-6

Each DSCB corresponds either to a data set or data space currently
residing on the volume, or to contiguous, unassigned tracks on the
volume. DSCBs are the data set labels, which contain
characteristics of the data sets or data spaces and a description
of the tracks on which the data sets resides. DSCBs for unassigned
tracks indicate the location of unassigned, contiguous tracks.

The Allocate and Extend routines assign tracks and cylinders on
direct-access volumes. The Allocate routines are used by the
scheduler component to get space for new data sets. The Extend
routine is called by the system catalog management and
End-of-Volume components to get more space for a data set (or VSAM
data space) that has already been allocated, but neads more space.
Other DADSM routines (Scratch and Partial Release) are used to
release space that is no longer needed on a direct-access volume.

When space is needed on a volume, the DADSM routines check the

VTOC for enough contiguous, available tracks to satisfy the
request. If there are not enouah contiguous tracks, the request is
filled using as many as five noncontiguous groups of free tracks.
{he 2ppropriate DSCBs are modified to reflect the assignment of
he tracks.

When space is released, the DADSM routines delete the DSCBs of the
deleted data set or data space. A free space (format-5) DSCB is
built, or modified if existent, to indicate that the tracks
containing the affected data set or data space can be reallocated.

DADSM's space management routines are concerned with:
1. Allocating primary space, which involves finding space for

new data sets or for VS5AM data spaces. These are the Allocate
routines.

Controlling Space on DASD Volumes 145

2. Allocating secondary space, which involves finding additional
space for data sets or VSAM data spaces that have exceeded .
their original, primary allocations. This is the Extend o
routine.

3. Releasing space, which involves both deleting entire data
sets or data spaces that are no longer needed, and freeing
unused space in data sets that are being retained. These are
the Scratch and Partial Release routines.

DADSM's VT0C-related service routines are concerned with:
1. Changing the names of data sets. This is the Rename routine.

2. Making control information available for examination. This is
the Obtain routine.

3. Determining the space available on a direct-access volume.
This is the LSPACE routine.

4. Maintaining the system PASSWORD data set, which controls
access to data sets and their associated control information.
This is the Protect routine.

ALLOCATING AND RELEASING SPACE ON DIRECT-ACCESS VOLUMES

146

The DADSM routines which allocate space (Allocate and Extend),

and release space (Scratch and Partial Release), add, delete, and

modi fy records of the VTI0C. These records are called data set

control blocks (DSCBs). To make space available to a new data set

or to increase the space allocated to a data set, the appropriate

DSCBs are searched for available space; the space is allocated to

the data set by writing the description of the space, called an

extent, to the data set's DSCB and deleting the extent from the

space available for a2llocation. To release space allocated to a)
data set, the allocate operation is reversed: the released extent a
is deleted from the data set's DSCB and added to the DSCB that

describes available space.

Components of the operating system use the DADSM routines to
allocate and release space in response to data definition (DD)
statements. For example, job management (scheduler) routines call
the Allocate routines to obtain space for a new data set. The
End-of-Volume component of Open/Close/End-of-Volume (0/C/EOV)
calls the Extend routine when an existing data set needs more
space; the MVS catalog management routines call the Extend
routine to get more space for a VSAM data space; and the 05
catalog management routines call the Extend routine to allocate
additional space for an 0S catalog. Similarly, job management
routines use the Scratch routine to delete data sets, and the
catalog management routines use the Scratch routine to delete a
data set when uncataloging involves deleting a data set of a
generation data group. Utility programs (IEHPROGM, IEHMOVE, and
IEBCOPY) use the Scratch and Allocate routines. Scratch
processing is also available to the system programmer through the
SCRATCH macro instruction.

The virtual storage access method (VSAM) allocates and releases
space using the DADSM Allocate, Extend, and Scratch routines.
These DADSM routines are called by the MVS catalog management
routines to allocate, extend, and delete VSAM data spaces.

The Partial Release routine is called by the Close routine of
0/C/EQV to release unused space before a data set is closed.
Partial Release is also called by the reposition-I/0 routine of
Checkpoint/Restart to release unused space.

)

057VS2 System Programming Library: Data Management

VTOC-RELATED SERVICE ROUTINES

While Rename, Obtain, LSPACE, and Protect routines are used to
read and change control information on the VTOC, none allocates or
releases space. System macro instructions can be used to invoke
the Rename, Obtain, and Protect routines (information for these
macro instructions is provided in the section "Using Catalog
Management Macro Instructions").

" The Rename routine finds the D5CB for a specified data set and
changes its name, after verifying that the requested name does not
duplicate one already on the volume.

- The Obtain routine finds the DSCB for a specified data set, then
reads the DSCB into virtual storage. The Obtain routine is also
used to get information about VSAM data sets from the VTOC, the
MVS master catalog, or a VSAM user catalog.

The LSPACE routine is called either (1) by routines issuing
demount messages for direct-access volumes (for example,
scheduler and 0/C/EQV) when the operator has issued a "MONITOR
SPACE" command or (2) by the System Management Facilities (SMF).
The available space on the volume is calculated by searching and
totaling the extents contained in the free space (format-5)
DSCBs. At the same time, the largest available extent on the
volume is located. If SifF information is required, an SMF type-19
record is gathered and written to the SMF data set.

The Protect routine adds, replaces, deletes, or lists entries in

the PASSWORD data set. When the security protection status of a

data set changes, the Protect routine also modifies the

protection mode indicator field in the protected data set's DSCB.
THE VOLUME TABLE OF CONTENTS

<; The volume table of contents (VTOC) is a data set consisting of

140-byte data set control blocks (DSCBs) that describe the
contents of a direct-access storage device volume. The VTOC data
set resides in a single extent (that is, it is a continuous data
set); its address is located in the VOLVTOC field of the standard
volume label (see Figure 32 on page 148). There are seven
different kinds of DSCBs. Each has a different purpose and is,
consequently, given a different name and format number. Figure 33
on page 149 lists each DSCB and its use.

Controlling Space on DASD Volumes 147

N
Standard Volume Label

3‘L N
11(B) '
VOLVTOC (10 bytes)
CCHHR of VTOC
(format-4) DSCB
Js
4
o
/
/
/
/
VTOC Data Set
(Can be located anywhere on 7
For, . the volume after cylinder 0, »
4] First DSCB DSCB] ! track 0, and following the -
F‘l’)ﬂsnéf DSCB 1| 5| 3’ volume label and IPL records.)

~N__

Figure 32. Locating the Volume Table of Contents (VTOC)

148 05/7VS2 System Programming Library: Data Management

DSCB
Name

Identifier

Index

Extension

vToC

Free Space

Shared
Extent

Figure 33 (Part 1 of 2).

DSCB
Format
Numbenr

1

Function

Describes a data set
set or VSAM data
space and the first
three extents.

Describes the
indexes of an ISAM

Describes the 4th
through 16th extents
of a data set or
VSAM data space.
(Data sets and VSAM
data spaces are
restricted to 16
extents per volume.)

Describes the extent
and contents of the

VT0C and volume and

device characteris-

tics.

Describes the space
on a volume that has
not been allocated
to a data set or to
a VSAM data space
(available space).

Describes the
extents shared by
two or more data
sets (split-
cvlinder extents).

Hou Many

One for avery
data set or
data space on
the volume,
except the
vTocC.

See "ISAM Data
Set Allocation"
in 057VS2

DADSM Logic

One for each
data set or
VSAM data space
on the volume
that has more
than three
extents.

One on each
volume.

One for every
26 non-
contiguous
extents of
available space
oh the volume.

One for every
26 split-
cylinder
extents on the
VTOoC.

Hou Found

Search on key equal
to the data set
name.

Chained from a
format-1 DSCB that
represents the
data set.

Chained from a
format-2 or a
format-1 DSCB that
represents the data
set or VSAM data
space.

VOLVTOC field of the
standard volume label
contains its address.
It is always the
first record in the
vVTO0C.

The first format-5
DSCB on the volume
is always the second
record of the VTOC.
If there is more
than one format-5
DSCB, it will be
chained from the
first format-5

DSCB via the
DS5PTRDS field

of each format-5
DSCB.

The address of the
first format-6 DSCB
is contained in the
DS4F6PTR field of
the format-4 DSCB.
If there is more
than one format-6
DSCB on the volume,
it will be chained
to the first via the
DS6FTRDS field of
the format-6 DSCB.

Data Set Control Block (DSCB) Format Types and Use

Controlling Space on DASD Volumes

149

DSCB
Nama

Free VTOC
Record

DSCB
Format
Numher

Function Hou Many How Found

The unused records One for every Search on key

in the VT0C, which unused 140-byte equal to X'00?
contains 140 bytes record on the (sometimes

of binary zeros. To VT0C. The X'00000000°').

delete a DSCB from DS4DSREC field

the VT0C, a format-0 of the format-4

DSCB is written over DSCB is a count

it. of the number of
format-0 DSCBs
on the VTOC.

Figure 33 (Part 2 of 2). Data Set Control Block (DSCB) Format Types and Use

The first record in every VTOC is the VTOC (format-4) DSCB that
describes (1) the device that the volume resides on, (2) the
attributes of the volume itself, and (3) the size and contents of
the VT0C data set itself.

The format-4 DSCB is followed by a free-space (format-5) DSCB,
which lists the extents on the volume that have not been allocated
to a data set or VSAM data space. Each format-5 DSCB contains 26
extents. If there are more than 26 available extents on the
volume, another format-5 DSCB will be built for every 26 extents.
The format-5 DSCBs are chained using the last field of each
format-5 DSCB. The third and subsequent DSCBs in the VTOC do not
necessarily occupy continuous space, nor do they have any
prescribed sequence.

A data set or VS5AM data space is defined by one, two, or three
DSCBs in the VT0OC of each volume on which it resides. The number
of DSCBs needed to define a data set or VSAM data space is
determined by (1) the organization of the data set (ISAM data sets
need a format-2 DSCB to describe the index) and (2) the number of
extents the data set or VSAM data space occupies (a format-3 DSCB
is needed to describe the fourth through the sixteenth extents).
Figure 34 on page 151 shows the general makeup of a VIOC and the
DSCBs. needed to define two types of data sets (ISAM and non-ISAM).

Data set A (in Figure 34 on page 151) is an ISAM data set; three
DSCBs, a format-1, format-2, and format-3, are required. Data
sets B, C, and D could be sequential, partitioned, or direct data
sets or VSAM data spaces. Data set B has more than three extents
and therefore requires both a format-1 and a format-3 DSCB.

Data sets C and D have three or fewer extents and need only a
format-1 DSCB. The format-6 DSCB, pointed to by the format-4 DSCB,
is used to keep track of the extents allocated in order to be
shared by two or more data sets (split-cylinder data sets). For
example, if data sets C and D share an extent made up of one or
more cylinders, this extent would be described in the format-6
DSCB. Note that split-cylinder data sets can no longer be
allocated on MVS systems, but existing split-cylinder data sets
can still be processed.

150 0S/7VS2 System Programming Library: Data Management

Standard Volume Label

VTOC Data Set

J)
{8
11(B)
VOLVTOC
field
33
{4

Data Set A

Data Set B

Format-4_D_SCB
Description of

device, volume,
and the VTOC

.

extent

_First FS DSCB
Description of
26 available
extents

Format-1 DSCB
ﬁescmiél;o'f E
the data set and
its fi Xtent

Form?t-'l DSCB]
- Description of
- -1
[the data set and -~

: its first 3 extents’]

1 7

7

V/"

Data Set C

v ——— —

Next Format-5 DSCB

Description of
as many as 26
available extents

Format-6 DSCB

Description of
as many as 26
shared-cylinder
extents

[~ Description of
|- the 4th - 16th
[~ extents of
b~ data set B

E_For_njit-3 DSCB

~_ Format-1 DSCB 4
1 — o— cm—]
/?Description of A
:/ data set C and its]
A first 3 extents_ 4

—

Data Set D
.) U

. Format-3 DSCB
¢ Description of

Format-1 DSCB *

Description of]
the data set and A

its first 3 extents-
s

the 4th-16th
extents of
data set A

7z

N

Figure 34.

DSCB for an ISAM data
set (Data Set A)

Free VTOC Records
(Format-0 DSCBs)

DSCRB tor a

non-ISAM data

set (Data Sets B, C, D)
or a VSAMdata space

Contents of VTOC—DSCBs Describing Data Sets

To prepare a volume for use (to initialize it), the Device Support

Facilities, IBCDASDI or IEHDASDR utility is used. One of the

things these utilities do is build the VT0C. After

initialization,

this VTOC will contain

Controlling Space on DASD Volumes

a format-4 DSCB and a
format-5 DSCB. The format-5 DSCB contains an extent entry for all
the free space on the volume; the initial number of extents in the

format—-5 DSCB is one or two, depending on where the VTI0C is
located on the volume. If the VT0OC is located somewhere other than
at the beginning or end of the volume, two extent entries are
needed to describe the free space that precedes and follows it.

SIZE OF THE VOLUME TABLE OF CONTENTS

The number of DSCBs in the VT0C determines the number of data sets
or VSAM data spaces that can reside on a volume and is therefore
essential information for the DADSM routines that allocate and
release space.

The types of direct-access storage devices supported by this
operating system and the number of DSCBs that will fit on a single
track of each type, are:

Direct-Access Device Type Number of
DSCBSs pelr
Track
IBM 2305-1 Fixed Head Storage 187track
IBM 2305-2 Fixed Head Storage 34/track
IBM 2314 Direct-Access Storage Facility 257track
IBM 2319 Disk Storage) 25/7track
IBM 3330 Disk Storage, models 1 and 11 39/track

IBM 3333 Disk Storage and Control, models 1 and 11 39/track

IBM 3340 Direct Access Storage Facility 277track
IBM 3344 Direct Access Storage 277track
IBM 3350 Direct Access Storage 47/track
IBM 3375 Direct Access Storage 51/track
IBM 3380 Direct Access Storage 537track

The DS4DSREC field of the format-% DSCB contains a count of the
number of free VTOC records (format-0 DS5CBs) in the VTOC. This
count is checked before each allocation. There must be enough free
VTOC records for all the DSCBs required to define the data set or
VSAM data space, as well as an extent or a combination of extents
large enough to contain the data set or VS5AM data space. The
number of DS5CBs needed to define a single data set or VSAM data
space can be one, two, or three, depending on (1) whether it is an
ISAM data set (a format-2 may be required) and (2) whether the
data set has more than three extents (a format-3 DSCB is needed to
list the fourth through the sixteenth extent). In addition, the
DADSM Allocate routines make sure there is room for an additional
format-5 in case it is necessary to create one during the
allocation.

VOLUME TABLE OF CONTENTS INTEGRITY

In an operating system with only one processor, two or more tasks
may require access to the same VTI0OC simultaneocusly for the purpose
of reading or updating (that is, adding, deleting, or modifying
DSCBs) that VTOC. If more than one processor has access to the
same device or devices, it becomes necessary to protect VT0Cs from
being accessed while the DADSM routines are in process.

To be sure that a VTOC is not changed while the DADSM routines are
in process, the DADSM routines issue RESERVE, ENQ, and DEQ macro
instructions. These macro instructions provide exclusive control
of the VTOC for the task issuing the macro instruction. The

152 0S/7VS2 System Programming Library: Data Management

RESERVE macro instruction is needed for systems in which two or
more processors are processing concurrently, using the same data
sets. These macro instructions provide exclusive control of the
VTOC for the task issuing the macro instruction. Depending on the
macro instruction, the "set-must-complete" option or the
"release-must-complete" option may be specified in an operand of
the macro instruction. The Allocate, Extend, Scratch, Rename,
Partial Release, LSPACE, and Protect routines of DADSM issue
these macro instructions. 0f these routines, only Allocate,
Scratch, and Partial Release use SMC=STEP in the ENQ and RESERVE
macros, and RMC=STEP in the DEQ macro. The Extend routine links to
the status routine (rather than issuing the EHQ macro) to obtain
"step-must-complete™ status, if the task that called Extend has
not already done so.

The MVS catalog management routines modify the D54AMCAT and
DS4AMTIM fields of the VIOC (format-4) DSCB. These routines also
issue the RESERVE, ENQ, and DEQ macro instructions to maintain
exclusive control while making modifications.

Note: When operating in an environment in which direct-access
storage devices are not shared among systems, the RESERVE macro
instruction defaults to (acts as) an ENQ macro instruction.

DADSHM Interrupt Recording Facility (DIRF)

If a system fails or a permanent 170 error occurs during
allocation of space or during a routine that updates the VT0C, the
VTOC will probably be in error. To make sure the error is
recorded, the DADSM routines use the DADSM interrupt-recording
facility (DIRF). DIRF processing involves turning on a bit in the
VT0C at entry to the DADSM function, and if no I/0 errors occur
gurizg DADSM processing, turning it off again at exit from that
unction.

This bit is called the DIRF bit and is bit 5 of the DS4VTOCI field
of the format—-4 DSCB. The Scratch and Partial Release routines
also turn on the DIRF bit if they encounter overlapping extents in
a format-5 DSCB.

The next time an attempt is made to allocate space on a volume
that has the DIRF bit set, the VT0OC Conversion routine is invoked
by Allocate or Extend, whichever is attempting to allocate more
space on the volume. The VT0C Conversion routine builds new
format-5 DSCBs to represent the available space on the volume,
updates the format—-4 DSCB, and returns to Allocate or Extend to
continue the allocation. The "Diagnostic Aids" section of 05/V52
DADSM Logic tells how to deactivate the VTOC conversion by
altering the DADSM routines.

Controlling Space on DASD Volumes 153

SPECIFYING BUFFER NUMBERS FOR SAM-E DASD DATA SETS

The BUFNO keyword in the DCB macro and the BUFNO subparameter of
the DCB keyword in the DD statement determine how many buffers are
allocated when accessing a partitioned or sequential data set
using Q5AM. The NCP keyword in the DCB macro determines how many
un-CHECKed READ or WRITE macro instructions are allowed when
accessing a sequential or partitioned data set using BSAM; one
buffer is used for each READ or WRITE macro instruction.

The sequential access method with SAM-E can construct a channel
program to transfer up to 30 buffers or 240,000 bytes of data,
whichever is less. If BUFNO or NCP is less than 30, no more than
that number of buffers can be transferred with a single channel
program.

BUFNO is defaulted in OPEN to 5 if it is not specified for a QS5AM
DCB; NCP is defaulted to 1 in OPEN if it is not specified. The
QSAM access method manages buffers. The user program must manage
buffers uhen it uses BSAM.

PERFORMANCE CONSIDERATIONS

154

Buffer number and block size influence the rate with which data
can be transferred and the operating system overhead per block.
The use of more buffers reduces (per block transferred) the EXCP
and I0S overhead and the time waiting for the DASD device to seek
to the requested cylinder and rotate to the requested record
(device latency time). However, if more buffers are allocated
than a program can effectively process, the virtual pages
containing those buffers will be paged out, effectively adding to
the system overhead for the job. A large number of buffers also
cause a large amount of real storage to be allocated to the job
while the data is being transferred.

A job in a low-performance group may get swapped out more
frequently than a higher priority job. The number of buffers
allocated for the job contributes to the number of pages which
have to be swapped out.

Programs which access data sets with small block size (for
exampla, 80) can easily make effective use of 30 buffers which fit
in, at most, two 4096-byte pages. The advantage of 30 buffers over
the default of five buffers is great: one channel program versus
six channel programs to transfer 30 blocks.

At the other end of the spectrum, usage of data sets with large
blocking factors such as full-track blocking on 3350 or
half-track blocking on 3380 can still be effective when only 3 or
4 buffers, rather than 5 or more, are specified. The slightly
lower DASD performance and small increase in EXCP and I0S
instruction costs should be more than offset by a reduction in
paging or suwapping in a constrained environment.

It can be seen that proper selection of buffer number can have a
positive effect on the elapsed time of a job and the system
overhead associated with the job. The DCB OPEN installation exit
(available in SAM-E Enhancements) can use installation criteria
to a default buffer number for QSAM DCBs. The NCP field of the DCB
must be set by the program for BSAM DCBs.

0S/7VS2 System Programming Library: Data Management

5

N

A

ABE appendage 54-55
abnormal-end appendage 54-55
access method routines, functions
performed in 1/0 operations 494
alias name
entry 32
of UCS images for JES2 139
use in retrieving catalog
information 7-8
allocate routine 145
alternate track, assigning 68-69
AM operand of DEBCHK macro 118
appendages
abnormal-end (ABE) 54-55
channel-end (CHE) 53
end-of-extent (EOE) 53
entry points 51
listing in SYS1.PARMLIB . 56
naming convention 56
page fix 79
PCI 51
programming restrictions 51
register usage 51
returns 51
start-I/0 (SI0) 51
assigning alternate track 68-69
ATLAS macro instruction
coding example 70
how to use 69
operations performed 70
return codes 70-72
specification 68-69
with track overflow option 68
authorized appendage list 56-57

BALANCE operand of TRKCALC macro 125,
128, 129

BFALN operand of DCB macro 61

BFTEK operand of DCB macro 61

block multiplexor programming
notes 57-58

BUFCB operand of DCB macro 62

BUFL operand of DCB macro 61

BUFNO operand of DCB macro 61

c

CAMLST macro
with BLDA operand 14
with BLDG operand 11
with BLDX operand 9
with BLOCK operand 8
with CAT(BX) operand 19
with DLTA operand 15
with DLTX operand 13

with DRPX operand 17
with LNKX operand 16
with RECAT operand 22
with UNCAT operand 21
catalog
dummy module 143
entry format 2
master 1, 2
order of search 1
private 2
user 1
CATALOG and CAMLST macro instructions
with CAT(BX) operand 19
with RECAT operand 22
with UNCAT operand 21
catalog maintenance
using CATALOG macro 19-23
using LOCATE macro 3-9
cataloging non-VSAM data sets
coding example 20
macro specifications 19
return codes 20
CCW (channel command word) 4648, 79, 81
See also channel program
translation, virtual addresses to
real addresses 48, 79-81

" CENDA operand of DCB macro 60

channel program
appendages used with 50
execution 47-48
initiation 47-48
related 50
restrictions or modification 48
translation 79-81
channel-end appendage 53
CHE appendage 53
checking the DEB 117-120
checkpointed data sets, processed with
EXCP macro 63
CLOSE macro instruction
used with EXCP macro 73
used with XDAP macro 86
CODE operand of DCB macro 64
command retry 57
communication vector table (CVT) mapping
macro 104
completion codes 77, 87
See also return codes
following use of EXCP macro 77
following use of XDAP macro 87
control blocks

DCB 47, 58
DEB 47
ECB 47, 76

FCB 130-135
general description 47
IOB 47, 73-76
PIRL 49, 123
control password 91, 95
control volume pointer entry 30
conversion
actual device address to relative
track address 89
of sector value for RPS devices 89
relative track address to actual
device address 88
creating protected data sets 93

Index 155

cvoL

in CAMLST macro 2

order of searching 2

pointer entry 30
CVT (communication vector table) mapping
macro 104

D

DADSM routines 33, 145-153
data extent block (DEB)
use with EXCP macro 47
validating 116-120
data set control block
See DSCB
data set pointer entry 27
data set security
See password protection
DCB fields used with EXCP macro
DCBDIRCT field of DCB 61 .
DCBFDAD field, maintaining 61
DCBIFLGS field of DCB, permanent I/0
error indicators 49
DCBOFLGS field of DCB, meanings of bit
settings 72-73
DCBTRBAL field, maintaining 62
DD operand of TRKCALC macro 126, 129
DDNAME operand of DCB macro 60
DDR (dynamic device reconfiguration),
repositioning tape data sets 60
DEB (data extent block)
use with EXCP macro 67
validating 116-120
DEBCHK macro instruction
functions of 117-120
specification 117-120
defective track
See assigning alternate track
define extent command 68
deleting @ data set
coding example 38
macro instructions for
return codes 39
when volume not mounted 37
with password protection 39
DEN operand of DCB macro 64
DEQ
at demount facility 112
DEVD operand of DCB macro 62-63
device characteristics 105-110
device~dependent parameters in
DCB 62-64
DEVTAB operand of TRKCALC macro
DEVTYPE macro instruction
for RPS devices 105
output from 105-110
specification 105
direct-access device, channel program
(XDAP macro) 82-85
DSCB, reading from VTOC
by actual device address
coding example 36
macro specifications 35
return codes 36
by data set name
coding example 34
macro specifications 34
return codes 35
format 0-6 145-153
missing format-1 141

58-65

37-39

125, 128

156 05/V52 System Programming Library:

DSECT expansions
See CVT,IEFJFCBN, IEFUCBOB,TRKCALC

DSORG operand of DCB macro 61, 62-63
E

ECB fields

used with EXCP macro 76

used with XDAP macro 86
end-of-extent appendage 53
end-of-volume

macro instruction 72-73, 86

ENQ 152
EODAD operand of DCB macro 61
EQOE appendage 53
EOEA operand of DCB macro 60
EOV (end-of-volume) macro instruction
and miesing DSCB 141
used with EXCP macro 72-73
used with XDAP macro 86
error recovery procedures 69
event control block (ECB) fields
used with EXCP macro 76
used with XDAP macro 86
EXCP macro instruction
control blocks used with

DCB 58-65
DEB 76
ECB 76
I0B 73-76

in honpageable address space 46
in problem programs 45
in real storage 77
in system control programs 44
macro specification 67 :
macros used with
ATLAS 68-72
CLOSE 73
EQV 72-73
OPEN 65-67
multivolume data set requirement 67
EXCPVR macro instruction 77-78
executing channel programs
in problem programs 45
in real storage 77
in system control programs 6%
exit
list entry for RDJFCB 110
used for missing DSCB 141
EXLST operand of DCB macro 660
expiration date, overriding 38
EXTEND option
OPEN macro 65, 112
routine 145

FCB (forms control buffer) image
adding image to
SYS1.IMAGELIB 130-135
how to modify before loading 135
JES2 Support 139
retrieving 136
rules 130-132
sample of 135
fixing data areas with EXCPVR 78
format 0-6 DSCB 145-153

Data Management

format-1 DSCB
missing 141
reading from VT0C 34
forms control buffer
See FCB image
foundation block of DCB 60
FUNCTN operand of TRKCALC macro

G

gener@tion data set name, use in
retrleying catalog information 5
generation index pointer entry 31

1/0 appendages

See appendages
I/0 device characteristics 105-110
IDAL (indirect address list) 79-81
IEAAPPO0O, authorized appendage list
IEBUPDTE utility

SYS1.PARMLIB 56-57

use in listing appendages in 56
IECPCNVT (relative track address to
actual device address conversion
routine) &8
IECPRLTV (actual device address to
relative track address conversion
routine) 89
IECO0SCR1 (sector conversion routine)
IEFJFCBN macro instruction 104
IEFUCBOB macro instruction 103
IEHATLAS utility program 70
IEHDASDR 145
IMGLIB macro instruction 136
IMSK operand of DCB macro 60
index

control entry 25

link entry 26

pointer entry 26
INDEX and CAMLST macro instructions

with BLDA operand 14-15
with BLDG operand 11-13
with BLDX operand 9-11

with DLTA operand 15-16
with DLTX operand 13-14
with DRPX operand 17-18
with LNKX operand 16-17

indexing feature for 3211 139
indirect address list (IDAL) 79-81
initializing a DASD volume 145
interruption handling procedures 49
I0OB fields

used with EXCP macro 73-76

used with XDAP macro 86
I0B-chain modification 123
IOBAD operand of DCB macro 61
IOBSENS fields with ATLAS macro 69

125-129

56

89

JES2 printer support 139-140
JES3
RENAME return code 42
SCRATCH return code 39
JFCB (job file control block)
111, 113, 114, 116
See also RDJFCB macro instruction
macros used with
OPEN 113
RDJFCB 114-116
mapping macro 104
modifying 111-113
processing 110-113
job file control block
See JFCB

104, 110,

K

K operand of TRKCALC macro 126, 129
KEYLEN .operand of DCB macro 63

LABEL operand of DD statement
operand of CVT macro 10%
operand of IEFJFCBN macro 104
operand of IEFUCBOB macro 103
password protected data set 92, 93
library character set modules 130
LIST
operand of CVT macro 104
operand of IEFJFCBN macro 10¢%
operand of IEFUCBOB macro 103
LOCATE and CAMLST macro instructions
retrieving catalog information
by alias name 7-8
by data set name 3-4%
by generation name 5-7
by relative block address 8-9
locate record command 48

M

MACRFE=(E) operand of DCB macro 60
macros

ATLAS 68-72
CATALOG 19-23
CLOSE

used with EXCP macro 73
used with XDAP macro 86

CVT 104

DCB 58, 65
DEBCHK 117-120
DEVTYPE 105-110
EOV

and missing DSCB 141
used with EXCP macro 72-73
used with XDAP macro 386
EXCP 67
EXCPVR 77-78

Index 157

IEFJFCBN 104
IEFUCBOB 103

IMGLIB 136
LOCATE 2-4
OBTAIN 33-36
OPEN

and missing DSCB 141
for JFCB 113-116
used with EXCP macro 65-67
PROTECT 95-102
PURGE 120-123
RDJFCB 110-116
RENAME 40-43
RESTORE 120-121, 124
SCRATCH 37-39
TRKCALC 124-129
used with XDAP macro 82
XDAP 82-85
maintaining 33, 43, 95, 102
See also PROTECT macro instruction
PASSWORD data set 95-102
volume table of contents
(VT0C) 33-43
mapping macros
CVT 104
IEFJFCBN 104
IEFUCBOB 103
TRKCALC 129
master catalog
MAXSIZE operand of TRKCALC macro 126,
128
MF
operand of DEBCHK macro 119
operand of TRKCALC macro 126-129
MODE aoperand of DCB macro 64
modifying
channel program during execution 48
FCB image 136
I0OB chain 123
JFCB 111-113
multivolume data set, processing with
EXCP macro 66

N

nonpageable address space, EXCP
operations in 46

NOPWREAD 92, 93, 96

NOWRITE 92, 96

0

OBTAIN macro instruction 33-35
obtaining a sector number (RPS
devices) 89
OFPEN macro instruction
and DEQ at Demount 112
and missing DSCB 141
TYPE=J
example 66
invoking 112
specification 113
used with EXCP macro
dummy data set restriction 65
label processing 65
procedures performed 65

volume disposition 65
used with XDAP macro 83
opening a VT0C, restriction on changing
contents 115
OPENJ (OPEN, TYPE=J) - 113
OPTCD=Z operand of DCB macro 60
OUTINX option, OPEN macro 61, 112
output data sets, maintaining DCBBLKCT
field 60

page boundaries 79
page fix
appendage 79
list 79
password
control 95
parameter list
add a record 102
delete a record 100
list a record 101
replace a record 99
protection mode indicator 95
record 93
secondary 95
standard label restriction 91
PASSWORD data set
characteristics 92
creating 93
password protecting data sets 91-102
password-protection
counter maintenance 9%
data set concatenation 94
termination 93
volume switching 94
PCI (program controlled interruption)
appendage 51
operand of DCB macro 60
PCIA operand of DCB macro 60
PGFX appendage 79
PIRL (purged I/0 restore list)
use in restoring 170 requests 49,
123, 124
posting completion code in ECB
following use of EXCP macro 76
following use of XDAP macro 86
PREFIX operand of IEFUCBOB macro 103
printer image
forms control buffer (FCBY 131-132
universal character set (UCS) 130
private catalog 2
program controlled interruption (PCI)
appendage 51
PROTECT macro instruction
parameter list 102
return codes 102
specification 96
protection mode indicator 95
PRT5P operand of DCB macro 66
PURGE macro instruction
adding to macro library 120
definition 120
parameter list 122, 123
return codes 123
specification 122
purged 170 restore list 69, 122, 124
PWREAD 92, 96
PWWRITE 92, 93, 96

158 05/VS2 System Programming Library: Data Management

R operand of TRKCALC macro
RACF
renaming a data set 40
scratching a data set 37
RDJFCB macro instruction
coding example 114
exit list entry for 115
invoking DEQ at demount 112
return codes 116
specification 114
reading and modifying a JFCB
reading catalog information
using a data set name 3-4
using a generation name 5-7
using an alias name 7-8
READPSWD module 92
recataloging a data set
coding example 23
macro specification 22
return codes 20
RECFM operand of DCB macro 61
recovering from permanent I/0 error
See ATLAS macro instruction
register
conventions for appendages 50
usage by conversion routines 88, 89
usage by I/0 supervisor 50
RESSAVE operand of TRKCALC macro 126,
129
related channel programs 50
related requests 50
relative generation number 5
REMOVE operand of TRKCALC macro
RENAME
dummy module 143
macro instruction
return codes 642
specification 40
status code 42
renaming a data set
coding example 41
macro specification 40
with password protection 43
REPOS operand of DCB macro 60
RESERVE macro 152
RESTORE macro instruction
adding to macro library 120
definition 120
specification 124
restore-chain modification 124
restoring I0Bs 124
retrieving catalog information
See reading catalog information
return codes
ATLAS macro 70-72
CATALOG macro 20
considerations 2
IECPCNVT 88
IMGLIB macro 137
LOCATE macro 4-5
OBTAIN macro 35
RDJFCB macro 116
RENAME meczro 42
SCRATCH macro 39
TRKCALC macro 127

126, 128, 129

111-116

125, 128

RKDD operand of TRKCALC macro 126, 128
RPS (rotational position sensing)
devices, used with XDAP macro &9

SCRATCH
macro instruction
coding example 38
general description 37
macro specification 39
return codes 39
status codes 39
scratching a data set
when volume not mounted 37
with password protection 39
secondary password 95
sector, address in XDAP macro 85, 89
seek 48
SI0 appendage
description 51
for EXCPVR 79
SI0A operand of DCB macro 60
STACK operand of DCB macro 6%
stand-alone seek 48
standard label restriction, password
data sets 91
start-1/0 appendage
description 51
for EXCPVR 79
status code
deleting a multivolume data set 39
renaming a multivolume data set 42
system control blocks, mapping macros for
cvT
IEFJFCBN 104
IEFUCBOB 103
system macro instructions
See macros

“tape volume, DEQ at Demount 112

track
assigning alternate 68
calculating capacity 124-129
translation of channel programs
by I/0 supervisor
in nonpageable address
space 79-80
in pageable address space 48
in your own program 79-80
TRKBAL operand of TRKCALC macro 125,
127, 128
TRKCALC macro instruction 124-129
TRKCAP operand of TRKCALC macro 125,
127, 129
TRTCH operand of DCB macro 64
TYPE
operand of DEBCHK macro 118
ogg;and of TRKCALC macro 125, 128,

Index 159

u

UCB (unit control block)
getting information from
See DEVTYPE macro instruction
mapping macro 106
operand of TRKCALC macro 125, 128
UCS (universal character set) image
adding to SYS1.IMAGELIB
for 1403 printer 130, 131
for 3203 Printer 130, 131
for 3211 printer 130, 131
for JES2 139
uncataloging a non-VSAM data set
coding example 21
macro specification 21
return codes 21
unit check with ATLAS macro 69
unit control block (UCB)
getting information from
See DEVTYPE macro instruction
mapping macro 106
universal character set (UCS)
See UCS image
user catalog 2
user exit, missing DSCB 141

v

validating the DEB 116-120
VCB (volume control block)
format of 29
use of 3
volume control block pointer entry 28
volume index control entry 24
volume label 150
volume list
definition 2
rename status code 62
scratch status code 39
use in catalog maintenance 2
volume status code 39, 42
volume switching 66
volume table of contents (VT0C),
maintaining
description 145
index 33, 37, 39
integrity 153
using OBTAIN macro 36-36, 146
using RENAME macro 640-43, 145
using SCRATCH macro 37-39, 146
VSAM catalog, order of search 2
V52 catalogs, maintaining
using CATALOG macro 19-23
using LOCATE macro 3-9
38% master catalog, order of search 3
TJ0C

See volume table of contents

H

WAIT macro instruction
used with EXCP macro 46
WRITE protection mode indicator 39, 43

X

XDAP channel program 87

XDAP macro instruction
control blocks used with 82, 86
macros required with

CLOSE 86
EOV 86
OPEN 82-83

specification 84-85
XENDA operand of DCB macro 60

1403 printer
JES2 Support 139
UCS image
coding example 131
description 130 N

3

3203 printer
JES2 140
output from DEVTYPE 108
UCS image
coding example 134
description 130
3211 printer
FCB image
coding example 135
description 132
indexing feature 139
JES2 Support 139
UCS image
coding example 133
description 130
3800 printer
IEBIMAGE for 130
output from DEVTIYPE macro 108
3895 reader inscriber
output from DEVTYPE macro 108

160 05/VS2 System Programming Library: Data Management

GC26-3830-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue White Plains, N.Y. 10604

1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

TN

s

N e1eq :Aseuqr Butwwesboad walsAg gSA/SO

1uausbeue
Yy

(0€-0LES "ON 3J'd)

$-0€8€-9¢0D 'V’'S'N Ul paiulid

)

b3

(D

Staples can cause probler..___vith automated mail sorting equipment.
Please use pressure sensitive or other gummed tape to seal this form.

Note:

ehsseesssseesssserecssas sesssssssessvensaase

sesescsa

cessscessesescersnes st e

cesevessns

Reader’s
0S/VS2 System Comment
Programming Library: Form
Data Management
GC26-3830-4

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3830-4

Reader's Comment Form

Fold and tape Please do not staple

e 8 8 8 N S 8 e TNt el e e e PP eeet00I 0 0880000000000 LE 00 0TE000000000000000000000000000e0000es0 09Nt sttNERIIEtCREOTTOETDTTS

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

D I I I R T R R I R I I I I R R A I I I R R R R A N A A A R I I I I I R R R R R N I R R I A O O N I S N N I I A A A Y

Fold and tape Please do not staple
L N T —
TN AR S ———
— - - S sE——
- — RN S
- N LA 4}
— - L] LI & J
TN RN RSN W .
L v —

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

I1BM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

i1BM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
E——
SERSESE———
SE——
MESTE—
SE——
E———
I—
——
SEE—
SEE——
MERS——
———
SER——
E——————
E—

Fold and tape

6 00006666668 00666 66esaecsocossocsesonsssessosesessseeseeeesosororeseceasssssssssssossssesoecsososorarcesors oot seeorssrlrosesress0satessseses0tst0sOsrOsNLOLITIOOS

f\
e s

N Bleq :Areuqi Buiwwesbold waisAg gSA/SO

")

juawabeue

$-0£8£-9209 ‘V'S'N Ul patulld (QE-0LES ON 8itd)

)

