Systems

GC26-3784-1

OS/VS Checkpoint/Restart

VS1 Release 2
VS2 Release 1

BV



Page of GC26-3784-1
Revised December 15, 1972
By TNL GN26-0754

Second Edition (July 1972)

This edition, as amended by technical newsletter GN26-0754, applies both to Release 2
of OS/VS1 and to Release 1 of OS/VS2, and to all subsequent releases of either
system unless otherwise indicated in new editions or technical newsletters.

Significant system changes are summarized under “OS/VS1 Summary of Changes” or
“0S/VS2 Summary of Changes” following “About This Book.”

Information in this publication is subject to significant change. Any such changes will
be published in new editions or technical newsletters. Before using the publication,
consult the latest IBM SRL Newsletter, GN20-0360, that amends IBM System/360
and System/370 Bibliography, GA22-6822, to learn which editions and technical
newsletters are applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers’ comments are provided at the back of the publication. If the forms
have been removed, comments may be addressed to IBM Corporation, Programming
Center—Publishing, Department D58, Monterey and Cottle Roads, San Jose,
California 95114. All comments become the proper of IBM.

© Copyright International Business Machines Corporation 1972



1agc UL UL L0-D 1 04§
Revised December 15, 1972
By TNL GN26-0754

ABOUT THIS BOOK

This publication describes checkpoint/restart, a technique for recording information
about a job at programmer-designated checkpoints so that, if necessary, the job can be
restarted at the beginning of a step or at a checkpoint within a step.

The major parts of this publication and the information in them are as follows:

» Chapter 1 describes in general terms checkpoint/restart and its components.
o Chapter 2 describes how to establish a checkpoint.

» Chapter 3 describes the restrictions that must be observed when a checkpoint is
taken or a restart performed on user data sets.

« Chapter 4 describes how to request restart.

¢ Chapter 5 describes what the operator must do to authorize restart.

« Chapter 6 contains storage estimates.

« Chapter 7 contains misctllaneous information about checkpoint/restart.

« Appendixes A and B list completion codes and describe how to establish checkpoint
at end-of-volume.

Checkpoint/restart is intended for use by programmers and system analysts. A general
understanding of job control language and data management is prerequisite knowledge
for understanding the information in this book. See OS/VS Job Control Language
Reference, GC28-0618, and OS/VS Data Management Services Guide,
GC26-3783, for background information on these subjects.

The following publications are referred to in this book:

e OS/VS Data Management Macro Instructions, GC26-3793, which contains
information about coding DCBs

e OS/VS Data Management for System Programmers, GC28-0631, which
contains information about preallocated data sets

o OS/VS1 Planning and Use Guide, GC24-5090, which contains information
about the RESERVE macro instruction and creating or modifying a list of resident
modules

e 0S/VS2 Planning and Use Guide, GC28-0600, which contains information
about the RESERVE macro instruction and creating or modifying a list of resident
modules.

e OS/VS Supervisor Services and Macros, GC27-6979, which contains
information about the list and execute forms of the CHKPT macro instruction

e OS/VS Tape Labels, GC26-3795, which contains information about tape labels

About This Book iii






Revised December 15, 1972
By TNL GN26-0754

0S/VS1 SUMMARY OF CHANGES

Release 2

« A return code of X‘14’ has been added to indicate EOV on a tape checkpoint data
set. The method of recovering from this condition has also been changed.

« The checkpoint/restart work area has been enlarged by 16 bytes.

0S/VS1 Summary of Changes v






Page of GC26-3784-1
Revised December 15, 1972
By TNL GN26-0754

CONTENTS

Page
iii About This Book

Summary of Changes
v Release 2

<

Figures

Chapter 1: Introduction
Types of Restart
Components of Checkpoint/Restart
CHKPT Macro Instruction
End-of-Volume Exit Routine
RD (Restart Definition) Parameter
RESTART Parameter
SYSCHK DD Statement
CKPTREST System Generation Specification

Chapter 2: How to Establish a Checkpoint
CHKPT Macro Instruction
Programming Notes on the CHKPT Macro Instruction
Exceptional Conditions
List and Execute Forms of CHKPT
Cautions in Taking a Checkpoint
Use of CHKPT with Other Macro Instructions
Use of CHKPT in Exit Routines
Explicit and Implicit Requests for ENQ
Use of Special Operating System Features
DCB for a Checkpoint Data Set
Required DCB Parameters
10 DCB Options
10 DD Statement for a Checkpoint Data Set
11  Use of Checkpoint Data Sets
11 How Checkpoint Entries Are Written
12 How to Ensure Restart
13 How Checkpoint Entries Are Identified
15 How to Use the CANCEL Option

OOV VR XAINIITAAANANUNT N DN - = -

17 Chapter 3: User Data Sets

17 What to Consider for Checkpoint/Restart
17 Cautions

19 Repositioning User Data Sets

20 Preserving Data Set Contents

21 Nonstandard Tape Labels

22 Input/Output Errors

22 What to Consider for Checkpoint or Step Restart
22 Generation Data Sets

23 Preallocated Data Sets

23 SYSIN Data Sets

Contents vii



Page

24 SYSOUT Data Sets
25 SYSABEND Data Sets

27 Chapter 4: How to Request Restart

27 RD (Restart Definition) Parameter

28 RESTART Parameter

28 SYSCHK DD Statement

29 Automatic Restarts

29 Requirements for Automatic Restart to Occur
29 How to Request Automatic Step Restart

30 How to Request Automatic Checkpoint/Restart

30 JCL Requirements and Restrictions

31 Resource Variations Allowed in Automatic Restart

31 How the System Works at Automatic Restart

33 How MOD Data Sets Are Handled During Automatic Step Restart

33 Caution Concerning Automatic Step Restart After Checkpoint/Restart

33 Deferred Step Restart

33 How to Request Deferred Step Restart

34 JCL Requirements and Restrictions

35 Resource Variations Allowed in Deferred Step Restart

35 Deferred Checkpoint/Restart

35 How to Request Deferred Checkpoint Restart

36 JCL Requirements and Restrictions

38 Resource Variations Allowed in Deferred Checkpoint/Restart
38 How the System Works During Deferred Checkpoint/Restart

39 Chapter 5: What the Operator Must Consider
39 VS2 Environment

39 Automatic Restart Message Sequence

40 Operator Options During Automatic Restart

41 Deferred Restart Message Sequence

41 Operator Considerations During Deferred Checkpoint/Restart
42 VS1 Environment

42 Automatic Restart Message Sequence

43 Operator Options During Automatic Restart

45 Deferred Restart Message Sequence

45 Operator Considerations During Deferred Checkpoint/Restart

47 Chapter 6: Storage Estimates

47 Checkpoint/Restart Work Area

47 Checkpoint Data Set Storage Requirements
48 Resident Access Methods (VS1)

49 Resident Checkpoint/Restart Module for VS1

51 Chapter 7: Miscellaneous Information

51 VS2 Track Stacking

51 Job and Job Step Accounting and Checkpoint/Restart

52 VS2 Job Step Time Limit

52 Completion of Step or Job Termination at System Restart

viii OS/VS Checkpoint/Restart



Page of GC26-3784-1
Revised December 15, 1972
By TNL GN26-0754

Page

53 COBOL RERUN Clause

53 Checkpoint/Restart and the Sort/Merge Program
53 PL/1 Checkpoint/Restart Capability

53 TCAM Data Set Considerations

55 Appendix A: Completion Codes
55 Return Codes Associated with the CHKPT Macro Instruction
56 Completion Codes Issued by Checkpoint/Restart

57 Appendix B: End—of-Volume Exit Routine (Taking a Checkpoint
at End—of-Volume)

59 Index

Contents ix






Page of GC26-3784-1
Revised December 15, 1972
By TNL GN26-0754

FIGURES
Page
3 Figure 1. Standard Eligible System Completion Codes
7 Figure 2. Obtaining Updated TCB Information after Restart
8 Figure 3. Requesting a Resource after Restart
12 Figure 4. Using One Sequential Checkpoint Data Set to Ensure Restart
13  Figure 5. Using Two Sequential Checkpoint Data Sets to Ensure Restart
14 Figure 6. Recording a Checkpoint Identification Assigned

by the Control Program
15 Figure 7. Canceling a Request for Automatic Restart
30 Figure 8. Requesting Automatic Step Restart
30 Figure 9. Requesting Automatic Checkpoint/Restart
34 Figure 10. Requesting a Deferred Step Restart
36 Figure 11. Requesting a Deferred Checkpoint/Restart

Figures xi






DIFFERENCES BETWEEN OS/VS CHECKPOINT/RESTART AND
OS/MFT AND OS/MVT CHECKPOINT/RESTART

« The BLKSIZE parameter in the DCB macro instruction for the checkpoint data set
need not be coded in VS.

« Module IGGO19HT, a page-fix appendage, was added to the resident access method
(RAM) list. IGGO19HT is required when virtual storage has been specified for a
task.

« If real storage is specified for the job when a checkpoint is taken, it should also be
specified when the job is restarted.

« In VS1, the checkpoint/restart work area must begin and end on a 2K-byte
boundary; the size of this work area has increased.

« In VS2, the user need not provide space in his region for the checkpoint/restart
work area; the system will obtain the necessary space outside the user’s region.

Differences between OS/VS Checkpoint/Restart and OS/MFT and OS/MVT Checkpoint/Restart  xiii






CHAPTER 1: INTRODUCTION

Checkpoint/restart is a technique for recording information about a job at
programmer—designated checkpoints so that, if necessary, the job can be restarted at
one of these checkpoints or at the beginning of a job step.

A checkpoint is taken when a user program issues the CHKPT macro instruction. This
macro causes the contents of the program’s virtual-storage area and certain system
control information to be written as a series of records in a data set. These records can
then be retrieved from the data set if the job terminates abnormally or produces
erroneous output, and the job can be restarted. Restart can take place immediately
(initiated by the operator at the console) or be deferred until the job is resubmitted. In
either case, the time—consuming alternative of rerunning an entire job is eliminated.

Types of Restart

The checkpoint/restart program allows four types of restart:
» automatic step restart
« automatic checkpoint/restart

deferred step restart

» deferred checkpoint/restart

Automatic restarts are initiated by the operator at the console. Automatic step restart,
which is restart at the beginning of a job step, is requested in the job control language.
Automatic checkpoint/restart, which is restart at the last checkpoint taken before the
job failed, is requested in the CHKPT macro instruction.

Deferred restarts take place when a job is resubmitted to be run. Deferred step restart
takes place at the beginning of the job step specified in the job control language.
Deferred checkpoint/restart takes place at the checkpoint specified in the job control
language. '

Components of Checkpoint/Restart

CHKPT Macro Instruction

The CHKPT macro is coded in the user’s program to cause a checkpoint to be taken.
In addition, it may request automatic restart at the last checkpoint taken.

When a CHKPT macro is executed, the contents of the program’s virtual-storage area
and certain system control information are written, as a series of records, in a data set.
The series of records is called a checkpoint entry, and the data set in which they’re
written is called a checkpoint data set. The checkpoint entry, which has a unique
programmer—specified or system—generated identification called a checkid, is retrieved
from the data set when restart occurs.

Chapter 2 explains in detail how to establish a checkpoint.

Chapter 1: Introduction 1



End-of-Volume Exit Routine

The end—of—volume exit routine is coded in the user’s program to allow execution of
the CHKPT macro instruction each time the processing of a multivolume physical
sequential user data set is continued on another volume. Appendix B contains more
detailed information about the end—of—volume exit routine.

RD (Restart Definition) Parameter

The RD parameter is coded in the JOB or EXEC statements and is used to request
automatic step restart if job failure occurs and/or to suppress, partially or totally, the
action of the CHKPT macro instruction. Chapter 4 contains more detailed information
about this parameter.

RESTART Parameter

The RESTART parameter, coded in the JOB statement, is used when a job is
resubmitted for restart (deferred restart). It specifies either the step (for deferred step
restart) or the step and the checkpoint within that step (for deferred
checkpoint/restart) at which restart should begin. Chapter 4 contains more detailed
information about this parameter.

SYSCHK DD Statement

The SYSCHK DD statement is required when a job is being submitted for deferred
checkpoint/restart. It defines the checkpoint data set for the job being restarted.
Chapter 4 contains more detailed information about the SYSCHK DD statement.

CKPTREST System Generation Specification

The CKPTREST macro instruction specifies, at system generation, which of the
completion codes accompanying abnormal step termination indicates that the step is
eligible to be restarted. During system generation, a standard, IBM~defined set of
system completion codes (codes emitted when the system executes ABEND) is placed
in a table of eligible codes. The table becomes part of the control program.
CKPTREST, which is optional, can be used to delete system completion codes from the
table and to add user completion codes (codes emitted when the user’s program
executes ABEND) to the table. The syntax of the macro instruction is:

CKPTREST [NOTELIG = (hex—code(,hex—code)...)][,ELIGBLE = (dec—code(,dec —code)...)]

The NOTELIG operand can be used to delete any number of system completion codes
from the table of eligible codes; hex—code is specified as a three—character hexadecimal
number.

The ELIGBLE operand can be used to add up to ten user completion codes to the
table; dec—code is specified as a decimal number having a maximum value of 4095.

If multiple codes are specified in either operand, the codes can be specified in any
order.

2 0OS/VS Checkpoint/Restart



The IBM—defined set of eligible system completion codes is listed in Figure 1.

001
031
033
03A
0A3
0BO
OF3
100

106
113
117
137
20A
213
214
217

2F3"
313
314
317
32D
413
414
417

422
513
514
613
614
626
637
700

714
717
737
806
813
837
906
913

926

937

Al4
B14
B37
C13
E37

1. Code 2F3 indicates that a job was executing normally when system failure occurred. The code is included in a console message

displayed during system restart.

Figure 1. Standard Eligible System Completion Codes

Note: Whether or not the CKPTREST macro instruction is uséd, the SUPRVSOR
macro instruction must be used to specify resident access methods. For details, refer to
“Resident Access Methods” in Chapter 6.

If CALL IEHREST is used in PL/I programs, the CKPTREST macro instruction must
specify 4092 as an eligible user completion code.

Chapter 1:

Introduction 3






CHAPTER 2: HOW TO ESTABLISH A CHECKPOINT

This chapter explains how a user may establish checkpoints at which to restart job
steps. The topics discussed are:

« CHKPT macro instruction

« Cautions in taking a checkpoint

o DCB for a checkpoint data set

o DD statement for a checkpoint data set

« Use of checkpoint data sets

CHKPT Macro Instruction

The CHKPT macro instruction is coded in the user’s program. When the CHKPT
macro is executed, job step information about the user’s program, virtual-storage data
areas, data set position, and supervisor control is written as a checkpoint entry in a
checkpoint data set. The point at which this information is saved becomes a
checkpoint from which a restart may be performed if the job terminates abnormally or
the system fails. After the checkpoint entry is written, control returns to the user’s
program at the instruction following the CHKPT macro.

The CHKPT macro instruction refers to the data control block (DCB) for the
checkpoint data set. The checkpoint data set can be opened for output before the
CHKPT macro instruction is executed. If the data set is not open, the checkpoint
routine opens it and then closes it after writing the checkpoint entry. If the data set is
open, the checkpoint routine writes the checkpoint entry, but does not close the data
set.

The checkpoint data set must be on one or more magnetic tape volumes or on one
direct—access volume. A checkpoint data set can reside on a magnetic tape with IBM
standard labels, nonstandard labels, or no labels. American National Standard labels
cannot be used for a checkpoint data set.

The standard form of the CHKPT macro instruction is:

[symbol]l CHKPT {dcb address[,checkid address [,checkid length 1] }
LS ]
{ CANCEL }

The operands are defined as follows:

dcb address
is the address of the DCB for the checkpoint data set.

CANCEL
cancels the request for automatic checkpoint/restart. Automatic step restart can
occur if RD=R was specified. If CHKPT without CANCEL is then executed
before abnormal termination, a request for automatic checkpoint/restart is again
in effect. Checkpoint entries written before a CHKPT with CANCEL are left
intact and may be used to perform a deferred checkpoint/restart.

Chapter 2: How to Establish a Checkpoint 5



checkid address
specifies the address of a programmer—provided field that is to contain a unique,
printable identification of the checkpoint entry. The identification is called a
checkid. The checkpoint routine writes the checkid as part of the entry and prints
it in a message on the operator’s console when it finishes writing the entry. The
programmer must subsequently use the checkid by coding it in the JOB statement
RESTART parameter if he wishes to use the corresponding entry to perform a
deferred restart at a checkpoint. If the checkid address operand is omitted, the
checkid length or ‘S’ operand is invalid.

checkid length or ‘S’
Checkid length is the length in bytes of the field that contains the checkid. The
maximum length of this field is 16 bytes when the checkpoint data set is physical
sequential, 8 bytes when it is partitioned. (For a partitioned data set, the field
can be longer than the actual checkid identification if the unused low—order
portion of the field contains blanks.) By coding this operand or by omitting this
operand entirely (in which case a length of 8 bytes is implied), the programmer
specifies that his program will form an identification and store it into the checkid
field before CHKPT is executed. If the checkid address operand is omitted, this
operand is invalid.

By coding this operand as ‘S, the programmer specifies that the checkpoint
routine is to generate an identification 8 bytes in length and store it in the checkid
field. If the checkid address operand is omitted, this operand is invalid.

Programming Notes on the CHKPT Macro Instruction

If both checkid address and checkid length or ‘S’ are omitted, the checkpoint routine
generates an identification and writes it in the checkpoint entry and on the operator’s
console, but does not return it to the user’s program.

If the programmer provides the checkpoint identification and the checkpoint data set is
sequential, the identification can be any combination of up to 16 alphanumerics, special
characters, and blanks. For a partitioned data set, it must be a valid member name of
up to eight alphanumerics. The identification for each checkpoint should be unique. If
two identifications differ only by having a different number of trailing blanks, the
control program considers them to be the same.

A checkpoint identification generated by the checkpoint routine consists of the letter C
followed by a seven—digit decimal number. The number, except in the case of a
deferred step restart, is the total number of checkpoints taken by the job; it includes
the current checkpoint, checkpoints taken earlier in the job step, and checkpoints taken
by any previous steps of the job. When a deferred step restart takes place, this number
is reset to 0.

The checkid address operand allows a user’s program to select fields in the records of
an input data set and use them as checkids. Alternatively, the user’s program may use
the checkid address and the ‘S’ operands and include a system—generated checkid in the
current record of an output data set.

Exceptional Conditions

The CHKPT macro instruction returns a code in register 15 to indicate whether the
CHKPT macro instruction was executed successfully. Appendix A contains a list of
these codes and their meanings.

6 OS/VS Checkpoint/Restart



List and Execute Forms of CHKPT

The CHKPT macro instruction may be coded in the list and execute forms as well as in
the standard form. The dcb address, checkid address, and checkid length operands can
be coded in the list and execute forms; the CANCEL operand must not be coded.

A complete description of the list and execute forms of this macro instruction appears
in OS/VS Supervisor Services and Macros.

Cautions in Taking a Checkpoint

The following discusses certain cautions that should be observed when taking a
checkpoint. These cautions relate to the operation of certain macro instructions,
serially-reusable resources, and special operating system features. Cautions that relate
to user data sets are listed in Chapter 3.

Use of CHKPT With Other Macro Instructions

EXTRACT: The EXTRACT macro instruction is used to obtain information from the
task control block (TCB). TCB information is subject to change when the task is
terminated and the job step is restarted. If the information is needed after restart, the
EXTRACT macro instruction should be reissued after the checkpoint is taken, as
shown in Figure 2.

EXTRACT ANSADDR,FIELDS=(ALL) Obtain TCB information

CHKPT CHKPTDCB Establish checkpoint

CH 15,=H"'4" Is restart in progress

BNE NRESTART No, branch to NRESTART
EXTRACT ANSADDR,FIELDS=(ALL) Yes, obtain new information

NRESTART

Figure 2. Obtaining Updated TCB Information After Restart

SETPRT: The SETPRT macro instruction is used in data management to load the
UCS buffer for a 3211 or 1403 Printer with the universal character set feature or the
forms control buffer (FCB) for a 3211 Printer. The buffer contents are not saved
when a checkpoint is taken. To reload the buffer upon restart, the user must reissue
the SETPRT macro instruction.

WTOR: The reply to a WTOR macro instruction must have been received before
CHKPT is issued.

STIMER: A time interval established by the STIMER macro instruction must have
been completed before CHKPT is issued.

Chapter 2: How to Establish a Checkpoint 7



ATTACH: If ATTACH is issued in the program using CHKPT, all subtasks created
must have terminated before CHKPT is issued; that is, the job—step task must be the
only task of the step.

Use of CHKPT in Exit Routines

The CHKPT macro instruction must not be used in an exit routine other than the
end—of—volume exit routine. The user may take a checkpoint when a BSAM or QSAM
data set reaches end—of—volume.

Explicit and Implicit Requests for ENQ

When a job step terminates, it loses control of serially—reusable resources. If the step
is restarted, it must request all of the resources needed to continue processing. Explicit
use of a serially—reusable resource is requested when the user’s program issues the
ENQ macro instruction. If the program issues the ENQ and takes a checkpoint, it must
issue the ENQ again whenever restart occurs at the checkpoint. Figure 3 shows a
program that requests a serially-reusable resource by issuing an ENQ before
establishing a checkpoint. After the checkpoint, it tests for a restart. If one has
occurred, it requests the same resource again. It requests the resource again because
the job step has terminated abnormally, has lost control of the resource, and has then
been restarted from the checkpoint.

ENQ  ( QADDR,RADDR)

CHKPT CHKPTDCB

CH 15,=H'4"

BNE  NRESTRT

ENQ  (QADDR,RADDR)
NRESTRT

DEQ (QADDR,RADDR)

Figure 3. Request for a Resource After Restart

Some serially-reusable resources are requested implicitly by issuing data management
macro instructions. These resources may be records that the user is processing or
tracks on a direct—access device. To ensure correct processing, the user must not
establish checkpoints while he has control of these resources:

« If the basic direct access method (BDAM) is used, the user’s program must execute
the WRITE or RELEX macro instruction to release a record that has been read
with exclusive control, before executing the CHKPT macro instruction.

8 OS/VS Checkpoint/Restart



« If BDAM is used to add a record to a data set with variable-length or undefined
records, BDAM issues an ENQ macro instruction for the capacity record (R0);
therefore, the user’s program must execute the WAIT or CHECK macro instruction
to check completion of the write operation before it executes CHKPT.

« If the basic indexed sequential access method (BISAM) is used, a checkpoint must
not be taken before waiting for completion of a write operation. If a record is read
for update, a checkpoint must not be taken before writing the updated record and
waiting for the write operation to be checked.

« If the queued indexed sequential access method (QISAM) is used, an ESETL macro
instruction must be issued before taking a checkpoint if a SETL macro instruction
was issued previously. Another SETL macro instruction may be issued after the
checkpoint.

+ Use of the RESERVE macro instruction (see “Shared DASD” caution below).

Use of Special Operating System Features

Shared DASD: At some installations, a direct—access storage device is shared by two
or more independent computing systems. This device is a serially-reusable resource. If
it is being used when a checkpoint is taken, it must be requested after a restart from
the checkpoint. This resource is requested by a special macro instruction, RESERVE,
described in the OS/VS1 Planning and Use Guide and the OS/VS2 Planning and
Use Guide.

DCB For a Checkpoint Data Set

Required DCB Parameters

The programmer must provide a DCB for the checkpoint data set. (The publication
OS/VS Data Management Macro Instructions contains detailed information about
coding DCBs.) The following parameters must be included in this DCB:

« DOSRG=PS or PO (BSAM or BPAM data set organization)
« MACRF=W (WRITE macro instruction)

« RECFM=U or UT (undefined record format)

« DEVD=DA or TA (direct-access or tape device)

« TRTCH=C (data conversion with odd parity; parameter required only if the data
set is on a 7-track magnetic tape)

« DDNAME= (name of DD statement for checkpoint data set)

The programmer must code the DSORG, MACRF, and DDNAME operands in the
DCB macro instruction. He may code the RECFM, DEVD, and TRTCH operands in
the DCB macro instruction, or he may code, in the related DD statement, the RECFM
and TRTCH subparameters of the DCB parameter. Because RECFM and DEVD have
default values of U and DA respectively, they need not be provided explicitly in either
the DCB macro instruction or the DD statement. The LABEL parameter of the DD
statement describes the labels of a data set on magnetic tape. For a checkpoint data
set, the programmer can specify IBM standard labels (SL or SUL), nonstandard labels
(NSL), or no labels (NL). American National Standard labels (AL or AUL) cannot be

Chapter 2: How to Establish a Checkpoint 9



specified for a checkpoint data set. If the label type is not specified, the operating
system assumes that the data set has IBM standard labels.

DCB Options
The programmer may optionally provide the following DCB parameters:
+» OPTCD=W (write validity checking)
« RECFM=UT (track overflow)
o NCP=2 (number of channel programs)
« NCP=2 and OPTCD=C (chained scheduling)

- Notes on DCB

.. The'checkpoint routine does not use the BLKSIZE parameter; it writes all
checkpoint records in 2048—~byte blocks.

» Requests for two channel programs or chained scheduling apply only to the writing
of virtual-storage records, not to the writing of control records or the reading of
records for a restart. Because virtual-storage records are written directly from
virtual storage without being buffered, the requests do not cause an increase in the
work area used by the checkpoint routine.

OPTCD=Q cannot be specified in the DCB.

DD Statement For a Checkpoint Data Set

The DD statement for the checkpoint data set must define the data set in a normal
way. ( OS/VS Job Control Language Reference contains detailed information on
coding the DD statement.) The only restrictions on the statement are:

« The UNIT parameter must specify a tape or direct—access device supported by
BSAM or BPAM. The device can be specified by referring to a specific device, a

device type, or a group of devices. DEFER should not be coded in the DD
statement.

» Secondary space allocation may be requested (by the increment subparameter), but
it will not be used. (See ‘“Notes on DD Statement.”)

+ The LABEL parameter must not specify ANSI tape labels.
» OPTCD=Q cannot be specified as a DCB subparameter.

Notes on DD Statement:

o The initial disposition of the data set (as specified in the DISP operand of the DD
statement) is used in a normal way to position the checkpoint data set when it is
opened, regardless of whether the user’s program or the checkpoint routine executes
the OPEN macro instruction. A more detailed discussion appears in the next
section.

10 OS/VS Checkpoint/Restart



« The final and conditional dispositions of the data set have their normal meanings.
However, if termination is occurring and an automatic restart at a checkpoint is to
occur, the system automatically keeps all data sets that are in use by the job,
including the checkpoint data set.

« If end-of-volume (no more primary space) is encountered while writing a
checkpoint on a direct-access volume, two actions are possible:

1. If the programmer requested secondary allocation, the allocation is performed,
and the checkpoint routine issues return code 08. The allocated space is not
used.

2. If the programmer did not request secondary allocation, the system executes an
ABEND macro instruction applying to the step. The ABEND causes emission
of a D37 system completion code, which is not a code that makes the step
eligible for restart. Thus, even though secondary space will not be used,
secondary allocation should be specified to avoid abnormal termination.

Examples of DD statements for the checkpoint data set are:

//ddname DD DSNAME=dsname,UNIT=TAPE,DISP=(MOD, KEEP )
//ddname DD DSNAME=dsname,UNIT=SYSDA,DISP=(NEW,DELETE,KEEP), X
// SPACE=(TRK, (300, 1)), VOLUME=SER=CKPTDS

Use of Checkpoint Data Sets

How Checkpoint Entries Are Written

If the user’s program did not open the checkpoint data set before it executed the
CHKPT macro instruction, the checkpoint routine opens it. The checkpoint entry is
then written at a position determined by whether the data set is sequential or
partitioned, and by the DISP parameter on the related DD statement. If the data set is
sequential and its disposition is NEW or OLD, the checkpoint entry is written at the
beginning of the data set. If the data set is sequential and its disposition is MOD, or if
the data set is partitioned, the checkpoint entry is written after the last entry existing in
the data set.

If the checkpoint data set is partitioned, each checkpoint entry is a member, and its
checkid is its member name. After it writes a checkpoint entry, the checkpoint routine
executes a STOW macro instruction to add the checkid of the entry to the directory of
the data set. If an identical checkid already exists in the directory, the related address
of a member is changed to be the address of the new checkpoint entry. The initial
disposition specified for the checkpoint data set has no effect on the STOW operation.

If the checkpoint routine opens the checkpoint data set, it also closes it.

If the user’s program opens the checkpoint data set for output, the checkpoint routine
simply writes a checkpoint entry at the data set’s current position and does not close
the data set. If the user opens the checkpoint data set, he need not close it after taking
the last checkpoint for the job step. If many checkpoints are taken, leaving the data
set open will save time. All of the checkpoint entries will be saved in this case, thus
providing the ability to request a deferred restart from any of the checkpoints. If the
data set is partitioned, the checkpoint routine executes a STOW macro instruction as it
would if it had opened the data set.

Chapter 2: How to Establish a Checkpoint 11



Page of GC26-3784-1
Revised December 15, 1972
By TNL GN26-0754

If end-of-volume is encountered during writing of a checkpoint entry on tape, a return
code of 14 is placed in register 15 and the checkpoint is terminated. The system then
issues a message to the operator explaining this unfortunate event and requests
mounting of a new volume. The next checkpoint will be written entirely on the new
volume. Only checkpoint data sets on tape may be multivolume data sets. The
previous section, “DD Statement for the Checkpoint Data Set,” discusses what occurs
if end-of-volume (no more primary space) is encountered during writing of a
checkpoint entry on a direct-access volume.

The status (open or closed) and position of a checkpoint data set remain the same at
restart as they were after execution of the CHKPT macro instruction that established
the checkpoint.

Note that a checkpoint data set must contain only checkpoint entries. A checkpoint
entry must not be written in one of the user’s data sets. Conversely, the program must
not write its own data in a checkpoint data set. Note also that a checkpoint data set
may not be a concatenated data set.

How to Ensure Restart

To ensure that restart at the most recent checkpoint will be possible, a checkpoint entry
must not be written over a preceding checkpoint entry, because abnormal termination
or system failure may occur while the new entry is being written. Three methods by
which the programmer can ensure that restart will be possible is suggested below. All
three methods involve the use of sequential checkpoint data sets.

Figure 4 shows the use of one sequential checkpoint data set, one data control block,
and one DD statement (CHECKDD) specifying MOD disposition. The user allows the
checkpoint routine to open and close the data set each time it writes a checkpoint
entry. Checkpoint entries will be written sequentially in the data set. Performance
would be improved if the user’s program opened the data set and kept it open; the
disposition could then be NEW or OLD.

Program
CHKPT CHKDCB

CHKDCB DCB  DDNAME=CHECKDD, MACRF=W,DSORG=PS

DD Statement
//CHECKDD DD UNIT=TAPE,DISP=(MOD,KEEP)

Figure 4. Using One Sequential Checkpoint Data Set to Ensure Restart

Figure 5 shows a way to alternate data sets when all checkpoints are taken by one
CHKPT macro instruction. The data sets are opened by the control program and are
identified by two DD statements, CHECKDD1 and CHECKDD?2. The data control
block initially refers to CHECKDD1. Before the second checkpoint, it is changed to
refer to CHECKDD?2; before the third checkpoint, it is again changed to refer to

12 OS/VS Checkpoint/Restart



CHECKDD, and so forth. In this way, one data control block can be used for two
data sets that are not open at the same time.

Program
DCBD DSORG=PS Define IHADCB (dummy section
* that defines DCBDDNAM )
CSECT Resume original control section
LA 2 ,CHECKDCB Establish CHECKDCB as base
USING IHADCRE, 2 address for IHADCB

XC DCBDDNAM( 8 ) , DDHOLD Exchange ddname in CHECKDCB for
XC DDHOLD( 8 ) , DCBDDNAM ddname in DDHOLD

XC DCBDDNAM( 8 ) , DDHOLD

CHKPT CHECKDCB Open, checkpoint, close

DDHOLD DC C'CHECKDD1'
CHECKDCB DCB DSORG=PS,MACRF=(W ) ,DDNAME=CHECKDD2

DD Statements
CHECKDD1 DD UNIT=SYSDA,DISP=NEW
CHECKDD2 DD UNIT=SYSDA,DISP=NEW

Figure 5. Using Two Sequential Checkpoint Data Sets to Ensure Restart

An alternate method of using two sequential data sets is to use two DCBs and two DD
statements specifying NEW or OLD dispositions, and to execute alternately two
CHKPT macro instructions, each referring to a different data set. Performance would
be improved when using direct—access data sets if the user’s program opened the data
sets, kept them open, and used the POINT macro instruction to reposition them.

The method illustrated in Figure 4 saves all checkpoint entries for possible use in
deferred restart, while the method illustrated in Figure 5 conserves auxiliary storage.
Note that none of the methods requires use of a particular device type.

How Checkpoint Entries Are Identified

Any number of checkpoint entries can be written in a checkpoint data set, and any
number of checkpoint data sets can be used concurrently. In a sequential checkpoint
data set, checkids of valid or invalid checkpoint entries in one data set should be
unique. In a partitioned data set, checkids of valid entries should be unique.

When the control program assigns identifications, the identification for each checkpoint
is unique. The identification is 8 bytes in length and consists of the letter C followed
by a seven—digit decimal number. This number, except in the case of a deferred step
restart, is the total number of checkpoints taken by the job; it includes the current
checkpoint, checkpoints taken earlier in the job step, and checkpoints taken by any
previous job steps. When a deferred step restart takes place, this number is reset to 0.

Chapter 2: How to Establish a Checkpoint 13



If the programmer specifies checkids instead of having the system generate them, he
may erroneously specify duplicate checkids. The system does not recognize this error.
When deferred restart at a checkpoint occurs and the checkpoint data set is sequential,
the system searches the data set from its beginning for the specified checkpoint entry.
It uses the first entry it finds that has the specified checkid. If the data set is
partitioned, the system searches the data set’s directory to find the location of the
specified checkpoint entry. If two or more entries having the same checkid were
written in the data set, the most recent of those entries is the one pointed to by the
directory, and restart occurs from the most recent entry.

Checkpoint entries have two identifications. The primary identification is the
programmer—generated or system—generated checkid specified or requested by the
CHKPT macro instruction. The secondary identification is identical to the
system—generated checkid that might have been requested by CHKPT. The primary
identification is used when a search is made for a checkpoint entry. The secondary
identification is then used as a base to compute the system—generated checkids of
entries written after restart has occurred. This procedure prevents the system from
generating checkids that are duplicates of checkids of existing useful entries.

The control program identifies each checkpoint in a message to the operator; on
request, it also makes the identification available to the user’s program. In Figure 6,
the CHKPT macro instruction requests the control program to supply an identification
and place it in the 8-byte field named ID. When the checkpoint is successfully taken,
the program prints the identification as part of a message to the programmer.

CHKPT CHKDCB, ID,'S' Take checkpoint
LTR 15,15 Was checkpoint taken
BNZ PHASE?2 No, branch to PHASE2
PUT STEPLOG, MESSAGE Yes, print checkpoint ID
PHASE2
MESSAGE DC H'45,0' Record length, etc.
DC C'SUCCESSFUL CHKPT AT PHASE2...ID='
ID DS CL8
STEPLOG DCB DSORG=PS,MACRF