
,,,...: ,·r '.,
~.

Systems

SY26-3857-0
File No. S370-30

OS/VS2 SVS
Independent Component:
Virtual Storage Access Method
(VSAM) Logie

Release 1.7

Feature Numbers 5083
5084
5472
5473

First Edition (January 1977)

This edition applies to Release 1.7 of OS/VS2 and to any, subsequent releases of that system
unless otherwise indicated in new editions or technical newsletters.

The Feature Numbers that apply for OSNS2 SVS (Program Number 5742-017) are:

Number

5083
5084
5472
5473

Meaning

Basic material; 1600 bpi, 9-track tape
Basic material; 6250 bpi, 9-track tape
Optional material; 1600 bpi, 9-track tape
Optional material; 6250 bpi, 9-track tape

Information in this publication is subject to significant change. Any such changes will be
published. in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-000I, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1971

PREFACE

This book describes the internal logic of the Virtual Storage Access Method
(VSAM) and contains diagnostic information. It is directed to maintenance
personnel and development programmers who require an in-depth knowledge
of VSAM's design, organization, and data areas.

Organization of This Book

Required Reading

This book has the following major divisions:

• "Introduction," which describes the use of VSAM, how VSAM fits into the
operating system, how VSAM interacts with the operating system and the
user's program, and the major components of VSAM.

• "Method of Operation," which describes the functions performed by
VSAM.

• "Program Organization," which describes the information contained in
VSAM program listings and the flow of control between modules.

• "Directory," which lists VSAM modules and the Method of Operation
diagrams related to each module.

• "Data Areas," which describes control blocks used by VSAM and
describes the format of VSAM data, index, and catalog records.

• "Diagnostic Aids," which contains useful information for locating the
cause of problems in the VSAM procedures.

• "Glossary," which defines terms relevant to VSAM, and lists abbreviations
used in this book and in the VSAM program listings.

• "Index," which is a subject index to the book.

The following books should be read and understood before using this one:

• OS/VS2 SVS Independent Component: Virtual Storage Access Method
(VSAM) Programmer's Guide, GC26-3868, which introduces VSAM
concepts and contains definitive explanations of VSAM macro instructions.

• OS/VS2 SVS Independent Component: Access Method Services,
GC26-3867, which describes the catalog record processing commands:
DEFINE, ALTER, DELETE, LISTCAT, and CONVERTV.

Related mM Publications
• Introduction to the IBM 3850 Storage System (MSS), GA32-0028

• OS/VS Mass Storage System (MSS) Planning Guide, GC35-0011

• OS/VS Mass Storage System (MSS) Services: General Information,
GC35-0016

• OS/VS Mass Storage System (MSS) Services: General Reference,
GC35-0017

• OS/VS DADSAM Logic, SQ66-3787

Preface 3

Using This Book

• OS/VS Data Management Macro Instructions, GTOO-0132

• OS/VS Catalog Management Logic, STOO-0181

• OS/VS JCL Reference, GT28-0618

• OS/VS JCL Services, GTOO-0141

• OS/VS Message Library: VS2 System Messages, GT38-1002

• OS/VS Open/Close/EO V Logic, STOO-0138

• OS/VS Service Aids, GT28-0633

• OS/VS Supervisor Services and Macro Instructions, GT27-6979

• OS/VS System Management Facilities (SMF), GTOO-0134

• OS/VSl VSAM Cross Reference, SYB6-3844

• OS/VS2 Checkpoint/Restart Logic, SQ66-3820

• OS/VS2 Data Areas, ST68-0606

• OS/VS2 Debugging Guide, GT28-0632

• OS/VS2 I/O Supervisor Logic, SQ66-3823

• OS/VS2 Supervisor Logic, SY27-7244

• OS/VS2 SVS Independent Component: Access method Services,
GC26-3867

• OS/VS2 SVS Independent Component: (VSAM) Options for Advanced
Applications, GC26-3870

• OS/VS2 SVS Independent Component: Virtual Storage Access Method .~
(VSAM) Programmer's Guide, GC26-3868 .."",

This book is designed to be used with the VSAM program listings in the
microfiche for VSAM and with OS/VSl VSAM Cross Reference,
SYB6-3844, also on microfiche cards. Cross-reference reports are described
in "Microfiche Reference Aids" in "Diagnostic Aids."

The diagrams in "Method of Operation" describe the major functions
performed by VSAM; these diagrams are intended to be your key to a module
name (and procedure name, as appropriate) in the listing. See "Reading
Method of Operation Diagrams" in "Method of Operation" for a description
of how to read these diagrams. For information on what is available in the
program listings, "Program Organization."

4 05/V52 5V5 Independent Component: Virtual Storage Access Method (VSAM) Logic

CONTENTS

Preface .. 3
Organization of This Book ... 3
Required Reading ... 3
Related IBM Publications ... 4
Using This Book ... 4

mustrations .. 9
Figures .. 9
Diagrams ... 11

Summary of Enchancements .. 15

Introduction ... 19

Method of Operation ... 23
Reading Method of Operation Diagrams ... 23

Overview ... 28
Open, Close, and End-of-Volume (Includes ISAM Interface

Open/ Close) ... 30
Record Management ... 73

ISAM Interface ... 156
Control Block Manipulation ... 160
Catalog Management .. 167
Catalog Management Services .. 225

Program Organization .. 279
Module Prologues ... 279
Module Flow Compendiums ... 280

Reading Module Flow Compendiums .. 280
Open, Close, and End-of-Volume Compendiums 283
Record Management Compendiums .. 307
Catalog Management Compendiums ... 357

Catalog Management I/O Functions .. 392

Directory ... 413
Module Directory .. 413
Module Packaging ... 422
External Procedure Directory ... 424
Procedure Calls Directory ...•........... 434

Procedure Calls Directory: Open/Close/EOV Modules 434
Procedure Calls Directory: Checkpoint/Restart 434
Procedure Calls Directory: Record Management Modules 434
Procedure Calls Directory: Catalog Management Procedures 437

Procedure Called-By Directory .. 454
Open/Close/EOV Procedure Called-By

(Backward-Reference) Table .. 454
Record Management Procedure Called-By

(Backward-Reference) Table .. 454
Catalog Management Procedure Called-By

(Backward-Reference) Table .. 458

Contents 5

Data Areas .. 467
VSAM Data-Set Format ... 467

VSAM Record .. 467
Control Interval .. 467

RDF-Record Definition Field ... 469
CIDF-Control Interval Definition Field .. 470

Control Area .. 470
Index Format .. 470

Format of Records in a Prime Index .. 471
Index Record Header ... 472
Free Data-Control-Interval Pointers ... 473
Index Entries .. 473

Index-Entry Sections .. 474
Format of Records in an Alternate Index .. 474

Catalog ... 475
High-Address Range of the Catalog .. 476
Low-Address Range of the Catalog ... 477
Sets of Fields in the Catalog Records ... 480
Catalog Records that Describe the Catalog ... 481
Locating Fields in Catalog Records ... 482

Recoverable Catalog Support ... 482
Catalog Recovery Area Record Descriptions ... 483
True Name Catalog Record Format ... 484
Catalog Control Record (CCR) Format .. 485
Free Catalog Record Format .. 486
Data and Index Catalog Record Format ... 487

AMDSB (Access Method Data Set Statistics Block)
Set of Fields Format .. 490

Association (Cluster) Set of Fields Format .. 491
Volume Information Set of Fields Format ... 491
Password Set of Fields Format ... 493

Cluster Catalog Record Format .. 493
Association (Data and Index) Set of Fields Format 495
Password Set of Fields Format ... 496

Alternate Index Catalog Record Format .. 496
Association Set of Fields Format ... 498
Password Set of Fields Format ... 499

Path Catalog Record Format .. 499
Association Set of Fields Fornlat ... 501
Password Set of Fields Format ... 502

Upgrade Catalog Record Format ... 503
Association Set of Fields Format ... 504

NonVSAM Catalog Record FOrnlat ... 505
Volume Infornlation Set of Fields FOrnlat ... 507

User-Catalog Catalog Record FOrnlat .. 507
Volume Infornlation Set of Fields FOrnlat ... 509

Volume Catalog Record Format ... 510
Space Map Set of Fields FOrnlat .. 512
Data Space Group Set of Fields FOrnlat .. 513

Derived Data Space Infornlation ... 514
Data Set Directory Entry Set of Fields FOrnlat 515

Derived Data Set Information ... 515
Extension Catalog Record FOrnlat ... 516
CRA Free Record Format .. 518

6 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

CRA Data Record Format ... 518
AMDSB Set of Fields Format .. 519
Association (Cluster) Set of Fields Format , 519
Volume Information Set of Fields Format ... 520

CRA Cluster Record Format .. 520
Association (Data) Set of Fields Format ... 520

CRA Catalog Control Record Format ... 521
CRA Data Extension Record Format , 521

Volume Information Set of Fields Format ... 522
Field Name Dictionary .. 523

Combination Field Names .. 524
Field Name Dictionary Entries ... 525
Dictionary Example 1 ... 531
Dictionary Example 2 ... 531

Control Block Interrelationships ... 532
Catalog Management Control Block Interrelationships 543
VSAM Control Block Descriptions .. 547

ACB-Access Method Control Block ... 547
AMB-Access Method Block .. 550
AMBL-Access Method Block List .. 552
AMCBS-Access Method Control Block Structure Block 555
AMDSB-Access Method Data Set Statistics Block 555
ARDB-Address Range Definition Block ... 557
BIB-Base Information Block ... 558
BLPRM-Resource Pool Parameter List ... 559
BSPH-Buffer Subpool Header ... 561
BUFC-Buffer Control Block ... 562
CAXWA-Catalog Auxiliary Work Area ... 564
CCA-Catalog Communications Area .. 566
CLW-Close Work Area ... 577
CMB-Cluster Management Block ... 577
CPA-Channel Program Area ... 578
Channel Programs .. 580

Read Channel Program .. 580
Format Write Channel Program .. 581
Update Write Channel Program .. 581
Write Check Channel Program .. 582

CSL-Core Save List ... 583
CTGCV-VSAM Catalog Control Volume List 583
CTGFL-Field Parameter List .. 584
CTGFV-Field Vector Table .. 585
CTGPL-Catalog Parameter List .. 586
CTGVL-Volume List .. 588
CTGWA-Work Area ... 589
DIWA-Data Insert Work Area .. 589
DSL-DEB Save List ... 590
EDB-Extent Definition Block ... 591
ESL-Enqueue Save List ... 591
EXLST-Exit List ... 592
HEB-Header Element Block ... 593
ICW A-Index Create Work Area ... 593
IICB-ISAM Interface Control Block ... 595
IMWA-Index Insert Work Area .. 596
lOB-Extension to Support VSAM Processing 597
IXSPL-Index Search Parameter List ... 598

Contents 7

KEYWDTAB-Keyword Processing Table ... 599
LPMB-Logical-to-Physical Mapping Block ... 600
OPW-Open Work Area ... 600
PCCB-Private Catalog Control Block ... 604
PLH-Placeholder ... 605
RPL-Request Parameter List ... 609
RPLE-RPL Extension ... 612
SSL-Swap Save List ... 613
UPT -Upgrade Table .. 613
VAT-Valid-AMBL Table .. 615
VCRT-VSAM Checkpoint/Restart Table .. 616
VCRWA-VSAM Checkpoint/Restart Work Area 618
VMT -Volume Mount Table .. 620
VSRT-VSAM Shared Resource Table .. 620
WAX-Work Area for Path Processing .. 621
WSHD-Working Storage Header .. 622

Diagnostic Aids .. 623
Microfiche Cross-Reference Aids ... 624

How To Read the Symbolic-Name Usage Table 624
How To Read the Macro-Instruction Usage Table 625

Messages ... 626
Function Codes for VSAM Open, Close, and EOV Messages 628

Macro Instructions .. 631
Mapping Macro Instructions .. 631
Action Macro Instructions .. 634

Using the CVT's VSAM Debug Switches .. 637
Getting a Dump of Open, Close, and End-of -Volume

Work Areas .. 637
Using the VSAM Catalog Debug Aid ... 637

Defining Debug Aid Options .. 638
Selecting Debug Aid Options ... 638

Generalized Trace Facility .. 639
Catalog Communication Area Register Save Area 639
Error Codes ... '" 640

Record Management Error Codes ... 640
Function Codes for Logical and Physical Errors 641
LERAD Exit Routine: Logical Error Analysis 641
SYNAD Exit Routine: Physical Error Analysis 644

Open, Close, and End-of-Volume Error Codes 647
Catalog Management Error Codes ... 650

Alphabetic List of the Catalog Management Error Return
Code Symbolic Names ... 653

Control Block Manipulation Error Codes .. 653
Virtual-Storage Management .. 654

Glossary ... 659
Abbreviations ... 659
Definitions of Terms Used In This Book .. 661

Index ... 665

8 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

ILLUSTRATIONS

Figures
Figure 1. Relationship of VSAM, OS/VS, User's Processing

Program, and Staged Data .. 19
Figure 2. Method of Operation Diagram .. 23
Figure 3. Graphic Symbols Used in Method of Operations

Diagrams ... 24
Figure 4. Notes to Method of Operation Diagram 25
Figure 5. Program Organization Compendium Figure 280
Figure 6. Notes to Program Organization Compendium Figure 281
Figure 7. Open/Close /End-of -Volume Program Organization

Contents .. 283
Figure 8. Open a VSAM Cluster (From an ISAM-User's Program) 284
Figure 9. Open a VSAM Cluster (From A VSAM-User's

Program) ... 286
Figure 10. Open a VSAM Catalog (From the OS/VS Scheduler) 288
Figure 11. Add a String Dynamically ... 290
Figure 12. Close a VSAM Cluster (From an ISAM-User's Program) 292
Figure 13. Close a VSAM Cluster (From a VSAM-User's Program) 294
Figure 14. Close A VSAM Catalog (From the OS/VS Scheduler) 296
Figure 15. Temporary Close (TYPE=T) of a VSAM Cluster 298
Figure 16. Verify a NonVSAM Caller's Authorization to

Process Each Data Set in a VSAM Data Space 300
Figure 17. VSAM End of Volume (From VSAM Record Management:

IDAEOVIF Procedure (in Module
IDAOI9R5» ... 302

Figure 18. Build or Delete a VSAM Resource Pool 304
Figure 19. Record Management Program Organization Contents 307
Figure 20. GET: Direct and Skip Sequential

Processing (ESDS, KSDS) .. 308
Figure 21. GET: Sequential Processing .. 310
Figure 22. Obtain the Control Interval Containing a Specified Record

and Establish the Position of the Record in the
Control Interval (ESDS, KSDS) ... 312

Figure 23. GET Processing (RRDS) .. 314
Figure 24. PUT Processing (ESDS, KSDS) .. 316
Figure 25. Update/Erase Processing (ESDS, KSDS) 318
Figure 26. Obtain the Next Control Interval: Create Processing and

Entry-Sequenced Data Set Processing 320
Figure 27. Split a Control Interval: Key-Sequenced Data Set,

NonCreate-Time Processing ... 322
Figure 28. Split a Control Area .. 324
Figure 29. Create-Time Sequence Set Record Processing:

Build an Entry ... 326
Figure 30. Create-Time Sequence Set Record Processing:

Write the Record (End of Control Area) 328
Figure 31. Create-Time Sequence Set Record Processing:

Write the Record (Closing the Data Set) 330
Figure 32. NonCreate-Time Sequence Set Record Processing 332
Figure 33. Update the Index: Adding to the End of a

Key Range or Data Set ... 334

Illustrations 9

Figure 34.

Figure 35.
Figure 36.
Figure 37.
Figure. 38.
Figure 38.1.
Figure 38.2.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

Figure 49.

Figure 50.
Figure 51.
Figure 51.1.
Figure 51.2.
Figure 51.3.
Figure 51.4.
Figure 51.5.

Update the Index: Splitting a Control Area (Not at the
End of a Key Range or Data Set) 336
PUT/ERASE Processing (RRDS) 338
Path Processing ... 342
Upgrade Processing ... 344
Buffer Management .. 346
Checkpoint Processing .. 350
Restart Processing ... 352
Catalog Management Program Organization Contents 357
VSAM Catalog Management Processing 358
LOCATE/Extract Processing ... 360
UPDATE/Modify Processing : 362
UPDATE-Extend Processing ... 366
Reusable Data Set Processing .. 370
Insert a New Set of Fields (IGGPADGO Processing) 372
Modify Field Data (IGGPALT2 Processing) 376
Remove a Set of Fields (IGGPDEL2 Processing) 378
Move a Set of Fields from a Catalog Record
into its Extension ... 380
Allocating Part of a Data Space's Space
(IGGPSALS Processing) ... 382
VSAM Catalog Management Services Processing 384
DEFINE Processing ... 390
Retrieve a Catalog Record (IGGPGET) 393
Write (Update) a Catalog Record (IGGPPUPC) 394
Write (Add) a Catalog Record (IGGPPAD) 395
Delete a Catalog Record (IGGPPDE) 396
Assign Catalog Control Intervals to the Caller
(IGGPAOCI) .. 397

Figure 51.6. Assign a Catalog Control Interval for an Extension
Record (IGGPAXCI) .. 398

Figure 51.7. Update and Rewrite the CCR (IGGPCCCR) 399
Figure 51.8. Call VSAM Record Management for Catalog Request

(IGGPXIO) ... 400
Figure 51.9. Ensure Availability of Catalog Control Intervals

(IGGPISCI) ... 401
Figure 51.10. Read the CCR and Update Control Fields and RBAs

Figure
Figure
Figure
Figure
Figure
Figure

(IGGPRCCR) ... 402
51.11. Write (Update) a CRA Record (IGGPRAPU) 403
51.12. Write (Add) a CRA Record (IGGPRAPA) 404
51.13. Delete a CRA Record (IGGPRAPD) 405
51.14. Orient to the CRA (IGGPRAOR) , 406
51.15. Open a CRA (IGGPRAOP) ... 407
51.16. Assign Control Interval Numbers to CRA Records

(IGGPRARA) ... 408
Figure 51.17. Ensure Availability of CRA Control Intervals

(IGGPRASC) .. 409
Figure 51.18. Return from CRA I/O Function (IGGPRAX) 410
Figure 51.19. Call VSAM Record Management for CRA Request

Figure
Figure
Figure
Figure
Figure

52.
53.
54.
55.
56.

(IGGPXRIO) .. 411
Control Interval Format ... 468
Index Control Interval Format ... 471
Index Record Format ... 471
Index Entries Grouped into Sections '" 472
Index-Entry Section Pointers ... 474

10 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Diagrams

Figure 57. Parts of a VSAM Catalog ... 476
Figure 58. Catalog Record-General Format .. 478
Figure 59. Catalog Record Associations .. 480
Figure 60. Resolution of a Combination Field Name 525
Figure 61. VSAM Control Block Structure for a Key-Sequenced

Data Set (VSAM User) ... 532
Figure 62. VSAM Control Block Structure for a Key-Sequenced

Data Set (ISAM User) .. 533
Figure 63. VSAM Data Set Control Blocks Before and After Data Set

Sharing .. 534
Figure 64. VSAM Control Block Structure for a Key-Sequenced

Data Set Accessed through a Path .. 536
Figure 65. Shared VSAM Control Block Structure for

a Key-Sequenced Data Set Accessed through Two Paths 537
Figure 66. Data AMB Control Block Structure ... 538
Figure 67. Alternate-Index AMB Control Block Structure 539
Figure 68. Index AMB Control Block Structure .. 540
Figure 69. Local Shared Resources Control Block Structure 541
Figure 70. AMB Control Block Structure with

Local Shared Resources .. 542
Figure 71. Catalog Management Control Blocks 544
Figure 72. Open Catalog Control Blocks ... 545
Figure 73. VSAM Control Blocks that Describe a Catalog

(A Key-Sequenced, Key-Range VSAM Data Set) 546
Figure 74. Symbolic-Name Usage Table .. 625
Figure 75. Macro-Instruction Usage Table .. 626
Figure 76. Format of Physical-Error Messages .. 646
Figure 77. Storage Blocks Used for Virtual Storage Management 655
Figure 78. Virtual Storage Management Control Block Structure 657

Diagram AA.
Diagram AB.
Diagram AC.
Diagram AD.

Diagram AE.

Diagram AF.

Method of Operation Contents ... 27
VSAM Overview ... 28
VSAM Open: Connect a User to a VSAM Data Set 30
VSAM Close: Disconnect a User from
a VSAM Data Set .. 46
VSAM End-of-Volume: Obtain the VSAM Object's Next
Volume .. 58
BLDVRP /DLVRP: Build or Delete a VSAM
Resource Pool .. 62

Diagram AG. VSAM Checkpoint: Checkpointing
VSAM Control Blocks .. 64

Diagram AH. VSAM Restart: Rebuild VSAM

Diagram AI.

Diagram BA.
Diagram BB.
Diagram BC.
Diagram BD.
Diagram BE.

Diagram BF.
Diagram BG.

Control Blocks ... 66
VSAM Restart: PREFRMA T procedure
to reposition data set ... 70
Record Management Table of Contents 73
VSAM Request Processing .. 74
GET-Direct Processing: Direct Retrieval 78
GET-Sequential Processing: Sequential Retrieval 80
PUT -Entry-Sequenced Processing: Create or
Insert at End of Data Set ... 82
PUT -Key-Sequenced Processing: Create 84
Creating a Key-Sequenced Data Set 86

Illustrations II

Diagram BH.
Diagram BI.
Diagram BJ.
Diagram BK.
Diagram BL.
Diagram BM.
Diagram BN.
Diagram BO.
Diagram BPI.

Diagram BP2.

Diagram BP3.

Diagram BQ.
Diagram BR.
Diagram BS.
Diagram BT.
Diagram BU.

Diagram CA.
Diagram CB.

Diagram DA.
Diagram DB.
Diagram DC.
Diagram DD.
Diagram DE.
Diagram DF.
Diagram DG.
Diagram DH.
Diagram OIl.

Diagram DI3.
Diagram DJ.

Diagram DK.
Diagram DL.
Diagram OM.
Diagram EA.
Diagram EB.
Diagram EC.
Diagram ED 1.
Diagram ED3.
Diagram ED5.
Diagram EE 1.
Diagram EE3.
Diagram EF.

Diagram EG.
Diagram EH.
Diagram Ell.
Diagram EI2.
Diagram EJ.

Modifying a Key-Sequenced Data Set 96
ERASE Processing: Key-Sequenced 116
POINT Processing ... 118
ENDREQ: Terminate a Record-Processing Request 120
CHECK Processing ... 124
VERIFY Processing .. 126
Processing By Control Interval .. 128
Creating or Modifying a Relative Record Data Set 134
MRKBFR: Marking a Buffer in the Buffer Pool
(With Local Shared Resources) ... 138
WRTBFR: Writing a Buffer in the Buffer Pool
(With Local Shared Resources) ... 140
SCHBFR: Searching the Buffer Pool
(With Local Shared Resources) ... 142
Processing a Path ... 144
Upgrading Alternate Indexes ... 146
Buffer Management ... 148
I/O Management ... 154
ISAM-Interface: Processing a VSAM Data Set
with an ISAM User's Program ... 156
GENCB: Build a New Control Block 160
MODCB, SHOWCB, TESTCB: Modify, Display,
or Test a Control Block ... 162
VSAM Catalog Management Table of Contents 167
VSAM Catalog Management Overview 168
SEARCH: Retrieve the Base Catalog Record 172
Check the Password 176
LOCATE: Retrieve Catalog Information 180
GENDSP: List the Contents of a Data Space 184
SUPERLOCATE: List a Data Set's Volumes 186
UPDATE: Modify Catalog Information 194
UPDATE-Extend: Obtain Additional Space for
a VSAM Object ... 196
REUSE: Reset a VSAM Data Set 200
SUBALLOCATE: Obtain Additional Space from a
Nonunique VSAM Data Space .. 208
LSPACE: Build an "Available Space" Report 212
Obtain a Catalog Record Field's Value 214
Modify a Catalog Record Field's Value 218
Catalog Management Services Table of Contents 225
Catalog Management Services Overview 226
DEFINE: Create a VSAM Catalog or Cluster 230
DEFINE CLUSTER: Create a Cluster 232
DEFINE AIX: Create an Alternate Index 236
DEFINE PATH: Create a Path ... 240
DEFINE CATALOG: Create a VSAM Catalog 242
DEFINE CRA: Create a Catalog Recovery Area 246
DEFINE NONVSAM: Define a NonVSAM
Data Set in a VSAM Catalog .. 248
DEFINE SPACE: Initialize a VSAM Data Space 250
ALTER: Modify a Catalog Record 254
LlSTCAT: Retrieve a Catalog Record's Contents 260
SHOWCA T: Display Fields of a VSAM Catalog 262
DELETE: Remove a VSAM or NonVSAM Data Set 264

12 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

DiagramEK.

Diagram EL.
Diagram EM.

DELETE SPACE: Release All of the Empty VSAM
Data Spaces on a Volume .. 272
DELETE CATALOG: Release a VSAM Catalog 274
CONVERTV: Convert a Volume to or
from Mass Storage ... 276

Illustrations 13

J

J

L

SUMMARY OF ENHANCEMENTS

New Data A.reas

Technical Changes

Editorial Changes

The following work areas have been added:

• Resource pool parameter list (BLPRM) is used by Record Management for
dynamic string addition and by data set management for internal
processing

• Close work area (CL W) is used for communication among the Close and
temporary Close modules

• Open work area is used by the VSAM Open modules

• Keyword table (KEYWDT AB) is a branch table that controls execution of
module IDA0191 C and supports processing for the control block
manipulation macros

Diagrams CA and CB have been changed to support improved control block
manipulation macro processing.

A new control block manipulation return code is issued when a block to be
displayed or tested does not exist because the data set is a dummy data set.

Each CAXW A in the CAXW A chain contains a pointer to the CRA ACB.
That pointer and the associated control block structure were added to Figure
72, Open Catalog Control Blocks.

Flowcharts that describe Catalog Management I/O functions have been given
figure numbers 51.1 through 51.19. The new figure numbers are in the List of
Figures following the Table of Contents, and they are referred to from the
module directory.

VSAM has several new functions and data structures for this release of SVS;
alternate indexes, spanned records, reusable data sets, relative record data set,
processing the index of a key-sequenced data set, shared resources among
data sets, improved control-interval processing, backward sequential
processing, catalog recovery, data staging for the IBM 3850 Mass Storage
System, and virtual-storage management. These additions to VSAM change
this logic manual in all its sections: method of operation diagrams (HIPOs),
program organization figures (compendiums), directories, data areas, and
diagnostic aids. The directories identify all the new modules and external
procedures and indicate which HIPOs and compendiums refer to them.

HIPOs and compendiums have been added for Record Management to
document Buffer Management and I/O Management.

Summary of Enhancements IS

Alternate Indexes

Spanned Records

Reusable Data Sets

Relative Record Data Set

Alternate indexes for key-sequenced and entry-sequenced data sets add
control blocks and complicate control block interrelationships. Opening and ... ~.
closing a path (a base cluster and the alternate index through which access is ""'"
gained to it) more than double the number of HIPOs for Open and Close.
Access by way of a path and alternate-index upgrading change and add
HIPOs to Record Management. Defining and deleting alternate indexes,
paths, and upgrade sets add HIPOs for the DEFINE and DELETE functions
of Catalog Management, add types of catalog records, and change many
catalog control blocks.

Having data records longer than one control interval changes a number of
HIPOs in Record Management. It chanies the contents of control information
in the RDFs in a control interval.

The catalog record processing required when a VSAM data set or alternate
index is reused adds a HIPO to Catalog Management.

The relative record data set brings to three the number of types of VSAM
data sets. It changes the contents of control information in the RDFs in a
control interval. It changes HIPOs and adds a HIPO to Record Management.

Processing the Index of a Key-Sequenced Data Set

User access to the control intervals of a prime index changes HIPOs in
Record Management to include the GETIX and PUTIX macros.

Shared Resources among Data Sets

Shared buffers, I/O-related control blocks, and channel programs among data
sets for processing add control blocks and change control block
interrelationships. Building and deleting a VSAM resource pool add a HIPO
to Open/Close/End of Volume for the BLDVRP and DLVRP macros.
Managing I/O buffers adds HIPOs to Record Management for the
MRKBFR, WRTBFR, and SCHBFR macros.

Improved Control-Interval Processing

Improved control-interval processing changes HIPOs in Record Management
to show the bypassing of certain functions for faster processing.

Backward Sequential Processing

Backward sequential processing changes HIPOs in Record Management to
include processing data records in descending sequence by RBA or key.

16 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Recovery

The optional recovery function that enables users to recover or restore data
sets changes many HIPOs and adds a HIPO to Catalog Management. Catalog
recovery changes the format of the catalog record header, adds types of
catalog records, and adds field to various catalog control blocks.

Data Staging for the IBM 3850 Mass Storage System

Staging and destaging of data between mass storage and direct-access storage
for the IBM 3850 Mass Storage System changes HIPOs for Open/Close/End
of Volume and adds a HIPO to Catalog Management.

Virtual-Storage Management

The management of virtual storage has been cnetralized in Virtual-Storage
Management, which controls most requests for storage. It adds control blocks,
which are described in "Virtual-Storage Management" in "Diagnostic Aids."

Summary of Enhancements 17

----.-------

INTRODUCTION

Virtual Storage AcceSi Method (VSAM) is an access method for use with
OS/VS2 SVS. VSAM is used with direct-access storage devices to provide
fast storage and retrieval of data.

VSAM's record format is different from that of other access methods. All
VSAM records are stored in control intervals; a control interval is a
continuous segment of auxiliary storage. A data set's records can be ordered
according to when the records are stored, where the records are stored, or
what values are in each record's key field. With key-sequenced data sets, the
user can access a record by specifying its key or its relative byte address
(RBA). With entry-sequenced data sets, the user can access a record only by
specifying its RBA. With relative record data sets, the user can access a
record by specifying its relative record number. For additional information on
VSAM records and how they are stored, see "Data Areas."

User programs that contain indexed-sequential access method (ISAM) macro
instructions can be used to process records in a VSAM data set. The ISAM
interface program that allows the use of ISAM macro instructions builds the
necessary VSAM control blocks when an OPEN macro instruction is issued
and ensures that VSAM control blocks are properly initialized when
subsequent requests are made for reading or writing records.

VSAM resides in the pageable link pack area along with the user's processing
program. Figure 1 illustrates VSAM's relationship to OS/VS, the processing
program, and the data stored on a direct-access storage device and in mass
storage.

Virtual Storage

OS/VS

Logical
Data

I Processing Program L ______ _
Program's Address Space

Direct-Access
Storage

Staged
Data

Mass
Storage

Figure 1. Relationship of YSAM, OS/YS, User's Processing Program, and Staged Data

Introduction 19

-------- --- ---------------

VSAM is controlled by user macro instructions. For additional information on
user macro instructions, see OS/VS2 SVS Independent Component: Virtual
Storage Access Method (VSAM) Programmer's Guide and OS/VS2 SVS
Virtual Storage Access Method (VSAM) Options for Advanced
Applications.

VSAM catalogs can contain entries for data sets that are stored on a mass
storage volume with the mM 3850 Mass Storage System, which is described
in Introduction to the IBM 3850 Mass Storage System (MSS).

VSAM communicates with other parts of the operating system through the
SVC processor and through OS/VS control blocks used by VSAM. In
addition to the OS /VS control blocks used by VSAM, VSAM builds and uses
the access method control block (ACB). The ACB describes a VSAM data
set in much the same way that a DCB describes a nonVSAM data set.

In addition to processing records and data sets, VSAM opens and closes data
sets and does most of its own direct-access device space management, that is,
VSAM makes only minor use of OS/VS Open and Close and relies on
OS/VS DADSM for only part of its direct-access device space management.
To do much of this work, VSAM uses its own catalogs. VSAM catalogs
contain a description of VSAM direct-access device space: where available
space is, how space is used, and the location of data sets. For additional
information on the VSAM catalog, see "Catalog" in "Data Areas" and
OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide.

VSAM modules are logically grouped into the following components:

• Open, which connects a user's program to a VSAM data set and builds the
control blocks required to permit the user to read from and write to the
data set.

• Close, which disconnects a user's program from a data set and releases the
data set's control blocks built by Open. Close also updates statistics in the
VSAM catalog.

• End of Volume, which mounts volumes and allocates space. End of volume
modifies the existing control blocks to reflect the newly mounted volumes
and newly allocated space.

• Record management, which reads and writes records in response to
user-issued VSAM and ISAM macro instructions. This component also
reads and writes records for the catalog management component and
causes volumes to be mounted and demounted when it detects
end-of -volume.

• ISAM Interface, which allows user programs that contain ISAM macro
instructions to process VSAM data sets. The ISAM Interface routines
translate a user's ISAM macro instructions into appropriate VSAM macro
instructions and control blocks. The ISAM Interface routines next issue the
VSAM macro instruction to read or write the user's VSAM record. When
the VSAM read/write operation completes, the ISAM Interface routine
interprets the VSAM record management return codes and translates them
into appropriate ISAM return-code information for the user's program.

20 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

• Catalog management, which writes and updates catalog records. Catalog
management processes the catalog to obtain and store information for
Open, Close, End-of-Volume, and Access Method Services.

• Control block manipulation, which allows the user program to create,
modify, display, and test the contents of some VSAM control blocks (the
ACB, EXLST, and RPL, which are described under "Data Areas" in this
pUblication) .

Introduction 21

METHOD OF OPERATION

A method of operation diagram describes one of the VSAM functions by _
listing the process steps required to complete the function, and by showing
the data required for each process step and the data produced by each process
step.

Reading Method of Operation Diagrams

Method of operation diagrams are functional descriptions of VSAM. The
diagram and descriptive notes, keyed to the diagram, are on facing pages.

The diagrams contain three blocks of information: input, processing, and
output. The left-hand side of the diagram shows the data that serves as input
to the processing steps in the center of the diagram, and the right-hand side
shows the data that is output from the processing steps. Input is anything a
program function refers to or gets. Processing is the steps required to fulfill
the function represented by the diagram. Output is any change effected by a
function; for example, register contents, or control blocks created or
modified. The processing steps are numbered; the numbers correspond to
notes on the facing page. The notes include cross-references to the listings.
Figure 2 shows a method of operation figure.

Diagram ACt. VSAM OPEN: Connect a User to a VSAM Data Set

ISAM"User~s Address Space

RI

Open
Parameter
List

toes

tOCB

SYS I.SYSIOBQE
Data Set

DeBs

DSORG

Data Set
Information

DDNAME

VSAM-User's Address Space. or
ISAM-User', Address Space after Step 3

Register 2 ;-:.AC;;;..:'B'--_---.
IUserACB~

Register 9

For CataJog or I
SCRAOpen

I-------l
Offset to
EntrY in TIOT

t Password

~UCBS T~::ntrY
for Data
Set's UCBs

Register 4

I
Common Work Area ----
DSNAME I-- - -
Volsers f--~

IFCB,

ISAM-User's Address Space
Th~ ISAM-user's program issued OPEN (SVC 19) for a
VSAM dala set. OS/VS Open enlers VSAM here.

ISAM-Interface Open Processing

_ = =_ ~ \. Build Ihe ISAM Inlerface control block - IICB -
_ _ for each DCB for a VSAM data set being opened.

-~
~ 2_ Build Ihe VSAM user cont",1 blocks - ACB and

OCB lIeB

EXLST - using.informalion in Ihe ISAM~D~C~B~.::;::::~::;::::::;::::pl--_.....J
3. Issue OPEN, SVC 19, 10 open Ihe ACB. 1--____________

The VSAM-user's program or ISAM-Inlerface Open
issued OPEN (SVC 19). OS/VS Open enlers YSAM
here.

'1 VSAM Open Processing

tA'I " ~ 4. lnitialize for processing the user ACB. ____ .. ~
~ ~ S. Mounl and verify volumes. _______ ... ~

II

21
~~ 6. Open Ihe obJed. __________ -+~

~;::::
(29T37 ~ 7. If a base cluster is being opened for outpul
""'-"-" and has an upgrade set, open the upgrade

27

sel. 38

f.i4'-..I ~8. If the dsname on Ihe DD slatemenl names
_ ~ a path, open the alternate index associated

- wilh Ihe path. ---____ ... ___ +-I~ 45
~ ~

VSAM- or ISAM-V .. r'. Add ... " Space

Jub Step n';l:1 DEUs

tDEB ~

ACD u~
ACDDED

I (47Y49Ysililll ~ 9. Prepare for sublask sharing and job step
I ~ termmatlOn. lISs:t.U1i:1:1l1:m:iml.l.'i1i:1:1l1:l.l.'i1i:1:1l1:t.U1i:1:1l1:mii:l:lll:~i:I:IlI:t.U1i:1:1l1:~~

@ 10. Terminate Open processing. -------tt-I~

Figure 2. Method of Operation Diagram

Method of Operation 23

The left-hand side of the diagram shows the input required by the function
shown in the diagram. For example, register 1 points to a list of DCB pointers
for an ISAM user. The SYSl.SYSJOBQE contains the JFCB, which indicates
the data set's organization. The data-set information in the DCB is input to
steps 1 and 2 in the processing portion of the diagram. The DDNAME is
input to step 2 in the processing portion of the diagram.

The processing portion of the diagram shows the processing steps required to
fulfill the function described by the diagram. Note that the function described
by one diagram might be performed by one or more VSAM modules; that is,
the diagrams describe functions, not physical parts of the program.

The figure shows two conditions for which VSAM Open is called: (1) at step
1 when processing is to be done for an ISAM user program and (2) at step 4
when processing is to be done for a VSAM user program or for an ISAM user
program that has been processed by steps 1 through 3. The numbers 1,2,3,
4, and 5 are keys to the notes for this diagram.

The output created by each processing step is shown in the diagram. Step 1,
for example, builds a control block (the nCB); step 2 builds VSAM user
control blocks (the ACB and EXLST).

Reading the method of operation diagrams requires that you understand the
symbols they use. Figure 3 shows the symbols and describes their meaning .

• --.0
Y~3 6

AA3
2

)

----7

---~

@---7

>
~
o >

Flow of control on the same page;
'3' indicates a number of a process
step on the same page.

Flow uf control between pages;
'AA3' is the diagram number and
'2' is the number of a process step
on that diagram.

Pointers

Reference to data or
testing of data by a
process step; 'H' is an
arbitrary designation.

Inpu t to process steps
and output from process
steps; 'A' is'an arbitrary
designation.

Modification of data by
a process step; 'P' is an
arbitrary designation.

Figure 3. Graphic Symbols Used in Method of Operations Diagrams

24 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Figure 4 shows part of the notes to Figure 2.

Noles for Diagram ACt

OS/VS ()pen: Initial Processing:

When the caller issues the OPEN macro instruction, SYC
19. IGCOOOlltOS/VS Open) is entered by the OS/VS
SVC Interruption handler.

OS/VS Open reads the JFCB from the SYSI.SYSJOBQE
data set.

ISAM Imerface ()pen Processing:

If the JFCB data-set organization iJFCDSORGI field
indicates a VSAM data organization and the DCB
data-set organization (DCBDSORGI indicates indexed
sequential organization. IFGOI96V (OS/VS Open) sets
the identifier for each DCB-for-VSAM..data-organization
entry in the WTG table to '21'. the identifier of the
ISAM-Interface Open routine.

IDAOI92I: BtOIlCB, INITIICB

The IICB serves as a bridge between the ISAM user
program's DCB and the VSAM control hlocks that
allow the user's program to read and write VSAM
records.

See "Data Areas" for details about the IICB.

St."I..' o,\'j",''',_' 1)(1/(1 -I,.('a,' for detail .. :thou! the
I)(,U.

IOAOI92I: BLOIICB, INITIICB, ACBMERGE

The ISAM-Interface Open roultne huilds an ACB and
an EXtST for each DCB for a VSAM data set being
opened. The ACB is initialized with the DCB
DDNAME and MACRF fields.

See "Oata Areas" for details about the ACB and
EXLST

IDAOI92I: OPENACB

The ISAM-lnterface Open routine huilds an open
parameter list and issues SVC 19 to open the ACB.

When VSAM Open processing completes tthe ACB
built in step 2 is openl. ISAM Intertace Open
processing continues at step 5X (see DIagram AC71.

VSAM ()pen Processing:

If the open-parameter-list entry addresses a VSAM ACB.
OS/VS Open sets the identifier field for each ACB entry
in the WTG table to C2A'. the identifier of the VSAM
Open routine.AII further OS/VS Opcn processing is
bypassed for each ACB entry unit! the VSAM Open
routine returns control to OS/VS Open at ~tcp ~7.

4 See Diagram AC2.

5 See Diagram AC)

This step is skipped for a dummy data set.

6 See Diagram AC ~

The object could be an alternate index that is itself
being opened for processing by the user.

See Diagram AC 5.

This step is skipped for a dummy data set.

8 See Diagram AC6.

This step is skipped for a dummy data set.

9 IOAOI92A: BLOOOEB

VSAM Open builds a "dummy DEB" for the user
ACB and adds it. address to the job step's TCB DEB
chain. IThe devkcMdependent section of the DEB is set
to 0.1 Each open ACB is identified hy a dummy DEB
in the chain. If the user's program ends abnormally,
ABEND closes the ACB or DCB associated with each
DEB in the chain.

10 See Diagram AC7.

Note: Dynamic Stnng Addition

When OPEN is issued. not to open a data set. hut to
dynamically add a string to the user's capability to process
multiple requests concurrently, the string is added and
Open returns to the caller. VSAM Record Management
requests dynamic string addition when more strings are
required than the user specified.

Record Managemenl indicates dynamic string addition hy
a flag in the ACB.

IDAOl92Y (ENQBUSYI issues ENQ on 'SYSVSAM' with
"S'lousy) indicated 10 prevent Open rrom using the
control block structure that is arfected oy dynilmic string
addition.

IDAOl92Y t1NITPLHI huilds and initializes an additional
PLH. lOB. and PFL. IDAOl92Y tBLDBlJFCI huilds and
initialIZes an additional BUFC and huffer. IDAOl92W
huilds an additional CPA and chains it to the BUFC
IDAOl92Y <DYNSTRADI chains these new control
blm:ks into the existing control.block structure. (PLHDR
points tn the PLH. and BUFDR points to the BUFCI

Figure 4, Notes to Method of Operation Diagram

The notes provide details about the processing shown in the diagram. For
example, the entry process and conditions are described by the first
(unnumbered) note, This note tells which OS/VS Open modules allow an
ISAM user's program to open an ACB for a VSAM data set; note 1 describes
the use of the nCB and directs you to "Data Areas" in this publication for
detailed information on the nCB. The notes also name the modules and
routines that perform the functions represented. The module and procedure
names allow you to relate a process step to a unit of code in the VSAM
program listings,

Method of Operation 25

J

2::
."
;.
0
0-

9.,
0
'0
." ...,
~ o·
::l

N,

r
Diagram AA 1. Method of Operation Contents

Macro
Instructions:

OPEN, CLOSE,
CLOSE (TYPE=T),
BLDVRP, DL VRP,
CHKPT

GET, PUT,
POlNT, CHECK,
ENDREQ, ERASE,
GETlX, PUTI X,
MRKBRF, SCHBFR,
WRTBFR

GENCB,
MODCB,
SHOWCB,
TESTCB

CATLG
(From
VSAM)

CATLG
(From
AMS)

VSAM Open; Close, and
'End-of Volumn, and
VSAM Checkpoint/Restart

Diagrams ACI-AI 1

Record
Management

Diagrams BA I-B1 I

VSAM Control Block
Manipulation

Diagrams CA I-C~2

VSAM Catalog
Management

Diagrams DA I-DM3

VSAM Catalog
Management Services

Diagrams EA I-EM I

r

ISAM Macro
Instructions:

OPEN

CLOSE

GET, PUT, PUTX,
SETL, ESETL,
RELSE, READ,
WRITE, CHECK,
FREEDBUF

LEGEND
--<D

Y 0
~

I - -->0)
e---~

I ==:>
===:>G
0===>

I ~ ~ ~

[SAM Interface
Open

Diagrams AC I, AC7

[SAM Interface
Close

Diagrams AD I, AD6

ISAM Interface
Processing

Diagrams BUl-BU2

now of control on the same page:
.]' indicates a numher of a process
step on the same page.

r low of control hetween pages:
'AA3' is the diagram numher and
'2' is the numher of a process step
on that diagram,

Pointers

({derence to data or testing of
data hy a process step: 'H' is an
arhitrary designation.

Input to process steps and output
from process steps: . A' is an
arhitrary designation.

Modification of data hy a process
step: 'P' is an arhitrary designation.

r·

N
00

o
CIl
<
CIl
N

CIl
<
CIl

;-
0-
n>

~
;:l
0-
n> a
(")
o
3
"0 o
:;)
n> a
< s: .,
a
CIl o
~
~
)-

8
n>
!ll
a::
~
::r
o
0-

< CIl
)-

e
S
ri·

Diagram ABI. VSAM Overview

VSAM{
Data
Set

Closed or
Shared Status

User-Issued OS/VS OPEN
Macro (SVC 19) or
BLDVRP Macro

User-Issued ISAM Macros:

BISAM - WRITE, READ, CHECK,
and FREEDBUF

QISAM - PUT, GET, PUTX, SETL,
ESETL, and RELSE

User-Issued VSAM PUT or PUTIX Macro

User-Issued VSAM GET or GETIX Macro

VSAM { Data
Set
(Open)

~-

~

Record(s)

User-Issued VSAM ERASE Macro

User-Issued VSAM POINT Macro

Close-Issued VSAMENDREQ Macro

User-Issued VSAM CHECK Macro

User-Issued VSAM MRKBFR Macro

User-Issued VSAM SCHBFR Macro

User-Issued VSAM WRTBFR Macro

1. Open Processing (see Diagrams ACl, "VSAM OPEN:
Connect a User to a VSAM Data Set" and AFl,
"BLDVRP/DLVRP: Build or Delete a VSAM
Resource Pool"

Allow a user to store or retrieve records in a VSAM
data set-or build a VSAM resource pool for
processing with shared resources.

2. Record Management Processing

IS AM-Interface Processing (see Diagram BU l, BU2
"ISAM-Interface: Processing a VSAM Data
Set with an ISAM User's Program ").

Translate the request into its VSAM equivalent
(if necessary).

VSAM Request Processing (see Diagram BB I).

User's Virtual Storage
i

VSAM Control
Block Structure

Store a record or control intervaL ! :>f::: J
Retrieve a record or control intervaL~

Delete a record. =========~=:§
Locate a record.

Terminate request processing.

Ensure completion of an asynchronous request.

Mark a buffer in the VSAM resource pool for
output or release. Search a buffer pool in the
VSAM resource pool for a control intervaL
Write a buffer or buffers in the VSAM resource
pool.

Restore processing statistics for a newly created
data set following a system crash.

~-

Control
Interval

\.,

VSAM
Data
Set
(Open)

~
(1)

;.
o
0-

o
o
'R
g
o·
::l

N
IC

r
Diagram AB2.

User's Virtual Storage
i

I Record ,- - -l ___ --1

Control
Interval

r

VSAM Overview

~ 't. 3. Close Processing (see Diagrams ADI, "VSAM
CLOSE: Disconnect a User from a VSAM Data
Set" and AFI, BLDVRPjDLVRP: Build or
Delete a VSAM Resource Pool").

User-Issued OS/VS
CLOSE Macro (SVC 20) I I
or DLVRP Macro

Disconnect a user's processing program from its
associated VSAM data set or delete the VSAM
resource pool.

4. Control Block Manipulation Macro Processing (see
Diagram CA I, "GENCB" an~ Diagram CB I,
"MODCB, SHOWCB, and TESTCB").

r

...... User's ~e~~ .!r:;

I
L.... __ ~ ____ -1

User-Issued VSAM I
GENCB Macro l Build a new control block. = Control Interval

User-Issued VSAM
MODCB, SHOWCB or
TESTCB Macros

Modify, display, or test a control block. ~ ACB, RPL, or EXLST

Vol
o
o
til
<
til
N

til
<
til

5' c..
t1>

"0
t1>

"' c..
t1> a
n o

~
o
~
~
<
~.

e.
til
S ..,
~

~
> ("l

@
'" '" a::
S-
o c..

< til
> e
r

OC>
ri'

Diagram ACt. VSAM OPEN: Connect a User to a VSAM Data Set

ISAM-User's Address Space

Rl

tDeB

tDeB

SYS 1.SYSJOBQE
Data Set

DeBs

DSORG

Data Set
Information.

DDNAME

Data Set
Organization

VSAM-User's Address Space, or
ISAM-User's Address Space after Step 3

Register 2 ACB

tUser ACB ..
Register 9 ,- Offset to

Entry in TIOT
For Catalog or I
SeRA tPassword

t
UCBs TIOT

,- ~
DD Entry
for-Data
Set's UCBs

I
Register 4

Common Work Area _

JFCB: ----DSNAME ~--
Volsers ~:,@

~

The ISAM-user's program issued OPEN (SVC 19) for a
VSAM data set. OS/VS Open enters VSAM here.

-'-;
~ 2.

ISAM-Interface Open Processing
~~.--.---- --

Build the ISAM Interface control block - IICB -
for each DCB for a VSAM data set being opened.

Build the VSAM user control blocks - ACB and
EXLST - using information in the ISAM DCB.

3. Issue OPEN, SVC 19, to open the ACB.

~

ISAM-User's Address Space

DCB I1CB

EXLST

ACB

VSAM- or ISAM-User's Address Space

~,

~
1'1>
g.
o
C-

O -.
o
~ .,
!!?
0'
::s
....

r
Notes for Diagram ACt

OS/VS Open: Initial Processing:

When the caBer issues the OPEN macro instruction, SVC
19, IGCOOOII (OS/VS Open) is entered by the OS/VS
SVC Interruption handler.

OS/VS Open reads the JFCB from the SYS I.SYSJOBQE
data set. -

ISAM Interface Open Processing:

If the JFCB data-set organization (JFCDSORG) field
indicates a VSAM data organization and the DCB
data-set organization (DCBDSORG) indicates indexed
sequential organization, IFG0196V (OS/VS Open) sets
the identifier for each DCB-for-VSAM-data-organization
entry in the WTG table to '21', the identifier of the
ISAM-Interface Open routine.

IDAOI92I: BLDIICB, INITIICB

The IICB serves as a bridge between the ISAM user
program's DCB and the VSAM control blocks that
allow the user's program to read and write VSAM
records.

See "Data Areas" for details about the IICB.

See OS/VS2 Data Areas for details about the
DCB.

2 IDA01921: BLDIICB, INITIICB, ACBMERGE

The ISAM-Interface Open routine builds an ACB and
an EXLST for each DCB for a VSAM data set being
opened. The ACB is initialized with the DCB
DDNAME and MACRF fields.

See "Data Areas" for details about the ACB and
EXLST.

3 IDA01921: OPENACB

The ISAM-Interface Open routine builds an open
parameter list and issues SVC 19 to open the ACB.

When VSAM Open processing completes (the ACB
built in step 2 is open), ISAM Interface Open
processing continues at step 58 (see Diagram AC7)_

VSAM Open Processing:

If the open-parameter-list entry addresses a VSAM ACB,
OS/VS Open sets the identifier field for each ACB entry
in the WTG table to C'2A', the identifier of the VSAM
Open routine.AII further OS/VS Open processing is
bypassed for each ACB entry until the VSAM Open
routine returns control to OS/VS Open at step 57.

4 See Diagram AC2 .

r
5 See Diagram AC3.

This step is skipped for a dummy data set.

6 See Diagram AC4.

The object could be an alternate index that is itself
being opened for processing by the user.

7 See Diagram AC5.

This step is skipped for a dummy data set.

8 See Diagram AC6.

This step is skipped for a dummy data set.

9 IDAOI92A: BLDDDEB

VSAM Open builds a "dummy DEB" for the user
ACB and adds its address to the job step's TCB DEB
chain. (The device-dependent section of the DEB is set
to 0.) Each open ACB is identified by a dummy DEB
in the chain. If the user's program ends abnormaBy,
ABEND closes the ACB or DCB associated with each
DEB in the chain.

10 See Diagram AC7.

Note: Dynamic String Addition

When OPEN is issued, not to open a data set, but to
dynamically add a string to the user's capability to process
multiple requests concurrently, the string is added and
Open returns to the caller. VSAM Record Management
requests dynamic string addition when more strings are
required than the user specified.

Record Management indicates dynamic string addition by
a flag in the ACB.

IDAOl92Y (ENQBUSY) issues ENQ on 'SYSVSAM' with
'B' (busy) indicated to prevent Open from using the
control block structure that is affected by dynamic string
addition.

IDA0192Y (INITPLH) builds and initializes an additional
PLH, lOB, and PFL. IDAOl92Y (BLDBUFC) builds and
initializes an additional BUFC and buffer. IDA0192W
builds an additional CPA and chains it to the BUFC.
IDA0192Y (DYNSTRAD) chains these new control
blocks into the existing control block structure. (PLHDR
points to the PLH, and BUFDR points to the BUFC.)

r

Vol
N

o
til
"<
til
N

[JJ

<
[JJ

::l
0-
('I)

'0
('I)

::l
0-
('I)

a
(j
o
3
-g
::l
('I)

a
<
~i
t::
!:!..
[JJ

0-....

~
:>
(')
(')
('I)
til
til

s:
('I)

s-
o
0-

< til
:> e
b

(JQ o·

Diagram AC2. VSAM OPEN: Initialize for Processing the User ACB

Same Control
Blocks as Diagram AC I

Built by Open Open Work Area

CTGFLs

CTGPL For Dala Reg.i~kr 4

Sel Type

For Ca t.log·s

~ n~~ r--":"~==:::::j
Build the Open Work Area. ~~~ IOPW

~---==~
11.

ICTGFL ACIJ Address

VSAM Catalog

JSCB VATs

'-'

12. Is the object to be opened a dummy data set'?
No Yes

f '-®
@/

::, 13. Confirm that the user is authorized to process
the data sets associated with his ACB. (See
Diagram 001, "Check the Password.")O®

/
I

/

/

14. Obtain information from the catalog for the
object named on the DO statement and for all
data sets associated with the object.

1 S. Build save lists for cleaning up storage during
task termination.

16. Prevent other tasks from opening the data sets
during this open.

17. Is the object already open afor this job step'?
""No Yes

1/' '-<D

~

I
I 18. Build the base information block for the object

being opened and its associated data sets.

19. Unless a catalog or a catalog recovery area is
being opened or processing will be with shared

@ resources, build a working storage header.

~ 20. Load the routines required for the rest of
Open processing.

£

\r

CTGFLs .---- CRA Volser

Control~ln terval
Numbers of I.)jjta

! and Index Comp's
of Hase Cluster
and of Alternate
Index

Number of
Upgrade Alternate
Indexes

Control-lnterv<..I1
Numbers of Data
and Index Comp's
of Upgrade
Alternate Indexes

DEll SLs

OJ
Core Sb

OJ
Swap SLs

Q
"Supply Correct Password

'-_-' ____ ..1. for ICode Namel Data Set"

~

s:::
CD
;.
8.
a
o
"0

CD e o·
::I ,.., ,..,

r
Notes for Diagram AC2

II IDAOI92A:INITl92A

The open work area is mapped by the IDAOPWRK
macro.

13 IDAOI92C

The user establishes the numberof times the operator
may attempt to supply the corr!!ct password, as
described in OS/VS2 SVS Independent Component:
Access Method Services. If the correct password isn't
supplied, VSAM Open sets the "ACB not opened'
return code in register 15 and the "user password
invalid' flag in ACBERFLG.

14 IDAOl92C: LOCI

LOCI issues a LOCATE (SVC 26) to obtain data-set
type, catalog ACB address, catalog recovery area
volume serial number, and control-interval number for
each data set associated with the object named on the
D D statement.

15 IDAI092A: BLDLISTS

During termination the ENQs indicated in the ESL
(enqueue save list) will be dequeued, the DEBs
indicated in the DSL will be unchained, and the
storage ("core") indicated in the CSL will be freed,
the SSL enables Open to chain control blocks at the
end of Open processing.

16 IDAOI92A: BLDENQPL, INITl92A

Open enqueues on each data set to prevent it from
being opened by other tasks during the current Open
processing.

17 IDAOI92A: CONBASE

If the IDF field in the AMBL of the data set being
opened matches the IDF field of an AMBL on the
primary chain, the control blocks for the base cluster
already exist.

r r

Vol
-'>-
o
(Il

<
:1
(Il

< (Il -::l
0-
<1>
"0

<1>
::l
0-
<1> a
n o
.g
o
i'i
~
<
~.

E..

S

~
>-(l
(l

<1>
gj

3:
~
:r
8-
'<
(Il

>-:;
b

(JQ

n'

Diagram AC3. VSAM OPEN: Mount and Verify Volumes

OPWBIB

OPWTIOT

OPWCOMWA

Common Work Area

JFCB
Volsers

\..,.

VMTs
r-

BIB

BIBVMT

TIOT Entry
i

DDNAME

tUCB
tUCB

UCBs .---

JFCB
and
Extensions

<t. 21. "th, obi""I,,,dy op'n?

Yes No

,~
VMTs

+ 22. i th, «qui"d volum" .I«,dy moun"d? / ~

, ~ 23. Increment the use count for the volumes. ~ ...
24. Are the required volumes already mounted? ~0

V"i ~
2S. Mount the required volumes. to Operator

BIB

BIBVMT ! D,,,,rib, th' mount,d volum" ~

l,

"Mount Volume
[xxxxxxJ on
Unit [yyy I"

VMTs (One per

~

3::
~ ;.
o
c-
o -.
o
"g
a ,s-
o
.....
V>

r
Notes for Diagram AC3

21 IDAOI92F: VOLMNT

22 IDAOI92F: OLDDEV

24 IDAOI92V

A volume in the JSCB and extensions is already
mounted if a UCB allocated to the DD statement that
is associated with the user ACB indicates so.

26 IDAOI92V: OLDDEV, NEWDEV

A volume mount table is built for each device type
allocated to the DD statement that is associated with
the user ACB. Each VMT contains an entry for each
successfully mounted volume of that device type. If a
VMT already exists for a device type, the new VMT
replaces the old one.

r r

~

'" o
Vl
"<
Vl
N

Vl
<
Vl

;-
P
n>

"0
n>
::l
P
n>
~
(")
o
3
"0 o
::l
n>

~
< ;i.
c: a
Vl o ..,
~
~
n>

:> g
n>
til
til

~
n>
g-
O
P-

< Vl
:> e
b
~ n·

Diagram AC4.

Register 4

r1 topw

Open Work Area

~I CI #s for
Components
of Path
Alternate
Index

~

CTGPL

For IJata
Component
Catalog
Record

CTGPL

For Index
Component
Catalog
Record

Register 2

tACB

ACB

ACBAMBL

BIB .L

BIHVMT

~

1',

o

~

~

VSAM OPEN: Open the Base Cluster

~

CTGFLs
For IJata

27. Build an AMBL for the base cluster.

28. Is the base cluster already open in this job
step?

No Yes • 29. Connect the AMBL to the existing
control block structure. • (2)

Record Size 30. Build a CMB for the base cluster.

For Volume and 31. Retrieve fields from the data component
Extent InformatIOn catalog record (associated with the cluster

For Index
Record SIZe

For Volume and
Extent Information

AMBL

AMBLBIB

VMTs /
/

l

catalog record). (See Diagram DEI, "LOCATE:
Retrieve Ca talog Information.")

32. If the cluster is keyed, retrieve fields from the

/,33.

index component catalog record.

Ensure that required volumes are mounted.

Build the VSAM control blocks and buffers
needed to process the base cluster. //// 34.

35. Is the ACB for improved control-interval access
with control blocks fixed in real storage?

No Yes

J.! Fix the control blocks in real storage.

®--~ 37. If the DD statement names a path, build interval

JSCB

JSCBSHR

ACB

ACBAMBL

VATs

VATPAMBL

Base AMBL

AM BL BIB I r:-F-"-M;.:;B'--__ --.

AMBLCMB

AMBL

Open Work Area

IJata Record Size

Volser and
Extent for Each
Volume

Index Record Size

Voiser and
Extent for Each
Volume

I control blocks to process the base cluster ~

(2) through the path. ~ ." r ,

BIB

BIBIJACB

~ \.

3:
(>

;.
o
0-
o,
o
'0
(> ..,
~ o·
Q

....
-..)

r
Notes for Diagram AC4

27 IDA0192F: OPNBASE, BLDAMBL, CHNAMBL,
VATUPD

Unless the user ACB indicates that a catalog is to be
opened or that a catalog recovery area is to be built in
system storage (SCRA), the AMBL is added to the
chain and its address is added to the valid-AMBL
table. The VAT is used for checking AMBLs for
validity. AMBL VC identifies the V AT and the entry in
the V AT that contains the address of the AMBL.

28 IDAOI92F: CHNAMBL

29 IDAOI92F: CHNAMBL

The AMBL is put on the secondary chain, off the
primary AMBL for the base cluster.

30 IDAOI92F: BLDCMB

31 IDAOl92B, IDA0192C: OPCATl (calls LOC2 and
LOC3)

A separate CTGFL is built for each catalog record
field requested by VSAM Open. A CTGFL gives the
field's length and its address in the open work area.

See "Data Areas" for details about the data set
catalog record, the CTGPL, and the CTGFL.

32 IDAOI92B, IDAOl92C: LOC2, LOC3

The index catalog record is pointed to by the cluster
catalog record. See "Data Areas" for details about the
index catalog record.

33 IDAOl92B

A volume mount table must exist for each device type
required by the cluster.

34 IDA0192Z, IDA0192W

The following figures in "Data Areas" show the
VSAM control block structure:

• VSAM Control Block Structure for a
Key-Sequenced Data Set (VSAM User)

• VSAM Control Block Structure for a
Key-Sequenced Data Set Accessed through a Path

• Shared VSAM Control Block Structure for a
Key-Sequenced Data Set Accessed through Two
Paths

• Data AMB Control Block Structure

• Alternate-Index AMB Control Block Structure

• Local Shared Resources Control Block Structure

r
• AMB Control Block Structure with Local Shared

Resources

"Data Areas" also describes each VSAM control
block.

36 IDAOI92F: OPNBASE, PAGEFIX

The user must be authorized to have pages fixed in
real storage-his program must be in supervisor state
with protection key 0 or link-edited with APF
authorization.

All storage identified by the cluster management block
is fixed.

37 IDAOI92F: OPNBASE

r

...,
00

o
Vl

Diagram ACS. VSAM OPEN: Open the Upgrade Set
........
<
Vl
tv
Vl
<
Vl

5'
0-
(1)

"0
(1)

o
0-
(1)

a

JSCB

JSCBSH~

VAT

~ r-
V

VATPAMBL

(J Co ntrol Blocks of a Previous Task
o ,....
.g
o
~
F.
<

.- - _. -

ACB PATH AMBL Base AMBL

"" ~
ACBAMBL / AMBLXPT ~ AMBLXPT

BIB

BIBUPT

~ 38. Build ,n up,,,d, .,b1, fo< 'h, up,,,d, ., •. ~ UPT

nate index in the upgrade set. ,....- UPTRPL

Repeat steps 40-44 for each alternate index in the up-
~.

e?.
Vl

5'

AMBLSC~

39. Build oon'<o1 b10," fo, pw"~in, ",h 'It''~

grade set.

~
- - ~ 40. If the alternate index is already open for processing - RPL

by way of a path, build additional control blocks ..,
I'l

Otl
(1)

~
n
(1)
til
til

::
(1)

;.
8.
< Vl

~
~

Otl
n'

Register 2

I

~

ACB AMBL

H
ACBAMBL ~

Same as for Steps 31, 32

Same as f~r Step 33

J, for upgrading the alternate index and process the
'-~ next alternate index in the upgrade set.

AMBL

,..

'\. CMB

41. Build a eMB for the alternate index.

> 42. Retrieve fields from the data and index component
catalog records.

~-- ~ 43. Ensure that required volumes are mounted.

44. Build the VSAM control blocks and buffers needed
to process the alternate index.

~

) On, En<"
per Upgrade
Alternate Index

ACB

r7

,---J
~

~
Alternate Index

r- Data Control
Block Structure

\..,

a::
" ;.
8.
o -o
'tl

" ..,
!! o·
::I
....
'"

r
Notes for Diagram ACS

38 IDAOI92F: OPNUPGR

The upgrade table contains an entry for each alternate
index in the upgrade set.

39 IDAOI92F: OPNUPGR, BLDAMBL

An RPL, an ACB, and an AMBL are built for each
alternate index.

40 IDAOI92F: OPNUPGR

The AMBLs for paths already open in the job step are
searched for the alternate index being processed.

IDA0192Y

To provide an additional string for upgrading an
alternate index that is already open for processing by
way of a path, IDA0192Y builds the PLH, BUFC,
lOB, CPA, and buffers. These control blocks are
described in "Data Areas."

41 IDAOI92F: BLDCMB

42 See notes for steps 31 and 32.

43 See note for step 33.

44 See note for step 34.

r r

~ Diagram AC6. VSAM OPEN: Open the Alternate Index Associated with the Path
o
VI
'-<
VI
N

VI
<
VI

S'
~
-g
::l
C.
~ a
n
o
3

"0 o
::l
~

~
<
:i'
t:
e=..
VI
0-
;

(JQ
~

~
a
~
~

;.
8-
<
VI
;J>

!
t""'
o

(JQ o·

Register 2
I

AC BAM BL

JSCB

JSCBSHR

oPWUPT

~

7'

(outPutof~
Step 27)

VAT

i
45. Build an AMBL for the path.

46. Is the alternate index already open for this
~ path in this job step'!
I No Yes

, VATAMBL

,I I ! Connect the AMBL to the existing
I control block structure. • ®
f 48. Is the alternate index already open for upgrading

~ BaseAMBL

1'1 ?
AMBLXPT r

-~

UPTRPL

J
I

Path AMBL/

AMBLXPT

AMBL
roo----

I
I

Same as for Steps 31. 32

'" in this job step'!
I No Yes / I ! Build additional control blocks for using

I the alternate index to process the base
I cluster.. ®

l'

SO. Retrieve fields from the data and index
component catalog records.

51. Ensure that required volumes are mounted.

I 52. Build the VSAM control blocks and buffers
needed to gain access to the alternate index. I

I
I
I ,
I
I , ,
I , ,

f o

Same as for Step 33 I ~

~

Register 2 ACB

AC BAM BL

AMBLXPT

Alternate Index
Data Control
Block Structure

l"

3::
(1)

;.
8-
o,

~
(1)

a o·
I:)

.j:,.

r
Notes for Diagram AC6

45 IDAOI92F: OPNPATH, BLDAMBL

The AMBL is chained off the current AMBL for the
base cluster. Its address is added to the valid-AMBL
table. The V AT is used for checking AMBLs for
validity. AMBLVC identifies the VAT and the entry in
the VAT that contains the address of the AMBL.

46 IDAOI92F: CONPATH

The alternate index is already open for this path if one
of the path AMBLs contains the same ID as this
alternate index.

47 IDAOI92F: OPNPATH

The AMBL is chained off the existing AMBL for the
path.

48 IDAOI92F: CONPATH

The alternate index is already open for upgrading if
one of the AMBLs pointed to by the upgrade table
contains the same ID as this alternate index.

49 IDAOI92F:CONPATH

For each string required for processing the path,
IDAOt92F builds the PLH, BUFC, CPA, lOB, and
buffers. These control blocks are described in "Data
Areas."

50 See notes for steps 3 t and 32.

51 See note for step 33.

52 See note for step 34.

r r

ts Diagram AC7. VSAM OPEN: Terminate Open Processing
o
Vl
-<
Vl
N

~
Vl

~
~
6..
t'1> :a
n o

~
~
-<
~.

e?.
Vl
0-

~
i
~

a::
!Po
;:r

8-
< Vl
> ;
~
~.
n

VSAM- or ISAM-User's Address Space

ENQ Save Lists

DEB Save Lists

ACB Core Save Lists

~

@
~ 53. Is System Management Facilities (SMF) active? .

--

No Yes 1 ;. Wdt, SMF "omd typ' 62 - Clu,tec O""n,d
or Open Attempted.

- ~ 55. If Open processing was unsuccessful, restore

SMF Data Set --
Record
Type 62

VSAM- or (SAM-User's
Address Space

ACB

r--:b:~tu:y~
I ~ ~mH~

Set to Status
Before Open

) 56. Dequeue busy enqueues and free work areas. P2Z2:ii~2a

I
: OS/VS Open - Final Processing DEQ Parameter List

I 57. Return to the caller or ISAM interface.
I tMajor Resource 'SYSVSAM'

J

'-'

I Minor Resource

oft
CI # for
Data Set

RIS

YI Retllrn Code

Catalog I 'B' I
ACB Address

l,

~
'" 5-
8-
s,
o
"0

'" ..,
~
0'
:;j ..
'"

r
Notes for Diagram AC7

53 IDA0192A: TERM192A, UPSMF

54 IDAOl92S

See OS/VS System Management Facilities (SMF) for
details about SMF record type 62.

55 IDAOI92A: TERM192A, CLNUP

CLNUP resets open indicators in the VSAM catalog
for data sets that were processed. It unchains AMBLs
and deletes entries from the valid-AMBL table. It
unchains DEBs. It decrements any use counts that
were incremented.

CLNUP deletes all volume mount table entries that
were added.

56 IDAOI92A: DEQBUSY

A DEQ is issued for each data set that was enqueued
busy (in step 16) to allow other tasks to open them.

57 IDA0192A

The VSAM Open routine sets the ACB's open bit
(ACBOFLGS) on if the ACB is opened successfully. If
an error occurs while opening an ACB, the VSAM
Open routine or OS/VS Open sets the appropriate
error flag.

OS/VS Open: Final Processing (after VSAM Open
Processing completes):

The VSAM Open routine returns control to OS/VS Open
by putting the identifier of the Open Final Termination
routine, C'8N', in the WTG table and transferring control
(through the IECRES macro instruction) to the
O/C/EOV resident routine. The resident routine
examines the open parameter list and, if all ACB entries
have been processed by the VSAM Open routine, returns
to the OS/VS Open Final Termination routine. If not, the
next ACB entry in the open parameter list is processed
(return to step 4, Diagram AC I).

OS/VS Open modules (lFGOI96V and IFGOI96W)
ensure that an ACB entry in the open parameter list is not
processed by any access method executor routine.

IFGOl96V sets the identifier for each VSAM ACB entry
in the WTG table to O.

IFGOl96W sets the identifier for each VSAM ACB entry
in the WTG table to C'8N', the identifier of the OS/VS
Open Final Termination routine.

IFGOl98N sets the return code in register IS.

r
See "Diagnostic Aids" for details about the VSAM Open
return codes and error codes.

r

t Diagram AC8. VSAM OPEN: Connect a User to a VSAM Data Set
o
til
........
<
til
N

til
<
til

:l c..
(1)

'0
(1)

:l c..
(1)

g
(')
o
3
'0 o
:l
(1)

g

< :1'
" 2-
til o
po

~
:>
(l
(l
(1)
til
til

3:
(1)

:r
o c..

< til
:> e
r o

(JQ

n'

ISAM User's
Address Space

SYSl.SVCLIB -

\.,.

ISAM
Interface

. Processing
Routines

ISAM
Interface
SYNAD
Routine

ISAM-Interface Open Processing

58. Was the ACBopenedsuccessiully?

Yes No

, t. Return to the ISAM-user's program.

60. Modify the DCB for use by the ISAM-user's
program.

., 61. Take the user DCB exit, if it is available.

62. If the data set attributes are incorrect, issue
an ABEND 038.

63. Build a DEB for the task's TCB's DEB chain.

64. Load the ISAM Interface processing routines
and the ISAM Interface SYNAD routine into
the user's address space.

65. Build and initialize all RPLs and buffers that
subsequent ISAM record processing requests
will require.

OS!VS Open - Final Processing

[66. Retur~ to the ISAM-user's pr~ram.

~

ISAM-User's Address Space

'-

~
(1)

;.
&.
9..
o
'"0
(1) a o·
::I

""" V\

r
Notes for Diagram AC8

ISAM Interface Open Processing (continued):

58 IDA01921: OPENACB

The ISAM-Interface Open routine sets the DCB open
bit (DCBOFLGS) to I if the DCB's associated ACB
was opened correctly.

60 IDA01921: OCBMERGE and AMSMERGE

See OS/VS2 Data Areas for details about the
DCB.

61 IDAOI92I: OCBEXIT

Register contents passed to the user's DCB exit
routine are:

• R I: address of DCB

• R2: through 13: User's registers

• R 14: return address

• R 15: address of user's DCB exit routine

IDAOI92I: BFRMERGE

Merge buffer-related information into the DCB.

62 IDAOI92I: VALIOCHK

ABEND 038 is issued when:

• Access Method Services and DCB values for
LRECL, KEYLE, and RKP are not equal, or when

• Reload is attempted-the DCB is opened for
OUTPUT with DlSP=OLD and the DCB's data set
contains records.

63 IDAOI92I: BUILDDEB

The ISAM-Interface Open routine builds a DEB so
that:

• There is meaningful DEB information for the
user's program to examine;

• The DEB fields on which COBOL, PL/I, and the
ISAM System Integrity Feature depend are
properly initialized;

• The checkpoint/restart or abnormal end (ABEND)
routines can examine the task's DEB chain and
close all of the user's DCBs and ACBs; and

• The user's program cannot modify the nCB
address or other fields in the DEB.

The DEB's ISAM-Interface indicator is now set on.

r
See OS/VS2 Data Areas for details about the
DCB, DEB, and TCB.

64 IFGOI92I: LOADMOD

The appropriate ISAM Interface modules are loaded.
DCB fields are initialized to point to the ISAM
Interface processing routine that will translate an
ISAM record-processing request into a VSAM request.

The ISAM SYNAD routine is loaded when it is
specified in the user's JCL AMP parameter.

The EXLST (built in step 2, Diagram AC 1) addresses
ISAM Interface exit routines.

See "Data Areas" for details about the EXLST.

The DEB (built in step 63) is initialized to point to the
ISAM Interface FREEDBUF routine.

65 IDAOI92I: BLDRPL, INITRPL, BLDBUFR

66

RPLs and ISAM Interface buffers are built for each
ACB (the number of RPLs and buffers is based on the
ACB's STRNO value for BISAM; one of each is built
for each QISAM DCB) that the ISAM user opens.
Two of the uses of the ISAM Interface buffers are to
support ISAM locate mode and dynamic buffer
processing.

IDAOI92I: OCBINIT

When the ISAM Interface Open processing completes,
the DCB open flags (DCBOFLGS) field contains:

• Busy bit off (set to 0)

• Open bit on (set to I)

• Lock bit off (set to I)

OS/VS Open: Final Processing (after ISAM Interface
Open Processing c~mpIetes):

OS/VS Open modules (IFGOI96V and IFGOI96W)
ensure that a DCB for a VSAM entry in the open
parameter list is not processed by any access method
executor routine.

IFGOl96V sets the ID field for each DCB-for-VSAM
entry in the WTG table to O.

IFGO 196W sets the identifier field for each
DCB-for-VSAM entry in the WTG table to C'8N', the
identifier of the OS/VS Open Final Termination
module (IFGOI98N).

IFGOI98N sets the return code in register 15.

r
If the ACB (built by the ISAM Interface Open routine
in step 2, Diagram AC I) is not opened correctly by the
VSAM Open routine, the ISAM-Interface Open
routine sets the DCB open bit to 0 (DCBOFLGS) and
sets all DCB module-address fields to O. If the user's
ISAM program issues an ISAM record processing
request without confirming that the DCB is
successfully opened, an ABEND OC4 results, caused
by a branch to address 000.

~ Diagram ADI. VSAM CLOSE: Disconnect a User from a VSAM Data Set
o en
........
<:
en
N
en
<: en

~
'tl
CD

6-
CD s.
(")
o

~
g
~
<:
~.

!..
en o ..
S»

~

i
l:l
3:
CD

s:-
O
0..

< en ;
b

1!9.
(')

ISAM·User's Address Space

I ~
I

tDCB

VSAM· 0' ISAM·Use,'s
Address Space

JSCB

JSCBSHR ~
Base AMBL

~

AMBLXPT It
AMBLBIB

Register 2

tUserACB ~

Job Step TCB

)

TCBDEB

DEBs

~ ~

I ~

~

'I

l,!",o,tt
\ISAM.lnterface

Processing
Routines

VATs

VATPAMBL

Base Data
Control Block
Structure

ACB

ACBAMBL

,- '---ACBDEB

~~ I
Palh AMBL I

I

:~ AMBLXPT ~I
I
I ,@II I

Alternate-Index
Data Control
Block Structure

Upgrade Control
Block Structure

Common Work Area

Problem
Determination
Parameter List
- - -----

The ISAM-user's program or an ABEND
for the ISAM-user's program issued
CLOSE (SVC 20) for a VSAM data set.
OS/VS CLOSE enters VSAM here.

1
ISAM·lnterface Close Processing

I. Complete the user's output requests.

~
2. Delete the ISAM interface processing and ISAM

interface SYNAD routines from the user's address
space.

3. Issue CLOSE, SVC 20, to close the ACB.

The VSAM-user's program, an ABEND

VSAM-Uoer's VSAM-User's
DataSet Index

I{ J Records Records
Written Written

~ for the VSAM·user's program, or the
ISAM-Interface Close routine issued CLOSE VSAM· 0' ISAM·Use,·s

(SVC 20). OS/VS CLOSE enters VSAM here.
Address Space

J VSAM Close Processing

Relister 13

... tMWA Module Work Area ..
4. Build work areas. Re2ister 4

S. If a dummy data set is being closed.~ C tCLW

Common Work Area
Close Work Area
~

~ ~I CLWCOMWK

Inner RPL
PLHDR

~6. Complete all pending I/O. r-- PLH RPLPLHPT

Ii: ~ ~ PLHMRPL I
RPLDACB

~ 7. If a path IS being closed. • @ I PLHCRPL I
8. If a base cluster is being closed. • @

AMB
9. If the last ACB associated with the base cluster

is being closed. • ® Redster 2

1 tUser ACB I ~IO. Ter.!!'inate close processing. AMBPH

~ ACB AMBL

~
~ ACBAMBL

l,

IE-

~.

:::
(1)

:;:-
0
c-
o ...,
0
'0
'" ..,
~ o·
::l

./:>.

r
Notes for Diagram AD1

Note: If CLOSE (TYPE=T) is issued, the data set's
catalog information is updated to reflect its current status
and an SMF record is written. See "Temporary Close
(TYPE= T) of a VSAM Cluster" in the Program
Organization compendiums for details on the CLOSE
(TYPE= T) process.

(SAM Interface Close Processing:

If the DCB data-set organization (DCBDSORG) field
indicates that an ACB is being processed and if the
DEBFLGSI field (in the DEB) indicates ISAM Interface
processing, OS!VS Close modules (IGCOOO20 and
IFG0200V) do the following:

IGCOOO20: Bypasses purging of the outstanding EXCP
requests.

IFG0200V: Bypasses DSCB processing and transfers
control to the ISAM Interface Close routine, IDA0200S.

2

3

IDA0200S: FLUSHBFR

The ISAM Interface Close routine issues a SYNCH
macro instruction to transfer control to the ISAM
Interface Load routine, which issues the final PUT
request, if all of these conditions exist:

The DCB was opened for output in the locate
mode and a PUT request was issued prior to the
CLOSE request (indicated in the DCBMACRF
field).

• No errors occurred (indicated in the DCBEXCD
field).

• The ACB associated with the user program's DCB
was not previously closed (indicated in the
ACBOFLGS field).

See "Data Areas" for details about the ACB.

See OS!VS2 Dala Areas for details about the
DCB and DEB.

IDA0200S: DELETRTN

The ISAM Interface Close routine resets each DCB
module address field. Virtual storage for the routines
is released to the system by issuing a DELETE macro
instruction against the ISAM Interface routines that
were loaded by ISAM Interface Open processing.

.IDA0200S: CLOSEACB

The ISAM Interface Close routine issues a CLOSE
macro instruction (SVC 20) to close the VSAM ACB.

r
When VSAM Close processing completes (the ACB
built during ISAM Interface Open processing is
closed), ISAM Interface Close processing continues at
step 68 (see Diagram AD6).

VSAM Close Processing:

OS!VS Close modules (IGCOOO20 and IFG0200V) allow
an ACB to be closed.

IGCOOO20 bypasses the DEB validity check and the
purging of outstanding EXCP requests and, if a VSAM
catalog is being closed, calls IFG0200N to locate the
TIOT entry and read the JFCB for the catalog ACB.

IFG0200V reads the JFCB for non-catalog ACBs and
tests for the user program's diagnostic options (i.e.
Generalized Trace Facility), and sets the ID field for each
ACB entry in the WTG table to COT', the identifier of
the VSAM Close module.

The input is from IFG0200T.

4 IDA0200T: INIT200T, GETCORE

The module work area and the close work area are
built.

If neither a catalog nor a catalog recovery area in
system storage (SCRA) is being closed, the dummy
DEB is verified. Unless a dummy data set is being
closed, IDA0200T (ENQFUNC, ENQINIT,
PARMINIT) builds an ENQ parameter list and issues
ENQ for every data set associated with the user ACB.
The parameter list indicates 'SYSVSAM' as the major
resource and control-interval number of the data set,
catalog ACB address, and 'B' (busy) as the minor
resource.

6 IDA0200T: FLQUlS, ENDIO

If the close is not for an ABEND and is not for
improved control-interval access to load a data set or
process the mass storage volume inventory data set,
the data set is flushed and quiesced (that is, any I/O
activity yet to be done or already started is done):

An inner RPL is built and pointed to the user ACB.
The PLH chain is searched for PLHs connected to the
user ACB. The inner RPL is connected to each PLH
and an ENDREQ macro is issued. No record is
returned for an incomplete input request (GET or
POINT). The output buffer is written to the VSAM
data set for an incomplete output request (PUT or
ERASE). After I/O completes, the inner RPL is freed.

7 IDA0200T: CLSPATH

The alternate index in a path is closed before the base

r
cluster. See Diagram AD2.

8 IDA02OOT:CLSBASE

The cluster being closed may be a base cluster (part of
a path), a cluster that was not processed through a
path, or an alternate index that was itself processed by
the user. See Diagram AD3.

9 IDA02OOT:CLSPHERE

This processing is not done if an ACB for the cluster is
still open. For example, two users might have been
processing a cluster, and the first user is closing his
ACB. See Diagram AD4.

10 IDA0200T: TERM200T

Before termination processing, the base AMBL is
freed. See Diagram AD6.

& Diagram AD2. VSAM CLOSE: Close the Alternate Index in a Path
o
til
<
til
N

til
<
til

S'
Q.
(1)

'"0
(1)

::l
Q.
(1)

a
(')
o
3
'"0 o
::l
(1)

a
<
5:
c::
e?.
til o
~
;I>

~
CIl
CIl

3:
(1) ..
:r
8-
< til
;I>

e
b
00
(;.

BIB

Primary
Path AMBL

AMBLSCHN

AMBLDTA

AMBLIX

AMBPAMBL

AMBLDTA

AMBLIX

AMBs

(BIBPAMBL
Primary Secondary Secondary
Base AMBL Base AMBL Base AMBL

'J ..
AMBLSCHN V AMBLSCHN AMBLSCHN

Primary Secondary Secondary
Path AMBL Path AMBL Path AMBL

'I I'll
AMBLSCHN AMBLSCHN AMBLSCHN

'\'\

Close Work A

CLWPARCL=l

or

CLWPRMCL=1 ~
CLWSECCL=l

11. Is t.hiS the only path associated with the basefo
cluster? .~

INO .s \!T -Primary

12. Unless.an upgrade AMBL exists for the ·Path AMBL
alternate index, indicate a primary close is
being done. • @

~ AMBLSCHN

;'" AMBLDTA
13. Is the alternate index's AMBL a primary AMBL?

~
No s

't
14. Change the first secondary AMBL to a

primary AMBL. ~© ~-
I S. Indicate a secondary close is being done~

-
I (

Disconnect the AMBL from the chain. ~

@ 17. Indicate a secondary close is being done.~
~ 18. Close the alternate index in the path. ~
I
I

~ 19. Was there an error in the close?

~, y~

AMBLIX'

AMBs

AMBPAMBL

I

JSCB ~ VAT U Path AMBL ~
1,/ VATAMBL(l) ~ I

20. Remove the AMBL from the valid·AMBL table. ~ L

21. Turn off all close indicators in the close work ~,.
area.

£
VAT

JSCBSHR VATAMBL(2)
VATAMBL(1)

o
Y.ATAMBL(3)

VATAMBL(3)

Register 1 5 $J
Return 'Code r /

~: ~

IT =0

=0

Secondary Pith AMBL
Becomes
Primary Path AMBL

AMBLPRIM=l

,.. AMBLDTA

AMBLIX

AMBs

It
..,

'-- AMBPAMBL

~--

Secondary

raIn ftMDl"

AMBLSCHN

l,

a::
~

;.
o
0-

s..
o
'g

a o·
:::

~

r
Notes for Diagram AD2

Except for step 20, all the processing in this diagram is
done by IDA0200B.

12

15

17

18

When an upgrade AMBL exists for the alternate indes
being closed, a partial close is indicated for Diagram
AD5 processing. For a partial close, only the string
blocks for the path, not for the upgrade set, are closed.

For a primary close, the last user is closing his ACB
for the base cluster-no primary AMBL or related
control blocks need be kept for further user
processing.

For a secondary close, at least one more user still has
an ACB open for the base cluster-the primary
AMBLs and related control blocks must be kept for
further user processing.

See note for step 15.

See Diagram AD5.

20 IDA02OOT: RMOV AMBL

The storage for the AMBL is freed.

r r

VI
o
o
en

" <: en
N

en
<:
en
5'
0-
o

"0 o
::
0-
o a
n
o
8
"0 o
:: o
~
~
::l
c::
e:..
en
S
I»

{J<l
o

~
(')
o
~

~
o
S-
O
0-

< en
:> g
t""
o
'!9.
(')

Diagram AD3. VSAM CLOSE: Close the Base Cluster (or a Cluster Not in a Path)

BIB

'~
AMBL

AMBLSCHN

AMBL
AMOL r
I. Uh' ~" • ...I AMBLPCHNI-'

BIB AMBL

I ""PAM"L r'r-A-M-B-L-S-C-H-N~ J •

23. Disconnect the AMBL fro~he

AMBL AMBL secondary chain. l ®

AMBL

~ No
22. Is the cluster's AMBL a primary AMBL?

AMBLSCHN
Yes

VAT

I vmAMOLt

Disconnect the AMBL from the primary chain. 'iIOumkonnnontfll

VAT

VATPAMBL AMBLPCHN

~ ::>24.

25. Is there a second ary AMBL?
Yes No

VAT AMBL AMBL

-1
VATPAMBL AMBLPCHN 1-'''- AMBLSCHN

+ -..®
26. Change the first

primary AMBL.

VAT AMBL AMBL

secondary AMBL to a
VATPAMBL AMBLPCHNf--- AMBLSCHN

AMBLPCHN 27. Is a catalog, a ca alog recovery area in system
AMBLPCHN ass storage volume inventory

'sed? First Secondary
BIB Output AMBL

~ storage, or the m
23 data set being cI

Yes No BIB ~Primary AMBL

BIBPAMBL f-

~.

of Step 24 ~ AMBLPRIM=O f
-,/

28. Indicate . ~,ond"y do,", i< b"n~ 1 BIBPAMBL

Close Work Area ~

~
~ 29. Indicate a primary close is being done.

Close Work Area
I

CLWPA TH= 1 - _ _ _ 30. Is the cluster belpg closed a base cluster in a
-_ _ path?

No~Yes

CLWSECCL=!

LWPRMCL=! • 31.
Register 2

Use the inner ACB for the close (not t'2<.???.??.:J- Register 2
,·c?.?.?.?2~1 the user s ACB). Hnner ACB tUser ACB

AMBLPRIM=1

AMBLPCHN

r:l~
~

Register! 5 ~ ~ 32. Close the cluster. • @ BIB ":.I Inner AC B

IReturnCode ~------~33. Wasth~a~rorintheclose? d!
No Yes~

t. Turn off all close indicators in the close work area. 0

BIBDAC" ro
\., ~

3:
(II

;.
o a.
o ...
o

'1:1
fTI ...
~ o·
::l
u.

r
Notes for Diagram AD3

The cluster being closed can be a base cluster that was
being processed through a path, a cluster that was not
being processed through a path, or an alternate index that
was itself processed by the user.

Except for some processing following step 33, IDA0200B
does all the processing in this diagram.

24

26

28

29

31

32

For disconnecting the AMBL and changing AMBL
pointers (step 26), an ENQ is issued to exclusively
control the resources for the job step.

After AMBL pointers are changed, a DEQ is issued to
free the resources for the job step.

See note for step 15.

See the explanation for a primary close in the note for
step 12.

The inner ACB is used because the user ACB contains
parameters for closing a path, not for closing a base
cluster.

See Diagram ADS.

33 IDA0200T: RMOV AMBL

If there was no error, register 2 is pointed back to the
user ACB. Unless a catalog, a catalog recovery area in
system storage (SCRA), or the mass storage volume
inventory data set is being closed, the AMBL is
removed from the valid-AMBL table.

r r

v.
N

o
fJJ
"'-<
fJJ
N

fJJ

<
fJJ

;-
0-
(1)

?l
:::I
0-
(1)

;:!.
(j
o
3
"0
o
:::I
(1)

~
~
:l c:
~
fJJ

0"
j;l

OQ
(1)

>g
(1)

~

~
(1)

;.
o
0-

<
CIl
>
~

b'
OQ ;:;.

Diagram AD4. VSAM CLOSE: Close Upgrade Alternate Indexes and Free Storage

AMBL

AMBLBIB

AMBL

AMBLBIB

\,,\BIB

BIBWSHD

BIBSPHPT

BIBPRSPH

£

\.,

,
..:? 35. Is there an upgrade table? Close Work Area

- - Yes ~{.:;\ J
_- - • ~ 1-------1

- 36. Indicate a primary close is being done.~ CLWPRMCL=!

BIB

~ tUPT f-
or 0

Repeat steps 37 and 38 for each alternate index in
the upgrade set· Register 2

-"'.I tupgrade ACB r
37. Point to the upgrade ACB.

Register 1 5 ~
I Return Code t------~

38. Close the upgrade alternate index.~ UPT

II 39. Was there an error in a close?
UPTRPL

No Y~s

t ,
t@

, WSHD Working

40 Remove the upgrade AMBL(s) from the valid
AMBL table.

TIOT Storage

~

RPL ACB

RPLDACB V ACBAMBL

UCB
-,

:

41.

~ 42.

Turn off the close indicator in the close work
area.~
Decrement UCB use counts.$® TIOEFSRT L------I ;j UCBDMCT

~ Wo,k'.'

•

I-'
Sphere
Block Storage

~

VMT

BIB ~
UCB

VMTUCB(I) ~-:iI

BIBVMT 10- VMTUCB(2) V UCBDMCT

43. Free volume mount tables.

44. Remove the AMBL pointed to by the BIB from
the valid-AMBL table.

45. Free working storage, sphere block, and
protected sphere block.

~ Pm',,'" Working
Sphere Bloc k ~ Storage

~

VAT

46. Delete modules loaded by Open.

47. If the user's SYNAD routine was loaded by
Open, delete it.

48. Free the base information block.

II
49. If processing was with shared resources,

decrement the VSRT use count. ooo::;;,C2~2':i2!<:i!:!:~;;;;~~~~ ! \~

~. \,

3::
~

So
~
S,
o
"0
(1) ...
a g.
VI

r
Notes for Diagram AD4

35 IDA0200T: CLSUPGR

37IDA02OOT:CLSUPGR

After the last upgrade alternate index is closed,
register 2 is pointed back to the user ACB.

38 IDA0200T calls IDA0200B

See Diagram ADS.

40 IDA0200T: RMOV AMBL

42 IDA0200T: VMTPROC, DCRUCBCT

Use counts are decremented one way for closing a
catalog and another way for closing other data sets:

For closing a catalog, the UCB use count is
decremented if the UCB indicated by the task I/O
table is the same UCB as that indicated in the volume
mount table.

If neither a catalog nor a catalog recovery area is
being closed and restart isn't indicated, the UCB use
counts in the volume mount table are decremented for
those volumes with valid serial numbers.

43 IDA0200T: FREECORE

44 IDA0200T: RMOV AMBL

45 IDA0200T: FREECORE, FREESPHR

For information about the sphere block and the
protected sphere block, see "Virtual-Storage
Management" in "Diagnostic Aids."

48 IDA0200T: FREECORE

The base information block is described in
"Virtual-Storage Management" in "Diagnostic Aids."

r r

Vl
o
Vl
<:
Vl
tv
Vl
<:
Vl

[
~
"0
~
;:)
0-
~ a
n
o
3
'8
;:)
~
;:)
:7
<:
5:
c::
e!..
Vl
S
10

(JQ
~

>
(l
(l
.."
til
til

3::
.."

5"-
8-
< Vl

> ;
t"'" o

(JQ

n'

Diagram ADS.

Register 2

ntACB 1
l ACB

r
..,

ACBAMBL h
~

r1 ACBDEB

r
t DEBs

~ I-

~
L

I

~
CLWPRMCL

CLWSECCL

CLWPARCL

Data Set
Activity Information

l,

VSAM CLOSE: Close a Cluster

JSCB
--

JSCBSHR l
I /

VAT

ivATPAMBl

1
AMBL

1

I

~
/

/
/

,,-'
?I

SO. Check the validity of the ACB's AMBL and
DEBs.

51. For processing with shared resources, write
buffers marked for output.

~ 52. Is a primary close being done?

/FlJNO .s
(35 53. Re.lease all shared resources that are no

longer used.

--

54. Update the catalog r~cords ~or. the data and.. ~
mdex components wIth statIstIcs of the actIvIty
that occurred while the cluster was open.

'55. Decrement use counts for devices associated
with the ACB.

56. Does the OS/VS system include System
Management Facilities (SMF)?

No Yes

I ~. Write SMF record type 64 - Data Set .f-- Status.

~ 58. Is a secondary close being done?
Yes No

t
~ 59. Is a partial close being done?

No Yes

+~
60. Delete VSAM DEBs from DEB table and

unchain them.

61. Demount volumes associated with the @ •• __ 7 ACB.

... 62. Free storage of control blocks associated with
theACB.~

\.,

VSAM Catalog

Register IS

Return Code

l,

3:
(1)

:r
o a.
o -.
o
"0
(1) ..,
~ o·
=
v.
v.

r
Notes for Diagram ADS

50 IDA0200B: INITlOOB, VALCHECK, PROBDT (calls
IDAOI92P)

The DEBCHK SVC is used to check the validity of
DEBs.

51IDA02OOB: WRITBUFR, GETCORE, WRBUFFER,
CBINIT, FREECORE, PROBDT

52

Inner control blocks are built and the WRTBFR macro
is issued to write data still in buffers.

See the explanation for a primary close in the note for
step 12.

53 IDA0200B: SHARE, SHAREDEQ

DEQ is issued.

54 IDA0200B: UPCATACB, UPCATDEQ (calls
IDAOI92C), PROBDT

55 IDA02OOB: VMTPROC
57 IDA0200B: UPSMF (calls IDAOI92S)

58

59

One SMF record type 64, is written for each AMB (for
data set or index) connected to the ACB's AMBL.

See OS/VS System Management Facilities (SMF) for
a description of SMF record type 64-Data Set Status.

See "Data Areas" for details about the AMDSB,
AMB, AMBL, and ACB.

See note for step 15.

See the explanation of a partial close in the note for
step 12. If neither a partial nor a secondary close is
being done, a primary close is being done.

60 IDA0200B: DEHOOK

The DEBCHK SVC is used. It removes VSAM DEBs
from the TCB DEB chain.

61 IDA0200B:

lDAOl92D destages data from the direct-access
storage staging drive to mass storage.

62 IDA0200B: CBRELE

r r

~ Diagram AD6. VSAM CLOSE: Terminate Close Processing
o
~
"'..
",j
N

Vl

<
Vl

S'
0-
n
-0
n
::l
0-
n a
(')
o a
-0 o
::l
n a
< S·
c:
e?.
!!l o .,
~

()Q
n

:>
g
n
V>
V>

:::
n
S-o
0-

< Vl

~
~

s
~.
n

~ VSAM- or ISAM-User's Address Space --, a. VSAM Close Processing VSAM- or ISAM-User's Address Space

ACB DEB 63_ If a dummy data set is being closed, unchain its V dummy DEB and free the dummy DEB's AC8 ~ DEB
storage. ~

ACBDEB"'", 64. Reset the user's ACB to its condition before it ACBDEB ~ ,......
was opened.

65. Free work areas.
Dummy DEB Dummy OEB

~
~ \o,~ ,..

DEB DEB ,..-----
~ ~

,
ACB

ISAM-User's AddJess Space OS/VS Close - Final Processing Reset to
66. Bypass access method executor processing for all Conditions

, VSAM ACBs being closed. Defore Open
IICD Jr------. ...

SYN~D 67. Return to the caller or ISAM interface,.~ _ Error Flags
t I ' I Routmes

RPLS ...---'----..... ~ I_ iSAM.l?terface!-- N" • __________________ ..;:;OO~~--...

Processmg
Routines ~

• ISAM-Interface Close Processing
'. RlS l - - -- -- - --- I r-R-e-tu-r-n-C-o-d-e'

read and write records in a VSAM data set.

69. Reset the DCB so that it can be open~d again.

OS/VS Close - Final Processing

170. Return to the ISAM-user's program. I

\. 4-

(SAM-User's Address Space

DCB
Set to Conditions
Before Open

~

3::
(1)

;.
o
0-

o -.
o
'0
(1)

a o·
::)

VI
-..)

r
Notes for Diagram AD6

63 IDA02OOT: DEHOOK, DECHNDEB

IDA0200T calls IDAOI92C

If a catalog is being closed, IDA0l92C issues a dummy
LOCATE to indicate that the closing of the catalog is
complete.

Unless a dummy data set has been closed (see note
between notes for steps 4 and 6), a DEQ parameter list
is built and a DEQ is issued for every data set
associated with the user ACB. The parameter list
indicates "SYSVSAM" as the major resource and
control-interval number of the data set, catalog ACB
address, and 'B' (busy) as the minor resource.

64 IDA02OOT: RESTORE

The ACB condition before it was opened is:

• Open bit (ACBOFLGS) is off

• Address of the VSAM interface routine
(IDAOI9Rl) is 0

• Address of the AMBL is 0

• DDNAME field contains the DDNAME from the
TIOEDDNM field in the TIOT DD entry

6S IDA0200T: FREECORE

The storage for the close work area and the module
work area is freed.

66 IDA0200T

The VSAM Close routine sets the ACB's open bit
(ACBOFLGS) off if the ACB is closed successfully. If
an error occurs while closing an ACB, the VSAM
Close routine or OS/VS Close sets the appropriate
error flag.

The VSAM Close routine returns control to OS/VS
Close by putting the identifier of the Close Final
Termination routine, X'2L', in the WTG table and
transferring control (through the IECRES macro
instruction) to the O/C/EOV resident routine. The
resident routine examines the close parameter list and,
if all ACB entries have been processed by the VSAM
Close routine, returns to the OS/VS Close Final
Termination routine. If not, the next ACB entry in the
close parameter list is processed (return to step 4).

OS/VS Close modules (IFG0200W and IFG0200Y)
ensure that an ACB entry in the close parameter list is
not processed by any access method executor routine.

r
IFG0200W sets the identifier for each VSAM ACB
entry in the WTG table to O.

IFG0200Y sets the identifier for each VSAM ACB
entry in the WTG table to C'2L', the identifier of the
OS/VS Close Final Termination routine.

IFG0202L sets the return code in register 15.

See "Diagnostic Aids" for details about the VSAM
Close return codes and error codes.

ISAM Interface Close Processing (continued):

68IDA02OOS:FREEBFRS,FREEDEB,RESETDCB,
FREEW A, FREEMAIN

The ISAM Interface Close routine releases the virtual
storage obtained for the ACB, the IICB, the DEB, the
RPLs, and the ISAM Interface buffers.

69 IDA0200S: RESETDCB

The DCB conditions before open are:

• DCBOFLGS: Open bit off, Lock bit off (set to I),
and Busy bit off

• DCBDSORG: ISAM-Interface bit off

r

~ Diagram AEI. VSAM End-of-Volume: Obtain the VSAM Object's Next Volume
o
en
........
<:
en
N

en
<:
en -::l 0-
~

'g
8-
~ a
n

~
::l
~

~
<:
;i'
c
E..
en
8"

~
> n
~
~

~
~

Go
8.
< en ;
i
n

Virtual Storage 0 btained for
VSAM Record Management

Rl AMB

Type of Request

Type of Object

tRBA or Key

Work Area

RBA or Key

Note: An "object" can be a VSAM data set, index,
catalog, or catalog recovery area .
VSAM Record Management routine

y OS!VS EOV Initial Processing

I. Is the object a VSAM catalog or
ca talog recovery area?

-~ --------- No Yes • 2. Modify the JFCB and build an
Alternate nOT entry to allow
VSAM EOV to process the VSAM
catalog as a key-sequenced data set.

~--------------------~''\

Virtual Storage Obtained for
VSAM EndoOr-Volume

CTGPL

To Retrieve
the Object's
Catalog
Record

'-'

CTGFLs

For Extent
Information

VSAM Catalog --
Object's
Catalog
Record

Volume
Catalog
Record

''\ 3. Is this a request to update the catalog?

" No Yes " ,'1' Update the data set's AMOSB
'\ in the catalog. • ®

" VSAM End-of-Volume:
~Locate and Mount the Object's Next Volume

5. Identify the volume that contains the caIIer
specified RBA or key value. (See Diagram DE I,
"LOCATE: Retrieve Catalog Information.")

Mount the volume identified in Step 5.

Is more space to be allocated to the object?
Yes No , ~

AIIocate additional space to the object

8. Can the object's allocation requirements be met
by the available space on the currently mounted
volume?
No Yes

I ~
9. Is the additional space for one of the data set's

or catalog's key-ranges?
No Yes

'-'

TCB

Virtual Storage Obtained for
EndoOf-Volume Work Area

Volume Serial Number

Device Type

Extent Information

Alternate
TIOT
r---

Serial Number of Object's
Next (Candidate) Volume

"Demount Volume [XXXXXll
from Unit [YYYI"

'--__ -=--__ ..J1 "Mount Volume [XXXXX21
on Unit [YYY)"

L,

3::
",

;;.
0
0.

S,
0

'" ", ..,
:::.
0'
::l

V>
\0

r
Notes for Diagram AEI

Diagram AEI describes VSAM end-of-volume (EOV)
processing. VSAM end-of-volume is called by OS/VS
EOV when SVC 55 is issued by VSAM Record
Management routines. VSAM end-of-volume provides
these services:

When the GET routine detects that the requested
record is not on any of the currently mounted volumes
for the data set, a volume is demounted, if necessary,
and the volume that contains the requested record is
mounted.

• When a PUT request cannot be completed because
there is no more space in the object, additional spaCe
is allocated to the object. The amount is based on the
object's space allocation requirement. If enough space
is available to satisfy the object's space allocation
requirement, the space is allocated from the free space
in:

First, the VSAM data space containing the object.

- Next, the volume containing the object. If an
object's key range is assigned more space, space is
allocated from the volume containing the key range
if the object has not been assigned an overflow
volume. Otherwise, (for key range only) space is
allocated from another volume that has been
assigned to the key range's object as an overflow
volume.

- Finally, another VSAM volume that has been
assigned to the object as a candidate volume.

IGCOOO5E,IFG0551F

If register 1 addresses an AMB (for VSAM EOV
processing), the OS/VS EOV routine sets the ID field
in thewhere-to-go (WTG) table to C'7A', the
identifier of the VSAM EOV routine. The WTG table
built for an EOV request contains only one entry. All
further OS!VS EOV routines are bypassed.

2 IFG0550Y

IDA0557A 3

4

5

The request is either to handle an end-of-volume
condition or to update information in the catalog.

IDA0557A: CATUPD (which calls IDA0192C)

The AMDSS contains statistics for the data set.

IDA0557 A: VOLLOC (calls ARDBSCH)

The volume information sets of fields (in the object's
catalog record) contain the volume serial number of

r
each volume (used or candidate) assigned to the
object. The volume information sets of fields also
contain the low and high key values of each key range,
and the low and high RBA values of each extent in the
object.

If the end-of-volume request is for more space on the
currently mounted volume, the volume's serial number
is in the end-of-data ARDB.

6 IDA0557A: VOLLOC (calls VOLMNT)

The VSAM Volume Mount and Verify routine
(IDA0192V) confirms that the specified volume is
mounted. If no device is available for the volume, the
VSAM Volume Mount and Verify routine requests
that the operator demount a volume not in use. If all
devices contain volumes currently in use, the VSAM
Volume Mount and Verify routine sets the
volume-not-mounted return code and returns to the
caller.

7 IDAOSS7 A: ALLOCSPC

If the AMB's allocate-space request option indicator is
on, the VSAM end-of-volume routine gets more space
for the object.

See "Data Areas" for details about the AMB.

8 IDA0557A: ALLOCSPC (calls (CATALC)

The volume catalog record defines a VSAM direct
access volume in terms of the objects it contains, the
VSAM data spaces it contains, and the available (free)
space in each of it's data spaces.

See "Data Areas" for details about the volume catalog
record.

r

g;
o
Vl
"<
Vl
N

Vl
<
Vl

::l
0-

'" ~
::l
0-

'" ;::
()
o
3
"0
o
::l

'" ~
< ;;:
c:
e..
S!l
o ..,
III

0<>

'" :>
(")
(")

'" til
til

~
'" So
8-
< Vl
:> ;
r o

0<> o·

Diagram AE2. VSAM End-of-Volume: Obtain the VSAM Object's Next Volume

Virtual Storage Obtained
for VSAM End-of-Volume

Virtual Storage Obtained
for End-of-Volume

Rl

Volume Serial
Numbers
Extent
Information
Freespace
Information

Update Data

Extent
Information ~
RBAs

Freespace
on Volume
Volume
Information

Allocate additional space to a key-range

10. Mount the overflow volume assigned to the
~ key-range.

'F ~1l. Obtain an amount of space based on the key-range's
space allocation requirements. (See Diagram 011,
"UPDA TE-Extend: Obtain Additional Space for
a VSAM Object.")

12. Can the available space on the overflow volume
satisfy the space allocation requirements of the
key-range?

No Yes

Allocate additional space to an object

13. Mount the object's candidate volume in place of
the volume mounted in step 6.

14. Obtain an amount of space based on the object's
space allocation requirements. (See Diagram OJ I,
"UPDATE-Extend: Obtain Additional Space for
a VSAM Object.")

Update system control blocks that describe the
object's space on the newly mounted volume.

15. Build a new DEB that contains a direct-access
storage device section for each of the object's ~
extents on currently mounted volumes.

User's Data Set
Volumes -

Data Set

Freespace

New Extent
for
Data Set

Virtual Storage Obtained for
Record Management

Virtual Storage Obtained
for Record Management

Build an EDB for each extent (on the newly == ::;::::r'1 r
mounted volume) associated with the object. .. ________________

(ii'\ - .. Does the OS/VS system include the system
~ management facilities (SMF)? SMF DataSet "I No • F ~ '""': " •. Writ< SMF re,md typ, 64 - D;:: S,tSt.tu,

"-____ ':.-=.-=.-=.-=.-=.-=.-=.-=.-: ___ --' ~~. Return to the caller. .~ Return Code I

,::: ==
Record

...... Type 64

\.., \.., ~.

r
Notes for Diagram AE2

10 IDA0557A: VOLSW (calls CATLOCNC and VOLMNT)

If the key range's object has an overflow volume
assigned to it, additional space for the key range is
allocated from the overflow volume, If no overflow
volume is assigned to the object, steps 8 through 10
are bypassed and the space is allocated from the
object's candidate volume.

11 IDA0557 A: VOLSW (calls CATALC and CATUPDVO)

The object's catalog record describes its space
allocation requirements.

12 IDA0557A: VOLSW (calls CATLOCNC)

If there is not enough available space on the overflow
volume to satisfy the allocation requirements of the
key range, space is allocated from the object's
candidate volume.

13 IDA0557 A: ALLOCSPC (calls VOLSW)

If the volumes are full, and no other volume
(candidate) is assigned to the object, the VSAM EOV
routine sets the space-not-allocated return code and
returns to the caller.

See OS/VS2 SVS Independent Component: Access
Method Services for a description of how candidate
volumes are assigned to VSAM objects.

14 IDA0557A: CATALC

The object's catalog record describes its space
allocation requirements.

See "Data Areas" for details about the catalog record
details, and the volume information set-of-fields.

15 IDA0557A: CTLBLK (calls DSCTLBLK)

See "Data Areas" for details about the ACB and EDB.
See OS/VS2 Data Areas for details about the DEB.

The VSAM EOV routine builds a new DEB and EDB
that replaces the existing DEB and EDB. The new
DEB and EDB contain extent information that

s: describe:
(1)

;. Each of the object's extents (on currently mounted
8.. volumes) that was not affected by the EOV
8, process .

.a> Each extent that defines the object's newly
~ obtained space (if any).
III g. • None of the object's extents on volumes that were
::: demounted.
0-

r
16 IDA0557A: DSCTLCLK (calls CATLOCXT and

CATLOCRB)

See "Data Areas" for details about the data set catalog
record, the volume information set of fields, and the
EDB.

18 IDA0557A: SMFUPD (calls CATLOCDS)

See OS/VS System Management Facilities (SMF) for
a description of SMF record type 64.

19 IDA0557 A: TERM, PROBDET

See "Diagnostic Aids" for details about the VSAM
End-of-Volume return codes and error codes.

If an error is detected, the VSAM End of Volume
routine attempts to determine the type of error and
builds a message describing the error.

('

~ Diagram AFt. BLDVRP/DLVRP: Build or Delete a VSAM Resource Pool
o en

< en
N

en
<:
en
5"
0-

~
Q
0-
(D

a
(j
o
3
'8
Q
(D

~
<:
;i'
t:
!!?
en
0-...
I»

(JQ
(D

~
R
fIl
fIl

~
(D

ET-
o
0-

~
> ;
r
o

(JQ o·

l,

Register 2

tBLPRM

-r-----------~~;'
tBuffer
Subpool
List

'-
" "

-/-/
/-

"-Buffer Subpool List " " "-
" " '-

Build a Resource Pool

/7 1. Check the validity of the parameter list.

2. If there is no valid-AMBL table, build one.

4. Build a working storage header and CPA header.

5. Build a pool of placeholders. ~
6. Build the buffer subpools requested.

7. Return the caller.

Delete a Resource Pool

8. Check the validity of the parameter list.

9. Is there a VSAM shared resource table?

'
NO.

10. Unchain it from the valid-AMBL table. ~

11. Free all storage used for the resource pool.

12. Return to the caller.

~

JSCB

JSCBSHR

tWSHD

tCPAHDR

tPLHDR

tBSPH

tIOB

tNext PLH

BSPH

t.BUFC

· ·7

JSCB VAT

J~MHR I ~r--tV-S-R-T=-o---'1

~

s:
(1)

:T-
o
0-

s..
o
~ a o·
:l

0-
VI

r
Notes for Diagram AFt

BLDVRP

IDAOl92Y: DBDCVAL

BLPRM is the BLDVRP parameter list. There must be
no conflicting parameters, and buffer sizes must pe
valid.

2 IDAOl92Y: BLDVAT

3 IDAOl92Y: BLDVSRT

The VSAM shared resource table is initialized to
receive pointers in subsequent processing. The control
block structure for processing with shared resources is
illustrated in "Control Block Interrelationships" in
"Data Areas."

4 IDAOI92Y: BLDWSHD

5 IDAOI92Y: INITPLHP

6 IDAOl92Y: BLDBUFC

IDAOI92Y: BLDVRP

The address of the VSAM shared resource table is put
into the valid-AMBL table. If this chaining couldn't be
done, the DLVRP procedure gets control to delete the
resource pool.

8 DLVRP

9

There must be no conflicting parameters and no ACBs
optn to use the resource pool. If an ACB is open to use
it, the DLVRP is rejected.

If DLVRP is issued without a previous BLDVRP,
there is no VSAM shared resource table.

10 IDAOI92Y: DELVRP

11 IDAOI92Y: FREEVSRT

r r

<t: Diagram AG 1. VSAM Checkpoint: Checkpointing VSAM Control Blocks
o
V1
"-< .n
N

V1
<
V1

:::l
0-
f'

~
:::l
0-
."

:::.
n
o
3

"0
o
:::l
."

:::.
<
;3.'
c
E..
V1
0'
~

"" ."

>
(')

~
gj

3:
." s-o
0-

:<
V1

>
3:

b
"" (i'

JSCB

R
e g

VSAM{ Data
Sets

~

ACB

Ace

l. Obtain storage and initiali7.e VCRWA,

~ __ -:.~ 2. ,For each VSAM data set:

'" / Y , " , " / "8. Build VSAM checkpoint/restart tab -- ~ - - - ~ b. Issue CLOSE TVPE=T to complete
flush buffers.

Ie (VCRT).

I/O and

c. Perform VSAM reposition processing as
required.

d. All VSAM data sets processed.

Yes No

, £
3. Return to IGC 0206C.

~

VCRT'S

I
I

r

:---

}
VSAM
Data
Sets

VCRWA

I

~

~
:r
8.
o ...,
o
"'0 ...
~ o·
::I

0\
\Jl

r
Notes for Diagram AGI

IDAOC06C receives control from IGC0206C via
BALRI4,15.

1 Obtain and initialize VCRW A. The JSCBSHR field is
saved in the VCRWA so that VSAM restart can
restore it.

2 For each VSAM data set, build a VCRT and chain to
the primary AMBL's BIB (each VCRT points to the
VCRWA), issue CLOSE TYPE=T, and perform
reposition processing. The current CI is gotten from
the data set and is reflected to the restart half of
checkpoint/restart.

7 Control returns to IGC0206C.

r r

is::
o
ell

< ell
N

ell

~ -::I 0-
~

"0
~

6.
(I>

a
(")
o
.g
o
::I
(I>

~
<:
~ e:.
ell
8'

~
> n
n

~
3::
~ s-o
0-

< ell

> e
S'
~.
n

Diagram AHI. VSAM Restart: Rebuild VSAM Control Blocks

VCRWA
//

Restore address of V AT in JSCBSHR.

:'12. For each open and upgrade entry.
/

/ 11 a. Free all fixed string and fixed upgrade string

..... ~ 1.

////

/ / ~ HEB's.
/ / I / / d b. Free the VSAM subpool 253 IRB from the

JSCB VAT AMBL

/ I \.!) data set DEB .
// I c. Rebuild all PFL's and their associated CMBCMBHEB ,...P_F_L ___ -.

1/ /,; strings which describe storage locations. ~ tHEB H tPFL H
/ / (i!f

/ /
/ /

/ /
/ /

// /

Model IRB
3. Issue CIRB to obtain mol,iellRB in caller's key ~

and state. _ISUbPOOI253~

/ I
I Data AMB DEB IRB

/
I

":7..,.4.

;//fs)/I
15 tACB

For each open upgrade entry. issue GETMAIN
for VSAM IRB's in sub pool 254 and copy contents
of modellRB to getmained IRB. ~

......
.... ~ @ __ ~5.

tCMB

tAMB

--~ tBIB

~ ~ l,

2:
tb
;-
8-
o
o
"0
tb

~
o·
:l

'"

r
Notes for Diagram AHI

VSAM restart

IDAOA05B restores the address of the V AT in the
JSCB. IDAOA05B is called from IGC"A05B.

2a IDAOA05b: INITLSQA,FREEHEBS.

For each primary AMBL, free all fixed string and
fixed upgrade string HEBs associated with al. VCRT
open and upgrade entries.

2b IDAOA05B: INITLSQA,FREEIRBS.

For each primary AMBL, free all subpool 253 IRBs
associated with all VCRT open and upgradL entries.

2c IDAOA05B: INITLSQA,BUILDBLK.

For each primary AMBL, rebuild all PFLs and their
associated CMB HEBs. Open module IDA0192M is
called to obtain the storage.

2c IDAOA05B: INITLSQA,BUILDBLK.

For each primary AMBL, rebuild all PFLs and their
associated CMB HEBs. Open module IDAOI92M is
called to obtain the storage.

3 IDAOA05B: INITLSQA,GETIRBS.

Obtain a model IRB via CIRB in the caller's key and
state, and reconstruct all VSAM DEBs in subpool 254.

5 IDAOA05B: INITLSQA,GETDEBS.

Rebuild all VSAM dummy DEBs in subpool 252. The
DEBs obtained by VS restart are freed.

r r

0"-
00

o en
"< en
N

en
< en
;-
0-
I'D
'0
I'D
::s
0-
I'D a
(')
o
3 -g
;
a
<
:i" c::
E.
en
0'
iil
~
:>
(')
(')
I'D

~

3:
I'D

S-
o
0-

< en
:> ;
b
~.
(')

Diagram AH2. VSAM Restart: Rebuild VSAM Control Blocks

BIB

VCRT

VCRT

tOpen h

(
tUpgrade

Open Entries ,/ ,

,

AMDSll

VSAM Cataloll

'-'

/
/

/
/

/
/

'11
/

/

6. Get core for RW A (this includes restart ACB
chain VCRT, VCRWA, and RWA.

/ __ . - ~ 7. Build and open restart ACB's and update VC
\" - open entries for restart.

\
\

\
\
\0

nd~ tRWA rRWA

veRT

tOpen
B

tUpgrade

tAMBL

tACB

\ ~
, ,

\
\

8. Ruild VCRT up,,,de w'd" to, ,,,,,,I. ~

•
Upgrade Entry ~

tAMBL
.. AMBL

~
9. Update user ACB and AMB nOT offset and

catalog ACB pointers.

- - - - - ~ 10. Check for data set (catalog) modified error.

II. Pass control via call to VSAM restart 2nd load

,.

~

AMB

~

JSCB

C
VAT

C
Restart
AMBL

AMB

C

1

Restart ~ c!J i..... 12. C1:" ,11 ,,,'," ACR·, open to, ,",,,n' d," ,,' ••• ,.!,,:oJCB I. IE

'//////////./.

being processed.

13. Free VeRT. V/RWA. and all storage gotten by ~®
VSAM restart.

14. ""um '0 lC" OA05B. 1
Return via BR 14.

\., \.,

a::
(D

go
8-
o ...,
o
'0
(D a ,s-
o
a
le

r
Notes for Diagram AH2

VSAM Restart

6 IDAOAOSB: INITLZ

Get storage for the restart ACBs, RWA, and RPL.

7 IDAOAOSB:OPENACB

The restart ACBs are opened, and the VCRT open
entries are updated to reflect the locations of the
restart AMBLs and ACBs.

8 IDAOAOSB: UPGRADE,UPDATE

The immediate upgrade entries are built, and the
VCRT up grate entries are updated. The catalog ACB
address and AMB/ ACB TlOT offsets are updated to
reflect restart time pointers.

11 IDAOAOSB:

Restart load 2 (IDAOB05B) is called to complete
repositioning or data set verification. On return, close
all restart ACBs, free restart work areas, and return to
IGCOA05B. IGCOA05B will XCTL to VS restart
module IGCOV05B.

r r'

-.J
o
o
!;n
<:
!;n
IV

~
!;n

[...
." ...
o
0-...
o ...
(")
o a
." o o ...
S.
<:
~.

eo.
!;n

o
iil
~
:>
~ ...
gj

s:: ...
S-o
0-

< !;n

:>
~
S

(JQ

o·

Diagram All. VSAM Restart: Rebuild VSAM Control Blocks

Restart AMOSB

~ i
1. Call PREFORMAT procedure if required to

reposition data set.

2. Call VERIFY procedure if required to obtain
current high water mark .

3. Call PUT (data) procedure if required to reposition
data set.

4. Call PUTlX (index) procedure if required to ~
reposition index set.

D-----~5.
",

",
,/

Call COPYRTN procedure to update user control
blocks.

Restart AROB ,/'"

D"''''
Restart HEB's

R"""eM8 ~Il

I L--J'~,~~,..,. 6.
AMBL

0------,. Call HEBSWAP procedure to swap certain header
element blocks.

Call PAG EFlX procedure if required to page fix
VSAM control blocks.

8. Return to IDA OA05B.

~ qp

\., '-'

)
VSAM
Data Set

User AMOSB

User AROB

User eMB

.--.

User HEB's ,/

\.,

3:
(\)

:;:-
8-
!a.
o

'1:1
(\) ..,
e! o·
::l

-..I

r
Notes for Diagram All

IDAOBOSB receives conkol from IDAOA05B

1 IDAOBOSB: PREFRMAT

PREFRMAT is called if reposition is required (create
mode KSDS or ESDS output CRPS = NC~,NRE, or
speed not specified and data set has been used).

2 IDAOBOSB:VERIFYHU

If data set is not in create mode and the immediate
upgrade data sets exist or if data set is KSDS/RRDS,
call VSAM VERIFY to obtain current high used RBA
for data set.

3 IDAOBOSB:PUTRTN

Call VSAM PUT to rewrite the data CI for ESDS
(noncreate mode) data sets that require repositioning.

4 IDAOBOSB:IDXPUT

Call VSAM PUTIX to rewrite the highest index CI of
each index level that existed at checkpoint time.

S IDAOBOSB:COP¥RTN

Copy, the restart AMDSB and ARDB to the user's
AMDSB and ARDB respectively, and also swap the
restart AMB DEB and EDB pointers with the DEB
and EDB pointers in the user's AMB.

6 IDAOB05B:HEBSWAP

Swap certain user HEBs with restart HEBs. The HEBs
to be swapped are the protected string, the DEB
blocks, and the EDB blocks.

7 IDAOBOSB:PAGEFIX

Perform page fix if ICIP with page fix option specified.

8 Return to IDAOA05B via BRI4.

r r

~
11>
;.
8-
o -
~
iil g.
=
w

r r'

Diagram BA 1. Record Management Table of Contents

VSAM
Overview
Diagram ABI

...

J, ! ! ! !
GET Macro

PUT Macro ENDREQ
GET Macro Processing ERASE Macro POINT Macro Macro
Processing Processing (Entry Processing Processing Processing
(Direct) (Sequential) Sequenced) Diagram BII Diagram BJ I (Noncreate)
Diagram BCI Diagram BDI Diagram BEl Diagram BKI

Creating a Key..sequenced Data Set Modifying a Key·Sequenced Data Set

PUT Macro
PUT Macro PUT Macro Processing

(Key Processing Processing

Sequenced) (Insert) (Modify)

Diagram BFI Diagram BHI Diagram BH2

J,
Getting a New J,
Control Interval Creating
Diagram BGI Space for

Insertions

.J, -.J, Diagram BH3

Creating Getting a New J. '1
Index Records Control Area
Diagram BG3 Diagram BG2 Inserting an Splitting a

Index Entry Control Area

J, Diagram BH6 Diagram BH4

Updating an J,
Index Structure Updating
Diagram BG4 the Index Major Subroutines

Structure
Diagram BH8

Creating or Modifying a Relative Record Data Set J, J,

\1/ \l'
Splitting an Processing
Index Record a Path

PUT Macro PUT or ERASE Diagram BH9 Diagram BQI
Processing Macro Processing
(Insert) (Modify)
Diagram BOI Diagram B02

r

ISAM VSAM

Interface Request

Diagra m IlU 1 Processing
Diagram BBI

-"
J]

! J, J,
ENDREQ
Macro CHECK Macro VERIFY
Processing Processing Processing
(Create) Diagram BL! Diagram BM!
Diagram BK2

Processing by Control Interval

-1 -1
'" GET or GETIX PUT or PUTIX PUT Macro

Macro Processing Macro Processing Processing
Diagram BNI (Update) (Create)

Diagram BN3 Diagram BN2

Processing with Shared Resources

J, \ J,

MRKBFR Macro WRTBFR Macro SCHBFR Macro
Processing Proct!ssing Processing
Diagram BI'I Diagram BP2 Diagram B03

-l.-
J,. J, Jt

Upgrading Buffer
an Alternate Manag~mt!nt

I/O

Index Diagrams Management
Diagram BTl Diagram BRI BS!, BS2, BS3

~ Diagram BB 1. VSAM Request Processing
o
Vl
<:
Vl
N

Vl
<:
Vl

:;
go
"0
n
::l
go
g
n o
3
"0 o
::l
n
g

~
~
e:..
Vl o .,
~
:> ,.,
~
'" '"
~
n
::r o

"" < Vl g
b
~. ,.,

Register 0 ,,::>f 1. Is the request a CHECK or ENDREQ?

RequestType k""''' No yes~
User's Virtual Storage "I .-____ --.: ______ \ BB2 User's Virtual Storage

~

PLH 1

PLH
n

\ 5

RPL(s) \

.-
r-

1---------

1
I

PLH(s)

H
",

,/

",

",
",

./

~~ •••••• ~ •••••••• _ •• -- •. _ •. _ ... - --~ ••• ---~~ ••• g

~
~ 2. Initialize the RPL(s) in the request-string.

3. Assign a placeholder to the request-string.
;;If

4. Ensure that the request is consistent with the
data set's characteristics .

S. Initiate request processing. (Continued on Diagram
BB2.)

VSAM Record Management Processing by Request
Type

GET Macro Processing: I
for direct requests (RPL OPTCD=(D1R» Diagram BCI

for sequential requests (RPL OPTCD=(SEQ» Diagram BDI

(See also "Control-Interval Access Processing.")

PUT Macro Processing:

for entry-sequenced data set processing Diagram BEl

for creating key-sequenced data sets Diagram BFI

for inserting records in key-sequenced data set Diagram BHI

for modifying records in key-sequenced data set Diagram BH2

for inserting records in relative record data set Diagram BOI

for modifying records in relative record data set 1.1 Diagram BO 21

(See also "Control-Interval Access Processing.")

ERASE M,ao Pm,,,.,,,,,,, I :: DI""m BI1

POINT Macro Processing: Diagram BJ I

l,

RPL(s)

...

I
T

PLH

~

t RPL(lsl)

f-

I-----

\.

:::
C> ;.
8.
o
o
'0
C> ...
a o·
::I

-..I
\JI

r
Notes for Diagram BBI

2

3

4

Several RPLs may be chained together to process
more than one record with a single macro request. For
example, a GET request associated with a chain of
three RPLs returns three records to the user's problem
program.

The number of placeholders is based on the STRNO
parameter in the ACB control block.

Each placeholder is examined to determine whether it
is available for assignment to the request string. (Note:
Once a placeholder is assigned to a request string, this
association is fixed until an ENDREQ macro or a
direct request that doesn't require placeholder
retention is issued against the RPL at the head of the
request string. After the ENDREQ or direct
processing is completed, the placeholder is available
for reassignment to another request-string.)

When no placeholder is available in the list of
placeholders for assignment to a request or request
string, and resources are being shared or processing is
loading a data set that was empty when it was opened,
an error code is set and a return is made to the caller.
Otherwise, IDA0l9RI calls IDAXGLPH in module
IDA0l9RU to obtain additional placeholders. If a
placeholder is available, its identifier is placed in the
RPL associated with the user's macro request.

If any of the following restrictions are violated, an
error code is set in the associated RPL and the
remaining RPLs (if any) in the request string are
posted as incomplete:

Keyed Request Errors

Keyed requests against an entry-sequenced data set are
not allowed.

Requests based on a generic key must include a
specified key-length value.

Specified key lengths may not exceed the maximum
key length value defined for a data set.

Addressed Request Errors

An addressed PUT-add request against a
key-sequenced data set is not allowed.

An ERASE request against an entry-sequenced data
set is not allowed.

r
An address request against a relative record data set is
not allowed.

Control Interval Request Errors

Control interval requests may not be issued against a
data set unless the data set was opened for control
interval processing.

('

~ Diagram BB2. VSAM Request Processing
o
~ S. (continued)
<
~
(Jl

<
(Jl

5'
!t
."
(>

::s
p.
(>

a
()
o
3
-g
::s
(>

~
<
;:i'
c::
~
(Jl

s ..,
I»

(JQ
(>

>
C'l

fi
~

s:
(>

s-
o
p.

< (Jl

> s:
~

l;'
(JQ
(i'

V.', Virtual Stor.

-......

\v

RPL(s)

TNtXI RPL

Synchl
Asynch
Flag

I

PLH

Request
rending
Flag

--- -

• ~ ENDREQ Macro Processing:

for request processing related to an old data set

for request processing related to a newly created
data set

CHECK Macro Processing:

VERIFY Processing:

Controllllterval Access Processing:

for retrieving control intervals

for creating a data set

for updating control intervals

MRKBFR Processing

WRTBFR Processillg

SCHBFR Processing

Path Processillg:
for processing a request to gain
access to a base cluster by way of
an al ternate index

6. When the request is a CHECK or ENDREQ, return
he user's ISAM probl

7. Post the request as complete.

~ 8. Reinitiate request processing until all RPLs in the
request-string are processed.

~ 9. When the request-string processing is synchronous,
ensure that its processing is completed.

• ~ 10. When another request-string has been deferred as
a result of current request-string processing, pass
control to the deferred request.

II. Return to the module that issued the macro
being processed.

'-------- -

~

- Diagram BK I I

Diagram BK2 I
Diagram BLl I
Diagram BM I I

Diagram BN I I
Diagram BN2 J
Diagram BNJ I
Diagram BPI I
Diagram BP2 I
Diagram BPJ I

Diagram BQI I

~ S~
Vser', Virtual Sto ..

ECB

r I r I
I

I

I

~

3:
" ;.
8-
o,
o
~ .,
~ o·
::s
-..j
-..j

r
Notes for Diagram BB2

10

When two request strings are competing concurrently
for a serially reusable resource, the second string is
deferred.

When the deferred request is synchronous, aWAIT
macro will have been issued against its ECB. When
the DIWA is released by another request string,
control is returned to a synchronous request at the
point at which it issued the WAIT by module
IDAOI9R5.

It posts the request-string's ECB to eliminate the wait
condition.

If an asynchronous request is deferred, a return
address will have been placed in its placeholder, and
when the serially reusable resource becomes available,
a branch is made to that address.

r r

~ Diagram BCI. GET-Direct Processing: Direct Retrieval
o
(IJ
.......
<:
(IJ
N
(IJ

~
[
. ."
~
::l

~
g
("1
o
3
"8
ii
~
<:
;;.'
c
e:.
(IJ

0' ...
~

!
~

~
;.
&.
< (IJ

>
~

~
(l

VSAM f ("=:: ~
Index 1
VSAM(
Data
Set

VSAM User's Virtual Storage

~

RPL

tSearcli
Argument

t User Area

c:v
L...1.

)"

0"

Locate the data control interval containing the Register RWORK2

user-specified key, RBA, or relative record number :> RBA of Data
and place the control interval in a data buffer. Control Interval

~
2. Is the record a spanned record?

No Yes • 3. Move all segments of the record to the , user's area.~ VSAM User's Virtual Storage

---~ 4. Move the record associated with the user-specified
key, RBA, or relative record number into the

----~ 5.
,,71

'"
~6

user-specified record area.

When the contents of the buffer are not needed
by the next request, release the buffer.

Return to caller.

! %J

~

PLH

~ I Address of
Buffer

BUFC

VSAM Buffer

Data Control Interval

User Record Area

~

:::
" ;.
&.
a
o
"0

" a o·
:I

-..I
'Cl

r
Notes for Diagram BCI

Keyed Processing-Key-Sequenced Data Set

IDA019RA

When the request is keyed, an index search must be
performed. The index level where the search begins is
based on the following considerations:

• For skip-sequential processing, the index search
starts at the sequence set-normally at the index
record pointed to by the current PLH. If the PLH is
invalid, the search starts at the first record in the
sequence set.

• For direct processing, the search starts at the
highest level of the index.

IDAOt9RA calls IDAOt9RB, which calls IDAOt9RZ
(lDAGRB)

The index record at which the search is to start is
moved into an index buffer.

IDAOt9RB calls IDAOt9RC

The index record is searched for an entry that is
greater than or equal to the search key.

IDAOt9RB

When the search is unsuccessful, the next record in
logical sequence is searched. If the search is successful
and a lower index level exists, the search is performed
on the index records in the lower level.

Keyed Processing-Relative Record Data Set

IDAOt9RR

The relative record number that is specified as a
search argument is converted into the RBA of the
control interval that contains the record and the offset
of the record in the control interval.

IDA019RR calls IDAOt9RZ (IDAGRB)

The control interval is read in by RBA.

Addressed Processing

IDAOt9RA

The RBA that is specified as a search argument is
converted into the RBA of the boundary of the control
interval within which it falls.

2 Doesn't apply to a relative record data set.

3 IDAOt9R4 calls IDAOt9RT (IDADARTV)

A spanned record is delivered.

r
IDADARlV calls IDA019RZ (IDAFREEB)

A segment is moved to the user's area. The buffer is
freed.

IDADARlV calls IDAOt9RZ (IDAGNXT)

The next segment is obtained.

4 IDAOt9R4

If the user is performing locate processing, the address
of the record is moved into the user area. If the
request is for update and an upgrade set exists,
IDA019RU is called to save the LLOR (least length of
record that contains the prime key and all alternate
key). (See Diagram BRt.)

Relative Record Processing

IDAOt9RR

If the user is performing locate processing, the address
of the record is moved into the user area.

S IDA019R4: RLSEBUFS calls IDA019RZ

If the request is direct and update,
note-string-position, or locate mode processing
options is not specified, the contents of the buffer are
not needed by the next request and the buffer is
released. If the user's processing with shared
resources, any index buffer is freed.

Relative Record Processing

IDAOt9RR calls IDAOt9RZ (IDAFREEB)

If the request is direct and update,
note-string-position, or locate mode is not specified,
the buffer is released.

r

~
o
~
<:
Vl
N
Vl
<:
Vl

S'
Q.
~

~
5-
~ a
(')
o
3
'8
::I
~ ;
<: s:
= Eo
Vl
0'
i
~

~
~
III
III

3:
~ :r
8.
< Vl
>-;
b

OQ
;:;-

Diagram BDl. GET -Sequential Processing: Sequential Retrieval

VSAM User's Virtual Storage

Data Buffer

PLH

Exception
Flag

Record
Position

Address of ...-
User Area

VSAM
Data
Set

~

User Area

r
--~l. ,

----~2.

When the desired control interval is not already in
the data buffer as a result of processing related to
a prior request in the current sequence of requests,
place the control interval in a data buffer.

Advance the placeholder to position to the record
logically following or preceding the record
associated with the prior request in the current
sequence of requests.

3. Is the record a spanned record?
No

. ,
___ ~5.

~6.

Yes .-
4. Move all segments of the record to the

user's area. • 0
Move the record positioned to by step 2 into the
user-specified record area.

Return to caller.~

BB2
7

~

VSAM User's Virtual Storage

Data Buffer

>1 Record I I
J'

PLH

Record ---... Position

User Area

>0
=....

\.,

::
(I)

;.
0
P-
o
0
"0
(I) ..,
a o·
l:l

00

r
Notes for Diagram BOt

Key-Sequenced or Entry-Sequenced Data Set

IDAOt9R4

2 Forward Processing

IDA019R4: ADVPLH

Normal GET-sequential processing advances the
record pointer to the next record in RBA sequence in
the data buffer.

If the record pointer points to the end of a control
interval, the following processing is performed:

IDAOt9R4 calls IDAOt9RZ (IDAFREEB)

The current buffer is released.

IDAOt9R4 calls IDAOt9RZ (IDAGNXT)

The next control interval is retrieved. If the next
control interval contains all free space, the retrieval
process continues until a control interval containing
data is acquired.

Backward Processing:

IDAOt9R4 calls IDA019RV (IDAADVPH)

Normal processing advances the record pointer to
preceding record in RBA sequence in the data buffer.

If the record pointer points to the beginning of a
control interval, the following processing is
performed:

IDAADVPH calls IDAOt9RZ (IDAFREEB)

The current is released.

IDAADVPH calls IDA019RZ (IDAGNXT)

The preceding control interval is retrieved.

4 IDAOt9R4 calls IDAOt9RT (IDADARTV)

5

A spanned record is delivered.

IDADARTV calls IDAOt9RZ (IDA FREE B)

A segment is moved to the user's area. The buffer is
freed.

IDADARTV calls IDA019RZ (IDAGNXT)

The next segment is obtained.

IDAOt9R4: DATARTV

If the request is for update and an upgrade set exists,
IDA019RU is called to save the LLOR (least length of
record that contains the prime key and all alternate
keys). (See Diagram BRJ.)

r
Relative Record Data Set

IDA019RR

The data buffer contains the current control interval.

2 IDA019RR: ADVPLH

The record pointer is advanced for normal sequential
processing or backed up for backward sequential
processing. If the record pointer points to the end of
the control interval for normal processing, or the
beginning of the control interval for backward
processing, the following processing is performed:

IDAOt9RR calls IDAOt9RZ (IDAFREEB)

The current buffer is released.

IDA019RR calls IDAOt9RZ (IDAGNXT)

For normal processing, the next sequential control
interval is retrieved, and the record pointer is set to
the first record. For backward processing, the
preceding sequential control interval is retrieved, and
the record pointer is set to the last record.

5 IDA019RR

r

00
IV

o
(Il

"-<:
(Il
IV
(Il

<:
(Il

S
Q.
~
'1j
(1)

6..
" :a
('j
o
~ o
::l
(1)

;
<:
5:
c::
~
(Il

S
~
~
> g
~
V1
V1

:::
(1)

:;r
8.
< (Il

>
~
t"'" o

O<l n·

Diagram BEl. PUT -Entry-Sequenced Processing: Create or Insert at End of Data Set

r
1. Ensure that the current output buffer is positioned

VSAM
Data
Set

to the end of the data set and prepared to receive ~
a new record. L.--.-____JL..~----.......J'--...;.....--L----'

RPL ,":=:;:~r Record Length
.. >%L_~

User's Record Area

2. If an upgrade set exists, upgrade the alternate Records
indexes in it. (See Diagram BRI.)

0- ~3. Is the record to be inserted a spanned record?
No Yes

VSAM Buffer

1 tpeat steps 4 and 5 for each segment.

®- - 4. Obtain an empty buffer.

5. Move the segment to the buffer. ®
6. When there is insufficient space to contain the new

,l'f record, get the next control interval.

New Record / >7. Move the new record into the data control
7 interval.

BUFC
r---

\.,

fP//
(/

VSAM Buffer (Available)

/
/ 8. As control intervals are filled, write them to the

data set. j Return to "lIeLee

~

Unused Space

Freespace

}
VSAM
Data
Set

\.,;

~
n>
;.
8.
8-
o
~
~ o·
::s
00 ...,

r
Notes for Diagram BEt

Create Mode Processing

IDA019R4: SQICHECK calls IDA019RZ (IDAGNNFL)

When processing is in create mode and the current
request is the first request after opening the data set, a
buffer is assigned to the request.

IDA019R4: SQICHECK

The buffer is initialized and buffer output is positioned
to the first control interval associated with the data
set.

Add-to-End or Mass Insert (Noncreate) Processing

IDA019R4: GETINCI calls IDA019RA

The address of the desired control interval is
established by GETINCI, and IDAOl9RA determines
whether the control interval in the current data buffer
has that address. When it does not, excess buffers are
released (IDAOI9RA calls IDAOl9R2 (IDASBF» and
the desired control interval is moved into the buffer
(IDAOI9RA calls IDAOl9R2 (IDAGRB».

2 IDA019RH calls IDA019RU

4 IDA019RM calls IDA019RT

If the buffer is not empty, IDAOl9RT calls IDAOl9SA
to obtain an empty buffer.

5 IDA019RT

The record segment is moved to the buffer, and the
CIDF and RDFs are built.

6 IDA019R4 calls IDA019RM

When there is insufficient space to contain the new
record, IDAOl9RM calls IDAOl9SA and the following
processing is performed:

IDA019SA calls IDA019RZ (IDAFREEB)

The current data buffer is released to be written.

IDA019SA: EOCA

When no more control intervals in the current control
area can be used, IDAOl9SA calls IDAOl9RZ
(IDA WRBFR) to ensure that all output to the current
control area is completed. Then, after positioning to
the next control area boundary, a test is made to
determine whether the new control area address
exceeds the limits of the data space allocated to the
data set. If the data space is exceeded, IDAOl9SA
(EOCA) calls IDAOl9R5 (IDAEOVIF) to issue an

r
SVC 55 in order to allocate additional extents to the
data set.

7 IDA019RM

8

Before moving the record into the control interval, an
RDF is created for the new record.

Actually, this process occurs at step 6. It is not
determined that a control interval is full until an
attempt is made to insert the next new record.

r

00
./:0.

o
Vl
"<:
Vl
N
Vl
<:
Vl

;-
0-
n
'0
n
o
0-
n a
("J
o
3
'0 o o
n

~
<:
~.

~
Vl
5' .,
III

(It>
n

:>
C'l
(')

<>
'" '"
~
<> ;.
o
0-

< Vl
:> e
r o

(It>

o·

Diagram BFt. PUT -Key-Sequenced Processing: Create

VSAM User's Virtual Storage

PLH

f--
1 st Req uest Flag ~--

RPL

Address of
I-, User Area

User Area

Record

\.,

cv i... I. Whon thi' i, tho fi"t "qu"t ,fto< Open, ",.gn,
- data buffer to the.request.

~

2. Is the record to be inserted a spanned record?
No Yes • 3. Process the spanned record segment by

segment. l CD 1
4. Move the new record into the current data buffer

and build/update an RDF. (See Diagram BG 1 fo
a description of processing when the freespace in
the current control interval is inadequate or
when the current key range is exceeded by the
key of the new record.)

~s. Return to caller~

BB2
7

~

VSAM User's Virtual Storage

PLH

L..
Address of

-.. Data Buffer h

BUFC ,
I 1 1

, Data Buffer

')/ New I
·1 Record IRDFS ICIDF 1

- -

l.,

~
'" g-
o.

s..
o
~
a
0'
='
00
v.

r
Notes for Diagram BFt

1 IDA019R4 calls IDA019RZ (IDAGNNFL)

The buffer control block entries are searched for an
unassigned entry, The first unassigned entry found is
assigned to the current request.

3 IDA019RM calls IDA019RT, which calls IDA019SA

IDAOl9SA gets an empty buffer. IDAOl9RT moves a
segment to the empty buffer.

4 IDA019R4 calls IDA019RM

r r

00
0\

o
en
< en
N

en
< en

5"
0-
n>
"0
n>
::
0-
n> a
(")
o
8
"0
o
::
n>

~
<
~.

Eo
en o
~
)-
(')

~
til

'" a::
n>
;.
8-
<
~
~

£' o·

Diagram BG 1. Creating a Key-Sequenced Data Set
Get a New Freespace Control Interval

VSAM User's Virtual Storage VSAM User's Virtual Storage

l,

PL:dd~~Of ~
~-----f Data Buffer 'L.

High Key -- ------:-~
--Address of ----

Index Buffer

..
BUFC ~

L-_...--'I r-~
Index Buffer

Current SS Record

BUFC

~. J I Data Buffer

Current Data CI

BUFCs (Data)

_ Available ____)
Status Flag

I
I

i

Index Buffer

1. Create, in the sequence-set index record, an t' I K I F 1 L I Pt I
index entry for the current data control interval. f.??Z.2?Z??C ey r
(See Diagram BG3 for a description o~} iI

New Entry index processing in support of the VSAM
create process.) c:::J Data

Set

2. Write the current data control interval.

3. Assign a free data buffer to support _---------
continued processing. - --

4. Position to the next freespace control interval.
(See Diagram BG2 for a description of --__
processing when no more control intervals in the - - -
current control area can be used by the current
request processing.)

5. Return to caller.

~

PLH

-1 Address of
. Data Buffer

--------~
(

t------

BUFC

Output
RBA

Data Buffer

l, ..

::
til
;.
o
0..
o ..,
o
~ a o·
::I

00
-..J

r
Notes for Diagram BGI

IDA019SA calls IDAOl9RG

2 IDAOl9SA calls IDAOl9RZ (IDAFREEB)

The buffer is made available for assignment to another
request; however, the next request that attempts to use
the buffer must first write the contents to the data set.

3 IDAOl9SA calls IDA019RZ (IDAGNNFL)

The BUFC for the next available buffer must be
written before it can be used. If the buffer must be
written, a call is made to the I/O Manager,
IDAOl9R3, to perform the write operation, and a wait
is performed to ensure that the I/O is completed.
(Note: The IDAGNNFL procedure is called when
processing in create mode or when adding to the end
of an entry-sequenced data set in update mode. Write
operations for PUT-sequential processing are initiated
only by IDAGNNFL.)

4 IDAOl9SA

IDAOI9SA: EOCA

More control intervals cannot be added to the current
control area if the key of the last record in the last
data control interval equals the high key of the current
or only key range or if there aren't enough freespace
control intervals remaining in the control area to hold
the new record and to maintain frees pace
requirements (that is, to maintain the number of
freespace control intervals per control area specified
by the user).

r r

00
00

o
~
<
C~
N
CIl

~
[
(1)

"0
(1)

8-
(1)

a
~

~
~ a
< S·
t:
~
CIl o
~
~
)-
n
R
'" '"
3:
(1)

;.
C
Q.

<:
CIl
)-
3:
~

~
(JQ

n'

Diagram BG2. Creating a Key-Sequenced Data Set
Get a New Freespace Control Area

VSAM User's Virtual Storage

r-....,

BUFC(s)

Must Write 1------
Status

r
J

PLH

Address of
Index Buffer

Data Buffer(!
..... J ,r"9.

......Jl J
I ...

Index Buffer

~
1. Write all completed and unwritten data control

intervals associated with the current control
area.

2. ~rite the current index record, initialize.a new ~~~~?Z?t*' - New
mdex record, and place an entry for the mdex t: _::- _ l I Entry
entry which was just written in a higher-level ~ 11 '------'--]r--'----.--J
index record. (See Diagram BG4.) .£A)

~

ARDB

High-Used
RBA

-~

3. When the nonrecovery option is specified, 41'
preformat any unused control intervals in the
current control area.

4. Establish the RBA of the next control area in
physical sequence. (See Diagram AEl for a 1
description of End-of-Volume processing when B
the next control area is not within the data
space allocated to the current data set.)

S. When the recovery option is specified
(SPEED=OFF), preformat the next control area.

6. Return to caller.

~

VSAM User's Virtual Storage

Index Buffer

BUFC (Data)
I

RBA of
Next CA

~

a::
'" ;.
8-
sa.
o
'0

'" ..,
a o·
::I

00
\0

r
Notes for Diagram BG2

1 IDAOI9SA: EOCA calls IDA019RZ (lDAWRBFR)

Other than the current data buffer, all of the data
buffers that have not been previously written are
written to the current control area.

2 IDA019SA calls IDA019RG

3 IDAOl9SA calls IDAOl9RK

4 IDA019SA

IDA019SA calls IDA019RS (IDAEOVIF)

The end-of-volume processor is called to allocate
additional extent(s) to the data set if necessary.

S IDA019SA calls IDA019RK

r r

~
o en
< en
N
en
< en
5'
Po

"'0 o
== P-
O a
(")
o
3

"'0 o
== o
~
<
:i'
c::
e:.
en o
i
:>
n
li
gj

::: o
;.
o
P-

<
~ ;
b

IJQ
;'i'

Diagram BG3. Creating a Key-Sequenced Data Set

VSAM User's Virtual Storage

ICWA

Current Key (K 1)

Previous Key (K2)

PLH

New Key (KO)

'"

l(D
L. I. Wh,n 'hi' i, 'h' fin' ,n'", in 'h' ind". ob,.in.

freespace control interval and initialize an index
buffer.

2. Compress the new entry's key. (See Diagram BG4
for a description of processing when the index
entry won't fit in the index record.)

3. Build a complete entry in the current sequence-set
index buffer.

4. Return to caller.

'"

VSAM User's Virtual Storage

Index Buffer

c:
~ Header I RDFICID~

ICWA

.
'Ii

Current Key (KO)

~

Previous Key (K I)

==-'

Index Buffer

I IKeyl F I L I Ptr I I
"- ~

f)New
Entry

l,

~
(l)

:T
o
C-
O -.
o
"0
(l) a
o·
:l

\C

r
Notes for Diagram BG3

IDAOl9RG calls IDAOl9RN (IDAAQR)

The index address-range-definition block (ARDB),
which governs the range of keys that include the new
index entry's key, is located. The field in the ARDB
that contains the address of the next available
freespace control interval is placed in the index create
work area (ICWA).

IDAOl9RG calls IDAOl9RZ (IDAGNFL)

An index buffer is assigned to the request.

IDAOI9RG: INTNEWRC

The contents of the index buffer are set to 0 and the
following items in the buffer are initialized to form an
index record: header, dummy entry, CIDF, RDF, and
freespace data control interval pointers (if the request
is for a sequence-set record).

2 IDAOI9RG: IDAIST

Before the new entry's key is compressed, the current,
previous, and section key values in the ICW A are
updated; the current key becomes the previous key,
the new key becomes the current key, and the section
key is updated if a new section entry has been built.

The new key is compared with the previous section
key, and a count of the common leading characters in
the keys is set as a front compression value. (Note:
The new key is front-compressed as if it were for a
section entry even though it may not be. Because they
front-compress less, section entries are slightly larger
than normal entries.)

When the current index record is a sequence-set index
record, the current key is rear-compressed relative to
the next data-record key, that is, the key of the first
data record in the next data control interval. The next
data-record key is in the record located by the
RPLAREA field.

The characters in the keys are compared from left to
right until two corresponding characters in the
respective keys differ in value. The current key is then
truncated at this point.

The length of the new entry is established, based on
the compressed key and section pointer, F, L, and
normal pointer field lengths. When there is inadequate
unused space in the current index record to contain
the new entry, a return is made to the caller,
IDAOI9SA, to obtain a new control area. (Note:
IDA019SA recalls IDA019RG to write the current
index record and to create an entry for the newly

r'
completed index record in a higher-level index
record.)

3 Section Entry Processing

IDAOI9RG: IDAIST

Move the F, L, and key values into the dummy entry,
which becomes the new section entry. Then set the
offset to the new dummy's F field in the new section
entry's LL field. (Note: The offset in the LL field is
incremented by the displacement to each succeeding
new dummy entry's F field until a new section entry is
established. The process then repeats for each
succeeding section entry until the record is filled.)

When a previous section entry exists, it is linked to the
new section entry by setting the displacement between
the F fields of the new and previous section entries in
the previous section entry's LL field.

When the insertion is to a sequence-set record or when
an index-record split was just performed on the index
record to receive the new entry, the next freespace
control interval pointer in the index record is moved
into the dummy record. (Note: A dummy record is
always maintained as the highest possible key in the
index during create processing in order to make the
index complete and searchable even while it is being
created.)

When the new section entry is made in a high-level
index record, the RBA of the current index record in
the next lower index level is converted to an index
entry pointer and placed in the dummy entry. (Note:
There is an ICWA for each level of the index. Each
ICWA has a field containing the RBA of the current
index record at its particular index level.) When the
current index record in the next lower level is
completed, its high key will be placed in the dummy
entry and this cycle continues.

4 NonnaI (or Nonsection) Entry Processing

IDAOI9RG: IDAIST

The current key is front compressed relative to the
previous key. The front compression performed in
step 2 is based on the assumption that the new entry is
a section entry. Only the rear compression performed
for step 2 is valid in this normal, or nonsection, entry
case.

The key length is calculated and the F, L, and key
values are moved into the new entry.

('

When a section entry has not been built, the section
entry pointer in the index record header is advanced to
point to the F field in the new dummy entry.

When a section entry has been built, the LL field is
incremented by the displacement between the new
entry's F field and the new dummy entry's F field.

See note 3, "Section Entry Processing," for a
description of how the dummy entry's pointer is
derived.

'" N

o
V'l
'<
Ul
N

V'l
<
V'l

::l
0-
n
'0

" ::l
0-

" ::l.
(j
o
3
'0 o
::l

" ~
<
~.

c:
f!:.
V'l
0-
;;l
~
> n
R
til
til

3:
" g-
o
0-

< V'l

>
3:
~

r
o

(JQ
(i'

Diagram BG4.

Header

~

P
FI LI t

Creating a Key-Sequenced Data Set
Insert an Index Entry for a New Index Record in an Index Record at the Next Higher Level

~
G2 BG3
2 2

ICWA (Sequence
Set)

...,

RBA of ;?f ,/"

1. Save the dummy entry's pointer in the base RBA
of the current sequence-set index record.

Current
Index Record

Address of
Current
Index Buffer
Request
Status

Address of
ICWA for
Next Level

Real
Entries

Output
of
Step 3

Output
of
Step 1

--.,.L--~

/~
2. Write the current sequence-set record.

3. Obtain a freespace index control interval.

4. Initialize the contents of the index buffer with
index-record control information.

5. When this is not the first time through this
processing, insert the entry that wouldn't fit
(see step 12) into the new high-level index record.

6. When this is the first time through this processing,
put the dummy entry's pointer and base RBA in
the new sequence-set record.

7. Write the new record.

~

~.

lCWA (Sequence Set)

Base RBA &
Dummy Pointers

Header

Freespace
CI Pointers

}
VSAM
Data
Set

\.

Dummy
Section
Entry

~
" ;.
8.
~
o
'0

" .,
a o·
::l

\0
~

r
Notes for Diagram BG4

IDAOt9RG

The base RBA is the RBA of the data control area
controlled by the index record. During index create,
the dummy entry points to the freespace control
interval following the last control interval in the
control area in which data records were inserted. At
the end of index-create processing, the dummy points
to the control interval containing the high-key record
of the data set.

2 IDAOt9RG: calls IDAOt9RJ (IDAWR)

This operation overlays the index record that was
generated by step 7 when this procedure was
previously entered.

3 IDAOt9RG: calls IDAOt9RN (IDAAQR)

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry's key is located. The contents of the field in the
ARDB that contains the address of the next available
freespace control interval is placed in the ICWA.

4 IDAOt9RG: INTNEWRC calls IDAOt9RZ (lDAGNFL)

An index buffer is obtained, the buffer is cleared, and
then it is initialized as a sequenced-set or a high-level
index record.

5

When the index record is high level (see note 5), a
pointer to the lower-level index record just written (see
note 7) is moved into the new higher-level index
record as the dummy entry representing the highest
key of the current level of the index.

Steps 3 through 13 represent a repeating sequence of
operations that retain control until an index entry is
successfully inserted in an index record on the index
level above the level on which a new index record is
created. The first time through this code, processing is
directed at the sequence-set level of the index.
Subsequent iterations are directed at successively
higher levels of the index.

IDAOt9RG: IDAIST

The high key of the new lower-level index record is
moved into the new higher-level index record built by
step 4.

6

r
Dummy entries are maintained in all levels of the
index as the highest possible key in each level in order
to ensure that the index is complete, or searchable,
even when it is being created. If the index is accessed
while it is being created, an index search, no matter
how high the key of the search argument, is always
satisfied.

For high-level index records (see note 4), the dummy
entry points to the incomplete index record at the next
lower level, and for sequence-set records, it points to a
data control interval.

7 IDA019RJ: IDAWR

The new sequence-set or high-level index record is
written to the data set.

On a sequence-set level, this record points back to the
data control interval in the control area belonging to
the previous (just completed) sequence-set record and
is maintained only to make the index complete. It is
destroyed when the next sequence-set index record is
completed and written to the data set (see note 2).

On a higher level, this new record has an entry for the
index record just completed on the next lower level
and a dummy entry for the new incomplete record at
that level.

('

IC
.j:..

o
I:Il
"<:
~
I:Il
<:
I:Il

;-
0-
~

'R
6-
~ a
n o a
1
~
<:
:1" = E..
~ o ...,
III

~

~
'" '"
a:::
'" ;.
o
0-

<
I:Il
> ;
b

(JQ o·

Diagram BGS. Creating a Key-Sequenced Data Set

VSAM
Index

Index Buffer

PLH

~

Insert an Index Entry for a New Index Record in an Index Record at
the Next Higher Level (continued)

ICWA (Sequence
Set)

Address of
ICWA for
Next Level

RBAof
Current
High Level
Index Record

High Key
of Lower
Level Record

1st Time
Processing.
Output of
Step 2;
Otherwise
Output of
Step II.

T
8. Reread the previous index record at the

current index level and complete it.

9. Rewrite the previous record.

10. When a higher-level index record doesn't exist,
create a new high-level index record.

_ ~ 11. Retrieve the current index record for the next
_ - - higher index level above the current level.

,.;::, 12. Insert the high-key value of the lower-level index
__ record just completed into the dummy entry of

__ -- the higher-level index record.

/~
13. When the new entry doesn't fit in the high-level

index record, free the current index buffer.

//

14. Acquire a new index buffer and initialize it for
continued sequence-set index-entry insertions.

15. Return to the caller.

~

Index Buffer

}
VSAM
Data
Set

===;:t::r::,,;"" I Status
BUFC

e>."".. I Avai ~ Flag

~ ~_ln_d_e_X_B_U_f_fe_r _________ --.

~ ______________________ -J

\.,

:::
(1)

S-
o
c-
o -o

""0
(1)

~ o·
:I

'" VI

r
Notes for Diagram BG5

8 IDA019RJ: IDAR

The previous index record at the current index level is
reread.

IDA019RG

A horizontal pointer to the new record on the current
index level is set in the previous index record.

IDA019RG: calls IDA019RN (IDAER)

The dummy entry in the index record is erased, and
the last (high-key) entry, or entry preceding the erased
dummy entry, is converted to a section entry. The
dummy entry is removed without detracting from the
completeness of the index because a new dummy entry
has been created by steps 6 and 8 (for high-level and
sequence-set records, respectively) and because the
horizontal pointer in the previous record makes the
dummy entry accessible.

9 IDAOI9RJ: IDAWR

10 IDA019RG calls IDA019RN (IDAAQR)

The index address range definition block (ARDB) that
governs the range of keys that includes the new index
entry's key is located. An ARDB field contains
information about the next available freespace control
interval; it is placed in the ICW A.

IDA019RG: INTNEWRC

The buffer is initialized as a high-level index record. A
pointer to the lower-level index record just completed
(see note 8) is moved into the new higher-level index
record as the dummy entry representing the highest
key of the current level of the index.

11 IDAOI9RJ: IDAR

12 IDA019RG

The current key in the lew A for the current index
level is moved into the current-key field in the next
higher level's ICWA.

IDA019RG: IDAIST

The value in the higher-level's ICWA is then inserted
in the current higher-level record.

13 IDA019RZ: IDAFREEB

When a new entry will not fit in the higher-level
record, a new higher-level record is built to contain the
new entry.

14

r
The processing of steps 3 through 13 is repeated until
an index entry is successfully inserted in an index
record on the index level above the level on which a
new index record is created.

When this sequence-set record is completed and this
routine is reentered, this record will be written at step
2, overlaying the dummy sequence-set record written
at step 9.

r

~
0--

o
C/l
"'<
C/l
tv
C/l

<
C/l

;-
0.

'" " '" ::l
0.

'" :?
n
o a
" o
::l

" :?
< :;.
E"
2:
C/l

C ..,
~

(JQ

'"
> ()
()

'" 'J>
'J>

s:
" S-
O
0.

<
C/l

> s:
r o

(JQ

n·

Diagram BUL Modifying a Key-Sequenced Data Set
PUT-Insert Processing (Single or Multiple Rec~)fd Insertion)

5 ~BI
-----7

1. Locate the data control interval whose range of
keys includes the new record's key.

~~ ;:s'1f2. Move the control interval into the current data
/ 7f buffer.

VSAM User's Virtual Storage

RPL

v/

- . /1 I

r- Data Buffer / /

I
t.

r'
7

,It /

l Record T Key 1.

I

~

// / 3. Is the record to be inserted a spanned record?

/ / No .s

.............
"--...;>

4. If the current data buffer isn't empty, split
the control interval to obtain an empty
buffer.

5. If the control area won't hold the spanned
record, split the control area.

6. Search the sequence set to locate the entry
to be converted to a spanned-record
segment entry.

Repeat steps 7 and 8 for each segment.
i i

7. Move the segment to a buffer.

8. Put an entry in the sequence set.

9. Insert the new record into the control interval.
(See Diagram BH3 for a description of processing
when there is insufficient space to contain the
new record.) ~lO. Return to caller.

t
c:v

~

"

RPARMI
RBA of Data
Control Interval

ll~
VSAM User's Virtual Storage

Data Buffer

Data Buffer

~:~ord I RDFI CIDF I

l,

:::
(1)

S-o p.

!a.
0
'0
(1) ...
~.
0
:I

:s

r
Notes for Diagram BHI

IDA019RA

2

3

4

S

6

7

8

9

An index search must be performed. The index level
where the search begins is based on the following
considerations:

• For skip-sequential processing, the index search
starts at the sequence set. The search normally
starts at the index record pointed to by the current
PLH. If the PLH is invalid, the search starts at the
first record in the sequence set.

• For direct processing, the search starts at the
highest level of the index.

IDA019RA calls IDA019RB, which calls IDA019RZ
(IDAGRB)

The index record at which the search is to start is
moved into an index buffer.

IDA019RB calls IDA019RC

The index record is searched for an entry that is
greater than or equal to the search key.

IDAOt9RB

When the search is unsuccessful, the next record in
logical sequence is searched. If the search is successful
and a lower index level exists, the search is performed
on the index records in the lower level.

IDA019RU

If an upgrade set exists, upgrade the alternate indexes
in it. (see Diagram BRI.)

IDAOt9RA calls IDA019RZ (lDAGRB)

IDA019RM calls IDA019RT

For spanned-record processing.

IDA019RT calls IDA019RE

IDAOl9RE is called until the current buffer, whose
address is given in PLHDBUFC, is empty.

IDAOt9RT calls IDA019RE

The control area is split also, when the sequence-set
record won't hold enough entries for the
spanned-record insertion.

IDA019RT calls IDA019RC

IDAOt9RT calls IDAOt9RS (IDAMVSEG)

IDA019RT calls IDA019RS (lDAADSEG)

IDAOt9R4 calls IDAOt9RM

r' r

'D
00

o
rIl
"<
rIl
N

Vl
<
rIl

S'
0.
n>
'0
n> = 0.
n> :a
n
o
:3
'0 o
~
~
<
:i'
t::
~
rIl
8"
~
n>

>
()
()
n>
'" '" a:
'" ;.
o
0.

'<
rIl
>
~
b

at> ;:;.

Diagram BB2. Modifying a Key-Sequenced Data Set

VSAM User's Virtual Storage

Data Buffer

I I~~~ord I I
RPL

~INew I
"I Record 1

ARDB I

High-used ~
RBA Data Buffer

I Free Space Control Interval]

",.
f'-........ ~

VSAM {
I'-.... ~

Data ~ ~
Set

r--.... -
'- -

~

y
When the new record is not spanned and is the
same length as the old record retrieved by the
prior GET-for-update request, move the new
record over the old record. • @
Is the old record a spanned record?

o Yes

~~
10.

..
3. Find the record's position in the sequence

set.

4. If the new record has the same number
of segments as the old, move the segments
from the user's area to buffers. • @

S. Does the new record have fewer segments
than the old?

No Yes • 6. Move the segments from the user's
area to buffer. J 7. Convert unused segments' control
intervals to free space. • @

8. If free space isn't available for the additional
segments, split the control area.

9. Move segments from the user's area to
the old control intervals and to the
free-space control intervals. • @

When the records are different lengths, erase the

Data Buffer

old record and insert the new record.! I J
(See Diagram BH3 for a description of processing
when there is insufficient free space in the control
interval to insert the new record and when
additional space must be acquired.)

11. Return to caller. ~

~, ~

a:: n
;.
8-
g,
o
'0
n ..,
a o·
:I

:g

r
Notes for Diagram BH2

1 IDA019RL

2 IDA019RL calls IDA019RS

Only if old record is a spanned record.

3 IDA019RS calls IDA019RC

4 IDAOI9RS: IDAMVSEG

A CIDF and RDFs are built for each control interval
that contains a segment.

6 See note for step 4.

7 IDAOI9RS:CLEARSEG

An unused buffer is got and filled with binary zeros
and a free-space CIDF. It is written for each freed
segment.

IDAOI9RS: DELSEG

Entries for unused segments are removed, and
free-data-control-interval pointers are set up.

8 IDA019RS calls IDA019RF

9 See note for step 4

IDAOI9RS: IDAADSEG

Entries for the additional segments are set up in the
sequence set.

10 IDAOl9RL

The old (unspanned) record is erased by overlaying it
with records to its right. If the record is the last record
in the control interval, it is cleared with zeros.
IDA019RL then calls IDA019RM to insert the new
(unspanned) record.

IDAOl9RM

If an upgrade set exists, the alternate indexes in it are
upgraded. (See Diagram BR 1.)

r r

-8
o
CIl

< CIl
N
CIl

Diagram B83. Modifying a Key-Sequenced Data Set
Create Space to Insert a New or Modified Record in a Data Control Interval

a VSAM User's Virtual Storage
S'
Q.
R
"0
R a.
R a
(j
o a
'8
~ a
~
::l
c:
e:.
CIl o .,
Pl

fJ<l
R

~
'" '"
~
R
:;.
o
Q.

< CIl

>
~
~

r o
fJ<l ,,'

~

BUFCs (Index)

- RBAof

- Current SS

Read
Required
Flag

I
I

, ,

BUFCs (Data)

RBAof
Current CI

'Must
Write'
Flag

CJrrent'SS Index Record
: :

,/
/

/ -- /

Pointers to f;;\
Freespace _::;.:..:Y
Cis -

/ '~ ,/ B ,/

,/ --
PLH

Current
Record
Pointer
(Insert
Point)

,/ --
,/ --,/ -

,/ --'" --
,,---High Key---
I
I
I

Data Buffer : (Previously Freespace CI)

Data Buffer

III IRDFslCIDFI

Output of
Steps 3 & 5

__ ~ 1. Ensure that the current sequence-set and the

Current/Old Data
Control Interval

/71
,/

current data control interval reflect any changes
made by other requests strings (if any).

When there isn't a freespace control interval in the ~ - ~~ree Space '\ ·s;;;?Z# current control area, move some controlmtervals 'q~ ~

to the next freespace control area to create free
space. (See Diagram BH4 for a description of
processing related to splitting a control area.)

3. When the current control interval must be split,
move records from the current control interval into
the next free-space control interval in the current
control area and adjust RDFs to reflect the new
distribution of records.

Old Control Interval

I ~eco~ds I O's FsfIDFl
New Control Interval (Previously Free Space)

4. Insert the new record into the appropriate control
_-.::, interval.

I Records I IRDFSICIDFI

S. Create an index entry for the new control interval
in the sequence-set index record. (See Diagram
BH6 for a description of index-entry insertion
processing.)

~

6. Write the updated index record, and when a controlO@ I New
control interval split has occurred, write the old ~® Entry
data control interval. '"--V"" E

7. When record insertion performed by step 4 is
unsuccessful, repeat steps 2 through 6.

8. Return to caller.

~ ~

r
Notes for Diagram 8H3

IDA019RE calls IDA019RZ (IDAGRB)

When the current sequence-set index record has been
updated by another request since it was last read, it
must be reread.

IDAOl9RE calls IDAOl9RZ (IDAWRBFR)

When the current data control interval has been
updated by another request since it was last written, it
must be rewritten to preserve those updates from
possible loss.

2 IDAOl9RE calls IDAOl9RF

3

If the record is to be inserted at the end of a control
interval or if it is one of a sequence of records to be
inserted at the beginning of a control interval, the
control interval is not split and the record is placed in
the next control interval currently containing
freespace.

If the request is a direct request to insert a record at
the beginning of the control interval or if it is either a
direct or sequential request to insert a record at some
point other than the beginning or end of the control
interval, the control interval must be split.

If the request is a sequential request, the control
interval is split at the point where the data record is to
be inserted.

If the request is a direct request, the record boundary
nearest to the midpoint of the control interval is used
as the split point.

The RDFs are divided among the control intervals so
that they remain associated with their respective
records.

IDAOl9RE calls IDAOl9RZ (IDAGNFL) and IDAOl9RE
(BUILDFS)

A work buffer is obtained, converted to freespace, and
attached to the data insert work area (DIWA). The

3:: work b~ffer is used to perform the record insertion
~ processmg.
;:r
8. IDA019RE

S, Records to the right of the split point in the old control
o interval are moved into the new freespace control E interval. Then the moved records are zeroed-out in the
a old control interval and the freespace pointers in each
g' control interval's CIDF are adjusted.

o 4 IDA019RE calls IDA019RM

r
5 IDAOl9RE calls IDAOl9RH

The new index entry reflects the high key of the data
records within the new data control interval. If the
new index entry fits in the index record, the buffer that
contains the record is not written to the index until the
new data control interval is written to the data set.

6 IDAOl9RE calls IDAOl9RZ (IDA WRBFR)

7

The new data control interval residing in the work
buffer associated with the DIW A is written.

IDAOl9RE calls IDAOl9RH (lXIDAWR)

The updated index record residing in the index buffer
associated with the current placeholder is written.

IDA019RE calls IDAOl9RZ (IDAWRBFR)

When a control interval split occurs (see note 3), the
old data control interval associated with the current
placeholder is written.

If the record insertion is unsuccessful after the control
interval has been split, a second pass results in a
successful insertion -IDAot9R4 has verified that the
record fits in a control interval.

r

s
o
~
<:
III
N
III

~
S'
0.

~ o
0.
(I)

a
(j
o a
'8 o
(I)

a
<:
~.

e:.
Vl o .,
~
" :>
n

a
:::
" s-
8-
~
:> e
r
~.
n

Diagram BH4. Modifying a Key-Sequenced Data Set

DlWA

No. of Used T
Control - - - - - - - - - -- - - - - -~ 1. Determine the number of control intervals to ~~
Intervals

Split-point
Status Flag
Count of
Control
Intervals
Moved

Data I Control
Intervals

Data {
Set

l,

-~

-~

Control Area
(Original)

2
3
4

5

ARDB

High-Used and
High-Allocated
RBAs

move to a new freespace control area.

~ 2. Can the control area be split?
__ -T

-- Yes No • 3. Initialize a new control area to freespace.

4. Build a sequence-set record for it.

5. Update the second-level index record for the
new sequence-set record.

6. Initialize a new buffer for subsequent ~
processing. •

~

)
Control
Intervals
to Move
~ 7.

~8.

Position to the next freespace control area in the
current extent.

Copy control intervals into the freespace control
area. o 9. Zero out the unused space in the new control area.~

~ 10. Split the index record to reflect the new
®' J distribution of control intervals among the two

control areas. (See Diagram BH9 for a description
of processing related to splitting an index record.)

~
'V

~,

DlWA

No. of Control
Intervals to
Move

RBA of Split
Point

RBA of New
Control Area

Control Area (New)

~l
Moved
Control
Intervals

Freespace

~

s:
(>

s:
o
0-
o -o
~ ..,
!! o·
:l

o ...,

r
Notes for Diagram BH4

When the process involves adding a record to the end of a
key range or to the end of the data set, there is no data
transfer between control areas. Steps 7 through II are the
only steps performed for add-to-end and end-of-key-range
processing.

IDA019RF

The number of control intervals to be moved to the
new control area from the control area being split is
calculated:

If the request is a sequential insert request
(RPLSEQ=ON), all data control intervals to the
right of the insert point are moved to the new
control area.

If the request is a direct request, one half of the
data control intervals are moved to the new control
area.

IDA019RF calls IDA019RW (IDAABF)

Buffers are added to the placeholder's buffer chain
until there is a buffer in the chain for each control
interval to be moved or until there are no more data
buffers in the buffer pool.

2 The control area can be split if it is filled with the
segments of only one (unspanned) record.

4 IDA019RF calls IDA019SF, which calls IDAOl9RI
(IDANEWRD)

The header of the index record is initialized.

User's key less than key of record in old control area:

The new sequence-set record is pointed horizontally to
the sequence-set record of the old control area. The
sequence-set record preceding the old control area's
sequence-set record is located.

IDAOl9SF calls IDAOl9RZ (IDAGRB)

This preceding sequence-set record is read and pointed
horizontally to the new sequence-set record.

IDAOl9SF calls IDAOl9RZ (IDAWRBFR)

The preceding sequence-set record is written.

User's key greater than key of record in old control
area:

IDA019SF calls IDA019RZ (IDAWRGFR)

The new sequence-record is pointed horizontally to
the sequence-set record that the sequence-set record of

r
the old control area pointed to and is written.

IDAOl9SF calls IDAOl9RZ (IDAGRB)

The sequenct-set record of the old control area is read
and pointed horizontally the new sequence-set record.

IDAOl9SF calls IDAOl9RZ (IDA WRBFR)

The sequence-set record of the old control area is
written.

5 IDAOl9SF calls IDAOl9RZ (IDAHLlNS)

6 IDAOl9SF calls IDAOl9RZ (IDAGNNFL)

7 IDAOl9RF

Before acquiring a freespace control area, the data
buffer control block (BUFC) chain is examined to
determine whether any of them have an RBA under
exclusive control within the range of RBAs for the
control area being split. If there is an exclusive control
conflict, an error code is set and a return is made to
the caller.

If the boundary of the next frees pace control area
exceeds the boundary of the current extent, that is, the
high-allocated RBA, VSAM End-of-Volume is called
via an SVC 55 to attempt to acquire more space (see
Diagram AEI, VSAM End of Volume: Obtain the
VSAM Object's Next Volume). If space is unavailable,
an error code is set in the RPL and a return is made to
the caller.

8 IDAOl9RF calls IDAOl9RZ (IDAGRB)

The first control interval is retrieved as a direct
request.

IDAOl9RF calls IDAOl9RZ (IDAGNXn

Subsequent control intervals are retreived on a
sequential basis.

IDAOl9RF calls IDAOl9RZ (IDAFREEB)

As each buffer is filled, its must-write flag is set
(BUFCMW=ON), and then it is released
(BUFCA VL=ON).

IDAOl9RF calls IDAOl9RZ (IDA WRBFR)

When all of the control intervals eligible for the move
have been read into buffers, the buffers are written to
the data set.

9 IDAOl9RF calls IDAOl9RK

10 IDAOl9RF calls IDAOI9RI, which calls IDAOl9RJ

For add-to-end processing, only a new sequence-set
record is created. For other processing, the original

r
control area's sequence-set record is split, thereby
creating a new sequence-set record with index entries
for the control intervals that were moved to the new
control area.

-~
o
fIl

"<
~

~
[
n>

'R
::s
0-
n> :a
(")
o .g
o
o
n>

~
~
::1 c e:.
til o ..,
I>l

"" ,.
> g ,.
'" '" :: ,.
;.
o
0-

'<
til

> ;
r o
"" n·

Diagram BH5. Modifying a Key-Sequenced Data Set

~.

BUFC
(Index)

I ~"
"

CSJ L.
I 7 ~H8 BH8

Data Buffer ,

~ ' " -- ~ ----~

11.

12.

Update a high-level index record with an index
entry for the new sequence-set record
generated by the split. (See Diagram BH8 for a
description of processing related to updating
higher levels of the index.)

When the control-area split point shifts as a
result of index-record split processing, adjust
the distribution of control intervals among the
control areas to coincide with the new split
point. Control Area (Original)

I I

13. Zero out the control intervals in the original b 2

,on(w1 '''' whi,h w," ,opi,d (0 (h, n,w ~ , C" .. o .. , A,," (Now,

control area. , ~ 4 S

15. Return to caller. ,
c:t;J

~

>

L
Data Buffer

Data Control Interval
Containing Insert Point

HUFC (Index)

RBA of Sequence·Set
Index Record Containing
an Entry for the Control
Interval to have a
Record Inserted.

~.

r
Notes for Diagram BHS

II IDAOl9RI

12

Any control intervals that were copied into the new
control area and that are no longer validly associated
with that control area as a result of distribution
changes effected by the sequence-set split process are
zeroed out in the new control area. The following
procedures effect this change:

All of the buffers in the placeholder's buffer chain are
zeroed out.

IDAOl9RF calls IDAOl9RZ (IDAGNNFL)

A buffer in the placeholder's buffer chain is assigned
as a work buffer.

IDAOl9RF calls IDAOl9RZ (lDAFREEB)

The work buffer's must-write flag is set on, and it is
freed. (Note: It is written when the next request for a
free buffer examines its must-write status and causes it
to be written before reassigning it.)

IDAOl9RF calls IDAOl9RZ (lDAWRBFR)

The previous two steps are repeated until all invalid
control intervals in the new control area have been
erased. All of the work buffers are then written to the
data set.

IDAOt9RF calls IDAOt9RZ (IDAGRB)

The sequence set of the original control area is then
read into an index buffer.

If the control interval containing the insert-point
address is returned to the old control area by the
process outlined by the previous four steps, the insert
point must be recalculated.

IDAOt9RF calls IDA019RZ (IDAWRBFR)

The buffers are written to the data set.

14 IDAOl9RF

3:: Ensure that the PLH points to the sequence-set record
~ containing an index entry for the data control interval
5" that contains the new record's insert point.
0-
S, IDAOl9RZ (lDAFREEB)

~ If it does not, the index buffer containing the
~ sequence-set record for the old control area is
a released. o·
!:l -o
VI

r
IDAOI9RZ: IDAGRB

The sequence-set record for the new control area is
brought into the index buffer.

IDA019RZ: IDASBF

The buffers that were added to the placeholder's
buffer chain to support the control-are a-split process
(see note I in Diagram BH4) are released from the
chain.

IDAOI9RZ: IDAGRB

The control interval that contains the insert point is
retrieved from the data set and placed in a data buffer.

r

~ Diagram 8H6. Modifying a Key-Sequenced Data Set
o
til

~
N

~
til

S-o.. o
'g
= 0..
o a
(")
o
3
'g
= o
~
<
~.

eo.
til o
r.l
~

~ o
~

3::
o
So
8.
<
til
> e
b
00
n'

Build an Index Entry and Insert It in an Index Record

t.H3 5 Processing for Insertion of an Entry in the Sequence Set.

1. Determine which of the data control intervals passed
@".?f has the highest key.

PLH

Address of Buffers
Containing

BUFC

Output RBA

D1WA

RPL

Control Interval
Request Type r"7'-" on Which Insert

was Performed

~

New Control Interval "c;;{§)
~~~I I 

Old Control Interval 

i 

Higher-Keyed 
Entry 

@--+2. Establish the high key of the old data control 
interval for insertion into the sequence-set index 
record and compute the index-entry pointer values 
for both the new and the old data control intervals. 

@' 

@Y 

3. Locate the insertion point for the new entry for the 
old control interval in the index record, and establish 
a front key-compression value for the new entry's key 

~4. 

"c.?f 

relative to the lower-keyed entry which it follows. "-

When the current processing is the result of a control ~ 
in terval split due to a sequential, or mass, insert 
to the old control interval, do the following: 

• Decrement the low key of the new control 
interval by I and use this as the high key of 
the old control interval to be inserted into the 
index record. 

~ 

High and Low Keys 

IMWA 

Address of New 
Entry Key 

New and Old 
Entry Ptr Values 

Compressed Key 
Length 

IXSPL 

. Front Key 
• Reestablish (see step 3) the front key-compressIOn Compression 

®-~S. 
71 

key of the entry which It wIll follow. Following Insert Point 

Rear compress the new entry's key relative to the 

@~ 

value of the new entry'~ ke~ relative to the lower I Address of Entry 

low key in the new data control interval and Index Record 
establish the key length of the fully compressed key. 

~ ~ 



;s:: 
t> 
;. 
8. 
o ..., 
o 
'ii 
a o· 
:l 

~ 

r 
Notes for Diagram BH6 

IDAOt9RH 

2 IDA019RH 

3 IDAOt9RH calls IDAOt9RC 

4 

The index-record search begins with a search of the 
section entries. 

After a section entry whose key is equal to or greater 
than the key being sought is located, the individual 
entries governed by the section entry are examined 
until a key that is greater than the search key is found. 

During the nonsection entry search process, a count of 
the common leading characters of each entry relative 
to the search key is maintained. When control is 
returned to IDAOl9RH (index insert), this value is 
sometimes used as the front key-compression value of 
the new entry's key, or the search key, relative to the 
previous, or lower-keyed, entry in the index record. 

Basing the high key of the new control interval on the 
low key (minus I) of the next control interval enables 
the sequential insertion process to continue without 
having to update the index record for each record in 
the group of records that are added to the data control 
interval as a mass insert; otherwise, a relatively small 
group of records could establish multiple new high 
keys for the control interval receiving the records. 

5 IDAOt9RH: COMPRS 

The leading characters of the two keys are compared 
until the first unlike character is found. The like 
characters are dropped from the new key when it is 
compressed. 

The front and rear compression values are then used 
to determine the length of the compressed key. 

r r 



~ Diagram BH7. Modifying a Key-Sequenced Data Set 
o 
c;n 
....... 
<: 
Vl 
N 

Build an Index Entry and Insert It in an Index Record (continued) 

Vl 
<: 
c;n 

S' 
0. 
('0 

" ('0 

VSAM User's Virtual Storage 

C7J 
\.. Common P,,,,,,,",n, (0' Hi,h.Lm' .nd S'<I"enco.Se'ln",,'io", 

6. When the new entry should be a section entry, 
IMWA 

::s 
0. 
('0 

a 
("') 
o 
3 
"8 ::s 
('0 

a 
<: 
;1' 
c: 
e:. 
Vl 
<:) 
;J 
~ 
> 
(l 
(l 
('0 
til 
til 

~ 
('0 

;. 
o 
0. 

< Vl 
> 
~ 
~ 

b 
(JQ 
(;' 

Index Buffer 

Header Next New 
Entry Entry 

RC 
D I 
F D! 

F 

11 establish a front key-compression value for the new 
11' section entry relative to previous section entries 

I / and repeat step 5 for sequence-set records. 

11/ 7. Establish a front key-compression value for the next 
/ l' higher key following the new entry relative to the 

I I new entry's key. 
Entries· I Previous ± I I I 
Per-Section I Section Entry I I 

I I I I I 8. When the new entry does not fit in the index record, 
return to the caller. \. - - T - - - - -- - I I 

-. - - - - - - - - f -' - ~ 9. Front compress the key field of the next, higher-
IMWA 

Address of 
New Entry's 
Key ---.. 

I 

~ 

User's Area 

Keyl J 
Record 

I 

I keyed, index entry. 

10. Build the new entry and put a new pointer in the 
next entry. 

II. Return to caller. 

l, 

Higher 
Key's Front 

:~I~~~rz,~;;ri~:ii!~ _~!'2!;2':.i~" Compression 
-C:;iCi!':.i!!=t~~ Compressed 

Key Length 

Index Buffer 

1if!;+ 
+ 

IXSPL 

Key 

Front Key 
Compression 

P P 
F L t Key F L t 

r 

New 
Entry 

>!) 
~ New Data 

Control Interval 

~ 

R 
D I 
FD 

F 



3: 
n> 
S-o 
0-

g, 
o 
-g ., 
a 
g' 
§ 

r 
Notes for Diagram BH7 

6 IDA019RH 

For section-entry key compression, the new section 
key is compared against each succeeding section entry, 
starting with the first, in establishing the front 
compression value. 

7 IDAOI9RH: HLlNSERT 

Before establishing a front-compression value, the 
front key compression, or F value, in the high-keyed 
index entry is compared against the front-key 
compression value combined with the key length of 
the new index entry. If the F value in the high-keyed 
index entry is not greater than the other combined 
values, or if the key length, or L value, of the new 
index entry is 0, compression is not performed. 

8 IDA019RH 

The length of the new entry's key (L value) plus the 
standard F, L, and pointer field lengths are compared 
to the amount of freespace in the current index record 
combined with the front-compression value 
established by step 7. (If the entry is a section entry, 
the length of the section entry pointer (LL field) is also 
included in these calculations.) If there is insufficient 
space for the new index entry, control is returned to 
IDAOl9RJ (index split), by way of IDAOl9RI (index 
update), to split the index record. 

9 IDA019RH 

The higher-keyed entry is moved to the left. 
overlaying the front characters in its key which are to 
be compressed. 

10 IDA019RH 

The entries following (to the left of) the insert point 
are moved to the left. overlaying the freespace to the 
left of the high-keyed entry in the record, until 
sufficient space exists at the insert point to contain the 
new index entry. 

The following higher-keyed index entry contains the 
key of the new data or index control interval 
generated by IDAOl9RE (control interval split) or 
IDAOl9RJ (index split). Accordingly, its pointer must 
be replaced with a pointer to the new control interval. 

r r 



--o 
o 
~ ....... 
~ 
N 
~ 

~ 
8: 
G 
-g 
::s 
~ 
::s .... 
(") 
o 
3 
"0 o ::s 
G' ;; 
< 
~' 
e:. 
~ o .., 
III 

~ 
:> 
~ 
~ 

~ 
S-o c. 

< 
~ 

:> g 
b 

(JQ 
(=i' 

Diagram BU8. Modifying a Key-Sequenced Data Set 
Update a High Level of the Index with an Entry for the New Sequence-Set Record. 

Indcx 
Space 

VSAM nata Sct 

SC4ucncc Sct 

High Lcvel 

Il'WA (Sc4uencc ScI) 

Index i{c<:ord 
Spec ifit..:atif)JlS 

~ i 
1. When there is only one index level in the data set, 

build a high-level index record as follows: 

- - ~. Obtain the RBA of a freespace index control 
interval for the high-level record. 

• Assign an index buffer to the request and 
build the high-level index record. 

Write the high-level record. 

Return to the caller. ~ 

Index·Entry Processing When a High-Level Index 
Record Exists 

ICWA (High Level) 

I Address of New fiFZZZ? Record 
~r-------------~ 

~I Address of Buffer 

BUFC 

2. Search the next higher level of the index for an 
index record whose range of keys includes the high 
key in the new index record created by the index 
split process. 

Index Space 

Register 15 

[ Return Code ~ 

\., 

~3. Insert an entry, which points to the new index 
record, in the higher-level index record. 

-~4. When the insertion is unsuccessful, locate the split 
point and split the higher-level index record to 

IS ~
IHIO 

5. 

create space for the new entry. (See Diagram BH9 
for a description of processing related to splitting 
an index record.) 

After the record is split following an unsuccessful 
attempt to insert an entry, insert the new entry in 
the unused space generated by the split process 
(see step 4). ...fC) 

6. Repeat steps 2 through 4 until the index level (/711-
above the level on which the last split was 
performed contains a new entry for the new 
record created by the split pTOcess. 

7. Return to caller. 

l, ~ 



::: 
til 

S-
o 
Q.. 

o .... 
o 
~ 
a o· 
o 

r 
Notes for Diagram BU8 

1 IDA019RI calls IDA019RN (IDAAQR) 

The index address range definition block (ARDB) that 
governs the range of keys that includes the new index 
entry's key is located. The contents of the field in the 
ARDB that contains the address of the next available 
freespace control interval is placed in the ICWA. 

IDA019RJ calls IDA019RK 

If this is the first time that space governed by the 
ARDB located above has been used and if 
sequence-set-with-data is specified, the new index 
record requires preformatting. Starting at the address 
established above, software end-of-file control 
intervals (zeros) are built until the end of the track on 
which replication is to occur is reached. 

IDA019RI calls IDA019RZ (IDAGNFL) 

A buffer is assigned to the request. 

IDA019RI calls IDA019RH, which calls IDA019RZ 
(IDAWRBFR) 

The high level index record is written. 

2 IDA019RI calls IDA019RB 

3 IDA019RI calls IDA019RH 

4 

If there was insufficient space in the index buffer to 
support the index-split process, an attempt is made to 
provide more space. 

IDA019RI: FINDSP 

The offset to the section entry containing the split 
point is established by tracing along the chain of 
section entries until a section entry is reached whose 
displacement from the start of the index record is less 
than the displacement of the split point used in the 
prior unsuccessful split operation. 

IDA019RI: LNEXTE 

Using this information, a new split point is established 
for the next attempt to split the index record. 

IDA019RI calls IDA019RJ 

The index record is split to create space for the index 
entry associated with the new index record created by 
the split process. 

5 IDA019RI calls IDA019RH 

r r 



--N 

o 
~ 
< 
CIl 
N 
CIl 
< 
CIl 

[ 
(1) 

~ 
6-
(1) 

a 
(') 
o 
3 
"8 
:I 
(1) 

~ 
< 
~. 

~ 
CIl 

0' 
"1 

~ 
)-
n 
n 
(1) 

~ 

~ 
~ 
:r 
2-
< CIl 
)-
~ 
~ 

t"" o 
(JQ 

n' 

Diagram BH9. Modifying a Key-Sequenced Data Set 

Data 
Set 

lr 

Split an Index Record to Create Space for a New Index Entry 

ICWA 

Address of 
Record to be 
Split 

Address of 
Index Buffer 

Index Level 
Indicator 

" ..... 

Index Buffer 

S 4 ~ 
~ 

",.. 

1. Find the RBA of a free control interval in which to 
insert the new index record. 

- ..LI_~ 2. Read the index record to be split into the index 
- - buffer. 

I 
I 
I 

3. Delete the section pointers from the entire index 
record. 

.............. : Reformat the High-Keyed Block of the Original 
" ........ Index Record 

: ~ 4. When the index record is a sequence-set record, 
build a new set of control interval pointers. 

_J 
S. When the index record is a high-level record, 

preserve the existing lower-level index-record 
pointers by copying them into the freespace 
immediately following the header. 

::=J 6. Delete the original pointers from within the index 
block. 

7. Convert the high-keyed index block into a new 
index record. 

8. Write the new index record. 

~ 

\." 

ICWA 

Address for 
New Record 

L.... ____ ~, Block 2 
Entries 

Index Buffer ...---

Header L Entry Entry 
L 4 3 

-, 

Block 1 
Entries 

• 

L Entry 
L 2 

11 

.. 
C' 

Entry R I 
1 D D' 

F FI 
Free space . Section Pointers 

Header 

Pointers to 
Free Data 
Control 
Intervals 
(Sequence-Set 
Records Only) 

Pointers Removed 
from Entries 
(Entries Composed 
of Keys and F and 
L Fields Only) 

.,''' ...... ,', .... ,', ............. ,', ..... .It 

Entry 4 for 
Block 2 

\v 



3:: 
'" g-
o 
0-
0 ..., 
0 
"0 
'" ... 
'" g. 
:3 

..., 

r 
Notes for Diagram BH9 

1 IDA019RN: IDAAQR 

The index address range definition block (ARDB) that 
governs the range of keys that includes the new index 
entry's key is located. The contents of the field in the 
ARDB that contains the address of the next available 
frees pace control interval is placed in the lew A. 

IDA019RJ calls IDA019RK 

If this is the first time that space governed by the 
ARDB located above has been used and if 
sequence-set-with-data is specified. the new index 
record requires preformatting. Starting at the address 
established above. software end-of-file control 
intervals (zeros) are built until the end of the track on 
which replication is to occur is reached. 

2 IDA019RJ: IDAR (calls IDA019RZ (IDAGRB» 

The appropriate index record is in the index buffer 
when IOA019RJ is entered. However, the index is 
freed by IOA019RJ to provide for the contingency that 
preformatting of succeeding index records will be 
required (see note I). Accordingly, the index record 
must be reread. 

3 IDA019RJ: DELSECf 

Starting with the rightmost, or low-keyed, section 
entry, each section entry is moved to the left by the 
length necessary to eliminate the section entry's 
section-chaining pointer (lL field). This operation 
continues until the last section entry is reached. The 
last section entry is identified by a section chaining 
pointer containing zeros. 

4 IDA019RJ 

5 

6 

For sequence-set index records, a complete set of 
I-byte or 2-byte pointers is built adjacent to the index 
header. The number of pointers equals the number of 
control intervals per control area. 

IDA019RJ: MOVEPTR 

For high-level index records, each index pointer in the 
index block is moved into the freespace between the 
index header and the index block, moving from left to 
right. The pointers within the block are not altered by 
this procedure. 

IDA019RJ: DELPTR 

The pointers in the index entries are eliminated by 
moving each index entry to the left so that it overlays 
the pointer field of the next higher-keyed entry. 

r 
7 IDA019RJ: BUiLDREC 

The following operations al'e performed to recreate an 
index record from a compressed block established by 
the preceding steps: 

a) The right end of the buffer that contains the 
section of the index record to the right of the split 
point is set to zeros. 

b) The first (rightmost) pointer in the group of 
pointers adjacent to the header is moved to the end 
of the index record adjoining the ROF. This 
becomes a dummy entry with F and L fields set to 
zero. 

c) IDA019RJ: RJE 

The first (rightmost, or low-keyed» entry in the 
index block is eliminated. This is done to provide 
additional space for the Insert routine. The key was 
previously saved in the lew A. 

d) IDA019RJ calls IDA019RG (IDAIST) 

The key that was placed in the lew A is front 
compressed (if necessary) and real values are 
established in the dummy entry's F and L 
index-entry fields. 

e) If there is insufficient space preceding the dummy 
index entry for the Insert routine to insert the key 
and if there is freespace to the left of the index 
block, the index block is moved to the left to 
overlay any freespace that is available. If there is 
no freespace available, or if after acquiring all 
available space there is still insufficient space to 
contain the key, control is returned to the caller, 
IDAOI9RI, the split point is adjusted to the left, 
and IDAOl9RI calls IDAOl9RJ to begin the split 
process again. 

f) If there are two or more keys remaining to be 
moved or if the last entry is not a dummy entry, the 
lew A is adjusted for use by the Insert routine as 
follows: 

The current key is moved into the previous key 
field. 

The current key length is moved into the previous 
key length field. 

The next key to the left in the index record is 
uncompressed and placed in the .:urrent key field. 

The key length is placed in thl: key-length field . 

r 
g) Steps 7d, e, and f are repeated until the test in step 

7f is not satisfied. 

8 IDA019RJ calls IDA019RZ (IDAWRBFR) 

The index buffer containing the new index record is 
written to the data set and then freed after it has been 
written. 



~ 

o 
til ....... 
< 
til 
N 

til 
< 
til 

S' 
0.. o 
"0 o 

s.. a 
(j 
o 
3 

1 
~ 
< 
~. 

~ 

;!I 
o 

~ 
:> 
~ 
til 
til 

3: 
o 
g-
o.. 

< til ; 
r 

0<> 
(S. 

Diagram B810. Modifying a Key-Sequenced Data Set 
Split an Index Record to Create Space for a New Index Entry (continued) 

VSAM User's Virtual Storage 

VSAM 

~
H9 
8 Reformat the Low-Keyed Block of the Original Index Record 

9. Reread the original index record into the index 
.,,)If buffer. Inde" Buffer 

Data 
Set 

@" 1 O. Delete the section pointers from the entire index 
record. ~Header 

ICWA 

Address of 
Record to be 
Split 

Inde" Buffer 

~ 

11. Compress the low-keyed index block as follows: 

®-~ 

• Count the entries to the left of the split point 
and preserve their pointers. 

• When the record is a sequence-set record, count 
entries to the right of the split point and preserve 
their pain ters. 

• Delete the en try pain ters in both blocks of the 
index record. 

12. Move the entries to the right of the split point to the 
left to adjoin the pointers. 

13. Convert the low-keyed index block into a new index 
record. 

14. Rewrite the original index record. 

1 S. Return to caller. " 

~ 

Pointers Removed from 
Entries - Entries 
Composed of Keys 
and F and L Fields 
Only 

F. L, and Keys 

Freespace C I En try 3 
Pointers " 
(Sequence r 
Set Only) 

Entry 2 

VSAM User's Virtual Storage 

Entry 1 

}
VSAM 

~~ DataSet 

~ 



~ 
(> 

s:-o 
0.. 

g, 

r 
Notes for Diagram B810 

9 IDAOI9RJ: IDAR (calls IDA019RZ (IDAGRB» 

The original index record is reread. 

10 IDA019RJ: DELSECT 

See note 3 of Diagram BH9. 

11 IDAOI9RJ: COUNT 

12 

The number of index entries between and including 
the first entry to the left of the split point and the 
leftmost (high-keyed) entry in the index record are 
counted. 

IDA019RJ: MOVEPTRR 

If enough space exists between the header and the 
leftmost index entry for the entry for the entry pointer 
established by the count above, each index pointer in 
the index block is moved into the freespace, moving 
from left to right. 

IDAOI9RJ: MOVEPTRI 

If there is not enough space for the entry pointer, the 
pointers are moved by placing the leftmost pointer in 
the index block into the leftmost location in the 
freespace, and by placing the next pointer to the right 
into the next position to the right in the freespace until 
all of the pointers established by the count are moved. 

High-level index record processing is not concerned 
with pointers that have been moved out of the index 
record by the split process. Sequence-set records must 
maintain pointers for control intervals that are freed 
by a control-area-split operation and retain pointers to 
the data control intervals that remain in the control 
area being split; whereas, high-level index records 
have pointers only to lower-level index records that 
are not moved by these processes. 

The steps performed by MOVEPTRR and 
MOVEPTRL are repeated; however, in this case, the 
process is directed against the pointers that are 
contained in the index entries to the right of the split 
point, instead to the left. 

IDAOI9RJ: DELPTR 

See note 6. 

~ Starting with the entry to the right of the split point, 
Pl the index block is moved to the left until it reaches the 
g. pointers that were established by prior steps. 
:::l 

-VI 

r 
13 IDAOI9RJ: BUiLDREC 

See note 7. 

14 IDAOI9RJ: IDA WR 

The index buffer containing the revised index record is 
written to the data set, overlaying the original index 
record. 

r 



'" o 
r.n ....... 
< r.n 
N 

r.n 
< r.n -;:) 
0-
~ -g 
;:) 
0-
~ a 
(') 
o 
3 
'0 
o 
::l 
~ a 
< 
:3: 
c: e:. 
r.n o 
>; 
10 

(JO 
~ 

> n 
n 
~ 

'" '" 
3:: 
~ 

:r 
o 
0-

< r.n 
> 
3:: 
~ 

r 
o 

(JO o· 

Diagram BIt. ERASE Processing: Key-Sequenced 

y VSAM User's Virtual Storage 

VSAM { 
Data 
Set 

/7'1 
// 

1. Ensure that the record to be erased is in the I r 
VSAM buffer associated with the request. 1..1 _____________ --' 

,-... 
2. Is the record to be erased a spanned record? 

INO fSLocate the record's sequence-set entries. 

4. Convert the control intervals of the record's 
segments to free space ..... ® 

I ",/" 

r ~ / < >1/ 

5. Erase the designated record by overlaying it with 
existing records. -----..::, 

L L Freespace 

Records 

6. Adjust or erase the RDF associated with the 
-----~ request._ 

7. Terminate the request and return to the user's 
processing program. 

~8. Return to caller. 

VSAM User's Virtual Storage ~ 

~ ~ 

----L L Additional Freespace 
Created by Shift 

Shifted 
Records 

~ 



~ 
C> ;:. 
8-
S
O 
~ 
~ 
1:5' 
::s 

-.I 

r 
Notes for Diagram BIt 

IDAOl9RL 

An ERASE request must be preceded by a 
GET-for-update request that moves the data control 
interval containing the desired record into a buffer. 

IDAOl9RU 

If an upgrade set exists, upgrade the alternate indexes 
in it. (See Diagram BRI.) 

2 IDAOl9RL calls IDAOl9RS 

For spanned-record processing. 

3 IDAOl9RS calls IDAOl9RC 

4 IDAOI9RS:CLEARSEG 

An unused buffer is obtained and filled with binary 
zeros and a free-space CIDF. The RBA of each 
segment is calculated from the index and placed in the 
BUFC. The buffer is written for each segment. 

IDAOI9RS: DELSEG 

Entries for all segments except the first are removed, 
and free-data-control-interval pointers are set up. The 
entry for the first segment is converted to indicate an 
unspanned record. 

5 IDAOl9RL 

6 IDAOl9RL 

When the RDF is a single RDF, it is erased. When the 
RDF is a group RDF (that is, two RDFs are combined 
to refer to two or more data records of equal length), 
the following processing occurs: 

• If the count of the records related to the group 
RDF is greater than two, the count is reduced by 
one. 

• If the count of the records is equal to one (which 
should not occur), the two RDFs are eliminated 
and the CIDF is adjusted to reflect the increase in 
frees pace in the control interval. 

• If the count of the records is two, one of the two 
RDFs is eliminated and the CIDF is adjusted. 

r r 



00 

o 
(Il 
....... 
< 
(Il 
tv 
(Il 

< 
(Il 

:; 
Q. 

'" "0 

'" :l 
Q. 

'" a 
n 
o 
3 
"0 o 
:l 

'" :l 
~ 

< 
~. 

E.. 
(Il 

5' ..., 
Pl 

~ 
:> 
n 
~ 
f:l 
~ 
'" g-
o 
Q. 

< (Il 

:> ; 
S 
~. 
n 

Diagram B11. POINT Processing 

\a,. 

VSAM User's Virtual Storage 

RPL 

tSearch 
Argument 

VSAM { 
Data 
Set 

.......-...... ...... 

y 
/I" 

.......-

1. Locate the wntro\ interval that contain 
specified key or RBA. 

2. Move the control interval into a buffer . 

3. Establish the position of the desired rec 

4. Return to caller. 

~ 

~ 

h e 

ord. 

Relister RWORK2 

RBA of Data 
Control Interval 

VSAM User's Virtual Storage 

'-' 



:: 
(1) 

;. 
o 
p.. 

o .., 
o 
'"0 
(1) ... 
a 
0' 
o 

>I:) 

r 
Notes for Diagram BJI 

Keyed Processing-Key-Sequenced Data Set: 

IDA019RA 

When the request is keyed, an index search must be 
performed. The index level where the search begins is 
determined as follows: 

• For skip-sequential processing, the index search 
starts at the sequence set. The search normally 
starts at the index record pointed to by the current 
PLH. If the PLH is invalid, the search starts at the 
first record in the sequence set. 

• For direct processing, the search starts at the 
highest level of the index. 

IDA019RA calls IDA019RB which calls IDA019RZ 
(IDAGRB) 

The index record at which the search is to start is 
moved into an index buffer. 

IDA019RB calls IDA019RC 

The index record is searched for an entry that is 
greater than or equal to the search key. 

IDA019RB 

When the search is unsuccessful, the next record in 
logical sequence is searched. If the search is successful 
and a lower index level exists, the search is performed 
on the index records in the lower level. 

Keyed Processing-Relative Record Data Set: 

IDA019RR 

The relative record number that is specified as a 
search argument is converted into the RBA of the 
control interval that contains the record and the offset 
of the record in the control interval. 

IDA019RR calls IDARRDRL 

The control interval is read, unless its RBA falls 
beyond the end of the data set. If the RBA isn't within 
the data set, then: 

• With KGE, end-of-data is indicated and 
positioning is established at the end of the data set. 

• Without KGE, no-record-found is indicated. 

Addressed Processing: 

IDA019RA 

The RBA that is specified as a search argument is 
converted into the RBA of the boundary of the control 

(' 

interval that it falls within. 

2 IDA019RA calls IDA019RZ (IDAGRB) 

Relative Record Processing: 

IDARRDRL calls IDA019RZ (IDAGRB) 

The control interval is read by RBA. 

3 IDA019RA 

The control interval is scanned to determine whether 
the key or RBA provided as a search argument is 
within the retrieved control interval. (Note: The RBA 
must represent a valid record boundary within the 
control interval.) 

When the key search is unsuccessful, a test is made to 
determine whether a control interval split has been 
performed by another request-string operating 
concurrently with the current request. If a split has 
occurred, processing returns to step I to perform a 
new index search. 

Relative Record Processing: 

IDARRDRL 

Positioning is established by saving in the PLH 
pointers to the record and the RDF and the RBA of 
the control interval. 

(' 



~ 
o 
t;,iJ 
'::;. 
2-1 
N 

en 
< en 
;-
0-
n> 

~ 
5-
n> a 
("l 
o 
3 
'"0 o 
::l 
n> 

~ 
< s· 
c:: e. 
S!l o 
jJ 
n> 

;J> 
() 
() 
n> 

'" '" 
3:: 
n> 
;. 
o 
0-

< en 
;J> e 
r o 

O<l ;::;. 

Diagram BK 1. ENDREQ: Terminate A Record-Processing Request 
Noncreate 

VSAM User's Virtual Storage 

RPL 

Error Flag ~ 
----------'" 

BUFCHDR 
----------- --...----

... .. ........ 

Data Buffer 

~ 

1. When processing of the current request is not 
complete, issue aWAIT macro against the ECB. 

2. Write any unwritten data buffers to the data set. 

Perform I/O-error processing if necessary. 

Return to the user's program or to Close. 

l., 

New or Modified 
Control Intervals 

L 

} 
VSAM 
Data Set 



a:: 
(1) 

;. 
0 
0-

0 .... 
0 
." 
(1) .. 
a o· 
i:l -tv 

r' 
Notes for Diagram BKI 
t IDAOt9Rt: FINDOPLH 

The placeholder (PLH) for the request string 
associated with the ENDREQ request is located by 
searching the placeholder list for a placeholder that 
points to the RPL identified by the ENDREQ. 

IDAOt9RP: IDAENDRQ 

Other RPLs (if any) in the request string are prevented 
from being processed by setting a flag in the 
placeholder that indicates that an ENDREQ request is 
being processed. (Note: Once a request-string starts 
processing, it continues until ali of the RPLs in the 
string are processed or until an ENDREQ is issued. 
When an ENDREQ is issued, processing against the 
request-string is terminated when processing of the 
current RPL in the string has completed.) If the 
current request is not complete, the WAIT is issued to 
ensure completion. 

2 IDAOt9RP: IDAENDRQ 

Before performing any I/O, the processing is forced 
into synchronous mode to ensure that control is not 
returned to the user untilI/O associated with the 
ENDREQ request is completed. When I/O is 
completed, asynchronous processing is restored if the 
processing was previously asynchronous. 

IDAOt9RP: IDAENDRQ (calis IDAOt9RZ 
(IDA WRBFR» 

All unwritten data buffers associated with the current 
placeholder are written. 

3 IDAOt9RP: calls IDAOt9R5 

4 

The buffer control block (BUFC) chain for the I/O 
block (lOB) in error is searched for a BUFC with an 
error indicator. 

Error conditions are analyzed and an error message is 
built. 

IDAOl9RP calls IDAOt9R5 (IDAEXITR) 

For processing if a SYNAD routine exists. 

IDAOt9RP: IDAENDRQ (calls IDAOt9RZ (IDASBF» 

Excess data buffers are released from the current 
placeholder. 

IDAOt9RP: IDAENDRQ 

The placeholder is released from the current request 
string. 

r r 



~ Diagram BK2. ENDREQ: Terminate A Record-Processing Request 
o 
I:Il 
"< 
I:Il 
N 
I:Il 
< 
I:Il 

5' 
Po 
~ 
::I 
Po a 
(") 
o 

~ 
::I o 
? 
~ 
2 

Create 

VSAM User's Virtual Storage 

RPL ECB I ~;::;.;::..~--,~ 

Index Buffer(s) 

Index Record 

Data Buffer(s) 

Data Control Interval 

e? 
I:Il 

0- ~--
~ O's eIDF 
~ 
> 
R 
~ 
a:: 
I'D 
S-
O 
P-

< I:Il 
> 
~ 
t"" o 

OQ o· 

\., 

¥ 
- - - - ~ I. When processing of the request associated with 

the ENDREQ request is not complete, issue a 
WAlT macro against the ECB. 

2. Write the current index record, if necessary, and 
write any un written data buffers. 

3. When the nonrecovery option is specified (SPEED= 
ON), convert unused control intervals in the last-

Preforrnatted 

used control area to freespace. I J 

4. Return to the user's problem program or to Close. 

~ ~" 

} VSAM 
Index 

} 
VSAM 
Data Set 



3:: 
<1> 
:;. 
o 
0-

2, 
o 
." 

<1> ., 
~ 
ci" 
::l 

IV 
w 

r 
Notes for Diagram BK2 

IDA019Rl: FINDOPLH 

The placeholder for the request string associated with 
the ENDREQ request is located by searching the 
placeholder list for a placeholder that points to the 
RPL identified by the ENDREQ. 

IDA019RP: IDAENDRQ 

Other RPLs (if any) in the request string are prevented 
from being processed by setting a flag in the 
placeholder that indicates that an ENDREQ request is 
being processed. (Note: Once processing for a 
request-string starts, it continues until all of the RPLs 
in the string are processed or until an ENDREQ is 
issued. When an ENDREQ is issued, processing 
against the request-string is terminated when 
processing of the current RPL in the string has 
completed.) If the current request is not complete, th,e 
WAIT is issued to ensure completion. 

2 The processing for step 2 ensures that the index entry 
for the last data control interval in the current data 
buffer for the current control area will fit in the index 
record for the current control area. Otherwise, when 
processing is resumed and when the dummy entry in 
the index record does not have space for the key, the 
data control interval would have to be moved to a new 
control area and have its index entry placed in the 
index record for the new control area. 

IDA019RP calls IDA019RG 

Before writing the index buffer, the following 
processing is performed: IDAOl9RG checks the 
leftmost entry, a dummy entry for the current control 
interval, in the index record to determine whether a 
maximum length key will fit in the remaining index 
record freespace. If there is adequate space to insert a 
key, IDAOl9RG writes out the current index record 
and frees the index-create work area(s) (lCW As). 

If there is inadequate space to contain a key for the 
control interval in the current data buffer, IDAO 19RP 
calls IDA019SA, which recalls IDA019RG, in order to 
have the entry inserted into the index record. 
IDAOl9RG returns a no-fit indicator to IDA019SA, 
which forces an end-of-control-area situation for 
IDA019SA (EOCA) processing. In response to the 
no-fit indicator, IDA019SA (EOCA) writes out any 
full data buffers (less the current data buffer) to the 
data set and acquires a new control area . 

3 IDA019RP calls IDA019RZ (IDAWRBFR) 

4 IDA019RP calls IDA019RK 

r r 



N 
.j:>. 

o 
[/J 

'< 
[/J 
N 
[/J 

< 
[/J 

::l 
0-
(1) 

"0 
(1) 

::l 
0-
11> a 
(j 
o 
3 
"0 
o 
::l 
11> 

a 
< 
~. 

I:: 
e:. 
[/J 

'0 ., 
~ 

0<> 
11> 

> 
(") 
(") 
11> 
'" '" 
3': 
11> 
;. 
8. 
< [/J 

> 
3': 
~ 

r o 
0<> o· 

\., 

Diagram BLI. CHECK Processing 

VSAM u .... VfrtIW s ..... 

EC8 

POit Bit 

RPL 

Error FJaa 

~ 
- - - - - -+ 1. When the request's ECD is not posted as being 

complete, a WAIT macro is issued against the 
ECD. 

- - - - - ~ 2. Perform error processing if necessary. 

3. Return to the user's processing program. 

l". l" 



3: 
(1) 

s:-
o 
0-

o -. 
o 
"0 
(1) .., 
a o· 
::I 

N 
v. 

r 
Notes for Diagram BLl 

IOAOt9Rt: F1NDOPLH 

The placeholder for the request-string associated with 
the CHECK request is located by searching the 
placeholder list for a placeholder that points to the 
RPL identified by the ENDREQ. 

IOAOt9Rt: RtCHECK 

A WAIT macro instruction is issued to ensure that the 
asynchronous request, for which the CHECK was 
issued, has completed. 

2 IDAOt9RI calls IOAOt9RS 

The buffer control block (BUFC) chain for the I/O 
block (lOB) in error is searched for a BUFC with an 
error indicator. 

Error conditions are analyzed and an error message is 
built. 

IOAOt9Rt calls IOAOt9RS (IDAEXITR 

For processing if a SYNAD routine exists. 

3 IOAOt9Rt: RtCHECK 

The check process is repeated for each RPL (if any) in 
the RPL-string associated with the RPL that the 
CHECK was originally issued against. 

The placeholder is released if necessary. 

The placeholder remains associated with the current 
request-string unless the processing is direct. For direct 
processing, the next request must be repositioned to an 
address in the data set. For sequential or 
skip-sequential processing, the positioning information 
established by a prior request is used by the succeeding 
request. 

r r 



~ Diagram BM 1. VERIFY Processing 
o 
til ....... 
-< 
til 
N 
til 
-< 
til 

S' 
0-
n 
'g 
8.. 
n 
::l ... 
(') 
o .g 
o 
::l 
n 

~ 
-< 
5: 
= a 
S 
~ 

f 
~ 

~ 
0-

< til 
:> 
~ 
'-' 

b 
IJ<I o· 

VSAM User's Virtual Storage 

AMB 

--------
SPEED= 
ON/OFF 

AMDSB 
/ 

/ 
Data Set ~/ Type 

J 
i ARDB(s) - Data 

High·Used 
roo RBA ~ 

roo 
J 

.) 

ARDB(s) - Index .I!J 
r- High·Key 1'/ 

J 

C- ~~ ..... ~ 

I' -I ~ 
I' ~~ 

Index Records 
-" ..... ---' 

4.., 

y 
--~L 

." 
/ 

/ 
/ 

When the data set is key sequenced and the 
recovery option (SPEED=OFF) is specified, 
perform the following: 

• Search the data space associated with each index 

VSAM User's Virtual Storage , 
ARDB 

High·Used 
RBA 

c/ 
and data ARDB for a software end-of-file marker~ 
in order to establish a valid high-used RBA in 
each ARDB. 

~ 
• Search the index to establish the RBA of the 

data control interval containing the highest key 
value in each data ARDB's space. 

/ 

@f 

err 
2. When the data set is key sequenced and the 

nonrecovery option (SPEED=ON) is specified, 
perform the processing described for step I except 
that a high-used RBA cannot be established for 
the data ARDB(s). 

It 
3. When the data set is entry sequenced, establish a 

high-used RBA for the data ARDB, as described in 
step I, only if recovery (SPEED=OFF) is specified. 

~ 
~ 

~ }VSAM 
Set 

jl Data 

~.~:: t· I r KUJ -I} ,.d .. 

RBA of 
CI Contain· 
ing High 
Key 

High Key 
in Data 
Set 

\v. 



3:: 
" ;. 
o 
0. 

g, 
o 
"'0 

" a o· 
::I 

8 

r 
Notes for Diagram BMl 

IDAOl9R8 calls IDAOl9RO 

Other requests are prevented from adding records into 
the data space controlled by the ARDB that is being 
examined by Verify. 

IDAOl9RO calls IDAOl9RZ (IDAGRB) and IDAOl9RZ 
ODAFREEB) 

Starting with the high-used key in an ARDB, retrieve 
and release successive control intervals until a 
software end-of-file marker, that is, a CIDF set to 
zeros, is found. The RBA of the control interval 
containing the software end-of-file marker is used to 
update the high-used RBA in the ARDB. 

IDAOl9RO calls IDAOI9RB, which calls IDAOl9RZ 
(IDAGRB) 

An index record is moved into a buffer. (Note: The 
search starts at the highest level of the index.) 

IDAOl9RB calls IDA0I9RC 

The index record is searched for a key that is greater 
than or equal to the search key. 

IDAOl9RB calls IDAOl9RZ (IDAFREEB) 

If the search is not satisfied or if lower-level index 
records exist (that is, the current level is not the 
sequence set), the current buffer is released. 
(IDA019RB then calls IDA019RZ (IDAGRB) to 
retrieve another index record and the search process 
repeats itself.) 

IDAOl9RO 

When the search is successful, the pointer in the index 
entry is converted into a valid RBA and moved into 
the ARDB. 

2 See note I. 

3 See note I. 

r r 



~ Diagram BNl. Processing by Control Interval 
~ GET or GETIX Processing (Control IntervM Retrieval) 
........ 
< en 
IV 
en 
< en 

5' 
0.. 
(1) 

"0 
(1) 

::l 
0.. 
(1) 

g 
n 
o 
3 
"0 
o 
::l 
(1) 

~ 
~ 
::l 
c: 
~ 
en o ., 
'" ~ 
> 
() 
() 
(1) 

'" '" s: 
(1) 

s:-
o 
0.. 

< en 
> ; 
r o 

!JQ 

ri' 

VSAM 1 Data 
Set 

~ 
1. Retrieve a control interval. 

Data or Index Buffer 

..... ------........ >1 con~rol Interval 

,,/f 

r~rt;~~~===;==~/~ Output of I <:> 

2. Is improved control.interval access specified? Data or Index Buffer 

No y~ ~ Control Interval 

T. whe;;;Ii&~rror occurs during a sequential ~'user Area 
retrieval operation, perform successive reads until .--------------. 
a control interval is successfully retrieved. ~ RBA or Control Interval 

4. Move the control interval or its address into a 
user-specified area. Step I or 3 ,,> 

yo 

VSAM User's Virtual Storage ,/" (i) • s . 
< 

Return to caller~ 

BB2 RPL 

Address of 
User Area 

~ 

h 

,," 
" 

> 

,II User Area 

I 

7 

I 

lJ L 



3:: 
" ;. 
& 
o -o 
~ 
~ o· 
::I -N 
\,Q 

r 
Notes for Diagram BNt 

Nonnal Control-Interval Processing (NCI): 

Direct Request Processing: 

IDAOl9R8 calls IDAOl9RZ (IDASBF) 

When the prior request was sequential, excess buffers 
in the chain of buffers associated with the current 
placeholder (PLH) are released. 

IDA019R8 calls IDAOl9RZ (IDAGRB) 

The control interval at a user-specified address is 
retrieved. 

Sequential Request Processing (GET) Only: 

IDAOl9R8 calls IDAOl9RZ (lDAGRB) 

When this is the first request after Open, the control 
interval at a user-specified address is retrieved. 
Subsequent control intervals are retrieved sequentially 
by IDAOl9RZ (lDAGNXT). 

2 Improved Control-Interval Processing (lCI: 

The request is decoded. A placeholder is obtained. If 
the request is for update, exclusive control of the 
control interval is obtained. 

IDAOl9S1 calls IDAOl9S3 

The control interval at a user-specified address is 
retrieved. 

3 IDAOl9R8 calls IDAOl9RZ (IDAGNXT) 

4 IDAOI9R8: calls IDAOl9RP (lDATJXln 

Journaling is performed when a journal exit routine 
exists. 

IDAOl9R8 calls IDAOl9RZ (IDAFREEB) 

For normal direct requests, the buffer associated with 
the request is released before returning to the caller. 

r r 



~ 
o 
o 
(I) 
........ 
< 
~ 
(I) 

< 
(I) 

S' 
0.. 

'" '0 

'" ::s 
~ a 
('l 
o 
3 
'0 o 
::s 
'" ?-
< 
~. 

a 
(I) 

0-
;;J 
~ 

'" >-
~ 
til 
til 

~ 

S-
o 
0.. 

< 
(I) 

>-; 
b 
!!!l. 
() 

l, 

Diagram BN2. Processing by Control Interval 
PUT-Create Processing (Add a New Control Interval) 

VSAM User's Virtual Storage 

BUFC 

BUFC(s) 

tNext 
BUFC 

Must-Write 
Status 

Availabilit y 
Status 

--DIwA---- T 
I - - ... 1. When the buffer associated with the p 

has not been released, release the buf Status 
Flag 

t----.........-4, f"I' , ' 

..... 

't!> ~ 2. Suspend add processing of other requ 

...... 

\ 

.................................... 

\) .............. 

3. When all of the control intervals in th 
control area have been used, the folio 
processing is performed: 

VSAM User's Virtual Storage 

BUFC 

'ior request 
~r. 

....... Available 
Status 

DIWA 

....... Active-
Status Flag st strings. 

: current 
ving ARDB 

High-Used 
RBA hich are • Write any unwritten data buffers w 

associated with the current reques stnng. .~ 
1 

High-

RPL 

tUser 
Area 

User Area 

Output of S 

~ 
~ 

(Q , 
:r.. 

• When data space allocated to the d 
is exhausted, acquire more space. 

• When the recovery option is specif 
OFF), preformat the next control 

4. Allow other request strings to proces 

S. Obtain a buffer and move a control in 
a user-specified area into the buffer. 

Ita set -
d (SPEED= 

rea. 

(see step 2). 

terval from 

6. Write the contents of the buffer to th e data set . .:::::::--.. 

7. Return to the caller. 

~ 

~"t 

---

I 

~ 

~ Allocated 
RBA 

DlWA 

Inactive-
Status 
Flag 

-
Data Buffer _ 

--f User-Supplied J 
Controllnterv~ 

-
~ ~ 

l(A) --CJ ___ 
} VSAM ""'y 

Data -- Set 
Freespace -~ =--

L 



3: 
~ 

;. 
o 
c-
o ..., 
o 
"0 
~ 

;1 g. 
::l 

.... 

r 
Notes for Diagram BN2 

IDA019R8 calls IDA019RZ (IDAFREEB) 

2 IDA019R8 

The DIWA, a serially reuseable resource, is examined 
to determine whether another request string is in 
control. When the DIW A is active, processing of the 
current request is deferred. When the DIWA is 
inactive, it is given an active status, which effectively 
defers processing of other requests that may be 
competing for this resource. 

3 IDA019R8 calls IDA019RZ (IDASBF) 

IDA019R8 calls IDA019RS (IDAEOVIF) 

IDA019R8 calls IDA019RK 

4 IDA019R8 

See note 2. 

S IDA019R8 calls IDA019RZ (IDAGNNFL) 

An available buffer is assigned to the request and 
written if necessary. 

IDA019R8 

The user-specified control interval is moved into the 
buffer. 

6 IDA019R8 calls IDA019RZ (IDAWRBFR) 

r r 



-... 
N 

o 
til 
"<: 
til 
N 
til 
<: 
til 

8: 
('II 

'g 
::I 
C. 
('II 

a 
(j 
o 
3 

'1:1 o 
::I 
('II 

~ 
<: 
S· 
c: 
e:. 
til o 
i 
i 
III 
III 

3:: 
('II 

;. 
o 
c. 

< til 
> 
3:: 
~ 

b 
OQ 

ri' 

Diagram BN3. Processing by Control Interval 

~ 

PUT or PUTIX-Update Processing (Update a Control Interval) 

U ser-Su pplied 
Control Interval 

PLH 

Address of 
Control Interval 
to he Updated 

/' 

} 

/' 

LB2 
5 

l. 

VSAM User's 
Virtual Storage 

Move the data or i~~ex control interval to a buffer ;:> 
Data or 
Index Buffer 

/' 
/' 

/' 

VSAM 
Data 
Set 

/ 
/' 

/' 

/"71 
/' 

from the user-specIfied area. I .... - •• _. 

2. Is improved control-interval access specified? 
No Yes 

• ! ~ ~ 3. Wnte contents of the buffer to the data set and~ 
then free the buffer. 

• ~ (4) BUFC 

Availahle 
Status Flag 

~4. Return to the caller. , 
~ 

l, ~ 



~ 
B 

ET 
8-
o ..., 
o 
"0 
B 

~ o· 
::s -<M 
<M 

r 
Notes to Diagram BN3 

Nonnal Control-Interval Processing(NCI): 

The request is invalid if any of the following 
conditions exist: 

• The record length is not equal to control interval 
size. 

• A PUT request specifies LOCATE mode. 

• A PUTIX request doesn't specify update. 

• A stand-alone PUT-for-update is issued without 
specifying user buffering. (Note:"Stand-alone" 
implies that the PUT-for-update is not preceded by 
a GET-for-update.) 

The address of the control interval to be updated is 
established as follows: 

IDAOl9R8 calls IDAOl9RW (IDAFRBA) 

For sequential requests, the new address calculation is 
based on information in the placeholder. 

For direct requests, the address is taken from the RPL. 

Improved Control-Interval Processing (lCI): IDAOl9S1 

The request is decoded. A placeholder is obtained. 

IDAOl9S1 calls IDAOl9S3 

The control interval specified by the RPL is written. 

3 IDAOl9R8 calls IDAOl9RP (IDATJXIT) 

Before writing the new control interval, journaling is 
performed if a journal exit routine exists. 

IDAOl9R8 calls IDAOl9RZ (IDAWRBFR) 

The new control interval is written to the data set. 

IDAOl9R8 calls IDAOl9RZ (IDAFREEB) 

The buffer is released. 

r r 



~ Diagram BOI. Creating or Modifying a Relative Record Data Set 
o 
(J) , 
<: 
(J) 
tv 
(J) 

<: 
(J) 

S' 
Q. 
~ 

'g 
5.. 
~ 
:l ... 
("l 
o 
3 
"0 o 
:l 
(> 

~ 
<: 
;5.' 
c: 
e:.. 
(J) .... o 

JJ 
(> 

~ 
'" til 

~ 
(> 

;. 
o 
Q. 

< (J) 

>-e 
s 

(JQ 

(i' 

VSAM -User's Virtual Storage 

Empty Slot 

Data Buffer 

I Control Interval J 
\ 

\ 

~. 

PUT -Insert Processing 

High Used 
and High 
Allocated 
RBAs 

, 

y 
I. Locate the control interval that contains the & indicated relative record number. 

2. If processing is sequential, advance the record 
A pointer. 

3. Is the control interval beyond the last 
preformatted control interval? 

No Yes • 4. What is the type of processing? 

" ........ , 
'\ ................ , 
" " " '\ 

'\. 

" 

~: \'Jil. 
12. 

13. 

'\ 
':ll 

~ 

8. If there is no more space, allocate 
additional space. (See Diagram AE 1.) 

9. Preformat the next control area, and the 
next, until the control interval that 
contains the indicated relative record 
number is found. 

10. Indicate the end of the last preformatted 
control area. 

Move the record into its slot in the current data 
buffer. 

Indicate the slot has a record in it. ~ 

If positioning is to be released, write the buffer 
and free it. 

14. Return to the caller. 

l" 

VSAM-User's Virtual Storage 

Data Buffer 

~,LH I Control Interval 

Current Control Area 

New Control Area 

Empty 

Control 

Intervals 

Empty 

Control 

Intervals 

High Used 
and High 
Allocated 
RBAs 

'-., 



3: 
" ;. 
0 
0.. 
0 .... 
0 
'0 no .., 
g-
:I -.... 
v. 

r 
Notes for Diagram BOI 

1 Direct or Skip Sequential Processing 

IDA019RQ calls IDA019RR (IDARRDRL) 

If the data set is not being created, or it is being 
created and the control interval is in an existing 
control area, the control interval is read and the 
record pointer is set in the PLH. 

Sequential Creation 

IDA019RR caIls IDA019RZ (IDAFREEB, IDAGNXT) 

If there are no more slots in the current control 
interval and the next control interval has already been 
written, the next control interval is read into a buffer. 

IDA019RQ calls IDA019RZ (IDAGRB) 

If there are no more slots in the current control 
interval and the next control interval has already been 
written, the next control interval is read into an insert 
buffer. 

Sequential Insertion 

IDAOl9RQ caIls IDA019RR (IDARRDRL) 

If the previous request was a POINT for KGE (key 
greater than or equal), its search argument is used to 
retrieve the control interval as though for a direct 
request. 

IDA019RQ calls IDA019RZ (IDAFREEB, IDAGNXT) 

Otherwise, if there are no more slots in the current 
control interval, the next control interval is read with 
read-ahead buffering. 

3 Direct or Skip Sequential Creation 

5 

6 

IDA019RQ caIls IDA019RZ (IDAFREEB, IDAGNNFL) 

If the control interval is not in an existing control area, 
a buffer is obtained and formatted with empty slots. 

Sequential Creation 

IDA019RQ calls IDA019RZ (IDAGNNFL) 

If there are no more slots in the current control 
interval and the next control interval is not in an 
existing control area, a buffer is obtained and 
formatted with empty slots. 

IDA019RO calls IDA019RM (IDAEOVIF) 

End of Volume does the allocation. 

IDA019RQ calls IDA019RK 

Each control interval is formatted with empty slots. 

r 
7 See note for step 6. If the requested control interval is 

among those formatted, processing continues at step 
to. 

S See note for step 5. 

9 See note for step 6. During preformatting of control 
areas, End of Volume might have to be called to 
allocate additional space. (See Diagram AE1.) 

10 IDA019RQ 

The high used RBA is at the beginning of the next 
control area-except for creation with the SPEED 
option, for which it is at the beginning of the next 
control interval. 

11 IDA019RQ 

If the slot into which the record is to be moved isn't 
empty, a duplicate-record error is indicated'. 

12 The codes that indicate whether a slot is empty or 
filled are given under "VSAM Data Set Format" in 
"Data Areas." 

13 IDA019RQ calls IDA019RZ (IDAWRBFR, IDAFREEB) 

r 



~ Diagram D02. Modifying a Relative Record Data Set PUT-Update or Erase Processing 
o 
VI 

< 
~ 

~ 
5' 
p.. 
('II 

1il 
6.. 
('II 

a 
n o 
3 
'8 
::I 
('II 

~ 
< 
~. 

Eo 
VI 
0' ... 
I>l 

~ 

f 
:: 
('II 

;. 
8-
< VI 
~ :: ....., 

b 
OQ 
t'i" 

/ 
VSAM-User's Virtual Storage 

\ 
/ 

y 
?' 

/ 
/ 

1. Ensure that the record to be updated or deleted is 
in the buffer associated with the request. 

/ \ I / 
/ \ / Data Buffer / 

/ 
2. Update or delete the record by overlaying it with 

either the new record or zeros. 

r Control Interval r 
Record to be 
Updated or Deleted 

// 

, ." 

V 

Records 

~ 

."" 

/A 
.",,/ 

3_ For deletion, adjust the RDF to indicate the slot 
is empty. 

4. If positioning is to be released, write the buffer 
and free it. 

s. Return to the caller. 

\.. 

,~ 

~ 

VSAM-User's Virtual Storage 

Record to be 
Updated or Deleted 

\.. 



a: 
tD 
;. 
o 
0.. 

a. 
o 
'g 

a o· 
::s -\H 
...;j 

r 
Notes for Diagram 801 

IDA019RQ 

A PUT-update or ERASE request must be preceded by 
a GET-update request. 

2 IDA019RQ 

For PUT-update processing. the length of the updated 
record must be the same as that of the original. 

3 IDA019RQ 

The codes that indicate whether a slot is empty or 
filled are given under "VSAM Data Set Format" in 
"Data Areas." 

4 IDA019RQ calls IDA019RZ (lDAWRBFR.IDAFREEB) 

r r 



~ Diagram BPI. MRKBFR: Marking a ButTer in the ButTer Pool (With Local Shared Resources) 
o 
en ....... 
<: 
~ 
en 
<: 
en 

S' 
0.. 

'" -g 
;:l 
0.. 

'" a 
(') 
o 
:g 
o 
;:l 

'" ~ 
<: 
;l' 
c 
e? 
en 
0' 

~ 
:> 
(l 

@ 
'" '" s::: 
'" ;. 
8. 
< en 
:> g 
t'"' o 

OQ 

n' 

VSAM-User's Virtual Storage 

'-

~ 

PLH 

lnUFC 

BSPH 

t First 
BUFC 

I:lUFCs for 
Buffer Pool 

~ • 1. Is the request to mark for output or to release it? 

RLS OUT • 

VSAM-User's Virtual Storage 

PLH 

cIr ~ 
BUFC 1-1.----I 

~ 2. If the buffer is being written, wait until ~ 
writing is finished. 

1 Burt: 

I:lUFC 

3. Set the RBA for output. we ....,... 
BUFC 

4. Set the flag that indicates to write the ~ 
buffer. ~ 

S. Take away exclusive control and decrement use _ 
count. fA' ~ ~L. _____ ..... 

6. Disconnect the placeholder from the buffer. 

~ 7. Return to the caller. 

L 

BSPH 

~ 

L 



~ 
t1> 
;. 
8-
o .... 
o 
"0 
t1> .., 
a o· 
::I -.., 
100 

r 
Notes for Diagram BPI 

1 IDA019RY (MRKBF) 

2 IDA019RY calls IDA019R5 (IDADRQ) 

The request is deferred until the buffer has been 
written. 

3 IDA019RY 

The RBA of the control interval to be written is 
assigned to the buffer that contains the control 
interval. 

6 IDA019RY 

The placeholder is marked invalid. 

r r 



~ Diagram BP2. WRTBFR: Writing a Buffer in the Buffer Pool (With Shared Resources) 
o en 
"<: en 
N 

en 
<: en 
5' 
0-
~ 

"0 
~ 
::l 
0-
~ a 
n 
o 
3 
"0 o 
::l 
~ 

~ 
<: s: 
c: 
eo. 
en 
S 
~ 
"" ~ 
:> 
(') 
n 
~ 
rJ> 
rJ> 

s: 
~ 

:r 
8. 
<: en 
:> 
s: 
1;' 
"" ;:;-

VSAM-User's Virtual Storage 

AMB BSPH 

~ t First 
tBSPH BUFC 

PLH BUFC 

~ V ~ 
/ 

~ 1 BUFC 
~ 

~ 

y 
. a placeholder holds a position in the buffer, ~ 

o 
./ 

,/ 

0-~ 

ee the placeholder. 

'etermine the type of request. 

- - _ 'DS 

3. Write all buffers marked for output for the 
specified AMB. 

4. Indicate that each buffer is empty. ~./ 
TYPE=CHK 

®-~ the~?~ 

6. Ignore errors. • 0 
TYPE=TRN ®-- -+ 7. Write all buffers marked for output for the C 

specified transaction ID. • 0 
r.:\ TYPE= ALL 
~ ~I 8. Write all buffers marked for outPut.~ 
~ 9. Return to the caller. 

l., 

VSAM-User's Virtual Storage 

PLH 

.,.... 

BUFC 
--. 

~ 

l., .. 



s: 
til 
;. 
o 
0-

9.. 
o 
'g 

a o· 
::l 

;t 

r 
Notes for Diagram BP2 

3 IDA019RY: WRTBF calls IDA019RY (WRBFR) 

WRBFR writes the buffers associated with the BUFCs 
indicated by the request. 

S Same as note for step 3. 

The user indicates the ID of the transaction in the RPL 
TRANSID operand. 

7 Same as note for step 3. 

8 Same as note for step 3. 

r r 



~ Diagram BP3. SCHBFR: Searching the ButTer Pool (With Shared Resources) 
o 
~ 
< 
CIl 
IV 

CIl 

< 
CIl 

[ 
(1) 

~ 
== P-
(1) 

a 
n 
~ 

"0 o 
; 
~ 
< 
~. 

e. 
~ o 

~ 
i 
[Il 
[Il 

3: 
(1) 

;. 
8-
< 
~ ; 

i. 
(") 

VSAM-Vser's Virtual Storage 

PLH 

, tBUFC 

BUFC 

~ 
E-. 

r 

BUFC 

~ '-

'-' 

- ---
I 

t First 1 BUFC I 

ffi 

" - - ~ 1. If the placeholder holds a position in the 
buffer pool, free the placeholder. 

2. Is the buffer number at which to start the 
search valid? 

Yes No 

I tot 'n 'rrUd'~ t @ 
4. Search the buffer pool for the specified RBA. 

5. Was the RBA found? 
Yes No 

I '- So' ""um cod, ~ t @ 
7. If the buffer is being used, wait until it is 

available. 

VSAM·User's Virtual Storage 

RPL 

tPLH 

tBUFC 

BUFC 

8. Increment the use count.·~ Register 0 

00 9. Indicate which buffer contains the RBA.~ I 
"'10. Return to the caller. 

~ L 



a:: 
." 
;. 
o 
Q. 

S, 
o 
~ a o· 
::s 

~ 

r 
Notes for Diagram BP3 

7 IDA019RY calls IDA019R5 (IDADRQ) 

The request is deferred until the buffer has been 
processed. 

r r 



t Diagram BQl. Processing a Path 
o 
I;Il 

< I;Il 
N 
I;Il 

< 
I;Il 

S" 
Co 

'" 

VSAM-User's Virtual Storage 

User's RPL ~ 
A request to gain access to a base cluster by way 
of an alternate index. 

I 

-g 
::I 
Co 

'" a 
n 
o 
3 
"0 
o 
::I 

'" a 
< s· 
c: 
e:. 
I;Il o 
~ 

(JQ 

'" > () 
() 

'" 'Jl 
'Jl 

3: 
'" S-
O 
Co 

:2 
I;Il 

> 
3: 
~ 

b' 
(JQ 
('i' 

r tPLH 

PLH 

~ 

r tWAX 

WAX 

~ 
tInner r RPL 

~ 

~' 

" " " V " " / ". 

/" / 
/ 

/ 
/ 

/ 
/ 

/ 
/ Inner RPL 

t::;::: ;-
~ 

FDBK 

T 

1. 

No 

Is positioning in an alterna 
required? 

Yes , 
2 Read the requ 

,.;;J record. 

~ 3. Position to its 
cluster record 

4. Select a pointer from the a 

5. Set up the. inner RPL to u 
access to the base cluster. 

6. Issue the user's request. 

te-index record 

.red alternate-index 

first pointer to a base-
~~~ 

lternate-index record.

e the pointer to gain

7. Move any error code to th e user's RPL. >@
8. Return to the caller.

L

VSAM-User's Virtual Storage

User's RPL

~
FDBK

tl'LH e B

I'LH

~
WAX

, ~
tWAX ~ t Pointer i""I

t Inner
r RPL

Inner RI'L

~

'" Alternate-Index Record

KEY I Ptr Ptr Ptr I Ptr I Ptr

L

3: n
;.
o
c.

S
O
'"0
n ..,
~ o·
::s

-1>0
v.

r
Notes for Diagram BQ1

IDA019RX

If the request is a PUT or a POINT, no positioning is
required. If the request is a GET, positioning could
already have been established by a previous GET.

2 IDA019RX calls IDAOl9R4

3 IDA019RX

The PLH identifies the alternate-index record
positioned at; the WAX indicates the pointer within
the alternate-index record positioned at. The
alternate-index record contains either prime-key
pointers (for a key-sequenced base cluster) or RBA
pointers (for an entry-sequenced base cluster).

4 IDAOl9RX

5 IDAOl9RX

The inner RPL is built by VSAM Open. It is used to
read the alternate index and to gain access to the base
cluster.

r r

~
o en

< en
N

en
< en
5'
0-
~

1!
::s
0-
~ a
()
o
3

"0
o
::s
~

~
<
;i'
t:
E..
en
0"
~

(J<I
~

:»
n

~
a:
~

S-
O
0-

< en ;
b

(J<I

n'

Diagram DR!. Upgrading Alternate Indexes
For GET-Update:

Save the portion of the data record that contains ..J::? all of its key fields. C :;t: • (14

iSAM-User's Virtual Storage • 'I 2. Is upgrading for PUT-update?
No Yes

RPL

tPLH

t Record

tLLOR

UPT

tRecord

tLLOR

tRPL Upgrade RPL

\,

,/-liJ

}",I • 3. H" any alt"nat, key fidd ,hang,d?

..... Yes NO...e
4. Get exclusive control of the upgrade table. - __

Repeat steps 5-12 for each alternate index in
the upgrade set.

S. Is there a new alternate key to add to the alter
nate index?

No Yes • 6. Read the alternate-index record that has
the new key, if there is a record, or build
a new record.

7. Add to the alternate-index record a
pointer to the data record.

8. Write the alternate-index record.

9. Is there an old alternate key to delete from
the alternate index?

No Yes • 10. Read the alternate-index record that
has the old key.

11. Remove from the alternate-index
record the pointer to the data record.

12. If the alternate-index record contains
no other pointers, delete the record;
otherwise write it.

13. Release the upgrade table from exclusive control.

GtP~
~---~ 14. Return to the caller.

~

LLOR (Least Length of Record)

UPT

tRPL

Upgrade RPL
i

tRecord

Alternate-Index Record

I

l"

3::
(D

;.
8-
o -o
'"0
(D

~ c·
0,

.;
-..J

r
Notes for Diagram HRl

1 IDA019RU

The LLOR is just large enough to contain the "least
length of the data record" that contains the record's
prime key, if any, and all of its alternate keys.

5 IDA019RU

For ERASE, there can be no new alternate key to add.
For PUT-insert, there is a new key. For PUT-update,
there is a new key if the alternate key for the alternate
index being upgraded has changed.

6 IDA019RU calls IDA019R4

7 IDA019RU

8 IDA019RU calls IDA019R4

9 IDA019RU

For PUT-insert, there can be no alternate key to
delete. For ERASE, there is a key to delete. For
PUT-update, there is a key to delete if the alternate
key for the alternate index being upgraded has
changed.

10 IDA019RU calls IDA019R4

11 IDA019RU

12 IDA019RU calls IDA019R4

13 IDA019RU

r r

<;.
00

o
CJl
"<
CJl
tv
CJl

<
CJl

::
0-
(I)

"0
(I)

::
0-
(I)

:a
(J
o
3
"0
o
::
(I)

:a
<
~.

c:
2:..
CJl

0' .., ..,
~
(I)

>
t'l
t'l
(I)

'" '"
:.:::
(I)

;.
o
0-

< CJl

>
:.:::
r
o
~
(;'

Diagram BS 1. Buffer Management: Reading a Control Interval into a Buffer

VSAM-User's Virtual Storage __ ~ 1. Is processing with local shared resources? VSAM-User's Virtual Storage

Data AMB

tSUFDR

RPL

tPLH

Index AMS

tSUFDR

PLH

tBUFC

SSPH

tBUFC

~

------ -
\--- ---

BUFDR

- No Yes

,~
For request for a data control interval:

Data SUFC
i

..
,.- tSUFC

2. If the requested control interval is not in the,ztZ"r I
, t d' t b ff d fiZZZ?"" curren a a u er, set up to rea, I2L Data Buffer

3. Ensure that there is no exclusive-control conflict.

BUFC 4. For a sequential request, prepare to read-ahead.

~
lBUFC

.1

/
For request for an index control interval:

5. Is the request for a sequence-set record?
Yes No 1 , ..., ." -- -

.... 1 ,.

• ... --
I-- - P C'H- ,.

","

,.
6. If the requested control interval isn't in A the buffer pool, select a buffer into which

~ r-= tData BUFC r tlndex SUFC

BUFDR

~
,- tSUFC

SUFC /~
r / /

LSUFC
I /
/

-I /'
/'

~ to read the control interval. P".;I!Z~~~!r2r2";i!'rZ'irioC1
7. Is the buffer's BUFC available? L-r------l
No

<D l1 8. Select the sequence-set buffer. ~
~ For processing with local shared resources:

/ / 9. If the requester already owns a buffer, free it.

/ /,71 10. Ensure that the requested control interval isn't

/'
" ~ involved in a control-area split.

" / 11. Is the requested control interval in the buffer
,. pool? / ,. ,

Index Buffer

PLH

t Bll FC

SllFC

------- tJB ~~: - i+ ~: In,,,m,ntth, u" wunt. • (IS SUFC

~
,.

I
LBUFC ~I

,/ 13. Obtain control of the buffer used least recently
and set up to read. if!

4 7 8 -::11---.....;;.-------------.......

I
I

14. Call the I/O Manager to read the requested 62l. control interval into the selected buffer, and
~ wait for completion of I/O.

15. Return to the caller.

l, l,

a::
(l)

S-o
0-
0 -.
0
."
(l) a o·
::l

~
\0

r
Notes for Diagram BSI

Buffer Management is called for the processing of almost
every Record-Management diagram. See the "Procedure
Called-By Directory" for a list of the modules that call
IDAOI9RZ.

IDAOl9RZ (IDAGRB)

If processing is with shared resources, IDA019RZ calls
IDAOI9RY; if not, it calls IDAOI9R2.

2 IDAOl9R2

If the requested control interval is in the current data
buffer, processing continues at step 15. The read flag
in the BUFC is set if:

• The requested control interval is not in the buffer,

It is in the buffer, but its contents are invalid,

• It is in the buffer, but its exclusive-control level is
inappropriate, or

• Share-option 4 is specified.

3 If exclusive control is required, the requested control
interval may not be held in exclusive control or for
writing by another string. If it is, an exclusive-control
error is indicated: IDAOl9R2 returns to the caller.

4 IDAOl9R2 initializes the REA fields and read flags of
the other BUFCs in the chain if the request is for:

• Sequential retrieval,

• Control-area split, or

• Spanned-record retrieval.

6 If the requested control interval is in the buffer pool,
processing continues at step 15. For selecting a buffer
for an index-set record, if there are more index buffers
than strings, the surplus buffers can be used. The first
surplus buffer can be used only for the highest-level
index record. Other surplus buffers can be used for
other index-set records. The buffer selected is, in this
order of priority:

7

(t) An empty buffer,

(2) A buffer that contains a lower-level index-set
record, or

(3) A buffer that contains an index-set record of the
same level

The BUFC is not available if its buffer is being used by
another string.

r
8 The sequence-set buffer is the buffer allocated to the

string by Open. It is used for for all requests for a
sequence-set record and for requests for an index-set
record when there are no surplus buffers.

9 IDA019RY

No string can own more than one index, one data, and
one insert buffer at a time. IDAOl9RY enforces this
rule by freeing a buffer if the request would otherwise
violate the rule.

12 If data is in the process of being read into the buffer,
IDAOl9RY calls IDAOl9R5 (IDADRQ) to wait until
I/O has finished. If the use count is incremented to
more than one and the request is for exclusvie control,
a read-exclusive error is indicated.

13 If a buffer not in use is found, it is written if its
contents have been modified, and the read flag in its
BUFC is set on. If no buffer not in use can be.found, a
logical error is indicated, and processing continues at
step 15.

14 IDA019R2 or IDA019RY calls IDA019R3

The read is initiated. (See Diagram BT t.)

IDA019R2 or IDA019RY calls IDA019RZ (IDA WAIT)

Processing waits for I/O to finish. (See Diagram 8S3.)

r

VI
o
o
t;I)
.......
<
t;I)
N
t;I)

<
t;I)

5'
0-
ft
'0
ft
:;)
0-
ft :a
n
o
3
'8
:;)
ft

~
<
~.

s::
e:.
t;I)

S
~
ft

~
'" '" a:
ft
;.
o
0-

< t;I)

> ;
r o

O<l o·

Diagram BS2. Buffer Management: Freeing a Buffer

VSAM-User's Virtual Storage

AMB

~-----
PLH

Free-Buffer I-
Count -----

\.,

1. Make the buffer to be freed available for other
strings.

__ • __ ~ 2. Is processing with local sh.lred resources?
--- No Yes

, • l®
3. Is processing sequential retrieval?
No Yes • ~ 4. Are enough buffers free to read-ahead?

No Yes ------- • r, : >~. Call the I/O Manager to read-ahead.

~

VSAM-User's Virtual Storage

BlJFC I

.. Available
Status

Data Buffers

.......

I
I

I

~

3::
n
:;.
8-
~
o
'g ...
a o·
=
v.

r
Notes for Diagram BS2

Many Record-Management routines call Buffer
Management. See

the "Procedure Called-By Directory" for a list of the
modules that call IDAOI9RZ.

Processing without Shared Resources

IDA019RZ: IDAFREEB calls IDA019R2

If share-option 4 is specified, the buffer contents are
forgotten.

If the data insert buffer or an index buffer is being
freed, the test-and-set byte is cleared and exclusive
control is released.

If the buffer being freed contains a segment of a
spanned record, IDAOl9R2 releases exclusive control,
but ensures that exclusive control is kept for the buffer
that contains the first segment.

Processing with Shared Resources

IDA019RZ: IDAFREEB calls IDA019RY

If the buffer being freed has been modified, its
modification mask is set to indicate the transaction ID
of the modifier (which the user specifies in the RPL
TRANSID operand). If the buffer doesn't contain a
segment of a spanned record held in exclusive control,
exclusive control is released, the use count in the
BUFC is decremented, and, if share-option 4 is
specified, the buffer is marked empty.

5 IDA019R2

IDA019R2 initializes the RBA fields and read flags of
the BUFC of each empty buffer if:

• The read threshold has been reached (that is,
enough buffers for read-ahead buffering have been
freed),

• The request is for sequential retrieval,

• The request is for a control-area split, or

• The request is for spanned-record retrieval.

Read-ahead buffering is begun. (See Diagram BTl.)

r r

VI
N

o
[II
. ~
'j)
N
Vl
<:
Vl

S'
~
'g
::I

~ a
l"'l
o
3
"0 o
~ a
~
:l
c: e:.
Vl o
~

IJQ
(I)

~
(')
(I)
VI
VI

3:
(I)

;.
o
0.

< [II

:>
;
r o

IJQ
ri'

Diagram BS3. Buffer Management: Waiting for 1/0 Completion

Register 12 Register I

r-I HOB ~1 tRPL I
VSAM-User's Virtual Storage

"- lOB

~-- " -- tECB " --:;'-
" " x"
'" "-" ~ ... ECB ..," '..(

/ "
/

~
/

/ tJ/

\,

~ i
1. Has the I/O been posted complete? ,/;"/(t Yes-..cv

;" 2. Was the request synchronous?

;,," //'iO t~
3. Wait for the I/O to complete. ----~---/

/
-74. Did a file-protect check occur?

Yes NO~ • 5. Reissue the EXCPVR. (See Diagram .0

" '-
BTL)

Set the placeholder so that the I/O manager
asynchronous routine passes control to step

~ 7. Did a file-protect check occur?
No Yes

7.-...cv

~ • f. R,wu< Ih' EXCPVR. (S" D",<om BTl.~
• 9. """m l'll'L
~

~.

VSAM-User's Virtual Storage

PLH

I
....

I

l,

3:
t1>

:T o
0..
o -.
o
"0
t1> a o·
:I

VI

r
Notes for Diagram BS3

I IDAOI9RZ: IDAWAIT

2 If the RPL specifies synchronous and WAITX, exit to
the UPAD routine.

4 The I/O Manager chains channel program segments
together with cylinder seeks if necessary. When a
cylinder seek causes a file-protect check, the
Abnormal-End Appendage, IDAOI9R6, resets the
starting address of the lOB to point to the CCW that
follows the cylinder seek.

6 The current request is suspended. The Asynchronous
Routine eventually resumes the request under an IRB.
When it passes control to step 7, return (at step 9) is
actually to the Stage-3 Exit Effector.

8 See note for step 4.

r r

v.
~

o en
"<
Vl
N

en
<
Vl

S'
0-
<1>
'0

<1>
~
0-
<1> a
(')
o
3
'0 o
~
<1>

~
< ;i.
c:
e?.
Vl
0"
ii1
~
> o o
<1>

'" '"
i3::
<1>

S-o
0-

< en
> ;
b

OQ

n·

Diagram BTL

VSAM-User's Virtual Storage

BUFC

tCPA

EDB

c§
~LPMB J

CPA

\r

I/O Management

\
\

"-~
/

/

VSAM-User's Virtual Storage
f:\-A ~ 1. Convert the RBA to be processed into MBBCCHHR.~D
\.V ~\::.J CPA

/f 2. Rebuild channel programs if necessary. U2Z?2???????.??U?t.,~ ey:- ~ 3. Build a virtual page list if necessary.

cl:4. Chain together channel program segments.

5. Issue EXCPVR to give control to OSjVS 1/0_

C r
Supervisor. ---- ___

./
./'

./'

I/O Supervisor passes control to the appropriate I/O
management appendage or Asynchronous Routine:

Page-Fix Appendage

6. Fix control blocks if they're not already fixed
in real storage.

7. Return to the I/O Supervisor.

Start-I/O Appendage

8. Convert the virtual addresses in CCWs to real
addresses.

9. Create an indirect data address list from the
virtual page list.

10. Return to the I/O Supervisor.

Channel-End Appendage

11. For an asynchronous request, sched ule the
Asynchronous Routine to run.

12. Reset the BUFC to show the current status.

13. Return to the I/O Supervisor.

Asynchronous Routine

14. Reset the BUFC to show the current status.

15. Return to Record Management.

L

~><?~

---- --

L

:!:: ..,
;.
o
0-

o ...,
o
'0 ..,
a o·
:l

v.
v.

r
Notes for Diagram BTl

IDA019R3

If the RPL specifies synchronous and WAITX, the
ECB pointer in the lOB is set to point to the user's
ECB. Otherwise, the ECB pointer is set to the VSAM
ECB.

2 IDA019R3

For processing with shared resources, IDA019R3 calls
IDAOI9SB.

3 IDA019R3

The virtual page list contains the virtual address of
each block of storage from which to read or into which
to write.

4 IDA019R3

The OS/VS I/O Supervisor is called by way of SVC
114.

6 IDA019R9

The AMB, BUFC, CPA, lOB, and buffers are fixed in
real storage for I/O.

9 IDA019R9

Each read, write, and write check CCW points to an
entry in the indirect data-address list that contains the
real address of each storage block of a buffer.

11 IDA019R6

For a synchronous request, the lOB is posted when the
I/O completes.

14 IDA019R7

The return address to Record Management is in the
PLH.

r r

u.
a-,

o
til
"<:::
til
N

til
<:::
til

S
0-
I'>
'0
I'>
::l
0-
I'> a
I.i o
3
'0 o
::l
I'>

~
~
::l c:
!!!..
til o ..,
'" 0<>
I'>

~
fI
~

3:
I'>

S-
O
0-

< til
;.-
;
r o

!/Q ;:;.

Diagram BUt. ISAM-Interface: Processing a VSAM Data Set

ISAM-Interface Request Translation for QISAM

L When the request is a resume-load request, issue
User-Issued .. a VSAM GET-locate macro and then a PUT-move
QISAM PUT Macro macro_

Otherwise, issue a VSAM PUT-move macro, only_

..

... 2_ Issue a VSAM GET macro_
User-Issued
QISAM GET Macro

3. When the record associated with the request is a
User-Issued ... deleted record and when deleted records are to be
QISAM PUTX Macro ... ignored, issue a VSAM ERASE.

Otherwise, issue a VSAM PUT macro.

..
4. Issue a VSAM POINT macro User-Issued

QISAM SETL Macro

User-Issued --... 5. Ignore this macro and return to the user's ISAM
QISAM RELSE Macro ... problem program.

6. Issue a VSAM ENDREQ macro. ... User-Issued
QISAM ESETL Macro

~
~

\., l, L

~
<> ;.
0
0-

s..
0
'0
<> .,
a o·
:::

'" -...j

r'
Notes for Diagram BUI

IDAIIPM I: QISAM PUT Processing

To handle an ISAM PUT-Locate request, VSAM uses
the ISAM-Interface buffer to contain records to be
written. For ISAM PUT-move requests, the user
supplies the buffer. (Note: In both cases, VSAM treats
the buffer as the user's work area, and transfers
records to its own output buffers before writing them.)

For ISAM resume-load requests, a GET-locate is
issued to VSAM to search the previously created data
set for a key greater than or equal to the key of the
first record to be written by resume-load. If the VSAM
search is unsuccessful, it is assumed that the previous
last key and the new key are in correct sequence, and
load I processing continues.

A successful search indicates that the new key is less
than a key already in the data set (a logical error); and
control is passed to the user's ISAM SYNAD routine if
it exists. Otherwise, an ABEND is issued.

2 IDAIIPM2: QISAM GET Processing

3

If the ISAM GET request is preceded by a SETL
request (used to determine whether the located record
was a deleted record), the retrieved record is moved
from the ISAM-Interface buffer to the user's buffer
and a VSAM GET macro is not issued.

When the ISAM GET request is in locate mode or
specifies data-only, the ISAM-Interface buffer is used
for the record; otherwise, the user's buffer is used.
(Note: Data-only implies that the key resides at the
beginning of the data record; the relative key position
of the record is 0.) A VSAM GET macro is issued. If
the request specifies move-mode and data-only
options, the data (minus the key) is moved into the
user's buffer. When a deleted record is retrieved, and
such records are to be ignored, successive GET
macros are issued until a normal record is retrieved.

IDAIIPM2: QISAM PUTX Processing

If the record to be written had only the data portion of
the record retrieved (see note 2), the data is moved
from the user's buffer to the ISAM-Interface buffer to
rejoin its key before it is written; otherwise, the
complete record already resides in the appropriate
buffer.

The record is then examined to determine whether it is
marked as a deleted record. Deleted records are
ignored, if requested, by issuing a VSAM ERASE
macro to eliminate the original record from the data

r
set. A VSAM PUT macro is issued for those records
that are to be written.

4 IDAIIPM2: QISAM SETL Processing

The validity of the request is tested, and if two SETL
requests have been issued without an intervening
GET, PUTX, or ESETL macro, an invalid SETL
macro has been issued or an invalid generic key has
been used. An invalid request error code is set and
control is passed to the ISAM-Interface SYNAD
routine (see note rl).
lf the request is valid, the address of the key to be
located is placed in the RPL, and a VSAM POINT
macro is issued.

If the data set contains deleted records and if the
request is directed at a specific record's key, a VSAM
GET macro is issued to retrieve the record. If the
record is a deleted record, a no-record-found indicator
is set in the DCB and control is passed to the
ISAM-Interface SYNAD routine (see note 1 I).

S IDAIIPM2: QISAM RELSE Processing

This request is ignored by the ISAM-Interface routine,
and control is immediately returned to the user. The
release function is not required by ISAM-Interface or
VSAM because each QISAM request handled by
ISAM-Interface uses only a single data record for
request processing.

6 IDAIIPM2: QISAM ESETL Processing

A VSAM ENDREQ macro instruction is issued to
release any VSAM resources. ISAM Interface resets
the scan-mode indicator in the IICB, which enables
another SETL request to be issued, and returns control
to the user.

IDAIIPM2: QISAM EODAD Processing

This routine recieves control when VSAM reaches an
end-of-data condition. The ISAM EODAD routine is
given control if one has been specified; otherwise, an
ABEND is issued.

r

VI
00

o
(Il
.......
<
(Il
N
(Il

<
(Il

;-
0-
(I)

'g
::l
0-
(I)

a
()
o
3
"0 o
::l
(I)

a
~
::l. c::
~
(Il

0" ...
rfJ
(I)

~
(')
(I)
Vl
Vl

~
(I)

;.
o
0-

<
(Il

:> ;
t'""' o

00 o·

Diagram BU2. ISAM-Interface:Processing a VSAM Data Set with an IS AM User's Program

ISAM-Interface Request Translation for BISAM

User-Issued • I
BISAM WRITE Macro

User-Issued • I
BISAM READ Macro .

User-Issued
BISAM FREEDBUF Macro

U ser-Issued • I
BISAM CHECK Macro

(SAM User's Virtual Storage /'
/'

/'
/'

DECB /'
/'

/'

r Error
~ Codes
/'

7. When the request is a stand-alone-write, issue
a VSAM GET-for-update macro and then a
PUT-for-update.

When the request is to write a deleted record,
issue a VSAM ERASE macro and then a
PUT-for-update macro.

Otherwise, issue a VSAM PUT macro.

8. Issue a VSAM GET macro. I
9. Issue a VSAM ENDREQ macro to release the

VSAM buffer associated with the prior request.

10. Determine whether an error has been detected.

When an error condition does not exist, return
to the ISAM-user's problem program.

When an error condition does exist, pass control
to the ISAM-user's SYNAD routine.

ISAM-Interface SYNAD Exit Processing

RPL (ISAM
Interface)

Error Codes f-"

ISAM-Interface
Extension (RPLE)

'-- tDECB

DCB

r
\.,

~

---.::J --- / -- /

.11

/
/

/
/

/
/

/

/
/

/

11. Map VSAM completion codes into ISAM
control blocks.

When the current processing is QISAM, pass
control to a user-specified ISAM SYNAD routine.

For BISAM, return to VSAM.

l,

(SAM User's Virtual Storage

DECB (for BISAM)

....
Error Codes

DCB (for QISAM)

.....
Error Codes

\..

I

:::
o
;.
o
Q..

o -.
o
'0 o ...
a o·
::l -v-
I:>

r
Notes for Diagram BU2

7 IDAIIPM3: BISAM WRITE Processing

The ISAM-Interface RPLs are searched for one which
is associated with the current request's DECB. If an
RPL is not found, an available RPL is assigned to the
request and initialized. If an RPL is not available, an
invalid request is indicated in the DECB and a return
is made to the user's problem program.

If the write request is an ISAM stand-alone-write for
update, VSAM GET-for-update and PUT-for-update
macros are issued to satisfy the request.

For a write request to overlay an existing data record
with a deleted record, the VSAM PUT macro is issued
to satisfy the request unless the option to ignore the
deleted record is specified. In this case, the ERASE
macro is issued. (Note: Deleted records have a X'FF'
in their first byte.)

For a write-key-new request, a VSAM PUT is issued.
If VSAM returns an error code indicating that the
record to be written is a duplicate of an existing data
record, ISAM-Interface issues a VSAM GET to
retrieve the existing data record to determine whether
it is a deleted record. If the record is a deleted record,
a VSAM PUT-for-update request is issued to replace it
with the new record.

When VSAM returns control, the ISAM-Interface
RPL is released (disconnected from the DECB), a
VSAM ENDREQ macro is issued to free the VSAM
resources, and the request is posted complete.

S IDAIIPM3: BISAM READ Processing

The RPLs are searched for one which is associated
with the current request's DECB. If an RPL is not
found, an available RPL is assigned to the request and
initialized. If an RPL is not available, a return is made
to the user's problem program.

After establishing the buffer to be used (that is, an
ISAM buffer or an ISAM-Interface buffer) and
adjusting the record pointer to include a record
descriptor word (RDW) for variable-length records, a
VSAM GET macro is issued.

When VSAM returns control, the ISAM-Interface
RPL is released (disconnected from the DECB) and a
VSAM ENDREQ macro is issued to free the VSAM
resources, unless the ISAM request was a successful
read-for-update .

r
9 IDAIIFBF: BISAM FREEDBUF Processing

This routine issues a SYNCH SVC: to get into problem
program state and then searches the ISAM-Interface
request-string for an RPL associated with the current
ISAM DECB. When found, a VSAM ENDREQ
macro is issued to free the resources held by the RPL.
The RPL is then disconnected from the DECB. If an
associated RPL is not found, a return is made to the
user's problem program.

If the RPL is found and processing of it is complete, a
VSAM ENDREQ macro is issued to free the VSAM
resources, and then the ISAM-Interface RPL is
released (disconnected from the DECB) for reuse by
another request.

10 IDAIIPM3: BISAM CHECK Processing

The ISAM-Interface Check routine tests for an error
code in the DECB (see note 3). If an error is not
detected, a return is made to the user's problem
program. If an error is detected, the Check routine
passes control to the user's ISAM SYNAD routine if it
exists; otherwise, an ABEND is issued.

11 IDAIISMl: ISAM-Interface SYNAD Processing

The ISAM-Interface SYNAD routine is entered by a
VSAM processing routine when an error condition is
detected.

For QISAM processing, the VSAM error codes in the
RPL are copied into the DCB, and for BISAM
processing, the error codes are copied into the DECB.

For QISAM processing, control is passed to the user's
ISAM SYNAD routine if it exists. If it does not exist,
an ABEND is issued.

For BISAM processing, a return is made to VSAM,
which returns to the ISAM-Interface BISAM
processing routine and then to the user's problem
program. An ensuing ISAM CHECK macro causes the
user's ISAM SYNAD routine to receive control if it
exists (see note 10) ..

The ISAM-Interface SYNAD routine also builds the
SYNADAF message.

r

~
o
en
-<
Rl
en
-< en

5'
0-

" -g
:;)
0-

" g
('l
o
3
"0 o
:;)

" ~
~
::l
c:: a
en o ...,
III

~
> g
" til
til

3:
" s:-
o
0-

< en
> ;
l' o

!JQ

n'

Diagram CAl. GENCB: Build a New Control Block

Parameter List

tHeader ACE

tElement ACE

tElement ACE

tElement ACE

~

A~mentConUoIEntty

Header

Block Type

Number of Copies

tUser Area

Length of User Area

Element
,.....--

User's Program
Issued GENCB

- ~ I. Did the user request an ACB, RPL, or EXLST?

\ Yes

No .
~ Return to the lIser on error.

Determine the amount of virtual storage needed to
satisfy the user's request.

Did the user supply an area to build the control
block in?

•
Yes N~

Area of Virtual
Storage for the
Control Block and Copies
i

\ \ J 4. Obtain virtual storage for the control block.

~s. Is the user's area large enough? 1
f ~ Return to the caller on error .

6. Initialize the control block with its default values. U""",'z~

+
Default Values

Element Argument Control Entry (ACE) Processing

~I Do steps 7 through 12 to process each element ACE:

7. Locate the ACE's keyword-entry in KEYWDTAB.

8. Determine the entry type and process it as follows:

Bitstring-type entry:

9. Validate the bits in the string and place them
in the block. Reset the default bits if necessary,

Normal-type entry in an EXLST control block:

10. Move the exit-routine address from the element
ACE into the EXLST control block.

11. Set the exit attribute flags.

Normal-type entry in an ACB or RPL control block:
i 12. Move the user-supplied information from the

element ACE into the control block.

13. Return to the user's program.

~

Field Values
(User·Supplied)

l,

3:
n
So
&.
S
O
'R
~. g

~

r
Notes for Diagram CAl

IDAO 19C I

2-S

The GENCB macro instruction is issued to create an
ACB, RPL, or EXLST dynamically.

The ACB and RPL are fixed-length control blocks, but
the EXLST is variable length. The Control Block
Manipulation routine calculates the amount of space
needed for the control block and any copies the user
requested. The Control Block Manipulation routine
issues a GETMAIN macro instruction to obtain the
required virtual storage for any block for which a user
area is not provided.

6 The block is initialized to its default values.
Information is subsequently added to the block as
specified by the element argument control entries
(ACEs).

II The exit attribute flags indicate that an exit address is
present, active, inactive, or set during Iink-edit.

r r

~ Diagram CBl. MODCB, SHOWCB, TESTCB: Modify, Display, or Test a Control Block
o
til
.......
<
til
N

til
<
til

;:l
0..

" "0

" ;:l
0..

" ~
(j
o
3
"0
o
;:l

" ~
~
;::.
<=
eo.
til o ..,
I>l

O<l

" >
(1
(1

" '" '"
3::
" S-
o
0..

< til
>
3::
~

r o
O<l
(i'

RI

tParameter
List

Argument Control Entry

Header

~

User's Program Issued
MODCD, SHOWCD,
TESTCD

Control Block Type I -.-
Parameter List Request Type " .. t'

~ 1. Did the user specify a valid control block type?
\. Yes No tControl Block tHeader ACE .../

tElement ACE - \. \t .J .. Return to the user on error.
tElement ACE

tElement ACE

\v

JII 2. Did the user supply valid keywords with his request?
// Yes No /' /1 , .. Return to the user on error.

Element /

~Keyword
Type Code

, ...

ACB, EXLST, or RPL
Control Block

Field(s) to be p::::
Modified

Process each user-supplied element ACE:

~MODCD (Modify control block) request:

~I 3. Examine each of the user-supplied keyword
entries to verify that the user is allowed to

~

~

1-
CB2

8

modify the control block fields.

Determine the field type and process it as follows:

Normal-type field in an ACD or RPL:

4. Replace the control block field with the
information in the element argument
control entry.

Normal-type field in an EXLST control block:

S. Modify the field as specified by the
element argument control entry.

6. Modify exit attribute flags.

Ditstring-type field:

7. Modify the control block field bit-by-bit as
specified.
Reset conflicting bits If necessary.

L

ACB, EXLST, or RPL
Control Block

Modified Field(s)

l,

3::
<'
So
8.
o
o
'0
<'

~.
o
::I

0\ ...,

r
Notes for Diagram CBt

IDAOt9Ct

The MODCB, SHOWCB, and TESTCB macro
instructions are issued to modify, display, and test,
respectively, the ACB, RPL, and EXLST control
blocks in the user's address space.

r r

~
o
til

<
~
til a
5' c.

~ :s
~ a
(")
o a

"0 g
n a
<
~'
!.
til
0' ..,
~
n

:>
fi
~

a=
11>

s:-
o c.

< til
:>
a=
~

r
~
ri'

Diagram CB2. MODCB, SHOWCB, TESTCB: Modify,
Display, or Test a Control Block

Argument Control Entry

Header (for SHOWCB)

Control Block Type

tControl Block

tUser's Area

Length of User's Area

Element

I Keyword I
Header (for TESTCB)

Control Block Type

tControl Block

tUser's Test-Analysis
Routine

Element

Keyword I
I Test Value I

ACB, EXLST, or RPL

l,

Field(s) to be
Displayed or
Tested

-

• • SHOWCB (Display control block) request: User's Work Area
"::=~='::"''':':'''::':''''':----",;,-=-""::,,,,---,-----, Field(s)

I-- (!f
8. Move the field(s) into the user's work area In the Requested by

order requested. the User

7 R TESTCB (Test control block) request:

/

./

./
./

./

--- --- -----

fJ
v..---

Determine the field type and process it as follows:
Normal-type field:

I 9. Compare the user-supplied data with the
control block's field.

B itstring-type field:

110. Compare the control block's field bit-by-bit
as specified by information in the ACE,

~ 11. Was an error detected by TESTCB, and did the
caller provide an error-return address?

No Yes

1 f 12. Return to the user's error-return address.

13. Return to the caller's program.

L

L
J

PSW

.,... Condition Code
Indicates Test

.b. Results
I
r

L·

3::
R
;.
8-
g,
o
~ e o·
::l

0-u.

r
Notes for Diagram CB2

4-13

The field attribute table entry contains the length,
offset from the beginning of the block, and
characteristics of the field in the control block.

Three types of entries are identified in the field
attribute table: bitstring, normal, and entries that
require a special subroutine to process them.

If the entry is a bitstring type, the field attribute table
points to a series of bit entries in the bitstring table
that are used to modify the control block (MODCB),
or are compared to a value supplied by the user
(TESTCB).

If the entry is a normal type, the element argument
control entry is moved into the block (MODCB), a
character string or field is moved into the user's area
(SHOWCB), or the user's argument field is compared
with the appropriate fields in the block (TESTCB).

r r

J

3::
(D

s-o
Q.

g,
o
~
~. g

~

r r
Diagram DAt. VSAM Catalog Management Table of Contents

,
Search: Retrieve
the Base Catalog
Record

Diagram DCI

T T
Check the
Password

GENDSP: Generate
a Data Space
DSNAME

Diagram DDI Diagram DFI

LEGEND

---.
---c!)

~i
• \Y

----~

---o@)
@----+

====:>
=:>0
0===>

~

~
~

Flow of control on the same page;
'3' indicates a number of a process
step on the same page.

Flow of control between pages;
'AA3' is the diagram number and
'2' is the number of a process step
on that diagram.

Pointers

Reference to data or testing of
data by a process step; 'H' is an
arbitrary designation.

Input to process steps and output
from process steps; 'A' is an
arbitrary designation.

Modification of data by a process
step; 'P' is an arbitrary designation.

VSAM Catalog
Management
Overview

Diagram DBI

SuperLOCATE:
List a Data Set's
Volumes

Diagram DGI

Obtain a Catalog
Record Field's
Value

Diagram DLI

1
LOCATE: Retrieve
Catalog
Information

Diagram DEI

I

I
UPDATE·Extend:
Obtain Additional
Space

Diagram 0[1

I
SUBALLOCATE:
Obtain Space from a
Nonunique Data Space

Diagram OJ 1

UPDATE: Modify
Catalog
Information

Diagram DHI

Modify a
Catalog Record
Field's Value

Diagram DMI

r

1
LSPACE:
Build an "Available
Space" Report

Diagram DKI

1
REUSE: Reset a
VSAM Data Set

Diagram DI3

~ Diagram DBI. VSAM Catalog Management Overview
o
~

~
~
<:
~

5"
0-
<0
"0
<0
::I
~
a
(")
o
3
"0
o
~
~
<:
~.

e.
~

0-
~
<0

~
<0
!:l
3:
<0

So
8-
<
~

> ;
b

!JQ
(i.

Request Type

Catalog Record
Identifier

tCTGFL

tCTGFL

~

~

- --- --

VSAM Open, Close, and End-of
Volume, and Access Method
Services issued CA TLG
(SVC 26) for a VSAM
Catalog Record. OS/VS
Catalog Management enters
VSAM here.

• VSAM Catalog Management

1. If caller is not in supervisor state or key 0, validity
check the CTGPL. If check fails, issue WTO message
IEC338I and return to caller.

2. Issue GETMAIN for CCA. If GETMAIN fails, issue

R15

I Return Code I

WTO message IEC339 I and return to caller. I:irz!!::?;2'.::;...-:;2~.z!:i~~.z2'.:"'2:;...-:;2!:i~(:;
3.- Build and initialize a CCA for the caller's request. 1 >I
4. Initialize the caller's CTGPL and CTGFLs. ~

s. Retrieve the catalog record identified by the caller:
(See Diagram DCI, "SEARCH: Retrieve the Base
Catalog Record.")

6. If the caller issued an Access Method Services
command, process it and by pass steps 6 through 8
(See Diagram EB 1, "Catalog Management Services
Overview. ")

":If 7. Check the caller's authorization to use the record:
(See Diagram 001, "Check the Password.")

Authorized Not Authorized

, • (9)

l,

~

VSAM Catalog Management Buffer

Catalog Record

l,

s::
(1)

;.
0
c..

~
0
'0
(1) ..,
~
0'
::l

a-.
\0

r
Notes for Diagram DBt
VSAM Catalog Management is called by OS/VS Catalog
Management when VSAM Open, Close, End-of-volume,
and the Access Method Services routines issue the
CA TLG macro instruction (SVC 26). Register t contains
the address of the caller's catalog parameter list. The
catalog parameter list identifies which catalog record to
process and what process to perform.

A user's program can access the VSAM catalog by issuing
an Access Method Services utility request. Access Method
Services translates the request into an SVC 26 and a
catalog parameter list.

The LOCATE command is processed first by the VSAM
catalog management routines and then, if the requested
information is not in a VSAM catalog, by the OS/VS
catalog management routines.

IGCOOOlF

Register 1 contains the address of a catalog parameter
list (CTGPL). OS/VS Catalog Management transfers
control (XCTL) to VSAM catalog management
transient module, IGGOCLAI.

IGGOCLA 1 loads IGGOCLC9, if IGGOCLC9 is not
already loaded, and calls IGGOCLC9 to process the
VSAM catalog management request.

IGGOCLC9: BLOCCA

A call is made to the task supervisor validity-check
routine to verify that the storage passed as a CTGPL is
owned by the caller. A condition code of 8 is set in the
PSW if the check is successful.

2 IGGOCLC9:BLOCCA

3

Issue a page boundary GETMAII'~ for CCA and
record areas. If return code is not zero, issue
"insufficient storage" message. Set return code 8 in
register 15 if caller was a SUPERLOCATE request or
a translated request. If it was not, set reason and error
code and module ID in the CTGPL.

IGGOCLC9: BLOCCA

The catalog control area (CCA) contains data about
catalog records retrieved to process the request. The
CCA also contains a register save area that shows the
flow of control between catalog management routines
used to process the request.

Each time a catalog management routine calls another
catalog management routine, the contents of registers
12, 13, and 14 are put in the CCA's register save area.
Register 13 contains the address of the next 12-byte

r
register save area in the CCA. Register 12 contains the
address of the calling routine. Register 14 contains the
return address to the calling routine.

See "Data Areas" for details about the CCA and
CTGPL.

See "Diagnostic Aids" for details about the CCA
register save area.

4 IGGOCLAB: IGGPACDV (calls IGGPSCNC
(lGGOCLA Y»
The caller's work area and each CTGFL are checked
to ensure that it is within the caller's address space.

The CTGFL's field-name value is used to obtain
dictionary data that defines the field's characteristics
and location within the record.

See "Data Areas" for details about the field name
dictionary.

5 IGGOCLAB: IGGPACDV (calls IGGPSCAT
(IGGOCLAH»

The catalog record is identified by the caller's dsname
value, volume serial number, or control interval
number.

6 IGGOCLAB: IGGPACDV (calls IGGPCDVR
(lGGOCLAn)

An Access Method Services command is translated
into a catalog management services request to define,
modify, delete, or list catalog records.

7 IGGOCLAB: IGGPACDV (calls IGGPCKAU
(lGGOCLBM»

The caller's request type determines the level of
password that, when supplied by the operator, allows
the VSAM catalog management routines to complete
the caller's request.

r

~ Diagram DB2. VSAM Catalog Management Overview
o
Vl
"-<
Vl
N

Vl
<
Vl

S
Co
(1)

]
:l

!r a
n o
3
'0 o
:l
(1)

a
< ;;:
c: e.
Vl
'0
iil

(JQ
(1)

~
(1)

~

3:
II :r o
Co

<
Vl
> e
t'"' o

(JQ

('i'

l,

- ----- ----- - - -- - --- 8. Determine the request type and process it:

CCAPROB

Return Code

LOCATE .(See Diagram DE I, "LOCATE: Retrieve
Catalog Information.")

SUPER· .(Sec Diagram DG I, "SUPERLOCATE:
LOCATE List a Data Set's Volumes.")

GENDSP .(See Diagram DF 1. "GENDSP: List the
Contents of a Data Space.")

UPDATE .. (See Diagram DH I, "UPDATE: Modify
Catalog Information.")

LSPACE .(See Diagram DKI, "LSPACE: Build an
'Available Space' Report.")

9. Release virtual storage obtained for this request.

OS/VS Catalog Management

10. Write problem determination message and set error
code, if any.

Register 15
11. Return to the caller. ~ Return C()de]

~. ~

a::
Cl>

S-o
0..

g,
o
'"0
Cl> ...
a o·
::l --...I

r
Notes for Diagram DB2
8 IGGOCLAB: IGGPACDV (calls IGGPSLOC

(lGGOCLAM), IGGPGDSP (lGGOCLBJ), IGGPLOC
(IGGOCLAZ), IGGPUPD (lGGOCLA V), or IGGPLSP
(lGGOCLBK»

IGGPSLOC:

A SUPERLOCATE request builds a list of all volumes
and units associated with a dsname.

IGGPGDSP:

A GENDSP request builds a list of all VSAM data sets
in a VSAM data space.

IGGPLOC:

A LOCATE request retrieves information from the
catalog record.

IGGPUPD:

An UPDATE request modifies information in a
catalog record. An UPDATE request can also obtain
direct-access space for the data set or index identified
by the dsname value.

IGGPLSP:

A LSP ACE request determines the amount of
available space on a VSAM direct-access volume,
when the volume is described in a VSAM catalog.

9 IGGOCLC9: IGGPRCLU

When the VSAM catalog management request is
complete, all virtual storage obtained for work areas,
control blocks, and the request's CCA is returned to
the OS/VS system.

10 IGGOCLC9: IGGPRCU

11

Write problem determination message, if it was a
SUPERLOCATE request or a translated request, and
set error code in CTGPL.

VSAM catalog management common processing
(IGGOCLC9) sets a return code in register 2 and
returns to IGGOCLAI.

IGGOCLAI deletes IGGOCLC9 and transfers control
(via XCTL) to IGCOOO2F. Register 1 contains the 2s
complement of register I's contents when IGGOCLAI
was entered, to indicate to IGCOOO2F whether or not
the CATLG macro instruction (SVC 26) was issued by
a VSAM catalog management procedure.

r
IGCOOO2F puts the return code (register 2's contents)
into register 15 and returns to the caller via the SVC
return.

r

-..J
tv

o
!Zl

~
tv
!Zl
<
!Zl

~
~
::I
P. co
;a
()
o
.g
o
::I co
~
<
~.

e:.
!Zl
S
;;l
~

~
~
III
3:
co
;.
o
p.

< !Zl
:> e
b

!JQ

i''i'

Diagram DCI. SEARCH: Retrieve the Base Catalog Record
Retrieve the Base
Catalog Record

Virtual Storage for the Caller's Program

Rll

Catalog Identifier

Catalog Record
Identifier

/
/

- 1. Did the caller identify a catalog to search?

/
/

" /

No Yes

f
Search the caller-8pecified VSAM catalog

The catalog identifier addresses a catalog's:

I Request Type 1I'fu
®- ~~2.

/"3.
DSNAME: Examine each PCCB for a
matching DSNAME, and then ~

ACB: Put the catalog's ACB address
into the CCA. • 0)

~----------------------~I' VSAM User's Address Space

l"

,
II

" / '.,(Search each VSAM catalog available to the caller.
/ d

/
/

/

Determine which catalog to search, based on the
requirements of the request. ~

Search each VSAM user catalog identified by a PCC~
When all user catalog's have been searched, search
the VSAM master catalog.

The catalog record identifier addresses either:

• A data set's DSNAME or a volume's serial
number

or

• A catalog record's control-interval number.

L

-" ~

Virtual Storage for the Caller's Program

Rll

ACB

Describes an)1 Open VSAM
Catalog

L

:::
!Po
:r
8-
o -.
o
"0
(1).

~
0'
::I

......
~

r
Notes for Diagram DCI

IGGOCLAH: IGGPSCAT

The CTGPL's catalog identifier field, set by the caller,
can contain the address of a catalog's ACB, the
address of a catalog's dsname, or O.

See "Data Areas" for details about the CCA, ACB,
and CTGPL.

2 IGGOCLAH: IGGPSCA

The catalog specified by the caller is the only catalog
searched. The Catalog Management Services DEFINE
routine calls the Search routine to confirm that, when
a caller wants to create a VSAM cluster or catalog, the
new cluster or catalog dsname isn't duplicated in the
catalog. The caller (Catalog Management Services
DEFINE routine) expects the "no record found"
return code.

If the CTGPL's catalog identifier field contains the
address of a catalog dsname, the search routine
examines each protected catalog control block (PCCB)
for a matching dsname field. Each PCCB contains the
address of its catalog's ACB.

If no PCCB contains a matching dsname, the
user-supplied catalog dsname refers to either a
nonexistent catalog or to an unopened catalog.

See "Data Areas" for details about the CCA and
PCCB.

See "Diagnostic Aids" for details about catalog
management error codes.

3 IGGOCLAH: IGGPSCA

4 IGGOCLAH: IGGPSCA

Some user requests, such as DEFINE CATALOG and
DELETE CATALOG, require searching the YSAM
master catalog and prohibit searching user catalogs,
even if they are specified.

If the CTGPL's catalog identifier field contains 0, the
VSAM user catalogs specified by the user's JCL
JOBCAT and STEPCAT DD statements, and the
VSAM master catalog, are searched until either the
record is found or there are no more catalogs to
search.

See "Data Areas" for details about the CTGPL search
options, cluster catalog records, and volume catalog
records.

The JSCB contains the address of the first PCCB in
the PCCB chain. Each PCCB describes one of the

r·
YSAM user catalogs that have been opened to satisfy
the user's JCL JOBCAT and STEPCAT DD
statements. A PCCB contains the address of a
catalog's ACB. The catalog's ACB address is put in
the CCA to identify the catalog being searched.

See "Data Areas" for details about the PCCB, ACB,
and CCA.

6 IGGOCLAH: IGGPSCA

The AMCBS (addressed by the CYT) contains the
address of the YSAM master catalog's ACB.

See "Data Areas" for details about the AMCBS and
ACB.

See OS/VSl System Data Areas for details about the
CYT.

7 IGGOCLAH: IGGPSCAT

If the CTGPL's catalog record identifier addresses the
record's control interval number, the catalog record
can be retrieved without a search of the catalog's
index.

r

~ Diagram DC2. SEARCH: Retrieve the Base Catalog Record
o
Vl
<:
Vl
N

Vl
<:
Vl

S'
0-
(1)

'1:l
(1)

::I
0-
(1)

~
n
o
3
'8
::l
(1)

;
<: s:
c: e:.
Vl o ..,
~

~
;I>
rl

~
til
til

3::
(1)

So
&.
< Vl
;I>
3:: -t'"" o

(JIO o·

Virtual Storage for the Caller's Program ~
CI
7

Search the Appropriate VSAM Catalog

I 8. Allocate and initialize an RPL for the catalog -f being searched. ~ ,.,. , ~ ", "",,'
-_ --~ 9. Put the catalog's ACB address into the RPL. ~

/
/

10. Search the catalog's index and true-name records
to find the catalog record's control interval num ber.
(See Diagram BC I, "GET -Direct Processing: Direct
Retrieval. ")

tBuffer -----.---+- ,11. Was the catalog record's control interval number
found?

VSAM
Catalog

Catalog
Index
Records

Catalog
True-Name
Records

Catalog
Data
Records

~

tRPL

Index

tACB

(From Steps
8 and 9)

Index Record

/
/

/

/
/

----~
I
I

Yes No ,
12. Search the next catalog available to the caller.

~~I ll 1 ___ ~
'.:l

13. Read the catalog record from the VSAM catalog
into a catalog management buffer. (See Diagram
BC I , "GET-Direct Processing: Direct Retrieval. ")

CCAPROB

Return to the caller. ~ Return Code I

~.

Virtual Storage for the Caller's Program

RPL
Request
Options

tACB

Catalog Management Buffers

True-Name Catalog Record

~

s::
'" ;.
8.
a
o
'0

'" ...
~. g
::i
VI

r
Notes for Diagram Del

8 IGGOCLAH: IGGPRPLM

The search routine assigns one request parameter list
(RPL) to the caller. Catalog management routines
issue GET and PUT macro instructions to retrieve and
write catalog records. Each record-management
request (GET, PUT, etc) needed to satisfy the caller's
catalog-management request refers to this RPL. This
RPL is initialized for a calier and used as often as
necessary to process the caller's catalog-management
request. When the caller's catalog-management
request is completed, the RPL is assigned to another
caller.

9 IGGOCLAH: IGGPRPLM

10 IGGOCLAH: IGGPSCAT (calls IGGPGET (IGGOCLBI))

The goal of the search is to find the true name record
identified by the dsname or the volume serial number.
The true name record contains the cluster's dsname or
volume serial number and the control interval number
of the cluster or volume catalog record.

See "Data Areas" for details about the catalog record.

12 IGGOCLAH: IGGPSCA

If the caller supplied a catalog's ACB address or
dsname, no further catalog searches are performed.
The search routine sets the "no record found" error
code in CCACD 1 and returns to the caller. If the
VSAM master catalog and all VSAM user catalogs
available to the user's program have been
unsuccessfully searched, the search routine returns to
the caller with the same error code.

See "Diagnostic Aids" for details about catalog
management error codes.

13 IGGOCLAH: IGGPSCAT (calls IGGPGET (IGGOCLBI))

The catalog record is located by its control interval
number and read into a catalog management buffer.
The buffer's address is put into the CCA.

See "Data Areas" for details about the CCA.

14 IGGOCLAH: IGGPSCAT

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r r

-" a-
o
en
"-

~
en
<:
en

8:
~
~ :a
(')

j
;
~
<:
~.

!.
en o ..
'" ~
:>
~
~

~
~
::r
8-
< en

!
{.

Diagram 001. Check the Password
Virtual Storage for the Caller's Program

tCTGPL

tCatalog
Record

CTGPL
i Request
Option

Catalog Management Buffer

Catalog Record
(Retrieved by the Caller)

I Password
Set of Fields

Verify the caller's authority to bypass password checking

• I a I. Does the caller want to bypass password checking?

, , , , , , ,

....

NoYes • .;, 2. Is the caller in either protection key
o or supervisor state?

Yes

~
~

OK Return

No

ot,
~

Error Return

Check the user-supplied password

"lIl3. Determine the type of password to be checked.

I Passwords ::: \\: > 4. Obtain the password from the catalog record.
'\\: (See Diagram DLI, "Obtain a Catalog Record Field's

Code Word

Number of
Attempts

.......... \

Value. ")

Is there a user-supplied password?
No , Console or

TSO Terminal

I
I
I

6. Request the password. :>f

~

I
I TI 7. Does the password in the catalog record equal the
I user-supplied password?
I Yes No

: I f
\.._- -+ 8. Did the user exhaust the number of attempts

he has to supply the password?
Yes No •

Error Return

~

"Supply Correct I Type I
Password for [Codeword I
Data Set"

l,

~
(1)

go
8-
:2.,
o

'1j
(1) ..,
e:. o·
::l

......

......

r
Notes on Diagram DOl

IDAOl92C and IGGOCLAB: IGGPACDV (calls
IGGPCKAU (IGGOCLBM»

When the VSAM Open routine (IDAOI92C) calls
VSAM Catalog Management to retrieve a cluster
catalog record, the password checking routine
confirms the user's authorization to gain access to the
cluster.

IGGOCLAT: IGGPCDVR (calls IGGPCKAU
(IGGOCLBM»

When an Access Method Services routine calls a
catalog management services routine, the password
checking routine confirms the user's authorization to
gain access to the VSAM catalog or a specific catalog
record.

The catalog record containing the password(s) is
available in the buffer addressed by the caller's CCA.

See "Data Areas" for password set of fields details.

The type of processing that the user is allowed to do
with the data set is determined by the password:

Master password: The user is allowed to modify
passwords and catalog records that describe his
data set, and to process his data set's control
intervals and records.

• Control-interval password: The user is allowed to
process the data set's control intervals as well as its
records.

Update password: The user is allowed to process
his data set's records.

Read-only password: The user is allowed to read,
but not to write (add or update), records in his data
set.

IGGOCLBM: IGGPCKAU

If the user's password has been verified during a
previous catalog management request, the caller
(VSAM Open, or a Catalog Management Services
routine) can set the CTGPL's
bypass-password-checking flag on.

2 IGGOCLBM: IGGPCKAU

Other VSAM catalog management callers, such as the
user's program (with Access Method Services
commands), and utility programs, are not in
protection key 0 or supervisor state. If these programs
attempt to bypass password checking, the password
checking routine sets an error return code that

r
prevents further VSAM catalog management
processing for the caller's program.

3 IGGOCLB6: IGGPSPSC

The caller can indicate what type of password is
supplied with the CTGPL, but the password checking
routine determines the type of password required for
the request.

4 IGGOCLBM: IGGPCKEX

The password is in the password set-of-fields in the
cluster, data set, or index catalog record. The CTGPL
can contain a password that the user supplied in a JCL
statement.

6 IGGOCLBM: IGGPPWGT

The console operator, or TSO user, can reply to the
VSAM request-for-password message with a password.

7 IGGOCLBM: IGGPPWVR

8 IGGOCLBM: IGGPPWVR

r

;;;l Diagram D D2. Check the Password
o
Vl
"'<
Vl
N

Vl
<
Vl

::s
Co

" ~
::s
Co

" ~
()
o
3
"0 o
::s

" ~
< ;i.

'" e:..
Vl o ...
III

~
»
n
n

" VI
VI

a::
" S-o
Co

<
Vl » ;
t"""' o

I)Q

n·

for the CaUer's P

Rll

tccA I
CTGPL

CCA

Password
tCTGPL Checking

Options
tCatalog

Record

Catalog Management Buffer

Catalog Record
(Retrieved by the Caller)

Password
Set of Fields

I tUSVR

RlS (Set by USVR) <' ./

I Return Code I

~P

./
./

,.-
,.-

'Y

V
~ 9. Did step 7 confirm the data set's master password?

Yes No ,.-

f ,.-

10. Is there a USVR specified for the user?
No Yes

,.J ,
11. Call the USVR to confirm the user

~ program's authorization to process
the data set's records.

~~
~;..- ,

I

12. Is the USVR return code O?
;;J

No ./ IS
l,.-./ L. Error Return - IStep 141

"" V-,.-

1

Return to the caller

- I. 13. Set a return code - successful completion - and
return to the caller. ~

- II 14. Set an error return code - security verification
error - and return to the caller.

L

Virtual Storage
for the User's Address Space

User Security
Verification
Routine (USVR)

I

CCAPROB "-----,
Return Code

~

~
n>
G-
o
0-

o ..,
o
"0
n>
j;l
g.
::s --.l
'-0

r
Notes for Diagram DD2

9 IGGOCLB6: IGGPINMD

If the user supplied the correct master password, the
user security verification routine (USVR), if it exists, is
bypassed. If a USVR exists, the USVR exit is taken
only if the user provided another type of password
correctly.

10 IGGOCLB6: IGGPINMD

If a user security verification routine exists, its address
is in the catalog record's password set-of-fields.

See "Data Areas" for details about the cluster catalog
record and the password set-of-fields.

11 IGGOCLB6: IGGPINMD

The user security verification routine (USVR) is an
installation-supplied routine that confirms a user's
authorization to gain access to the data set. The USVR
confirms that the user satisfies the installation's
security verification criteria.

r' r

00 o
o
rJl
"<
rJl
N
rJl

<
rJl

S
0-
CD
-g
6.
CD a
n
o a

"0
o
~
~
~
::l c:
e?.
rJl

5'
;J

Otl
CD

i;-
n
CD
~

~
CD
;.
8-
< Vl
:>
;
t""' o

1)Q

n'

Diagram DEI. LOCATE: Retrieve Catalog Information

Virtual Storage for the Caller's Program

l,.

rCTGPL

tCurrent
CTGFL

CTG FL for Tests

Test Condition

Field Name

Address and Length
of Test Data

INext CTGFL for Tests

Catalog Management Buffer

Seq.

CTGPL

Request
Type

tCTGFLs
~

I. Obtain information about each CTGFL's field
name.

2. Do steps 3 through 16 for each of the caller's
CTGFLs.

Is the field to be retrieved an upgrade field name?
No Yes

J f Use the associations in the cU.frent entry to
read the upgrade entry into the catalog ®

, management buffer. _~
~S. Is the field to be retrieved only if caller-specified

test conditions are satisfied?
No Yes •

Virtual Storage for the eaUer's Program

tCTGPL

t Buffer

Sequence
Number of '
Each Set of
Fields that
Satisfies
the Tests

CTGPL

rCTGFL

t.CTGFL

1 =-~6. Identify each set of fields that satisfies the
~ test conditions. ~LI _____ ..J

7. Does at least one set of fields satisfy the test
conditions. Catalog Management Buffer

No

l,. ~

s::
" S-
o
a.

s..
0
""0

" ..,
~ o·
:l

00

r'
Notes for Diagram DEI

IDAOl92C

The VSAM Open routine issues the CA TLG macro
instruction (SVC 26) to obtain data set and volume
information about the user's data set and index. See
Diagram ACI, VSAM Open Processing, for details.

IDAOSS7A

The VSAM end-of-volume routine issues the CATLG
macro instruction (SVC 26) to obtain volume
information about the extents added to the user's data
set. See Diagram AEI, VSAM End-of-Volume
Processing, for details.

IGGOCLAB: IGGPACDV (calls IGGPLOC
(lGGOCLAZ»

When the caller issues a CATLG macro instruction,
register I points to the caller's catalog parameter list
(CTGPL). The CTGPL's request options are decoded
and the base catalog record is retrieved for the
request. See Diagram DB I, VSAM Catalog
Management Overview, for details about initial
catalog management processing and request decoding.

IGGOCLB7: IGGPRUS, IGGPFRWK (calls IGGPLOC
(lGGOCLAZ»

Upon completion of Reuse processing, LOCATE is
called to return catalog field information from the
reset entry.

IGGOCLAZ: IGGPEXT (calls IGGPSCNC (lGGOCLAY»

Each CTGFL is initialized with the dictionary entry
associated with the CTGFL's field-name value. Calls
from within catalog management (as opposed to
external calls, such as LOCATE) enter at this point to
use the field management retrieval function.

2 IGGOCLAZ: IGGPSCNF

3

Steps 5 through 15 are performed for each of the
caller's CTGFLs.

The Locate routine processes each CTGFL associated
with the caller's CTGPL and returns as much
caller-requested data (in the caller's work area) as the
caller's test conditions and work area size permit.

IGGOCLAZ: IGGPSCNF (calls IGGPUPGD)

A caller may request catalog information from an
associated upgrade entry by using upgrade field
names.

r
4 IGGOCLAZ: IGGPUGD

The upgrade entry may not be in the catalog
management buffer. If it is not in the buffer, the
associations in the current entry are used to retrieve
the upgrade entry.

5 IGGOCLAZ: IGGPSCNF

The caller's CTGFL list contains the address of each
CTGFL required to satisfy the caller's need for catalog
information. Each CTGFL describes one of the
catalog record fields to be retrieved. Each CTGFL is
completely processed before the next one is started.

IGGOCLAZ: IGGPSCNF (calls IGGPTSTS
(lGGOCLBA»

A caller might make conditional requests for retrieval
of catalog record fields. In this case, two CTGFLs are
supplied with the request and processed together. One
CTGFL identifies a field to be retrieved and points to
a second CTGFL that contains the name of the
catalog field to be tested, the test conditions (equal,
low, high, etc.), and the address and length of the
caller's test data area. The catalog record field
identified by the second CTGFL is compared to
(tested against) the caller's data. If the comparison
satisfies the test conditions, the catalog record field
specified by the first CTGFL is retrieved.

6 IGGOCLBA: IGGPTSTS

If the caller wants to retrieve a catalog record's header
field, the field's data is retrieved if all tests are
satisfied.

If the caller wants to retrieve a field from one of the
sets of fields that follow the header fields, the field's
data is retrieved from each set of fields that satisfies all
tests.

See "Data Areas" for details about a catalog record
and its sets of fields.

7 The sequence number of each set of fields that satisfies
the tests is put in the CCA. After the sets of fields have
been tested, the sequence numbers in the CCA are
used to identify each set of fields that contain
caller-requested data.

r

OX)
IV

o
CIl

" <
CIl
IV

CIl

<
CIl

S
0-

" '0

" :l
0-

" a
n
o
3
'0
o
:l

" a
<
;i"
t:
~
CIl o ...,
po

0<>

" ;I>
n
n

" rJ>
rJ>

~
" s-
o
0-

< CIl
;I>

e
t""" o

0<>
ri'

Diagram DE2. LOCATE: Retrieve Catalog Information

Virtual Storage for the Caller's Program

RII -
tCCA

CTGPL

.----~)j tCTGFL

r L

y
;r8. Is more than ~ne field ~dentified by the field

/ name ~a combmatiOn field name)?

CCA -

Virtual Storage for the Caller's Program

R II CTGPL

tCCA ---~~ltCTGFL

,l

CCA
~

--L
')0'

rl tBuffer
/ / / NJ" 1. Do ,'oP' 10 'hwugh 1 Sfo""h [;dd tCurrent

CTGFL h tWork Area
tCurrent

CTGFL

tCTGPL ~
/ associated with the combination name. -----,

~.=..:....-___,c....

-~

tCTGPL I--+---'

" ,,~ 10. Does the caller want the address of the catalog's ACB? tBuffer

t~~~Og'S " " yles i
" Field Name (Combination)

~ 11. Get the field's value from the catalog record.
(See Diagram DLl, "Obtain a Catalog Record t\ield ~a~e in the

Work Area Field's Value.") CombmatlOn Name Index

Work Area's Number of Fjeld Names

Catalog Management Buffer

Object's Catalog Record

Set-of
Fields
Pointer

Length Put the Field's Data in the Caller's Work Area in the Combination

Current Total . ." Address and Length of
Length , 12. Add the data field s length to the current total Data in Work Area

Catalog
Field's
Data

Other \
Fields \

..... , length."
.......... ~ Combination

'" , Name Index
13. Is the' current total length" greater than the work

area length? Yes No

" . Field Name Move the field's data into the work area. ~
Field Name

Put the data's length and address
into the CTGFL.

Work Area

Work Area's
Length

Current Total
Length

Catalog
Field's
Data

\.\.
16. If the upgrade entry was read in to process an Catalog Management Buffer

upgrade field name, restore the original entry.
Object's Catalog Record ~)EI ~ Perform final derived-volume l'ntry field pro<.:essing. ~ .. ld

)'le to

Return to the caller when all CTGFLs have been he
Retrieved

7 17.

18.
processed. {

Ia. ~'CAPROB
Return Code

\., \., ~

-

3:
" s:-
o
0-
o -.
o
~ a o·
::l

00
w

r
Notes for Diagram DE2

8 IGGOCLAZ: IGGPLOCl

A combination name refers to a set of related catalog
field names, and is used by the caller instead of a
separate CTGFL for each field name.

9 IGGOCLAZ: IGGPLOCl

The CTGPL, CTGFL, and catalog control area (CCA)
are described in "Data Areas."

The combination name index has an entry for each
field name in the combination. The Locate routine
processes each field name entry in the combination
name index sequentially, starting at the index of the
first field name entry for the combination, and ending
when the number of entries processed equals the
number of field names associated with the
combination name.

The test sequence (if any) associated with a
combination-name CTGFL is done only once, not
once for each field name in the combination.

10 IGGOCLAZ: IGGPLOC2

The address of the catalog's ACB is in the CCA. All
other catalog record fields that the caller can request
are in the catalog record. Each catalog record field is
identified by its field name. See "Data Areas" for
catalog record field names.

11 IGGOCLAZ: IGGPLOC2 (calls IGGPGV AL
(IGGOCLBA»

Diagram OLl, Obtain A Catalog Record Field's
Value, shows how the requested catalog record field
(specified by its field name in the CTGFL) is located
for the Locate routine.

12 IGGOCLAZ: IGGPSHIN

The first two fields in the caller's work area specify the
number of bytes the caller allocated to the work area
and the number of bytes that contain catalog record
field data (the "current total length" exceeds the work
area length, the current total length field is updated
with the length of the catalog record data, but the data
itself is not moved in the caller's work area.

14 IGGOCLAZ: IGGPSHIN

The Locate routine puts the beginning address and the
length of the catalog field into the CTGFL's field-data
entry.

r
15 IGGOCLAZ: IGGPSHIN

The CTGFL's field-data entry contains the beginning
address and length of the data in the caller's work
area. When control is returned to the caller, the caller
can use the field-data entry to locate a specific field's
data in the work area.

16 IGGOCLAZ: IGGPSCNF

If the field name processed required the upgrade entry
to be read in, the original entry is restored before the
next CTGFL is processed.

17 IGGOCLAZ: IGGPEXT

If this function was requested by an internal catalog
management function, final derived-volume
processing must be done. This processing consists of
generating certain volume entry fields from the
catalog information returned in the user's work area.

18 IGGOCLAZ: IGGPLOC

See" Diagnostic Aids" for details about catalog
management return codes and error codes.

r

00
~

o
c;n

"<
[;-1
l'.J
c;n
<:
c;n

S"
0-
(1)

'0
(1)

::l
0-
(1)

a
()
o

i
(1)

~
<:
~.

e?.
c;n
0'
r;1
~
> n
~
~

is:
(1)

::r o
0-

< c;n
> e
f (;.

Diagram DFt. GENDSP: List the Contents of a Data Space

Virtual Storage for the Caller's Program

Rll ~R~3 __________ ~

tCCA tFlDSCB
in Work Area

FlDSCB
CCA

Data Space
t Buffer Timestamp

Volume Catalog Record \
\
\

List all VSAM objects in a data space .. -
1. Is data space unique?

No Yes

\
~i

,
2. Get the true-name record.

3. Put volume ACB address, CI number,
and length of CI in user's area. CCAPROB

I--Ti~;;-;;r"":::::"'t::::::!:!=~ 5.

4. Return to caller ~eturn Code

Retrieve the data space group set of fields associated

~

Data Space
Timestamp

Sequence
Number of
the Space
Header
Set of Fields

Number of
Ex tents this
Object has
in the Data Space

with the data space.

Do steps 6 through 8 to examine each Data Set Directory
entry in the volume catalog record

6. Retrieve the Data Set Directory entry.

Does the Data Set Directory entry indicate that its
VSAM object is allocated an ex tent in the data
space?

No Yes

1
8. Put the control interval number of the

Virtual Storage for the Caller's Program

CCA CTGPL

tCTGPL tWork Area

CTGWKA

Length

VSAM object's catalog record into the list. =: :::'::>1

3-Byte Control
Interval Number
of Each VSAM
Object in the
Data Space

CCAPROB 9. Return to the caller when all Data Set Directory
entries have been processed. '~I Return Code

~ l,.

s::
ro :;.
o
a.
o ...,
o
'0 ro ..,
!:!.
o·
:::s

00
v.

r
Notes for Diagram DFI

The caller (an OS/VS Utilities program or OS/VS Open)
specifies the GENDSP option of LOCATE to obtain the
control interval number of the catalog record of each
object (cluster, data set, index, and catalog) that is
contained in a VSAM data space identified by a
DSNAME value (from the format 1 (identifier) DSCB).

IGGOCLBJ: IGGPGDSP

The user-provided workarea is tested to ensure that
the minimum size has been provided. The GENDSP
routine tests the first seven characters of the data
space name to determine whether the data space is
unique. A data space name beginning with
"Z999999 ... " is a nonunique data space.

2 IGGOCLBJ: IGGPGUDS

The true-name catalog record associates the data
space name with the control interval number of the
catalog record that describes the data space.

3 IGGOCLBJ: IGGPGUDS

The fixed length of the control interval number area
and the control interval number are put into the
user-provided workarea.

5 IGGOCLBJ: IGGPGDSP

The CCA, a CPL, and two FPLs are set up to extract
the data space group set of fields for the appropriate
data space. The DSCB timestamp value is calculated
from the data space name and used as the test value.

6 IGGOCLBJ: IGGPGDSP

Three FPLs are set up and the Data Set Directory
entry is extracted.

7 IGGOCLBJ: IGGPGDSP

Scan the Data Set Directory set of fields to find a data
space sequence number match.

8 IGGOCLBJ: IGGPGDSP

When a sequence number match is found, the volume
ACB address, the length of the control interval
number area, and the control interval number put into
the caller's workarea.

.See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r r

00
a-

o
VI
"<
VI
N

VI

<
VI

S'
0-n
-g
::l
0-
n a
(j
o
3
'0
o
::l
n a
<
;1'
= Eo
VI o ...
~

~
>-
~
'" '" :::
n
;.
o
0-

< VI

>-
!
b

(JQ

o·

Diagram DGI. SUPER LOCATE: List a Data Set's Volumes

Virtual Storage for the Caller's Program

RII CTUPL

tWorkArea

i Catalog
Record
Identifier

IScheduler
Work Area

I Volume
List Area

Request
Type

Number of
Entries in
User's Area

Number of
Volume
Information
Entries
tVolume

Information
List

SVOI

Volume
Informatio
Entries

Catalog Management Buffer

4..

/"1f

05

List all volumes that contain the caller-specified
VSAM object.

1. Is the VSAM object an index, data, cluster,
alternate index, path, nonVSAM, or user catalog?

Yes No I • CCAPROB
• 2. Return to caller. ~ctu~-(-:-~d~
3. Are caller's work area and volume list area valid?

Yes .. CCAPROB

, 4. Return to caller. ~ Return Code I
5. Prevent the VSAM object from being deleted by

another catalog management caller during the
SUPE RLOCATE process.

6.

0 ~7.
Initialize CC A, CTGPL, and CTGFL to retrieve
group associations of VSAM object.

c/

No

Is the request in a recoverable catalog and the
VSAM object is not a user catalog or nonVSAM
entry? .s ©P

8. Move catalog recovery area information to
the volume list.

~

Virtual Storage for the Caller's Program

CCA CTGPL

tCTGPL "Force Keep"

r- t Huffer ~
Flag ON

t Scheduler
tWork Area Work Area

lSFLDS
lCTu:A

Number of
Minimum Volume

Information Unit Count

Entries t Volume

lVolume List

Information

-ICTGVL List

1svoI Volume

Volume

~
Information

Information
Entries

Entries
Dcvke
Type

Volume
Serial
Numher

Flags

~ Catalog Management Buffer

I I Ohjed's Catalog Record I -

~

a:
<1>

S-o
0-
o ...,
o
'0

<1>

~ o·
::

00
-..J

r
Notes for Diagram DGt

The caller (the OS!VS Scheduler) specifies the
SUPERLOCATE option of LOCATE to obtain a list of
volume serial numbers (and device types) for a VSAM
data set's volumes. The caller identifies the data set with
its dsname value.

IGGOCLAM: IGGPSLOC

If the VSAM object is a cluster, the cluster's data
volumes are described in the cluster's data set catalog
record.If the cluster is key-sequenced, the cluster's
index volumes are described in the cluster's index
catalog record.

See "Data Areas" for details about cluster, data set,
and index catalog records and their sets of fields.

3 IGGOCLAM: IGGPSLIN and IGGPDBVC

5 IGGOCLAM: IGGPSLIN

6 IGGOCLAM: IGGPSLIN and IGGPSLEI

7 IGGOCLAA: IGGPSLEN and IGGPSLIV

r r

-00
00

o
CIl
<:
CIl
N
CIl
<:
CIl

o
0-
~
'0
~ ::s
0-
~ g
n
o
3
'0 o
o
~ g
<:
~'
!.
CIl

0' .,
'" 0tI
~

> g
~

~
~

S-o
0-

'<
CIl

> ;
b

0tI o·

Diagram DG2. SUPERLOCATE: List a Data Set's Volumes

Virtual Storage for the Caller's Program ~
Rll CTGPL CTGWA -'1 .\2) / • Objed is a path entry.

0 • Object is a nonVSAM, index. or user

.~ catalog entry.

• Object is a data record. • I Buffer

.~ tWork Area
List Area • Object is a duster or Alternate 16 L ~;;:~' , index entry.

SFLDS Cluster or Alterna te Index Processing

Number of 10. Retrieve the base data and index (if any) records
Entries in
User's Area from each group occurrence of the VSAM

Number of object.
Volume 11. For each base record obtained in step 10, retrieve Information

SVOI volume information for each volume that has Entries

,VOlume l~ space allocated to the object or is a candidate tVolume
Information Information volume.
List Entries

12, For each volume occurrence obtained in step

,,@CataIOg Management Buffer
build a list of volume information entries and
establish the minimum unit count.

/ Objed's Catalog Record

"Data
Set"
Ftag

OS/VS2 Catalog

l, 4.,

Virtual Storage for the Caller's Program

CCA CTGPL

lCTGPL "Force Keep"
Flag ON

roo tBuffer
t Scheduler

tWork Area Work Area

1 SFLDS 1 CTCWA Numher of
Volume

Minimum Information

0? Entries Unit Count

lVolume
lVolume List

Information
List 1 CTGVL J SVOI

Votume Volume
Information 0P Entries

Information
Entries

Device
Type

Volume
Serial
Numher

Flags

Catalog Management Buffer

Ohjed', Catalog Record I

l.,

s:
'" ;-
o
Q.

8,
o

'1:l

'" ..,
~
0·
::l

OQ
-.a

r
Notes for Diagram DG2

9 IGGOCLAA: IGGPSLEN

10 IGGOCLAA: IGGPSLCG

If the VSAM object is a base cluster data record, call
IGGPSL Y (IGGOCLAA) to obtain upgrade
associations, if any.

11 IGGOCLAM: IGGPSLEL

12 IGGOCLAA: IGGPSLlV

The volume list pointed to by CTGW A VL has the
following format:

• The volume list contains no duplicate volume serial
numbers.

• The volumes are divided by whether they are
within the minimum unit count or outside it.
Minimum unit count is the minimum number of
direct-access devices required to mount the object's
volumes. Volumes must be contiguous by device
type. Device types within the minimum unit count
are not ordered in any particular sequence nor are
they related to the device types outside the count.

• Volumes within the minimum unit count will each
be assigned an individual unit by the Scheduler. If
volumes that do not have units already assigned
exist outside the minimum unit count, the last unit
assigned to a volume of the same device type
within the minimum unit count will be made
nonshareable. If this is not possible, an additional
nonshareable unit will be assigned.

The volume list pointed to by CTG WA VL has the
following content:

All volumes in a given entry are placed into the
volume list, regardless of whether they have
allocated space.

• The volume information returned varies according
to the entry type specified by the Superiocate
request and whether the volume is within the
minimum unit count or outside it, as follows:

Entry types C, 0, G, I, and R

Within the minimum unit count, the CRA volume
for the particular entry is returned.

Data entry (D):

Within the minimum unit count. every volume in
the upgrade set is returned. Each volume in the
data entry that has aunique device type within the
data entry and is either the first with allocated

r
space (prime or overflow) or, if no volumes have
allocated space, is the first candidate volume is
returned.

Outside the minimum unit count, all others in the
data entry are returned.

Index entry(l):

Within the minimum unit count, each volume in
the index entry that has a unique device type within
the index entry and also is either the first with
allocated space (prime or overflow) or, if there are
no volumes with allocated space, is the first
candidate volume is returned. If sequence set is
with data, the same volume may appear as both a
prime and a candidate volume.

Outside the minimum unit count, all others in the
index entry are returned.

NonVSAM entry(A):

Within the minimum unit count, each volume in
the nonVSAM entry that has a unique device type
within the nonVSAM entry is returned. Every
nonVSAM volume occurrence is marked as prime.

Outside the minimum unit count, all others in the
nonVSAM entry are returned.

User catalog entry (U):

Within the minimum unit count, each volume in
the user catalog entry that has a unique device type
within the entry is returned. Every user catalog
volume occurrence is marked as prime.

Outside the minimum unit count, all others in the
user catalog entry are returned.

Base cluster entry (C):

Within the minimum unit count, every volume that
does not have sequence set with data is returned.
Otherwise, same as data entry.

Outside the minimum unit count, all others in the
data entry are returned.

Alternate index entry (G):

Same as the base cluster entry, except that there is
never an upgrade set.

Alias path entry (R):

Same as the base cluster entry, except that the
upgrade set inclusion depends on the
UPDATE/NOUPDATE flag in the path entry.

r
Nonnal path entry (R):

Within the minimum unit count, every volume of
the alternate index under this path is returned.
Otherwise, same as the base cluster entry, except
that the upgrade set inclusion depends on the
UPDATE/NOUPDATE flag in the path entry.

Outside the minimum unit count, all others in the
data entry are returned.

~
o
Vl
"<
Vl
N

Vl

<
Vl

;-
0-
(1)

"0
(1)

::l
0-
(1)

;::.
(')
o
3
"0 o
::l
(1)

;::.
< S·
c
!::.
Vl o ...,
III

~
:>
(')

@
~

=::
a
:r
o
0-

< Vl
:>
!
t""'
o

(JQ

(i'

Diagram DG 3. SUPERLOCATE: List a Data Set's Volume

Virtual Storage for. the Caller's Program

R II CTGPL CTGW A
• i ...--

tCTGPL

t Buffer

tWork Area

Catalog
Record
Identifier

tScheduler
~rk Area
tVolume

List Area

SFLDS

Number of
Entries in
User's Area

Number of
Volume
Information

Minimum
Unit
Count

Entries r~.;V..:O::..:...1 ___ _

tVolume
Infllrmation
List

Volume
Information
Entries

Catalog Management Buffer.

Object's Catalog Record

Identifier

~

Uata Set
Catalog Record

Index
Catalog Record

Pa th Processing

Obtain data and index records from each group
occurrence for the path. Extract volume
information associated with the record and put
the volume information in the caller's work

~
~

NonVSAM, Index, or User Catalog Processing

Retrieve volume occurrences for VSAM object
record and put volume information in the ---1-......
Scheduler work area.

Upgrade Processing

Retrieve upgrade associations, if any, and
obtain group occurrence associations. For each
member of the group occurrence, obtain
volume occurrences and put volume information
iI) caller's work area.

Data Record Processing

Retrieve volume infQrmation for data
component record and put volume information
in caller's work area,

l,

Virtual Storage for the Caller's Program

CCA

tCTGI'L

t Buffer

tWork Area

SFLDS

Number of
Volume
Information
Entries

tVolume
Information
List

Device
Type

Volume
Serial
Number

Flags

CTGPL

.. Force Keep"
Flag ON

,f Scheduler
Work Area

CTGWA

Minimum
Unit Count

tVolunle
List

CTGVL

Volume
Information
En tries

Catalog Management Buffer

Object's Ca talog Record

~

a:::
<1>
;.
o
0-

o,
o
"0

~ o·
::I

ID

r
Notes for Diagram DG3

13 IGGOCLAA: IGGPSLR, IGGPSLIV, and IGGPSLY

For each record obtained, IGGPSLEL extracts the
volume information associated with the record. Then
IGGPSLIV inserts the information into the caller's
work area. When the base cluster data record has been
retrieved, IGGPSL Y obtains any upgrade associations
related to the record.

14 IGGOCLAA: IGGPSLIV
IGGOCLAM: IGGPSLEL

IGGPSLIV inserts volume information into the
caller's work area.

IS IGGOCLAA: IGGPSL Y and IGGPSLIV
IGGOCLAN: IGGPSLEL

IGGPSLEL obtains the volume occurrences;
IGGPSLIV inserts the volume information into the
caller's work area.

16 IGGOCLAA: IGGPSLEN

If the VSAM object is a base cluster data record, call
IGGPSL Y (IGGOCLAA) to obtain upgrade
associations, if any.

IGGOCLAM: IGGPSLEL and IGGPSLIV

IGGPSLIV inserts volume information into the
caller's work area.

r r

~ Diagram DG4. SUPERLOCAT:E! List a Data Set's Volumes
o
(J)

"-<
Vl
N

Vl
<
Vl

S
0..
(>
'0
(>
;:I
0..
(>

:a
("l
o a
'0
o
;:I
(>

~
< ;i"

'" Eo
Vl

8" ...,
I»

(JQ
(>

> g
(>

'" '"
~
(>

s-
o
0..

< Vl

> e
b

(JQ

o·

~

17 .. Move volume information to beginning of
caller's work area.

18. Return to caller. ~_ CCAPROB

~I Return Code

L

CCA

tCTGPL

CTGPL

tWork Area

CTGWA

tVol List

CTGVL

Volume Information

'-'

3:
~

;.
8.
o ...,
o
-g
~
g'
...:>

r
Notes For Diagram DG4

IGGOCLAA: IGGPSLEN and IGGPSLlV

17 IGGPSLlV builds the volume list from the end of the
work area to the beginning, thus allowing the sorting
of entries by device type both within and outside the
minimum unit count.

18 IGGOCLAM: IGGPSLOC

If an error is detected, the procedure detecting the
error returns control immediately to the calling
procedure. IGGPSLOC returns to the caller of
SUPERLOCATE.

For additional information about topics related to
SUPERLOCATE processing, see:

"Data Areas:"

Catalog record descriptions and formats

"Diagnostic Aids:"

Catalog management return codes

r r

f Diagram DHI. UPDATE: Modify Catalog Information
o
CIl

~
N

CIl
<
CIl

S'
0.
(1)

'0
(1)

::I
0.
(1)

;a
()
o .g
o
::I
(1)

;a
<
;5.'
c: a
CIl
0-..,
'" OQ
(1)

:> g
(1)

~

~
(1)

;.
o
0.

~
:> ;
b

OQ
ri'

RII

tCCA I
I

lCCA
r- tBuffer

tCTGPL
tCurrent
CTGFL

CTGPL
Identifies

~ a Catalog
Record $ Request
Options
tCTGFL r------

~ 1. Does the caller (VSAM EOV) want more space?
~NOYeS

(if J!ll the Update-Extend function and exit.
(See Diagram DI I, "UPDATE-Extend: Obtain
Additional Space for a VSAM Object.")

-

CTGFL

Field Name
~

I" tCTGFL for Tests -
rl tUpdate Data

CTG FLs for Tests
';J Test Condition t- _

Field Name
Address and

r- Length of the
Test Data
tCTGFLs

C~for Tests

I

~ Test Data

Caller-

4 Supplied n Update Data
to Replace
Catalog
Record Data

2. Does the caller (VSAM OPEN processing) want
to reset a VSAM data set?

No Yes

l· Call VSAM data set reset function and then
exit. (See Diagram D 13, "Reset a VSAM Data
Set. ")

o steps 3 through 8 to process each of the caller's CTGFLs:
est the Catalog Record Field

3. Is the field to be updated only if caller-specified
test conditions are satisfied?

No Yes

t

Virtual Storage for the Caller's Program

Sequence

CTGFL

tUpdate
Data

CTGFL
Field Name (Combination)
t First Field Name Index
in the Combination
Name Index

Identify each set of fields that satisfies the Numbers
Number of Field Names
in the Combination

test conditions? of "OK"
. Sets of Fields tUpdate Data

Does at least one set of fields satisfy
the test conditions?

Yes No
11

6. Is more than one field identified by the field name
(a combination name)?

NoYes

I '- Do step 8 for each field associated with the
• combination name.
8. Replace the field's data with the caller's update data.

(See Diagram DM I, "'Modify a Catalog Record Field's
Value ")

t Buffer
Combination Name Index
Index to Each Field Name
Entry (in the Dictionary)
Associated with the
Combination Name.

Virtual Storage for
the Update Routine's Buffer

Catalog Record

I Updated Data I !! Field

VSAM Catalog

Catalog Management Buffer
71 .

9. Write the updated catalog record into the catalog.

Catalog Record
Set·of·Fields

/
Set-of·

Pointer Fields

Sequence tSet-
Field I Field "I N b of-

urn er Fields.

~O. Return to the caller when all CCAPROB ~.
CTGFLs have been processed.~ Return Code I

I

~

~ L L

::
." ..
::r
0 p.

So
0
""0
."

~
:::to
0 ::s -'4:)

r
Notes for Diagram out

IDAOl92A

The VSAM Open routine uses VSAM catalog
management to reset a VSAM data set.

IDAOlOOT

The VSAM Close routine uses VSAM catalog
management to modify the data set and index statistics
maintained in the catalog record's copy of the
AMDSB.

IDA0557A

The VSAM EOV routine uses VSAM catalog
management to obtain more space for a data set.

IGGOCLAB: IGGPACDV (calls IGGPUPD
(lGGOCLAV»

When the caller issues the CATLG macro instruction,
register I points to the caller's catalog parameter list
(CTGPL).The CTGPL request options are decoded
and the base catalog record is retrieved for the
request. See Diagram DBl, VSAM Catalog
Management Overview, for a description of initial
catalog management processing and request decoding.

1 IGGOCLAV: IGGPUPD (calls IGGPUPDE
(lGGOCLBB»

If more space is required for the data set, the
UPDATE-Extend routine processes the caller's
update request, and returns to IGGPACDV in
IGGOCLAB.

IGGOCLAV: IGGPSFPL

Steps 2 through 7 are performed to update each of the
catalog record fields identified by the caller's
CTGFLs.

2 IGGOCLA V: IGGPUPD (calls IGGPRUS (lGGOCLB7»

If a VSAM data set must be reset, the
UPDATE-REUSE routine processes the caller's
request and returns to IGGPACDV (IGGOCLAB).

3 IGGOCLAV: IGGPSFPL

The caller's CTGFL list contains the address of each
CTGFL needed to satisfy the caller's updating
requirements. Each field parameter list (CTGFL)
describes one of the catalog record fields to be
updated. Each CTGFL is completely processed before
the next one is started.

r
IGGOCLAV: IGGPSFPL (calls IGGPTSTS
(lGGOCLBA»

Sometimes the caller wants to update a field only if
another field's value, when compared to the caller's
test value, satisfies the caller's test conditions. If so,
the caller builds a CTGFL that contains the name of
the catalog field to be tested, the test conditions
(equal, high, low, etc.), and the address and length of
the caller's test value. If a CTGFL contains the
address of another CTGFL, the second CTGFL
describes a catalog record field that is to be compared
to the caller's data. If the comparison satisfies the test
conditions, the catalog record field specified by the
first CTGFL is updated with the caller's data.

4 IGGOCLBA: IGGPTSTS and IGGPTCMP

If the caller wants to update a catalog record's header
field, the field's data is updated with the caller's data if
all tests are satisfied.

If the caller wants to update a field from one of the
sets of fields that follow the header field, the field's
data is updated with the caller's data for each set of
fields' field that satisfies all tests. The set of fields that
contains the field to be updated can also be identified
by it's sequence number.

See "Data Areas" for details about the catalog record
and its sets-of -fields.

The sequence number of each set of fields that satisfies
the tests is put in the CCA. When all sets of fields have
been tested, the sequence numbers are used to identify
each set of fields that contains caller-requested data.

6 IGGOCLAX: IGGPALT2

A combination name refers to a set of related catalog
field names, and is used by the caller instead of a
separate CTGFL for each field name.

7 IGGOCLAX: IGGPALT2

The CTGPL, CTGFL, and catalog control area (CCA)
are described in "Data Areas."

The CCA's combination name index has an entry for
each field name in the combination. The Update
routine processes each field name entry in the
combination name index sequentially, starting with
the index of the first field name entry for the
combination, and ending when the number of entries
processed equals the number of field names associated
with the combination name.

r
The combiriation name's CTGFL contains the
beginning address and the total length of the group of
update data fields in the caller's work area.

The test sequence (if any) associated with a
combination-name CTGFL is done only once, not
once for each field name in the combination.

9 IGGOCLAV: IGGPSFPL (calls IGGPPREC
(lGGOCLA W»

When the catalog record is updated (in a buffer in the
Update routine's virtual storage) the update routine
sets the "must write" flag on to indicate that the buffer
must be written from virtual storage into the catalog
before the buffer can be made available to contain
another catalog record. Wl\en the caller's update
request is finished, or when~he Update routine needs
the buffer to process another catalog record asso~iated
with the request, the Update routine calls IGGPPUPC
or IGGPPAD (IGGOCLAG) to write the catalog
record from the buffer into the VSAM catalog (on a
direct-access storage device).

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

-~
o
en
.........
<: en
N
en
<: en
:;-
0-

~
l:I
~ a
("l
o
.g
o
l:I

~
<:
~.

e.
en
0'

~
~
en
en

:::
~
8-
< en

!
!;'

(JQ o·

Diagram OJ 1. UPDATE-Extend: Obtain Additional Space for a VSAM Object

Virtual Storage for the Caller's Program
Virtual Storage for the CaDer's Program i In_

RII

r

RII

tCCA CTGPL

!CCA

t Buffer

tCTGPL

tVolume
Information 1-1 ---
Set of Fields

Extent CCHH
Values

Identifies the
Data Set or
Index Catalog
Record

> l. Retrieve the AMD~B. set of fields to determine the ,~
attnbutes and statistics. -- tBuffer

Catalog
Management
Buffer

~ Data Set Catalog
R .. rord

2. Find the volume information set of fields that 2':.ii!'2Ziirz:2'2!Z1f<:~
describes the volume to contain the additional I-'-'-'-';;';;"~~~
space. • SALPARL tSALPARL Catalog Allocate space to the data set '---;:::====-___ --!.~M~a:!!n~ag~e:!:m~e~n~t..!B~u~f~f:!er r-~3-. -:D~o-e-s~th:--e -o-:b-:~-e-c~t -s:-h-a-re--:-it~s-:V:"'!"::S~A-:M:-:-~d-a-ta-s p ac-e-w-i-th----.I CI # of 0 bject 's

Data Set Catalog 'J other VSAM objects? Catalog Record
Record N Y

o .es Amount of Space
Requested

Allocate space to the object from the data Maximum Number

~

space's free space. (See Diagram OJ I, ~ of Extents
"SUBALLOCA TE: Obtain Additional ---",,\!::.) Allowed
Space from a Nonunique VSAM Data Space.") tUserlist

~5. Did the data space contain enough free~ Userlist
Volume Information Set of Fields l space to satisfy the request?

No ~s Volume
Volume Serial

Flagsl Serial Extent Descriptors Dl2 Numbers
Number 9

-

~ I 6. Can one of the data spaces on the volume identified VSAM Direct-Access
/ in step 2 be extended to obtain the requested Volume

C amount of space? ~------

Another VSAM } Data
SALPARL Userlist / Object Space #1

J tUserlist W Return Code V Obtain another extent for the data spa.ce. E #
(See OSjVSI DADSM Logic, "Extendmg xtent 1

Data Set Allocations (Secondary Allocation).") } Another Extent
Extent #2 for Data

Create a new VSAM data space on the volume. F Space #1

(See OSjVSl DADSM Logic, "NonISAM Data reespace }

DI2
9

Set Allocation.") Data
Extent #3 Space #2

~ ~

~
<>
S-
o
P-

Z,
o
'0
<> ..,
~ o·
::l

\0

"

r
Notes for Diagram DIl

The UPDATE-Extend routine is called whenever a
VSAM object (cluster, data set, index, or catalog) needs
more space to store it's records.

The VSAM end of volume routine calls the
catalog-management UPDATE routine, and an amount
of space, based on the object's direct-access space
allocation requirements, is allocated from one of the
following sources:

• A shared VSAM data space that has enough free space
to satisfy the allocation requirements

• A shared VSAM data space, extended to satisfy the
allocation requirements from the free space on the
object's currently mounted volume

• A new VSAM data space, created to satisfy the
allocation requirements, the object's currently
mounted volume.

IGGOCLBB: IGGPUPDE (calls IGGPINIT
(lGGOCLBC»

2 IGGOCLBB: IGGPUPDE (calls IGGPSVOL
(lGGOCLBC»

The volume information set of fields is identified by
volume serial and key ranges, if this is a key-range
data set. See "Data Areas" for details about the
volume information set of fields.

3 IGGOCLBB: IGGPUALL

A shared (nonunique) VSAM data space contains all
or parts of two or more VSAM objects. A unique
VSAM data space contains all or part of only one
VSAM object, and is not allowed to contain records of
another object.

4 IGGOCLBB: IGGPCSAL (calls IGGPSALL
(lGGOCLAR»

If the object shares its data space with other VSAM
data sets or indexes, there might be enough free space
in one of the data spaces on the volume to satisfy the
object's direct-access space allocation requirements.

S IGGOCLBB: IGGPUPDE

[f there is not enough free space, another extent is
obtained for one of the volume's data spaces, or a new
data space is created.

6 [GGOCLBB: [GGPUPDE

[f any data space on the volume has less than [2
extents, the data space can be extended.

r
8 IGGOCLBB: IGGPUPDE

If a new extent was obtained for one of the volume's
data spaces or a new data space was created, this
space is suballocated to the object (nonunique) or
given directly to the object (unique). For recoverable
catalogs, the format-4 timestamp field is updated on
the physical volume.

r

~ Diagram 012. UPDATE-Extend: Obtain Additional Space for a VSAM Object
o
en
.......
< en
N

en
< en

5'
Q.
~

~
::l
Q.
~

::t
n
o
3
'0 o
::l
~

~
< ;;.'

Virtual Storage for the Caller's Program

tBuffer

Low and High
CCHH Values
for Each Extent
Allocated to
the VSAM Object

Catalog Management Buffer

/

9. Compute the extent values, determine the new high
RBA, and calculate the extent range for each extent
in the newly allocated space.

Update the statistics in the AMDSB set-of-fields.

Does the volume information set-of-fields located
by step 2 describe a key-range volume to be added?

10.

/Ill.

/ No Yes

~ I Add extent descriptors to a new volume
information set of fields. (See Diagram

~ DM I, "Modify a Catalog Record Field's
\::l Value" - Add a New Set of Fields to

VSAM Catalog

c:
~
en

the Record.) II kj > 13. Update the volume information set of fields to Data Set Catalog Record
zI >I Updated Data ", ,zzz,zzzz,~ Set Catalog Record

5'
iJ
~

:> g
~

'" '"
3::
~

S-o
Q.

< en
:> e
b

(JQ

ii'

show the object's newly obtained-space. (See
'--_____________ "" Diagram DM2, "Modify a Catalog Record Field's

'\. Value" - Change a Field Within a Set of Fields.)

'\.

~

" " Allow for sequence set stored with the data

14. If the object is key-sequenced, is the sequence set
stored with the data in the data set?

Yes

f
~ 1 S. Retrieve the index catalog record.

16. Allocate part of the data set's new
,extent to the sequence set.

17. If SMF is required, write SMF record type 63 -
VSAM data set altered - to reflect the new ex
tents and record type 69 - VSAM data space
allocated or extended. SMF records are not
written for CRA data sets. CC APROB

18. Return to the caller.~ Return Code

~

~

Updated Index
Catalog Record

VSAM Direct·Access Volume
~ """'---

Space for User's Data
;;pace for
Sequence
Set

Low
RBA

For the Data Set
Record's Extent
Descriptor

1''\ ,
High Low High
RBA RBA RBA
i

For the Index
Record's Extent
Descriptor

~

~
(I)

~ o
0.

g,

~
~. g
...
\Q
\Q

r
Notes for Diagnun DIl

11 IGGOCLBB: IGGPMVOL

If a key range data set obtains space from a candidate
volume, the second, third, fourth, ... key range that
obtains space from that candidate volume for the first
time will require a new 'volume information set of
fields. Note that each key range or each different
volume is described by an individual volume
information set of fields.

12 IGGOCLBB: IGGPMVOL

The object's catalog record contains a volume
information set of fields to describe the object's space
on each volume that contains a part of the object. If
the object's newly obtained extent is in a key range on
a new volume, the UPDATE-Extend routine may
build a volume information set of fields to describe the
new volume and extent. Otherwise, an existing volume
information set of fields is updated with the
high-allocated RBA and extent information in the
form:

SS CCHH CCHH DODD DODD

where:

• SS identifies the VSAM data space.

• CCHH are the low and high cylinder and track
addresses.

• DODD are the low and high RBAs.

See "Data Areas" for details about the object's catalog
record, and its for volume information set of fields.

16 IGGOCLBB: IGGPSSWD

18

The low and high CCHH addresses (in the index
catalog-record's volume information set of fields) are
those of the extent obtained for the data set. The low
and high RBA values are for the sequence set.

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r r

N

8
o
CIl

< CIl
N

~
CIl

f
~ s.
(j
o
.g
o
::l
I'D
::l
:;

<:
:;.'
c: e.
CIl

0' ..
~

~
til
til

rs::
I'D s-o
Q.

<
CIl
:> ;
t""

~.
n

Diagram DI3. REUSE: Reset a VSAM Data Set

Virtual Storage for the Caller's Program

~

Rll

tBuffer

tCTGPL

tREUSE
Work Area

Catalog Management Buffer

REUSE Work Area

tAMDSB
Work Area

AMDSBSet of
Fields Work Area

Check Validity of Request

Is the data set record type Of
No

J
2. Return to caller.

Is the data set reusable?

4. Is the data set empty?

CCAPROB

. Yes No ~

~ t R,tu," t~8,m'" ~~::d'
6. Can the data set be reset? (Not inhibited for update) , CCAPROB i

7. Return to caller. ~~~L-_____ ""'"

Retrieve the AMDSB set of fields.

Is the data component of a key-sequenced data set
being reset?

Yes • 10. Does CTGWKA contain the index catalog
[ecord identifier?

eves No

~
11. Return to caller.

l"

CCAPROB

~

~
n
;.
8-
o -
~
~.
::s

8

r'
Notes for Diagram DD

REUSABLE is an attribute that may be assigned to a
VSAM data set or an alternate index. This attribute
allows the data set to have its high-used RBA set to
zero at open time, if the user specifies the RESET
option. The indicator for REUSE is retained in the
attributes field of data and index records of a
key-sequenced data set and an alternate index and in
the data record of an entry-sequenced and relative
record data set. Reusable data sets may be
multi-volumed and they must be suballocated only.
That is, reusable data sets may not be unique. Also,
reusable data sets cannot have key ranges and they are
restricted to a maximum of 16 physical extents per
volume. If a base cluster is defined as reusable, it may
not have alternate indexes associated with it; however,
it is permissible to define reusable alternate indexes
that are related to a nonreusable base cluster.

IGGOCLAV: IGGPUPD (calls IGGPRUS (lGGOCLB7»

Initially, the data set catalog record is available in a
catalog management buffer.

4 If the data set is not reusable but is empty, the caller's
LOCATE request is processed. No error codes are
returned.

8 IGGOCLB7: IGGPRUS (calls IGGPEXT (lGGOCLAZ»

The reuse work area is set up by IGGPRUS and
appropriate pointers are initialized. The reuse work
area includes CTGPL and CTGFLs required by
Modify and Extract Logic.

r r

s
o
til
<
til
N
til
<
til

8:
n
~

~ a
(j
o

~
~ a
<
~.

a
til

0-
r;l
~

~ a
~
[
'<
til ;
i.
(")

Diagram DI4. REUSE: Reset a VSAM Data Set

Virtual Stolage fOI the Caller's Program

~

Rll

t Buffer

t Reuse
Work Area

Catalog Management Buffer

Reuse Work Area

tVolume Information
Set of Fields

Volume Information
Set of Fields

12. Retrieve a volume information set of fields into
the reuse work area.

13. Read corresponding volume record into the
catalog management work area.

14. Is it the first noncandidate volume to be
processed?

No Yes

~ t. C'l,u~t, th' high-u"d RBA fo' '-"'.t-' pnmary allocahon of the data set.

16. Update volume information set of fields,
retaining only those extents within the primary
allocation. If no extents remain, the volume ~I
becomes a candidate volume.

17. Move updated volume information set of fields
to the catalog (see Diagram DM 1. "Modify a
Catalog Record Field's Value").

18. Were any secondary extents present in the
original volume information set of fields?

No Yes

~

RIl

tWork Area

Reuse Work Area

tVolume Information
Set of Fields

Volume Information
Set of Fields

\.

~
C1>

S-o
0-
o
o
'g
g
o·
:=
N
o,

('

Notes for Diagram DI4

1l IGGOCLB7: IGGPRUS (calls IGGPEXT (IGGOCLAZ»

The reuse work area provides space for a volume
information set of fields that contains a maximum of
16 extent descriptors.

13 IGGOCLB7: IGGPRUS (calls IGGPGET (IGGOCLBO)

17 IGGOCLB7: IGGPRUS (calls IGGPMOD (IGGOCLAV»

(' ('

~
o
til

~
til
N
til
<:
til

[
C1>
'0

C1>

5.
C1> :a
(j

~ o
~
~
<:
~.

a
til ...
i
~
C1>

~

a:: g.,
8-
< til

g
£' o·

Diagram DIS. REUSE: Reset a VSAM Data Set

Virtual Storage for the Caller's Program

\.,

Rll

tREUSE
Work Area

tACB

ACB

REUSE Work Area

CAXWA

RecoveralJle
Catalog
Indicator

t AMDSB Work Area

tVolume Information
Set of Fields

AMDSB Set of Fields
Work Area

Volume Information
Set of Fields

Update Volume Space Map

19. Did the volume information set of fields represent
sequence set with data?

Yes No ,
20. Build a volume information set of fields

representing the secondary extents.

21. Update the volume space map set of fields
to reflect the returned secondary extents.
(See Diagram E12 for subscratch logic.)

Is it a recoverable catalog?

Reset Sum of Extent Track pOinte7rs D

Compute sum of relative track I
addresses of extents remaining on

23.

reset volume.

24. Reset relative track sum in Data Set
Directory set of fields.

Repeat steps 12 through 24 for each volume on
which the data set resides.

Update AMDSB set of fields to reflect reset
status of the data set.

~

Rll

tCCA

t REUSE Work Area

Sum of Extent Track Pointers

REUSE Work Area

t AMDSB Work Area

tVolume Information
Set of Fields

AMDSB Work Area

Volume Information
Set of Fields

l,.

~
n
;.
&.
S
O
't:l
n
g g.
~
VI

r
Notes for Diagram DIS

19 The flag field in the volume information set of fields
indicates whether sequence set is with data. If so, no
resetting of the space map is necessary, since the space
map will have been set already from the corresponding
data set volume information set of fields. This is also
true for the relative track sum in the case of a
recoverable catalog.

21 IGGOCLB7: IGGPRUS (calls IGGPSSCR (IGGOCLBF»

23 IGGOCLB7: IGGPRUS (calls IGGPTNXO (IGGOCLBI))

If the reset volume is a candidate volume, the
computed sum in the CCA will be zero.

r r

~
o
(IJ
.......
<:
(IJ
N
(IJ

<:
(IJ

5'
~
'&
6..
n>
sa
Q
3·
'g
~
~
<:
~.

!.
(IJ :
I
~
n>

[
<
~
~

£' rj"

Diagram DI6. REUSE: Reset a VSAM Data Set

Rll

Catalog Management Buffer

Data Set Catalog Record

~

~ i
~27.

28.

Update header information in data set catalog
record to reflect reset status.

Move updated AMDSB sets of fields and
updated header information to catalog.

29. Is a key-sequenced data set being processed?
No Yes • 30. Read index catalog record into catalog

management buffer, replacing the data
set catalog record.

31. Repeat steps 8 through 28 for the index
component of the data set.

32. Restore the data set catalog record
into the catalog management buffer.

CCAPROB

Return to caller. ~I Return Code

~

Cat.a.1og Management Buffer

Data Set Catalog Record

I Header Information I

4..v

a:
"' S-o
0-

S.
o
'g

~.
o
::I

~

r
Notes for Diagram DI6

18 IGGOCLB7: IGGPRUS (calls IGGPMOD (lGGOCLAV»

30 IGGOCLB7: IGGPRUS (calls IGGPGET (lGGOCLBI)

32 IGGOCLB7: IGGPRUS (calls IGGPGET (lGGOCLBI))

r' r'

-! •• -•• :g
<
= ••

~ o

E
" ~
i. .. .
~

-= :;
U ..
-S ..
..::
'" ~
~
7i

~
>

f----

~~ -'" "...,
~;
:-::

>c-- -,,_

't
1\

;;

" '"..I ...
:r.
>
:tl \L 0

I~-------'

---------i I
~----------------~

::0
::)
x
:..
~
;..-
"'"

=

..J
x
~

'"J
~
:r.

r---

..:
..: ;.-
~

i '--

...-

~

'J

;...
~

J
~
~

..oJ

~

" 'J

-
"J

::

;;
"J

,-
-::
= " 'J

'"

"" "7. .,. ,.,
-
r.
5 0'

"J ..., ..., ... z' ...,
7.

"J .,.

// / \
"-
'j

;; " i: .~~ l :. -.I ~
~ "

;.,

=:
~

.E ';;i- ,.
~ " = ,., ::

:; .::;
'J :j z x

i
..J
x
~

'"
~

..J ~
~
:r. =

'-
:r.
..J
:>:
"J":

...
~ "

...,
r-- OIl

0, on ::J ,., ..., ...,
~ 'J " :2 ,- ~ " " ~

2 ::0 ~ "J ~ ::J ::) '."

5 ..., ..., " 1: ~ x ... 'J ", = ":l :
~ -,:; '." "" "

...,
J

.E .-Z x c'
~ ~ ~ .] ~ ,.- :;:

'J - : :::; '." :; '" 2 "J ;.., ';:: ~, ~

~ -
~

..., -"'-

.2 - ~
~ ~ E 'J ,., ", ;:: ~ :,.; C· ~ ~ ~ '3 "". " E = 'J ,. .:! ~ ..., ..., "J
~ '." ~ -:: :n

C- O '" "J -::;

"" ';;: ,., "J ...,
:/l ..., 'J ::J 0 - -...,

~ Co " - ,=
~ .. -o

~

." ~ :3 "J ::J
~

...,
'J

'~ ...,
:5

..., ~
:n ::0 ::J X

z ___ ... r..:

... I"T'I
;!;
..J := ~
:>: " S :r. ~ .~ :: ::> ;; " z 'f. ~
~l.LL ::;

" x
~
;;

"
~

:.;
.~ "
~

E
::

.... >
/

~
;"?

""3 :j

> " =:

*£ .., " "- -;
::>:.;

,,~

.~
~

"J
~

...,

,.
N

~
~

:.:.:
::
.::
~ ...,
'."

,-
...,
~ E 'J

...
2

~~
~J :'3

,. -
:'1 "J:

:nc.=

oci

208 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J ,

.0 -

J

f
[
o -. o

I o·
:I

~

r
Notes for Diagram DJ1

The Suballocate routine is called to assign a candidate
volume to a VSAM object (cluster, data set, index, or
catalog) and to assign available space to a VSAM object
from one of the data spaces on the caller-specified
volume. The caller, either the UPDATE-Extend routine
(see Diagram OIl) or the DEFINE CLUSTER routine
(see Diagram EDt), builds a list of volume serial numbers
to identify each volume to be assigned to the object as a
candidate volume. If the caller requests space allocated to
the object, the list contains one volume serial number.

1 IGGOCLAR: IGGPSALL

The volume entry record may already exist in the
RAB, having been put there by the caller of
suballocate.

2 ICCOCLAR: ICCPSALL

If the volume entry record is not in the RAB, a call is
made to IGGPGET (BI) to get the record.

4 IGGOCLAR: IGGPSALL

If the request is to assign available space to an object
from a specified volume, IGGPSALL calls
IGGPSALS (AU).

5 IGGOCLAR: IGGPSALL

If the volume catalog record already contains a data
set directory entry set of fields, the volume either is
already assigned to the VSAM object as a candidate
volume or has some of its space allocated to the
VSAM object.

6 IGGOCLAR: IGGPSALL

If a Directory Entry already exists for the data set, the
return code is set in the user-provided volume serial
number list.

7 IGGOCLAR: IGGPSALL

IGGPSALL calls IGGPISCJ and IGGPMOD to add
the new data set directory entry to the volume catalog
record.

See "Data Areas" for details about the data set
directory entry set of fields.

(~ r

N

o

o
V,i
......

~
V,i

<:
V,i

8:
n
~ a.
n a
(")
o

~
~
::l
!":'

<:
::i'
c
~
V,i

0' ...
~
>
~
III
~ n
;-
8-
~
>
~
~
~.
n

Diagram DJ2. SUBALLOCATE: Obtain Additional Space from a Nonunique VSAM Data Space

Virtual Storage for the Caller's Program

It Buffer

Buffer

Work Area

ax. No. of t:xtents
Allowed in Small
Extent Table TTNN
Value

Return from
IGGPBMR

Extent Save Areal
Small Extent Table

Volume Catalog Record

Space Map

Track Status

A

~

Data Space Group
Sets of Fields

Process the Request for more Space

9. Determine the amount of tracks required to
__ - - - -I~ satisfy the request.

, - - - -+ 10. Butld an extent table to show all non unique
I (shared) data space extents on the volume.

I
I
I
I
I
I

Process each Extent in the Extent Table

11. Examine the Space Map set of fields.

12.

13.

If the extent obtained by step 10:

Exactly satisfies the request, no further '\
extent-table processing occurs. 1
Is greater than the amount of tracks requested, if a
previous "larger extent" was found and if the ~
currently obtained e. xtent is smaller than the pre- r j
viously obtained one, the current extent is saved. A

14. Is less than the amount of tracks requested, save it.

Allocate the Space to the Object

15. Requested space found?
Yes No

, f CCAPROB
16. Return to caller. r • I Error code I

17. Reset the Space Map set of fields to show the
newly allocated tracks.

18. Return to caller.

\.

Virtual Storage for the Caller's Program

Work Area

Extent Save Areal
Small Extent Table

Buffer

Volume Catalog Record

i Space Map

Track Status

Parameters to IGGPBMR

Minimum
Allocation
Unit Size

Starting TT
Value of Extent

Ending TT Value

l,

3::
(1)

S-o
0-
o
o
~ a o·
o
IV

r
Notes for Diagram OJl

9 IGGOCLAU: IGGPSALS

If the amount of space requested is a number of
cylinders, convert it to a number of tracks.

10 IGGOCLAU: IGGPSALS (calls IGGPEXT (lGGOCLAZ»

The extent table is built by retrieving each extent
descriptor (from each data space group set of fields)
that might contain enough free space to satisfy the
request's minimum allocation requirement (the
number of tracks in one control area).

All extents of shared data spaces are described in the
table until either there are no more extents to describe
or the table is full.If the table is full, step IO is repeated
when steps II through 14 are completed, until the
extents of all shared data spaces have been examined.

II IGGOCLAU: IGGPEDS (calls IGGPBMR (IGGOCLBR»

Each extent descriptor in the extent table is in the
~E '

S#17NN

where:

• S# is the sequence number of the data space's
extent.

• 17 is the extent's starting track number.

• NN is the number of tracks in the extent.

The extent descriptors are processed beginninll with
the lowest 17 value in the table, then the next lowest,
etc., until all extent descriptors have been processed.

IGGPBMR examines each extent to find an amount of
contiguous unallocated tracks at least as large as the
request's minimum allocation unit. IGGPBMR
examines the Space Map set of fields, starting at bit
position (track indicator) 17 and ending at bit
position (track indicator) 17 +NN-I (usually the
extent's track boundaries). If IGGPBMR finds a large
enough amount of unallocated tracks, it returns to
IGGPEDS with the beginning track number (TT) and
the number of tracks (NN). If the data space's extent
might contain another amount of unallocated tracks at
least as large as the request's minimum allocation unit,
IGGPEDS calls IGGPBMR again to examine the rest
of the data space's extent.

12 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is the exact
number of tracks required to satisfy the caller's

r
request, no further extenttable.processing is done.
Larger or smaller extents obtained from previous
extent-table entries are ignored.

13 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is larger than the
amount of tracks required to satisfy the request, the
extent is saved if either:

• No other "Iarger-than-requested-amount" extent
has been returned yet, or

• The current extent is smaller than a previpusly
obtained "Iarger-than-requested-amount" extent.

MONDAY AUG 23 - merged TNL with base (parts I and
2) and sent to printq.

In either case, only one
"Iarger-than-requested-amount" extent value is saved.
The "small extent table" (built in step 13) is ignored
and no longer used.

14 IGGOCLAU: IGGPEDS

If the extent returned by IGGPBMR is smaller than
the amount of tracks required to satisfy the request, its
17NN value is adjusted so that IT is on a cylinder
boundary. If NN is now at least as large as the
request's minimum allocation unit (number of tracks
for one control area), the extent is saved in the "small
extent table" if:

• The table has fewer than five entries (or a
caller-specified maximum less than five), or

The table is full and the current extent's NN value
is greater than the table's smallest extent's NN
value. The current extent replaces the table's
smallest extent.

In either case, the extent is not put in the "small extent
table" if it is too small (adjusted NN is less than the
minimum allocation unit) or if a
"larger-than-requested-amount" extent already exists
(see step 12).

If, after all data spaces have been examined, the total
of the NN values in the "small extent table" is less
than the amount required to satisfy the request, no
space is allocated to the object.

17 IGGOCLAU: IGGPSALS (calls IGGPBMR
(IGGOCLBR»

If the selected extent is larger than or equal to the
amount of space requested, IGGPBMR adjusts the
Space Map set of fields starting at bit position (track

r
indicator) n, turning off NNbits (NN is the exad.
number of tracks required to satisfy the request).

If the space is allocated to an object from a number of
extents, the"smaU extent table" is sorted so that the
largest NN value is first, the smallest last. IGGPBMR
then adjusts the Space Map set of fields for each
ITNN value in the "small extent table," until the
amount of allocated tracks equals the amount of tracks
requested.

18 IGGOCLAU: IGGPSALS

IGGPSALS returns the sequence number of the data
space's extent, starting track number, and number of
tracks for each extent obtained for the request. The
caller uses this information to build extent descriptor
entries hi the VSAM object's volume information set
of fields.

~ Diagram OK!. LSPACE: Build an "Available Space" Report
o
(J'J

"< (J'J
N
(J'J

< (J'J

5'
0..
~

"0
~
::l
0..
~ a
n
o

~ o
::l
~

~
<
~.

e:..
Vl
0-...
'" OQ
~

§
til
til

a:::
~

;.
8.
< Vl
:> ;
£'
n'

Virtual Storage for the Caller's Program

CTGPL

tCTGPL

t Buffer

Virtual Storage for the LSPACE
Routine's Buffer

Volume Catalog Record

~

Data Space Entries

Available Space in
the Space Map

VSAM Catalog -
Volume·
Catalog
Record

,
\.

\.
\.

\.
\.

Virtual Storage for the Caller's Program

on for all data
n DLI, "Obtain

Build an available-space report by d
available-space information of each
in the volume catalog record.

3. Did the caller provide a work area?

{ing the
~a space en try

No Yes

\.
\..

,
4. Did an error occur while bUi 19 the

available-space report?

No Yes

I !. Put a diagnostic mess
caller's work area.

\" t(9)
~ 6. Put the available-space repor

into the

to the caller's
work area.

7. Does the OS/VS system include the system

RII

tCCA

CCA

tCTGPL

t Buffer

Catalog
Management
Buffer

Volume
Catalog
Record

-,,-"

~

I

management facilities (SMF)? SM ' D S
No Yes J:o ata et

CTGPL

tWork Area I

30·Byte
II Work Area

Available-Space
Data for One of
the Caller's
Volumes

, r: ~
8. Write SMF record type 69 - VSAM Data =====~

Space Information. L Type 69

I ' -
CCAPROB

9. Return to the caller. ~eturn Code

l,. l,.

3:
~
::r
0
c..
0
0

'1::l
('I) --.
e:. o·
:I

IV

1M

r
Notes for Diagram DKI

1 IGGOCLBK: IGGPLSP and IGGPLDCE

The volume catalog record describes each VSAM data
space, and its free space, on the volume.

See "Data Areas" for details about the volume catalog
record.

2 IGGOCLBK: IGGPLDCS, IGGPLSMS, IGGPLDAS

Each data space entry derived from the volume
catalog record has a field that describes the available
space in the data space. The LSP ACE routine analyzes
each data space entry and calculates the amount of
available space in cylinders and tracks. It also records
the number of cylinders and tracks in the longest
continuous amount of available space.

S IGGOCLBK: IGGPLEMP

A diagnostic message describing the error which
occurred during the building of the available-space
report is placed in the caller's work area.

6 IGGOCLBK: IGGPLDCE, IGGPLSMP

8

9

If the caller provides a 30-byte work area, the
available-space report is put into the work area in the
form:

SP ACE-CCCC, TTTT,AAAA/ cccc,tttt

where:

• CCCC is the number of cylinders of free space in
all VSAM data spaces on the volume.

• TTTT is the number of tracks in addition to the
number of cylinders of free space in all VSAM data
spaces on the volume.

• AAAA is the number of extents of free space in all
VSAM data spaces on the volume.

• cccc is the largest number of con~iguous freespace
ce cylinders on the volume.

• tttt is the number of contiguous free-space tracks in
addition to the cccc value.

IGGOCLBK: IGGPLSP (calls IGGPSMFL (lGGOCLBV»

See OS/VS System Management Facilities (SMF) for
SMF record type 69 details.

IGGOCLBK: IGGPLSP

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r r

N

....
o
Vl
"'-<
Vl
N
Vl
-<
Vl

S
0-
(1)

~
::l
0-
(1)

a
(')
o
3 g
(1)

f4
-<
~.

e:.
Vl

I
i
'" '" s:::
(1)

~
8.
< Vl

~ --b
~.
o

Diagram DLI. Obtain a Catalog Record Field's Value

RII

tCCA

lcCA

Set-of· Fields
Sequence
Number

t Buffer

Extension
Record's
C1#

CTGFL's Field
Name Dictionary
Entry

~

(

I
I
I

Extract header field data

l. Perform derived-field name processing

~ 2. Does the CTGFL's field name identify a header field?

No Yea

the CCA and return to the caller.

-1--"",
I I
I I
I I

~
L2 -

14
E
r

1 t Set the h"de< field', ,dd"" ,nd length in

. ~CAPROB
"tract set-of-fields field data Return Code

4. Examine each set-of-fields pointer in the catalog
record to determine whether:

-1-'"'\ I
I I \..

.I I
I

I
1

t-------

'------

• The group code in the pointer equals the group
code of the field name, an.d

-~ • The sequence number in the pointer equals the
§equence number in the CCA.

5. Were step 4's conditions satisfied by one of the
record's set-of-fields pointers?

Yes No ..
'r ~ 6. Is there an extension record for the catalog

,eco,d mmined in "ep ~"Not Found" Fl.g
Yes No A
, .. CCAPROB

7. Return to the caller. ~ Return Code I
Attempt to read the extension record into a catalog
management buffer.

8. Is a buffer available to contain the extension
record? "No Buffer

Yes No ~ Space" Flag
,. CCAPROB

9. Return to the caller. ~ Return Code I
- t- I> I •. R"d the <x t'n,;on reco,d in to , catruog ~

management buffer. (See Diagram BC I,
"GET-Direct Processing: Direct Retrieval.")

-
DL2
11 4

,-,.

Virtual Storage for the Caller's Program
-

CCA Addresses of

~~ Flags Parts of the
Catalog Record

Extension
Record's CPEI

(fJ c1# CPE2
Field's CPE3
Length CPE4
and Address

CPE5
tCatalog CPE6
Record

CPE7

Catalog Management Buffer

Catalog Record
(Retrieved by the Caller)

Extension Number Pointers Header
Fields Record's of Sets to Sets of h

C1# of Fields Fields

I~PEICPE2~
Pointer to a
Set of Fields

Address
of the Group Sequence
Set of Code Number
Fields

.1\
CPE5

Lis'" 0' F;.Id.

~PE3 CPEl

Set of Fields

Variable·
Field Field Field Length Field

Len I Data
1\ 1\

CPE6 CPE7

l,

is:
" ;.
0
c-
o ...,
0
'0

" ~ ... o·
:l
N -v.

r
Notes for Diagram DLl

The Get-Field-Value routine is called by other catalog
field management routines to obtain the location and
length of a field in a catalog record. The record is in
virtual storage in a catalog management buffer. The
following results could occur:

• The field is entirely contained in the record in the
buffer, and the field's address and length are set in the
caller's CCA.

• The field is partially contained in the record in the
buffer, and the field's address and partial length are
set in the caller's CCA. The CCA also has the "not
complete" flag on and contains the control-interval
number of the catalog record's extension, which
contains more of the field.

• The field is not retrieved because it doesn't exist in the
caller-specified set of fields, or because there are no
more sets of field in the record, or because no buffer
space is available to contain an extension record.

IGGOCLBS: IGGPXV AL

If the field name is derived, the field information to be
returned does not exist in the physical catalog record
but must be generated from the catalog fields, possibly
in different catalog records. Derived field names exist
only in the volume entry.

2 IGGOCLBA: IGGPLVAL

3

The field-name dictionary is a read-only catalog
management table. The catalog field name dictionary
contains an entry for each type of catalog record field,
based on it's field name. The caller puts the dictionary
entry identified by the CTGFL's field name into the
CCA before calling the get-field-value routine.

Header fields are identified by a type-code of 0 (in
their dictionary entry). A nonzero type-code identifies
a set of fields that contains the field identified by the
CTGFL's field name.

See "Data Areas" for details about the catalog field
names and dictionary entry format.

IGGOCLBA: IGGPLVAL

Header fields are fixed-length and located at a fixed
displacement from the beginning of the catalog record.

The field's address is obtained by adding the
displacement (in the CTGFL's dictionary entry) to the
beginning address of the record (the CCA's CCACPEI
value). The field's length is part of CTGFL's
dictionary entry.

r
If the field name identifies a header field, and the field
is variable length, the field's address is obtained by
using the sequence number in the CTGFL's dictionary
entry, which indicates that the field is the first, second,
etc. variable-length field.

See "Data Areas" for details about the catalog record
header fields and the catalog communications area
(CCA).

4 IGGOCLBA: IGGPLVAL

The set of fields pointer (GOP) is used to locate a set
of fields. The GOPs are grouped together by type
code. Within each group of GOPs, the pointers are
ordered by sequence number.

See "Data Areas" for details about the catalog record
and set of fields poi}lter.

5 IGGOCLBA: IGGPLVAL

If the caller-specified set of fields pointer identified by
it's sequence number is found, its displacement field
and flags field specify the location of its set of fields
as:

• the number of bytes from the beginning of the
record's sets of fields (the CCA's CCACPE3 value
plus the set-of-fields pointer's displacement field
value), or

• the control interval number of the extension record
that contains the set of fields. The extension record
contains a set-of-fields pointer that specifies the set
of field's location as a number of bytes from the
beginning of the record's sets of fields.

See "Data Areas" for details about the catalog record,
extension record, and set of fields pointer.

6 IGGOCLBA: IGGPGV AL

7 IGGOCLBA: IGGPGVAL

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

8 IGGOCLBA: IGGPGREC

Each catalog record (in a catalog management buffer)
is identified by a record area block (RAB) within the
CCA. The RAB contains flags that indicate whether or
not the buffer can be used to contain another record.
If the RAB's "must write" flag is on, the buffer cannot
be used for another record until its contents have been
written into the catalog.

See "Data Areas" for details about the CCA.

r
IGGOCLBA: IGGPGV AL

Each catalog control area (CCA) contains six record
area blocks. Each catalog management request can, use
a maximum of five buffers. If ,all buffers are filled and
cannot be released, the get-field-value routine sets the
CCA's"no buffer space" flag on.

t IGGOCLBA: IGGPGV AL

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

10 IGGOCLBA: IGGPGREC

The CCA'~ "not found" flag is set off before returning
to step 3 to examine the extension record's set of fields
pointers.

~ Diagram DL2. Obtain a Catalog Record Field's Value
o
.Jl --..
~
N
til
<:
til

f
6.
~ a
n
o .g
~ ;
<:
~.

!!?

S ..
I'>

~

[
~ ;.
&.
~ ::;
!
b
~.

Virtual Storage for the Caller's Program

Rll

Buffer
Usage
Flags

Extension
Record's
CI#

tCatalog
Record
Field

",

./
",

",

",
./

,/

~LI 10

11. Does the set-of-fields pointer address an extension record?
No Yes

./
",

",

,/'"
./

• Attempt to read the extension record into a catalog
management buffer.

'" 12. Is a buffer available to contain the
extension record?

Yes No 11 "No Buffer I Space" Flag
CCAPROB

13. Return to the caller.~ Return Code

r
14. Read the extension record into a catalog

management buffer. (See Diagram BCl,
"G ET -Direct Processing: Direct Retrieval.")

1 S. Locate the field in the buffer and set the field's address
and length.

- - - - ... 16. Is the field variable-length and partially contained in an
.... --------------..... extension record?

VSAM Catalog

~0

Yes

,J
18.

No ,
CCAPROB ,

17. Return to the caller.

Set the extension record's control interval num ber in
the CCA.

19. Return to the caller. CCAPROB
~ i Return Code

L

Virtual Storage for the Caller's Program

Catalog Management
Buffer

I---"';~~ Extension Record

L

::
<1>
;..
o
0-

S.
~

<1>

a o·
:I

N

-...I

r
Notes for Diagram DLl

II IGGOCLBA: IGGPLVAL

If the set of fields pointer contains the control interval
number of an extension record, the set of fields is in
that extension record.

12 IGGOCLBA: IGGPGV AL

IGGOCLBA: IGGPGREC

Each catalog record (in a catalog management buffer)
is identified by a record area block (RAB) within the
CCA. The RAB contains flags that indicate whether or
not the buffer can be used to contain another record.
If the RAB's "must write" flag is on, the buffer cannot
be used for another record until its contents have been
written into the catalog.

See "Data Areas" for details about the CCA.

IGGOCLBA: IGGPGV AL

Each catalog control area (CCA) contains six record
area blocks. Each catalog management request can use
a maximum of five buffers. If all buffers are filled and
cannot be released, the get-field-value routine sets the
CCA's "no buffer space" flag on.

13 IGGOCLBA: IGGPGV AL

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

14 IGGOCLBA: IGGPGREC

The CCA's "not found" flag is set off before returning
to step 3 to examine the extension record's set of fields
pointers.

15 IGGOCLBA: IGGPLVAL

The field's length is obtained from the CTGFL's
dictionary entry (for a fixed-length field) or the first 2
bytes of the field (length bytes of a variable-length
field). The field's address is the sum of the address of
the set of fields and the displacement in the CTGFL
(for a fixed-length field); or is first, second, etc. (as
indicated in the CTGFL) for a variable-length field.

16 IGGOCLBA: IGGPLVAL

A variable-length field might be partially contained in
an extension record. If so, the field's length is greater
than the number of bytes remaining in the record.

17 IGGOCLBA: IGGPLV AL

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r
18 IGGOCLBA: IGGPLVAL

The caller's information requirements might be
satisfied with the part of the field that is currently
available. If not, the caller (a catalog management
routine) returns to the get-field-value routine to obtain
the next part of the field from the extension record.

19 IGGOCLBA: IGGPLVAL

The caller can move that part of the field currently in
the buffer into a work area. If the rest of the field is
required, the caller can return to the get-field-value
routine to retrieve the extension record.

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r

N -00

o
til
<::
til
N
til
<::
til

8:
~
6-
~ a
(j
o
3
'8
ii
~
<:: s:
c
!:?.
til
0-

~
:>
~
'" '"
~
~

S-o
0...

< til
:> ;
b

OQ
n'

Diagram DM 1. Modify a Catalog Record Field's Value

Virtual Storage for the
Caller's Program

Rll

tCCA

..1 CCA

tCTGFL

tCatalog
Record

Addresses
of Parts of
the Catalog
Record in
the Buffer

CPES

CPE6

CPES

~

-l@

(tCurrent Set
of-Fields Pointer)

L

I. Perform derived volume-entry field processing.

"2. Obtain information about each CTGFL's field name
././ from the field-name dictionary.

CTGFL

Combination
Name of the
Set of Fields

./ ... 3. Perform the type of modificatio~requested:

vt • Add a new. set of fields to the.tecord~

I Group Code t'.

tNew Data

CPE6
(tCurrent

Set of Fields)

• Change a field w.ithin an existing set of fields

• Remove a set of fields from the reC~O'd *
.. 3

L A2

""

10. Are there more CTGFLs to process?
Yes No

J~
11. Process the next CTGFL~

L

Virtual Storage for the Caller's Program

Rll

Free·

,

L

s::
(0

So
0
P-
o
0

't;1
(0 ...
[!;.
o·
:::l

N

\0

r
Notes for Diagnun DMI

IGGOCLAV: IGGPMOD (calls IGGPXMOD
(lGGOCLBT)

For newly-created volume entries, deleted set-of-fields
pointers are inserted for the bit map set of fields to
ensure that the base volume entry (V) contains the bit
map set-of-fields pointers. This bit map set of fields is
dynamically added when the first data space set of
fields is added.

2 IGGOCLAV: IGGPMOD (calls IGGPSCNC
(lGGOCLAy)

Each CTGFL is initialized with the dictionary entry
associated with the CTGFL's field-name value.

3 IGGOCLAV: IGGPMOD (calls IGGPSFPL
(IGGOCLA V»
The field parameter list (CTGFL) contains the field's
name, type code, length, and displacement from the
beginning of the record or set of fields in the case of a
fixed-length field. For a variable-length field, contains
the field's name, type code, and sequence number. If
the field exists, it is either a header field (group code =
0) or a field within a set of fields. If the caller supplied
modifying data and test conditions, the field is being
altered. If the caller supplied modifying data and no
test conditons, a set of fields is to be added to the
record. If the caller identified a set of fields
combination field-name but didn't supply modifying
data, the set of fields is being deleted.

4 IGGOCLAV: IGGPSFPL (calls IGGPXDGO
(IGGOCLBn which in turn calls IGGPADGO
(IGGOCLA W»

5

Every new set of fields is examined by the
derived-field processing routine (lGGPXDGO) before
being passed on to the normal add field processing
routine (IGGPADGO). The derived-field processing
routine ensures that certain volume set of fields are
never added, added in a different format, or cause
dynamic addition of a different set of fields (Le., bit
map set of fields).

IGGOCLAV: IGGPAGOP

If a new set of fields pointer is built, it is put into the
catalog record at the end of its group of set-of-fields
pointers. The set-of-fields pointers are grouped by type
code with the codes in sequence number order.

If the new set of fields pointer causes the catalog
record to overflow, an extension record is obtained
from the catalog's free control intervals. All sets of

r
fields in the original record are put into the extension
record. The set-of-fields pointer's displacement value
(in the original record) is replaced with the control
interval number of the extension record. In addition, a
set-of-fields pointer is built and put into the extension
record for each set of fields in the extension record.
The set-of-fie1ds pointer in the extension record
contains the displacement from the beginning of the
record to its set of fields.

If the new set of fields pointer causes the catalog
record to overflow and the catalog record contains
only set-of-fields pointers, an~xtension record is
obtained to contain the new set-of-fields pointer. The
original record's extension field contains the control
interval number of the extension record.

6 IGGOCLAW: IGGPAGOP (calls IGGPIGOP
(lGGOCLA W»
The Modify routine activates the set of fields pointer
by setting it's "inactive" flag off.

See "Data Areas" for details about the catalog record
and set of fields pointer.

7 IGGOCLAW: IGGPADGO

See "Data Areas" for details about the set of fields
pointer.

8 IGGOCLAW: IGGPADGO (calls IGGPMVGD
(IGGOCLA W»

The new set of fields might contains fixed-length fields
and variable-length fields.

If the new set of fields causes the record to overflow,
an extension record is obtained to contain the new set
of fields.

See "Data Areas" for details about the catalog record
and its sets of fields.

9 IGGOCLAW: IGGPADGO (calls IGGPMVGO
(lGGOCLAW»

Replace the initial field values (from step 6) with the
caller-supplied values addressed by the CCA.

10 IGGOCLAV: IGGPSFPL

If there are no more CTGFLs to process, calls
IGGPPREC to write each updated catalog record into
the catalog.

11 IGGOCLAV: IGGPSFPL

r

~ Diagram DM2. Modify a Catalog Record Field's Value
o
o
[Jl

"<:
[Jl
N

'Jl
<:
[Jl

5'
Q.

" "0

" ::l
Q.

" a
(')
o
3

"0 o
::l

" ~
<:
5.'
c:: a
[Jl

S ..,
I>l

~

~
" '" '" a::
" ;.
o
Q.

< [Jl

;
b

(JQ o·

Virtual Storage for the Caller's Program

CTGFL
r--

Field Name

tCatalog b
Record

Set-of-Fields L.J3)
Sequence
Number

Addresses
of Parts of
the Catalog
Record in
the Buffer

CPES

CPE6

i
CPES
(tCurrent
Set-of-Fields
Pointer)

I I * Buffer

Catalog Record

".

}(

CPE7 (tCurrent Field)

~.

VSAM Catalog

Catalog Control
Record

Free
Catalog
Records

Change a field within a set of fields:
12. Obtain the field's length and displacement from the

beginning of the record or sequence number (for
variable-length fields), and the length and address
-of the field's updating data.

13. Is fixed-length field being modified?

Virtual Storage for the Caller's Program

Rll

Variable-Length Field

If the field's length is:

16. Shift the other fields to the left by the num ber
Reduced: }

of eliminated bytes. ~m""m~\"""\"""'\,,,aY
Increased:

Shift the other fields to the right by the num ber
of additional bytes.

18. Can the record's freespace contain the new or
updated set-of-fields' field?

No Yes

VSAM Catalog

Assign a free record as an extension to the catalog~
record.

Move the original record's data from the original
into the extension until there is enough freespace ~".......
in the original record for the expansion.

Update all set-of-field pointers that are affected
by the split.

'-'

~F

~

Free
space

Free
space

~
(>

s-
·0
0.
o ...,
o
'g

~ o·
:I

~

r
Notes for Diagram DMl

12 IGGOCLAV: IGGPSFPL (calls IGGPXLT2 (lGGOCLBn
which in turn calls IGGPALT2 (lGGOCLAX»

Every field to be updated is examined by the
derived-field processing routine (lGGPXL T2) before
being passed on to the normal update field processing
routine (IGGPALT2). The derived-field processing
routine ensures that certain volume entry set of fields
are never altered, primarily because the altered fields
do not physically exist in the catalog records.

IGGOCLAX: IGGPALT2 (calls IGGPGVAL (lGGCLBA»

The CCA's CCACPE7 field contains the field's
address. The CTGFL contains the address and length
of the data to update the field with.

13 IGGOCLAX: IGGPALT2

The CTGFL flags field (from the catalog field name
directory) specifies field type.

See "Data Areas" for details about the CTGFL.

14 IGGOCLAX: IGGPALT2

The CTGFL contains the length and address of the
updating data. The data is in the caller's work area.

15 IGGOCLAX: IGGPMV AR

The CTGFL flags field (from the catalog field name
directory) specifies field type. If the length of the data
to update the field with (in the CTGFL) isn't equal to
the field's length (in the CCA), the variable-length
field's length is either increased or decreased, causing
a corresponding reduction or increase in the catalog
record's amount of free space.

The variable-length field's length bytes are replaced
with the length of the data to update the field with (in
the CTGFL).

16 IGGocLAX: IGGPSHNK

The eliminated bytes at the end of the record are
added to the record's free space.

17 IGGOCLAX: IGGPEXPD

The additional bytes are obtained by reducing the
record's free space.

If the increased length causes the catalog record to
overflow, an extension record is obtained. The
original record's data is split so that part remains in
the original record and part is moved into the
extension record. Each associated set of fields pointer
is updated to show the new position of its set of fields.

r
19 IGGOCLAX: IGGPALT2 (calls IGGPAOCI

(lGGOCLAG»

The catalog control record (CCR) contains the
control-interval number of a free control interval.
Catalog management allocates the free control
interval to the original catalog record as an extension
record. The control-interval number of the next free
control interval is put into the CCR, and the CCR's
free control interval count is decreased by l.

20 IGGOCLAX: IGGPALT2

The set of fields' data is split so that part remains in
the original record and part is moved into the
extension record.

21 IGGOCLAX: IGGPALT2

Each set of fields pointer is updated to show the new
position of its set of fields.

r

~ Diagram DM3. Modify a Catalog Record Field's Value
o
Vl

< Vl
N
Vl
<
Vl

f
~ a
(")

I
~ e.

I
i
ac
S-
o
.0.

<
~
!

i
(')

Virtual Storage for the C~er's Program

Rll

Set-of- Field'
Address
and
Length

tUpdated
Catalog
Record

Iluffers

tExtension < M
R~cord >

VSAM Catalog -

~

Catalog
Control
Record

}<'ree
Catalog
Records

Sets of Fields

3. Delete a set of fields: X.M1

, ,_ D,,,,,,,t, th' ret-of-tiold, po;nt"_ ~

Release an extension record

~ 23. Is the deleted set of fields the only one in an
extension record?

Yes No

J~
24. Delete the extension record's control interval number

from the record that the extension record extends.

,.-----v'I25. Update the extension record to reclassify it as
a free catalog record.

Update the catalog control record to show one
more free record.

Write the updated catalog record from the buffer
into the catalog.

CCAPROB
28. Return to the caller.

~

Virtual S~orage for the Caller's Program

tE·xtension
Record
Set to 0

Catalog Record

tNext Free
Catalog
Record

~

~ a
::r o
Q..

S
o

'1:1
(>

~. g
~ ...,

r
Notes for Diagram DM3

211GGOCLAV: IGGPSFPL (calls IGGPXELl
(lGGOCLB'I) which in tum calls IGGPDELl
(lGGOCLA V»
Every set of fields to be deleted is examined by the
derived field processing routine (lGGPDEU) before
being passed on to the normal delete set of fields
processing routine (lGGPDEL2). The derived field
processing routine ensures that certain nonexistent
sets of fields are not deleted and that the bit map set of
fields is updated.

IGGOCLAV: IGGPDEL2

The set of fields pointer's "inactive" flag is; set on,
thereby deactivating it. The set of fields pointer's type
code and sequence number fields ate unchanged. The
set of fields is removed from the record and the
displacement field is set to 0, if the field is in the same
record as the set-of-fields pointer; otherwise, the
following is done:

23 IGGOCLAV: IGGPDEL2

If the extension record contains no data after the set of
fields is removed, the record is reclaimed by catalog
management as a free control interval.

2S IGGOCLAV: IGGPDEU

See "Data Areas" for details about the catalog record.

26 IGGOCLAV: IGGPDEL2

The catalog control record (CCR) contains the count
of free control intervals available to the catalog and
the control interval number of a free control interval.
All free control intervals are chained together. When a
control interval is added to the free control interval
chain, catalog management puts the CCR's free
control interval number into the new free control
interval and puts the new free control interval's
control-interval number into the CCR. The CCR's
free-control-interval count is increased by 1.

See "Data Areas" for details about the catalog record
and the extension record.

21IGGOCLAV: IGGPMOD

28

The modify routine returns to the caller (a catalog
management routine) when the catalog record field is
updated.

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r r

I
a.
o
'g

i·
~
VI

r r
Diagram EAt. Catalog Management Services Table of Contents

DEFINE

DEFINE: Create a
VSAM Catalog
or Cluster

Diagram ECI

I
.J, .J,

DEFINE AIX: DEFINE CLUSTER:
Create an Alternate Create a Cluster Index

Diagram EDI Diagram ED3

DEFINE NONVSAM:
Define a NonVSAM
Data Set

Diagram EFI

DEFINE SPACE:
Initialize a VSAM ... Data Space

Diagram EGI

.J,

DEFINE PATH:
Create a Path

Diagram EDS

LEG

~
~

@---+

=====>
~
0===:>

~

~
~

Catalog
Management
Services
Overview

Diagram EBI

termination

ALTER 1
AL TER: Modify a
Catalog Record

Diagram EHI

.J, ~
DEFINE CRA: DEFINE CATALOG:
Create a Catalog Create a VSAM
Recovery Area Catalog

Diagram EE3 Diagram EEl

)1 on the same page;
number of a process
ne page.

)1 between pages;
agram number and
)er of a process step
n.

lata gr testing of
ess step; 'H' is an

arbitrary Clesig nation.

Input to process steps and output
from process steps; 'A' is an
arbitrary designation.

Modification of data by a process
step; 'P' is an arbitrary designation.

,.

DELETE L1STCAT 1
DELETE: Remove L1STCAT:
a VSAM or NonVSAM Retrieve a Catalog
Data Set ~ Record's Contents

Diagram EJI Diagram EI I

CONVERTV

DELETE SPACE: CONVERTV:

Release All Empty Convert a volume

~ to or from mass + Data Spaces
storage

Diagram EKI Diagram EM!

DELETE CATALOG:
Delete a VSAM
Catalog ~ User's program issues

SHOWCA T macro

Diagram ELI
J~

LINK Return ,
SHOWCAT: Display
fields of a VSAM
catalog

Diagram EI2

~
o
CIl

~
~
~
~
s..
n a
(")

~
~
~
<
~.

e:.
CIl o ...
,fJ
n

»
§
til
til

I
< CIl » ;
i o·

Diagram EB 1. Catalog Management Services Overview

Virtual Storage for the Caller's Program
I

RII

t Buffer

CTGPL

Request
Type

tCTGFV

tCatalog's
DSNAME
'C<

./
./

"

./

./
./

./

~

to Create a
Catalog or
Initialize
a Data Space

Catalog Management Buffer

Catalog Record

~

User issues one of the Access
Method Services commands:

DEFINE, ALTER, DELETE,
~ L LISTCAT, or CONVERTV

~ 1. Check the caller's authorization to issue the command.
/! (See Diagram DDI, "Check the Password.")

@'" 2. Did the caller issue a DEFINE command?
./ /f Yes No // l~

Create a VSAM Master Catalog

3. Does the caller want to create the VSAM master
catalog?

4.

5.

Create a VSAM Data Space

6. Does the caller want to create a VSAM data space?

OS/VS System
Catalog

CVOL Entry

t VSAM Master
Catalog

VSAM-Owned
Direct-Access
Volume

Data Space

VSAM Master
Catalog

Freespace

VSAM-Owned
Direct·Access
Volume
~

7. Create a VSAM data space. (See Diagram EGI ,.~
\! : > "DEFINE SPACE: Initialize a VSAM Data

Initalized
Data Space

Space. ")
CCAPROB Freespace

Return to the caller. ~ Return Code I

~

VSAM Catalog
that Owns the
Direct·Access
Volume

Updated
Volume Record
that Describes
the New VSAM
Data Space

'-

~
n ...
::r
&.
a.
0
'g
; g.
~

r
Notes for Diagram EDt
Catalog Management Services is a group of VSAM
catalog management modules that respond to Access
Method Services commands. The Catalog Management
Services Driver routine, IGGPCDVR (IGGOCLAT), calls
other Catalog Management Services routines as described
in the table below.

See "Data Areas" for details about the ACB.

See "Diagnostic Aids" for details about catalog
management ret,urn codes and error codes.

DEFINE CLUSTER, AIX, PATH,
DEFINE MASTERCATALOG,
and DEFINE USERCATALOG

DEFINECRA

DEFINE NONVSAM

DEFINE SPACE

ALTER

LISTCAT

DELETE TYPE (CLUSTER, AIX, PATH) and
DELETE TYPE (NONVSAM)

DELETE TYPE (SPACE)

DELETE TYPE (MASTERCAT ALOG) and
DELETE TYPE (USERCATALOG)

CONVERTV

r r

IGGOCLAT Related Method of
c:aIIs: Operation Diagram:

IGGOCLAL DiagramECI

IGGOCLB4 DiagramEE3

IGGOCLBH Diagram EFI

IGGOCLAQ Diagram EGI

IGGOCLBD Diagram EHI

IGGOCLBQ Diagram Ell

IGGOCLBG DiagramEJI

IGGOCLBL DiagramEKI

IGGOCLAF Diagram ELl

IGGOCLBZ DiagramEMI

~ Diagram EB2. Catalog Management Services Overview
00

o
til
........
<:
R5
til
<:
til

8:
~

"0
~

6.
~ a
(")
o

I
<:
~.

!.
til
0" ...
'" ~
>
('l
('l
~

'" '" ::
[
<
til

~ --
i.
('l

Create a VSAM User Catalog
Virtual Storage for the Caller's Program 9. Does the caller want to create a VSAM user catalog?
i

tCTGPL

Return
Code

,/
./

,/ ___ L __

,/

,/
,/

,/

~

No Yes • 10. Search the VSAM master catalog to ensure that
.the new user catalog's DSNAME doesn't
duplicate an existing DSNAME. (See Diagram
DCI, "SEARCH: Retrieve the Base Catalog
Record. ")

II. Did the search routine set the no-record-found
error code?

Yes No

I f' CCAPROB
.. 12. Return to the caller. ~ Error Code

VSAM Master
Catalog

1=:=====::::::> 13. Build the VSAM user catalog. (See Diagram EC I, >1
~ "DEFINE: Create a VSAM Catalog or Cluster.")

User-Catalog
Catalog
Record tCatalog's ~ P

DSNAME 14. Return to the caller.:z:z zI)...,CCA ROB

\
ACB \ 1.9

Identifies '('-
the Catalog \
to be """" ____ _

Searched "

\

\
\

\
\
\

\
\

\
\

41---------+ ~ Return Code

Create a Data Set ctJ
IS.

----~
Search the VSAM catalog specified in the caller's
CTGFL to ensure that the new data set's DSNAME
doesn't duplicate an existing DSNAME. (See
Diagram DCI, "SEARCH: Retrieve the Base
Catalog Record.")

'----

16. Did the search routine set the no-record-found
error code?

Yes No

I t CCAPROB
• 17. Return to the caller. pZz:z:oea.I Error Code

18. Process the DEFINE command to create:

• A cluster (a VSAM data set, with or without Cluster Record:
an index). (See Diagram ECI, "DEFINE: Create Describes the

19,

a VSAM Catalog Cluster, AI X, or Path.") New VSAM

• A nonVSAM data set. (See Diagram EF I, _C_lu_s_te_r __ _

"DEFINE NONVSAM: Define a NonVSAM
Data Set in a VSAM Catalog.")

• A catalog recovery area. (See Diagram EE3,
"DEFINE CRA: Create a Catalog Recovery
Area.") CCAPROB

Return to caller. "ZZZzzzz:e>t Return Code

~

cord: Describes
the New Non
VSAM Data
Set

~ lv

VSAM-Owned

Data Space

VSAM User
Catalog

Freespace

Space
Allocated
to the New
VSAM Cluster

NonVSAM
Direct-Access
Volume
Identified
by Caller's
CTGFV

Space Allocated
to NonVSAM
Data Set

Freespace

lv

s::
til

g-
o.
S
O
~
~. o
t:I

~

r r

Diagram EB3. Catalog Management Services Overview

Virtual Storage for the Caller's Program
Process an ALTER, DELETE, LISTCAT, SHOWCAT, or
CONVERTV Request

- It 20. Search the VSAM catalog specified in the caller's

Request
Type

tCTGFV

Catalog
Record's
DSNAME

Catalog's
DSNAME

ACB

Identifies the
Catalog that
Contains the
Record to be
Listed, Altered,
or Deleted

CTGFVs

Data Needed to
Alter or Delete
Catalog
Information

Catalog Management Buffer

//

/ /
- / / r--/-

/
/

,/ /
,../ /

/
/

I

jI

/
/

/

Catalog Record to be
Listed, Altered, or Deleted

l' CTGPL and retrieve the catalog record identified
by the caller-supplied DSNAME. (See Diagram
DC I, "SEARCH: Retrieve the Base Catalog Record"

21. Process the command to:

• Modify a catalog record. (See Diagram EHI,
"ALTER: Modify a Catalog Record.")

• Delete a cluster, AIX, path, or nonVSAM
data set. (See Diagram EJ I, "DELETE:
Remove a VSAM or NonVSAM Data Set.")

• Delete all empty data spaces on a volume.
(See Diagram EK I, "DELETE SPACE:
Release All of the Empty VSAM Data
Spaces on a Volume.")

• Delete a VSAM user or master catalog. (See
Diagram ELI, "DELETE CATALOG: Release
a VSAM Catalog.")

• Retrieve information from a catalog. (See
Diagram Ell, "LISTCAT: Retrieve a
Catalog Record's Con ten ts. ")

• Display selected fields of the VSAM catalog. See
Diagram E12, "SHOWCAT: Display Fields of a
VSAM Catalog.")

• Convert the contents of a direct-access storage
volume to or from a mass storage volume. (See
Diagram EM 1, "CONVERTV: Convert a Volume
to or from Mass Storage. ")

CCAPROB
22. Return to the caller. ~Re!urn Code

VSAM Catalog
Identified by t~e
CPL's Catalog
DSNAME Value -

Modified
Catalog
Record

Free Catalog
Record

VSAM-Owned

Freespace

r

Virtual Storage for the Caller's Program

CTGPL Work Area

Catalog Data
to Satisfy the
Caller's Request

N

~
o
til

~
til

~

~
~
:l
P
O a
(')
o
3
'8
:l o
~
< s:
c
E..
til o ...
~
~
~
~

3:
o
;.
8.
< til
~
;
!;'

(JQ

(i'

~

Diagram ECI. DEFINE: Create a VSAM Catalog,Cluster, AIX or Path

Virtual Storage for the Coller', Program
I

RII
1. Verify that, if the VSAM master catalog exists, this

.;'..::r" request does not attempt to create another one.

/' /' / / 2. Verify that each of the caller's CTGFVs:

/'./' / /' • Is within the caller~program's region, and

@ / • Contains all the information needed to build the

OS/VS Nucleu,

;-.~... ",/
See the Data
Areas Section
for a List of
the CTGFVs
Needed to
Create a VSAM
Object or
Catalog

/

/
/

~

/ / catalog or VSAM object. Creation Date CTGFV

3. Determine the creation date.' :>I Creation Date I
'4. Did the caller issue a DEFINE catalog request?

Ves

t Newly-Created
VSAM Catalog

S. Build the VSAM catalog. (See Diagram EEl, ~ J
"DEFINE CATALOG: Create a VSAM Catalog.")

CCAPROB

6. Return to the caller. e I Return Code I
Did the caller issue a DEFINE PATH
request?

No Yes

.. VSAM Path
8. Build the VSAM path (See

Diagram EDS "DEFINE PATH: II Newly-Created

,. '"om '" ""'" II"""" """I t J Create a Path.") CCAPROB : .

10. Did the caller issue a DEFINE AIX
request?

No Ves I' Newly-Created
VSAM AI~

I I. Build the VSAM AIX (See Diagram
ED2: "D~FINE AIX: Create an Alternate t. J
Index.") CCAPROB I :

12. Return to caller e ~Reiurn Codel

13. Build the VSAM cluster (See Diagram ED I:
DEFINE CLUSTER: "Create a Cluster.")

14. Return to caller : I Return Code]

'-'

3:
R ...
::r
0
Q.

0 -0
'i
!. g
N

r r
Notes for Diagram Eel 3 IGGOCLAL: IGGPDEDE

When the user issues the Access Method Services
DEFINE command to create a catalog (either user or
master) or a VSAM object, the catalog management
services DEFINE: Initial Processing modules ensure that
the caller provided all the information necessary to create
a catalog or VSAM object.

5 IGGOCLAN: IGGPDSCB (calls IGGPDCDA
(lGGOCLAP) and IGGPDEFC (IGGOCLAS»

8 IGGOCLAL: IGGPDDEP

10 IGGOCLAL: IGGPDCWC

13 IGGOCLAN: IGGPDSCB (calls IGGPDRDA
(lGGOCLAN) and IGGPDBDI (IGGOCLAJ» 1 IGGOCLAL: IGGPDEF

2 IGGOCLAL: IGGPDEDE

CTGFVs are checkep by routines (internal
procedures) in the IGGOCLAL and IGGOCLAN
modules, as shown in the table below.

CTGFV

Cluster CTGFV

AIXCTGFV

Caller's work area

Data CTGFV structure

Index CTGFV structure

Data dsname CTGFV

Index dsname CTGFV

PathCTGFV

Data space CTGFV

Catalog's space CTGFV

Key range CTGFV

Space parameter CTGFLs

Buffer size CTGFLs

Average record size CTGFLs

Module Procedure

IGGOCLAL: IGGPDCWC

IGGOCLAL: IGGPDCWC

IGGOCLAL: IGGPDCWC

IGGOCLAL: IGGPDFSC

IGGOCLAL: IGGPDFSC

IGGOCLAL: IGGPDDNP

IGGOCLAL: IGGPDDNP

IGGOCLAL: IGGPDDEP

IGGOCLAL: IGGPDBVC

IGGOCLAL: IGGPDCSF

IGGOCLAL: IGGPDRPG

IGGOCLAN: IGGPDSPF

IGGOCLAN: IGGPDBSF

IGGOCLAN: IGGPDALR

r

N
N

o
CIl
<:
CIl
N
CIl
<:
CIl

[
~

'&
~ a
(j
o
3
'0 o ::s
~ ::s r:-
<:
~.

e:.
CIl
'0

~
~
~

~

~
~

S-o
0-

'<
CIl
:> ;
t""' o

at>
n'

Diagram EDt. DEFINE CLUSTER: Create a Cluster

~ECI 1. Build the cluster's AMDSB set of fields.
13 Catalog Management rI} 2. Compute the amount of direct-access space required ~work Area

Virtual Storage for the Caller's Program for the cluster
, , B' AMDSB Set-of-Fields

~ ,pedflod in tho ,.II,,", ePl .nd ",;on thorn to tho 01"",,_ AmO""' of 'PO"

CCA

tCTGPL

tCatalog's
ACB

tBuffer

CTGFLs

CTGFLs
Describes Data

~ Set and Index
Volume Usage
and Serial
Numbers

Catalog Management Buffers jl)
"'fl
/~

Free Catalog Record #1

Free Catalog Record #2

Free Catalog Record #3 '"

~

C 3. Obtain contiguous free catalog records from the catalog

,. '" '" Needed for the Cluster

I Build the cluster catalog record

4. Initialize the cluster catalog record's header fields.

S. Build an association set of fields to point to the data D !=::::::==~~
set catalog record and, if the cluster is key-SeqUenjJed, I-----------~

Catalog Management Buffers

Cluster Catalog Record

the index catalog record. Data Set Catalog Record

6. Build the cluster's password set of fields. _ r1 Index Catalog Record

7. Compute the cluster catalog record's size.

®-1" 8. Write the cluster catalog record into the catalog.

®-~

~~

Do steps 9 through 23 to:

• Build the data set catalog record to describe the data
set and its assigned space.

• Build the index catalog record to describe the data

®=> 9.

set's index and its assigned space, if the cluster~'s J
key-sequenced.

Initialize the catalog record's header fields.

Obtain direct-access space.to satisfy the data set's or
index's space allocation requirements

Can the data set or index share its space with other
VSAM data sets and indexes?

No

f

VSAM Catalog
Identified by the
Caller's CTGPL -

New Cluster
Catalog Record

V>SAM-Owned
Direct-Access
Volume

11. Allocate a VSAM data space to the data set or >I
I index. (See Diagram EG I , ~'DEFINE SPACE: Space Allocated

to the Data Set
or Index • Initialize a VSAM Data Space.")

Allocate space to the data set or index from an
existing VSAM data space. (See Diagram DJ I,
"SUBALLOCATE: Obtain Additional Space from
a Nonunique VSAM Data Space.")

l, ~

== n ...
::r
0
c-
o
0
'g ...
~.
0
::I
N

r
Notes for Diagram EDt

This figure describes the processes performed by catalog
management services routines when the user issues the
Access Method Services DEFINE CLUSTER command
in the form:

DEFINE
CLUSTER
I CATALOG (catname/password) I
(parameterlist)

where:

catname is the name of the catalog that will contain
the cluster, data, and index catalog records that
describe the user's data set.

• password is the catalog's master, control interval, or
update password, if the catalog is protected by
passwords.

• parameterlist is a list of optional and required
parameters that define the cluster's characteristics.

See OS/VS2 SVS Independent Component: Access
Method Services for details about the DEFINE command
parameters.

1 IGGOCLAN: IGGPDRDA

The AMDSB contains the cluster's statistics and fixed
characteristics. Each time the cluster is opened, the
AMDSB is retrieved from the data catalog record.
When the cluster is closed, the AMDSB is updated and
rewritten into the data catalog record.

See "Data Areas" for details about the AMDSB.

2 IGGOCLAN: IGGPDSPC

3

The field vector table contains addresses of buffer-size
and record-length field parameter lists (CTGFLs).
This data is used to determine the data set's
control-interval and control-area size. If the data set is
key-sequenced, 'ther buffer-size and record-length
CTGFLs determ.h .. __ "_ index's control-interval and
control-area size. If the key-sequenced data set is
divided into key ranges, the size of each key range is
determined.

IGGOCLAN: IGGPDCCE

A user's data set is described by a cluster catalog
record, a data catalog record, and, if the data set is
key-sequenced, an index catalog record .

See "Data Areas" for details about the catalog record.

r
8 IGGOCLAN: IGGPDCCE

The DEFINE routine issues an ADDREC macro
instruction to write the cluster record into the catalog.

9 IGGOCLAJ: IGGPDBDI

See "Data Areas" for details about the data catalog
record.

10 IGGOCLAJ: IGGPDSPO

11 IGGOCLAJ: IGGPDSPO (calls IGGPDEFS
(IGGOCLAQ»

A data space group set of fields is added to the volume
catalog record, and the data set's name is added to the
volume catalog record's data set directory.

See "Data Areas" for details about the volume catalog
record, the data space group set of fields, and its data
set directory entry set of fields.

12 IGGOCLAJ: IGGPDSPO (calls IGGPSALL
(IGGOCLAR»

The data set's name is added to the volume catalog
record's data set directory et..ry set of fields, and the
volume catalog record's data space group set of fields
is updated to show the cylinders and tracks allocated
to the new data set or index.

r

N
o
Vl
........
<:
Vl
N

~
Vl

~
'g
6-
n a
(")

~ = n

~
<:
~.

!.
Vl

~
~
>
~
'" '"
== !l
::r
&.
<
~
~
b'

OQ o·

Diagram ED2. DEFINE CLUSTER: Create a Cluster
Virtual Storage for the Caller's Program

Low and High CCHH
Values for Each Extent V -"""
Allocated to t he Data
Set, Index, or Data
Set's Key Range

Assign space (continued)

Build an extent descriptor that describes each extent
allocated to the data set or index.

If the data set is divided into key ranges, assign spac
to each of the data set's key ranges.

Assign candidate volumes to the data set or index.

Virtual Storage for the Caller's Program

Extent
DeSCriptors

Volume Information
Sets of Fields

Extent
Descri ptors
(From Steps 13 & 14)

ct. 1 (See Diagram DJ I, "SUBALLOCATE" - Assign a
• Candidate Volume to the Object.)

"'--____ C Build a volume information set of fields to describe:

Volume Information
Sets of Fields
(From Steps 16, 17,
and 18)

CTGFLs

Catalog Management Buffers , ,
Data Set Catalog Record

Index Catalog Record

\."

All extents allocated to the data set or index on each
volume.

All extents allocated to each of the data set's key
ranges on each volume.

18. Each of the data set's or index's candidate
volumes.

Is the "sequence set with data" option specified?
Yes • ~~==.1=~>20. Assign part of each of the data set's extents

I ... to the sequence set.

21. Put each volume information set of fields into the data
set or index catalog record. (See Diagram OM!,
"Modify a Catalog Record Field's Value.")

Catalog Management Buffers

")1 Updated Data Set Catalog Record

Updated Index Catalog Record

VSAM Catalog
Iden tified by the
Caller's CTGPL

22. Write the data set or index catalog record into the~ __ ~ I
catalog. ~ ~ New Data Set

Catalog Record
23. Free the virtual storage of the work areas obtained by

the Define routine.
Write SMF record type 63

24. Does the OS/VS system include the system
management facility (SMF)?

No Yes

t
25. Write SMF record type 63 - Cluster Cataloged.

CCAPROB
26. Return to the caller. ~ Return Code

lv,

New Index
Catalog Record

SMF Data Set

Record Type 63

'-'

3:

[
a
o
'g

I·
N
1M
UI

r
Notes for Diagram ED2

13 IGGOCLAJ: IGGPDSEX

15 IGGOCLAJ: IGGPDCNV

A candidate volume is available to contain part of the
cluster if more space is needed later. None of the
candidate volume's space is allocated to the data set or
index when the cluster is created.

16 IGGOCLAK: IGGPDBVO

Each volume that contains a part of the data set or
index is described by a volume information set of
fields within the data set qr index catalog record.

See "Data Areas" for details about the data catalog
record, the index catalog record, and the volume
information set of fields.

17 IGGOCLAK: IGGPDRNG

If the data set is divided into key ranges, each key
range's space on a volume is described in a separate
volume information set of fields. If the key range's
space is on more than one volume,·each volume that
contains part of the key range's space is described is a
separate volume information set of fields.

18 IGGOCLAK: IGGPDBCV

20 IGGOCLAK: IGGPDSSP

If the "sequence set with data" option is specified, part
of the data set's space is allocated to the index for
sequence set records. The low and high CCHH values
in the index record's volume information set of fields
are those of the extent obtained for the data set. The
low and high RBA values are for the sequence set and
are relative to the index addresses.

21IGGOCLAK: IGGPDMOP

22 IGGOCLAK: IGGPDMOP

A catalog management routine writes the completed
data set or index catalog record into the VSAM
catalog and frees the catalog management buffer that
contains the record.

23 IGGOCLA8: IGGPDFRS

25 IGGOCLAJ: IGGPDBDI (calls IGGPSMFA
(IGGOCLBV»

See OS/VS System Management Facilities (SMF) for
details of SMF record type 63-VSAM Data Set
Cataloged. Record type 63 is written after a VSAM
cluster or catalog is defined and whenever the
definition is altered.

('

26 See "Diagnostic Aids" for details about catalog
management return codes and error codes.

('

~
er-
o
til
<:
til
N
til
<:
til

f
~ a
Q

i
~
<:
~.

e:.
til

Q
~

i
~

:::
[
< til ;
i
n

Diagram ED3. DEFINE AIX: Create an Alternate Index

~
theAIX's AMDSB set of fields. ,....---------, ~~1. Virtual Storage for the Caller's Program

, , B

Catalog Management
Get base cluster record, verify password, and build ~work Area

AMDSB Set-of-Fields

CCA

tCTGPL

tCatalog's
ACB

tBuffer

---CTGFLs C

Describes Data
Set and Index
Space
Requirements

Describes Data
Set and Index
Volume Usage
and Serial
Numbers

Catalog Management Buffers ,(i)
Free Catalog Record #1 ,(ij)
Free Catalog Record #2 ,{jj)
Free Catalog Record #3

~

~2. Compute the amount of direct-access space required ~I-________ -!
for the AIX. . Amount of Space
Obtain contiguous free catalog records from the Needed for the Cluster
catalog specified in the caller's CTGPI, assign them
to the AIX, and build an association set of fields in ~
the cluster record.

Build the AIX catalog record

4. Initialize the AIX catalog record's header fields.

S. Build an association set of fields to point to the data
set catalog record, the index catalog record, and the
related cluster catalog record.

6. Build the AIX's password set of fields.

7. Compute the AIX catalog record's size.

8. Write the AIX catalog record into the catalog.

Do steps 9 through 23 to:

@-+. Build the data set catalog record to describe the data
set and its assigned space.

®- ~. Build the index catalog record to describe the data
set's index and its.assigned space.

~ 9. Initialize the catalog record's header fields.~0
Obtain direct-access space to satisfy the data set's or
index's space allocation requirements

10. Can the data set or index share its space with other
VSAM data sets and indexes?

'"

Allocate a VSAM data space to the data set
or index. (See Diagram EG l, "DEFINE
SPACE: Initialize a VSAM Data Space.")

Allocate space to the data set or index from an
existing VSAM data space. (See Diagram DJI,
"Suballocate: Obtain Additional Space from a
Nonunique VSAM Data Space.")

~

Catalog Management Buffers

AIX Catalog Record

Data Set Catalog Record

Index Catalog Record

VSAM-Owned
Direct-Access
Volume

~

~
::r
&.
fa.

~
i·
to.) ...
--.I

r
Notes for Diagram ED3

This figure describes the processes performed by catalog
management services routines when the user issues the
Access Method Services DEFINE AIX command in the
form:

DEFINE
AIX
(parameterlist)
[CAT ALOG(catname/password)]

where:

catname is the name of the catalog that will contain
the AIX, data set, and index catalog records that
describe the user's data set.

• password is the catalog's master, control interval, or
update password, if the catalog is protected by
passwords.

• parameterlist is a list of optional and required
parameters that define the AIX's chacteristics.

See OS/VS2 SVS Independent Component: Access
Method Services for details about the DEFINE command
parameters.

1 IGGOCLAN: IGGPDRDA

The AMDSB contains the cluster's statistics and fixed
characteristics. The AMDSB set of fields is in the Data
catalog record (for an entry-sequenced data set) and in
the Data and Index catalog records (for a
key-sequenced data set). Each time the cluster is
opened, the AMDSB is retrieved from the data set
catalog record. When the cluster is closed, the
AMDSB is updated and rewritten into the data set
catalog record.

2 IGGOCLAN: IGGPDSPC

The field vector table (CTGFY) contains addresses of
buffer-size and record-length field parameter lists
(CTGFLs). This data is used to detennine the data
set's control-interval and control-area size. If the data
set is key-sequenced, other buffer-size and
record-length CTGFLs detennine the index's
control-interval and control-area size. If the
key-sequenced data set is divided into key ranges, the
size of each key range is detennined.

IGGOCLBX

IGGOCLBX detennines the amount of secondary
storage needed. For Pagespaces, IGGOCLBX
calculates this space using track overflow where
appropriate.

r
IGGOCLBY: IGGPDRSP

IGGPDRSP is called to calculate the space
parameters.

3 IGGOCLAG: IGGPAOCI
IGGOCLB9: IGGPMODC

IGGPAOCI is called to obtain three contiguous
catalog control intervals to contain the AI X, data set,
and index catalog records.

8 IGGOCLAN: IGGPDCCE

The DEFINE routine issues an ADDREC macro
instruction to write the AIX record into the catalog.

9 IGGOCLAJ: IGGPDBDI

10 IGGOCLAJ: IGGPDSPO

11 IGGOCLAJ: IGGPDSPO (calls IGGPDEFS
(IGGOCLAQ»

A Data Space Group set of fields is added to the
volume catalog record, and the data set's name is
added to the volume catalog record's data set
directory.

12 IGGOCLAJ: IGGPDSPO (calls IGGPSALL
(IGGOCLAR»

The data set's name is added to the volume catalog
record's Data Set Directory Entry set of fields, and the
volume catalog record's Data Space Group set of
fields is updated to show the cylinders and tracks
allocated to the new data set or index.

For additional infonnation about topics related to
DEFINE AIX processing, see:

"Data Areas."

Catalog record description and fonnat
Data set catalog record description and fonnat
Volume catalog record description and fonnat
Data set group set of fields description
Data set directory entry set of fields descrption
Access Method data set statistics block (AMDSB)
description and fonnat

r

N ...
00

~
<
~
CIl
<:
CIl

t a
Q
~
~
?
<:
~.

I!!.
CIl o
i
i
til
til

3:
()

;.
&.
< CIl

> ;
f
(i'

Diagram ED4. DEFINE AIX: Create an Alternate Index

'Virtual Storage for the Caller's Program

l.

Low ami High CCHH
Valu~s for Each Ext~nt
Allocat~d 10 Ihe Data
Sel. Index. or Dala
Sel's K~y Rang~

Exlenl
()~,criplors

(from sleps IJ & 14)

Volume Informalion
Sels of Fields
(from sleps 16. 17.
and 18)

CTGFLs

Describes Dala Sel
and Index Volume
Usage and Serial
Numhers

Catalog Management Buffers
i

Dala Sel Catalog R~cord

Index Calalog Record

Assign Space (continued)

Build an extent descriptor that describes eadl
extent allOl:ated to the data set or index.

If the data set is divided into key ranges. assign
space to each of the data set's key ranges.

Assign candidate volumes to the data set or cI: I index. (See Diagram DJ I, "Suballocate:
.. Assign a Candidate Volume to the Object. ")

C Build a Volume Information Set of Fields to Describe:

All extents allocated to the data set or index on
each volume.

All extents allocated to each of the data set's
key ranges on each volume.

18. Each of the data set \ or index's candidate \....- 1"'"
volumes.

Is the "sequence set with data" option specified'!
Yes .. ; I :> 20. Assign part of each of the data set's

extents to the sequence set.

Put each volume information set of fields into
the data set or index catalog record. (See
Diagram OM I, "Modify the Catalog Record.")

Virtual Storage for the Caller's Program

Work Area

- Exlent @:> ()~,criptor'
~H Volume Informalion
~ Sets of Fields

Catalog Management Buffers

,)I Updated Data Sel Catalog Record

Updated Index Catalog Record

OS/VS2 Catalog
Identified hy the
Caller', CTGPL
~

Write the data set or index catalog record into C d
the catalog. c:::::s::::=
Free the virtual storage of the work areas
ohtained hy the DEFINE routine.

Write SMF Record Type 63

24. Docs the OS/VS system indude the system
management facility (SMF)'?

No Ves ..
25. Write SMF record type 63 --Cluster

Cataloged. CCAPROB

26. Return to the caller. ~ I
Return Code

L

SMF Dala Set

~

== n

[
S
O
~
~.
g
~
10

r
Notes for Diagram ED4

13 IGGOCLAJ: IGGPDSEX

14 IGGOCLAJ: IGGPDSPO

Each key range is assigend physical space and space
al~ion continues until all key ranges have been
assigne(fipaee.

15 IGGOCLBO: IGGPDCNV

A candidate volume is available to contain part of the
cluster if more space is needed later. None of the
candidate volume's space is allocated to the data set or
index when the AIX is created.

16 IGGOCLAK: IGGPDBVO

Each volume that contains a part of the data set or
index is described by a volume information set of
fields within the data set or index catalog record.

17 IGGOCLAK: IGGPDRNG

If the data set is divided into key ranges, each key
range's space on a volume is described in a separate
volume information set of fields. If the key range's
space is on more than one volume, each volume that
contains part of the key range's space is described in a
separate volume information set of fields.

18 IGGOCLAK: IGGPDBCV

IGGPDBCV builds a volume information set of fields
for each candidate volume of the data set.

20 IGGOCLAK: IGGPDSSP

If the "sequence set with data" option is specified,
part of the data set's space is allocated to the index for
sequence set records. The low and high CCHH values
in the index record's volume information set of fields
are those of the extent obtained for the data set. The
low and high RBA values are for the sequence set and
are relatie to the index addresses.

21 IGGOCLAK: IGGPDMOP

IGGPDMOP calls IGGPMOD to add each volume
information set of fields to the record.

22 IGGOCLAI: IGGPDMOP

A catalog management routine writes the completed
data set or index catalog record into the VSAM
catalog and frees the catalog management buffer that
contains the record.

23 IGGOCLA8: IGGPDFRS

IGGPDFRS frees all unneeded storage resources.

r
25 IGGOCLAJ: IGGPDBDI {calls IGGPSMFA

(lGGOCLBV»

See OS/VS System Management Facilities (SMF) for
details of SMF record type 63-VSAM Data Set
Cataloged. Record type 63 is written after a VSAM
AIX is defined and whenever the definition is altered.

26 For additional information about topics related to
DEFINE AIX processing, see:

"Data Areas."

Data set catalog record description and format
Index catalog record description and format
Volume information set of fields description

"Diagnostic Aids."

Catalog management return codes

r

* o
~
<::
en
N

~
en

&:
(1)

~

~
a
(")

3
'0
o
~
~
<::
~.

!.
en
0'

i
:> n
~
'" '" s::
a
::r
8-
< CIl
:> ;
b

O<l
ii'

Diagram ED5. DEFINE PATH: Create a Path

Virtual Storage for Caller's Program

RJI

"...,
"...,

"...,

CTGFV

tCTGFL

tCTGFVNAM

tCTGFVANOI ~

Ca talog Managemen t Buffers

Free Catalog Record

\.,

/" .,. /"

T
Get base cluster or AIX record and verify master
password.

Obtain Free catalog record from the catalog
specified in the CTGPL and assign it to the path.

Build the Path Record

0- -r 3. Initialize the path record header
fields.

4. Build the association sets of fields.

S. Write the path record into the catalog. :>
6. Write SMF record type 63. =====C;;:;C:;:A;P;;:;R:;:;O;;;B===::::-=::-

7. Return to the caller. ~~ Return Code I

(,

Catalog Management Buffers

Path Catalog Record

Updated Cluster or AIX Record

Catalog Identified
by CTGPL

l,

a::
~

E>-o
P-
o ...
0
'g ..
g.
I:'
N
~

r
Notes for Diagram ED5

This figure describes the processes performed by the
catalog management services routines when the user
issues the Access Method Services DEFINE PATH
command in the form:

DEFINE PATH (NAME(name)
PATHENTRY(entryname/ password)
(parameterlist))

where:

• name specifies the name to be given to the alternate
index/base cluster pair (i.e., the path).

• entry name specifies the name of the alternate index or
cluster which is to be considered as the entry to the
path.

• password specifies the master-level password.

• parameter/ist is a list of optional and required
parameters that define the path's characteristics.

See OS/VS2 SVS Independent Component: Access
Method Services for details about the DEFINE command.

1 IGGOCLB9: IGGPPRPW

2 IGGOCLAG: IGGPAOCI

IGGPAOCI is called to obtain one catalog control
interval to contain the path record.

3 IGGOCLB9: IGGPBA WP

4 IGGOCLB9: IGGPBA WP and IGGPBAMC

s

6

Builds an association set of fields to point to the
cluster and index records and, if the cluster is
key-sequenced, the index record. If the path is being
built over the AIX, then the pointers to the AIX, the
AIX data, and the AIX index records are also
included. An association set of fields is also built in the
cluster or AIX record to point to the path record.

IGGOCLB9: IGGPBAWP

The DEFINE routine issues a modify with a put/add
option to insert all the association sets of fields into
the path record and to write the record into the
catalog. These association sets of fields had been
extracted previously from the cluster and the AIX
records, if the path'is being built over an AIX.

IGGOCLBV: IGGPSMFA

Record type 63 is written after a VSAM path is
defined.

r r

~
o

~
N
en
< en
S
0-
(>

~
&.
(>

:a
()
o

~ :s
(>

~
<
~.

~
en
8"
;J
"" (>

> o o
(>
(Il
(Il

3::
(>
:::r
o
0-

< en
> ;
b
"" n'

~

Diagram EEl. DEFINE CATALOG: Create a VSAM Catalog
Virtual Storage for the Caller's Program

Work Area

Extent
Descriptors
(From Steps
12and13)

Catalog Management Buffers

User-Catalog Catalog Record

CI#O
Through
CI#8

CI#2

CI#9

CI#[O
-[3

Catalog's
Self-Describing
Catalog Records

Catalog's Cluster
Catalog Record

Volume Catalog Record

Space Map Set of Fields
for the Volume

Catalog Management
Work Area ~1. Build the·catalog's AMDSB. : ~

..,.2. Compute the amount of direct-access space required for:::::::=:- ~ ==::::::::: 1----------1 I' the catalog.
I Build a pointer to the catalog

I i 3. Is the request to build the VSAM master catalog?

11.

12.
No ,
13.

OS/VS System
Catalog

Build a catalog volume (CVOL) entry to describp~
the VSAM master catalog and write it into the
OS/VS system catalog.

Build a user-catalog catalog record and
write it into the VSAM master catalog.

Initialize the cluster record's header fields.
Build an association set of fields to point to the
catalog's data set catalog record (CI#O) and index
catalog record (CI#I).
Build the catalog's password set of fields.
Compute the cluster record's size.

Ves

Low and High CCHH Val
ues for Each Extent Allo
cated to t he Data Space

VSAM-Owned
Direct-Access Volume

--- -1

}VTOC

.. _ ;~~ ~~~~~~e
S" V;""m EE3, "DHINE CR~ ~ ~ecordS Available I Catalog's

High Key·
range Data
Records

Create a Catalog Recovery Area. 7 Catalog's to Describe VSAM Index 1-1----1
Assign part of the catalog's space to each part of Self- .. lusters Volumes Records

Desert btng , •
the catalog. ...1i) R d nd NonVSAM

~~ I ecor s Data Sets

Build a volume information set of fields to describe
each part's assigned space (from step 13).

True-Name
Records

~. ~

~
[
a
~
~.
0
1:1

~

r
Notes for Diagram EEl

This figure describes the processes performed by the
catalog management services routines when the user
issues the Access Method Services DEFINE
MASTERCAT ALOG or DEFINE USER CAT ALOG
command in the form:

DEFINE MASTERCATALOG

or

DEFINE USERCATALOG
[CATALOG (catname/password)]
(parameterlist)

where:

• catname is the name of the VSAM master catalog,
which will contain the catalog record that describes
the VSAM user catalog.

• password is the VSAM master catalog's master,
control interval, or update password, if the master
catalog is protected by passwords.

• parameter/ist fields are described in OS/VS2 SVS
Independent Component: Access Method Services.

1 IGGOCLAP: IGGPDCDA

The AMDSB contains the catalog's statistics and fixed
characteristics. Each time the catalog is opened, the
AMDSB is retrieved from the catalog's data set
catalog record (control interval number 0). When the
catalog is closed, the AMDSB is updated and rewritten
into the data set catalog record.

See "Data Areas" for details about the AMDSB.

l IGGOCLAP: IGGPDCSP

4

S

The field vector table contains addresses of buffer-size
and record-length CTGFLs. This data is used to
determine the catalog's control-interval and
control-area size, and the amount of space required
for the catalog.

IGGOCLAP: IGGPDCPC

The OS/VS system catalog contains a data set entry
that describes the VSAM master catalog as a private
catalog to the OS/VS system catalog.

IGGOCLAP: IGGPDCPC

See "Data Areas" for details about the user-catalog
catalog record.

r
7 IGGOCLAN: IGGPDCCE

The cluster catalog record contains an
associated-data-set set of fields to locate the catalog's
data set catalog record (control interval number 0) and
an associated-index set of fields to locate the catalog's
index catalog record (control interval number 1).

See "Data Areas" for details about the cluster catalog
record.

10 IGGOCLAS: IGGPDCSP (calls IGGPDEFS
(IGGOCLAQ»

The VSAM catalog is always built in a data space that
can contain other VSAM data sets and indexes. A new
data space is allocated to VSAM by the OS/VS
DADSM Allocate routine, and the data space is
assigned to the new catalog.

See "Data Areas" for details about the volume catalog
record, the data space group set of fields, and the data
set directory entry set of fields.

11 IGGOCLAS: IGGPDCSP (calls IGGPSALL
(IGGOCLAR»

A data set directory entry set of fields containing the
cluster's control interval number is added to the
volume catalog record.

12 IGGOCLAS: IGGPDCSP (calls IGGPDCRA
(IGGOCLB4»

13 IGGOCLAS: IGGPDCLD

The catalog might contain records that describe user's
VSAM data sets, user's nonVSAM data sets,
direct-access volumes, and (in the VSAM master
catalog) VSAM user catalogs.

See "Data Areas" for details about the catalog record.

14 IGGOCLAS: IGGPDCVO

IS IGGOCLAS: IGGPDCBE

See "Data Areas" for details about the first
preformatted records in the catalog. These records
define the catalog as a key-sequenced VSAM data set,
describe the space allocated to the catalog's data
records, index records, and true name records,
describe the free space control intervals within the
catalog's data space, and describe the allocated and
unallocated tracks on a catalog's volume.

r

t Diagram EE2. DEFINE CATALOG: Create a VSAM Catalog
o
CIl
"<
CIl
N
CIl
<
CIl

5'
0-

" "0

" ::l
0-

" a
()
o

~
::l

" ~
<
~.

e:.
CIl

5'

i
~
R
CIl
CIl

Open the Catalog

16. Build the control blocks to allow the catalog to be
opened and processed as a VSAM data set.

Virtual Storage for the Caller's Program
./

./
./

Open the catalog's ACB to allow catalog records to
be written: (See Diagram AC I, "VSAM OPEN:
Connect a User to a VSAM Data Set.")

I ACB (From ./

Rli Step J 6)

Describ~s
the Catalog

" 18. Write the catalog's self-describing records (built in

~
step 15) into the catalog.

/' /' D 19. Build and write true-name catalog records for the _1_ /' /' catalog DSNAME and the data space's,volume
?-~ E serial number.

Describes the CLOSE: Disconnect a User from a VSAM Data Set.")
'f./ ./ -~ 20. Close the catalog's ACB. (See Diagram AD I, "VSAM

PUT Request ./ 21. Delete the control blocks built in step 16.

tACB •

t Buffer
Open the VSAM Master Catalog

---- ~22. Did the request create the VSAM master catalog?

No Yes • 23. Build the control blocks required to open the

Virtual Storage for the Caller's Program
in.,

Alternate
I----~>t nOT

~--------~ I

OS/VS System Queue Area

CVT ..---
tAMCBS

VSAM
:.::
S.
8-

Catalog Management Buffers

VSAM master catalog.
24_ Open the VSAM master catalog. (See Diagram

AC I, "VSAM OPEN: Connect a User to a
VSAM Data Set.")

~~aat:l:-g

< [Jl

> ;
b
"" n'

1

~

Catalog's Self-Describing
Catalog. Records

True-Name Records

Write SMF record type 63

25. Does the OS/VS system include the system
management facilities (SMF)?

No Yes • 26. Wri,te SMF record type 63 ~ Cluster Cataloged.

CCAPROB

27. Return to the caller. ~Return COdel

~

is Open

Record
Type 63

Opened VSAM
Master Catalog -

~

~ o
;.
o
Q,.

a
o

"'0 o

~.
o
::I

~
""

r
Notes for Diagram EE2

16 IGGOCLAE: IGGPDCCB

See "Data Areas" for details about the ACB and
CAXWA.

17 IGGOCLAE: IGGPDCCB

The ACB describes the catalog as a VSAM data set to
VSAM record management routines.

18 IGGOCLAE: IGGPDCPR

19 IGGOCLAE: IGGPDCPR

See "Data Areas" for details about the true name
catalog record.

23 IGGOCLAE: IGGPDCME (calls IGGPMC02
(lGGOCLAD»

24 IGGOCLAD: IGGPMC02

26 IGGOCLBV: IGGPSMFA

27

See OS/VS System Management Facilities (SMF) for
the format of SMF record type 63-VSAM Data Set
Cataloged. Record type 63 is written after a VSAM
catalog is defined for the cluster, data, and index
components and whenever the catalog's definition is
altered. definition is altered.

The catalog management services DEFINE routine
sets a return code in the CCA's CCAPROB field and
returns to the caller whenever an error is detected.

See "Diagnostic Aids" for details about catalog
management return codes.

r r

~
o
CIl
'<:
CIl
N

CIl
<:
CIl

S'
Q.. ...

I ... a
(j
o

~
~ g
<:
~.

e:.
~ o

~
~
til
til

a:
S-
O
Q..

< CIl

> ;
b

()Q

(i'

Diagram EE3. DEFINE CRA: Create a Catalog Recovery Area

Virtual Storage for Caller's Program

RII CTGPL

CCA
ICTGFV

lWork Area

ICMSWA

-
lork Area

User's Data Volume
~

~

Acquire Space for the CRA

1. Is the c~ller DEFINE CATALOG?
Yes No

t
2. Is the DEFINE SPACE request for a unique

data space or for a candidate volume?
No Yes ,

3. Call DEFINE SPACE for I
of space for the CRA.

4. Suballocate I cylinder of space for the CRA.

S. Update the volume's format-4 DSCB to show the
location of the CRA.~

~~6. Compute the CRA's high-used RBA.

7. Construct the CRA self-describing records.

8. Construct an ACB and a CAXWA for the CRA
OPEN.

9. OPEN the eRA.

VSAM User's
Data Volume
~

Virtual Storage for DEFINE
CRA Routine

DEFINE CRA
Work Area

Work Area Fields

eRA
Self·Descrihing
Records

CCA

t Buffers

User's Data Volume

10. Write the CRA self-describing records and the ~
volume base and extension records into the CRA. ~ eRA

11. Is the caller DEFINE SPACE?
No Yes I , OS/VS2 Catalog

• 12. W,'" th' 'otum' ,,,~,d, to th' "t,'og. ~ J
13. Return to caller. ~~~ (,(,APROB I Return Code I

~ ~

I
a

f
g'
~

('

Notes for Diagram EE3

1 IGGOCL84: IGGPSfRG

2 IGGOCL84: IGGPSfRG

3 IGGOCL84: IGGPRDEF

If the caller is DEFINE SPACE and the request is for
a unique data space or for a candidate volume,
IGGPRDEF will construct an interface to recursively
caIl DEFINE SPACE (IGGPDEFS) to obtain one
cylinder of space for the CRA.

4 IGGOCL84: IGGPSBAL

Suballocate one cylinder for the CRA from the data
space.

S IGGOCL84: IGGPFMT4
IGGOCL84: IGGPF4RD, IGGPF4WR

6 IGGOCL84: IGGPCHIU

7 IGGOCL84: IGGPCCIO, IGGPCIt5
IGGOCLDA: IGGPMODI

The CRA self-describing records are constructed in
main storage; the MODIFY function is called via
IGGPMODI to complete the record construction.

8 IGGOCL84: IGGPCACB, IGGPCXWA

An ACB and a CAXWA are built in a catalog
management buffer for use by OPEN.

9 IGGOCL84: IGGPOCRA

10 IGGOCLDA: IGGPWCRA

The CRA self-describing records are written to the
volume. The volume base and extension records are
also written to the CRA. For a DEFINE CATALOG
caller, the records are pointed to by an address array
in the CMS workarea; for the DEFINE SPACE caller,
the volume records are chained from a pointer in the
CCA.

12 IGGOCLDA: IGGPWCAT

The chained volume records are also written into the
catalog if DEFINE SPACE is the caller.

(' ('

~
o
;,n
~
N

I:Il
<
I:Il

8:
~
8-
(1)

a
n o
.g
o'
~
?.
~ a
!..

S
~
(1)

r
~
(1)

s-o
p.

< I:Il ;
b

OQ

n'

Diagram EFt. DEFINE NONVSAM: Define a NonVSAM
Data Set in a VSAM Catalog

Virtual Storage for the Caller's Program

Rll
r-

tCCA

1 CCA

tCTGPL

CTGFV

Pointers
to CTGFLs
that Define
a NonVSAM
Data Set

CTGPL

r-I- _

CTGFLs --
--

----.
Data Set's
Volume
S~rial
Number
List

D~vice
Types

FiI~
Sequence
Numbers

VSAM Catalog -
Catalog's
Index

~

......
....-1

Virtual Storage for the Caller's Program

~ I I tB,ff" ~
CCA

Build a NonVSAM Data Set Catalog Record Catalog Management Buffer

__ --~ 1. Build the nonVSAM catalog record and write it into NonVSAM Catalog Record
the catalog.

Data Number, and File
__ .. 2. Build a true-name catalog record and write it into Set's Sequence Number of]

Device Type, Serial

the catalog. DSNAME Each of the Non-

Volumes Update the catalog's index records so that the
\

VSAM Data Set's

nonVSAM catalog record can be located by the
nonVSAM data set's DSNAME.

L-~ ____________________ ~~

• CCAPROB

4. Return to the caller. ~Return COde/
VSAM Catalog

Index
Record

RBA of
Tru~-Name
Record

Control Interval
True-Name Number of the
Record NonVSAM

Catalog Record

NonVSAM
Record

'- -'

I'--Records

Free
Catalog
Record

~

~.

(Identified
by the Caller's
CTGPL)

~

'-' '-'

:::
C1I
;.
o
0-

S.
o
"0

C1I ..,
!!:. o·
::s
N

~

r
Notes for Diagram EFt

This figure describes the processes performed by the
catalog management services routines when the user
issues the Access Method Services DEFINE NONVSAM
command in the form:

DEFINE
NONVSAM (parameterlist)
[CATALOG (catname/password)]

where:

catname is the name of the catalog that will contain
the nonVSAM catalog record that describes the user's
non VSAM data set.

• password is the catalog's master or update password, if
the catalog is protected by passwords.

• parameterlist fields are described in OS/VS2 SVS
Independent Component: Access Method Services.

See "Data Areas" for details about the nonVSAM
catalog record.

IGGOCLBH: IGGPDEFA, IGGPDAIN and IGGPDAVO

The DEFINE NONVSAM routine builds and transfers
the nonVSAM catalog record from a catalog
management buffer in virtual storage to the VSAM
catalog specified by the caller's DEFINE command.

If the non VSAM data set is being defined in a
recoverable catalog, the catalog's volume serial
number and device type are saved in the nonVSAM
catalog record.

2 IGGOCLBH: IGGPDEFA

See "Data Areas" for details about the true name
catalog record.

3 IGGOCLBH: IGGPDEFA

4

See "Data Areas" for details about the catalog index
record.

See "Diagnostic Aids" for details about catalog
management return codes.

Note: This figure also describes the processes
performed when the user issues an IMPORT
command to connect a VSAM user catalog (created on
another OS/VS system and defined in that system's
VSAM master catalog) to the VSAM master catalog.
This process is similar to defining a nonVSAM data
set, and should not be confused with the process

r
described in Diagram EEl, DEFINE CATALOG:
Create A VSAM Catalog.

The VSAM user catalog record is similar to the
nonVSAM catalog record, except the record's ID
(identifier) value is "U" and there is one volume
information set of fields to describe the volume
containing the user catalog.

r

i

N
v. o
o
r:n

<
~
r:n
< r:n

8:
~
6-
III a
(')
o

~
~
~
<

i
s
~
[
a::
~
::r
8-
<
~
f .r

Diagram EGI. DEFINE SPACE: Initialize a VSAM Data Space

Virtual Storage for the Caller's Program

I. Confirm that the required volume is mounted. ~ = Message

lv

VSAM Catalog

Volume
Catalog
Record

VTOC {

Freespace

I'" 2. Deter[l1ine the numher of cylinders and tracks
1 ~ needed for the data space.

1/ ,
'- f/

'- /
'- .. ,/1 Initialize the Volume Catalog Record
//

// ,
/ 11:l 3. Does the VSAM catalog contain a volume catalog

/ 1 ...f" record for the new data space's volume'!
I@'

1 Yes

1
No • 4. Update the volume's format-4 (VTOC)

DSCB to show that the volume is now
owned by the VSAM catalog.

5. Build the volume catalog record.

Retrieve the volume catalog record

Allocate space from the volume's free space for the
VSAM data space. (See OS/ VSJ DADSM Logic,
"NonISAM Data Set Allocation. ")

~

to Operator

HMountV~umeIXXXXXXJ
on Unit IYYYJ"

VSAM User's Data
Volume

}VTOC

Volume Catalog Record

Low/High CCHH
Values for the
Allocated
Data Space

~

~
::r
0
c..
0

~
~.
t:l
N
VI

r
Notes for Diagram EGl
This diagram describes the processes performed by the
catalog management services routines when the user
issues the Access Method Services DEFINE SPACE
command in the form:

DEFINE SPACE
[CATALOG (catname/password)]
parameterlist

where:

• catname is the name of the catalog that contains the
volume catalog record that will describe the VSAM
data space.

• password is the catalog's master, control interval, or
update password, if the catalog is protected by
passwords.

• parameter!ist fields are described in OS/VS2 SVS
Independent Component: Access Method Services.

IGGOCLAQ: IGGPDEFS and IGGPVMTV

2 IGGOCLA6: IGGPCRTC

The user can specify the data space's cylinder and
track requirements, or he can specify a number of
records and the length of each record, to define the
data space's allocation requirements.

3 IGGOCLAQ

If a volume catalog record exists for the volume, and jf
the volume already contains a VSAM data space, a
Data Space Group set of fields is added to the volume
catalog record to describe the new VSAM data space.
A new format-I (identifier) DSCB is added to the
volume's VTOC to describe the new extent.

4 IGGOCLAQ: IGGPCOBT

5

6

If the volume is a candidate volume (one that is
eligible to contain a VSAM data space, but doesn't yet)
the volume's format-4 (VTOC) DSCB is updated to
show that the VSAM catalog is now the volume
owner.

IGGOCLAQ: IGGPIVER

See "Data Areas" for details about the volume catalog
record.

IGGOCLAQ: IGGPDEFS (calls IGGPSCAT
(lGGOCLAH»

The volume catalog record is identified by the
volume's serial number.

r
7 IGGOCLA6: IGGPBJFB

IGGOCLAQ: IGGPDEFS

Construct a JFCB and call the DADSM allocate
function.

('

~ Diagram EG2. DEFINE SPACE: Initialize a VSAM Data Space
N

o
til
<
til
N
til
<
til

&:
~
6-
~ a
n

~
g
;;
<

i
til
0-

~

r
~

[
~
til
> ;
b

«!!!.
n

Virtual Storage for the Caller's Program

Low/High CCHH
Values for the
Allocated
Data Space

CTGFV

Buffer

(For VSAM
Data Space
Initialization)

.....

Volume Catalog Record

~

,
...............

,-'-

Build A VTOC Entry for the Data Space

8. Build a format·l (identifier) DSeB to describe
the VSAM data space as an OS/VS data set's
space. (See OS/VSI DADSM /,ogic, "Reading
a DSeB From the VTOC. ")

;;r 9. Is the data space assigned exclusively to one data set?
No Yes

I ~. Put the data set's DSNAME in the format· I
... (identifier) DSeB.

11. Write the format·1 (identifier) DSeB into the
volume's VTOC.

Write the Volume Catalog Record Into the Catalog

@..1"12. Build a data space entry in the volume catal
record to describe the data space's cylinder and
track allocation.
Is the data space assigned exclusively to one
data set?

14. Build a data set directory entry in the
volume catalog record to describe the
data set's use of the data space.

Buffer
Volume Catalog Record

Data Space Entry

Describes the
Available Space
in the New
VSAM Data Space

Write the volume catalog record into the :>I
catalog.

16. Does the OS/VS system include the system SMF Data Set

No ;::;""om", I.d";" (SMF)? ~ j
• Record Type 69 J 17. Write SMF record type 69 - VSAM Data

Space Defined or Deleted. (See Diagram
DKl, "LSPACE: Build an 'Available
Space' Report. ")

18. Was the defined space for a recoverable
catalog that just assumed volume owner·
ship?

No Yes • 19. Define a CRA on the volume.
(See Diagram EE3, "DEFINE CRA:
Create a Catalog Recovery Area.) =====~>

20. Return to the caller.

\,

VSAM·User's
Data Volume

Catalog

CCAPROB

~n Code

Data Set Directory Entry

tData I DSNAME of the
Set's Data Set that
Space Resides in the
Entry Data Space

Data
Space

\.,

r
Notes for Diagram EG2

8 IGGOCLAQ: IGGPDEFS

The format-I (identifier) DSCB describes the VSAM
data space as an OS/VS data set to the OS/VS
DADSM routines.

9 IGGOCLAQ: IGGPCOBT

10 IGGOCLAQ: IGGPCOBT

A VSAM data space assigned exclusively to one data
set is, to DADSM, the same as one of the extents of an
OS/VS data set. The data space is described by a
format-l (identifier) DSCB that contains the data set's
dsname. If a data space can be assigned to more than
one data set, its format-l (identifier) DSCB contains a
dsname generated by the DEFINE SPACE routine.

11 IGGOCLAQ,: IGGPCOBT

12 IGGOCLAQ: IGGPCSHG and IGGPCSDG

See "Data Areas" for details about the volume catalog
record and Data Space Group set of fields.

14 IGGOCLAQ: IGGPCDSD

The volume catalog record contains the identifier of
each data set that resides (in part or in full) on the
volume.

See "Data Areas" for details about the volume catalog
record.

17 IGGOCLAQ: IGGPDEFS (calls IGGPLSP (lGGOCLBK»

See OS/VS System Management Facilities (SMF) for
the format of SMF record type 69-VSAM Data
Space Defined or Deleted. Record type 69 is written
when a VSAM data space is created or when its
available space is allocated to a VSAM data set or
index.

19

A catalog recovery area is defined on the volume on
which the space is being defined if ownership is taken
by a recoverable catalog and the defined space does

3:: not contain the catalog .
...
;. See "Diagnostic Aids" for details about catalog
8. management return codes and error codes.
o
o
"0 ...
~ o·
::s
N
v.
w

r r

N
o

~
til

~

~
~
&.
B a
(j

~ o
B

~
<:

[

I
~
~

3:
B

So
&.
< til

!
b'
~

n'

Diagram EHI. ALTER: Modify a Catalog Record
Rll

tCCA

JCCA

tCTGPL

t Buffer

CTGFV

Describes
All
Fields
to he
Modified

J
CTGFL

s-=
~'ieldNam6

tllpdate
Data

Catalog Management Buffer

Catalog Record

I Passwords I

~

(3V
i

Modify the Catalog Record's Fields

Do steps I through 3 for each user-specified field:
1. Locate the field's address and length. (See

~ Diagram DLI, "Obtain a Catalog Record ~
Field's Value.") I~

2. Do specialized processing:

• Change a data set's DSNAME

• Perform volume cleanup

• Assign a candidate volume

• Delete a candidate volume

do steps 8
through 14

do steps 15
through 19

do steps 20
through 22

Rll

I
lCCA

Field's
Address
and Length

Catalog Management Buffer

Catalog Record

I Updated I
Field

do steps 23.
through 24 "*"",,\\,m\\\\\\\'\\\\\\""",(\1

I=====~> ~ 3. Modify other catalog fields as specified, replacing

--f

the existing information with the updating infor
mation. (See Diagram DMI, "Modify a Catalog
Record Field's Value.")

4. Rewrite the updated catalog record.

5. Does the OS/VS system include the system manage
ment facilities (SMF)?

No Yes

SMF
Data Set • 6. Write SMF record type 63 - VSAM Data Set ======J= Record .='

Type 63
Cataloged.

CCAPROB

7. Return to the caller. ~

\.,.

I

~

3:
rI

[
g,
o
~
~

g'
N
VI
VI

r
Notes for Diagram EHt
The ALTER command enables the user to modify some
of the information he established when he created a
VSAM data set.

This figure describes the processes performed by catalog
management services routines when the user issues the
Access Method Services ALTER command in the form:

or

ALTER
(entryname/ password)
[CATALOG (catname/password)]
parameterlist

ALTER
entryname/password
FILE(dname)
REMOVEVOLUMES (volser[bvolser ...])

where:

entryname is the dsname or volume serial number that
identifies the catalog record to be modified.

• password is the record's (identified by entryname)
master password.

CATALOG identifies the VSAM catalog that contains
the record to be modified, and supplies the correct
password for that catalog.

• parameterlist fields are described in OS/VS2 SVS
Independent Component: Access Method Services.

or:

• entryname, for the volume cleanup function, is the
name of the OS/VS master catalog.

• password is the master password of the master catalog
specified in entryname.

dname specifies the name of a DD statement that
identifies the volume(s) to be scratched. This
parameter is required for the volume cleanup function.

volser specifies the volume serial number(s) of the
volume(s) on which all VSAM space is to be removed
and VSAM ownership is to be relinquished. Volumes
owned by the master catalog cannot be specified on a
cleanup request.

IGGOCLBD: IGGPALT

See "Data Areas" for details about the CCA, CTGPL,
andCTGFL.

r
1 IGGOCLBD: IGGPALT

When the data set name or allocated candidate
volumes are changed, other catalog records besides
the data set catalog record must be updated.

3 IGGOCLBD: IGGPALT

4 IGGOCLBD: IGGPALMD

6 IGGOCLBD: IGGPALT

See OS/VS System Management Facilities (SMF) for
the format of SMF record type 63 VSAM Data Set
Cataloged. Record type 63 is written after a
nonVSAM data set, cluster, or catalog is defined and
when the definition is altered. One SMF record is
written for each modified catalog record.

7 IGGOCLBD: IGGPALT

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r

~ Diagram EH2. ALTER: Modify a Catalog Record
o
VI
<:
~
VI
<:
VI

5'
0-

~ ::s
fr a
n o
~ o ::s
(>

~
~
a-
Eo
VI o
j;J

{JQ
(>

~
~
i3:
(>

e-
o
0-

< VI
>
!
t"'
o

{JQ
(;.

Virtual Storage for Caller's Routine

Rll

VSAM Catalog -
Old
True-Name
Record

Data Set
Record

(.,

CTGPL

;'

VSAM User's
Data Set

Freespace

/

/
/

/
/

Change a Data Set's DSNAME VSAM Catalog

, II 8. Search the VSAM catalog to ensure that the new

/
/

/

/
/

/'

/
/

/

/
/

/

~ name doesn't duplicate an existing name. (See
;lI Diagram DCl, "SEARCH: Retrieve the Base

Catalog Record. ")

~ 9. Build a new true-name catalog record, write it
into the VSAM catalog, and update the catalog's
index.

~ 10. Does the data set share its data space with other
sets?

Yes No • VSAM User's
Data Volume

11. Update the data space's format-l DSCB withc:apzzzzzzzzzzzbl'
the new DSNAME.

f
Remove the old true-name record from the catalog.

13. Does the OSjVS system include the system manage
ment facilities (SMF)?

No Yes • 14. Write SMF record type 68 - VSAM Data Set
Renamed.

l.,

SMF Data Set

Record
Type 68

I VTOC

}
VSAM
Data
Space

l,

~
[
S
O
'g
i3 g.
=
N u.
-..J

('

Notes for Diagram EH2

8 IGGOCLBD: IGGPALNM

The catalog specified by the ALTER command's
CATALOG parameter is examined. No other catalogs
are examined .

., IGGOCLBD: IGGPALNM

11

See "Data Areas" for details about the VSAM catalog
organization, the catalog index record, the true name
catalog record, and the data catalog record.

See OS/VS2 Data Areas for details about the DSCB.

12 IGGOCLBD: IGGPALFl

The name and control interval fields in the data set's
true name record are set to 0, and the true name
record's identifier field is set to C"P".

14 IGGOCLBD: IGGPALT

See OS/VS System Management Facilities (SMF) for
the format of SMF record type 68 VSAM Data Set
Renamed.

r- r

N
VI
00

o
~
~

~
1:1.1

8:
~

'8
is.
~

S-

f
~
<:
~'
a
!a o

~
~
9
3::
~

[
< 1:1.1
> ;
b

OC
(i'

Diagram EH3. ALTER: Modify a Catalog Record

VSAM Catalog -Data Sel
Record

Volume
Record

Volume
Record

VSAM
Candidate
Volumes

\.."

A

r

in nser-

I S. Confirm that a volume catalog record
exists to describe the volume.

16. Can the volume be mounted?:J
Yes No

! Set error code in volume list and
process the next volume. ? Z I z ?~

Scratch each format-l DSCB with VSAM
DSORG on the volume.

19. Rewrite the format-4 DSCB with VSAM
ownership relinquished.

Assign Candidate Volumes to a Data Set

20. Confirm that a volume catalog record exists to
describe each candidate volume. (See Diagram
DCl, "SEARCH: Retrieve the Base Catalog
Record.")

21. Update each volume's catalog record to add the
data set's catalog record identifier to the data
set directory entries.

22. Update the data set's catalog record to add a
volume information set of fields to describe
the candidate volume. (See Diagram DM I,
"Modify a Catalog Record Field's Value.")

~
Remove Candidate Volume Information From a Data
Sei's Catal08 Record

23. Update each candidate volume's catalog record to
delete the data set catalog record's identifier from
the data set directory entries.

24. Update the data set's catalog record to remove
each candidate volume's volume information set
of fields. (See Diagram DM I, "Modify a Catalo~

R~''''' YO", ...)

\.."

VSAM Catalog -
Data Set
Record

Volume
Record

~

~
" Er-
g.
g,
o
'g

i·
N
!.II
ID

r
Notes for Diagram En3

15 IGGOCLBE: IGGPALVL

If volume cleanup is required, IGGP AL VL calls
IGGPVRD (IGGOCLBN). Each volume in the
user-provided volume serial number list is processed, if
its volume catalog record exists.

16 IGGOCLBN: IGGPVRD

The volume(s) specified in the user-provided volume
serial number list is mounted. After a successful
mount, IGGPRVRD calls IGGPVRCV (IGGOCLBN).

17 IGGOCLBN: IGGPVRD

If a volume cannot be mounted, a
volume-not-mounted condition is indicated in the
volume serial list and passed back to the user.

18 IGGOCLBN: IGGPVRCV

Scratch each format-I DSCB that has VSAM DSORG
indicated.

19 IGGOCLBN: IGGPVRCV

The VSAM ownership, VSAM timestamp, the sum IT
fields, and, if applicable the recovery timestamp are
removed from the format-4 DSCB and the DSCB is
rewritten on the volume.

20 IGGOCLBD: IGGPALT (calls IGGPALVL (lGGOCLBE»

IGGOCLBE: IGGPALVA

IGGPALVA calls IGGPSALL (suballocate) to assign
the candidate volume to the data set. If a volume
catalog record does not exist for the candidate volume,
the suballocate routine returns an error code.

See Diagram EG I, DEFINE SPACE: Assign a VSAM
Data Space to a Catalog, for details on how a volume
catalog record is built.

21 IGGOCLBE: IGGPALVA

The volume catalog record contains a data set
directory that describes each VSAM data set's use of
the volume's VSAM space.

See "Data Areas" for details about the volume catalog
record.

22 IGGOCLBE: IGGPALVA (calls IGGPALSA
(lGGOCLBE), IGGPSALL (lGGOCLAR), and
IGGPMOD (lGGOCLAV»

See "Data Areas" for details about the data catalog
record and its volume information set of fields.

23 IGGOCLBN: IGGPALVR

r
24 IGGOCLBN: IGGPALVR (calls IGGPMOD

(IGGOCLA V»

See "Data Areas" for details about the data catalog
record and volume information set of fields.

r

~
o
tn
.......
<:
~
~
tn

S'

t
6-
(II

:I ...
n o
.g
o
;
~
<:
~.

eo
S
~
i
~

f
Q.

<
tn

~
'-'

b
1!9.
n

Diagram ElI. LISTCAT: Retrieve a Catalog Rp.cord's Contents

Virtual Storage for the Caller's Program

~

/{equest Options

tDSNAME

Record Type

tPassword

tCTGFLs

"Multitype" CTGFL
, i

List of
Conditions the
Record Must
Meet

Catalog Management Buffer

Record Type

~ i
~ l. Did the caller supply the catalog's DSNAME?

Yes No

" , ,. Return the DSNAME to the caller.~
~ 3. Did the caller specify the CTGPL "GET NEX

option with record type nonzero?
No. Yes

4. Was "Multitype" CTGFL specified?

tNO

•

~ S. If the catalog record meets the
conditions specified in the "multi
CTGFL, go to step 8; otherwise g
step 7.

~6. Is the retrieved catalog record the same
type as the CTGPL record type?

No

1. Retrieve the next catalog record a
go to step 4.

Verify the user's authorization to read the
catalog information requested.

9. Build a copy of the caller's CTGPL and point

r"

ype"
to

"d~

to the CTGFLs required by this entry. ~

Obtain the catalog record field's values that
satisfy the caller's request (see Diagram DL.

10.

"Obtain a Catalog Record Field's Value").
CCAPROB

11. Return to caller.~Return Code

l,

Virtual Storage for the Caller's Program

Caller's CTGPL

tDSNAME ~ DSNAME ".

r tWork Area B RII

tCTGFLs t-... I tCCA I
CCA

Catalog tCalier's CTGPL
D Work Area

tCTGPL Copy

t Buffer
CTGFLs ~~

To Identify l~ CTGFLs I each Field
in a Volume ~ To Identify Catalog Each Field in Record ~ ~ a Data Set,

Index, Cluster,
or User-Catalog I

~ Catalog /{ecord
CTGPL

~ Copy of
Caller's
CTGPL

CTGFLs I----'

L...-

l,

~
(1)

[
o
o
'g

~.
i:I
N
~

('

Notes for Diagram Ell

The LlSTCA T command enables the user to list all or a
part of a VSAM user or master catalog's contents. This
figure describes the processes performed by the catalog
management services routines when the user issues the
Access Method Services LlSTCAT command in the form:

LlSTCAT
[CATALOG (catname[fpassword][dname])]
[OUTFILE (dname)!
ENTRIES(entryname[f password])]
[CLUSTER! DATA! INDEX! SPACE!
NONVSAM!USERCATALOG!
ALTERNATEINDEX! PATH]
[ALL! NAME! VOLUME! ALLOCATION!
HISTORY]
[CREA TION(days)]
[EXPIRA TION(days)]
[NOTUSABLE]

where:

CATALOG identifies the VSAM catalog that contains
the user-requested data:

- catname is the dsname of a VSAM user catalog or
the VSAM master catalog.

- password is one of the catalog's passwords, if the
catalog is password protected. If the user requests
password information from the catalog, he must
specify the catalog's master password. All other
catalog information is available to the user if he
specifies the catalog's read password.

- dname specifies the DD name of the catalog to be
listed.

• OUTFILE specifies an optional alternate listing
output data set and identifies it by dname.

• ENTRIES is a list of catalog record identifiers:

- entryname is the dsname or volume serial number
that identifies a catalog record. If the LlSTCAT
command includes an ENTRIES parameter list,
only those catalog records identified by entrynames
are listed.

- password is one of the catalog record's passwords.
If the catalog's password is supplied, the catalog
record's password is ignored. Otherwise, the
catalog record's master password allows its
password information to be listed; its read
password allows all other information to be listed,
but suppresses the paSsword information.

• [CLUSTER! DATA! INDEX! SPACE!

('

NONVSAM!USERCATALOG
ALTERNATEINDEX! PATH]

is a list that specifies the types of catalog records to be
listed. If both the ENTRIES and this 'types list'
parameter lists are specified, only those catalog
records that are identified by an entryname and are
included in the list of types are returned to the caller.

• [ALL! NAME! VOLUME ! ALLOCATION
! HISTORY] specifies what part of each record to list.

• CREATION specifies the minimum age an object
must be to be listed.

• EXPIRATION specifies the maximum number of days
remaining before expiration an object may have to be
listed.

• NOTUSABLE specifies that only those data or index
entries made not usable by a force delete (as opposed
to entries made not usable by system failure, etc.) are
to be listed.

The LlSTCAT parameters are described in OS/VS2 SVS
Independent Component: Access Method Services.

IGGOCLBQ: IGGPLSfC

If the first character of the catalog's name is blank, the
caller wants the catalog name returned.

3 IGGOCLBQ: IGGPLSTC

If the caller did not specify the CTGPL "GET NEXT"
option and a nonzero CTGPL record type, only the
one original entry pointed to by the CTGPL is listed.

5 IGGOCLBQ: IGGPLSTC

The multitype CTGFL specifies conditions which must
be met by the retrieved record. The possible
conditions are:

a. Must be of a specified record type
b. Must have a certain usability state
c. Must meet a creation date value
d. Must meet an expiration date value

6 IGGOCLBQ: IGGPLSTC

If there is no multitype CTGFL, the retrieved record
must be the same record type as the CTGPL record
type.

7 ICCOCLBQ: IGGPLSTC

The next record is retrieved by specifying the GET
NEXT option to VSAM Record Management.

('

9 IGGOCLBQ: IGGPLSTC

If the entry is a volume record, only volume CTGFLs
are pointed to from the CTGPL; otherwise, only
nonvolume CTGFLs are pointed to from the CTGPL.

t t IGGOCLBQ: IGGPLSTC

When all requested information has been retrieved,
the Listcat routine sets a return code in CCAPROB
and returns to the caller, VSAM Catalog Management
Services Common Processing.

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

~
o
tI.l
<:
~
tI.l
<:
tI.l

f
8-
CD s-

f
~
~
<:
~'
!.
tI.l
0'

i
~
CD
!:l
a=
~
~

8.
< tI.l ;
b

OQ
f'j'

Diagram E12. Show Catalog Processing

Rl. R6

~ Flags

Name or
t CI Numher

t Catalog ACB
Address or 0

Return Area

Return Area Length

Space for
SHOWCAT
Return Codes

~ Name or CI Numher

l,

SHOWCAT Macro
I LINK IGGOCLAO

st

}, l. Obtain virtual storage for Show Catalog work
area.

2, Build VSAM catalog LOCATE interface to
retrieve required data, R 15

3. I",", SVC 26. ~ >Ir ';";Re-.tu-r-n-(-'o-~""·I

4. Translate VSAM catalog return codes into Show ~
Catalog return codes.

S. Validity-check to ensure that the proper data was
returned.

6. Transform data returned by VSAM catalog Locate
into Show Catalog format.

7. Free the virtual storage obtained for the Show
Catalog work area. Rl5

8. Branch register 14. ~ SIIOWCAT Return Code

\,

SIIOWCAT Work Area
i h i

t Catalog ACB
Address or 0

t Work Area

tCTGFLs

CTGFLs

SIIOWCAT Parameter List
I

Flags

Name or
t ('I Numher

Catalog. ACB
t Address or 0

t R~turn Area

Name or ('I Numher

\,

CTGI'L

~
;.
8.
a

f g.
~

r
Notes for Diagram Ell

The Show Catalog processor, IGGOCLAO, enables the
user to obtain selected information from the VSAM
catalog. This specialized user interface is mapped by
macro IGGSHWPL and is invoked by the SHOWCA T
macro. See OS/VS2 SVS Independent Component:
VSAM Options for Advanced Applications for a complete
description of the SHOWCAT macro.

The SHOW CAT macro generates the Show Catalog
parameter list and issues a LINK to module IGGOCLAO.
Note that this module is not a part of the VSAM
supervisory load module for SVC26, IGGOCLC9.

1 The Show Catalog processor builds its conditional
GETMAIN parameter list in the user-provided return
area.

1 The VSAM Catalog Locate interface is built in the
Show Catalog work area acquired in step I. The
CTGPL work area address points to the user return
area.

3 The VSAM Catalog Locate function sets the required
return area length field in the user return area and
places the requested data into this return area.

4 The Show Catalog processor has equivalent error
codes for VSAM catalog return codes.

S The validity check ensures that data was actually
returned and that the proper entry type is being
requested.

6 The transformation causes upgrade associations and
nonupgrade associations to be returned in a consistent
format.

7 The Show Catalog processor always obtains a fixed
amount of virtual storage for its work area. The user is
responsible for providing an area of sufficient size to
contain the returned data. If his area is not of
sufficient size, he can use the required return area
length field to obtain enough virtual storage to reissue
his request.

For additional information about topics related to Show
Catalog processing, see:

"Data Areas."

Catalog parameter list (CTGPL) format and
description Catalog

"Diagnostic Aids."

Catalog management return codes

r r

~ Diagram EJ1. DELETE: Remove a VSAM or NonVSAM Data Set
o
tI.I
"<:
~
tI.I
<:
tI.I

8:
~
6-
n a
~ a
1
~
~
g
~
tI.I
0-
~
n>

~
~
~
S-
o
Co

< tI.I

~
b

(JQ ;:;.

Virtual storage for the callers program

Rll

tCCA

~1. Did the caller specify CLUSTER, PATH, AIX, or
~ ~." NONVSAM?

" "
/

Yes No
CCAPROB
~ Error Code I I

J, CCA "
, , Return to caller

CTGPL " "
tCTGPL Request " Type f---
tCatalog I------ • ACB DDname I\\--
tBuffer Request \\

Options
..... ~ \ \

Object Record
'----.. \ \ \

\ \ I Expiration I \ \
Date

Catalog ACB \
\

.....

~ ~ tCAX 1\
\
\
\

CAX \

Recoverable I \
Catalog Indicator -

OS/VS Nucleus "
[ament Date I

Delete Work Area

\
\
\

18'-~ 3. Is this a recoverable catalog?

~ No Yes

- - 4. Did the caller specify FILE?

11 Yes No CCAPROB

..... T Return to caller ~ Error Code I
..... ~

6. Did the caller specify PURGE?
Yes No

0.,1 ,
» 7. Is the object record's expiration date value less than \ f- the current date value?

\" Yes No

CCAPROB ,,\ t < \
\ \ 8. Return to callel~ Error Code I
\ . 9. Did the caller specify "TYPE (NONVSAM)"?

\ \iyes~
\
\
\ 10. Did the caller specify "TYPE (PATH)"?

\ ioYes~

---- ---- ".
- - - ~ 11. Is the data set (index) open?

Data Set CI #

Index CI #

Data Set Records

'-'

\ No. Yes
~ I • CCAPROB

• 12. Return to caller ~ Error Code I
13. Did the caller specify ERASE? Yes • 14. Overwrite each record in the user's data set

with Os. ®-.::, 15. Did the caller specify "TYPE (ALTERNATE INDEX)"?

No YeS~J3

~ 34
EJ4
38

'-' \,

=::
I'D
S-o
Q.

0
0
"0
I'D ...
~ o·
::s
t-.)
0-
u.

r'
Notes for Diagram EJl

The DELETE command enables the user to remove from
the catalog all information about a specified VSAM
object or non VSAM data set.

This figure describes the processing performed by the
catalog management routines when the user issues the
Access Method Services DELETE command in the form:

DELETE
(entryname/ password)
[CAT ALOG(catname/ password)]
[CLUSTER I AIX I PATH I NONVSAM]

where:

• entryname is the data set name of the VSAM object or
nonVSAM data set to be deleted.

• password is the master password of the VSAM object
to be deleted.

CATALOG identifies the catalog that contains the
record to be deleted and specifies the catalog's
password.

• CLUSTER I AIX I PATH I NONVSAM specifies the type
of object to be deleted. Deletion of these types is
described in this diagram. To delete VSAM data
spaces on a volume, see Diagram EK I; to delete a
VSAM catalog, see Diagram EL I.

The DELETE command's parameters are described in
OS/VS2 SVS Independent Component: Access Method
Services.

3

6

IGGOCL8G: IGGPDEL

If the CATALOG parameter is not specified, the
catalog record identified by the ENTRY parameter's
entryname is found by a search of each catalog named
by the user's JCLJOBCAT and STEPCAT DD
statements, followed by a search of the VSAM master
catalog. The catalog record identifier is examined to
determine the record type and verify that the TYPE
parameter, if specified, is correct.

IGGOCL8G: IGGPDEL

If the catalog is a recoverable catalog, a DD statement
must be specified for the CRA (catalog recovery area)
volume.

IGGOCLBG: IGGPDEL

If the user specified PU~GE, the data set's expiration
date is ignored. See OS/VS2 SVS Independent
Component: Access Method Services for details about
the PURGE and RETAIN parameters.

r·
7 IGGOCLBG: IGGPDEL

If the user who created the data set specified the
expiration date, the data set cannot be deleted until
after that date (unless the PURGE parameter is
specified; see step 6).

9 IGGOCL8G: IGGPDEL

If the request type is nonVSAM, go to step 16 (EJ2).
Open determination and Erase processing do not
apply to nonVSAM data sets.

10 IGGOCLBG: IGGPDEL (calls IGGPDEPT (lGGOCLB5»

If the request type is PATH, go to step 25 (£13). Open
determination, Erase, volume record, and release
space processing do not apply to path catalog records.

11 IGGOCLBG: IGGPDEL (calls IGGPDOPN
(lGGOCLBG»

If the data set or the index of the alternate index or
cluster is already opened, the deletion of the VSAM
data set will not be allowed.

13 IGGOCLBG: IGGPDEL (calls IGGPERAS
(lGGOCLBG»

Each of the data set's control areas is overwritten with
zeros.

15 IGGOCL8G: IGGPDEL (calls IGGPDEAX
(lGGOCLB5»

Go to step 34 (£13) to explicitly delete an alternate
index from the catalog. An alternate index is similar to
a key-sequenced cluster, except a base cluster is always
associated with an alternate index.

r

~

~
~
til

f
6-
n a
Q
~
~
~
<:

[
til
0"
i
n

~
R
gj

~
n
S-
8-
'<
til
:> ;
!;'

OQ o·

Diagram EJ2. DELETE: Remove a VSAM or NonVSAM Data Set

Calalog
Management
Buffer

Volume
Catalog
Record

Catalog
Management
Buffer

Data Set, Index,
or NonVSAM
('atalog Record

l.,.

Data Set Directory Set
of Fields (I per Data Set
(Index) in Volume)

Control Interval # of
the Objects Catalog Record

Data Space Group
Set of Fields (I per
Data Space)

Sequence Number

Starting CCHH

Tracks Allocated to
VSAM Objects

Space Map

Describes the VSAM
Data Space on an
OS/VS Data Set

Time Stamp

CI Number of Records

Volume Information
Set of Fields - Extent
Descriptors (I per
Extent in the Volume)

i Sequence Number
of the Data
Space Group

Starting CCHH
Address

Ending CCHH
Address

Data Set Attributes

I "Unique Flag" r

Update the Volume Catalog Records

Do steps 16 through 24 to process each volume
information set of fields in the data set (index)
catalog record:

Note: To delete space allocated to a nonVSAM
data set, do steps 16 and 22 to process each volume
information set of fields in the nonVSAM catalog
record. Bypass steps 17 - 21 and 23 - 24.

Retrieve the volume catalog record identified by
the volume serial number. I :>J
Delete the Data Set Directory set of fields
identified by the data set (index) catalog records
control interval number. (See Diagram DM I,
MODIFY a Catalog Record Field's Value.")

Release the Data Set's (Index) Space

Do steps 18 through 24 to process each da ta space
that contains part of the data set (index) records on
the volume identified in step 16:

18. Does the data set (index) share its data space with
other VSAM data sets or indexes?

No • ;:119.

o
Delete the Data Space Group set of
fields identified by the volume
information set of fields.

20. Is this a recoverable ca talog?
Yes No • 21. Rewrite format-4 DSCB with • --I Dol,,, th' VSAM d." 'P"" (So<

OS/VS2 DADSM logic, "Deleting

a new current timestamp.

Data Sets (SCRATCH).") Z?7i::::::ee
Build a list describing each of the data set's extents
in the data space.

24. Modify the Space Map set of fields based on each
entry in the data set's extent list to update the
space map to show the tracks allocated to the data
set are now unalloca ted.

\.,

Catalog Management Buffer

Volume Catalog Record

Pointer to the Data Set
Oirectory Set of Fields
"Deleted" Flag On

Catalog Management Buffer
I

Updated Volume
Catalog Record

Released VSAM
Data Space

Available Space
in a N()nunique
Data Space

)

l,

f
[
sa.
o -g

i·
~

r
Notes for Diagram EJ2

16 IGGOCLA7: IGGDEVG

Each volume information set of fields is retrieved
from the data set (index) catalog record. If the data set
(index) is unique, the volume is mounted.

IGGOCLA 7: IGGPVMSC

The volume catalog record is retrieved by forming a
44-byte true name from the volume serial number field
in the volume information set of fields. The 44-byte
true name for the volume catalog record is the 6-byte
volume serial number followed by 38 zeros.

17 IGGOCLA7: IGGPDEDD

The volume catalog record also contains a Data Set
Directory set of fields to describe each VSAM data set
that is contained, partially or completely, on the
volume. If the volume is a candidate volume for a data
set or index, the data set or index is not described by a
Data Set Directory set of fields.

18 IGGOCLA7: IGGPVMSC

19 IGGOCLA7: IGGPDEDD

If the data set's (index's) space is not shared (the
"unique" flag in the data set attributes field is on), the
data space group set of fields described by the volume
information set of fields (sequence number of Data
Space Group field) is deleted.

20 IGGOCLA7: IGGPVMSC

If the catalog is a recoverable catalog, the timestamp
in the volume catalog record and format-4 DSCB in
the volume's VTOC are not altered.

21 IGGOCLA7: IGGPDF4T

A new timestamp is obtained from the system and the
old timestamp in the volume catalog record and
format-4 DSCB in the volume VTOC are rewritten
with the new current timestamp.

22 The OS/VS DADSM Scratch routines are called by
issuing SVC29. The extents of the data space's
identifier (format-l DSCB) and extension (format-3
DSCB) are added to a format-5 DSCB. A free VTOC
record (format-O DSCB) is written over each of the
data space's format-\ and format-3 DSCBs.

23 IGGOCLBF: IGGPSSCR

Each entry in the list identifies one of the data set's
(index's) extents in one of the data spaces on the
volume.

r
14 IGGOCLBF: IGGPSSCR

Each of the data space's extents is described in the
Data Space Group set of fields.

r

~ Diagram EJ3. DELETE: Remove a VSAM or NonVSAM Data Set
o
Vl

'< Vl
N
Vl
-<:
Vl

~
'g
s..
~
:l ...
(")

i
~
-<:
~.

a
5
~
~

~
n
~

!ll
~

~
8.
~
Vl
>
!
b
'e.
n

OS/VS Catal<>~
~ ~

A

AIX Catalog
Record

Catalog
Mana~emt!nt
Buffer

Path Catalog
Record

4.."

Deletion of Path

25. Retrieve the Paths base. catalog record and delete

OS/VS Catalog -
tho ",wd,Hon ," of h,ld, idenHhed by the ~ ~
Path's Control Interval number. :~~~ ! t Base

Delete CATALOG Entry Records

Does the OS/VS system include the System
Management Facility (SMF)?

Yes

SMF Data Set -. ~ ---l" .. i !~ 27. Write SMF record number 67 for the i ":;"'1

fCluster Index

catalog record being deleted.

Rewrite the catalog record into the catalog as a
free record.

E,"~ tho t'",-~me ~"'og "'",d._~ _

Is the object an AIX or key-sequenced c1uste:? :]
Yes .. .
31. Return to step 17 to process the Index

catalog record. _

Do step 26 through 29 for the AIX or cluster
catalog record. CCAPROB

Return to the caller. ~ Return Code I
Delete an AIX and Implicitly Delete Paths

Retrieve each Path associated with this AIX
catalog record and do steps 25 through 29 for
each path.

OS/VS Catalog -

Retrieve the base cluster and delete the upgrade
association set of fields from the "Y" catalog
record.

~ ~ZUu4ft Delete the AIX association set of fields from the rzvre;c<<i
base duster indicated by the AIX control
interval number.

37. Go to step 16 to process the AI X ca talog records.

~ ~

s::
S-
o
Q.

S
o
'R
~

g'
!'oJ

$

r
Notes for Diagram EJ3

25 IGGOCLB5: IGGPDEPT

Retrieve the path catalog record's "base" catalog
record (the base catalog record can be either a cluster
or an alternate index catalog record) and delete the
association set of fields in the base catalog record that
describes the path's control interval number. This
action unchains the path catalog record from the
catalog structure.

27 IGGOCLB5: IGGPOCLS

See OS/VS System Management Facilities (SMF) for
the format of SMF record type 67. Record type 67 is
written when a VSAM cluster, path, alternate index,
or nonVSAM data set defined in a VSAM catalog is
deleted.

29 IGGOCLB5: IGGPOCLS

The DELETE routines erase the data set's true-name
record and delete all references to the data set's
DSNAME in the catalog's index.

30 IGGOCLB5: IGGPOCLS

If the object catalog record type is an alternate index
or a key-sequenced cluster, steps 16 through 29 are
performed to delete the index catalog record.

32 IGGOCLB5: IGGPOCLS

Steps 26 through 29 are performed for the cluster or
alternate index catalog records.

34 IGGOCLB5: IGGPDEAX (calls IGGPDlPT
(IGGOCLB5»

When an alternate index is deleted, all paths
associated with the alternate index are implicitly
deleted first. This process is performed by retrieving
each path record and completing steps 25 through 29.

35 ICGOCLB5: IGGPDUPG (calls IGGPUDEL
(IGGOCLB1»

The alternate index base cluster is retrieved and the
upgrade association set of fields described by the
alternate index's data set (index) control interval
numbers is deleted from the "Y" catalog record
associated with the cluster's data set.

36 IGGOCLB5: IGGPDEAX

Delete the association set of fields in the base catalog
record that describes the alternate index control
interval number. This.action unchains the alternate
index catalog record from the catalog structure.

r
37 IGGOCLB5: IGGPDEAX

Complete steps 16 through 33 to process the alternate
index data set, and index catalog records.

r

~ Diagram EJ4. DELETE: Remove a VSAM or NonVSAM Data Set
o
~
-<
~

~
8:
i
6-n a

f
t:I
n

?
-<
;5.'
c
e:.
S ..
I»

~

I
:::

i
< \Il
:>
!
b'

OQ
n'

~

Base
Cluster

Data

AIX

tData

tIndex

t AlX

tPath

tCluster

tY Record

tIndex

tPath

,,-
,,-

" " " " "

,/

"

Delete a Cluster and Implicity Delete AIXs and Paths

38. Retrieve each AIX record associated with the
base cluster and do step 1 1 and steps 34 through
36. Then do steps 16 through 32 (skipping
step 25) for each AIX.

Retrieve each path record associated with the
base cluster and do steps 25 through 29 for
each path.

7f 40. Delete the cluster's associated "Y" catalog
record.~

41. Go to step 16 to process the cluster catalog
record.

~

I Cluster I t Data I
~Data

~

~
[
g,

I
!::l

('

Notes for Diagram EJ4
38 When a cluster is deleted, all associated alternate index

paths are implicitly deleted first, followed by all the
associated alternate indexes and the associated cluster
paths.

Each alternate index record is retrieved and step 11 is
performed to assure that the data sets (index) are not
opened. Steps 34 through 36, 16 through 24, and 26
through 32 are performed to implicitly delete all
associated alternate indexes and alternate index paths.

39 IGGOCLBG: IGGPDEL (calls (lGGPDIPT
(lGGOCLBS»

Retrieve each cluster's associated path record and
perform steps 25 through 29 for each path.

40 IGGOCLBG: IGGPDEL (calls IGGPDUPG
(lGGOCLBS»

The "Y" catalog record associated with the cluster
data set record and the related association set of fields
in the data set record is deleted.

41 IGGOCLBG: IGGPDEL (calls (lGGPDCLS
(lGGOCLBS))

To process the cluster, data set, and index catalog
records, perform steps 16 through 33 (skip step 25).

For additional information about topics related to
DELETE processing see:

"Data Areas."

Volume catalog record description
Data set directory set of fields description and
format

"Diagnostic Aids."

Catalog management return codes

(' ('

~ Diagram EK 1. DELETE SPACE: Release All of the Empty
~ VSAM Data Spaces on a Volume
........
<:
~
~
tfj

5'
~
'g
::I
0-
n a

~
'g
::I

~
~
a
!!!.
tfj

0'
i
n

~
R
~

3:
(II

;.
8-
< tfj

g
b

!JQ

tr

VSAM
Catalog

Volume
Catalog
Record

VSAM Data
Set's Volume

'--

I. Confirm that the volume is mounted. ,
Release the VSAM Data Space

2. If FORCE option is on, delete all data space entries
from the volume catalog record and appropriately
mark all data and index components occupying
space on the volume NOTUSABLE; otherwise

3. Delete the empty and nonunique data space entry
from the volume catalog record.

Release the VSAM data space and make it available
to the OSjVS system.

Does the volume catalog record contain any data
space entries, or is the volume a candidate volume
for an existing data set? (If FORCE option is on,
do steps 6 and 7.)

No ,

"Mount Volume [XXXXXX I
on Unit [YYY I "

VSAM Data
Set's Volume

Released
VSAM
Data Space

VSAM Catalog

6. Rewrite the volume catalog record into the~ Free Catalog
Record VSAM catalog as a free catalog record.

7. Update the volume's format-4 (VTOC) DSCB
to show no VSAM ownership of the volume.

Rewrite the updated volume catalog record into~
the VSAM catalog.

CCAPROB

9. Return to the caller. ~ Return Code I

'--

or

Updated Volume
Catalog Record

} VTOC

l.,

~
~ ...
::r
0
0-

g,
0
~ ...
~.
0 ::s
N
--.J
v>

r
Notes for Diagram EKI

The DELETE SPACE command enables the user to
release all VSAM data spaces on a specified volume. This
figure describes the processes performed by the catalog
management services DELETE SPACE routine when the
user issues the Access Method Services DELETE SPACE
command in the form:

DELETE SPACE
(entryname/password)
[CATALOG (catname/password)]
[FILE(dname)]
[FORCE]

where:

entryname is the volume serial number of a direct
access volume containing VSAM data spaces to be
deleted.

catname is the name of the catalog that contains the
volume's catalog record.

• password is the catalog's master, control interval, or
update password.

FILE identifies the JCL statement that causes the
volume to be mounted.

The DELETE command parameters are described in
OS/VS2 SVS Independent Component: Access Method
Services.

1 IGGOCLBL: IGGPDELS and IGGPDLVM

If the volume isn't already mounted and available for
use, the DELETE SPACE routine issues the
appropriate mount message to the operator.

2 IGGOCLAI: IGGPFDSP and IGGPDFMI

3

4

FORCE DELETE uses DADSM SCRATCH to
release all VSAM data space and make it available to
other OS/VS system users.

IGGOCLBL: IGGPDLSH, IGGPDLSD, and IGGPDLCB

The volume catalog record contains a data space
group set of fields to describe each VSAM data space
on the volume.

See "Data Areas" for details about the volume catalog
record and its data space group sets of fields.

IGGOCLBL: IGGPDLSC

The OS/VS DADSM Delete routine releases the
empty nonunique VSAM data space and makes its
space available to other OS/VS system users.

r
See OS/VS2 DADSM Logic for details about deleting
an OS/VS data set (to DADSM, the same as a VSAM
data space).

5 IGGOCLBL: IGGPDELS

When the volume is totally empty, the volume catalog
record can be deleted from the catalog. This occurs
when there are no data space group sets of fields and
no data set directory entry sets of fields in the volume
catalog record.

See "Data Areas" for details about the volume catalog
record.

6 IGGOCLBL: IGGPDLET

7 IGGOCLBL: IGGPDLET

The format-4 (VTOC) DSCB is the first entry in a
direct-access volume's VTOC. It contains the volume's
owner's identification and information on how the
volume is used.

See OS/VS2 Data Areas for DSCB details.

8 IGGOCLBL: IGGPDLET

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r

~
o
~
CI.l
N

~
CI.l

8:
t1>

~
6-
t1> a
Q

I
~
<:
~.

!.

~
10
Il<l
t1>

> g
t1>
til
til

3:
t1>

[
< CI.l

!
~
n

Diagram ELI. DELETE CATALOG: Release a VSAM Catalog

l,

. TVPE(MASTERCATALOG)

. TVPE(U5ERCATALOG)

Catalog as a
Data Set

VSAM User
Catalog

~
B3

21

I. Is this a FORCE DELETE request?
No Yes

,
"0

J ! Release all data spaces. (See Diagram EKI,
"DELETE SPACE: Release all of the
Empty Data Spaces on a Volume.")

3. Is this a D,ELETE MASTERCATALOG request?
No Ves

1
,
4. If PURGE is not on and current date is less CCAPROB

than expiration date. return to the caller. ~_ Error Code

S. Is FORCE option on'!
Yes No • 6. Is thl' c:..ttalog empty?

Yl!S Nu

~ CCAPROB

7. Return to (;..Iller. I Error Code I

Rl'Il'J<;t..' alll'lllJ1ty data SpaL"l'S. (Set' Diagram EK I.
'"DI:.L1'T~ SPACt. RekJ',' All of the Empty
VSA\1 Data Sr:'JL'l'" 011 J VO]Ulllt'.")

Yes •
not open <lnLl nonl'xistent.

Close the VSAM master catalo~'s ACB.

12. Rl.'11l0Vl' thl' VSAM master L"atalo{:!'s cJtalog
voluu1<' «('VOU eutry from the OS;VS
system ca talo~. t Se,- OS; vs I Ca talog
Mana!!Cmel1f I,ogie. ·'DRPX. Disconned
a CVOl.'") • @

®. Delete a VSAM User Catalog
,r-----------------~

13. Close the VSAM user CJtJlog's A'B .

Volume that
Contained the
VSAM Catalog -

OSjVS Nucleus

....;;::::==============:>14. Delete the user-catalog catalog record from the t>I
VSAM master catalog

CCAPROB

Return to the caller. f2ZZZ2i2 e I Return Code

'-'

Released
Control
Blocks
(Free
Virtual
Storage)

'-'

~ o
S-
o
0-

S,
o
~
el
g'
!:j
\A

r
Notes for Diagram ELl

The DELETE USERCATALOG and DELETE
MASTER CAT ALOG commands enable the user to
release a catalog's space and make it available to other
OS/VS system users. The catalog must be empty (see step
I notes) or the request is rejected. This figure describes
the processes performed by the catalog management
services DELETE CATALOG routines when the user
issues the DELETE command in the following form:

DELETE
(entryname/password)
[USERCAT ALOG I MASTERCAT ALOG]
[FORCE]

where:

• entryname is the dsname of the catalog to be deleted.

• password is the user catalog's master password (allows
user catalog deletions), or the VSAM master catalog's
master password (allows master catalog deletions).

• [USERCATALOG I MASTERCATALOGj identifies the
type of catalog being deleted.

The DELETE command parameters are described in
OS/VS2 SVS Independent Component: Access Method
Services.

6 IGGOCLAF: IGGPDELC

If the catalog contains more than two true name
catalog records, it is not empty and cannot be deleted,
unless the FORCE option is on.

See "Data Areas" for details about catalog
organization and the true name catalog record.

8 IGGOCLAF: IGGPSDSP

The volume catalog record contains an entry for each
VSAM data space allocated on the volume. Each entry
contains the data necessary to free the data space.

See "Data Areas" for details about the volume catalog
record.

Diagram EKl, DELETE SPACE, shows how each
VSAM data space is released and it's space made
available to other OS/VS system users.

10 IGGOCLAF: IGGPDELC

The communications vector table (CVT) points to the
AMCBS which points to the control blocks which
describe the VSAM master catalog to the OS/VS
system.

r
See OS/VS2 Supervisor Logic for details about the
CVT.

llIGGOCLAF

See "Data Areas" for details about the ACB and for
details of the control blocks that allow catalog records
to be processed.

12 IGGOCLAF: IGGPDELC

The OS/VS system catalog contains a data set entry
for each OS/VS private catalog and for the VSAM
master catalog, but not for VSAM user catalogs.

See OS/VS Catalog Management Logic for OS/VS
system catalog and data set entry information.

13 IGGOCLAF: IGGPDELC

15

The VSAM user catalog is described, as a data set, by
its ACB. See Diagram ADl, VSAM Close, for a
description of closing a VSAM data set.

See "Data Areas" for details about the ACB.

See "Diagnostic Aids" for details about catalog
management return codes and error codes.

r

N
-.l
CI\

o
til

< til
N
en
;;3

8:
."

~ ::s
0-
." a
II

j
::s
."

~
< ::r c
e:.
en
0-
~

(JQ
."

> n
n
."

~

~
a
::r
&.
~
til

> e
b

(JQ o·

Diagram EM 1. CONVERTV: Convert a Volume to or from Mass Storage

Virtual Storage for the
CaIler's Program

VSAM Catalog

\.,

CTUPL

Request
Type

ODname

tCTUFL

.......

tUCB

~ ,
1. Verify the caller's authority to convert the

volume.
~ 2. Check the validity of the catalog parameter list

-: and the field parameter lists.

~ 3. Verify that the ddname is correct and the volume
r.<;;If is mounted.

\t; 4. Indicate the volume is unusable for the duration c/ of conversion.

B Convert volume information in the catalog that
owns the volume

Repeat steps 5 and 6 until all catalog entries that
indicate the converted volume have been processed:

New Volume

VSAM Catalog

-:::: >5. Retrieve a catalog record.

6. If the catalog record points to the volume, change~
the device-type indication.

7. If a user catalog is on the converlt.'d voluml'.
change the pointer to the user catalog to indicate
the new device type.

8. Indicate the volume is usable. ~

l, l,

3:
<1>
::r o
0-
o ...,
o
'g ..,
g.
~

~
...;j

r
Notes for Diagram EMl

The CONVERTV command enables the user to convert
the contents of a direct-access storage volume to a mass
storage volume, or vice versa, and to have catalog
information that indicates the old device type changed to
indicate the new device type.

This figure describes the processing performed by the
catalog management services routines when the user
issues the Access Method Services CONVERTV
command in the form:

CONVERTV
FROMFILE(ddname)
TOFILE(ddname)
[RECAT ALOG(ALL I VSAMCAT ALOG)]
[CAT ALOG(catname[/password])]

where:

• FROMFILE and TOFILE identify the DD statements
that cause allocation of the devices from and to which
the volume's contents are being converted.

• RECATALOG indicates that a VSAM catalog owns
the volume being convertetl attn indicates the extent of
recataloging that is to be done.

CATALOG identifies the user catalog, if there is one,
on the volume being converted.

CONVERTV is described in OS/VS Mass Storage
System (MSS) Services for Space Management.

IGGOCLBZ: IGGPCONV

Issues the TEST AUTH macro, which checks whether
the calling progran is an APF (authorized program
function).

2 IGGOCLBZ: IGGPV ALI

3 IGGOCLBZ: IGGPCONV

4 IGGOCLBU: IGGPF4RD

Reads the format-4 DSCB.

IGGOCLBU: IGGPF4WR

Writes the format-4 DSCB. If CONVERTV fails and a
user subsequently attempts to open a data set on the
volume, he will receive an error code from Open.

IGGOCLAG: IGGPPUPC

Writes the modified volume record. The identity of
this record is passed to IGGOCLBZ from Access
Method Services.

r
IGGOLAG: IGGPRCCR

Updates the catalog control record in the catalog that
owns the volume to indicate the next free control
interval.

S IGGOCLBZ: IGGPGAW

6 IGGOCLAV: IGGPMOD

Modifies device-type fields in catalog records that
point to the volume being converted.

7 IGGOCLAH: IGGPSCAT

Searches the master catalog for the user catalog
record.

IGGOCLAV: IGGPMOD

Writes the modified master catalog record that points
to the user catalog. In step S, IGGOCLBZ discovers
that a user catalog is on the volume being converted
when it finds a user catalog record that indicates the
volume's volume serial number.

IGGOCLA3: IGGPRPLF

Releases the master catalog from exclusive control.

8 See step 4.

r

J

J

L

PROGRAM ORGANIZATION

Module Prologues

VSAM program listings are the key to VSAM's organization. You get into the
listings from the method of operation diagrams. Once you have located the
module or routine name that interests you in the diagrams, you are ready to
tum to the listing to find the additional information you require.

Each VSAM module listing begins with a description of the module, called the
module prologue. The information contained in VSAM module prologues is
described in the topics that follow.

Module name: The external procedure name of the module (for example,
IFGOI92A).

Descriptive name: The English name of the module (for example, VSAM
Open).

Status: The version and release level of the module.

Function: A brief step-by-step explanation of the functions performed by this
module. Function is divided into steps so that you can more easily locate the
routine responsible for each step.

Notes: A generalized heading that includes (1) any dependencies, for
example, CPU model or features, that will affect the operation of this module,
(2) any restrictions that apply to this module, (3) symbols used to represent
registers and register usage, (4) symbolic name of the maintenance area for
this module and whether the maintenance area is used or reserved, and (5)
any special terms and acronyms that are used within this module that are not
necessarily used elsewhere in the documentation.

Module type: A description of the type of this module (for example,
procedure or macro), the name of the compiler used/required to create this
module, the amount of storage required by this module for executable code
and associated data, and the attributes of the module (for example, reentrant
or read-only).

Entry point: The name of the point at which control can enter this module,
the conditions of entry, the calling sequence by which control was given,
including any parameters passed and the names of modules that may enter at
this entry point.

Input: A description of anything this module gets or references, for example,
registers, control blocks, and data. The means by which this module gains
access to the input is included.

Output: A description of registers, control blocks, and data areas at output;
any messages issued as a result of this module's processing are included.

Exit-normal: A description of conditions at and reasons for normal exit from
this module, including the names of modules called by this module.

Exit-error: A description of conditions at and reasons for any error exit from
this module.

External references: A list of modules, data areas, etc., defined outside of or
accessible outside of this module.

Program Organization 279

Tables: A list of all local tables and work areas, that is, data areas built and
used only within this module.

Macros: A description of system macros used by this module.

Change activity: A list of any change activity to this module.

Module Flow Compendiums
A compendium and its notes describe the flow of control between procedures
and modules to perform a function. The compendium is a supplement to the
function's method of operation diagram.

The compendium's notes describe how each procedure and module
contributes to the completion of the function, and under what circumstances
the procedure or module is called.

Reading Module Flow Compendiums

Module flow compendiums are descriptions of VSAM functions, in terms of
modul~ (procedure) calls and usage. The compendium and descriptive notes,
keyed to the compendium, are on facing pages.

The compendium shows the flow of control between VSAM modules in order
to perform a VSAM function. Figure 5 shows a compendium figure. A
single-headed arrow (between IGCOOOlI and IFG0193A) indicates that
control is passed from one module to another and does not return. A
double-headed arrow indicates that control is returned when the "called"
module completes its processing.

RI

IACB

Open
Parameter
List

Figure 5. Program Organization Compendium Figure

Blocks that are indented (otherwise contained within another block) are
called to perform a specified function and return, when finished, to the caller.
For example, IDA0192A calls IDA0192C to retrieve information from the
catalog.

Numbers and letters in bold-face type refer to descriptive notes. The notes tell

280 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

what the caller expects the called module (procedure) to do. Figure 6 shows
the descriptive notes to Figure 5.

!"!totes for Flpre 9

I IGCUOOII. IH.iOI'HA. and IFGOl9KN are OS/VS Op~n
modules (see os/rs' OpeII?Close/EOV Logic for
detaibl.

A IFGOl91Y (in Figu(c !OlXCTLslolFGOI'BAtoopcn,1
VSAM catalog. O~n-prtx:essin[Z and relUrn'hHhc~allcr
continue .. a~ ",hown in this filturc

2 IDAOIIJ.:!A is the VSAM Opcn m()duk

3 IDA01l.J:!C calls VSAM CalalolZ Managcml'rll tlOC\TFI
to retrieve mformation at~oul the
VSAM ... ol"ljecl-hcin~-()pcncd from it ... VSAM calal('~
rClo:urd.

4 IDA011.J:!V cn .. urc .. thal the rt:4u1red minimum numhc[o!
the ohjec(s ulre..:t ... a..:u: ~olumes arc mounted

S IDAOI"'~C "ali!. VSAM CalalolZ ManalZemenlILOC:\ n·)
to re!ric"!." volume serial numl;\cr<i from the ()hjcc(... \'S4.M
.:alal(l~ record.

6 IDAOtI.J2Z huilds the ft)lInwin!l VS:\M I.:tlnlwl hhld .. :

AMB Burrer.. FOB

,,-MOSH DEB" 105

AROB Dunum DFB PLH

BL!FC DI\\tA

7 IOAOIIJ::!W hUild .. th<.: CP,A, <.:onlrol hll-.:k

8 IDAOlnS wnte~ SMf- re<':(lru I\lre 6:!

9 When<':\ler it VS,A.M Open module dl·tecl, an errl'r.
[DAOI4::!P is.!'!.uc!'!. il dla[!:noslic nll.· a[!:<.: <lnd tr.lce~ \'SAM
1,;\'"lrol hllllk .. if the (iencralized fraf.:e Fal'llIl), 1(,lTl i ..

Figure 6. Notes to Program Organization Compendium Figure

Catalog management procedures call certain procedures so frequently that, if
each call were shown, the catalog management compendiums would be
cluttered. For this reason, whenever a procedure calls one of these (frequently
called) procedures, its module identifier (last two letters of the module name:
IGGOCLxx) is listed instead of drawing a separate block to show the
procedure call. The frequently-called modules are:

• AG: IGGOCLAG-Catalog Management Input/Output Procedures

• A V: IGGOCLA V: IGGPMOD-Modify Catalog Field(s)

• AZ: IGGOCLAZ: IGGPEXT-Extract Catalog Field(s)

• BI: IGGOCLBI-Catalog Management Input/Output Procedures

• BV: IGGOCLBV-SMF Record Processing Procedures

• B3: IGGOCLB3-SMF Record Processing Procedures

Program Organization 281

J

Open, Close, and End-o/-Yolume Compendiums

OPEN

hgure 8 ligure 10
Open a VSAM Opcn a VSAM
Cluster (from Catalog (from
an (SAM·User's the OS/VS
Program) Scheduler)

I I
I

hgure 9
Opel1 a VSAM
('[uster (from
a VSAM·User',

CLOSE (TYPE = T)

Figure 15
Temporary ('iose
(TYPL 0 T) of a

VSAM Cluster

End of Volume

h~u,,' 17

Program)

VSA\1 111.1 01 \'olllllle'
(frolll \'S:\ \1 Ih'c,lrd
~LlIla~l'll\l'llt 1

Verify Data Space

Figure 16
Verify Utility\
Authorilation to

Procc\s Fadl Data SL't
in a VSA~(LJata Space

BLDVRP/DLVRP

I i~un..' 1)0\

HuilLi or Dl'll'tl..'

" \,SA\l
RI.'\OUfn.' I)nol

Fit! Ure II

d" Ad
Sir
Dy

ing
l1amil'all~

CLOSE

I'i)..!llrl' I 2
('10'" a VS.\\1
("IU\tCf (!"rolll

JIl ISA\I-l'sl'r',
Program)

I

Checkpoint

II~urc 3R,!

Chcl,,:kpoint

Pro -c,sin!-!

Figure 7, Open/C!ose/End-of-Vo!ume Program Organization Contents

I
I 1~IJrl' 13
(I\\\\., ,I \"S \\1

Clll"ll"! Itrolll

;1 YS \ \I·l '\\.'r·,

Pr\l~r,iJll j

I I~IH': 14
(Ill,,,,,, .1 \'~_\ \\

(aLtI\\~ (1 I"\llll

ih,' OS \S

Sdll'dui...'f)

I

Restart

I'i~url' 3H.2
lh'S\(HI

Pml'c\sing

Program Organization 283

Rl

Open
Parameter
list

tDCB

OPEN
SVC 19

Return
to
Caller

3 II)AOI921
• Issues SVC 19

Figure 8. Open a VSAM Cluster (From an ISAM-User's Program)

284 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for F'Igwe 8

1 IGCOOOlI, IFG0196V, and IFG0198N are OS!VS Open
modules (see OS/VS Open/Close/EO V LogIc for
details).

1 IFGOl921 is an alias for IFGOl92A.

3 IDAOI921 is the ISAM Interface Open module. IDAOl92I
is an alias for IDAOl92A. IDA01921 issues the VSAM
OPEN macro instruction (SVC 19).

4 IDA01921 calls the ISAM DCB exit routine if the user's
program has specified one.

Program Organization 285

RI

Open
Parameter
List

t ACB

NOTE: * indicates that the module calls IDAOl92M for virtual storage.
IDAO 192M is the VSAM Virtual-Storage Manager. It builds the HEB.

Figure 9. Open a VSAM Cluster (From a VSAM-User's Program)

286 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 9

IGCOOOlI, IFG0193A, and IFG0198N are OS/VS Open
modules (see OS/VS Open/Close/EOV Logic for
details).

A IFG0191Y (in Figure IO) XCTLs to IFG0193A to open a
VSAM catalog. Open-processing and return-to-the-caller
continues as shown in this figure.

1 IDAOl92A is the VSAM Open module. It builds the
following VSAM control blocks: BIB, WSHD, Dummy
DEB.

3 IDA0192C calls VSAM Catalog Management (LOCATE)
to retrieve information about the VSAM object being
opened from its VSAM catalog record.

4 IDA0192F opens base, path, and upgrade clusters. It
builds the following VSAM control blocks:

ACB

AMBL

CMB

UPT

VAT

VMT

5 IDA0192V ensures that the required minimum number of
the object's direct-access volumes are mounted.

6 IDA0192D stages (via ACQUIRE) data from mass storage
to a direct-access storage device (staging drive).

7 lDA0192C checks the time stamp.

S IDAOl92B opens VSAM clusters.

9 IDA0192C calls VSAM Catalog Management (LOCATE)
to retrieve volume serial numbers from the object's VSAM
catalog record.

10 lDAOl92Z builds the following control blocks:

AMB DEB

AMDSB EDB

ARDB IRB

lWA

LPMB

11 IDA0192Y builds the:

BUFC lOB

Buffers PLH

RPL

WAX

11 IDA0192W builds the CPA control block.

13 IDAOl92D stages (via a Mass Storage System ACQUIRE)
data from mass storage to a direct-access storage device
(staging drive).

14 Whenever a VSAM Open module detects an error,
lDA0l92P issues a diagnostic message and traces VSAM
control blocks if the Generalized Trace Facility (GTF) is
active.

15 Same as 14.

16 Same as 14.

17 IDAOl92S writes SMF record type 62.

Program Organization 287

OPEN
SVCl9

t Catalog's
ACB

I----.~ See Figure 9

Figure 10. Open a VSAM Catalog (From the OS/VS Scheduler)

288 OIi/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

Notes for FIgure 10

1 IGCOOOlI is an OS/VS Open module.

2 IFG0191X and IFG0191Y are VSAM Catalog Open: ACB
Processing modules. These modules perform special
processing for the catalog's ACB, then transfer control
(using the XCTL macro instruction) to IFG0193A (in
Figure 9).

Program Organization 289

R1

OPEN
SVC 19

Figure 11. Add a String Dynamically

290 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Notes for Figure 11

1 IGCOOlI determines whether OPEN is for a VSAM ACB.

1 IDA0192Y builds control blocks necessary for Record
Management to complete I/O requests: PLH,IOB, PFL,
BUFC, buffer.

3 IDA0192M allocates virtual storage for the requester to
use to build control blocks. IDA0192M builds the HEB.

4 IDA0192W builds a channel program area for the added
string.

S See note for step 3.

Program Organization 291

Rl

Oose

CLOSE -------41
SVC20

Return
to
Caller

3 IDA0200S
• Issues SVC 20

Figure 12. Close a VSAM Cluster (From an ISAM-User's Program)

292 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Notes for FIgure 11

IGC00020, IFG0200V, and IFG0202L are OS/VS Close
modules (see OS/VS' Open/Close/EO V Logic for
details).

1 IFG0200S is an alias for IFGOl92A.

3 IDA0200S is the ISAM Interface Close module. IDA0200S
is an alias for IDA0192A.

Program Organization 293

CLOSE __ ~
SVC20

®--~

Rl

3 IDA0200T

5 IDA0192C
• Issues SVC 26

Oose

See Figure 40

9 IDAOl92C

Figure 13. Close a VSAM Cluster (From a VSAM-User's Program)

J
294 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 13

1 IGCOOO20, IFG0200V, and IFG0202L are OS/VS Close
modules (see OS/VS Open/Close/EO V Logic for
details).

A IFG0200N (in Figure 14) XCTLs to IFG0200V to close a
VSAM catalog or catalog recovery area. Close-processing
and return-to-the-caller continues as shown in this figure.

2 IFG0200T is an alias for IFGOI92A.

3 IDA0200T is the VSAM Close module.

4 IDA0200B closes VSAM clusters.

5 IDA0192C calls VSAM Catalog Management (UPDATE)
to modify statistical informat,ion in th!= object's VSAM
catalog record.

6 IDA0192S writes SMF record(s) type 64.

7 IDA0192D destages (via a Mass Storage System
RELINQUISH) the data from direct-access storage to
mass storage.

S Whenever IDA0200B detects an error, IDA0192P issues a
diagnostic message.

9 When a catalog is being closed, IDA0192C calls VSAM
Catalog Management (LOCATE) to indicate that Close
has finished processing.

to IDA0192P issues a diagnostic message whenever
IDA0200T detects an error.

Program Organization 295

CLOSE __________ ~
SVC20

t Catalog's
ACB

1-------41 See Figure 13

Figure 14. Close a VSAM Catalog (From the OS/VS Scheduler)

296 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FIgure 14

1 IGCOOO20 is an OS/VS Close module (see OS/VS
Open/Close/EO V Logic for details).

2 IFG0200N is the VSAM Catalog Close: ACB Processing
module. It performs special processing for the catalog's
ACB, then XCTLs to IFG0200V (in Figure 13).

Program Organization 297

Rl

TCLOSE
SVC23

...
7' 1 IGCOOO2C

1
2IFG0231T

3 IDA0231T I

Qose
Parameter
List

t ACB

Return
to
Caller

l
.". I IFG0232Z '"

Figure IS. Temporary Close (TYPE-T) of a VSAM Cluster

4 IDA0231B l
S IDAOl92D

I
6 IDA0192C

• Issues SVC 26

l See Figure 40

I
7 IDAOl92S

I
8 IDAOl92P

I
I

9 IDAOl92P I
I

298 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

I

J

Notes for FIgure 15

IGCOOO2C and IFG0232Z are OS/VS CLOSE (TYPE=T)
modules (see OS/VS Open/Close/EO V Logic for
details).

2 IFG02 31 T is an alias for IFGO 192A.

3 IDA023IT is the VSAM CLOSE (TYPE=T) module.

4 IDA023lB is the VSAM CLOSE (TYPE=T) module for
closing clusters.

5 IDA0192D de stages (via a Mass Storage System
RELINQUISH) the data from direct-access storage to
mass storage. If the data was not bound in direct-access
storage, IDA0192D restages (via a Mass Storage System
ACQUIRE) the data from mass storage to direct-access
storage.

6 IDA0192C calls VSAM Catalog Management (UPDATE)
to modify statistical information in the object's VSAM
catalog record.

7 IDA0192S writes SMF record(s) type 64.

8 Whenever IDA0231B detects an error, IDA0192P issues a
diagnostic message.

9 IDA0192P issues a diagnostic message whenever
IDA0231T detects an error.

Program Organization 299

VSAM Catalog
Management
Issues SVC 29
SCRATCH

I~

V

OS/VS DADSM
Determines
Data Space
is Protected

'[\

It

1 SECLOADA

'[\

\V
2IOAOI92G I

NonVSAM
Caller
Issues SVC 19,
OPEN;
SVC 20, CLOSE;
or SVC 55,
End-of-Volume

I~

OS/VS OPEN
Modules

3IFGOl95T I
4IOAOI92G I

5 IOAOl92C
• Issues SVC 26

GENDSP

I See Figure 40 I

I
61OAOl92C

• Issues SVC 26
LOCATE

I See Figure 40

I
I

I

I

Figure 16. Verify a NonVSAM Caller's Authorization to Process Each Data Set in a VSAM Data Space

300 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

.j

L

Notes for FIgure 16

The VTOC contains a format-! (identifier) DSCB to describe
each VSAM data space. The DSCB indicates that the space it
describes is protected and that the caller must provide the
correct password before access is granted.

When a VSAM data space is shared (nonunique), the caller
must provide the correct master password for each data set in
the data space before he is allowed to process the data space.

1 When the caller is the OS!VS DADSM Scratch Routine
and the format-! DSCB identifies a VSA.M data space,
SECLOADA passes control to IDAO!92G. (See OS!VS
Open!Close!EOV Logic for SECLOADA details.)

2 When the caller is authorized (is in key 0 and supervisor
state), IDAOl92G does no further checking.

3 When a utility program issues OPEN, CLOSE, or EOV,
IFGOl95T determines that the caller is other than VSAM
or ISAM-Interface and that the format-! DSCB is
protected. (See OS!VS Open!Close!EOV Logic for
details.)

4 IDAO!92G verifies the caller's authorization to process
the data space.

S IDAOl92C issues SVC 26 (GENDSP) to VSAM (catalog
management) to obtain the dsname of each VSAM data
set in the data space.'

6 IDAO!92C issues SVC 26 (LOCATE) to catalog
management to verify that the caller can supply each
protected data set's master password.

Program Organization 30!

SVC55--~

Return
To
Caller

6 IDA0192C
• Issues SVC 26

Figure 17. VSAM End of Volume (From VSAM Record Management: IDAEOVIF Procedure (in Module IDAOI9R5»

302 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Notes for FJgUI'e 17

IGCOOO5E and IFG055lF are OS/VS End of Volume
modules (see OS/VS Open/Close/EO V Logic for
details).

2 IFG0550Y is an alias It performs special processing for the
VSAM catalog's ACB and is called when EOV is issued
against a VSAM catalog.

3 IFG0557A is an alias for IFGOI92A.

4 IDA0557 A is the VSAM End of Volume module.

S IDA0l92V ensures that the required volumes are mounted
for the VSAM object.

6 IDAOl92C calls VSAM Catalog Management (UPDATE)
to modify information in the object's VSAM catalog
record.

7 IDA0192D stages (via a Mass Storage System ACQUIRE)
new extents to a direct-access storage device (staging
drive).

8 Same as step 7.

9 IDA0192S writes SMF record(s) type 64.

10 IDAOl92C calls VSAM Catalog Management (LOCATE
and UPDATE) to locate and update information in the
object's VSAM catalog record.

11 Whenever a VSAM End of Volume module detects an
error, IDA0192P issues a diagnostic message and traces
VSAM control blocks if the Generalized Trace Facility
(GTF) is active.

Program Organization 303

BLDVRP
or
DLVRP
SVCI9

I--IGCOOO II

2

Figure 18. Build or Delete a VSAM Resource Pool

304 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 18

IGCOOOlI determines whether SYC19 is for BLDYRP or
DLYRP.

2 IDA0192Y builds or deletes control blocks for a VSAM
resource pool: YSRT, WSHD, CPA header, PLHs, BSPH,
BUFCs, buffers. For BLDVRP, it chains the VSRT to the
VAT; for DLVRP, it unchains it.

3 IDA0192M allocates virtual storage for the requester to
use to build control blocks. IDA0192M builds the HEB.

Program Organization 305

Record Management Compendillms

GET (Entry-Sequenced or
Key-Sequenced Data Set)

Figure 20
GET: Direct and
Skip Sequential
Processing

I

Figure 21
GET: Sequential
Processing

I

PUT/ERASE (Entry-Sequenced or
Key-Sequenced Data Set)

Figure 24
PUT
Processing

I GET (Relative Record Data Set)
PUT /ERASE (Relative

Record Data _S_et.;.) __ --.

Figure 22
Obtain the Control Interval
Con taining a Specified Record
and Establish the Position of
the Record in the Control
Interval

Create Time

I
Figure 29
Sequence-Set
Record
Processing:
Build an Entry

Figure 26
Obtain the Nex t
Control Interval

I
I

Figures 30 and 31
Sequence-Set
Record Processing:
Write the Record
(End of Control
Area)

Path Processing Upgrade Processing

Figure 36
Establish Positioning
by Way of the
Alternate Index and
Gain Access to the
Base Cluster

Buffer Management

Figure 38
Regulate the
Ownership and
the Contents of
the I/O Buffers

Figure 37
Upgrade the
Alternate Indexes
in the Upgrade
Set

Figure 23
GET
Processing

Figure 19. Record Management Program Organization Contents

Figure 25
Update/Erase
Processing

Non-Create Time

I
Figure 28
Split a
Control
Area

1
Figures 33 and 34
Update the Index

Figure 27
Split a Control
Interval

l

Figure 35
PUT/ERASE
Processing

Figure 32
Sequence-Set
Record
Processing

Program Organization 307

RO

Request
Type

RI

I tRPL

R14

Return
Address

R15

I t IDA019Rl

R15

Return
Code

GET
BALR R14

Return
to
Caller

/

R15~

1 IDA019Rl

2 IDA019R4

3 IDA019RA
(See Figure 22)

4 IDA019R4
DATARTV

Spanned Record

5 IDA019RT
IDADARTV

6 IDA019RZ
IDAFREEB

7 IDA019RZ
IDAGNXT

Direct GET

8 IDA019R4
RLSEBUFS

9 IDA019RZ
IDAWRBFR

10 IDA019R3

11 IDA019RZ
IDAFREEB

J
12 IDA019RZ

IDAFREEB

13 IDAOl9RP
IDATJXIT

Figure 20. GET: Direct and Skip Sequential Processing (ESDS, KSDS)

I

308 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

J

Notes for FIpre 20

I IDA019Rl is the common Record Management request
module. It verifies that the request is a valid Record
Management macro instruction, then tests the RPL for
keyed or addressed processiBg.

2 When the request requires either keyed or addressed
processing (not a control-interval-processing request),
IDA019R4 selects the correct processing path for either
GET, PUT, or POINT, and for sequential, skip sequential,
or direct processing.

3 When the request is either direct GET or skip sequential
GET, IDA019RA locates the position of the desired data
record in its control interval.

4 DATARTV makes an unspanned data record available to
the caller. It sets the RBA of the data record into the RPL.
If the caller's request is, in locate mode, D AT AR TV
returns a pointer to the record to the caller. If the request
is in move mode, DATARTV moves the data record into
the caller's record area.

S IDADARTV moves all the segments of a spanned record
into the user's area,

6 IDAFREEB frees the buffer.

7 IDAGNXT moves the next segment into a buffer.

S If the request is direct GET and the caller doesn't want to
retain the record's position for subsequent record
processing requests, RLSEBUFS releases the data record's
buffer.

9 If the buffer was changed by a previous update request,
IDAWRBFR rewrites the buffer's control interval into the
data set.

10 IDAOt9R3 builds the required I/O CCW chain and issues
an EXCP macro instruction to rewrite the record on the
direct access device.

It IDAFREEB frees the data buffer.

12 If the request is keyed, IDAFREEB frees the buffer
containing the sequence-set control interval associated
with the data buffer.

13 If the user's EXLST contains an active journal exit
address, IDATJXIT provides the necessary journaling
information for the user's journal exit routine.

Program Organization 309

GET
BALR R14, R

RO

Request
Type

Rl

I tRPL

R14

Return
Address

Rl5

I t IDA019RI

RI5

Return
Code

Return
to
Caller

15

I

I

.".
~

I lDAOl9RI

2 lDAOl9R4 I
3 lDAOl9R4

PLHEXP

Addressed

4 lDAOl9RZ
lDAGRB

Keyed

5 lDAOl9RZ
IDAGRB

6 lDAOl9RZ
IDAGRB

7 IDA019RZ
IDAFREEB

8 IDA019RZ
IDAGNXT

Forward Processing r
9 lDA019R4

ADVPLH

10 IDAOl9RZ
IDAFREEB

II IDAOl9RZ
IDAGNXT

I

Figure 21. GET: Sequential Processing (ESDS, KSDS)

r?
lDAOl9R4
(Continued)
Backward Processing

12 lDA019RV
IDAADVPH

13 lDA019RZ
lDAFREEB

14 lDAOl9RZ
IDAGNXT

15 IDA0l9R4
SCANDATA

16 IDAOl9RA
(See Figure 22)

17 lDA019R4
ADVPLH

Unspanned Record

18 IDA019R4
DATARTV

19 IDA019R4
MOVE KEY

20 IDAOl9RP
IDATJXIT

) Spanned Record

21 IDA019RT
IDADARTV

22 IDAOl9RZ
IDAFREEB

23 IDAOl9RZ
IDAGNXT

24 IDAOl9RP
IDATJXIT

I
I

310 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Notes for Figure 21

1 IDAOl9RI is the common Record Management request
module. It verifies that the request is a valid Record
Management macro instruction, then tests the RPL for
keyed or addressed processing.

2 When the request requires either keyed or addressed
processing (not a control-interval-processing request),
IDAOl9R4 selects the correct processing path for either
GET, PUT, or POINT, and for sequential, skip sequential,
or direct processing.

3 When the request is sequential GET, PLHEXP tests the
status indicators in the placeholder (PLH) to determine if
an exceptional condition occurred:

• If the request is the first request after the data set is
opened, and isn't preceded by a POINT to position to a
starting record:

4 If the request is addressed, IDAGRB reads in the
first data control interval of the data set. IDA019R3
issues the I/O CCW chain required to read the
control interval from the direct access device.

5 If t~e request is keyed, IDAGRB reads in the first
sequence-set control interval. IDA019R3 issues the
I/O CCW chain required to read in the control
interval from the direct access access device.

6 The sequence-set control interval is used to
determine the RBA of the first data control
interval. IDAGRB retrieves the first data control
interval of the key-sequenced data set.

7 If the first control interval of the key-sequenced
data set is empty, IDAFREEB frees its buffer.

8 IDAGNXT obtains the next control interval of the
key-sequenced data set. Steps 7 and 8 are repeated
as often as necessary to obtain a nonempty control
interval of the key-sequenced data set.

• If the end of data condition occurs, PLHEXP sets a
return code and returns to the caller.

• If a read error occurs, ADVPLH skips over the bad
data, resets the PLH so that it points to the next good
data control interval's RBA, and returns to the caller
with a return code set.

• If the previous request encountered a read-exclusive
error (not allowed to read the record because another
user has exclusive control over it), SCANDAT A
searches the index to locate the requested record.

9 If no exceptional conditions have been detected, the PLH
now points to the record most recently processed by the
user. ADVPLH adjusts the PLH so that it points to the
next record (desired by this request) in the buffer.

10 If there are no more records in the buffer (that is, the
record most recently processed by the user is the control
interval's last record), IDAFREEB frees the buffer.

11 IDAGNXT retrieves the next sequential control interval,
unless another buffer already contains the control interval.
The PLH is set to point to the first data record in the
control interval.

12 If no exceptional conditions have been detected, the PLH
now points to the record most recently processed by the
user. IDAADVPH adjusts the PLH so that it points to the
previous record (desired by this request) in the buffer.

13 If there are no more records in the buffer (that is, the
record last processed by the user is the control interval's
first record), IDAFREEB frees the buffer.

14 IDAGNXT retrieves the next sequential control interval
(by descending RBA), unless another buffer already
contains the control interval. The PLH is set to point to
the last data record in the control interval.

15 If the current request is GET-for-update, but the record's
buffer is not under the caller's exclusive control,
SCANDAT A locates the record again to ensure that the
PLH now points to it, even though updates might have
occurred against it. The buffer is now under the caller's
exclusive control.

16 IDA019RA searches the index, if the data set is
key-sequenced, or uses the caller-supplied RBA, if the data
set is entry-sequenced, to determine the record's location
in the buffer.

17 If the placeholder needs to be updated, ADVPLH updates
it after the record has been located.

18 DAT ARTV makes an unspanned data record available to
the caller. It sets the RBA of the data record into the RPL.
If the caller's request is in locate mode, DATARTV
returns a pointer to the record in the caller's RPL. If the
request is in move mode, DAT ARTV moves the data
record into the caller's record area.

19 MOVEKEY saves the record's key in the placeholder.

ZO If the user's EXLST contains an active journal exit
address, IDA TJXIT provides the necessary journaling
information for the user's journal exit routine.

21 IDADARTV moves all the segments of a spanned record
into the user's area.

22 IDAFREEB frees the buffer.

23 IDAGNXT moves the next segment into a buffer.

24 See the note for step ZOo

Program Organization 311

JDAOl9R4 J
~

1 JDAOl9RA J
2 JDAOl9RZ

JDAWAIT

I
3 JDAOl9RB

4 JDAOl9RZ
JDAGRB

, 5 JDA019R3 I

61DAOl9RC

7 JDA019RZ
JDAFREEB

I
8 IDAOl9RZ

JDAFREEB

I
9 IDAOl9RW

IDAFRBA

I
10 JDAOl9RZ

IDASBF

I
II JDAOl9RZ

JDAGRB

I
Figure 22. Obtain the Control Interval Containing a Specified

Record and Establish the Position of the Record in
the Control Interval (ESDS, KSDS)

312 OS/V52 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Notes for FJgUre 22

I IDA019RA locates the position of a desired data record in
a control interval that is in a VSAM Record Management
buffer.

2 If the control interval is being updated by another user,
IDA WAIT waits until the updating is complete.

3 If the data set is key-sequenced, IDAOl9RB searches the
index to find the RBA of the desired data record's control
interval.

.. IDAGRB obtains an index record to search.

5 IDA019R3 issues the I/O CCW chain required to read the
control interval into a buffer, if another buffer doesn't
already contain the control interval.

6 IDA019RC searches the index control interval to locate an
index entry containing a key value equal to or greater than
the search argument passed by IDAOI9RB. IDA019RC
sets a return code to indicate the status of the search, and
a pointer to the requested entry, if found.

7 If IDAOl9RC hasn't found the termination point for the
search (determined by IDAOI9RB), IDAFREEB releases
the buffer containing the just-searched index control
interval. Steps 4 through 7 repeat until the termination
point for the search is reached.

8 If the placeholder doesn't point to the buffer containing
the desired data record, IDAFREEB frees the buffer
currently pointed to by the PLH.

, IDAFRBA determines the RBA of the next sequential (or,
if the request is keyed, the next higher keyed) control
interval.

10 IDASBF releases all buffers (except one) pointed to by the
placeholder-buffers that have been assigned to the
placeholder and available for its use, but are not currently
in use.

11 IDAGRB retrieves the data record's control interval,
located by the previous index search if the data set is
key-sequenced or by the caller-specified RBA value is the
data set is entry-sequenced.

Program Organization 313

I IDAOl9RI

2 IDAOl9RR

Direct or Skip
Sequential

.-------'---...,
3 IDA019RR

IDARRDRL

4 IDAOl9RZ
IDAGRB

Sequential .----_...1-_...,

5 IDAOl9RR
PLHEXP

I

6 IDAOl9RW
IDAABF

7 IDAOl9RZ
IDAGRB

8 IDA019RR
ADVCl

I
I

9 IDAOl9RZ
IDAFREEB

10 IDAOl9RZ
IDAGNXT

Figure 23. GET Processing (RRDS)

----.:".~ II IDAOl9RR
ADVPLH

12 IDA09RR
ADVCI

13 IDAOl9RZ
IDA FREE B

14 IDAOl9RZ
IDAGNXT

IS IDAOl9RR
GETXCTL

16 IDA019RR
IDARRDRL

17 IDAOl9RR
COMGET

18 IDA019RZ
IDAFREEB

19 IDA019RP
IDATJXIT

I

314 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 23

1 IDAOl9Rl is the common Record Management request
module. It verifies that the request is valid and checks for
keyed processing of a relative record data set.

2 IDA019RR selects the processing path for GET, PUT,
POINT, or ERASE and for direct, sequential, or skip
sequential access.

DIrect or Skip Sequential

The search argument (relative record number) is
converted to the RBA of the control interval that contains
it and the offset of the record in the control interval.

3 For skip sequential access, IDARRDRL verifies that the
search argument is greater than the previous one,
indicated by positioning.

4 IDAGRB retrieves the control interval by RBA, and
IDARRDRL sets the PLH pointer to the record.

Sequential

5 For sequential retrieval, positioning must have been
established. Status indicators in the PLH indicate any
exceptional condition, which is handled by PLHEXP:

• For the first request after OPEN, positioning is
implicitly established at the beginning or the end of the
data set (depending on whether processing is to be
forward or backward). Steps 6 through 10 handle this
exceptional condition.

• If the end of the data set (or the beginning, for
backward processing) has already been reached,
PLHEXP sets an error code and returns to the caller.

• If there has been a read error, PLHEXP calls
ADVPLH, which skips over the unreadable control
interval, searches for the next slot that contains a
record, and sets the PLH pointer to the record.

• If the control interval couldn't be retrieved before
because another request had exclusive control of it,
PLHEXP calls GETXCTL to retrieve the control
interval.

6 IDAABF adds buffers to the buffer chain for read-ahead
bl.\ffering.

7 IDAGRB retrieves the first control interval and scans it
for the first slot that contains a record.

8 If the control interval doesn't contain a record, ADVCI
advances to the next control interval, and the next, until it
finds a slot that contains a record.

9 IDAFREEB frees the current data buffer.

10 IDAGNXT retrieves the next sequential control interval.

11 For processing when there is no exceptional condition,
ADVPLH advances to the next slot that contains a record
and sets the PLH pointer to the record.

12 ADVCI advances to the next slot that contains a record.

13 IDAFREEB frees the current data buffer.

14 IDAGNXT retrieves the next sequential control interval.

15 For GET-update, when the buffer isn't already under
exclusive control, GETXCTL retrieves the control interval
with exclusive control of the buffer that contains it.

16 IDARRDRL retrieves the control interval by RBA and
sets the PLH pointer to the first slot that contains a
record.

Common Termination

17 COMGET sets RPL fields for the user, updates statistics,
and releases positioning, if necessary.

18 For a direct request that is not for update, not to have
string position noted, and not in locate mode, IDAFREEB
frees the current data buffer.

19 If the user's EXLST contains an active journal exit
address, IDATJXIT provides the necessary journaling
information for the user's journal exit routine.

Program Organization 315

I IDAOl9RI

2 IDAOl9R4 0 IDAOl9R4

Update/Erase Continued

Insert Unspanned

3 IDAOl9RL Record

(Sec Figure 25)
10 IDAOl9RM

(Sec Figure 25)

Sequential
II IDAOl9R4 Insert (Add)

RLSEBUFS
4 IDAOl9R4

SQICHECK

12 IDAOl9RZ
IDAWRBFR

5 IDAOl9RA
(Sec Figure 22)

13 IDAOl9RZ
IDAFREEB

61DAOl9RZ
IDAGNNFL

14 IDAOl9RP
Entry-Sequenced IDATJXlT
Insert

7 IDAOl9R4
GETINCI Insert Spanned

Record

15 IDAOl9RM
8 IDAOl9RA J

(Sec Figure 22) 16 IDAOl9RT

17 IDAOl9RE

I\.eyed-Direct
Insert

18 IDAOl9RF

91DAOl9RA
(Sec Figure 22) 19 IDAOl9RC

I
20 IDAOl9R5

IDAMVSEG

21 IDAOl9R5
IDAADSEG

Figure 24. PUT Processing (ESDS, KSDS)

316 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Fig1n l4

1 IDA019Rl is the common Record Management request
module. It verifies that the request is a valid Record
Management macro instruction, then tests the RPL for
keyed or addressed processing.

1 When the request requires either keyed or addressed
processing (not a control-interval-processing request),
IDA019R4 selects the correct processing path for either
Gin', PUT, or POINT, and for sequential, skip sequential,
or direct processing.

3 When the request is PUT-update, IDA019R4 verifies that
the previous request was-a GET-for-update. When the
request is either PUT-update or ERASE, IDA019RL
either replaces the old record's contents with updated
information (PUT-update) or removes the old record from
the data control interval.

" When the record is added sequentially to a key-sequenced
data set, SQICHECK ensures that the new record's key is
in the correct sequence.

5 If the caller's previous request didn't establish a position
in the data set, or if the key of the record to be inserted is
greater than the key for the current position, IDA019RA
searches the index to find the correct position for the new
record to be inserted. IDA019RA returns a pointer to the
insertion point for the record in the buffer. This process
occurs only after the data set has been created.

6 When the first record of a data set is being written,
IDAGNNFL obtains an empty buffer to build the control
interval's records in. This process occurs only when the
data set is being created.

7 When the request is a direct or skip-sequential insert into
an entry-sequenced data set, GETINCI ensures that the
last control interval that contains data records is available
to receive the new data record.

8 IDA019RA locates the correct control interval and reads it
into a buffer (if the request is direct).

9 When the request is a direct or skip-sequential insert into a
key-sequenced data set, IDA019RA searches the index to
locate the correct sequence-set and data control interval,
and reads both control intervals into buffers.

10 IDA019RM inserts the record into the buffer at a
previously determined insertion point. IDA019RM builds
the record's RDF and inserts the record into the control
interval, adjusting other records as necessllry.

11 If the request is direct PUT and the caller doesn't want to
retain the record's position for subsequent record
processing requests, RLSEBUFS releases the data record's
buffer.

11 If the buffer was changed by a previous update request,
IDA WRBFR rewrites the buffer's control interval into the
data set. IDA019R3 issues the required I/O CCW chain to
rewrite the record on the direct access device.

13 IDAFREEB frees the buffer when it has been rewritten
into the data set.

14 If the user's EXLST contains an active journal exit
address, IDATJXIT provides the necessary journaling
information for the user's journal exit routine.

15 IDA019RM calls IDAOl9RT for spanned-record insertion.

16 See note for step 15.

17 If the current buffer isn't empty, IDAOl9RE is called to
split the control interval.

18 If the control area hasn't enough free space for the
spanned record, IDA019RF is called to split the control
area.

19 IDA019RC finds the position of the current entry in the
sequence set.

10 IDAMVSEG moves one segment from the user's area to a
buffer.

11 IDAADSEG builds a sequence-set entry for the segment.

Program Organization 317

IDA019R4

I
Old Record Unspanned J

1 IDA019RL

2 IDA019RP
IDATJXIT

r IDA019RS
Continued

Update

3 IDA019RM 13 IDA019RF

4 IDA019RP
IDATJXIT

14 IDA019RC

5 IDA0l9RM 15 IDA019RS
CIFULL IDAMVSEG

6 IDA019R5
IDADRQ

16 IDA019RS
CLEARSEG

7 IDA019RE
(See Figures 26
and 27) 17 IDA019RS

DELSEG

Old Record Spa~ned 18 IDA019RS

8 IDA019RS
IDAADSEG

Erase

9 IDA019RC
19 IDA0l92Z

IDAWRBFR

10 IDA019RS
CLEARSEG

11 IDA019RS
DELSEG

12 IDA019RZ I IDAWRBFR

/
I

Figure 25. Update/Erase Processing (ESDS, KSDS)

318 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 15

IDA019RL removes an unspanned record from a control
interval (ERASE), updates a previously read unspanned
record if the length doesn't change (PUT-update), or, if an
updated record's length is different, erases the record's
contents in the control interval, and calls IDA019RM to
insert the record into the control interval (PUT-update).

2 If a record was erased, IDATJXIT provides the necessary
joumaling information for the user's journal exit routine.

3 If the record is a different size, IDA019RM inserts it.

4 If the control interval must be split (the new information
is greater than the amount of free space in the control
intervaI), the control interval's original records (before the
split) are joumaled. IDA TJXIT provides the necessary
joumaling information for the user's journal exit routine.
data buffer.

5 ClFUL processes the control interval when it is full and its
contents is split (put into two control intervals).

6 The control-interval-split process requires the exclusive
use of the DIW A control block. If another request is using
the DIWA, IDADRQ waits until the DIWA is available.

7 IDA019RE splits the control interval.

See Figure 26 when the control interval is split during data
set creation or during entry-sequenced data set processing.

See Figure 27 when the control interval is split during
key-sequenced data set processing after the data set is
created.

8 IDA019RS erases or updates a spanned record.

9 IDA019RC locates the record's entry in the sequence-set.

10 CLEARSEG gets a buffer, clears it to free space, and
writes it to auxiliary storage.

11 DELSEG removes a segment's entry from the
sequence-set.

12 IDA WRBFR writes the updated sequence-set record.

13 IDA019RF splits the control area if the updated record
has additional segments for which free control intervals
aren't available in the control area.

14 IDA019RC locates the record's entry in the sequence-set.

15 IDAMVSEG moves a segment from the user's area to a
buffer.

16 CLEARSEG clears to free space the control intervals
occupied by segments removed from an updated record.

17 DELSEG removes a segment's entry from the
sequence-set when the updated record has fewer segments
than the original record.

18 IDAADSEG builds entries in the sequence-set for
additional segments in the updated record.

19 IDA WRBFR writes the updated sequence-set record.

Program Organization 319

IDA019RM

I
I IDA019SA

2 IDA019RG
(See Figures 29,
30, and 31

~-----
No Space in
Sequence-Set
Con trol In terval

3 IDA019SA
EOCA

4 IDA019RZ
IDAWRBFR

5 IDA019RK

6 IDA019R5
IDAEOVIF

7 IDA019RG
(See Figure 30)

8 IDA019RK

9 IDA019RP
IDATJXIT

10 IDAOl9RG
(See Figure 29)

I

IDA019SA
Continued

Normal
Processing

11 IDA019RZ
IDAFREEB

12 IDA019RZ
IDAGNNFL

13 IDA019SA
BUILDFS

~-----

Next Key Past End
of Key Range

14 IDAOl9SA
EOCA
(See Steps 4 - 8)

~------

End of Control
Area Reached

15 IDA019SA
EOCA
(See Steps 4 - 8)

Figure 26. Obtain the Next Control Interval: Create Processing and Entry-Sequenced Data Set Processing

320 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for na-e 26

1 IDAOl9SA obtains the next (sequential) control interval
to contain the data records. IDA019SA selects this path
when the data set (key-sequenced~ntry-sequenced) is
being created, or when an entry-sequenced data set is
being processed.

1 IDA019RG builds an index entry (in the sequence-set
cont~ol interval) for the full data control interval.

3 VSAM is designed so that the sequence-set control interval
,can contain an index entry for each data control interval
in a control area. Sometimes, when the keys are very long,
the sequence-set control interval is filled even though
some of the control intervals haven't been loaded with
data records yet. When this occurs, IDA019RG (at step 1)
returns a condition code indicating that the index entry for
the full data control interval hasn't been built. EOCA
writes each unused control interval in the control area
(associated with the full sequence-set control interval) as a
free control interval. EOCA then writes the full data
control interval irito the first control interval of the next
control area.

4 IDA WRBFR writes the full buffer containing the data
control interval into the data set (the first control interval
of the next control area).

5 If the caller is creating the data set and specified the
"speed option", the unused control intervals in the control
area have not been preformatted. IDA019RKpreformats
them-rewrites them as free-space control intervals.

6 If the data set (or key range, if this describes step 14's
EOCA) is out of space, IDAEOVIF calls the VSAM End
of Volume routine to obtain another secondary space
allocation for the data set (or key range).

7 IDA019RG writes the full sequence-set control interval
into the index.

• If the caller specified the "recovery option", IDA019RK
preformats the next control area's control intervals.

9 IDA TJXIT provides journal information about the data
that is going into the new control area for the user's
journal exit routine.

10 IDA019RG builds an index entry to describe the first
control interval in the new control area arid puts it into the
new control area's sequence-set control interval.

11 IDAFREEB frees the buffer that contains the full data
control interval.

11 IDAGNNFL obtains an empty buffer to continue the
caller's data set create proccessing.

13 BUILDFS initializes the buffer as a free-space control
interval.

14 When the caller's key-sequenced data set is divided into
key ranges and the key of the record being added is
greater than the high key of the key range, EOCA writes
the buffer contaiQing the control area's last record into the
control area. EOCA then writes each unused control
interval in the control area as a free-space control interval.
EOCA determines the RBA of the next key-range's first
control area and writes the record into the new control
interval.

15 When the caller's new record exceeds the capacity of the
last control interval in the control area, EOCA determines
the next control area and performs necessary processing
to allow the caller to continue data set create processing.

Program Organization 321

IDA019RM
(Figure 25)

I IDA019RE

f--------
Exceptional
Condition
Processing

2 IDA019RZ
IDAGRB

3 IDA019RZ
lDAWRBFR

9 IDAOl9RF
(See Figure 28)

_----::::~ IDAOl9RE
Continued

Normal
Processing ,---::.......-__ -L..._-,

10 IDAOl9RP
lDATJXIT

II IDA019RP
IDATIJXIT

Figure 27. Split a Control Interval: Key-Sequenced Data Set, NonCreate-Time Processing

322 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Notes for Figure 27

1 IDA019RE divides a control interval's records between
the control interval and a free-space control interval.

2 If the sequence-set record associated with the control
interval has been modified by some other request,
IDAGRB obtains a current copy of the sequence-set
control interval in a buffer.

3 If the data control interval has been modified by another
request before it has been written back to the data set,
IDA WRBFR writes the updated control interval into the
data set.

4 ,If the control interval's control area doesn't contain a
free-space control interval, IDA019RF splits the control
area.

S IDAGNNFL obtains an empty buffer. The buffer is used
to build the new data control interval, using records from
the control interval being split.

IDA019RE distributes the records between the current
control interval (being split) and the new control interval
(in the newly obtained buffer).

6 IDA019RM inserts the data record (the record that
wouldn't fit and caused the control interval split) into the
control interval.

7 IDA019RH builds an index entry for the new control
interval. IDA019RH also puts the entry in the
sequence-set control interval associated with the control
area.

8 If the entry won't fit in the sequence-set control interval,
IDA019RE forces a control area split. IDAFREEB frees
the buffer that was obtained to contain the new data
control interval.

, IDA019RF splits the control area.

10 If the user's exit list contains an active journal exit
address, IDATJXIT provides journaling information
about the control area split and the data records that were
moved from one control interval to another.

11 If the user's exit list contains an active journal exit
address, IDA TJXIT provides journaling information
about the data records that were moved within the control
interval to allow the new data record to be inserted.

12 IDA WRBFR writes the new control interval into the data
set. Of the two control intervals that resulted from the
control interval split, this control interval contains the
records with the highest keys.

13 IDA019RH writes the updated sequence-set record (from
step 17).

14 IDA WRBFR writes the updated (old) control interval into
the data set.

IS IDAFREEB frees the buffer obtained during step 5.
IDA019RE repositions the sequence-set pointers to point
to the data control interval into which the insert was made

16 IDASBF releases all other buffers associated with the
placeholder (PLH).

Program Organization 323

IDA0I9RE
(See Figure 27)

I J
I IDA019RF IDA019RF ~ IDAOl9RF

Continued Continued The Record Insert

r Poin t Is in the
No Space for a New Control Area
New Control Area IDA019SF

Continued 21 IDA019RZ
IDAGRB f------

2 IDA019R5 IDA019RF

IDAEOVIF Continued
13 IDA019RZ

IDAWRBFR
22 IDA019RP 29 IDA019RZ

IDATJXIT IDAFREEB
3 IDAOl9RZ f-------

IDAGRB

14 IDA019RI

Old Control Area's
30 IDA019RZ -------

IDAHLINS
Sequence Set

IDAGRB
Record Was
Incorrectly Split

4 IDA019RK -------
23 IDA019RZ

The Record Is to
Be Added to the

5 IDAOl9SF IDAGNNFL End of the Da ta Set
IS IDA019RZ

IDAABF
31 IDA0I9RM 6 IDA019RZ

IDAFREEB (See Figure 25)

1------- 24 IDA019RZ

Repeat to Copy IDAFREEB

Each Required -------
7 IDAOl9RI

Control Interval

IDANEWRD
into the New
Control Area 25 IDA019RZ 32 IDAOl9RZ

New Key Less IDAWRBFR IDASBF

Than Old Key 16 IDA019RZ
IDAGRB

The Record Is Not ------- to Be Added to the

8 IDAOl9RZ
Repeat to Erase

End of the Data Set
Each "Moved"

IDAWRBFR Control Interval 17 IDA019RZ
IDAGNXT in the Old

Control Area 33 IDA019RZ

9 IDAOl9RV 26 IDA019RZ
IDASBF

IDAGNNFL
18 IDA019RZ

IDAFREEB
34 IDA019RZ 10 IDA019RZ

IDAWRBFR IDAGRB
27 IDA019RZ

New Key Greater IDAFREEB
19 IDA019RZ

Than Old Key
IDAWRBFR

11 IDA019RZ 28 IDA019RZ
IDAWRBFR ------- IDAWRBFR

20 IDA019RI

12 IDAOl9RZ
(See Figure 34)

IDAGRB

Figure 28. Split a Control Area

324 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FIgwe 28

1 IDAOl9RF moves some of a control area's control
intervals into a free-space control area.

1 If a free-space control'area is not available, IDAEOVIF
calls VSAM End of Volume to obtain m.ore space for the
dataset.

3 IDAGRB obtains a current copy of the control area's
sequence set record.

4 IDA019RK preformats the free-space control area.

S If the control area can't be split because it is filled with a
single spanned record, IDA0l9SF builds a new
sequence-set record and clears a data buffer to free space

6 IDAFREEB frees the current sequence-set buffer.

7 IDANEWRD initializes a new sequence-set record.

New Key Less 'fhut Old Key

(The" old" key is the key of the spanned record that fills
the control area.)

8 IDA WRBFR writes the new sequence-set record.

9 IDA0l9RV obtains the sequence-set record that
precedes the sequence-set record of the control area
filled with the spanned record. IDA019RV changes the
sequence-set record's horizontal pointer to point to the
new sequence-set record (step 7).

10 IDA WRBFR writes the sequence-set record (step 9).

New Key Greater Than Old Key

11 IDA WRBFR writes the new sequence-set record.

11- IDAGRB reads the sequence-set record of the control
area filled with the spanned record and changes its
horizontal pointer to point to the new sequence-set
record.

13 IDAWRBFR writes the sequence-set record (step 12.)

14 IDAHLINS changes the second-level index record to point
to the new sequence-set record.

15 IDAABF obtains as many buffers as possible to allow the
'Control Area Split routine to function as smoothly as
possible. The maximum number of buffers obtained is
equal to the number of control intervals to be moved into
the new control area. The buffers are used to ,copy control
intervals from the old control area and rewrite them into
the new control area.

16 IDAGRB obtains a copy of the first control interval that is
to be copied into the new control area.

17 When this sequence is repeated for subsequent control
intervals, IDAGNXT obtains the next sequential data
control interval in the control area until all control
intervals that are to be moved have been processed.

IDA019RF modifies the output RBA value in the control
interval buffer's BUFC, so that the control interval is
written into the new control area.

18 IDAFREEB frees the buffer. The buffer's contents will be
written into the new control area; when it is used again to
contain another control interval.

Steps 17 and 18 are repeated for each control interval in
the old control area that is moved into the new control
area.

19 IDAWRBFR writes all buffers not yet written into-the new
control control area.

20 IDA0l9RI builds a new sequence-set record for the
control area and adjusts other higher-level index records
topoint to the new sequence-set record.

21 IDAGRB obtains a current copy of the old control area's
sequence-set record.

22 If the user's exit list contains an active journal exit,
IDA TJXIT provides journaling information about the
control interval being moved-its old and new RBAs.

If the sequence-set record could not be split at the point
the data was split, some control intervals in the new
control area are removed from the new control area so
that both old and new seqeunce set records are accurate.
These control interval's are rewritten as free-space control
intervals in the new control area; they remain intact in the
old control area. Steps 23 through 25 process this
exceptional condition.

23 IDAGNNFL obtains an empty buffer.
IDA019RF builds a free-space control interval in it.

1-4 IDAFREEB frees the buffer, so that it will update the
control area with a free-space control interval when the
buffer is used next.

25 IDA WRBFR writes all buffers not yet written into the new
control area.

26 IDAGNNFL obtains an empty buffer.
IDA019RF builds a free-space control interval in it. The
free-space control interval replaces each control interval
in the old control area that has been copied into the new
control area.

27 IDAFREEB frees the buffer, so that it will update the old
control area with a free-space control interval when the
buffer is used next. Steps 26 and 27 are repeated until all
control intervals in the old control area that have been
copied are deleted.

28 IDA WRBFR writes all buffers not yet written into the old
control area.

29 If the insert point for the record to be added to the data
set is in the new control interval, IDAFREEB frees the
buffer that contains the old sequence-set control interval.

30 IDAGRB obtains a copy of the sequence-set control
interval associated with the new control area.

31 If {he record is to be inserted at the end of the data set,
IDA019RM inserts the record. No further control area
split processing is performed.

If the record is not to be added to the end of the data set:

32 IDASBF releases all buffers associated with the
placeholder, except the buffers contained the data record's
insert point and the sequence-set control interval.

33 Same as step 32.

34 IDAGRB obtains a current copy of the data control
interval that contains the data record's insert point.

IDA019RF returns to the control interval split routine to
split the control interval and insert the data record.

Program Organization 325

IDA019SA

I

\I

1 IDA019RG

First Time

2 IDA019RN
IDAAQR

3 IDA019R5
IDAEOVIF

4 IDA019RK

5 IDA019RG
INTNEWRC

6 IDA019RZ
IDAGNFL

7 IDA019RG
IDA 1ST

Figure 29. Create-Time Sequence-Set Record Processing:
Build an Entry

326 OSjVS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figwe 29

IDAOl9RG is called by IDA019SA when a key-sequenced
data set is being created.

1 This figure describes the addition of an index entry to the
sequence-set control interval when a data control interval
is full.

2 If IDA019RG is being called for the first time, IDAAQR
obtains a control interval for a sequence-set record.

3 If all allocated space in the data set has been used,
IDAEOVIF obtains another extent for the data set.

4 If the newly obtained extent must be preformatted before
it can be used, IDA019RK preformats it.

5 INTNEWRC initializes the control interval as a
sequence-set control interval.

(; IDAGNFL obtains a buffer for the sequence-set control
interval.

7 IDAIST uses the high key value of the data control
interval to build an index entry in the sequence-set control
interval. The key is front and rear compressed before the
entry is built.

If there is not enough room to insert the index entry in the
sequence-set control interval, IDAOl9RG indicates this
and returns to IDA019SA. The entry is not put in the
seqilence-set record.

Program Organization 327

IDA019SA

1 IDA019RG

Write the
Sequence
Set Record

2 IDA019RJ
IDAWR

3 IDA019RN
IDAAQR

4 IDA019RG
INTNEWRC

5 IDA019RZ
IDAGNFL

6 IDA019RJ
IDAWR

1--------
Update the
Previous
Sequence
Set Record

7 IDA019RJ
IDAR

8 IDA0l9RN
IDEAR

9 IDA019RJ
IDAWR

I
I

___ ~ IDA019RG

, Continued

Update Higher
Level Index
Records

10 IDA019RN
IDAAQR

11 IDA019RJ
IDAR

12 IDA019RG
IDAIST

13 IDA0l9RZ
IDAFREEB

14 IDAOl9RJ
IDAWR

15 IDA0l9RG
INTNEWRC

16 IDA019RZ
IDAGNFL

Figure 30. Create-Time Sequence-Set Record Processing: Write the Record (End of Control Area)

328 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for F1pre 30

I When the control area is full, IDAOl9RG writes its
sequence-set record into the index and initializes a new
sequence-set record for the new control area.

1 IDA WR writes the updated sequence-set record into the
index. This is the sequence-set record associated with the
old control area.

3 IDAAQR obtains the next control interval for a
sequencesett record.

If all allocated space in the data set has been used,
IDAAQR calls IDAEOVIF to obtain another extent for
the data set.

If the newly obtained extent must be preformatted before
it can be used, IDAAQR calls IDA019RK to preform at it.

4 INTNEWRC initializes the control interval as a
sequencesett record.

5 IDAGNFL obtains a buffer for the sequencesett record.

6 IDA WR writes the new sequence-set record with a dummy
index entry-an entry with length ... O and front-key
compression""O.

7 Read obtains a copy of the previously written (from
step 2) sequence-set record.

IDA019RG builds a horizontal pointer entry to allow the
record to point to the newly created sequence-set record.

S IDAER removes the dummy entry from the sequencesett
record.

9 IDAWR writes the updated (previous, from step 7)
sequence-set record into the index. The sequence-set
record now has the "proper" ending entry.

IDAOl9RG adjusts the higher-level index records to
reflect the addition of a new sequence-set record.

10 When a higher-level index record is required, IDAAQR
locates the control interval containing it.

If all allocated space in the data set has been used,
IDAAQR calls IDAEOVIF to obtain another extent for
the data set.

If the newly obtained extent must be preformatted before
it can be used, IDAAQR calls IDAOl9RK to preformat it.

IDA019RG obtains more virtual storage (using
GETMAIN) for another ICWA, if all other ICWAs are
being used, and initializes it.

11 IDAR reads in the higher level index record.

12 IDAIST builds an index entry to describe the sequence-set
index record and puts it into the higher level index record.

13 If the entry won't fit in the higher level record,
IDAFREEB frees the buffer containing the higher level
index record (from step 11).

14 IDA WR writes out the updated higher level index record,
so that the index is always as current as possible. Steps 10
through 14 are repeated to update as many levels of the
index as are required.

15 INTNEWRC initializes a buffer for the new sequence-set
index record. index record.

16 IDAGNFL obtains an empty buffer for the new
sequence-set index record.

Program Organization 329

IDA019RP
ENDREQ J

1\

,
1 IDA019RG

2 IDA0l9RJ
IDAWR

Figure 31. Create-Time Sequence-Set Record Processing:
Write the Record (Closing the Data Set)

330 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Notes for Figure 31

t When the user closes the data set after he creates it,
IDA019RG writes the last sequence-set record into the
index.

2 IDA WR writes the sequence-set record into the index.

Program Organization 331

IDAOl9RE I
11\

,It

I IDA019RH I
2 IDA019RC

I
3 IDA019RH

COMPRS

I
4 IDA019RH

COMPRS

I
5 IDA019RZ

IDAWRBFR

I
Figure 32. NonCreate-Time Sequence-Set Record Processing

332 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

Notes fer FIgIn 32

1 IDA019RH builds an index entry and inserts it in the
proper position in the sequence-set record when a control
interval is split.

2 IDA019RC searches the compressed index entries in the
sequence-set record to locate the insert point for the new
index entry.

3 COMPRS performs rear key compression for the newly
built mdex entry.

4 COMPRS modifies the front and rear key compression of
index entries in the sequence-set record that might require
modification as a result of inserting a new compressed key
entry.

5 IDA WRBFR writes the updated sequence-set record into
the sequence-set.

Program Organization 333

IDA019RF
(See Figure 28)

1
1 IDA019RI

2 IDA019RI
ENTKEY

3 IDA019RI
ENTKEY

4 IDA019RZ
IDAFREEB

5 IDA019RI
NEWRCRD

6 IDA019RN
IDAAQR

7 IDA019RZ
IDAGNFL

8 IDA019RI
IWRITE

9 IDA019RH
(See Figure 32)

10 IDA019RZ
IDAFREEB

I
J

IDA019RI
Continued

11 IDA019RI
GETSREC

12 IDA019RZ
IDAGRB

13 IDA019RI
IWRITE
(See Steps 8 - 10)

Figure 33. Update the Index: Adding to the End of a Key Range or Data Set

334 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

1

J

L

Notes for FIgure 33

IDAOl9RI updates higher level index records when a
control area is split. If the control area being split is at the
end of a key range or data set, this figure describes the
updating sequence.

2 ENTKEY locates and extracts the next to last section
entry from the index record.

3 ENTKEY extracts the last section entry from the index
record.

4 IDAFREEB frees the current index record.

S NEWRCRD builds and initializes a new index record.
index record.

6 IDAAQR obtains a RBA value for the new index record.

If ail allocated space in the data set has been used,
IDAAQR calls IDAEOVIF to obtain another extent for
the data set.

If the newly obtained extent must be preformatted before
it can be used, IDAAQR calls IDAOl9RK to preformat it.

7 IDAGNFL obtains an empty index buffer for the new
index record. When the record is built, it will be written
into the index at the RBA obtained by IDAAQR.

NEWRCRD builds the new index record.

8 IWRITE writes the new index record into the index.

9 IDA019RH writes the index record.

10 IDAFREEB frees the index record's buffer.

11 GETSREC obtains the previous sequencesett record.

12 IDAGRB retrieves the newly written index record.

GETSREC adjusts the index record, removing the last key
entry from the record.

13 IWRITE rewrites the updated index record into the index.

Program Organization 335

IDA019RF
(See Figure 28)

I IDAOl9RI

2 IDA019RJ

t---------
If Split Could
Not Be Made
at Specified
Point

3 IDAOl9RZ
IDAFREEB

4 IDAOl9RI
GETSREC

5 IDAOl9RZ
IDAGRB

6 IDAOl9RI
FINDSP

7 IDAOl9RI
LNEXTE

Split Is Complete.
Make Entry in
Higher Level

8 IDAOI9$B

9 IDAOl9RH
(See Figure 32)

I

~ IDAOl9RI
Continued

Entry Won't Fit
in Index Reco rd

10 IDAOl9RI
FINDSP

II IDAOl9RJ

t--------
If Split Could
Not Be Made
at Specified
Point

12IDAOl9RZ
IDAFREEB

13 IDAOl9RI
GETSREC

14 IDAOl9RZ
IDAGRB

15 IDAOl9RI
LNEXTE

I

~ IDA019RI
Continued

Wri te Index Record
Containing New
Entry

16 IDAOl9RI
IWRITE

17 IDAOl9RH
(See Figure 32)

18 IDAOl9RZ
IDAFREEB

t--------
New High Level
Index Record
Built

19 IDA019R5
IDAEOVIF

t--------
New High Level
Index Record
Needed ...-___ ...L_......,

20 IDAOl9RI
NEWRCRD

21 IDAO! 9RN
IDAAQR

22 IDAOl9RZ
IDAGNFL

Figure 34. Update the Index: Splitting a Control Area (Not at the End of a Key Range or Data Set)

336 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FIgure 34

1 IDAOt9RI updates the higher level index records when a
control area is split. If the control area being split is not at
the end of a key range or data setAis figure describes the
updating sequence.

2 IDA019RJ splits the current sequencesett record.

If the sequence-set record could not be split at the
specified point, steps 3 through 7 adjust the split point so
that it can be split.

3 IDAFREEB. frees the index buffer.

4 GETSREC obtains the sequence-set record from the index
(IDA019RJ destroyed the old copy during its processing.)

5 IDAGRB. retrieves the sequencesett record.

6 FINDSP scans the sequence-set record to locate the split
point.

7 LNEXTE adjusts the split point by one entry. Step 2 is
retried, and steps 3 through 7 repeat, until the
sequence-set record is split.

8 IDA019RB. searches the index to locate the insert point in
the next higher level of the index.

9 IDA0l9RH inserts the new entry in the higher level index
record.

If the entry doesn't fit in the higher level index record,
steps 10 and It attempt to split it.

10 FlNDSP locates the midpoint of the index record entries
in the higher level index record.

11 IDA019RJ splits the index record. If the split could not be
made at the specified point, steps 12 through 15 adjust the
split point so that the record can be split.

12 IDAFREEB. frees the index record's buffer.

13 GETSREC obtains the higher level index record from the
index (IDA019RJ destroyed the copy in the buffer during
its processing).

14 IDAGRB. retrieves the index record.

15 LNEXTE adjusts the split point by one entry. step 11 is
retried, and steps 12 through 15 repeat, until the index
record is split. When the split is correct, steps 8 and 9
insert the entry that would not fit before.

16 IWRITE writes the index record containing the new entry
into the index.

17 IDA019RH writes the index record.

18 IDAFREEB frees the index record's buffer.

19 If a new high-level index record was built by this index
upgrading processing, IDAEOVIF updates the catalog
information for the index.

20 If a new high-level index record is needed, NEWRCRD
obtains a RBA and buffer for the record. NEWRCRD
builds the new record and does steps 16 through 19 to
write the record and adjust the index's catalog
information.

21 IDAAQR obtains a RBA value for the new high-level
index record.

If all allocated space in the data set has been used,
IDAAQR calls IDAEOVIF to obtain another extent for
the data set.

If the newly obtained extent must be preformatted before
it can be used, IDAAQR calls IDA019RK to preformat it.

II IDAGNFL obtains an empty index buffer for the new
index record. When the record is built, it will be written
into the index at the RBA obtained by IDAAQR.

Program Organization 337

I IDAOl9RI

2 IDAOl9RR

3 IDAOl9RQ ,n IDA019RQ ~ IDA019RQ

Update or Erase Continued Continued

Non Create

4 IDA019RZ
15 IDA019RQ

27 IDA019RZ
IDAWRBFR

PUTSQNCR
IDAWRBFR

16 IDA019R5
IDADRQ

5 IDA019RZ 28 IDA019RZ
IDAFREEB IDAFREEB

17 IDAOl9RQ
GETSPACE

6 IDA019RP 29 IDA019RZ
IDATJXIT IDASBF

------- 18 IDA019RZ

Insert IDAFREEB
30 IDA0I9RP

7 IDA019RQ IDATJXI7

PUTNONSQ

19 IDA0I9RZ
IDAGNXT

8 IDA019RR
IDARRDRL

20 IDA019RZ
PUTNONSQ

9 IDA019RQ
RETSPACE

Create

10 IDA019RZ 21 IDA019RQ

IDAGNNFL PUTSQCRE J
22 IDA019RQ

GETSPACE

11 IDA019RQ
PUTSQIST

23 IDA019RZ
IDAFREEB

12 IDA019RW
IDAABF

24 IDA019RZ
IDAGNNFL

13 IDA019RR
IDARRDRL

25 IDA019RZ
IDAGNX7

14 IDA019RZ
IDAGNNFL

26 IDAOl9RZ

I IDAGRB

Figure 35. PUT/ERASE Processing

338 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 35

IDA019Rl is the common Record-Management request
module. It verifies that the request is valid and checks for
keyed processing of a relative record data set.

1 IDA019RR selects the processing path for GET, PUT,
POINT, or ERASE and for direct, sequential, or skip
sequential access.

Update or Erase

PUT-update or ERASE requires that a GET-update was
previously issued. Therefore, the control interval that
contains the record to be updated or deleted is in the data
buffer, and the PLH points to the record.

3 For PUT-update, IDA0l9RQ lays the updated record over
the old record. For ERASE, IDAOl9RQ fills the slot with
binary zeros and changes the RD F to indicate an empty
slot.

4 For a direct request that is not to have string position
noted, IDA WRBFR writes the dllt'l buffer to the control
interval.

5 IDAFREEB frees the data buffer.

6 If the user's EXLST contains an active journal exit
address, IDATJXIT provides the necessary journaling
information for the user's journal exit routine.

lnsert

The slot indicated by the search argument or by current
positioning must be empty. If it isn't, the record to be
inserted isn't inserted, because of duplicate record.

7 PUTNONSQ locates the control interval for a direct or
skip sequential request. The search argument (relative
record number) is converted to the RBA of the control
interval that contains it and the offset of the record in the
control interval.

8 For skip sequential access, IDARRDRL verifies that the
search argument is greater than the previous one,
indicated by positioning. It retrieves the control interval
by RBA and sets the PLH pointer to the indicated slot.

9 If the indicated relative record number is in a control
interval beyond the last control interval currently in the
data set, GETSPACE calls IDAOl9RK to preformat the
next control area. If processing is for creation (the data set
was empty when opened) with the SPEED option, the rest
of the control intervals in the current control area are
preformatted before a new control area is preformatted.
Control intervals are preformatted until the one that
contains the indicated relative record number has been
preformatted. GETSPACE calls IDAEOVIF when
additional space is needed for control areas.

10 To insert the record into a slot in a control interval not
currently in the data set, no control interval is read.
IDAGNNFL gets an empty data buffer and formats it
with empty slots.

11 PUTSQIST locates the first control interval of the data set
when the first request after OPEN is sequential.

12 IDAABF adds additional buffers to the buffer chain for
read-ahead buffering.

13 If processing is not for creation (that is, the data set
contained formatted control areas when opened),

IDARRDRL retrieves the first control interval and sets
the PLH pointer to the first slot in the control interval.

14 If processing is for creation, IDAGNNFL gets an empty
data buffer and formats it with empty slots.

NonCreate

15 PUTSQNCR processes sequential requests when
processing is not for creation. If the previous request was
POINT with KGE (key greater than or equal), the control
interval identified by the search argument of the POINT is
retrieved. Otherwise, PUTSQNCR advances the PLH
pointer to the next slot. If there are no more slots in the
control interval, the next control interval is retrieved.

16 When additional space is allocated, IDADRQ gets
exclusive use of the data set for extension.

17 When the next control interval is in the next control area,
GETSPACE calls IDAOl9RK to preformat the next
control area. If additional space is needed for the next
control area, GETSPACE calls IDAEOVIF to allocate the
space and preformat the first control area in it.

18 When there are no more slots in the current control
interval, IDAFREEB frees the current data buffer.

19 IDAGNXT retrieves the next sequential control interval.

20 If the previous request was POINT with KGE,
PUTNONSQ retrieves the control interval identified by
the search argument of the POINT.

Create

11 PUTSQCRE processes sequential requests when
processing is for creation. PUTSQCRE advances the PLH
pointer to the next slot in the current data buffer.

22 When the next control interval is in the next control area,
GETSPACE calls IDAOl9RK to preformat the next
control area. If additional space is needed for the next
control area, GETSPACE calls IDAEOVIF to allocate the
space. Unless the SPEED option is indicated, IDAEOVIF
preformats the first control area in the newly allocated
space.

23 When there are no more slots in the current control
interval, IDAFREEB frees the current data buffer.

24 When the next control interval hasn't been preformatted,
IDAGNNFL gets an empty data buffer and formats it
with empty slots.

25 When the next control interval has been preformatted and
the RECOVERY option is indicated, IDAGNXT retrieves
the next control interval and puts it in the data buffer.

26 When the next control interval has been preformatted and
the SPEED option is indicated, IDAGRB retrieves the
next control interval by RBA and puts it in the insert
buffer. Using the insert buffer causes an update-write
channel program to be used when the control interval is
written.

IDAOl9RQ moves the record to be inserted into its slot,
unless the slot already contains a record. The record to be
inserted is considered a duplicate.

Program Organization 339

Notes for Figure 35 Continued

27 For a direct request that is not to have string position
noted, IDA WRBFR writes the data buffer to the control
interval.

28 IDAFREEB frees the data buffer.

29 For a direct request that is not to have string position
noted, where the current data buffer is the insert buffer,
IDASBF writes the insert buffer and removes it from the
normal buffer chain.

30 If the user's EXLST contains an active journal exit
address, IDATJXIT provides the necessary journaling
information for the user's journal exit routine.

Program Organization 341

1 IDA019Rl I
2 IDA019RX I J

3 IDA019R4 I
I 4 IDA019RX I

I
I

5 IDA019R4 I
I

I
Figure 36. Path Processing

342 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 36

IDA019Rl checks the user's RPL for validity and assigns a
PLH to it. It detects a request for access to a base cluster
by way of an alternate index.

2 IDA019RX builds an inner RPL to be used in retrieving
the alternate-index record needed for the request.

3 IDA019R4 retrieves the alternate-index record needed for
the request.

4 If IDA019R4 detected that the user's data area was too
small for the alternate-index record, IDA019RX increases
the size of the area.

IDA019RX builds an inner RPL to be used for the request
for access to the base cluster.

S IDA019R4 issues the request for access to the base cluster.

IDAOt9RX transfers any return code from the inner RPL
to the user's RPL.

Program Organization 343

I IDA019R4

2 IDA019RU I
r 3 IDA019R4 I

I

4 IDA019RU I
IS IDA019R4 I

I

Figure 37. Upgrade Processing

344 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Notes for FIgure 37

1 For a PUT or ERASE, when there is an upgrade table
(UPT)-which indicates that the base cluster has an
upgrade set, IDAOl9R4 calls IDA019RU for upgrade
processing.

2 For each alternate index in the upgrade set, IDA019RU
determines whether the PUT or ERASE requires an
alternate-index record or a pointer in an alternate-index
record to be added or removed.

3 For each alternate index that requires upgrading,
IDA019R4 does the I/O to accomplish upgrading.

If each alternate index was upgraded successfully,
IDA019R4 does the I/O for the PUT or ERASE.

4 If the I/O for the PUT or ERASE failed, IDA019RU
backs out (undoes) the upgrading for each alternate index.

5 For each alternate index whose upgrading was backed out,
IDA019R4 does the I/O to accomplish backing out.

Program Organization 345

I IDAOl9RZ ~
IDAOl9RZ

1

r? IDAOl9RZ
Continued Continued

Without -------
Shared Resources

14IDAOl9R2

1

1

IDAGRB
With

2 IDAOl9R2 Shared Resources
IDAFREEB

1
lIS IDAOl9RZ

29IDA0l9RY

l 1

IDAWAIT IDAFREEB
3 IDAOl9RZ

IDAWAIT I
I 116 IDAOl9RV

30IDAOl9RY

1

I I
IDARVRSI IDAWRBFR

4IDAOl9RW
IDAFRBA I 31 IDAOl9RP

I [171DA019R3
IDATJXIT

I
S IDAOl9RV

1

I [
IDARVRSI I 32 lDAOl9R3

I 18IDAOl9R2 I
T

I 6IDAOl9R3 I IDAGNFl
33 lDAOl9RZ

I I IDAWAIT

19 lDAOl9R2

I
T

1

IDAGNNFl 34 IDAOl9R5
7 IDAOl9R2

IDAWRBFR 1
120 lDAOl9RZ

1 1

IDAWAIT
8IDAOl9RZ 35 IDAOl9R5

IDAWAIT I IDAEXEX

I I 21 IDAOl9R3 T
I 9IDAOl9R3 I I 36 IDAOl9RP

I IDATJXIT

122 IDAO I 9R2

I
10 IDAOl9RZ

I
IDAWRBFP T

IDA WAIT I
I 123 IDAOl9RZ 37 IDA0I9RY

I IDA WAIT IDASBF

II IDAOl9R2

I
I 38 IDAOl9RY

IDASBF I IDAWRBFR

I
12 IDA0I9R2

I
24 IDAOl9R2

1

I
lDAWRBFR IDAGNXT

Continued T
I 125 lDA0I9RZ

I
IJ IDAOl9RZ

I
IDAWAIT

IDAWAIT I
I I 26 IDAOl9R3

I
I

Note: In some steps. 27 IDAOl9R2 -1 external procedures of lDAEXCl
IDA0I9RZ are indicated
under IDAOl9R2 or I IDA0I9RY. to which
IDAOl9RZ is the interface.

28 IDAOl9RW
IDAGWSGW

I

Figure 38 (Part I of 3). Buffer Management

346 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FJguI'e 38 (Part 1 of 3)

1 IDAOl9RZ is entered for all frequently used Buffer
Management functions. It sets a code in a register that
indicates the requested function. For requests without
shared resources specified, it calls IDAOI9R2; for requests
with shared resources specified, it calls IDAOI9RY. Some
procedures (such as IDAFREEB) are literally part of
IDAOI9RZ, but their processing actually takes place in
IDAOl9R2 or IDA019RY. (For example, in this figure,
IDAFREEB is shown as a procedure of both IDA019R2
and IDAOI9RY.)

Without Shared Resources

2 IDAFREEB makes an index or insert buffer available for
reassignment. For sequential retrieval, when IDAFREEB
frees a data buffer, it initiates read-ahead buffering if
enough free buffers are available for it.

3 For read-ahead buffering, IDA WAIT lets any previously
started I/O finish.

4 IDAFRBA determines the RBA of the next control
interval.

S When one or more of the RBAs in the I/O chain are not
in ascending sequence, IDARVRSI puts them in
ascending sequence.

6 IDA019R3 (I/O Management) issues I/O for read-ahead
buffering.

7 IDA WRBFR writes the buffer(s) in the current I/O chain.

8 IDA WAIT lets any previously started I/O finish.

9 IDAOl9R3 (I/O Management) issues I/O for the current
chain.

10 IDA WAIT lets the I/O started in step 9 finish.

11 IDASBF moves buffer(s) from the I/O chain back to the
buffer pool.

12 Before IDASBF moves a buffer back to the buffer pool,
IDA WRBFR ensures that no writes are pending against
the buffer.

13 IDA W AIT lets any I/O pending against the buffer finish.

14 IDAGRB reads an index or a data control interval.

15 IDA W AIT lets any previously started I/O finish.

16 IDARVRSI puts in ascending sequence any RBAs in the
I/O chain that are out of order.

17 Unless the index or data control interval is already in the
buffer pool, IDA019R3 (I/O Management) issues I/O to
read it.

18 IDAGNFL supplies a work buffer for index processing or
for a control-interval split.

19 IDAGNNFL supplies an empty data buffer for sequential
output processing.

20 IDA WAIT lets any previously started I/O finish.

21 When enough buffers are already flagged for output,
IDAOl9R3 (I/O Management) issues I/O to write them.

22 If the current buffer's contents have been modified,
IDA WRBFR write it.

23 IDA WAIT lets any I/O pending against the buffer finish.

24 IDAGNXT ensures that the next data control interval has
been read and provides a pointer to the buffer that
contains it.

2S IDA W AIT lets any pending I/O finish,

26 IDAOl9R3 (I/O Management) issues I/O to read a buffer
that was not read previously because another request had
exclusive control of it.

27 IDAEXCL obtains exclusive control of a control interval
identified by RBA.

28 IDAGWSGW obtains an empty data buffer from the
current I/O chain.

With Shared Resources

29 IDAFREEB makes a buffer available for reassignment.

30 IDA WRBFR writes a buffer.

31 If the user's EXLST contains an active journal exit
address, IDATJXIT notifies the journal exit routine of an
impending write.

32 IDAOl9R3 (I/O Management) issues I/O for the write.

33 IDA WAIT lets I/O for the write finish.

34 If an I/O error occurred, IDAOl9R5 builds an error
message.

35 If an I/O error occurred and the AMB contains an
exception exit address, IDAEXEX passes control to the
exception exit routine.

36 If an I/O error occurred and the user's EXLST contains
an active journal exit address, IDATJXIT passes control
to the journal exit routine.

37 IDASBF frees the current buffer.

38 If the buffer's contents have been modified, IDA WRBFR
writes it.

Program Organization 347

IDA019RZ r- IDA019RZ
Continued Continued

39 IDA019RY 52 IDA019RY
IDAGRB IDAWRTBF

40 IDA019R5 53 IDA019R5
IDADRQ IDADRQ

41 IDA019RY 54 IDA019RY
READBFR IDAWRBFR

42 IDA019R3

43 IDA019RZ 55 IDA019RY
IDAWAIT IDASCHBF

56 IDA019R5

44 IDA019R5
IDADRQ

45 IDA019RP
IDATJXIT

57 IDA019RY
IDAMRKBF

46 IDA019R5
IDAEXEX

58 IDA019RY
IDAGWSEG

59 IDA019RY
IDAWRBFR

47 IDA019RY
IDAGNFL

Wait Rou tine

48 IDA019RY 60 IDA019RZ
IDAGNNFL IDAWAIT

49 IDA019RY
IDAGNXT

50 IDA019RW
IDAFRBA

51 IDA019RY
IDAGRB

Figure 38 (Part 2 of 3). Buffer Management

348 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 38 (Part 2 of 3)

39 IDAGRB reads an index or a data control interval.

40 If the buffer is already being read, IDADRQ suspends
processing for the current request.

41 Unless the index or data control interval is already in the
buffer pool, READBFR reads it.

42 IDA019R3 (I/O Management) issues I/O for the read.

43 IDA WAIT lets the I/O started in step 42 finish.

44 If an I/O error occurred, IDA019R5 builds an error
message.

45 If an I/O error occurred and the user's EXLST contains
an active journal exit address, IDATJXIT passes control
to the journal exit routine.

46 If an I/O error occurred and the AMB contains an
exception exit address, IDAEXEX passes control to the
exception exit routine.

47 IDAGNFL supplies a work buffer for index processing or
for a control-interval split.

48 IDAGNNFL supplies an empty data buffer for sequential
output processing.

49 IDAGNXT ensures that the next data control interval has
been read and provides a pointer to the buffer that
contains it.

50 IDAFRBA determines the RBA of the next control
interval.

51 IDAGRB obtains the control interval.

52 IDAWRTBF processes a WRTBFR macro to write the
buffer(s) indicated by the caller.

53 If any of the buffers to be written are being used by
another request, IDADRQ suspends processing for the
current request until the other request makes the buffers
available.

54 IDA WRBFR writes the buffers.

55 IDASCHBF processes a SCHBFR macro to search the
buffer pool for the RBA indicated by the user.

56 If a buffer contains the indicated RBA but is in the process
of having the control interval read into it, IDADRQ
suspends processing for the current request until reading is
finished.

57 IDAMRKBF processes a MRKBFR macro to mark a
buffer to be released or for output.

58 IDAGWSGW obtains an empty data buffer from the
current I/O chain.

59 If the buffer's contents have been modified, IDA WRBFR
writes it.

60 If the RPL specifies synchronous and W AITX, exit to the
UP AD routine. If the ECB is still not posted for a
synchronous request, IDA WAIT issues aWAIT macro for
the I/O to finish. For an asychronous request, IDA WAIT
sets a flag for the I/O Manager's Asynchronous Routine to
pass control to IDA WAIT after the I/O is finished.

Program Organization 349

61 IDA019RW
r-? IDA019RW

Continued

Routines Used
Infrequently 72 IDA019RZ

62 IDA019RW
IDAWRBFR

IDAABF

73 IDA019RV

63 IDA019RW
IDAAIBF

74 IDA019RZ
IDAGRB

64 IDA019RW
IDAGWSGW

75 IDA019R3

65 IDA019RZ
IDAWRBFR

76 IDA019RZ
IDAWAIT

66 IDA019RW
IDAFRBA

67 IDA019RZ
IDAWRBFR J

68 IDA019RZ
IDAGRB

69 IDA019RC

70 IDA019R3

71 IDA019RZ
IDAWAIT

I
I

Figure 38 (Part 3 of 3). Buffer Management

3S0 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 38 (Part 3 of 3)

61 IDAOl9RW receives requests for Buffer Management
functions that are used only infrequently.

62 For processing without shared resources, IDAABF adds
buffers to a string's I/O chain to shorten processing time.

63 For processing without shared resources, IDAAIBF adds
the insert buffer to a string's I/O chain for a control-area
split or for updating or inserting a spanned record.

64 For processing without shared resources, IDAGWSGW
locates empty buffer(s) in the string's I/O chain so that a
spanned record can be inserted or lengthened (with
additional segments) without using buffers that are being
used for read-ahead buffering.

65 IDA WRBFR writes empty buffers whose contents have
been modified.

66 IDAFRBA determines the RBA of the next control
interval.

67 When the next RBA in sequence is in the next control
area, IDA WRBFR prevents subsequent repositioning to a
preceding control area for writing.

68 For processing with shared resources, IDAGRB reads the
index control interval that contains the current
sequence-set record.

69 When sequence-set pointers become invalid (because of
the control-interval split or processing with shared
resources), IDAOl9RC searches the sequence set for the
current key.

70 For processing without shared resources, IDAOl9R3 (I/O
Management) issues I/O to read a sequence-set record.

71 For processing without shared resources, IDA WAIT lets
the I/O started in step 70 finish.

72 When the next RBA in sequence is in the next control
area, IDA WRBFR prevents subsequent repositioning to a
preceding control area for writing.

73 For backward processing, IDA019RV obtains the
sequence-set record preceding the current sequence-set
record.

74 For processing with shared resources, IDAGRB obtains
the next sequence-set record.

75 For processing without shared resources, IDAOl9R3 (I/O
Management) issues I/O to read the next sequence-set
record.

76 IDA WAIT lets the I/O started in step 75 finish.

Program Organization 3S 1

CHKPT ___ _.

SVC 63

Return to
~ __ ~ CH KPT Caller

SVC 63 J
Figure 38.1 Checkpoint Processing

352 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 38.1

1 IGCOOO6C and IGC0206C are VS2 Release 1.7 checkpoint
modules described in OS/VS2 Release 1.7
Checkpoint/Restart Logic.

2 IGC0206C loads and branches to IDAOC06C to save
VSAM control block information.

3 IGCOQ06C is a VS2 Release 1.7 checkpoint module
described in OS/VS2 Release 1.7 Checkpoint/Restart
Logic. It frees the VSAM VCRWA and all VCRT's if they
exist.

4 IGCOS06C is a VS2 Release 1.7 checkpoint module
described in OS/VS2 Release 1.7 Checkpoint/Restart
Logic.

Program Organization 353

IEFRSTRT
SVC 52

2
IGCOA05B

Figure 38.2 Restart Processing

Return to
I---~'CHKPT Caller

SVC 63

354 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Notes for Figure 38.1

IGCOOO5B and IGCOT05B are VS2 Release 1.7 restart
modules described in OS/VS2 Release 1.7
Checkpoint/Restart Logic.

1 IGCOA05B loads and branches to IDAOAOSB.

3 IDAOA05B is the VSAM restart module. It restores
VSAM control blocks.

4 IDAOI92M, the VSAM Virtual Storage Manager, is called
to acquire storage for PFL's.

5 IDAOBOSB is the VSAM restart module second load. It
does data set repositioning and/or verification.

6 IGCOV05B is a VS2 Release 1.7 restart module described
in OS/VS2 Release 1.7 Checkpoint/Restart Logic.

Program Organization 355

J

Catalog MII1IIIIement Compe1Uliums

Figure 40
VSAM Catalog
Management
Processing

I
r I

Figure 41 Figure 50

LOCATE/ Figure 42 VSAM Catalog

Extract UPDATE/Modify Management

Processing Processing Services
Processing

I
I I I 1 1

Figure 43 Figure 44 Figure 45
Figure 46

Figure 47 Figure 48

UPDATE- Reusable Insert a New
Modify Field

Remove a Set Move a Set of Figure 51

Extend Data Set Set of Fields
Data (IGGPALT2

of Fields Fields from a DEFINE

Processing Processing (IGGPADGO
Processing)

(IGGPDEL2 Catalog Record Processing

Processing) Processing) to its Extension

I I
I

Figure 49
Alloca ting Part
of a Data Space's
Space (IGGPSALS
Processing)

Figure 39, Catalog Management Program Organization Contents

Program Organization 357

CATLG ___ ~
SVC 26

Rl

CTGPL

Return
to
Caller

I

I

1 IGC0002F

2 IGGOCLAI

3 IGGOCLC9

I

4 IGGOCLAB
IGGPACDV

5 IGGOCLAC
IGGPMCO

6 IGGOCLAD
IGGPMC02
• Issues SVC 19

See Figure 10

7 IGGOCLAT
IGGPCDVR
(See Figure 50)

8IGGOCLAY
IGGPSCNC

J
9IGGOCLAH

IGGPSCAT
BI

I
10 IGGOCLBM

IGGPCKAU
AZ, BI

11 IGGOCLB6
IGGPWTSO

I

Figure 40. VSAM Catalog Management Processing

I

358 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

r IGGOCLAB
IGGPACDV
Continued

UPDATE .---___ -.1.._---.

12IGGOCLAV
IGGPUPD
(See Figure 42)

SUPER-LOCATE

131GGOCLAM
IGGPSLOC
AZ, BI

GENDSP ,--__ ---J"------.
14 IGGOCLBJ

IGGPGUDS
AZ,BI

LOCATE .---___ --L_---.
15 IGGOCLAZ

IGGPLOC
(See Figure 41)

LSPACE I ,-----1-.----.,
16 IGGOCLBK

IGGPLSP
AZ, BI, BV

I

J

J

Notes for Flgwe 40

1 IGCOOO2F is an OS/VS Catalog Management module (see
OS/VSCatalog Management Logic for details).

2 IGGOCLAI is the VSAM Catalog Management transient
load module.

3 IGGOCLC9 builds the CCA for the request and perlorms
initial and final VSAM Catalog Management processing.

4 IGGP ACDV is the VSAM Catalog Management Common
Processing procedure.

5 When the VSAM master catalog is not open, IGGPMCO
is called to open it.

6 IGGPMCO and IGGPMC02 initialize an ACB to
describe the VSAM master catalog, then issue SVC 19 to
open it.

7 When the CTGPL indicates a VSAM Catalog
Management Services request (DEFINE, ALTER,
DELETE, or LISTCAT), the VSAM Catalog
Management Services: Common Processing procedure
(IGGPCDVR) is called.

8 IGGPSCNC checks and initializes the CTGFLs for the
other types of Catalog Management requests (LOCATE
and UPDATE).

9 IGGPSCAT retrieves the catalog record identified by the
CTGPL (the VSAM object's base catalog record).
Extensions to the base record are retrieved as they are
needed.

BI: IGGPGET issues GET to retrieve catalog records.

10 IGGPCKAU verifies the caller's authorization to perlorm
the CTGPL's request.

AZ: IGGPEXT locates the password information required
by IGGPCKAU.

BI: IGGPGET issues GET to retrieve the object's catalog
record that contains its password set of fields (group
occurrence) .

11 When the user is on a TSO terminal, IGGPWTSO issues
requests to the TSO terminal for the required password.

12 When the caller's request is UPDATE, IGGPUPD
receives control. The caller may request that his VSAM
data set be extended (IGGPUPDE), that it be reset
(IGGPRUS), or it be updated (IGGPUPD). If the request
is for an update, only fixed-length record fields should be
changed.

13 When the caller's request is SUPERLOCATE,
IGGPSLOC processes it. SUPERLOCATE obtains the
volume serial number of each volume that contains a part
of the cluster's data set and index.

AZ: IGGPEXT locates the volume information sets of
fields (group occurrences).

BI: IGGPGET issues GET to retrieve catalog records as
required.

14 The caller's GENDSP request is processed by either
IGGPGDSP (request for a nonunique data space) or
IGGPGUDS (request for a unique data space). GENDSP
obtains the control interval members of the catalog
record(s) of each object (cluster, data set, index, and
catalog) contained in a YSAM space identified by a
DSNAME.

AZ: IGGPEXT locates the data space group set of fields
(group occurrence) that describes the data space and the
data set directory entry sets of fields that point to the
catalog records of VSAM objects in the volume's data
space.

BI: IGGPGET issues GET to retrieve volume catalog
records as required.

15 When the caller's request is LOCATE, IGGPLOC
processes it. The caller is allowed to retrieve fixed-length
and (entire) variable-length catalog record fields.

16 When the caller's request is LSPACE, IGGPLSP processes
it.

AZ: IGGPEXT locates the data space group sets of fields
(group occurrences) that describe each shared
(nonunique) data space on the volume.

BI: IGGPGET issues GET to retrieve volume catalog
records as required.

BY: IGGPSMFL writes SMF record type 69-YSAM
Data Space Defined or Deleted.

Program Organization 3S9

From Figure 40
IGGOCLAB
IGGPACDV

I IGGOCLAZ
IGGPLOC

41GGOCLAZ
IGGPSCNF
B3

S IGGOCLAZ
IGGPUPGD
BA, BI

6IGGOCLBA
IGGPTSTS

7IGGOCLBA
IGGPGVAL
B5 .---___ ...L...._...,

8IGGOCLBA
IGGPGREC
BI, B3

9IGGOCLBA
IGGPGVAL

IIIGGOCLBA
IGGPTCMP

12IGGOCLAZ
IGGPLOC2

13IGGOCLBA
IGGPGVAL
(See 6-9)

14IGGOCLAZ
IGGPSHIN

IS IGGOCLBA
IGGPGREC
BI, B3

lO IGGOCLBA
IGGPCKLC

I

Figure 41. LOCATE/Extract Processing

From Another
Catalog
Management
Procedure

2 IGGOCLAZ
IGGPEXT
B5

3 IGGOCLAY
IGGPSCNC

41GGOCLAZ
IGGPSCNF

360 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Notes for Figure 41

IGGPLOC retrieves an entire (fixed-length or
variable-length) catalog record field's contents for the
caller (other than an internal OS/VS2 catalog
management procedure).

2 IGGPEXT retrieves a fixed-length, variable-length, or
part of a variable-length catalog record field's contents for
the caller (other than an OS/VS2 catalog management
procedure).

If the specified filed name indicates a "derived
information" field, IGGOCLBS processes the field name.

3 IGGPSCNC initializes CTGFLs with dictionary
information required to find the field in the catalog record
and ensures that the CTGFLs are valid.

4 IGGPSCNF (steps 6 through 13) processes each CTFGL
addressed by the caller's CTGPL to retrieve all catalog
information that satisfies the caller's request.

B3: IGGPSMFG makes a copy of the base catalog record
in case it is updated later by a modify call.

5 IGGPUPGD retrieves the associated upgrade entry record
if this is an upgrade field name.

BA: IGGPGV AL retrieves the connecting association to
the upgrade entry from the current base entry.

BI: IGGPGET issues GET to retrieve connecting entries
to the upgrade entry, as well as the upgrade entry itself.

6 When the CTGFL (addressed by the caller's CTGPL)
addresses CTGFLs-for-tests, IGGPTSTS (steps 6 through
10) processes each CTGFL-for-tests to identify each set of
fields (group occurrence) that satisfies the test conditions.

7 IGGPGVAL retrieves one catalog-record-field's value.

If the specified filed name indicates a "derived
information" field, IGGOCLBS processes the field name.

I If more set of fields pointers (group occurrence pointers)
are in an extension of the base catalog record, or

If the specified set of fields pointer (group occurrence
pointer) contains the control interval number of an
extension record:

IGGPGREC retrieves the required extension record.

BI: IGGPGET issues GET to retrieve the catalog record.

B3: IGGPSMFG makes a copy of the catalog record in
case it is updated later.

9 IGGPLV AL locates the field within the catalog record.

10 IGGPCKLC verifies that the field exists (ie. the requested
field is in the catalog record or one of its sets of fields
(group occurrences)).

11 IGGPTCMP compares the catalog record field's value to
the caller's test data and, if the compare is OK, saves the
sequence number of the catalog-record-field's set of fields
pointer (group occurrence pointer).

12 IGGPLOC2 retrieves catalog-record-field contents to
satisfy the caller's request. If the caller's CTGFL specifies
a special field (one not in the catalog record) or a
combination field-name (a field-name that identifies a
group of relat¢d fields), IGGPLOC2 processes the
field-name and calls IGGPGVAL, as required, to retrieve
the requested information.

If the caller provided CTGFLs-for-tests, each catalog
record field is retrieved if it is:

• Identified by the CTGFL's (addressed by the CTGPL)
field name, and

• Contained in a set of fields (group occurrence) that
satisfies all tests associated with the CTGFL
(addressed by the CTGPL). The set of fields pointer's
(group occurrence pointer's) sequence number is set by
step It.

If the caller didn't provide CTGFLs-for-tests, the contents
of each catalog record field identified by the CTGFL's
field name is retrieved.

13 IGGPGVAL retrieves each catalog-record-field's
contents, as required by IGGPLOC2.

14 IGGPSHIN places the catalog record field's contents into
the user-provided work area addressed by CTGPL and
increments the required work area length. If there is
insufficient space in the work area, only the required work
area length is changed.

15 IGGPGREC retrieves the original base catalog record, if
necessary, since a horizontal extension of the base or an
associated upgrade entry record may have overlaid it.

Program Organization 361

UPDATE Modify

From Figure 40
IGGPACDV

t
IIGGOCLAV

From another
catalog
management
procedure

t
J

IGGPUPD 141GGOCLAV
IGGPMOD

21GGOCLBB
BT

IGGUPDE
(See Figure 43)

151GGOCLAY
IGGPSCNC

31GGOCLB7
IGGPRUS 41GGOCLAV
(See Figure 44) IGGPSFPL

B3

41GGOCLAV IGGPTSTS

IGGPSFPL (See 5-11)

B3

51GGOCLBA
IGGPTSTS 16 IGGOCLBT

IGGPXDGO

61GGOCLBA
AG,AW, BA

IGGPGVAL 171GGOCLAW
BS IGGPADGO

7 IGGOCLBA
(See Figure 45)

IGGPGREC
BI, B3

81GGOCLAW
IGGPPREC 181GGOCLBT
AG, B3 IGGPXLT2

I 191GGOCLAX
IGGPALT2 J
(See Figure 46)

9 [GGOCLBA
IGGPLVAL

[OIGGOCLBA
IGGPCKLC

20lGGOCLBT
IGGPXEL2
CA, BR

211GGOCLAV
IGGPDEL2
(See Figure 47)

II [GGOCLBA
[GGPTCMP

221GGOCLBA
IGGPGREC
AG,B3

12 [GGOCLBT
[GGPXLT2 231GGOCLAW

IGGPPREC

131GGOCLAX
AG, B3

IGGPALT2
(See Figure 46)

Figure 42. UPDATE/Modify Processing

362 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FIgure 41

1 IGGPUPD modifies a fixed-length catalog record field,
obtains more space for a VSAM object, or calls IGGPRUS
to reset a VSAM data set.

1 IGGPUPDE obtains more space for a VSAM object.

3 IGGPRUS resets a VSAM data set.

4 IGGPSFPL (steps 4 through 10) processes each CTGFL
addressed by the caller's CTGPL to modify all catalog
record field data specified by the caller's request.

S When the CTGFL (addressed by the CTGPL) addresses
CTGFLs-for-tests, IGGPTSTS (steps 6 through 10)
processes each CTGFL-for-tests to identify each set of
fields (group occurrence) that satisfies the test conditions.

6 IGGPGV AL retrieves one catalog-record-field's value.

If the specified field name indicates a "derived
information" field, IGGOCLBS processes the field.

7 If more set of fields pointers (group occurrence pointers)
are in an extension of the base catalog record, or

If the specified set of fields pointer (group occurrence
pointer) contains the control interval number of an
extension record,

IGGPGREC retrieves the required extension record.

BI: IGGPGET issues GET to retrieve the catalog record.

B3: IGGPSMFG makes a copy of the catalog record in
case it is updated later.

S IGGPPREC writes the contents of the buffer (a catalog
record) prior to reading another record into it, if the
"buffer-must-be-written" indicator is on.

AG: IGGPPUPC issues PUT-update to rewrite an updated
catalog record.

AG: IGGPPAD issues PUT-Add to insert a new catalog
record into the catalog.

B3: IGGPSMF identifies the copy of the original catalog
record (saved by IGGPSMFG) as an updated record.

Note: When the catalog record is completely updated, a
SMF record type 63-VSAM Data Set Cataloged-is
written that contains the entire new catalog record (the
base and all extensions) and each part of the original
catalog record that was modified (part=logicai catalog
record=SOS-byte (or less) base or extension record's
contents).

I) IGGPLVAL locates the field within the catalog record.

10 IGGPCKLC verifies that the field exists (that is, the
requested field is in the record or one of its sets of fields
(group occurrences».

11 IGGPTCMP compares the catalog record field's value to
the caller's test data and, if the compare is OK, saves the
sequence number of the catalog-record-field's set of fields
pointer (group occurrence pointer).

12 IGGPXL T2 filters those field names (derived) which do
not exist physically in the catalog. It ensures that these
fields are not updated; all others are passed to
IGGPALTI.

13 IGGPALT2 replaces a catalog record field's contents with
the caller's update data.

If the caller provided CTGFLs-for-tests, each catalog
record field is updated if it is:

• Identified by the CTGFL's (addressed by the CTGPL)
field name, and

• Contained in a set of fields (group occurrence) that
satisfies all tests associated with the CTGFL
(addressed by the CTGPL). The set of fields pointer's
(group occurrence pointer's) sequence number is
available from step ll.

If the caller didn't provide CTGFLs-for-tests, each set of
field's field identified by the CTGFL's field name is
updated.

14 IGGPMOD allows a VSAM catalog management
procedure to update catalog record information in the
following ways:

A new set of fields (group occurrence) is added to the
record (IGGPXDGO processing).

A set of fields (group occurrence) is removed from the
catalog record (IGGPXEL2 processing).

A fixed-length field, variable-length field, or part of a
variable-length catalog record field's contents is modified
(IGGPXL T2 processing).

15 IGGPSCNC initializes the CTGFLs with dictionary
information required to find the field in the catalog record
and ensures that the CTGFLs are valid.

16 IGGPXDGO intercepts field names (derived)
which do not exist physically in the catalog. All others are
passed to IGGPADGO. It constructs a bit map set of
fields when the first data space group is added and updates
the associated data space group when data space
descriptors are added. Note that derived field names exist
only in the volume entry record.

AG: IGGPAOCI obtains a control interval for
constructing the bit map set of fields in an extension
record.

AG; IGGPPAD adds the newly constructed bit map
record.

A W; IGGPPREC updates the base volume entry record
which points to the bit map set of fields.

BA: IGGPGV AL retrieves the data space group
associated with the space descriptor group to be added.

BA: IGGPGREC retrieves the base volume entry record
so that bit map processing can be done.

BR: IGGPBMR updates the bit map to reflect the added
space.

17 When the caller provides set of fields (group occurrence)
field data, but doesn't provide CTGFLs-for-tests,
IGGPADGO builds a new set of fields (group occurrence)
with the caller's field data and adds it to the catalog
record.

18 IGGPXL T2 filters those field names (derived) which do
not exist physically in the catalog. It ensures that these
fields are not updated; al\ others are passed to
IGGPALT2.

Program Organization 363

Notes for Figure 42 Continued

19 When the caller provides header-field field data, or when
the caller provides set of fields (group occurrence) field
data and CTGFLs-for-tests, IGGPALT2 modifies the
field's contents (as per step 13 above) and makes all
necessary adjustments to the catalog records.

20 IGGPXEL2 causes the bit map set of fields to be updated
when a data space group is to be deleted. All set-of-field
names, both derived and nonderived, are passed to
IGGPDEL2.

BA: IGGPGV AL retrieves the data space group to be
deleted.

BA: IGGPGREC retrieves the base volume entry record
so bit map processing can be done.

BR: IGGPBMR updates the bit map to reflect the released
space.

21 When the caller doesn't provide field data, IGGPDEL2
deletes catalog record sets of fields (group occurrences).

If the caller provides CTGFLs-for-tests, all sets of fields
(group occurrences) identified by IGGPTSTS (see step 10)
are deleted.

If the caller didn't provide CTGFLs-for-tests, only those
sets of fields (group occurrences) that contain the field
identified by the CTGFL's (addressed by the CTGPL)
field name are deleted.

22 IGGPGREC retrieves the original base catalog record for
processing the next CTGFL, since a horizontal extension
record may have overlaid it.

BI: IGGPGET issues GET to retrieve the catalog record.

B3 IGGPSMFG makes a copy of the catalog record in
case it is updated later.

23 IGGPPREC flushes any catalog buffers that must be
written.

Program Organization 365

From Figure 42
IGGPUPD

~
1 IGGOCLBB IGGPUPDE

IGGPUPDE ~ Continued
BV

2 IGGOCLBC 131GGOCLBB
IGGPINIT IGGPMVOL
AZ AV

3 IGGOCLAG 14 IGGOCLBB
IGGPGET IGGPCEXT

4 IGGOCLAG 15 IGGOCLBB
IGGPEXT IGGPMEXT

AV

51GGOCLBC 16 IGGOCLBB
IGGPSVOL IGGPSSWD
AZ BV

171GGOCLAG

6 IGGOCLBB IGGPGET

IGGPUALL
AG

71GGOCLBP 2 IGGOCLBC
IGGPSPAC IGGPINIT
AG, A V, AZ, BU AZ

5 IGGOCLBC

8 IGGOCLBB IGGPSVOL

IGGPCSAL AZ
'tl· .I

9 IGGOCLAR I3 IGGOCLBB
IGGPSALL IGGPMVOL

I
AV

IGGPSALS
(See Figure 49)

14 IGGOCLBB

I IGGPCEXT

10lGGOCLBP
IGGPSPAC 15 IGGOCLBB

AG,AV,AZ,BU IGGPMEXT
AV

II IGGOCLBI
IGGPTNXO

12 IGGOCLBI
IGGPTXO

Figure 43. UPDATE-Extend Processing

366 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for Figure 43

1 IGGPUPDE obtains more space for the VSAM object.

BV: IGGPSMFA writes SMF record type 63-VSAM
Data Set Cataloged or Altered-for the data set catalog
record.

BV: IGGPSMFL writes SMF record type 69-VSAM
Data Space Defined, Extended, or Deleted-if additional
space was obtained by DADSM, either to create a new
VSAM data space or to extend an existing VSAM data
space.

2 IGGPINIT initializes a CTGPL and CTGFLs and calls
IGGPEXT.

AZ: IGGPEXT retrieves the AMDSB set of fields.

3 IGGPGET retrieves the base index record for
key-sequenced data sets that have sequence set with data.

4 IGGPEXT retrieves the index AMDSB for key-sequenced
data sets that have sequence set with data to ensure that
the maximum number of extents for the index component
will not be exceeded.

5 IGGPSVOL finds the volume information set of fields
that describes the volume that contains the VSAM object
to be extended.

AZ: IGGPEXT locates the volume information set of
fields.

6 When the object is in a non-shared (unique) data space,
the object is allowed to reside in only one data space (16
extents maximum) per volume.

If the data space exists and contains less than 12 extents,
IGGPUALL calls IGGPSPAC to obtain another extent(s)
for the data space. IGGPSPAC will return a maximum of
5 extents to satisfy the request.

If the data space already contains 16 extents, no space is
allocated to the object from the specified volume.

If the data space doesn't exist (the volume is a candidate
volume for the object), IGGPUALL calls IGGPSPAC to
build a data space on the volume for the object.

AG: IGGPGET issues GET to retrieve the volume catalog
record.

7 IGGPSPAC calls OS/VS DADSM to obtain space for a
VSAM data space (EXTEND) or to create a new VSAM
data space (ALLOCATE).

AG: IGGPISCI ensures that a catalog or CRA extend will
not occur while the catalog volume entry is being
modified.

AG: IGGPPUPC updates the base catalog volume entry
record after the new timestamp value has been set in it.

AV: IGGPMOD updates the volume catalog record fields.

AZ: IGGPEXT retrieves volume catalog record fields.

BU: IGGPF4DQ, IGGPF4RD, and IGGPF4WR update
the physical volume's format-4 DSCB with new timestamp
values.

8 When the object is in a shared (nonunique) data space, the I

object is allowed to reside in many data spaces (123
extents maximum per volume). Note: An extent for an
object in a shared data space is a contiguous amount of
tracks in one of the data space's extents (obtained by
OS/VS DADSM).

IGGPCSAL attempts to obtain more space for the object
from any shared data space on the volume.

9 IGGPSALL calls IGGPSALS to attempt to obtain the
required amount of space from the free space of one of the
shared (nonunique) data spaces on the volume.

Note: All of the requested amount of space can be
obtained from more than one shared (nonunique) data
space. If the amount of space necessary to satisfy the
request is not contiguous, IGGPSALS obtains (a
maximum of five) contiguous amounts of tracks to satisfy
the request.

10 When all shared (nonunique) data spaces on the volume
have been examined, and none can satisfy the request,
IGGPSPAC attempts to obtain another extent(s), at least
large enough to satisfy the request, for any shared
(nonunique) data space. If all shared data spaces have 12
or more extents, IGGPSPAC builds a new data space on
the volume (if the volume contains enough contiguous free
space to satisfy a data space's primary allocation
requirements). If IGGPCSAL called IGGPSPAC to obtain
more space from OS/VS DADSM, IGGPCSAL calls
IGGPSALL again to suballocate part of the newly
obtained space to the object.

11 IPPGTNXO computes the sum of the beginning CCHHs
(converted to relative track numbers) for the newly
acquired extents (recoverable catalogs only).

12 IGGPTXO updates the data set directory with the new
sum computed in step 11.

13 IGGPMVOL updates the volume information set of fields
to describe the object's newly obtained space.

AV: IGGPMOD modifies the volume information set of
field's fixed-length fields and to modify statistical
information in the AMDSB.

14 IGGPCEXT builds extent descriptors to insert in the
volume information set of fields. The extent descriptors
describe each contiguous amount of newly allocated
space. IGGPCEXT computes the RBAs and CCHH values
from the information returned by IGGPSALL:

CCHH NN DesC#

where:

CCHH is the starting cylinder and track number of the
extent,

NN is the number of tracks in the extent, and

DesC# is the data space descriptor's sequence number.

Program Organization 367

J

Notes for FIgure 43 Cootinued

15 IGGPMEXT inserts the extent descriptors into the volume
information set of fields.

AV: IGGPMOD adds the extent descriptor(s) to the
volume information set of fields (group occurrence).

16 When the space is obtained for a sequence-set-with-data
object (a data set or key range), IGGPSSWD allocates
part of the newly obtained space to the object's sequence
set and modifies the object's index catalog records to
reflect this.

Initial IGGPSSWD processing:

IGGPGET retrieves the index catalog record. The index
entry is then processed in a manner similar to the data
entry except that space has already been acquired (hence,
neither IGGPUALL nor IGGPCSAL is called).

BV: IGGPSMFA writes SMF record type 63-VSAM
Data Set Cataloged or Altered-for the index catalog
record.

Program Organization 369

From Figure 40
IGGPUPD

lIGGOCLB7
IGGPRUS

2IGGOCLAM
IGGPLOC

3IGGOCLAZ
IGGPEXT

4IGGOCLAZ
IGGPEXT

5IGGOCLBI
IGGPGET

6IGGOCLAV
IGGPMOD

7IGGOCLBI
IGGPTNXO

8IGGOCLBI
IGGPTXO

9IGGOCLBF
IGGPSSCR

I

Figure 44. Reusable Data Set Processing

_---~~ IGGPRUS
Continued

10 IGGOCLAV
IGGPMOD

l1IGGOCLBI
IGGPGET

12IGGOCLB7
IGGPPRWK

13 IGGOCLBI
IGGPGET

14IGGOCLAM
IGGPLOC

370 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

L

L

Notes for Figure 44

This figure describes the processing done when a caller wants
to reset (reuse) a VSAM data set. The reusable attribute may
be applied to a VSAM key-sequenced, entry-sequenced, and
relative record data set, and to an alternate index. The
attribute allows the data set to have its high-used RBA set to 0
at OPEN time. Reusable data sets may be multi-volumed and
they must be suballocated (nonunique). Also, they cannot
have key ranges and they are restricted to a maximum of 16
physical extents per volume. A reusable base cluster may not
have alternate indexes; however, reusable alternate indexes
can be associated with a nonreusable base cluster.

IGGPRUS checks the data set catalog record to verify that
it is a type D record and that the data set has the correct
attributes for resetting. Appropriate error codes are
returned to the caller if data set does not have the proper
attributes.

1 If the data set is not reusable (but is empty), IGGPRUS
calls IGGPLOC before returning to caller. No error codes
are returned.

3 If the data set can be reset, IGGPEXT retrieves the
AMDSB set of fields. If the data set attributes in the
AMDSB indicate a key-sequenced data set, the user's work
area (CTGWKA) is checked to ensure that it contains the
control interval number of the index record in the catalog.
If not, return to caller with the appropriate error code.

4 IGGPEXT retrieves each volume information set of fields
pertaining to the data set.

S IGGPGET retrieves the corresponding volume records
from the catalog.

6 Each volume information set of fields is updated so as to
retain only primary extents. If no primary extents remain
after updating, the volume becomes a candidate volume.
IGGPMOD returns the updated volume information set of
fields to the catalog.

7 If a recoverable catalog is involved, IGGPTNXO
calculates for each volume processed the sum of the
relative track addresses of extents remaining in the reset
data set.

8 IGGPIXO uses the value from step 7 to update the Data
Set Directory set of fields for each volume processed.

9 If the resetting of the data set results in extents being freed
on the volume being processed, IGGPSSCR updates the
Space Map set of fields.

10 IGPMOD updates the catalog with the AMDSB set of
fields and the base data set catalog record.

11 If a key-sequenced data set is being reset, IGGPGET
retrieves the index catalog record and resetting of the
index section of the data set proceeds as described above
for the data component.

12 If a key-sequenced data set has been reset, IGGPFRWK
retrieves the data set catalog record required by
IGGPLOC.

13 IGGPLOC processes the user's LOCATE request.

Program Organization 371

hOIll Figure 42
IGGOCLAV
IG(;PSX()(;O J

t
I IGGOCLAW IGGPADGO IGGPADGO

IGGPADGO Continued Continued

IGGPAGOP 17 IGGOCLBA 2 IGGOCLAW
IGGPASPT Continued IGGPGREC

AW, HI, B3
~------
@

3 IGG()CLAW 10 IGGPAXCI 18 IGGPAXCI
IGGPAGOP 3nd IGGPGNEX and IGGPGNEX

4 IGGOCLAW
IGGPGREL II IGGOCLHA
HA 19 IGGOCLAW

IGGPGREC IGGPGREL AW, HI, H3

~-----@

5 IGGOCLAW 12 IGGPMGO 20lGGPAXCI
IGGPIGOP (See Figure 40) and IGGPGNEX

~-----
® 13 IGGPAXCI 21 IGGOCLAW

and IGGPGNEX IGGPIGOP
61GGOCLAW

IGGPIGOP

~-----
14 IGGPMGO 22 IGGOCLAW

© (See Figure 40) IGGPMVGO

7 IGGPAXCI
and IGGPGNEX

15 IGGOCLAW
IGGPGREL

8IGG(K'LAW
IGGPASPT

16 IGGUCLAW
IGGPIGOP

9 IGGOCLAW
IGGPIGOP L

I
I
I

Figure 45, Insert a New Set of Fields (IGGPADGO Processing)

372 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

Notes for FIpre 4!

I IGGPADGO inserts a new set of fields (group occurrence)
into the object's catalog record and adjusts other catalog
records as required. In the notes for this figure, the
hypothetical set of fields to be added is called ADDSET.

Note: If ADDSET can fit in the base catalog record, its set
of fields pointer (group occurrence pointer) in the base
catalog record contains ADDSET's displacement from the
beginning of the base catalog record's sets of fields (group
occurrences) .

Otherwise, ADDSET is put in an extension record and
two set of fields pointers (group occurrence pointers) are
used to locate it. Its set of fields pointer in the base catalog
record contains the extension record's control interval
number. ADDSET's set of fields pointer in the extension
record contains its displacement from the beginning of the
extension records sets of fields.

1 If the base catalog record doesn't contain an
"available-space pointer" (a pointer to an extension
record that contains free space), IGGPASPT builds an
"available-space pointer" (a set of fields pointer with
sequence number ... 0 and type code ... 0) and calls
IGGPIGOP to insert it into the base catalog record.

3 IGGPAGOP ensures that there is a set of fields pointer
(group occurrence pointer) in the base catalog record for
ADDSET and determines where the set of fields can be
inserted. If the base catalog record (or one of its
extensions) contains a deleted set of fields pointer (with
the same type code as ADDSET), IGGPAGOP activates
it and assigns it to ADDSET. If not, IGGPAGOP builds a
set of fields pointer and inserts it into the base catalog
record (or one of its extensions).

4 IGGPGREL identifies the set of fields pointer (group
occurrence pointer) in the base catalog record (or one of
its extensions) that has the same type code as ADDSET
and either:

• Is marked as deleted, or

• Has the highest sequence number with ADDSET's
group code.

BA: IGGPGREC retrieves any horizontal extensions of
the base entry record.

IGGPAGOP then ensures that the base catalog record
contains a set of fields pointer (group occurrence pointer)
that will point to ADDSET:

A If IGGPGREL found a set of fields pointer (group
occurrence pointer) marked deleted which points to an
extension record:

5 IGGPIGOP activates the set of fields pointer.
IGGPAGOP is finished; ADDSET is to be inserted
into the extension record pointed to by the set of fields
pointer.

B If ADD SET and its set of fields pointer (group occurrence
pointer) can fit in the base catalog record:

6 IGGPIGOP builds a set of fields pointer for ADDSET
and inserts it into the base catalog record following the
set of fields pointer identified by IGGPGREL (see
step 10). IGGPAGOP is finished; ADD SET is to be
inserted into the base catalog record.

C If the base catalog record cannot contain a new set of
fields pointer (group occurrence pointer), even if all sets
of fields are moved out of the base catalog record:

7 IGGPAXCI and IGGPGNEX obtain an extension
record for the base catalog catalog record.

If the record area in which the extension record is to be
built already contains a record to be written,
IGGPGREC flushes the record.

8 IGGPASPT builds an available space pointer and
inserts it into the base catalog record's extension.

9 IGGPIGOP builds a set of fields pointer for ADDSET
and inserts it into the base catalog record's newly
obtained extension record. IGGP AGOP is finished;
ADDSET is to be inserted into the base catalog
record's newly obtained extension.

D If the base catalog record can contain a new set of fields
pointer (group occurrence pointer) by moving the sets of
fields (group occurrences) in the base catalog record into
an extension record:

Move the set of fields out of the base catalog record into
an extension record and adjust the base catalog record as
necessary:

10 If the base catalog record's available-space pointer
doesn't point to an extension record, IGGPAXCI and
IGGPGNEX obtain an extension record to contain the
sets of fields.

11 If the base catalog record's available-space pointer
points to an extension record, IGGPGREC retrieves
the extension record.

AW: IGGPPREC writes any record in the record area
that must be flushed before the extension record can be
retrieved.

BI: IGGPGET retrieves the extension record.

B3: IGGPSMFG ensures that a copy of the original
extension record exists.

12 IGGPMGO moves all sets of fields (except type code I
or 2) into the extension record from the base catalog
record. IGGPMGO adjusts each set of fields pointer in
the base catalog record to point to the extension record
containing its set of fields.

13 If the extension record obtained by step 11 isn't able to
contain all of the base record's sets of fields,
IGGPAXCI and IGGPGNEX obtain another
extension record to contain the remaining sets of
fields. IGGPAGOP updates the base catalog record's
available-space pointer to point to the newly obtained
extension record.

14 IGGPMGO moves the rest of the base catalog record's
sets of fields into the extension record (obtained in
step 13).

15 IGGPGREL re-identifies the set of fields pointer
(group occurrence pointer) in the base catalog record
for ADDSETs use.

16 IGGPIGOP activates or builds a new set of fields
pointer for ADDSET. IGGPAGOP is finished; the
record into which ADDSET is to be inserted is the last
extension record obtained by 11 or 13.

Program Organization 373

L

Notes for Figure 45 Continued

If ADDSET is not to be added to the base catalog record
and if the (deleted, now activated) set of fields pointer (see
step 3) points to an extension extension record:

17 IGGPGREC retrieves the extension record into which
ADDSET is to be inserted. (See Figure 42, steps 7 through
8, for details.)

18 If ADDSET and its set of fields pointer cannot fit in
the extension record, IGGPAXCI and IGGPGNEX
obtain another extension reocrd.

19 IGGPGREL determines where (in the extension
record) ADD SET's set of fields pointer (group
occurrence pointer) should be be inserted.

If ADDSET is not to be added to the base catalog record,
and if ADDSET's set of fields pointer (in the base catalog
record) doesn't point to an extension record:

20 IGGPAXCI and IGGPGNEX obtain an extension
record to contain ADDSET.

21 IGGPIGOP builds a new set of fields pointer (group
occurrence pointer) for ADDSET and inserts it into
the extension record that will contain ADDSET.

22 IGGPMVGO moves ADD SET into the record that is
to contain it.

Program Organization 375

from Figure 42
IGGOCLAV
IGGPXLT2

I
I IGGOCLAX

IGGPALT2

21GGOCLBA
IGGPGVAL

3 IGGOCLAX
IGGPMVAR

41GGOCLAX
IGGPSHNK

5 IGGOCLAX
IGGPEXPD

Old Field is in
Base Record

6 IGGOCLAX
IGGPMBGO
(See Figure 48)

7 IGGOCLBA
IGGPGVAL

Updated Field Fits

8 IGGOCLAX
IGGPEXPD

Updated Field
Doesn't Fit, now
Old Field is in
Extension
Record

.-------'----.
9 (See Figure 48)

Updated Field Fits

7 IGGOCLBA
IGGPGVAL

I

IGGPMVAR
,----t4(Continued)

5 IGGOCLAX
IGGPEXPD

Updated Field Doesn't
Fit, now there is only
one Set of Fields in
the Extension Record

10 IGGOCLBW
IGGPDEIN

Figure 46. Mooify Field Data (IGGPALT2 Processing)

376 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Notes for Figure 46

IGGPALT2 modifies the contents of a catalog record. It
repeats the following sequence to process each field name
identified by a combination name.

2 IGGPGVAL retrieves the field to be modified (See Figure
42, steps 5 through 10, for details.)

3 When the field is fixed-length, IGGPALT2 replaces the
field's contents with the caller's update data.

When the field is variable-length with length change,
IGGPMYAR replaces the field's contents with the caller's
update data and adjusts other catalog records as required.

Note: IGGPMVAR can only be used with IGGPMOD callers,
since IGGPUPD callers do not modify the contents of
variable-length fields.

4 When the variable-length field's new length is less than or
equal to its old length, IGGPSHNK:

I. Adjusts the rest of the record so that all the record's
free space is contiguous, and increases the amount of
free space.

2. Adjusts other set of fields pointers (group occurrence
pointers) to reflect displacement changes resulting
from the free space adjustment.

3. Replaces the catalog record field's contents with the
caller's update data.

5 When the variable-length field's new length is greater than
its old length, and when the entire new field's contents can
be contained in the catalog record, IGGPEXPD:

I. Adjusts the rest of the record so that the larger field is
inserted, and decreases the amount of free space.

2. Adjusts other set of fields pointers (group occurrence
pointers) to reflect displacement changes resulting
from the insertion.

3. Replaces the catalog record field's contents with the
caller's update data.

When the entire field's new contents cannot be contained in
the catalog record, and that record is the base catalog record:

6 IGGPMBGO moves the field's set of fields (group
occurrence) into an extension record.

7 IGGPGVAL locates the field in the extension reocrd.

8 If the entire field's new contents can be contained in the
extension record, IGGPEXPD updates the field's contents
as described in step 5.

When the entire field's new contents cannot be contained in
the catalog record; when the record is an extension record;
and when the extension record contains two or more sets of
fields (group occurrences):

9 Sets of fields (group occurrences) are moved out of the
extension record into another extension record (as
described in Figure 48) until:

• The entire field's new contents can be contained in its
set of fields' extension record, or

• The field's set of fields (group occurrence) is the only
set of fields in an extension record.

When the entire field's new contents cannot be contained in
the catalog record; when the record is an extension record;
and when the extension record contains only the field's (to be
updated) set of fields (group occurrence):

10 IGGPDEIN updates the field's contents and adjusts other
catalog records as required.

Program Organization 377

Figure 42
IGGOCLAV
IGGPXEL2

1
1 IGGOCLAV

IGGPDEL2

21GGOCLAV
IGGPSGOP

31GGOCLAX
IGGPDGO

41GGOCLBA
IGGPGREC

SIGGOCLAW
IGGPPREC
AG, B3

6IGGOCLAG
IGGPPDE
B3

7 IGGOCLAV
IGGPSGOP

8IGGOCLAX
IGGPDGO

I
9IGGOCLAX

IGGPDGOP

1
Figure 47. Remove a Set of Fields (IGGPDEL2 Processing)

378 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Notes for FJgUI'e 47

IGGPDEL2 removes a set of fields (group occurrence)
and adjusts other catalog records as required. When
IGGPXEL2 calIs IGGPDEL2, IGGPSFPL has determined
the sequence number of the set of fields pointer (group
occurrence pointer) to be deleted. In this figure, the set of
fields to be deleted is calIed DELSET.

2 IGGPSGOP locates DELSET's set of fields pointer (group
occurrence pointer) in the base catalog record or one of its
horizontal extensions.

When DELSET is in the base catalog record or one of its
horizontal extensions:

3 IGGPDGO deletes DELSET. IGGPDEL2 marks its set of
fields pointer (group occurrence pointer) as deleted and
zeros its displacement value. DELSET is now deleted;
IGGPDEL2 is finished and returns to IGGPSFPL.

When DELSET is in an extension record:

4 IGGPGREC retrieves the extension record and as many
of its extensions as required to delete DELSET. (See
Figure 42, steps 6 through 7, for details.)

When DEL SET is the only set of fields in the extension
record:

IGGPDEL2 marks DELSET's set of fields pointer (group
occurrence pointer) in the base catalog record as deleted
and zeros its pointer to the extension record.

S IGGPPREC updates the object's base catalog record.
catalog record.

6 IGGPPDE issues PUT-update to rewrite the extension as a
free catalog control interval.

B3: IGGPSMF identifies the copy of the original catalog
record (saved by IGGPSMFG) as an updated record.

DELSET is now deleted; IGGPDEL2 processes each
additional vertical extension that contains part of the set
of fields (using steps 4 through 6) and, when DELSET is
completely deleted, returns to IGGPSFPL.

When DELSET is not the only set of fields (group
occurrence) in the extension record:

7 IGGPSGOP finds DELSET's set of fields pointer (group
occurrence pointer) in the extension record.

8 IGGPDGO deletes DELSET in the extension record.

9 IGGPDGOP deletes DELSET's set of fields pointer
(group occurrence pointer) in the extension record.

IGGPDEL2 marks DELSET's set of fields pointer (group
occurrence pointer) in the base catalog record as deleted,
and zeros its pointer to the extension record. DELSET is
now deleted; IGGPDEL2 is finished and returns to
IGGPSFPL.

Program Organization 379

IGGOCLAW
IGGPADGO

or
IGGOCLAX

1 IGGPMVAR
or

2IGGPMBGO

3 IGGOCLAG
IGGPAXCI

4IGGOCLAW
IGGPGNEX

5 IGGOCLAW
IGGPPREC
AG, B3

6 IGGOCLBA
IGGPGREC
AG, B3

5 IGGOCLAW
IGGPPREC
AG, B3

7 IGGOCLAX
IGGPMGO

8IGGOCLAV
IGGPSGOP

9IGGOCLAW
IGGPIGOP

10 IGGOCLAX
IGGPCGO

I

IGGPMVAR
or

IGGPMBGO
(Continued)

IGGPMGO
(Continued)

II IGGOCLAX
IGGPDGO

12 IGGOCLAX
IGGPDGOP

13 IGGOCLAG
IGGPAXCI

14 IGGOCLAW
IGGPGNEX

4IGGOCLAW
IGGPPREC
AG, B3

7 IGGOCLAX
IGGPMGO
(See Steps 8 - 12)

Figure 48. Move a Set of Fields from a Catalog Record into its Extension

380 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Notes for Figure 48

This figure describes the sequence required to move a set of
fields (group occurrence) from one record (OLDREC) to
another (NEWREC). The acronyms "OLDREC" and
"NEWREC" are introduced to help you understand this
process; these acronyms do not appear in the VSAM code as
symbolic names or comments.

IGGPMV AR executes this sequence to move each set of
fields (group occurrence), except the one that contains the
expanded variable-length field, from one extension record
to another. IGGPMV AR moves one set of fields at a time,
the record's last set of fields, and returns to its caller.

2 IGGPMBGO executes this sequence to move the
expanding set of fields (group occurrence) in the base
catalog record into an extension record.

3 When the base catalog record's available-space pointer
(identified by type code = 0 and sequence number = 0) is
zero, IGGPAXCI obtains a free control interval.

4 IGGPGNEX initializes it as an extension record
(NEWREC). IGGPGNEX then updates the
available-space pointer to contain NEWREC's control
interval number.

5 If the "buffer must be written" indicator is on, IGGPREC
writes the contents of the buffer (a catalog record) prior to
reading another record into it.

AG: IGGPPUPC rewrites an updated catalog record.

AG: IGGPPAD writes a new (extension) catalog record.

B3: IGGPSMF identifies the copy of the original catalog
record (saved by IGGPSMFG) as an updated record.

6 When the base catalog record's available-space pointer
points to an extension record with free space,
IGGPGREC retrieves the extension record (NEWREC).

AG: IGGPGET issues GET to retrieve the catalog record.

B3: IGGPSMFG makes a copy of the catalog record in
case it is updated later.

7 When there is enough free space in NEWREC to contain
OLDREC's set of fields (group occurrence), IGGPMGO
moves the set of fields (group occurrence) from OLDREC
to NEWREC.

8 IGGPSGOP searches NEWREC to locate the position of
the new set of fields' pointer (group occurrence pointer).

9 IGGPIGOP inserts a new set of fields pointer (group
occurrence pointer) in NEWREC to contain the
displacement of the new set of fields.

10 IGGPCGO copies the contents of the set of fields (group
occurrence) into NEWREC and reduces the amount of
NEWREC's free space.

1 t IGGPDGO deletes the set of fields (group occurrence) in
OLDREC and increases the amount of OLDREC's free
space.

12 If OLDREC is not the base catalog record, IGGPDGOP
deletes the set of fields pointer (group occurrence pointer)
inOLDREC.

13 If the caller in step I or 2 determines that NEWREC
(determined at steps 3 or 5) cannot contain the set of
fields (group occurrence), another extension record is
built. IGGPAXCI obtains a free control interval and
IGGPGNEX initializes it as an extension record
(NEWREC). The base catalog record's available-space
pointer is updated.

Program Organization 381

IGGPSALL
Figure 43

I
1 IGGOCLAU

IGGPSALS

2IGGOCLAZ
IGGPEXT

3IGGOCLAU
IGGPEDS

4IGGOCLBR
IGGPBMR

5 IGGOCLAU
IGGPEDS

--
4 IGGOCLBR

IGGPBMR

6IGGOCLBR
IGGPBMR

7 IGGOCLBR
IGGPBMR

Figure 49. Allocating Part of a Data Space's Space
(IGGPSALS Processing)

382 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Notes for FJg1II'e 49

1 IGGPSALS assigns tracks to a VSAM object that can
reside in a nonunique data space (a data space that can
contain more than one VSAM object).

2 IGGPEXT retrieves data space group sets of fields from
the volume catalog record. Each Data Space Group set of
fields contains one or more (up to 16) extent descriptors
that describe the data space's extents. IGGPSALS builds a
table that contains extent descriptors in the form:

S#ITNN

where

S# is the sequence number of the extent descriptor in
its data space group set of fields.

IT is the extent's starting track number, and is
converted by another routine to CCHH for a seek
address.

NN is the number of tracks in the extent.

When the extent table is full, or when there are no more
data space group sets of fields to process, IGGPSALS calls
IGGPEDS to process each entry in the table.

3 IGGPEDS scans the data space extent table to find the
entry with the smallest IT value. This entry is processed,
then IGGPEDS scans the table again to find the entry
with the next higher IT value. All entries in the table are
found, then processed, from the lowest TT value to the
highest.

4 IGGPBMR scans the space map set of fields, starting at
bit position IT and ending at bit position IT + NN-l,
attempting to find a contiguous amount of unallocated
tracks large enough to satisfy the minimum allocation unit
for the request (usually a control interval).

IGGPBMR returns to IGGPEDS with either a "no extent
found" indicator or a ITNN value. IGGPEDS analyzes
the ITNN value to determine:

1. If the extent exactly satisfies the caller's allocation
request, no further extent table processing is done.

2. If the extent is larger than the caller's allocation
request, but is smaller than any previously obtained
extent, the (smaller) extent's ITNN and its data
space's sequence number is saved. Processing the data
space extent table continues.

3. If the extent is smaller than the caller's allocation
request, its TTNN and data space sequence number is
put in the" small extent table" if:

• There are fewer than the maximum number of
entries in the small extent table (five, or a
caller-specified maximum less than five), or

• The extent's NN value is larger than the smallest
NN value in the small extent table. Processing the
data space extent table continues.

5 When the data space extent table is partially full,
IGGPEDS processes each entry as described in steps 3
and 4.

6 IGGPBMR adjusts the bits in the space map set of fields if
the caller's allocation request is satisfied with one extent.

7 If the caller's allocation request is satisfied with more than
one extent, all entries in the small extent table are sorted
on decreasing NN value, so that space is allocated from
the least number of extents. IGGPBMR adjusts the bits in
the space map set of fields for each extent required to
exactly satisfy the caller's request. Each bit in the space
map set of fields identifies a track on the volume as either
allocated to a VSAM object or unallocated.

Program Organization 383

From Figure 40
IGGPACDV

I
1 IGGOCLAT

IGGPCDVR

1-------
DEFINE Master
Catalog

21GGOCLAL
IGGPDEF
(See Figure 51'

~------

31GGOCLAH
IGGPSCAT
AG

41GGOCLBM
IGGPCKAU
AZ, BI

DEFINE
NonVSAM

5 IGGOCLB6
IGGPWTSO

6 IGGOCLBH
IGGPDEFA
AG,AV

1-------
DEFINE Space

7 IGGOCLAQ
IGGPDEFS
BI

8 IGGOCLAL
IGGPDTIM

I

IIGGPCDVR
Continued

IGGPDEFS
Continued

91GGOCLAH
IGGPSCAT
AG

'10 IGGOCLBM
IGGPCKAU
(See Steps
4 and 5)

11 IGGOCLBU

I
12IGGOCLB4

IGGPDCRA

~--,-.---
DEFINEVSAM
Cluster Aix,Path,
or Catalog

.-~--

13 IGGOCLAL
IGGPDEF
(See Figure 51)

ALTE~R~ ____ ~~ __ ~

;t4IGGOCLBD
IGGPALT
AG,A V,AZ,B3,BV

IS IGGOCLBE
IGGPALVL
AV, AZ, BI

t. 16 IGGOCLBN
IGGPVRD
IGGPVRCV
BI, BU

I
171GGOCLBN

IGGPALVR
AG, AV, AZ

181GGOCLAR
IGGPSALL

~------

191GGOCLBZ
IGGPUPG

20IGGOCLAI
IGGPUADD
IGGPUDEL

Figure SO (Part 1 of 2). VSAM Catalog Management Services Processing

384 OS!YS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Notes for Figure 50

1 IGGPCDVR is the VSAM Catalog Management Services:
Common Processing procedure.

2 If the request is to create the VSAM master catalog,
IGGPDEF processes it.

3 IGGPSCAT searches the catalog for a duplicate name (if
the request is DEFINE), or to retrieve the object's catalog
record (if the request is ALTER, DELETE, or LISTCAT).
If the request is DEFINE SPACE, step 3 is not performed.

4 IGGPCKAU verifies the caller's authorization to perform
the request. If the request is LISTCA T, step 4 is bypassed.

AZ: IGGPEXT locates the password information required
by IGGPCKAU.

BI: IGGPGET issues GET to retrieve the catalog's cluster
catalog record (control interval number 2) to determine if
the catalog is password protected. If the catalog is not
password protected, all security verification processing is
bypassed.

5 When the user is on a TSO terminal, IGGPWTSO issues
requests to the TSO terminal for the required password if
the password is not supplied with the input parameters
(part of the Access Method Services job syntax language).

6 When the caller's request is DEFINE NONVSAM,
IGGPDEFA processes it.

AG: IGGPAOCI obtains a free control interval to contain
the nonVSAM catalog record.

AV: IGGPMOD inserts information into the newly
created non VSAM catalog record.

BV: IGGPSMFA writes SMF record type 63-VSAM
Data Set Cataloged.

7 When the caller's request is DEFINE SPACE,
IGGPDEFS processes it.

AG: IGGPPAD issues PUT-Add to add records to the
catalog as required.

BI: IGGPGET issues GET to retrieve the volume catalog
record.

8 IGGPDTIM obtains time-of-day data.

9 IGGPSCAT retrieves the the catalog record identified by
the CTGPL (the VSAM object's base catalog record).
Extensions to the base catalog record are retrieved as they
are needed.

BI: IGGPGET issues GET to retrieve catalog records.

10 IGGPCKAU verifies the caller's authorization to create a
VSAM data space.

AZ: IGGPEXT locates the password information required
by IGGPCKAU.

BI: IGGPGET issues GET to retrieve the volume-owner's
(a VSAM catalog) catalog record that contains the
password set of fields (group occurrence).

11 IGGOCLBU processes the format-4 DSCB, when the
DEFINE SPACE creates the volume's first data space:

IGGPF4RD reads the format-4 DSCB.

IGGPF4DQ dequeues the volume identified by the
format-4 DSCB.

IGGPF4WR writes (or updates, if it exists) the format-4
DSCB.

12 IGGPDCRA defines a catalog recovery area on the
volume when the volume's first data space is created and
the owning catalog is recoverable.

13 When the caller's request is to create a VSAM cluster or a
VSAM user's catalog, IGGPDEF processes it.

14 When the caller's request is ALTER, IGGPALT processes
processes it.

AG: IGGPPUPC issues PUT-update to rewrite a catalog
catalog record.

AG: IGGPPAD issues PUT-Add to insert a catalog record
into the VSAM catalog.

AG: IGGPPDE issues PUT-update to rewrite the record
as a free catalog catalog record.

AV: IGGPMOD modifies the contents of catalog record
fields.

AZ: IGGPEXT locates catalog record fields.

BI: IGGPGET issues GET to retrieve a catalog record.

BV: IGGPSMFA writes SMF record type 63.

15 IGGPALVL modifies volume catalog record information.

A V: IGGPMOD modifies the contents of catalog record
fields.

AZ: IGGPEXT locates catalog record fields.

BI: IGGPGET issues GET to retrieve the volume catalog
record.

16 IGGPVRD mounts the required volume(s) and
IGGPVRCV removes VSAM ownership from the
volume(s).

BI: IGGPGET retrieves the volume catalog record.

BU: IGGPF4RD reads the format-4 DSCB.

BU: IGGPF4DQ dequeues the volume identified by the
format-4 DSCB.

BU: IGGPF4WR writes (updates) the format-4 DSCB.

17 IGGPALVR updates the volume catalog record.

AG: IGGPPUPC rewrites the updated volume catalog
catalog record.

A V: IGGPMOD modifies fields in the volume catalog
record.

AZ: IGGPEXT locates fields in the volume catalog
record.

BI: IGGPGET ret~ieves the volume catalog record.

18 IGGPSALL assigns a specified volume as a candidate
volume to a VSAM object.

Program Organization 385

IGGPCDVR
Continued

DELETE
Catalog

21IGGOCLAF
IGGPDELC
AG, AZ, BI

221GGOCLAL
IGGPDBVC

23 IGGOCLAH
IGGPSCAT
BI

241GGOCLBU

1--------
DELETE Space

25 IGGOCLBL
IGGPDELS
AV, AZ, BI

26IGGOCLBU

27 IGGOCLBK
IGGPLSP
AZ, BI, BV

28 IGGOCLAI
IGGPFDSP

I
I

... IGGPCDVR
Continued

DELETE CLUSTER,
AIX, PATH, or
NONVASM

29IGGOCLBG
IGGPDEL
AG

30lGGOCLB5
IGGPDCLS
AG, AV, AZ, BI, BV

31 IGGOCLA7
IGGPVMSC
AG, AZ, BI

321GGOCLBF
IGGPSSCR
AV,AZ

33 IGGOCLBR
IGGPCMR

34IGGOCLBU
IGGPF4RD
IGGPF4DQ
IGGPF4WR

351GGOCLB8
IGGPDUND

361GGOCLBI
IGGPUDEL

J

37IGGOCLA3
IGGPRPLF

LlSTCAT

38IGGOCLBQ
IGGPLSTC
AG,AZ

~ON~~;--l
39IGGOCLBZ

IGGPCONV

I

AG, AH, AV, A3, BU

I

I

Figure 50 (Part 2 of 2). VSAM Catalog Management Services Processing

386 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

L

Notes for FIgure 50 Continued

21 When the caller's request is DELETE CATALOG,
IGGPDELC processes it.

AG: IGGPPDE issues PUT-update to rewrite the record
as a free catalog catalog record.

AG: IGGPCCCR checkpoints the catalog record before it
is deleted.

AG: IGGPRPLF dequeues the catalog (releases exclusive
control over the catalog so that other requests can process
its records).

AZ: IGGPEXT locates catalog record fields.

BI: IGGPGET issues GET to retrieve the catalog records.

22 IGGPDBVC verifies that the caller's work area (to return
the name of the catalog in) is in the caller's address space.

23 IGGPSCAT searches the catalog being deleted to verify
that the catalog is empty (contains no cataloged objects).

BI: IGGPGET issues GET to retrieve the catalog records
that describe the catalog.

24 IGGOCLBU processes the format-4 DSCB:

IGGPF4RD reads the format-4 DSCB.

IGGPF4WR writes the updated format-4 DSCB.

25 When the caller's request is DELETE SPACE,
IGGPDELS processes it.

AG: IGGPPDEC issues PUT-update to rewrite an
extension record as a free catalog record.

AV: IGGPMOD modifies the contents of the volume
catalog record's fields.

AZ: IGGPEXT locates a catalog record field.

BI: IGGPGET issues GET to retrieve the volume catalog
record.

26 If the volume is completely empty, IGGOCLBU processes
the format-4 DSCB:

IGGPF4RD reads the format-4 DSCB.

IGGPF4WR writes the updated format-4 DSCB.

27 When the volume catalog record is not deleted, IGGPLSP
determines the amount of available space there is on the
volume.

AZ: IGGPEXT locates each shared (nonunique) data
space group set offields (group occurrence) in the volume
catalog record.

BI: IGGPGET issues GET to retrieve the volume catalog
record.

BV: IGGPSMFL writes SMF record type 69-VSAM
Data Space Defined or Deleted.

28 IGGPFDSP scratches all VSAM data space and makes it
available to the OS/VS system.

29 When the caller's request is DELETE CLUSTER,
ALTERNATE INDEX, PATH, PAGESPACE, or
NONVSAM, IGGPDEL processes it.

AZ: IGGPEXT locates a catalog record's field.

BI: IGGPGET issues GET to retrieve a catalog record.

30 IGGOCLBS contains the following DELETE procedures
that are called by IGGPDEL:

IGGPDCLS deletes data, index, cluster, and alternate
index catalog records.

IGGPDEAX explicitly deletes an alternate index.

IGGPDIAX implicitly deletes one or more alternate
indexes.

IGGPDEPT explicitly deletes a path.

IGGPDIPT implicitly deletes one or more paths.

IGGPDUPG deletes upgrade association set of fields.

Each of the IGGOCLBS's procedures call the following
procedures as needed:

AG: IGGPPDE issues PUT -delete to delete a catalog
record.

AV: IGGPMOD modifies the contents of catalog record
fields.

AZ: IGGPEXT locates a catalog record field.

BI: IGGPGET issues GET to read a catalog record.

BV: IGGPSMFS writes SMF record type 67 to the SMF
data set.

31 IGGOCLA7 contains the following DELETE procedures
that are called by IGGPDEL:

IGGPVMSC deletes all space information for the object
in the volume catalog record.

IGGPDEMV locates the object's volume information sets
of fields (group occurrences).

IGGPDVMV ensures that all required volumes are
mounted.

IGGPDUSC returns the data space (issues SCRATCH to
delete the format-l identifier DSCB) from the volume's
VTOC.

IGGPMCRA verifies that the primary CRA volume is
either mounted or mountable.

IGGPDF4T updates the format-4 DSCB and the volume
catalog record timestamp.

Each of IGGOCLA7's procedures call the following
procedures as needed:

AG: IGGPPUPC issues PUT-update to rewrite an updated
catalog record.

AV: IGGPMOD modifies the data space group set of
fields (group occurrences).

AZ: IGGPEXT locates a catalog record field.

BI: IGGPGET issues GET to read a catalog record.

Program Organization 387

Notes for Figure 50 Continued

32 IGGPSSCR returns the space allocated to a catalog or
cluster that is contained in a shared (nonunique) data
space.

AZ: IGGPEXT locates the data space group set of fields
(group occurrence) that describes the data space.

AV: IGGPMOD modifies the data space group set of
fields (group occurrence).

33 IGGPBMR adjusts the space map set of fields to show the
newly allocated tracks.

34 IGGOCLBU contains the following external procedures
used by the DELETE procedures:

IGGPF4RD reads a format-4 DSCB from the VTOC.

IGGPF4DQ issues the VTOC DEQ macro.

IGGPF4WR writes the format-4 DSCB in the VTOC.

35 IGGPGUND cleans up extension records.

AG: IGGPPDEC issues PUT-update to rewrite an
extension record as a free catalog record.

36 IGGOCLB 1 contains the following external procedure
used by DELETE procedures:

IGGPUDEL deletes upgrade association sets of fields
from the Y catalog record.

37 IGGOCLA3 contains the following external procedures
used by DELETE procedures:

IGGPRPLF releases the serial ability of the catalog
resource after performing the erase process.

IGGPRPLM acquires the serialability of the catalog
resource after performing the erase process.

38 When the caller's request is LISTCAT, IGGPLSTC
processes it. IGGPCKAU is called each time a record is
retrieved, and verifies the user's authorization to retrieve
the record.

AZ: IGGPEXT locates a catalog record field.

BI: IGGPGET issues GET to retrieve the catalog record.

39 When the caller's request is CONVERTV, IGGPCONV
processes it.

AG: IGGPPUPC writes the catalog record.

AG: IGGPRCCR updates the catalog control record to
indicate the next free control interval.

AH: IGGPSCAT searches the master catalog for the user
catalog entry.

AV: IGGPMOD updates device type fields in data and
index records in the catalog.

A3: IGGPRPLF releases the master catalog from
exclusive control.

BU: IGGPF4RD reads the format-4 DSCB.

BZ: IGGPGALO gets the catalog record whose volume
information is to be updated.

BZ: IGGPVALI checks the validity of the CTGPL and
CTGFLs.

Program Organization 389

From Figure 50
IGGPCDVR

IIGGOCLAL
IGGPDEF
AG

2IGGOCLAN
IGGPDSCB
AG,AV

31GGOCLAP
IGGPOCDA
AG

DEFINE Catalog

4IGGOCLAS
IGGPDEFC
AG,AV

5IGGOCLAQ
IGGPDEFS
AG

61GGOCLAR
IGGPSALL

IGGOCLAU
IGGPSALS
(See Figure 49)

7 IGGOCLAE
IGGPDCME
AG, B3

8IGGOCLB4
IGGPDCRA

91GGOCLAD
IGGPMC02

DEFINE Cluster or
AIX .-___ -'-_--.

10lGGOCLB9
IGGPPAIX
BI, BM

I

I

Figure 51. DEFINE Processing

IGGPDSCB
Continued

IIIGGOCLBX
IGGPDSPC

12 IGGOCLBO
IGGPDCCO

13 IGGOCLBY
IGGPDRSP

14 IGGOCLAJ
IGGPDBDI

DEFINE PATH

15 IGGOCLAR
IGGPSALL

IGGOCLAU
IGGPSALS

, (See Figure 49)

16 IGGOCLAQ
IGGPDEFS
AG

17 IGGOCLAK
IGGPDCMD
AV,BV

18 IGGOCLB8
IGGPDFBO

19IGGOCLB9
IGGPPATH

20IGGOCLAG
IGGPAOCI

21 IGGOCLBV
IGGPSMFA

390 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Notes for Figure 51

1 IGGPDEF verifies user-provided values, propagates
certain parameters, and generates a dsname for the data
set and index of a cluster, as necessary.

2 IGGPDSCB is a continuation of IGGPDEF.

3 IGGPDCDA checks the validity of user-supplied
parameters and determines the default values of other
required parameters.

4 IGGPDEFC defines a VSAM master or user catalog.

5 IGGPDEFS builds a data space. The data space is
nonunique (contains parts of more than one VSAM
object).

6 IGGPSALL and IGGPSALS assigns part of the data
space's tracks to the catalog-a key-sequenced, key-range
data set.

7 IGGPDCOC builds a temporary ACB and temporarily
opens the catalog so that the catalog's self-describing
records (control interval numbers 0 through 13) can be
written.

8 IGGPDCRA builds a catalog recovery area if the catalog
is recoverable.

9 IGGPMC02 opens the VSAM master catalog, if it is being
defined, after its self-describing records have been written.

10 IGGPP AIX checks the validity of the user-supplied input
parameters and the\,assword for the alternate index.

11 IGGPDSPC determines the physical requirements of the
cluster-its control interval size, blocksize, and number of
blocks per track-based on the device that will contain the
cluster.

12 IGGPDCCO checks data and index device characteristics.

13 IGGPDRSP determines the cluster's space allocation
quantities.

14 IGGPDBDI partially builds the catalog records required
for the data set and index and obtains the primary space
allocation for the data set and index.

15 IGGPSALL assigns candidate volumes to the data set and
index and, if they reside in a nonunique data space
(contains more than one VSAM object), IGGPSALS
allocates space from the data space.

16 IGGPDEFS obtains a unique data space for the data set or
index. The data space can contain only one VSAM object.

17 IGGPDCMD completes the catalog record construction.

AV: IGGPMOD modifies the contents of catalog record
fields.

18 If an error occurred during the cluster's creation,
IGGPDFBO resets any allocated tracks to an unallocated
status and rewrites any partially built catalog records as
free catalog records.

19 IGGPPATH verifies user-supplied input parameters and
the password for the path.

20 IGGPAOCI obtains one catalog control interval to
contain the path record.

21 IGGPSMFA writes SMF record type 63 after a VSAM
path is successfully defined.

Program Organization 391

Catalog Management I/O Functions
This section contains a detailed explanation of the catalog management I/O
procedures.

When a catalog record is retrieved, updated (rewritten), written (added to the
catalog), or deleted, one of the following catalog management procedures
initiates the I/O operation:

• IGGPGET -Retrieves the catalog record

• IGGPPUPC-Updates (rewrites) a catalog record

• IGGPPAD-Adds a record to the catalog

• IGGPPDE-Deletes a catalog record

• IGGPRAG-Retrieves a CRA record

• IGGPRAPU-Updates a CRA record

• IGGPRAPA-Adds a CRA record

• IGGPRAPD-Deletes a CRA record

Before a new catalog record can be written into the catalog, a catalog's
control interval is assigned to contain the new record's information. This
assignment is made by:

• IGGPAOCI-assigns more than one contiguous (if possible) control
intervals to the caller. This function is usually called during a DEFINE
procedure.

• IGGPAXCI-assigns one control interval to the caller. This function is
usually called when an extension record is being built.

Other catalog management I/O procedures are called by the
above-mentioned procedures to perform special functions.

All catalog and catalog recovery area I/O functions are described in Figures
51.1-51.19.

392 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

IGGPGET-ctltalog record retrieval

• Retrieves the requested control interval and

L places it into the caller-specified record area.

• Initializes the RAB (one of six record area blocks
in the CCA) and its record segment pointers.

Normal keyed GET

1. IGGPXIO retrieves the true name record,
using keyed direct GET.

2. IGGPGET converts the catalog record's
control interval number (in the true name
catalog record) to an RBA.

3. IGGPXIO retrieves the catalog record's
control interval, using addressed direct GET.

Normal keyed GET-next

Same as "normal keyed GET", except that
"key greater than or equal" is specified when
IGGPXIO retrieves the true name catalog
record.

Normal GET by control inte"al number

1. IGGPGET converts the catalog record's
control interval number (specified by the
caller) to an RBA.

2. IGGPXIO retrieves the catalog record's
control interval, using addressed direct GET.

GET requests issued wbile a catalog is being opened
or created

When the catalog is being created, IGGPGET
"retrieves" the record by locating the DEFINE
work area that contains the requested record.

When the catalog is being opened, IGGPGET
issues EXCP and WAIT to retrieve the
requested record.

L

IGGPGET
(IGGPGETC)

conlrol
interval

Locate the
record in the
DEHNE work
ar ..

Move the
record into
a record

Initialize
values in
the RAH

Figure 51.1. Retrieve a Catalog Record (IGGPGET)

Program Organization 393

IGGPPUPC-catalog record write (update)

1. If the RPL used to retrieve the updated record
has been reused, IGGPTRPL calls IGGPXIO to
retrieve the catalog record again. This verifies the
catalog record's position in the catalog and
re-establishes the RPL's GET -for-update status.

2. IGGPXIO writes the catalog record into the
catalog, using addressed direct PUT -for-update.

IGGPPUPC

No

IGGPTRPL

Ensure th.at
record status
is complete

IGGPRAPU

Update eRA
l'OPy of TCl'ord

Figure 51.2. Write (Update) a Catalog Record (IGGPPUPC)

394 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

IGGPPAD-clltlliog r«ortl write (lIdd)

1. IGGPXIO retrieves the free control interval that
will be replaced by the new record, to verify the
control interval's position in the catalog and to
re-establish the RPL's GET -for-update status.

2. IGGPXIO writes the new catalog record into the
catalog, using addressed direct PUT -for-update.

3. If a true name catalog record is required,
IGGPP AD builds it, then calls IGGPXIO to write
it into the catalog using keyed direct PUT.

IGGPPAD
(lGGPPADC)

No

No

IGGPRCCR

Retrieve
the
CCR

Sct \Witl'h
In update
and rcwrltl'
Ihe CCR

IGGPRAPA

Add rCl"ord
t(lCRA

Figure 51.3. Write (Add) a Catalog Record (IGGPPAD)

Program Organization 395

IGGPPDE~atalog record deletion

1. If a true name catalog record exists for the record
being deleted:

. IGGPXIO retrieves the true name catalog
record, using keyed direct GET, to establish
the record's GET -for-update status.

• IGGPXIO erases the true name record, using
keyed ERASE.

2. If the catalog control record (CCR) is not already
in a catalog management record area,
IGGPRCCR retrieves it.

3. If the RPL used to retrieve the record (to be
deleted) has been reused, IGGPTRPL calls
IGGPXIO to retrieve the catalog record again to
verify the record's position in the catalog and to
re-establish the RPL's GET -for-update status.

4. IGGPPDE builds a free catalog record. Its control
interval number is the same as the record to be
deleted. The control interval number of the free
catalog record is put into the catalog's
free-control-interval chain.

5. IGGPXIO deletes the record by replacing it with
the free catalog record, using addressed direct
PUT -for-update.

6. IGGPCCCR updates and rewrites the catalog
control record (CCR).

IGGPPDE
(IGGPPDEC)

Retrieve
the CCR

IGGPTRPl

Ensure that
record status
is get-updated

Set ~wit\:h
\0 update &.
rewrite Ihl!

CCR

IGGPRAPO

I>l'It:lcCRA
I,;\)pr 01

n~c~\rd

Figure 51.4. Delete a Catalog Record (IGGPPDE)

396 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

IGGPAOCl--ll&figJucolltipollS (if poaibk)
Clllillog COIItroi iIItnwlls to 1M CllIIer

1. H die catalog control record (CCR) is not already
in a catalog management record area,
IGGPRCCR retrieves it.

2. IGGPAOCI assigns the requested number of
catalog control intervals to the caner. The control
intervals will be used to contain new catalog
records (built during a DEFINE process). One of
the following methods is used (in the order listed)
to obtain the control intervals:

A. H enough previously unassigned control
intervals are available in the catalog's extent,
IGGPANCI preformats and assigns the
requested number of control intervals to the
caller.

B. H enough free control intervals (not necessarily
contiguous) are available, IGGPAOCI removes
the requested number of control intervals from
the free control interval chain and assigns them
to the caller.

C. IGGPANCI obtains more space (via Catalog
Extend) for the catalog, then preformats and
assigns the requested number of control
intervals to the caller.

3. IGGPCCCR updates and rewrites the catalog
controlrecord (CCR).

IGGPAOCI

Nu

IGGPRCCR

Retrieve
theCCR

Yes

Assign the
free Cb
to the
!;aller

IGGPANCI
Preronnat
and assign
theelslO
the caller

IGGPCCCR

Oteckpoint
the
CCR

Figure 51.5. Assign Catalog Control Intervals to the Caller
(IGGPAOCI)

Program Organization 397

IGGPAXCI--assigns one CIIt/llog control
intenal to be ued as an extension record
1. If the catalog control record (CCR) is not already

in a catalog management record area,
IGGPRCCR retrieves it.

2. IGGPAXCI assigns one control interval to the
caller. One of the following methods is used (in
the order listed) to obtain the control interval:

A. If a free control interval is available,
IGGPAXCI removes it from the free control
interval chain and assigns it to the caller.

B. IGGPANCI preformats and assigns a
previously unassigned control interval to the
caller. This might mean that IGGPANCI first
obtains more space for the catalog (via Catalog
Extend).

3. IGGPCCCR updates and rewrites the catalog
control record (CCR).

No

IGGPRCCR

Kclricvlo.'
Ih ... ·('("K

G 'PAN 'I

PrcfOflllJI and
assign a CI
10 tl~c l:all~r

A\~ign

free CI to
the caller

No

IGGPCCCR

Update and
reWrih! the
CCR

Figure 51.6. Assign a Catalog Control Interval for an
Extension Record (IGGPAXCI)

398 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

IGGPCCCR-updlltes and rewrites the
catalog control record (CCR)

1. The CCR is read to establish its set-for-update
status.

2. IGGPCCCR updates the CCR control fields to
reflect the current catalog record usage.

3. IGGPCCCR calls IGGPXIO to rewrite the CCR,
using addressed PUT -for-update.

lGGPCCCR

Update
RBA and
co ntrol fields
in theCCR

Re~ct the
-'rewrite
CCRu

switch

IGGPRCCR

Figure 51.7. Update and Rewrite the CCR (IGGPCCCR)

Program Organization 399

IGGPXlO--cllIb Ji'SAM IYcortlllUllIIIg.,.1II

1. IGGPXIO initializes an RPL.

2. IGGPXIO issues GET, PUT, or ERASE-a
VSAM record management request macro
instruction.

3. If an error occurs, IGGPXIO exits on error to
IGGPIORA to convert the RPL error code to an
appropriate catalog management error code.
IGGPIORA then returns to the routine that called
the catalog I/O function that was processing
when the error occurred.

r~'~urd

write

Yes
l(iGPIORA

:\nalp .. : Ihl'

r~·ItHn \,"'1.1,,'

TrJl1slak Ih,,'
r.. .. ':ord m~11l1.
t'rror ,:lJdt.! to

:.t I."atalog Ing1l11.
,,-rror .. "OJ!:

Figure S1.8. Call VSAM Record Management for Catalog Request (IGGPXlO)

IGGPF\lIO

Write an
error messa~e
to the operator

«10 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) LoPe

J

J

IGGPlSCl-ellSllres tlult there are enouglt
free conbv,1 in~1WlIs, '0 that the catalog
WOII't be atelllled (obtaill more 'Pace) at tlte
"""e time a WJbune CQtalog record ;, being
procesud

1. H the catalog control record (CCR) is not already
in a catalog management record area,
IGGPRCCR retrieves it.

2. H there are not sufficient free control intervals
available, IGGPISCI calls IGGP ANCI to obtain
more space for the catalog (via Catalog Extend).
IGGPANCI then preformats and assigns a
previously unassigned control interval to
IGGPISCI.

3. IGGPXIO retrieves the control interval to
extablish its GET -for-update status, using
addressed GET -for-update.

4. IGGPXIO rewrites the control interval as a free
control interval, using addressed PUT -update.

5. IGGPCCCR updates and rewrites the catalog
control record (CCR).

No

IGGPRCCR

Retrieve
theCCR

Not
enough

lGGPANCI

Forces
catalog
EOV

lGGPCCCR

Update and
rewrite the
CCR

Ok

Yes

IGGPRASC'

Ensure that
suflicient Cis
are uva ilable

Yes

IGGPGlT
CA.-t the
volume entry
from t:alalog
again

Figure 51.9. Ensure Availability of Catalog Control Intervals
(IGGPISCI)

Program Organization 401

IGGPRCCR-reads the Catalog Control
Record (CCR) and updates control fklds
and RBAs from information contained
within the CCR.

IGGPRCCR

Entry

I IGGPXIO J

/ Retrieve /
the
CCR

Move CCR
control fields
loCAXWA

Me'$"CCR
RBAs to
ARDBs

Indicate
thalCCR
was read

(Return

Figure 51.10. Read the CCR and Update Control Fields and
RBAs (IGGPRCCR)

402 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

IGGPRAPU-CRA record write (update)

L

No

Update
record on
buffer
chain

IGGPRAOR

Orient to
CRA

Yes

IGGPXRIO

Write (update)
record to CRA

Yes

No

Yes

Set switch
to bypass
catalog's
1(0

IGGPRAPV

Update volume
timestamps

IGGPRAX

Clean up
and
exit

Figure SUI. Write (Update) a eRA Record (IGGPRAPU)

Program Organization 403

IGGPR.APA.-CRA record write (add)
IGGPRAPA

(Enlry

J
CRA IGGPRAPC

volume No Add record
determined 10 buffer

chain

Yes

IGGPRAOR IGGPRAX

Orient Clean up
10CRA and exit

IGGPRAPV
Volume Yes Updale timestamps to be
updated volume

timestamps

N~)

IGGPRARA
8u flc red Yes Assign CI
records and write
exist record 10 CRA

No

IGGPPAD

Write
record to
catalog

IGGPRARA

AssIgn C'1

~ and write Yes buffered
record to C'RA records

No

IGGPRAX

Clean up
and exit

Figure 51.12. Write (Add) a CRA Record (IGGPRAPA)

404 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

IGGPRAPD-CRA record delete

L

Yes

IGGPRAOR

Orient to
CRA

Yes

IGGPRAPV

Update
volume
timestamp

Yes

IGGPXRID

Read record
fromCRA

Yes

IGGPRARC

Read the
CRACCR

Build a
free
record

IGGPXRIO

Write free
record to CRA

Update the
deleted record
chain

Indicate that
a CCR rewrite
is required

IGGPRAX

Clean up
and exit

Figure 51.13. Delete a eRA Record (IOOPRAPD)

Program Organization 405

IGGPRAOR-orie"t to eRA
IGGPRAOR

No

Search CAXWA
chain for
this volume"s
CRA

No

Increment
UCB+CAXWA
use counts

Indicate
that CRA
is active

No

Yes

Assign
an
RPL

IGGPRAOP

Open or
close/ reopen
CRA

Figure 51.14. Orient to the CRA (IGGPRAOR)

406 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

IGGPRAOP-CRA OPEN
IGGPRAOP

RemoveCRA
fromCRA
CAXWAchain

Close Ihe
eRA

Indica Ie Ihal
>---'~ ~~ Oname and rIO

Build CRA. ACB.
CAXWA.and
ATIOT

OPEN Ihe
CRA

Ves

Gel slUrage for
CRA.ACB.
CAXWA. and
ATIOT

Search for
DDname and
TlOT enlry

Free CRA. ACB. Ves
CAXWA. and 14-"':':'=-<' No

AddCRA
loCRA
CAXWA
chain

ATlOT slorage

Figure 51.15. Open a eRA (IGGPRAOP)

Program Organization 407

IGGPRAlU as.". COlitrol iIItuval
"" .. ben to IIeW CRA records a1Ul write tile ..
to the CRA

!
!

No

Place CRA creatiuil
timestamp and
release ID into
record

Yes

IGGPRARC

Read the
CRACCR

Yes

IGGPXRIO

Read first
free ('I

No

IGGPRACC

Write updated
CRACCR

IGGPXRIO

Write new
record 10

CRA

Vo>

Preformat
remaining C Is
and add them
to free chain

Assign next
available CI #
and write new
record to CRA

Ves

IGGPXRIO

Add new
record 10

Write updated
CRACCR

Figure 51.16. Assign Control Interval Numbers to CRA
Records (IGGPRARA)

408 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

IGGPRASC--ens"res that there are eno"gh
free control intervals in a CRA. so that the
CRA. won't be extended at the same time the
CRA. 's vol"me catalog record is being
extended

IGGPRASC

Entry

IGGPRAOR

Orient to
CRA

,.~ ofCRA CCR No
required

Ves

IGGPRARC

Read the
(,RACCR

~m~ free Cis

No

Indicate a
FORCE EXTEND
operation

IGGPRARA

Extend the
CRA

IGGPRAX

Clean up
and exit

Figure 51.17. Ensure Availability of CRA Control Intervals
(IGGPRASc)

Program Organization 409

IGGPRAX-CRA I/O ,"lICtiOll exit rDlltille

No

Decretnent UCB
and C AXW A use
counts and

. indicate eRA is
inactive

To catalog 1/0 function
that caned a CRA
1/0 function.

IGGPRACC

Write the
CRACCR

Clear
error
code

To the caner of
the catalog 1/0 function
that caned a
CRA I/O function.

Figure 51.18. Return from CRA I/O Function (IGGPRAX)

410 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

J

IGGPXRIO-calls VSAM record
management

1. IGGPXRIO initializes an RPL.

2. IGGPXRIO issues GET or PUT -a VSAM
record management request macro instruction.

3. If an error occurs, IGGPXRIO returns on error to
IGGPRAEA to convert the RPL error code to an
appropriate catalog management error code.

IGGPRAEA

Analyze
return code

rec. mgmt. error
code to a
catalog mgmt. error
code

No

IGGPEMIO

Write error
message to
operator

Figure 51.19. Call VSAM Record Management for CRA Request (IGGPXRIO)

Program Organization 411

J

L

DIRECTORY

Module Directory

Module
Name

Descriptive
Name

The directory section contains lists of items and cross-reference information
related to each item in the list. The lists include:

• Module Directory

• Module Packaging

• External Procedure Directory

• Procedure Calls Directory

• Procedure Called-By Directory

The module directory is organized alphabetically by symbolic module name. It
lists the module's descriptive name, the module's procedure names (external
entry points), the component to which the module belongs, and the method of
operation diagrams and program organization compendium figures in which
the module is referenced.

The component identifier codes are:

II
CBM
RM
o
C
EOV
CM
C/R

ISAM Interface
Control Block Manipulation
Record Management
Open
Close
End of Volume
Catalog Management
Checkpoint/Restart

External
Procedure
Names

Method of
Operation

Component Diagrams

Program
Organization
Figures

IDAIlFBF ISAM Interface: FREEDBUF Processing IDAIIFBF II BU2

IDAIIPMI ISAM Interface: QISAM Load-Mode Processing IDAIIPMI II BUI

IDAIIPM2 ISAM Interface: QISAM Scan-Mode Processing IDAIIPM2 II BUI

IDAIIPM3 ISAM Interface: BISAM Processing IDAIIPM3 II BU2

IDAIISMI ISAM Interface: SYNAD Processing IDAIISMI II BU2

IDAOl9CI Control Block Manipulation IDAOl9CI CBM CAl, CBI, CB2

IDAOI~A Direct Record Locate IDAOl9RA RM BCI, BEl, BHI, 20,21,22,
BJI 24

IDAOl9RB Index Search IDAOl9RB RM BCI, BHI, BH8, 22,34
BJI, BMI

IDA019RC Search Compressed Index Block IDAOl9RC RM BCI, BHI, BH2, 22,24,25,
BH6, BIl, BJ], 32, 38
BMI

IDAOl9RE Control-Interval Split IDAOl9RE RM BHI, BH3, BH7, 24,25,27,
28, 32

IDAREPOS RM

IDAOl9RF Control-Area Split IDAOl9RF RM BHI, BH2, BH3, 24,25,27,
BH4, BH5 28,33,34

IDAOA05B Restart IDAOA05B C/R AHI, AH2 38.2

Directory 413

Module Directory

External Method of Program
Module Descriptive Procedure OperatioD Organization
NIIIIe Name Names CompoDent Diagrams FIgures

IDAOB05B Restart IDAOB05B C/R All 38.2

IDAOC06C Checkpoint IDAOC06C C/R AGt 38.1

IDAOl9RG Index Create IDAOl9RG RM BGt, BG2, BG3, 26,29,30
BG4, BGS, BK2 31

IDAIST RM BG3, BG4, BG5, 29, 30
BH9

IDAOl9RH Index Insert IDAOl9RH RM BH3, BH6, BH7, 27,32,33,
BH8 34

IDAIVIXB RM

IDASPACE RM

IDAOl9RI Index Upgrade IDAOl9RI RM BH4, BH5, BH8, 28,33,34
BH9

IDAHLINS RM BH4 28

IDANEWRD RM BH4 28

IDAO I 9RJ Split Index Record IDAOl9RJ RM BH4, BH7, BH8, 34
BH9

IDAR RM BG5, BH9, BHlO 30

IDAWR RM BG4, BG5, BHlO 30,31

IDAOl9RK Preformat IDAOl9RK RM BG2, BH4, BH8 26,28,29
BH9, BK2, BN2,
BOI

IDAOl9RL Data Modify IDAOl9RL RM BH2, BII 24,25

IDAOl9RM Data Insert IDAOl9RM RM BEl, BFI, BHI, 24,25,26,
BH2, BH3 27,28

IDACHKKR RM

IDAOI 9RN Indexing Subroutines IDAOl9RN RM

IDAAQR RM BG3, BG4, BG5, 29,30,33,
BH8,BH9 34

IDAER RM BGS 30

IDAOl9RO Verify IDAOl9RO RM BMI

IDAOl9RP ENDREQ and JRNAD IDAOl9RP RM BKI, BK2

IDAENDRQ RM BKI, BK2 31

IDATJXIT RM BNI, BN3 20,21,23,
24,25,26,
27,35,38

IDAUPXIT RM BS3 38

IDA019RQ Relative Record Subroutines IDA019RQ RM BOI, B02 35

IDAOl9RR Relative Record Driver IDAOl9RR RM BCI, BDI, BJI 23, 35

IDARRDRL RM BJI, BOI 23, 35

IDA019RS Spanned Record Data Modify IDAOl9RS RM RtI2, BII 25

IDAADSEG RM BHI, BH2 24,25

IDAMVSEG RM BHI, BH2 24, 25

IDAOl9RT Spanned Record Data Insert IDAOl9RT RM BEl, BFI, BHl, 24
BH3

IDADARTV RM BCI, BDI 20,21 J
414 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Module Directory

External Method of Program
Module Descriptive Procedure Operation 0rpaIzati0n
Name Name Names Component Diagrams FIgures

L IDAJRNSR RM

IDASPNPT RM

IDAot9RU Alternate-Index Upgrade Driver IDAOl9RU RM BCI, BDI, BEl, 37
BHI, BIl, BRI

IDAXGPLH RM BBI

IDAOl9RV Locate Previous Sequence-Set Record IDAOl9RV RM 28,38

IDAADVPH RM BDI 21

IDARVRSI RM 38

IDAOI 9RW Buffer management, Part 2 IDAOl9RW RM 22, 38

IDAABF RM BH4 23,28,35,
38

IDAAIBF RM 38

IDAFRBA RM BN3 22, 38

IDAGWSGW RM 38

IDAOI 9RX Path Processing Driver IDAOl9RX RM BQI 36

IDAGETWS RM

IDARELWS RM

IDARXBD RM

IDAot9RY Shared Resources Buffer Management IDAOl9RY RM BPI, BP2, BP3, 38
BSI, BS2

IDAot9RZ Buffer Management Interface IDAOl9RZ RM 27,38

IDAEXCL RM 38

IDAFREEB RM BCI, BDI, BGl, 20,21,22,
BGS, BH4, BHS, 24,26,27,
BMI, BNI, BN2, 28,30,33,
BN3, BOI, B02, 34,35,38
BS2

IDAGNFL RM BG3, BG4, BH3, 29,30,33,
BH8 34, 38

IDAGNNFL RM BEl, BFI, BGI, 24,26,27,
BH4, BHS, BN2, 28,35,38
BOI

IDAGNXT RM BCI, BDI, BH4, 20,21,23,
BNI, BOI 28,35,38

IDAGRB RM BCI, BEl, BHI, 21,22,23,
BH3, BH4, BHS, 27,28,33,
BH9, BHIO,BJl, 34,35,38
BMI, BNI, BOI,
BSI

IDAGWSEG RM 38

IDAMRKBF RM 38

IDASBF RM BEl, BH5, BKI 22,27,28,
BNl, BN2 35, 38

IDASCHBF RM 38

IDAWAIT RM BSl, BS3 22, 38

Directory 415

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization
Name Name Names Component Diagrams Figures

IDA019RZ (Continued) IDAWRBFR RM BEl, BG2, BH3, 20,24,25,
BH4, BH5, BH8, 26,27,28,
BH9, BK1, BK2, 32,35,38
BN2, BN3, BOI,
B02

IDAWRTBF RM 38

IDAOl9RI Decode and Validate IDAOl9RI RM AD6, BBI, BKI, 20,21,23,
BK2, BLI 24,35,36

IDA019R2 Buffer Management, Part I IDA019R2 RM BS1, BS2 38

IDA019R3 I/O Management IDAOl9R3 RM BS1, BTl 20,22,38

IDA019R4 Keyed/Addressed Request Driver IDAOl9R4 RM BCI, BDl, BEl, 20,21,22
BFI, BH3, BQI, 24,25,36
BRI 37

IDA019R5 I/O Error Analysis IDAOl9R5 RM BB2, BKI, BLI 38

IDADRQ RM BPI, BP3, BSI 35,38

IDAEOVIF RM BEl, BG2, BN2, 26,28,29,
BOI 34

IDAERROR RM

IDAEXEX RM 38

IDAEXITR RM BKI, BLI

IDARSTRT RM

IDAOl9R6 Channel-End and Abnormal-End IDAOl9R6 RM BS3, BTl
Appendages

IDA019R7 Asynchronous Routine IDA019R7 RM BTl J IDA019R8 Control-Interval Processing IDAOl9R8 RM BMI, BNI, BN2,
BN3

IDA019R9 Page-Fix and Start-I/O Appendages IDAOl9R9 RM BTl

IDAOl9SA Control-Interval Initialization: IDAOl9SA RM BEl, BFI, BGI, 26,29,30
Create Entry-Sequenced Data Set BG2, BG3, BK2

IDAOl9SB Dynamically Build Channel Program IDAOl9SB RM
Area for Shared Resouces

IDAOl9SF Control-Area Split: Spanned Records IDAOl9SF RM BH4 28

IDAOl9S1 Improved Control-Interval Processing IDAOl9S1 RM BNI, BN3
Driver

IDAOl9S3 Improved Control-Interval Processing: IDAOl9S3 RM BNI, BN3
I/O Management

IDA0192A VSAM Open String IDAOl92A 0 ACI, AC2, AC7 8,9

IDAOl928 Open a Cluster IDA0192B 0 AC4, AC5, AC6 9

IDA0192C Catalog Interface IDAOI92C 0 AC2, AC4, AC5, 9, 13, IS,
AC6, AD5, AD6, 16, 17
AEI

IDA0192D Stage/Destage (ACQUIRE/ IDAOI92D O/C/EOV AD5 9,13, IS,
RELINQUISH) 17

IDAOl92F Open Base Cluster, Path, and IDAOI92F 0 AC3, AC4, AC5, 9
Upgrade Alternate Index AC6

IDAOl92G Data Space Security Verification IDAOI92G 0 16

IDA0192I ISAM Interface: Open Processing IDAOl921 II ACI, AC7

416 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization

L
Name Name Names Component Diagrams FIgures

IDA0l92M Virtual-Storage Management IDAOI92M O/C/EOV 9, 11, 18

IDAOI92P VSAM Open/Close/EOV: Problem IDAOI92P 0 ADS 9, 13, IS,
Determination 17

IDAOI92S VSAM Open/Close/EOV: SMF Record Build IDAOl92S 0 AC7 9, 13, IS,
17

IDAOl92V Volume Mount and Verify IDAOl92V 0 AC3 9, 17

IDA0l92W Channel Program Area Build IDAOI92W 0 ACI, AC4, ACS 9, II
AC6

IDA0l92Y String Build and Shared-Resource Processor IDAOl92Y O/C ACI, ACS, AFI 9,11,18

IDAOI 92Z Control Block Build IDAOl92Z 0 AC4, AC5, AC6 9

IDA0200B Close a Cluster IDA0200B C AD2, AD3, ADS 13

IDA0200S ISAM Interface: Close Processing IDA0200S II ADI,AD6 12

IDA0200T VSAM Close String IDA0200T C ADl, AD2, AD3, 13
AD4,AD6

IDA0231B Close (TYPE=T) a Cluster IDA0231B C 15

IDA023lT VSAM Close (TYPE=T) String IDA023IT C IS

IDA0557A VSAM End of Volume IDAOSS7A EOV AEl, AE2 17

IEFAB410 Private (VSAM User's) Catalog Open IEFAB410 0

IEFAB411 Private (VSAM User's) Catalog Close IEFAB41I C

IEFNB902 AMP Parameter Interpreter IEFNB902

IFGOl91X Catalog Open ACB Processor, Load 1 IFGOl91X CM 10

IFGOl91Y Catalog Open ACB Processor, Load 2 IFGOl91Y CM 9,10

IFGOI 92A VSAM Open/Close/EOV String Load IFGOl92A O/C/EOV 8,9,12,
13, 15, 17

IFG0l92B Invalid ACB Processing IFGOl92A O/C/EOV

IFGOl92Z VSAM Catalog Open: ACB Processor IFGOt92Z 0

IFG0200N Catalog Close/EO V ACB processor IFG0200N CM 13, 14

IFG0550Y eM 17

IGGOCLAA SUPERLOCATE: Upgrade IGGPSLEN CM DGI, DG2,
Support IGGPSLIV CM DG3, DG4

IGGOCLAB Catalog Management Driver IGGPACDV CM DBI, DDl, DEI, 40
DHt

IGGOCLAC Master Catalog ENQ/CVOL Search IGGPMCO CM 40

IGGOCLAD Master Catalog and Catalog IGGPMC02 CM EE2 40,51
Recovery Area Open

IGGPCRAD CM

IGGPRAOP CM

IGGOCLAE CMS DEFINE CATALOG: Open and Build IGGPDCME CM EE2 51

IGGPMEBM CM

IGGOCLAF CMS DELETE CATALOG IGGPDELC CM EBt, ELI 50

IGGPEMIO CM

IGGPEMSG CM

Directory 417

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization
Name Name Names Component Diagrams Figures

IGGOCLAG Catalog I/O Subfunctions IGGPAOCI CM DM2, ED3, ED5 50,51 J
IGGPAXCI CM 45,48

IGGPCCCR CM 50

IGGPIORA CM

IGGPISCI CM 43,48,51

IGGPPAD CM DHI 50

IGGPPADC CM

IGGPPDE CM 47, 50

IGGPPDEC CM

IGGPPUPC CM DHI, EMI 43,48,50

IGGPXIO CM

IGGOCLAH Search catalog IGGPRPLF CM

IGGPSCAT CM DBI, DCI, DC2, 40, 50
EGI, EMI

IGGPDFMI CM

IGGOCLAI DELETE SPACE: Force Support IGGPFDSP CM EKI 50

IGGOCLAJ CMS DEFINE: Build Data and Index Entries IGGPDBOI CM EDI, ED2, ED3, 51
ED4

IGGOCLAK Complete Define of an Entry IGGPDCMB CM ED2, ED4 51

IGGOCLAL CMS DEFINE: 1st Module IGGPDEF CM EBI, EB2, ECI 50,51

IGGPDTIM CM 50 J IGGOCLAM SUPERLOCATE lGGPDBVC CM 50

IGGPSLEL CM

IGGPSLOC CM DBI, DGI, DG2, 40
DG3, DG4

IGGOCLAN CMS DEFINE: 2nd Module IGGPDCCE CM EDI, ED3, EEl

IGGPDRDA CM EDt, ED3

IGGPDSCB CM ECI 51

IGGPPSEM CM

IGGOCLAP CMS DEFINE: 3rd Module IGGPDCDA CM ECI, EEl 51

IGGOCLAQ CMS DEFINE SPACE IGGPDEFS CM EBI, EDI, ED3, 50,51
EEl, EGl, EGZ

IGGOCLAR Suballocate: Assign Candidate Volumes IGGPSALL CM 011, OJI, EDI, 43,50,51
ED3, EEl, EHI

IGGOCLAS CMS Define Catalog: I st Module IGGPDCRC CM

IGGPDEFC CM EC1, EEl 51

IGGOCLAT CMS (Catalog Management Services) Common IGGPCDVR CM DBI, DDI, EBI 40, 50
Processing

IGGOCLAU Suballocate: Obtain Space IGGPSALS CM DJ!, OJ2, EJ2 43,49,51

418 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization
Name Name Names Component Diagrams Figures

IGGOCLAV Modify Catalog Field IGGPDEL2 CM DM3 42,47

IGGPMOD CM 014, 016, DJI 42
DMI, DM3, EMI

IGGPSGOP CM 47,48

IGGPUPD CM DBI, DHI, DB 40,42

IGGOCLA W Add Group Occurrence (Set of Fields) IGGPADGO CM DM! 42,45

IGGPGNEX CM 45,48

IGGPGREL CM 45

IGGPIGOP CM DMI 45,48

IGGPPREC CM DHI 42,47,48

IGGOCLAX Alter-2 (Modify) IGGPALT2 CM DHI, DM2 42,46

IGGPDGO CM 47,48

IGGPDGOP CM 47,48

IGGPEXPD CM DM2 46

IGGPMGO CM 45,48

IGGPSHNK CM DM2 46

IGGOCLAY Scan Catalog Parameter List IGGPSCNC CM DBI, DEI, DM2 40,41,42

IGGOCLAZ Extract Catalog Field IGGPEXT CM DJ2, DB, 014 41,49

IGGPLOC CM DBI, DEI, DE2 40,41

IGGOCLAO Show Catalog Processing IGGOCLAO CM EI2

L IGGOCLAI Catalog Transient Load: PSA Loader IGGOCLAI CM DBI 40

IGGOCLA6 CMS DEFINE SPACE: Build the Data Space IGGPDFS2 CM EGI
Group and Data Set Directory Entry Sets
of Fields

IGGPBJFB CM EGI

IGGPCBPT CM

IGGPCRTC CM EGI

IGGOCLA7 CMSDELETE IGGPDEMV CM 50

IGGPDUSC CM 50

IGGPDVMV CM SO

IGGPMCRA CM

IGGPVMSC CM 50

IGGPDF4T CM EJ2 50

IGGOCLA8 CMSDEFINE IGGPDFRS CM ED2, ED4

IGGOCLBA Tests IGGPGREC CM DLI, DL2 41,42,45,
47,48

IGGPGVAL CM DE2, DLI, DL2, 41,42,46
DM2

IGGPTSTS CM DEI, DHI 41,42

IGGOCLBB UPDATE-Extend IGGPUPDE CM DHI, OIl, 012 42,43

IGGOCLBC UPD A TE-Extend Initialization IGGPINIT CM DIl 43

L IGGPSVOL CM DIl 43

Directory 419

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization
Name Name Names Component Diagrams Figures

IGGOCLBD CMS ALTER Processing IGGPALT CM EBI, EHI, EH2, SO
EH3

IGGOCLBE CMS ALTER: Volume Processing IGGPALEC CM

IGGPALVL CM EH3 SO

IGGOCLBF Subscratch: Return Space IGGPSSCR CM DIS, Ell, E12 SO

IGGOCLBG CMS DELETE Processing IGGPDEL CM EBI, Ell, EJ4 SO

IGGPDEXA CM

IGGPDOPN CM EJ!

IGGPDLXT CM

IGGOCLBH CMS DEFINE NonVSAM Processing IGGPDEFA CM EBI, EFI 50

IGGOCLBI Catalog GET and Recovery Subfunctions IGGPGET CM DC2, DI4, DI6, 40,41,42,
OJ! 43,49,50

IGGPGETC CM

IGGPTNXO CM DI5

IGGPTXO CM

IGGPUCRS CM

IGGOCLBJ GENDSP Processing IGGPGDSP CM DBI,DFI 40

IGGOCLBK LSP ACE Processing IGGPLDCS CM DKI

IGGPLSP CM OBI, DKI, EG2, 40,50
EJ3

IGGOCLBL CMS DELETE SPACE Processing IGGPDELS CM EBI, EKI 50 J IGGOCLBM Check Authorization IGGPCKAU CM OBI, DDI 40, 50

IGGOCLBN CMS ALTER: Remove Volume IGGPALVR CM EH3 50

IGGPVRD CM EH3 50

IGGOCLBO CRA I/O Sub functions IGGPRACC CM

IGGPRAEA CM

IGGPRAG CM

IGGPRAPA CM

IGGPRAPC CM

IGGPRAPD CM

IGGPRAPU CM

IGGPRARC CM

IGGPRASC CM

IGGPRAX CM

IGGPXRIO CM

IGGOCLBP UPDATE-Extend Interface to DADSM IGGPSPAC CM 43

IGGPRETI CM

IGGOCLBQ CMS LISTCAT Processing IGGPLSTC CM EBI, Ell 50

IGGOCLBR Bit Manipulation Routine IGGPBMR CM DJ2 48,50

IGGOCLBS Retrieval of Derived Catalog Record IGGPXEXT CM DLI
Information

IGGPXVAL CM DLI

420 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Module Directory

External Method of Program
Module Descriptive Procedure Operation Organization
Name Name Names Component Diagrams Figures

IGGOCLBT Modification of Derived Volume Catalog IGGPXDGO CM DMI
Record Information

IGGPXEL2 CM DM3

IGGPXLT2 CM DM2

IGGPXMOD CM DMt

IGGOCLBU Catalog Read/Write Format 4 DSCB IGGPF4DQ CM 50

IGGPF4RD CM EMI 50

IGGPF4WR CM EMt 50

IGGOCLBV Catalog SMF Record Build IGGPSMFA CM ED2, ED4, ED5,
EE2

IGGPSMFF CM DKt

IGGPSMFL CM

IGGPSMFR CM

IGGPSMFS CM

IGGOCLBW Modify: Delete/Insert Processing IGGPDEIN CM 46

IGGOCLBX CMS DEFINE: 4th Module IGGPDSPC CM 51

IGGPDSIM CM

IGGOCLBY CMS DEFINE: 5th Module IGGPDRSP CM ED3 51

IGGOCLBZ Convert Processing IGGPCONV CM EBt, EM1 49

IGGPGALO CM EMI 49

IGGPVALI CM EM1 49

IGGOCLBO Define Data and Index Characteristics IGGPCMKY CM

IGGPDCCO CM

IGGOCLBt Upgrade Management IGGPUADD CM

IGGPUDEL CM

IGGOCLB2 ALTER: Upgrade/Update IGGPAUPG CM

IGGOCLB3 SMF GET/PUT for Alter IGGPSMF CM

IGGPSMFG CM

IGGOCLB4 DEFINECRA IGGPDCRA CM EBI, EEl, EE3

IGGOCLB5 DEFINE AIX/PATH IGGPDCLS CM En, EJ4 49

IGGPDEAX CM EJI, En 49

IGGPDEPT CM EJI, En 49

IGGPDIAX CM En, EJ4 49

IGGPDIPT CM En, EJ4 49

IGGPDUPG CM EJ3, EJ4 49

IGGOCLB6 TSO Interface for Security IGGPGTSO CM

IGGPWTSO CM

IGGPINMD CM DD2

IGGPSPSC CM DDI

IGGOCLB7 Reset Reusable Data Set IGGPRUS CM DEI, DHI, DI3, 44
DI4,DI5,DI6

Directory 421

Module Directory

Module
Name

Descriptive
Name

External
Procedure
Names

Method of
Operation

Component Diagrams

Program
Organization
Figures

IGGOCLB8 CMS DEFINE: Space Recovery IGGPCNBO CM

IGGPDFBO

IGGPDUND

IGGOCLB9 VSAM CMS Define IGGPPAIX
IGGPPATH

CM

CM

CM
CM

ED3
ED5

51

50

50
50

IGGOCLCA OS/VS Catalog Request Handler

IGGOCLCB VSAM Catalog Request Handler

IGGOCLC9 Catalog First Load

IGGOCLCA

IGGOCLCB

IGGOCLC9

CM

CM

CM DBI

EE3

40

IGGOCLDA CRA Services IGGPMODI
IGGPRAPV
IGGPWCAT
IGGPWCRA

CM
CM
CM
CM

EE3
EE3

IGG0102G OS/VS DADSM: Obtain Space For a VSAM
Data Space

IGGOI02G

IMDUSRF9 IMDPRDMP Format Appendage IMDUSRF9 CM

Module Packaging

Name Description

Catalog Management

IGGOCLC9 Catalog Management
Modules

Control Block Manipulation

VSAM modules reside in page able virtual storage. The minimum virtual
storage that can be specified when VSAM is included in the OS/VS system is
2048K bytes. If VSAM was specified at system generation, the minimum
virtual storage must also have been specified. If VSAM was not specified at
system generation, you must perform system generation to include VSAM in
the system.

The following table lists the VSAM load modules and transients that are
resident in the SVCLIB or LP ALIB library; they are loaded into the pageable
supervisor or link-pack area by nucleus initialization (NIP) at initial program
load (IPL).

VSAM Modules

IGGOCLAA, IGGOCLAB, IGGOCLAC, IGGOCLAD, IGGOCLAE,
IGGOCLAF, IGGOCLAG, IGGOCLAH, IGGOCLAI, IGGOCLAJ, IGGOCLAK,
IGGOCLAL, IGGOCLAM, IGGOCLAN, IGGOCLAP, IGGOCLAQ,
IGGOCLAR, IGGOCLAS, IGGOCLAT, IGGOCLAU, IGGOCLAV,
IGGOCLAW, IGGOCLAX, IGGOCLAY, IGGOCLAZ, IGGOCLA6, IGGOCLA7,
IGGOCLA8, IGGOCLBA, IGGOCLBB, IGGOCLBC, IGGOCLBD, IGGOCLBE,
IGGOCLBF, IGGOCLBG, IGGOCLBH, IGGOCLBI, IGGOCLBJ, IGGOCLBK,
IGGOCLBL, IGGOCLBM, IGGOCLBN, IGGOCLBO, IGGOCLBP, IGGOCLBQ,
IGGOCLBR, IGGOCLBS, IGGOCLBT, IGGOCLBU, IGGOCLBV, IGGOCLBW,
IGGOCLBX, IGGOCLBY, IGGOCLBZ, IGGOCLBO, IGGOCLBl, IGGOCLB2,
IGGOCLB3, IGGOCLB4, IGGOCLBS, IGGOCLB6, IGGOCLB7, IGGOCLB8,
IGGOCLB9,IGGOCLC9,IGGOCLC9

IDA019Cl Control Block Manipulation IDAOl9CI

422 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Module Packaging

Name Descriptfon

Catalog Management

Record Management

IDAOI9L1 Modules Record Management

IDAOl9L2 Improved Control-Interval
Processing

IDAOl9RS Spanned Record Data Modify

IDAOI 9RT Spanned Record Data Insert

IDAOl9R6 Channel/ Abnormal End
Appendage

IDAOl9R7 I/O Asynchronous Routine

IDAOl9R9 Start I/O Page-Fix Appendage

ISAM Interface

IDAIIFBF ISAM Interface FREEDBUF

IDAIIPMI ISAM Interface QISAM Load

IDAIIPM2 ISAM Interface QISAM Scan

IDAIIPM3 ISAM Interface BISAM

IDAIISMI ISAM Interface SYNAD

Checkpoint/Restart

VSAM Modules

IDAOI9RA, IDAOI9RB, IDAOI9RC, IDAOI9RE, IDAOI9RF, IDAOI9RG,
IDAOl9RH, IDAOI9RI, IDAOI9RJ, IDAOI9RK, IDAOl9RL, IDAOI9RM,
IDAOIRN, IDAOIRO, IDA019RP, IDIr019RQ, IDAOIRR, IDAOI9RU,
IDAOl9RV, IDAOIRW, IDAOI9RX, IDAOI9RY, IDAOI9RZ, IDAOI9RI,
IDAOI9R2, IDAOI9R3, IDAOI9R4, IDAOI9R5, IDAOI9R8, IDAOI9SA,
IDAOI9SB, IDAOl9SF

IDAOI9SI, IDAOl9S3

IDAOl9RS

IDAOl9RT

IDAOl9R6

IDAOl9R7

IDAOl9R9

IDAIIFBF

IDAIIPMI

IDAIIPM2

IDAIIPM3

IDAIISMI

The Checkpoint/Restart modules are packaged with Open/Close/EOV module IDAOI92A.

IDAOC06C Checkpoint

IDAOA05B First Restart

IDAOB05B Second Restart

Open/Close/End of Volume

IDA0192A Open/Close/End of Volume
Modules

VSAM Transient Routines

IFGOI92A VSAM Open/Close/End of
Volume Loader

IFGOl9lX VSAM Catalog Open ACB
Processor, Load I

IFGOl9lY VSAM Catalog Open ACB
Processor, Load 2

IFG0200N VSAM Catalog Close/End of
Volume ACB Processor

IGCOA05B VSAM Release 2
Restart Controller

IDAOC06C

IDAOA05B

IDAOB05B

IDAOI92A, IDAOI92B, IDAOI92C, IDAOI92D, IDAOI92F, IDAOJ92G,
IDAOl921, IDAOI92M, IDAOI92P, IDAOI92S, IDAOI92V, IDAOI92W,
IDAOJ92Y, IDAOI92Z, IDA0200B, IDA0200S, IDA0200T, IDA023IB,
IDA023IT, IDA0557 A

IFGOl92A

IFGOl91X

IFGOl9lY

IFG0200N

IGCOA05B

The following module is brought from LINKLIB into the user's job pack area whenever it is linked to or from the user's program.

Name Description

IGGOCLAO Show
Catalog
Processor

Catalog Management Module

IGGOCLAO

Directory 423

External Procedure Directory

Procedure Module
Name Name

IDAABF IDAOl9RW

IDAADSEG IDAOl9RS

IDAADVPH IDAOl9RV

IDAAIBF IDAOl9RW

IDAAQR IDAOl9RN

IDACATlI IDACATII

IDACATI2 IDACATI2

IDACATl3 IDACATl3

IDACHKKR IDAOl9RM

IDADARTV IDAOl9RT

IDADRQ IDAOl9R5

IDAENDRQ IDAOl9RP

IDAEOVIF IDAOl9R5

IDAER IDAOl9RN

IDAERROR IDAOl9R5

IDAEXCL IDAOl9RZ

IDAEXEX IDAOl9R5

IDAEXITR IDAOl9R5

IDAFRBA IDAOl9RW

IDAFREEB IDAOl9RZ

IDAGETWS IDAot9RX

IDAGNFL IDAOl9RZ

IDAGNNFL IDAOl9RZ

IDAGNXT IDAot9RZ

The external procedure directory is organized alphabetically by symbolic
procedure name (external entry point name). It lists the module that contains
the procedure, the procedure's descriptive name, and the method of operation
diagrams and program organization compendium figures in which the
procedure is referenced.

Descriptive
Name

Buffer Management: Add Buffer to
Placeholder (PLH)

Insert a Spanned-Record-Segment Entry
into a Sequence-Set Record

Advance Placeholder Backwards

Add Insert Buffer to Chain

Split Index Record: Assign RBA to
the Index Record

Private (User's) Catalog Open

Private (User's) Catalog Close

Private Catalog Task Termination

Check Key for Proper Key Range

Retrieve a Spanned Record

Data Insert: Defer the Request until
the Device is Available

ENDREQ Request

Data Insert: Interface to the VSAM
End of Volume Routine

Index Create: Erase Dummy Entry from
the Index Record

Determine Which Exit to Take

Exclusive Control

Exit to User Exception Routine

Exit to User Routine

Buffer Management: Determine Next RBA for
Sequential Processing

Free a Buffer

Get Working Storage

Buffer Management: Obtain an Empty Buffer

Buffer Management: Obtain Next Empty Buffer
Buffer for the Placeholder

Buffer Management: Obtain Next Buffer in
Sequence

Method of Program
Operation Organization
Diagrams Figures

BH4 23,28, 35,
38

BHI, BH2 24,25

BDI 21

38

BG3, BG4, BG5, 29,30,33,
BH8, BH9 34

BBI

BCI, BDI 20,21

BPI, BP3, BSI 35, 38

BKI, BK2 31

BE I, BG2, BN2 26,28,29,
BOI 34

BG5 30

38

38

BKI, BLI

BN3 22, 38

BCI, BDI, BGI, 20,21,22,
BG5, BH4, BH5, 24,26,27,
BMI, BNI, BN2, 28,30,33,
BN3, BOI, B02, 34, 35, 38
BS2

BG3, BG4, BH3, 29,30,33,
BH8 34, 38

BEl, BFI, BGI, 24,26,27,
BH4, BH5, BN2, 28, 35, 38
BOI

BCI, BDI, BH4, 20,21,23,
BNI, BOI 28, 35, 38

424 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

~

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization
Name Name Name Diagrams Figures

IDAGRB IDAOl9RZ Buffer Management: Obtain the Buffer that BCl, BEl, BHI, 21,22,23,
Contains the Specified RBA BH3, BH4, BH5, 27,28,33

BH9,BHlO, BJ1, 34,35,38
BMl, BNl, BOl,
BSI

IDAGWSEG IDAOl9RZ Get a Work Segment (for Shared 38
Resources)

IDAGWSGW IDA0I9RW Get a Work Segment 38

IDAHLINS IDAOl9RI Insert Entry into Index-Set Record BH4 28

IDAIIFBF IDAIIFBF ISAM Interface: FREEDBUF Processing BU2

IDAIIPMl IDAIIPMl ISAM Interface: Load-Mode Processing BUI

IDAIIPM2 IDAIIPM2 ISAM Interface: QISAM Scan-Mode Processing BUI

IDAIIPM3 IDAIIPM3 ISAM Interface: BISAM Processing BU2

IDAIISMI IDAIISMI ISAM Interface: SYNAD Processing BU2

IDAIST IDAOl9RG Index Create: Insert Entry into Index BGJ, BG4, Bm, 29, 30
Record BH9

IDAIVIXB IDAOl9RH Index Insert: Invalidate Buffers
Containing a Copy of the Modified
Index Record

IDAJRNSR IDAOl9RT Journal a Spanned-Record Segment

IDAMRKBF IDAOl9RZ Mark a Buffer 38

IDAMVSEG IDAOl9RS Move a Segment BHl, BH2 24,25

IDANEWRD IDAOl9RI Initialize a New Sequence-Set Record BH4 28

IDARELWS IDAOl9RX Release Working Storage

IDAREPOS IDAOl9RE Reposition Placeholder

IDARRDRL IDAOl9RR Direct Record Locate for Relative BJ1, BOI 23,35
Record

IDARSTRT IDAOl9R5 Restart

IDARVRSI IDAOl9RV Order Buffers 38

IDARXBD IDAOl9RX Increase Working Buffer Length

IDAR IDAOl9RJ Split Index Record: Read the Record BG5, BH9, BHlO 30

IDASBF IDAOl9RZ Buffer Management: Remove Buffers from BEl, BH5, BKI, 22,27,28,
Placeholder BNI, BN2 35, 38

IDASCHBF IDAOl9RZ Share a Buffer 38

IDASPACE IDAOl9RH Check an Index Record to Ensure
It Can Be Split

IDASPNPT IDAOl9RT Make an Index Entry for a Spanned-
Record Segment

IDATJXIT IDAOl9RP Control-Interval Request: Take the BNI, BN3 20,21,23,
Journal Exit 24,25,26,

27,35,38

IDAUPXIT IDAOl9RP Exit to a User Processing Routine BS3 38

IDAWAIT IDAOl9RZ Buffer Management: Wait for Completion BSI, BS3 22, 38
Of I/O operations

L IDAWR IDAOl9RJ Split Index Record: Write the Index BG4, BG5, BHlO 30,31
Record

Directory 425

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization

Name Name Name Diagrams Figures

IDAWRBFR IDAOl9RZ Buffer Management: Write the Buffer BEl, B02, BH3, 20,24,25,
BH4, BH5, BH8, 26,27,28,
BH9, BKI, BK2, 32, 35, 38
BN2, BN3, BOI,
B02

IDAWRTBF IDAOl9RZ Write a Buffer 38

IDAXGPLH IDAOl9RU Get a Placeholder BBI

IDAOA05B IDAOA05B Checkpoint/Restart:Restart AHl,AH2 38.2

IDAOB05B IDAOB05B Checkpoint/Restart:Restart load 2 All 38.2

IDAOC06C IDAOC06C Checkpoint/Restart:Checkpoint AGI 38.1

IDAOl9Cl IDAOl9Cl Control Block Manipulation CAl, CBl, CB2

IDAOl9RA IDAOl9RA Direct Record Locate BCl, BEl, BHI, 20,21,22,
BJl 24

IDAOl9RB IDA019RB Index Search BCI, BHl, BH8, 22, 34
BJl, BMI

IDAOl9RC IDAOl9RC Search Compressed Index Block BCI, BHl, BH2, 22,24,25,
BH6, BIl, BJI, 32, 38
BMI

IDAOl9RE IDAOl9RE Control-Interval Split BHI, BH3, BH7 24,25,27,
28, 32

IDAOl9RF IDAOl9RF Control-Area Split BHI, BH2, BH3, 24,25,27,
BH4, BH5 28, 33, 34

IDAOl9RG IDAOl9RG Index Create BOI, BG2, BG3, 26,29,30, J B04, B05, BK2 31

IDAOl9RH IDAOl9RH Index Insert BH3, BH6, BH7, 27,32,33,
BH8 34

IDAOl9RI IDAOl9RI Index Upgrade BH4, BH5, BH8, 28,33,34
BH9

IDAO I 9RJ IDAOl9RJ Split Index Record BH4, BH7, BH8, 34
BH9

IDAOl9RK IDA019RK Preform at B02, BH4, BH8, 26,28,29
BH9, BK2, BN2,
BOI

IDAOl9RL IDAOl9RL Data Modify BH2, BII 24,25

IDAOl9RM IDAOl9RM Data Insert BEl, BFI, BHI, 24,25,26
BH2, BH3 27,28

IDAOI9RN IDAOI9RN Indexing Subroutines

IDAOI9RO IDAOl9RO Verify BMI

IDAOl9RP IDAOl9RP ENDREQ and JRNAD BKI, BK2

IDAOl9RQ IDAOl9RQ Relative Record Subroutines BOI, B02 35

IDAOl9RR IDAOl9RR Relative Record Driver BCI, BDl, BJI 23, 35

IDA019RS IDAOl9RS Spanned Record Data Modify BH2, BII 25

IDAOl9RT IDAOl9RT Spanned Record Data Insert BEl, BFI, BHl, 24
BH3

IDAOl9RU IDAOl9RU Alternate-Index Upgrade Driver BCI, BDI, BEl, 37
BHl, BI1, BRI

IDAOl9RV IDAOl9RV Locate Previous Sequence-Set Record 38

426 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization

L Name Name Name Diagrams F"gures

IDAOI9RW IDAOl9RW Buffer Management, Part 2 22,38

IDAOl9RX IDAOl9RX Path Processing Driver BQI 36

IDAOl9RY IDAOl9RY Shared Resources Buffer Management BPI, BP2, BP3, 38
BSI, BS2

IDAOl9RZ IDAOl9RZ Buffer Management Interface 27,38

IDA0l9RI IDAOl9RI Record Management: Request Decode and AD6, BBI, BKI, 20,21,23,
Validate BK2, BLl 24, 35, 36

IDA0l9R2 IDAOl9R2 Buffer Management, Part I BSI, BS2 38

IDA0l9R3 IDAOl9R3 I/O Management BSI, BTl 20,22,38

IDA0l9R4 IDAOl9R4 Keyed/Addressed Request Driver BCI, BDI, BEl, 20,21,22,
BFI, BH3, BQI, 24,25,36,
BRI 37

IDAOl9R5 IDAOl9R5 I/O Error Analysis BB2, BKI, BLl 38

IDAOl9R6 IDAOl9R6 Channel-End and Abnormal-End Appendages BS3, BTl

IDA0l9R7 IDAOl9R7 Asynchronous Routine BTl

IDAOl9R8 IDAOl9R8 Control-Interval Processing BMI, BNI, BN2,
BN3

IDA0l9R9 IDAOl9R9 Page-Fix and Start-I/O Appendages BTl

IDA0l9SA IDA0l9SA Control-Interval Initialization- BEl, BFt, BOt 26,29,30
Create Entry-Sequenced Data Set B02, B03, BK2

IDAOt9SB IDA0l9SB Dynamically Build Channel Program
Area for Shared Resources

IDA0l9SF IDAOl9SF Control-Area Split-Spanned Records BH4 28

IDA0l9St IDAOt9S1 Improved Control-Interval Processing BNt, BN3
Driver

IDAOl9S3 IDAOl9S3 Improved Control-Interval Processing- BNI, BN3
I/O Management

IDAOl92A IDAOl92A VSAM Open String ACI, AC2, AC7, 8,9
DHI

IDAOl92B IDAOl92B Open a Cluster AC4, AC5, AC6

IDAOt92C IDAOl92C VSAM Open/Close: Catalog Interface AC2,AC4, AC5, 9, 13, IS,
AC6, ADS, AD6, t6, 17
AEI, DDI, DEI

IDAOl92D IDAOt92D Stage/Destage (ACQUIRE/RELINQUISH) ADS 9, 13, IS,
17

IDAOl92F IDAOl92F Open Base Cluster, Path, and Upgrade AC3, AC4, AC5, 9
Alternate Index AC6

IDAOl920 IDAOl920 Data Space Security Verification 16

IDAOl92I IDAOl92I ISAM Interface: Open Processing ACl, AC7

IDAOl92M IDAOl92M Virtual-Storage Management 9, 11, 18

IDA0l92P IDAOl92P VSAM Open/Close/EOV: Problem Determination ADS 9, 13, IS
17

IDAOl92S IDAOl92S VSAM Open/Close/EOV: SMF Record Build AC7 9, 13, IS,
17

L
IDAOl92V IDAOl92V Volume Mount and Verify AC3 9, 17

Directory 427

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization

J Name Name Name Diagrams Figures

IDAOl92W IDAOl92W Channel Program Area Build ACI, AC4, AC5, 9,1\
AC6

IDA0192Y IDAOl92Y String Build and Shared-Resource Processor ACI, AC5, AFI 9, II, 18

IDAOl92Z IDAOl92Z Control Block Build AC4, AC5, AC6 9

IDA0200B IDA0200B Close a Cluster AD2, AD3, AD5 \3

IDA0200S IDA0200S ISAM Interface: Close Processing ADI, AD6 12

IDA0200T IDA0200T VSAM Close String ADI, AD2, AD3 \3
AD4, AD6, DHI

IDA0231B IDA0231B Close (TYPE=T) a Cluster 15

IDA023IT IDA0231T VSAM Close (TYPE= T) String 15

IDA0557A IDA0557A VSAM End of Volume AEI, AE2, DEI, 17
DHI

IEFAB410 IEFAB4IO Private (VSAM User's) Catalog Open

IEFAB411 IEFAB411 Private (VSAM User's) Catalog Close

IEFNB902 IEFNB902 AMP Parameter Interpreter

IFG0I91X IFGOl91X Catalog Open ACB Processor, Load I 10

IFGOl91Y IFGOl91Y Catalog Open ACB Processor, Load 2 9,10

IFGOl92A IFGOl92A VSAM Open/Close/EOV String Load 8,9,12,
13,15,17

IFGOl92Z IFGOI92Z VSAM Catalog Open ACB Processor

IFG0200N IFG0200N VSAM Catalog Close ACB Processor 12, \3

IFG0550Y IFG0200N VSAM Catalog EOV ACB Processor 16

IGGPACDV IGGOCLAB Catalog Management Driver DBI, DDI, DEI, 40
DHI

IGGPADGO IGGOCLAW Add Group Occurrence (Set of Fields) DMI 42,45

IGGPALEC IGGOCLBE Check for Index or Data and Sequence
Set with Data

IGGPALT IGGOCLBD CMS ALTER Processing EBI, EHI, EH2, 50
EH3

IGGPALT2 IGGOCLAX Alter Catalog Record's Field Value DHI,DM2 42,46

IGGPALVL IGGOCLBE CMS ALTER: Volume Processing EH3 50

IGGPALVR IGGOCLBN CMS ALTER: Volume Processing EH3 50

IGGPAOCI IGGOCLAG Assign Contiguous Control Intervals DM2, ED3, ED5 5\.5

IGGPAUPG IGGOCLB2 ALTER: Upgrade/Update

IGGPAXCI IGGOCLAG Assign One Control Interval 45,48,51.6

IGGPBJFB IGGOCLA6 Build JFCB EGI

IGGPBMR IGGOCLBR Bit-Map Manipulation Routine DJ2 48, 50

IGGPCBPT IGGOCLA6 Compute Blocks of Track Value

IGGPCCCR IGGOCLAG Checkpoint the Catalog Control Record 51.7
(CCR)

IGGPCDVR IGGOCLAT CMS (Catalog Management Services): Initial OBI, 001, EBI 40, 50
Processing

IGGPCKAU IGGOCLBM Check the Caller's Authorization To OBI, DOl 40, 50 j Access the Catalog Record

428 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization

L Name Name Name Diagrams Figures

IGGPCMKY IGGOCLBO Key-Range Verification

IGGPCNBO IGGOCLB8 Remove Candidate Volume Occurrences

IGGPCONV IGGOCLBZ CONVERTV Processing EB1, EMI 49

IGGPCPLR IGGOCLAG Check Preformat of Low-Key Range

IGGPCRTC IGGOCLA6 Convert Records to Tracks EGI

IGGPDAVO IGGOCLBH NonVSAM Volume Occurrence Construction

IGGPDBVC IGGOCLAM CMS DEFINE: Validity-check control blocks DG5, ECI 50

IGGPDBDI IGGOCLAJ CMS DEFINE: Build the Data Set and Index ED I, ED2, ED3, 51
Catalog Records of a Cluster ED4

IGGPDCCE IGGOCLAN CMS DEFINE: Build the Cluster's Catalog EDI, ED3, EEl
Record

IGGPDCCO IGGOCLBO Define Data and Index Characteristics 51

IGGPDCDA IGGOCLAP CMS DEFINE CATALOG Processing (2nd of 2) ECI, EEl 51

IGGPDCIM IGGOCLBX Integer Conversion

IGGPDCLS IGGOCLB5 DELETE Cluster/ AIX Records En, EJ4 so
IGGPDCMB IGGOCLAK CMS DEFINE: Completion (Build the Volume ED2 51

Information Sets of Fields)

IGGPDCME IGGOCLAE CMS DEFINE CATALOG: Catalog Open, Build, EE2 51
and Close

IGGPDCRA IGGOCLB4 DEFINECRA EEl, EE3 51

IGGPDCRC IGGOCLAS RBA Computing Routine EE2 51

IGGPDEAX IGGOCLBS Explicit DELETE AIX EJI, En 50

IGGPDEF IGGOCLAL CMS DEFINE: Initial Processing EBI, EB2, ECI 50,51

IGGPDEFA IGGOCLBH CMS DEFINE NONVSAM Processing EBI, EFI SO

IGGPDEFC IGGOCLAS CMS DEFINE CATALOG Processing (1st of 2) EEl 51

IGGPDEFS IGGOCLAQ CMS DEFINE SPACE Processing EBI, EDI, ED3 50,51
EEl, EGI, EG2

IGGPDEIN IGGOCLBW Modify: Delete/Insert Processing 46

IGGPDEL IGGOCLBG CMS DELETE CLUSTER/ AIX/PATH/NONVSAM EBI, EJI, EJ4, 50
Processing En

IGGPDELC IGGOCLAF CMS DELETE CATALOG Processing EBI, ELI SO

IGGPDELS IGGOCLBL CMS DELETE SPACE Processing EBI, EKI SO

IGGPDEL2 IGGOCLAV Delete a Set of Fields DM3 42,47

IGGPDEMV IGGOCLA7 CMS DELETE: Extract the volume information 50
set of fields

IGGPDEPT IGGOCLBS Explicit DELETE PATH EJl, EB 50

IGGPDEXA IGGOCLBG Extract Associations

IGGPDFBO IGGOCLB8 CMS DEFINE: Space Recovery 51

IGGPDFRS IGGOCLA8 Free Unused and Unneeded Storage ED2, ED4
Resources

IGGPDFS2 IGGOCLA6 CMS DEFINE SPACE: Build the Data Space
Group and Data Set Directory Entry Sets

L of fields

IGGPDF4T IGGOCLA7 Format-4 Volume Record Timestamp EJ2

Directory 429

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization
Name Name Name Diagrams Figures

IGGPDGO IGGOCLAX Modify: Delete Group Occurrence (Set of 47,48
Fields) Processing

IGGPDGOP IGGOCLAX Modify: Delete Group Occurrence Pointer 47,48
(Set of Fields Pointer) Processing

IGGPOIAX IGGOCLB5 Implicit DELETE AIX EJI, EJ2, En 50

IGGPOIPT IGGOCLB5 Implicit DELETE PATH En, EJ4 50

IGGPDLET IGGOCLBL Delete Volume Entry Records

IGGPDLXT IGGOCLBG DELETE Exit Routine

IGGPDLVM IGGOCLBL Build Volume Mount Interface

IGGPDOPN IGGOCLBG OPEN Determination EJI 50

IGGPDRDA IGGOCLAN DEFINE AMDSB Processing EDI, ED3 51

IGGPDRSP IGGOCLBY CMS DEFINE CLUSTER Processing (5th Module) ED3 51

IGGPDSCB IGGOCLAN CMS DEFINE: Initial Processing (Space ECI 51
Calculations and Build the Cluster
Catalog Record)

IGGPDSPC IGGOCLBX CMS DEFINE CLUSTER Processing (4th Module) ED3 51

IGGPDTIM IGGOCLAL CMS DEFINE: Call the System Timer 50

IGGPDUND IGGOCLB8 CMS DEFINE: Undo the Previous Processing 50

IGGPDUCB IGGOCLBL

IGGPDUPG IGGOCLB5 DELETE Upgrade Associations En, EJ4 50

IGGPDUSC IGGOCLA7 CMS DELETE: Scratch the Data Space 50 J (Format l-Identifier-DSCB) from the
Volume's VTOC

IGGPDVMV IGGOCLA7 CMS DELETE: Mount and Verify Volumes 50

IGGPEMIO IGGOCLAF I/O Error Message Writer

IGGPEMSG IGGOCLAF Error Message Writer

IGGPEXPD IGGOCLAX Expand a Catalog Record's Variable- DM2 46
length Field

IGGPEXT IGGOCLAZ Extract Processing DEI, DE2, DB, 41,49
014, DJ2

IGGPFDSP IGGOCLAI DELETE SPACE Processing EKI 50

IGGPF4DQ IGGOCLBU Dequeue the Format 4 DSCB 50

IGGPF4RD IGGOCLBU Read the Format 4 DSCB EE3, EMI 50

IGGPF4WR IGGOCLBU Write the Format 4 DSCB EE3, EMI 50

IGGPGALO IGGOCLBZ CONVERTV: GET all Low-Range Records EMI 50

IGGPGDSP IGGOCLBJ LOCATE: GENDSP Processing DBI, DFI 40

IGGPGET IGGOCLBI GET: Call Record Management to Retrieve DC2, 014, 016, 51.1
A Catalog Record DJI

IGGPGETC IGGOCLBI GET: Call Record Management 51.1
to Retrieve a Catalog Record

IGGPGNEX IGGOCLAW Format a New Catalog Extension Record 45,48

IGGPGREC IGGOCLBA Retrieve a Catalog Record DLt, DL2 41,42,45,
47,48

430 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization
Name Name Name Diagrams Figures

IGGPGVAL IGGOCLBA Get A Catalog Record Field DE2, DLI, DL2, 41,42,46
DM2

IGGPIGOP IGGOCLAW Insert A Group Occurrence Pointer DMI 45,48
(Set of Fields Pointer)

IGGPINIT IGGOCLBC UPDATE-Extend: Initialization DII 43

IGGPINMD IGGOCLB6 Build User Authorization Interface DD2

IGGPIORA IGGOCLAG Decode record management I/O error codes 51.8

IGGPISCI IGGOCLAG Insure Catalog Control Interval 51.9
Availability

IGGPLDCS IGGOCLBK LSPACE: Gather the Available Space Data DKI

IGGPLOC IGGOCLAZ LOCATE Processing DBI, DEI, DE2 40,41

IGGPLSP IGGOCLBK LSPACE Processing DBI, DKI, EG2, 40,50
EB

IGGPLSTC IGGOCLBQ CMS LISTCAT Processing EBI, Ell 50

IGGPMCO IGGOCLAC DEFINE CATALOG: Master Catalog Build and 40
Open (1st of 2)

IGGPMC02 IGGOCLAD DEFINE CATALOG: Master Catalog Build and EE2 40, 50
Open (2nd of 2)

IGGPMCRA IGGOCLA7 DELETE: Verify CRA Volume Mount 50

IGGPMEBM IGGOCLAE Handle Multiple Extents for Catalog Open
and Build

L IGGPMGO IGGOCLAX Move Group Occurrences (Sets of Fields) 45,48
From One Extension Record Into Another

IGGPMOD IGGOCLAV Modify: Initial Processing DI4, DI6, DJI, 42
DMI, DM3, EH3,
EMI

IGGPMODI IGGOCLDA Build Interface to MODIFY Function EE3

IGGPORDA IGGOCLAN DEFINE Processing 51

IGGPPAD IGGOCLAG PUT Add: Call Record Management To Write DHI 51.3
A New Catalog Record

IGGPPAIX IGGOCLB9 DEFINE AIX ED3 51

IGGPPATH IGGOCLB9 DEFINE PATH ED5 51

IGGPPDE IGGOCLAG ERASE: Call Record Management To 47,51.4
Erase A Catalog Record

IGGPPREC IGGOCLAW Call PUT-Add or PUT-Update to Write a DHI 42,47,50
Catalog Record, Then Call SMF

IGGPPSEM IGGOCLAN DEFINE: Validity-Check Input Parameters 51

IGGPPUPC IGGOCLAG PUT-Update: Call Record Management to DHI 51.2
Rewrite A Catalog Record

IGGPRACC IGGOCLBO Checkpoint CRA CCR

IGGPRAEA IGGOCLBO CRA I/O Error Analysis 5l.l9

IGGPRAG IGGOCLBO CRAGET

IGGPRAOP IGGOCLAD OpenCRA 5l.l5

L IGGPRAOR IGGOCLBO Orient to CRA 51.14

IGGPRAPA IGGOCLBO CRAPUT Add 51.12

Directory 431

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization
Name Name Name Diagrams Figures

IGGPRAPC IGGOCLBO CRA Record Chain

IGGPRAPD IGGOCLBO CRA PUT Delete 51.13

IGGPRAPU IGGOCLBO CRA PUT Update 51.11

IGGPRAPV IGGOCLDA Format-4 DSCB Timestamp Processing

IGGPRARC IGGOCLBO Read CRA CCR

IGGPRASC IGGOCLBO Ensure Sufficient CRA CIs 51.17

IGGPRAX IGGOCLBO CRA Exit Routine 51.18

IGGPRCCR IGGOCLAG Read Catalog Control Record EMI 51.7,51.10

IGGPRETI IGGOCLBP Return point from DADSM EXTEND

IGGPRPLF IGGOCLAH Dequeue the Catalog EMI

IGGPRPLM IGGOCLAH RPL Manager DC2

IGGPRUS IGGOCLB7 Reset a Reusable Data Set DEI, DHI, DB, 44
Dl4,Dl5,Dl6

IGGPSALL IGGOCLAR Suballocate: Candidate Volume Assignment DlI, D11, EDt, 43,50,51
ED3, EEl, EH3

IGGPSALS IGGOCLAU Suballocate: Space Assignment DJI, DJ2, EJ2 43,49,51

IGGPSCAT IGGOCLAH Search Catalog Processing DBI, DCI, DC2, 40,50
EGI, EMI

IGGPSCNC IGGOCLAY Initial CTGPL Processing DBI, DEI, DE2, 40,41,42
DMI

IGGPSCNF IGGOCLAZ DEI, DE2 J IGGPSGOP IGGOCLAV Search For a Group Occurrence Pointer DEI, DE2 47,48
(Set of Fields Pointer)

IGGPSHNK IGGOCLAX Shrink A Catalog Record's Variable-Length DM2 46
Field

IGGPSLEL IGGOCLAM SUPERLOCATE Processing DG2, DG3 40

IGGPSLEN IGGOCLAA SUPERLOCATE Processing DGI, DG2, DG3 40

IGGPSLOC IGGOCLAM LOCATE: Super-Locate Processing DBI, DGI, DG2, 40
DG3, DG4

IGGPSMF IGGOCLB3 SMF-for-ALTER: Write Processing

IGGPSMFA IGGOCLBV SMF: Build a Format-63 SMF Record ED2, ED4, EDS,
EE2

IGGPSMFF IGGOCLBV SMF: Free the Virtual Storage Obtained DKI

IGGPSMFG IGGOCLB3 SMF-for-AL TER: Read Processing

IGGPSMFL IGGOCLBV SMF: Build a Format-69 SMF Record DK!

IGGPSMFR IGGOCLBV SMF: Build a Format-68 SMF Record

IGGPSMFS IGGUCLBV SMF: Build a Format-67 SMF Record

IGGPSPAC IGGOCLBP UPDATE-Extend: Obtain More Space 43

IGGPSPSC IGGOCLB6 Check for Security By-Pass DD!

IGGPSSCR IGGOCLBF Subscratch: Release A Cluster's Space Dl5, EJI 50
Within a VSAM Data Space

IGGPSVOL IGGOCLBC Search For the Volume Information Set- Dli 43
of-Fields

IGGPTNXO IGGOCLBI Calculate SUMTT Value

432 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

External Procedure Directory

Method of Program
Procedure Module Descriptive Operation Organization
Name Name Name Diagrams Figures

IGGPTSTS IGGOCLBA CTG FL-for-Tests Processing DEI, DHI 41,42

IGGPTXO IGGOCLBI Update SUMTT in Volume Record

IGGPUADD IGGOCLBI Add Upgrade Association

IGGPUCRS IGGOCLBI GET a CRA Record by
CI Number

IGGPUDEL IGGOCLBI Delete Upgrade Association

IGGPUPD IGGOCLAV UPDATE: Initial Processing DBI, DHI, DB 40,42

IGGPUPDE IGGOCLBB UPDATE-Extend Processing DHI, DII, DI2 42,43

IGGPUPGD IGGOCLAZ PUT Upgrade Processing DEI

IGGPVALI IGGOCLBZ CONVERTV: Validity-Checking EMI 50

IGGPVRD IGGOCLBN ALTER: Remove VSAM Space EH3 50
from Volume

IGGPVMSC IGGOCLA7 CMS DELETE: Delete all space information in 50
the volume catalog record

IGGPWCAT IGGOCLDA Write Volume Records to Catalog EE3

IGGPWCRA IGGOCLDA Write Self-Describing and EE3
Volume Records to CRA

IGGPWFLR IGGOCLAG Write Free Record

IGGPWTSO IGGOCLB6 Write Messages To A TSO Terminal User 40, 50

IGGPXDGO IGGOCLBT Add Derived Group Occurrence DMI

IGGPXEL2 IGGOCLBT Delete Derived Group Occurrence DM3

IGGPXEXT IGGOCLBS Extract Derived Group Occurrence

IGGPXIO IGGOCLAG Issue the GET, PUT, or ERASE Macro 51.8
Instructions

IGGPXLT2 IGGOCLBT Alter Derived Field Value DM2

IGGPXMOD IGGOCLBT Modify Derived Group Occurrence DMI

IGGPXRIO IGGOCLBO CRA GET/PUT Routine 51.19

IGGPXVAL IGGOCLBS Get Derived Field Value DLI

IGGOCLAI IGGOCLAI Catalog Management Transient Load DBI 40

IGGOCLCA IGGOCLCA OS/VS Catalog Request Handler

IGGOCLCB IGGOCLCB VSAM Catalog Request Handler

IGGOCLC9 IGGOCLC9 Catalog Management First Load DBI 40

IGGOI02G IGGOI02G OS/VS DADSM: Obtain Space For a VSAM
Data Space

IMDUSRF9 IMDUSRF9 IMDPRDMP-Format Appendage

Directory 433

Procedure CaDs Directory

Procedure Calls Directory: Open/Close/EO V Modules

This table lists each Open/Close/EOV module and the modules it calls.

Calling
Module

IDA0192A

IDA0192B

IDAOI92C

IDAOI92D

IDA0192F

IDA0192G

IDA01921

IDA0192M

IDA0192P

IDAOI92S

IDA0192V

IDAOI92W

IDA0192Y

IDA0192Z

IDA0200S

IDA0200B

IDA0200T

IDA0231B

IDA0231T

IDA0557A

Called Modules

IDA0192B, IDA0192C, IDAOI92F, IDA0192M, IDAOI92P, IDA0192S

IDAOI92C, IDAOI92D, IDAOI92M, IDAOI92P, IDAOI92Y,
IDAOI92Z

IDAOl92P

IDAOI92M, IDAOI92P, IDA0192V

IDA0192C

IDAOI92C, IDA0192D

IDAOI92M

IDA0192M, IDAOl92W

IDAOI92M, IDA0192Y

IDAOI92C, IDA0192D, IDAOI92P, IDA0192S

IDA0192C, IDAOl92P, IDAOI92Y, IDA0200B

IDAOI92C, IDAOI92D, IDAOI92P, IDA0192S

IDA0192P, IDA0231B

IDAOI92C, IDAOI92D, IDAOI92P, IDAOI92S, IDA0192V

Procedure Calls Directory: Checkpoint/Restart
CaIUng
Module

IGCOA05B

IDAOA05B

IDAOB05B

IDAOC06C

CaUed Modules

IDAOA05B

IDAOB05B, IDAOI92M

Procedure Calls Directory: Record Management Modules

This table lists each Record Management module and the modules and
procedures it calls.

Calling
Module

IDA019RA

IDA019RB

IDA019RC

Called Procedure
(and its Module)

IDAABF (IDAOI9RW), IDAFRBA (IDA019RW), IDAFREEB
(IDAOI9RZ), IDAGNXT (IDA019RZ), IDAGRB (IDA019RZ),
IDASBF (IDAOI9RZ), IDAWAIT (IDA019RZ), IDAOl9RB

IDAFREEB (IDAOI9RZ), IDAGRB (IDAOI9RZ), IDA019RC

434 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

Calling
Module

lOAOl9RE

lOAOl9RF

lOAOl9RG

lOAOl9RH

lOAOl9RI

lOAOl9RJ

lOAot9RK

lOAOl9RL

lOAot9RM

lOAOl9RN

lOAot9RO

lOAOl9RP

lOAOl9RQ

lOAot9RR

lOAOl9RS

lOAOl9RT

lOAOl9RU

lOAOl9RV

lOAOl9RW

lOAOl9RX

CaDed Procedure
(and its Module)

lOAFREEB (lOAOI9RZ), lOAGNFL (lOAOI9RZ), lOAGRB
(IDAot9RZ), lOASBF (lOAOI9RZ), lOATJXIT (lOAOI9RP),
lOAWRBFR (IDAOI9RZ), lOAOI9RF, lOA019RH, lOAOl9RM

IDAABF (IDAOI9RW), lOAAIBF (IDA019RW), IDAEOVIF
(IDAOI9R5), lOAFREEB (IDA019RZ), lOAGNNFL (IDAOI9RZ),
IDAGNXT (IDAOI9RZ), lOAGRB (IDA019RZ), IDASBF
(IDAOI9RZ), lOATJXIT (IDAOI9RP), IDAWRBFR (IDAOI9RZ),
lOA019RI, lOAOI9RK, lOA019RM, IDA019SF

IDAAQR (IDA019RN), lOAEOVIF (IDA019R5), IDAER
(IDA019RN), lOAFREEB (IDAOI9RZ), lOAGNFL (IDAOI9RZ),
lOAR (IDAOI9RJ), IDASPNPT (lOA019RT), lOAWR (lOAOI9RJ)

lOAWRBFR (lOA019RZ), lOAOl9RC

lOAAQR (IDAOI9RN), lOAEOVIF (IDAot9R5), lOAFREEB
(IDAOI9RZ), lOAGNFL (IDAOI9RZ), lOAGRB (lOAot9RZ),
lOAot9RB, IDA019RH, IDA019RJ

lOAAQR (lOA019RN), IDAER (lOA019RN), lOAFREEB
(IDAOI9RZ), lOAGRB (IDAot9RZ), lOAIST (lOAot9RG),
lOAIVIXB (IDAOI9RH), lOASPACE (IDAOI9RH), IDASPNPT
(IDAOI9RT), lOAWRBFR (lOAOI9RZ)

IDAEOVIF (lOAOI9R5), lOAFREEB (IDA019RZ), IDAGNFL
(IDAOI9RZ), IDAWRBFR (IDAOI9RZ)

lOATJXIT (lOAOI9RP), lOAot9RM, IDA019RS

IDATJXIT (IDAOI9RP), lOA019RE, IDAOI9RT, IDAOI9RU,
lOAot9SA

lOAEOVIF (lOAOI9R5), IDAOl9RK

lOAFREEB (IDAOI9RZ), lOAGRB (IDA019RZ), lOAot9RB

lOAEXEX (IDAOI9R5), IDAEXITR (lOAot9R5), lOASBF
(lOA019RZ), lOAWRBFR (IDA019RZ), lOA019RG, lOAOI9RK,
lOA019R5,lOA019SA

lOAABF (IDAOI9RW), lOADRQ (lOAot9R5), lOAEOVIF
(lOAot9R5), lOAFREEB (lOAOI9RZ), lOAGNNFL (IDAot9RZ),
lOAGNXT (lOA019RZ), lOARRDRL (IDA019RR), IDATJXIT
(IDA019RP), lOAWRBFR (IDAOI9RZ), IDA019RK

IDAABF (IDA019RW), lOAFREEB (lOA019RZ), IDAGNXT
(IDA019RZ), lOAGRB (IDA019RZ), lOATJXIT (IDA019RP),
IDA WRBFR (IDAOI 9RZ), lOAOl9RQ

IDACHKKR (lOAot9RM), IDADRQ (IDA019R5), IDAGRB
(IDA019RZ), lOAGWSEG (IDA019RZ), IDAIVIXB (IDAot9RH),
lOAJRNSR (IDAOI9RT), IDAREPOS (IDA019RE), lOASBF
(IDAOI9RZ), lOAWRBFR (IDAot9RZ), lOA019RC, lOA019RF

lOAABF (IDAot9RW), IDAADSEG (lOAOI9RS), lOAAIBF
(IDAOI9RW), lOADRQ (lOAOI9R5), lOAFREEB (IDAot9RZ),
lOAGNXT (lOAot9RZ), lOAGRB (IDA019RZ), lOAIVIXB
(IDAot9RH), lOAMVSEG (lOAot9RS), lOAREPOS (lOAot9RE),
lOASBF (lOA019RZ), lOATJXIT (IDA019RP), IDAWRBFR
(IDA019RZ), lOAOI9RC, lOAot9RE, IDA019RF, IDA019SA

lOADRQ (IDAOI9R5), lOAGETWS (IDAot9RX), lOARELWS
(lOA019RX), lOASBF (IDA019RZ), lOA019R4

lOAABF (IDA019RW), lOAFREEB (lOAOI9RZ), lOAGNXT
(lOA019RZ), IDAGRB (lOAot9RZ), lOA019RA, lOA019RC

IDAGRB (IDA019RZ), lOAWAIT (lOA019RZ), lOAWRBFR
(lOA019RZ), lOAot9RC, lOA019RV, lOA019R3

lOADRQ (lOA019R5), lOAENDRQ (IDAot9RP), lOAXGPLH
(IDAot9RU),lOA019R4

Directory 435

CaIIng
Module

IDAOl9RY

IDAOl9RZ

IDAOl9RI

IDAOl9R2

IDAOl9R3

IDAOl9R4

IDA0I9R5

IDAOl9R6

IDAOl9R7

IDAOl9R8

IDAOl9R9

IDAOl9SA

IDAOl9SB

IDAOl9SF

CaRed Procedwe
(and Its Module)

IDADRQ (IDAOI9R5), IDAEXEX (IDAOI9R5), IDAFRBA
(IDAOI9RW), IDATJXIT (IDAOI9RP), IDA WAIT (IDAOI9RZ),
IDAOl9R3, IDAOl9R5

IDAGWSGW (IDA0I9RW), IDAOI9RY, IDAOI9R2, IDAUPXIT

IDAENDRQ (IDAOI9RP), IDAERROR (IDAOI9R5), IDAFREEB
(IDAOI9RZ), IDAMRKBF (IDAOI9RZ), IDARSTRT (IDAOI9R5),
IDASBF (IDA0I9RZ), IDASCHBF (IDAOI9RZ), IDA WRBFR
(IDAOI9RZ), IDAWRTBF (IDAOI9RZ), IDAOI9RK, IDAOI9RR,
IDAOl9RX, IDAOI9R4, IDA0I9R5, IDA0I9R8

IDAFRBA (IDAOI9RW), IDARVRSI (IDAOI9RV), IDAWAIT
(IDAOI9RZ), IDAOl9R3

IDADRQ (IDAOI9R5), IDAEOVIF (IDAOI9R5), IDAOl9SB

IDAABF (IDAOI9RW), IDAADVPH (IDAOI9RV), IDADARTV
(IDA0I9RT), IDADRQ (IDAOI9R5),IDAFREEB (IDAOI9RZ),
IDAGNNFL (IDAOI9RZ), IDAGNXT (IDAOI9RZ), IDAGRB
(IDAOI9RZ), IDARXBD (IDAOI9RX), IDATJXIT (IDAOI9RP),
IDAWRBFR (IDAOI9RZ), IDAOI9RA, IDA0I9RK, IDAOI9RL,
IDAOl9RM, IDA0I9RU

IDAUPXIT

IDAABF (IDAOI9RW), IDADRQ (IDAOI9R5), IDAEOVIF
(IDAOI9R5), IDAEXCL (IDAOI9RZ), IDAFRBA (IDAOI9RW),
IDAFREEB (IDAOI9RZ), IDAGNNFL (IDAOI9RZ), IDAGNXT
(IDAOI9RZ), IDAGRB (IDAOI9RZ), IDASBF (IDAOI9RZ),
IDATJXIT (lDA0I9RP), IDAWRBFR (lDAOI9RZ),IDA019RK,
IDA019RO

IDAEOVIF (IDA019R5), IDAFREEB (IDAOI9RZ), IDAGNNFL
(IDAOI9RZ), IDAGRB (IDA019RZ),IDATJXIT (IDAOI9RP),
IDAWRBFR (IDAOI9RZ), IDA019RG, IDAOl9RK, IDA019RU

IDADRQ (IDA019R5)

IDAABF (IDA019RW), IDAEOVIF (IDA019R5), IDANEWRD
(IDA019RI), IDAFREEB (IDA019RZ), IDAGNNFL (IDA019RZ),
IDAGRB (IDAOI9RZ), IDAHLINS (IDA019RI), IDASBF
(IDAOI9RZ), IDAWRBFR (lDA019RZ), IDA019RM, IDA019RV

436 OS/VS2 SYS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Procedure Calls Directory: Catalog Management Procedures

This table contains each Catalog Management module and external and
internal procedures within the module. The internal and external calls of each
procedure are listed.

Calling
Module and Its
Procedures

IGGOCLAA

External

External Procedures Called
(Procedures Outside the Module)

IGGPSLEN IGGPSLEL

Internal

IGGPSLCG IGGPEXT, IGGPGET, IGGPSLEL

IGGPSLIV

IGGPSLR

IGGPSLY

IGGOCLAB

External

IGGPEXT, IGGPGET, IGGPSLEL

IGGPEXT, IGGPGET, IGGPSLEL

IGGPACDV IGGPCDVR, IGGPCKAU, IGGPGDSP,
IGGPLOC, IGGPLSP, IGGPMCO,
IGGPSCAT, IGGPSCNC, IGGPSLOC,
IGGPUPD

Internal

IGGOCLAC

External

IGGPMCO

Internal

IGGPSUCB

IGGOCLAD

External

IGGPMC02

IGGPRAOP

IGGOCLAE

External

IGGPDCME

IGGPMEBM

Internal

IGGPDCBO

IGGPDCCB

IGGPDCOC

IGGPDCPR

IGGOCLAF

External

IGGPMC02

IGGPDCRC, IGGPMOD

IGGPBMR

IGGPDUND, IGGPF4RD, IGGPF4WR

IGGPMC02,IGGPSMFA

IGGPXID

Internal Procedures Called
(Procedures Within the Module)

IGGPSLCG, IGGPSLIV, IGGPSLR,
IGGPSLY

IGGPSLY

IGGPSLY

IGGPCRAD

IGGPDCOC

IGGPDCCB, IGGPDCBO, IGGPDCPR

IGGPDELC IGGPCCCR, IGGPDBVC, IGGPEXT. IGGPDLER,IGGPSDSP
IGGPFDSP, IGGPF4RD, IGGPF4WR,
IGGPGET, IGGPPDE, IGGPSCAT

Directory 437

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its External Procedures Called Internal Procedures Called

J Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPEMIO

IGGPEMSG IGGPNFND

Internal

IGGPDCDS IGGPDOPN, IGGPEXT

IGGPDLER IGGPDF4T

IGGPNFND

IGGPSDSP

IGGOCLAG

External

IGGPAOCI IGGPANCI, IGGPCCCR, IGGPRCCR,
IGGPXIO

IGGPAXCI IGGPANCI, IGGPCCCR, IGGPRCCR,
IGGPXIO

IGGPCCCR IGGPRBAP, IGGPXIO

IGGPIORA IGGPEMIO, IGGPEMSG

IGGPISCI IGGPGET, IGGPRASC IGGPANCI, IGGPCCCR, IGGPRCCR,
IGGPXIO

IGGPPAD IGGPRAPA,IGGPRAP4 IGGPRCCR,IGGPXIO

IGGPPADC

IGGPPDE IGGPRAPD IGGPRCCR, IGGPTRPL, IGGPXIO

IGGPPUPC IGGPRAPU IGGPTRPL, IGGPXIO J
IGGPRCCR IGGPRBAP, IGGPXIO

IGGPXIO IGGPIORA

Internal

IGGPANCI IGGPCHAC, IGGPIORA

IGGPCHAC

IGGPRBAP

IGGPTRPL IGGPXIO

IGGOCLAH

External

IGGPSCAT IGGPCKAU, IGGPGET, IGGPUCRS IGGPIOSI, IGGPRPLF, IGGPRPLM,
IGGPSCA

IGGPRPLF

IGGPRPLM IGGPPLHC

Internal

IGGPIOSI

rGGPPLHC

IGGPSCA

438 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its External Procedures Called Internal Procedures Called
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGOCLAI

External

IGGPDFMl IGGPF4DQ,IGGPF4RD

IGGPFDSP IGGPDLET, IGGPDLVM, IGGPDOPN, IGGPFDEX,IGGPFDXT
IGGPDUCB, IGGPEXT, IGGPGET,
IGGPMOD, IGGPPUPC

Internal

IGGPFDEX

IGGPFDXT

IGGOCLAJ

External

IGGPDBDI IGGPDCMB, IGGPDFBO, IGGPDTIM, IGGPDCNV,IGGPDFRS,
IGGPGET,IGGPUADD IGGPDRCS, IGGPDSPO

Internal

IGGPDCNV IGGPSALL

IGGPDEXD

IGGPDFRE

IGGPDFRS IGGPDFRE

IGGPDRCS

IGGPDSEX IGGPDEXD

L IGGPDSPO IGGPCNBO, IGGPDEFS, IGGPGET, IGGPDSEX
IGGPSALL, IGGPTNXO, IGGPTXO

IGGOCLAK

External

IGGPDCMB IGGPDBVO,IGGPDMOP,
IGGPDOMF

Internal

IGGPDBCV IGGPDEXD

IGGPDBVO IGGPDBCV, IGGPDEXD,
IGGPDRCA, IGGPDRNG, IGGPDSSP

IGGPDEXD-

IGGPDMOP IGGPMOD

IGGPDOMF IGGPSMFA

IGGPDRCA

IGGPDRNG

IGGPDSSP IGGPDEXD

IGGOCLAL

External

IGGPDEF IGGPDSCB IGGPDCAV,IGGPDDEP

IGGPDBVC

L
IGGPDTIM

Directory 439

Procedure CaDs Directory: Catalog Management Modules

Calling
Module and Its External Procedures Called Internal Procedures CaUed

J Procedures (Procedures Outside the Module) (Procedures within the Module)

Internal

IGGPDCAY IGGPDBYC,IGGPDCSF,
IGGPDCWC,IGGPDDNP,
IGGPDFSC,IGGPDRPG

IGGPDCDE

IGGPDCSF IGGPDBYC

IGGPDCWC IGGPDBYC

IGGPDDEP IGGPDCDE, IGGPDEDE,
IGGPDSTY, IGGPDWAI

IGGPDDNP

IGGPDEDE IGGPGET IGGPDTIM

IGGPDFSC IGGPDBYC

IGGPDRPG IGGPCMKY

IGGPDSTY IGGPDBYC

IGGPDWAI

IGGOCLAM

External

IGGPDYC

IGGPSLEL IGGPEXT

IGGPSLOC IGGPSLEN IGGPSLIN

Internal J
IGGPSLEI

IGGPSLIN IGGPSLEI

IGGOCLAN

External

IGGPDCCE IGGPAOCI,IGGPPAD

IGGPDRDA IGGPDRSP, IGGPDSPC IGGPDCCE

IGGPDSCB IGGPDBDI, IGGPDCDA, IGGPDEFC IGGPDALR,IGGPDBSF,
IGGPDRDA,IGGPDSPF,
IGGPDUND

IGGPPSEM IGGPXDCI

Internal

IGGPDALR

IGGPDBSF

IGGPDSPF

IGGOCLAP

External

IGGPDCDA IGGPDCYS

Internal

IGGPDCON

IGGPDCPC IGGPAOCI, IGGPDCCE, IGGPPAD

:J IGGPDCSP IGGPDCON, IGGPDCPC

440 OS!YS2 SYS Independent Component: Virtual Storage Access Method (YSAM) Logic

Procedure Calls Directory: Catalog Management Modules

Calling

L
Module and Its External Procedures CaUed Internal Procedures Called
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPDCVS IGGPDCSP

IGGOCLAQ

External

IGGPDEFS IGGPAXI, IGGPBJFB, IGGPCBPT, IGGPCOBT,IGGPDSXT,
IGGPCKAU, IGGPCRTC, IGGPDCRA, IGGPFIBO,IGGPF4PR,
IGGPDFS2, IGGPDTIM, IGGPGET, IGGPIVER,IGGPTMST,
IGGPISCI, IGGPLSP, IGGPPAD, IGGPVMTV
IGGPSCAT

Internal

IGGPCOBT

IGGPDSXT

IGGPFIBO

IGGPF4PR IGGPF4DQ, IGGPF4RD, IGGPF4WR

IGGPIVER

IGGPTMST IGGPF4RD, IGGPF4WR

IGGPVMTV

IGGOCLAR

External

IGGPSALL IGGPEXT, IGGPGET, IGGPISCI,
IGGPMOD, IGGPSALS

L
IGGOCLAS

External

IGGPDEFC IGGPCCCR, IGGPDCME IGGPDCBE, IGGPDCSP, IGGPDCVO

Internal

IGGPDCBE IGGPDCEB,IGGPDCPB

IGGPDCEB IGGPDCME

IGGPDCFL

IGGPDCHD IGGPDCRC

IGGPDCIX IGGPDCRC

IGGPDCLD IGGPDCRC

IGGPDCPB

IGGPDCRC

IGGPDCSP IGGPDEFS, IGGPSALL, IGGPMEBM

IGGPDCVO IGGPDCFL,IGGPDCHD,
IGGPDCIX,IGGPDCLD

IGGOCLAT

External

IGGPCDVR IGGPALT,IGGPCKAU,IGGPCONV, IGGPCCLN
IGGPDEF, IGGPDEFA, IGGPDEFS,
IGGPDEL, IGGPDELC, IGGPDELS,
IGGPLSTC,IGGPSCAT

L
Internal

IGGPCCLN

Directory 441

Procedure CaDs Directory: Catalog Management Modules

Calling
Module and Its External Procedures Called Internal Procedures CaUed

J Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGOCLAU

External

IGGPSALS IGGPBMR, IGGPEXT IGGPEDS

Internal

IGGPEDS IGGPBMR

IGGOCLAV

External

IGGPDEL2 IGGPDGO, IGGPDGOP, IGGPGREC, IGGPSGOP
IGGPPDE, IGGPPREC, IGGPSMF

IGGPMOD IGGPSCNC IGGPSFPL

IGGPSGOP IGGPGREC

IGGPUPD IGGPRUS, IGGPUPDE IGGPSFPL

Internal

IGGPSFPL IGGPGREC, IGGPPREC, IGGPSMFG,
IGGPTSTS, IGGPXDGO, IGGPXEL2,
IGGPXLT2

IGGOCLAW

External

IGGPADGO IGGPAXCI,IGGPGREC IGGPAGOP,IGGPASPT,
IGGPGNEX,IGGPGREL,
IGGPIGOP, IGGPMVGO

J IGGPGNEX IGGPPREC

IGGPGREL IGGPGREC

IGGPIGOP

IGGPPREC IGGPPAD, IGGPPUPC, IGGPSMF

Internal

IGGPAGOP IGGPAXCI, IGGPGREC, IGGPMGO IGGPASPT,IGGPGNEX,
IGGPGREL,IGGPIGOP

IGGPASPT IGGPIGOP

IGGPMVGO

IGGOCLAX

External

IGGPALT2 IGGPGVAL IGGPMVAR

IGGPDGO

IGGPDGOP

IGGPEXPD

IGGPMGO IGGPIGOP, IGGPSGOP IGGPCGO, IGGPDGO, IGGPDGOP

IGGPSHNK

Internal

IGGPCGO

IGGPMBGO IGGPAXCI, IGGPGNEX, IGGPGREC IGGPMGO

IGGPMVAR IGGPAXCI, IGGPDEIN, IGGPGNEX, IGGPEXPD, IGGPMBGO, J IGGPGREC, IGGPGVAL IGGPMGO, IGGPSHNK

~2 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Procedure CaDs Directory: Catalog Management Modules

Calling

'-.. Module and Its External Procedures Called Internal Procedures Called
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGOCLAY

External

IGGPSCNC IGGPSNVC

Internal

IGGPSNVC

IGGOCLAZ

External

lGGPEXT lGGPSCNC, IGGPXEXT IGGPSCNF

IGGPLOC lGGPSCNF

Internal

lGGPSCNF IGGPGREC, lGGPSMFG, lGGPTSTS IGGPLOC2,IGGPUPGD

IGGPLOC2 IGGPGVAL lGGPGREP,IGGPSHIN

IGGPSHIN

lGGPGREP IGGPGREC

IGGPUPGD lGGPGET, lGGPVAL

IGGOCLAI

External

IGGOCLAI IGGOCLC9

IGGOCLA6

External

IGGPBJFB

IGGPCBPT

lGGPCRTC

lGGPDFS2 IGGPCDSD, IGGPCSDG, IGGPCSHG

Internal

lGGPCDSD IGGPSALL

IGGPCSDG IGGPDSMD

IGGPCSHG lGGPDSMD

lGGPDSMD IGGPMOD

IGGOCLA7

External

IGGPDEMV IGGPDLXT, IGGPEXT IGGPSET

IGGPDF4T IGGPDLXT, IGGPF4DQ, IGGPF4RD,
IGGPF4WR, IGGPPUPC

IGGPDUSC IGGPDLXT

IGGPDVMV

IGGPMCRA IGGPDLXT, IGGPGET IGGPDVMV

IGGPVMSC IGGPGET, IGGPSSCR IGGPDEDD,IGGPDESH,
IGGPDEVG, IGGPDF4T, IGGPDUSC

Directory 443

Procedure CaDs Directory: Catalog Management Modules

Calling
Module and Its External Procedures CaUed Internal Procedures CaUed J Procedures (Procedures Outside the Module) (Procedures within the Module)

Internal

IGGPDEDD IGGPMOD IGGPSET

IGGPDESH IGGPMOD IGGPSET

IGGPDEVG IGGPDLXT, IGGPEXT, IGGPMOD IGGPDVMV,IGGPSET

IGGPSET

IGGOCLA8

External

IGGPDFRS

Internal

IGGPDFRE

IGGOCLBA

External

IGGPGREC IGGPGET, IGGPPREC, IGGPSMFG

IGGPGVAL IGGPGREC,IGGPLVAL

IGGPTSTS IGGPGV AL, IGGPTCMP

Internal
f·,

, ' IGGPCKLC

IGGPLVAL IGGPCKLC

IGGPTCMP

IGGOCLBB

External

IGGPUPDE IGGPEXT, IGGPGET, IGGPINIT, IGGPCEXT,IGGPCSAL,
IGGPSMFA, IGGPSMFL, IGGPSVOL, IGGPMEXT,IGGPMVOL,
IGGPTNXO, IGGPTXO IGGPSSWD, IGGPUALL

Internal

IGGPCEXT

IGGPCSAL IGGPSALL, IGGPSPAC

IGGPMEXT IGGPMOD

IGGPMVOL IGGPMOD

IGGPSSWD IGGPGET, IGGPINIT, IGGPSVOL IGGPCEXT,IGGPMEXT,
IGGPMVOL

IGGPUALL IGGPGET,IGGPSPAC

IGGOCLBC

External

IGGPINIT IGGPEXT

IGGPSVOL IGGPEXT

IGGOCLBD

External

IGGPALT IGGPALVL, IGGPAUPG, IGGPGET, IGGPALMD,IGGPALNM
IGGPPUPC, IGGPSMF, IGGPSMFA,
IGGPSMFG

J
Y~ OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Procedure CaDs Directory: Catalog Management Modules

Calling
Module and Its
Procedures

Internal

IGGPALBT

External Procedures Caled
(Procedures Outside the Module)

Internal Procedures CaUed
(Procedures within the Module)

IGGPALFI IGGPALGV,IGGPALSV

IGGPALGV IGGPEXT

IGGPALMD IGGPMOD

IGGPALNM IGGPGET, IGGPPAD, IGGPPDE,
IGGPSMFR

IGGPALSV

IGGOCLBE

External

IGGPALEC IGGPGET

Internal

IGGPALBC

IGGPALAE

IGGPALIX IGGPEXT,IGGPGET

IGGPALSA IGGPMOD,IGGPSALL

IGGPALVA IGGPEXT

IGGPALVL IGGPALVR, IGGPEXT, IGGPVRD

IGGPVRD

IGGOCLBF

External

IGGPSSCR IGGPBMR

IGGOCLBG

External

IGGPALBT

IGGPALFI

IGGPALIX

IGGPALBC

IGGPALBC,IGGPALEC

IGGPALBC, IGGPALAE, IGGPALSA

IGGPALBC,IGGPALVA

IGGPVRCV

IGGPDEL IGGPDCLS, IGGPDEAX, IGGPDEMV, IGGPDEXA, IGGPDLXT,
IGGPDEPT, IGGPDlAX, IGGPDlPT, IGGPDOPN,IGGPERAS
IGGPDUND, IGGPDUPG, IGGPDUSC,
IGGPDVMV, IGGPGET, IGGPMCRA,
IGGPSMFS, IGGPVMSC

IGGPDEXA IGGPEXT IGGPDLXT

IGGPDLXT

IGGPDOPN

Internal

IGGPERAS IGGPRPLF,IGGPRPLM IGGPDLXT

IGGOCLBH

External

IGGPDA VO IGGPMOD

IGGPDEFA IGGPDUND,IGGPSMFA IGGPDAIN

Internal

IGGPDAIN IGGPAXCI

IGGPDANL

Directory 445

Procedure Calls Directory: Catalog Management Modules

CaDing
Module and Its External Procedures CaUed Internal Procedures CaUed
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGOCLBI

External

IGGPGET IGGPRAG IGGPUCCT,IGGPXIO

IGGPTNXO

IGGPTXO IGGPEXT,IGGPMOD

IGGPUCRS IGGPGET,IGGPUCVT

Internal

IGGPUCCT

IGGPUCVT

IGGPXIO IGGPIORA

IGGOCLBJ

External

IGGPGDSP IGGPEXT IGGPGUDS

Internal

IGGPGUDS IGGPGET

IGGOCLBK

External

IGGPLDCS IGGPLBVC

IGGPLSP IGGPGET,IGGPSMFL IGGPLDCE, IGGPLDCS, IGGPLEMP,
IGGPLSMP J Internal

IGGPLBVC

IGGPLDAS

IGGPLDCE IGGPEXT IGGPLDAS,IGGPLBVC

IGGPLEMP IGGPLBVC

IGGPLSMP

IGGPLSMS IGGPLBVC

IGGOCLBL

External

IGGPDELS IGGPDBVC,IGGPDF4T,IGGPDLVM, IGGPDLCD, IGGPDLEX,
IGGPEXT,IGGPFDSP IGGPDLSC, IGGPDLSH,

IGGPDLVC,IGGPDUCB

IGGPDLET IGGPDFMI,IGGPF4RD,IGGPF4WR,
IGGPGET, IGGPMOD, IGGPDEL,
IGGPRAOP

IGGPDLVM IGGPDVMV

IGGPDUCB

Internal

IGGPDLCD IGGPEXT

IGGPDLEX

IGGPDLMF IGGPLSP

J IGGPDLSC

446 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Procedure CaDs Directory: Catalog Management Modules

Calling
Module and Its External Procedures CaUed Internal Procedures CaUed
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPDLSD IGGPMOD

IGGDLSH IGGPMOD

IGGPDLVC IGGPEXT IGGPDLET, IGGPDLMF

IGGPDLVM

IGGOCLBM

External

IGGPCKAU IGGPINMD, IGGPSPSC IGGPBSGT, IGGPCKCC,
IGGPCKEX, IGGPL VST,
IGGPPWGT, IGGPPWVR

Internal

IGGPBSGT IGGPGET

IGGPCKCC IGGPGET IGGPBSGT,IGGPCKEX

IGGPCKEX IGGPEXT

IGGPCLGT IGGPEXT, IGGPGET IGGPBSCGT, IGGPCKEX

IGGPLVST

IGGPPWGT IGGPGET, IGGPRPLF, IGGPRPLM IGGPCKEX
IGGPWTSO

IGGPPWVR IGGPBSGT,IGGPCKCC,
IGGPCKEX, IGGPCLGT

IGGOCLBN

~
External

IGGPALVR IGGPALEC, IGGPEXT, IGGPMOD IGGPALPL, IGGPALVE, IGGPALVO

IGGPVRD IGGPGET IGGPVRCV

Internal

IGGPACHR

IGGPALPL

IGGPALVE IGGPGET, IGGPMOD, IGGPPUPC IGGPALPL

IGGPALVO

IGGPVRCV IGGPF4DQ, IGGPF4RD, IGGPF4WR IGGPACHR

IGGOCLBO

External

IGGPRAG IGGPRAOR, IGGPRAX, IGGPXRIO

IGGPRAPA IGGPPAD,IGGPRAPV IGGPRAOR, IGGPRAPC,
IGGPRARA,IGGPRAX

IGGPRAPD IGGPRAPV IGGPRAOR, IGGPRARC, IGGPRAX,
IGGPXRIO

IGGPRAPU IGGPRAPV IGGPRAOR, IGGPRAX, IGGPXRIO

IGGPRARC IGGPXRIO

IGGPRASC IGGPRAOR, IGGPRARA,
IGGPRARC, IGGPRAX

IGGPXRIO IGGPRAEA

Directory 441

Procedure CaDs Directory: Catalog Management Modules

CaUing
Module and Its External Procedures Called Internal Procedures Called

J Procedures (Procedures Outside the Module) (Procedures within the Module)

Internal

IGGPRACC IGGPXRIO

IGGPRAEA IGGPEMIO, IGGPEMSG

IGGPRAOR IGGPRAOP, IGGPCRAD

IGGPRAPC

IGGPRARA IGGPRACC, IGGPRARC, IGGPXRIO

IGGPRAX IGGPRACC

IGGOCLBP

External

IGGPSPAC IGGPF4DQ, IGGPF4RD, IGGPF4WR, IGGPDALL, IGGPDEXT, IGGPINEX,
IGGPISCI,IGGPPUPC IGGPOBTN, IGGPSRHI, IGGPSRH2

IGGPWRIT

IGGPRETI

Internal

IGGPDALL IGGPGNAM

IGGPDEXT IGGPGNAM

IGGPGNAM

IGGPINEX

IGGPOBTN

IGGPSRHI IGGPEXT J IGGPSRH2 IGGPEXT

IGGPWRIT IGGPMOD

IGGOCLBQ

External

IGGPLSTC IGGPEXT, IGGPGET

Internal

IGGOCLBR

External

IGGPBMR IGGPGETM,IGGPPART,
IGGPPUTM

Internal

IGGPGETM IGGPGET IGGPPUTM

IGGPPART

IGGPPUTM IGGPPUPC

IGGOCLBS

External

IGGPXEXT

IGGPXVAL IGGPBMR, IGGPGREC, IGGPGVAL, IGGPXVOL
IGGPSGOP

448 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAMl Logic

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its External Procedures CaUed Intemal Procedures Called
Procedures (Procedures Outside the Module) (Procedures within the Module)

Internal

IGGPXEXS IGGPGREC, IGGPGV AL

IGGPXVOL IGGPXEXS

IGGOCLBT

External

IGGPXDGO IGGPADGO, IGGPBMR, IGGPGVAL IGGPCSMP

IGGPXEL2 IGGPBMR, IGGPDEL2, IGGPGVAL

IGGPXLT2 IGGPALT2

IGGPXMOD

Internal

IGGPCSMP IGGPAOCI,IGGPPUPC

IGGOCLBU

External

IGGPF4DQ

IGGPF4RD IGGPF4DQ

IGGPF4WR IGGPF4DQ

IGGOCLBV

External

IGGPSMFA IGGPGET IGGPSMFC, IGGPSMFD,
IGGPSMFE, IGGPSMFF

IGGPSMFF

IGGPSMFL IGGPGET, IGGPLDCS IGGPSMFC

IGGPSMFR IGGPSMFC

IGGPSMFS IGGPSMFE, IGGPSMFL

Internal

IGGPSMFC

IGGPSMFD

IGGPSMFE IGGPSMFM

IGGPSMFM IGGPGET IGGPSMFP

IGGPSMFP

IGGOCLBW

External

IGGPDEIN IGGPGVAL IGGPRISE, IGGPSINK, IGGPSNK2

Internal

IGGPDOWN IGGPAXCI, IGGPEXPD, IGGPGNEX,
IGGPGVAL, IGGPPREC, IGGPSHNK

IGGPRISE IGGPAXCI, IGGPGVAL, IGGPPREC, IGGPSINK, IGGPUPUP
IGGPSHNK

IGGPSINK IGGPEXPD,IGGPSHNK

IGGPSNK2 IGGPAXCI, IGGPGREC, IGGPPDE, IGGPDOWN
IGGPPREC

Directory 449

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its External Procedures CaUed Internal Procedures Called
Procedures (Procedures Outside tbe Module) (Procedures witbln tbe Module) J

IGGPUPUP

IGGOCLBX

External

IGGPDCIM

IGGPDSPC IGGPDCCO IGGPDCCC,IGGPDCCO,
IGGPDDCE

Internal

IGGPDCCC IGGPDCID, IGGPDCIM, IGGPDCPT

IGGPDCCI IGGPDPBI

IGGPDCID IGGPDCIM,IGGPMAXA

IGGPDCIM

IGGPDCPT

IGGPDDCE IGGPGET

IGGPDPBI

IGGOCLBY

External

IGGPDRSP IGGPDATA,IGGPDCIS,
IGGPDDRT, IGGPDDSA,
IGGPDDTC,IGGPDISA

Internal

IGGPDATA J
IGGPDCIS

IGGPDDRT

IGGPDDSA IGGPDATA,IGGPDDRT,
IGGPDDTC

IGGPDDTC

IGGPDISA

IGGOCLBZ

External

IGGPCONV IGGPF4RD, IGGPF4WR, IGGPMOD, IGGPGALO,IGGPVALI
IGGPPUPC, IGGPRCCR, IGGPRPLF,
IGGPSCAT

IGGPGALO

IGGOCLBO

External

IGGPCMKY

IGGPDCCO IGGPDSPC IGGPDCCI

Internal

IGGPDCCI

IGGPOPBI

IGGOCLBI

External

450 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its Extemal Procedures CaUed Intemal Procedures Called
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPUADD IGGPAXCI, IGGPEXT, IGGPGET, IGGPUCOM, IGGPUEND
IGGPMOD, IGGPPAD, IGGPPDE

IGGPUDEL IGGPEXT, IGGPGET, IGGPMOD IGGPUCOM, IGGPUEND
IGGPPDE

Intemal

IGGPUCOM IGGPEXT

IGGPUEND IGGPGET

IGGOCLB2

Extemal

IGGPAUPG IGGPEXT, IGGPUADD, IGGPUDEL IGGPAEXA

Intemal

IGGPAEXA

IGGOCLB3

Extemal

IGGPSMF

IGGPSMFG

IGGOCLB4

Extemal

IGGPDCRA IGGPMDDI, IGGPWCAT, IGGPWCRA IGGPCACB, IGGPCCIO, IGGPCHIU,
IGGPCIl5, IGGPCRPL, IGGPCXWA,
IGGPDCXI, IGGPFMT4, IGGPOCRA,
IGGPRDEF, IGGPSBAL, IGGPSTRG

Intemal

IGGPCACB

IGGPCCIO

IGGPCHIU

IGGPCIl5

IGGPCRPL

IGGPCXWA

IGGPDCXT

IGGPFMT4 IGGPF4RD, IGGPF4WR

IGGPOCRA

IGGPRDEF IGGPDEFS

IGGPSBAL IGGPSALL

IGGPSTRG IGGPRDEF, IGGPSBAL

IGGOCLB5

Extemal

IGGPDCLS IGGPDLXT, IGGPDUND, IGGPGET,
IGGPSMFS, IGGAVMSC

IGGPDEAX IGGPDLXT,IGGPGET IGGPDBMD,IGGPDEXB,
IGGPDIPT, IGGPDUPG

IGGPDEPT IGGPDLXT, IGGPGET, IGGPPDE, IGGPDBMD
IGGPSMFS

Directory 45 I

Procedure Calls Directory: Catalog Management Modules

Calling
Module and Its External Procedures Called Internal Procedures Called

J Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPDIAX IGGPDEXA, IGGPDLXT, IGGPDOPN, IGGPDBMD, IGGPDEXB,
IGGPGET IGGPDUPG

IGGPDIPT IGGPDLXT, IGGPGET, IGGPPDE, IGGPDBMD, IGGADEXB
IGGPSMFS

Internal

IGGPDBMD IGGPDLXT,IGGPMOD

IGGPDEXB IGGPDLXT,IGGPEXT

IGGPDUPG IGGPDLXT, IGGPGET, IGGPUDEL IGGPDEMV,IGGPDVMV

IGGOCLB6

External

IGGPINMD IGGPGET

IGGPSPSC IGGPGET

IGGOCLB7

IGGPWTSO IGGPGTSO

Internal

IGGPGTSO IGGPRPLF, IGGPRPLM

External

IGGPRUS IGGPEXT, IGGPGET, IGGPLDC, IGGPFRWK
IGGPMOD, IGGPSSCR, IGGPTNXO,
IGGPTXO

Internal J IGGPFRWK IGGPGET,IGGPLOC

IGGOCLB8

External

IGGPDFBO

IGGPCNBO

IGGPDUND IGGPGET,IGGPPDE IGGPDEUN

IGGOCLB9

External

IGGPPAIX IGGPDRDA, IGGPDUND, IGGPPSEM IGGPDCBG,IGGPIGDC,
IGGPMODC,IGGPPRPW,
IGGPRGBC

IGGPPATH IGGPBAMC,IGGPBAWP,
IGGPCGGC, IGGPIGDC,
IGGPPRBW, IGGPSCRG,
IGGPWSMF

Internal

IGGPBAMC IGGPMOD

IGGPBAWP IGGPAOCI, IGGPMOD, IGGPPDE IGGPINAE, IGGPINBE

IGGPCGGC IGGPEXT IGGPEXGC

IGGPDCBG IGGPDCCE

IGGPEXGC IGGPEXT, IGGPGET

IGGPIGDC J
452 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Procedure Calls Directory: Catalog Management Modules

Calling

<....
Module and Its External Procedures CaUed Internal Procedures CaIled
Procedures (Procedures Outside the Module) (Procedures within the Module)

IGGPINAE IGGPEXT

IGGPINBE

IGGPMODC IGGPAOCI, IGGPGET, IGGPMOD

IGGPPRPW IGGPGET,IGGPCKAU

IGGPRGBC IGGPMOD

IGGPSCRG

IGGPWSMF IGGPSMFA

IGGOCLC9

External

IGGOCLC9 IGGPACDY,IGGPRETI BLDCCA, IGGPRCU

Internal

BLDCCA

IGGPRCU IGGPCCCR, IGGPEMSG, IGGPRARC,
IGGPRPLF

IGGOCLDA

External

IGGPMODI IGGPMOD

IGGPRAPY IGGPF4DQ, IGGPF4RD, IGGPF4WR,
IGGPXIO,IGGPXRIO

IGGPWCAT IGGPPAD

IGGPWCRA IGGPXRIO

Directory 453

Procedure Called-By Directory

Open/Close/EO V Procedure Called-By
(Backward-Reference) Table

CaDed
Module

IDA0192A

IDAOI92B

IDA0192C

IDA0192D

IDA0192F

IDA0192G

IDAOI92I

IDA0192M

IDA0192P

IDA0192S

IDA0I92V

IDA0192W

IDA0192Y

IDA0192Z

IDA0200B

IDA0200S

IDA0200T

IDA0231B

IDA023 IT

IDA0557A

Record Management Procedure Called-By
(Backward-Reference) Table

CaDed
Module and Its
Procedures

IDA019RA

IDA019RB

IDA019RC

IDA019RE

Procedure

IDAREPOS

IDA019RF

Calling Modules

IDAOl92F

IDA0192A, IDAOI92B, IDAOI92G, IDAOI92V, IDA0200B,
IDA0200T, IDA023IB, IDA0557A

IDAOI 92B, IDAOI92V, IDA0200B, IDA0231 B, IDA0557 A

IDA0192A

IFG0195T, SECLOADA

IDAOI92A, IDAOI92B, IDAOI92F, IDAOI92W, IDA0192Y,
IDA0I92Z,IDAOA05B

IDAOI92A, IDAOI92B, IDAOI92D, IDAOI92F, IDAOI92G,
IDA0200B, IDA0200T, IDA023IB, IDA023IT, IDA0557A, IFGOI93A,
IFG0200V, IGCOOO2C

IDAOI92A, IDA0200B, IDA023IB, IDA0557A

IDAOI92F, IDA0557A

IDA0192Y

IDAOI92B, IDAOI92Z, IDA0200T

IDA0192B

IDA0200T

IDA0231T

Calling modules

IDA019RV,IDA019R4

IDA019RA, IDAOI9RI, IDA019RO

IDAOI9RB, IDAOI9RH, IDAOI9RS, IDAOI9RT, IDAOI9RV,
IDA019RW

IDAOI9RM,IDAOI9RT

IDAOI9RS, 10 A019RT

IDA019RE, IDAOI9RS, IDA019RT

454 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Record Management Procedure Called-By (Backward Reference) Table

CaUed
Module and Its
Procedures

IDAOl9RG

Procedure

IDAIST

IDA0l9RH

Procedures

IDAIVIXB

IDASPACE

IDA019RI

Procedures

IDAHLINS

IDANEWRD

IDAOl9RJ

Procedures

IDAR

IDAWR

IDAOl9RK

IDA019RL

IDA019RM

Procedure

IDACHKKR

IDA019RN

Procedures

IDAAQR

IDAER

IDAOl9RO

IDAOl9RP

Procedures

IDAENDRQ

IDATJXIT

IDAOl9RQ

IDAOl9RR

Procedure

IDARRDRL

IDA019RS

Procedures

IDAADSEG

IDAMVSEG

Calling Modules

IDA019RP, IDA019SA

IDA019RJ

IDA019RE, IDA019RI

IDA019RJ, IDA019RS, IDA019RT

IDAOl9RJ

IDA019RF

IDA019SF

IDA019SF

IDA019RI

IDA019RG

IDA019RG

IDA019RF, IDAOI9RN, IDA019RP, IDAOI9RQ, IDA019RI,
IDA019R4, IDAOI9R8, IDA019SA

IDAOl9R4

IDAOI9RE, IDA019RF, IDA019RL, IDA019R4, IDAOl9SF

IDA019RS

IDAOI9RG, IDA019RI, IDAOl9RJ

IDAOI9RG, IDAOl9RJ

IDA019R8

IDAOI9RX, IDAOl9Rl

IDA019RE, IDA019RF, IDAOI9RL, IDAOI9RM, IDAOI9RQ,
IDA019RR, IDA019RT

IDA019RR

IDA019Rl

IDA019RQ

IDA019RL

IDA019RT

IDA019RT

Directory 4SS

Record Management Procedure Called-By (Backward Reference) Table

Called
Module and Its

J Procedures CalUng Modules

IDAOl9RT IDAOl9RM

Procedures

IDADARTV IDA0I9R4

IDAJRNSR IDAOl9RS

IDASPNPT IDAOI9RG, IDAOl9RJ

IDAOl9RU IDAOI9RM, IDAOI9R4, IDAOl9SA

Procedure

IDAXGPLH IDAOl9RX

IDAOl9RV IDAOl9RW, IDA0I9SF

Procedures

IDAADVPH IDAOl9R4

IDARVRSI IDAOl9R2

IDAOl9RW

Procedures

IDAABF IDAOI9RA, IDAOI9RF, IDAOI9RQ, IDA0I9RR, IDAOl9RT,
IDA0I9RV, IDAOI9R4, IDAOI9R8, IDAOl9SF

IDAAIBF IDAOI9RF, IDAOl9RT

IDAFRBA IDAOI9RA, IDAOI9RY, IDAOI9R2, IDA0I9R8

IDAGWSGW IDA0I9RZ

IDAOl9RX IDAOl9RI J Procedures

IDAGETWS IDAOl9RU

IDARELWS IDAOl9RU

IDARXBD IDAOl9R4

IDAOl9RY IDAOl9RZ

IDA0I9RZ

Procedures

IDAEXCL IDAOl9R8

IDAFREEB IDAOI9RA, IDAOI9RB, IDAOI9RE, IDAOI9RF, IDAOI9RG,
IDAOI9RI, IDAOI9RJ, IDAOI9RK, IDAOI9RO, IDAOI9RQ,
IDAOI9RR, IDAOI9RT, IDAOI9RV, IDAOI9RI, IDA0\9R4,
IDAOI9R8, IDAOI9SA, IDAOl9SF

IDAGNFL IDAOI9RE, IDAOI9RG, IDAOI9RI, IDAOl9RK

IDAGNNFL IDAOI9RF, IDAOI9RQ, IDAOI9R4, IDAOI9R8, IDAOI9SA,
IDA019SF

IDAGNXT IDAOI9RA, IDAOI9RF, IDAOI9RQ, IDAOI9RR, IDAOI9RT,
IDAOI9RV, IDAOI9R4, IDA019R8

IDAGRB IDAOI9RA, IDAOI9RB, IDAOI9RE, IDAOI9RF, IDAOI9RI,
IDAOI9RJ, IDAOI9RO, IDAOI9RR, IDAOI9RS, IDAOI9RT,
IDAOI9RV, IDAOI9RW, IDAOI9R4, IDAOI9R8, IDAOI9SA,
IDAOl9SF

IDAGWSEG IDAOl9RS

IDAMRKBF IDAOl9RI J
456 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Record Management Procedure CaUed-By (Backward Reference) Table

CaUed
Module and Its
Procedures

IDASBF

IDASCHBF

IDAWAIT

IDAWRBFR

IDAWRTBF

IDA019R2

IDA019R3

IDA019R4

IDAOl9R5

Procedures

IDADRQ

IDAEOVIF

IDAERROR

IDAEXEX

IDAEXITR

IDARSTRT

IDAot9R8

IDA019SA

IDAot9SB

IDAOl9SF

Calling Modules

IDAOI9RA, IDAot9RE, IDA019RF, IDA019RP, IDAOI9RS,
IDA019RT, IDA019RU, IDAot9Rl, IDA019R8, IDAot9SF

IDAOl9Rl

IDAOI9RA, IDAOI9RW, IDA019RY, IDA019R2

IDA019RE, IDA019RF, IDA019RH, IDAOI9RJ, IDAot9RK,
IDA019RP, IDAOI9RQ, IDA019RR, IDA019RS, IDA019RT,
IDAot9RW, IDAot9Rl, IDAOI9R4, IDAot9R8, IDA019SA,
IDAOl9SF

IDAOl9RI

IDAOl9RZ

IDAot9RW, IDA019RY, IDA019R2

IDA019RU, IDA019RX, IDAOl9RI

IDA019RP, IDA019RY, IDA019Rl

IDA019RQ, IDA019RS, IDA019RT, IDAot9RU, IDAot9RX,
IDAOI9RY, IDAOI9R3, IDA019R4, IDA019R8, IDAot9SB

IDAOI9RF, IDA019RG, IDA019RI, IDA019RK, IDA019RN,
IDA019RQ, IDA019R3, IDA019R8, IDA019SA, IDA019SF

IDAOl9Rl

IDA019RP, IDA019RY

IDA019RP

IDAot9Rl

IDAOl9RI

IDA019RM, IDA019RP, IDAOl9RT

IDA019R3

IDAOl9RF

Directory 457

Catalog MalUlgement Procedure
Called-By (Backward Reference) Table

This table lists procedures (not within the called procedure's module) that call
a Catalog Management procedure. In addition to the calling procedures listed,
a called procedure might be called by procedures within its module. See
"Procedure Calls Directory: Catalog Management Procedures" to determine
the calling procedures within the module.

Called Module
and Its External
Procedures

IGGOCLAA

Procedure:

IGGPSLEN

IGGOCLAB

Procedure:

IGGPACDV

IGGOCLAC

Procedures:

IGGPDCRC

IGGPMCO

IGGOCLAD

Procedures:

IGGPMC02

IGGPRAOP

IGGPCRAD

IGGOCLAE

Procedures:

IGGPDCME

IGGPMEMB

IGGOCLAF

Procedures:

IGGPDELC

IGGPEMIO

IGGPEMSG

IGGOCLAG

Procedures:

IGGPAOCI

IGGPAXCI

IGGPCCCR

IGGPIORA

IGGPISCI

Calling Procedure (in Module)

IGGPSLOC(AM)

IGGOCLC9(C9)

IGGPDCME(AE)

IGGPACDV(AB)

IGGPDCOC(AE), IGGPMCO(AC)

IGGPDLET(BL),IGGPRAOR(BO)

IGGPRAOR(BO)

IGGPDEFC(AS)

IGGPDCSP(AS)

IGGPCOVR(AT)

IGGPIORA(AG),IGGPRAEA(BO)

IGGPIORA(AG), IGGPRAEA(BO), IGGPRCU(C9)

IGGPBA WP(B9), IGGPCSMP(BT), IGGPDCCE(AN),
IGGPDCPC(AP),IGGPMODC(B9)

IGGPADGO(AW), IGGPAGOP(AW), IGGPDAIN(BH),
IGGPDEFS(AQ), IGGPDOWN(BW), IGGPMBGO(AX),
IGGPMVAR(AX), IGGPRISE(BW), IGGPSNK2(BW),
IGGPUADD(Bl)

IGGPDEFC(AS), IGGPDELC(AF), IGGPRCU(C9)

IGGPXIO(BI)

IGGPDEFS(AQ), IGGPSALL(AR), IGGPSPAC(BP)

458 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Catalog Management Procedure Caned-By (Backward Reference) Table

CaUed Module
and Its External
Procedures

IGGPPAD

IGGPPDE

IGGPPLHC

IGGPPUPC

IGGPRCCR

IGGPXIO

IGGOCLAH

Procedures:

IGGPRPLF

IGGPRPLM

IGGPSCAT

IGGOCLAI

Procedures:

IGGPDFMl

IGGPFDSP

IGGOCLAJ

Procedure:

IGGPDBDI

IGGOCLAK

Procedure:

IGGPDCMB

IGGOCLAL

Procedures:

IGGPDEF

IGGPDTIM

IGGOCLAM

Procedures:

IGGPDBVC

IGGPSLEL

IGGPSLOC

IGGOCLAN

Procedures:

IGGPDCCE

IGGPDRDA

Calling Procedure (in Module)

IGGPALNM(BD), IGGPDCCE(AN), IGGPDCPC(AN),
IGGPDEFS(AQ), IGGPPREC(AW), IGGPRAPA(BO),
IGGPUADD(Bl),IGGPWCAT(DA)

IGGPALNM(BD), IGGPBAWP(B9), IGGPDELC(AF),
IGGPDEL2(AV), IGGPDEPT(B5), IGGPDIPT(B5),
IGGPDUND(B8), IGGPSNK2(BW), IGGPUADD(Bl),
IGGPUDEL(Bl)

IGGPRPLM(AH)

IGGPALT(BD), IGGPALVE(BN), IGGPCONV(BZ),
IGGPCSMP(BT), IGGPDF4T(A7), IGGPFDSP(Al),
IGGPPREC(A W), IGGPPUTM(BR), IGGPSPAC(BP)

IGGPCONV(BZ) .

IGGPDCPR(AE), IGGPDELC(AF), IGGPRAPV(DA)

IGGPCONV(BZ), IGGPERAS(BG), IGGPPWGT(BM),
IGGPRCU(C9), IGGPRCU(C9), IGGPGTSO(B6)

IGGPERAS(BG), IGGPPWGT(BM), IGGPGTSO(B6)

IGGPACDV(AB), IGGPCDVR(AT), IGGPCONV(BZ),
IGGPDEFS(AQ),IGGPDELC(AF)

IGGPDLET(BL)

IGGPDELC(AF), IGGPDELS(BL)

IGGPDSCB(AN)

IGGPDBDI(AJ)

IGGPCDVR(AT)

IGGPDBDI(AJ), IGGPDEFS(AQ)

IGGPDELC(AF), IGGPDELS(BL)

IGGPSLCG(AA), IGGPSLEN(AA), IGGPSLR(AA),
IGGPSL Y(AA)

IGGPACDV(AB)

IGGPDCBG(B9),IGGPDCPC(AP)

IGGPAIX(B9)

Directory 459

Catalog Management Procedure Called-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGPDSCB

IGGPPSEM

IGGOCLAP

Procedure:

IGGPDCDA

IGGOCLAQ

Procedure:

IGGPDEFS

IGGOCLAR

Procedure:

IGGPSALL

IGGOCLAS

Procedure:

IGGPDEFC

IGGOCLAT

Procedure:

IGGPCOYR

IGGOCLAU

Procedure:

IGGPSALS

IGGOCLAY

Procedures:

IGGPDEL2

IGGPMOD

IGGPSGOP

IGGPUPD

IGGOCLAW

Procedures:

IGGPADGO

IGGPGNEX

IGGPIGOP

IGGPPREC

CalHng Procedure (In Module)

IGGPDEF(AL)

IGGPPAIX(B9)

IGGPDSCB(AN)

IGGPCDYR(AT), IGGPDSCP(AS), IGGPDSPO(AJ),
IGGPRDEL(B4)

IGGPALSA(BE), IGGPCDSD(A6), IGGPCSAL(BB),
IGGPDCNY(AJ), IGGPDCSP(AS), IGGPDSPO(AJ),
IGGPSBAL(B4)

IGGPDCME(AE), IGGPDSCB(AN)

IGGPACOY(AB)

IGGPSALL(AR)

IGGPXEL2(BT)

IGGPALMD(BD), IGGPALSA(BE), IGGPALYE(BN),
IGGPALYR(BN), IGGPBAMC(B9), IGGPBAWP(B9),
IGGPCONY(BZ), IGGPDAYO(BH), IGGPDBMD(B5),
IGGPDCME(AE), IGGPDEDD(A7), IGGPDESH(A7),
IGGPDEYG(A7), IGGPDLET(BL), IGGPDLSD(BL),
lGGPDLSH(BL), IGGPDMOP(AK), IGGPDSMD(A6),
IGGPFDSP(AI), IGGPMEXT(BB), IGGPMODC(B9),
lGGPMODI(DA), IGGPMYOL(BB), IGGPRGBC(B9),
lGGPRUS(B7), IGGPSALL(AR), lGGPTXO(BI),
IGGPUADD(BI), IGGPUDEL(B I), IGGPWRIT(BP)

IGGPMGO(AX), IGGPXYAL(B5)

IGGPACOY(AB) .

lGGPXDGO(BT)

IGGPDOWN(BW), IGGPMBGO(AX), IGGPMYAR(AX)

IGGPMGO(AX)

IGGPDEL2(AY), IGGPDOWN(BW), IGGPGREC(BA),
lGGPRISE(BW), IGGPSFPL(AY), IGGPSNK2(BW)

460 OS/YS2 SYS Independent Component: Virtual Storage Access Method (YSAM) Logic

J

J

Catalog Management Procedure CaUed-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGOCLAX

Procedures:

IGGPALT2

IGGPDGO

IGGPDGOP

IGGPEXPD

IGGPMGO

IGGPSHNK

IGGOCLAY

Procedure:

IGGPSLNC

IGGOCLAZ

Procedures:

IGGPEXT

IGGPLOC

IGGOCLA6

Procedures:

IGGPBJFB

IGGPCBPT

IGGPCRTC

IGGPDFS2

IGGOCLA7

Procedures:

IGGPDEMV

IGGPDF4T

IGGPDUSC

IGGPDVMV

IGGPMCRA

IGGPVMSC

Calling Procedure (in Module)

IGGPXLT2(BT)

IGGPDEL2(AV)

IGGPDEL2(AV)

IGGPDOWN(BW), IGGPSINK(BW)

IGGPAGOP(AW)

IGGPDOWN(BW), IGGPRISE(BW), IGGPSINK(BW)

IGGPACOV(AB), IGGPEXT(AZ), IGGPMOD(AV)

IGGPALGV(BD), IGGPALlX(BE), IGGPALVA(BE),
IGGPALVL(BE), IGGPALVR(BN), IGGPAUPG(B2),
IGGPCGGC(B9), IGGPCKEX(BM), IGGPCLGT(BM),
IGGPDCDS(AF), IGGPDELC(AF), IGGPDELS(BL),
IGGPDEMV(A7), IGGPDEVG(A7), IGGPDEXA(BG),
IGGPDEXB(B5), IGGPDLCD(BL), IGGPDLVC(BL),
IGGPEXGC(B9), IGGPFDSP(AI), IGGPGDSP(BJ),
IGGPINAE(B9), IGGPINIT(BC), IGGPLDCE(BK),
IGGPLSTC(BQ), IGGPRUS(B7), IGGPSALL(AR),
IGGPSALS(AU), IGGPSHR 1 (B9), IGGPSHR2(BP),
IGGPSLCG(AA), IGGPSLEL(AM), IGGPSLR(AA),
IGGPSVOL(BC), IGGPTXO(BI), IGGPUADD(Bt),
IGGPUCOM(BI), IGGPUDEL(Bt), IGGPUPDE(BB)

IGGPACDV(AB), IGGPFRWK(B7), IGGPRUS(B7)

IGGPDEFS(AQ)

IGGPDEFS(AQ)

IGGPDEFS(AQ)

IGGPDEFS(AQ)

IGGPDEL(BG), IGGPDUPG(B5)

IGGPDELS(BL),IGGPDLER(AF)

IGGPDEL(BG)

IGGPDEL(BG),IGGPDLVM(BL)

IGGPDEL(BG)

IGGPDCLS(B5), IGGPDEL(BG)

Directory 461

Catalog Management Procedure Called-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGOCLBA

Procedures:

IGGPGREC

IGGPGVAL

IGGPTSTS

IGGOCLBB

Procedure:

IGGPUPDE

IGGOCLBC

Procedures:

IGGPINIT

IGGPSVOL

IGGOCLBD

Procedure:

IGGPALT

IGGOCLBE

Procedures:

IGGPALEX

IGGPALVL

IGGOCLBF

Procedure:

IGGPSSCR

IGGOCLBG

Procedures:

IGGPDEL

IGGPDEXA

IGGPDLXT

IGGPDOPN

IGGOCLBH

Procedure:

IGGPDEFA

CaUlng Procedure (in Module)

IGGPADGO(AW), IGGPAGOP(AW), IGGPGREL(AW),
IGGPGREP(AZ), IGGPMBGO(AX), IGGPMV AR(AX),
IGGPSCNF(AZ), IGGPSFPL(A V), IFFPSGOP(A V),
IGGPSNK2(BW), IGGPXEXS(BS), IGGPXV AL(BS)

IGGPAL T2(AX), IGGPDEIN(BW), IGGPDOWN(BW),
IGGPLOC2(AZ), IGGPMV AR(AX), IGGPRISE(BW),
IGGPSCNF(AZ), IGGPUPGD(AZ), IGGPXDGO(BT),
IGGPXEL2(BT), IGGPXEXS(BS), IGGPXV AL(BS)

IGGPSFPL(A V)

IGGPUPD(A V)

IGGPSSWD(BB), IGGPUPDE(BB)

IGGPSSWD(BB),IGGPUPDE(BB)

IGGPCDVR(AT)

IGGPALVR(BN)

IGGPALT(BD)

IGGPRUS(B7),IGGPVMSC(A7)

IGGPCDVR(AT)

IGGPDIAX(B5)

IGGPDBMB(B5), IGGPDCLS(B5), IGGPDEAX(B5),
IGGPDEMV(A7), IGGPDEPT(B5), IGGPDEVG(A7),
IGGPDEXB(B5), IGGPDF4T(A7), IGGPDIAX(B5),
IGGPDIPT(B5), IGGPDUPG(B5), IGGPDUSC(A7),
IGGPMCRA(A7)

IGGPDCDS(AF), IGGPDIAX(B5), IGGPFDSP(AI)

IGGPCDVR(AT)

462 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Management Procedure CaUed-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGOCLBI

Procedures:

IGGPGET

IGGPTNXO

IGGPTXO

IGGPUCRS

IGGOCLBJ

Procedure:

IGGPGDSP

IGGOCLBK

Procedures:

IGGPLDCS

IGGPLSP

IGGOCLBL

Procedures:

IGGPDELS

IGGPDLET

IGGPDLVM

IGGPDUCB

IGGOCLBM

Procedure:

IGGPCKAU

IGGOCLBN

Procedures:

IGGPALVR

IGGPVRD

Calling Procedure (in Module)

IGGPALEX(BE), IGGPALIX(BE), IGGPALNM(BD),
IGGPALT(BD), IGGPALVE(BN), IGGPBSGT(BM),
IGGPCKCC(BM), IGGPCLGT(BM), IGGPDBBI(AJ),
IGGPDCLS(B5), IGGPDDCE(BX), IGGPDEAX(B5),
IGGPDEDE(AL), IGGPDEFS(AQ), IGGPDEL(BG),
IGGPDELC(AF), IGGPDEPT(B5), IGGPDIAX(B5),
IGGPDIPT(B5), IGGPDLET(BL), IGGPDSPO(AJ),
IGGPDUND(BB), IGGPDUPG(B5), IGGPEXGC(B9),
IGGPFDSP(AI), IGGPFRWK(B7), IGGPGETM(BR),
IGGPGREC(BA), IGGPGUDS(BJ), IGGPINMD(B6),
IGGPISCI(AG), IGGPLSP(BK), IGGPLSTC(BQ),
IGGPMCRA(A7), IGGPMODC(B9), IGGPPRPW(B9),
IGGPWGT(BM), IGGPRUS(B7), IGGPSALL(AR),
IGGPSCAT(AH), IGGPSLCG(AA), IGGPSLR(AA),
IGGPSLY(AA), IGGPSMFA(BV), IGGPSMFL(BV),
IGGPSMFM(BV), IGGPSPSC(B6), IGGPSSWD(BB),
IGGPUADD(B I), IGGPUALL(BB), IGGPUDEL(B I),
IGGPUEND(BI), IGGPUPDE(BB), IGGPUPGD(AZ),
IGGPVMSC(A7), IGGPVRD(BM)

IGGPDSPO(AJ), IGGPRUS(B7), IGGPUPDE(BB)

IGGPDSPO(AJ), IGGPRUS(B7), IGGPUPDE(BB)

IGGPRUS(B7), IGGPSCAT(AH)

IGGPACDV(AB)

IGGPSMFL(BV)

IGGPACOV(AB), IGGPDEFS(AQ), IGGPDLMF(BL)

IGGPCDVR(AT)

IGGPFDSP(AI)

IGGPDELS(BL), IGGPFDSP(AI)

IGGPFDSP(AI)

IGGPACDV(AB), IGGPCDVR(AT), IGGPDEFS(AQ),
IGGPPRPW(B9), IGGPSCAT(AH)

IGGPALVL(BE)

IGGPALVL(BE)

Directory 463

Catalog Management Procedure Called-By (Backward Reference) Table

Called Module
and Its External
Procedures

[GGOCLBO

Procedures:

IGGPRAG

[GGPRARA

IGGPRAPD

IGGPRAPU

IGGPRARC

IGGPRASC

IGGPXRIO

IGGOCLBP

Procedures:

IGGPRETI

IGGPSPAC

IGGOCLBQ

Procedure:

IGGPLSTC

IGGOCLBR

Procedure:

IGGPBMR

IGGOCLBS

Procedure:

IGGPXEXT

IGGOCLBT

Procedures:

IGGPXDGO

IGGPXEL2

IGGPXLT2

IGGOCLBU

Procedures:

IGGPF4DQ

IGGPF4RD

IGGPF4WR

Calling Procedure (in Module)

IGGPGET(BI)

IGGPPAD(AG)

IGGPPDE(AG)

IGGPPAD(AG),IGGPUPC(AG)

IGGPRCU(C9)

IGGPISCI(AG)

IGGPRAPV(DA), IGGPWCRA(DA)

IGGOCLC9(C9)

IGGPCSAL(BB), IGGPUALL(BB)

IGGPCDVR(AT)

IGGPEDS(AU), IGGPSALS(AU), IGGPSSCR(BF),
IGGPXDGO(BT), IGGPXEL2(BT), IGGPXVAL(BS)

IGGPEXT(AZ)

IGGPSFPL(A V)

IGGPSFPL(AV)

IGGPSFPL(A V)

IGGPDFMI(AD, IGGPDF4T(A7), IGGPF4PR(AQ),
IGGPRAPV(DA), IGGPSPAC(BP), IGGPVRCV(BN)

IGGPCONV(BZ), IGGPDCBO(AE), IGGPDELC(AF),
IGGPDFM I (AD, IGGPDF4T(A7), IGGPDLET(BL),
IGGPFMT4(B4), IGGPF4PR(AQ), IGGPRAPV(DA),
IGGPSPAC(BP), IGGPTMST(AQ), IGGPVRCV(BN)

IGGPCONV(BZ), IGGPDCBO(AE), IGGPDELC(AF),
IGGPDF4T(A7), IGGPDLET(BL), IGGPFMT4(B4),
IGGPF4PR(AQ), IGGPRAPV(DA), IGGPSPAC(BP),
IGGPTMST(AQ), IGGPVRCV(BN)

464 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Catalog Management Procedure Called-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGOCLBV

Procedures:

IGGPSMFA

IGGPSMFL

IGGPSMFR

IGGPSMFS

IGGOCLBW

Procedure:

IGGPDEIN

IGGOCLBX

Procedure:

IGGPDSPC

IGGOCLBY

Procedure:

IGGPDRSP

IGGOCLBZ

Procedures:

IGGPAUPG

IGGPCONV

IGGOCLBO

Procedures:

IGGPCMKY

IGGPDCCO

IGGOCLBI

Procedures:

IGGPUADD

IGGPUDEL

IGGOCLB3

Procedures:

IGGPSMF

IGGPSMFG

IGGOCLB4

Procedure:

IGGPDCRA

Calling Procedure (in Module)

IGGPALT(BD), IGGPDCOC(AE), IGGPDDMF(AK),
IGGPDEFA(BH), IGGPUPDE(BB), IGGPWSMF(B9)

IGGPLSP(BK),IGGPUPDE(BB)

IGGPALNM(BD)

IGGPDCLS(B5), IGGPDEL(BG), IGGPDEPT(B5),
IGGPDIPT(B5)

IGGPMV AR(AX)

IGGPDCCO(BO),IGGPDRDA(AN)

IGGPDRDA(AN)

IGGPALT(BD)

IGGPCOVR(AT)

IGGPDRPG(AL)

IGGPDSPC(BX)

IGGPAUPG(B2),IGGPDBDI(AJ)

IGGPAUPG(B2),IGGPDUPG(B5)

IGGPALT(BD), IGGPDEL2(AV), IGGPPREC(AW)

IGGPALT(BD), IGGPDEL2(AV), IGGPGREC(BA),
IGGPSCNF(AZ)

IGGPDEFS(AQ)

Directory 465

Catalog Management Procedure CaUed-By (Backward Reference) Table

Called Module
and Its External
Procedures

IGGOCLB5

Procedures:

IGGPDCLS

IGGPDEAX

IGGPDEPT

IGGPDIAX

IGGPDIPT

IGGPDUPG

IGGOCLB6

Procedures:

IGGPINMD

IGGPSPSC

IGGPWTSO

IGGOCLB7

Procedure:

IGGPRUS

IGGOCLB8

Procedures:

IGGPCNBO

IGGPDFBO

IGGPDUND

IGGOCLC9

Procedure:

IGGOCLC9

IGGOCLDA

Procedures:

IGGPMODI

IGGPRAPV

IGGPWCAT

IGGPWCRA

Calling Procedure (in Module)

IGGPDEL(BG)

IGGPDEL(BG)

IGGPDEL(BG)

IGGPDEL(BG)

IGGPDEL(BG)

IGGPDEL(BG)

IGGPCKAU(BM)

IGGPCKAU(BM)

IGGPPWET(BM)

IGGPUPD(A V)

IGGPDSPO(AJ)

IGGPDBOI(AJ)

IGGPDCBO(AE), IGGPDCLS(B5), IGGPDEFA(BH),
IGGPDEL(BG),IGGPPAIX(B9)

IGGOCLA1(At)

IGGPDCRA(B4)

IGGPRAPA(BO), IGGPRAPD(BO), IGGPRAPU(BO)

IGGPDCRA(B4)

IGGPDCRA(B4)

466 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

DATA AREAS

VSAM Data-Set Format

VSAM Record

Control Interval

"Data Areas" describes the VSAM data set, index, and catalog and their
record formats.

"Data Areas" also describes each VSAM control block and shows the
relationships between VSAM control blocks. OS/VSl VSAM Cross
Reference has a "Symbol Where Used Report" that lists alphabetically all the
symbols used in VSAM modules, along with all the modules that use them.

A VSAM data set is a collection of records grouped into control intervals.
Control intervals are grouped into larger units called control areas. The
VSAM stored record, control interval, and control area are described in the
topics that follow.

VSAM records are ordered according to key, in the case of a key-sequenced
data set, according to when the records were stored, in the case of an
entry-sequenced data set, or according to record numbers that serve as keys
in the case of a relative record data set.

Data records are put in the low-address portion of the control interval.
Control information about each data record is put in the high-address portion
of the control interval. The combination of a data record and its control
information, through they are not physically adjacent, is called a stored
record.

In a key-sequenced or entry-sequenced data set, records can be variable in
length and can span control intervals. Each segment of a spanned record is
stored in its own control interval.

A control interval is a continuous area of auxiliary storage that VSAM uses
for storing records. The control interval is the unit of information that VSAM
transfers between virtual and auxiliary storage.

The length of each control interval is an integral multiple of blocksize. The
size of a control interval is determined by the system from the size of the
records, user-specified minimum buffer size, device characteristics, and the
user-specified percentage of free space. The user can specify the size of the
control interval, but it must be within limits acceptable to VSAM.

Figure 52 shows the format of a control interval.

When a VSAM data set is created, records are put into control intervals.

For an entry-sequenced data set, records are ordered according to when they
were stored in the data set. The first record to be stored, therefore, has the
lowest RBA. A control interval is filled until there is insufficient space in it for
the next record. Records are always added at the end of an entry-sequenced
data set.

For a key-sequenced data set, records are ordered according to key. Records
of a key-sequenced data set are put into control intervals; the percentage of
free space specified is reserved in each control interval and in each control

Data Areas 467

Record I

Record
n

. . .

Free Space RDF n
... RDF j CmF

Figure 52. Control Interval Format

area for use by records to be added to the data set. As records are added to
the data set, records that have higher keys are moved to higher RBA
locations; the free space within the control interval is reduced.

Distributed free space is used to simplify the insertion of records. If there is
enough free space in the control interval to accommodate the record to be
inserted, higher-keyed records are moved within the control interval to keep
the records in key sequence.

If the space needed for directly inserted records is greater than the amount of
free space available in a control interval, the control interval is split: VSAM
moves some of the stored records (data records and their control information) . 1
to an empty control interval in the same control area. For mass insert ~
(sequential insert at the end of a control interval), the percentage of free
space defined by the user is maintained. When a control interval has reached
its defined packing factor, a new control interval is obtained. No data records
are moved.

Note that it is possible for the physical sequence of records to be different
from their key sequence after control interval splits. The sequence will be
accordin g to key in each control interval, but the control intervals involved in
the split need not be adjacent. Thus, it is possible to have 1-2-3,4-5-6,9-10,
7 -8 in each of four control intervals. The sequence-set index records,
however, reflect the key sequence.

For a relative record data set, records are ordered according to their relative
record number. Each control interval has as many fixed-length slots as will fit
(and allow room for control information.) If each control interval has ten
slots, the first control interval has slots for relative records 1 through 10, the
second for 11 through 20, and so on.

468 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

RDF-Record Definition Field

The Record Definition Field (RDF) describes a record, record slot, or record
segment within the control interval. RDFs are put into the control interval
right to left so that the rightmost RDF describes the leftmost data record. The
format of the RDF is:

Offset

0(0)

1(1)

Bytes and
Bit Pattern

.x

.. xx

.•.• x ••.

....• x ..

x xx

2

Description

Control field:

Indicates whether there is (1) or isn't (0) a paired RDF to the
left of this RDF.
Indicates whether the record spans control intervals:
00 No.
01 Yes-this is the first segment.
10 Yes-this is the last segment.
11 Yes-this is an intermediate segment.
Indicates what the 2-byte binary number that follows this
control field gives:
o The length of the record, segment, or slot

described by this RDF.
The number of consecutive unspanned
records of the same length, or the update
number of the segment of a spanned record.

For a relative record data set, indicates whether the slot
described by this RDF does (0) or doesn't (1) contain a
record.
Reserved.

Binary number:
When bit 4 in the control field is 0, gives the
length of the record, segment, or slot
described by this RDF.
When bit 4 in the control field is 1 and bits 2
and 3 are 0, gives the number of consecutive
records of the same length.
When bit 4 in the control field is 1 and bits 2
and 3 aren't 0, gives the update number of
the segment described by this RDF.

Data Areas 469

CIDF-Controllnterval Definition Field

Control Area

Index Format

The Control Interval Definition Field (CIDF) describes the control interval.
The format of the CIDF is:

Offset

0(0)

2(2)

Bytes and
Length

2

2

Description

The displacement from the beginning of the control interval
to the beginning of the unused space, or, if there is no unused
space, to the beginning of the control information. This
number is equal to the length of the data (records, record
slots, or record segment). In a control interval without data,
the number is O.

The length of the unused space. This number is equal to the
length of the control interval, minus the length of the control
information, minus the 2-byte number in the preceding field.
In a control interval without data (records, record slots, or
record segment), the number is the length of the control
interval, minus 4 (the length of the CIDF-there are no
RDFs). In a control interval without unused space, the
number is O.

In an entry-sequenced data set, when there are unused control intervals
beyond the last one that contains data, the first of the unused control
intervals contains a CIDF filled with Os. In a key-sequenced or relative record
data set, or a key-range portion of a key-sequenced data set, the first control
interval in the first unused control area (if any) contains a CIDF filled with
Os. A control interval with such a CIDF contains no data or unused space.

A control area consists of control intervals; the number of control intervals in
a control area is determined by VSAM. The control area is the amount of
space that VSAM preformats so that data integrity is ensured for records
added to a data set.

Control areas are also used to simplify and localize the movement of records
when records are inserted in a key-sequenced data set. If an insertion requires
a free control interval and there isn't one, a control-area split results. VSAM
establishes a new control area and moves the contents of approximately half
of the full control area to free control intervals in the new control area. The
new records, as their keys dictate, are then inserted into one of the two
control areas.

There are two types of indexes in VSAM: the prime index of a
key-sequenced data set, and alternate indexes of either a key-sequenced or
an entry-sequenced data set.

A key-sequenced data set is a cluster composed of a data component, which
contains the control intervals that contain data records, and an index
component, which contains the control intervals that contain the records of
the prime index.

An alternate index is itself a key-sequenced data set. Its data component
contains index records that give the location of data records within its base
cluster (the key-sequenced or entry-sequenced data set for which it is the
alternate index).

470 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Format of Records in a Prime Index

The format of records in the index component of key-sequenced cluster is
fully compatible with the format of data records; that is, index records,
regardless of their level within the index, are treated by record-management
modules in the same way that any other VSAM record is treated. Each index
record and associated control information resides in an index control interval.
Figure 53 shows the basic format of an index control interval. The RDF and
CIDF fields are described under "Control Interval" earlier in this chapter.

Control Information

Index Record

Figure 53. Index Control Interval Format

Figure 54 shows an expansion of the record portion of the index control
interval.

Header F F
n 2 F

Free Data
Control
Interval
Pointers

I

Figure 54. Index Record Format

Space for Entries E
n E5 E

4
E

3

Index
Entries

E 2 E I

The header portion of the index record contains, for example, the information
required to insert index entries, to locate entries within the index record, and
to convert pointers within entries to RBAs. The free data-control interval
pointers are used to locate data control intervals that have not yet been used;
these entries exist only in sequence-set index records. Both the index entries
and the free data-control interval pointers are placed in the index record from
right to left, as indicated in the figure.

Index entries are grouped into sections. When an index entry is to be located,
the search for it begins at the section level. The high-key entry of each section
is examined to locate the section that contains the specified entry. VSAM
determines the number of sections on the basis of the total number of entries
within the index record. Figure 55 shows the index entry portion of the index
record divided into sections.

The parts of an index record-header, free data-control interval pointers, and
entry sections-are described in the paragraphs that follow.

Data Areas 471

Index Record Header

1\ 1\

S B S B
v

S B
EY EY EY
C'T CT CT
TE Indc.\ Entries TE Indc\ Entries TE I nde'(En tries
I S I S I S
0 0 0
N

A
N

1\
N

1\
V

Figure 55. Index Entries Grouped into Sections

The format of the index record header is:

Offset

0(0)

2 (2)

3 (3)

4 (4)

8 (8)

12 (C)

16(10)

17(10

18 (12)

Bytes and
Bit Pattern

2

4

4

4

2

Field Name

IXHLL

IXHFLPLN

IXHPTLS

IXHBRBA

IXHHP

IXHXX

IXHLV

IXHFLGS

IXHFSO

Description

Length, in bytes, of the index record,
including this field.

Length, in bytes, of the control information
(the IBFLPF, IBFLPL, and IBFLP3 fields) in
each index entry.

Length of the vertical pointers in this index
record. In the sequence set, vertical pointers
point to control intervals in the data
component; in the index set, they point to
control intervals in a lower level of the
index. 1 This field is used as a mask for insert
character (store character) under mask
instructions that are used to access pointers.
The value contained in this field specifies the
length of these pointers, as follows:

X'O\'
X'03'
X'07'

I-byte pointer
2-byte pointer
3-byte pointer

For a sequence-set index record, the RBA of
a data control area that contains data to be
referenced. This RBA and index-entry
pointers are used together to calculate the
4-byte RBA of another index record or of a
data control interval.

Pointer to the logically next index record in
this index level. (Horizontal pointer.)

Reserved (0).

Index level number. A sequence-set index is
assigned a value of I; the next higher-level
index is assigned a value of 2; etc.

Reserved (0).

Displacement from the beginning of this
record to the space available for inserting
index entries. For higher-level indexes, the
entry space immediately follows the record
header; for sequence-set indexes, the entry
space follows the record header and free
data-control interval pointers.

472 OS/\ S2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Index Record Header Fonnat

Offset

20 (14)

22 (16)

Bytes and
Bit Pattern

2

2

Field Name

IXHLEO

IXHSEO

Description

Displacement from the beginning of this
record to the last (high-key) section entry in
the index record (the leftmost entry).2

Displacement from the beginning of this
record to the first (low-key) section entry in
the index record (the leftmost entry in the
rightmost section).2

1 Pointers are allowed to vary in length to conserve index space. If, for example, the number of items to be
referenced by an index record is less than 256, a one-byte pointer can be used; if the number is greater than
256 and less than 65,536, a two-byte pointer can be used; and if the number is greater than 65,536, a
three-byte pointer can be used.

2 This displacement is to the IBFLPF (front-key compression count) byte of the entry, not to the beginning of
the entry.

Free Data-Control-Interval Pointers

Index Entries

Free data-control interval pointers, which exist only in sequence-set index
records, are used to calculate the RBAs of available data control intervals.
The length of a pointer is specified in the record header.

VSAM always uses the rightmost free data-control interval pointer when a
data control interval is needed. The value of the pointer is set to 0 when the
control interval is used. As pointers are set to 0, the displacement to .pace
that is available for index entries (contained in the record header) is adjusted
by the length of the free data-control interval pointer. In this way, space used
by free data-control interval pointers is made available for index entries when
the pointers are no longer required.

The format of an index entry is:

Length
(in Bytes)

Variable

1-3

Field Name

IXKEY

IBFLPF

IBFLPL

IBPLP3

Description

Key characters that determine the sequence of
records in a key-sequenced data set.

Front-key compression count, that is, the number of
characters by which the beginning of the key has been
compressed.

Length of the IXKEY field.

Pointer to an index or data control interval. The
length of the pointer is specified in the record header.

The last (high key) index entry in each index level is a dummy entry: it
contains no key characters and the IBFLPF and IBFLPL fields are set to O.
The pointer in this entry is used to calculate the RBA of the last control
interval in the logically next lower index level.

Each segment of a spanned record has its own entry in a sequence-set index
record. Only the leftmost entry (the entry for the last segment) contains the
IXKEY field. In all of the other entries, IBFLPF contains the spanned
record's key length, and IBFLPL contains O.

Data Areas 473

Index-Entry SectiollS
Index entries are grouped into sections. A section is defined by a 2-byte field
that precedes the high-key index entry. This 2-byte field links a section with a
higher-keyed section. This field contains the displacement from the IBFLPF
field of the high-key entry in this section to the IBFLPF field of the high-key
entry in the next higher-key section. Figure 56 shows how these pointers
work. Section 1 indicates the number of bytes between the high-key entry in
section 1 and the high-key entry in section 2; section 2 indicates the number
of bytes between the high-key entry in section 2 and the high-key entry in
section 3; etc.

When the index is searched, the high key of each section is examined to locate
the section that contains the specified entry. When the section that contains
the entry is found, it is searched.

When an index is originally built, the sections within a record usually contain
the same number of entries. As index entries are added and deleted, however,
the number of entries per section varies.

All of the entries for the segments of a spanned record are grouped into the
same section.

F017lUlt of Records in an Altemate Index

Header
Fields

Index
record

header

The index component of an alternate index is the same as the index of any
key-sequenced data set. The data component, too, is the same in form: data
records, which can be spanned, are stored in control intervals, and control
intervals are grouped into control areas.

A data record in an alternate index contains:

• Header information

• A key field that contains the alternate key of the base cluster over which
the alternate index is defined

• One or more pointers to data records in the base cluster that contain the
alternate key in the alternate-index record's key field

In an alternate index defined with unique keys, data records are fixed in
length-they contain only one pointer to a base record. In an alternate index
defined with nonunique keys, data records are variable in length-they can
contain more than one pointer to base records.

A pointer to a record in an entry-sequenced base cluster is an RBA pointer.
It gives the location of the base record by RBA. A pointer to a record in a
key-sequenced base cluster is a prime-key pointer. That is, it identifies the

I I
X X
H H
L S
E E
0 0
~1'I~n~n~n

Sections of index en tnes

Figure 56. Index-Entry Section Pointers

474 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog

base record by its prime key. VSAM uses the prime-key pointer to go to the
index of the key-sequenced base cluster to find the base record's location.

The format of a data record in an alternate index is:

Offset

Header

0(0)

1(1)

2(2)

4(4)

Key Field

5(5)

Pointer(s)

VL

Bytes and
Bit Pattern

... 0

... 1
xxx x xxx.

2

VL

VL

Field Name

AIXFG

AIXPL

AIXPC

AIXKL

AIXKY

AIXPT

Description

Flags that indicate what kind of pointer(s) the
record contains:

RBA pointer(s) .
Prime-key pointer(s) .
Reserved.

Length of a pointer. An RBA pointer is four
bytes long. A prime-key pointer is as long as the
prime key of the key-sequenced base cluster.

Number of pointers in the record.

Length of the key field in the record. The length
is the same as the length of the alternate key
field in base records. (That is, the key field in an
alternate-index record is not compressed.)

The key field of the record. It contains the
alternate key of the base record(s) governed by
the record.

A pointer to a base record. This field is repeated
for each base record that contains the alternate
key in AIXKY.

VSAM catalogs-the master catalog and any user catalogs-are built and
processed by catalog management modules. Catalog management modules,
via the catalog, enable a user to locate a data set, volume, index, or cluster by
specifying a dsname or volume serial number. In addition, VSAM catalogs
provide VSAM with the information required to allocate space for data sets,
verify authorization to gain access to them, compile usage statistics on them,
and relate RBAs to physical locations within data sets. The catalog indicates,
therefore, much more than the simple location of data sets. The catalog
maintains the relationship between a key-sequenced data set and its index,
describes the location of VSAM data spaces and the data sets that reside in
them, and describes the space that is available for new data sets.

The VSAM catalog is conceptually a key-sequenced VSAM data set divided
into two key ranges called the low-address range and the high-address range.
VSAM data set processing options, such as index record replication and
sequence set with data, are utilized in both parts of the catalog. The catalog
record size is variable; the catalog controi interval size is 512 bytes. Figure 57
shows a VSAM catalog. The figure shows:

• The low-address range of the catalog, shown on the left, contains records
that describe objects---data sets, indexes, alternate indexes, paths, upgrade
sets, volumes, and clusters.

• The high-address range of the catalog, shown on the right, contains the
true name (a data-set name, cluster name, or volume serial number) of an
object specified by the user.

Data Areas 475

• The index, shown in the middle, points to both the low- and high-address
parts of the catalog.

Low-Key Range
(Catalog Records)

Figure 57. Parts of a VSAM Catalog

Index

High-Key Range
(True-Name Entries)

With the exception of catalog records that are built when the catalog is
created and describe the catalog itself, catalog records are built as objects are
cataloged. The order the records are in depends upon which portion of the
catalog the records belong to. If the catalog records reside in the low-address
part of the catalog, the records are ordered according to control interval
number. As objects are cataloged, available control intervals are used. If the
catalog records reside in the high-address part of the catalog, they are ordered
according to their true name (data-set name or volume serial number).

Catalog management relies on VSAM record management for all record
retrieval and storage. When a user specifies, a data-set name, the index points
to a catalog record in the high-address part of the catalog that contains the
data-set name; that record, in turn, contains the control interval number of
the catalog record that describes the data set. Catalog management converts
the control interval number to an RBA in the low-address part of the catalog.

High-Address Range of the Catalog

The high-address range of the catalog contains 47-byte True Name records in
512-byte control intervals. The True Name records associate user-specified
names or volume serial numbers with the control interval number of the
catalog record that describes the specified object.

476 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Low-Address Range of the Catalog

Records in the low-key range are 505 bytes long. Each record resides in its
own control interval. Each record also identifies its record type. The low-key
range of the catalog is made up of the following types of records:

• Control record, which describes the free control intervals in the
low-address part of the catalog. The Control record is always the fourth
record in the catalog. This record is record type "L."

• Free record, which marks the control interval in which it resides as
available for use as another kind of catalog record. There is one Free
record for each previously assigned control interval that is available for
use. This record is record type "F."

• Cluster record, which describes a VSAM data-set cluster. This record
contains the control interval number of a Data record and, if the VSAM
data set is a key-sequenced data set, the control interval number of an
Index record. There is one Cluster record for each VSAM cluster
cataloged. This record is record type "C."

• Alternate index record, which relates the alternate index to its associated
base cluster and also to any paths over it. This record is record type "G."

• Data and Index records, which describe data sets and indexes. There is one
Data or Index record for each data set or index cataloged. These records
are record types "D" and "I."

• Path record, which relates a base cluster and possibly an alternate index.
This record is record type "R."

• Upgrade set record, which relates the data components and index
components of the alternate indexes that make up the upgrade set. This
record is record type "Y."

• NonVSAM record, which describes a data set organized differently than
VSAM. There is one NonVSAM record for each nonVSAM data set
cataloged. This record is record type" A."

• User-Catalog record, which describes a VSAM user catalog. There is one
User-Catalog record for each user catalog connected to this master catalog.
This record is record type "U."

• Volume record, which describes each VSAM data space on a volume, the
data sets that reside in the data space, and the space available within the
data space. There is one Volume record for each volume controlled by this
catalog. This record is record type "V."

• Extension record, which contains overflow information from another
catalog record. There are as many Extension records as are required to
contain overflow information. This record is record type "W" when it is an
extension of a Volume record; it is record type "E" when it is an extension
of any other catalog record.

The Cluster, Data, Index, Alternate Index, Path, Upgrade, NonVSAM,
Extension, and User-Catalog records have a common general format. Figure
58 shows the general format for these records.

Data Areas 477

0(0) 1(1) 4(4) 5(5) 11(B) 14(E) 18(12) 22(16) 26(1 A)

I 00
I

CI
No. I RELIND I CRAVOL I CRAIDNO I CRADEVT I CRACRETS I CRADITS I Reserved I !

Identifies the releases ...-/
o = Nonenhan ced

VSAM
1 = Enhanced

VSM

For recoverable
caralogs, identifies
the CRA volume
serial number. I

F or recoverable
catalogs, indicates
the CRA control
interval number. 1

1 Contains zeros if the catalog is not recoverable or if there is no associated CRA entry.

Figure 58 (Part I of 2). Catalog Record-General Format

For recoverable
catalogs, the
data or index
creation time
stamp. 1 Zeros
for other record
types.

'----------1 For recoverable
catalogs, the CRA
creation time-stamp. 1

For recoverable catalogs,
the CRA device type (same
as VCB device type field,
except (I) shared bit is
turned off, (2) RPS bit is
turned off (3340 only),
and (3) power warning
bit is turned off. 1

478 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

~ Header Fields ---------------------:>1:.1
44(2C) 45(2D) 47(2F)48(30) 49(31) 93(5D) I

Identifies the type
ID

Record
00 L True DSNAME

Fixed-Length Variable-Length
of catalog record: Size Fields Fields

A = Non VSAM
C = Ouster

I

T
'f'

D = Data
= F Free Length (in bytes)

G = Alternate Index Count of '--
I Index Variable- to the End of the =
E = Extension Length Fixed-Length

P Path Fields Fields =
U = User-ca talog (usually

V = Volume zero)

W = Ex tension for a W
volume record

Since there are usually no Variable-y = Upgrade Set
Length Fields, "L" points to the
Horizontal-Extension-Record Poin ter.

15 Bytes· 1 Byte 5 Bytes 5 Byte Pointers (*)

t Horizontal Number of ASPT (Available- I I I I

Extension Sets of Space Pointer)
Set-of-Fields Pointers

Fields J I I I

(~) ~)
The set of

{
Number of

fields is Bytes from
Type

Sequence
in this Reserved

the First
(group)

Number
record. Set of Fields

Code

I The set of (3) (1) (1)(*)

fields is

{
Control Type

Sequence in an Interval (group)
Number extension Number Code

record. ----- l' ~
Bit 0 = 0: Set of fields in record

= 1: Set of fields in extension
Bit 1 = 1: Inactive set-of-fields pointer
Bits 2 - 7: Type (group code)

*The volume catalog record and its
extension (types V and W) have 6-byte
set-of-fields pointers, because of
2-byte sequence numbers.

Figure 58 (Part 2 of 2). Catalog Record-General Format

I

Variable-Length Sets of Fields

I I r 1
Sets of Fields

I I I I

~ ~
Fixed-Length Variable-Length

C L
Fields Fields

'I' 't f

Number of Length of the
Variable- Fixed-Length Fields-
Length this includes the "e"
Fields and "L" Bytes

y" V,,",bHongt' Fiold'

(2) I
Length Data

Data Areas 479

Sets of Fields in the Catalog Records

"D"
Alternate Index

Data

Related fields of information are grouped into sets of fields so they can be
treated as a unit. For example, all fields relating to one volume on which a
data set resides are grouped together. If a data set resides on three volumes,
there are three sets of volume information; these sets of volume information
fields are not necessarily contiguous. Each pointer to a set of fields, however,
contains a code that identifies the kind of information the set of fields
contains. It is possible for one record to contain many sets of fields.

Following are the sets of fields that can occur in Cluster, Alternate Index,
Path, Upgrade, Data, Index, NonVSAM, and User-Catalog records:

• AMDSB (Access Method Data Set Statistics Block), which appears in Data
Set and Index records. Only one copy of an AMDSB appears in a record.
A pointer to AMDSB information contains a code of 1.

• Association information, which appears in Data, Index, Cluster, Alternate
Index, Path, and Upgrade catalog records. Figure 59 illustrates the
associations that can occur in these records. Each arrow represents an
association. Associations shown by a broken line exist only when the base
cluster is a key-sequenced data set. Multiple alternate indexes and paths
may exist.

• Volume information, which appears in Data, Index, User-Catalog and
NonVSAM records. This set of fields describes all of the direct-access

1--------------------------,
I

UR"
Path

t
"G"

Alternate Index - ~

,
HI"

"R"
Alias Path

t
"e"

Base Cluster

I
I
I

- ---"'1

r- -...,
I
I

I
I
I
I
I
I
I
I

Alternate Index* "D" "I"
Base Index Index Base Data

I •
"Y"

Upgrade*

• The alternate index is in the upgrade set; therefore, the "Y" entry has associations pointing

to the data and index of the alternate index.

Figure 59. Catalog Record Associations

480 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

device space allocated to the data set (or index, etc.) on a particular
volume. A separate set of volume information fields is used to describe the
space on each volume. If the data set's space on a volume is divided into
key ranges, each key range is described in a separate set of volume
information fields. As many sets of volume information fields as are
required to describe allocated space can appear. A pointer to volume
information contains a code of 3.

• Password information, which can appear in Data, Index, Alternate Index,
Path, and Cluster records. This set of fields contains the security
information for a data set (or index, etc.). Only one set of password
information fields can appear. A pointer to password information contains
a code of 4.

The Volume record can also contain sets of fields, as follows:

• Track allocation information (Space Map set of fields). This set of fields
describes each track on the volume as allocated to a VSAM object or
unallocated. Each volume record contains as many of these sets of fields as
are required to describe the entire volume. A pointer to track allocation
information contains a code of 5.

• VSAM data space information (Data Space Group set of fields). This set
of fields describes a VSAM data space on the volume. One set of fields is
required to describe each data space and its extents on the volume. A
pointer to data-space information contains a code of 6.

• Data Set Directory Entry set of fields. This set of fields describes a data set
that resides in a VSAM data space. One set of fields is required for each
data set. A pointer to data set information contains a code of 8.

Note: If a Cluster, Alternate Index, Upgrade, Data, Index, NonVSAM, or
Volume record is extended, these sets of fields (except for the AMDSB set of
fields) are moved, as required, into an Extension record.

Catalog Records that Describe the Catalog

Catalog records that describe the catalog as a data set are in fixed positions at
the beginning of the catalog. The following table shows the control interval
numbers of records that describe the catalog, the kind of catalog record each
is, and the contents of each.

Control
Interval Record
Number Type

0 Data

Index

2 Cluster

3 Control

4 Extension

Contents

Description of the data portion of the catalog.

Description of the index portion of the catalog.

Description of the catalog cluster.

Catalog control record (CCR), which describes the
catalog's free control intervals.

Extension of the index catalog record (control interval
number 1). This Extension record contains a description
of the high-level index extents of the catalog.

Data Areas 481

Catalog Records that Describe the Catalog

Control
Interval
Number

5

6

7

8

9

10-13

Record
Type

Extension

Extension

Extension

Extension

Volume

Volume

Contents

Extension of the data catalog record (control interval
number 0). This Extension record contains a description
of the low-address data extents of the catalog.

Extension of the index catalog record (control interval
number 1). This Extension record contains a description
of the low-address index sequence set extents of the
catalog.

Extension of the data catalog record (control interval
number 0). This Extension record contains a description
of the extents of the True Name records in the
high-address part of the catalog.

Extension of the index catalog record (control interval
number I). This Extension record contains a description
of the high-address index sequence set extents of the
catalog.

Description of the track allocation and VSAM data spaces
on this volume.

As many volume extension records as are necessary to
describe the total space on the volume.

When the catalog is built, there are two True Name records. One contains the
catalog volume's serial number and points to control interval number 9. The
other contains the catalog's name and points to control interval number 2.

Locating Fields in Catalog Records

A field-name dictionary, which is part of the catalog management code,
allows catalog management to locate fields within catalog records by name.
The dictionary also allows for combination field names-each combination
field name allows catalog management to locate a group of related fields.

Catalog records and the field-name dictionary are described in the topics that
follow.

Recoverable Catalog Support
Catalogs can be defined with an optional recovery attribute that allows data
sets to be recovered or restored. Recovery is based on information that is
recorded in the catalog and also in a catalog recovery area on the volumes
owned by the catalog. The recovery area is established when the recoverable
catalog acquires ownership of the volume. Thus, all volumes owned by a
recoverable catalog contain catalog recovery area space.

Whenever records in a recoverable catalog are defined, deleted, or modified,
the corresponding information in the catalog recovery area is updated to
reflect the change. Although no specific commands are required to maintain
the recovery area, certain volumes must be mounted during defines, alters,
deletes, and any catalog entry modifications resulting from open, close, or end
of volume activity. The volumes are:

ALTER The prime catalog recovery volume for the objects being
altered.

DELETE All volumes that are reference by the entry being deleted and

482 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

the prime CRA volume.

DEFINE All volumes that are referenced in the DEFINE command.
Also, the first volume of the base cluster must be mounted
when alternate indexes and paths are being defined.

Once a recoverable catalog is defined, it cannot be made nonrecoverable.
Also, a recoverable catalog cannot be copied. A'nonrecoverable catalog can
be converted and made recoverable through Access Method Services
commands. This conversion is not necessary unless there is a requirement for
the recovery capability.

The Access Method Services commands used to achieve catalog recovery are
described in OS/VS2 SVS Independent Component: Access Method
Services. That book also contains specific instructions on how to make an
existing master catalog recoverable. User catalogs can be converted by using
the EXPORT, DELETE, DEFINE, and IMPORT commands.

This publication contains additional information about catalog recovery. In
the "Method of Operation" chapter, Diagram EE3 describes the processing
required to define a catalog recovery area. In the "Program Organization"
chapter, detailed drawings in the "Catalog Management I/O Functions"
section illustrate CRA I/O operations. The "Data Areas" chapter contains
the description and the format of all the recovery area records.

Catalog Recovery Area Record Descriptions
Catalogs that are defined with the recoverable attribute are associated with
one or more eRAs (catalog recovery areas). A CRA is a VSAM
entry-sequenced data set, and every volume owned by a recoverable catalog
contains one CRA.

Each CRA contains three types of 512-byte records:

• Self -describing records

• Duplicate copies of VSAM catalog entry records

• CRA free records

Self-describing records and free records occupy control intervals 0 - 8 in the
CRA. The control intervals and the specific record they contain are:

CI Number

o

2

3

4

5

6,7,8

Record
Type

D

Description

Data set record, which describes the CRA data component of
the CRA cluster

F Free record

C

L

F

E

F

Cluster record, which describes the CRA cluster

Control record, which manages control interval allocation in
theCRA

Free record

Extension record, which is an extension of the data set record
in control interval 0

Free records

The formats and contents of the self-describing records are shown later in this
section.

Data Areas 483

Duplicate copies of catalog records are recorded in the eRA in control
intervals 9 - n. The volume record for the eRA volume is in control interval
9. The format and content of these duplicated records are identical to their
counterparts in the recoverable catalog associated with the eRA.

Each catalog record that is not self -describing is duplicated in a specific eRA.
The table that follows shows which eRA contains a given catalog record. In
the table, initial volume is the first volume on which space was allocated for
the entity.

Catalog Entry

Volume records

KSDS cluster records

KSDS data records

KSDS index records

AIX cluster record (KSDS)

AIX data record (KSDS)

AIX index record (KSDS)

AIX cluster records (ESDS)

AIX data records (ESDS)

AIX index records (ESDS)

Path records (KSDS, no AIX)

Path records (ESDS, no AIX)

Path records (KSDS, AIX)

Path records (ESDS, AIX)

Upgrade records (KSDS)

Upgrade records (ESDS)

NonVSAM records

True Name Catalog Record Format

Record
Type

V,W

C,E

D,E

I,E

G,E

D,E

I,E

G,E

D,E

I,E

R,E

R,E

R,E

R,E

Y,E

Y,E

A,E,U

CRA

Subject volume

Initial prime index volume

Initial prime index volume

Initial prime index volume

Initial prime index volume of the base cluster

Initial prime index volume of the base cluster

Initial prime index volume of the base cluster

Initial base data volume

Initial base data volume

Initial base data volume

Initial prime index volume

Initial base data volume

Initial prime index volume of the base cluster

Initial base data volume

Initial prime index volume of the base cluster

Initial base data volume

Catalog volume

The True Name record associates the volume serial number, data-set name, or
cluster name specified by the user with the control interval number of the
catalog record that describes the object (volume, cluster, alternate index,
path, or data set). True Name records are contained in the high-address part
of the catalog and are pointed to by the catalog's index records. The True
Name record is retrieved using key-sequenced processing. The catalog
management modules convert the control interval number in the True Name
record to an RBA for entry-sequenced processing.

True Name records are 47 bytes long; several might be contained in a
catalog'S (S 12-byte) control interval.

Bytes and
Offset Bit Pattern

0(0) 44

44 (2C) 3

Field Name Description

Name of a data set, alternate index, path, or
cluster, filled on the right with blanks, or a
volume serial number, filled on the right with
zeros, specified by the user.

Control interval number of the catalog
record that describes the object.

484 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Catalog Control Record (CCR) Fonnat
The catalog control record (CCR) is used by catalog management to control
the allocation of control intervals in the low-address part of the catalog,
where catalog records, excluding the True Name records and the index,
reside. The CCR also shows the catalog's high-used and high-allocated RBA
values. The catalog control record is the fourth record (control interval) in the
catalog.

For a request of one catalog reco~d, catalog management tries to use a record
that was freed because of deletion. This process is done before using
unassigned control interval. If more than one catalog record is needed, catalog
management tries to use contiguous unassigned space in the current extent; if
sufficient unassigned control interval is not available, records that have been
deleted are used.

Catalog Control Record (CCR) Format

Offset

0(0)

44 (2C)

45 (2D)

48 (30)

51 (33)

54 (36)

Bytes and
Bit Pattern

44

3

3

3

3

Description

Key.

Byte

o
1-3

4
5-43

Record type-"L."

Meaning

Zeros.
Control interval number of this
record.
Release indicator
Zeros.

Number of the highest control interval within the current
extent. I

Number of the next free control interval of those that have
not been previously assigned.!

Count of deleted control intervals, that is, the number of
control intervals that are free because of deletion.2

First deleted control interval in a chain of control intervals
that are free because of deletion.2

Data Areas 485

Catalog Control Record Format

Offset
Bytes and
Bit Pattern Description

The following fields are used to keep track of the RBA values that denote the current
logical end (high RBA) of parts of the catalog.

Note: The low key range is the low-address part of the catalog; the high key range is the
high-address part.

57 (39) 4 Data, low key range: high-key RBA

61 (3D) 4 Data, low key range: high-used RBA

65 (41) 4 Data, low key range: high-allocated RBA

69 (45) 4 Data, high key range: high-key RBA

73 (49) 4 Data, high key range: high-used RBA

77 (4D) 4 Data, high key range: high-allocated RBA

81 (51) 4 Index, high level: high-used RBA

85 (55) 4 Index, high level: high-allocated RBA

89 (59) 4 Index, low key range-sequence set: high-used RBA

93 (50) 4 Index, low key range-sequence set: high-allocated RBA

97 (61) 4 Index, high key range-sequence set: high-used RBA

101 (65) 4 Index, high key range-sequence set: high-allocated RBA

1 This field is used to keep track of unassigned space within tho. current extent.

2 This field is used to keep track of previously-used records that are now available for use as another catalog
record.

Free Catalog Record Format
The Free record indicates that the control interval in which it resides is free
and points to the next control interval that is free because of deletion. Note
that the free space in the catalog that has never been assigned is not
represented by Free records; the Free record is used only to mark a record
that was used and deleted.

Offset

0(0)

44 (2C)

45 (2D)

Bytes and
Bit Pattern

44

3

Description

Key.

Byte

o
1-3

4-43

Record type-"F."

Meaning

Zeros.
Control interval number of this
record.
Zeros.

Control interval number of the next free control interval.

486 OS/VS2 SVS' Independent Component: Virtual Storage Access Method (VSAM) Logic

Data and Index Catalog Record Format
Data and Index records describe data sets and their indexes.

L Bytes and
Offset Bit Pattern Field Name Description

0(0) Zeros.

1 (1) 3 ENTIDNO Control interval number of this record.

4 (4) RELIND Release indicator:

o = Nonenhanced VSAM;
1 = Enhanced VSAM.

5 (5) 6 CRAVOL CRA volume serial. 1

11 (B) 3 CRAIDNO CRA control interval number.l

14 (E) 4 CRADEVT CRA device type)

18 (12) 4 CRACRETS CRA creation time stamp.

22 (16) 4 CRADITS Data/index identifier timestamp.

26 (JA) 18 Zeros.

44 (2C) ENTYPE Record type-"D" for a Data record or "I"
for an Index record.

45 (2D) 2 Record length.

47 (2F) Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

48 (30) Length of the fixed-length fields in this
record, excluding any fixed-length fields
following displacement 143 (X'8F). This
value is always equal to the displacement
from the beginning of the record to the
pointer to an extension record.

49 (31) 44 ENTNAME For a Data or Index record, the data set
name.

93 (50) 8 OWNERID Owner of the data set, specified when the
data set was defined.

101 (65) 3 DSETCRDT Data set creation date, in packed-decimal
form YDD, specified when the data set was
defined.

104 (68) 3 DSETEXDT Data set expiration date, in packed-decimal
form YDD, specified when the data set was
defined.

107 (6B) ATTRI Data set attributes, which are defined using
Access Method Services commands, as
follows:

1... Speed, which indicates that storage for the
data set or index is not to be preformatted
before records are output.

.1.. Unique, which indicates that this data set or
index must reside in a data space all its own.

.. 1. The cl!lster associated with this component is
reusable.

... 1 Erase, which indicates that the data set or
index is to be overwritten with binary zeros
when deleted.

1... This catalog is recoverable.

L .1 .. Inhibit update, which indicates that the data
set or index is not to be updated.

Data Areas 487

Data and Index Catalog Record Fonnat

Bytes and
Offset Bit Pattern Field Name Description

.. 1. Temporary export, which indicates that the
original copy of this data set or index is not
to be deleted, even though another copy of it
exists somewhere else.

... x Reserved .

108 (6C) ATTR2 Data-set sharing attributes as follows:

00 .. The data set can be shared by READ users or
it can be used by one UPDATE/OUTPUT
user.

01.. The data set can be shared by READ users
and one UPDATE/OUTPUT user.

10 .. The data set can be fully shared.
II.. The data set can be fully shared; with

assistance supplied by VSAM.

Data-set sharing attributes across systems, as
follows:

.. 00 Reserved .

.. 01 Reserved .

.. 10 I... The data set can be fully shared .

.. 11 The data set can be fully shared; with
assistance supplied by VSAM.

.. . 1 Component is not usable .
xxx. Reserved.

109 (60) OPENIND Open indicator flag; if this byte contains
X'80', the data set is open for output.

110 (6E) 4 BUFSIZE Minimum buffer size.

J 114(72) 3 PRIMSPAC Primary space allocation for the data set or
index, specified when the data set or index
was defined.

117(75) 3 SCONSPAC Secondary space allocation for the data set or
index, specified when the data set or index
was defined.

120 (78) SPACOPTN Space options flags.

10 .. Track request, which indicates that space
allocation was specified in tracks.

II.. Cylinder request, which indicates that space
allocation was specified in cylinders.

.. xx xxxx Reserved .

121 (79) 4 HURBADS High used RBA of the data set or index.

125 (70) 4 HARBADS High allocated RBA of the data set or index.

129 (St) 4 LRECL For a Data record, the logical record size of
the data set described by this Data record.
For an Index record, always X 'FF's.

133 (S5) 2 USERINFO User information for the DOS/VS
indexed-sequential access method
compatibility interface.

135 (S7) S EXCPEXIT Exception exit.

The follOWing 6-byte entry contains control information for the sets of fields that follow
it.

143 (SF) 5 Pointer to horizontal extension record. If this
record is not continued in an extension
record, this field contains zeros.

48S OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Data and Index Catalog Record Format

Offset

148 (94)

149 (95)

Bytes and
Bit Pattern

VL

VL

Field Name Description

The number of set of fields pointers that
follow.2

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT -available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

S-byte pointers to sets of fields within the
record.

Byte

o
1-2

3

4

Meaning

Reserved.

Displacement of the set of fields
from the beginning of all sets of
fields in this record.

Bits 0 and I are set to zero. If bit I
is on, the set of fields associated
with this pointer has been deleted;
the code in bits 2 through 7 of this
byte and the sequence number in
byte 4, however, are kept. Bits 2
through 7 contain a code
describing the set of fields pointed
to.2

Sequence number of the set of
fields pointed to by code.3 For
example, all sets of fields
associated with a code of 2 are in
one sequence.

S-byte pointers to sets of fields contained in
vertical Extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains this
set of fields.

3 Bits 0 and 1 are set to B'IO'. Bits 2
through 7 contain a code that
describes the set of fields pointed
to.3

4 Sequence number of the set of
fields pointed to by code.3 For
example, alI sets of fields
associated with a code of 2 are in
one sequence.

1 Zeros If the catalog is not recoverable or if there is no assocated CRA volume.

2 Fields describing (a) the AMDSB, (b) the control interval number of a Cluster record associated
with this record, (c) the volumes on which a data set resides, and (d) the password information
associated with a data set are grouped into sets of fields. Pointers to each set of fields identify
the type of information contained in each set of fields.

3 If the pointer is associated with AMDSB information, the code is 1; with cluster information,
the code is 2; with volume information, the code is 3; or with password information, the code
is 4.

Data Areas 489

AMDSB (Access Method Data Set Statistics Block)
Set of Fields Format

The AMDSB set of fields contains a copy of the AMDSB control block, and
is updated each time the data set is closed. This set of fields is associated with
a pointer that contains a type (group) code of 1.

Offset

0(0)

2 (2)

Bytes and
Bit Pattern

2

;96

Association (Cluster) Set of Fields Format

Field Name

AMOSBCAT

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

AMOSB-Access Method Oata Statistics
Block. See "Data Areas" for detailed
information about the AMOSB.

The control interval number of the cluster catalog record associated with the
data or index catalog record is contained in the association set of fields. This
set of fields is associated with a pointer that contains a type (group) code of
2.

Offset

0(0)

Bytes and
Bit Pattern

2

Field Name Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

490 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Association (Cluster) Set of Fields Format

Offset

2 (2)

3 (3)

Bytes and
Bit Pattern

3

Volume Information Set of Fields Format

Field Name

TYPE

NAME

Description

"C," which indicates that this record is
associated with a Cluster record, or "0",
which indicates this is the data component or
the index component of an alternate index.
The data component of a cluster may have
an additional "Y" association if the cluster
has an alternate index that is part of the
upgrade set.

Control interval number of the Cluster or
Alternate Index record associated with this
record.

All extents allocated to the data set, index, or data set's key range on a
volume are described by a volume information set of fields. This set of fields
is associated with a pointer that contains a type (group) code of 3.

Offset

0(0)

2 (2)

6 (6)

12 (C)

Byte and
Bit Pattern

2

4

6

2

Field Name

DEVTYP

VOLSER

FILE SEQ

Description

Control information.

Byte

o
Meaning

Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

Device type.

Volume serial number.

File sequence number. (This field is provided
for compatibility with the OS/VS catalog.)

Data Areas 491

Data and Index Catalog Record: Volume Information Set of Fields Format

Bytes and
Offset Bit Pattern Field Name Description

J 14 (E) VOLFLG Volume flags, as follows:

1... Prime, which indicates that this volume was
allocated when the data set was defined or
that a data set that is not divided into parts
according to key has been extended to this
volume.

.1. Candidate, which indicates that this volume
is available for use by the data set described
by this record.

.. 1. Overflow, which indicates that this volume is
being used by a data set that is divided into
parts according to key, but this volume was
not allocated when the data set was defined.

... x xxxx Reserved

15 (F) NOEXTNT Number of extents allocated in this set of
extents on this volume for this data set.

16 (10) 4 HKRBA RBA of the data control interval with the
high key.

20 (14) 4 HURBA High-used RBA.

24 (18) 4 HARBA High-allocated RBA.

28 (I C) 4 PHYBLKSZ Blocksize.

32 (20) 2 NOBLKTRK Number of blocks per track.

34 (22) 2 NOTRKAU Number of tracks per allocation unit.

36 (24) ITYPEXT Flags:

I. .. In an index record: the sequence set is with J the data.
.1.. The extents are not preformatted
.. xx xxxx Reserved

37 (25) 2 DSDIRSN Data set directory sequence number in the
volume record.

39 (27) VL LOKEYV Low key on the volume. This field can be a
maximum of 64 bytes long; the first two bytes
indicate the length of the field.

VL HIKEYV High key on the volume. This field can be a
maximum of 64 bytes long; the first two bytes
indicate the length of the field.

VL EXTENT This field contains a 2-byte length field,
followed by a 20-byte field for each extent.
The 20-byte field describes the start and end
of the extent, in the form
SSCCHHCCHHTTDDDDDDDD, where SS
is the data space extent's sequence number,
CCHHCCHH is the low and high cylinder
and head, TT is the number of tracks, and
DDDDDDDD is the low and high RBA of
the extent.

492 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Ptl&fwonl Sn 0/ Fkllb FOt7IUIt

Password information, if any, is contained in the password set of fields. This
set of fields is associated with a pointer that contains a type (group) code
of 4.

Offset

0(0)

2 (2)

34 (22)

42 (24)

44 (2C)

52 (34)

Ouster Catalog Record Format

Bytes_
Bit Pattern

2

32

8

2

8

VL

FIeld Name

PASSWORD

PASSPRMT

PASSATMP

USVRMDUL

USERAREC

Description

Control informatioo

Byte Meamag

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

Four eight-character passwords, in the
following order: Master, Control Interval,
Update, and Read.

Password prompting code name that allows
the operator to provide the correct password
without displaying the data set name.

Maximum number of attempts allowed for
the operator or TSO operator to provide
correct password.

Name of user's security-verification module,
if any.

User-authorization record. This field can be a
maximum of 256 bytes long.

The Cluster record describes a data set and its index, if any, and may point to
one or more alternate indexes.

Offset

0(0)

1(1)

4 (4)

5 (5)

11 (B)

14 (E)

18 (12)

22 (16)

26 (1A)

44 (2C)

45 (2D)

47 (2F)

Bytes and
Bit Pattern

3

6

3

4

4

4

18

2

FIeld Name

ENTIDNO

RELIND

CRAVOL

CRAIDNO

CRADEVT

CRACRETS

CRADITS

ENTYPE

Description

Zeros.

Control interval number of this record.

Release indicator:

o = Nonenhanced VSAM;
1 = Enhanced VSAM.

CRA volume serial.1

CRA control interval number'!

CRA device type.1

CRA creation time stamp.

Data/index identifier timestamp.

Zeros.

Record type-"C."

Record length.

Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

Data Areas 493

Ouster Catalog Record Format

Offset

48 (30)

49 (31)

93 (50)

101 (65)

104 (68)

Bytes and
Bit Pattern

44

8

3

3

Field Name

ENTNAME

OWNERID

DSETCRDT

DSETEXDT

Description

Length of the fixed-length fields in this
record, excluding any fixed-length fields that
follow displacement 106 (6A). This value is
always equal to the displacement from the
beginning of the record to the pointer to an
extension record.

Name of the cluster described by this record.

Owner of the data set, specified when the
data set was defined.

Data set creation date, in packed-decimal
form YDD, specified when the data set was
defined.

Data set expiration date, in packed-decimal
form YDD, specified when the data set was
defined.

The following six-byte entry contains control information for the sets of fields that
follow it.

107 (68) 5

112 (70)

113 (71) VL

Pointer to horizontal extension record. If this
record is not continued on an extension
record, this field contains zeros.

The number of set-of-field pointers that
follow. 2

Note: The first set-of-fields pointer may be
special (meaning that the field-name
dictionary permits catalog management to
locate information that is not contained in
catalog records); if this is the case, its
sequence number = 0 and type code = o.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT -available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.

Byte MeanIng

o Reserved.

1-2 Displacement of the set of fields from
the beginning of all sets of fields in
this record.

3 Bits 0 and I are set to zero. If bit 1 is
on, the set of fields associated with
this pointer has been deleted; the
code in bits 2 through 7 of this byte
and the sequence number in byte 4,
however, are kept. Bits 2 through 7
contain a code describing the set of
fields pointed to.3

4 Sequence number of the set of fields
pointed to by code.3 For example, all

494 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

L

Cluster Catalog Record Format

Offset
Bytes and
Bit Pattem

VL

Field Name Description

sets of fields associated with a code
of 2 are in one sequence.

5-byte pointers to sets of fields contained in
vertical Extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains this set
of fields.

3 Bits 0 and I are set to B'IO'. Bits 2
through 7 contain a code that
describes the set of fields pointed to.3

4 Sequence number of the set of fields
pointed to by code.3 For example, all
sets of fields associated with a code
of 2 are in one sequence.

1 Zeros if the catalog is not recoverable or if there is no associated eRA entry.

2 Fields describing (a) the control interval number of a Data or Index record
associated with this cluster or (b) the password information associated with a
data set are grouped into sets of fields. Pointers to each set of fields identify the
type of information contained in each set of fields.

3 If the pointer is associated with cluster information (the control interval number
of a Data or Index record), the code is 2; with password information, the code
is 4.

Association (Data and Index) Set of Fields Format

The control interval number of the Data and Index Catalog Record associated
with the cluster is contained in an association set of fields. This set of fields is
associated with a pointer that contains a type (group) code of 2.

Offset

0(0)

2 (2)

3 (3)

Bytes and
Bit Pattem

2

3

Field Name

TYPE

NAME

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

If this entry describes an Index Record, "I";
if this entry describes a Data record, "D;" if
this entry describes an alternate index entry,
""G."

Control interval number of a Data, Index, or
Alternate Index record that is part of the
cluster described by this record.

Data Areas 495

Password Set of Fields Format
Password information, if any, is contained in the password set of fields. This
set of fields is associated with a pointer that contains a type (group) code
of 4.

Offset

0(0)

2 (2)

34 (22)

42 (2A)

44 (2C)

52 (34)

Bytes and
Bit Pattern

2

32

8

2

8

VL

Alternate Index Catalog Record Format

Field Name

PASSWORD

PASSPRMT

PASSATMP

USVRMDUL

USERAREC

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

Four eight-character passwords, in the
following order: Master, Control Interval,
Update, and Read.

Password prompting code name that allows
the operator to provide the correct password
without displaying the data set name.

Maximum number of attempts allowed for
the operator or TSO operator to provide
correct password.

Name of the user's security-verification
module, if any.

User-authorization record. This field can be a
maximum of 256 bytes long.

The alternate index record describes the data and index components
associated with the alternate index. In addition, it points to the related cluster
entry and it can point to one or more path entries. The alternate index
grouping is similar to the grouping of a key-sequenced data set except for
different record types ("G" rather than "e").

Offset

0(0)

1 (I)

4 (4)

5 (5)

11 (B)

14 (E)

18 (12)

22 (16)

44 (2C)

45 (20)

47 (2F)

Bytes and
Bit Pattern

3

6

3

4

4

22

2

Field Name

ENTIDNO

RELIND

CRAVOL

CRAIDNO

CRADEVT

CRACRETS

ENTYPE

Description

Zeros.

Control interval number of this record.

Release indicator:
O=Nonenhanced VSAM;
1 =Enhanced VSAM.

CRA volume serial.

CRA control interval number.

CRA device type.

CRA creation time stamp.

Zeros.

Record type-"G."

Record length.

Number of variable-length fields that precede
the pointer to an extension record (always 0).

496 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Alternate Index Catalog Record Format

Bytes and
Offset Bit Pattern Field Name

48 (30)

49 (31) 44 ENTNAME

93 (5D) 8 OWNERID

101 (65) 3 DSETCRDT

104 (68) 3 DSETEXDT

107 (6B) RGATTR

1. ..

. xxx xxxx

Description

Length of nonrepeating fixed-length fields
(always X'6C').

Name of the alternate index described by this
record.

Owner of the alternate index described by
this record; specified when the alternate
index was defined.

Alternate index creation date, in the packed
decimal form YDD. .

Alternate index expiration date, in the
packed decimal form YDD.

Alternate index attributes:

If there is an association in the upgrade
entry, indicates that this alternate index is a
member of the upgrade set.

Reserved .

The following 6-byte entry contains control information for the sets of fields that
follow it.

108 (6C) 5

113(71)

Pointer to the horizontal extension record. If
this record is not continued on an extension
record, this field contains zeros.

The number of set of fields pointers that
follow. 1

Note: The first set-of-fields pointer may be
special (meaning that the field-name
dictionary permits catalog management to
locate information that is not contained in
catalog records); if this is the case, its
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that

contains free space. The set-of-fields pointer is called the ASPT-available-space pointer.
When bytes 0 to 2 are zero, the pointer is a dummy set-of-fields pointer-not available to
be used to point to a set of fields.

114 (72) VL 5-byte pointers to sets of fields within the
record.

Byte

o
1-2

3

Meaning

Reserved.

Displacement of the set of fields from
the beginning of all sets of fields in
this record.

Bits 0 and 1 are set to zero. If bit 1 is
on, the set of fields associated with
this pointer has been deleted; the
type (group) code in bits 2 through 7
of this byte and the sequence number
in byte 4, however, are kept. Bits 2
through 7 contain a type (group)
code describing the set of fields
pointed to.

Data Areas 497

Alternate Index Catalog Record Fonnat

Offset
Bytes and
Bit Pattern

VL

Field Name Description

4 Sequence number of set of fields
pointed to by code. For example, all
sets of fields associated with a code
of 2 are in one sequence.

S-byte pointers to sets of fields contained in
vertical extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains this set
of fields.

3 Bits 0 and I are set to B' 10'. Bits 2
through 7 contain a type (group)
code that describes set of fields
pointed to.

4 Sequence number of the set of fields
pointed to, by type (group) code. For
example, all sets of fields associated
with a code of 2 are in one sequence.

1 Fields describing (a) the control interval number of a Data or Index catalog
record associated with this cluster, or (b) the password information associated
with a data set are grouped into sets of fields. Pointers to each set of fields
identify the type of information contained in each set of fields.

Association Set of Fields Format

The associations in this entry are partially ordered; however, no assumptions
should be made as to the relative placement or physical position of these
associations in the alternate index record.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 Control information.

2 (2) TYPE Record type pointed to by the following
control interval number.

3 (3) 3 NAME Control interval number.

The association ordering by record type is:

Record Type

D

C

R

Description

Alternate index data (D) component association with occurrence
sequence number = 1.

Alternate index index (0 component association with occurrence
sequence number = 2.

Base cluster (C) component association with occurrence sequence
number = 3.

Maximum of 252 path (R) associations.

498 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

~

Password Set of Fields Format

Password information, if any, is contained in the password set of fields. This
set of fields is associated with a pointer that contains a type (group) code
of 4.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 Control information.

Byte Meaning

0 Count of the number of
variable-length fields in this set
of fields.

Hexadecimal displacement to
the first variable-length field
from the beginning of this set of
fields.

2 (2) 32 PASSWORD Four eight-character passwords, in the
following order: MASTER, CONTROL
INTERVAL"UPDATE, and READ-ONLY.

34 (22) 8 PASSPRMT Password prompting code name that allows
the operator to provide the correct password
without displaying the data set's DSNAME.

42 (2A) 2 PASSATMP Maximum number of attempts allowed for
the operator.to provide the correct password.

44 (2C) 8 USVRMDUL Name of user's security-verification module,
if any.

52 (34) VL USERAREC User-authorization record. This field can be a
maximum of 256 bytes long.

Path Catalog Record Format
The path record describes an alternate index and its associated base data set
to give an alternate, logical view of the base data set. It also may be used as
an alias for a base data set to inhibit upgrade set unit allocation.

Offset

0(0)

1 (1)

4 (4)

S (5)

11 (B)

14 (E)

18 (12)

22 (16)

44 (2C)

4S (2D)

47 (2F)

48 (30)

Bytes and
Bit Patterns Field Name

3

6

3

4

4

22

2

ENTIDNO

RELIND

CRAVOL

CRAIDNO

CRADEVT

CRACRETS

ENTYPE

Description

Zeros.

Control interval number of this record.

Release indicator:
O=Nonenhanced VSAM;
I =Enhanced VSAM.

CRA (catalog recovery area) volume serial.

CRA control interval number.

CRA device type.

CRA creation time stamp.

Zeros.

Record type-"R."

Record length.

Number of variable-length fields that precede
the address of an extension record (always
zero).

Length of nonrepeating fixed-length fields
(always X'6C').

Data Areas 499

Path Catalog Record Format

Bytes and
Offset BIt Pattem FIeld Name

49 (31) 44 ENTNAME

93 (50) 8 OWNERID

101 (65) 3 DSETCRDT

104 (68) 3 DSETEXDT

107 (6B) RGATTR

1. ..

. xxx xxxx

Description

Name of the path described by this record.

Owner of the path; specified when the path
was defined.

Path creation date; in the packed-decimal
formYDD.

Path expiration date; in the packed-decimal
form YDD.

Path attributes:

Include upgrade set during unit allocation
and when opening this path.

Reserved .

The following 6-byte entry contains control information for the sets of fields that follow
It.

108 (6C) 5

113 (71)

114 (72) VL

VL

Pointer to the horizontal extension record. If
this record is not continued on an extension
record, this field contains zeros.

The number of set of fields pointers that
follow'!

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set -of -fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT-available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.

Byte Meaning

0 Reserved.

1-2 Displacement of the set of fields
from the beginning of all sets of
fields in this record.

3 Bits 0 and I are set to zero. If bit
I is on, the set of fields
associated with this pointer has
been deleted; the type (group)
code in bits 2 through 7 of this
byte and the sequence number
in byte 4, however, are kept.
Bits 2 through 7 contain a type
(group) code describing the set
of fields pointed to.

4 Sequence number of the set of
fields pointed to by code. For
example, all sets of fields
associated with a code of 2 are
in one sequence.

5-byte pointers to sets of fields contained in
vertical extension records.

500 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

..J

~

Path Catalog Record Format

Offset
Bytes and
Bit Pattern Field Name Description

Byte Meaning

0-2 Control interval number of the
extension record that contains
this set of fields.

3

4

Bits 0 and 1 are set to B'lO.' Bits
2 through 7 contain a type
(group) code that describes set
of fields pointed to.

Sequence number of the set of
fields pointed to, by type
(group) code. For example, all
sets of fields associated with a
code of 2 are in sequence.

1 Fields describing (a) the control interval number of a Data or Index catalog
record associated with this cluster, or (b) the password information associated
with a data set are grouped into sets of fields. Pointers to each set of fields
identify the type of information contained in each set of fields.

Association Set 0/ Fields Format

The associations in this entry are ordered in the sense that each association
occurrence has a defined group occurrence sequence number; however, no
assumptions should be made as to the relative placement or physical position
of these associations in the path record.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 Control information.

2 (2) TYPE Record type which is pointed to by the
following control interval number.

3(3) 3 NAME Control interval number.

If this record describes a path over an alternate index, the association
ordering by record type is:

Record Type

G

D

D

Description

Alternate index (G) entry association with occurrence sequence
number = I.
Alternate index data (D) component association with occurrence
sequence number =2.

Alternate index index (I) component association with occurrence
sequence number = 3.

Base data (D) component association with occurrence sequence
number = 4.

Base index (I) component association with occurrence sequence
number = 5. This association exists only if the base cluster is a
key-sequenced data set.

Data Areas 50l:

If this record describes a path over a base cluster, the association ordering by
record type is:

Record Type

C

D

Password Set of Fields Format

Description

Base cluster (C) component association with occurrence sequence
number = 1.

Base data (D) component association with occurrence sequence
number = 2.

Base index (I) component association with occurrence sequence
number = 3. This association exists only if the base cluster is a
key-sequenced data set.

Password information, if any, is contained in the password set of fields. This
set of fields is associated with a pointer that contains a type (group) code of
4.

Offset

0(0)

2 (2)

34 (22)

42 (2A)

44 (2C)

52 (34)

Bytes and
Bit Pattern

2

32

8

2

8

VL

Field Name

PASSWORD

PASSPRMT

PASSATMP

USVRMDUL

USERAREC

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set
of fields.

Hexadecimal displacement to
the first variable-length field
from the beginning of this set of
fields.

Four eight-character passwords, in the
following order: MASTER, CONTROL
INTERVAL, UPDATE, and READ-ONLY.

Password prompting code name that allows
the operator to provide the correct password
without displaying the data set's DSNAME.

Maximum number of attempts allowed for
the operator to provide the correct password.

Name of user's security-verification module,
if any.

User-authorization record. This field can be a
maximum of 256 bytes long.

502 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Upgrade Catalog Record Format
The upgrade record describes all the alternate indexes that make up the
upgrade set. It is pointed to by an association in the base data component.

Bytes and
Offset Bit Pattern Field Name Description

0(0) Zeros.

I (I) 3 ENTIDNO Control interval number of this record.

4 (4) RELIND Release indicator:
O=Nonenhanced VSAM;
I =Enhanced VSAM

5 (5) 6 ·CRAVOL CRA volume serial number.

II (B) 3 CRAIDNO CRA control interval number.

14 (E) 4 CRADEVT CRA device type.

18 (12) 4 CRACRETS CRA creation timestamp.

22 (I6) 22 Zeros.

44 (2C) ENTYPE Record type-"Y."

45 (2D) 2 Record length.

47 (2F) Number of variable-length records that
precede the pointer to an extension record
(always 0).

The following 6-byte entry contains control information for the sets of fields that
follow it.

49 (31) 5

55 (37) VL

Pointer to the horizontal extension record. If
this record is not continued on an extension
record, this field contains zeros.

The number of set of fields pointers that
follow. l

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set -of -fields pointer is called the
ASPT-available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.

Byte Meaning

o Reserved.

1-2 Displacement of the set of fields
from the beginning of all sets of
fields in this record.

3 Bits 0 and I are set to zero. If bit
I is on, the set of fields
associated with this pointer has
been deleted; the type (group)
code in bits 2 through 7 of this
byte 4, however, are kept. Bits 2
through 7 contain a type (group)
code describing the set of fields
pointed to.

Data Areas 503

Upgrade Catalog Record Format

Offset
Bytes and
Bit Pattern

VL

Field Name Description

4 Sequence number of the set of
fields pointed to by code. For
example, all sets of fields
associated with a code of 2 are
in one sequence.

5-byte pointers to sets of fields contained in
vertical extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains
this set of fields.

3

4

Bits 0 and I are set to B'IO.' Bits
2 through 7 contain a type
(group) code that describes set
of fields pointed to.

Sequence number of the set of
fields pointed to, by type
(group) code. For example, all
sets of fields associated with a
code of 2 are in one sequence.

1 Fields describing (a) the control interval number of a Data or Index catalog
record associated with this cluster, or (b) the password information associated
with a data set are grouped into sets of fields. Pointers to each set of fields
identify the type of information contained in each set of fields.

Association Set of Fields Format

The associations in this entry are actually twin associations consisting of a
data association and index association.

Offset

0(0)

2 (2)

3 (3)

6 (6)

7 (7)

Bytes and
Bit Pattern

2

3

3

Field Name

TYPE

NAME

TYPE2

NAME2

Description

Control information.

"0", which indicates the following control
interval number is for the data component of
an alternate index in the upgrade set.

Control interval number of the alternate
index data component.

',),', which indicates the following control
interval number is for the index component
of an alternate index in the upgrade set.

Control interval number of the alternate
index index component.

These twin associations exist only in upgrade records (type "Y"), and the set
of twin associations in any given upgrade record entry is always unique.

504 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

~

NonVSAM Catalog Record Format
The Non VSAM record describes a data set organized differently from VSAM
data set organization.

Bytes and
Offset Bit Pattern Field Name Description

0(0) Zeros.

1(1) 3 ENTIDNO Control interval number of this record.

4 (4) RELIND Release indicator:
O=Nonenhanced VSAM;
I=Enhanced VSAM.

5 (5) 6 CRAVOL CRA volume serial. 1

11 (B) 3 CRAIDNO CRA control interval number.1

14 (E) 4 CRADEVT CRA device type. 1

18 (12) 4 CRACRETS CRA creation time stamp.

22 (16) 4 CRADITS Data/index identifier time stamp.

26 (\A) 18 Zeros.

44 (2C) ENTYPE Record type_uA."

45 (2D) 2 Record length.

47 (2F) Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

48 (30) Length of the fixed-length fields in this
record, excluding any fixed-length fields
following displacement 92 (5C). This value is
always equal to the displacement from the
beginning of the record to the pointer to an
extension record.

49 (31) 44 ENTNAME Name of the data set described by this
record.

93 (5D) 8 OWNERID Owner of the data set; specified when the
data set was defined.

101 (65) 3 DSETCRDT Date data set was created; in packed-decimal
form YDD.

104 (68) 3 DSETEXDT Date data set expires; in packed-decimal
form YDD.

The following 6-byte entry contains control information for the set of fields that follow
it.

107 (6B) 5

112 (70)

Pointer to horizontal extension record. If this
record is not continued on an extension
record, this field contains zeros. The
NonVSAM catalog record is usually not
extended.

The number of set-of-fields pointers that
follow.2

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT -available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy

Data Areas 505

NonVSAM Catalog Record Format

Offset

113 (71)

Bytes and
Bit Pattern

VL

VL

Field Name Description

set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.

Byte Meaning

o Reserved.

1-2 Displacement of the set of fields
from the beginning of all sets of
fields in this record.

3 Bits 0 and I are set to zero. If bit
1 is set on, the set of fields
associated with this pointer has
been deleted; the code in bits 2
through 7 and the sequence
number in byte 4, however, are
kept. Bits 2 through 7 contain a
value of 3, which indicates that
the set of fields pointed to
contains information about a
volume on which this data set
resides.

4 Sequence number of the set of
fields pointed to.

5-byte pointers to sets of fields contained in
vertical Extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains
this set of fields.

3 Bits 0 and I are set to B' 10'. Bits
2 through 7 contain a value of 3,
which indicates that the set of
fields pointed to contains
information about a volume on
which this data set resides.

4 Sequence number of the set of
fields pointed to.

1 Zeros if the catalog is not recoverable or if there is no associated eRA volume.

2 Fields describing the volumes on which a data set resides are grouped into sets of
fields. Pointers to each set of fields identify the type of information contained in
the set of fields.

506 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Volume Information Set of Fields Format

Each volume that contains space allocated to the nonVSAM data set is
described by a volume information set of fields. This set of fields is associated
with a pointer that contains a type (group) code of 3.

Offset

0(0)

2 (2)

6 (6)

12 (C)

14 (D)

Bytes and
Bit Pattern

2

4

6

2

1...

.. 1.

... x xxxx

User-Catalog Catalog Record Format

Field Name

DEVTYP

VOLSER

FILESEQ

VOLFLG

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

Device type.

Volume serial number.

File sequence number. (This field is provided
for compatibility with the OS/VS catalog,
and is used for nonVSAM data sets that
reside on tape volumes.)

Volume flags, as follows:

Prime, which indicates that this volume was
allocated when the by the data set described
by this record.
Overflow, which indicates that this volume is
being used by the data set, but this volume
was not allocated when the data set was
defined.
Reserved .

The User-Catalog record describes a user catalog.

Offset

0(0)

1 (1)

4 (4)

5 (5)

11 (B)

14 (E)

18 (12)

22 (16)

26 (1A)

44 (2C)

45 (2D)

47 (2F)

Bytes and
Bit Pattern

3

6

3

4

4

4

18

2

Field Name

ENTIDNO

RELIND

CRAVOL

CRAIDNO

CRADEVT

CRACRETS

CRADITS

ENTYPE

Description

Zeros.

Control interval number of this record.

Release indicator:
O=Nonenhanced VSAM;
1 =Enhanced VSAM.

CRA volume serial)

CRA control interval number)

CRA device type.1

CRA creation time stamp.

Data/index identifier timestamp.

Zeros.

Record type-"U."

Record length.

Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

Data Areas 507

User-Catalog Catalog Record Format

Offset

48 (30)

49 (31)

Bytes and
Bit Pattern

44

Field Name

ENTNAME

Description

Length of the fixed-length fields in this
record, excluding any fixed-length fields
following displacement 92 (5C). This value is
always equal to the displacement from the
beginning of the record to the pointer to an
extension record.

Name of the user catalog described by this
record.

The following 6-byte entry contains control information for the sets of fields that follow
it.

93 (50) 5

98 (62)

VL

Pointer to horizontal extension record. If this
record is not continued on an extension
record, this field contains zeros. The
user-catalog catalog record is usually not
extended.

The number of set-of-fields pointers that
follow.2

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT-available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.

Byte Meaning

o Reserved

1-2 Displacement of the set of fields from
the beginning of all sets of fields in
this record.

3 Bits 0 and 1 are set to zero. If bit 1 is
on, the set of fields associated with
this pointer has been deleted; the
code in bits 2 through 7 of this byte
and the sequence number in byte 4,
however, are kept. Bits 2 through 7
contain a value of 3, which indicates
that the set of fields pointed to
contains volume information.

4 Sequence number of the set of fields
pointed to.

··"~08 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

User-CatalOl CatalOl Record Format

Offset
Bytes aucI
Bit Pattem

VL

FIeld Name Description

5-byte pointers to sets of fields contained in
vertical Extension records.

Byte Meaning

0-2 Control interval number of the
extension record that contains this set
of fields.

3 Bits 0 and I are set to B'\O'. Bits 2
through 7 contain a value of 3, which
indicates that the set of fields pointed
to contains volume information.

4 Sequence number of the set of fields
pointed to.

I Zeros if the eatalog is not recoverable or if tltere is no associated eRA volume.

2 Fields describina the volumes on which the user eatalol resides are IIrouped into
sets of fields. Pointers to eac;h set of fields identify the type of information
contained in the set of fields.

Volume Information Set of Fields Format

Each volume that contains space allocated to the user catalog (and, therefore,
is owned by the user catalog is described by a volume information set of
fields. This set of fields is associated with a pointer that contains a type
(group) code of 3.

Offset

0(0)

2 (2)

6 (6)

12 (C)

14 (E)

Bytes and
Bit Pattem

2

4

6

2

I.

. I.

.. 1.

... x xxxx

field Name

DEVTYP

VOLSER

FILESEQ

VOLFLG

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields.
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields.

Device type.

Volume serial number.

File sequence number. (This field is provided
for compatibility with the OS/VS catalog.)

Volume flags, as follows:

Prime, which indicates that this volume was
allocated when the catalog was defined.
Candidate, which indicates that this volume
is available for use by the catalog.
Overflow, which indicates that this volume is
being used by the catalog. but this volume
was not allocated when the catalog was
defined.
Reserved .

Data Areas ~09

Volume Catalog Record Format
The Volume record describes VSAM data spaces, their extents, and the data
sets that reside in VSAM data spaces.

Offset

0(0)

1(1)

4 (4)

5 (5)

11 (B)

14 (E)

18 (I2)

22 (I6)

44 (2C)

45 (2D)

47 (2F)

48 (30)

49 (31)

93 (5D)

101 (65)

Bytes and
Bit Pattern

3

6

3

4

4

22

2

44

8

20

Field Name

ENTIDNO

RELIND

CRAVOL

CRAIDNO

CRADEVT

CRACRETS

ENTYPE

ENTNAME

VOLSTMP

VOLDVCHR

Description

Zeros.

Control interval number of this record.

Release indicator:
O=Nonenhanced VSAM;
I =Enhanced VSAM.

CRA volume serial.1

CRA control interval number.

CRA device type.1

CRA creation time stamp.

Zeros.

Record type-"V."

Record length.

Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

Length of the fixed-length fields in this
record, excluding any fixed-length fields
following displacement 126 (7E). This value
is always equal to the displacement from the
beginning of the record to the pointer to an
extension record.

Volume serial number, filled with binary
zeros on the right, of the volume described
by this record.

Volume time stamp, which indicates when
the first VSAM data space was defined on
this volume.

Device characteristics.

Byte Meaning

0-3 Volume device type.

4-7 Maximum device blocksize.

8-9 Number of cylinders on this volume.

10-11 Number of tracks per cylinder on this
volume.

12-13 Number of bytes per track on this
volume.

14 Number of bytes required for gaps
and check bits for each keyed block
other than the last block on a track
for this volume.2

15 Number of bytes required for gaps
and check bits for the last keyed
block on a track for this volume.2

16 Number of bytes to be subtracted for
a block that is not keyed.2

510 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Volume Catalog Record Fonnat

Offset

121 (79)

122 (7 A)

123 (7B)

Bytes and
Bit Pattern

4

Field Name

VOLRFLG

SYSEXTDS

Description

17 Flags. Bits 0 through 6 are reserved.
If bit 7 is set to I, use tolerance factor
on all blocks but the last to calculate
the effective length of a block.2

18-19 Tolerance factor to be used in
calculating the effective length of a
block.

Volume record flags.

Number of extents per suballocation-request
allowed by the OS/VS system.

Reserved

The following field names identify information that is not contained in the volume
catalog record; the information is derived from fields in the volume catalog record.

NODSPACE

NODSET

127 (7F) 5

131 (83)

132 (84) VL

Number of data spaces on the volume-a
count of the Data Space Group sets of fields.

Number of data sets on the volume-a count
of the Data Set Directory Entry sets of fields.
The following six-byte entry contains control
information for the sets of fields that
follow it.

Pointer to horizontal extension record. If this
record is not continued on an extension
record, this field contains zeros.

Number of set-of-fields pointers that follow. 3

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT -available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

6-byte pointers to sets of fields within the
record.

Byte Meaning

o Reserved.

1-2 Displacement of the set of fields from
the beginning of all sets of fields in
this record.

3 Bits 0 and I are set to zero. If bit 1 is
on, the set of fields associated with
this pointer has been deleted; the
code in bits 2 through 7 of this byte
and the sequence number in bytes 4
and 5, however, are kept. Bits 2
through 7 contain a code,4 describing
the set of fields pointed to.

4-5 Sequence number of the set of fields
pointed to.

Data Areas 511'

Volume Catalog Record Format

Offset
Bytes and
Bit Pattern

VL

Field Name Description

6-byte pointers to sets of fields contained
in vertical Extension records.

Byte Meaning

0-2 Control interval number of the
Extension record that contains this
set of fields.

3 Bits 0 and) are set to B'IO'. Bits 2
through 7 contain a code describing
the set of fields pointed to.

4-5 Sequence number of the set of fields
pointed to.

t Zeros if the catalog is not recoverable or if there is no associated eRA entry.

2 This value is used to calculate overhead bytes for keyed blocks to provide for
compatibility with the DEVTYPE macro instruction. Blocks used by VSAM are,
however, not keyed blocks.

3 Fields describing (a) the volume's track-allocated/unallocated status, (b) each
VSAM data space on the volume, and (c) each data set that resides in a VSAM
data space are grouped into sets of fields. Pointers to each set of fields identify
the type of information contained in each set of fields.

4 If the pointer is associated with track status (space map) information, the code is
5; with data-space information, the code is 6; with a data set directory entry, the
code is 8.

Space Map Set of Fields Format

The tracks on a VSAM volume are allocated to a VSAM object, or are
unallocated, as described by the Space Map set of fields. Each bit position
describes one track as allocated (bit = 0) or unallocated (bit = 1). This set of
fields is associated with a pointer that contains a type code of 5.

Offset

0(0)

2 (2)

Bytes and
Bit Pattern

2

VL

Field Name

BITMAP

Description

Control Information:

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields (X'O) ').

Hexadecimal displacement to the
variable-length field, from the
beginning of the set of fields (X'02').

Portion of the volume bit map (I to 440 bytes
describing the allocated or unallocated status
of I to 3520 tracks).

512 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Data Space Group Set of Fields Format
Each VSAM data space on the volume is described with a Data Space Group
set of fields. This set of fields is associated with a pointer that contains a type
code of 6.

Offset

0(0)

2 (2)

to (A)

IS (F)

16 (10)

17 (11)

20 (14)

23 (17)

Bytes and
Bit Pattern

2

8

5

1.

0

.1.

.... 1. ..

.. xx .xxx

to

II..

.. xx xxxx

3

64

Field Name

DSCBTS

DSCBPTR

SPHDFLG

NODSPEXT

DSPSOPT

DSPSSQ

SPEXTENT

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields (X'OO').
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields
(X'55').

Format-I DSCB time stamp, which indicates
when the DSCB was created. The time stamp
is part of the name given to the Format-I
DSCB.

CCHHR of the Format-I DSCB.

Data-space flags.

Unique data space, that is, this data space
contains all or part of only one VSAM
object.
Shared data space, that is, this data space
contains all or part of two or more VSAM
objects.
Automatically built data space, that is, this
data space was built during end-of-volume
processing.
This data space was built when the user
issued an Access Method Services DEFINE
CATALOG command.
Reserved .

Number of extents in this data space.

Data-space creation space options.

Track request, which indicates that primary
space allocation is specified in tracks.
Cylinder request, which indicates that
primary space allocation is specified in
cylinders.
Reserved

Secondary space allocation quantity by which
space is to be extended if required. This value
is taken either from an Access Method
Services DEFINE command or from the first
data set on this volume that caused space to
be used.

Sixteen 4-byte extent descriptors in the form
ITNN:

IT -starting track number of the extent
(relative to the beginning of the volume).
NN-number of tracks in the extent.

Data Areas 513

Derived Data Space Information

The following field names identify information that is expected, but not
contained in, the Data Space Group set of fields. The information is derived
from fields in the volume catalog record.

Offset
Bytes and
Bit Pattern

.. I.

... 1

2

Field Name

SPHDFLG

NODSDSP

Description

Data space flags:

A user catalog has extents within this data
space-each CAXW A associated with the
user contains the volume serial number of its
catalog.
A master catalog has extents within this data
space-the master catalog's volume is
identified by a Data Set Directory Entry set
of fields that contains a control interval value
of 002.

Number of data sets in the data space---'this
information is derived by searching each data
set and index catalog record (pointed to by
Data Set Directory Entry sets of fields and
Cluster catalog records) for a volume
information set of fields that contains the
volume's serial number. Each set of fields so
identified is searched to determine if the data
set or index has been allocated space in one
of the data space's extents.

The following field names refer to information about an extent of the data space:

2 TRKSUSED

4 EXTSTART

2 NOTRKEXT

2 SNSPHD

VL SPACEMAP

Number of allocated tracks in the
extent-the Space Map set of fields is
scanned to determine the number of
allocated tracks, based on the extent's
starting track number and total number of
tracks (contained in SPEXTENT).

Cylinder and track on which the extent
begins-the extent's IT value (contained in
SPEXTENT) is converted to a CCHH value.

Number of tracks in the extent-the extent's
NN value (contained in SPEXTENT).

Sequence number of the set of fields that
describes the extent's data space-the
sequence number of the Data Space Group
set of fields.

A variable-length space map that defines the
allocated and unallocated space in the
extent-the Space map set of fields is
converted to the format of this
variable-length field based on the extent's
starting track number and total length
(contained in SPEXTENT).

514 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

Dalll Set Directory Entry Set of Fields F017lUlt

Derived Data Set Information

Each data set that resides in a VSAM data space on the volume is described
with a Data Set Directory Entry set of fields. This set of fields is associated
with a pointer that contains a type code of 8.

Offset

0(0)

2 (2)

5(5)

9(9)

Bytes and
Bit Pattern

2

3

4

3

Field Name

DSIDNO

DSCRETS

DSSUMTT

Description

Control information.

Byte Meaning

o Count of the number of
variable-length fields in this set of
fields (X·OO').
Hexadecimal displacement to the
first variable-length field from the
beginning of this set of fields (X·05').

Control interval number of the Data or Index
catalog record that describes this data set or
index.

Data/index identifier creation timestamp.
Initialized by DEFINE and never altered.
Consists of the high-order 4 bytes of the
TOD clock value.

Sum of TT values converted from starting
CCHHs of all extents of this data set on this
volume.

The following field names identify information that is expected, but not
contained in, the Data Set Directory Entry set of fields. The information is
derived from fields in the volume catalog record.

Offset
Bytes and
Bit Pattern

1.

. xxx xxxx

VL

Field Name

MODSEXT

DSDIRFLG

DSSPSN

Description

Number of data set extents on this volume.

Flags:

The Data or Index catalog record identifies
the volume as a candidate volume-the Data
or Index catalog record was searched and its
volume information set of fields had zero
extents.

Reserved .

A variable-length collection of 3-byte fields
that identify each data space within which
the data set has extents allocated to it-this
information is obtained by converting each
volume information set of fields' extent
descriptor's (EXTENT) SS value (data space
extent's sequence number) so that the
resulting 3-byte field is:

Byte Meaning

0-1 Sequence number of the Data Space
Group set of fields.

2 Number of extents (groups of
contiguous tracks) assigned to the
data set or index from the data space
(limits: 1-255).

Data Areas 515

Extension Catalog Record Fonnat
The Extension record contains overflow information from another catalog
record.

Bytes and
Offset Bit Pattern Field Name Description

0(0) Zeros.

1(1) 3 ENTIDNO Control interval number of this record.

4(4) RELIND Release indicator:
o = Nonenhanced VSAM;
1 = Enhanced VSAM.

5(5) 6 CRAVOL CRA volume serial'!

11(8) 3 CRAIDNO CRA control interval number.

14(E) 4 CRADEVT CRA device tye.1

18(12) 4 CRACRETS CRA creation time stamp.

22(16) 22 Zeros.

44 (2C) ENTYPE Record type-a "w" if this Extension record
is an extension of a Volume record; an "E" if
this Extension record is an extension of any
other record.2

45 (20) 2 Record length.

47 (2F) Number of variable-length fields that precede
the pointer to an Extension record. Always
zero.

48 (30) Length of the fixed-length fields in the
header fields, excluding any fixed length
fields following displacement 48 (30). This
value is always equal to the displacement
from the beginning of the record to the
extension record's pointer.

The following 6-byte entry contains control information for the sets of fields that follow
it.

49 (31) 5

54 (36)

55 (7) VL

Pointer to horizontal Extension record. If
this record is not continued on an Extension
record, this field contains zeros.

The number of set-of-fields pointers that
follow. 3

Note: The first set-of-fields pointer contains
sequence number = 0 and type code = O.
When bytes 0 to 2 are nonzero, this
set-of-fields pointer points to the first
(vertical) extension record that contains free
space. The set-of-fields pointer is called the
ASPT-available-space pointer. When bytes
o to 2 are zero, the pointer is a dummy
set-of-fields pointer-not available to be used
to point to a set of fields.

5-byte pointers to sets of fields within the
record.4

Byte Meaning

o Reserved.

\-2 Displacement of the set of fields from
the beginning of all sets of fields in
this record.

516 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

L

Extension Catalog Record Format

Offset
Bytes and
Bit Pattern Field Name Description

3 Bits 0 and 1 are set to zero. If bit 1 is
on, the set of fields associated with
this pointer has been deleted; the
code in bits 2 through 7 of this byte
and the sequence number in byte 4,
however, are kept. Bits 2 through 7
contain a code describing the set of
fields pointed to.4

4 Sequence number of the set of fields
pointed to.

If the record type is "w," the sequence number length is two bytes. If the record type is
not "w," the sequence number length is one byte.

VL 5-byte pointers to sets of fields contained in
vertical Extension records.4

Byte Meaning

0-2 Control interval number of the
Extension record that contains this
set of fields.

3 Bits 0 and 1 are set to S'I 0'. Bits 2
through 7 contain a code that
describes the set of fields pointed to.4

4 Sequence number of the set of fields
pointed to by code. 4

If the record type is "w," the sequence number length is two bytes. If the record type is
not "w," the sequence number length is one byte.

1 Zeros if catalog is not recoverable or if there is no associated eRA volume.

2 The sets of fields that are contained in an Extension record depend upon the
kind of catalog record that is extended. The format of the remainder of an
Extension record is, therefore, variable. The sets of fields in an Extension record
will, however, follow the same pattern as they would in the base record.

3 Fields describing (a) the volumes on which a data set resides, and (b) the
password information associated with a data set are grouped into sets of fields.
Pointers to each set of fields identify the type of information contained in each
set of fields.

4 If the pointer is associated with volume information, the code is 3; or with
password information, the code is 4. Sets of fields with codes 1 and 2 are never in
an extension record.

Data Areas 517

CRA Free Record Format
The CRA Free record indicates that the control interval in which it resides is
free and points to the next control interval that is free because of deletion. J'
Note that the Free CRA record is used only to mark a record that was used
and has been deleted. The free space (control intervals) in the CRA that has
never been assigned is not represented by Free CRA records. Control
intervals 1, 4, 6, 7, and 8 in the CRA are marked as Free records; however,
their Free control interval chain field is zero.

Offset

0(0)

I (I)

4(4)

44(2C)

45(2D)

48(30)

CRA Data Record Format

Bytes and
Bit Pattern

3

40

3

457

Field Name Description

Reserved.

ENTIANO Control interval number of this record:
X'OOOOON' where N = I, 4, 6, 7, or 8.

Reserved.

ENTYPE Record type-"F."

Free control interval chain field

Reserved.

The CRA Data record describes the CRA data component of the CRA
cluster. The CRA Data record, which is record type "D", occupies control
interval 9 in the CRA.

Bytes and
Offset Bit Pattern Field Name Description

0(0) Zeros.

I(I) 3 ENTIDNO Control interval number of this record:
X '000000. ,

4(4) RELIND Release indicator:

o = Nonenhanced VSAM;
I = Enhanced VSAM.

5(5) 39 Zeros.

44(2C) ENTYPE Record type-"D."

45(2D) 2 Record length.

47(2F) Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

48(30) Length of nonrepeating, fixed-length fields.
Always X'8F.'

49(3 I) 44 ENTNAME Name of the catalog that owns this CRA
volume.

93(50) 8 OWNERID Initialized to all X'FF.'

101(65) 3 DSETCRDT Date CRA was created. In packed decimal
form YDD.

104(68) 3 DSETEXDT Expiration date. Initialized to X'O()()()()F.'

107(6B) ATTRI Data set attributes: X'OO.'

108(6C) ATTR2 Data set attributes: X' AO.'

109(6D) OPENIND Open indicator: X'OO.'

1I0(6E) 4 BUFSIZE Minimum buffer size: X'800.'

518 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

eRA Data Record Fonnat

Bytes and
Offset Bit Pattern

114(72) 3

117(75) 3

120(78)

121(79)

125(7D)

129(81)

133(85)

135(87)

4

4

4

2

8

Field Name

PRIMSPAC

SCONSPAC

SPACOPTN

HURBADS

HARBADS

LRECL

USERINFO

EXCPEXIT

Description

Primary space. Initialized to number of
tracks per cylinder.

Secondary space. Initialized to number of
tracks per cylinder.

Space option: X'80.'

High-used RBA.

High-allocated RBA.

Logical record size: X'IF9.'

DOS user information: X'OO.'

Exception exit: initialized to all X'FF.'

The following entries contain control information for repeating fields:

143(8F)

148(94)

149(95)

5

VL

AMDSB (Access Method Data Statistics Block) Set 0/ Fields
Format

Pointer to an extension record. Always zeros.

The number of set-of-field pointers that
follow.

Five-byte pointers to sets of fields.

The AMDSB set of fields contains a copy of the AMDSB control block that is
updated each time the eRA is closed. This set of fields is associated with a
pointer that contains a type (group) code of 1.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 Control information.

Byte Meaning

0 Count of number of
variable-length fields in this set of
fields.

Displacement (X'62') to the first
variable-length field from the
beginning of this set of fields.

2(2) 96 AMDSBCAT Copy of the AMDSB. See "Data Areas" for
detailed information about the AMDSB.

Association (Cluster) Set 0/ Fields Fonnat

There is one association in this entry, and it has a group occurrence sequence
number of 1.

8ytesand
Offset Bit Pattern Field Name Description

0(0) 2 Control information: X'OOO6.'

2(2) TYPE Record type-'C.'

3(3) 3 NAME Control interval number: X'OOOOO2.'

Data Areas S 19

Volume In/017lllltion Set 0/ Fields
There is one volume information set of fields in this entry. Its group
occurrence sequence number is 1, and it resides in control interval number 5.

CRA Cluster Record Format
This record describes the eRA cluster. It is record type "e," and it occupies
control interval 2 in the eRA.

Offset

0(0)

1(1)

4(4)

5(5)

44(2C)

45(20)

47(2F)

48(30)

49(31)

93(50)

101(65)

104(68)

107(6B)

Bytes and
Bit Pattern

3

39

2

44

8

3

3

Field Name

ENTlDND

RELIND

ENTYPE

ENTNAME

OWNERID

DSETCRDT

DSETEXDT

CATTR

Description

Zeros.

Control interval number of this record:
X'()()()()()2. '

Release indicator:
o = Nonenhanced VSAM;
1 = Enhanced VSAM.

Zeros.

Record type-'C.'

Record length.

Number of variable-length fields that precede
the pointer to an extension record. Always
zero.

Length of nonrepeating fixed-length fields:
X'6C.'

Name of the catalog that owns this CRA
volume.

Initialized to all X'FF.'

Date CRA was created. In packed-decimal
formYDD.

Expiration date. Initialized to X'OOOOOF.'

Cluster attributes: X'OO.'

The following entries contain control information for repeating fields.

108(6C)

113(71)

114(72)

5

VL

A.ssociation (Data) Set 0/ Fields F017llllt

Pointer to an extension record. Always X'OO.'

The number of set of field pointers that
follow.

Five-byte pointers to sets of fields.

There is one association in this entry, and its group occurrence sequence number is 1.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 Control information: X'OOO6.'

2(2) TYPE Record type -"D."

3(3) 3 NAME Control interval number: X'OOOOOO.'

520 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

CRA Catalog Control Record Format
The catalog control record is used to manage eRA control interval allocation.
It is record type "L," and it occupies control interval 3 in the eRA.

Bytes and
Offset Bit Pattern

0(0)

1(1) 3

4(4)

5(5) 39

44(2C)

45(20) 3

48(30) 3

51(33) 3

54(36) 3

57(39) 4

61(30) 4

65(41) 4

69(45) 436

CRA Data Extension Record Format

Field Name

ENTIDNO

RELINO

ENTYPE

Description

Zeros.

Control interval number of this record:
X'OOOOO3.'

Release indicator:
o = Nonenhanced VSAM.
1 = Enhanced VSAM.

Zeros.

Record type-"L."

Number of the highest control interval within
the current extents.

Number of the next free control interval that
has not been previously assigned.

Number of deleted control intervals.

First deleted control interval in a chain of
control intervals that are free because of
deletion.

Reserved.

CRA data high-used RBA.

CRA data high-allocated RBA.

Reserved.

The Data Extension record is the extension of the eRA Data Record in
control interval 0 of the CRA. The Data Extension record is record type "E,"
and it occupies control intervalS in the CRA.

Bytes and
Offset Bit Pattern

0(0)

1(1) 3

4(4)

5(5) 39

44(2C)

45(20) 2

47(2F)

48(30)

Field Name

ENTIDNO

RELINO

ENTYPE

Description

Zeros.

Control interval number of this record:
X'OOOOO5.'

Release indicator:
o = Nonenhanced VSAM;
1 = Enhanced VSAM.

Zeros.

Record Type-"E."

Record length.

Number of variable length field that precede
the pointer to an extension record. Always
zero.

Length of non-repeating fixed length fields:
X'6C'

The following entries contain control information for repeating fields:

49(31) 5 Pointer to an extension record. Always zeros.

Data Areas 521

CRA Data Extension Record Format

Offset

54(36)

55(37)

Bytes and
Bit Pattern

VL

Volume Infonnation Set of Fields Fonnat

Field Name Description

The number of sets-of-fields pointers that
follows.

5-byte pointers to sets of fields within the
record.

There is one volume information set of fields in this entry, and its group
occurrence sequence number is 1.

Offset

0(0)

2(2)

6(6)

12(C)

14(E)

15(F)

Bytes and
Bit Pattern

2

4

6

2

16(10) 4

20(14) 4

24(18) 4

28(1 C) 4

32(20) 2

34(22) 2

36(24)

37(25) 2

39(27) 2

41(29) 2

43(2B) 2

45(2D) VL

Field Name

DEVTYP

VOLSER

FILESEQ

VOLFLG

NOEXTNT

HKRBA

HURBA

HARBA

PHYBLKSZ

NOBLKTRK

NOTRKAU

ITYPEXT

DSDlRSN

LOKEYV

HIKEYV

EXTENT

Description

Control information: X'0327.'

Device type.

Volume serial number.

File sequence number.

Volume flags: X'80.'

Number of extents.

High-key RBA.

High-used RBA.

High-allocated RBA.

Block size: X'200.'

Number of blocks per track.

Number of tracks per allocation unit.
Initialized to number of tracks per cylinder.

Type-of-extent indicator.

Data set directory sequence number.

Low key value on volume.

High key value on volume.

Length of extent information

20-byte extent descriptors.

522 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Field-Name Dictionary
The field-name dictionary is an internal data area that provides a map
between field names and fields within catalog records, as well as information
that is not within catalog records. The dictionary also allows the dictionary
user to specify values (for example, the number of sets of fields to be
processed) by associating them with a dictionary name. A field name is
specified in a CTGFL (field parameter list); for a description of the CTGFL,
see "Data Areas." The catalog-management modules reference the field-name
dictionary for the location, length, and type of fields.

The field-name dictionary is a series of 8-byte entries. In addition, there is an
index of combination field names. Each combination field name allows
catalog management to locate more than one field at a time.

The field-name dictionary is located in module IGGOCLA Y.

Bytes and
Offset Bit Pattern

0 4

4

000

001.
010

100

110

OIl.
111.
... 0

... 1

.... J...

.... 0 ...

.... . 1..

.... . 0 ..

.... .. 1.

.... .. 0 .

.... ... x

5

Description

Shortened field name: the first, second, fifth, and sixth
characters of the eight-character field name.

Flags that describe the field:

The field is fixed-length and appears in the header portion
of a record (before the Extension record pointer).
A combination field name. 1

The field is fixed-length and is part of a set of fields that
follows the Extension record pointer.
The field is variable-length and appears in the header
portion of a record (before the Extension record pointer).
The field is variable-length and is part of a set of fields
that follows the Extension record pointer.
Special field2

Special field2

Not a flag field~ which means that a CLC (compare logical
character) instruction can be used to test this field.
Flag field, which means that a TM (test under mask)
instruction can be used to test this field.
A fixed-length field within a variable-length field in a set
of fields.
Not a fixed-length field within a variable-length field in a
set of fields.
CRA updates are to be suppressed .
CRA updates are not suppressed .
This field must be retrieved from the upgrade set.
This field has no special retrieval characteristics .
Reserved

Bytes that identify the location of the field:

Type of
Field Name:

Fixed-length:

In the header:

In a set of
fields:

In a group of
fixed-length
fields within
a variable-length
field:

Variable-length:

Contents of
This Byte:

Displacement in bytes from the

Beginning of the record.

Beginning of the set of fields.

Length of the group of
fixed-length fields.

Zero.

Data Areas 523

Combination Field Names

Field-Name Dictionary

Offset

6

7

Bytes and
Bit Pattern Description

Combination: Index value in the
combination-name index.

Bytes that identify the location of the field (continued):

Type of
Field Name:

Fixed-length:

Variable-length:

Combination:

Contents of
This Byte:

Length of the field (in bytes).

Sequence number of the field.

Number of fields identified by
the combination name.

A code that indicates which group of data (the kind of
catalog record and the set of fields) this field is in.

Type Code:

o
I
2
3
4
5
6
7
8

Description:

Header field
AMDSB
Association
Volume information
Password
Space map 3

Data space group 3

Reserved
Data set directory3

t "Combination field name" indicates that the name supplied is a name that allows
catalog management to locate a group of related fields.

2 The field-name dictionary permits catalog management to locate information
that is not contained in catalog records.

3 This set of fields is contained only in a Volume catalog record.

Bytes 4 through 7 of the field-name dictionary record describe the field.
When a caller specifies catalog information with an CTGFL, dictionary
information is moved into the CTGFL.

To clarify the use of the dictionary as a means of gaining access to catalog
information, refer to the examples that follow.

A combination field name identifies a group of related fields. When a catalog
management user requires information from many catalog record fields (for
example, all fields in a set of fields), the user builds a CTGFL that contains a
combination field name. The combination field name in the CTGFL identifies
an entry in the field name dictionary (in module IGGOCLAY). The entry
identifies the field name as a combination field name, specifies the number of
fields contained in the combination, and points to the starting point for the
combination in the combination field name index. The combination field
name index contains a group of I-byte entries. Each entry points to an entry
in the field name dictionary, as shown in Figure 60, Resolution of a
Combination Field Name. The entry in the field name dictionary describes
one of the fields identified by the combination.

524 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

F ld N Ie arne
Dictionary --/ tCombination Number of

Index

Field I

/ \.
(Combination)

Field 2 tField 2

Field 3 tField 3

Field 4 tField 4

Fields

- iL
'\

..........-

J
E xtent

~o f the
ombination C

Figure 60. Resolution of a Combination Field Name

Field Name Dictionary Entries

This section lists the field name dictionary entries in alphabetic order.
IGGOCLA Y lists the field name dictionary entries in alphabetic order, too,
but that list is ordered by abbreviated field name. The field's name, length,
location, and description are listed here.

The length is a number of bytes. If the field is variable-length, the code 'VL'
is used. If the name is a combination name, the length might be indeterminate.
The field's length (Len) is:

- 'n' -a number of bytes.

- 'VL'-indeterminate, because the field is a variable-length field.

- '-'-indeterminate, because the combination-name group of fields
includes one or more variable-length fields.

The field's location is coded as follows:

Code

AMDSB

Assoc

Combin

Header

Password

Special

Vol Info

Vol-Dir

Vol-DSG

Vol-SM

Notes:

Location description

The AMDSB set of fields

The association set of fields

A combination field name

The catalog record's header fields. Note: some header fields appear in
all catalog records; other header fields appear only in one (or more)
type of catalog record.

The password set of fields

A piece of information that is derived from information in catalog
record fields or catalog control blocks, but is not stored in a catalog
record

The volume information set of fields

The data set directory entry set of fields in the volume catalog record

The data space group set of fields in the volume catalog record

The space map set of fields in the volume catalog record

• The list of field names following each combination name in this section is
ordered alphanumerically. See module listing IGGOCLA Y for the actual
order of the combination's field names.

Data Areas 525

• Each variable-length field contains two bytes of control information
followed by a number of data bytes. The 2-byte control information
specifies the total length of the field (the number of data bytes).

Field J Name Len Location Description

AMDCIREC 8 AMDSB AMDSB control-interval size and maximum
logical record size (Show Catalog support)

AMDKEY 4 AMDSB AMDSB relative key position and key length
(Show Catalog support)

AMDSBCAT 96 AMDSB Copy of the AMDSB control block

AMDSBSC 12 Combin AMDSB fields for Show Catalog

Includes fields: AMDCIREC, AMOKEY

AMDSBI 6 AMDSB Part of AMDSB

AMDSB2 \0 AMDSB Part of AMDSB

AMDSB3 68 AMDSB Part of AMDSB

ASSOCSC 8 Combin Twin associations for Show Catalog support

ATTRI Header Data set attributes

ATTR2 Header Data set attributes

BITMAP VL Vol-SM Volume space map showing the allocated and
unallocated tracks on a direct-access volume

BUFSIZE 4 Header Minimum buffer size

CATACB 4 Special Address of the catalog's ACB control block

CATTR Header Cluster attributes

CATVOL 15 Combin Volume information set of fields for a
nonVSAM data set's catalog record

Includes fields: DEVTYP, FILESER,
RELREPNO, VOLFLG, VOLSER

CNTREPNO 2 Special Maximum number of RELREPNOs to be
processed

CRACRETS 4 Header CRA creation timestamp

CRADEVT 4 Header CRA device type

CRADIRCT 12 Comb in Data set directory fields for Catalog Recovery

Includes fields: DSCRETS, DSIDNO,
DSSUMTT, RELREPNO

CRADITS 4 Header Data/index identifier creation timestamp

CRAIDNO 3 Header CRA control interval number

CRAVOL 6 Header CRA volume serial

DATASPAC 85 Combin Data space group set of fields

Includes fields: DSCBPTR, DSCBTS,
DSPSOPT, DSPSSQ, NODSPEXT,
SPEXTENT,SPHDFLG,RELREPNO

DEVTYP 4 Vol Info Device type

DEXTENTS 68 Combin All fields in the data space group set of fields
required by Suballocate processing

Includes fields: NODSPEXT, SPEXTENT,
SPHDFLG,RELREPNO

DIRECTRY 5 Combin Data set directory entry set of fields

J IrvJudes fields: DSIDNO, RELREPNO

526 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

•

Field Name Dictionary Entries

Field
Name Len Location Description

DSATRO 3 Combin All data set attributes flags fields

Includes fields: ATTRI, ATTR2, OPENIND

DSATTR 2 Combin All data set attributes flags fields, except the
open indicator

Includes fields: ATTRI, ATTR2, OPENIND

DSCBPTR 5 Vol-DSG TTR of the DSCB that describes the data space
in the volume's VTOC

DSCBTS 8 Vol-DSG Data space timestamp

DSCBTTR 3 Vol Info TTR of the format 1 (identifier) DSCB that
describes the space allocated to a nonVSAM
data set

DSCRETS 4 Vol-Dir Data/index identifier timestamp

DSDIRECT Combin Data set directory entry set of fields, including
some of the related derived fields

Length: 7 + I'DSSPSN

Includes fields: DSDIRFLG, DSIDNO,
DSSPSN, NODSEXT, RELREPNO

DSDIRFLG Special Data set directory flags (derived)

DSDIRSN 2 Vol Info Data set directory sequence number in the
volume informationset of field's extent
descriptor

DSETCRDT 3 Header Data set creation date

DSETEXDT 3 Header Data set expiration date

DSIDNO 3 Vol-Dir Control interval number of the data set directory
entry's object's catalog record

DSPDSCRP 13 Combin Space descriptor set of fields (a group of derived
fields)

Includes fields: EXTSTART, NOTRKEXT,
RELREPNO, SNSPHD, SPACEMAP,
TRKSUSED

DSPSOPT Vol-DSG Space options for a data space

DSPSSQ 3 Vol-DSG Secondary data space quantity

DSSPSN VL Special Data space sequence numbers for the data set
directory entry set of fields (derived)

DSTYPNAM 4 Combin Catalog record type and dsname

Includes fields: ENTIDNO, ENTYPE

DSSUMTT 3 Vol-Dir Sum of starting tracks of all extents of data set
on this volume

ENTASSOC 8 Combin Association set of fields

Includes fields: NAME, RELREPNO, TYPE

ENTIDNO 3 Header Control interval number of the catalog record

ENTNAME 44 Header Dsname in the catalog record

ENTUPGD 22 Combin Combination for associations in the upgrade set

Includes fields: NAME, NAME2, RELREPNO,
TYPE, TYPE2

ENTVOL 37 Combin Volume information set of fields

Data Areas 527

Field Name Dictionary Entries

Field
Name Len Location Description

Includes fields: DEVTYP, FILESEQ, HARBA, J
HKRBA, HURBA, ITYPEXT, NOBLKTRK,
NOEXTNT, NOTRKAU, PHYBLKSZ,
VOLFLG, VOLSER, RELREPNO, DSDIRSN,
EXTENT,HIKEYV, LOKEYV

ENTYPE Header Catalog record type identifier

EXCPEXIT 8 Header Exception exit

EXTENT VL Vol Info Extent descriptors

EXTSTART 4 Special Starting point in the list of data space extents in
the data space group set of fields (derived)

EXTVOL Combin Volume information set of field's fields required
for VSAM End of Volume processing

Length: 7 + I'EXTENT

Includes fields: DEVTYP, EXTENT, ITYPEXT,
RELPERNO

FILESEQ 2 Vol Info File sequence number for a nonVSAM data set

Includes fields: NAME, TYPE

GENDSP 44 Special Generated data space dsname

HARBA 4 Vol Info High-allocated RBA on the volume for the data
set

HARBADS 4 Header High-allocated RBA for the data set (not always
the same as HARBA if the data set resides on
several volumes)

HlKEYV 2 Vol Info Key-sequenced data set's high key value on a
volume or, if the data set is divided into key J
ranges, the key range's high key value

HKRBA 4 Vol Info RBA of the record containing the high key of a
key-sequenced data set on a volume or, if the
data set is divided into key ranges, the key
range's high key value

HKURBA 8 Combin Data set's high-key and high-used RBAs

Includes fields: HKRBA, HURBA

HURBA 4 Vol Info High-used RBA on the volume for the data set

HURBADS 4 Header High-used RBA for the data set (not always the
same as HURBA if the data set resides on
several volumes)

ITYPEXT Vol Info Type of extent indicator

LOKEYV VL Vol Info Key-sequenced data set's low-key value on a
volume or, if the data set is divided into key
ranges, in the key range

LRECL 4 Header Average logical record size

MAPSPACE Combin Volume catalog record's space map set of fields

Length: 2 + i'BITMAP

Includes fields: BITMAP, RELREPNO

NAME 3 Assoc Control interval number

NAME2 3 Assoc. Control interval number of index in twin
association of upgrade set

NAMEDS 4 Combin Association set of fields

528 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Field Name Dictionary Entries

Field
Name Len Location Description

Includes fields: NAME, TYPE

NOBLKTRK 2 Vol Info Number of blocks per track

NOBYTTRK 4 Vol Info Number of bytes per track

NODSDSP 2 Special Number of data sets in a data space (derived)

NODSET 2 Special Number of data sets on a volume (derived)

NODSEXT Special Number of data set directory extents (derived)

NODSPACE 2 Header Number of data spaces on a volume (derived)

NODSPEXT Vol-DSG Number of data space extents

NOEXTNT Vol Info Number of volume information set of field's
extents

NONVOL 16 Comhin NonVSAM data set's volume information set of
fields

Includes fields: DEVTYP, DSCBTTR,
FILESEQ, RELREPNO, VOLFLG, VOLSER

NOTRKAU 2 Vol Info Number of tracks per allocation unit

NOTRKEXT 2 Special Number of tracks in a data space's extent
(derived)

OPENCNT Header Open count

OPENC2 61 Combin Catalog fields required by OPEN

Includes fields: BUFS!ZE, ENTNAME,
EXCPEXIT, HURBADS, SPACOPTN

~
OPENIND Header Open indicator

OPNCALLI 53 Combin All header fields required by VSAM Open
processing

Includes fields: BUFSIZE, ENTNAME,
HURBADS, SPACOPTN

OWNERID 8 Header Owner identification number

PASSATMP 2 Password Number of attempts the operator has to supply
the correct password

PASSPRMT 8 Password Data set's prompting name (codename) for
security verification

PASSWALL Combin Password set of fields

Length: 50 + I'USERAREC

Includes fields: PASSATMP, PASSPRMT,
PASSWORD, USERAREC, USVRMDUL

PASSWORD 32 Password All (4) 8-byte passwords

PHYBLKSZ 4 Vol Info Physical blocksize

PRIMSPAC 3 Header Primary space allocation amount

RELCRA 14 Combin Release indicator and CRA header fields

Includes fields: CRADEVT, CRAIDNO,
CRA VOL, RELIND

RELIND Header Release indicator

RELREPNO 2 Special Relative repetition number

~
REPNO 2 Special Highest nondeleted sequence number

RGATTR Header Path/alternate index indicator

Data Areas 529

Field Name Dicdonary Entries

Field
Name Len Location Description

J SCONSPAC 3 Header Secondary space allocation amount requirement

SLOCVOL 19 Combin Fields required by Superlocate

Includes fields: DEVTYP, DSCBTTR,
FILESEQ, ITYPEXT, RELREPNO, VOLFLG,
VOLSER

SNSPHD 2 Special Data space sequence number for a data space
(derived)

SPACEHDR 23 Combin Data space group set of fields

Includes fields: DSCBPTR, DSCBTS,
DSPSOPT, DSPSSQ, NODSDSP, NODSPEXT,
RELREPNO, SPHDFLG

SPACEMAP Special Data space run length codes (derived)

SPACOPTN Header Space options

SPACPARM 7 Combin Space allocation quantities and options

Includes fields: PRIMSPAC, SPACOPTN,
SCONSPAC

SPEXTENT 64 Vol-DSG Data space extent descriptors

SPHDFLG Vol-DSG Data space flag (partially derived)

SYSEXTDS Header Number of extents allowed per
suballocation-in the volume catalog record

TOENTVOL 43 Combin Track overflow entire volume

Includes fields: DEVTYP, DSDIRSN,
EXTENT, FILESEQ, HARBA, HIKEYV,
HKRBA, HURBA, ITYPEXT, LOKEY,
NOBLKTRK, NOBYTAU, NOBYTTRK,
NOEXTNT, NOTRKAU, PHYBLKSZ,
RELREPNO,VOLFLG,VOLSER

TRBAEXT 3 Vol Info Test RBA for EOV mount by RBA

TRKSUSED 2 Special Tracks used in the data space (derived)

TYPE Assoc Association entry type

TYPE2 Assoc Entry type for second qame of a twin association
in the upgrade set

UPDVOL Combin Volume information set of fields for
UPDATE-Extend processing

Length: 43 + I'HIKEYV + I'LOKEYV

Includes fields: DEVTYP, DSDIRSN,
FlLESEQ, HARBA, HIKEYV, HKRBA,
HURBA, ITYPEXT, LOKEYV, NOBLKTRK,
NOEXTNT, NOTRKAU, PHYBLKSZ,
RELREPNO,VOLFLG,VOLSER

UPGRADE 8 Combin Fields for a twin association in the upgrade set

Includes fields: TYPE, NAME, TYPE2, NAME2

USERAREC VL Password Additional security verification data

USVRMDUL 8 Password USVR (user security verification routine)
module name

VOLDEV 12 Combin Volume information set of fields required by
VSAM Open processing

530 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Dictionary Example 1

Dictionary Example 2

Field Name Dictionary Entries

Field
Name

VOLDVCHR

VOLEXT

VOLFLG

VOLPHY

VOLRFLG

VOLSER

VOLTSTMP

Len

20

6

8

Location

Header

Combin

Vol Info

Combin

Header

Vol Info

Header

Description

Includes fields: DEVTYP, NOBLKTRK,
NOTRKAU,PHYBLKSZ

Device characteristics-in the volume catalog
record

Volume information set of fields

Length: 10 + I'EXTENT

Includes fields: DSDIRSN, EXTENT,
RELREPNO, VOLSER

Volume information flags

Volume information set of fields required by
VSAM Open processing

Length: 23 + I'EXTENT + I'HlKEYV +
I'LOKEYV

Includes fields: EXTENT, HARBA, HlKEYV,
HKRBA, HURBA, ITYPEXT, LOKEYV,
NOEXTNT,RELREPNO,VOLFLG,VOLSER

Volume catalog record flags

Volume serial number

Volume catalog record timestamp

The DSETCRDT (data set creation date) field appears in the dictionary, as
follows:

DSETCRDT,O,101,3,O

The first ° is the fourth byte value of the record; it indicates that
DSETCRDT is (a) a fixed-length field, (b) not part of a set of fields, and (c)
not a flag field.

The 101 (decimal) is the fifth-byte value of the record; it indicates, when
converted to hexadecimal, that DSETCRDT is at displacement X'65' from
the beginning of the record in which it appears.

The 3 is the sixth-byte value of the record; it indicates that DSETCRDT is
three bytes long.

The last ° is the seventh-byte value of the record; it is zero because
DSETCRDT is not part of a set of fields and, therefore, is not associated with
a set of fields code.

The DSPSOPT (data-space-creation space options) field appears in the
dictionary, as follows:

DSPSOPT,80,19,1,6

The 80 (X'50') is the fourth-byte value of the record; it indicates, when
converted to binary, that DSPSOPT is (a) a fixed-length field that is part of a
set of fields, (b) a flag field, and (c) not a repeating field within a
variable-length field.

Data Areas 531

The 19 is the fifth-byte value of the record; it indicates, when converted to
hexadecimal, that DSPSOPT is at displacement 13 from the beginning of the
set of fields to which it belongs.

The 1 is the sixth-byte value of the record; it indicates that DSPSOPT is 1
byte long.

The 6 is the seventh-byte value of the record; it indicates that DSPSOPT is
part of a set of fields associated with a code of 6, which means that it is part
of a set of fields that contains VSAM data-space information.

Control Block Interrelationships
Figures 61 and 62 show the VSAM control blocks built when a
key-sequenced data set is opened.

The role of the BIB and CMB in virtual-storage management is described in
"Virtual-Storage Management" in "Diagnostic Aids."

User's Record
Management Request

,GET, PUT, POINT, or ERASE

User-Supplied
Control Blocks

I

------------ ------r.----------------
Built by VSAM Open VSAM User Rl

tRPL J CMB

04 I VMTs

RPLs BIB

@---? Lr
r--

Describes
the VSAM r-

ACB tVMT Record r- ::::
Processing

-~ Request Describes
!the VSAM

I r---; 'DataSet AMBL

I --" tData AMB
J ~ tAMBL Data tIndex AMB

Control

tRecord tCMB 1----0. Block

Management I Structure
EXL~T tBIB h Load Module I

t Active I
User Exit tEXLST I Record Index
Routines

I Management

~
Control

"7' Program Block
I Load Module Structure

I
B

-----------------~------------------
Note: The data control block structure is shown in Figure 66. The index control block structure is shown in Figure 68.

Figure 61. VSAM Control Block Structure for a Key-Sequenced Data Set (VSAM User)

532 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Built by
ISAM-User's Program

Rl

tOCB I
DCB 1 I

I rl tOEB L
r

- _____J

DEB

~ tOCB

tIlCB

tlSAM

~ Interface ---..,
Routine

DECB

tOEB

Built by
ISAM-Interface Open

ACB

~ tAMBL

tRecord
Management
Load Module

tEXLST r---,

IlCB

'-- tACB

'----
tOCB

~ tRPL

RPL/RPLE

~ tIlCB

IDECB

ISAM-Interface
Routines

J

~ I
L

I

Built by VSAM Open

AMBL

~ tData AMB
...,

I
, Data

tlndex AMB ----...... Control

I
Block

tCMB ~
Structure

I tHlB,

I
I Index

I Record ~ Control
Block

Management Structure

I Program
Load Module

I CMB L _____
-,'--.:)

EXLST

t LERAD

ISYNAD BIB

tEODAD ~
tVMT

r-

VMTs

~
r-

I

Note: The data control block structure is shown in Figure 66.
The index control block structure is shown in Figure 68.

Figure 62. VSAM Control Block Structure for a Key-Sequenced Data Set (ISAM User)

Figure 63 shows how a VSAM cluster (OURDAT A) is shared between two
subtasks (User#l and User#2). When the cluster is opened by User#l, VSAM
control blocks are built to describe the cluster to VSAM routines. When the
cluster is opened by User#2, an AMBL is built to link User#2's ACB to the
cluster's VSAM control blocks. When either subtask closes the cluster, the
subtask's AMBL is deleted. When the last subtask that is sharing the cluster
closes it, the VSAM control blocks that describe the cluster to the VSAM
routines are deleted.

Data Areas 533

CMB

BIB

tVMT

ACB (User #1) AMBL

" t Data AMB DDNAME=
OURDATA

t Index AMB

DDNAME =
OUR DATA

tCMB ~
tBJB ~

After: Data Set "OURDATA" Shared and Processed
by User #1 and User #2

ACB (User #1) AMBL

--'" t Data AMB DDNAME = "
OUR DATA / t Index AMB --.,

DDNAME=
OURDATA

".-
t Secondary

AMBL

Primary AMBL
Flag On = 1

tCMB

t BIB

ACB (User #2) AMBL

....
DDNAME = " t Data AMB

OURDATA
t Index AMB

DDNAME =
OURDATA

t Primary
AMBL

'--- Primary AMBL
Flag Off = 0

tCMB

t BIB

.... Data Control Block ,
Structure

Index Control Block
" Structure

....
" Data Control Block

"
Structure

" Index Control Block

"
Structure

"

CMB

"

"

BIB

~
~ tVMT

VMTs

~ -

I

Note: The data control block structure is shown in Figure 66. The index control block structure is shown in Figure 68.

Figure 63. VSAM Data Set Control Blocks Before and After Data Set Sharing

534 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

J

L

Figure 64 shows the VSAM control blocks built when a key-sequenced data
set (KSDS1) is opened for access through a path (PATHl). The path
alternate index (AIXl) and a second alternate index (AIX2) are members of
the upgrade set for KSDS 1.

Figure 65 shows the sharing of VSAM control blocks when the
key-sequenced data set (KSDS1) shown in Figure 64 is opened for access
through a path (PATH2) with the second alternate index (AIX2). AMBLs
are built to link User #2's ACB to AIX2 and KSDSI. When either user closes
his path, his AMBLs are deleted.

Data Areas 535

JSCB

tVAT

Base AMBL (KSDSI)

~ t Data AMB

t Index AMB

ID for KSDSI

tCMB

t BIB

-r-- t Path AMBL

Primary AMBL
Flag On = I

ACB (User # I)

,... DSNAME =
PATHI

Path AMBL (AIX I)

~ tData AMB

t Index AMB

ID for AIXI

tCMB

t BIB

'-- t Base AMBL

Primary AMBL
Flag On = I

VATs

~
t Primary

AMBL

J
Chain

I

KSDSI
Control Blocks
1---------, BIB

I------ I Base Data p
~ 1 Control Block I

1
Structure I tVMT

I-----

~ I tUPT -------
Index Control Block I

I Structure
1 UPT ,1/ I I

I CMB I
I

1 t RPL (AIXI)

1 1 t RPL (AIX2) I I L ______ --l

AIXI
Control Blocks
I------~ Upgrade AMBL (AIXl)

I... Alternate-Index " t Data AMB ~
I' ~I Data Control

L4
Block Structure I tlndex AMB

I ID for AIXI
Index £..

Control Block I r--- tCMB
1 Structure

1 I - hlB

1
CMB I

....

~
Upgrade AMBL

I
Flag On = I

I I
L ______ ~

AIX2
Control Blocks
r - - - - - - -, Upgrade AMBL (AIX2)

I Alternate-Index IE"",,'II---H t Data AMB iE1
I Data Control ~I

Block Structure t Index AMB

: Index ~ : r
I Control Block M-'I
I Structure

I CMB :

1 fi-L ______ -.J

ID for AIX2

r--r- tCMB

'- t BIB

Upgrade AMBL
Flan On = I

--
S;

VMTs

-

I

RPL

ACB

RPL

ACB

Note: The base data control block structure is shown in Figure 66. The alternate-index data control block structure is shown in
Figure 67. The index control block structure is shown in Figure 68.

Figure 64. VSAM Control Block Structure for a Key-Sequenced Data Set Accessed through a Path

536 OS/V',2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Base AMBL (KSDS I)

.; t Data AMB
~ JSCB

t Index AMB

r- tVAT
ID for KSDSI

tCMB

t BIB
VAT

~ t Secondary t Primary ,.--
AMBL AMBL

Chain ,.... t Path AMBL

Primary AMBL
Flag On ; I

ACB (User'" I)
Path AMBL (AIX I)

DSNAME; ~ t Data AMB
PATH I '"

t Index AMB

ID for AIXI

tCMIl

t BIB

t Base AMBL

Primary AMBL
Flag On = I

Base AMBL (KSDSI)

~ t Dala AMB
--

t Index AMB

ID for KSDSI

tCMB

t BIB

'--
t Primary

AMBL

r- t Path AMBL

Primary AMBL
I-lag Off; 0

ACB (Uscr =2)

Path AMBL (AIX21
DSNAME = C t Data AMB PATH 2

t Index AMB

10 for AIX2

tCMB

t BIB

t Base AMBL

Primary AMBL
Flag On = 1

It.
f--.

II.
f--.

r.

~

KSDS I
COl1trol Blocks
,--------
I
I~

Base Data

I'
Con trol Block
Structure

1
1

I
r-H Index

Control Block
I Structure

I
I CMB

ri4
I ---------
AIXI
('on trol Blocks ,-------
I
!/ Alternate-Index

Data Control I Block Stru..:lure
I
I
I
I

Index
Conlrol Blo..:k

I Slru..:ture
I
I CMB
I

I
I
"----------

AIX2
Con trol Blocks
,...---------

! Alterna tive-Index /

I Data Control

I Block Structure

I
I

Indcx
I Control Block
I Structure

I
I eMB

I

-,
I
I
I
I
I
I
I
1
I
I
I
I
I
I

J
L _________

Note: The base data control block structure is shown in Figure 66. The alternate-index data control block structure is shown in
Figure 67. The index control block structure is shown in Figure 68. The BIB-VPT-RPL-ACB-upgrade AMBL structure is shown in
Figure 68. The BIB-VPT-RPL-ACB-upgrade AMBL structure (not shown) is the same as in Figure 64.

Figure 65. Shared VSAM Control Block Structure for a Key-Sequenced Data Set Accessed through Two Paths

Data Areas 537

AMB OEB IRB

tOEB ~I t IRB
..

1

EOB LPMB

tEOB -~I t LPMB
J

1 "I

AMOSB AROBs

t AMOSB J t AROB 1 J

~ "I
CPA

BUFOR BUFC ~ tBUFOR J tBUFC 1 tCPA

t Buffer
BUFC

t Next
BUFC ~ tCPA

t Buffer

tPLH

tNext
BUFC

tPLHOR ~ PLH ,It

tBUFC
in Use Oata lOB PFL

t Data lOB ;1 tPFL 1 .I ,

t Index lOB

=~tPFC
PFL

t Index BUFC 1 .J
1

tPLH Index lOB
-CPLH ~ Index

Control Block
Structure

Note: The index control block structure is illustrated in Figure 68.

Figure 66. Data AMB Control Block Structure

Buffer

r
CPA

....
Buffer

L r
BUFC

,

I

Figure 66 shows the control blocks that describe a cluster's data component
to VSAM record management routines.

538 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

AMB DEB IRB

tDEB HtIRB
1 J
1 "I

CPA
EDB LPMB

~
tEDB H tLPMB

BUFC
AMDSB ARDBs

~r-> ~ tARDB 1 tCPA Buffer
t AMDSB

I t Buffer ~
BUFDR 1

tBUFDR H tBUFC 1 f
tPLH

1 t Next BUFC

PLHDR r BIB

PLH 1 Data lOB PFL

PI tPFL
tPLHDR r--

tBUFC
in Use r-r-' WAX RPL

tf~ 1m
... ~ACB

t Data lOB r- "1

~
tWAX r-

Index Base Data
t Index BUFC ... Con trol Block Control Block J Structure Structure .,..

----- -----------------------------
t Upgrade These control blocks exist when the alternate

PLHDR index is a member of the upgrade set

PLHDR BUFC J CPA

PLH

=ft
tCPA

'-~
t BUFC ~ t Buffer L Buffer

in Use r- ... tPLH ,

t Data lOB r-~atalOB PFL

tPFL

t Index BUFC ... Index ~

Can trol Block
Structure

Note: The base data control block structure is shown in Figure 66. The index control block structure is shown in Figure 68.

Figure 67. Alternate-Index Data AMB Control Block Structure

Figure 67 shows the control blocks that describe an alternate index's data
component to VSAM Record-Management routines.

Data Areas 539

AMB DEB IRB

tDEB ---J t IRB 1 • ...1
'"I 1 '1

EDB LPMB

tEDB1 t LPMB L J
'1 1 '1

AMDSB ARDBs

t AMDSB ..J t ARDB 1 • ...1

~ '1 1 "1

BUFDR BUFC CPA

t BUFDR J tBUFC 1 ... tCPA ... I I I
, ,

t Buffer l
r- t Next BUFC

BUFC CPA

~ tCPA ... I ,

t Buffer h
r- tNext BUFC

BUFC CPA

'-?o tCPA I
t Buffer l
t Data PLH

l ICWA Data Control
Block Structure

- ...:::.. for Index Being Created

U
,

tICWA
or

tlMWA n IMWA

for Index Being Modified ?

Note: The data control block structure is illustrated in Figure 66.

Figure 68. Index AMB Control Block Structure

Buffer for
Highest Level
of Index

... .1
'1

Buffer for
Other Levels
of Index Set

• ...1
"1

Buffer for
Sequence Set

..J
'1

Figure 68 shows the control blocks that describe a key-sequenced cluster's
index to VSAM record management routines.

540 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

I

I

I

L

JSCB

§
VAT

§
VSRT PLHDR [DB PFL

~ PLH
_lJLt PFL t PLHDR

t [DB
PLH lOB PFL

t Next PLH ' t lOB ~tPFL ~
t Next PLH ~PLH

BSPH BUFC

~ t BUFC ---1"~ t Buffer

~ Buffer

t BSPH

r-- t Next BSPH t Next BUFC -,
BUFC

'--- Buffer
t Buffer

~
t Previous

BUFC

BSPH BUFC
'----;;II

t BUFC ----1'~ t Buffer c-1uffer

0 t Next BUFC '1 BUFC Buffer

WSHD
'--;;l t Buffer ~1

t WSHD ,
t Previous

BUFC

CPAH

t CPAH ~

Figure 69. Local Shared Resources Control Block Structure

Figure 69 shows the VSAM control blocks built for processing with local
shared resources (LSR). These control blocks describe the local VSAM
resource pool.

I

J

I

Data Areas 541

AMB DEB IRB

tDEB ~tIRB

EDB LPMB

tEDB ~ tLPMB

AMDSB ARDBs

t AMDSB ----?\ t ARDB

~ I
BSPH

BUFC Buffer
t BSPH ~ tBUFC

~ t Buffer ~

t Next BUFC

BUFC Buffer

PLHDR y t Buffer ~
tPLHDR ~ PLH lOB t Previous

t lOB r-rl tPFL ~ BUFC

t Next PLH
I-I1PLH PFL

t lOB ~
WSI:ID

t Next PLH
tWSHD ~

r lOB PFL

'-~
PLH

CPAH
~

tCPAH ~

Figure 70. AMB Control Block Structure with Local Shared Resources

Figure 70 shows the AMB control block structure for processing with local
shared resources (LSR). It differs from the structure for processing without
shared resources, which is shown in Figures 66, 67, and 68.

542 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

- -- -----~~~~~~-

Catalog Management Control Block Interrelationships
Figure 71 shows the VSAM catalog management control blocks built when a
VSAM routine calls catalog management to process a VSAM catalog record.

Figure 72, Open Catalog Control Blocks, shows the OS/VS2 system and
catalog management control blocks that describe a VSAM catalog to the
OS/VS2 system.

Data Areas S43

Caller-supplied Control Blocks r-----------------
Rll I RI

tCCA I tCIGPL

I
I
I

CCA I CIGPL

nCB I r tCatalog

I Identifier
tRB

I
tCatalog tCTGPL I Record

tACB l.ACB Identifier

tPCCB Describes r- tWork Area
CIGFL

,-- tActive RAB
Catalog as tPassword Field Name a VSAM Key-

~ ~
sequenced tCTGFL

tCTGFL = 0: DataSet
RABs: (6) tCTGFL h No Tests

I tCatalog
'--~

~ tWork Area: Record in
a Buffer

Work Ar.ea Update Data,
RPL '--i Field's Data L.. or Field's

(Retrieved) ts to Fields Describes the
in the VSAM Record Field's Data Data and

~ Processing
~ Length Buffer

Request Available
I r Space

tRPL I---" CIGFL

t Active CTGFL I .. Field Name ~
I CTGFL for Tests

tNext Available I tCTGFL for Tests Field Name
Space in Work Area

,

I Test Condition
I tField's Data

I tCTGFL = 0: No
More Tests, or

I tCTGFL for Next

I T~st Data Area Test

I L tTest Data
I

I L ________________ _

Note: Figure 61 illustrates the control block structure of a key-sequenced VSAM data set.

Figure 71. Catalog Management Control Blocks

Figure 73, VSAM Control Blocks That Describe a Catalog (a key-sequenced
key-range VSAM data set), shows the control blocks that describe the catalog
as a data set. This control block structure allows record management to read
and write control intervals in the catalog, and to update the catalog's index, as
required when catalog management I/O functions issue GET, PUT, and
ERASE macro instructions.

544 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

CVT TCB words TCB TCB

tTClls --...- tNext TCB tNext TCB - J tCurrent
r- tAMCBS TCB ,,-... tJSCB ,- tJseB

AMCIlS
JSCB JSeB

4

b 4 tMaslcr catalog's r-
tPCCB ~ tPCCB

ACIl t Active tActive
tControl block JSCB

,-
JSCB

maillpulation
routine STEpCAT's STEPCAT's

tCalalog high, pecil PCCB

lcvel rou tine ~ ~
(IGGOCLAIl r-

tNext pCCB
r-

tNext pCCB

,.-- tCAXWA .:hain ,-----, tACIl tACB

I Control I
block

CAXWA I structure I STEPCA1's STEpCA 1's

"--;J L ____ ..fr--, PCCIl PCCIl
tNexl CAXWA ---.. r- ~ 0 ~ o tpCCB
A.:tlvlty count

tACB tACB
tlIC1~

User
Catalog's .:atalog's Dynamically,built
DSNAME ACB pC(,B

lACIl tAMBl --' '---il 0

'-- tCAXWA lACIl

CAXWA

~ lNext CAXWA h
r-----,
I Control I block NOTES: AcllVily cuunl I structure ~ The P(,(,1l chain determines the order in which

WCIl
L ____ all catalogs available to a job step arc searched.
User Each JOIlCAT DD and STlP(,AT DD statement

CatahlS's catalog's results in one pC(,B.
DS:,\AME ACB

t Arll 1 AMlll '---'" Each opcn catalog IS described by a CAXWA,
an ACB, and the VSAM control block structure ...--
required to describe a key-sequenced, D, key-'-- tcAXWA
range VSAM data set.

CAXWA(last, Each CAXWA on the CAXWA chain contains

~ 0 r---..
r------, Ihe address of the CRA ACB. If the catalog is

I COlllrol I nol recoverable, the field is nOI intialized.

A~lIvity count I block I
struclurc . r

lUCIl
L ____
Mastcr

Catalug's catalog's
DS:'I:AME ACB

tACIl lAMBl '---'"

t eRA ACB '---- lCAXWA CRA CAXWA
.,

eRA ACB
7' t ACB

tCRA CAXWA t Ncxt eRA -CAXWA

t CRA ACB

CRA A(,11 CRA CAXWA (last)_

J
.,

tCRAC. ... XWA t ACB

0

tCRA ACB

Figure 72. Open Catalog Control Blocks

Data Areas S4S

AMBL EDBs
------,

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

tCatalog's ACB I ~ tLPMB

Flags: I RBA uf start
AMBLCAT = ON I of extent

tData AMB r--'" I
tEDB

RBA of end

tlndex AMB I
tDlWA of extent

~

I
tlOB

I tDEB
I AMDSB

tAMDSB
I ~ Flags:

I
tCa talog's ACB AMDDST = ON, and

tobject's DSNAME
~MDRANGE = ON

I tFirst ARDB
tBUFC

I Statistics
tPLH

I tlndex's AMB

L ______ ,
f--------- i AMB (Index I EDBs BUFDR

~. tLPMB roo ~ BUFCs

RBA of start tPLH

of extent tCPA
~ ~ tEDB t Buffer

RBA of end
tDIWA of extent

tlOB

tDEB PLHs
AMDSB

~ tAMDSB
~

tCurrent RPL
tFirst ARDB

tobject's DSNAME tCurrent ARDB

t BUFf
RBA of high-level

~ Index record tCurrent data
BUFC

~ tPLH RBA of sequence

tICWA, or set record tCurrent record

tlMWA Statistics tData lOB

PLHs BUFDR L Describes the catalog's data

~ Kurrent RPL ~ BUFC

tCurrent RBA tPLH

tCPA) Hi,h·'",'
tlndex BUFC ,...---.. index buffer

tBuffer

I tCurrent record
BUre

tlndex lOB tPLH)
I

tlXSPL tCPA
Sequence-set
index buffer

tBuffer I
BUFC I

tPLH) tePA
Intermediate-
level index buffer

L>escribes the tBuffer I
catalog's index I L ______________ ---1

Figure 73_ VSAM Control Blocks that Describe a Catalog (A Key-Sequenced, Key-Range VSAM Data Set)

546 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

I
I
I
I
I
I

I
I

I
I
I
I

J

J

J

VSAM Control Block Descriptions

ACB-Access Method Control Block

The VSAM ACB describes a VSAM cluster. It is built by the user's program.
Before the cluster is opened, the ACB can be modified by the user's DD
statements and by the ACB exit routine. After the cluster is opened, the ACB
is pointed to by the RPL (RPLDACB) that describes the user's record
processing request.

Bytes and
Offset Bit Pattern Field Name Description

0(0) ACBID Control block identifier, X'AO'

I (I) ACBSTYP Subtype:

X'IO' = VSAM
X'20' =VTAM

2 (2) 2 ACBLENG Length of the ACB
ACBLENG2
ACBLEN2

4 (4) 4 ACBAMBL Address of the AMBL
ACBIXLST Address of the index list
ACBJWA
ACBIBCT

8 (8) 4 ACBINRTN Address of the VSAM Interface routine
(IDAOI9Rl)

12 (C) 2 ACBMACRF MACRF flags:

Byte I ACBMACRI MACRF flag byte I:

~
I. .. ACBKEY The record is identified by a

key-keyed processing
.1.. ACBADR The record is identified by a RBA

ACBADD (relative byte address>-addressed
processing

.. 1. ACBCNV Control interval processing
ACBBLK

... 1 ACBSEQ Sequential processing
I. .. ACBDlR Direct processing
.1.. ACBIN Input (GET, READ) processing
.. 1. ACBOUT Output (PUT, WRITE) processing
... 1 ACBUBF User-supplied buffer space

13 (D) Byte 2 ACBMACR2 MACRF flag byte 2:

... 1 ACBSKP Skip sequential processing
I. .. ACBLOGON VT AM LOGON indicator
.1.. ACBRST Set data set to empty state
.. 1. ACBDSN Basic subtask shared control block

connection on common DSNAMEs
... 1 ACBAIX Entity to be processed is the alternate index

of the path specified in the given DDNAME
xxx Reserved

14 (E) ACBBSTNO Number of concurrent strings for alternate
index path

15 {F) ACBSTRNO Number of RPL strings

16 (10) 2 ACBBUFND Number of buffers requested for data

18 (12) 2 ACBBUFNI Number of buffers requested for index

20 (14) 4 ACBBUFPL Address of the buffer header (BUFC)

L
Data Areas 547

ACB-Access Method Control Block

Bytes and
Offset Bit Pattern Field Name Description

J 20 (14) ACBMACR3 MACRF flag byte 3

.1.. ACBLSR Local shared resources

... 1 ACBICI Improved control interval processing
1. .. ACBDFR Write operations are to be deferred
.1.. ACBSIS Sequential insert strategy
.. 0. ACBNCFX Control blocks are not fixed
.. 1. Control blocks are fixed

x.x. ... x Reserved

21 (15) ACBMACR4 Reserved

22 (16) 2 ACBJBUF Number of buffers requested for journal

24 (18) ACBRECFM Record format:

1. .. ACBRECAF JES format
.. 1. ACBCPACD Compaction table must be passed (JES/RES)
... 1 ACBPDIR PDIR must be passed (JES/RES)
.x .. xxxx Reserved

25 (19) ACBCCTYP Control character:

nn .. ACBTRCID 3800 translate table identifier
nnnn ACBASA Control character type

.. xx Reserved

26 (1A) 2 ACBOPT Non-user options
ACBDSORG Match ACBDORGA with DCBDSORG

Byte 1:

xx .. ACBCROPS Checkpoint/ restart options:

1... ACBCRNCK Restart has not checked for notification since

J last checkpoint
.1.. ACBCRNRE Data added since last checkpoint has not

been erased by restart, and no reposition to
last checkpoint takes place

.. 1. ACBDVIND 3800 device type indicator
ACBOPTJ

... x xxxx Reserved

Byte 2:

1... ACBDORGA Match with DCBDSORG
xxxx.xxx Reserved

28 (1C) 4 ACBMSGAR Message area

32 (20) 4 ACBPASSW Address of the user-supplied password

36 (24) 4 ACBEXLST Address of the user exit list
ACBUEL

Before OPEN

40 (28) 8 ACBDDNM DDname

After OPEN

40 (28) 2 ACBTIOT Offset to the TIOT

42 (2A) ACBINFL Indicator flags

43 (2B) ACBAMETH Access method type

44 (2C) ACBERFL Error flags

45 (2D) 3 ACBDEB Address of the DEB

548 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

ACB-Access Method Control Block

Bytes and
Offset Bit Pattern Field Name Description

Not Changed by OPEN

48 (30) ACBOFLGS Open/Close flags:

.. I. ACBEOV EOV concatenation

... 1 ACBOPEN The ACB is open
1... ACBDSERR No further requests are possible against

theACB
.. 1. ACBEXFG An ACB Exit routine exists

ACBLOCK The ACB is locked
... 1 ACBIOSFG The Open or Close routine

is in control
ACBBUSY The ACB is busy

xx .. . x .. Reserved

49 (31) ACBERFLG Error flags
Note: See "Diagnostic Aids: Open, Close,
and End-of-Volume Error Codes" for details
on the ACBERFLG error flags.

50 (32) 2 ACBINFLG Indicator flags:

.1.. ACBJEPS JEPS processing

.. 1. ACBIJRQE RQE being held by JAM

... 1 ACBCAT The ACB describes a VSAM catalog
I. .. ACBSCRA Catalog recovery area is built in system

storage
.1.. ACBUCRA Catalog recovery area is built in user storage
.. 1. ACBVVIC Data set being opened is the mass storage

volume inventory (MSVI data set)
... 1 ACBBYPSS Bypass security checking on Open if user is

authorized
x ... Reserved

51 (33) Reserved

52 (34) 4 ACBUJFCB Address of the user JFCB

56 (38) 4 ACBBUFSP Amount of space available for the buffers

60 (3C) 2 ACBBLKSZ Length of the physical DASD record
ACBMSGLN Message length

62 (3E) 2 ACBLRECL Length of the user's record

64 (40) 4 ACBUAPTR Address of the user's work area

68 (44) 4 ACBCBMWA Address of the CBM work area

72 (48) 4 ACBAPID Address of application ID

L
Data Areas 549

AM~Access Method Block

The AMB describes a VSAM data set or index and points to control blocks
needed to process data set and index records, such as the BUFC, the PLH, J the catalog's ACB, and the AMDSB. An AMB is built for a cluster's data set
and, if the cluster is key-sequenced, an AMB is built for the index. Each
AMB associated with the cluster is pointed to by the AMBL (AMBLDT A
points to the data AMB; AMBLIX points to the index AMB). When a data
set's or index's record is being processed by VSAM record management,
register 3 (RAMB) points to the data set's or index's AMB.

Bytes and
Offset Bit Pattern Field Name Description

0(0) AMBID Control block identifier, X'40'

1 (1) AMBRSC Resource test and set byte

2 (2) 2 AMBLEN Length of the AMB

4 (4) 4 AMBLINK Address of the next AMB in the chain

8 (8) 4 AMBBUFC Address of the BUFC associated with the
AMB

12 (C) 4 AMBPH Address of the PLH associated with the AMB

16 (10) 4 AMBCACB Address of the VSAM catalog's ACB (the
ACB of the catalog that contains the object's
catalog record)

20 (14) 4 AMBDSB Address of the AMDSB

24 (18) AMBEOVR End of volume request type:

X'OJ' Mount by key
X'8J' MountbyRBA
X'02' Allocate by key J X'82' Allocate by RBA

25 (19) AMBFLGI Indicator flags:

I... AMBCREAT The object is being created
.0 .. AMBTYPE The AMB describes a data set
.1.. The AMB describes the index of a

key-sequenced data set
.. 1. AMBMCAT The AMB describes the VSAM master

catalog
... 1 AMBUCAT The AMB describes a VSAM user catalog

I... AMBSPEED Speed option: Control intervals are not
preformatted before the user's data records
are written (only applies when the data
set is created).

.1.. AMBUBF The user's EXLST contains a buffer handling
exit routine's address

.. 1. AMBJRN The user's EXLST contains a joumaling exit
routine's address

... 1 AMBINBUF The data set is shared-a direct buffer
request has been issued

26 (lA) 2 AMBDSORG Data set organization indicators:

26 (I A) Reserved

27 (lB) I... VSAM access method
xxxx.xxx Reserved

28 (IC) 4 AMBIOBAD Address of the lOB

32 (20) 3 AMBCDSN Data set name of the VSAM catalog

35 (23) 3 AMBDDSN Data set name of the object associated with
theAMB

550 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Access Method Block (AMB)-Description and Format

Bytes and
Offset Bit Pattem FIeld Name Description

38 (26) 2 . Reserved

40 (28) 2 AMBTIOT Address of the TIOT

42 (2A) AMBINFL Indicator flags:

42 (2A) ... 1 AMBCAT The AMB describes a VSAM catalog's
data set or index

1. .. AMBSCRA Catalog recovery area is in system storage
.1.. AMBUCRA Catalog recovery area is in user's storage
.. 1. AMBUPX An upgrade table (UPT) exists

xxx x Reserved

43 (2B) AMBAMETH VSAM access method indicator

44 (2C) AMBDEBPT Address of the DEB and error flags:

44 (2C) Error flags

45 (2D) 3 AMBDEBAD Address of the DEB

48 (30) AMBOFLGS Open status flags:

... 1 AMBOPEN The AMB is open
.11. AMBEXFG User exit routines are active
... 1 AMBBUSY Busy bit

xxx. x ... Reserved

49 (31) AMBFLG2 Flag byte 2:

1. .. AMBPUG The data set described by this AMB
is an alternate index in an upgrade set

.xxx xxxx Reserved

50 (32) 2 AMBRPT

52 (34) 4 AMBEDB Address of the EDB

56 (38) 4 AMBEOVPT Address of the key or RBA to be used by the
VSAM End of Volume routine

60 (3C) 4 AMBWKA Address of the AMB work area

64 (40) 4 AMBIWA Address of the DIWA

68 (44) 4 AMBIOBA Address of the lOB

72 (48) 4 AMBIXP Address of the index's AMB ifthis is a data
AMB for a key-sequenced data set.

76 (4C) 4 AMBPAMBL Address of the primary AMBL

80 (50) 4 AMBUPLH Address of upgrade placeholder

84 (54) 4 AMBCSWDI

84 (54) AMBAFLG Flat byte:

.1.. AMBLSR Local shared resources

... 1 AMBlCl Improved control-interval access
1... AMBDFR Defer write operations
.1.. AMBSIS Sequential insert strategy
.. 1. AMBCFX Control blocks fixed in real storage

X.x. ... x Reserved

85 (55) Reserved

86 (56) 2 AMBRDCNT Number of control intervals read for this
AMB

88 (58) 4 AMBBM2SH Address of PLH doing second search of

Li
subpool

Data Areas S5)

Access Metbod Block (AMB)-DescriptioD aDd Fonnat

Bytes aDd
Offset Bit Pattem

92 (5C) 4

96 (60) 4

100 (64) 8

108 (6C) 2

110 (6E) 2

112 (70) 2

114 (72) 2

116 (74) 4

AMBL-AccelS Method Block List

Field Name

AMBCPA

AMBWSHD

AMBEXEX

AMBSZRD

AMBSZWR

AMBSZFW

AMBSZCP

Description

With shared resources: address of the
WSHD; without shared resources: address of
the first CPA in the chain

Address of working storage header

Name of user's exception exit routine

Size of the channel program for read

Size of the channel program for write

Size of the channel program for format write

Size of the CPA base

Reserved

The AMBL describes a VSAM cluster and points to the cluster's data set and
index AMBs. When the cluster is opened, an AMBL is built to describe the
cluster. If the cluster's data set (and index) is shared with other users, AMBs
already exist for the data set (and index). The existing AMB's addresses are
put into the AMBL. If the cluster is not shared, AMBs are built to describe
the cluster's data set and, if the cluster is key-sequenced, to describe the data
set's index. The AMBL is pointed to by the cluster's ACB (ACBAMBL).

Bytes aDd
Offset Bit Pattem Field Name Description

0(0) 4 AMBLPCHN Address of the primary AMBL in the AMBL
chain

4 (4) 4 AMBLSCHN Address of the secondary AMBL in the
AMBLchain

8 (8) 4 AMBLACB Address of the ACB associated with the
AMBL

12 (C) 4 AMBLEOV Work area for End of Volume and Record
Management routines

12 (C) AMBLEFLG End of Volume flags:

l... AMBLWAIT End of volume is waiting
.1 .. AMBLESET End of Volume encountered an error and

restored control blocks to their original
condition

.. xx xxxx Reserved

13 (0) AMBLCOMP End of Volume lock

14 (D) 2 Reserved

16 (10) 8 AMBLDONM The ACB's ODNAME field

16 (10) 8 AMBLIDF Cluster identifier:

16 (10) 4 AMBLCACB Address of the ACB of the catalog

20 (14) 3 AMBLDCI Control-interval number of the catalog data
record

SS2 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Access Method Block List (AMBL)-Description and Format

Bytes and
Offset Bit Pattern Field Name DescrIption

23 (I7) AMBLQ Qualifier:

1... AMBLDDC DD connect only
.. 1. AMBLLSR Cluster opened for local shared resources
... 1 AMBLFSTP Cluster opened for fast path (improved

control-interval access)
1. .. AMBLUBF Cluster opened for user buffering
.1.. AMBLKSDS Cluster opened as a key-sequenced data set
.. 1. AMBLESDS Cluster opened as an entry-sequenced data

set
... 1 AMBLDFR Cluster opened for deferred writes

.x .. Reserved

24 (I 8) 4 AMBLXPT In a base AMBL, address of the path AMBL;
in a path AMBL, address of the base AMBL

28 (IC) 2 AMBLVC Identifies the entry in the valid-AMBL table
that identifies this AMBL:

28 (IC) AMBLVRT Number of the valid-AMBL table in the
chain of valid-AMBL tables

29 (ID) AMBLENO Offset within the valid-AMBL table

30 (IE) AMBLTYPE Type of control block structure opened:

1... AMBLPATH Path
.1.. AMBLUPGR Upgrade set
.. 1. AMBLAIX Alternate index
... 1 AMBLBASE Base cluster

1. .. AMBLFIX Control blocks are fixed in real storage
.xxx Reserved

31 (IF) Reserved

32 (20) AMBLID Control block identifier, X'SO'

33 (21) AMBLSHAR Sharing indicators:

1... AMBLPRIM Identifies the primary AMBL
.1.. AMBLCATO The catalog is open
.. 1. AMBLWRIT The user intends to write or update records

in the data set
... x xxxx Reserved

34 (22) AMBLLEN Length of the AMBL

Data Areas 553

Access Method Block List (AMBL)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description J 35 (23) AMBLFLGI Flags:

I. .. AMBLFULL The user-supplied master password was
verified

.1.. AMBLCINV The user-supplied control interval
password was verified

.. 1. AMBLUPD The user-supplied update password was
verified

... 1 AMBLVVIC The AMBL is for the mass storage volume
inventory (MSVI) data set

I. .. AMBLSCRA The AMBL is for a catalog recovery area in
system storage

.1.. AMBLUCRA The AMBL is for a catalog recovery area in
user's storage

.. 1. AMBLCAT The AMBLACB field points to a catalog's
ACB

... 1 AMBLDUMY A DD DUMMY statement was specified
... x x.x . The combination of these bits indicates the

type of data set:
001 Catalog
101 MSVI
011 SCRA

36 (24) AMBLFLG2 Flags:

I. .. AMBLREST A Restart routine is in control
.1.. AMBLCKPT A Checkpoint routine is in control
.. 1. AMBLRSTI Update the high RBA for Restart
... 1 AMBLSTAG The cluster is staged

xxxx Reserved

37 (25) AMBLNST Number of strings J 38 (26) 2 AMBLNUM Number of AMB pointers in the AMBL

40 (28) Reserved

41 (29) AMBLNIDS Number of identifiers

42 (2A) 10 AMBLMIDS Five 2-byte fields, each containing a VSAM
module's identifier

52 (34) 4 AMBLDTA Address of the cluster's data set AMB

56 (38) 4 AMBLIX Address of the key-sequenced cluster's index
AMB

60 (3C) 4 AMBLBIB Address of the base information block

64 (40) 4 AMBLCMB Address of the cluster management block

SS4 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

AMCBS-Access Method Control Block Structure Block

The AMCBS contains information that is used by OS!VS to locate the master
catalog and user catalogs. The AMCBS is completed when the master catalog
is opened. IDA019Cl, a VSAM module in located in the pageable nucleus,
contains the AMCBS at entry point IDA019C2. The CVT (CVTCBSP)
points to the AMCBS.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 CBSID AMCBS ID character

2 (2) 2 CBSSIZ Length of the AMCBS

4 (4) 4 Reserved

8 (8) 4 CBSACB Address of the VSAM master catalog's ACB

12 (C) 4 CBSCBP Address of the control block manipulation
routine

16 (10) 4 CBSCMP Address of the catalog management
high-level routine (IGGOCLA 1)

20 (14) 4 CBSCAXCN Address of the CAXW A chain

24 (18) 4 CBSCRACA Address of the CRA CAXW A chain

28 (1C) 4 CBSCRTCB Address of CRA task TCB

32 (20) 8 CBSVSRT CDS (compare and swap double) word for
VSRT (VSAM shared resource table)

CBSVUSE VSR T use count

CBSVPTR Address of the VSRT

AMDSB-Access Method Data Set Statistics Block

The AMDSB contains statistical information about record processing in the
data set. It also contains some of the data set's attributes and specifications.
The AMDSB is built, using the data set or index catalog record's AMDSB set
of fields, when the cluster is opened. The data or index AMB (AMBDSB)
points to its associated AMDSB.

Bytes and
Offset Bit Pattern Field Name Description

0(0) AMDSBID AMDSB identifier, X'60'

1 (I) AMDATTR Attributes of the data set:

1. AMDDST Key-sequenced data set
0 Entry-sequenced data set
.1. AMDWCK Check each record when it is written
.. t AMDSDT Sequence set is stored with the data and is

replicated.
... 1. ... AMDREPL All index records are replicated---duplicated

around the track.
.... 1. .. AMDORDER Use the volumes in the same order as in the

volume list
.... . 1.. AMDRANGE The data set is divided into key ranges .
...... 1. AMDRRDS Relative record data set
....... 1 AMDSPAN The data set contains spanned records

2 (2) 2 AMDLEN Length of the AMDSB

4 (4) 2 AMDNEST Number of index entries in the index section

AMDAXRKP Relative key position of the alternate key

6 (6) 2 AMDRKP Relative key position

Data Areas 555

Access Method Data Set Statistics Block (AMDSB)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description J 8 (8) 2 AMDKEYLN Key length

10 (A) AMDPCTCA Percentage of free control intervals in the
control area

11 (B) AMDPCTCI Percentage of free bytes in the control
interval

12 (C) 2 AMDCIPCA Number of control intervals in a control area

14 (E) 2 AMDFSCA Number of free control intervals in a control
area

16 (10) 4 AMDFSCI Number of free bytes in a control interval

20 (14) 4 AMDCINV Control interval size

24 (18) 4 AMDLRECL Maximum record size

28 (IC) 4 AMDHLRBA Relative byte address (RBA) of the high-level
index record

AMDNSLOT Number of record slots per control interval

32 (20) 4 AMDSSRBA Relative byte address (RBA) of the first
sequence-set record

AMDMAXRR Maximum valid relative record number

36 (24) 4 AMDPARDB Address of the first ARDB

40 (28) 56 AMDSTAT Data set statistics:

40(28) AMDATTR3 Attributes of the data set:

x AMDUNQ The data set has:

J 0 Unique keys
I Nonunique keys

.x AMDFAULT The data set is staged:
0 At open time, if required

By cylinder fault
.. x AMDBIND The data set is:

0 Not bound
I Staged and bound

... x AMDWAIT After destaging is begun, control is returned
to the program that is closing the data set:
0 Immediately
I After destaging is finished

.... x ... AMDLM 0 Load mode, or data set is not loaded
I Data set is loaded

..... xxx Reserved

41 (29) 7 Reserved

48 (30) 8 AMDSTSP OS/VS system timestamp

56 (38) 2 AMDNIL Number of index levels

58 (3A) 2 AMDNEXT Number of extents in the data set

60 (3C) 4 AMDNLR Number of user-supplied records in the data
set

64 (40) 4 AMDDELR Number of deleted records

68 (44) 4 AMDIREC Number of inserted records

72 (48) 4 AMDUPR Number of updated records

76 (4C) 4 AMDRETR Number of retrieved records

80 (50) 4 AMDASPA Number of bytes of free space in the data set J
556 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Cw

L

Access Method Data Set Statistics Block (AMDSB)-Description and Format

Bytes and
Offset Bit Pattern

84 (54) 4

88 (58) 4

92 (5C) 4

A.RD~A.ddreu Range De/inition Block

Field Name

AMDNCIS

AMDNCAS

AMDEXCP

DescrIption

Number of times a control interval was split

Number of times a control area was split

Number of times EXCP was issued by VSAM
I/O routines

The ARDB co~tains information about space allocated to and space actually
used by a data set. The block is built by the VSAM Open routine from
information in the data set's catalog record. The ARDB is updated by record
management routines as additional space is used. The first ARDB in an
ARDB chain is pointed to by the AMDSB (AMDPARDB).

Bytes and
Offset Bit Pattern Field Name DescrIptIon

0(0) ARDID Control block identifier, X'61'

1 (1) ARDTYPE Identifies the type of space defined by the
ARDB:

1(1) 1. .. ARDKR One key range of a key-range data set
.1.. ARDHLI The total index of a key-sequenced data set,

or
The non-sequence set levels of a
key-sequenced data set's index,
when the sequence set is stored
with the data

.. 1. ARDSS The sequence set of a key-sequenced data set,
when the sequence set is stored with the data

1. .. ARDEOD The key range containing the highest
data RBA in the data set

.1.. ARDUSED The ARDHRBA field's initial value
has changed

... x .. xx Reserved

2 (2) 2 ARDLEN Length of the ARDB

4 (4) 4 ARDNPTR Address of the next ARDB chain

8 (8) 4 ARDHKRBA The RBA of the data set control interval
containing the key range's high-key value

12 (C) 4 ARDHRBA The RBA of the next free-space control
interval at the end of the data set

16 (10) 4 ARDERBA The RBA of the highest control interval
allocated to the key range

20 (14) 6 ARDVOLSR The serial number of the volume containing
the highest RBA allocated to the key range

26 (tA) 2 ARDRELNO The sequence number of the Data Space
Group set of fields that describes the data
space containing the key range. The Data
Space Group set of fields is in the volume
catalog record identified by ARDVOLSR.

28 (IC) ARDPRF Preformat flags:

1... ARDPRSS The sequence set is stored with the data
.1.. ARDPRFMT The key range's extents haven't been

preformatted
.. xx xxxx Reserved

Data Areas 557

Address Range Definidon Block (ARDB) Descripdon and Format

Bytes and
Offset Bit Pattern

29 (tD) VL

BIB-Base In/o17lUltion Block

Field Name Description

ARDKEYS The key range's low and high key values.
The length of this field equals twice the key
length.

The Bm contains information for Virtual-Storage Management to control
allocation of storage for a particular base cluster in a job step. It is further
described in "Virtual-Storage Management" in "Diagnostic Aids."

The Bm is pointed to by the AMBL (AMBLBm).

Bytes and
Offset Bit Pattern Field Name Description

0(0) 4 BIBHDR Header:

0(0) BIBID Control block identifier, X'IO'

I (t) BIBFLGI Flag byte I:

1... BIBVIRT At least one mass-storage UCB is allocated
.xxx xxxx Reserved

2 (2) 2 BIBLEN Length of the BIB

4 (4) BIBFLG2 Reserved

5 (5) 3 Reserved

8 (8) 4 BIBUPT Address of the upgrade table

12 (C) 4 BIBVMT Address of the volume mount table

16 (10) 4 BIBDACB Address of an inner ("dummy") ACB

20 (14) 4 BIBAMBL Address of the primary AMBL in the AMBL
chain

24 (I8) 4 BIBSPHPT Address of the sphere block

28 (tC) 4 BIBPRSPH Address of the protected sphere block

32 (20) 4 BIBHEBPT Address of the header element block

36 (24) 4 BIBHEBFQ Address of the first free header element in
the header element block

40 (28) 4 BIBVCRT Address of the VSAM checkpoint/restart
table

44 (2C) 4 BIBWSHD Address of the working storage header

48 (30) 16 BIBRTNS Addresses of Record-Management routines:

48 (30) 4 BIBINTRF VSAM interface (IDAOI9Rl)

52 (34) 4 BIBCEAPP Channel end appendage

56 (38) 4 BIBASYRT Asynchronous Routine

60 (3C) 4 BIBSIOAP Start-I/O appendage

558 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

BLPRM-Resource Pool Parameter List

BLPRM is created by the BLDVRP and DL VRP macros. It is used by Record
Management for dynamic string additiona dn by data set management for
internal processing. BLPRM is mapped by IDABLPRM and pointed to by the
parameter list whose address is in register 1 when SVC 19 is issued.

Resource Pool Parameter List (BLPRM)-Description and Format

Bytes and
Offset Bit Patterns Field Name Description

0(0) BLPACBID ACBID-X'AO'

1 (1) BLPACBST ACB subtype-X'II'

2 (2) 2 Reserved

4 (4) 4 BLPBUFLP Address of the buffer list used by BLDVRP
(described below)

4 BLPUACB Address of the user ACB (used for dynamic
string addition)

4 BULPIOPLH Address of the I/O Support PLH (used for
CLOSE)

8 (8) BLPKEYLN Key length

9 (9) BLPSTRNO String number requests

10 (A) BLPFLAGI Flag byte 1:

1... BLPFDBDC Shared resources
.1.. BLPFBLD BLDVRP request
.. 1. BLPFDEL DLVRP request
... 1 BLPFLSR LSR option

1... BLPFGSR GSR option
.1.. BLPFIOBF Fix lOBs
.. 1. BLPFBFRF Fix buffers
... 1 BLPFSTAD Add String

11 (B) BLPFLAG2 Flag byte 2 (used for I/O support internal
processing):

1... BLPFPART Partial build request
.1.. BLPFUPGR Upgrade set Open
.. 1. BLPFPATH Path (AIX) Open
... 1 BLPFPRIM Primary Open

1... BLPFDATA DataAMB
.1.. BLPFINDX IndexAMB
.. 1. BLPFIOSR I/O support request
... 1 BLPFRSTR Restart request

12 (C) BLPOCODE Special use field

13 (D) 3 BLPOACB Address of ACB

16 (10) 8 BLPCORE Record management GETCORE request

16 (10) BLPGFLG Flag byte:

1... BLPGREQ GETCORE request
.1.. BLPGPG GETCORE page boundary request
.. xx xxxx Reserved

17(11) 3 BLPGSZ GETCORE length

20 (14) BLPGSP GETCORE subpool

21 (15) 3 BLPGAD GETCORE return address

24 (18) 4 BLPIOACB Address of I/O support ACB

24 (18) 3 Reserved

27 (1B) BLPDSORG X'08' (required for BLDVRP,DLVRP, and
string addition)

Data Areas 559

a

Resoarce Pool Panmeter LIst (BLPRM}-DeserIptlon and Format

Bytes IIIld
Offset BIt Patterns F1eId NIUIle Description

28 (lC) 20 Reserved

48 (30) BLPOFLGS X'02'

49 (31) 2 Reserved

5 I (33) BLPERFLG X'OO'

The buffer request list (pointed to by BLPBUFLP) is repeated once for each buffer
pool. The format is:

0(0)

4 (4)

5 (5)

6 (6)

4

1...
.XXX xxxx

2

BLPBUFSZ

BLPBRLFG

BLPBFLST

BLPBFLCf

Buffer size

Buffer list flags:

Last buffer request
Reserved

Reserved

Buffer count

560 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

BSPH-Bu//er Subpool Header

The BSPH is built for processing with shared resources. It defines a buffer
pool in the VSAM resource pool. The first BSPH for the resource pool is
pointed to by the VSRT (VSRTBUFH). Each BSPH is pointed to by an AMB
(AMBBUFC) that uses the buffer pool defined by the BSPH.

Bytes and
Offset Bit Pattern Field Name Description

0(0) BSPHID Control block identifier, X'72'

I (1) BSPHFLGI Flag byte 1:

1. BSPHIOBF I/O-related control blocks are fixed in real
storage

.1. BSPHBFRF I/O buffers are fixed in real storage
2 (2) 2 BSPHLEN Length of the BSPH

4 (4) 4 BSPHNM Visual name: 'BSPH'

8 (8) 4 BSPHNBSP Address of the next BSPH for the resource
pool

12 (C) 2 BSPHBFNO Number of buffers in the buffer pool

14 (E) 2 BSPHERCT Count of write errors

16 (10) 4 BSPHBUFC Address of the first BUFC for the buffers in
the pool

20 (14) 4 BSPHMDBT Modification bits-they indicate IDs of
transactions that have modified the buffer
(RPL TRANSID operand)

24 (18) 4 BSPHBSZ Length of each buffer in the pool

28 (IC) 4 BSPHCSRC Compare/Swap resource-used to serialize
the use chain:

~ 28 (IC) BSPHFLG2 Flag byte 2:

1. BSPHAPRT Arithmetic protect bit
.1. BSPHPCUC The use chain is being changed
.. xxxxxx Reserved

29 (ID) Reserved

30 (IE) 2 BSPHPSUC Number of PLHs searching the use chain

32 (20) 4 BSPHCPLH Address of the PLH that is modifying the
use chain

36 (24) 4 BSPHRDS Number of I/O operations to bring data into
the buffer pool

40 (28) 4 BSPHFND Number of requests for retrieval that could
be satisfied without an I/O operation

44 (2C) 4 BSPHUlW Number of user-initiated writes from the
buffer pool

48 (30) 4 BSPHNUIW Number of non-user-initiated writes (writes
that VSAM was forced to do because no
buffers were available)

52 (34) 4 BSPHUTOP Address of the top of the use chain

56 (38) 4 BSPHUBTM Address of the bottom of the use chain

60 (3C) 4 BSPH1ST Address of the first BSPH for the resource
pool

L
Data Areas 561

BUFC-Buffer Control Block
The BUFC consists of a buffer header (that describes the buffer pool) and a
buffer control entry (that describes each buffer requested by the user and
each buffer required for preformat processing). The header describes the
structure of the buffer pool. Each buffer control entry contains function
codes, status indicators, and RBAs to describe the buffer. The buffer control
entry also contains the address of its associated placeholder (PLH), the data
buffer, the associated channel program (pointed to by the CPA), and the next
BUFC in the chain. The BUFC is the interface between the I/O Manager
routine (IDA019R3) and the Buffer Manager routines (IDA019R2 and its
procedures). The BUFC is pointed to by the PLH (PLHBUFC points to the
data BUFC; PLHIBUFC points to the index BUFC).

The buffer header and the buffer control entries are created by Open and
released by Close. The AMB points to the buffer header. The DIW A points
to the insert buffer control entry, and each placeholder points to a chain of
one or more data buffer control entries and one index buffer control entry.

Bytes and
Offset Bit Pattern

Buffer Header

0(0)

1(1)

2 (2)

4 (4)

8 (8)

9 (9)

10 (A)

11 (B)

12 (C)

16 (10)

2

4

I...

.1..

.. xx xxxx

4

4

Buffer Control Entry

0(0)

0(0)

Field Name

BUFDRID

BUFDRNO

BUFDRLEN

BUFDRPFB

BUFDRPFN

BUFDRCIX

BUFDRMAX

BUFDRTSB

BUFDRFLG

BUFDRREL

BUFDRAVL

BUFDBUFC

BUFCAVL

BUFCUCNT

Description

Buffer-header identifier, X'70'.

Number of buffer control entries in this
buffer pool, excluding preformat buffer
control entries.

Length of the BUFC entry

Pointer to the first BUFe in a pool of BUFCs
that are reserved for preformatting data
control areas or index tracks.

Number of preformat BUFCs.

Number of index buffers in an index buffer
pool that are not assigned to a placeholder
and are not reserved for the highest level
index record.

Maximum number of buffers that can be
assigned to a placeholder that is in sequential
mode.

Test-and-set byte for the buffer header. This
byte is set to X'FF' when a buffer is being
taken from the buffer pool and assigned to a
placeholder; set to X'OO' in all other cases.

Buffer status flags:

Buffer-released flag, which is set when a
placeholder returns a buffer to the buffer
pool.
Buffer is available, which is set when there
are data buffers in the pool that are not
reserved for inserts and are not assigned to
placeholders.
Reserved

Address of the first BUFC

Reserved

Test-and-set byte for the buffer.

Use count

562 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Buffer Control Block (BUFC)-Description and Format

Bytes and

L
Offset Bit Pattern Field Name Description

1 (1) BUFFLGI BUFC status flags:

I... BUFCUPG This BUFC is associated with an upgrade set
.1.. BUFCSEG The buffer contains a segment of a spanned

record
.. 1. BUFCINS Identifies this buffer as an insert buffer. This

buffer can be assigned to a placeholder for
data only for the duration of a single request.

... 1 BUFCERI Error generated by input processing.
1... BUFCER2 Error generated by output processing.
.1.. BUFCVAL Input RBA is valid.
.. 1. BUFCEXC The control interval represented by this

BUFC is in exclusive control. This field is
meaningful only when the input RBA is
valid.

... 1 BUFCEPT I/O-complete flag .

2 (2) BUFCIOFL I/O status flags:
I... BUFCMW Control interval must be written at the

indicated output RBA (BUFCORBA). Note
that output processing is done before input
processing for the same BUFC.

.1.. BUFCFMT This BUFC is associated with a format-write
channel program.

.. 1. BUFCRRD The control interval indicated by
BUFCDDDD must be read.

... x BUFCREAL Reserved.
1... BUFCWC The channel program associated with this

BUFC includes write-validity-checking
CCWs.

.1.. BUFCXEDB The RBA that was to be read or written was
in an extent of the data set that was
unavailable (for example, not mounted).

.. 1. BUFCPFCP Preformatted channel-program segment is
complete.

... x BUFCFIX Reserved .

3 (3) BUFCFLG2 Flag byte 2:

.. 1. BUFCBSYR For processing with shared resources, a read
operation is in progress-the bit is on during
the operation

... 1 BUFCBSYW For processing with shared resources, a write
operation is in progress-the bit is on during
the operation

xx .. xxxx Reserved

4 (4) 4 BUFCPLH Address of the placeholder associated with
this BUFC.

BUFCAMB Address of the access method block
associated with this BUFC

8 (8) 4 BUFCDD RBA for input processing (valid only if bit in
FLGI is set).

12 (C) 4 BUFCORBA RBA for output processing (valid only if
IOFL indicates that a control interval must
be written).

16 (10) 4 BUFCCPA Channel program area address.

20 (14) 4 BUFCBAD Address to or from which control interval is
to be written or read.

L 24 (18) 4 BUFCNXTI Next BUFC for which I/O can be requested.

Data Areas 563

Buffer Control Block (BUFC)-Description and Format

Offset

28(tC)

36(24)

37 (25)

40 (28)

44 (2C)

48 (30)

52 (34)

S6 (38)

60 (3C)

Bytes and
Bit Pattern

8

3

4

4

4

4

4

4

CAXWA-Catalog Auxiliary Work Area

Field Name

BUFCIDXL

BUFCNXT2

BUFXIRBA

BUFXORBA

BUFCHAIN

BUFCMDBT

BUFCUCUP

BUFCUCDN

Description

Reserved

For processing without shared resources, the
level of the index record in the buffer-used
in the selection of the buffer to be replaced

Address of the next logical buffer

RBA of the record in the buffer or, for a
spanned record, of the record's first segment

Same as BUFXIRBA, but used for output

Address of the next BUFC in the pool

For shared resources, modification
bits-they identify IDs of transactions that
have modified the buffer (RPL TRANSID
operand)

Address of the next BUFC up the use chain

Address of the next BUFC down the use
chain

The CAXW A is built when a VSAM master or user catalog is opened or is
being created. The CAXW A contains the addresses of control blocks and
work areas needed when a catalog is being opened or created, such as the
alternate nOT, the DRW A, and the UCB. The CAXWA also contains flags
that indicate the type of processing being performed on the catalog and the
OS/VS component that invoked the processing. The CAXW A is pointed to
by the ACB (ACBUAPTR). The AMCBS (CBSCAXCN) contains the
address of the CAXW A chain.

Bytes and
Offset Bit Pattern Field Name Description

0(0) CAXID Control block identifier, X'CA'

1 (l) 3 Reserved

4 (4) 4 CAXCHN Address of the next CAXW A in the chain

8 (8) CAXFLGS Flags:

I ... CAXBLD Build request
.1.. CAXOPN The catalog is being opened
.. 1. CAXCLS The catalog is being closed
... 1 CAXEOV An End of Volume routine is in control

I ... CAXCMP Open/Close/EO V processing is complete
.1.. CAXMCT Identifies the VSAM master catalog
.0 .. Identifies a VSAM user catalog
.. 1. CAXCMR Catalog management (SVC 26) has been

called by a catalog management routine
... 1 CAXSCR Catalog Management (SVC 26) has been

called by the OS/VS Scheduler
.. 00 Catalog management (SVC 26) has been

called by an Access Method Services
procedure

564 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Catalog Auxiliary Work Area (CAXWA)-DescriptioD and Format

Bytes and
Offset Bit Pattern Field Name Description

9 (9) CAXFLG2 Flags:

1... CAXF2DT The catalog has been deleted
The following flags are set by IFG0191X
and IFG0200N:

.1.. CAXF2NDD No DDNAME found

.. 1. CAXF2NCR Unable to obtain virtual storage with a
GETMAIN request

... 1 CAXF2IOE I/O error
1. .. CAXF2CLR RPL cleanup request
.1.. CAXF2CA If an error occurs, free the CAXW A
.. 1. CAXF2REC Recoverable catalog
... 1 CAXF2VTU Volume timestamp updated

10 (A) CAXFLGJ Flags:

1. .. CAXF3AT CRA alternate TIOT exists
.1.. CAXF3ANE CRA does not exist

00 .. CAXF3B5 Password not read
11.. No passwords
01.. CAXF3B6 Master password; no update

password
10 .. Master and update passwords

.. xx .. xx Reserved

11 (B) CAXACT Catalog activity count

12 (C) 4 CAXATIOT Address of the alternate TIOT

16 (10) 4 CAXSCHWA Address of the Scheduler work area

20 (14) 4 CAXDRWP Address of the catalog's DRWA

~ 24 (18) 4 CAXACB Address of the catalog's ACB

28 (lC) 4 CAXUCB Address of the UCB

32 (20) 12 CAXCCR Catalog control record information

32 (20) 3 CAXHACI Control interval number of the highest
allocated control interval in the catalog

35 (23) 3 CAXNFCI Control interval number of the next free
control interval in the catalog

38 (26) 3 CAXCDCI Number of deleted control intervals

41 (29) 3 CAXFDCI Control interval number of the first deleted
control interval in the catalog

44(2C) 2 Reserved

46 (2E) 2 CAXRPLCT Number of RPLs associated with the
CAXWA

48 (30) 4 CAXRPL Address of the first RPL in the CAXWA's
RPL chain

52 (34) 44 CAXCNAM Catalog's dsname

52 (34) 6 CAXVOLID CRA volume serial

58 (3A) 4 CAXRACTS CRA creation timestamp

62 (3D) 4 CAXRATEP CRA's TIOT entry address

66 (42) 8 CAXRADDN CRA's DDNAME

74 (4A) 22 Reserved for CRA

L
Data Areas 565

Catalog Auxiliary Work Area (CAXWA)-Description and Format

Offset

96 (60)

96 (60)

97 (61)

100 (64)

104 (68)

108 (6C)

112 (70)

Bytes and
Bit Pattern

4

1...
.xxx xxxx

3

4

4

CCA.-Cataiog Communications A.rea

Field Name

CAXOPLST

COPTS

CENLST

COPACB

CAXOPEWA

CAXCCA

CAXJDE

CAXCRACB

Description

Open/Close parameter list:

Option flags:

End of list indicator
Reserved

Address of the catalog's ACB

Address of the Open/Close/End of Volume
work area

Address of the CCA

Address of the JDE

Address of the CRA's ACB

The CCA is built each time an OS/VS component issues the CA TLG macro
instruction (SVC 26) to process a catalog record. The CCA contains
information about the catalog being processed, and about the catalog record
and its extensions contained in each of the six buffers available to process the
user's request. The CCA is used to pass information between catalog
management procedures. Register 11 contains the address of the CCA.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 2 CCAID Identifier, X'ACCA'

2 (2) 2 CCASZ Length of CCA

4 (4) 4 CCAPROB Problem determination:

4 (4) 2 CCAMODID Error module ID

6 (6) 2 CCAERRCD Error code

6 (6) CCAREASN Set reason code

6 (6) CCACDR Refer reason code

7 (7) CCARETRN Set return code

7 (7) CCACDI Refer return code

8 (8) 5 Reserved

13 (D) CCACD2 Return code 2

Note: See "Diagnostic Aids: Catalog
Management Error Codes" for a list of the
VSAM Catalog Management return codes
and error codes.

566 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Catalog Communications Area (CCA)-DescriptioD and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

14 (E) CCAFLGI Flags Byte 1:

1... CCAFILPS Stop the loop
.x .. Reserved
.. 1. CCAFILRD Catalog control record read

into virtual storage
... 1 CCAFIKEY Retrieve the catalog record based on

a DSNAME value
1... CCAFIKGE Retrieve the next catalog record
.1.. CCAFICR A checkpoint of the catalog control

record is required
.. 1. CCAFlUP GET for update
... 1 CCAFlDK When the caller is renaming a data set, this

flag indicates that the data set's true name
record is to be deleted, but the data set's
catalog record is not to be deleted.

15 (F) CCAFLG2 Flags Byte 2:

1... CCAF2SYS The caller is an OS/VS system module
.1.. CCAF2NVC No validity check on the caller's CTGFL or

work area is required
.. 0. CCAF2CCT Search all catalogs available to the caller.
.. 1. Search the first VSAM catalog specified by

the caller's STEPCAT statement.
If the caller's JCL doesn't include
a STEPCA T statement, search the
VSAM master catalog. In either case
search only one catalog.

... 1 CCAF2XEQ Exclusive enqueue

... 0 Shared enqueue
1. .. CCAF2RHS When a catalog management routine

calls the VSAM Open routines to open
a newly created catalog, and the Open
routines call VSAM Catalog Management
routines to obtain information about the
catalog to be opened, the situation is called
a "recursive call." The catalog cannot be
dequeued when the Catalog Management
routines return to the caller (VSAM Open
routines).

.xx. CCAF2COB Both catalog open and build:

.1.. CCAF2CO Catalog is being opened

.. 1. CCAF2CB Catalog is being created

... 1 CCAF2SMO Search the master catalog only

16 (10) CCAFLG3 Flags Byte 3:

1... CCAEXGRI Exit indicator
.1.. CCAGC4 The catalog record contains a password

information set of fields, identified by Type
Code 4 (detected during IGGPSCNC
processing)

.. 1. CCAGDSP Caller specified the GENDSP option
(detected during IGGPSCNC processing)

... 1 CCAEXGR2 Exit indicator
1... CCANF The set of fields cannot be found
.1.. CCAELC2 Exit indicator
.. 1. CCALFT First time
... 1 CCAEGREC Exit indicator

L
Data Areas 567

Catalog Communications Area (CCA)-Description and Fonnat

Bytes and
Offset Bit Pattern Reid Name Description J l7(1t) CCAFLG4 Flags Byte 4:

l... CCAF4DRQ The catalog must be dequeued after the
request completes

.1.. CCAF4BYS Bypass the security verification

.. 1. CCAGVNC The required variable-length field is not
completely contained in the record
currently in the buffer

... 1 CCAGVNF The set of fields identified by the
caller-specified sequence number cannot
be found

1. .. CCAGVNBS There is no buffer space available to
contain an extension record

.1.. CCAGVEX Exit indicator

.. 1. CCAGVNE The field does not exist in the located
set of fields

... 1 CCATCOMP Test complete: all set-of-fields pointers
have been examined and all designated
fields have been tested

18 (12) CCAFLGS Flags Byte 5:

1. .. CCAMEX2 Exit indicator
.1.. CCAMEX Exit indicator
.. 1. CCAMEXI Exit indicator
... 1 CCAMODPA The catalog record's base record must be

written (using IGGPPAD) into the catalog
I... CCATHIT Successful test: a set of fields has been

found that satisfies the test conditions
.1.. CCATEX Exit indicator
.. 1. CCATEXI Exit indicator J ... 1 CCATEX2 Exit indicator

19(13) CCAFLG6 Flags Byte 6:

1. .. CCAMCODR The catalog must be dequeued when the
request completes

.1.. CCADELP A deleted set-of-fields pointer was found

.. 1. CCAMNOSP The catalog record's free space isn't large
enough to contain all the new catalog
information during the set-of-fields move
operation

... 1 CCAINIT Insert switch for variable-length field
being retrieved

1. .. CCASUPFD Suppress password field information during
field retrieval

.1.. CCAREUSE The contents of the caUer's record areas
(buffers) can be used by IGGPEXT and
IGGPMOD

.. 1. CCAEXT Set when a catalog management routine caUs
the Extract routine (IGGPEXT)

... 1 CCAMOD Set when a catalog management routine caUs
the Modify routine (IGGPMOD)

20 (14) 4 CCATCB Address of the TCB

20 (14) 4 CCALBCYL Address of label cylinder data

24 (18) 4 CCARB Address of the RB

24 (18) 4 CCADPL Address of DADSM parameter list

28 (I C) 4 CCACPL Address of the caller's CTGPL

32 (20) 4 CCAACB Address of the catalog's ACB

36 (24) 4 CCANPCCB Address of the next PCCB

568 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog CommUDieations Area (CCA)-Description and Fonnat

Bytes and

L
Offset Bit Pattern Field Name Description

40 (28) 4 CCAURAB Address of the record area block (RAB)
currently in use

44 (2C) 44 CCASRCH Search argument (dsname of a cluster,
data set, index, catalog, or nonVSAM data
set, or a volume serial number)

44 (2C) 3 CCASRID Control interval number
CCASRCIN

47 (2F) 41 Reserved

88 (58) 20 CCARABO Record Area Block,O: Each record area
block describes the catalog record contained
in one of the six catalog management buffers
available for the request. RAB's 1 through 5
are identical in format to RAB o.
Note: 'x' in each field name is replaced by '0'
through '5' to indicate a particular RAB's
field.

88 (58) CCARxFLG Flags:

The following flag is used by IGGPEXT and
IGGPMOD:

1... CCARxUR The RAB is in use. It cannot be used by
IGGPEXT or IGGPMOD

.1.. CCARxUl The RAB is temporarily in use by IGGPEXT
or IGGPMOD. It cannot be overlaid.

.. 1. CCARxU2 (Same as CCARxUl)

... 1 CCARxWR The buffer must be written before another
catalog record can be read into it

1... CCARxPA The buffer contains a new catalog
record-PUT-add is required to write the
record into the catalog

.xx. Reserved

... 1 CCARxUPD The buffer contains a GET-for-update record

89 (59) CCARORPL Last assigned RPL index

90 (5A) 2 Reserved

92 (5C) 4 CCARxREC Address of the record in the buffer

96 (60) 12 CCARxSEG Addresses of parts of the cataJol rec:ord:
4 CCACPE2x Address of the first byte after the fixed-length

header fields.

100 (64) 4 CCACPE3x Address of the first set of fields

104 (68) 4 CCACPE4x Address of the first free-space byte in the
record

108 (6C) 20 CCARABI Record Area Block 1 (See RAB 0
description)

128 (80) 20 CCARAB2 Record Area Block 2 (See RAB 0
description)

148 (94) 20 CCARAB3 Record Area Block 3 (See RAB 0
description)

168 (A8) 20 CCARB4 Record Area Block 4 (See RAB 0
description)

188 (BC) 20 CCARAB5 Record Area Block 5 (see RAB 0
description)

208 (DO) CCARPLK Work area for IGGOCLAG and IGGOCLAM

Data Areas 569

Catalog CommunicatioDS Area (CCA)-Description and Format

Bytes and

J Offset Bit Pattem Field Name Description

209 (D1) CCARPLF (Same as CCARPLK)

210 (D2) CCARPLX (Same as CCARPLK)

211 (03) CCARPLT (Same as CCARPLK)

212 (D4) 6 CCARPLAA Indexes to assigned RPLs

218 (DA) 2 Reserved

220 (DC) 4 CCARPLl Address of the RPL in use

224 (EO) 44 CCADESA, Save area for the extent information
returned by OS/VS DADSM and VSAM
Catalog Management: Suballocate

224 (EO) CCANDEXT Number of extents

225 (E1) CCAIXEXT Extent index value

226 (E2) 2 CCASSVOL Sequence number of the data set directory
entry in the volume catalog record

228 (E4) 40 CCAEXTDE Five 8-byte extent descriptors:

228 (E4) 2 CCAEXTSS Sequence number of the Data Space Group
set of fields that this extent's space is a part
of.

230 (E6) 4 CCAEXTAD The extent's starting physical address:

230 (E6) 2 CCAEXTCC Cylinder number CC

232 (E8) 2 CCAEXTHH Head number HH

234 (EA) 2 CCAEXITH Number of tracks in the extent

268 (lOC) CCAASCIK Number of control intervals required to
satisfy the caller's request

269 (lOD) CCACRRP RPL used to read the CCR

270 (lOE) CCAASCIX Used by the ASSIGN functions-points to
the element in CCAASCI currently being
processed

271 (lOF) 9 CCAASCI Number of each assigned control interval

280 (118) 16 CCAEQDQ ENQ/DEQ parameter list:

280 (118) CCAEDXFF "End of parameter list" indicator-X'FF'

281(119) CCAEDRLN Length of minor name

282 (lIA) CCAEDOPT ENQ/DEQ options

1... CCAEDSHR Shared
0 ... Exclusive
.xxx xxxx Reserved

283 (lIB) CCAEDRCD ENQ/DEQ return code

284 (lIC) 4 CCADEQNM Address of the major name

288 (120) 4 CCAEDRNM Address of the minor name

292 (124) 4 CCAEDUCB Address of the UCB

296 (128) 4 CCAMLRET Address of the caller's !.ave area

300 (l2C) 12 CCAMSSPL Storage management work area:

300 (l2C) 4 CCAMNLEN Number of bytes to process

304 (130) 4 CCAMNPTR Address of the return address

J 308 (134) Reserved

570 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Communications Area (CCA)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

309 (I35) CCAMNSPL Required subpool number

310 (136) 2 Reserved

312 (138) 4 CCARPRM Return parameters

316 (13C) 8 CCACMS Catalog Management Services work area:

316 mC) 4 CCACMSWA Address of the catalog management services
calling routine's work area

320 (140) 4 CCAEXCMS Address of a secondary catalog management
services work area

The following fields are set and used by IGGPLOC, IGGPEXT, IGGPMOD, and
IGGPTSTS, and catalog management subfunctions that these procedures call:

324 (I44) 4 CCACPE5 Address of a selected set of fields
CCALUME pointer

328 (I48) 4 CCACPE51 (Same as CCACPE5)

332 (14C) 4 CCACPE52 (Same as CCACPE5)

336 (ISO) 4 CCACPE53 (Same as CCACPE5)

340 (I 54) 4 CCACPE6 Address of a selected set of fields

344 (I58) 4 CCACPE61 (Same as CCACPE6)

348 (l5C) 4 CCACPE7 Address of a selected retrieved field
CCAIDPT (Same as CCACPE7)

352 (I60) 4 CCACPE71 (Same as CCACPE7)

356 (I64) 2 CCAGOPLN Length of the set-of-fields pointer

358 (I66) 2 CCASL Number of bytes for the sequence number

360 (I68) 4 CCAILNG Length of the selected retrieved field

364 (I6C) 4 CCAFLPT Address of the requested-field CTGFL
CCATFLPT Address of the CTGFL-for-tests

368 (I70) 4 CCARABPT Address of the record area block

372 (I74) 4 CCADICT Dictionary information to describe the field,
based on its field name

376 (I78) 4 CCAXCPL Address of the CTGPL built when
CCAMCPL IGGPEXT and IGGPMOD are called, so

that information in the caller's CTGPL is not
altered

380 (17C) 4 CCARABB Address of the RAB that identifies the base
catalog record

384 (180) 4 CCARABF Address of the RAB that identifies the first
record area (buffer) that can be used by
IGGPEXT or IGGPMOD

388 (I84) 4 CCARABL Address of the RAB that identifies the last
record area (buffer) that can be used by
IGGPEXT or IGGPMOD

392 (I88) 3 CCACBASE The control interval number of the base
catalog record

395 (l8B) CCAGC Type code of the requested set of fields

396 (I8C) 2 CCALREL Relative repetition number of a selected
CCALRELl set of fields

398 (I8E) 2 CCASN Sequence number of a selected set of fields
CCASNI

Data Areas 571

Catalog Communications Area (CCA)-Descrlption and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

J 400 (t90) 2 Reserved

402 (t92) 2 CCAIXFPL Index to the current CTGFL being processed

404 (t94) 2 CCAIXREL Index for CCATREL

406 (t96) 2 CCATNREL The sequence number of the next set of fields
to perform tests against if CCATREL is full
or if there are no buffers available to contain
the catalog record's next extension

408 (t 98) 2 CCATNUM Number of successful relative repetition
numbers (cannot exceed 16)

410 (t9A) 32 CCATREL Successful relative repetition numbers

442 (tBA) 2 CCATNO Total number of successful relative repetition
numbers (might exceed 16)

444 (tBC) 4 CCATEST Address of the test CTGFL

448 (tCO) 20 CCARBA Work area for extent descriptors:

448 (tCO) 6 CCACRAVL CRA volume serial number

448 (tCO) 2 CCASS Sequence number of the Data Space Group
set of fields that contains the extent

450 (tC2) 4 CCACCHHI Physical address-CCHH----of the extent's
first track

454 (tC6) 4 CCACRADT CRA device type

454 (IC6) 4 CCACCHH2 Physical address-CCHH----of the extent's
last track

458 (ICA) 2 CCATT Number of tracks in the extent J 460 (ICC) 4 CCARBAI Low relative byte address (RBA)

464 (I DO) 4 CCARBA2 High relative byte address (RBA)

468 (ID4) 2 CCATLNG The total length of the extent information
that has been processed

CCATLEN Total length of the scanned field so far

470 (ID6) 2 CCARBAL RBA extent balance

472 (tD8) 2 CCACNIX Combination name index

474 (lDA) 2 CCASMFIX The type of SMF record to be written when a
cluster or catalog is defined (SMF record for
the cluster, data set, or index)

476 (1DC) 4 CCAIDPT2 Address of the available space in the caller's
work area or of the caller-supplied update
information

480 (lEO) 4 CCAIDPT3 Address of the length field of a
variable-length field in the user's return area

484 (1E4) 2 CCAGVCT Number of set-of-fields pointers processed so
far

486 (1E6) 2 CCANEVV If the requested variable-length field is
non-existant, this field is set to binary zero

488 (lE8) 3 CCAGVEXT Control interval number of the record's next
extension record (not yet in a buffer)

491 (1EB) CCANEFV If the requested fixed-length field is
nonexistant,existant, this byte is set to X'FF'

492 (lEC) Reserved

572 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Communications Area (CCA)-Description and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

493 (lED) CCAGRGC Group code of the requested set of fields

493 (tED) CCARCDID Record ID

494 (tEE) 2 CCAGRHI Sequence number of the requested
CCAGRHIl set of fields

494 (tEE) 2 CCASSEQ Save sequence number

496 (tFO) 2 CCAIXTPL Index to test CTGPLs

498 (tF2) 2 CCADLEN Number of bytes to be deleted from the
catalog record

500 (IF4) 2 CCADIFF The difference between the insert length and
the delete length (can be a negative number)

502 (tF6) 2 CCAREPCT Number of relative repetition numbers
processed so far

504 (tF8) 2 CCADISP Displacement into variable-length field to
the delete/insert location

506 (IFA) 3 CCASVCI Save area for the control interval number of
the base catalog record

509 (tFD) 3 CCASVCIl Save area for the control interval number

512 (200) 4 CCADTA Address of the dictionary

516(204) 4 CCACDTA Address of the index combination table

520 (208» 2 CCADTCT Number of dictionary entries

522 (20A) 2 CCACDTCT Number of index combination entries

524 (20C) 4 CCACWAP Address of the controller work area

528 (210) 4 CCAMNADR Address of the virtual storage obtained by a
GETMAIN request

532 (214) 4 CCAILNG3 Save area for the insertion length

536 (218) 4 CCAILNG2 Length of the user-supplied insert data

540 (2IC) 4 CCAALPTR Address of the space management work area

544 (220) 4 CCASMFPT Address of the SMF record chain

548 (224) 4 CCALCPL Address of the CTGPL used when a catalog
management routine issues the LSP ACE
macro instruction

552 (228) CCAFLG7 Flag byte 7:

1. .. CCALSP LSPACE has been called by a catalog
management routine

.1.. CCASMFEX SMF exit indicator

.. 1. CCASMFA Perform SMF alter processing during
IGGPEXT and IGGPMOD processing

... 1 CCASMFBR The base catalog record is in a record
area (buffer) for SMF processing

1... CCAONCE Move only one set of fields
.1.. CCAROREQ Request-type is read-only
.. 1. CCAFEOV Force end of volume request
... 1 CCACRABU A CRA is being built

553 (229) CCAFLG8 Flag byte 8:

I ... CCADSRCL Recursive call for DEFINE
space

.1.. CCAVBUFI Number of volume records
buffered

.. 1. CCASCRA Suppress CRA updates

Data Areas 573

Catalog Communications Area (CCA)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

J ... 1 CCASCICK Suppress CRA control interval
check

1... CCALPIND Loop control in buffer scan
for GETs

.1.. CCAVRIND Volume record buffer chain
is to be checked

.. 1. CCALEOD End-of-file on low keys

... 1 CCAAUCAT Volume has a user catalog

554 (22A) CCAFLG9 Flags byte 9:

1. .. CCARABYC Bypass catalog I/O
.1.. CCARAEOV CRA end-of-volume
.. 1. CCARALRD CRA CCR has been read
... 1 CCARACR CRA CCR checkpoint requested

1... CCAUCRA Use CRA CI number translate table
before CRA GET

.1.. CCARAACT CRA is active

.. 1. CCARAICI Inhibit catalog I/O

... 1 CCARESUM Replace sum

... 0 Increment sum

555 (22B) CCANORBA Number of RBAs needed

556 (22C) 4 CCASMFRD Address of the SMF record

560 (230) 2 CCASMFCT Number of catalog records in the SMF record
chain to be used in creating the SMF ALTER
record

562 (232) 2 CCASMFLG SMF record flags:
CCASMFGl

Before calling the SMF-record-writing routine, the caller sets these bits to indicate what
it has done or intends to do:

1... CCASMFUC Uncatalog-write SMF record type 67
CCASMFDF DEFINE-write SMF record type 63

.1.. CCASMFSR Data set, index, or nonVSAM data set has
been scratched-write SMF record type 67

CCASMFAL ALTER-write SMF record type 63
.. xx xxxx Reserved

563 (233) CCASMFG2 Reserved

564 (234) 2 CCASMFLN Amount of virtual storage obtained for the
SMF record

566 (236) 3 CCACHAIN Control interval number save area

569 (239) 3 CCACll Control interval number save area

572 (23C) 3 CCACI2 (Same as CCACIl)

575 (23F) 3 CCACI3 (Same as CCACIl)

578 (242) 2 CCAVARLN Number of bytes to be inserted into the
record

580 (244) 4 CCARRAB Address of the RAB containing the
set-of-fields pointers where delete/insert
processing is to begin.

584 (248) 4 CCARBASE (Same as CCARRAB)

588 (24C) 4 CCAVARPT Address of the information to be inserted
into the record

592 (250) 2 CCADELN Number of bytes to be deleted from the

J record

574 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Catalog Communications Area (CCA)-Description and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

594 (252) 20 CCAVAR Insert information save area

614(266) 20 CCAVARI (Same as CCA V AR)

634 (27A) 3 CCADELl The control interval number of the first
record in a series of records to be deleted

637 (27D) 3 CCADEL2 The control interval number of the last
record in a series of records to be deleted

640 (280) 40 CCAXLATE Temporary compiler work area

680 (2A8) 4 CCAR14S IGGOCLC9 Register 14 save area

684 (2AC) 60 CCABMxxx Bit manipulation routine (IGGOCLBR) work
area

684 (2AC) 2 CCABMTRK Starting track number

686 (2AE) 2 CCABMLIM Ending track number. or upper limit

688 (2BO) 2 CCABMMIN Minimum number of tracks required

690 (2B2) CCABMFLG State and function code:

1. .. CCABMST State to set or condition to check
.1.. CCABMCHK Perform the check
.. 1. CCABMSET Set the state
... 1 CCABMCCK Perform a conditional check

1... CCABMLST Last set required
.xxx Reserved

691 (2B3) Reserved

692 (2B4) 5 CCABMOUT Output parameters for the bit manipulation

~
routine OGGOCLBR)

692 (2B4) 2 CCABMONN Number of tracks

694 (2B6) 2 CCABMOTR Starting track number

696 (2B8) CCABMOFG Output flags:

1... CCABMOST State of bits
.xxx xxxx Reserved

697 (2B9) 2 Reserved

699 (2BB) CCABMPAD Padding character

700 (2BC) 4 CCABMGOP Address of the current space map set of fields

704 (2CO) 4 CCABMPTR Address of the current bit mask byte

708 (2C4) 4 CCABMEND Address of the end of the current space map
set of fields

712 (2C8) 2 CCABMBTI Number of bits-first byte

714 (2CA) 2 CCABMBTL Number of bits-last byte

716 (2CC) 2 CCABMBYT Number of full bytes

718 (2CE) 2 CCABMSTR Current bit mask starting track

720 (2DO) 4 CCABMWKI Work area

724 (2D4) 4 CCABMWK2 Work area

728 (2D8) 4 CCADMWK3 Work area

732 (2DC) 4 CCABMWK4 Work area

736 (2EO) 4 CCABMRB1 Address of the first RAB that points to the
space map set of fields

Data Areas S7S

Catalog Communications Area (CCA}--Descrlptlon and Fonnat

Bytes and
orfset Bit Pattem Field Name Description

J 740 (2E4) 4 CCABMRB2 Address of the second RAB that points to the
space map set of fields

744 (2E8) 40 CCATEMPS Compiler "TEMPS" work area

784 (310) 348 CCAREGS Register 12, 13, and 14 save area
(See "Diagnostic Aids" for details about the
CCA register save area)

784 (310) 4 Address of user save area

788 (314) 8 CCAMODNM Load module name

1132 (46C) 4 CCABZSAV Address of the save area for IGGOCLBZ

1I32 (46C) 4 CCADSPWA Address of DEFINE SPACE work area

1136 (470) 4 Reserved

1140 (474) 4 CCACUMPL Address of the catalog management upgrade
parameter list

1144 (478) Reserved

1145 (479) 3 CCASBASE Save base control interval for upgrade
process

1148 (47C) 4 CCACRACI Address of the CRA record pointer array

1152 (480) 4 CCARAACB Address of the CRA's ACB

1156 (484) 4 CCARARPL Address of the CRA RPL

1160 (488) 4 CCARARBA Relative byte address of the CRA

1I64 (48C) 4 CCARAREC Address of a CRA record

1168 (490) 4 CCARALSA Address of the CRA local save area

1168 (490) 2 CCACRABT Block/track value for CRA record
construction

1170 (492) 2 Reserved

1172 (494) CCAFLGIO Flag byte 10:

l... CCAINCPL Catalog parameter list is invalid
.1.. CCAPDMW Problem determination message
.. 1. CCACATAC Catalog is active
... 1 CCARAFEV Forced end of volume

I. .. CCARARTC Recovery exit - return to caller
.1.. CCAPRANX Prime CRA gone
.. xx Reserved

1173 (495) 3 CCASUMIT Sum of the tracks in the CRA

1176 (498) 4 CCADICTS Data/index timestamp

1180 (49C) 8 CCAPANCA Start, end addresses of normal record buffer
chain

1188 (4A4) 8 CCARAVCA Start, end addresses of volume record buffer
chain

1196 (4AC) 8 CCAVTS Volume timestamp

1204 (4B4) 4 CCAREWKA Address of reusable data set processing
workarea

1208 (488) 4 CCASMFP Save area for SMF problem determination

1208 (488) 2 CCASMFMD MOdule ID

1210 (4BA) CCASMFRC Reason code

J 1211 (488) CCASMFCD Return code

576 OS/'1S2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

CL W--CIMe Work Area

Catalog ColDlllllllleatlons Area (CCA)-Descrlptlon and Format

Bytes aDd
Offset Bit Pattem Field Name DescrIption

1212 (4BC) 4 CCAPROBX Save area for CCAPROB

1212 (4BC) 2 CCAMODDX Error module 10

1214 (4BE) 2 CCAERCDX Error codes

1214 (4BE) CCARESNX Reason code

1215 (4BF) CCARETRX Return code

The CL W contains information used for communication among the Close and
temporary Close modules. It is built by IDA0200T (CLOSE) and IDA0231T
(CLOSE,TYPE=T), mapped by IDACLWRK, and pointed to by register 4
during VSAM Close processing.

CLOSE Work Area (CLW)-Descripdon and Format

Bytes and
Offset BIt Pattern Field Name DescrIption

0(0) 4 CLWCOMWK Address of common work area

4 (4) 4 CLWAMBPT Address of current AMB

8 (8) 12 CLWSFI Subfunction information area

20 (14) 2 CLWFLAGS Flag bytes:

Byte I:

1... CLWBNOFL No buffer flush
.1. . CLWCNOUP No catalog update
.. 1. CLWNWRIT No write buffer
... 1 CLWPATH Path processing

1. .. CLWSPHCL Close entire sphere
• 1.. CLWDUMMY Dummy data set
.• 1. CLWOUTPT Base data set opened for output
... 1 CLWPARCL Partial close

Byte 2:
1... CLWPRMCL Primary close
.1.. CLWSECCL Secondary close
.. 1. CLWGMAIN Module work area built
... 1 CLWTERM Terminating error in IDA0200B

xxxx Reserved

CMB-Cluste, Mllllllgemellt Block

The CMB contains the addresses of header elements in the header element
block that describe storage obtained for the control blocks of a
key-sequenced or entry-sequenced data set.

The CMB is pointed to by the AMBL (AMBLCMB). It is further described
in "Virtual-Storage Management" in "Diagnostic Aids."

Offset

0(0)

1(1)

2 (2)

Bytes aDd
Bit Pattern FIeld Name

CMBID

2 CMBLEN

DescrIption

Control block identifier, X'I l'

Reserved

Length of the CMB

Data Areas 577

<luater Management Block (CMB)-Description and Format

Offset

4 (4)

5 (5)

6 (6)

8 (8)

8 (8)

12 (C)

16 (to)

20 (14)

24 (18)

28 (lC)

32 (20)

36 (24)

40 (28)

44 (2C)

CPA.-Channel Progmm A.rea

Bytes and
Bit Pattern

1

1... 1

.xxx xxxx

2

40

4

4

4

4

4

4

4

4

4

4

Field Name Description

CMBFLGS Flags:
CMBOUT The control block structure allows output

requests
Reserved

CMBNST Number of strings set up in the control block
structure

CMBCNT Number of addresses that follow:

CMBPTRS Addresses of header elements in the header
element block.

CMBUSRPT User block header

CMBPRPTR Protected user block header

CMBSTPTR String block header

CMBUSPTR Upgrade string block header

CMBFSTPT Fixed string block header

CMBUFSPT Fixed upgrade string block header

CMBBFRPT Buffer block header

CMBUBFPT Upgrade buffer block header

CMBDEBPT DEB (data extent block) block header

CMBEDBPT EDB (extent definition block) block header

The CPA contains addresses to CCW chains that perform specialized I/O
processing. The CPA also contains information needed to convert the
addresses of virtual storage data areas to real main storage addresses for the
channel. Each BUFC has a CPA associated with it, pointed to by the
BUFCCPA.

Note: See module listing IDA019R3 for channel program building and
execution details. The formats of four channel programs follow this
description of the CPA.

Bytes and
Offset Bit Pattern Field Name Description

0(0) CPAID Control block identifier, X'71'

1 (1) Reserved

2 (2) 2 CPALEN Length of the CPA

4 (4) 4 CPAWREAL Real address of the previous write channel
program segment

8 (8) 4 CPAWCPS Real address of the first CCW in the write
channel program segment

12 (C) 4 CPAWCPE Real address of the last CCW in the write
channel program segment

16 (10) 4 CPAWCKS Real address of the first CCW in the write
check channel program segment

20 (14) 4 CPAWCKE Real address of the last CCW in the write
check channel program segment

24 (18) 4 CPARREAL Real address of the previous read program
channel segment

28 (1C) 4 CPARCPS Real address of the first CCW in the read
channel program segment

578 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

J

Channel Program Area (CPA)-Description and Format

8ytesand
Offset Bit Pattern Field Name Desaiption

L~ 32 (20) 4 CPARCPE Real address of the last CCW in the read
channel program segment

36 (24) 8 CPAWPHAD The physical address for records to be
written, in the form MBBCCHHR:

36 (24) Reserved (M value)

37 (25) 6 CPAWSEEK Seek address:

37 (25) 2 CPAWBB BB value

39 (27) 4 CPAWCHR Cylinder and head address (CCHH value)

43 (2B) Reserved (record number R)

44 (2C) 4 CPAWSID Address of the search argument list for write
channel program segments

48 (30) 4 CPAFWCNT Address of the count fields list for the format
write channel program segment

52 (34) 8 CPARPHAD The physical address for records to be read,
in the form MBBCCHHR:

52 (34) Reserved (M value)

53 (35) 6 CPARSEEK Seek address:

53 (35) 2 CPARBB BB value

55 (37) 4 CPARCHR Cylinder and head address (CCHH value)

59 (3B) Reserved (record number R)

60 (3C) 4 CPAIDAL Address of the real page list (indirect data
address list)

~ 64 (40) 4 CPAVPL Address of the virtual page list

68 (44) 4 CPAWORKt Work area

72 (48) 4 CPAWORK2 Work area

76 (4C) 4 CPABLKSZ The physical blocksize value calculated by
the I/O Manager: Convert routine

80 (50) 2 CPABCINV Number of physical blocks per control
interval

82 (52) CPASSECT Set sector argument

83 (53) CPASTATt Flags:

1. CPAVPLV The virtual page list (VPL) is valid
.xxxxxxx Reserved

84 (54) 2 CPAFLAGS Flags:

84 (54) Byte t CPAFLAGt

1. CPAWV The write channel program segment is valid
.1.. CPAWCV The write check channel program segment

is valid
.. 1. CPARV The read channel program segment is valid
... 1 CPAWRPS The write channel program segment

(preceeded by a set sector CCW) is
valid

.... 1.. . CPARRPS The read channel program segment
(preceeded by a set sector (CCW) is
valid

.1.. CPACHNED Chaining of the channel program segments
is complete

L .. xx Reserved

Data Areas 579

Chllnnel Programs

Read Channel Program

Channel Program Area (CPA)-Description and Format

Bytes and
Offset Bit Pattem Field Name Description

85 (55) Byte 2 CPAFLAG2

1. CPAWREPL The write channel program segment
is used to write replicated index
records

.1.. CPARREPL The read channel program segment is used to
read replicated index records

.. 1. CPAXLRA There has been a LRA instruction error

... 1 CPAPFENT The pagefix appendage has been called
1... CPATKOFL Track:overflow
.xxx Reserved

86 (56) CPARSECT Set sector argument-read

87 (57) CPAWSECT Set sector argument-write

88 (58) 4 CPANXTI Address of the static CPA chain

92 (5C) 4 CPACPCHN Address of the dynamic CPA chain

Four channel programs (read, format write, update write, and write check)
are used for I/O operations:

The read channel program is used to retrieve data from direct-access storage.

ccw Command Code Flags
Number Hex DescrIption Address Hex Description Count

RI IB Seek head CPARSEEK 40

R2 231 Set sector CPARSECT 60

R3 31 Search ID eq. CPARSID 60

R4 08 TIC R3

R52 063 Read data IDAL 40
CPABLKSZ

864 M-T read data IDAL 40
CPABLKSZ

Rn 035 Noop 20

1 Unless there is RPS (Rotational Position Sensing), R2 is a no op.

2 R5 is repeated for each physical record per control interval that is retrieved.

3 R5 uses a read-data command for the first physical record.

4 R5 uses a multiple-track read-data command for subsequent physical records.

5 Rn can be changed to a TIC (transfer in channel) command to chain to another
read channel program.

CC 6

CC, SLI

CC, SLI 5

CC

CC

SLI 2

580 OS/VS2 SVS Independent Component: Virtual Storage Access Method (YSAM) Logic

J

J

Format Write Channel Program

Update Write Channel Program

The format write channel program is used to preformat or write data on a
whole track (as in loading a data set with the SPEED option).

CCW Command Code
Number Hex

FWI IB

FW2 231

FW3 31

FW4 08

FW52 10

FWfY. 10
CPABLKSZ

FWn 033

Description

Seek head

Set sector

Search ID eq.

TIC

Address

CPAWSEEK

CPAWSECT

CPAWSlD

FW3

WriteC,K,&D CPAFWCNT

Write C,K,&D lDAL

Noop

1 Unless there is RPS (Rotational Position Sensing), FW2 is a no op.

Flags
Hex

40

60

40

80

44

20

2 FW5 and FW6 are repeated (write count, key, and data) for each physical record
on a track.

3 FWn can be changed to a TIC (transfer in channel) command to chain to
another format write channel program or to a write check channel program.

Description Count

CC 6

CC, SLI

CC 5

CC 8

CC, lDAL

SLI 2

The update write channel program is used to write data on a part of a track
(as in insertion).

CCW Command Code Flags
Number Hex Description Address Hex Description Count

UWl IB Seek head CPAWSEEK 40 CC 6

UW21 23 Set sector CPAWSECT 60 CC, SLI

UW32 31 Search ID eq. CPAWSlD 40 CC 5

UW42 08 TIC UW3

UW52 05 Write data lDAL 44 CC,lDAL
CPABLKSZ

UWn 03 3 Noop 20 SLI 2

1 Unless there is RPS (Rotational Position Sensing), UW2 is a no op.

2 UW3, UW4, and UW5 are repeated for each physical record indicated in the
CPA. The command code for subsequent UW3s is Bl, multiple-track search ID
equal.

3 UWn can be changed to a TIC (transfer in channel) command to chain to
another update write channel program or to a write check channel program.

Data Areas 581

Write Check Channel Program

The write check channel program is used to retrieve data to compare it with
the data that was previously written.

CCW Command Code Flags
Number Hex Description Address Hex Description Count

WCt tB Seek head CPAWSEEK 40 CC 6

WC2 231 Set sector CPAWSECT 60 CC, SLI

WC3 3t Search ID eq. CPAFWCTNZ 40 CC 5
CPAWSID3

WC4 08 TIC WC3

WC5 064 Read data IDAL 50 CC, Skip
CPABLKSZ

865 M-T read data IDAL 50 CC, Skip
CPABLKSZ

WCn 036 Noop 20 SLI 2

1 Unless there is RPS (Rotational Position Sensing), WC2 is a no op.

2 CP AFWCNT is used to check a format write.

3 CPA WSID is used to check an update write.

4 WC5 uses a read-data command for the first physical record.

5 WC5 uses a multiple-track read-data command for subsequent physical records.

6 wen can be changed to a TIC (transfer in channel) command to chain to
another write check channel program.

582 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

CSL-Core Save List

The CSL contains up to 32 entries that describe virtual-storage areas acquired
by GETMAIN in Open. It enables Open to free these areas if it detects an
error that prevents them from being freed in normal Open termination.

The CSL is pointed to by OPWA (called the ACB work area). Additional
CSLs are chained as required.

Bytes and
Offset Bit Pattern

CSLHeader

0(0) 4

0(0)

1(1) 3

4 (4) 8

12 (C) 4

16 (10) 2

18 (12) 2

20 (14) 12x32

CSL Entry

0(0) 12

0(0) 8

0(0)

1(1) 3

4 (4) 4

8 (8)

1.
. 1.
00

.. 1.

... x xxxx

9 (9) 3

Field Name

CSLRO

CSLSUBPL

CSLLENTH

CSLID

CSLNXPTR

CSLACTEN

CSLNTRYS

CSLENTRY

CSLFREMN

CSLPOOLN

CSLCORLN

CSLCORPT

CSLFLAGS

CSLKEYS
CSLKEY7

CSUSTCB

CSLANCPT

Description

Used to load register 0 for FREEMAIN

Subpool number of the CSL

Length of the CSL

Identifier: '1;IDACSL1;'

Address of the next CSL (zero for the last
CSL in the chain)

Number of active entries

Reserved

Entries for virtual-storage areas:

An entry for a virtual-storage area:

Information for FREE MAIN

Subpool number of the virtual-storage area

Length of the virtual-storage area

Address of the virtual-storage area

Flags:

The storage is in key 5
The storage is in key 7
The storage is in key 0 or
the key of the problem
program
The storage is owned by the
job-step TCB
Reserved

Address of the header element in the HEB
for the virtual-storage area, or zero

CTGCV-VSAM Catalog Control Volume List

The CTGCV is built by the Scheduler to contain the volume and name of the
OS/VS system catalog CVOL entry for a SUPERLOCATE request. CTGCV
is mapped by IEZCTGCV and is pointed to by CTGPL.

Offset

() (0)

6 (6)

Bytes and
Bit Pattern

6

4

Field Name

CTGCVVOL

CTGCVDEV

Description

CVOL volume serial

CVOL device type

Data Area 583

CTGFL-Field Parameter List
\

The CTGFL is built before an OS/VS component issues the CATLG macro
instruction (SVC 26) to process a catalog record. The CTGFL defines one of
the catalog record's fields or a group of logically related fields (identified by a
combination name). The CTGFL is used in two situations:

• It identifies catalog record information to retrieve or update. The CTGPL
contains the address of each CTGFL used in this way.

• It identifies catalog record information to compare against caller-supplied
data. This is a "test" CTGFL and is addressed by another CTGFL.

When a catalog management routine is processing a CTGFL, the CTGFL's
address is in the CCA (CCAFLPT or CCATEST).

CTGFL-Field Parameter List

Offset

0(0)

I (J)

2 (2)

3 (3)

4 (4)

S (S)

12 (C)

Bytesaud
Bit Pattern

X'OO'

X'nonOO'

X'SO'
X'70'
X'20'
X'40'
X'AO'
X'CO'
X'SO'
X'IO'
X'40'

xxxx xxx.
... 0
... 1

4

4

4

Field Name

CTGFLDNO

CTGFLDCD

CTGFLDGC

CTGFLDRE

CTGFLDWA

CTGFLDNM

CTGFLCHN

16 (10) CTGFLDAT
(CTGFLDNO x S)

Description

Number of entries in CTGFLDAT

Test condition:

The CTGFL describes a field to be updated
or retrieved. The CTGFL is pointed to by the
caller's CTGPL (CTGFlELD entry).

The CTGFL describes a test condition. The
CTGFL is pointed to by another CTGFL.

Test condition:

Equal
Not equal
Greater than
Less than
Greater than or equal
Less than or equal
Test under mask for zeros
Test under mask for ones
Test under mask for mixed

Type code number

Test results:

Reserved
Successful test
Test failed

Work area: contains information about the
catalog record's field name from the
dictionary

Address of the field name

Address of a CTGFL-for-tests, or 0

Address and length, in the caller's work
area, of:

• Each field that was retrieved, if the
request was LOCATE or LISTCAT.

• New data to replace or add to data in the
catalog record, if the request was
UPDATE, DEFINE, or ALTER.

• Data used to compare to catalog record
fields, if the CTGFL is a
CTGFL-for-tests.

584 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

CTGFV-Field Vector Table

The CTGFV is built by the Access Method Services (AMS) utility programs
and contains addresses of user-supplied information fields and lists. The
CTGFV is built when the user issues a DEFINE or ALTER command. If the
user is creating a cluster, a CTGFV is built for each catalog record that will
be built to describe the cluster: that is, Access Method Services builds a
cluster CTGFV, a data CTGFV, and, if the cluster is key-sequenced, an index
CTGFV. The CTGFV is pointed to by the CTGPL (CTGFVT). If Access
Method Services builds more than one CTGFV, the cluster CTGFV is
pointed to by the CTGPL (CTGFVT) and the data and index CTGFVs are
pointed to by the cluster CTGFV.

Bytes and
Offset Bit Pattern Field Name Description

0(0) CTGFVTYP The CTGFY contains information used by
the catalog management service's DEFINE
routines to build a catalog record of the type:

C'A' NonVSAM
CC' Cluster
C'D' Data
C'G' CTGFYAIX Alternate index
CI' Index
C'R' CTGFYPTH Path
C'V' Volume

1(1) CTGFYPRO Catalog management services processing
option flags:

1... CTGFYAVL ALTER: Add volumes
.1 .. CTGFYRVL ALTER: Remove volumes

L .. 1. CTGFYNDC No device-type conversion
... 1 CTGFYDRC DEFINE a recoverable catalog

xxxx Reserved

2 (2) CTGFYELM Element number of CMSPCATR

3 (3) Reserved

4 (4) 4 CTGFYDCH Address of the cluster's data CTGFY

8 (8) 4 CTGFYICH Address of the cluster's index CTGFY

12 (C) 4 CTGFYVCH Address of the space vector table

16 (10) 4 CTGFYIND Address of the associated DD statement

20 (14) 4 CTGFYENT Address of the entry name CTGFL

24 (18) 4 CTGFVSTY Address of the security information CTGFL
(passwords, codeword, and number of tries)

28 (lC) 4 CTGFYOWN Address of the owner identification CTGFL

32 (20) 4 CTGFYEXP Address of the expiration date CTGFL

36 (24) 4 CTGFYCRE Address of the creation date CTGFL

40 (28) 4 CTGFYVLT Address of the volume serial number list

44 (2C) 4 CTGFYRNG Address of the key range list

48 (30) 4 CTGFYDVT Address of the device type CTGFL (for
NonVSAM DEFINE only)

52 (34) 4 CTGFYSPC Address of the space allocation information
CTGFL

56 (38) 4 CTGFYAMD Address of the AMDSB CTGFL (if VSAM
DEFINE)

CTGFYFSN Address of the file sequence number
(if NonVSAM DEFINE)

Data Areas 585

Field Vector Table (CfGFV)-Description and Fonnat

Bytes and
Offset Bit Pattem

60 (3C) 4

64 (40) 4

68 (44) 4

72 (48) 4

76 (4C) 4

80 (50) 4

84 (54) 4

88 (58) 4

CI'GPL-Catll/og Parameter List

Fleld Name

CTGFVATR

CTGFVBUF

CTGFVLRS

CTGFVEXT

CTGFVUPG

CTGFVNAM

CTGFVPWD

CTGFVWKA

Description

Address of the data set attributes CTGFL

Address of the buffer size CTGFL

Address of the average record size CTGFL

Address of exception exit parameter list

Address of alternate index/path parameter
list

Address of the related name

Address of related object's password

Address of the CRA feedback area

The CTGPL is built before an OS/VS component issues the CATLG macro
instruction (SVC 26) to process a catalog record. The CTGPL defines the
catalog management request and its options, the catalog record to be
processed, and the VSAM catalog that contains the record. The CTGPL is
pointed to by register 1. When the catalog management routines build a CCA
to support the request, the address of the CTGPL is put into the CCA
(CCACPL).

Bytes and
Offset Bit Pattem Field Name Description

0(0) CTGOPTNI First option byte:

1... CTGBYPSS Bypass the catalog management security
verification processing

.1.. CTGMAST Check the master password

.. 1. CTGCI Check the control interval password

..• 1 CTGUPD Check the update password
1. .. CTGREAD Check the read password
.1.. CTGNAME The CTGENT field contains the address of

a 44-byte dsname, or a 6-byte volume
serial number (padded with binary Os)

.0 .. The CTGENT field contains the address of
a 3-byte control interval number

.. 1. CTGCNAME The CTGCAT field contains the address of a
44-byte catalog dsname or the address
of an OS/VS system catalog CVOL entry

.... .. 0 . The CTGCAT field contains the address of a
4-byte field that contains the address of a
VSAM catalog's ACB

... x Reserved

1(1) CTGOPTN2 Second option byte:

1... CTGEXT Extend option (with UPDATE)
.1.. CTGERASE Erase option (with DELETE)

CTGSMF Write SMF record option (with LSPACE)
.. 1. CTGPURG Purge option (with DELETE)

CTGVMNT The caller is VSAM Open/Close!EOV:
Volume Mount and Verify routine
(IDAOI92V)

... 1 CTGGTNXT Get-next option (with LISTCAT
1... CTGDlSC Disconnect option (with DELETE)
.1.. CTGOVRID Erase override option (with DELETE)
.. 1. CTGSCR Scratch space option (with DELETE)
... x Reserved

586 OS/VS2 SVS Independent Component: Virtual Storage Access Method (V SAM) Logic

J

Catalog Panmeter List (CfGPL)-Description and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

2 (2) CTGOPTN3 Third option byte:

xxx CTGFUNC Specifies the caller-requested function:
001. LOCATE
010 LSPACE
OIl. UPDATE
100 A Catalog Management Services

function (see CTGOPTNS)
... 1 CTGSUPLT Super-Locate function

x ... Reserved
.1.. CTGSRH Search the OS/VS system catalog first
.0 .. Search the VSAM catalog first (specified by

CTGCATor, if CTGCAT "" 0, search
the VSAM catalogs available to
the caller)

.. 1. CTGNUM Search only one catalog (specified by
CTGCAT)

.. 0. Search as many catalogs as are available

... 1 CTGAMO The call is a VSAM catalog management
request

... 0 The call is a nonVSAM request

3 (3) CTGOPTN4 Fourth option byte:
xxxx.xxx Reserved

l... CTGBYPMT Bypass security prompting to system
operator

4 (4) 4 CTGENT Address of the catalog record identifier, as
defined in CTGOPTNI.

CTGFVT Address of the caller's CTGFV

8 (8) 4 CTGCAT Address of the catalog's dsname or a 4-byte
field that contains the address of the
specified in CTGOPTNI

CTGCVOL Address of an OS/VS system catalog CVOL
entry, if the request is SUPERLOCA TE

12 (C) 4 CTGWKA Address of the caller's work area

16 (10) 2 CTGDSORG Data set organization, if the request is
SUPERLOCATE

16 (10) CTGOPTNS Catalog Management Services request
options:

0000 l... DEFINE
00010 ... ALTER
00011... DELETE
00100 ... LISTCAT
00110 ... CONVERTV

.xxx Reserved

17 (I I) Reserved

L
Data Areas 587

CTGVL-Volume List

Catalog Parameter LIst (CfGPL)-Description and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

18 (12) CTGTYPE Type of catalog record:

C'·D' Data
C'I' Index
C'A' NonVSAM
C'U' User catalog
C'V' Volume
C'C' Cluster
COM' Master catalog
COG' Alternate index
COR' Path
Coy, Upgrade
C'F' Free

19 (13) CTGNOFLD Number of entries contained in CTGFIELD

20 (14) 4 CTGDDNM Address of the DD statement, if one is
associated with this request

CTGNEWNM Address of the new dsname, if the request is
ALTER and the object's name is being
changed

If the request is Super-Locate:

20 (14) 2 CTGFDBK Feedback area

22 (16) CTGFBFLG Flags:

1. .. CTGPAR Parallel mount
.1.. CTGKEEP Forced keep
.. xx xxxx Reserved

23 (17) Reserved

24 (18) 4 CTGJSCB Address of the JSCB
CTGPSWD Address of the caller-supplied password

28 (lC) VL CTGFIELD The address of each CTGFL, to specify
each catalog field to be processed. The length
of CTGFIELD is four times the
CTGNOFLD value.

The CTGVL is built by the issuer of a locate request for a data-set name.
Catalog management uses the CTGVL to return to the caller the volume
serial numbers of the volumes on which space is allocated to the data set. For
superlocate requests, the CTGW A points to the CTGVL.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 6 CTGVLVOL Volume serial number

6 (6) 4 CTGVLDEV Device type

10 (A) 2 CTGVLSEQ File sequence number

12 (C) 3 CTGVLTTR For a single-volume data set, the TTR of its
DSCB

12 (C) VL For a multi-volume data set, a repetition of
CTGVLVOL, CTGVLDEVand
CTGVLSEQ for the rest of the volumes

588 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

CTGWA-Work Area

The CTGW A is built by the caller of catalog management for most requests.
The CTGPL points to the CTGW A.

The work area has one format for a supedocate request and another format
for all other requests.

Format for a Request Other Than Superiocate

Offset

0(0)

2 (2)

Bytes and
Bit Pattern

2

VL

Field Name

CTGWALNG

*

Format for a Superlocate Request

Offset

0(0)

4 (4)

6 (6)

8 (8)

Bytes and
Bit Pattern

4

2

2

2

F1eldName

CTGWAVL

CTGWALV

CTGWAVCT

CTGWAUCT

Description

Length of the work area

Data returned for DEFINE, DELETE,
GENDSP, LISTCAT, LOCATE, LSPACE

Description

Address of the CTGVL (volume list)

Length of the volume list

Number of volume serial numbers returned
in the volume list

Minimum number of volumes that must be
mounted

DIWA-Data Insert Work Area

The DIW A is a work area used by the control area and control interval
splitting modules. The DIW A is pointed to by the data AMB (AMBIW A).

Bytes and
Offset Bit Pattern Field Name Description

0(0) DIWID Control block identifier, X' 41 '

1 (I) DIWATV Test-and-set (TS) assembler instruction is
issued against this field to obtain exclusive
use of the DIW A

2 (2) 2 DIWLEN Length of a DIW A in bytes

4 (4) DIWFLGl Flag byte 1:

1. .. DIWCAS Control-area split is in progress
.1.. DIWCISPL Control-interval split has been

performed
.. 1. DIWPFERR I/O error occurred during preformating
... 1 DIWEOKR Key of a record to be inserted in a key-range

data set is greater than the highest possible
key in the current key range; this
end of key-range condition causes a
control-interval split

1... DIWGSPC Spanned record needs a new
control area

.1.. DIWSHIFT There is a shift in the insert point

.. 1. DISNOTl The buffer had intermediate or last segment
of a spanned record

... 1 DIWIST The buffer had first or intermediate segment
of a spanned record

5(5) DIWFLG2 Flag byte 2:

1. .. DIWFSPF Preformatting is needed in an
entry-sequenced data set

Data Areas 589

Data Insert Work Area (DIW A)-Description and Format

Bytes and
Offset BIt Pattern Fleld Name Description J .xxxxxxx Reserved

6 (6) 2 Reserved

8 (8) 4 DIWLRBA Address of the first control interval in a
control area which is being split

12 (C) 4 DIWHRBA Address of the last control interval in a
control area which is being split

16 (10) 4 DIWPLH Address of the PLH which is currently
associated with the DIW A

20 (14) 4 DIWBUFC Address of the BUFC which controls the
insert work buffer

24 (18) 4 DIWSPLTP Address of the RDF associated with the first
record to be moved to a new control interval
as a result of a control-interval split

28 (lC) 20 DIWSAVE Register save area

DSL-DEB Save List

The DSL contains up to 16 entries that describe DEBs that have been
successfully chained and added to the DEB table. It enables Open to free the
DEBs if an error prevents them from being freed normally.

The DSL is pointed to by OPWA (called the ACB work area). Additional
DSLs are chained as required.

Bytes and
Offset Bit Pattern Field Name Description

0(0) DSLSUBPL Subpool number of the DSL

1(1) 3 DSLLENTH Length of the DSL

4 (4) 8 DSLID Identifier: 'bIDADSLb'

12 (C) 4 DSLNXPTR Address of the next DSL (zero for the last
DSL in the chain)

16 (10) 2 DSLACTEN Number of active entries

18 (12) 2 Reserved

20 (14) 4x16 DSLENTRY Entries for DEBs:

20 (14) DSLFLG Flags:

... 1 DSLFDDEB The DEB is a dummy DEB
xxxxxxx. Reserved

21 (IS) 3 DSLDEBAD Address of the DEB

590 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

EDB-Extent Definition Block

ESL-Enqueue Save List

The EOB describes all extents of the space allocated to the cluster's data set.
The EOB is built by the VSAM Open routine from information in the data
set's catalog record.

The EOB header contains the length of the EOB and the number of EOB
entries that follow the header. Each EOB entry describes an extent, and
contains the address of the associated LPMB. The EOB header is pointed to
by the AMB (AMBEOB).

Offset
Bytes and
Bit Pattern

EDB Header Definition

0(0)

1 (1)

2 (2)

4 (4)

2

4

EDB Entry Dermition

0(0)

3 (3)

4 (4)

8 (8)

12 (C)

16 (10)

3

4

4

4

4

Field Name

EDBIDID

EDBNO

EDBLEN

EDBLPMBC

EDBM

EDBLPMBA

EDBSTIRK

EDBLORBA

EDBHIRBA

Description

Control block identifier, X'90'

Number of EDB entrie~ne EDB per
logical extent

Length of an EDB entry in bytes

Address of first LPMB

Reserved

Extent number; specifies the relative location
of an extent entry in a DEB

Address of LPMB

Relative track address of the extent
associated with this EDB

RBA of the start of the extent

RBA of the end of the extent

The ESL contains up to 16 entries that describe ENQ requests that have been
completed during Open. It enables Open to dequeue the indicated resources if
an error prevents them from being dequeued normally.

The ESL is pointed to by OPWA (called the ACB work area). Additional
ESLs are chained as required.

Offset

0(0)

1 (1)

4 (4)

12 (C)

16 (10)

18 (12)

10 (14)

20 (14)

21 (15)

21 (15)

Bytes and
Bit Pattern Field Name

3

8

4

2

2

ESLSUBPL

ESLLENTH

ESLID

ESLNXPTR

ESLACTEN

9 x 16 ESLENTRY

ESLENQOP

8 ESLRNAME

3 ESLCINBR

Description

Subpool number of the ESL

Length of the ESL

Identifier: 'bIDAESLb'

Address of the next ESL (zero for the last
ESL in the chain)

Number of active entries

Reserved

Entries for resources enqueued:

The ENQ option that was used for this
resource

ENQ resource name (minor) that identifies
this resource:

Control-interval number for the resource

Data Areas 591

EXLST-Exit List

ESL-Enqueue Save LIst

Bytes and
Offset BIt Pattem Field Name

24 (18) 4 ESLACBAD

28 (tC) ESLIO

DescrIption

Address of the ACB of the catalog for the
resource

Indicator of the purpose of the ENQ:
I input
o output

The EXLST contains addresses for the user-exit processing routines EODAD,
SYNAD, LERAD, and JRNAD. The address of the EXLST is in the ACB
(ACBEXLST).

Bytes and
Offset Bit Pattem Field Name DescrIption

0(0) EXLID Control block identifier, X'8t'

1(0 EXLSTYP Subtype identifier:

X'tO' = VSAM
X'20'= VTAM

2 (2) 2 EXLLEN Length of the control block

4 (4) Reserved

5 (5) EXLEODF Entry description

6 (6) 4 EXLEODP Address of the EODAD exit routine

to (A) EXLSYNF Entry description

It (B) 4 EXLSYNP Address of the SYNAD exit routine

15 (F) EXLLERF Entry description

16 (10) 4 EXLLERP Address of the LERAD exit routine

20 (14) EXLUPADF Entry description

2t (t5) 4 EXLUPADP Address of the UP AD exit routine

2S (t9) 5 Reserved

30 (IE) EXURNF Entry description

31 (IF) 4 EXURNP Address of the JRNAD exit routine

3S (23) 10 Reserved

592 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

HEB--Header Element Block

The HEB is used by Virtual-Storage Management to allocate and free
unprotected storage blocks. It contains 16 header elements, each of which
describes a storage block. It is further described in "Virtual-Storage
Management" in "Diagnostic Aids."

The HEB is pointed to by the BIB (BIBHEBPT). The first free header
element is pointed to by BffiHEBFQ.

Bytes and
Offset Bit Pattern Field Name

HEB Block Definition

0(0) HEBID

1 (1)

2 (2) 2 HEBLEN

4 (4) 4 HEBNHEB

8 (8) 2

10 (A) 2 HEBCNT

12 (C) 20 x 16 HEBHDELS

HEB Header Element Definition

0(0)

0(0)

1(1)

4 (4)

8 (8)

9 (9)

12 (C)

16 (to)

ICWA.-Index Create Work Area

1. ..

8

3

4

.xxx xxxx

3

4

4

HEBFREMN

HEBSP

HEBLN

HEBBLKPT

HEBFLAGS

HEBPGBDY

HEBAVSP

HEBELCHN

HEBNBYTE

Description

Control block identifier, X'13'

Reserved

Length of the HEB (including header
elements)

Address of the next HEB (or 0)

Reserved

Number of header elements in use

Header elements:

Information for freeing the storage block
described by this header element:

Subpool in which the storage block is located

Length of the storage block

Address of the storage block

Flags:

The storage block is on a page boundary
Reserved

Amount of space available in the storage
block

Address of the next header element

Address of the next available byte

The ICW A contains information needed when a VSAM index record is being
built or modified during key-sequenced data set creation. The ICW A is
pointed to by the index AMB (AMBIW A).

Bytes and
Offset Bit Pattern

0(0)

t (1)

1...
.1..
.. 1.
... 1

1. ..
.1..
.. 1.
... 1

Field Name

ICWID

ICWFLGI

ICWWNF
ICWWAGM
ICWRBAOK
ICWVSE
ICWVNE
ICWKRDS
ICWSPLIT
ICWENDRQ

Description

Control block identifier, X'43'

Flag byte:

Entry won't fit in the index record
The Open routine did not supply a work area
Don't get RBA on initial
The section entry is valid
The previous entry is valid
The data set is divided into key ranges
The work area contains a split index record
The Close routine requires a control interval
split

Data Areas 593

Index Create Work Area (ICWA)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

2 (2) 2 ICWLEN Length of the ICWA

4 (4) 4 ICWCHN Address of the next ICWA

8 (8) 4 ICWBUFC Address of the current index BUFC

12 (C) 4 ICWCRBA Current index RBA

16 (IO) 4 ICWPRBA Previous index RBA

20 (14) 2 ICWPSEO Displacement from the beginning of the
index record to the prior section entry

22 (16) 2 ICWSCNT Number of entries in the current section

24 (18) 4 ICWADD Address of the current work area

28 (IC) 4 ICWTBASE Base RBA

32 (20) 4 ICWTPTR Address of the index save position

36 (24) 4 ICWARDBP Address of the current ARDB

40 (28) 2 ICWLN Index level number

42 (2A) 2 ICWKEYIL Length of the current key

44 (2C) 2 ICWKEY2L Length of the previous key

46 (2E) 2 ICWKEY3L Length of the section key

48 (30) 2 ICWNEST Number of entries in the index section

50(32) 2 ICWNOSEG Number of segments in a spanned record

52(34) 2 ICWCRSEG Number of the segment being processed

54 (36) ICWREQ Request type

J 55 (37) ICWPTL Index entry pointer length

56 (38) ICWCER Rear compression count of the current index
entry

57 (39) ICWCEF Current index entry F-number of front-key
compressed bytes

58 (3A) ICWCEL Current index entry L-length of the
compressed key in the entry

59 (3B) ICWCERP Rear compression count of the previous
index entry

60 (3C) (key length) ICWKEYI Save area for the current key

VL (key length) ICWKEY2 Save area for the previous key

VL (key length) ICWKEY3 Save area for the section key

594 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

IICB-ISAM Inter/ace Control Block

The IICB is used to address the DCB (ISAM) and the ACB and RPL
(VSAM) control blocks and associated areas needed by the ISAM interface.
The nCB is pointed to by the DEBWKPT5 field in the ISAM DEB to provide
integrity and by the RPLIICB field in the RPL Extension to provide the
connection to VSAM control programs.

Bytes and
Offset Bit Pattern Field Name Description

0(0) I1CBID IICB identifier, X'SO'.

I (I) Reserved.

2 (2) 2 I1CBLEN Length of IICB, in bytes.

4 (4) 4 IIDCBPTR Address of DCB.

S (S) 4 IIACBPTR Address of ACB.

12 (C) 4 I1RPLPTR Address of RPL.

16 (10) 4 IIWICBF Address of dummy work area (scan mode).

16 (10) 2 I1SAVLRL Previous DCBLRECL value (load mode).

IS (12) 2 IIMAXLRL Maximum DCBLRECL value (load mode).

20 (14) 4 IIKEYPT Address of key (dummy ISAM) save area.

24 (IS) IIFLAGI ISAM interface status flags:

I I1FSCAN Scan mode.
.1 IIFGET First GET request.
.. I. IIFPASS First pass in load mode.
... 1 IIFCLOSE Close in process.

I ... I1DATA Data only retrieval.
.1 .. IIFTEST Loop test bit.
.. x. Reserved
... 1 IIQBFRS QISAM does not use buffers-no

FREEMAIN is required.

25 (19) 3 IIACBL ACB, EXLST, I1CB length for
GETMAIN/FREEMAIN.

28 (IC) IIFLAG2 ISAM interface status flags used by Open to
designate the fields being merged by ISAM
Interface. ISAM Interface Close uses the
same mask to restore the DCB to its pre-open
status.

1 MRKP Relative key position.
.1 MLRECL Logical record length.
.. I. MBLKSI Block size.
... 1 MOPTCD Option code.

1 ... MRECFM Record format.
.1.. MBUFL Buffer length.
.. I. MBUFNO Buffer number.
... 1 MKEYLE Key length.

29 (to) 3 I1RPLL RPL and RPLE: length for
GETMAIN/FREEMAIN.

32 (20) 2 IIKEYSL Length of key save area, in bytes.

34 (22) 2 IIBUFL Length of single ISAM Interface buffer (used
in calculations).

36 (24) IIFLAG3 ISAM interface status flags:

I... MBFALN BFALN merge bit.
. xxxxxxx Reserved .

37 (25) 3 IIMSGL Message area length.

Data Areas 595

ISAM Interface Control Block (IICB)-Description and Format

Bytes and
orfset Bit Pattern

40 (28) 4

44 (2C)

45 (2D) 3

48 (30) 4

52 (34) 8

60 (3C) 72

60 (3C) 4

64 (40) 4

68 (44) 4

72 (48) 60

IMWA-Index Insert Work Area

Field Name

IIMSGPTR

IIBUFNO

lITBUFL

IISVCLST

lISAMSYN

IIREGSAV

IIREGBC

IIREGFC

Description

Message area pointer.

Number of ISAM Interface buffers built by
Open.

Total BCB and buffer length for
GETMAIN/FREEMAIN.

SVC exit for SYNADAF.

ISAM SYNAD name-used when SYNAD is
specified in the AMP parameter.

Register save area.

Reserved

Previous save area pointer.

Next save area pointer.

Remainder of save area.

The IMW A is a control block used in inserting an index entry into the index
of a key-sequenced data set. The IMW A is created by the Open routine, and
is pointed to by the ICWA (ICWCHN).

Bytes and
orfset Bit Pattern Field Name Description

0(0) IMWID IMWA identifier, X'42'

1(1) IMWFLAGS Control flags:

1. .. IMWNEWHL Indicates a new high level should be built
in the index structure.

.1. IMWRIPL Indicates a new entry must be built in an
index record at the next higher level to
reflect a new index record created by an
index split.

.. 1. IMWBSE Indicates the new index entry should be a
section entry.

... x xxxx Reserved .

2 (2) 2 IMWLEN Length of IMW A in bytes.

4(4) 4 IMWIXSP Address of index search parameter list.

8 (8) 32 IMWISWKA Index search parameter list (see IXSPL
control block description).

40 (28) 4 IMWXKEYP Address of the next (higher-keyed) index
entry.

44 (2C) 4 IMWIKEYP Address of the new index entry's key.

48 (30) 4 IMWXPTR Value of the index pointer field in the next
(higher-keyed) index entry.

52 (34) 4 IMWIPTR Value to be inserted in new index entry's
pointer field.

56 (38) 4 IMWLBUFC Address of a data BUFC for a data buffer
containing the lowest key following a control
area split.

60 (3C) 4 IMWBUFP Address of the index record being processed.

596 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Index Modification Work Area (IMW A)-Description and Format

Offset

64 (40)

65 (41)

66 (42)

67 (43)

68 (44)

70 (46)

72 (48)

Bytes and
Bit Pattern

2

2

4

Field Name

IMWFGAIN

IMWIEL

IMWSVIEL

IMWCIMVN

IMWNSOFF

76 (4C) (key length) IMWKEYI

lOB Extension to Support VSAM Processing

Description

Front key-compression adjustment to be
added to IBFLPF field in next (higher-keyed)
index entry.

Value of IBFLPL field, that is, compressed
length of new index entry's key.

Save area for IBFLPL value.

Reserved.

Readjustment to number of control intervals
in old control area following a control area
split to enable an index record to be built for
the new control area.

Offset to next section entry in index record.

Reserved.

Highest possible key for a mass insertion;
that is, last key in a sequence of keys to be
inserted which is less than an existing key.
Also, save area for current insert key under a
no-fit condition.

The VSAM extension to the basic direct-access lOB (offset is 40 bytes
(X'28') from the start of the lOB) contains information used by VSAM I/O
Management for OS/VS I/O Supervisor to process VSAM I/O requests.

See OS/VSl System Data Areas for basic direct-access lOB details.

Offset
Bytes and
Bit Pattern Field Name Description

Note: These fields are located in the lOB at X'28', + X 'offset value'.

0(0) 4 10BBUFCS Address of the BUFC for current I/O
processing

4 (4) IOBIOMF Flags:

I... 10BAMUSE The lOB is in use
.1.. IOBMCSW The address in the CSW is not in a VSAM

channel program
.. 1. 10BEOVW The VSAM End of Volume routine is waiting
... 1 10BEOVTS The VSAM End of Volume routine set the

10BLOCK field
xxxx Reserved

5 (5) 10BNMOD Number of modules in the virtual storage list

6 (6) IOBLOCK Process lock

7 (7) Reserved

8 (8) 2 10BNBUF Number of buffers reserved for this request

10 (A) 2 10BNSEG Number of channel program segments for
this request

12 (C) 4 10BPLH Address of the PLH

16 (to) 4 IOBRI4 Save area that contains the return address to
the I/O Supervisor when an appendage
module is called

20 (14) 4 10BVSL Address of the virtual storage list

Data Areas 597

VSAM Extension to the Input/Output Block (lOB)-Description and Format

Offset

24 (18)

48 (30)

52 (34)

Bytes and
Bit Pattern

24

4

4

IXSPL-Index Search Parameter List

Field Name

IOBMSAVI
through
IOBMSAV6

REGI

IOBIQE

Description

Six 4-byte work areas

Register save area

Address of the IQE

The IXSPL is used to pass index search parameters to the index search
routine. It also contains status information about the results of the search. It is
used as a work area by the SCIB (Search Compressed Index Block) routine
(IDA019RC). The PLH contains the address of the IXSPL (PLHISPLP) or
the contents of the IXSPL (PLHIXSPL).

Bytes and
Offset Bit Pattern Field Name Description

0(0) 4 IXSSTRBA RBA of the index record to search first.

4 (4) 4 IXSBUFC Address of the index BUFC

8 (8) 4 IXSARG Address of the search argument (a key field)

12 (C) IXSTLN Index level number at which the search is to
terminate

13 (D) IXSILN Index level number at which the search is to
begin

14 (E) 3 Reserved

17(11) IXSBFLG Flags:

l... IXSSSRH Used by the Search Compressed
Index Search routine: search for a section
entry only

0 ... Search for a normal entry
.1.. IXSLELV The entry located by the Index

Search routine is the last entry
in the terminating level
(F = 0 and L = 0)

.. xx xxxx Reserved

18 (12) IXSEKON Length of the F, L, and pointer fields in each
index entry

19 (13) IXSPEC The number of characters in the index entry
preceeding the entry located by the Index
Search routine that equalled the search
argument

20 (14) 4 IXSHEP Address of the index entry located by the
Index Search routine

24 (I 8) 4 IXSSEP Address of the section entry that is greater
than or equal to the index entry located by
the Index Search routine

28 (lC) 4 IXSLEP Address of the lowest-valued entry in the
section identified by IXSSEP

598 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

KEYWDTAB-Keyword Processing Table

KEYWDTAB is a branch table that controls the execution of IDA019Cl and
supports processing for the GENCB, MODCB, SHOWCB, and-TESTCB
macros. The table is built by and contained within IDA019Cl and is not
referred to by any other module. The table contains one 14-byte row for each
keyword processed by a control block macro, and each row is identified by a
keyword-type code (0-255). Each column in the table represents functions
for the keywords and contains index points for specific keyword functions.
Each column also contains either offsets and lengths for byte-oriented fields
or pointers to descriptive information about bit-oriented fields. The index
points are used to route specific requests through IDA019Cl on the bases of
keyword, block (ACB, RPL, and EXLST), and function (GENCB, MODCB,
SHOWCB, and TESTCB).

Offset

0(0)

0(0)

0(0)

1 (1)

2 (2)

3 (3)

3 (3)

4 (4)

5 (5)

6 (6)

6 (6)

7 (7)

8 (8)

9 (9)

9 (9)

10 (A)

11 (D)

12 (C)

13 (D)

14 (E)

28(1C)

255 (FF)

Rytes

14

3

3

3

3

2

14

14

14

Description

The description for the keyword with type code=O
(KWOO)

The index points for the ACD

The index point for MODCD of the ACD

The index point for SHOWCB of the ACD

The index point for TESTCD of the ACD

The index points for the EXLST

The index point for MODCB of the EXLST

The index point for SHOW CD of the EXLST

The index point for TESTCR of the EXLST

The index points for the RPL

The index point for MODCD of the RPL

The index point for SHOWCB of the RPL

The index point for TESTCD of the RPL

The index points for the NIB (VT AM)

The index point for MODCD of the NIB

The index point for SHOWCD of the NIB

The index point for TESTCD of the NIB

The offset to a bit definition, if this is a bit-level keyword

The offset of the resultant field in the target field, if this is
a byte field

The description for the keyword with type-code= 1
(KWOl)

The description for the keyword with type-code=2
(KW02)

The description for the keyword with type-code=255
(KW255, the maximum value)

Data Areas 599

LPMB-Logical-to-Physical Mapping Block

OPW-Open Work Area

The LPMB contains information about the direct-access device that contains
the user's data set. The LPMB is built by the VSAM Open routines, using
information in the data set's catalog record. The EDB (EDBLPMBA)
contains the address of the LPMB.

Bytes and
Offset Bit Pattern

0(0)

1(1)

1.

.1.

.. 1.

.... I...

... x .xxx

2 (2) 2

4 (4) 4

8 (8) 4

12 (C) 4

16 (10) 2

18 (12) 2

20 (14) 2

22 (16) 2

24 (18) 4

28 (I C) VL

Field Name

LPMBID

LPMBFLGS

LPMBRPS

LPMREPL
LPMSS

LPMBSSTH

LPMBLEN

LPMAUSZ

LPMBPTRK

LPMBLKSZ

LPMTRKAU

LPMTPC

LPMBLKTR

LPMBEXT

LPMBSST

Description

Control block identifier, X '91'

Flags:

The device has the rotational position
sensing (RPS) feature
Records are replicated on the track
Sequence set records are stored with the data
records
The Set Sector table is
included at the end of
the LPMB
Reserved

Length of the LPMB

The minimum number of bytes that can be
allocated to an object. Allocation is always
an integer multiple of LPMAUSZ. For a data
component, this field is the control area size.
For an index, this field is the device's track
size.

Number of bytes per track

Number of bytes per physical record (control
interval)

Number of tracks per allocation unit (extent)

Number of tracks per cylinder

Number of physical records (control
intervals) per track

Reserved

Reserved for address of LPMB extension

. Set sector table

OPW is the common work area used by VSAM Open routines. It is built by
IDA0192A, mapped by IDAOPWRK, and pointed to by register 4 during
VSAM processing.

Open Work Area (OPW)-Description and Fonnat

Bytes and
Offset Bit Pattern F"Jeld Name Description

0(0) OPWSUBPL Subpool of work area

1(1) 3 OPWLENTH Work area length

4 (4) 8 OPWID Block ID-IDAOPWRK

12 (C) OPWFLGSI Flag byte 1:

I... OPWCAT Catalog open
.1.. OPWSCRA System CRA open
.. 1. OPWVVIC MSVI data set
... x xxxx Reserved

600 OS//52 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Open Work Area (OPW)---Description and Format

Bytes and
Offset Bit Pattern Field Name Description

13 (D) OPWFLGS2 Flag byte 2:

L 1. .. OPWUCRA User CRA open
.1.. OPWIXDT Index open as an ESDS
.. 1. OPWAIXDT Alternate index open for end use
... 1 OPWDUMMY Open dummy data set

xxx. Reserved

... 1 OPWNOPFL Page fix list does not exist

14 (E) OPWFLGS3 Flags for IDAOI92B:

I. .. OPWDAVAT Dummy AMBL added to VAT
.1.. OPWPUPGR Path also in upgrade set
.. 1. OPWUPGOP Upgrade set open
... 1 OPWNOWRK MOD work area does not exist

xxxx Reserved

15 (F) OPWFLGS4 Authorization flags:

1... OPWFULL Full access
.1.. OPWCINV Control-interval access
.. 1. OPWUPD Update access
... x xxxx Reserved

16 (10) 4 OPWCURPT Address of cluster being processed. This field
can point to OPWBSECL (548(224»,
OPWPTAIX (556(22C», OPWUPAIX
(568(238», and every 8 bytes thereafter,
since OPWUP AIX is a repeating field. The
format of current cluster information is
described below by OPWCURCL.

20 (14) 4 OPW2YPLH Address of first PLH

L'
24 (18) 4 OPWCAMBL The address of the existing AMBL for

connecting to an existing structure

28 (lC) 4 OPWBCON Address of base AMBL connecting to

32 (20) 4 OPWPCON Address of path AMBL connecting to

36 (24) 4 OPWBAMBL Address of AMBL for base

40 (28) 4 OPWPAMBL Address of AMBL for path

44 (2C) 6 OPWCRA CRA volume serial number

50 (32) 2 Reserved

52 (34) 4 OPWBIB Address of the BIB

56 (38) 4 OPWUPT Address of the upgrade table

60 (3C) 4 OPWUACB Address of the user ACB

64 (40) 20 OPWSAVE Addresses of save lists

64 (40) 4 OPWCSL Address of core save list

68 (44) 4 OPWESL Address of ENQ save list

72 (48) 4 OPWPSL Address of the page-fix save list

76 (4C) 4 OPWDSL Address of the DEB save list

80 (50) 4 OPWSSL Address of the swap save list

84 (54) 4 OPWWRKPT Address of current AMB work area

88 (58) 4 OPWDTWRK Address of data AMB work area

92 (5C) 4 OPWIXWRK Address of index AMB work area

96 (60) 4 OPWCTCB Address of current TCB

Data Areas 601

Open Work Area (OPW}-Description and Fonnat

Bytes and
Offset Bit Pattem Field Name Description

100 (64) 4 OPWJSTCB Address of job step TCB J 104 (68) 4 OPWTIOT Address of TIOT entry
108 (6C) 4 OPWCOMWA Address of Open common work area

112 (70) 4 OPWBUFND Number of data buffers

116(74) 4 OPWBUFNI Number of index buffers

120 (78) OPWCSTRN Current string number

121 (79) OPWSTRNO Path string number, if path processing;
otherwise, base string number

122 (7A) OPWBSTRN Base string number, if base processing

123 (7B) Reserved

124 (7C) 8 OPWIDF Cluster identifier

124 (7C) 4 OPWCACB Address of catalog ACB

128 (80) 3 OPWDCI Control interval number of data component

131 (83) OPWQ Open qualifier:

l... OPWDDC Connect by DD name
.1.. OPWGSR Opened for GSR
.. 1. OPWLSR Opened for LSR
... 1 OPWFSTP Opened for ICI

1. .. OPWUBF Opened for user buffering
.1.. OPWKSDS Opened as a KSDS
.. 1. OPWESDS Opened as an ESDS
... 1 OPWDFR Opened with deferred write option

132 (84) 16 OPWVSMPL O/C/EOV Virtual Storage Manager
parameter list J 132 (84) 4 OPWVMANC Address of anchor block

136 (88) OPWVMSP Subpool for direct request

136 (88) OPWVMTYP Request type

137 (89) 3 OPWVMLNG Amount of storage requested

140 (8C) 4 OPWVMADR Address of storage acquired (zero, if storage
not obtained)

144(90) OPWVMFLG Flag byte:

1. .. OPWVMPGB Get storage on a page boundary
.1.. OPWVMNSL Do not build a CSL for this request
.. 1. OPWVMDIR Direct request

Reserved

145 (91) 3 Reserved

148 (94) 76 OPWVSMWA O/C/EOV Virtual Storage Manager work
area

148 (94) 4 OPWVANCP Pointer to the address of the first HEB
header element associated with this request

152 (98) 4 OPWVTBLP Address of the request table used by
GETSP ACE routine

156 (9C) 4 OPWVCSLE Address of core save list entry

160 (AO) 4 OPWVHDRE Address of header element

164 (A4) 16 OPWVSAVE Save area for IDAOl92M processing

J
602 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Open Work Area (Opw)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

180 (B4) 36 The following 12-byte field is repeated 3
times:

0(0) 12 OPWVGSPL Get space parameter lists

0(0) OPWVGSSP Subpool number

1 (I) 3 OPWVGETL Length of acquired storage

4 (4) 4 OPWVGSPT Address of required storage

8 (8) OPWVGFLG Flags for Get space

1... OPWVGPGB Get storage on a page boundary
.1.. OPWVGNSL Do not build a CSL for this request
.. xx xxxx Reserved

9 (9) 3 OPWVREQL Length of request

216 (08) 12 OPWVGMPL GETMAIN parameter list

228 (E4) 8 OPWVFMPL FREEMAIN parameter list

228 (E4) OPWVFMSP FREEMAIN subpool number

229 (E5) 3 OPWVFMLN FREE MAIN length

232 (E8) 4 OPWVFMPT FREEMAIN address

236 (EC) 52 OPWDACB Dummy ACB for opening base

288 (120) 12 OPWSFI Subfunction information

300 (I2C) 256 OPWERMAP Map of return codes to ACBERFLG, where
return code rc is defined in OS!VS Message
Library: VSJ System Messages for messages
IEC070I, IEC1611, IEC2511, and IEC2521.

L 556 (22C) 4 OPWSAVEA Return address save area

560 (230) 8 OPWBSECL Base cluster information

560 (230) Reserved

561 (231) 3 OPWBDTCI Base data control interval number

564 (234) Reserved

565 (235) 3 OPWBIXCI Base index control interval number

568 (238) 8 OPWPTAIX Path alternate index information

568 (238) Reserved

569 (239) 3 OPWPDTCI Path alternate index data control interval
number

572 (23C) Reserved

573 (230) 3 OPWPIXCI Path alternate index control interval number

576 (240) OPWNOUPG Number of upgrade alternate indexes

577 (241) 3 Reserved

580 (244) 8 The following 8-byte field, pointed to by
OPWCURPT (16(10», is repeated once for
each upgrade alternate index associated with
the base cluster being processed.

0(0) 8 o PWUPAI X Upgrade alternate index information

0(0) Reserved

1 (1) 3 OPWUDTCI Upgrade alternate index data control interval
number

4 (4) I Reserved
5 (5) 3 OPWUIXCI Upgrade alternate-index control interval

number

Data Areas 603

Open Work Area (OPW)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

The format of information about the cluster being processed (pointed to by
OPWCURPT (16(10)) is shown below:

0(0) 8 OPWCURCL Current cluster information

0(0) OPWCFLGI Cluster flags (set by sphere Open):

I. .. OPWBASE Open base cluster
. 1.. OPWPATII Open path alternate index
.. 1. OPWUPGR Open upgrade alternate index
... 1 OPWSVWRK Do not free AMB work areas

I. .. OPWPRTBL Partial control-block build
.xxx Reserved

t(1) 3 OPWCDTCI Data component control interval number

4 (4) OPWFLG2 Cluster flags (set by cluster Open)

I. .. OPWDOPEN Open indicator on in catalog for data
. 1.. OPWMODWK Module work area exists
.. 1. OPWEMPUP Empty upgrade data set
... 1 OPWERR2B Terminating error in IDAOl92B

I... OPWIOPEN Open indicator on in catalog for index
.xxx Reserved

5 (5) 3 OPWCIXCI Index component control interval number

PCCB-Private Catalog Control Block

A PCCB describes each user's catalog to the OS/VS system. The PCCB is
built when the user's catalog is opened. If the catalog is already open for
another user, a PCCB is built when the user's JCL DD STEPCAT or
JOBCAT statement specifies the catalog. The JSCB associated with the user
task's TCB points to the first PCCB. Other PC CBs available to the user's
task are chained fonn the first PCCB.

Bytes and
Offset Bit Pattern Field Name Description

0(0) 4 PCCBNXT Address of the next PCCB

4 (4) 4 PCCBACB Address of the ACB for the VSAM user's
catalog

8 (8) 4 PCCBTCE Address of the TIOT chaining element

12 (C) 4 PCCBCORE Information used with GETMAIN and
FREEMAIN requests:

12 (C) PCCBSBP Subpool number

13 (D) 3 PCCBLNG Amount of virtual storage for the PCCB,
TCE,andAT

16 (10) 4 PCCBSTS Status bytes

16 (10) PCCBSTI Status Flags:

I. PCCBOPN The VSAM user's catalog was opened
.xxx xxxx Reserved

I7 (1 I) 3 Reserved

604 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

PLH-Placeholder

~

The PLH contains current information about a string of requests. This
information includes positioning information, request options, and buffer
location and status. The PLH is built by the Open routine and is pointed to by
the AMB (AMBPH). The next PLH in the chain is pointed to by
PLHCHAIN. When a record management routine is processiug a PLH, the
PLH's address is in register 2 (RPLH).

Bytes and
Offset Bit Pattern Field Name Description

PLH Header

0(0) PLHID Control block identifier, X'30'

1 (t) PLHCNT Number of PLH entries that follow the
header

2 (2) 2 PLHELTH Length of each PLH entry

4 (4) 4 PLHDRREQ Count of requests that have been deferred

8 (8) 2 PLHDRMAX Maximum number of placeholders (PLH
entries) in concurrent use

10 (A) 2 PLHDRCUR Number of active placeholders

12 (C) 4 PLHIOSDQ Data-Set Management (I/O Support)
deferral queue header

PLH Entry

0(0) PLHAVL Zero if the PLH entry is available

1 (t) PLHATV Zero if there are no active requests

2 (2) PLHFLGI Process flag byte I:

I. PLHEOVW The VSAM End of Volume routine is waiting
.1. PLHENDRQ The caller issued an ENDREQ request
.. 1. PLHASKBF Less than maximum buffers
... 1 PLHSSR The sequence set is stored with the data
.... I. .. PLHRDEXC Read exclusive mode
..... 1.. PLHASYRQ IRB execution needed
...... 1. PLHDRPND A deferred request is pending
....... x Reserved

3 (3) PLHFLG2 Process flag byte 2:

I. PLHUPD The previous request was a GET-for-update
.1. PLHSQINS Sequential insertion mode
.. 1. PLHKEYMD Keyed mode
... 1 PLHADDTE Add to the end processing
.... I. .. PLHKRE End of key range indicator
..... 1.. PLHCIINS Control interval split insertion
...... 1. PLHSVADV Save the PLHNOADV field during

Scan Data
...•.•. 1 PLHIWAIT Test whether ECB is posted

4 (4) 2 PLHEFLGS Exception flags:

Byte 1:

I. PLHNOSPC End of Volume could find
no more space for creation

.1. PLHIST This is the first request after the data set
was opened

.. 1. PLHSKPER Skip across the error control interval

... 1 PLHSRINV Spanned record is invalid

.... I ... PLHNOADV Don't advance the PLH

..... 1.. PLHEODX The EODAD exit was taken

...... 1. PLHINVAL The PLH is invalid

....... 1 PLHDSCAN Scan data after read exclusive

Data Areas 605

Placeholder (PLH)-Descrlption and Fonnat

Bytes and
Offset Bit Pattern Field Name Description

Byte 2: J
1. PLHRSTRT Restart
.xxx xxxx Reserved

6(6) PLHFLG3 Rags:

1 PLHSRBSG Update numbers in RDFs of spanned-record
segments aren't the same

.1 PLHRAHD Do read-ahead buffering.

.. 1 PLHSLVLD Second level of the index is valid

... 1 PLHBWD Previous request specified backward
processing

.... 1 ... PLHRVRS The I/O chain is reversed

..... 1 .. PLHEOVDF End of Volume synchronization flag
...... xx Reserved

7(7) PLHAFLGS Rags:

1 PLHDRLM A direct request was issued during loading of
an empty data set

.. 1 PLHVAMB The AMB that points to the PLH is valid

... 1 PLHDBDC The PLH is from the VSAM resource pool

.... 1 ... PLHIOSID I/O-Support 10

..... 1 .. PLHRABWD IDA019RA was entered for backward
processing

.x xx Reserved

8 (8) 4 PLHACB Address of the caller's ACB

12 (C) PLHDSTYP Data set type:

Data-X'OI'
Index-X'02'

13 (D) PLHRMIN Read threshold

14 (E) PLHFRCNT Number of free buffers

15 (F) PLHBFRNO Total number of buffers

16 (10) 4 PLHMRPL Address of the RPL header

20 (14) 4 PLHCRPL Address of the current RPL

24 (I8) 4 PLHDSIDA Address of the DSID (PLHACB field above)

28 (IC) 4 PLHCRBA Current RBA
PLHJORBA Old RBA-to support the JRNAD exit

routine

32 (20) 4 PLHJRNLL Length of the data-to support the JRNAD
exit routine

36 (24) 4 PLHJNRBA New RBA-to support the JRNAD exit
routine

40 (28) PLHJCODE Entry code-to support the JRNAD exit
routine. See VSAM Programmer's Guide for
a list of entry codes.

41 (29) PLHRCODE Indicates the previous request type

42 (2A) PLHEOVR End of volume request code-indicates space
allocation or volume mount

43 (2B) Reserved

44 (2C) 4 PLHARDB Address of the current data ARDB

48 (30) 4 PLHLRECL Length of the record processed during the
previous request J

606 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Placeholder (PLH~Description and Format

Bytes and
Offset Bit Pattern Field Name Description

52 (34) 4 PLHDBUFC Address of the current data BUFC

56 (38) 4 PLHNBUFC Address of the next read BUFC

60 (3C) 4 PLHRECP Address of the current record

64 (40) 4 PLHFSP Address of the first byte of free space within
the record

68 (44) 4 PLHRDFP Address of the current RDF

72 (48) 2 PLHRDFC Replication count for the current RDF

74 (4A) 2 PLHSRSID Spanned-record segment ID

76 (4C) 4 PLHDIOB Address of the data lOB
PLHIIOB Address of the index lOB

80 (50) 4 PLHARET Return address to the I/O Manager's
Asynchronous Routine

84 (54) 24 PLHSAVEI Six 4-byte register save areas-not
through to be used by Buffer Management,
PLHSAVE6 I/O Management, IDADRQ, or IDATJXIT

108(6C) 4 PLHAMB AMB save area for IDADRQ and IDATJXIT

112(70) 4 PLHCHAIN Address of the next PLH in the chain

116 (74) 2 PLHRETO Offset to the current register 14 save area in
the push-down list (PLHRET I)

118 (76) 2 Reserved

120 (78) 44 PLHRETI Save area (push-down list) for II return
registers (register 14)

164(A4) 4 PLHASAVE Beginning of save area for I/O
Management's Asynchronous Routine

168(A8) 4 Save area for thirteenth return register

172(AC) 4 Save area for fourteenth return register

176 (BO) 4 PLHARI4 Address to which the Asynchronous Routine
is to return

180 (B4) 4 PLHEOVPT Address of the RBA provided by the End of
Volume routine

PLHDDDD RBA of the previous request

184 (B8) 4 PLHNRBA Next RBA

188 (BC) 4 PLHIBUFC Address of the index BUFC

192 (CO) 4 PLHRBUFC Save area for register RBUFC for IDADRA
and IDA TJXIT

196 (C4) 4 PLHISPLP Address of the IXSPL

200 (C8) 32 PLHIXSPL Space for one IXSPL

200 (C8) 4 PLHSSRBA RBA of the sequence-set control interval
PLHHIREC RBA of the highest record

204 (CC) 4 PLHIXBFC Address of a BUFC for index search

208 (DO) 24

232(E8) 4 PLHWAX Address of the work area for path processing
PLHXPLH Address of the PLH for the alternate index of

the base cluster

236(EC) 4 PLHLLOR Address of the least lengtn of the data record
that contains all of the record's key fields

Data Areas 607

Placeholder (PLH)-Description and Format

Bytes and
Offset Bit Pattern Field Name Description

240(FO) 2 PLHNOSEG Number of segments in a spanned record J
242(F2) 2 PLHSRCSG Number of the segment being processed

244(F4) 4 PLHSLRBA RBA of the second level of the index

248(F8) 4 PLHKEYPT Address of the current key
(PLHKEY at end of PLH entry)

PLHRRN Previous relative record
number

252(FC) 4 PLHDRRSC Address of the deferred-request flag byte

256(1(0) 4 PLHPARMI Save area for IDADRQ and IDATJXIT

260(104) 4 PLHR13 Register 13 save area for IDADRQ and I/O
Management

264(108) PLHDRMSK Mask to test for resources for a deferred
request

265(109) 3 Reserved

268(1OC) 4 PLHECB Address of event control block for
cross-region post

272(110) 4 Reserved

276(114) 4 PLHERRET Address to which to return from an error (for
cross-region post)

280(118) 0 PLHEND Label for the end of the PLH entry before
PLHEXTEN and PLHKEY

280(118) 28 PLHEXTEN Extension to the PLH for processing with
shared resources (optional):

j 280(118) 4 PLHRESRI Address of a serial resource being held

284(1IC) Reserved

285(110) PLHBMWRK Buffer-Management work flags:

1. .. PLHBMRDF The RBA was found in the buffer pool (for
SCHBFR macro)

.1.. PLHBEUC End of use chain

.• 1. PLHBMSOV Start-over flag

... x xxxx Reserved

286(1 IE) 2 PLHRDCNT Save area for AMBRDCNT

288(120) 20 PLHBMSVI Five 4-byte save areas
through for Buffer Management
PLHBMSV5

VL VL PLHKEY The current key. pointed to by PLHKEYPT

608 OSlVS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

RPL---Request Parameter List
The RPL contains user-request information and error feedback information.
It also maintains information required by GET and PUT macro instructions.
The RPL is created by the user with the RPL macro instruction.

Bytes and
Offset Bit Pattem Field Name Description

0(0) 4 RPLIDWD Identification word of the RPL:

0(0) RPLID RPL identifier, X'OO'

I (1) RPLSTYP RPL subtype:

X'to' = VSAM
X'20' =VTAM

2 (2) RPLREQ Request type-when the user issues a VSAM
macro-instruction, register 0 contains one of
the following request type-codes. When
VSAM processes the request, the request
type-code in register 0 is transferred to the
RPLREQ field (unless the request is CHECK
orENDREQ).

0(0) GET request
HI) PUT request
2 (2) CHECK request
3 (3) POINT request
4 (4) ENDREQ request
5 (5) ERASE request
6 (6) VERIFY request
8 (8) Data preformat request
9 (9) Index preformat request

to (A) Force I/O request
II (B) GETIX request
12 (C) PUTIX request
13 (D) Search buffer request
14 (E) Mark buffer request
15 (F) Write buffer request

3 (3) RPLLEN Length of the RPL
RPLLEN2

4 (4) 4 RPLPLHPT Address of the PLH

8 (8) RPLECB Address of the external ECB, or an
internal ECB:

1... RPLWAIT The event has not yet completed
.1.. RPLPOST The event has completed
.. xx xxxx Reserved

9 (9) 3 Reserved, if RPLECB is an internal ECB, or
the address of the external ECB

12 (C) 4 RPLFDBWD Feedback word

12 (C) RPLSTAT RPL status flags:

.1.. RPLCHKI CHECK has been issued

.. 1. RPLEDRQI ENDREQ has been issued
x .. x xxxx Reserved

13 (0) 3 RPLFDBK RPL feedback area (See "Diagnostic Aids"
for a list of RPL return codes and condition
codes.)

13 (D) RPLRTNCD RPL return code (See "Error Codes"
RPLERREG in "Diagnostic Aids" section for a

'-.>
description of RPL return codes.)

X'OO' Normal return

Data Areas 609

Request Parameter List (RPL)-Description and Fonnat

Bytesmd
Offset Bit Pattern Field Name Description J X'04' Request not accepted because the RPL

indicated for this request was active for
another request

X'08' Logical error
X'OC' Physical error

14 (E) 2 RPLCNDCD RPL condition code

14 (E) RPLCMPON Component issuing the code

15 (F) RPLERRCD Error code

16 (10) 2 RPLKEYLE Key length
RPLKEYL

18 (12) 2 RPLSTRID RPL transaction identifier

20 (14) 4 RPLCCHAR Address of the control character

24 (18) 4 RPLDACB Address of the caller's ACB

28 (lC) 4 RPLTCBPT Address of the user's TCB-this field is
always zero for a VSAM RPL

32 (20) 4 RPLAREA Address of the caller's record area

36 (24) 4 RPLARG Address of the caller's search argument

36 (24) 4 Address of SETPR T parameter list:

36 (24) 2 RPLSAF Source address field

38 (26) 2 RPLDAF Destination address field

40 (28) 4 RPLOPTCD Option flags

40 (28) RPLOPTI Option flag byte 1: J 1... RPLLOC Locate mode
0 ... Move mode
.1.. RPLDIR Direct-search access
.. 1. RPLSEQ Sequential access
... 1 RPLSKP Skip sequential processing

1... RPLASY Asynchronous request
0 ... Synchronous request
.1.. RPLKGE Search key greater than or equal
.0 .. Search key equal
.. 1. RPLGEN Generic key
.. 0. Full key
... 1 RPLECBSW The RPLECB field contains the

RPLECBIN ECB's address

41 (29) RPLOPT2 Option flag byte 2:

1... RPLKEY Locate the record identified by a key
.1.. RPLADR Locate the record at the caller-specified

RPLADD relative byte address (RBA)
.. 1. RPLCNV Locate the control interval at the

caller-specified RBA
... 1 RPLBWD Process in backward direction
... 0 Process in forward direction

1... RPLLRD Locate or retrieve the last
record in the data set

0 ... Locate, retrieve, or store the
record identified by the
user's argument

.1.. RPLWAITX Take UP AD exit before WAIT

.. J. RPLUPD Update processing

... 1 RPLNSP Note the string position

610 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Request Parameter Ust (RPL)-Description and Format

Bytes and
Offset Bit Pattem Field Name Description

42 (2A) RPLOPT3 Option flag byte 3:

1... RPLEODS End of the user's output data set
.1.. RPLSFORM Spool form on remote
.. 1. RPLBLK Block the records
.. 0. The records are unblocked
... 1 RPLVFY UCS/FCB verify

l... RPLFLD UCSfoid
.xx. RPLFMT Format type:
.00. UCS load
.01. FCB load
.10. Reserved
.11. Reserved
... 1 RPLALIGN Align the buffer and notify the operator
... 0 Do not align the FCB buffer loads

43 (2B) RPLOPT4 Option flag byte 4:

l... RPLENDTR 3800 end of transmission
.1.. RPLMKFRM 3800 mark form
.. 1. RPLPOIC POIC passed

... 1 RPLICOPY Pass only one copy of
the data set

... x xxx . Reserved

44 (2C) 4 RPLNXTRP Address of the next RPL in the chain
RPLCHAIN

48 (30) 4 RPLRLEN Length of the record

52 (34) 4 RPLBUFL Length of the user's buffer

56 (38) 4 Reserved

60 (3C) 8 RPLRBAR RBA return location

60 (3C) 2 RPLAIXPC Alternate index pointer count

62 (3E) RPLAIXID Alternate index pointer type:

1... RPLAXPKP Relative byte address
0 ... Prime-key pointer
.xxx xxxx Reserved

63 (3F) Reserved

64 (40) 4 RPLDDDD Relative byte address

68 (44) RPLEXTDS Exit definition flags:

RPLEXTDI

1... RPLEXSCH AIi' exit is scheduled
.1.. RPLNEXIT No exit is specified
.. 1. RPLEXIT Asynchronous exit

.1.. RPLNIB Argument has a pointer
to the NIB

.. 1. RPLBRANC Branch entry to a macro
... x x .. x Reserved

69 (45) RPLACTIV CHECK not issued

70 (46) 2 RPLEMLEN Error message length

72 (48) 4 RPLERMSA <\ddress of the error message area

Data Areas 611

RPLE-RPL Extension

An RPLE is built and appended to each RPL built for an ISAM Interface user
when the user's ISAM program opens a VSAM cluster. The RPLE contains
the address of the nCB, a register save area, a linkage to other RPLs in the
ISAM Interface RPL pool, and a pointer to the ISAM DECB.

Offset

0(0)

4 (4)

8 (8)

12 (C)

16(10)

17(11)

20 (14)

24 (18)

Bytes and
Bit Pattern

4

4

4

4

3

4

4

Field Name

RPLIICB

RPLDECB

RPLIIBFR

RPLRPLPT

RPLIITSB

RPLSAVE

RPLSAVE2

Description

Address of the IICB

Address of the DECB. If the field contains
zeros, the RPL has not been assigned to a
DECB (BISAM only)

Address of the ISAM Interface buffer
associated with the RPL (the buffer is
required for locate mode processing, data
only retrieval, dynamic buffering, and
BISAM stand-alone write)

Address of the next RPL in the ISAM
Interface RPL pool. If the RPL is the last
RPL in the pool, this field contains zeros.

Test-and-set (TS) byte. This field is used to
indicate the assignment of the RPL to a
BISAMDECB.

Reserved

Register save area

Register save area

RWA.-Reposition Work A.rea

The RW A is built and freed by IDAOC06C and IDAOA05B. It is used for
saving data needed to reposition the user's data sets at restart. VSAM 1/0
operations necessary during the checkpoint process use the RPL, PLH, and
BUFC poritions of the work area. It is pointed to by the VRCW A
(VRCW ARW A).

Offset

0(0)

1 (1)

2 (2)

4 (4)

8 (8)

12 (C)

72 (48)

76 (4C)

80 (50)

84 (54)

160 (AO)

Bytes and
Bit Pattern Field Name

2

4

4

60

4

4

4

76

280

RWAFLAGI

RWAMBFLG

RWAPSAV

RWARGSAV

RWARBA

RWABUFC

RWAEXLST

Description

Save area for AMBLFLG 1

Save area for AMBFLG 1

Reserved

Address of previous
save area

Reserved

Register save area

RBA argument used by GET

VSAM buffer pointer
used by GET

Save area for ACB exit
list address

RPL used for GET

PLH save area

612 OS/VS2 SVS Independent Component; Virtual Storage Access Method (VSAM) Logic

J

J

SSL-Swap Save List

UPT-Upgrade Table

The SSL contains up to 16 entries that identify control blocks that are to be
chained after Open has otherwise completed successfully. Deferring chaining
makes it unnecessary to unchain the control blocks should Open fail.

The SSL is pointed to by OPWA (called the ACB work area). Additional
SSLs are chained as required.

Bytes and
Offset Bit Pattern Field Name Description

0(0) SSLSUBPL Subpool number of the SSL

I (I) 3 SSLLENTH Length of the SSL

4 (4) 8 SSLID Identifier: 'bIDASSLb'

12 (C) 4 SSLNXPTR Address of the next SSL (zero for the last
SSL in the chain)

16 (10) 2 SSLACEN Number of active entries

18 (12) 2 Reserved

20 (14) 8 x 16 SSLENTRY Entries for control blocks to be chained:

20 (14) 4 SSLSWPTR Address of the swap word for the
Compare-and-Swap instruction

24 (18) 4 SSLSWAP Value to replace original in
Compare-and-Swap

The UPT describes the upgrade set of a base cluster. It contains an entry for
each alternate index in the upgrade set. It is pointed to by the Bm (BmUPT).

Bytes and
Offset Bit Pattern Field Name

UPTHeader

0(0)

0(0)

I (I)

2(2)

4 (4)

8 (8)

12 (C)

13 (D)

14 (E)

16 (10)

16 (10)

20 (14)

24 (18)

25 (19)

26 (lA)

4

1...
.xxx xxxx

2

4

4

2

72

4

4

2

UPTHDR

UPTID

UPTFLGO

UPTPWS

UPTLEN

UPTNEW

UPTOLD

UPTRSC

UPTNOENT

UPTLLEN

UPTSA

UPTWORK1

UPTLSA

UPTBEREG

UPTBERCD

Description

Header

Control block identifier, X'45'

Flags:

Continue with scan
Reserved

Length of the UPT

Address of the new alternate-index record

Address of the old alternate-index record

Resource byte-used to serialize updates

Number of alternate indexes in the upgrade
set (and of entries in the UPT)

Largest sum of key length plus the key's
relative position in a data record

Save area:

Work area

Last save area

RPLERREG value for the base cluster

RPLERRCD value for the base cluster

Reserved

Data Areas 613

UPT-Upgrade Table

Bytes and
Offset Bit Pattern Field Name Description J UPTHeader

28 (lC) 4 UPTRl4 Address to which IDAOl9R4 returns after
1/0 is issued for upgrading

32 (20) 56 UPTRl5 Rest of save area

UPTEntry

0(0) 12 UPTAXENT Entry for an alternate index in the upgrade
set:

0(0) 4 UPTRPL Address of the upgrade RPL

0(0) UPTFILOP Last operation against the upgrade ACB

4 (4) 2 UPTFLGI Flags:

Byte I:
1. UPTFILST This is the last entry in the UPT
.1. UPTFIATV This entry is active for an upgrade operation
.. 1. UPTFINUK The alternate index can have nonunique keys
.•. 1 UPTFINOP The alternate index is not open
.... 1. .. UPTFINRF A no-record-found error has occurred
..... x .. UPTFIKEY The key being processed is:

0 Old
I New

...... 1. UPTFIRTY The last operation is being retried

....... 1 UPTFIUPG The alternate index is being upgraded

Byte 2:
1. UPTFIBKO An upgrade operation is being undone

(backed out)
.1. UPTFILOG A logical error has occurred J .. 1. UPTFIPHY A physical error has occurred
... 1 UPTFIERA The operation requiring upgrade was

deletion (ERASE)
.... 1. .. UPTFIPNU The operation requiring upgrade was

insertion
..... 1.. UPTFIPUD The operation requiring upgrade was update
...... xx Reserved

6 (6) 2 UPTRKP Relative alternate-key position in a base
record

8 (8) UPTPASS The number of this upgrade operation (pass
through the upgrade set)

9 (9) UPTLNCDE Length of key, minus I

lO(A) 2 UPTBG Length ofRPLAREA field

614 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

VAT-Valid-AMBL Table

The VAT is used to check the validity of each AMBL that is built for
processing a base key-sequenced cluster. It contains the address of each
AMBL. The first VAT is pointed to by the JSCB (JSCBSHR).

Bytes and
Offset Bit Pattern Field NlIIIle Description

0(0) 4 VATHDR Header:

0(0) VATID Control block identifier, X'II'

1 (0 Reserved

2 (2) 2 VATLEN Length of the V AT

4 (4) 4 VATNEXT Address of the next V A T

8 (8) 8 VATVSRT Used to update the use count and address of
the VSAM shared resource table at the same
time (with the CDS instruction)

8 (8) 4 VATVUSE Use count in the VSRT

12 (C) 4 VATVPTR Address of the VSRT

16 (10) 4 VATPAMBL Address of the first AMBL in the primary
chain

20 (14) 2 VATVC Used for checking validity of AMBLs

20 (14) VATVRT The number of this VAT on the chain

21 (IS) VATENO Number of entries in this VAT

22 (16) 2 Reserved

24 (18) 4 VATNAE Number of active entries in this VAT

<w
28 (1C) 4 Reserved

32 (20) VATAMBLI Zero. This field is used by VSAM
Checkpoint/Restart to identify enhanced
VSAM

33 (21) 3 Reserved

36 (24) 4 x 16 VATAMBL Addresses of VALID AMBLs

DataAreu 615

VCRT-VSAM Checkpoint/Restart Table

The VSAM Checkpoint/Restart Table (VCRT) is used by VSAM
Checkpoint/Restart while processing the alternate-index environment J.
introduced with enhanced VSAM. The V CRT contains a count, by entry
type, of each entry appended to the VCRT. There are four types of VCRT
entries, as follows:

1. The first entry type is the VCRT open entry, which points to the user
and restart AMBL/ACB set to be opened by restart. This entry is sixteen
bytes in length and contains pointers to the user AMBL, the restart
AMBL, the user ACB, and the restart ACB. The restart AMBL and ACB
pointers will be filled in at restart time.

2. The second entry type is the VCRT Upgrade Entry, containing pointers to
the user and restart upgrade AMBLs to be processed by restart. This
eight-byte entry will exist only if the immediate-upgrade set for this data
set was open at checkpoint time.

3. The third entry type is the VCRT Upgrade ACB Entry, which contains
only a pointer to the user ACB to be updated. This four-byte entry exists if
there are ACBs open at checkpoint time which need not be opened for
restart processing but must be updated at restart time.

4. The fourth entry type is the VCRT Index Entry. Eight bytes in length, this
entry exists only if the base data set is a KSDS open for load-mode
processing. There will be one index entry for each index level that exists at
checkpoint time. The index entry contains ICW A and buffer pointers for
the index level it represents.

The VCRT is created by VSAM checkpoint and, except in error situations, is ...•
freed by VS checkpoint and VSAM restart. The following diagram shows the ..",
format of the VCRT.

Bytes and
Offset Bit Pattern Field Name Description

0(0) VCRID VCRT ID field

1 (1) 3 VCRFLAGl VCRT flags

1. VCRUPGSW Entry type indicator:
1 =process VCRT upgrade entry O=process
VCRT open entry

.1. VCRLSR LSR specified

.. 1. VCROUT Output ACB is open

... x xxxx Reserved (Bytes two and three are also
reserved.)

4 (4) 8 VCRIDNM VCRT identification name,'IDAVCRT'

12 (C) 4 VCRSIZE VCRT size in bytes

16 (10) 4 VCRCHAIN Pointer to next VCRT

20 (14) 2 VCROPNCT Number of VCRT open entries

22 (16) 2 VCRUPGCT Number of VCRT upgrade entries

24 (18) 2 VCRUPDCT Number of VCRT update ACB entries

26 (I A) 2 VCRIDXCT Number of VCRT index entries

28 (lC) 4 VCRVCRWA Pointer to VSAM restart work area
(VCRWA)

32 (20) 4 VCRRBUF Pointer to Restart buffer

J 36 (24) 4 VCROPN Pointer to VCRT open entries

616 OS!VSZ'SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

veRT -VSAM Checkpoint/Restart Table

Bytes and
Offset Bit Pattern Field Name Description

40 (28) 4 VCRUPG Pointer to VCRT upgrade entries

44 (2C) 4 VCRUPD Pointer to VCRT update ACB entries

48 (30) 4 VCRIDX Pointer to VCRT index entries

52 (34) 4 VCRPASSW Pointer to password

Pointers to the first of each of the following entry types are at offsets 36 (24) through 48
(30) above.

VCRT Open Entry
VCRUAMBL

VCRRAMBL

VCRUACBP

VCRRACBP

Pointer to user AMBL

Pointer to restart AMBL

Pointer to user ACB

Pointer to restart ACB

VCRT Upgrade Entry (For addressability, this is the same as the
AMBL portion of the Open Entry)

VCRT Update ACB Entry

VCRT Index Entry

VCRUAMBL

VCRRAMBL

VCRUPDPT

VCRICWA

VCRBUFPT

Pointer to user immediate-upgrade AMBL

Pointer to restart immediate-upgrade AMBL

Pointer to update ACB

Pointer to I CW A

Pointer to associated buffer

Data Areas 617

VCRWA-VSAM Checkpoint/Restart Work Area

The VSAM Checkpoint/Restart Work Area (VCRWA) is created by VSAM
checkpoint. If an error occurs during VSAM checkpoint processing, it is also
freed by VSAM checkpoint. If no error occurs, it is freed by VS checkpoint
during checkpoint processing, and by VSAM restart during restart processing.
The VCRWA is shared by all loads of VSAM checkpoint restart and is
therefore saved, in the checkpoint data set, at checkpoint time and restored at
restart time.

Bytes and
Offset Bit Pattern Field Name Description
0(0) I VCRWID VCRWA ID field

1 (1) VCRWFLG Reserved

2 (2) 2 VCRWSIZE VCRW size in bytes

4 (4) 8 VCRWIDNM VCRWA identification name, IDAVCRWA

12 (C) 4 VCRWVSWA Pointer to VS work area

16 (10) 4 VCRWVCRT Pointer to current VCRT

20(4) 4 VCRWRWA Pointer to VSAM reposition work area

24 (18) 4 VCRWRWAS Size in bytes of checkpoint/restart RWA,
RPL, andPLH

28 (1C) 4 VCRWRPL Pointer to checkpoint/restart RPL

32 (20) 4 VCRWPLH Pointer to checkpoint/restart PLH

36 (24) 4 VCRWSHR JSCBSHR save area

40 (28) 4 VCRWRET1 Register 14 save area one

44 (2C) 4 VCRWRETZ Register 14 save area two

48 (30) 4 VCRWRET3 Register 14 save area three

52 (34) 4 VCRWBASE Save area for IDAOA05B base register J
56 (38) 4 VCRWRACB Pointer to restart ACB core

60 (3C) 4 VCRWACBS Restart ACB core size

64 (40) 4 VCRWB05B Pointer to second level VSAM Restart

68 (44) 3 VCRWECB Restart page-fix ECB

69 (47) VCRWCC Page-fix ECB flags
xxxx x.xx unused

.1.. VCRWAD Page-fix error indicator

72 (48) 4 VCRWBUFC Pointer to BUFC save area

VCRWMSG - Error message

76 (4C) 16 VCRWHEBS Message body and HEB save

92 (5C) 5 Remainder of message body

97 (61) 8 VCRWDDNM DD name of data set in error

105 (69) 3 Remainder of message

VCRWGLST - GETMAIN list

108 (6C) 4 VCRWRETA GETMAIN return address

112 (70) 4 VCRWSZ GETMAIN core size

116 (74) 12 VCRWPARM GETMAIN parameter list

VCRWRSA V - Register save area header

128 (80) 4 VCRWRS01 Standard save area header

132 (84) 4 VCRWRS02 Standard save area header

.J 136 (88) 4 VCRWRS03 Standard save area header

618 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

VCRWA-VSAM Checkpoint/Restart Work Area

Bytes and
Offset Bit Pattern Field Name Description

VCRWRSA V - Register save area header

140 (8C) 4 VCRWRS04 Standard save area header

144 (90) 4 VCRWREGE Register 14 save area

148 (94) 4 VCRWREGF Register 15 save area

152 (98) 4 VCRWREGO Register 0 save area

156 (9C) 4 VCRWREGl Register 1 save area

160 (AO) 4 VCRWREG2 Register 2 save area

164 (A4) 4 VCRWREG3 Register 3 save area

168 (A8) 4 VCRWREG4 Register 4 save area

172 (AC) 4 VCRWREG5 Register 5 save area

176 (BO) 4 VCRWREG6 Register 6 save area

180 (B4) 4 VCRWREG7 Register 7 save area

184 (B8) 4 VCRWREG8 Register 8 save area

188 (BC) 4 VCRWREG9 Register 9 save area

192 (CO) 4 VCRWREGA Register to save area

196 (C4) 4 VCRWREGB Register 11 save area

200 (CB) 4 VCRWREGC Register 12 save area

204 (CC) 4 VCRWBAS2 Save area for second
base register

208 (DO) 4 VCRWRKPT Workarea pointers

208 (DO) 4 RVATSAVE V AT pointer save area

208 (DO) 4 RWORKA Work pointer A

20C (04) 4 RWORKB Work pointer B

210 (08) 4 RWORKC Work pointer C

214 (DC) 4 IRBAD IRB address

L
Data Areas 619

VMT-Volume Mount Table

The VMT identifies and describes volumes to be mounted for a base cluster
and all clusters associated with it for processing. There is a VMT for each
device type. The first VMT is pointed to by the BIB (BIBVMT).

Offset

0(0)

0(0)

1 (I)

2 (2)

4 (4)

8 (8)

10 (A)

13 (D)

13 (D)

14 (E)

16 (to)

16 (10)

20 (14)

21 (IS)

22 (16)

28 (lC)

Bytes and
Bit Pattern Field Name

4 VMTHDR

2

4

2

3

3

2

16 x n

4

1.
.xxx xxx x

6

4

VMTID

VMTLEN

VMTNXT

VMTNOVOL

VMTDEV

VMTDVOPT

VMTDVTYP

VMTVOL

VMTUSECT

VMTVFLGI

VMTOPEN

VMTVLSER

VMTUCB

VSRT-VSAM Shared Resource Table

Description

Header:

Control block identifier, X'12'

Reserved

Length of the VMT

Address of the next VMT

Number of volume entries (n) in the VMT

Reserved

Device information:

Device options

Device class and type

Volume entry for a volume to be mounted:

Use count

Volume flags:

The volume is being processed by Open
Reserved

Reserved

The volume's serial number

Address of the UCB for the volume

The VSRT contains the addresses of buffer pools and PLH pools in the
resource pool and addresses of various control blocks built during the
processing of a BLDVRP macro. For local shared resources (LSR), the VSRT
is pointed to by the VAT (VATVPTR).

Offset

0(0)

1 (I)

2 (2)

4 (4)

12 (C)

14(E)

IS(F)

Bytes and
Bit Pattern

2

8

2

.1.

.. 1.

... 1
x ... xxxx

xxxx xxxx

Field Name Description

VSRTBKID Control block identifier, X' 1 S'

Reserved

VSRTLEN Length of the VSR T

VSRTID Visual identifier

VSRTFLGS Flags:

Byte 1:
VSRTLSRF Local resource pool
VSRTIOBF I/O-related control blocks are fixed in real

storage
VSRTBFRF Buffers are fixed in real storage

Reserved

Byte 2:
Reserved

VSRTKL The maximum key length of the data sets
that are sharing the resource pool

VSRTSTRN The total number of placeholders required
for all the data sets (specified in BLDVRP)

620 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

..J

L

VSRT-VSAM Shared Resource Table

Offset

16(10)

20(14)

24(18)

28(1C)

32 (20)

36 (24)

36 (24)

37 (25)

40 (28)

41 (29)

Bytes and
Bit Pattern

4

4

4

4

4

8 x n

1.
.1.
.. 1.
... 1
.... 1. ..

..... 1..

...... 1.

....... 1

3

3

WAX-Work Area for Path Processing

FieklName

VSRTPLHH

VSRTBUFH

VSRTCPAH

VSRTWAH

VSRTCSL

VSRTCSLF

VSRTCSFX
VSRTCSVS
VSRTCSBF
VSRTCSPF
VSRTCSWS

VSRTCSPL
VSRTCSIO
VSRTCSBH

VSRTCSSP

VSRTCSSP

VSRTCSLN

Description

Address of the PLH header

Address of the BUFC header

Address of the CPA header

Address of the working storage header
(WSHD)

Reserved

Entries for gotten storage:

Flags:

The storage is fixed in real storage
The storage contains the VSRT
The storage contains a buffer
The storage contains the page fix list
The storage is for a work area (working
storage)
The storage contains PLHs
The storage contains lOBs
The storage contains a buffer

Address of the storage

The number of the subpool the storage is
located in

Length of the storage

The WAX contains addresses and other information required for processing a
path. It is pointed to by the PLH (PLHW AX).

Bytes and
Offset Bit Pattern Field Name Description

0(0) WAXID Control block identifier, X'73'

I (I) WAXFLGI Flags:

1. WAXSRAB Catalog recovery area built in system storage
. I. WAXPUG The alternate index in the path is in the

upgrade set
.. I. WAXPS The last operation against the path was a

sequential PUT
... x xxxx Reserved

2 (2) 2 WAXLEN Length of the WAX

4 (4) 2 WAXPL Length of the alternate-index record's
pointers to base records

6 (6) 2 WAXXXXX2 Reserved

8 (8) 4 WAXIRPL Address of the inner ("dummy") RPL that is
used to gain access to the alternate index

12 (C) 4 WAXURPL Address of the user's RPL

16 (10) 4 WAXRCDA Address of the alternate-index record

20 (14) 4 WAXXPTR Address of the current alternate-index
pointer to a base record

24 (18) 4 WAXEPTR Address of the byte beyond the last
alternate-index pointer

28 (lC) 4 WASBPLH Address of the PLH for the base cluster

Data Areas 621

WAX-Work Area for Path Processing

Bytes and
Offset Bit Pattern Field Name

32 (20) 4 WAXSRAA

36 (24) 4 WAXSRAL

40 (28) 4 WAXXXXX3

WSHD-Workin, Storage Header

Description

Address of the saved-record area

Length of the saved-record area

Reserved

The WSHD describes up to four blocks of storage used for work areas
(working storage). It is pointed to by the AMB (AMBWSHD).

Bytes and
Offset Bit Pattern Field Name Description

0(0) WSHDID Control block identifier, X' 44'

1(1) WSHDPOOL The number of the subpool in which the
WSHD is located

2 (2) 'Z WSHDLEN Length of the WSHD

4 (4) 4 WSHDNEXT Address of the next WSHD

4 (4) WSHDGMTB GETMAIN resource byte

8 (8) 10 WSHDGMWA GETMAIN work area

18 (12) 2 WSHDNUS Number of used slots (entries) in the WSHD

20 (14) 4 WSHDGMRA GETMAIN result

2 4 (I8) 4 WSHDOCHN Address of ordered slot chain

28 (IC) 16x4 WSHDSLT Slot (entry) for each block of working
storage:

28 (IC) 4 WSHDSAD Address of the storage block

32 (20) 12 WSHDSGMW Work area for the GETMAIN for the storage
block:

32 (20) 4 WSHDSFM FREEMAIN field for the DLVRP macro:

32 (20) WSHDSFSP The number of the subpool in which the
storage block is located

33 (21) 3 WSHDSFLN Length of the storage block

36 (24) 4 WSHDSONX Address of the next slot on ordered slot chain

40(28) 2 WSHDSBV Number of bytes represented by each bit in
WSHDSBM

42 (2A) WSHDSFLG Slot flags:

1. WSHDSFNO The storage block has no bytes available
.xxx xxxx Reserved

43 (2B) WSHDSBM Bit mask (each bit indicates whether the
bytes it represents are used-I, or not~)

622 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

DIAGNOSTIC AIDS

L

This chapter provides several aids that can be useful when you are trying to
diagnose

difficulties with VSAM modules. These aids include:

• A description of the cross-reference information published on microfiche
cards.

• A list of messages issued by VSAM, cross-referenced to enable you to
detect the module causing the message to be issued.

• A list of function codes that appear in messages to indicate the operation
being performed when an error occurred.

• A list of VSAM macro instructions and their functions.

• A catalog debug aid that provides dumps that can be selected and activated
upon termination of a catalog management request.

• A description of a system-provided service, GTF, used by VSAM, how
VSAM requests this service, and what this service provides in the way of
VSAM AP AR information.

• A description of the Catalog Communications Area's register save area.

• A list of return codes and error codes.

• A description of the control blocks and control blo~k interrelationships of
the Virtual-Storage Manager.

Additional aids can be found in other parts of the book and in the program
listings. These include:

• Register contents on entry to a module, which are under "INPUT" in the
module prologues.

• Use of registers and equated names for registers, which can be found under
"NOTES" in the module prologues.

• Error codes, which are under "EXIT -ERROR" in the module prologues.

• A list of modules, their external procedure names, their component, and
their associated method of operation diagrams, which is in the "Module
Directory. "

• A list of external procedure names and their modules, which is in the
"External Procedure Directory."

• A definition of terms and abbreviations used in this book, and in the
VSAM listings, which is in the "Glossary."

Diagnostic Aids 623

Microfiche Cross-Reference Aids
OS/VSl VSAM Cross Reference contains valuable information that you
should be aware of. Two types of cross-reference information are available:

• Symbolic-name usage table: lists each symbolic name that appears in the
VSAM code listings, lists each module that refers to the symbolic name,
and specifies how each module refers to the symbolic name.

• Macro-instruction usage table: lists each macro instruction that is issued in
VSAM listings, specifies the total number of times the macro instruction is
issued, lists each module that issues the macro instruction, and specifies the
number of times the module issues the macro instruction.

How To Read the Symbolic-Name USilge Table

OS/VSl VSAM Cross Reference contains the symbolic-name usage table,
or Symbol Where Used Report, for VSAM listings. Three kinds of
information are available from the table, as shown in Figure 74:

• A list of symbolic names-this includes field names, symbolic address
names, return code names, constant/value names, flag-bit names, etc.-in
alphanumeric order from top to bottom on the page.

Note: In the lower-right corner of each page, the lowest and highest name·
for the page is shown.

• A list of modules that refer to each symbolic name, in alphanumeric order
from left to right across the page.

• A code indicating how each module refers to the symbolic name:

W-WRITE

R-READ

C-COMPARE

The data field or bit value was modified by at least one
line of code in this module. If the module contains a
statement:

A=B

then the module's use of 'A' is to modify it ('A' appears
to the left of an equate sign in a statement that is not
an 'IF' statement.)

The data field or value was referred tp by at least one
line of code in this module. If the module contains a
statement:

A=B

then the module's use of 'B' is to refer to it, using it to
modify 'A' ('B' appears to the right of an equate sign in
any type of statement).

The data field or value was compared against another
value. If the module contains a statement:

IF A = B, THEN ...

then the module's use of 'A' is to compare it to 'B' ('A'
appears to the left of an equate sign in an 'IF'
statement). Note that the module's use of 'B' is to refer
to it, not to compare it.

Other codes are explained in the "Access Codes" at the bottom of each page .'
in the usage table. """

624 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

DATE: 01/15/77

SYMBOL MODULE

ACBBUFSP IEAVNP1A

ACBCAT IDACAT11

ACBCBMWA IDA019Cl

ACBCRNCK IGCOA05B

ACBCRNRE IGCOB05B

ACBDDNM IDACAT11

IGGOCLAD

ACBDEB IDACAT13

ACBDIR lEAVNP1A

ACBDORGA IDACAT11

ACBDOSID IGGOCLAD

ACBDTFID IGGOCLAD

ACBERFL IFG0191X

ACBERFLG IFG0191Y

ACBEXFG IDACAT11

ACBEXLST IGCOC06C

ACBID IDACAT11

ACBIDVAL IGGOCLAD

ACBIN IDA019C1

ACBINFL IEAVNP1A

ACBINRTN IGCOB05B

ACBKEY IDA019C1

ACBLEN IDACB2

ACBLENG IDACAT11

SYMBOL WHERE USED REPORT --- OS/VS2 RELEASE 1.7 VSAMPAGE 3

ACCESS MODULE

R

W IDACAT12

DRW

C

C IGCOC06C

W IDA019C1

W IGGOCLAE

R I EAVNP 1 A

C IFG0191X

W IDA019C1

W IGGOCLAE

R IGGOCLAE

W

W IFG0200N

W IDA019C1

RW

W IDA019C1

R IGGOCLAE

W IFG0191X

R IFG0191X

R

W IFG0191X

M

W IDA019Cl

(EXTERNAL SYMBOLS)

ACCESS MODULE ACCESS MODULE ACCESS MODULE ACCESS MODULE ACCESS

W

C

W

W

W

W

W

W

R

W

W

WC

R

W

W

W

W

IGGOCLAD W

IEAVNP1B R

IGGOCLBG W

IGCOB05B C

IGCOC06C C

IGGOCLBG W

IGGOCLBG R

IGCOA05B RWC

IGGOCLAD W

IGCOC06C C

IGGOCLBG R

IGGOCLBG W

IGGOCLBG W

IGGOCLAD W

IGGOCLAE W

IEAVNP11 W

IGGOCLAD W

IGGOCLAE C

IGGOCLBG W

IGGOCLAD W

IGGOCLAE W

IFG0191X R

IGGOCLAE W

IGGOCLAE W

IGGOCLBG W

IGCOA05B W

IGGOCLBG W

IGGOCLBG W

ACCESS CODES: D=DEFINITION, R=READ, W=WRITE, C=COMPARE, E=EQUATE OPERAND, M=MACRO, A=ABSOLUTE, P=PARAMETFR

Figure 74. Symbolic-Name Usage Table

How To Read the Macro-Instruction Usage Table
OS/VSl VSAM Cross Reference contains the macro-instruction usage
table, or Macro Where Used Report for VSAM listings. Three kinds of
information are available, as shown in Figure 75:

• A list of macro-instruction names in alphanumeric order from top to
bottom.

• A list of the modules that issue each macro-instruction, in alphanumeric
order from left to right across the page.

• The total number of times all VSAM modules issued the macro-instruction,
and the number of times each module in the list issued the
macro-instruction,

Diagnostic Aids 625

DATE: 01/15/77 MACRO WHERE USED REPORT --- OS/VS2 RELEASE 1.7 VSAM PAGEl

MACRO

ABEND

ABPCALL

ACB

ACBX

ADDRESS

AMCBS

AMOREGN

ASMl

BLDL

CALL

CARD

CATGODSP

CATGOGcl

CATGOSEQ

CCAASCIK

CCACDl

CCACPE2

CCACPE3

CCACPE4

CCACPES

CCACPE6

CCACPE7

CCARABB

CCARABFL

TOTAL # MODULE

1 IEAVNP11

1 IEAVNP12

1 IGCOA05B

1 IEAVNPll

1 IGGOCLAP

IDACAT11
8 IEAVNP12

1 IGGMCDCL

2 IEAVNP1A

2 IEAVNPll

5 IDACB2

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

2 IGGOCLAQ

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

2 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

1 IGGOCLAP

MODULE

1 IDACAT12
1 IGGMCDCL

1 IEAVNP11

2 IGGOCLAQ

MODULE MODULE MODULE MODULE

IDACAT13 1 IEAVNP1A 1 IEAVNP1B 1 IEAVNPll

MACRO ENTRIES: ABEND - CCARABFL

Figure 75. Macro-Instruction Usage Table

Messages
Messages IDAOOI through IDA025 are macro-instruction messages and refer to an incorrectly
coded macro instruction.

Message
Number

IDAOO!

IDAOO2

IDAOO3

IDAOO4

IDAOO5

IDAOO6

IDAOO7

IDAOO8

IDAOO9

IDAOIO

IDAO!1

IDA018

IDA019

IDA020

Message
Text

INVALID POSITIONAL PARAMETER, xxx - IGNORED

xxx KEYWORD REQUIRED - NOT SPECIFIED

INVALID VALUE, yyy, SPECIFIED FOR xxx KEYWORD

xxx KEYWORD NOT VALID FOR EXECUTE FORM - IGNORED

INVALID OR DUPLICATE SUBLIST ITEM FOR xxx KEYWORD, yyy

xxx VALUE, yyy, NOT VALID FOR LIST FORM

LOGIC ERROR IN MACRO xxx

INCOMPATIBLE SUBLIST ITEMS, yyy AND zzz FOR xxx KEYWORD

xxx CONTROL BLOCK KEYWORDS SPECIFIED - ONLY ONE
ALLOWED

EXIT ADDRESS REQUIRED FOR xxx KEYWORD - NOT SPECIFIED

xxx IS NOT A VALID yyy KEYWORD - IGNORED

VT AM KEYWORD xxx SPECIFIED WITHOUT SPECIFYING AM =
VTAM

KEYWORDS xxx AND yyy ARE INCOMPATIBLE

VT AM SUB LIST ITEM xxx SPECIFIED FOR yyy KEYWORD
WITHOUT SPECIFYING AM = VTAM

626 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

Message Message
Number Text

L
IDA021 xxx AND yyy KEYWORDS MUST BE SPECIFIED TOGETHER BUT

ONE IS MISSING

IDA022 CONFLICTING SUB LIST ITEMS WERE SPECIFIED FOR xxx
KEYWORD

IDA024 xxx, A VSAM KEYWORD SPECIFIED FOR A NONVSAM CONTROL
BLOCK

IDA025 www,xxx,yyy CONFLICTING SUB PARAMETERS IN zzz KEYWORD,
WWW ASSUMED

Message Message Detected Issued
Number Text by by

IECOOlA M ddd,ser,jjj,sss,dsn IDA0l92V IDA0192V

IECOO3E R ddd,ser,jjj,sss, IDAOl92V IDA0l92V
[,SPACE=PRM] ,dsn

IECOl4E D dddd IDAOI 92V IDA0l92V

IEC070I m[(sf;)]-ccc,jjj,sss,ddn, IDAOI92C IDAOl92P
ddd, vol, c1n,dsn, cat IDAOl92D

IDAOl92S
IDAO I 92V
IDA0557A
IFG0551F

IECIOIA M ddd,ser,jjj,sss,dsn IGGOCLBL IDA0192V

IEClllE D, ddd,ser IGGOCLBL IDAOl92V

IECI13A ENTER PASSWORD FOR DATA SET IGGOCLBG
IGGOCLBM
IGGOCLB6

L IECl14E D ddd lddn-n] IGGOCLBL

IEC115I INVALID PASSWORD IGGOCLBG
IGGOCLBM
IGGOCLB6

IEC116I REENTER IGGOCLBG
IGGOCLBM
IGGOCLB6

IEC130I ddn - DD STATEMENT MISSING IFG0191X

IEC1611 m[(sf;)]-ccc,jjj ,sss,ddn, IDAOl92C IDA0l92P
ddd, vol, c1n,dsn, cat IDA0192D

IDAOl92S
IDA0l92V
IDAOl92Z
IDAOl92A
IFG0193A

IEC2511 m[(s!;)]-ccc,jjj,sss,ddn, IDAOl92C IDAO I 92P
ddd, vol, c1n, dsn, cat IDA0192D

IDA0192S
IDA0192V
IDA0200T
IFG0200V

IEC252I m[(sf;)]-ccc,jjj,sss,ddn, IDA0192C IDA0192P
ddd, vol,c1n,dsn, cat IDA0192D

IDAOI 92V
IDA0231T
IGCOOO2C

IEC30lA S JOB xxxxxxxx DSNAME IGGOCLBM

IEC3311 ccc-m,jjj,sss,ffff,mmm IGGOCLAG IGGOCLAF

Diagnostic Aids 627

Message Message Detected Issued
Number Text by by

(IGGPIORA)
(IGGPEMSG)

IEC332I fff [[Iff···] IGGOCLAG IGGOCLAF
(IGGPIORA)

(IGGPEMSG)

IEC333I leee,xx, ddd, iii IGGOCLAG IGGOCLAF

(IGGPEMIO)

IEC338I

IEC339I

IEF175I

IEF447I

IEF448I

IEF449I

IHJOOOI

IHJOO7I

IHJOO9I

IGGOCLC9, VALIDITY CHECK FAILED
ON CATALOG PARAMETER LIST
STORAGE

(IGGPIORA)

IGGOCLC9, INSUFFICIENT STORAGE
FOR VSAM CATALOG COMMUNICATION
AREA

AMP KEYWORD xxxxxxxx DUPLICATE IEFNB902
OR CONFLICTING PARM STEP NOT
EXECUTED

AMP KEYWORD nnnnnnnn IS IEFNB902
INV ALID STEP WAS NOT EXECUTED

AMP KEYWORD nnnnnnnn VALUE IEFNB902
xxxxxx IS TOO LARGE STEP
NOT EXECUTED

AMP KEYWORD nnnnnnnn REQUIRES IEFNB902
A DECIMAL VALUE STEP
NOT EXECUTED

CHKPT jjj (ddn) NOT TAKEN (xxx)

RESTART NOT SUCCESSFUL
FOR jjj (xxx [,cuu])

ERROR ON ddn IDAOA05B

Function Codes/or VSAM Open, Close, and EOV Messages

~,

When an error occurs during open, close, or EOV processing for a VSAM
data set, the message that is issued will contain a field, ccc, that contains a
function code. The following lists these function codes and ties each to the
module that detected the error and the operation being performed when the
error was detected.

Module that
Function Detected Operation Being Perfonned When
Code Error Error Was Detected

IDA0192C Initialize for catalog interface processing.

2 IDA0192C Deteimine which data sets are associated with dsname or DO
statement, determine catalog and check password.

3 IDAOl92C Determine data set attributes.

4 IDA0192C Get volume information.

5 IDA0192C Update 'open' indicator in catalog.

6 IDA0192C Update catalog when data set is being closed.

7 IDAOl92C Retrieve volume timestamp.

8 IDA0192C Record management catalog update.

9 IDAOl92C Update preformat indicator in catalog.

10 IDA0192C Retrieve 44-byte clustel flame.

628 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Module tbat
Function Detected Operation Being Performed When
Code Error Error Was Detected

11 IDAOI92C Retrieve 44-byte component name.

20 IDAO I 92V Initialize for mounting and verify volume.

21 IDA0192V Check volume timestamp.

22 IDAI092V Handle messages.

23 IDAOI92V Mount volume.

30 IDAOI92S Initialize for SMF processing.

31 IDA0192S Build SMF record.

40 IDA0192D Initialize for staging.

41 IDA0l92D Build VCB list.

42 IDA0192D Build list for ACQUIRE/RELINQUISH (stage/destage).

43 IDA0192D Issue ACQUIRE or RELINQUISH.

50 IDA0192Z Initialize for building control blocks.

51 IDAOI92Z Determine number of buffers needed.

52 IDA0192Z Build buffers.

53 IDAOl92Z Build control blocks.

54 IDAOI92Y Build string blocks.

60 IDA0192B Module initialization.

61 IDA0192B Locate data-set attributes and check them for validity.

62 IDA0192B Volume processing.

63 IDA0192B Preformat extent.

70 IDAI092W Initialize for building channel program.

71 IDA0192W Build channel program area.

80 IFG0193A ReadJFCB.

81 IDAOI92A Initialize for VSAM open processing.

82 IDAOI92A Verify ACB.

83 IDA0192F Fix control blocks in real storage.

84 IDAOl92B Allow subtasks to share data set.

85 IDA0192F Mount and verify volumes.

87 IDAOI92A Determine whether to connect base cluster to an existing
structure or generate a new structure.

88 IDA 1 092F Open base cluster.

89 IDA 1 092F Open alternate index in upgrade set.

90 IDA0192F Open alternate index in path.

93 IDAOl92A Build a dummy DEB.

95 IDA0192A Terminate VSAM Open processing.

96 IDA0192A Clean up after an error in Open processing.

99 IFG0192B Error processing for VSAM ACB processed on a system not
generated for VSAM.

100 IFG0200V Read JFCB.

101 IDA0200T Initialize for VSAM close processing.

L
103 IDA0200T Complete deferred write requests.

104 IDA0200T Close path.

Diagnostic Aids 629

Module that
Function Detected Operation Being Perfonned When
Code Error Error Was Detected

105 IDA0200T Close base cluster. J
106 IDA0200T Close sphere (close upgrade alternate indexes and free

storage).

107 IDA0200T Close upgrade set.

108 IDA0200T Process volume mount table.

110 IDA0200B Module initialization.

III IDA0200B Check validity of AMBLs and DEBs.

112 IDA0200B SMF processing.

113 IDA0200B Update statistics and RBA information in the catalog.

114 IDA0200B Free storage for control blocks.

115 IDA0200B Write a buffer.

150 IGCOOO2C Read JFCB.

151 IDA0231T Initialize for VSAM CLOSE (TYPE=T) processing.

153 IDA0231T Complete deferred write requests.

154 IDA0231T Close (TYPE= T) path.

155 IDA0231T Close (TYPE=T) base cluster.

156 IDA0231T Close (TYPE= T) upgrade set.

157 IDA0231B Module initialization.

158 IDA0231B Check validity of AMBLs and DEBs.

159 IDA0231B Update statistics and RBA information.

160 IDA0231B SMF processing. J 161 IDA0231B Write a buffer.

200 IFG0551F ReadJFCB.

202 IDA0557A Initialize for VSAM end-of-volume processing.

202 IDA0557A Locate and mount volume.

203 IDA0557A Allocate space.

204 IDA0557A Switch volumes.

205 IDA0557A Build control blocks.

206 IDA0557A Update SMF record.

207 IDA0557A Preformat extent.

208 IDA0557A Record management, catalog update.

209 IDA0557A Reset control blocks.

630 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Macro Instructions
The following tables list VSAM and OS/VS macro instructions and explain
what they do. Each module that issues the macro instruction is also listed. The
macro instructions are divided into those that define control blocks and data
area (mapping macro instructions) and those that issue executable code
(action macro instructions).

Mapping Macro Instructions

The following table lists macro instructions that define the format of control
blocks and data areas used by VSAM modules.

Macro Instructions That Defbte Data Areas

Macro
Instruction

AMCBS

CIRB

CLCL

CVT

F4DSCB

IDAAIR

IDAAMB

IDAAMBL

IDAAMDSB

IDAARDB

IDABFK

IDABIB

IDABLPRM

IDABSPH

IDABUFC

IDACBTAB

IDACIDF

IDACLWRK

IDACMB

IDACPA

IDACSL

IDACTREC

IDADIWA

IDADSL

IDAEDB

IDAELEM

IDAEQUS

IDAERMSG

IDAERRCD

Description

Maps the VSAM catalog vectors table (AMCBS)

Maps the CIRB control block

Maps the CLCL control block

Maps the communications vector table (CVT)

Maps the Format-4 Data Set Control Block (DSCB)

Maps the alternate-index record

Maps the Access Method Block (AMB)

Maps the Access Method Block List (AMBL)

Maps the Access Method Data Set Statistics Control Block (AMDSB)

Maps the Address Range Definition Block (ARDB)

Maps the buffer control set

Maps the Base Information Block (BIB)

Maps the Resource Pool Parameter List (BLPRM)

Maps the Buffer Sub pool Header for shared resources (BSPH)

Maps the Buffer Control Block (BUFC)

Maps the tables used by the Control Block Manipulation routine

Maps the Control-Interval Descriptor Field (CIDF)

Maps the Close Work Area (CLW)

Maps the Cluster Management Block (CMB)

Maps the Channel Program Area (CPA)

Maps the Core Save List (CSL)

Maps the work area built when the VSAM catalog management
routines issue OPEN (SVC 19), CLOSE (SVC 20), or SVC S5 (calls
End of Volume processing).

Maps the Data Insert Work Area (DIW A)

Maps the DEB Save List (DSL)

Maps the Extent Definition Block (EDB)

Maps the Control Block Manipulation routine's element argument
control entry

Defines the equates for the ISAM Interface: SYNAD-Message-Build
routine

Maps the ISAM Interface: SYNAD Message format

Lists the VSAM Open/Close ACB Error Codes

Diagnostic Aids 631

Macro Instructions That Define Data Areas

Macro
Instruction

IDAESL

IDAFOREC

IDAGENC

IDAHEB

IDAICWA

IDAIDXCB

IDAIICB

IDAIIREG

IDAIMWA

IDAIOB

IDAIOSCN

IDAIRD

IDAIXSPL

IDALPMB

IDAMODC

IDAOPWRK

IDAPDPRM

IDAPLH

IDARDF

IDAREGS

IDARMRCD

IDARPLE

IDASHOW

IDASSL

IDATEST

IDAUPT

IDAVAT

IDAVMT

IDAVSRT

IDAVUCBL

IDAVVOLL

IDAWAX

IDAWSHD

IECDIOSB

IECDSECS

IECSDSLI

IEESMCA

Description

Maps the Enqueue Save List (ESL)

Maps the work area for VSAM Open/Close/EOV Modules

IDAFOREC issues IDAPDPRM, IEFJFCBN, and IEFJFCBX.

Maps the GENCB header argument control entry

Maps the Header Element Block (HEB)

Maps the Index Create Work Area (ICWA)

Lists the VSAM control-block-identifier codes

Maps the ISAM-Interface Control Block (lICB)

Defines the ISAM Interface Register usage

IDAIIREG issues IDAIICB, IDARPLE, IFGRPL, IHADCB, and
IHADCBDF.

Maps the Index Modification Work Area (IMWA)

Maps the VSAM lOB extension

Maps the VSAM Open/Close/EOV commonly-used declarations

Defines the index record

Maps the Index Search Parameter List (IXSPL)

Maps the Logical-to-Physical Mapping Block (LPMB)

Maps the MODCB header argument control entry

Maps the Open Work Area (OPW)

Maps the VSAM Open/Close/EOV problem determination parameter
list

Maps the Placeholder (PLH)

Maps the Record Definition Field (RDF)

Defines register usage for all record management modules

Lists the record management return codes

Maps the ISAM-Interface Request Parameter List Extension (RPLE)

Maps the SHOWCB header argument control entry

Maps the Swap Save List (SSL)

Maps the TESTCB header argument control entry

Maps the Upgrade Table (UPT) for upgrading alternate indexes

Maps the Valid-AMBL table (V AT)

Maps the Volume Mount Table (VMT)

Maps the VSAM Shared Resource Table (VSRT)

Maps the VSAM Open/EOV: Volume Mount and Verify UCB list

Maps the VSAM Open/EOV: Volume Mount and Verify volume serial
number list

Maps the Work Area for Path Processing (WAX)

Maps the Working Storage Header (WSHD)

Maps the I/O supervisor control block

Maps the DSECTS

Maps the SDSL 1

Maps the SMCA

632 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Macro Instructions That Defme Data Areas

Macro
Instruction

IEFJESCT

IEFJFCBN

IEFJFCBX

IEFJMR

IEFPCCB

IEFQMIOP

IEFTCT

IEFTIOTl

IEFUCBOB

IEZCTGCV

IEZCTGFL

IEZCTGFV

IEZCTGPL

IEZCTGVL

IEZCTGWA

IEZDEB

IEZIOB

IEZJSCB

IFGACB

IFGEXLST

IFGRPL

IGGCAXWA

IGGCCA

IGGMCDCL

IGGMCMDM

IGGMCMWA

IGGMCTRC

IGGMDRWA

IGGMF4WA

IGGMGVO

IGGMSAWA

IGGMUPDE

IGGMVEDC

IGGMZLOC

Description

Maps the JESCT

Maps the Job File Control Block (JFCB)

Maps the Job File Control Block (JFCB)

Maps the JMR

Maps the Private Catalog Control Block (PCCB)

Maps the QMIOP

Maps the TCT

Maps the Task Input/Output Table (TIOT)

Maps the OS/VS Unit Control Block (UCB)

Maps the VSAM Catalog Control Volume List (CTGCV)

Maps the VSAM Catalog Field Parameter List (CTGFL)

Maps the VSAM Catalog Field Vector Table (CTGFV)

Maps the VSAM Catatalog Parameter List (CTGPL)

Maps the VSAM Catalog Volume List (CTGVL)

Maps the VSAM Catalog Scheduler Work Area (CTGWA)

Maps the OS/VS Data Extent Block (DEB)

Maps the OS/VS Input/Output Block (lOB)

Maps the OS/VS Job Step Control Block (JSCB)

Maps the Access Method Control Block (ACB)

Maps the Exit List (EXLST)

Maps the Request Parameter List (RPL)

Maps the VSAM Catalog Auxiliary Work Area (CAXWA)

Maps the VSAM Catalog Communications Area (CCA)

Contains the commonly used control block formats and constants for
VSAM catalog management modules

IGGMCDCL issues AMCBS, AMOREGN, COMREGN, CVT,
IEZCTGCV, IEZCTGFL, IEZCTGFV, IEZCTGPL, IEZCTGWA,
IFGACB, IGGCAXWA, IGGCCA, IGGMCTRC, and IKJTCB.

Maps the VSAM catalog management commonly-used record
structures

Maps the VSAM catalog management services work area

Lists the catalog management return codes

Maps the VSAM catalog DSCB read-in work area

Maps the VSAM Catalog Management format-4 DSCB work area

Maps the volume information set of fields

Maps the VSAM Catalog Management: Suballocate work area

Defines the commonly-used declarations for VSAM Catalog
Management: Update-Extend modules

IGGMUPDE issues IDAAMDSB, IGGMCDCL, IGGMCMDM,
IGGMSAWA, and IGGMVEDC.

Maps the Volume Catalog Record

Defines the commonly-used declarations for VSAM Catalog
Management: Suballocate modules

Diagnostic Aids 633

Action Macro Instructions

Macro Instnactlons That Define Data Areas

Macro
Instruction

IHADCB

IHADCBDF

IHADECB

IHARB

IKJPSCB

IKJTCB

SGIDA401

XCTLTABL

Description

Maps the OS/VS Data Set Control Block (DCB)

Maps the OS/VS Data Set Control Block (DCB)

Maps the OS/VS Data Extent Control Block (DECB)

Maps the OS/VS Request Block (RB)

Maps the OS/VS PSCB

Maps the Task Control Block (TCB)

Lists the VSAM SYSGEN global definitions

Maps the OS/VS Transfer Control (XCTL) table

This table lists the macro instructions that generate executable code.

Macro Instnactions That Generate Executable Code

Macro
Instnaction

ABEND

ADDREC

BLDVRP

CALLSFxxxx

CALL EXIT

CATLG

CATPROB

CLOSE

COMB

DEBCHK

DELETE

DELREC

DEQ

DEVTYPE

DICT

DLVRP

DOM

ENDREQ

ENQ

ERASE

EXCP

EXCPVR

FREEMAIN

GENCB

GET

Description

Abnormal termination (OS/VS macro instruction)

Calls IGGPPAD to write a new record into the catalog

Builds a VSAM resource pool (for shared resources)

Transfers control to procedure IGGPxxxx

Returns control to the caller of the procedure

Loads the address of the catalog parameter list (CTGPL) into register 1
and issues SVC 26

Problem determination

VSAM CLOSE: Disconnects a user from a VSAM data set

Generates combination name entries in the VSAM combination name
index table

Checks the validity of the DEB

(Same as OS/VS DELETE macro instruction)

Calls IGGPPDE to erase a catalog record

(Same as OS/VS DEQ macro instruction)

Determines the direct-access device type

Generates entries in the VSAM catalog field name dictionary

Deletes a VSAM resource pool (for shared resources)

Deletes operator message (same as OS/VS DOM macro instruction)

Terminates a VSAM record processing request (such as GET or PUT)

(Same as OS/VS ENQ macro instruction)

Deletes a VSAM record

(Same as OS/VS EXCP macro instruction)

(Same as OS/VS EXCPVR macro instruction)

Releases virtual storage obtained by a GETMAIN

Generates a VSAM control block (ACB, EXLST, RPL)

Retrieves a record from a data set on a direct-access device

634 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

LJ

L

Macro Instructions lbat Generate Executable Code

Macro
Instruction

GETIX

GETMAIN

GETREC

GTRACE

IDABFR

IDACALL

IDACBl

IDACB2

IDAERMAC

IDAEXITR

IDAGMAIN

IDAPATCH

IDARST14

IDASVR14

IECRES

IGGMEND

IGGMODUL

IGGMPROC

LOAD

MODCB

MODESET

MRKBFR

OBTAIN

OPEN

PGFIX

PGFREE

POINT

POST

PUT

PUTIX

RESERVE

RETURN

SCHBFR

SHOWCAT

Description

Retrieves a control interval from the index of a key-sequenced data set

Obtains virtual storage for a temporary work area

Calls IGGPGET to retrieve a catalog record

Calls the Generalized Trace Facility (GTF) to copy VSAM control
blocks

Sets the RBA and/or status in the buffer control block (BUFC)

Transfers control from procedure A to procedure B and allows
procedure B to return control to procedure A at the instruction
following the IDACALL instruction-expansion

Transforms operands for Control Block Manipulation macro
instructions (GENCB, MODCB, SHOWCB, and TESTCB)

Scans keywords and generates code for Control Block Manipulation
macro instructions

Prints MNOTEs for Control Block Manipulation macro instruction
user-programmer errors

Transfers control from VSAM modules to a user's exit routine and
allows the user exit routine to return control to the VSAM module at
the instruction following the IDAEXITR instruction-expansion

IDAEXITR issues DELETE, IDARST14, IDASVRI4, and LOAD.

Gets virtual storage for VSAM Open/Close/EOV

Generates maintenance space

Puts the return address in register 14

Saves register 14 in the placeholder (PLH) push-down list

Transfers control to the OS/VS Resident routine

Generates code at the end of VSAM Catalog Management modules

Generates header code for VSAM Catalog Management modules

Generates header code for VSAM Catalog Management procedures

(Same as OS/VS LOAD macro instruction)

Modifies a VSAM control block (ACB, EXLST, RPL)

(Same as OS/VS MODESET macro instruction)

Marks a buffer in a VSAM resource pool

(Same as OS/VS OBTAIN macro instruction)

Connects a user's program to a VSAM data set

"Fixes" a page of virtual storage so that it appears (to OS/VS) as real
storage

"Frees" a "fixed" page of virtual storage

Identifies a starting point in a VSAM data set

(Same as OS/VS POST macro instruction)

Writes a record into a VSAM data set

Writes a control interval in the index of a key-sequential data set

(Same as OS/VS RESERVE macro instruction)

(Same as OS/VS RETURN macro instruction)

Searches for a control interval in a VSAM resource pool

Displays information from a VSAM catalog

Diagnostic Aids 635

Macro Instructions That Generate Executable Code

Macro
Instruction

SHOWCB

SMFWTM

SYNCH

TESTCB

TIME

VERIFY

WAIT

WRTBFR

WTO

WTOR

XCTL

Description

Displays information from a VSAM control block

Writes the SMF message into the SMF data set

(Same as ISAM SYNCH macro instruction)

Tests information in a VSAM control block (ACB, EXCST, RPL)

Obtains the correct time from the OS/VS system time-of-day clock

Gives control to Record Management to check the end-of-data
indicators for Checkpoint/Restart or for Access Method Services
VERIFY command

(Same as OS/VS WAIT macro instruction)

Writes a buffer from a VSAM resource pool

Writes a message to the operator (no reply)

Writes a message to the operator (a reply is expected)

Transfers control (same as OS/VS XCTL macro instruction)

Note: The following macros are VSAM user's macros and are described in
detail in the OS/VS Virtual Storage Access Method (VSAM) Programmer's
Guide:

CLOSE
ENDREQ
ERASE
GENCB
GET
MODCB
OPEN
POINT
PUT
SHOWCB
TESTCB

The following VSAM user's macros are described in detail in OS/VS Virtual
Storage Access Method (VSAM) Options for Advanced Applications:

BLDVRP
DLVRP
GETIX
MRKBFR
PUTIX
SCHBFR
SHOWCAT
WRTBFR

636 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

Using the CVT's VSAM Debug Switches
The CVTAMFF field (displacement = X'108') in the CVT (Communications
Vector Table) allows the PSR (Programming Systems Representative) to run
a program using VSAM that contains an error and, when the error occurs; to
save certain VSAM control blocks and work areas that would otherwise be
destroyed.

Getting A Dump of Open, Close, and End-of-Volume Work Areas

The messages that the problem determination routine (IDAOl92P) issues for
open, close, and end of volume (the function codes for these messages follow)
may not be sufficient to find the problem.

In such a case, you can obtain an ABEND dump by turning on (setting to '1 ')
a bit in the CVT and rerunning the job in error. Use the CPU manual
procedure AM (alter real storage) to set bit 4 of the first byte of CVTAMFF
to '1'. The CVT's location is stored in fixed-storage location X' 10'. Add
X'OI08' to the CVT's address, or set this byte to X'08'.

CVT

CVTAMFF

108 109 lOA lOB

11
When an error occurs with this bit turned on, the problem determination
module (IDA0192P) issues its messages and also issues an ABEND with a
user code of 888.

The contents of the general registers (0--15) of the module that called
IDA0192A (the same module identified by the function code) can be found
at the address calculated by adding X'0140' to the contents of register 4 at
entry to ABEND.

The caller's register 13 points to its save area, which precedes its work area.
By following the save area chaining address from save area to save area, you
can locate the work area of each module in open, close, or end of volume that
processed before the error occurred.

Each module in open, close, and end of volume pairs its save area with its
work area. Work areas have no general format, but vary from module to
module.

Using the VSAM Catalog Debug Aid
The VSAM debug catalog aid allows the PSR to exercise certain options when
VSAM catalog management requests terminate. The options are trapping and
issuing a problem determination message. Either one or both can be selected,
and you can specify that they be activated upon termination of (1) all
requests, (2) only those requests that generate a nonzero return code in
CCACDl, (3) only those requests that generate an abnormal return code in
CCACDl, or (4) only those requests that generate a specific return code in
CCACDl.

Diagnostic Aids 637

Defining Debug A.id Options

Selecting Debug Options

Debug aid options are defined by storing values and setting bits within the
CVTAMFF field in the CVT. The PSR can use the CPU manual procedure
AM (alter main storage) to modify the CVTAMFF field. (Note, however,
that bits 0-3 of CVTAMFF must not be changed.)

You accomplish debug activity by storing a nonzero value (X'O 1 ' -X'FF')
into CVTAMFF+ 1 (the CVT's location + X'109') and X'07FE' (a BR 14
instruction) into bytes 3 and 4 of CVTAMFF (CVT's location + X'lOA').
The nonzero value you store determines the scope of the debug activity, as
follows:

x'or
X'02'

X'03'

X'04' -X'FF'

Exercise options upon termination of all requests

Exercise options only when the catalog return code is nonzero

Exercise options only when the catalog return code is not a normal
return code (0, 8, 36, 40, 44, 76, and 140, and reason codes 40, 188, and
240 are considered normal)

Exercise options only when the catalog return code equals the value
stored.

Each option selected will be exercised only when the catalog termination
routine determines that the catalog return code (in CCACDl) falls within the
defined scope. The trap option is activated by setting a hardware address
stop, a DSS 'AT', or a VM ADS TOP at the location of the BR 14 instruction
contained in the low-order two bytes of CVTAMFF (the CVT's location +
X'10A'). The catalog termination routine executes a BALR R14, R15
instruction to pass control to the BR 14 instruction.

Register contents at the time of the debug trap are:

Register Contents

o CPL bytes 0, 1,2, and 16 (the type of catalog management request can be derived
from the information contained in these bytes)

Contents of CCAPROB (module ID, error code, and return code)

11 Pointer to CCA

14 Return address

15 Address of trap instruction

To cause determination message IEC3311 to be issued, set bit 5 (X'04') of
CVTAMFF (the CVT's location + X'108') to 1.

CVT

CVTAMFF
108

..... x ..

109

Scope of
debug activity

lOA

o 7 F E

1 = Issue message

638 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

L

Generalized Trace Facility
The Generalized Trace Facility (GTF) can be used to record information
about VSAM processing at the time of an error. If GTF is active in the
OS/VS system, GTF is used to trace VSAM control blocks when there is an
error.

GTF is used to record the contents of the ACB, AMBL, AMBs, AMDSBs,
and TIOT entry for the data set being processed when the error occurred.

To format and print GTF records, use the IMDPRDMP service aid with
"USR=(FFF,FF5)" specified in the EDIT statement.

Two types of traces are available to help in debugging VSAM
Open/Close/EOV problems:

• The error trace routine traces VSAM control blocks when an error is
detected. The optional work area trace traces the Open/Close/EOV work
area WTG table prefix and the current entry in the WTG table at entry to
and exit from the VSAM Open/Close/EOV modules.

• The work area trace is requested by specifying AMP="TRACE". This is
the same trace that is obtained for nonVSAM Open/Close/EOV
processing when DCB=DIAGNS=TRACE is specified in the JCL. (For
details on the AMP and DCB JCL parameters and options, see OS/VS
JCL Reference.

Both traces require that GTF be operating in external mode while the job to
be traced is running. In addition, the operator must respond with
"TRACE=USR" when the GTF trace message "SPECIFY TRACE
OPTIONS" appears at the operator's console.

Additional information on GTF and IMDPRDMP is contained in the OS/VS
Service Aids.

Catalog Communication Area Register Save Area
A catalog communication area (CCA) is built for every call to VSAM catalog
management. The CCA contains a register save area (CCAREGS) that
allows the PSR (programming systems representative) to follow the flow of
control from one catalog management external procedure to another, through
each procedure called to process the request.

The contents of registers 12, 13, and 14 are put into CCAREGS whenever a
catalog management procedure is entered. The current value of register 13 is
the address of the latest entry in CCAREGS. If an external catalog
management procedure is entered from another catalog management
procedure, three words are saved as follows:

• the first word contains the contents of register 12-the calling procedure's
base address,

• the second word contains the contents of register 13-a pointer to the
previous 12-byte entry in the register save area (CCAREGS), and

• the third word contains the contents of register 14-the return address in
the calling procedure.

Immediately after registers 12, 13, and 14 are saved (at register 13 + 12
(decimal», register 12 is updated to contain the called procedure's base
address. Register 13's value is increased by 12, so that it points to the latest

Diagnostic Aids 639

Error Codes

entry in CCAREGS. While a catalog management procedure is processing,
register 11 contains a pointer to the beginning of the CCA.

Note that backward movement is not recorded in the trace table. For
example, if procedure B returns to procedure A, the return is not shown in the
register save area.

VSAM sets error codes in the RPL, the ACB, and the CCA. Codes in the
RPL and the ACB are paired with codes in register 15. Error codes set in the
RPL are listed and explained under "Record Management Error Codes."
Those set in the ACB are listed and explained under "Open, Close and
End-of -Volume Error Codes." And those set in the CCA, are listed and
explained under "Catalog Management Error Codes."

VSAM sets a pair of codes in registers 15 and 0 for control block
manipulation macros. These are listed and explained under "Control Block
Manipulation Error Codes."

Record Management Error Codes

After a request macro is issued or a CHECK or ENDREQ macro is issued,
register 15 contains a return code.

After an asynchronous request for access to a data set, VSAM indicates in
register 15 whether the request was accepted, as follows:

Reg IS Condition

o (0) Request was accepted.

4 (4) Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

After a synchronous request, or a CHECK or ENDREQ macro, register 15
indicates whether the request was completed successfully, as follows:

Reg IS Condition

0(0) Request completed successfully.

4 (4) Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

8 (8) Logical error; specific error is indicated in the feedback field in the RPL.

12 (C) Physical error; specific error is indicated in the feedback field in the RPL.

Paired with the 0, 8, and 12 indicators in register 15 are return codes in the
feedback field of the request parameter list.

The feedback return codes for the 0 indicator in register 15, which doesn't
cause VSAM to exit to an exit routine, are:

FDRK
Code Condition

0(0) Request completed successfully.

4 (4) Request completed successfully. For retrieval, VSAM mounted another volume
to locate the record; for storage, VSAM allocated additional space or mounted
another volume.

8 (8) For GET requests, indicates a duplicate key follows; for PUT requests, indicates
a duplicate key was created in an alternate index with the nonunique attribute.

12 (C) (Shared resources only.) A buffer needs to be written.

640 OS!VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

See the discussions below of the LERAD exit routine for the logical-error
return codes and of the SYNAD exit routine for the physical-error return
codes.

Function Codes for Logical and Physical Errors

When a logical or physical error occurs during processing that involves
alternate indexes, VSAM provides a code in the RPLCMPON field that
indicates whether the base cluster, its alternate index, or its upgrade set was
being processed and whether upgrading was okay or might have been
incorrect because of the error:

Code Wbat Was Being Proeeaed Status of UpgradIDg

0(0) Base cluster Okay

I (I) Base cluster Might be incorrect

2 (2) Alternate index Okay

3 (3) Alternate index Might be incorrect

4 (4) Upgrade set Okay

5 (5) Upgrade set Might be incorrect

LERAD Exit Routine: Logical Error Analysis

When a LERAD routine is provided, it gets control for logical errors, and
register 15 doesn't contain 8, but contains the entry address of the LERAD
routine.

The contents of the registers when VSAM exits to the LERAD routine are:

Reg Contents

o Unpredictable.

Address of the request parameter list that contains the feedback field the routine
should examine. The register must contain this address if the exit routine returns
toVSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains
the address of the processing program's 72-byte save area, which may not be used
as a save area by the LERAD routine if the routine returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine. The register doesn't contain the
logical-error indicator.

If a logical error occurs and no LERAD routine is provided (or the LERAD
exit is inactive), VSAM returns control to the processing program following
the last executed instruction. Register 15 indicates a logical error (8), and the
feedback field in the request parameter list contains a code identifying the
error. Register 1 points to the request parameter list.

Diagnostic Aids 64 J

The following list gives the logical-error return codes in the feedback field and
explains what each one means.

FORK
Code

4 (4)

Condition

End of data set encountered (during sequential retrieval). Either no EODAD
routine is provided, or one is provided and it returned to VSAM and the
processing program issued another GET.

Detected by: IDAOI9RA, IDAOI9RD, IDAOI9RR, IDAOI9RY, IDAOI9R2,
IDAOI9R4, IDAOl9R8

8 (8) Attempt was made to store a record with a duplicate key.

12 (C)

16 (10)

20 (14)

24 (18)

Detected by: IDAOI9RA, IDAOI9RQ, IDAOI9RX, IDA019R4

Attempt was made to store a record out of ascending key sequence; record may
also have a duplicate key.

Detected by: IDAOI9RA, IDAOI9RR, IDAOI9RX, IDA019R4

Record not found.

Detected by:IDAOI9RA, IDAOI9RR, IDA019RY

Record and its control interval already held in exclusive control by another
requester.

Detected by: IDAOI9RF, IDA019RY, IDAOI9R2, IDA019R8

Record resides on a volume that can't be mounted.

Detected by:IDAOI9RW, IDA0l9RY, IDAOI9R2, IDA019R5

28 (lC) Data set cannot be extended because VSAM can't allocate additional
direct-access storage space. Either there is not enough space left in the data
space to allocate the secondary allocation request or an attempt was made to
increase the size of a data set during processing with SHROPT==4 and
DISP=SHR.

32 (20)

Detected by: IDA019R5

An RBA was specified that doesn't give the address of any data record in the the
data set.

Detected by: IDAOI9RA, IDA019R8

36 (24) Key ranges were specified for the data set when it was defined, but no range was
specified that includes the record to be inserted.

Detected by: IDA019RM

40 (28) Insufficient virtual storage in the address space to complete the request.

Detected by: IDAOI9RG, IDAOI9RU, IDA019RX

44 (2C) Work area not large enough for the data record (GET with OPTCD=MVE).

64 (40)

Detected by: IDAOI9RR, IDAOI9RT, IDAOI9RY, IDAOI9R4, IDA019R8

As many requests are active as the number specified in the STRNO parameter
of the ACB macro; therefore, another request cannot be activated.

Detected by: IDAOI9RU, IDAOI9RX, IDA019Rl

68 (44) Attempt was made to use a type of processing (output or control-interval
processing) that was not specified when the data set was opened.

72 (48)

Detected by: IDAOI9RQ, IDA019R4, IDA019R8

A keyed request for access was made to an entry-sequenced data set, or a
GETIX or PUTIX was issued to an empty entry-sequenced or relative record
data set.

Detected by: IDAOI9RI, IDA019R8

642 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

FORK
Code Condition

76 (4C) An addressed or control-interval PUT was issued to add a record to a
key-sequenced data set, or a control-interval PUT was issued to a relative record
data set.

80 (50)

84 (54)

88 (58)

Detected by: IDA019Rl, IDA019R8

An ERASE request was issued for access to an entry-sequenced data set.

Detected by: IDAOI9RL, IDAOI9RX, IDAOl9R8

OPTCD=LOC was specified for a PUT request or in a request parameter list in
a chain of request parameter lists.

Detected by: IDA019RQ, IDAOI9Rl, IDA019R4, IDA019R8

A sequential GET or PUT request was issued without VSAM having been
positioned for it, a change was made from addressed access to keyed access
without VSAM having been positioned for keyed sequential retrieval, or an
illegal switch between forward and backward processing was attempted.

Detected by: IDA019RQ, IDA019RR, IDA019R4, IDA019R8

92 (5C) A PUT for update or an ERASE was issued without a previous GET for update,
or a PUTIX was issued without a previous GETIX.

Detected by: IDA019RQ, IDA019RX, IDA019R4, IDA019R8

96 (60) Attempt was made to change a key during an update.

Detected by: IDAOI9RL, IDA019RX

100 (64) Attempt was made to change the length of a record during an addressed update.

104 (68)

Detected by: IDA019RL, IDA019RQ

The RPL options are either invalid or conflicting in one of the following ways:

• SKP was specified and either KEY wasn't specified or BWD was specified

• BWD was specified for CNV processing

• FWD and LRD were specified

• Neither ADR, CNV, nor KEY was specified in the RPL

• WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID was
greater than 31 or a shared-resources option wasn't specified

• ICI processing was specified, but a request other than a GET or a PUT was
issued

Detected by: IDAI09RA, IDA019RR, IDAOI9RY, IDA019RX, IDA019Rl,
IDA019R4, IDA019R8

108 (6C) RECLEN specified was larger than the maximum allowed, equal to 0, smaller
than the sum of the length and the displacement of the key field, or not equal to
record (slot) length specified for a relative record data set.

Detected by: IDA019RL, IDA019RQ, IDA019RU, IDA019R4, IDA019R8

112 (70) KEYLEN specified was too large or equal to O.

Detected by: IDA019Rl

116 (74) A GET, POINT, ERASE, direct PUT, skip sequential PUT, or PUT with
OPTCD=UPD not permitted during initial data-set loading (that is, for storing
records in the data set the first time it's opened).

Detected by: IDA019RR, IDAOI9R4, IDA019R8

132·(84) An attempt was made in locate mode to retrieve a spanned record.

Detected by: IDA019RT

136 (88) An addressed GET was issued for a spanned record in a key-sequenced data set. L Detected by: IDA019RT

Diagnostic Aids 643

FDRK
Code Condition

140 (8C) Inconsistent spanned-record segments.

Detected by: IDA019R4

144 (90) Invalid pointer in an alternate index (no associated base record).

Detected by IDA019RX

148 (94) The maximum number of pointers in the alternate index has been exceeded.

Detected by: IDA019RU

152 (98) (Shared resources only.) Not enough buffers are available to process the
request.

Detected by: IDA109RY

192 (CO) Invalid relative record number.

Detected by: IDA019RQ, IDA019RR

196 (C4) An addressed request was issued to a relative record data set.

Detected by: IDA019Rl

200 (C8) Addressed or control-interval access was attempted by way of a path.

Detected by: IDA019RX

204 (CC) PUT-insert requests are not allowed in backward mode.

Detected by: IDA019RQ, IDA019R4

SYNAD Exit Routine: Pbysical Error Analysis

When a SYNAD routine is provided, it gets control for physical errors, and
register 15 doesn't contain 12, but contains the entry address of the SYNAD
routine.

The contents of the registers when VSAM exits to the SYNAD routine are:

Reg Contents

o Unpredictable.

Address of the request parameter list that contains the feedback field the routine
should examine and the address of the message area, if any. The register must
contain this address if the exit routine returns to VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains
the address of the processing program's 72-byte save area, which may not be used
by the SYNAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine. The register doesn't contain the
physical-error indicator.

If a physical error occurs and no SYNAD routine is provided (or the SYNAD
exit is inactive), VSAM returns control to the processing program following
the last executable instruction. Register 15 indicates a physical error (12), and
the feedback field in the request parameter list contains a code identifying the
error; the message area contains more details about the error. Register 1
points to the request parameter list.

644 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L
The physical-error return codes in the feedback field, and what each one
indicates, are:

FDRK
Code

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

24 (I8)

Condition

Read error occurred for a data component.

Read error occurred for the index set of an index component.

Read error occurred for the sequence set of an index component.

Write error occurred for a data component.

Write error occurred for the index set of an index component.

Write error occurred for one sequence set of an index component.

All physical errors are detected by IDAOI9R5.

Figure 76 gives the format of a physical-error message. The format and some
of the contents of the message are purposely similar to the format and
contents of the SYNADAF message, which is described in OS/VS Data
Management Macro Instructions.

Diagnostic Aids 64S

Field Bytes Length Discussion

Message
Length 0-1 2 Binary value of 128 J 2-3 2 Unused (0)

Message
Length - 4 4-5 2 Binary value of 124 (provided for compatibility

with SYNADAF message)

6-7 2 Unused (0)

Address of
I/O Buffer 8-11 4 The I/O buffer associated with the data in

relation to which the error occurred

The rest of the message is in printable format:

Date 12-16 5 YYDDD (year and day)
17 1 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, and tenths
and hundredths of a second)

26 Comma(,)

RBA 27-34 8 Relative byte address of the record in relation to
which the error occurred.

35 Comma (,)

Data-Set 36-41 6 "DATA" or "INDEX"
Type

42 Comma(,)

Volume Serial
Number 43-48 6 Volume serial number of the volume in relation

to which the error occurred J 49 Comma (,)

Job Name 50-57 8 Name of the job in which error occurred

58 Comma(,)

Step Name 59-66 8 Name of the job step in which error occurred

67 Comma(,)

Unit 68-70 3 The unit, CUU (channel and unit), in relation to
which the error occurred

71 Comma (,)

Device Type 72-73 2 The type of device in relation to which the error
occurred (always DA for direct access)

74 Comma (,)

ddname 75-82 8 The ddname of the DO statement defining the
data set in relation to which the error occurred

83 Comma(,)

Channel
Command 84-89 6 The channel command that occasioned the error

in the first two bytes, followed by "- OP"

90 Comma (,)

Figure 76 (Part I of 2). Format of Physical-Error Messages

646 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Yield Bytes Length

Message 91-105 15

106

Physical
Direct-Access
Address 107-120 14

121

Access Method 122-127 6

Discussion

Messages are divided according to ECB
condition codes.

X'4t'-
"INCORR LENGTH"
"UNIT EXCEPTION"
"PROGRAM CHECK"
"PROTECTION CHK"
"CHAN DATA CHK"
"CHAN CTRL CHK"
"INTFCE CTRL CHK"
"CHAINING CHK"
"UNIT CHECK"

If the type of unit check can be determined,
this message is replaced by one of the
following:
"CMD REJECT"
"INT REQ"
"BUS OUT CK"
"EQP CHECK"
"DATA CHECK"
"OVERRUN"
"TRACK COND CK"
"SEEK CHECK"
"COUNT DATA CHK"
"TRACK OVERRUN"
"CYLINDER END"
"INVALID SEQ"
"NO RECORD FOUND"
"FILE PROTECT"
"MISSING A.M."
"OVERFL INCP"

X'48'-"PURGED REQUEST"

X'4F' -"R.HA.RO. ERROR"

For any other ECB completion
code-"UNKNOWN COND."

Comma(,)

BBCCHHR (bin, cylinder, head, and record)

Comma(,)

"VSAM"

Figure 76 (Part 2 of 2). Format of Physical-Error Messa~es

Open, Close, and End-oj-Volume E"or Codes
(For EOV)

Error Code Set
in Register 15

0(0)

:4 (4)

Meaning of Error Code

Successful

The requested volume could not be mounted

8 (8)

12 (C)

The requested amount of space could not be allocated

The lOB could not be locked

16 (10) The VSAM catalog could not be updated

All End-of-Volume errors are detected by IDA0557A.

Diagnostic Aids 647

(For OPEN/CLOSE/TCLOSE)

Error Code Set
In ACRERFLG
F1eklof ACB

0(0)

4 (4)

96 (60)

100 (64)

104 (68)

108 (6C)

116 (74)

128 (80)

132 (84)

136 (88)

144 (90)

148 (94)

152 (98)

160 (AO)

Meaning of Error Code

When register 15 contains 0, all data sets were opened or closed
successfully.

When register 15 contains 8, either VSAM is processing the ACR for
some other request, or DDNAME was not specified in the ACR.

Warning message: the ACB is already opened (and the user issued
OPEN), or the ACB is already closed (and the user issued CLOSE or
TCLOSE).

Warning message: an unusable data set was opened for input.

Detected by: IDAOI92B

Warning message: Open encountered an empty alternate index that is
part of an upgrade set.

Detected by: IDAot 92B

The timestamp for the volume does not match the timestamp in the
volume catalog record. (This might mean the volume is not accurately
described by its catalog record.)

Detected by: IDAOl92A

The timestamp for the index is less than the timestamp for the data.set.
(This could occur if the data set was updated without the index being
open.)

Detected by: IDAOl92B

The last request to close this data set was not completed successfully.

Detected by: IDAot92B

DDNAME not found in TIOT.

An I/O error was detected while the system was reading the JFCB.

Detected by: IDAOI92F, IFG0200V

Not enough storage was available for work areas, buffers, or control
blocks.

Detected by: IDAOI92A, IDAOI92B, IDAOI92C, IDAOI92F,
IDAOI92W, IDAOI92Y, IDAOI92Z, IDA0200B, IDA0220T,
IDA0231B,IDA0231T

An I/O error occurred while reading or writing a catalog record. A
return code was set by a VSAM catalog management routine.

Detected by: IDA0192C

The catalog entry for the data set being opened or closed was not
found.

Detected by: IDA0192C

The data set being opened is protected by a password, and the VSAM
Open routine was unable to validate the password.

Detected by: IDA0192C

The buffer space specified was not consistent with the buffer
requirements of the data set; or the ACB indicated keyed access, but
the data set is not a key-sequenced data set; or the device type specified
in the DO statement is not consistent with the device type indicated in
the catalog entry for the data set; or user buffering is specified in the
ACB's MACRF field and control-interval processing should be
specified, but is not. Detected by: IDAOI92A, IDAOI92B, IDAOI92C,
IDA0192Z

648 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

(For OPEN/CLOSErrCLOSE)

Error Code Set
InACBERFLG
Field of ACB

164 (A4)

168 (A8)

176 (BO)

180 (B4)

184 (B8)

188 (BC)

192(CO)

196 (C4)

200 (C8)

208 (DO)

212 (D4)

216 (D8)

220 (DC)

224 (EO)

228 (E4)

232 (E8)

Meaning of Error Code

The system detected an I/O error while reading the volume label and
format-4 DSCB.

Detected by: IDA0192F

The Open routine was unable to get the resource the system requested
for the data set being opened. The resource was being used by another
task in the system.

Detected by: IDAOI92B

The Open routine was unable to fix in real storage the access-method
control blocks for the data set being opened.

Detected by: IDA0192F

The requested VSAM master or user catalog does not exist or is not
open.

Detected by: IDA0192C

An I/O error occurred during I/O processing.

Detected by: IDA0192B, IDA0200B, IDA0200T, IDA0231B,
IDA0231T

The data set indicated by the access-method control block is not of the
type that may be specified by an access-method control block.

Detected by: IDAOI92Z,IDA0200B,IDA0231B

An unusable data set was opened for output.

Detected by: IDA0192B

Access to data was requested by way of an empty path.

Detected by: IDA0192B

The volume is unusable.

Detected by: IDA0192F

The ACB MACRF specified GSR.

Detected by: IDA0192A

The ACB MACRF specified LSR, but the data set requires create
processing.

Detected by: IDAOl92B

The ACB MACRF specified LSR, but the key length of the data set
exceeds the maximum key length specified in BLDVRP.

Detected by: IDA0192B

The ACB MACRF specified LSR, but the data set's control-interval size
exceeds the size of the largest buffer specified in BLDVRP.

Detected by: IDA0192Z

The ACB MACRF specified ICI, but the data set requires create
processing.

Detected by: IDA0192B

The ACB MACRF specified LSR, but the VSAM shared resource table
doesn't exist.

Detected by: IDA0192A

Reset was specified for a nonreusable data set, but the data set is
empty.

Detected by: IDA0192C

Diagnostic Aids 649

(For OPEN/CLOSE!TCLOSE)

Error Code Set
In ACBERFLG
Field of ACB

236 (EC)

240 (FO)

244(F4)

Cotlliog MlllUIgement Error Codes

Meaning of Error Code

A stage or destage error occurred.

Detected by: IDAOI92D

Format-4 DSCB and catalog time-stamp verification failed during
volume mounting for output processing.

Detected by: IDA0I92F

The volume that contains the catalog recovery area wasn't
mounted and verified for output processing.

Detected by: IDA0192F

Catalog mamagement sets error and reason codes in the CCAPROB field of
the CCA (Catalog Communications Area). (For a description of the CCA,
see "VSAM Control Block Descriptions" in the "Data Areas" section of this
publication.) CCAPROB includes an identification of the catalog
management module that set the code (CCAMODID), a reason code
(CCAREASN), and a return code (CCACDl), which appears in register 15.
Complete explanations of the error and return codes, together with the
appropriate programmer responses, are given in the description of message
IDC30091 in OS/VS Message Library: VS2 System Messages. Brief
descriptions of the return codes are given below:

Return Code
Set in CCA's SymboUc
CCAPROB Field Name

0(0) RCS

4 (4) RCCAT

8 (8) RCENT

20 (14) RCINSP

24 (18) RCIOL

28 (IC) RCIONL

32 (20) RCINCPL

36 (24) RCDSNF

40 (28) RCVLSZ

44 (2C) RCVLSM

48 (30) RCINFUNC

52 (34) RCIOU

Meaning of Return Code

Operation completed successfully.

An error occurred while performing open/close
processing for a VSAM catalog or catalog recovery
area.

Entry does not exist, if action is one that locates an
entry; entry already exists, if action is one that adds an
entry to a catalog.

Not enough space is available in the catalog data set.
Another extent cannot be obtained because there is no
more space on the volume in which the catalog resides
or the maximum number of extents has been reached.

Permanent read error in VSAM catalog.

Permanent I/O error in VSAM catalog.

Error was detected in the catalog parameter list
(CTGPL).

Data set was not found.

Volume list or work area is too small-the required
length value is returned in the feedback field.

Work area is too small; system is unable to return
required size.

Operation is not a valid oJ;1e.

I/O error was detected on a user volume. An attempt to
modify the VTOC of the volume on which a

650 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

Return Code
Set in CCA's SymboUc
CCAPROB FJeld Name

56 (38) RCSEC

60 (3C) RCINENT

64 (40) RCNAME

68 (44) RCNOSP

72 (48) RCNUNIT

76 (4C) RCNUNIT

80 (50) RCRELOP

84 (54) RCDATE

88 (58) RCCRAOP

92 (5C) RCDSEXT

94 (5E) RCOBTAIN

96 (60) RCSPANCK

98 (62) RCRENAME

102 (66) RCSCRTCH

106 (6A) RCNTFMT4

108 (6C) RCINFNAM

112 (70) RCINFPL

116 (74) RCCATBAL

120 (78) RCSYSFLD

124 (7C) RCINCI

128 (80) RCBLKVCK

132 (84) RCiNPTR

136 (88) RCMISPAR

140 (8C) RCINCNPM

144 (90) RCINENTN

148 (94) RCVOLOWN

152 (98) RCDNECAT

156 (9C) RCNOSPSA

160 (AO) RCVNDSPD

164 (A4) RCINSSWA

168 (A8) RCINVDTY

Meaning of Return Code

user-specified data set is being defined or modified
failed because of a read or write error.

Password is incorrect.

Catalog record type is invalid.

Data set or index catalog record associated with the
cluster or alternate index catalog record was not found.

No space is available on a user volume.

Unit is not available for mounting user volume or
volume not mounted.

Unit is not available for mounting user volume or
volume not mounted.

Invalid related object. The object specified in the
RELATE parameter of the DEFINE command does not
exist or is improper for the object being defined.

Purge date has not expired.

Error with a catalog recovery area define operation.

Data set has reached the maximum number of extents.

An OS/VS DADSM Obtain request failed during a
VSAM catalog delete request.

Error in specifying key length, key position, or record
size for an alternate index or a spanned cluster.

An unusual condition occurred during ALTER name of
a unique or non VSAM data set.

An OS/VS DADSM Scratch request failed during a
VSAM delete request for a unique or nonVSAM data
set.

A format-4 DSCB processing error was encountered.

Field name is invalid.

Field parameter list (CTGFL) contains invalid
parameters.

Catalog records are invalid.

User attempted to modify a system field or nonexistent
field.

Control interval number is invalid.

User provided a work area outside his address space.

Pointer is not valid.

Required parameter is missing.

Specified parameters are inconsistent or conflicting.

Entry name is invalid.

Volume is already owned by another VSAM catalog.

User attempted to delete a catalog that is not empty.

No space available to suballocate.

Deletion of space object did not cause volume to be
deleted.

Not enough storage is available for work area.

Specified device-type is not supported.

Diagnostic Aids 651

Return Code
Set ioCCA's Symbolic
CCAPROB Field Name MelUling of Return Code

172 (AC) RCDUPNVL Volume has duplicate data space name. J 116 (BO) RCNSPVTC No space available on VTOC for DSCB.

180 (B4) RCDSNFND Data space was not found.

184 (B8) RCDSO Data set is currently open, so the catalog record cannot
be modified.

188 (BC) RCCATUNA The catalog is unavailable.

192 (CO) RCMLRSZ Maximum logical record length specified is greater than
32,161 for a nonspanned data set.

196 (C4) RCMCISZD Data component control interval size specified is greater
than 32,161.

200 (C8) RCMCISZI Index component C()ntrol interval size specified is
greater than maximum block size of index device.

204 (CC) RCKEYINC Key extends beyond end of record.

208 (DO) RCBUFSIZ Buffer size is too small.

212 (D4) RCSIZCAL Control interval size cannot be calculated.

216 (D8) RCVTCBAL Volume's VTOC is invalid.

220 (DC) RCDOSVTC DOS VTOC cannot be converted to OS/VS VTOC.

224 (EO) RCMXGRP Catalog record has exceeded the maximum number of
sets of fields allowed.

226 (E2) RCTSAUTH Test authorization macro failed.

228 (E4) RCLOCKER Error detected in time-of-day clock.

230 (E6) RCHIGH VSAM catalog retrieve of a control interval failed to get
a low-range record from the VSAM catalog. J 232 (E8) RCSMFER Error detected in SMF processing.

234 (EA) RCLEOD End of data encountered while reading the low data key
range of the VSAM catalog.

236 (EC) RCSMAPE Error detected in scanning the space map.

238 (EE) RCNOUCEN No user catalog entry in the master catalog for convert
volume processing.

240 (FO) RCINDER Required DD statement missing.

242 (F2) RCEFRMPH A physical I/O error occurred during an erase of data
set being deleted.

244 (F4) RCEF Erase operation failed-DELETE operation was not
performed.

248 (F8) RCVOLENT The volume catalog record (identified with a
caller-specified volume serial number) was not found.

250 (FA) RCEFRM VSAM record management found a logical error during
erase processing while deleting a VSAM data set.

252 (FC) RCEE Error was detected, and the operation was not
completed.

652 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Alphabetic List of the Catalog Management Error Return Code Symbolic Names

Name

RCBLKVCK
RCBUFSIZ
RCCAT
RCCATBAL
RCCATUNA
RCCRAOP
RCDATE
RCDNECAT
RCDOSVTC
RCDSEXT
RCDSNF
RCDSNFND
RCDSO
RCDUPNVL
RCEE
RCEF
RCEFRM
RCEFRMPH
RCENT
RCHIGH
RCINCI
RCINCNPM
RCINCPL
RCINDER
RCINENT
RCINENTN
RCINFNAM
RCINFPL
RCINFUNC
RCINPTR
RCINSP
RCINSSWA
RCINVDTY
RCIOL
RCIONL
RCIOU

Code

128(80)
208(DO)
4(04)
116(74)
188(BC)
88(58)
84(54)
152(98)
220(DC)
92(5C)
36(24)
180(B4)
184(B8)
172(AC)
252(FC)
244(F4)
250(FA)
242(F2)
8(08)
230(E6)
124(7C)
14O(8C)
32(20)
24O(FO)
60(3 C)
144(90)
108(6C)
112(70)
48(30)
132(84)
20(14)
1 64(A4)
168(A8)
24(18)
28(1C)
52(34)

Control Block ManipUlation E"or Codes

Name

RCKEYINC
RCLEOD
RCLOCKER
RCMCISZD
RCMCISZI
RCMISPAR
RCMLRSZ
RCMXGRP
RCNAME
RCNMNTD
RCNOSP
RCNOSPSA
RCNOUCEN
RCNSPVTC
RCNTFMT4
RCNUNIT
RCOBTAIN
RCRELOP
RCRENAME
RCS
RCSCRTCH
RCSEC
RCSIZCAL
RCSMFER
RCSPANCK
RCSMAPE
RCSYSFLD
RCTSAUTH
RCVLSM
RCVLSZ
RCVNDSPD
RCVOLENT
RCVOLOWN
RCVTCBAL

Code

204(CC)
234(EA)
228(E4)
196(C4)
200(C8)
136(88)
192(CO)
224(EO)
64(40)
72(48)
68(44)
156(9C)
238(EE)
176(BO)
106(6A)
76(4C)
94(5E)
80(50)
98(62)
0(0)
102(66)
56(38)
202(D4)
232(E8)
96(60)
236(EC)
120(78)
226(E2)
44(2C)
40(28)
16O(AO)
284(F8)
148(94)
216(D8)

When the Control Block Manipulation routine returns to the caller after
successful completion, register 15 contains o. If the request is GENCB,
register 0 contains the total length of the area that contains the control
block(s). Register 1 contains the address of the area.

When the Control Block Manipulation routine returns to the caller with a
nonzero value in register 15, an error occurred. If the request is TESTCB and
the caller supplied a ERET keyword, return is to the location specified by the
ERET keyword. Otherwise, the Control Block Manipulation routine returns
control to the point of invocation, via the return address in register 14.

Register 15 contains a return code:

Code Description

o Successful completion.

4 An error has been detected. The error code in register 0 indicates the type of
error.

8 Invalid use of the execute form of this macro instruction. Since the return code is
set by the macro instruction expansion and not by the Control Block
Manipulation routine, the register 0 contents do not indicate an error code.

Diagnostic Aids 653

Register 0 contains an error code:

Applicable
Code Macros· Condition

](1) G,M,S,T The function type is invalid.

2(2) G,M,S,T The control-block type is invalid.

3(3) G,M,S,T The keyword type is invalid.

4(4) M,S,T The control block to be processed isn't of the type specified.

5(5) S,T The ACB to be processed is closed-it must be open.

6(6) S,T The cluster whose index component was to be processed isn't
key-sequenced (doesn't include an index).

7(7) M,S The EXLST entry to be processed isn't present.

8(8) G Not enough virtual storage is available, or (with AM=VTAM
specified) list and execute forms are inconsistent.

9(9) G,S User area is too small.

IO(A) G,M Exit address isn't specified in the input.

11(B) M The RPL to be processed is active, or it is already being processed.

12(C) M The ACB to be processed is open-it must be closed.

13(D) M No exit address is specified in the input for the exit to be activated.

14(E) G,M,T An invalid combination of option codes (for example, for MACRF
or OPTCD) is specified.

15(F) G,S The user area isn't on a fullword boundary.

16(10) G,M,S,T A VTAM keyword is specified with AM=VTAM not specified.

19(13) M,S,T A specified keyword refers to a field beyond the end of the control
block to be processed.

20(14) S A specified keyword requires processing with shared resources to
be specified, but it isn't.

21 (I 5) S,T The block to be displayed or tested does not exist because the data
set is a dummy data set.

* G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

All errors in control block manipulation are detected by IDAOI9C1.

Virtual-Storage Management
The getting and freeing of storage for VSAM control blocks is managed
centrally by IDA0192M. To allocate storage efficiently, IDAOl92M (in most
cases) gets storage in blocks large enough to satisfy not only a current request
for storage for a control block, but also subsequent requests for storage for
the same or a related control block. Figure 75 indicates:

• What control block(s) are stored in each type of storage block

• What block gives the address of each storage block

• What subpool each storage block is located in (subpools 254, 241, 245,
and 252 are protected with key 0; subpool 250 is unprotected-attributes
of system subpools are described in OS/VS2 Supervisor Logic)

• The size of each storage block

• Whether each storage block is fixed in real storage by Open

654 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

J

Pointed Gotten Fixed in Real Stonge
Storage Block Contains to by inSubpooll Size6 by Open?

Blocks Related to the Job
Step as a Whole

Sphere Block2 ACBs for the base BIB 250 lKor No
cluster (path larger
processing) and the
alternate indexes
in the upgrade set,
RPLs for the
alternate indexes
in the upgrade set,
UPT

Protected Sphere AMBLs for the base BIB 252 lKor No
Block cluster (path larger

processing) and the
alternate indexes
in the upgrade set,
HEBs

Blocks Related to a
Particular Cluster

Buffer Block I/O buffer CMB 250 Length of No5

buffer

Upgrade Buffer I/O buffer CMB 250 Length of No
Block2 buffer

DEB Block DEB CMB 2544 Length of No
DEB

EDB Block EDB CMB 252 Length of No5

EDB
String Block3 BUFCs, CPAs, lOBs, CMB 250 4Kor No5

PLHs, RPLs for larger
path PLHs, W AXs
for Path PLHs

Fixed String PFL CMB 2544 1/2K or No
Block3 larger

Upgrade String BUFCs,CPAs,IOBs, CMB 250 4Kor No
Block2 PLHS larger

Fixed Upgrade PFL CMB 254 Length of No
String Block PFL

User Block AMBs, AMDSBs, CMB 250 lK or No5

ARDBs, BUFC larger
headers, pieformat
BUFCs, preformat
CPAs,IWAs

Protected User LPMBs CMB 252 3 LPMBs, + NoS
64 bytes
for set
sector table

1 Subpool is 241 for a catalog or a catalog recovery area built in system storage.

2 This block doesn't exist for a catalog or a catalog recovery area built in system storage.

3 This block doesn't exist for processing with local shared resources.

4 Subpool is 245 for a catalog or a catalog recovory area built in system storage.

5 This block is fixed in real storage. by Open if the user requests it for "fast path" (improved control-interval)
processing.

6 The sizes are given for time of allocation. After Open termination, excess storage will have been freed.

7 This block doesn't exist with "fast path" (improved control interval) processing.

Figure 77. Storage Blocks used for Virtual-Storage Management.

Diagnostic Aids 655

To allocate and free storage in a storage block, IDAOI92M uses these control
blocks (which are described in detail in "Data Areas"):

• BIB-the base information block is built in subpool 252 upon a request to\
build it from the VSAM Open module IDA0192A. One BIB is built for all"
processing related to a particular base cluster in the job step.

• CMB-the cluster management block is built in subpool252 upon the first
request to open a particular cluster from the VSAM Open module
IDAOI92F.1t enables IDA0192M to control the allocation and freeing of
control blocks for the cluster. It contains the addresses of the header
elements in header element blocks (described next) that identify the
storage blocks that contain control blocks for the cluster.

After a CMB has been built for a cluster, subsequent requests for storage
for control blocks for the cluster (related to the same open) are satisfied, if
possible, by using storage blocks already obtained. As storage blocks fill
up, IDAOI92M gets additional ones.

• REB-the header element block is built (in the protected sphere block) by
IDA0192M to manage the allocation and freeing of unprotected storage
blocks. A REB contains 16 header elements, each of which, when used,
identifies and describes a storage block. The CMB indicates by the position
of an entry that points to a header element what type of storage block the
header element describes. The header element gives the block's address,
length, subpool number, and available space. It doesn't give the address
within the block of individual control blocks. These addresses are given by
the control blocks within the VSAM control block structure, which is
described in "Data Areas."

Figure 78 gives the interrelationship of these control blocks. It shows two
storage blocks obtained for DEBs. Storage blocks are obrained for other J
control blocks in the same way. A DEB block is just large enough to contain
the DEB for which storage is requested. Some other storage blocks are large
enough to contain several control blocks of the same or a related type, for
which storage might be requested subsequently.

As a by-product, these control blocks map the location, by storage block, of
VSAM control blocks for clusters (and associated paths and upgrade sets).
BIBs, CMBs, and REBs are in protected storage; they can be used to find a
control block when a pointer in the VSAM control block structure has been
destroyed or can't be found.

656 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

16

32

90

'--

24

28

32

36

8

12

16

20

24

28

32

36

40

44

VSAM O/C/EOV
Work Area

I t BIB

t CMB

Subpool Size of Request

Request
Flags I Type

t CSL

BIB

t Sphere Block

t Protected Sphere Block

t First HEB

t First Free Header Element

CMB

t User Block Header

t Protected User Block Header

t String Block Header

t Upgrade String Block Header

t Fixed String Block Header

t Fixed Upgrade
String Block Header

t Buffer Block Header

t Upgrade Bu ffer Block Header

t DEB Block Header

t EDB Block Header

Virtual
Storage
Management
Parameter
List

CSL

r-

First Entry

J
Second En try

Third Entry

----- Fourth Entry

Fifth Entry

--, -I- ~
-r ~r

31st Entry

~

32nd Entry

I

Protected Sphere Block

HEB

First Header Elemen t

[Second Header Element

,-t--
Third Header Element r-

Fourth Header Element

S~ j c{ 16th Header Element

("Dummy') AMBLs for base
cluster (path processing) and
the alternate indexes in the upgrade
set

I

Figure 78. Virtual-Storage Management Control Block Structure

..

Sphere Block

ACBs for the base
~ cluster (path processing)

and the alternate indexes
in the upgrade set

RPLs for the alternate
indexes in the upgrade
set

UPT

DEB Storage Block

'-t-- First DEB

J for which
storage was
requested

DEB Storage Block

Second DEB
for which
storage was
requested

Diagnostic Aids 657

J

J

GLOSSARY

Abbreviations
Following is an alphabetized list of the abbreviations used in
this book and in the VSAM code listings.

ABEND: abnormal end

ACB: access method control block

ADDR: addressed processing or addressed

ADR: same as ADDR

AIX: alternate index

AMB: access method block

AMBL: access method block list

AMCBS: access method control block structure control block

AMDSB: access method data statistics block

AMS: Access Method Services

AM/O: Virtual Storage Access Method (VSAM)

ARDB: address range definition block

ASPT: available space pointer

ATIOT: alternate task input/output table

BIB: base information block

BISAM: basic indexed sequential access method

BLK: block, control interval

BLPRM: BDL VRP parameter list

BSPH: buffer subpool header

BUFC: buffer control block

BWD: backward (processing)

CA: control area

CAXW A: catalog auxiliary work area

CCA: catalog communication area

CCB: command control block

CCR: catalog control record

CHKPT: checkpoint

CI: control interval

CICB: ISAM interface control block

CIDF: control interval definition field

CLW: close work area

CM: catalog management

CMB: cluster management block

CMS: VSAM catalog management services

CNV: control interval or control-interval processing

core: virtual storage

CPA: channel program area

CPL: catalog parameter list (CTGPL)

CRA: catalog recovery area

CSL: core save list

CfGCV: catalog control volume

CfGFL: field parameter list (FPL)

CfGFV: field vector table (FVT)

CfGPL: catalog parameter list (CPL)

CfGVL: catalog volume list

CfGWA: catalog work area

CVT: communications vector table

OCB: data control block

DDNAME: data definition name

DEB: data extent block

DIR: direct processing

DIW A: data insert work area

DSCB: data set control block

DSL: DEB save list

DSNAME: data set name

DSORG: data set organization

ECB: event control block

EDB: extent definition block

ENDREQ: end the request

EOD: end of data

EOF: end of file

EOV: end of volume

ERFLG: error flags

ESDS: entry-sequenced data set

ESL: enqueue save list

EXCD: exceptional conditions

EXCP: execute channel program

EXLST: exit list

Ext Proc: external procedure

FKS: full key search

Fn:format n

FPL: field parameter list (CTGFL)

FS: free space

FVT: field vector table (CTGFV)

FWD: forward (processing)

GC: type code (group code)

GEN: generic key search

GO: Set of fields (group occurrence)

GOP: Set-of-fields pointer (group occurrence pointer)

HEB: header element block

ICIP: improved control-interval processing

Glossary 659

ICWA: index create work area

10: identifier

IDAL: indirect data-address list (real page list)

II: ISAM interface

IICB: ISAM interface control block

IMW A: index modification work area

lot Proc: internal procedure

I/O: input/output

lOB: input/output block

ISAM: indexed sequential access method

IXSPL: index search parameter list

JFCB: job file control block

JSCB: job step control block

KEQ: search on key equal

KEY: keyed accessing

KGE: search on key greater or equal

KSDS: key-sequenced data set

L: link

LLOR: least length of record (that contains all key fields)

LOC: locate

LPMB: logical-to-physical mapping block

LSR: local shared resources

MACR: macro instruction reference

MOD: module

MSS: Mass Storage System

MSVI: Mass storage volume inventory

MWA: module work area

0: integer number

NSI: next sequential instruction

NSP: next string position

NUP: no update

O/C/EOV: Open/Close/End-of-Volume

OFLG: open flags

OPTCD: option code

OPW: Open work area

OPWA: (same as OPW)

OPWRK: (same as OPW)

OS/VS: operating system/virtual storage

PCCB: private catalog control block

PFL: page fix list

PFPL: PGFIX parameter list (same as PFL)

PL/I: programming language/one

PL/S: programming language/systems

PLH: placeholder

PLHDR: placeholder header

PROC: procedure

PSR: Programming Systems Representative

PSW: program status word

PUT: write-a-record command

QISAM: queued indexed sequential access method

RAB: record area block

RB: request block

RBA: relative byte address

RDF: record definition field

REP: replication

RM: record management

Rn: general-purpose register n

RPL: request parameter list

RPLE: RPL extension for ISAM interface processing

RPS: rotational position sensing

RRDS: relative record data set

RTN: routine

SCIB: search compressed index block

SCRA: catalog recovery area in system storage

SEQ: sequential or sequential processing

SKP: skip sequential or skip sequential processing

SMF: system management facilities

SSL: swap save list

SST: set sector table

STRNO: number of RPL strings

SVC: supervisor call

TCB: task control block

TIOT: task I/O table

TSO: time sharing option

UCB: unit control block

UCRA: catalog recovery area in user's storage

UPD: update mode (or data lYodify)

UPT: upgrade table

USVR: user security verification routine

VAT: valid-AMBL table

VL: variable length

VMT: volume mount table

VPL: virtual page list

VRP: VSAM resource pool

VSAM: virtual storage access method

VSL: virtual subarea Iiast (same as PFL)

VSRT: VSAM shared resource table

VTOC: volume table of contents

660 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

VVIC: (replaced by MSVI)

WAX: work area for path processing

WSHD:

WTG: where-to-go table working storage header

XCTL: transfer control (macro instruction)

XPT: checkpoint

XREF: cross reference

Definitions of Terms Used In This
Book
The following terms are defined as they are used in this book.
If you do not find the term you are looking for, refer to the
index or to the IBM Data Processing Glossary, GC20-1699.

Access Method Services: A multifunction service program that
defines VSAM data sets and allocates space for them,
converts indexed sequential data sets to key-sequenced data
sets with indexes, modifies data-set attributes in the catalog,
reorganizes data sets, facilitates data portability between
operating systems, creates backup copies of data sets and
indexes, helps make inaccessible data sets accessible, and lists
data-set records and catalog entries.

addressed direct access: The retrieval or storage of a data
record identified by its relative byte address, independent of
the record's location relative to the previously retrieved or
stored record. (See also keyed direct access, addressed
sequential access, and keyed sequential access.)

addressed sequential access: The retrieval or storage of a data
record in its entry sequence relative to the previously
retrieved or stored record. (See also keyed sequential access,
addressed direct access, and keyed direct access.)

alternate Index: A collection of index entries organized by the
alternate keys of its associated base data records.

alternate-Index cluster: The data and index components of an
alternate index.

appHcatlon: As used in this publication, the use to which an
access method is put or the end result that it serves;
contrasted to the internal operation of the access method.

base catalog record: The first catalog record (control interval)
that describes the VSAM object. This record contains the
object's data set name, cluster name, or volume serial number
in the ENTNAME field. This record also contains the header
fields required for the object. The base catalog record can
contain set-of-fields pointers that point to sets of fields in the
base catalog record, or that point to sets of fields in extension
records (vertical extension). The base catalog record's
extension pointer can point to a control interval that
continues the information (set-of-fields pointers) contained in
the base catalog record (horizontal extension).

base cluster: A key-sequenced or entry-sequenced cluster over
which one or more alternate indexes are built.

candidate volume: A direct-access storage volume that has
been defined in a VSAM catalog as a VSAM volume; VSAM
can automatically allocate space on this volume, as needed.

catalog: (See master catalog and user catalog.)

catalog recovery area: (See CRA.)

cluster: A combination of related VSAM data sets, identified
by one name in a VSAM catalog and requiring a single DD
statement. A key-sequenced data set and its index form a
cluster; an entry-sequenced data set alone forms a cluster.

coUating sequence: An ordering assigned to a set of items, such
that any two sets in that assigned order can be collated. As
used in this publication, the order defined by the System/370
8-bit code for alphabetic, numeric, and special characters.

compendium: A compendium gathers together and presents in
concise form all the essential facts and details about a VSAM
functional unit.

Glossary 661

component: A named, cataloged collection of stored records.
The lowest member in the data structure hierarchy. A data
set contains at least one component, and the component can
contain no subsets.

compression: (See key compression.)

control area: A group of control intervals used as a unit for
formatting a data set before adding records to it. Also, in a
key-sequenced data set, the set of control intervals pointed to
by a sequence-set index record; used by YSAM for
distributing free space and for placing a sequence-set index
record adjacent to its data.

control-area spIt: The movement of the contents of some of
the control intervals in a control area to a newly created
control area, to facilitate the insertion or lengthening of a
data record when there are no remaining free control
intervals in the original control area.

control interval: A fixed-length area of auxiliary-storage space
in which YSAM stores records and distributes free space. It is
the unit of information transmitted to or from auxiliary
storage by YSAM, some integer multiple of blocksize.

control-interval spIt: The movement of some of the stored
records in a control interval to a free control interval, to
facilitate the insertion or lengthening of a record that won't
fit in the original control interval.

eRA: Catalog recovery area. An entry-sequenced data set
that exists on each volume owned by a recoverable catalog,
including the catalog volume itself. The CRA contains
self-describing records as well as duplicates of catalog records
that describe the volume.

data integrity: Preservation of data or programs for their
intended purpose. As used in this publication, the safety of
data from inadvertent destruction or alteration.

data record: A collection of items of information from the
standpoint of its use in an application and not from the
standpoint of the manner in which it is stored. (See also
stored record.)

data security: Prevention of access to or use of data or
programs without authorization. As used in this publication,
the safety of data from unauthorized use, theft, or purposeful
destruction.

data set: The major unit of data storage and retrieval in the
operating system, consisting of data in a prescribed
arrangement and described by control information to which
the system has access. As used in this publication, a collection
of fixed- or variable-length records in auxiliary storage,
arranged by YSAM in key sequence or in entry sequence.
(See also key-sequenced data set and entry-sequenced data
set.)

data space: A storage area defined in the volume table of
contents of a direct·access volume for the exclusive use of
YSAM to store data sets, indexes, and catalogs.

direct access: The retrieval or storage of data by a reference to
its location in a data set rather than relative to the previously
retrieved or stored data. (See also addressed direct access
and keyed direct access.)

distributed free space: Space reserved within the control
intervals of a key-sequenced data set for inserting new
records into the data set in key sequence; also, whole control
intervals reserved in a control area for the same purpose.

entry sequence: The order in which data records are physically
arranged in auxiliary storage, without respect to their
contents. (Contrast to key sequence.)

entry-sequenced data set: A data set whose records are loaded
without respect to their contents, and whose relative byte
addresses cannot change. Records are retrieved and stored by
addressed access, and new records are added at the end of the
data set.

extent: A continuous space allocated on a direct-access
storage volume, reserved for a particular data space or data
set.

extension record: The continuation of a catalog record that
contains set-of-fields pointers and their sets of fields.
Set-of-fields pointers in an extension record always point to
sets of fields within the extension record. The extension
record's extension pointer can point to a control interval that
contains part of a set of fields too large to fit in the extension
record (horizontal extension).

external procedure: A procedure that can be called by any
other YSAM procedure; a procedure whose name is in the
module's (assembler listing) "external symbol dictionary."

field: In a record or a control block, a specified area used for
a particular category of data or control information.

free space: (See distributed free space.)

generic key: A high-order portion of a key, containing
characters that identify those records that are significant for a
certain application. For example, it might be desirable to
retrieve all records whose keys begin with the generic key AB,
regardless of the full key values.

group code: (See type code.)

group occurrence: (See set of fields.)

group occurrence pointer: (See set-of-fields pointer.)

horizontal extension: An extension record pointed to by a
catalog record's extension field. (See also vertical extension.)

horizontal pointer: A pointer in an index record that gives the
location of another index record in the same level that
contains the next key in collating sequence; used for keyed
sequential access.

index: As used in this publication, an ordered collection of
pairs, each consisting of a key and a pointer, used by YSAM
to sequence and locate the records of a key-sequenced data
set; organized in levels of index records. (See also index
level, index set, and sequence set.)

index entry: A key and a pointer paired together, where the
key is the highest key (in compressed form) entered in an
index record or contained in a data record in a control
interval, and the pointer gives the location of that index
record or control interval.

index level: A set of index records that order and give the
location of records in the next lower level or (sequence set
record) that give the location of control intervals in the
control area that it is associated with.

index record: A collection of index entries that are retrieved
and stored as a group. (Contrast to data record.)

index replication: The use of an entire track of direct-access
storage to contain as many copies of a single index record as
possible; reduces rotational delay.

662 OS/YS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

L

Index set: The set of index levels above the sequence set. The
index set and the sequence set together comprise the index.

Index upgrade: The process of reflecting changes made to a
base cluster in its associated alternate indexes.

Integrity: (See data integrity.)

Interpal procedw-e: A procedure that can be called only by
other procedures within the module. (See also external
procedure.)

ISAM Interface: A set of routines that allow a processing
program coded to use ISAM (indexed sequential access
method) to gain access to a key-sequenced data set with an
index.

key: One or more characters within an item of data that are
used to identify it or control its use. As used in this
publication, one or more consecutive characters taken from a
data record, used to identify the record and establish its order
with respect to other records. (See also key field and generic
key.)

key compression: The elimination of characters from the front
and the back of a key that VSAM does not need to distinguish
the key from the preceding or following key in an index
record; reduces storage space for an index.

key field: A field located in the same position in each record
of a data set, whose contents are used for the key of a record.

key sequence: The collating sequence of data records,
determined by the value of the key field in each of the data
records. May be the same as, or different from, the entry
sequence of the records.

key-sequenced data set: A data set whose records are loaded in
key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access,
and new records are inserted in the data set in key sequence
by means of distributed free space. Relative byte addresses of
records can change.

keyed direct access: The retrieval or storage of a data record
by use of an index that relates the record's key to its relative
location in the data set, independent of the record's location
relative to the previously retrieved or stored record. (See also
addressed direct access, keyed sequential access, and
addressed sequential access.)

keyed seqnentlal access: The retrieval or storage of a data
record in its key sequence relative to the previously retrieved
or stored record, as defined by the sequence set of an index.
(See also addressed sequential access, keyed direct access,
and addressed direct access.)

mass sequential insertion: A technique VSAM uses for keyed
sequential insertion of two or more records in sequence into a
collating position in a data set: more efficient than inserting
each record directly.

mass storage volume: Two data cartridges in the IBM 3850
Mass Storage System that contain information equivalent to
what could be stored on a direct-access storage volume.

master catalog: A key-sequenced data set with an index
containing extensive data-set and volume information that
VSAM requires to locate data sets, to allocate and deallocate
storage space, to verify the authorization of a program or
operator to gain access to a data set, and to accumulate usage
statistics for data sets.

password: A unique string of characters stored in a catalog
that a program, a computer operator, or a terminal user must
supply to meet security requirements before a program gains
access to a data set.

path: A named, logical entity composed of one or more
clusters (an alternate index and its base cluster, for example).

physical record: On a track of a direct-access storage device,
the space between interrecord gaps.

pointer: An address or other indication of location. For
example, an RBA is a pointer that gives the relative location
of a data record or a control interval in the data set to which
it belongs. (See also horizontal pointer and vertical pointer.)

portability: The ability to use VSAM data sets with different
operating systems. Volumes whose data sets are cataloged in
a user catalog can be demounted from storage devices of one
system, moved to another system, and mounted on storage
devices of that system. Individual data sets can be transported
between operating systems using Access Method Services.

prhne Index: The index component of a key-sequenced data
set having one or more alternate indexes. (See also index and
alternate index.)

prbne key: The key of reference for a key-sequenced data set
when it was loaded. (See also key.)

procedure: A functional unit of VSAM code that is entered
only at one entry point and exits at the end of the procedure
(the last line of the procedure's code). The procedure can call
(transfer control, with a return to the procedure expected)
other procedures within the module (internal calls) and can
call other procedures in other VSAM modules (external
calls). (See also internal procedure and external procedure.)

random access: (See direct access.)

RBA: Relative byte address. The displacement of a data
record or a control interval from the beginning of the data set
to which it belongs; independent of the manner in which the
data set is stored.

record: (See index record, data record, stored record.)

relative byte address: (See RBA.)

relative record data set: A data set whose records are loaded
into fixed-length slots.

relative record number: A number that identifies not only the
slot in a relative record data set but also the record occupying
the slot.

replication: (See index replication.)

reusable data set: A VSAM data set that can be reused as a
work file, regardless of its old contents.

security: (See data security.)

segment: The portion of a spanned record contained within a
control interval. (See also spanned record.)

sequence set: The lowest level of the index of a key-sequenced
data set; it gives the locations of the control intervals in the
data set and orders them by the key sequence of the data
records they contain. The sequence set and the index set
together comprise the index.

sequential access: The retrieval or storage of a data record in
either its entry sequence or its key sequence, relative to the
previously retrieved or stored record. (See also addressed
sequential access and keyed sequential access.)

Glossary 663

set of fields: A group of catalog record fields that contain
related information. Sets of fields are referred to in the code
as "group occurrences" or "GOs."

set-of-fields pointer: A field used to identify and locate a set of
fields by its displacement from the beginning of the record's
sets of fields (the set of fields is in the same control interval as
the set-of-fields pointer) or by a control interval number (the
set of fields pointer is in the base catalog record or its
extension and the set of fields is in an extension record).
Set-of-fields pointers are grouped by type code and are in
ascending sequence by sequence number. Set-of-fields
pointers are referred to in the code as "group occurrence
pointers" or "GOPs."

shared resources: A set of functions that permit the sharing of
a pool of I/O-related control blocks, channel programs, and
buffers among several VSAM data sets open at the same
time.

skip sequential access: Keyed sequential retrieval or storage of
records here and there throughout a data set, skipping
automatically to the desired record or collating position for
insertion: VSAM scans the sequence set to find a record or a
collating position.

spanned record: A record whose length exceeds
control-interval lengthened and, as a result crosses, or spans,
one or more control interval boundaries within a single
control area.

stored record: A data record, together with its control
information, as stored in auxiliary storage.

string: The part of a control block structure built around a
placeholder (PLH) that enables VSAM to keep track of one
position in the data set that the control block structure
describes.

type code: A code that identifies the set-of-fields type. Type
codes are referred to in the code as "group codes" or "GCs."
(See "Field Name Dictionary" for a list of type codes.)

upgrade set: All the alternate indexes that VSAM has been
instructed to update whenever there is a change to the data
component of the base cluster.

user catalog: A catalog used in the same way as the master
catalog, but optional and pointed to by the master catalog,
and also used to lessen the contention for the master catalog
and to facilitate volume portability.

vertical extension: An extension record pointed to by a
set-of-fields pointer in the object's base catalog record or its
horizontal extension. (See also base catalog record and
horizontal extension.)

vertical pointer: A pointer in an index record of a given level
that gives the location of an index record in the next lower
level or the location of a control interval in the data set
controlled by the index.

664 OS/VS2 SVS Independent Component: Virtual Storage Access Method (YSAM) Logic

INDEX

For additional information about any subject listed in this
index, refer to the publications that are listed under the same
subject in OS/VSI Master Index of Logic, GY24-5 I 64.

A
abbreviations, list of 659
ABEND macro 634

issued by Open processing 31
ACB control block

conditions before open 47
described and illustrated 547
mapped by IFGACB macro 633
STRNO parameter and the number of placeholders 75
used during

Close processing 45,47
End of Volume processing 59
Open processing 31

Access Method Services
and VSAM catalog management processing 225

acquiring a free space control area during key-sequenced data
set modification 97

acronyms, list of 659
add-to-end processing

during data set creation 83
during key-sequenced data set modification 97

adding a
control interval to the data set for the user's program 129
new set of fields to a catalog record 219

ADDREC macro 634
and DEFINE CATALOG processing 243
and DEFINE CLUSTER processing 233

addressed processing
GET

direct 79
sequential 81

POINT 119
restrictions 75

allocating
more space to a data set 197

and sequence set with data 199
extent descriptor for 199
from a nonunique data space 209

part of a data space's space (SUBALLOCATE
processing) 384

space to a VSAM data set or key range 59
ALTER processing 255
alternate index

access by way of 145
closing the upgrade set 53
control block structure 539
format 474
opening the upgrade set 39
upgrading 147

alternate index catalog record 496
association set of fields 497
description 496
format 496
password set of fields 498

alternate key 474
AMB control block

described and illustrated 550
mapped by IDAAMB macro 631

used during
Close processing 47
End of Volume processing 49

AMBL control block
described and illustrated 552
mapped by IDAAMBL macro 631
used during

Close processing 47
Open processing 3 I

AMCBS control block
described and illustrated 555
mapped by AMCBS macro 631

AMCBS macro 631
(See also AMCBS control block) 555

AMDSB control block
described and illustrated 555
mapped by IDAAMDSB macro 631
used during Close processing 47

AMDSB set of fields
description 490
used in data set catalog record 492
used in index catalog record 492

RESET processing 200
amendments, summary of 15
AMP parameter (JCL DD parameter) used to specify ISAM

SYNAD routine 47
ARDB control block

described and illustrated 556
mapped by IDAARDB macro 631
used during data set creation 91,93

argument control entry 161,162,164
assignment of

candidate volumes
after the data set or catalog has been created 255
during DEFINE CLUSTER processing 233

catalog control intervals 487
CRA control intervals 408
placeholders to a request string, effect of

ENDREQon 75
RPL to catalog management requests 175

association set of fields
cluster

used in a data set catalog record 492
used in an index catalog record 492

data set and index
used in a cluster catalog record 495

description 480
illustrated 480

asynchronous
processing (CHECK) 125
request, deferred 77

available-space map (LSPACE processing) 213

Index 665

B
backward processing 81
BIB control block

built by Open 33
description 558
mapped by IDABIB macro 631
virtual-storage management 654

BISAM (basic indexed sequential access method) request
translation 159

bit manipulation routine, used during SUBALLOCATE
processing 209

BLDVRP processing 63
blocksize 472
BLPRM parameter list

described and illustrated 559
mapped by IDABLPRM 631

BSPH control block
description 561
mapped by IDABSPH macro 631

BUFC control block
described and illustrated 562
mapped by IDABUFC macro 631
used during CHECK processing 125

buffer assignment to create-mode PUT processing 85
Buffer Management

method of operation 149
program organization 346

buffer request list (in BLPRM) 560
buffers built for ISAM-Interface user 35
building a(n)

available-space map (LSP ACE processing) 213
control block dynamically (GENeB processing) 161
index entry and inserting it into an index record

during key-sequenced data set modification 105
index entry for a completed data control interval 91

during data set creation 91
initialization of an index buffer 91
section entry processing 91

building an index entry after a control area split 103
building a VSAM resource pool 63
bypassing password checking 177

c
CALLSF macro 634
CALL EXIT macro 634
candidate volume processing 209

and SUBALLOCATE processing 208
DEFINE SPACE processing 251
deletion of a data set's 265
End of Volume processing 59

catalog
assigning catalog control intervals 487
communications area (CCA) register save area 639
control interval 479
converting volumes to or from mass storage 276
CONVERTV processing 276
debug aid 637
field name dictionary 523
format 475
high-address range of the catalog 476
identifier (in the CTGPL) 173
low-address range of the catalog 477

management
control block interrelationships 543
error codes, set in CCAPROB 650
I/O functions 392
OS/VS

(See CVOL entries)
overview 170
procedure called-by directory 458
procedure calls directory ·,436
procedure name abbreviations, used in program

organization compendium figures 280
processing 359
services processing 227,384
summary of 20

names/volume area (CTGCV) 583
record
alternate index 496
associations, illustrated 480
cluster 493

control 485
CRA 518-522

data set 487
extension 215,223,516
free 486
index 487
locating fields in a 481
modifying a field's value in a 219
nonVSAM 505
obtaining a field's value in a 215
path 499
recovery area 518,522
sets of fields, types of 480
that describe the catalog 481
true name 484
upgrade 502
user-catalog 507
volume 510
recovery 482
recovery area 482,520 (See also CRA)
summary of 19
volume list (CTGVL) 588
work area (CTGW A) 588

CATLG macro 634
(See also entries for catalog management and SVC 26)

CATPROB macro 634
CAXW A control block

described and illustrated 564
mapped by IGGCAXWA macro 633

CCA control block
described and illustrated 566
mapped by IGGCCA macro 633
register save area 639

CCAPROB field 650
changing a data set's DSNAME 257
channel programs

built 149
format 580

CHECK processing 125
and the user's SYNAD exit routine 125
issued by a BISAM-user's program 159

checking a password 176
checking user-supplied CTGFVs during DEFINE

processing 231
CIDF (control interval definition field) 470
CIRB macro 631
CLCL macro 631

666 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

CLOSE macro 634
issued by ISAM interface 47

CLOSE, OS/VS (See OS/VS CLOSE)
CLOSE processing 47

catalog 47,298
cluster

from ISAM program 290
from VSAM program 292

more than one data set at a time 49
CLOSE, TYPE=T (temporary close) 47,298
Close work area (see CL W work area)
cluster catalog record

and its association set of fields
data and index 495
used during Open processing 33

format 493
and its password set of fields 495

CL W work area
described and illustrated 577
mapped by IDACLWRK 631

CMB control block
description 578
mapped by IDACMB 631
virtual-storage management 654

COMB macro 634
(See also combination name processing)

combination name processing
during LOCATE processing 181
during UPDATE processing 195

conditional processing
during LOCATE processing 181
during UPDATE processing 195

connecting
another system's VSAM user catalog to your system's

master catalog (IMPORT processing) 249
a user's program to a data set (Open processing) 31

control area
format 473
splitting 326,473

control block
checkpointing 64
interrelationships

alternate index 539
before and after data set sharing 534
catalog management control blocks 543
data AMB structure 538
index AMB structure 540
path processing 535
shared resources 542
virtual-storage management 654
VSAM control block structure (IS AM user) 533
VSAM control block structure (VSAM user) 532

manipulation
building (GENCB processing) 161
displaying (SHOWCB processing) 163
error codes 653
modifying (MODCB processing) 163
summary of 20
testing (TESTCB processing) 163

recorded by the Generalized Trace Facility 639
shared between two or more user programs

during Close processing 47
during Open processing 3 1

(All control blocks used in VSAM processing are indexed
by abbreviation.)

control interval
definition field 470
format 468
free space in a 472
processing

and restrictions 75
GET processing 129
PUT processing

add a new control interval 131
restrictions 13 3
update a control interval 133

record definition field (RDF) format 469
splitting 325,472
password 177

control-interval access
improved 129,13 3
index processing 128,132

converting a volume to or from mass storage 276,384
CONVERTV processing 276,384
CPA control block

described and illustrated 578
mapped by IDACPA macro 631

CRA (See also catalog, recovery area.)
catalog control record 521
cluster record 520
data extension record

description and format 521
volume information set of fields 522

data record
AMDSB set of fields 519
association set of fields 519
description and format 518
volume information set of fields 520

free record 518
record processing

adding 404
deleting 405
updating 403

create-ENDREQ processing 121
creating (a VSAM/nonVSAM object)

an ACB, EXLST, or RPL (GENCB processing) 161
a key-sequenced data set 87

building an index entry for a completed data control
interval 91

getting a new free space control area 89
getting a new free space control interval 87
inserting an index entry for a new index record at the

next higher level 95
a nonVSAM data set 249
space for a key-sequenced data set 101
aVSAM

alternate index 234,390
catalog 243
catalog recovery area 246,390
cluster 233
data set 231
data space 251

and OS/VS DADSM processing required 253
path 240,390

cross-reference aids 624
CSL control block

built by Open 33
description 583
mapped by IDACSL macro 631
used by virtual-storage management 654

Index 667

CTGCV control block
description and format 583
mapped by IEZCTGCH 583

CTGFL control block
described and illustrated 584
mapped by IEZCTGFL macro 633
used during Open processing 31

LISTCA T processing 260
LOCATE processing 180
MODIFY processing 218
SUPERLOCATE processing 186
UPDATE processing 194

CTGFLsfortests 181,195
CTGFV control block

described and illustrated 585
mapped by IEZCTGFV macro 633

CTGPL control block
described and illustrated 586
mapped by IEZCTGPL macro 633
used during Open processing 31

SUPERLOCATE processing 186
CTGVL control block

description 588
mapped by IEZCTGVL 588

CTGWA control block
description 588
format for a request other than SUPERLOCATE 588
format for a SUPERLOCATE request 588
mapped by IEZCTGW A 588

CVOL entries 242
CVOL entry in the OS/VS system catalog

during DEFINE CATALOG processing 243
during DELETE CATALOG processing 275

CVT macro 631

D
DADSM (OS/VS)

Allocate routine, and building the VSAM catalog 243
Delete routine 273
Scratch routine 265

data-AMB control block structure 538
data-area-definition macro instructions 631
data areas

(all data areas used in VSAM processing are indexed by
abbreviation.)

catalog 475
(See also catalog and catalog record)

control area format 473
control interval format 468
data set format 468
index format 470

data record
and control interval split 467
format 487
record definition field (RDF) format 469

data set
catalog record

and its AMDSB set of fields 490
and its association (cluster) set of fields 490
format of 487
header fields 487
and its password set of fields 492
used during Open processing 31
and its volume information set of fields 490

creation
entry sequenced data set 83
key sequenced data set 85
using the Access Method Services DEFINE CLUSTER

command 233
directory entry set of fields 515
expiration date, during DELETE processing 265
format 467

data record format 467
control interval format 467
control area: format 470

shared between two or more user programs
control block structure before and after sharing 534
during Close processing 47
during Open processing 31

data space
containing only one VSAM object (unique) 197
creation of 251
deletion of 265
extent for 197
group set offields 513
shared by more than one VSAM object (nonunique) 197
verifying a nonVSAM caller's authorization to process

data sets in 302
DCB control block

conditions before open 47
reset of module address fields 47
used during Close processing 47

DCB exit routine 35
DEB control block

built during Open processing 35
removing it from the TCB's DEB chain 49
used during End of Volume processing 61
used during Open processing 31
used with OS/VS system components 35

DEBCHK macro 634
debug aid 637
deferred requests

asynchronous 69
synchronous 69

DEFINE, to create a VSAM object
AIX processing 236,390
CRA processing 246,390
PATH processing 240,390
CATALOG processing 243,385
CLUSTER processing 233,385

additional processing for key ranges 335
additional processing for key-sequenceddata set

creation 233
and assignment of cand1date volumes 235
and sequence set with data 235
and the AMDSB in the cluster catalog record 233

initial processing 231
NONVSAM processing 249
SPACE processing 251

and OS/VS DADSM 253
DELETE

AIX processing 268,384
CATALOG processing 275
macro 634

issued byClose processing 47
(See also DADSM, Delete routine)

CLUSTER processing 264,384
NONVSAM processing 266,384
PATH processing 268,384
SPACE processing 273

668 OS/VS2 SVS IndepeI)dent Component: Virtual Storage Access Method (VSAM) Logic

J

J

deleting
a catalog record's set of fields 223
candidate volume assignments to a data set 265
records in the data set 117

deleting a VSAM resource pool 63
DELREC macro 634
DEQ macro 634
derived information

data set information 514
data space information 514
volume information 510

description of the module listing 279
determining

a data control interval's RBA 317
amount of unallocated tracks and cylinders on a volume

(LSPACE processing) 213
DEVTYPE macro 634
diagnostic aids 623

catalog communications area (CCA) register save
area 639

error codes
catalog management 650
Open/Close/End of Volume 647
record management 640

function codes for logical and physical errors 641
generalized trace facility 639
macro instructions 631
messages 626
virtual storage management 654

DICT macro 634
(See also field name dictionary)

dictionary entry
example of 531
format 523

direct
access device space management (DADSM)

OS/VS
(See DADSM (OS/VS) and OS/VS DADSM)

summary of 19
VSAM

(See DEFINE SPACE, DELETE SPACE, and
SUBALLOCATE processing)

GET processing 310
addressed 79
keyed 79

PUT processing for a key-sequenced data set 97
retrieval 79

directory, module 413
external procedure 424
module name 413
module packaging 422
procedure called-by, for

catalog management 458
Open/Close/End of Volume 454
record management 454

procedure calls, for
catalog management 436
Open/Close/End of Volume 434
record management 434

disconnect a user's program from a VSAM data set 47
displaying a control blocks' contents, SHOWCB

processing 163
displaying fields of a catalog 262
distributed free space 467

DIWA control block
described and illustrated 589
mapped by lDADIW A macro 631
used during

key-sequenced data set modification 101
record management request string processing 77

DLVRP processing 63
DSCB control block

format 0 (free VTOC) 266
format 1 (identifier)

and ALTER processing 254
and DEFINE SPACE processing 251
and DELETE processing 265,384
and verifying a nonVSAM caller's authorization to

process data sets in a VSAM data space 302
format 3 (extension)

and DELETE processing 265
format 4 (VTOC)

and ALTER processing 258
and CONVERTV processing 276
and DEFINE CRA processing 246
and DELETE processing 266,384
and UPDATE-extend processing 366
and DEFINE SPACE processing 251
and DELETE SPACE processing 273

format 5 (freespace)
and DELETE processing 265

DSNAME as a search argument 173
dynamic string addition 32
dynamically building a control block (GENCB

processing) 161

E
ECB condition codes 647
EDB control block

described and illustrated 590
mapped by lDAEDB macro 631
used during

End of Volume processing 59
record management processing 77

end (of data set, key range, or volume)
for control area during

add-to-end processing 83
EOV processing 83
key-sequenced data set creation 89
key-sequenced data set modification 83

for control interval during
add-to-end processing 83

of volume called during
data set creation 87
end of control area processing 83

of volume when it calls
LOCATE processing 181
UPDATE processing 195

program organization 302
summary 20

ENDREQ macro 634
issued during

Close processing 47
create time 123
noncreate time 121

ENQ macro 634
EODAD-ISAM user's macro, issued by a QISAM-user's

program 157
ERASE macro 634

for a key-sequenced data set 135

Index 669

erasing a
catalog record 265
user's data record 320
VSAM catalog 277

error codes
catalog management, set in CCAPROB 650
control block manipulation 653
Open/Close/End of Volume

function codes 629
set during OPEN processing 47
set in ACBERFLG 647

record management
ECB condition codes 647
feedback return codes 640,641,644
LERAD exit routine 641
physical error messages 644
register 15 contents after a request completes 632
SYNAD exit routine 644

errors detected
during ISAM-Interface Open processing 35
while closing an ACB 49

ESETL-ISAM user's macro, issued by a QISAM-user's
program 135

ESL control block
built by Open 33
description 584
mapped by IDAESL macro 631

EXCP macro 634
EXCPVR macro 634
exit list for ISAM user 35
exit routines, I/O 392
EXLST control block

described and illustrated 592
ISAM user exit routine addresses in 35
mapped by IFGEXLST macro 631

extending a data set 196
extension catalog record 516
extent descriptor, and Suballocate processing 205
external procedure directory 424
EXTRACT processing (catalog management) 362

F
fast path 129,133
feedback error codes, record management 640,641,644
field name dictionary 523

dictionary entry format 523
entry examples 541
set-of-fields type codes 541

FILE option
ALTER command 254
DELETE command 264

format of the module listing 279
format of catalog record 475
format-write channel program 580
forward processing 81
free

catalog record 486
control intervals in the catalog 223
space

control area (for data set creation) 89
control interval (for data set creation) 87
in a control interval 467

FREEDBUF-ISAM user's macro, issued by a BISAM-user's
program 159

FREEMAIN macro 634
function codes for logical and physical errors 641

function codes for open/close/end of volume 628
F4DSCB macro 631

(See also DSCB-format 4 (VTOC»

G
GENCB processing 161
GENDSP processing 185

and LOCATE processing 181
verifying a nonVSAM caller's authorization to process

data sets in a VSAM data space 302
generalized trace facility

and Close processing 296
and Close (TYPE= T) processing 300
control blocks recorded 639
description of 639
and End of Volume processing 302
JCL required for 639
and Open processing 288

get-field-value processing 215
GET macro 634
GET processing

control interval retrieval 129
direct retrieval 310

addressed 79
keyed 79
releasing buffer after retrieval 79

issued by QISAM program 135
results in EOV processing 59
sequential retrieval 81,310
skip-sequential retrieval 310

GETIX processing 130
GETMAIN macro 634
GETREC macro 634
glossary 661
graphic symbols used in method of operation diagrams 24
GTRACE macro 635

(See also generalized trace facility)

H
header elements

CMB control block 578
HEB control block 592
Virtual-Storage Management 654

header fields, retrieval of 215
HEB control block

description 592
mapped by IDAHEB macro 631
Virtual-Storage Management 654

high-address range of the catalog 476
true-name catalog record format 484

how to read
macro instruction usage table 625
method of operation diagrams 23
program organization compendium figures 280
symbolic name usage table 624

670 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

I
ICWA control block

described and illustrated 593
mapped by IDAICWA macro 631
used during

data set creation 91
data set modification 113
ENDREQ processing 121

IDAAIR macro 631
IDAAMB macro 631

(See also AMB control block) 549
IDAAMBL macro 631

(See also AMBL control block 552)
IDAAMDSB macro 631

(See also AMDSB control block 554)
IDAARDB macro 631

(See also ARDB control block 556)
IDABFK macro 631
IDABFR macro 462
IDABIB macro 631

(See also BIB control block 553)
IDABLPRM macro 631

(see also BLPRM parameter list 559)
IDABSPH macro 631

(See also BSPH control block 561)
IDABUFC macro 631

(See also BUFC control block 562)
IDA CALL macro 635
IDACBTAB macro 631
IDACBl macro 635
IDACB2 macro 635
IDACIDF macro 631

(See also control interval definition field 470)
IDACLWRK macro 631

(see also CLW work area 577)
IDACMB macro 631

(See also CMB control block 578)
IDACPA macro 631

(See also CPA control block 578)
IDACSL macro 631

(See also CSL control block 583)
IDACTREC macro 631
IDADIW A macro 631

(See also DIWA control block 589)
IDADSL macro 631

(See also DSL control block 590)
IDAEDB macro 631

(See also EDB control block 590)
IDAELEM macro 631

(See also control block manipulation)
IDAEQUS macro 631
IDAERMAC macro 635
IDAERMSG macro 631
IDAERRCD macro 631
IDAESL macro 631

(See also ESL control block 591)
IDAEXITR macro 635
IDAFOREC macro 631
IDAGENC macro 632
IDAGMAIN macro 635
IDAHEB macro 631

(See also HEB control block 592)
IDAICWA macro 632

(See also ICWA control block 593)
IDAIDXCB macro 632

lOAIICB macro 632
(See also IICB control block 594)

lOAIIREG macro 632
lOAIMWA macro 632

(See also IMWA control block 596)
lOAIOB macro 632

(See also lOB (VSAM extension) 597)
IDAIOSCN macro 632
IDAIRD macro 632
IDAIXSPL macro 632

(See also IXSPL control block 598)
IDALPMB macro 632

(See also LPMB control block 599)
IDAMODC macro 632
lOAOPWRK macro 632

(see also OPW work area 600)
IDAPATCH macro 635
IDAPDPRM macro 632
IDAPLH macro 632

(See also PLH control block 604)
lOARDF macro 632

(See also record definition field 469)
IDAREGS macro 632

(See also register contents)
IDARMRCD macro 632
IDARPLE macro 632

(See also RPLE control block 612)
IDARST14 macro 635
IDASHOW macro 632
IDASSL macro 631

(See also SLL control block 612)
IDASVR14 macro 635
IDATEST macro 632
IDAUPT macro 631

(See also UPT control block 613)
IDAVAT macro 631

(See also VAT control block 615)
IDAVMT macro 631

(See also VMT control block 620)
IDAVSRT macro 631

(See also VSRT control block 620)
IDAVUCBL macro 632
IDA VVOLL macro 632
IDA WAX macro 631

(See also WAX control block 62 t)
IDAWSHD macro 631

(See also WSHD control block 622)
IDAxxxx (typical record management external procedure

name)
See "External Procedure Directory," page 424, for:
• the name of the procedure's module
• the procedure's descriptive name
• the method of operation diagrams and program

organization figures that describe the procedure
IDA019xx (typical Open and record management module

name)
called by

See "Procedure Called-By Directory," page 454, for a
list of procedures that transfer control to the external
procedures in the module.

See "External Procedure Directory," page 424, to find
the method of operation diagram and program
organization figure that describe a specific procedure.

Index 671

calls
See "Procedure Calls Directory," page 434, for a list of

procedures that the module's procedures transfer
control to.

See "External Procedure Directory," page 424, to find
the method of operation diagram and program
organization figure that describe a specific procedure.

described
See "Module Directory," page 413, to find the method

of operation diagrams and program organization
figures that describe the module and its procedures.

external procedures
See "Module Directory," page 413, for a list of the

module's external procedures.
loaded in

See "Module Packaging," page 422, for a list of
modules contained in each load module.

other information
See "Diagnostic Aids," page 623, for a description of

the many different kinds of information about the
module that might help you diagnose and correct a
problem.

IECDSECS macro 632
IECIOSB macro 632
IECRES macro 635
IECSDSLl macro 632
IEESMCA macro 632
IEFJECBX macro 632
IEFJESCT macro 632
IEFJFCBN macro 632
IEFJMR macro 633
IEFPCCB macro 633

(See also PCCB control block 604)
IEFQMIOP macro 633
IEFTCT macro 634
IEFTIOTl macro 633
IEFUCBOB macro 633
IEZCTGCV macro 633

(See also CTGCV control block 583)
IEZCTGFL macro 633

(See also CTGFL control block 584)
IEZCTGFV macro 633

(See also CTGFV control block 585)
IEZCTGPL macro 633

(See also CTGPL control block 586)
IEZCTGVL macro 633

(See also CTGVL control block 588)
IEZCTGWA macro 633

(See also CTGW A control block 588)
IEZDEB macro 633
IFGACB macro 633

(See also ACB control block 547)
IFGEXLST macro 633

(See also EXLST control block 592)
IFGRPL macro 633

(See also RPL control bllock 609)
IFGOl92I (alias for IFG0192A) 286
IFG0200S (alias for IFG0l92A) 294
IFG0200T (alias for IFG0192A) 296
IFG0231 T (alias for IFG0192A) 300
IFG0550Y alias name 59,302

(See also IFG0200N module)
IFG0557 A (alias for IFG0192A) 302
IGGCAXWA macro 633

(See also CAXW A control block 564)

IGGCCA macro 633
(See also CCA control block 566)

IGGMCDCL macro 633
IGGMCMDM macro 633
IGGMCMWA macro 633
IGGMCTRC macro 633
IGGMDRWA macro 633
IGGMEND macro 635
IGGMF4WA macro 633
IGGMGVO macro 633

(See also volume information set of fields 490)
IGGMODUL macro 635
IGGMPROC macro 635
IGGMSAWA macro 633
IGGMUPDE macro 633
IGGMVEDC macro 633
IGGMZLOC macro 633
IGGPxxxx (typical catalog management external procedure

name)
See "External Procedure Directory," page 424, for:
• the name of the procedure's module
• the procedure's descriptive name
• the method of operation diagrams and program

organization figures that describe the procedure
IGGOCLxx (typical catalog management module name)

called by
See "Procedure Called-By Directory," page 458, for a

list of procedures that transfer control to the external
procedures in the module.

See "External Procedure Directory," page 424, to find
the method of operation diagram and program
organization figure that describe a specific procedure.

calls
See "Procedure Calls Directory," page 436, for a list of

procedures that the module's procedures transfer
control to.

See "External Procedure Directory," page 424, to find
the method of operation diagram and program
organization figure that describe a specific procedure.

described
See "Module Directory," page 413, to find the method

of operation diagrams and program organization
figures that describe the module and its procedures.

external procedures
See "Module Directory," page 413, for a list of the

module's external procedures.
loaded in

See "Module Packaging," page 422, for a list of
modules contained in each load module.

other information
See "Diagnostic Aids," page 623, for a description of

the many different kinds of information about the
module that might help you diagnose and correct a
problem.

lHADCB macro 633
IHADCBDF macro 633
IHADECB macro 633
IHARB macro 634
IHASRB macro 634
IICB control block

described and illustrated 594
mapped by IOAIICB macro 631
used during Open processing 35

IKJPSCB macro 634
IIUTCB macro 634
IMPORT PROCESSING 149

672 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

improved control-interval access 129,133
IMW A control block

described and illustrated 596
mapped by IDAIMWA macro 631

inactive catalog control intervals 223
index, alternate

control block structure 539
format 474
upgrading 147

index, prime, processing with control-interval access 128,132
index AMB control block structure 540
index buffer used during search 79
index catalog record

AMDSB set of fields 490
association set of fields 490
format 487
header 487
password set of fields 492
used during OPEN processing 31
volume information set of fields 490

index control interval format 471
index entry 473

sections 474
pointers 474

index format 470
index processing

alternate-index upgrade 147
control-interval access 128,132

index processing for sequence-set records
during create time

building an entry 326
writing the record 330,334

during noncreate time 332
to add to the end of a key range or data set 334
to split a control area 336

index record
dummy record 473
entry format 4,57,473
header field format 471
sections 474

pointers 474
index search

GET processing 79
sections 474
starting index level 79

initialize a VSAM data space 250
inserting a(n)

index entry for a new index record at the next higher level,
during data set creation 93

new set of fields into the catalog record 372
installation-supplied security authorization routine 179
insufficient space for a new record during add-to-end

process 83
introduction 19
introduction to VSAM 19
I/O supervisor control block, mapped by IECDIOSB 632
lOB (VSAM extension) control block

described and illustrated 597
mapped by IDAIOB macro 631

ISAM
interface processing

BISAM request translation 159
program, summary of 19
QISAM request translation 157
to close an ISAM-user's data set 47,49
to open an ISAM-user's data set 31,35

macro instructions 19
(Macro instructions issued by ISAM-user's programs

are indexed by name.)
-to-VSAM processing 19

(See also ISAM Interface)
user exit routines 35

IXSPL control block

J

described and illustrated 598
mapped by IDAIXSPL macro 631

JCL (Job Control Language)
required for Generalized Trace Facility processing 639

JFCB control block 31
Job control language

JOBCAT=dsname 33
STEPCAT=dsname 33

JOBCAT=dsname 33

K
key

compression for a section entry 109
ranges, and End of Volume processing 61

keyed
direct GET processing 79
POINT processing 119
processing and restrictions 75
sequential

ERASE processing 117
GET processing 81
PUT processing 85

key-range data set, extending a 196,198
KEYWDT AB table

L

described and illustrated 599
GENCB processing 160

LERAD exit routine 641
register contents on entry to 641

LISTCAT processing 261
listing a data set's volumes 186
listing the contents of a data space 184
LLOR (least length of record that contains all key fields) 147
LOAD macro 635
load modules 413
LOCATE processing 180
locating

a record in a data set using the POINT macro 119
fields in a catalog record 481

logical error return codes 641
low-address range of the catalog 477
LP A (link pack area) 19
LP ALIB library and VSAM load modules 422
LPMB control block

described and illustrated 599
mapped by IDALPMB macro 631

LSP ACE processing 213

Index 673

M
macro instructions

coding error messages 623
modules and the macro instructions each issues 625
that define data areas 631
that generate executable code 634
usage table 625

managing I/O buffers
MRKBFR processing 139
SCHBFR processing 143
WRTBFR processing 141

mass-insert processing 73
mass storage

conversion to or from 276,384
destaging data 295,299
relative to system, illustrated 19
staging data 286,299,303

Mass Storage System, IBM 3850 19
master catalog

and the OS/VS system catalog 233
and user (private) catalogs 243
connecting another system's user catalog to, IMPORT

processing 249
creating 243
deletion of 275

master password 177
and the user security verification routine 179

messages 626
and the module that detects and issues each 626
for the Generalized rrace Facility 639
for a physical error 644
macro instruction coding errors 624

method of operation diagrams, description and
examples 23-125

microfiche aids 624
minimum allocation unit 189
minimum unit count 188
MODCB processing 163
MODESET macro 635
MODIFY processing (catalog management) 219,367
modifying

a catalog record field's contents 219
a control block (MODCB processing) 163
catalog record fields 219

during Close processing 195
during End of Volume processing 195
using the Access Method Services ALTER

command 255
a catalog record's sets of fields 221
a key-sequenced data set 97

building an index entry and inserting it into an index
record \05

creating space to insert a new or modified record in a
data control interval \01

single or multiple record insertion 97
splitting a control area to create free space and to

generate an index record \03
splitting an index record to create space for a new

index entry III
updating an existing record 99
updating a higher level of the index with an entry for

the new sequence set record \09

module
and method of operation diagrams 20
description 279
directory 413
listings 279
name directory 413
organization (compendiums) 282
packaging 422
prologues 279
that detects and issues a message 626

mount volumes (Open) 35
mounting the volume

during End of Volume processing 59
during Open processing 31

moving a set of fields from a catalog record to its
extension 382

MRKBFR processing 139
multitype CTGFL 260

conditions that can be specified 262

N
noncreate ENDREQ processing 125
nonunique data space 197

and the VSAM catalog 243
nonVSAM

catalog record
format 505
and its volume information set of fields 507

data set 249
notes for method of operation diagrams 23

o
OBTAIN macro 635
obtaining

a catalog record field's value 215
an available-space map (LSPACE processing) 213
catalog information 181
more space for the user's data set

and sequence set with data 197
End of Volume processing 59
extent descriptor for 197
from a nonunique data space (Suballocate

processing) 211
the control interval number of the catalog record of

each object in a VSAM data space (GENDSP
processing) 189

the next control interval for the data set
during create processing 321
during entry-sequenced data set processing 321
during key-sequenced data set processing 325

OPEN macro 635
OPEN parameter list 31
OPEN processing

calls LOCATE 181
method of operation 30
program organization 285-289
summary 20

OPEN work area
(see OPW work area)

Open/Close/EOV
error codes

in the ACBERFLG field 647
function codes 629

674 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

J

OS/VS
(See OS/VS Close modules, OS/VS End of Volume

modules, and OS/VS Open modules)
procedure called-by directory 454
procedure calls directory 434
summary of 20

opening a VSAM
catalog 288
cluster

from an ISAM user's program 285
from a VSAM user's program 286

CRA 407
OPW work area

described and illustrated 600
mapped by IDAOPWRK 632

organization of this book 3
OS/VS

p

Close modules
IFG0200N 47
IFG0200V 47
IFG0200W 49
IFG0200Y 49
IFG0202L 49
IGC00020 47

DADSM
Allocate routine and building the VSAM catalog 243
Delete routine 273
Scratch routine 265,201

End of Volume modules
IFG0551F 59
IGCOOO5E 59

Open modules
and GENDSP processing 185
IDA0192G 302
IFG0193A 31
IFG0196V 35
IFG0196W 35
IFG0198N 35
IGCOOOlI 31
SECLOADA 302

scheduler
and opening a VSAM catalog 288
and SUPERLOCATE processing 187

system catalog
and the VSAM master catalog 242,274
CVOL entry in 242,274

TCLOSE processing and VSAM TCLOSE processing 298
utilities and GENDSp processing 185

password
bypassing 177
checking 177
processing, during Open processing 31
set of fields

description 480
used in alternate index catalog record 498
used in cluster catalog record 495
used in data set catalog record 492
used in index catalog record 492
used in path catalog record 501

types of 177

,

path
closing 49
control block structure 535
opening 31
processing 145
work area (for WAX) 620

path catalog record
association set of fields 500
description 499
password set of fields 501

PCCB control block
described and illustrated 607
mapped by IEFPCCB macro 631
used during SEARCH 172

PGFIX macro 634
PGFREE macro 634
physical error return codes 644
PLH control block

assignment to request string 75
described and illustrated 607
mapped by IDAPLH macro 631
numberof 75
restrictions resulting in error codes 75
used during

CHECK processing 125
data set modification 101

POINT
macro 634
processing

addressed 119
keyed 119

POST macro 634
preformatted catalog records, during DEFINE CATALOG

processing 243
prime index

format 471
processing with control-interval access 128,132

prime-key pointers, alternate index 474
private catalog

(See user catalog)
procedure

called-by directory
catalog management 458
Open/Close/End of volume 454
record management 434

calls directory
catalog management 436
Open/Close/End of Volume 434
record management 434

processing more than one record with a single macro
instruction request 75

program organization 279
program organization figures

description 280
example of 280
flow of control, example of 280
how to read 280
notes, example of 281

programmer messages 626
protected sphere block 654
PURGE option (DELETE command) 264
PUT macro 634

issued by CLOSE 47
issued by QISAM program 157

Index 675

PUT processing
control-interval add 131
control-interval update 133
entry-sequenced processing 83
key-sequenced processing 85,97,99
method of operation 82-85
program organization 316,338
requests that result in EOV 59

PUTIX processing 132
putting retrieved catalog data into the caller's work area 183
PUTX-ISAM user's macro, issued by a QISAM-user's

program 157

Q
QISAM (queued indexed sequential access method) request

translation 157
quiescing the data set (during Close processing) 47

R
RBA pointers, alternate index 474
read-ahead buffering 149
read-channel program 590
READ-ISAM user's macro, issued by a BISAM-user's

program 159
read-only password 177
reading catalog records by the user's program 261

restrictions 261
reading module flow compendiums 280
rebuild VSAM control blocks 66,68,70
record

definition field (RDF) format 469
format

catalog (See catalog record)
data 469
index 470

management
ECB condition codes 647
error codes 640
feedback return codes 640,641,644
LERAD exit routine 641
logical error codes 641
procedure called-by directory 454
procedure calls directory 434
processing, method of operation diagrams 75
request processing 75
SYNAD exit routine 644

record segment, format, of a spanned record 469
recoverable catalog support

description 482
restrictions 482

register contents
saved in the CCA register save area 639
on entry to the LERAD exit routine 641
on entry to the SYNAD exit routine 644
passed to user's DCB Exit routine 35

relationship of
method of operation diagrams to VSAM modules and

procedures 23
OS!VS, user's processing programs, and stored data 19

relative record data set
format 467
processing 135,79-81,119

relative record number 468
with GET direct in processing 78

releasing
a VSAM catalog 274
buffer after direct-GET record retrieval 79
empty VSAM data spaces on a volume 272
excess buffers for mass-insert mode PUT processing 83
virtual storage obtained for VSAM control blocks 49

RELSE-ISAM user's macro, issued by a QISAM-user's
program 157

removal of
VSAM ownership from a volume 255

REMOVEVOLUMES processing 255
request

processing 75
string, assignment of placeholders to

effect of ENDREQ on 75
and none available 75
and sequential processing 75

RESERVE macro 634
RESET option 200
resetting a VSAM data set 200
resource pool

BSPH control block 561
building 63
closing 55
control block structure 542
deleting 63
managing I/O buffers 138-142
VSRT control block 620

resource pool parameter list
(see BLPRM parameter list)

restrictions
on control-interval PUT-for-update processing 155
on record management processing 75

RETAIN option (DELETE command) 264
retrieving

a catalog record field's value 215
catalog information 180
catalog record's contents 260
the object's base catalog record 169
a control interval for the user's program 129
the object's base catalog record 169

RETURN macro 634
returning an empty VSAM data space to the OS!VS

system 273
reusable data set processing 200,370
REUSE processing 200,370
RPL control block

assignment of, for ISAM user's program 35
chained together 75
described and illustrated 609
mapped by IlFGRPL macro 631

RPLE control block

s

described and illustrated 612
mapped by IDARPLE macro 631

SCHBFR processing 143
SEARCH processing 172
searching the

catalog 173
index record to build an index record during data set

modification 105
SECLOADA (OS!VS Open module) 300
section, index record 474

676 OS/',/:-;2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

section-entry processing
during data set creation 91
for higher-level (nonsequence-set) index records 109
key compression 107

security authorization 177
self-describing catalog records 481
sequence-set record processing

create time 326
noncreate time 332

sequence-set stored with data
during DEFINE processing 233
new extent for the data set 199

sequential
GET processing 81,310
retrieval 81

service request block, mapped by IHASRB macro 634
set of fields

modification of 221
password information 480
pointer 215
processing

adding a set of fields to a catalog record 372
deleting a set of fields 378
modifying a field's contents 376
moving a set of fields from a catalog record to its

extension 380
retrieval of 215
type codes 385
types of 480

SETL-ISAM-user's macro, issued by a QISAM-user's
program 157

SGIDA401 macro 634
shared

control blocks between user programs 31
data space and the VSAM catalog 243

shared resources
BSPH control block 561
building a resource pool 63
closing 55
control block structure 542
deleting a resource pool 63
managing I/O buffers 138-143
VSRT control block 620

sharing data sets
control block structure with path processing 535

show catalog processing 262
SHOWCAT macro 262

mapped by IGGSHWPL 263
SHOWCB processing 163
single or multiple record insertion 97
skip-sequential processing

GET processing 308
modifying a key-sequenced data set 97

small extent table 211
SMF (System Management Facilities) records

type 62
during Open processing 35
during UPDATE processing 195

type 63
during ALTER processing 255
during catalog record updating 366
during DEFINE AIX processing 240
during DEFINE CATALOG processing 243
during DEFINE CLUSTER processing 233
during DEFINE NONVSAM processing 249
during DEFINE PATH processing 241,390

,

during UPDATE-Extend processing 366
during UPDATE-modify processing 362

type 64
during CLOSE processing 49,296
during Close (TYPE= T) processing 298
during End of Volume processing 61,302

type 67
during DELETE processing 265

type 68
during ALTER processing 257

type 69
during DEFINE SPACE processing 251
during LSPACE processing 213
during UPDATE-Extend processing 366

VSAM writes records to the SMF data set 35,49,61
SMFWTM macro 635
space allocation

for a data set 61
for a key range 61
requirements for End of Volume processing 61

space map set of fields
and the Bit Manipulation routine 211
format 512
used during Suballocate processing 211

spanned records
format 467
index entries 473
processing 78-85,96-101,117

sphere block
protected 654
unprotected 654

splitting a(n)
control area 324

to create free space 103
control interval 322
index record to create space for a new index entry 111

SSL control block
built by Open 33
description 612
mapped by IDASSL macro 631

starting-search index level 77
STEPCA T =dsname 31
storage blocks used in Virtual-Storage Management 634
storage management, virtual 634
stored record 467
string addition, dynamic 31
SUBALLOCATE processing

allocating space to a data set 211
candidate volume assignment 209
program organization compendium 382
and UPDATE-Extend processing 197

subpools used for control blocks 634
summary of amendments 15
SUPERLOCATE processing 187

and LOCATE processing 181
supervisor call (SVC) processing program 19
SVC processor 19
SVC 25

issued by ISAM Interface processing 31
to open master catalog 168,358

SVC 20, issued by ISAM Interface processillf 47
SVC26

issued by Access Method Services on O/C/Ev.., 169,181
issued by SHOWCAT 263

SVC 29, issued by DELETE processing 265
SVCLIB and VSAM load modules 422

Index 677

symbolic-name usage table 624
SYNAD

exit routine 644

,

register contents on entry to 644
ISAM-user's macro

and CHECK processing 125
issued by a QISAM-user's program 159

SYNADAF message 644
built by the ISAM Interface SYNAD routine 159

SYNCH macro 635
issued by Close processing 47

synchronous request processing, deferred 77
system library and VSAM load modules 422
System Management Facilities

(See SMF)
SYSVSAM (major resource) 31,47
SYS I.SYSJOBQE data set 31

T
TCB control block, used during Open processing 31
TCLOSE processing 298
temporary close (TYPE=T) of a VSAM cluster 298
terminating a record processing request (ENDREQ

processing)
during data set creating 123
not during data set creation 121

TESTCB processing 163
testing the contents of a control block 163
TIME macro 636
tracing the path through catalog management

procedures 639
true-name catalog record

format 484
searching for the 173

types of catalog records 477

u
unique data space 197
update

password 177
processing 195

UPDATE processing (catalog management) 194,267
UPDATE-Erase processing (record management) 243
UPDATE-Extend processing 143,196,269
update-write channel program 581
updating a(n)

catalog record's fields 219
header fields 195
set of fields 195

control interval for a user's program 133
higher level of the index with an entry for the new

sequence set record during key-sequenced data set
modification 1\ 3

index
adding to the end of a key range or data set 334
splitting a control area (not at the end of a key range or

data set) 324
upgrade catalog record

association set of fields 504
description 502

upgrade set
closing 53
opening 39

upgrading alternate indexes 147

UPT control block
description 613
mapped by IDAUPT macro 631

user
DCB exit routine 35
programs with ISAM macro instructions 19
security verification routine 179

user (private) catalog
catalog record

format 507
and its volume information set of fields 509

creation of 243
deletion of 275
and the VSAM master catalog 243

USVR
(See user security verification routine 179)

v
validity-checking the CTGPL 168
V AT control block

description 615
mapped by IDA V AT macro 631

VERIFY processing 127
verifying

a nonVSAM caller's authorization to process data sets in a
VSAM data space 302

the user's authorization to access a data set 177
virtual-storage management 654
VMT control block

description 620
mapped by IDAVMT macro 631

volume
catalog record

and its data set directory entry set of fields 515
and its data space group set of fields 513
and its derived information 514,515
used during GENDSP processing 185
format 510
and its space map set of fields 512
used during End of Volume processing 59

information set of fields
used during End of Volume processing 59
used in data set catalog record 490
used in index catalog record 490
used in nonVSAM catalog record 507
used in user-catalog catalog record 509

is full and End of Volume processing occurs 61
mounting and verification

during end of Volume processing 59
during Open processing 31

serial number as a search argument 173
volume cleanup 254
VSAM

catalog
contents of, during DEFINE CATALOG

processing 243
preformatted records in, during DEFINE CATALOG

processing 243
catalog management

entry conditions 169
LOCATE command, special processing for 169

checkpoint 64
checkpoint/ restart table 616
checkpoint/restart work area 618
communication with other parts of OS/VS 19
interface routine, during Open processing 31

678 OS/VS2 SVS Independent Component: Virtual Storage Access Method (VSAM) Logic

J

introduction to 19
load modules 413
modules, residence in pageable link pack area 19
Open processing 31
processing, summary 19
program components and size 20
request processing, Method of operation diagrams for 74
space management, summary of 19

VSRT control block
description 620
mapped by IDAVSRT macro 631

w
WAIT macro 636
WAX control block

description 621
mapped by IDAWAX macro 631

write-check channel program 581
WRITE-ISAM-user's macro, issued by a BISAM-user's

program 159
writing the last record before closing the data set 47
WRTBFR processing 141
WSHD control block

description 622
mapped by IDA WSHD macro 631

WTG <where-to-go table} used during open processing 31
WTO macro 636
WTOR macro 636

x
XCTL macro 636
XCTL T ABL macro 634

123
3850 Mass Storage System, IBM 19

..

Index 679

,
SY26·3857·Q

International Business Machines Corporation
Data Processing Division

1133 Westchester Avenue. White Plains. New York 10604
(U.S.A. only)

IBM World Trade Corporation

821 United Nations Plaza. New York. New York 10017
(I nternationa!)

"T1

m
z
o

~
o
W o

, •.... :
~.

OSNS2 SVS Ie: Virtual Storage
Access Method (VSAM) Logic
SY26-38S7-0

Your comments about this pUblication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this fonn to ask technical questions about IBM
systems and programs or to request copies of publications. Rather.
direct such questions or requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

ow

Reader's
Comment
Form

\

SY26·3857·Q
- ---.,.-- --------------------- ------

Fold and Staple
..

Business Reply Mail

No postage necessary if mailed in the U.S.A.

Postage will be paid by:

IBM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

.. ""
Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

