
Systems

GC26-3874-0
'File No. 5370-30

OS/VS1 Data Management
Services Guide

VS1 Release 6 .-

'First Edition (September 1976)

This is the first edition of a new publication that applies to Release 6 of OS/VS 1 and to any
subsequent releases of that system unless otherwise indicated in new editions or technical
newsletters. Another new.publication, OS/VS2 MVS Data Management Services Guide,
GC26-3875, will contain corresponding OS/VS2 MVS information. OS/VS 1 and OS/VS2
MVS information was previously intermingled in OS/VS Data Management Services
Guide, GC26-3783; this previous publication is now out of date for OS/VS1 and will be out
of date for OS/VS2 MVS when the new OS/VS2 MVS publication is issued.

Information on the IBM 3203 Printer, Model 4, is provided for planning purposes only
until the product is available.

Significant system changes are summarized under "OS/VS1 Summary of Amendments"
following the list of figures. In addition, miscellaneous editorial and technical changes have
been made throughout the publication. Each technical change is marked by a vertical line
to the left of the change.

Information in this publication is subject to Significant change. Any such changes will be
published in new editions or technical newsletters. Before using the publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend
the bibliography, to learn which editions and technical newsletters are applicable and
current.

Requests for copies of IBM publications should be made to the IBM branch office that
serves you.

Forms for readers' comments are provided at the back of this publication. If the forms
have been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California 95150. All comments and suggestions
become the property of IBM.

© Copyright International Business Machines Corporation 1976

PREFACE

This book describes all IBM data management except for VSAM (virtual storage access
method) and specialized applications such as the time sharing option (TSO), graphics,
teleprocessing, optical character readers, optical reader-s,orters, and magnetic character
readers. These specialized applications are described in separate publications that are
listed in IBM System/360 and System/3 70 Bibliography, GA22-6822. To learn about
VSAM or to write programs that create and process VSAM data sets, refer to:

• Planning for Enhanced VSAM Under OS/VS, GC26-3842, which introduces
VSAM and describes its concepts and functions.

• OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838, which describes how to create VSAM data sets and code the macro
instructions required to process them.

• OS/VSl Access Method Services, GC26-3840, describes the service program
commands used to manipulate VSAM data sets.

• OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819, which describes applications not required in the normal use
of VSAM.

If you know how to write assembler-language programs and use job control statements,
you can use this book and OS/VSl Data Management Macro Instructions,
GC26-3872, to write programs that create and process data sets. To use this book you
must have basic knowledge of the operating system as contained in OS / VS 1 Planning
mid Use Guide, GC24-S090; of assember language as described in
OS/VS-DOS/VS-VM/370 Assembler Language, GC33-4010; and of job control
language (JCL) as explained in OS/VSl JCL Services, GC24-S100, and OS/VSl
JCL Reference, GC24-S099.

This book has three parts:

"Part 1: Introduction to Data Management" introduces you to the characteristics of data
sets, how you name them, how the system catalogs them, and how you format the
records in them. The format of tracks on a direct-access storage device is explained
briefly.

Part 1 also describes the data control block (DCB) and the information it supplies to the
operating system. Special processing routines that you specify in the DCB macro
instruction are also explained in this section.

In "Part 2: Data Management Processing Procedures" there is an explanation of
data-processing techniques that includes the macro instructions for the queued access
technique and the basic access technique and the macro instructions for analyzing input
and output errors. The section on data-processing techniques also tells how to select an
access method and how to begin and end processing of a data set.

The section "Buffer Acquisition and Control" in Part 2 explains three different methods
you can use to obtain buffers and the macro instructions you use with each method. This
section also describes ways to control buffers: simple buffering and exchange buffering
for the queued access technique, direct buffering and dynamic buffering for the basic
access technique. In addition, for the queued access technique, there is an explanation of
the four modes of moving the records in virtual storage: move mode, data mode, locate
mode, and substitute mode. Macro instructions for controlling buffers are described here,
too.

The next four sections of Part 2 concern processing data sets of four different types: a
sequential data set, a partitioned data set, an indexed sequential data set, and a direct

Preface 3

data set. They explain the organization of the data sets and the macro instructions used
to process them. In the examples the macro instructions are coded -in just enough detail (I -.
to make the examples clear. For a complete description of the operands and options _
available, see OS/VS1 Data Management Macro Instructions, GC26-3793.

"Part 3: Data Set Disposition and Space Allocation" tells you, how to figure the amount
of space you need for 'a data set on a direct-access storage device and how to request that
space in your JCL DD statement. You are given special directions for allocating space
for a partitioned data set and an indexed sequential data set. Part ~ also tells how to
indicate in the JCL DD statement the status of the data set at the beginning of and
during processing and how to indicate what you want the system to do with the data set
when processing has terminated. You also are told how to use the DD statement to route
the data set to a system output writer, to concatenate data sets, to catalog data sets, and
to protect confidential data sets.

Appendix A describes data set labeling. Appendix B explains control characters you can
use to control card punches and printers. A glossary of acronyms and abbreviations used
in this book and the index follow Appendix B.

The following manuals are referred to in the text.

• OS/VS Message Library: VS1 System Codes, GC38-1003

• OS/VS Message Library: VS1 System Messages, GC38-1001

• OS/VS1 Data Management for System Programmers, GC26-3837

• OS/VS1 JCL Reference, GC24-5099

• OS/VS1 JCL Services, GC24-5100

• OS/VS1 Service Aids, GC28-0665

• OS/VS1 Supervisor Services and Macro Instructions, GC24-5103 (
• OS/VS1 'System Data Areas, SY28-0605

• OS/VS1 System Generation Reference, GC26-3791

• IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

• IBM 3890 Document Processor Machine and Programming Description,
GA24-3612

• OS Data Management Services and Macro Instructions for IBM 1419/1275,
GC21-5006

• OS and OS/VS Programming Support for the IBM 3505 Card Reader and
IBM 3525 Card Punch, GC21-5097

• OS/VS IBM 3886 Optical Character Reader Modell Reference, GC24-5101

• OS/VS Mass Storage System (MSS) Planning Guide, GC35-0011

• OS/VS Mass Storage System (MSS) Services for Space Management,
GC35-0012

• OS/VS Tape Labels, GC26-3795

• OS/VS Utilities, GC35-0005

4 OS/VS 1 Data Management Services Guide

(

Ih II,W'+++e1b w.. +u,hM** "'H

CONTENTS

Preface .. 3

Figures .. 9

OS/VSl Summary Of Amendments ... 11
I Release 6 .. 11

Release 5 .. 11
Release 4 .. 11

Part 1: Introduction to Data Management ... 13
Data Set Characteristics ... 13

Data Set Identification ... 15
Data Set Storage .. ,... 15

Direct-Access Volumes .. 16
Magnetic-Tape Volumes .. 16

Data Set Record Formats .. 17
Fixed-Length Records ... 18
Variable-Length Records .. 20
Undefined-Length Records ~ ... 25
Control Character ~ .. 26

Direct-Access Device Characteristics ... 27
Track Format ; .. 28
Track Addressing ... 28
Track Overflow .. 29
Write-Validity-Check Option .. 29

The Data Control Block ... 30
Data. Set Description .. 31
Processing Program Description : ... 33

Macro Instruction Form (MACRF) .. 33
Exits to Special Processing Routines ... 33

Modifying the Data Control Block .. 49
Sharing a Data Set .. "50

Part 2: Data Management Processing Procedures ... 55
Data-Processing Techniques ... 55

Queued Access Technique ... 55
GET-Retrieve a Record .. 55
PUT-Write a Record ... 55
PUTX-Write an Updated Record ... 56
Parallel Input Processing (QSAM Only) ... 56

Basic Access Technique ... 58
READ-Read a Block .. 59
WRITE-Write a Block .. 59
CHECK-Test Completion of Read or Write Operation 60
WAIT-Wait for Completion of a Read or Write Operation 60
pata Event Control Block (DEGB) : .. ,61

Error Handling ... 61
SYNADAF-Perform SYNAD Analysis Function ... 61
SYNADRLS-Release SYNADAF Message and Save Areas 62
ATLAS-Perform Alternate Track Location Assignment 62

Selecting an Access Method ... 62
Opening and Closing a Data Set ... 63

OPEN-Prepare a Data Set for Processing ... 65
CLOSE-Terminate Processing of a Data Set .. 66

Contents 5

End-of-Volume Processing .. 68
FEOV-Force End of Volume ... 69

Buffer Acquisition and Control .. 70 (--
Buffer Pool Construction ... , 70 '-.

BUILD-Construct a Buffer Pool ... 71
BUILDRCD-Build a Buffer Pool and a Record Area .. 71
GETPOOL-Get a Buffer Pool .. 71
Automatic Buffer Pool Construction ... 72
FREEPOOL-Free a Buffer Pool .. 72

Buffer Control .. 73
Simple Buffering .. 74
Exchange Buffering ... 77
RELSE-Release an Input Buffer ... 80
TRUNC-Truncate an Output Buffer .. 81
GETBUF-Get a Buffer from a Pool ... 81
FREEBUF-Return a Buffer to a Pool .. 82
FREEDBUF-Return a Dynamic Buffer to a Pool .. 82

Processing a Sequential Data Set .. 82
Data Format-Device Type Considerations .. 82

Magnetic Tape (T A) .. 83
Paper-Tape Reader (PT) ... 84
Card Reader and Punch (RD /PC) -.................................... 84
Printer (PR) ... 85
Direct-Access Device (DA)•... 85

Device Control ... 86
CNTRL-Control an I/O Device ... 86
PRTOV-Test for Printer Overflow ... 86
SETPRT-Printer Setup .. ~ 86 f
BSP-Backspace a Magnetic Tape or Direct-Access Volume 87 ~

NOTE-Return the Relative Address of a Block ... 87
POINT-Position to a Block ... 88

Device Independence .. , .. 88
System Generation Considerations .. 88
Programming Considerations , ... 89

Chained Scheduling for I/O Operations .. 90
Search Direct for Input Operations .. 91
Creating a Sequential Data Set .. 92
Retrieving a Sequential Data Set ~ ... 93
Updating a Sequential Data Set ... 93
Extending a Sequential Data Set ... 94
Determining the Length of a Record When Using the BSAM READ Macro 95
Writing a Short Block When Using the BSAM WRITE Macro 96

Processing a Partitioned Data Set ... 96
Partitioned Data Set Directory ... 97
Processing a Member of a Partitioned Data Set ... 99

BLDL-Construct a Directory Entry List .. .100
FIND-,-Position to a Member ... 100
STOW-Update the Directory .. 101

Creating a Partitioned Data Set ... 101
Retrieving a Member of a Partitioned Data Set ... 103
Updating a Member of a Partitioned Data Set ... 104

Updating in Place .. 104
Rewriting a Member .. 105

Processing an Indexed Sequential Data Set .. 106
Indexed Sequential Data Set Organization .. 106

6 OS/VS 1 Data Management Services Guide

Prime Area ... 107
Index Areas .. 107
Overflow Areas .. 109

Adding Records to an Indexed Sequential Data Set .. 109
Inserting New Records into an Existing Indexed Sequential Data Set 109
Adding New Records to the End of an Indexed Sequential Data Set 110

Maintaining an Indexed Sequential Data Set ... 111
Indexed Sequential Buffer and Work Area Requirements 113
Controlling an Indexed Sequential Data Set Device .. 116

SETL-Specify Start of Sequential Retrieval .. 116
ESETL-End Sequential Retrieval ' ... 117

Creating an Indexed Sequential Data Set ... 118
Retrieving and Updating an Indexed Sequential Data Set 120

Sequential Retrieval and Update ... 120
Direct Retrieval and Update .. 120

Processing a Direct Data Set .. 126
Organizing a Direct Data Set ... 126
Referring to a Record in a Direct Data Set .. 127
Creating a Direct Data Set ... 128

Adding or Updating Records on a Direct Data Set .. 129

Part 3: Data Set Disposition and Space Allocation .. 133
Allocating Space on Direct-Access Volumes ; 133

Specifying Space Requirements ... 133
Estimating Space Requirements ... 134
Allocating Space for a Partitioned Data Set ... 136
Allocating Space for an Indexed Sequential Data Set .. 136

Specifying a Prime Data Area .. 138
Specifying a Separate Index Area .. 139
Specifying an Independent Overflow Area .. 139
Calculating Space Requirements for an Indexed Sequential Data Set 139

Control and Disposition of Data Sets ... 143
Routing Data Through the System Input and Output Streams ; 143
Concatenating Sequential and Partitioned Data Sets ... 145

Rotational Position Sensing Considerations .. 146
Cataloging Data Sets .. 147

Entering a Data Set Name in the Catalog ... 148
Generation Data Groups .. 148

Absolute Generation and Version Numbers .. 149
Relative Generation Number ... 149
Building a Generation Index .. 150
Creating a New Generation ... 150

Allocating a Generation ... 150
Cataloging a Generation 151
Passing a Generation ... 151
Creating an ISAM Data Set as part of a Generation Data Group 152

Retrieving a Generation ... 152
Controlling Confidential Data .. 153

Password Protection for NonVSAM Data Sets .. 153

Appendix A: Direct-Access Labels .. 155
Volume-Label Group ... 155

Initial Volume Label Format .. 156
Data Set Control Block (DSCB) ~ ... 157
User Label Groups ... 157

User Header and Trailer Label Format .. 158

Contents 7

Appendix B: C~ntrol Characters .. 159
Machine Code .. 159
Extended American National Standards Institute Code ... 160 (
Glossary of Acronyms and Abbreviations ... 161

Index ... 165

(

(

8 OS/VS 1 Data Management Services Guide

FIGURES

\
, , ,

Figure 1. Fixed-Length Records ... 18
Figure 2. Fixed-Length Records for ASCII Tapes .. 19
Figure 3. Nonspanned, Variable-Length Records ... 20
Figure 4. Spanned Variable-Length Records .. 22
Figure 5. Segment Control Codes ... 22
Figure 6. Spanned Variable-Length Records for BDAM Data Sets 24
Figure 7. Variable-Length Records for ASCII Tapes ... 25
Figure 8. Undefined-Length Records .. 26
Figure 9. Undefined-Length Records for ASCII Tapes .. 26
Figure: 10. 2316 Disk Pack .. 27
Figure 11. Direct-Access Volume Track Formats ... 28
Figure 12. Completing the Data Control Block .. 30
Figure 13. Sources and Sequence of Operations for Completing the

Data Control Block .. 31
Figure 14. Data Management Exit Routines ... 34
Figure 15. Format and Contents of an Exit List ... 38
Figure 16. Parameter List Passed to User Label Exit Routine 39
Figure 17. System Response to a User Label Exit Routine Return Code 40
Figure 18. System Response to Block Count Exit Return Code 44
Figure 19. Defining an FCB Image for a 3211 ... 45
Figure 20. Parameter List Passed to DCB ABEND Exit Routine 46
Figure-21. Conditions for which Recovery Can Be Attempted 47
Figure 22. Recovery Work Area .. : 48
Figure 23. Modifying a Field in the Data Control Block .. 49
Figure 24. JCL, Macro Instructions, and Procedures Required to Share

a Data Set Using Multiple DCBs ... 51
Figure 25. Macro Instructions and Procedures Required to Share a Data Set

Using a Single DCB ... 52
Figure 26. Parallel Processing of Three Data Sets .. 57
Figure 27. Data Management Access Methods ... 62
Figure 28. Opening Three Data Sets Simultaneously .. 65
Figure 29. Record Processed When LEAVE or REREAD is Specified for

CLOSE TYPE=T .. 66
Figure 30. Closing Three Data Sets Simultaneously ... 67
Figure 3 L Constructing a Buffer Pool From a Static Storage Area 72
Figure 32. Constructing a Buffer Pool Using GETPOOL and FREEPOOL 73
Figure 33. Simple Buffering with MACRF=GL and MACRF=PM 75
Figure 34. Simple Buffering with MACRF=GM and MACRF=PM 76
Figure 35. Simple Buffering with MACRF=GL and MACRF=PL 76
Figure 36. Simple Buffering with MACRF=GL and

MACRF=PM-UPDAT Mode ... 77
Figure 37. Exchange Buffering with MACRF=GT and MACRF=PT 79
Figure 38. Exchange Buffering with MACRF=GL and MACRF=PM 79
Figure 39. Exchange Buffering with MACRF=GL and MACRF=PT 80
Figure 40. Buffering Technique and GET/PUT Processing Modes 81
Figure ~ 1. Tape Density (DEN) Values .. 83
Figure 42. Creating a Sequential Data Set-Move Mode, Simple Buffering 92
Figure 43. Creating a Sequential Data Set-Locate Mode, Simple Buffering 93
Figure 44. Creating a Sequential Data Set....,..-Substitute Mode, Exchange Buffering 94
Figure 45. One Method of Determining the Length of the Record

When Using BSAM to Read Undefined-Length Records 95
Figure 46. A Partitioned Data Set ; .. 96

Figures 9

Figure 47. A Partitioned Data Set Directory Block ... I 97
Figure 48. A Partitioned Data Set Directory Entry ... ·98 (
Figure 49. Build List Format ... 100 .
Figure 50. Creating One Member of a Partitioned Data Set 102
Figure 51. Creating Members of a Partitioned Data Set Using STOW 103
Figure 52. Retrieving One Member of a Partitioned Data Set 103
Figure 53. Retrieving Several Members of a Partitioned Data Set

Using BLDL, FIND, and POINT .. 104
Figure 54. Updating a Member of a Partitioned Data Set ... 105
Figure 55. Indexed Sequential Data Set Organization .. 107
Figure 56. Format of Track Index Entries .. 108
Figure 57. Adding Records to an Indexed Sequential Data Set 110
Figure 58. Deleting Records From an Indexed Sequential Data Set 112
Figure 59. Creating an Indexed Sequential Data Set .. 119
Figure 60. Sequentially Updating an Indexed Sequential Data Set 121
Figure 61. Directly Updating an Indexed Sequential Data Set 123
Figure 62. Directly Updating an Indexed Sequential Data Set with

Variable-Length Records 125
Figure 63. Creating a Direct Data Set ... 129
Figure 64. Adding Records to a Direct Data Set ... 130
Figure 65. Updating a Direct Data Set .. 131
Figure 66. Direct-Access Storage Device Capacities .. 135
Figure 67. Direct-Access Device·Overhead Formulas .. 135
Figure 68. Requests for Indexed Sequential Data Sets .. 138
Figure 69. Reissuing a READ for Unlike Concatenated Data Sets 146
Figure 70. Catalog Structure on Two Volumes ... 147
Figure 71. Direct-Access Labeling .. : 155
Figure 72. Initial Volume Label .. 156 r
Figure 73. User Header and Trailer Labels ... 157 I,,,"

(

10 OS/VS 1 Data Management Services Guide

OS/VSl SUMMARY OF AMENDMENTS

Release 6

New Device Support

The IBM 3203 Printer, Model 4, is supported with this release.

Open Extend Support

Release 5

The EXTEND and OUTINX options are supported for the OPEN macro. These options
allow the user to change the disposition of a data set to MOD. In all other ways
EXTEND and OUTINX are equivalent to the OUTPUT and OUTIN options,
respectively.

These new options will allow users of SAM and ISAM to add records to the end of an
existing data set even though DISP=OLD /NEW /MOD / SHR was specified. In the past,
the only way to add records to the end of the data set was to specify DISP=MOD on the
DD statement and OUTPUT on the OPEN macro or to specify INOUT on the OPEN
macro and read to end-of-file or use the OPEN TYPE=J macro.

Information on the IBM 3203 Printer, Model 4, is provided for planning purposes only
until the product is available. For additional information about the 3203 Printer, see
IBM 3203 Printer Component Description and Operator's Guide, GA33-1515.

New Programming Support

Release 4

• The IBM 3800 Printing Subsystem is supported with this release. For additional
programming information for the 3800 and the IEBIMAGE utility program, see IBM
3800 Printing Subsystem Programmer's Guide, GC26-3846. Information on the
3800 is provided for planning purposes only until the product is available.

• The IBM 3350 Direct Access Storage is supported with this release. For additional
information on the 3350, see Introduction to IBM 3350 Direct Access Storage,
GA26-1638. Information on the 3350 is provided for planning purposes only until the
product is available.

• The IBM 3344 Direct Access Storage is supported with this release. For additional
information on the 3344, see Reference Manual for IBM 3340 Disk Storage,
GA26-1619. Information on the 3344 is provided for planning purposes only until the
product is available.

• Chained scheduling is now supported in pageable and nonpageable storage.

New Programming Support

The IBM 3850 Mass Storage System (MSS) is supported with this release. The MSS
virtual volumes are functionally equivalent to the 3330/3333 Disk Storage, Model 1. For
information on MSS, see OS/VS Mass Storage System (MSS) Planning Guide,
GC35-0011. MSS information is provided for planning purposes only until the system is
available.

OS/VS 1 Summary of Amendments 11

Editorial Changes

• The explanation of the EODAD routine has been expanded.

• An explanation of how the SYNAD routine functions with QISAM load mode has
been added.

• A list of restrictions when sharing a direct data set in multitasking mode has been
added.

• The section titled "Updating a Sequential Data Set" has been expanded.

• A section titled "Writing a Short Block When Using the BSAM WRITE Macro" has
been added.

• An explanation of the capacity record (RO) has been added to the section titled
"Creating a Direct Data Set." .

] 2 OS/VS 1 Data Management Services Guide

(

(

(

PART 1: INTRODUCTION TO DATA
~ MANAGEMENT
f

Data Set Characteristics
The data management programs of the operating system help you achieve maximum
efficiency in managing the mass of data associated with the many programs that are
processed at your installation by providing systematic and effective means of organizing,
identifying, storing, cataloging, and retrieving all data, including programs, processed by
the operating system.

Data set storage control, along with an extensive catalog system, makes it possible for
you to retrieve data by symbolic name alone, without specifying device types and volume
serial numbers. In freeing computer personnel from maintaining involved volume serial
number inventory lists of stored data and programs, the catalog reduces manual
intervention and the likelihood of human error.

Data sets stored within the cataloging system can be classified according to installation
needs. For example, a sales department could classify the data it uses by geographic area,
by individual salesman, or by any other logical plan.

The cataloging system also. makes it possible for you to classify successive generations or
updates of related data. These generations can be given an identical name and
subsequently be referred to relative to the current generation. The system automatically
maintains a list of the most recent generations.

You can request data from a direct-access volume, a ,remote terminal, or a tape volume,
and data organized sequentially or directly, in essentially the same way. In addition, data
management provides:

• Allocation of space on direct-access volumes. Flexibility and efficiency of
direct-access devices are improved through greater use of available space.

• Automatic retrieval of data sets by name alone.

• Freedom to defer specifications such as buffer length, block size, and device type until
a job is submitted for processing. This permits the creation of programs that are in
many ways independent of their operating environment. .

Control of confidential data is provided by the data set security part of the operating
system. You can prevent unauthorized access to payroll data, sales forecast data, and all
other data sets that require special security attention. An individual can use a
security-protected data set only after furnishing a predefined password.

Input/ output routines are provided to efficiently schedule and control the transfer of
data between storage and input/output devices. Routines are available to:

• Read data

• Write data

• Translate data from ASCII (American National Standard Code for Information
Interchange) to EBCDIC (Extended Binary Coded Decimal Interchange Code) and
back

• Block and deblock records

• Overlap reading, writing, and processing operations

• Read and verify volume and data set labels

• Write data set labels

Part t: I ntroduction to Data Management t 3

• Aut~matically position and reposition volumes

• Detect error conditions and correct them when possible

• Provide exits to user-written error and label routines

OS/VS data management programs also provide for a variety of methods for gaining
access to a data set. The methods are based on data set organization and data access
technique.

OS/VS data sets can be organized in four ways:

• Sequential: Records are placed in physical rather than logical sequence. Given one
record, the location of the next record is determined by its physical position in the
data set. Sequential organization is used for all magnetic-tape devices, and may be
selected for direct-access devices. Punched tape, punched cards, and printed output
are sequentially organized.

• Indexed Sequential: Records are arranged in sequence, according to a key that is a
part of every record, on the tracks of a direct-access volume. An index or set of
indexes maintained by the system gives the location of certain principal records. This
permits direct as well as sequential access to any record.

• Direct: The records within the data set, which must be on a direct-access volume, may
be organized in any manner you choose. All space allocated to the data set is available
for data records. No.space is required for indexes. You specify addresses by which
records are stored and retrieved directly.

• Partitioned: Independent groups of sequentially organized records, called members,
are in direct-access storage. Each member has a simple name stored in a directory th;lt
is part of the data set and contains the location of the member's starting point.
Partitioned data sets are generally used to store programs. As a result, they are often
referred to as libraries.

Requests for input/output operations on data sets through macro instructions employ
two techniques: the technique for' queued access and the technique for basic access.
Each technique is identified according to its treatment of buffering and synchronization
of input and output with processing. The combination of an a ;cess technique and a given
data set organization is called an access method. In choosing an access method for a data
set, therefore, you must consider not only its organization, but also what you need to
specify through macro instructions. Also, you may choose a data organization according
to the access techniques and processing capabilities available.

The code generated by the macro instructions for both techniques IS optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system, an elementary
access technique called execute channel program (EXCP) is also provided. To use this
technique, you must establi.sh your own system for organizing, storing, and retrieving
data. Its primary advantage is the complete flexibility it allows you in using the. computer
directly.

An important feature of data management is that much of the detailed information
needed to store and retrieve data, such as device type, buffer processing technique, and
format of output records need not be supplied until the job is ready to be executed. This
device independence permits changes to those specifications to be made without changes
in the program. Therefore, ypu may design and test a program without knowing the exact
input/ output devices that will be used when it is executed.

Device independence is a feature of both access techniques for processing a sequential
data set. To some extent, you determine the degree of device independence achieved.

14 OS/VSl Data Management Services Guide

(

(

IVlany useful device-dependent features are available as part of certain macro
instructions, and achieving device independence requires some selectivit)'" in their use.

Data Set Identification

Data Set Storage

Any information that is a named, organized collection of logically related records can be
classified as a data set. The information is not restricted to a specific type, purpose, or
storage medium. A data set may be, for example, a source program, a library of macro
instructions, or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed on auxiliary
storage, you (or the operating system) must give the data set a name. The data set name
identifies a group of records as a data set. All data sets recognized by name (referred to
without volume identification) and all data sets residing on a given volume must be
distinguished from one another by unique names. To assist in this, the system provides a
means of qualifying data set names.

A data set name is one simple name or a series of simple names joined together so that
each represents a level of qualification. For example, the data set name
DEPT58.SMITH.DATA3 is composed of three simple names. Proceeding from the left,
each simple name is a category within which the next simple name is a subcategory.

Each simple name consists of from 1 to 8 alphameric characters, the first of which must
be alphabetic. The special character period (.) separates simple names from each other.
Including all simple names and periods, the length of the data set name must not exceed
44 characters. Thus, a maximum of 22 simple names can make up a data set name.

To permit different executions of a program to process different data sets without
program reassembly, the data set is not referred to by name in the processing program.
When the program is executed, the data set name and other pertinent information (such
as unit type and volume serial number) are specified in a job control statement called the
data definition (DD) statement. To gain access to the data set during processing,
reference is made to a data control block (DeB) associated with the name of the DD
statement. Space for a data control block, which specifies the particular data set to be
used, is reserved by a DeB macro instruction when your program is assembled.

System/370 provides a variety of devices for collecting, storing, and distributing data.
Despite the variety, the devices have many common characteristics. The generic term
volume is used to refer to a standard unit of auxiliary storage. A volume may be a reel of
magnetic tape, a disk pack, or a drum.

Each data set stored on a volume has its name, location, organization, and other control
information stored in the data set label or volume table of contents (for direct-access
volumes only). Thus, when the name of the data set and the volume on which it is stored
are made known to the operating system, a complete description of the data set,
including its location on the volume, can be retrieved. Then, the data itself can be
retrieved, or new data added to the data set.

Various groups of labels are used to identify'magnetic-tape and direct-access volumes, as
well as -the data sets they contain. Magnetic-tape volumes can have standard or
nonstandard labels, or they can be unlabeled. Direct-access volumes must use standard·
labels. Standard labels include a volume label, a data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides can be a burden and a
source of error. To alleviate this problem, the system provides for automatic cataloging
of data sets. The system can retrieve a cataloged data set if given only the name of the

Part 1: Introduction to Data Management 15

data set. If the name is qualified, each qualifier corresponds to one of the indexes in the
catalog. For example, the system finds the data set DEPT58.SMITH.DATA3 by
searching a master index to determine the location of the index name DEPT58, by (
searching that index to find the location of the index SMITH, and by searching that
index for DAT A3 to find the identification of the volume containing the data set.

By use of the catalog, collections of data sets related by a common external name and
the time sequence in which they were cataloged (their generation) can be identified; they
are called generation data groups. For example, a data set' name LAB.PAYROLL(O)
refers to the most recent data set of the group; LAB.PA YROLL(-1) refers to the second
most recent data set, etc. The same data set names can be used repeatedly with no
requirement to keep track of the volume serial numbers used.

Direct-Access Volumes

Direct-access volumes are used to store executable programs, including the operating
system itself. Direct-access storage is also used for data and for temporary working
storage. One direct-access storage volume may be used for many different data sets, and
space on it may be reallocated and reused. A volume table of contents (VTOC) is used
to account for each data set and available space on the volume.

Each direct-access volume is identified by a volume label, which is stored in track 0 of
cylinder o. You may specify up to seven additional labels, located after the standard
volume label, for further identification.

The VTOC is a data set consisting of data set control blocks (DSCBs) that describe the
contents of the direct-access volume. The VTOC can contain seven kinds of DSCBs,
each with a different purpose and a different format number. OS/VSI System Data
Areas describes the seven kinds of DSCBs, their purposes, and their formats.

Each direct-access volume is initialized by a utility program before being used on the
system. The initialization program generates the volume label and constructs the table of
contents. For additional information on direct-access labels, see "Appendix A:

(
Direct-Access Labels."

When a data set is to be stored on a direct-access volume, you must supply the operating
system with the amount of space to be allocated to the data set, expressed in blocks,
tracks, or cylinders. Space allocation can be independent of device type if the request is
expressed in blocks. If the request is made in tracks oc cylinders, you must be aware of
such device considerations as cylinder capacity and track size.

Magnetic-Tape Volumes

Because data sets on magnetic-tape devices. must be organized sequentially, the operating
system does not require space allocation procedures comparable to those for
direct-access devices. When a new data set is to be placed on a magnetic-tape volume,
you must specify the data set sequence number if it is not the first data set on the reel.
The operating system positions a volume with IBM standard labels, American National
Standard labels, or no labels so that the data set can be read or written. If the data set
has nonstandard labels, you must provide for volume positioning in your
nonstandard-label-processing routines. All data sets stored on a given magnetic-tape
volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you have not specified a
volume serial number, the system assigns a serial number to that volume and to any
additional volumes required for the data set. Each such volume is assigned a serial
number of the form Lxxxyy where xxx indicates the data set sequence number from IPL
to IPL and yy indicates the volume sequence number for the data set. If you specify
volume serial numbers for unlabeled volumes on which a data set is to be stored, the
system assigns volume serial numbers to any additional volumes required. If data sets

16 OS/VS 1 Data Management Services Guide

(

residing on unlabeled volumes are to be cataloged or passed, you should specify the
volume serial numbers for the volumes required. This will prevent data sets residing on
different volumes from being cataloged or passed under identical volume serial numbers.
Retrieval of such data sets could result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is to be processed by
the operating system must be followed by a tapemark. Tapemarks cannot exist within a
data set. When the operating system is used to create a tape with standard labels or no
labels, all tapemarks are automatically written. Two tapemarks are written after the last
trailer label group on a volume to indicate the last data set on the volume. On an
unlabeled volume, the two tapemarks are written after the last data set.

When the operating system is used to create a tape data set with nonstandard labels, the
delimiting tapemarks are not written. If the data set is to be retrieved by the operating
system, those tapemarks must be written by your nonstandard-label-processing routine.
Otherwise, tape marks are not required after nonstandard labels since positioning of the
tape volumes must be handled by installation routines.

For more information onlabels for magnetic-tape volumes, refer to OS/VS Tape
Labels.

The data on magnetic-tape volumes can be in either EBCDIC or ASCII. ASCII is a 7 -bit
code consisting of 128 characters. It permits data on magnetic tape to be transferred
from one computer to another even though the two computers may be products of
different manufacturers.

Data management support of ASCII and of American National Standard tape labels is
such that data management can translate records on input tapes in ASCII into EBCDIC
for internal processing and translate the EBCDIC back into ASCII for output. Records
on such input tapes may be sorted into ASCII collating sequence.

Data Set Record Formats

A data set is composed of a collection of records that normally have some logical relation
to one another. The record is the basic unit of information used by a processing program.
It might be a single character, all information resulting from a given business transaction,
or measurements recorded at a given point in an experiment. Much data processing
consists of reading, processing, and writing individual records.

The process of grouping a number of records before writing them on a volume is referred
to as blocking. A block is made up of the data between interrecord gaps (IRGs). Each
block can consist of one or more records. Blocking conserves storage space on the
volume because it reduces the number of IRGs in the data set. In many cases, blocking
also increases processing efficiency by reducing the number of input/output operations
required to process a data set.

Records may be in one of four formats: fixed-length (format-F), variable-length for data
in EBCDIC (format-V), variable-length for data to be translated to or from ASCII
(format-D), or undefined-length (format-U). The main consideration in the selection of
a record format is the nature of the data set itself. You must know the type of input your
program will receive and the type of output it will produce. Selection of a record format
is based on this knowledge, as well as on an understanding of the input/output devices
that are used to contain the data set and the access method used to read and write the
data records. The record format of a data set is indicated in the data control block
according to specifications in the DCB macro instruction, the DD statement, or the data
set label.

For ASCII tapes, data can be in format-F, format-D, and format-U with the restrictions
noted under "Fixed-Length Records, .~SCII tapes," "Variable-Length
Records-Format D," and "Undefined-Length Records." When data management reads

Part 1: Introduction to Data Management 17

Fixed-Length Records

...

records from ASCII tapes, it translates the records into EBCDIC. When data
management writes records onto ASCII tapes, it translates the records into ASCII. (
Because you use input records after they are translated and because output records are ...
translated when you ask data management to write them, you work only with EBCDIC.

Note: There is no minimum requirement for block size; however, if a data check occurs
on a magnetic-tape device, any block shorter than 12 bytes in a Read operation or 18
bytes in a Write operation is treated as a noise record and lost. No check for noise is
made unless a data check occurs. The sort/merge program does not accept physical
blocks or logical re~ords shorter than 18 bytes from any device.

The size of fixed-length (format-:-F) records, shown in Figure 1, is constant for all records
in the data set. The number of records within a block is constant for every block in the
data set, unless the data set contains truncated (short) blocks. If the data set contains
unblocked format-F records, one record constitutes one block.

The system automatically pt(rforms physical length checking (except for card readers) on
blocked or unblocked format-F records. Allowances are made for truncated blocks.

Format-F records are shown in Figure 1. The optional control character (c), used for
stacker selection or carriage control, may be included in each record to be printed or
punched.

Block
A

Blocked Records Record (\ Record B

Block

Unblocked Records [Reco:d A l
Figure 1. Fixed-Length Records

Record C

'. " " " , "

Block

" " "

[Re~ro j

Block
.A

Record D Record E Record F

.....
......

Record
/'.

C Data

\ L Optional Control I
\ Character - 1 Byte /

\ /
\ /

\ /
\ /

1 Reoord C J

Block

[R~=l
Fixed-Length Records, Standard Format: During creation of a sequential data set (to be
processed by BSAM or QSAM) with fixed-length records, the RECFM subparameter of
the DCB macro instruction may specify a standard format (RECFM=FS or FBS). A
standard-format data set must conform to the following specifications:

• All records in the data set are format-F records.

... No block except the' last block is truncated. (With BSAM you must ensure that this
specification is met.)

• Every track except the last one contains the same number of blocks.

• Every track except the last one is filled to capacity as determined by the track capacity
formula established for the device. (These formulas are presented in Part 3 of this
book under "Allocating Space on Direct-Access Volumes.")

18 OS/VS 1 Data Management Services Guide

Optional

• The data set organization is physical-sequential. A member of a partitioned data set
cannot be specified.

A sequential data set with fixed-length records having a standard format can be read
more efficiently than a data set that doesn't specify a standard format. This efficiency is
possible ,because the system is able to determine the address of each record to be read
because each track contains the same number of blocks.

You should never extend a data set of this type (by coding DISP=MOD) if the last block
is truncated, because the extension will cause the data set to contain a truncated block
that isn't the last block. This type of data set on magnetic tape should not be read
backward, because then the data set would begin with a truncated block. Consequently,
you probably won't want to use this type of data set with magnetic tape. If you use one
of the basic access techniques with this type of data set, you should not specify that the
track overflow feature is to be used with the data set.

Standard format should not be used to read records from a data set that was created
using a RECFM other than standard since other record formats may not create the
precise format required by standard.

If at any time the characteristics of your data set are altered from the specifications
described above, then the data set should no longer be processed with the standard
format specification.

Fixed-Length Records, ASCII Tapes: For ASCII tapes, format-F records are the same as
described above, with two exceptions:

• Control characters, if present, must be American National Standards Institute (ANSI)
control characters.

• Records or blocks of records can contain block prefixes.

Figure 2 shows the format of fixed-length records for ASCII tapes and where control
characters and block prefixes go if they exist.

The block prefix c.an vary in length from 0 to 99 bytes but the length must be constant
for the data set being processed. For blocked records, the block prefix precedes the first
logical record. For unblocked records, the block prefix precedes each logical record.

Block Block . A

Optional
Blocked
Records

Block
Prefix

Record A Record B Record C Block Record 0 Record E Record F

"-

Block Block . .
Optional

Unblocked Block Record A
Records Prefix

Optional
Block Record B
Prefix

Figure 2. Fixed-Length Records for ASCII Tapes

Prefix

c Data

LOptional Control
\ Character-1 Byte
\

/

;'
/

\

\
, / ~ __ B~I<!~Ck __ _____

Optional Optional
Block Record 0
Prefix

Block Record C
Prefix

Part ': Introduction !() Data M:magernent 19

Using QSAM and BSAM to read records with block prefixes requires that you specify
. the BUFOFF operapd in the DCB. When using QSAM, you cannot read the block prefix (
on input. When using BSAM, you must account for the block prefix on both input and '. .,
output. When using either QSAM or BSAM, you must account for the length of the
block prefix in the BLKSIZE and BUFL operands of the DCliJ.

When you use BSAM on output records, the operating system does not recognize a block
prefix. Therefore, if you want a block prefix, it must be part of your record. Note that
you cannot include block prefixes in QSAM output records.

The block prefix can contain any data you want, but you must avoid using data types
such as binary, packed decimal, and floating-point that cannot be translated into ASCII.

For more information about control characters, refer to "Control Character" and to
"Appendix B: Control Characters."

Vanable-Length Records

Blocked Records

The variable-length record formats are format-V and format-D. Format-V records can
be spanned; that is, records can be larger than the blocksize, as describ~d below.
Format-D records are used for ASCII tape data sets and cannot be spanned. Figure 3
shows blocked and unblocked variable-length records without spanning.

Variable-Length Records--Format V: Format V provides for variable-length records,
variable-length record segments, each of which describes its own characteristics, and
variable-length blocks of such records or record segments. Except when variable-length
track overflow records are specified for volumes on devices' with the rotational position
sensing feature, the control program performs length checking of the block and uses the
record or segment length information in blocking and deblocking. The first 4 bytes of
each record, record segment, or block make up a descriptor word containing control
information. You must allow for these additional 4 bytes in both your input and output
buffers.

Block
BOW
~ l.,.L

LL

t
00 Record A Record B

L Reserved - 2 Bytes
Block Len th . 9
2 Bytes

Record C

\
\

\~

LL 00

Record ,11. 00 c

Record 0 Record E Repord F
,

--- --- -

I
I
I
I

Optional Control Character /
Reserved - 2 Bytes / /

~
Reserved - 2 Bytes

---Block Length - 2 Bytes

~---Record Length· /
2 Bytes /

Record C r

/
/

/ I BQW

Ll 00

Block
"-

Record

Record 0

,

Figure 3. Nonspanned, Variable-Length Records

.20 OS/VS 1 Data Management Services Guide

Block Descriptor Word: A variable-length block consists of a block descriptor word
(BDW) followed by one or more logical records or record segments. The block
descriptor word is a 4-byte field that describes the block. The first 2 bytes specify the
block length ('11')-4 bytes for the BDW plus the total length of all records or segments
within the block. This length can be from 8 to 32,760 bytes or, when you are using
WRITE with tape, from 18 to 32,760. The third and fourth bytes are reserved for future
system use and must be O. If the system does your blocking-that is, when you use the
queued access technique-the operating system automatically provides the BDW when it
writes the data set. If you do your own blocking-that is, when you use the basic access
technique-you must supply the BDW.

Record Descriptor Word: A variable-length logical record consists of a record descriptor
word (ROW) followed by the data. The record descriptor word is a 4-byte field
describing the record. The first 2 bytes contain the length ('II') of the logical record
(including the 4-byte ROW). The length can be from 4 to 32,756. For'information about
processing a sequential data set, see "Data Format-Device Type Considerations." All
bits of the third and fourth bytes must be 0, as other values are used for spanned records.
For output, you must provide the ROW except in data mode for spanned records
(described under "Buffer Control"). For output in data mode, you must provide the total
data length in the physical record length field (DCBPRECL) of the DCB. For input,"the
operating system provides the ROW except in data mode. In data mode, the system
passes the record length to your program in the logical record length field (DCBLRECL)
of the DCB. The optional control character (c) may be specified as the fifth byte of each
record and must be followed by at least one byte of data (the length in the ROW, in this
case, would be six). The ROWand the control character, if specified, are not punched or
printed.

Spanned Variable-Length Records (Sequential ACC4f Method): The spanning feature of the
queued and basic sequential access methods enables you to create and p:s;ocess
variable-length logical records. that are larger than one physical block and/or to pack
blocks with variable-length records by splitting the records into segments so that they
can be written into more than one block, as shown in Figure 4.

When spanning is specified for blocked records, the system tries to fill all blocks. For
unblocked records, a record larger than blocksize is split and written in two or more
blocks, each block containing only one record or record segment. Thus the blocksize may
be set to the one that is best for a given device or processing situation. It is not restricted
by the maximum record length of a data set. A record may, therefore, span several
blocks, and may even span volumes. Note that a logical record spanning three or more
volumes cannot be processed in update mode (described under "Buffer Control") by
QSAM. A block can contain a combination of records and record segments, but not
multiple segments of the same record. When records are added to or deleted from a data
set, or when the data set is processed again with different blocksize or record-size
parameters, the record segmenting will change.

Consideratiom for Processing Spanned Record Data Sets: When spanned records span
volumes, reading errors may occur when using QSAM if a volume which begins with a
middle or last segment is mounted first or if an FEOV macro instruction is issued
followed by another GET. QSAM cannot begin reading from the middle of the record.
The errors include duplicate records, program checks in the user's program, and invalid
input from the spanned record data set.

When a spanned record data set is to be opened in UPDAT mode arid QSAM is used, a
record area must be provided by using the BIDLDRCD macro instruction or by
specifying BFTEK=A in the DeB.

If you issue the FEOV macro instruction when reading a data set that spans volumes, or
if a spanned multivolume data set i:" opened to other than the first volume, make sure

Part 1: Introduction to Data Management 21

Block
.A.

BOW / ~L "-

LL
Last

Segment
of Logical
Record A

I

First Segment
of Logical
Record B

LL I ntermediate Segment
of Logical Record B LL

Last First Segment
of Logical of Logical
Record B Record C

....
.Reserved -I ,

\ I ,
I , \ \

2 Bytes : " I ,

I "
\ \

\ \
Block Length - I ,
2 Bytes : 11 "

1---,,-- ,
\ u. \ I ,

First
Segment
of Logical

r S OW Data ---...;

c

\\('--S-D-W~A'--D-a-t-a-----"~ 1 __ ----~11 "
I' SOW Data '\

Inter- Last
mediate 1/1/ Segment ""
Segment J(Jl. f . I x.x.

Record L-",......J.-r-L~,.J-----'
of Logical 0 Loglca
Record L....----LT-'-"""'------' Record L..---L,...L-..J...._---I

Optional Control Segment Control
Character Code
Reserved - 1 Byte
Segment Control Code -
1 Byte (See Figure 5)

'-----Segment Length - 2 bytes H.

Segment Control
Code

rr------------~A~-------------------\
Data Portion of Logical Record B ROW

Logical Record
(In User's Work Area)

Data Portion: Data Portion
of I of

First Segment! I ntermediate Segment
I

Optional Control Character
Reserved - 2 Bytes

a....-___ Record Length - 2 Bytes

Data Portion
of Last

Segment

Figure 4. Spanned Variable-Length Records

that each volume begins with the first (or only) segment of a logical record. Input
routines cannot begin reading in the middle of a logical record.

Segment Descriptor Word: Each record segment consists of a segment descriptor word
(SDW) followed by the data. The segment descriptor word, similar to the record
descriptor word, is a 4-byte field that describes the segment. The first 2 bytes contain the
length (' 11 ') of the segment, including the 4-byte SDW. The length can be from 5 to
32,756 bytes or, when you are using WRITE with tape, from 18 to 32,756 bytes. The
third byte of the SDW contains the segment control code, which specifies the relative
position of the segment in the logical record. The segment control code is'in the
rightmost 2 bits of the byte. The segment control codes are shown in Figure 5. The
remaining bits of the third byte and all of the fourth byte are reserved for future system
use and must be o.

Binary Code

00

01

10

11

Relative Position of Segment
\

Complete logical record

First segment of a multisegment record

Last segment of a multisegment record

Segmen't of a multisegment record other than the first or last segment

Figure 5. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after the record has
been segmented. You or the operating system can build the SDW, depending on which
mode of processing is used. In the basic sequential access method, you must create and
interpret the spanned records yourself. In the queued sequential access method move
mode, complete logical records, including the RDW, are processed in your work area.

22 OS/VS 1 Data Management Services Guide

(

(

GET consolidates segments into logical records and creates the RDW. PUT forms
segments as required and creates the SDW for each segment. Data mode is similar to
move mode, but allows reference only to the data portion of the . logical record in your
work area. The logical record length is passed to you through the DCBLRECL field of
the data control block. In locate mode, both GET and PUT process one segment at a
time. However, in locate mode, if you provide your own record area using the
BUILDRCD macro instruction or if you ask the system to provide a record area by
specifying BFTEK=A, then GET, PUT, and PUTX process one logical record at a time'.
(BFTEK=A or the BUILDRCD macro cannot be specified when logical records exceed
32,760 bytes. To process logical records that exceed 32,760 bytes, you must use locate
mode and specify LRECL=X in your DCB macro.)

A logical record spanning three or more volumes cannot be processed when the data set
is opened for update.

W:hen unit-record devices are used with spanned records, the system assumes that
unblocked records are being processed and the block size must be equivalent to the
length of one print line or one card. Records that span blocks are written one segment at
a time.

SYSIN and SYSOUT Restrictions: Spanned variable-length records cannot be specified
for a SYSIN data set. If you're using QSAM to process a SYSOUT data set, move mode
(see "Buffer Control") is more efficient than locate mode.

Null Segments: A 1 in bit position 0 of the SDW indicates a null segment. A null,
segment means that there are no more segments in the block. Bits 1-7 of the SDW and
the remainder of the block must be binary zeros. A null segment is not an
end-of-Iogical-record delimiter. (You do not have to be concerned about null segments
unless you have created a data set using null segments.)

Spanned Variable-Length Records (Basic Direct Acce.D Method): The spanning feature of
the basic direct access method (BDAM) enables you to create and process
variable-length unblocked logical records that are longer than one track. The feature also
enables you to pack tracks with variable-length records by splitting the records into
segments. These segments can then be written onto more than one track, as shown in
Figure 6.

When you specify spanned, unblocked record format for the basic direct access method
and when a complete logical record cannot fit on the track, the system tries to fill the·
track with a record segment. Thus the maximum record length of a data set is not
restricted by block size. Furthermore, segmenting records allows a record to sP3:n several
tracks, with each segment of the record on a different track. However, since the system
does not allow a record to span volumes, all segments of a logical record in a direct data
set are on the same volume.

Variable-Length Records-Format D: For ASCII tapes, variable-length records must be
format-D records. Format-D records are the same as format-V records, except:

• Control characters, if present, must be ANSI control" characters.

• Records or blocks of records can contain block prefixes.

Figure 7 shows the format of variable-length records for ASCII tapes, where the record
descriptor word (RDW) must go, and where block prefixes and control characters can go
when they exist.

To specify a block prefix, code the BUFOFF operand in the DCB macro. The block
prefix can vary in length from 0 to 99 bytes but its length must remain constant for the
data set being processed. For blocked records, the block prefix precedes the first logical
record in each block. For unblocked records, the block prefix precedes each logical
record. If the block prefix exists, it precedes the RDW.

Part 1: Introduction to Data Management 23

Track 1 Tra<;k 3
...--____ .A. ____ -..

Track 2

Block
A

A

BOW I' 4- '\

/"
.A.

""'
LL

I ntermediate Segment of

Logical Record A

Last Segrrent

LL of Logicat
Record A

First Segment

LL of Logical
Record A

Reterv~ -
2 Bytes

\

\

" "-
"-

"-

" "-

LL = track sIze \
\ \
\ \
\ \

I \
I \
I \
I \
I \

Block Length -
2 Bytes

\ "-
\ " \ ,

\ ",
\ \
\ \
\ \

I \
I \
I \

I U \ \';.-....-_____ R;~ __ "_,_:...
r SOW Data '\

\---~!)'------..~ I ___ ---" '--'-_~~
f SOW Data' SOW Data

Intermediate
First f---r-r--f------; Segment f----.-...,....-t-------\ Last
Segment D. of Logical MI Segment 1111
of Logical .~ Record XJ(. of Logical xx.
Record Record

Logical Record
(I n User's Work
Area)

Block Length -
2 Bytes

Reserved - 1 Byte
Segment Control Code -
1 Byte (See F igu re 5)

Segment Control
Code

L..-___ Segment Length - 2 Bytes

L"L

BOW Data Portion of Logical Record A

Data Portion : Data Portion :Data Portion

of :
First Segment!

of ! of Last
I ntermediate Segment : Segment

Segment Control
Code

Reserved - Note: Not All Segment and Block Combinations are Represented •.
2 Bytes

Figure 6. Spanned Variable-Length Records for BDAM Data Sets

To specify that the block prefix is to be treated as a BDW by data management. for
format-D records on output, code BUFOFF=L as a DCB operand. Your block prefix
must be 4 bytes long, and it must contain the length of the block, including the block
prefix. The maximum length of a format D, BUFOFF=L block is 9999 because the
length (stated in binary by the user) is translated to a fortr-byte zoned decimal field on
the ASCII tape when the tape is written, and is then converted back to a two-byte length
field in binary followed by two bytes of zeros when the block is read. If you use QSAM
to write records, data management fills in the block prefix for you. If you use BSAM to
write records, you must fill in the block prefix yourself. If you are using chained
scheduling to read blocked format-D records, coding BUFOFF=absolute expression in
the DCB is not allowed. Instead, BUFOFF=L is required, because the access method
needs binary RDWs and valid end-of-block addresses to unblock the records.

When using QSAM, you cannot read the block prefix on input. When using BSAM, you
must account for the block prefix on both input and output. When using either QSAM or
BSAM, you must account for the length of the block prefix in the BLKSIZE and BUFL
operands.

When you use BSAM on output records, the operating system does not recognize the
block prefix. Therefore, if you want a block prefix, it must be part of your record.

(

The block prefix can contain any data you want, but you must avoid using data types, (
such as binary, packed decimal, and, floating-point, that cannot be translated into ASCII.
For format-D records, the only time the block prefix can contain binary data is when you

24 OS/VS 1 Data Management Services Guide

Blocked
Records

Block Block

r
.

\ (~------------------~-------------------\

Optional Optional
Block Record A Record B Record C Block Record 0 Record E Record F
Prefix Prefix

\
\
\
\
y~----------------~----------------~>~\

/
/

/

/

/
/

/

Unblocked Optional
Block Record C

Records Prefix

ROW Data
~------------~'------------~\

11 c

Optional Control Character
Reserved - 2 Bytes __

_____ 0 Record Length...;.-"'-----

2 Byte~ ----

-- --- --- Block -- r \
Optional

Block Record 0
Prefix

Block

rr--~--~------~\

Optional
Block
Prefix

Record E

Note: Block prefixes on output records must be %ytes long.

Figure 7. Variable-Length Records for ASCII Tapes

have coded BUFOFF=L, which tells data management that the prefix is a BDW. Unlike
the block prefix, the RDW must always be in binary.

If you create variable-length records that are shorter than 18 bytes, data management
pads each one up to a length of 18 bytes when the records are written onto ASCII tape.
The padding character used is the ASCII circumflex.

For more information about control characters, refer to "Control Character" and to
"Appendix B: Control Characters."

Undefined-Length Records

Format U permits processing of records that do not conform to the F or V format. As
shown in Figure 8, each blo~k is treated as a record; therefore, deblocking must be
performed by your program. The optional control character may be used in the first byte
of each record. Because the system does not perform length checking on format-U
records, your program may be designed to read less than a complete block into virtual
storage.

For ASCII tapes, format-:U records are the same as described above, with the two
exceptions described for format-F records on ASCII tapes.

Figure 9 shows the.format of undefined-length records for ASCII tapes and where a
control character and block prefix, if any, go.

For format-U records, the.user must specify the record length when issuing the WRITE,
PUT, or PUTX macro instruction. No length checking is performed by the system, so no
error indication will be given if the specified length does not match the buffer size or
physical record size.

Part 1: lmroduction to Data Management 25

Control Character

Record
-'"

c Data

\.lOptional Control
I

I \
\ Character-1 Byte I
\ I

Block
\ I

\ Block I Block

8 1 ae~dB I r a~c l
Figure 8. Undefined-Length Records

Record
"

Optional
Block c Data
Prefix

\ to tional Control

I , /
,P /

, Character-l Byte I , /
\ I

Block \ Block I Block 'v,,----.J<.-------.,/ (__ --~A"---__ \ (

Optional
Block Record A
Prefix

Optional
Block
Prefix

Record B

Figure 9. Undefined-Length Records for ASCII Tapes

Optional
Block
Prefix

Record C

In update mode, you must issue a GET or READ macro before you issue a PUTX or
WRITE macro to a data set on a direct-access device. If you change the record length
when you issue the PUTX or WRITE macro, the record will be padded with zeros or
truncated to match the length of the record received when the GET or READ macro was
issued. No error indication will be given.

You may specify in the DD statement, the DCB macro instruction, or the data set label
that an optional control character is part of each record in the data set. The I-byte
character is used to indicate a carriage control channel when the data set is printed or a
stacker bin when the data set is punched. Although the character is a part of the record
in storage, it is never pt'inted or punched. For that reason, buffer areas must be large
enough to accommodate the character. If the immediate destination of the record is a
device, such as disk, that does not recognize the control character, the system assumes
that the control character is the first qyte of the data portion of the record. If the
destination of the Tecord is a printer or punch and you have not indicated the presence of
a control character, the system regards the control character as the first byte of data. A
list of the control charflcters is in "Appendix B: Control Characters."

-26 OS/VS 1 Data Management Services Guide

(

(

Direct-Access Device Characteristics
Regardless of organization, data sets created using the operating system can be stored on
a direct-access volume. Each block of data has a distinct location and a unique address,
making it possible to locate any record without extensive searching. Thus, records can be
stored and retrieved either directly or sequentially.

Although direct-access devices differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The number of
tracks and their capacity vary with the device. Each device has some type of access
mechanism, containing read/write heads that transfer data as the recording surface
rotates past them. Only one head at a time can transfer data.

The logical arrangement of related tracks is vertical rather than horizontal. As shown in
Figure 10, a cylinder of a 2316 disk pack is composed of 20 tracks, one for each
recording surface. Because there are 203 tracks per recording surface, there are 203
vertical cylinders of 20 tracks each. If a data set extends to more than 1 track, it is
continued on the next track in the cylinder, not the next track on the same recording.
surface.

Comb-Type
Access Assembly

Ten Access Arms

Figure 10. 2316 Disk Pack

Disks

Part 1: Introduction to Data Management 27

Track Format

Information is recorded on all direct-access volumes in a standard format. In addition to (
device data, each track contains a track descriptor record (capacity record or RO) and

Track Addressing

I Count 1 8
Track Descriptor

Record (RO)

I Count 1 8
Track Descriptor

Record (RO)

data records.

As shown in Figure 11, there are two possib~e data record formats--count-data and
count-key-data---only one of which can be used for a particular data set.

In addition to device data, the count area contains 8 bytes that identify the location of
the record by cylinder, head, and record numbers, its key length (0 if no keys are used),
and its data length.

If the records are written with keys, the key 'area (1 to 255 bytes) contains a record key
that specifies the data record by part number, account number, sequence number, or
some other identifier. In some cases, records are written with keys so that they can be
located quickly.

Two types of addresses can be used to store and retrieve data on a direct-access volume:
actual addresses and relative addresses. The only advantage of using actual addresses is
the elimination of time required to convert from relative to actual addresses and vice
versa., When sequentially processing a multiple-volume data set, you can refer only to
records of the current volume.

Actual Addresses: When the system returns the actual address of a record on a
direct-access volume to your program, it is in the form MBBCCHHR, where:

M

is a I-byte binary number specifying the relative location of an entry in a data extent
block (DEB). The data extent block is created by the system when the data set is
opened. Each extent entry describes a set of consecutive tracks allocated for the data
set.

BBCCHH

is three 2-byte binary numbers specifying the cell (bin), cylinder, and head number for
the record (its track address). The cylinder and head numbers are recorded in the
count area for each record.

Count-Data Format

I Count 1 B 00 I Count 18
Data Record (R 1) Data Record (Rn)

Cou'nt-Key-Data Format

BB800 I Count I B 8
Data Record (R 1) Data Record (Rn)

Figure 11. Direct-Access Volume Track Formats

28 OS/VS 1 Data Management Services Guide

(

Track Over/low

R

is a I-byte binary number specifying the relative block number on the track. The
block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be treated as unmovable.

Relative Addresses: Two kinds of relative addresses can be used to refer to records in a
direct-access data set: relative block addresses and relative track addresses.

The relative block address is a 3-byte binary number that indicates the position of the
block relative to the first block of the data set. Allocation of noncontinuous sets of
blocks does not affect the number. The first block of a data set always has a relative
block address of O.

The relative track address has the form TTR, where:

TT

R

is a 2-byte binary number specifying the position of the track relative to the first track
allocated for the data set. The TT for the first track is O. Allocation of noncontinuous
sets of tracks does not affect the number.

is a I-byte binary number specifying the number of the block relative to the first block
on the track TT. The R value for the first block of data on a track is 1.

If the record overflow feature is available for the direct-access device being used, you.
can reduce the amount of unused space on the volume by specifying the track overflow
option in the DD statement or the DCB macro instruction associated with the data set. If
the option is used, a block that does not fit on the track is partially written on that track
and continued on the next track. (The track onto which the record is continued must be
physically next and must be part of the same extent as the track that holds the first part
of the record.) Each segment (the portion written on one track) of an overflow block has
a count area. The data length field in the count area specifies the length of that segment
only. If the block is written with a key, there is only one key area for the block. It is
written with the first segment. If the track overflow option is not used, blocks are not
split between tracks.

Write- Validity-Check Option

You can specify the write-validity-chl!ck option in either the DD statement or the DCB
macro instruction. After a record is transferred from main to secondary storage, the
system reads the stored record (without data transfer) and, by testing for a data check
from the 110 device, verifies that the record was written correctly. This verification
requires an additional revolution of the device for each record that was·written. Standard
error recovery procedures are initiated if an error condition is detected.

Part 1: Introduction to Data Management 29

The Data Control Block

DCB Macro

B F G H J

You must describe the characteristics ofa data set, the volume on which it resides, and (,,, .
its processing requirements before processing can begin. During execution, the
descriptive information is made available to the operating system in the data control
block (DCB). A DCB is required for each data set and is created in a processing
program by a DCB macro instruction.

Primary sources of information to be placed in the data control block are a DCB macro
instruction, a data definition (DD) statement, and a data set label. In addition, you can
provide or modify some of the information during execution by storing the pertinent data
in the. appropriate field of the data control block. The specifications needed for
input/ output operations are supplied during the initialization procedures of the OPEN
macro instruction. Therefore, the pertinent data can be provided when your job is to be
executed rather than when you write your program (see Figure 12).

When the OPEN macro instruction is executed, the Open routine:

• Completes the data control block

• Loads all necessary access method routines not already in virtual storage

• Initializes data sets by reading or writing labels and control information

• Constructs the necessary system control blocks

InfofQ1ation from a DD statement is stored in the job file control block (JFCB) by the
operating system. When the job is to be executed, the JFCB is made available to the
open routine. The data control block is filled in with information from the DCB macro
instruction, the JFCB, or an existing data set label. If more than one source specifies
information for a particular field, only one source is used. A DD statement takes
precedence over a data set label, and a DCB macro instruction over both. However, you /r
can modify most data control block fields either before the data set is opened or when ~
the operating system returns control to your program (at the data control block open
exit). Some fields can be modified during processing.

Figure 13 illustrates the process and the sequence of filling in the data control block from
various sources. The primary source is your program, that is, the DCB macro instruction.
In general, you should use only those DCB parameters that are needed to ensure correct
processing. The other parameters can be filled in when your program is to be executed.
When a direct-access data set is opened (or a magnetic tape with standard labels is

D D Statement Data Set Label

C D A E

Data Control Block

ABCDEFGHIJ

(
Figure 12. Completing the Data Control Block

30 OS/VS 1 Data Management Services Guide

opened for INPUT, RDBACK, or INOUT), any field in the JFCB not completed by a
DD statement is filled in from the data set label (if one exists). When opening a magnetic
tape for output, the tape label is assumed not to exist or to apply to' the current data set
unless you specify DISP=MOD and a volume serial number in the volume parameter of
the DD statement. Any field not completed in the DCB is filled in from the JFCB. Fields
in the DCB can then be completed or modified by your own DCB ~xit routine. Then all
DCB fields are unconditionally merged into corresponding JFCB fields if your data set is

I opened for output (OUTPUT, OUTIN, EXTEND, or OUTINX is specified in the OPEN
macro instruction). The DSORG field is not merged unless this field contains zeros in the
JFCB.1f your data set is opened for input (INPUT, INOUT, RDBACK, or UPDAT is
specified in the OPEN macro instruction), the DCB fields are not merged unless the
corresponding JFCB fields contain zeros.

I ~a~~ I--------~

DD
Statement Control

Block

Old
Data Set

label

DeB
Exit

Routine

New
Data Set

label

Figure 13. Sources and Sequence of Operations for Completing the Data Control Block

When the data set is closed, the data control block is restored to the condition it had
before the data set was opened (the buffer pool is not freed). The open and close
routines also use the updated JFCB to write the data set labels for output data sets. If the
data set is not closed when your program terminates, the operating system will close it
automatically. Note, however, that the system cannot automatically close any open data
sets after the normal termination of a program that was brought into virtual storage by
the loader. Therefore, loaded programs must include CLOSE macro instructions for all
opened data sets.

Data Set Description

For each data set you are going to process, there must be a corresponding DCB and DD
statement. The characteristics of the data set and device-dependent information can be
supplied by either source. In addition, the DD statement must supply ,data set
identification, device characteristics, space allocation requests, and related information as
specified in OS/VSl JCL Reference. You establish the logical connection between a
DCB and a DD statement by specifying the name of the DD statement in the DDNAME
field of the DCB macro instruction, or by completing the field yourself before opening
the data set.

Part 1: Introduction to Data Management 31

Once the data set characteristics have been specified in the DCB macro instruction, they
can be changed only by modification of the DCB during execution. The fields of the
DCB discussed below are common tom.ost data organizations and access techniques. (

Data Set Organization (DSORG): specifies the organization of the data set as physical
sequential (PS), indexed sequential (IS), partitioned (PO), or direct (DA). If the data set
contains absolute rather than relative addresses, you must mark it as unmovable by
adding a D to the DSORG parameter (for example, by coding DSORG=PSD). You must
specify the data set organization in the DCB macro instruction. When creating or
processing an indexed sequential organization data set or creating a direct data set, you
must also specify DSORG in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in the data set as
fixed-length (F), variable-length (V), or undefined-length (D). Blocked records are
specified as FB or VB. You may also specify the records as fixed-length standard. by
using FS or FBS. You can request track overflow for records other than standard format
by adding a T to the RECFM parameter (for example, by coding FBT).

Record Length (LRECL): specifies the length, in bytes, of each record in the data set. If
the records are of variable length, the maximum record length must be specified. For
input, the field should be omitted for format-D records.

Blocksize (BLKSIZE): specifies the maximum length, in bytes, of a block. If the records
are of format F, the blocksize must be an integral mUltiple of the record length except for
SYSODT data sets. (See "Routing Data Through the System Input and Output Streams"
in Part 3 of this book.) If the records are of format V, the block size specified must be the
maximum blocksize. If records are unblocked, the blocksize must be 4 bytes greater than
the record length (LRECL). When spanned variable-length records are specified, the
blocksize is independent of the record length.

Key Length (KEYLEN): specifies the length (0-255) in bytes of an optional key which f
precedes each block on a direct-access device. The value of KEYLEN is not included in 'l
BLKSIZE or LRECL but must be included in BDFL if buffer length is specified. Thus,
BDFL=KEYLEN + BLKSIZE.

Each of the data set description fields of the data control block, except as noted ,for data
set organization, can be specified when your job is to be executed. In addition, data set
identification and disposition, as well as device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are common to most data set

. organizations and devices.

Data Definition Name (DDNAME): is the name of the DD statement and connects the
DD statement to the data control block that specifies the same DDNAME.

Data Set Name (DSNAME): specifies the name of a newly defined data set, or refers to
a previously defined data set.

Data Control Block (DCB): provides, by means of subparameters, information to be used
to complete those fields of the data control block that were not specified in the DCB
macro instruction. This parameter cannot be. used to modify a data control block.

Channel Separation and Affinity (SEP / AFF): requests that specified data sets use
different channels during input/output operations.

Input/Output Device (UNIT): specifies the number and type of I/O devices to be
allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct-access volume
that should be allocated for the data set. Dnused space can be released when your job is (
finished. '

32 OS/VS 1 Data Management Services Guide

Volume Identification (VOLUME): identifies the particular volume or volumes, or the
number of volumes, to be assigned to the data set, or the volumes on which existing data
sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or labels
associated with the data set. The operating system verifies standard labels. Standard
labels include those specified in the DD statement as SL (standard labels), SUL
(standard user labels), AL (American National Standard labels), and AUL (American
National Standard user labels). Nonstandard labels (NSL) can be specified only if your
installation has incorporated into the operating system routines to write and process
nonstandard labels.

Data Set Disposition (DISP): describes the status of a data set and indicates what is to be
done with it at the end of the job step.

Processing Program Description

The operating system requires several types of processing information to ensure proper
control of your input/output operations. The forms of macro instructions in the program,
buffering requirements, and the addresses of your special processing routines must be .
specified during either the assembly or the execution of your program. The DCB
parameters specifying buffer requirements are discussed in "Buffer Acquisition and
Control."

Because macro instructions are expanded during the assembly of your program, you must
supply the macro instruction forms that are to be used in processing each data set in the
associated DCB macro instruction. You can supply buffering requirements and related
information in the DCB macro instruction, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end of your DCB exit
routine. If the addresses of special processing routines are omitted from the DCB macro
instruction, you must complete them in the DCB before opening the data set.

Macro Instruction Form (MACRF)

The MACRF parameter of the DCB macro instruction specifies not only the macro
instructions used in your program, but also the processing mode as discussed in the
section "Buffer Control." The organization of your data set, the macro instruction form,
and the processing mode determine which of the data access routines will be used during
execution.

Exits to Special Processing Routines

The DCB macro instruction can be used to identify the location of:

• A routine that performs end-of-data procedures

• A routine that supplements the operating system's error recovery routine

• A list that contains addresses of special exit routines

The exit addresses can be specified in the DCB macro instruction or you can complete
the DCB fields before opening the data set. Figure 14 summarizes the exits that you can
specify either explicitly in the DCB, or implicitly by specifying the address of an exit list
in the DCB.

End-of-Data-Set Exit Routine (EODAD): The EODAD parameter of the DCB macro
instruction specifies the address of your end-of -data routine, which may perform any
final processing on an input d~ta set. This routine is entered when an FEOV macro is
issued or when a CHECK or GET macro is issued and there are no more records or
blocks to be retrieved. (On a READ :~equest, this routine is entered when you issue a
CHECK macro instruction to check for completion of the read operation. For a BSAM

Part 1: I~roduction to Data Management 33

Exit Routine When Available Where Specified

End-of-Data-Set When no more sequential EODAD operand
records or blocks are
available

Error Analysis After an uncorrectable SYNAD operand
input/output error

Standard User Label When opening, closing, EXLST operand and
(physical sequential or reaching the end of a exit list
or direct organization) data set, and when changing

volumes

DCB Open . When opening a data set EXLST operand and
exit list

JFCBE When opening a data set EXLST operand and
for the 3800 exit list

End-of-Volume When changing volumes EXLST operand and
exit list

Block Count After unequal block count EXLST operand and
comparison by end-of-volume exit list
routine

FCB Image When opening a data set or EXLST operand and
issuing a SETPR T macro exit list

DCBABEND When an ABEND condition EXLST operand and
occurs in Open, Close, or exit list
end-of-volume routine.

Figure 14. Data Management Exit Routines

data set that is opened ior (JPDAT, this routine is entered at the end of each volume.
This allows you to issue WRITE macros before an FEOV macro is issued.)

The EODAD routine is not a subroutine, but rather a continuation of the routine which
issued the CHECK, GET, or FEOV macro instruction. Onpe in your EODAD routine,
you can continue normal processing, such as reposition and resume processing of the
data set, close the data set, or process another data set.

For BSAM, you must first reposition the data set that reached end-of-data if you wish to
issue a BSP, READ, or WRITE macro instruction. You can reposition your data set by
issuing a CLOSE TYPE=T macro instruction. If a READ macro is issued before the
data set is repositioned, unpredictable results will occur.

\

For BP AM, you may reposition the data set by issuing a FIND or POINT macro
instruction. (CLOSE TYPE=T with BPAM results in a no operation performed.)

For QISAM, you can continue processing the input data set that reached end-of-data by
first issuing an ESETL macro to end the sequential retrieval, then issuing a SETL macro
to set the lower limit of sequential retrieval. You can then issue GET macros to the data
set.

Your task will be apnormally terminated under either of the following conditions:

• No exit routine is provided.

• A GET macro instruction is issued in the EODAD routine to the DCB which caused
this routine to be entered (unless the access method is QISAM).

34 OS/VS 1 Data Management Services Guide

(

(

When control is passed to the EO DAD routine, the registers contain the following
information:

Register Contents

0-1 Reserved

2-13 Contents before execution of CHECK, GET, or FEOV macro instruction

14 Address of the instruction after the last issued GET, CHECK, or FEOV macro instruction

15 Reserved

Synchronous Error Routine Exit (SYNAD): The SYNAD parameter of the DCB macro
instruction specifies the address of an error routine that is to be given control when an
input/ output error occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The block being read or written can be accepted or skipped, or
processing can be terminated.

If an input/output error occurs during data transmission, standard error recovery
ptocedures, provided by the operating system, attempt to correct the error before
returning control to your program. An uncorrectable error usually causes an abnormal
termination of the task. However, if you specify in the DCB macro instruction the
address of an error analysis routine (called a SYNAD routine), the routine is given
control in the event of an uncorrectable error.

You can write a SYNAD routine to determine the cause and type of error that occurred
by examining:

• The contents of the general registers

• The data event control block (discussed in Part 2 under "Basic Access Technique")

• The exceptional condition code

• The standard status and sense indicators

You can use the SYNADAF .macro instruction to perform this analysis automatically.
This macro instruction produces an error message that can be printed by a subsequent
PUT or WRITE macro instruction. .

After completing the analysis, you can return control to the operating system or close the
data set. If you close the data set, note that you may not use the temporary close
(CLOSE TYPE=T) option in the SYNAD routine. To continue processing the same data
set, you must first return control to the control program by a RETURN macro
instruction. The control program then transfers control to your processing program,
subject to the conditions described below. In no case should you attempt to reread or
rewrite the record, because the system has already attempted to recover from the error.

When you are using GET and PUT to process a sequential data set, the operating system
provides three automatic error options (EROPT) to be used if there is no SYNAD
routine or if you want to return control to your program from the SYNAD routine:

• ACC

• SKP

• ABE

accept the erroneous block

skip the erroneous block

abnormally terminate the task

These options are applicable only to data errors, as control errors result in abnormal
termination of the task. Data errors affect only the validity of a block of data. Control
errors affect information or operations necessary for continued processing of the data
set. These options are not applicable to output errors, except output errors on the printer.
When chained scheduling is used, the SKP option is not available, and ACC is assumed if
SKP is coded. If the EROPT and SYNAD fields are not completed, ABE is assumed.

Part 1: Introduction to Data Management 35

When you use READ and WRITE macro instructions, errors are detected when you
issue a CHECK macro instruction. If you are processing a direct or sequential data set
and you return to the control program from your SYNAD routine, the operating system (
assumes that you have accepted the bad record. If you are creating a direct data set and
you return to the control program from your SYNAD routine, your task is abnormally
terminated. In the case of processing a direct data set, the return should be made to· the
control program via register 14 in order to make a control block (the lOB) available for
reuse in a subsequent READ or WRITE macro instruction.

For a detailed description of the register contents upon entry to your SYNAD routine,
refer to the tables in OS/VSl Data Management Macro Instructions. The tables there
describe register contents for programs using QISAM, BISAM, BDAM, BP AM, BSAM,
and QSAM.

Your SYNAD routine can end by branching to another routine in your program, such as
a routine that closes the data set. It can also end by returning control to the control
program, which then returns control to the next sequential instruction (after the macro)
in your program. If your routine returns control, the conventions for saving and restoring
register contents are as follows:

• The SYNAD routine must preserve the contents of registers 13 and 14. If required by
the logic of your program, the routine must also preserve the contents of registers 2
through 121. Upon return to your program, the contents of registers 2 through 12 will
be the same as upon return to the control program from the SYNAD routine.

• The SYNAD routine must not use the save area whose address is in register 13,
because this area is used by the control program. If the routine saves and restores
register contents, it must provide its own save area.

• if the SYNAD routine calls another routine or issues supervisor or data management
macro instructions, it must provide its own save area or issue a SYNADAF macro
instruction. The SYNADAF macro instruction provides a save area for its own use,
and then makes this area available to the SYNAD routine. Such a save area must be
removed from the save area chain by a SYNADRLS macro instruction before control
is returned to the control program.

When you use QSAM to read and translate paper-tape characters, your SYNAD routine
receives control when you request the record preceding the record in error. Before giving
control to your SYNAD routine, the system translates the requested record int.o your
buffer.

For example, suppose that you are using QSAM to read and translate a paper-tape data
set and that you have specified, in your DCB, SYNAD=(address) and EROPT=ACC.
Suppose also that the third record of the data set has a parity error. When you issue a
GET request for the second record, the system translates that record into your buffer
and, as a result of the error in the third record, passes control to your SYNAD routine.
Because you specified the accept option, the system returns control to your program
after your SYNAD error analysis routine completes its processing. When you issue a
GET request for the third record, all characters other than the erroneous one are
translated into your buffer; the erroneous character is moved, in normal sequence, into
your buffer without translation.

36 OS/VS 1 Data Management Services Guide

(

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being created (the DCB is opened for QISAM load mode), bit 3
of the IOBFLAGS field in the load mode buffer control table (IOBBCT) is set to one.
The DCBWKPT6 field in the DCB contains an address of a list of work area pointers
(ISLVPTRS). The pointer to the IOBBCT is at offset 8 in this list as shown in the
following diagram:

DCB Work Area

11-_____ ~lV : ~1~~~~RSi
2481 DCBWKPT6 _ A (lDBBCTi

IDBBCT

If the error analysis routine receives control from the Close routine when indexed
sequential data sets are being processed using QISAM scan mode, bit 2 of the DCB field
DCBEXCD2 is set to one.

Exit List (EXLST): The EXLST parameter of the DCB macro instruction specifies the
address of a list that contains the addresses of 'special processing routines, a forms
control buffer (FCB) image, or a user totaling area. An exit list must be created if user
label, data control block, end-of-volume, block count, JFCBE, or DCB ABEND exits are
used, or if a PDAB macro or FCB image is defined in the processing program.

The exit list is constructed of 4-byte entries that must be aligned on fullword boundaries.
Each exit list entry is identified by a code in the high-order byte, and the address of the
routine, image, or area is specified in the 3 low-order bytes. Codes and addresses for the
exit list entries are shown in Figure 15.

You can activate or deactivate any entry in the list.by placing the required code in the
. high-order byte. Care must be taken, however, not to destroy the last entry indication.
The operating system routines scan the list from top to bottom, and the first active entry
found with the proper code is selected.

You can shorten the list during execution by setting the high-order bit to 1, and extend it
by setting the high-order bit to O.

When control is passed to an exit routine, the registers contain the following information:

Register Contents

o Variable; see exit routine description.

The three, low-order bytes contain the address of DCB currently being processed, except
when user-label exits (X'Ol'-'04'), user totaling exit (X'OA'), or DCB ABEND exit (X'll') is
taken; when register 1 contains the address of a parameter list. The contents of the
parameter list are described in each exit routine description.

2-13 Contents before execution of the macro instruction.

14 Return address (must not be altered by the exit routine).

15 Address of exit routine entry point.

The conventions for saving and restoring register contents are as follows:

• The exit routine must preserve the contents of register 14. It need not preserve the
contents of other registers. The control program restores the contents of registers 2-13
before returning control 'to your program.

• The exit routine must not use the s~ve area whose address is in register 13, because

Part 1: Introduction to Data Management 37

Entry Type

Inactive entry

Input header label

Output header label

Input trailer label

Output trailer label

Data control block exit

End-of-volume

User totaling

Block count exit

Defer input trailer
label

Defer nonstandard
input trailer label

FCB image

DCB ABEND exit

QSAM parallel input

JFCBE

Last entry

Hexadecimal
Code

00

01

02

03

04

05

06

OA

OB

OC

OD

10

11

12

15

80

3-Byte Address-Purpose

Ignore the entry; it is not active.

Process a user input header label.

Create a user output header label.

Process a user input trailer label.

Create a user output trailer label.

Take a data control block exit.

Take an end-of-volume exit.

Address of beginning of user's totaling area.

Take a block-count-unequal exit.

Defer processing of a user input trailer label from
end-of-data until closing.

Defer processing a nonstandard input trailer label on
magnetic tape unit from end-of-data until closing (no
exit routine address).

Define an FCB image.

Examine the ABEND condition and select one of several
options.

Address of the PDAB for which this DCB is a member.

Take an exit during open to allow user to examine
JCL-specified setup requirements for a 3800 printer.

Treat this entry as last entry in list. This code can
be speciiied with any of the above but must always be
specified with the last entry.

Figure 15. Format and Contents of an Exit List

this area is used by the control program. If the exit routine calls another routine or
issues supervisor or data management macro instructions, it must provide the address
of a new save area in register 13.

Standard User Label Exit: When you create a data set with physical sequential or direct
organization, you can provide routines to create your own data set labels. You can also
provide routines to verify these labels when you use the data set ,as input. Each label is
80 characters long with the fir~t 4 charapters UHLl,UHL2, ... ,UHL8 for a header label
or UTLl,UTL2, ... ,UTL8 for a trailer label. User labels are not allowed.on indexed

r sequential data sets.

The physical location of the labels on the data set depends on the data set organization.
For direct (BDAM) data'sets, user labels are placed on a separate user label track in the
first volume. User label exits are taken only during execution of the open and close
routines. Thus you may create or examine up to eight user header labeJs only during
execution of open and up to eight trailer labels only during execution of close. Since the
trailer labels are Oft the same track as the header labels, the first volume of the data set
must be mounted when the data set is closed.

For physical sequential (BSAM or QSAM) data sets, you may create or examine up to
eight header labels and eight trailer labels on each volume of the data set. For ASCII
tape data sets, you may create an unlimited number of user header and trailer labels. The
user label exits are taken during open, close, and end-of-volume processing.

To create or verify labels, you must specify the addresses of your label exit routines in an
exit list as shown in Figure 15. Thus you may have separate routines for creating or
verifying header and trailer label groups. Care must be taken if a magnetic tape is read

38 OS/VS 1 Data Management Services Guide

(

backward, since the trailer label group is processed as header labels and the header label
group is processed as trailer labels.

When your routine receives control, the contents of register 0 are unpredictable.
Register 1 contains the address of a parameter list. The contents of registers 2-13 are the
same as when the macro instruction was issued. However, if Y9ur program does not issue
the CLOSE macro instruction, or abnormally terminates before issuing CLOSE, the
CLOSE macro instruction will be issued by the control program, with control-program
information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned on a fullword
boundary. Figure 16 shows the contents of the area.

o
Address of SO-byte buffer area

4
Address of DCB being processed

8
Address of status information

12
Address of user total ing image area

Figure 16. Parameter List Passed to User Label Exit Routine

The first address in the parameter list points to an 80-byte label buffer area. For input,
the control program reads a user label into this area before passing control to the label
routine. For output, the user label exit routine constructs labels in this area and returns to
the control program, which writes the label. When an input trailer label routine receives
control, the EOF flag (high-order byte of the ~econd entry in the parameter list) is set as
follows:

bit 0 = 0: Entered at end-of-volume­
bit 0 = 1: Entered at end-of~file
bits 1-7: Reserved

When a user label exit routine receives control after anuncorrectable I/O error has
occurred, the third entry of the parameter list contains the address of the standard status
information. The error flag (high-order byte of the third entry in the parameter list) is set
as follows:

bit 0 = 1: Uncorrectable I/O error
bit 1 = 1: Error occurred during writing of updated label
bits 2-7: Reserved

The fourth entry in the parameter list is the address of the user totaling image area. This
image area is the entry in the user totaling save area that corresponds to the last record
physically written on the volume. The image area is discussed further under "User
Totaling. "

Each routine must create or verify one label of a header or trailer label group, place a
return code in register 15, and return control to the operating system. The operating
system responds to the decimal return code as shown in Figure 17.

You can create user labels only for data sets on magnetic-tape volumes with IBM
standard labels or American National Standard labels and for data sets on direct-access
volumes. When you specify both user labels and IBM standard or American National
Standard labels in a DD statement by specifying LABEL = (,SUL) or LABEL = (,AUL)

Part 1: Introduction to Data M~nagement 39

Routine Type Return Code

Input header
or
trailer label

Output header
or trailer label

o

4

81

o

4

8

System Response

, Normal processing is resumed. If there are any remaining labels
in the label group, they are ignored.

The next user label is read into the lapel buffer area and control is
returned to the exit routine. If there are no more labels in the label
group, normal processing is resumed.

The label is written from the label buffer area and normal processing is
resumed.

The label is written from the label area, the next label is read into -the
label buffer area, and Fontrol is returned to the label processing
routine. If there are no more labels, processing is resumed.

Normal processing is resumed; no label is written from the label
buffer area.

User label is written from the labelbuffer area. Normal processing is
resumed.

User label is written from the label buffer area. If fewer than eight
labels have been created, control is returned to the exit routine, which
then creates the next label. If eight labels have been created, normal
processing is resumed.

1 Your input label routines can only return these codes when you are processing a physical sequential data set opened for
UPDAT or a direct data set opened for OUTPUT or UPDAT. These return codes allow. you to verify the existing labels,
update them if necessary, then request that the system write the updated labels.

Figure 17. System Response to a User Label Exit Routine Return Code

and there is an active entry in the exit list, a label exit is always taken. Thus, a label exit
is taken even when an input data set does not contain user labels, or when no user label
track has been allocated for writing labels on a direct-access volume. In either case, the
appropriate exit routine is entered with the buffer area address parameter set to O. On
return from the exit routine, normal processing is resumed; no return code is necessary.

Label exits are not taken for system output (SYSOUT) data sets, or for data sets on
volumes that do not have standard labels. For other data sets, exits are taken as follows:

• When an input data set is opened, the input header label exit 01 is taken. If the data
set is on tape being opened for RDBACK, user trailer labels will be processed.

• When an output data set is opened, the output header label exit 02 is takeD:. However,
if the data set already exists and DISP=MOD is coded in the DD statement, the input
trailer label exit 03 is taken to process any existing trailer labels. If the input trailer
label exit 03 does not exist, then the deferred input trailer label exit OC is taken if it
exists; otherwise, no label exit is taken. For tape, these trailer labels will be
overwritten by the new output data or by EOY or close processing when writing new
standard trailer labels. For direct-access devices, these trailer labels will still exist
unless rewritten by BOV or close processing in an output trailer label exit.

• When an input data set reaches end-of-volume, the input trailer label exit 03 is taken.
If the data set is on tape opened for ROBACK, header labels will be processed. The
input trailer label exit 03 is not taken if you issue an FEOV macro instruction. If a
defer input trailer label exit OC is present, it is taken instead of any input trailer label
exit 03. After switching volumes, the input header label exit 01 is taken. If the data set
is on tape opened for ROBACK, trailer labels will be processed. '

• When an output data set reaches end-of-volume, the output trailer label exit 04 is
taken. After switching volumes, output header label exit 02 is taken.

• When an input data set reaches end-of -data, the input trailer label exit 03 is taken
before the EODAD exit, unless the DCB exit list contains a defer input trailer label
exit oc.

40 OS/VSl Data Management Services Guide

(

(

• When an input data set is closed, no exit is taken unless the data set was previously
read to end-of-data and the deferinput trailer label exit OC is present. If so, the defer
input trailer label exit OC is taken to process trailer labels, or if the tape is opened for
RDBACK, header labels.

• When an output data set is closed, the output trailer label exit 04 is taken.

To process records in reverse order, a data set on magnetic tape can be read backward.
When you read backward, header label exits are taken to process trailer labels, and trailer
label exits are taken to process header labels. The system presents labels from a label
group in ascending order by label number, which is the order in which the labels were

. created. If necessary, an exit routine can determine label type (UHL or UTL) and
number by examining the first four characters of each label. Tapes with mM standard
labels and direct-access devices can have as many as eight user labels. Tapes with
American National Standard labels can have unlimited user labels.

If an uncorrectable error occurs during reading or writing of a user label, the system
passes control to the appropriate exit routine with the third word of the parameter list
flagged and pointing to status information.

After an input error, the exit routine must return control with an appropriate return code
(0 or 4). No return code is required after an output error. If an output error occurs while
the system is opening a data set, the data set is not opened (DCB is flagged) and control
is returned to your program. If an output error occurs at any other time, the system
attempts to resume normal processing.

User Totaling (BSAM and QSAM only): When creating or processing a data set with user .
labels, you may develop control totals for each volume of the data set and store this
information in your user labels. For example, a control total that was accumulated as the
data set was created can be stored in your user label and later compared with a total
accumulated during processing of the volume. User totaling assists you by synchronizing
the control data you create with records physically written on a volume. For an output
data set without user labels, you can also develop a control total that will be available to
your end-of-volume routine.

To request user totaling, you must specify OPTCD=T in the DCB macro instruction or
in the, DCB parameter of the DD statement. The area in which you accumulate the
control data (the user totaling area) must be identified to the control program by an
entry of hexadecimal OA in the DCB exit list. OPTCD=T cannot be specified for SYSIN
or SYSOUT data sets.

The user totaling area, an area in storage that you provide, must begin on a halfword
boundary and be large enough to contain your accumulated data plus a 2-byte length
field. The length field must be the first 2 bytes of the area and specify the length of the
entire area. A data set for which you have specified user totaling (OPTCD=T) will not
be opened if either the totaling area length or the address in the exit list is 0, or if there is
no X'OA' entry in the exit list.

The control program establishes a user totaling save area, in which the control program
preserves an image of your totaling area, when an 110 operation is scheduled. When the
output user label exits are taken, the address of the save area entry (user totaling image
area) corresponding to the last record physically written on a volume is passed to you in
the fourth entry of the user label parameter list. This parameter list is described in the
section "Standard User Label Exit." When an end'-of-volume exit is taken for an output
data set and user totaling has been specified, the address of the user totaling image' area
is in register O.

When using user totaling for an output data set, that is, when creating the data set, you
must update your control data in your totaling area before issuing a PUT or a WRITE
macro instruction. The control progra.:n places an image of your totaling area in the user

Part 1: Introduction to Data Management 41

totaling save area when an I/O operation is scheduled. A pointer to the save area entry
(user totaling image area) corresponding· to the last record physically written on the
volume, is passed to you in your label processing routine. Thus you can include the (, '
control total in your user labels. When subsequently using this data set for input, you can
accumulate the same information as you read each record and compare this total with the
one previously stored in the user trailer label. If .you have stored the total from the
preceding volume in the user header label of the current volume, you can process each
volume of a multivolume data set independently and still maintain this system of control.

When variable-length records are specified with the totaling facility for user labels,
special considerations are necessary. Since the control program determines whether a
variable-length record will fit in a buffer after a PUT or a WRITE has been issued, the
total.you have accumulated may include one more record than is actually written on the
volume. In the case of variable-length spanned records, the accumulated total will include
the control data from the volume-spanning record although only a segment of the record
is on that volume. However, when you process such a data set, the volume-spanning
.record or the first record on the next volume will not be available to you until after the
volume switch and user label processing are completed. Thus the totaling information in
the user label may not agree with that developed during processing of the volume.

One way you can resolve this situation is to maintain, when you are creating a data set,
control data pertaining to each of the last two records and include both totals in your
user labels. Then the tetal related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be available to your
user label routines. During subsequent processing of the data set, your user label routines
can determine if there is agreement between the generated information and one of the
two totals previously saved.

Data Cu;;trul Block Open' Exit: You can specify in an exit Ust the address of a routine that
completes or modifies a DCB and does any additional processing required before the
data set is completely open. The routine is entered during the opening process after the
JFCB has been used to supply information for the DCB. The routine can determine data
set characteristics by examining fields completed from the data set labels. When your
DCB exit routine receives control, the three, low-order bytes of register 1 will contain
the address of the DCB currently being processed.

As with label processing routines, register 14's contents must be preserved and restored
if any macro instructions are used in the routine. Control is returned to the operating
system by a RETURN macro instruction; no return code is required.

This exit is mutually exclusive with the JFCBE exit. If you need both t~e JFCBE and
data control block exits, you must use the JFCBE exit to pass control to your routines.

QSAM Parallel Input Exit: A request for parallel input processing'is indicated by
including the address of a parallel data access block (PDAB) in the DCB exit list. The
address must be on a fU,llword boundary with the first byte of the entry containing X'12'
or, if it is the last entry, X'92'. For more information on parallel input processing, see
"Parallel Input Processing (QSAM Only)".

JFCBE Exit: JCL-specified setup requirements for the 3800 printer cause a JFCB
extension (JFCBE) to be created to reflect those spec.ifications. The JFCBE exit can be
used to examine or modify those specifications in the JFCBE. You can provide a JFCBE
exit routine to examine or modify those specifications. The address of the routine should
be placed in an exit li~t. This exit. is taken during open processing and is mutually
exclusive with the data control block exit. If you need both the JFCBE and data control
block exits, you must use the JFCBE exit to pass control to your routines.

42 OS/VS 1 Data Management Services Guide

(

When control is passed to your exit routine, the contents of register 0 and 1 will be:

Register Contents

o If a JFCBE exists, this register will point to an area in your storage into which a copy of the
JFCBE has been placed. If a JFCBE does not exist, this register Will be zero.

The address of the DCB being processed.

Registers 2-15 will contain the standard user exit contents.

The area in your storage pointed to by register 0 will also contain the 4-byte FCB
identification which is obtained from the JFCB. The FCB identification is placed in the
four bytes following the 176-byte JFCBE.

If your copy of the JFCBE is modified during an exit routine, you should indicate this
fact by turning on bit JFCBEOPN (X'80' in JFCBFLAG) in the JFCBE copy. On
retUrn to'open, this bit indicates whether the system copy is to be updated. The 4-byte
FCB identification in your area will be used to update the JFCB regardless of the bit
setting. Checkpoint/restart also interrogates this bit to determine which version bf the
JFCBE will be used at restart time. If this bit is not on, the JFCBE generated by the'
restart JCL will be used.

End-of-Volume Exit: You can specify in an exit list the address of a routine that is
entered when end-of-volume is reached in processing of a physical sequential data set.

When the end-of-volume routine is entered, register 0 contains 0 unless user totaling was
specified. If you specified user totaling in the DeB macro instruction (by coding
OPTCD=T) or in the DD statement for an output data set, register 0 contains the
address of the user totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed. If the volume is a
reel of magnetic tape, the tape is positioned after the tapemark that precedes the
beginning of the data.

You can use the end-of-volume (EOY) exit rout~ne to take a checkpoint by issuing the
CHKPT macro instruction, which is discussed in OS / VS Checkpoint/Restart;
specifications for the CHKPT macro are also included in OS/YSl Data Management
Macro Instructions. If a checkpointed job step terminates abnormally, it can be restarted
from the EOY checkpoint. When the job step is restarted, the volume is mounted and
positioned as upon entry to the routine. Restart becomes impossible if changes are made
to the supervisor call (SYC) library between the time the checkpoint is taken and the
time the job step is restarted. When the step is restarted, pointers to end-of -volume
modules must be the same as when the checkpoint was taken.

the end-of-volume exit routine returns control in the same manner as the data control
block exit routine. Register 14's contents must be preserved and restored if any macro
instructions are used in the routine. Control is returned to the operating system by a
RETURN macro instruction; no return code is required.

Block Count Exit: You can specify in an exit list the address of a routine that will allow
you to abnormally terminate the task or continue processing when the end-of-volume
routine finds an unequal block count condition. When you are using standard labeled
input tapes, the block count in the trailer label is compared by the end-of-volume routine
with the block count in the DCB. The count in the trailer label reflects the number of
blocks written when the data set was cr~ated. The number of blocks read when the tape
is used as input is contained in the DCBBLKCT field of the DCB.

The routine is entered during end-of -volume processing. The trailer label block count is
passed in register O. You may gain access to the count field in the DCB by using the
address passed in register 1 plus the proper displacement, as given in OS / VS 1 System
Da(a Areas. If the block count in the DCB differs from that in the trailer label when no

Part 1: Introduction to Data Management 43

exit routine is provided, the task is abnormally terminated. The routine must terminate
with a RETURN macro instruction and a return code that indicates what action is to be (
taken by the operating system, as shown in Figure 18. As with other exit routines, .
register 14's contents must be saved and restored if any macro instructions are used. .

Return Code System Action

o The task is to be abnormally terminated.

4 Normal processing is to be resumed.

Figure 18. System Response to Block Count Exit Return Code

Defer Nonstandard Input Trailer Label Exit: In an "exit list, you can specify a code that
indicates that you want to defer nonstandard input trailer label processing from
end-of-data until the data set is closed. The address portion of the entry is not used by
the operating system.

An end-of-volume condition exists in several situations. Two examples are: (1) when the
system reads a filemark or tapemark at the end of a volume of a multivolume data set but
that volume is not the last, and (2) when the system reads a filemark o~ tapemark at the
end of a data set. The first situation is referred to here as an end-of-volume condition,
and the second as an end-of-data condition, although it, too, can occur at the end of a
volume.

For an end-of-volume (EOV) condition, the EOV routine passes control to your
nonstandard input trailer label routine, whether or not this exit code is specified. For an
end-of-data condition when this exit code is specified, the EOV routine does not pass
control to your nonstandard input trailer label routine. Instead, the close routine passes
control to your end-of-data routine.

FCB Image Exit: You can specify in an exit list the address of a forms control buffer f
(FCB) image. This FCB image can be loaded into the forms control buffer of the printer ~
control unit. The FCB controls the movement of forms in printers that do not use a
carriage control tape.

Multiple exit list entries in the exit list can define FCBs. The open and SETPRT routines
search the exit list for requested FCBs before searching SYS I.IMAGELIB.

The first 4 bytes of theFCB image contain the image identifier. To load the FCB, this
image identifier is specified in the FCB parameter of the DD statement, by the SETPRT
macro instruction, or by the system operator in response to message IEC 127D or
IECI29D.

The image identifier is followed by the FCB load module, described in OS/VSl Data
Management for System Programmers.

You can use an exit list to define an FCB image only when writing to an online printer.
Figure 19 illustrates one Way the exit list can be used to define an FCB image.

DCB ABEND Exit: The DCB ABEND exit is provided to give you some options
regarding the action you want the system to take when a condition arises that may result
in abnormal termination of your task. This exit can be taken any time an ABEND
condition arises during the process of opening, closing, or handling an end-of-volume
condition fora DCB associated with your task.

When an ABEND condition arises, a write-to-programmer message about the ABEND is
issued and your DCB ABEND exit is given control, provided there is an active DCB
ABEND exit routine address in the DCB being processed. If STOW called the
end-of-volume routines to get secondary space to write an end-of-file mark for a
partitioned data set, the DCB ABEND exit routine will not be given control if an
ABEND condition occurs. The contents of the registers when your exit routine is entered

44 OS/VSl Data Management Services Guide

DCB .. ,EXLST=EXLIST

EXLIST OS OF
DC X' 10' Flag code for FCB image
DC AL3 (FCBIMG) Address of FCB image
DC X' 80000000' End of EXLST and a null entry

FCBIMG DC CL4' IMG1 ; FCB identifier
DC X' 00' FCB is not a default
DC AL 1 (67) Length of FCB
DC X' 90' Offset print line

* 16 line character positions to the right
DC X' 00' Spacing is 6 lines per inch
.DC 5X' 00' Lines 2-6 no channel codes
DC X' 01 ' Line 7 channel 1
DC 6X' 00 ' Lines 8-13 no channel. codes
DC X' 02 ' Line (or Lines) 14 channel 2
DC 5X' 00' Line (or Lines) 15-19 no channel codes
DC X' 03' Line (or Lines) 20 channel 3
DC 9X' 00' Line (or Lines) 21-29 no channel codes
DC X' 04' Line (or Lines) 30 channel 4
DC 19X' 00' Line (or Lines) 31-49 no channel codes
DC X' OS' Line (or Lines) 50 channel 5
DC X' 06' Line (or Lines) 51 channel 6
DC X' 07' Line (or Lines) 52 channel 7
DC X' 08' Line (or Lines) 53 channel 8
DC X' 09' Line (or Lines) 54 channel 9
DC X' OA' Line (or Lines) 55 channel 10
DC X' OB' Line (or Lines) 56 channel 11
DC X' OC' Line (or Lines) 57 channel 12
DC 8X' 00' Line (or Lines) 58-65 no channel codes
DC X' 1 0 ' End of FCB image

END
/ /ddname DO
/*

UNIT=3211, FCB=(IMG1,VERIFY)

Figure 19. Defining anFCB Image for a 3211

are the same as for other DCB exit list routines except that the three, low-order bytes of
register 1 contain the address of the parameter list descnbed in Figure 20. Your ABEND
exit routine can choose one of four options:

• to immediately terminate your task,

• to delay the ABEND until all of the DCBs in the same OPEN or CLOSE macro
instruction are opened or closed,

• to ignore the ABEND condition and continue processing without making reference to
the DCB on which the ABEND condition was encountered, or

• to try to recover from the error.
/

Not all of these options are available for each ABEND condition. Your DCB ABEND
exit routine must determine which option is available by examining the contents of the
option mask byte (byte 3.) of the parameter list. The address of the parameter list is
passed in register 1. Figure 20 shows the contents of the parameter list and the possible
settings of the option mask when your routine receives control. All information in the
parameter list is in binary.

Part 1: Introduction to Data Management 45

Displacement

o

4

8

12

Bit

0-3

4

5

6

7

Fullword Boundary

System Completion Code* I Return Code

DCB Address

Open/Close/End-of-Volume Work Area Address

00 I Recovery Work Area Address

* I n the first 12 bits.

Meaning

Reserved for Future Use

OK to Recover

OK to Ignore

OK to Delay

Reserved for Future Use

Option Mask

Figure 20. Parameter List Passed to DeB ABEND Exit Routine

When your DCB ABEND exit routine returns control to the system control program
(this can be done using the RETURN macro instruction), the option mask byte should
contain the setting that specifies the action you want to take. These actions and the
corresponding settings of the option mask byte are:

Bit Setting Action

o abnormally terminate the task immediately

4 ignore the ABEND condition

8 delay the ABENQ .until the other DeBs being processed concurrently 'are opened or closed

12 make an attempt to recover

You must inspect bits 4, 5, and 6 of the option mask byte (byte 3 of th,e parameter list)
to determine which options are available. If a bit is set to 1, the corresponding option is;
available. Indicate your choice by inserting the appropriate value in byte 3 of the
parameter list, overlaying the bits you inspected. If you use a value that specifies an
option that is not avail~ble, the ABEND is issued immediat~ly.

If the contents of the option mask are 0, you must request an immediate ABEND by
leaving the value of 0 in the option mask unchanged.

If bit 5 of the option mask is set to 1, you can ignore the ABEND by placing a decimal
value of 4 in byte 3 of the parameter list. Processing on the current DCB stops. If you
subsequently attempt to use this DCB, the results are unpredictable. If you ignore an

46 OS/VS 1 Data Management Services Guide

(

(

error in end-of-volume, the data set will be closed before control is returned to your
program at the point which caused the end-of-volume conditio~ (unless the
end-of-volume routines were called by the close routines). If the end-of-volume routines
were called by the close routines, an ABEND macro will be issued even though the
ignore option was selected.

If bit 6 of the option mask is set to 1, you can delay the ABEND by placing a decimal
value of 8 in byte 3 of the parameter list. All other DCBs waiting for open or close
processing will be processed before the ABEND is issued. For end-of-volume, however,
you can't delay the ABEND because the end-of-volume routine never has more than one
DCB to process.

If bit 4 of the option mask is set to 1, you can attempt to recover. Place a decimal value
of 12 in byte 3 of the parameter list and provide information for the recovery attempt.
Figure 21 lists the ABEND conditions for which recovery can be attempted. For
ABEND conditions which can be ignored or delayed, see OS/VS Message Library:
VSl System Messages.

System
Completion
Code

213

237

413

613

713

717

813

Return
Code

04

04

18

08

Description of Error

DSCB was not found on volume specified.

Block count in DCB does not agree with block count in trailer label.

Data set was opened for input and no volume serial number was specified.

IIO error occurred during reading of tape label.

OC Invalid tape label was read.

10 I/ 0 error occurred during writing of tape label.

14 I/O error occurred during writing of tapemark following header labels.

04

10

04

A data set on magnetic tape was opened for INOUT, but the volume
contained a data set whose expiration date had not been reached and the
operator denied permission.

I/ 0 error occurred during reading of trailer label 1 to update block count in
DCB.

Data set name on header label does not match data set name on DD
statement.

Figure 21. Conditions for which Recovery Can Be Attempted

Recovery Requirements: For the recovery attempt, you should supply a recovery work
area (see Figure 22) with a new volume serial number for each volume associated with
an error. If no new volumes are supplied, recovery will be attempted with the existing
volumes, but the likelihood of successful recovery is greatly reduced.

If you request recovery for system completion code 213, return code 04, you must
indicate in your job control language (JCL) that the volumes are nonsharable by
specifying unit affinity, deferred mounting, or more volumes than units for the data set.

If you request recovery for system completion code 237, return code 04, you don't need
to supply new volumes or a work area. The condition that caused the ABEND is the
disagreement between the block count in the DCB and that in the trailer label. This
disagreement is ignored to permit re<;overy.

If you request recovery for system completion code 717, return code 10, you don't need
to supply new volumes or a work area. The ABEND is caused by an 110 error during
updating of the DCB block count. To permit recovery,· the block count is not updated.
Consequently, an abnormal termination with system completion code 237, return code
04, may result when you try to read from the tape after recovery. You may attempt

Part 1: Introduction to Data Management 47

Bit Meaning

0 Free This Work Area

1
Volume Serial Numbers Are
Provided

2-7 Reserved for Future Use

Halfword Boundary
Displacement

o Length of This Work Area Option Byte 1 Subpool Number

4 Number of 1-
New Volumes New Volume Serial Numbers (6 bytes each)

T
,Figure 22. Recovery Work Area

•

recovery from the ABEND with system completion code 237, return code 04, as
explained in the preceding paragraph.

System completion codes and their associated return codes are described in OS I VS
Message Library: VSl System Codes.

The work area that you supply for the recovery attempt must begin on a halfword
boundary and can contain the information described in Figure 22. Place a pointer to the
work area in the last 3 bytes of the parameter list pointed to by register I and described
in Figure 20.

If you acquire the storage for the work area by using the GETMAIN macro instruction,
you can request that it be freed by a FREEMAIN macro instruction after all information
has been extracted from "it. Set the high-order bit of the option byte in the work area to 1
and place the number of the subpool from which the work area was requested in byte 3
of the recovery work area.

Only one recovery attempt per data set is allowed during open, close, or end-of-volume
processing. If a recovery attempt is unsuccessful, you may not request another recovery.
The second time through the exit routine you may request only one of the· other options
(if allowed): issue the ABEND immediately, ignore the ABEND, or delay the ABEND.
If at any time you select an option that is not allowed, the ABEND is issued immediately.

Note that if recovery is successful, you still receive an ABEND message on your listing.
This message refers to the ABEND that would have been issued if the recovery had not
been successful.

48 OS/VS 1 Data Management Services Guide

(

(

Modifying the Data Control Block

You can complete or modify the DCB during execution of your program. You can also
determine data set characteristics from information supplied by the data set labels.
Changes or additions can be made before opening of the data set, after closing it, during
the DCB exit routine, or while the data set is open. Naturally, any information must be
supplied before it is needed.

Because each DCB does not have a symbolic name for each field, a DCBD macro
instruction must be used to supply the symbolic names. By loading a base register with
the address of the DCB to be processed, you can refer to any field symbolically.

The DCBD macro instruction generates a dummy control section (DSECT) named
lHADCB. The name of each field consists of DCB followed by the first five letters of
the keyword operand that represents the field in the DCB macro instruction. For
example, the field reserved for blocksize is referred to as DCBBLKSI. For the names of
other fields, including names of bits, see OS/VSl Data Management Macro
Instructions.

The attributes of each DCB field are defined in the dummy control section. Because each
field in the DCB is not necessarily aligned on a fullword boundary, care must be taken
when storing or moving data into the field. The length attribute and the alignment of
each field can be determined from an assembly listing of the DCBD macro instruction.

The DCBD macro instruction can be coded once to describe all DCBs even though their
fields differ because of differences in data set organization and access technique. It must
not be coded more than once for a single assembly. If it is coded before the end of a
control section, it must be followed by a CSECT or DSECT statement to resume the
original control section.

Changing an Address in the Data Control Block: Figure 23 illustrates how you can modify
a field in the data control block. The DCBD macro instruction defines the symbolic name
of each field.

OPEN (TEXTDCB, INOUT)

EOFEXIT CLOSE (TEXTDCB,REREAD),TYPE=T
LA 10,TEXTDCB
USING IHADCB,10
MVC DCBSYNAD+1(3),=AL3(OUTERROR)
B OUTPUT

INERROR STM 14, 12,SYNADSA+12

OUTERROR STM 14,12,SY~ADSA+12

TEXTDCB DCB DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE, C
EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

Figure 23. Modifying a Field in the Data Control Block

The data set defined by the data control block TEXTDCB is opened for use as both an
input and an output data set. When its use as an input data set is completed, the EODAD
routine closes the data set temporarily to reposition the volume for output. The EODAD
routine then uses the dummy control section IHADCB to change the error exit address
(SYNAD) from INERROR to OUTERROR.

. '

The EODAD routine loads the address TEXTDCB into register 10, which it uses as a
base register for IHADCB. It then moves"}the address OUTERROR into the
DCBSYNAD field of the DCB. This field is a fullword, but contains information that

Part 1: Introduction to Data Management 49

must not be disturbed in the high-order byte. For this reason, care must be taken to
change only the 3 low-order bytes of the field.

All unused address fields in the DCB except DCBEXLST are set to I during the DCB
macro expansion. Many system routines interpret a value of 1 in an address field to
mean "no address specified." If you modify an address field and then want to reset
it to "no address specified," you should set it to a value of I.

Sharing a Data Set

There are two conditions under which a data set on a direct-access device can be shared
by two or more tasks:

• Two or more DCBs are opened and.used concurrently by the tasks to refer to the
same, shared data set (multiple DCBs).

• Only one DCB is opened and used concurrently by multiple tasks in a single job step
(a single, shared DCB).

Job control language (JCL) statements and macro instructions are provided in the
operatfng system to help you to ensure the integrity of the data sets you wish to share
among the tasks that process them. Figures 24 and 25 show which JCL and macro
instructions you should use, depending on the access method your task is using and mode
of access (input, output, or update).

Figure 24 describes the macro instructions, JCL, and processing procedures you should
use if more than one DCB has been opened to the shared data set. The DCBs can be
used by tasks in the same or different job steps.

50 OS/VS 1 Data Management Services Guide

(

c

MULTIPLE DCBs

Access Method

Access Mode
BSAM, BPAM,

QSAM BDAM QISAM BDAM Create BISAM

Input DISP = SHR DISP = SHR DISP = SHR DISP = SHR DISP = SHR

Output No Facility No Facility DISP = SHR No Facility
DISP = SHR and
ENQ on Data Set

DISP = SHR and
DISP = SHR and DISP = SHR and

DISP = SHR and DISP = SHR and ENQ on Data Set ENQ on Data Set Update Guarantee Discrete ENQ on Block ENQ on Block and Guarantee and Guarantee
Blocks

Discrete Blocks Discrete Blocks

DISP=SHR:
Each job step sharing an existing data set must code SHR as the subparameter of the DISP parameter on the DO statement for
the shared data set to allow the steps to execute concurrently. For additional information about ensuring data set integrity, see
OS/VSl JCL Services. If the tasks are in the same job step, DISP=SHR is not required.

No Facility:
There are no facilities in the operating system for sharing a data set under these conditions.

ENQ on Data Set:
In addition to coding DISP=SHR on the DO statement for the data set that is to be shared, each task must issue ENQ and
DEQ macro instructions naming the data set as resource for which exclusive control is required. The ENQ must be issued
before the GET (READ); the DEQ macro should be issued after the PUTX or CHECK macro that concludes the operation.
See OS/VSl Supervisor Services and Macro Instructions for additional information on the use of ENG and DEQ macro
instructions.

Guarantee Discrete Blocks:
When you are using the access methods that provide blocking and unblocking of records (QSAM; QISAM, and BISAM), it is
necessary that every task updating the data set ensure that it is not updating a block that contains a record being updated by
any other task. There are no facilities in the operating system for ensuring that discrete blocks are being processed by different
tasks.

ENQ on Block:
If you are updating a shared data set (specified by coding DISP==SHR on the DO statement) using BSAM or BPAM, your task
and all other tasks must serialize processing of each block of records by issuing an ENQ macro instruction before the READ
macro and a DEQ macro after the CHECK macro that follows the WRITE macro you issued to update the record. If you are
using BDAM; the same procedure may be used; however BDAM provides for enqueuing on a block of records using the READ
exclusive option, which is requested by coding MACRF=X in the DCB and an X in the type operand of the READ and WRITE
macro instructions. See "Exclusive Control for Updating" for an example of the use of the BDAM macros.

Figure 24. JCL, Macro Instructions, and Procedures Required to Share a Data Set Using Multiple DCBs.

Part 1: Introduction to Data Management 51

Access Mode

Input

Output

Update

ENQ:

Figure 25 describes the macros you can use to serialize processing of a shared data set
when a single DeB is being shared by several tasks in a job step. The·DISP=SHR
specification on theDD statement is not required.

Data sets can also be shared both ways at the same time: more than one DeB can be
opened for a shared data set, while more than one task can be'sharing one of the DeBs.
Under this condition, the serialization techniques 'specified for indexed sequential and
direct data sets in the Figure 24 satisfy the requirement. For sequential and partitioned
data sets, the techniques specified in Figure 24 and Figure 25 must be used.

A SINGLE SHARED DCB

Access Method

BSAM, BPAM,
BDAM Create

QSAM BDAM QISAM BISAM

ENQ ENQ
No Action

ENQ ENQ
Required

ENQ ENQ
No Action ENQ and Key

ENQ
Required Sequence

ENQ ENQ ENQ on Block ENQ ENQ

When a data set is being shared by two or more tasks in the same job step (all of which must be using the same DCB), each
task processing the data set must issue an ENQ macro instruction on a predefined resource name before issuing the macro or
macros that begin the input/output operation. Each task must also release exclusive control by issuing the DEQ macro
instruction at the next sequential instruction following the input/output macro. If, however, you are processing an indexed
sequential data set sequentially using the SETL and ESETL macros, you must issue the ENQ macro before the SETL macro
and the DEQ macro after the ESETL macro. Note also that if two tasks are writing different members of a partitioned data
set, each task should issue the ENQ macro instruction before the FIND macro and issue the DEQ macro after the STOW
macro that completes processing of the member. Additional reference information on the ENQ and DEQ macros is presented
in OS/VSl Supervisor Services and Macro Instructions. For an example of the use of ENQ and DEQ macro instructions with
BISAM, see Figure 59.

No Action Required:
Sharing a Direct Data Set: BDAM supports multiple task users of a single DCB when working with existing data sets. When
operating in load mode, however, only one task may use the DCB at a time. The following restrictions and comments apply
when operating in a multitasking mode with existing data sets:

• Subpool 0 must be shared.

• The user should insure that a WAIT or CHECK macro has been issued for all outstanding BDAM requests before the task
issuing the READ or WRITE macro terminates. Incase of abnormal termination this can be done through a ST AE/ST AI
or EST AE exit.

• FREEDBUF and/or RELEX macros should be issued to free any resources that could still be held by the terminating task.
This can be done during or after task termination.

ENQ on Block:
When updating a shared BDAM data set, every task must use the BDAM exclusive control option, which is requested by
coding MACRF=X in the DCB macro and an X in the type operand of the READ and WRITE macro instructions. See
"Exclusive Control for Updating" in this book for an example of the use of BDAM macros. Note that all tasks sharing a data
set must share subpool 0 (see the ATTACH macro description in OS/VSl Supervisor Services and Macro Instructions.

Key Sequence:
Tasks sharing a QISAM load-mode DCB must ensure that the records to be written are presented in ascending key sequence;
otherwise, a sequence check will result in (1) control being passed to the SYNAD routine identified by the DCB, or (2) if there
is no SYNAD routine, termination of the task.

Figure 25. Macro Instructions and Procedures Required to Share a Data Set Using a Single DCB

52 OS/VSl Data Management Services Guide

(

(

More information on opening and closing data sets by more than one task is contained in
Part 2, "Opening and Closing a Data Set."

Shared Direct-Access Storage Devices: At some installations, a 4irect-access storage
device is shared by two or more independent computing systems. Tasks executed on
these systems can share data sets stored on the device. For details, refer to OS/VSl
Planning and Use Guide.

Part 1: Introduction to Data Management 53

(

PART 2: DATA MANAGEMENT PROCESSING
PROCEDURES

Data-Processing Techniques
The operating system allows you to concentrate most of your efforts on processing the
records read or written by the data management routines. To get the records read and
written, your main responsibilities are to describe the data set to be processed, the
buffering techniques to be used, and the access method. An access method has been
defined as the· combination of data set organization and the technique used to gain access'
to the data. Data access techniques are discussed here in two categories-queued and
basic.

Queued Access Technique

The queued access technique provides GET and PUT macro instructions for transmitting
data within virtual storage. These macro instructions cause automatic blocking and
deblocking of the records stored and retrieved. Anticipatory (look-ahead) buffering and
synchronization (overlap) of input and output operations with central processing unit
(CPU) proc~ssing are automatic features of the queued access technique.

Because the operating system controls buffer processing, you can use as many
input/output (I/O) buffers as needed without reissuing GET or PUT macro instructions
to fill or empty buffers .. Usually, more than one input block is in storage at any given
time, so I/O operations do not delay record processing.

Because the dperating system synchronizes input/output with processing, you need not
test for completion, errors, or exceptional conditions. After a GET or PUT macro
instruction is issued, control is not returned to your program until an input area is filled
or an output area is available. Exits to error analysis (SYNAD) and end-of -volume or
end-of-data (EODAD) routines are automatically taken when necessary.

GET-Retrieve a Record

PUT-Write a Record

The GET macro instruction obtains a record from an input data set. It operates in a
logical sequential and device-independent manner. As required, the GET macro
instruction schedules the filling of input buffers, deblocks rec~rds, and directs 'input error
recovery procedures. For sequential data sets, it also merges record segments into logical
records. After all recprds have been processed and the GET macro instruction detects an
end-of-data indication, the system automatically checks labels on sequential data sets and
passes control to your end-of-data (EODAD) routine. If an end-of-volume condition is
detected for a sequential data set, the system provides automatic volume switching if the
data set exten<;ts across several volumes or if concatenated data sets are being processed.
If you specify OPTCD=Q in the DCB, GET causes input data to be translated from
ASCII to EBCDIC.

The PUT macro instruction places a record into an output data set. Like the GET macro
instruction, it operates in a logical sequential and device-independent manner. As
required, the 'PUT macro instruction schedules the emptying of output buffers, blocks
records, and handles output error correction procedures. For sequential data sets, it also
initiates automatic volume switching and label creation, and also segments records for
spanning. If you specify OPTCD=Q in the DCB, PUT causes output to be translated
from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 55

If the PUT macro instruction is directed to a card punch or printer, the system
automatically adjusts the number of records or record segments per block of format-F or (.
format-V blocks to 1. Thus, you can specify a record length (LRECL) and blocksize
(BLKSIZE) to provide an optimum blocksize if the records are temporarily placed on
magnetic tape or a direct-access volume.

For spanned variable-length records, the blocksize must be equivalent to the length of
one card or one print line. Record size may be greater than blocksize in this case.

PUTX-Write an Updated Record

The PUTX macro instruction is used to update a data set or to create an output data set
using records from an input data set as a base. PUTX updates, replaces, or inserts
records from existing data sets but does not create records.

When ·you use the PUTX macro instruction to update, each record is returned to the data
set referred to by a previous locate mode GET macro instruction. The buffer containing
the updated record is flagged and written back to the same location on the direct-access
storage device from which it was read. The block is not written until a GET macro
instruction is issued for the next buffer, except when a spanned record is to be updated.
In that case, the block is written with the next GET macro instruction.

When the PUTX macro instruction is used to create an output data set, you can add new
records by using the PUT macro instruction. As required, the PUTX macro instruction
blocks records, schedules the writing of output buffers, and handles output error
correction procedures. .

ParaDel Input Processing (QSAM Only)

QSAM parallel input processing may be used to process two or more input data sets
concurrently, such as sorting or merging several data sets at the same time. This
eliminates the need for issuing a separate GET macro instruction to each DCB
processed. The get routine for parallel input processing selects a DCB with a ready
record and then transfers control to the normal get routine. If there is no DCB with a
ready record, a multiple WAIT macro instruction is issued.

Parallel input processing provides a logical input record from a queue of data sets with
equal priority. The function supports QSAM with input processing, simple buffering,
locate or move mode, and fixed, variable, or undefined length records. Spanned records,
track-overflow records, dummy data sets, and SYSIN data sets are not supported.

Parallel input processing can be interrupted at any time to retrieve records from a
specific data set, or to issue control instructions to a specific data set. When the retrieval
process has been completed, parallel input processing may be resumed.

Data sets can be added to or deleted from the data set queue at any time. It is important
to note, however, that as each data set reaches an end-of-data condition, the data set
must be removed from the queue with the CLOSE macro instruction befoie a subsequent
GET macro instruction is issued for the queue; otherwise, the task may be terminated
abnormally.

A request for parallel input processing is indicated by including the address of a parallel
data access block (PDAB) in the DCB exit list. For additional information on the DCB
exiflist, see "Exit List (EXLST)."

With the use of the PDAB macro instruction, you can create and format a work area that
identifies the maximum number of DCBs that can be processed at anyone time. If you
exceed the maximum number of entries indicated in the PDAB macro when adding a (
DCB to the queue with the OPEN macro, the data set will not be available for parallel
input processing; however, it may be available for sequential processing.

56 OS/VS 1 Data Management Services Guide

GETRTN

EODRTN

DATASET 1

DATASET2

DATASET3

DATASET4

DCBQUEUE
SET3XLST
ZEROS

OPEN

TM
BZ
TM
BZ
TM
BZ
GET
LR

PUT
B
EQU
L
L
CLOSE
CLC
BL

DCB

DCB

DCB

DCB

PDAB
DC
DC
DCBD
PDABD

When issuing a parallel GET macro, register 1 must always point to a PDAB. You may
load the register or let the GET macro do it for you. When control is returned to you, ".
register 1 contains the address of a logical record from one of the data sets in the queue;
registers 2-13 contain their original contents at the time the GET macro was issued;
registers 14, 15, and 0 are changed. You can locate the data set from which the record
was retrieved through the PDAB. A fullword addr~ss in the PDAB(PDADCBEP) points
to the address of the DCB. It should be noted that this pointer may be invalid from the
time a CLOSE macro.is issued to the issuing of the next parallel GET macro.

In Figure 26, not more than three data sets (MAXDCB=3 in the PDAB operand) will be
open for parallel processing at any given time. Assuming that data definition statements
and data sets are supplied, DATASETl, DATASET2, and DATASET3 will be opened
for parallel input processing as specified in the input processing OPEN macro instruction.
Other attributes of each data set are QSAM (MACRF=G), simple buffering by default,
locate or move mode (MACRF=L or M), fixed length records (RECFM=F) ,and exit
list entry for a PDAB (X'92'). Note that both locate and move modes may be used in the
same data set queue. The mapping macros, DCeD and PDABD, are used to reference
the DCBs and the PDAB respectively.

(DATASET 1 , (INPUT) , DATASET2, (INPUT) , DATASET 3 , X
(INPUT),DATASET4,(OUTPUT))

DATASET1+DCBQSWS-IHADCB,DCBPOPEN Opened for. parallel processing
SEQRTN Branch on no to sequential routine
DATASET2+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DATASET3+DCBQSWS-IHADCB,DCBPOPEN
SEQRTN
DCBQUEUE, BUFFERAD, TYPE=P
10,1 Save record pointer

DATASET4,(10)
GETRTN

Record updated in place

* Close DCB which just reached EODAD
2, DCBQUEUE+PDADCBEP-IHAPDAB
2,0(0,2)

((2)) .
ZEROS(2),DCBQUEUE+PDANODCB-IHAPDAB
GETRTN

DDNAME=DDNAME1,DSORG=PS,MACRF=GL,RECFM=FB,
LRECL=80,EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DD~AME2,DSORG=PS,MACRF=GL,RECFM=FB,

LRECL=80,EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DDNAME3,DSORG=PS,MACRF=GMC,RECFM=FB,
LRECL=80,EODAD=EODRTN,EXLST=SET3XLST
DDNAME=DDNAME4,DSORG=PS,MACRF=PM,RECFM=FB,
LRECL=80
MAXDCB=3
OF ' 0' , X' 92 f , AL3 (DCBQUEUE)
X'OOOO'
DSORG=QS

Any DCBs left?
Branch if yes

X

X

X

X

Note: The number of bytes required for PDAB is equal to 24+8n where n is the value of the keyword,
MAXDCB.

Figure 26. Parallel Processing of Three Data Sets

Part 2: Data Management Processing Procedures 57

Following the OPEN macro instruction, tests are made to determine whether the DCBs
were opened for parallel processing. If not, the sequential processing routine is given
control.

When one or more data sets are opened for parallel processing, the get routine retrieves a
record, saves the pointer in register 10, processes the record, and writes it to
DATASET4. This process continues until an end-of-data condition is detected on one of
the input data sets; the end-of-data routine locates the completed input data set and
removes it from the queue with the CLOSE macro instruction. A test is then made to
determine whether any data sets remain on the queue. Processing continues in this
manner until the queue' is empty.

Basic Access Technique,

The basic access technique provides the READ and WRITE macro instructions for
transmitting data between virtual and auxiliary storage. This technique is used when the
operating system cannot predict the sequence in which the records are to be processed or
when you do not want some or all of the automatic functions performed by the queued
access technique. Although the system does not provide anticipatory buffering or '
synchronized scheduling, macro instructions are provided to help you program these
operations.

The READ and WRITE macro instructions process blocks, not records. Thus, blocking
and deblocking of records is your responsibility. Buffers, allocated by either you or the
operating system, are filled or emptied individually each time a READ or WRITE macro
instruction is issued. Moreover, the READ and WRITE macro instructions only initiate
input/ output operations. To ensure that the operation is completed successfully, you
must issue a CHECK macro instruction to test the data event contrpl block (DECB) or

(

issue a WAIT macro instruction and then check the DECB yourself. (The only exception f
to this is when the SYNAD or EODAD routine is entered, neither a WAIT or CHECK \l
macro instruction should be issued to previously outstanding READ or WRITE
requests.) The number of READ or WRITE macro instructions issued before a CHECK
macro instruction is used should not exceed the specified number of channel programs
(NCP).

Grouping Related Control Blocks in a Paging Environment: In an OS /VS system, related
control blocks (the DCB and DECB) and data areas (buffers and key areas) should be
coded so they assemble in the same area of your program. This will reduce the number of
paging operations required to read,from and write to your data set.

Using Overlapped I/O with BSAM: When using BSAM with overlapped I/O (multiple
I/O requests outstanding at one time), more than one DECB must be used. A different
DECB should be specified for each chann~l program. For example, if you specify
NCP=3 in your DCB for the data set and you are reading records from the dat~ set, you
should code the following macros -in your program:

READ DECBl, .. .
READ DECB2, .. .
READ DECB3, .. .
CHECKDECBl
CHECKDECB2
CHECKDECB3

58 OS/VSl Data Management Services Guide

(

READ-Read a Block

The READ macro instruction retrieves a data block from an input data set and places it
in a designated area of virtual storage. To allow overlap of the input operation with
processing, the system returns control to your program before the read operation is
completed. The DECB created for the read operation must be tested for successful
completion before the record is processed or the DECB is reused.

If an iildexed sequential data set is being read, the block is brought into virtual storage
and the address of the record is returned to you in the DECB.

When you use the READ macro instruction for BSAM to read a direct data set with
spanned records and keys and you specify BFTEK=R in your DCB, the data
management routines displace record segments after the first in a record by key length.
Thus, you can expect the block descriptor word and the segment descriptor word at the
same locations in your buffer or buffers, regardless of whether you read the first segment
of a record, which is preceded in the buffer by its key, or a subsequent segment, which
does not have a key. This procedure is called offset reading.

You can specify variations of the READ macro instruction according to the organization
of the data set being processed and the type of processing to be done by the system as
follows:

Sequential
SF - Read the data set sequentially.
SB - Read the data set backward (magnetic tape, format-F and format-U

only). WhenRECFM=FBS, data sets with the last block truncated
cannot be read backward.

Indexed Sequential
K - Read the data set.
KU - Read for update. The system maintains the device address of the

record; thus, when a WRITE macro instruction returns the record, no
index search is required.

Direct
D - Use the direct access method.
I - Locate the block using a block identification.
K - Locate the block using a key. •
F - Provide device position feedback.
X - Maintain exclusive control of the block.
R - Provide next address feedback.
U - Next address can be a capacity record or logical record, whichever

occurred first.

WRITE-Write a Block

The WRITE macro histruction places a data block in an output data set from a
designated area of virtual storage. The WRITE macro instruction can also be used to
return an updated record to a data set. To allow overlap of output operations with
processing, the ~ystem returns control to your program before the write operation is
completed. The DECB created for the write operation must be tested for successful
completion before the DECB can be reused. For ASCII tape data sets, do not issue more
than one WRITE on the same record, because the WRITE macro instruction causes the
data in the record area to be translated from EBCDIC to ASCII.

Part 2: Data Management Processing Procedures 59

As with the READ macro instruction, you can specify variations of the WRITE macro'
instruction according to the organization of the data set and the type of processing to be ("
done by the sy-stem as follows:

Sequential
SF - Write the data set sequentially.
SFR - Write the data set sequentially with next-address feedback.

Indexed Sequential
K - Write a block containing an updated record, or replace a record with

a fixed, unblocked record having the same key. The record to be
replaced need not have been read into virtual storage.

KN - Write a new record or change the length of a variable-length record.

Direct
SD - Write a dummy fixed-length record.
SZ - Write a capacity record (RO). The system supplies the data,

writes the capacity record, and advances to the next track.
D - Use the direct access method.
I - Search argument identifies a block.
K - Search argument is a key.
A - Add a new block.
F - Provide record location data (feedback).
X - Release exclusive control.

CHECK-Test Completion of Read or Write Operation

When processing a data set, you can test for completion of a READ or WRITE request
by issuing a CHECK macro instruction. The system tests for errors and exceptional
conditions in the data event control block (DECB). Successive CHECK macro
instructions issued for the same data set must be issued in the same order as the
associated READ and WRITE macro instructions.

The check routine passes control to the appropriate exit routines specified in the DCB (
for error analysis (SYNAD) or, for sequential data sets, end-of-data (EODAD). It also ~

automatically initiates end-of-volume procedures (volume switching or extending output
data sets).

If you specify OPTCD=Q in the DCB, CHECK causes input data to be translated from
ASCn to EBCDIC.

WAIT-Wait for Completion of a Read or Write Operation

When processing a data set, you can test for completion of any READ or WRITE
request by issuing aWAIT macro instruction. The input/output operation is
synchronized with processing, but the DECB is not checked for errors or exceptional
conditions, nor are end-of-volume procedures initiated. Your program must perform
these operations.

For BDAM and BISAM, a WAIT macro must be issued for each READ or WRITE
macro if MACRF=C is not coded in the associated DCB. When MACRF=C is coded,
and at all times for BSAM and BP AM, a CHECK macro must be issued for each READ
or WRITE macro. Since the CHECK macro incorporates the function of the WAIT
macro, aWAIT is normaHy redundent for those access methods. The ECBLIST form of
the WAIT macro may be useful, though, in selecting which of a number of outstanding
events. should be checked first.

The WAIT macro instruction can be used to await completion of multiple read and write
operations. Each operation must then be checked or tested separately.

Example: You have opened an input DCB for BSAM with NCP=2, and an output DCB
for BISAM with NCP=l and without specifying MACRF=C. You have issued two (,
BSAM READ macros and one BISAM WRITE macro. You now issue the WAIT macro
with ECBLIST pointing to the BISAM DECB and the first BSAM DECB. (Since BSAM

60 OS!VS 1 Data Management Services Guide

requests are serialized, the first request must execute before the second one.) When you ...
regain control, you will inspect the DECBs to see which ~as completed (second bit on).
If it was' BISAM, you will issue another WRITE macro. If it was BSAM, you will issue a
CHECK macro and then another READ macro.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by each READ or WRITE
macro instruction. It contains control information and pointers to standard status
indicators. It is described in detail in Appendix A·of OS/VSl Data Management
Macro Instructions.

The DECB is examined by the check routine when th~ I/O operation is completed, to
determine if an uncorrectable error or exceptional condition exists. If it does, control is
passed to your SYNAD routine. If you have no SYNAD routine, the task is abnormally
terminated.

The basic and queued access techniques both provide special macro instructions for
analyzing input/output errors. These macro instructions can be used in SYNAD routines
and in error analysis routines that are entered directly when you use. the basic access
technique with indexed sequential data sets.

SYNADAF-Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and exceptional condition
code data that is available to your error analysis rou~ine. It produces an error message
that your routine can write into any appropriate data set. The message is in the form of
an unblocked variable-length record, but you can write it as a fixed-length record by
omitting the block length and record length fields that precede the message text.

The text of the message is 120 characters long, and begins with a field of 36 or 42
blanks; you can use the blank field to add your own remarks to the message. Following is
a typical message with the blank field omitted:

,TESTJOBn,STEP2nnn,283,TA,MASTERnn,READn,DATACHECKnnnnn,
0000015,BSAM

This message indicates that a data check occurred during reading of the fifteenth block of . ,
a data set. The data set was identified by a DD statement named MASTER, and was on
a magnetic-tape volume on unit283. The name of the job was TESTJOB; the name of
the job step was STEP2.

If the error analysis routine is entered because of an input error, the first 6 bytes of the
message (bytes 8-13) contain binary information. If no data was transmitted or if the
access method is QISAM, the first 6 bytes are blanks or binary zeros. If the error did not
prevent data transmission, the first 6 bytes contain the address of the input buffer and
the number of bytes read. You can use this information to process records from the
block; for example, you might print each record after printing the error message. Before
printing the message, however, you should replace this binary information with EBCDIC
characters.

The SYNADAF macro instruction provides-its own save area and makes this area
available to your error analysis routine. When used at the entry point of a SYNAD
routine, it fulfills the routine's responsibility for providing a save area.

Part 2: Data Management Processing Procedures 61

SYNADRLS-Release SYNADAF Message and Save Areas

The SYNADRLSmacro instruction releases the message and save areas provided by the
SYNADAF macro instruction. You must issue this macro instruction before returning
from the error analysis routine.

ATLAS-Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from permanent
input/ output errors when processing a data set in direct-access storage. After a data
check, or in certain missing-address-marker conditions, you can issue ATLAS to assign
an alternate track to replace the error track or to transfer data from the error track to the
alternate track.

The use of this macro requires a knowledge of channel programming. A detailed
desc~ption of the macro instruction and its use is included in OS/VSl Data
Management for System Programmers.

If you do not use the ATLAS macro instruction, you can use the IEHA TLAS utility
program to perform the same function. The principal difference between the macro
instruction and the utility program is that the latter provides error recovery only after
your own program has been completed. For a detailed description of IEHATLAS, refer
to OS/VS Utilities.

Selecting an Access Method

Access methods are identified primarily by the data set organization to which they apply.
For instance, BDAM is the basic access method for direct organization. Nevertheless,
there are times when an access method identified with one organization can be used to
process a data set usually thought of as organized in a different manner. Thus, a data set
created by the basic access method for sequential organization (BSAM) may be
processed by the basic direct access method (BDAM). If the queued access technique is
used to process a sequential data set, the access method is referred to as the queued
sequential access method (QSAM).

Basic access methods are used for all data organizations, while queued access methods
apply only to sequential and indexed sequential data sets as shown in Figure 27.

Data Set
Organization

Sequential
Partitioned
Indexed Sequential
Direct

Access Technique

Basic Queued

BSAM
BPAM
BISAM
BDAM

QSAM

QISAM

Figure 27. Data Management Access Methods

It is possible to control an 110 device directly while processing a data set with any data
organization without using a specific access method. The execute channel program
(EXCP) macro instruction uses the system programs that provide for scheduling and
queuing II 0 requests, efficient use of channels and devices, data protection, interruption
procedures, error recognition and retry. Complete details about the EXCP macro are in
OS/VSl Data Management for System Programmers.

62 OS/VS 1 Data Management Services Guide

(

(!, I

"

(

Open;ng and Clos;ng a Data Set

Although your program has been assembled, the various data management routines
required for I/O operations are not a part of the object code. In other words, your
program is not completely assembled until the DCBs are initialized for execution. You
accomplish initialization by issuing the OPEN macro instruction. After all DCBs have
been completed, the system ensures that all required access method routines are loaded
and ready for use and that all channel command word lists and buffer areas are ready.

Access method routines are selected and loaded according to data control fields that
indicate:

• Data organization

• Buffering technique

• Access technique

• I/O unit characteristics

This information is used by the system to allocate virtual-storage space and load the
appropriate routines. These routines, the channel command word (CCW) lists, and
buffer areas created automatically by the system remain in virtual storage until the close
routine signals that they are no longer needed by the DCB that was using them.

When I/O operations for a data set are completed, you should issue a CLOSE macro
instruction to return the DCB to iis original status, handle volume disposition, create data
set labels, complete writing of queued output buffers, and free virtual and auxiliary
storage.

Managing Buffer Pools when Closing Data Sets: After closing the data set, you should
issue a FREEPOOL macro instruction to release the virtual storage used for the buffer
pool. If you plan to process other data sets, use FREEPOOL to regain the buffer pool
storage space. If you expect to reopen a data set using the same DeB, use FREEPOOL
unless the buffer pool created the first time the data set was opened will meet your needs
when you reopen the data set. FREEPOOL is discussed in more detail in the section
"Buffer Pool Construction."

After the data set has been closed, the DCB can be used for another data set. If you do
not close the data set before a task terminates, the operating system closes it
automatically. If the DCB is not available to the system at that time, the operating
system abnormally terminates the task, and data results can J:?e unpredictable. Note,
however, that the operating system cannot automatically close any open data sets after
the normal terminatipn of a pIogram that was brought into virtual storage by the loader.
Therefore, loaded programs must include CLOSE macrQ instructions for all open data
sets.

Simultaneous Opening and Closing of Multiple Data Sets: An OPEN or CLOSE macro
instruction can 'be used to initiate or terminate processing of more than one data set.
Simultaneous opening or closing is faster than issuing separate macro instructions;
however, additional storage space is required for each data set specified. The coding
examples in Figures 28 and 29 show the macro expansions for simultaneous @pen and
close operations.

Part 2: Data Management Processing Procedures 63

Opening and Closing Data Sets Shared by More Than One Task: When more than one
task is sharing a data set, the following restrictions must be recognized. Failure to adhere
to these restrictions endangers the integrity of the shared data set.

• All tasks sharing a DCB must be in thejob step that opened the DCB (see "Sharing a
Data Set").

• Each task sharing a DCB must ensure that all of the input and output operations it
initiated·using a given DCB are complete, before the task terminates. A CLOSE
macro instruction issued for the DCB will ensure termination of all input and output
operations.

• A DCB can be closed only by the task that opened it.

Considerations for Opening and Closing Data Sets:

• Two or more DCBs should never be concurrently open for output to the same data set
on a direct-acc'ess device, except with the basic indexed sequential access method
(BISAM). Otherwise the end-of-file record written by CLOSE for one DCB may
overlay data associated with another DCB.

• If one DCB is concurrently open for input and one for output to the same data set on
a direct-access device, the input DCB may be unable to read what the output DCB
wrote if the output DCB extended the data set.

• If you want to use the same DD statement for two or more DCBs, you cannot specify
parameters for fields in the first DCB and then be assured of obtaining the default
parameters for the same fields in any subsequent DCB using the same DD statement.
This is true for both input and output and is especially important when you are using
more than one access method. Any action on one DCB that alters the JFCB affects
the other DCB(s) and thus can cause unpredictable results. Therefore, unless the
parameters of all DCBs using one DD statement are the same, you should use separate
DD statements.

• Associated data sets for the 3525 Card Punch can be opened in any order, but all data
sets must be opened before any processing can begin. Associated data sets can be
closed in any order, but once a data set has been closed, I/O operations cannot be
performed on any of the associated data sets. See OS and OS/VS Programlning
Support for the IBM 3505 Card Reader and IBM 3525 Card Punch for more
information.

• Volume disposition specified in the OPEN or CLOSE macro instruction can be
overridden by the system if necessary. However, you need not be concerned; the
system automatically requests the mounting and demounting of volumes, depending
upon the availability of devices at a particular time. Additional information on volume
disposition is provided in OS/VSl JCL Reference.

• Two or more DCBs should not be concurrently open using the same ddname. Any
action on one DCB that alters the task input/output table (TIOT~ or JFCB a:tfects the
other DCB(s) and thus can cause unpredictable results. However, a concurrent open
of a single volume data set allocated to a single unit does not adversely affect the
TIOT. Thus, a one volume physical sequential DASD data set can be mUltiply open
f<1r input, or within the other restrictions, for output. A multivolume ISAM or BDAM
data set can be concurrently open as long as the volume serial list remains the same.

If an abnormal termination occurs during open, close, or end-of-volume processing,
the DCB causing the error and any DCBs being processed in parallel with it may be
left in such a state that they cannot be used and cannot be closed (or will be closed
incorrectly). The device associated with the DCB in error (such as a magnetic tape

64 OS/VS 1 Data Management Services Guide

(

unit) can become locked to this DCB and will not be reuse able until the end of the job
step when device deallocation will unlock it. This is true whether or not the abnormal
termination is intercepted by a ST AE routine, a DCB ABEND exit routine, or a
mother task. When opening or closing DCBs in parallel, specifying delay or ignore
abnormal termination in the DCB ABEND exit routine will allow the other DCBs to
complete processing normally .

• During task termination, the system issues a CLOSE macro for each data set which is
still open. If this is an abnormal termination, the QSAM close routines (which would
normally finish processing buffers) are bypassed. Any outstanding I/O requests are
purged. Thus, your last data records may be lost for a QSAM output data set .

• It is a good procedure to close an ISAM data set before task termination because, if an
I/O error is detected, the ISAM close routines caoo.ot return the problem program
registers to the SYNAD routine, causing unpredictable results.

OPEN-Prepare a Data Set for Processing

The OPEN macro instruction is used to complete a data control block for an associated
data set. The method of processing and the volume positioning instruction in the event of
an end-of-volume condition can be specified.

Processing Method: You can process a data set. as either input or output (by coding

I INPUT, OUTPUT, or EXTEND as the processing method operand of the OPEN macro)
or, under BSAM, by coding INOUT, OUTIN, or OUTINX.1f t~e data set resides on a
direct-access volume, you can code UPDAT in the processing method operand to
indicate that records can be updated. By coding RDBACK in this operand, you can
specify that a magnetic-tape volume containing format-:-F or format-U records is to be
read backward. Variable-length records cannot be read backward. If the processing
method operand is omitted from the OPEN macro instruction, INPUT is assumed. The
operand is ignored by the basic indexed sequential access method (BISAM); it must be

I specified as OUTPUT or EXTEND when you are using the queued indexed sequential
access method (QISAM) to create an indexed sequential data set. You can override the

I INOUT, OUTIN; or OUTINX at execution by using the LABEL parameter of the DD
statement, as discussed in OS/VSl JCL Reference.

SYSIN and SYSOUT data sets must be opened for INPUT and OUTPUT, respectively.
INOUT is treated as INPUT; OUTIN, EXTEND, or OUTINX are treated as OUTPUT.
UPDAT and RDBACK cannot.be used.

In Figure 28, the data sets associated with three DCBs are to be opened simultaneously.

+

+
+
+
+
+
+

+
+

OPEN
CNOP
BAL
DC
DC
DC
DC
DC
DC
SVC

(TEXTDCB, ,CONVDCB, (OUTPUT) , PRINTDCB, (OUTPUT))
0,4 Align list to fullword
1, *+ 16 Load regl w/list address
AL1(O) Option byte
AL3(TEXTDCB) DCB address
AL1(15) Option byte
AL3(CONVDCB) DCB address
AL1(143) Option byte
AL3(PRINTDCB) DCB address
19 Issue open SVC

Figure 28. Opening Three Data Sets Simultaneously

Since no processing method operand is specified for TEXTDCB, the system assumes
INPUT. Both CONVDCBand PRINTDCB are opened for output. No volume
positioning options are specified; thus, the disposition indicated by the DD statement
DISP parameter is used.

Part 2: Data Management Processing Procedures 65

At execution, the SVC 19 instruction passes control to the Open routine, which then
initializes the three DCBs and loads the appropriate access method routines:

CLOSE-Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a data set and release it
from a DCB. The volume positioning that is to result from closing the data set can also
be specified. Volume positioning options are the same as those that can be specified for
end-of-volume conditions in the OPEN macro instruction or the DD statement. An
additional volume positioning option, REWIND, is available and can be specified by the
CLOSE macro instruction for magnetic-tape volumes. REWIND positions the tape at the
load point regardless of the direction of processing.

You can code CLOSE TYPE=T and perform some close functions for sequential data
sets on magnetic tape and direct-access volumes processed with BSAM. When you use
TYPE=T, the DCB used to process the data set maintains its open status, and you
should not issue another OPEN macro instruction to continue processing the same data
set. This option cannot be used in a SYNAD routine.

(

The TYPE = T operand causes the system control program to process labels, modify some
of the fields in the system control blocks for that data set, and reposition the volume (or
current volume in the case of multivolume data sets) in much the same way that the
normal CLOSE macro does. When you code TYPE=T, you can specify that the volume
either be positioned at the end of data (the LEAVE option) or be repositioned at the
beginning of data (the REREAD option). Magnetic-tape volumes are repositioned either
immediately before the first data record or immediately after the last data record; the
presence of tape labels has no effect on repositioning. Figure 29, which assumes a sample
data set containing 1000 records, illustrates the relationship between each positioning
option and the point at which you resume processing the data set after issuing the

temporary close. "

Begin
processing

7
Record

1
Record Record

2 3

If you CLOSE TYPE = T and specify

LEAVE

LEAVE (with tape dat~ set open
for read backward)

REREAD

. REREAD (with tape data set open
for read backward)

,
{

))
"""{ \

Record

999

Begin processir]g
tape data set
(open for read

backward) ~

Record
1000

After temporary close, you will
resume processing

Immediately after record 1000

I mmediately before record 1

Immediately before record 1

Immediately after record 1000

Figure 29. Record Processed When LEAVE. or REREAD is Specified for CLOSE TYPE= T

66 OS/VS 1 Data Management Services Guide

(

If you code the release (RLSE) operand on the DD statement for the data set, it is
ignored by temporary close, but any unused space will be released when you finally issue
the normal CLOSE macro instruction.

It is possible to use BSAM to process a data set that is not physical-sequential; if you use
CLOSE TYPE=T for them, the following restrictions apply:

• The DCB for the data set you are processing on a direct-access device must specify
either DSORG=PS or DSORG=PSU for input processing, and either DSORG=PS,
DSORG=PSU, DSORG=PO, or DSORG=POU for output processing.

• The DCB must not be open for input to a member of a partitioned data set.

• If you open a data set on a direct-access device for output and issue CLOSE
TYPE = T, the volume will' be repositioned only if the data set was created with
DSORG=PS, DSORG=PSU, DSORG=PO, or DSORG=POU (you cannot specify
the REREAD option if DSORG=PO or DSORG=POU is specified). (This restriction
prohibits the use of temporary close following or during the building of a BDAM data
set that is created by specifying BSAM MACRF=WL).

• If you open the data set for input and issue CLOSE TYPE=T with the LEAVE
option, the volume will be repositioned only if the data set specifies DSORG=PS or
DSORG=PO.

Note: When a data control block is shared among multiple tasks, only the task that
opened the data set can close it unless TYPE=T is specified.

Before issuing the CLOSE macro, a CHECK macro must be issued for all DECBs that
have outstanding I/O from WRITE macro instructions. When CLOSE TYPE=T is
specified, a CHECK macro must be issued for all DECBs that have outstanding 1/0
from either WRITE or READ macro instructions.

In Figure 30, the data sets associated with three DCBs are to be closed simultaneously.

+
+
+

+
+
+
+
+
+

CLOSE
CNOP
BAL
DC
DC
DC
DC
DC
DC
SVC

(TEXTDCB"CONVDCB"PRINTDCB)
0,4 Align list to fullword
1 , *+ 16 Load regl w/list addr
AL1(0) Option byte
AL3(TEXTDCB) DCB address
AL1 (0) Option byte
AL3(CONVDCB) DCB address
AL1(128) Option byte
AL3(PRINTDCB) 'DCB address
20. Issue close SVC

Figure 30. Closing Three Data Sets Simultaneously

Because no volume positioning operands are specified, the P9sition indicated by the DD
statement DISH parameter is used.

At execution; the SVC 20 instruction passes control to the Close routine, which
terminates processing of the three data sets and returns the three DeBs to their original
status~

Part 2: Data Management Processing Procedures 67

End-of - Volume Processing

. Control is passed automatically to the data management end-:Qf-volume routine when
any of the following conditions is detected:

• Tapemark (input tape volume)

• Filemark or end of last extent (input direct-access volume)

• End-of-data indicator (input device other than magnetic tape or direct-access
volume). An example of this would be the last card read on a card reader.

• End of reel (output tape volume)

• End of extent (output direct-access volume)

You may issue a force end-of -volume (FEOV) macro instruction before the
end-of-volume condition is detected.

The end-of-volume routine checks or creates standard trailer labels, if the LABEL
parameter of the associated DD statement indicates standard labels. If UL or NSL is
specified, control is passed to the appropriate user label routine (if it is specified in your
exit list.)

If multiple-volume data sets are specified in your DD statement, automatic volume
switching is accomplished by the end-of-volume routine. When an end-of-volume
condition exists on an output data set, additional space is allocated as indicated in your
DD statement. If no more volumes are specified or if more than specified are required,
the storage is obtained from any available volume on a device of the same type. If no
such volume is available, your job is terminated.

Volume Positioning: When an end-of-volume condition is detected, the system positions
the volume according to the disposition specified in the DD statement unless the volume
disposition is specified in the OPEN macro instruction. Volume positioning instructions
for a sequential data set on magnetic tape can be specified as LEAVE or REREAD.

LEAVE
positions a labeled tape to the point following the tape mark that follows the data set
trailer label group, and an unlabeled volume to the point following the tape mark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set. If the tape was
last read backward, LEAVE and REREAD do the following:

LEAVE
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set. .

REREAD
positions a labeled tap~ to the point following the tape mark that follows the data set
trailer label group, and an unlabeled tape to the point following the tape mark that
follows the last block of the data set.

If, however, you want to position the current volume according to the option specified in
the DISP parameter of the DD statement, you co~e DISP in the OPEN macro
instruction.

68 OS/VS 1 Data Management Services Guide

(

c

DISP
specjfies that a tape volume is to be disposed of in the manner implied by the DD
statement associated with the data set. Direct-access volume positioning and
disposition are not affected by this parameter of the OPEN macro instruction. There
are several dispositions that can be specified in the DISP parameter of the DD
statement; DISP can be PASS, DELETE, KEEP, CATLG, or UNCATLG.

If the number of volumes is less than or equal to the number of allocated unfts,·
the current volume will be positioned as follows:

DISP Parameter

PASS
DELETE
KEEP, CATLG, or UNCATLG

Action

Forward space to the end of data set on the current volume.
Rewind the current volume.
Rewind and unload the current volume.

If the number of volumes is greater than the number of units allocated, the current
volume will be rewound and unloaded.

A volume positioning instruction can be specified only if the processing method
operand has been specified. It is ignored if devices other~than magnetic-tape and
direct-access are used, or if the number of volumes exceeds the number of available
units.

For magnetic-tape volumes that are not being unloaded, positioning varies according
to the direction of the last input operation and the existence of tape labels. If the tape
was last read forward:

LEAVE
positions a labeled tape to the point following the tapemark that follows the data set
trailer label group, and an unlabeled volume to the point following the tapemark that
follows the last block of the data set.

REREAD
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the first block of the data set.

If the tape was last read backward:

LEAVE
positions a labeled tape to the point preceding the data set header label group, and an
unlabeled tape to the point preceding the, first block of the data set.

REREAD
positions a labeled tape to the point following the tapemark that follows the data set
trailer label group, and an unlabeled tape to the point following the tapemark that
follows the last block of the data set.

FEOV-Force End of Volume

The FEOV macro instruction directs the operating system to initiate end-of-volume
processing before the physical end of the current volume is reached. If another volume
has been specified for the data set, volume switching takes place automatically. The
volume positioning options REWIND and LEAVE are available.

If ali FEOV macro is issued for a spanned multivolume data set which is being read using
QSAM, errors may occur when the next GET macro is issued. These errors are
documented in the section, "Spanned Variable-Length Records" in "Part 1: Introduction
to Data Management."

The FEOV macro instruction can only be used when you are using BSAM or QSAM.
FEOV is ignored if issued for a SYSIN or SYSOUT data set.

Part 2: Data Management Processing Procedures 69

Buffer Acquisition and Control
The operating system provides several methods of buffer acquisition and control. Each
buffer (virtual-storage area used for intermediate storage of input/output data) usually
corresponds in length to the size of a block in the data set being processed. When you
use the queued access technique, any reference to a buffer actually refers to the next
record (buffer segment).

You can assign more than one buffer to a data set by associating the buffer with a buffer
pool. A buffer pool must be constructed in a virtual-storage area allocated for a given
number of buffers of a given length.

The number of buffers you assign to a data set should be a tradeoff against the frequency
with which you refer to each buffer. A buffer that is not referred to for a relatively long
period of time may be paged out. If this were allowed to happen to any considerable
degree, it could result in a greater number of buffers actually decreasing throughout.

Buffer segments and buffers within the buffer pool are controlled automatically by the
system when the queued access technique is used. However, you can terminate
processing of a buffer by issuing a release (RELSE) macro instruction for input or a
truncate (TRUNC) macro instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple buffering can be used
to process an indexed sequential data set.

(

If you use the basic access technique, you can use buffers as work areas rather than as
intermediate storage areas. You can control them directly, by using the GETBUF and
FREEBUF macro instructions, or dynamically for BDAM and BISAM, by requesting
dynamic buffering in your DCB macro instruction and your READ or WRITE macro
instruction. If you request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. That buffer will be freed when you
issue a WRITE or FREEDBUF macro instruction. ,

Buller Pool Construction

Buffer pool construction can be accomplished in any of three ways:

• Statically using the BUILD macro instruction

• Explicitly using the GETPOOL macro instruction

• Automatically by the system when the data set is opened

If QSAM simple buffering is used, the buffers are automatically returned to the pool
when the data set is closed. If the buffer pool is constructed explicitly or automatically,
the virtual storage area must be returned to the,system by the FREEPOOL macro
instruction.

In many applications, fullword or doubleword alignment of a block within a buffer is
important. You can specify in the DCB that buffers are to start on either a doubleword
boundary or a fullword boundary that is not also a double word boundary (by coding
BFALN=D or F). If doubleword alignment is specified for format-V records, the fifth
byte of the first record in the block is so aligned. For that reason, fullword alignment
must be requested to align the first byte of the variable-length record on a doubleword
boundary. The alignment of the records following the first in the block depends on the
length of the previous records.

Note that buffer alignment provides alignment only for the buffer. If records from ASCII
magnetic tape are read and the records use the block prefix, the boundary alignment of
logical records within the buffer depends on the length of the block prefix. If the length
is 4, logical records are on fullword boundaries. If the length is 8, logical records are on
double word boundaries.

70 OS/VSl Data Management Services Guide

If the BUILD macro instruction is used to construct the buffer pool, alignment depends
on the alignment of the first byte of the reserved storage area.

When you process multiple QISAM data sets, you can use a common buffer pool. To do
this, however, you must use the BUILD macro instruction to reformat the buffer pool
before opening each data set.

BUILD-Construct a Buffer Pool

When you know, before program assembly, both the number and 'the size of the buffers
required for a given data set, you can reserve an area of appropriate size to be used as a
buffer pool. Any type of area can be used~for example, a predefined storage area or an
area of coding no longer needed.

A BUILD macro instruction, issued during execution of your program, structures the
reserved storage area into a buffer pool. The address of the buffer pool must be the same
as that specified for the buffer pool control block (BUFCB) in your DCB. The buffer
pool control block is an 8-byte field preceding the buffers in the buffer pool. The number
(BUFNO) and length (BUFL) of the buffers must also be specified. For QSAM, the
length of BUFL must be at least the blocksize.

When the data set using the buffer pool is closed, you can reuse the area as required.
You can also .reissue the BUILD macro instruction to reconstruct the area into a new
buffer pool to be used by another data set.

You can assign the buffer pool to two or more data sets that require buffers of the same
length. To do this, you must construct an area large enough to accommodate the total
number of buffers required at anyone time during execution. That is, if each of two data
sets requires five buffers (BUFNO=5), the BUILD macro instruction should specify ten
buffers. The area must also be large enough to contain the 8-byte buffer pool control
block.

BUILDRCD-Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction, like the BUILD macro instruction, causes a buffer
pool to be constructed in an area of virtual storage you provide. In addition, BUILDRCD
makes it possible for you to access variable-length, spanned records as complete logical
records, rather than as segments.

You must be processing with QSAM in the locate mode and you must be processing
either VS or VBS records, if you want to access the variable-length, spanned records as
logical records. If you issue the BUILDRCD macro before the data set is opened, or
during your DCB exit routine, you automatically get logical records rather than segments
of spanned records.

Only one logical record storage area is built, no matter how many buffers are specified;
therefore, you can't share the buffer pool with other data sets that may be open at the
same time.

GETPOOL-Get a Buffer Pool

If a specified area is not reserved for use as a buffer pool, or you want to defer .specifying
the number and length of the buffers until execution of your program, you should use the
GETPOOL maCro instruction. It enables you to vary the size and number of buffers
according to the needs of the data set being processed.

The GETPOOL macro instruction structures a virtual-storage area allocated by the
system into a buffer pool, assigns a buffer pool control block, and associates the pool
with a specific data set. The GETPOOL macro instruction should be issued either before
opening of the data set or during your DCB exit routine.

Part 2: Data Management Processing Procedures 71

When using GETPOOL with QSAM, specify a buffer length (BUFL) of at least as large
as the blocksize.

Automatic Buffer Pool Construction

If you have requested a buffer pool and have not used an appropriate macro instruction
by the end of your DCB exit routine, the system automatically allocates virtual-storage
space for a buffer pool. The buffer pool control block is also assigned and the pool is
associated with a specific DCB. For BSAM, a buffer pool is requested by specifying
BUFNO. For QSAM, BUFNO can be specified or allowed to default to 2 (for all devices
except unit-record) or 3 (for 2540) by the open routines. If you are using the basic
access technique to process an indexed sequential or direct data set, you must indicate'
dynamic buffer control. Otherwise, the system does not construct the buffer pool
automatically.

Because a buffer pOQI obtained automatically is not freed automatically when you issue a
CLOSE macro instruction, you should also issue a FREEPOOL or FREEMAIN macro
instruction, which is discussed in the next section.

FREEPOOL-Free a Buffer Pool

BUILD
OPEN

ENDJOB CLOSE

RETURN
INDCB DCB
OUTDCB DCB

CNOP
INPOOL DS

Any buffer pool assigned to a DCB either automatically by the OPEN macro instruction
(except when dynamic buffer control is used) or explicitly by the GETPOOL macro
instruction should be released before your program is terminated. The FREEPOOL
macro instruction should be issued to release the virtual-storage area as soon as the
buffers are no longer needed. When you are using the queued access technique, a data
set must be closed first. When you are using exchange buffering, the buffer pool must
not be released until all the data sets have been closed.

If the OPEN macro was issued while running under a protect key of zero, a buffer pool
which was obtained by OPEN should be released by issuing the FREEMAIN macro
instead of the FREEPOOL macro. This is necessary because the buffer pool acquired
under these conditions will be in storage assigned t~ subpool252.

Constructing a Buffer Pool: Figures 31 and 32 illustrate several possible methods of
constructing a buffer pool. They do not take into account the method of processir).g or
controlling the buffers in the pool.

In Figure 31, a static storage area named INPOOL is allocated during program assembly.
The BUILD macro instruction, issued during execution, arranges the buffer pool into ten
buffers, each 52 bytes long. Five buffers are assigned to INDCB and five to OUTDCB,
as specified in the DCB macro instruction for each. The two data sets share the buffer
pool because both specify INPOOL as the buffer pool control block. Notice that an
additional 8 bytes have been allocated for the buffer pool to contain the buffer pool
control block.

Processing
INPOOL, 10,52 Structure a buffer pool
(INDCB"OUTDCB,(OUTPUT))

(INDCB, ,OUTDCB)
Processing

Processing
Return to system control

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,--­
BUFNO=5,BUFCB=INPOOL,---
0,8
CL528

Force boundary al ignment
Buffer pool

Figure 31. Constructing a Buffer Pool From a Static Storage Area

72 OS/VS 1 Data Management Services Guide

(

In Figure 32, two buffer pools are constructed explicitly by the GETPOOL macro
instructions. Ten input buffers are provided, each 52 bytes.long, to contain one
fixed-length record; five output buffers are provided, each 112 bytes long, to contain two
blocked records,plus an 8-byte count field (required by ISAM). Notice that both data
sets are closed before the buffer pools are released py the FREEPOOL macro
instructions. The same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

Buller Control

ENDJOB

INDCB
OUTDCB

Your program can use four techniqtJ.es to control the buffers used by your program. The
advantages of each depend to a great extent upon the type of job you are doing. Simple
and exchange buffering are provided for the queued access technique. The basic access
technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed sequential data set,
buffer segments and buffers within a buffer pool are controlled automatically by the
operating system.

In addition, the queued access technique .provides four processing modes that determine
the extent of data movement in virtual storage. Move, data, locate, or substitute mode
processing can be specified for either the GEr or PUT macro instruction. The buffer
processing mode is specified in the MACRF field of the DCB macro instruction. The
movement of a record is determined as follows:

• Move mode: The record is moved from an input buffer to your work area, or from
your work area to an output buffer .

• Data mode (QSAM format-V spanned records only): The same as the move mode
except only the data portion of the record is moved.

• Locate mode: The record is not moved. Instead, the address of the next input or
output buffer is placed in register 1. For QSAM format-V spanned records, if you
have specified logical records by specifying BFTEK=A or by issuing the BUILDRCD
macro instruction, the address returned in register 1 points to a record area where the
spanned record is assembled or segmented.

The PUT -locate routine uses the value in the DCBLRECL field to determine whether
another record will fit into your buffer. Therefore, when you write a short record, you
can maximize the number of records per block by modifying the DCBLRECL field

GETPOOL
GETPOOL
OPEN

INDCB,10,52
OUTDCB,5,112
(INDCB"OUTDCB,(OUTPUT))

Construct a 10-buffer pool
Construct a 5-buffer pool

CLOSE (INDCB"OUTDCB)
FREEPOOL INDCB Release buffer pools after all

I/O is complete
FREEPOOL OUTDCB

RETURN
DCB
DCB

Return to system control
DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,--­
DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

RKP=O,RECFM=FB,---
C

Figure 32. Constructing a Buffer Pool Using GETPOOL and FREEPOOL

Part 2: Data Management Processing Procedures 73

Simple Buffering

before you issue a PUT -locate to get a buffer segment for the short record. The
processing sequence follows:

1. Register 1 is returned to you with the address of the next buffer segment.

2. Move the record into the output buffer segment.

3. Put the length of the next (short) record into DCBLRECL.

4. Issue PUT-locate.

5. Move the short record into the buffer segment.

• Substitute mode: The record is not moved. Instead, the address of the next input or
output buffer is interchanged with the address of your work area.

Two processing modes of the PUTX macro instruction can be used in conjunction with a
GET -locat~ macro instruction. The update mode returns an updated record to the data
set from which it was read; the output mode transfers an updated record to an output .
data set. There is no actual movement of data in virtual storage. The processing mode is
specified by the operand of the PUTX macro instruction, as explained in OS/VSl Data
Management Macro Instructions.

If you use the basic access technique, you can control buffers in one of two ways:

• Directly, using the GETBUF macro instruction to retrieve a buffer constructed as
described above. A buffer can then be returned to the pool by the FREEBUF macro
instruction.

• Dynamically, by requesting a dynamic buffer in your READ or WRITE macro
instruction. This technique can be used only when you are using BISAM or BDAM. If
you request dynamic buffering, the system automatically provides a buffer each time a
READ macro instruction is issued. The buffer is supplied from a buffer pool that is
created by the system when the data set is opened. The buffer is released (returned to
the pool) upon completion of a WRITE macro instruction when you are updating. If
you do not update the record in the buffer and thus release the buffer when the record
is written, the FREEDBUF macro instruction may be used. If you are processing an
indexed sequential data set, the buffer is automatically released upon the next issuance
of the READ macro instruction if there has been no intervening WRITE or
FREEDBUF macro instruction.

The term Simple buffering refers to the relationship of segments within the buffer. All
segments in a simple buffer are together in storage and are always associated with the
same data set. When the buffer pool is constructed, the system creates a channel
command word (CCW) for each buffer in the buffer pool. For this reason, each record
must be physically moved from an input buffer segment to an output buffer segment. It
can be processed within either segment or in a work area.

If you use simple buffering, records of any format can be processed. New records can·be
inserted and old records deleted as required to create a new data set. A record can be
moved and processed as follows:

• Processed in an input buffer and then moved to an output buffer (GET -locate,
PUT -move/PUTX-output)

• Moved from an input buffer to an output buffer where it can be processed
(GET -move, PUT -locate)

• Moved from an input buffer to a work area where it can be processed and then moved
to an output buffer (GET -move, PUT -move)

74 OS/VSl Data Management Services Guide

(

A

PUT

B

• Processed in an input buffer and returned to the data set (GET-locate, PUTX-update)

The following examples illustrate the control of simple buffers and the processing modes
that can be used. The buffer pools may have been constructed in any way previously
described.

Simple Buffering-GET -locate, PUT -move/PUTX~output: The GET macro instruction
(step A, Figure 33) locates the next input record to be processed. Its address is returned
in register 1 by the system. The address is passed to the PUT macro instruction in
register O.

The PUT macro instruction (step B, Figure 33) specifies the address of the record in
register O. The system then moves the record to the next output buffer.

Note: The PUTX-output macro instruction can be used in place of the PUT -move macro
. instruction. However, processing will be as described under Exchange Buffering (see
PUT -substitute).

Simple Buffering-GET -move, PUT -locate: The PUT macro instruction locates the
address of the next available output buffer. Its address is returned in register 1 and is
passed to the GET macro instruction in register O.

The GET macro instruction specifies the address of the output buffer into which the
system moves the next input record.

A filled output buffer is not written until the next PUT macro instruction is issued.

Simple Buffering-GET -move, PUT -move: The GET macro instruction (step A, Figure
34) specifies the address of a work area into which the system moves the next record
from the input buffer.

The PUT macro instruction (step B, Figure 34) specifies the address of a work area from
which the system moves the record into the next output buffer.

Simple Buffering-GET -locate, PUT -locate: The GET macro instruction (step A, Figure
35) locates the address of the next available input buffer. The address is returned in
register 1.

The PUT macro instruction (step B, Figure 35) locates the address of the next available
output buffer. Its address is returned in register 1. You must then move the record from

OUTPUT OUTPUT
NEXTREC GET INDCB

L.R 0, 1
PUT OUTDCB ,; (0)
B NEXTREC

INDCB DCB MACRF=~GL),---
OUTDCB DCB MACRF=(PM), ---

Figure 33. Simple Buffering with MACRF=GL and MACRF=PM

Part 2: Data Management Processing Procedures 75

A I OUTPUT I OUTPUT I
PUT

B

NEXTREC GET INDCB,WORKAREA

PUT
B

WORKAREA DS
INDCB DCB
OUTDCB DCB

OUTDCB,WORKAREA
NEXTREC
CLSO
MACRF=(GM) , --­
MACRF=(PM), ---

Figure 34. Simple Buffering with MACRF=GM and MACRF=PM

GET

A Di~'I:li!I'1 I N PUT

NEXTREC GET INDCB
OUTPUT OUTPUT LR 7, 1

PUT OUTDCB
LR 6, 1

PUT LA 5,INDCB
USING IHlWCB,S

./ LH 4,DCBLRECL
r········· ··············· :.·:.!:::::·::I

B ~liiiiiir:I;E:E:~:T;JI! _ I N P UT I
SH 4,=H'1'

OUTPUT OUTPUT EX 4,MOVEREC

B NEXTREC
MOVEREC MVC 0(1,6),0(7)
INDCB DCB MACRF= (GL) ,

c EODAD=EOF,---
OUTDCB DCB MACRF=(PL), ---

DCBD DSORG=(LR)
EOF

Figure 35. Simple Buffering with MACRF=GL and MACRF=PL

the input buffer to the output buffer (step C, Figure 35). Processing can be done either
before or after the move operation.

A filled output buffer is not written until the next PUT macro instruction is issued. The
CLOSE and FEOV macro instructions write the last record of your data set by issuing
TRUNC and PUT macro instructions. Be careful not to issue an extra PUT before
issuing CLOSE or FEOV. Otherwise, when the CLOSE or FEOV macro instruction tries
to write your last record, the extra PUT will write a meaningless record or produce a
sequence error.

Note that if records other than format-F records are being moved, the length attribute of
the MVC instruction must be changed as shown by the code beginning with the USING
statement in Figure 35. If the record is more than 256 bytes, you can code a move
routine or use a MVCL instruction to process the complete record.

76 OS/VSl Data Management Services Guide

(

(

Exchange Buffering

GET

INPUT!
OUTPUT

PUTX

Simple Buffering-UPDAT Mode: When a data ~et is opened with UPDAT specified
(Figure 36), only GET-locate and PUTX-update are supported. The GET macro locate'S'
the next input record to be processed and its address is returned in register 1 by the
system. The user may update the record and issue a PUTX macro which will cause the
block to be written back in its original location in the data set after all the logical records
in that block have been processed.

The term exchange buffering refers to the relatioJ)ship of segments within a buffer. All
the segments in an exchange buffer are not necessarily together in virtual storage, nor are
they always associated with the saine ,data set. When the buffer pool is constructed, the
system creates a channel command word (CCW) for each buffer segment in the buffer.
The system can then combine all the segments (the logical records) of a buffer (a
physical record or block of data) by using a technique called data chaining. In data
chaining, a series of CCWs representing the buffer segments are chained and executed,
thereby improving performance. However, when using exchange buffering, you must be
sure that the CPU and channel can exchange CCWs faster than the I/O device can
transfer data. Otherwise, as in the case of some of the faste~ direct-access storage devices
used in combination with some of the slower CPUs, a hardware error called data overrun
will result.

If a request for exchange buffering is denied by the system for any reason, move mode
will be used instead. Move mode is compatible with exchange buffering.

To use exchange buffering, you must provide a work area comparable in size and
alignment to a buffer segment. That work area is substituted for the next buffer segment
(the storage areas change roles). The CCW created for the buffer segment actually
points to the work area.

Why use exchange buffering? Because there is no need to move the record. This can
mean a saving in processing time when you use substitute mode or PUTX-output mode.
The use of exchange buffering during execution of your program requires these
conditions:

• Input and output buffers must be of the same size and alignment.

• Records must be format-F records (blocked or unblocked).

• ASCII records must be format-F records with BUFOFF~(O).

• Track overflow cannot be used with blocked format-F records.

• GET-move and PUT-locate modes cannot be used.

• Unit-record devices must not be specified.

INPUT!
OUTPUT

NEXTREC

UPDCB

OPEN

GET

PUTX
B
DCB

(UPDCB, (UPDAT))

UPDCB

UPDCB
NEXTREC
MACRF=(GL,PM),---

(No movement of data takes place)

Figure 36. Simple Buffering with MACRF=GL and MACRF=PM-UPDAT Mode

Part 2: Data Management Processing Procedures 77

If you request exchange· buffering, but it cannot be used, the system automatically uses
simple buffering. Move mode processing is used in place of substitute mode.

After opening the data set, you can test the DCBCIND 1 field of the DCB. to determine if
simple buffering was substituted for exchange buffering because of inconsistencies in the
DCB information. The eighth bit of the DCBCINDI field is 1 for exchange buffering
and 0 for simple buffering:

If your records are blocked format-F records, each segment is aligned as specified in the
DCBBF ALN field. Therefore, your buffer length (DCBBUFL) must specify buffers
large enough to contain segments whose length is a multiple of 16 bytes. Otherwise, the
specified boundary alignment cannot be achieved; simple buffering is used and only the
first byte in the first record is aligned as specified.

To reopen a DCB that has been opened for exchange buffering, you must first close all
DCBs using the buffer pool associated with the DCB to be reopened and issue a
FREEPOOL macro instruction specifying the DCB to be reopened. There are two
possible conditions that cannot be prechecked by the system:

• Word alignment that does not correspond to the characteristics of the machi~e. For
maximum efficiency on a System/370, your record length should be a multiple of 8 .

• An I/O device that transfers the data faster than the CPU can exchange the addresses
in the CCW, which may cause data overrun. Several factors should be considered:
(1) the relative rate of data transfer between the CPU and the I/O device,
(2) the logical record length, and (3) the blocking factor. This problem can be avoided
by making the logical record size equal to the block size to prevent data chaining of
record segments. Since this problem is closely related to installation planning and
system configuration, you may want to consult your installation planning
representative if it is a significant problem.

Note: Performance can be adversely affected when exchange buffering is used with
blocked records because of the usage of longer channel programs.

The following examples illustrate the control of exchange buffers and the corresponding
processing modes that can be used. The buffer pools may have been constructed in any
way previously described.

Exchange Buffering-GET -substitute, PUT -substitute: The GET macro instruction
(step A, Figure 37) specifies the address of a work area. The work area address is
exchanged with the address of the next input record returned in register 1. After
processing, the address of a record can be passed to the PUT macro instruction. If you
issue a PUT macro, it need not be for the record just read.

The PUT macro instruction (step B, Figure 37) specifies the address of the output
record. The output record address is exchanged for the address of the next output buffer
available for use as a work area.·The work area address, returned in register 1, is passed
to the GET macro instruction (step C, Figure 37) in register O.

Notice that as the areas are exchanged there is no movement of data. Output records are
contained in the original input area and vice versa, but are logically associated with the
correct data set.

Exchange Buffering-GET -locate, PUTX-output: The GET macro instruction (step A,
Figure 38) locates the address of the next input record. The address is returned in
register 1. The record must be processed in the buffer segment before the PUTX macro
instruction (step B, Figure 38) is issued. The PUTX macro instruction specifies the
address of both the input and output data control block. The two buffer segments are
exchanged without any movement of data. The GET macro instruction .(step C, Figure
38) locates the next record to be processed

78 OS/VS 1 Data Management Services Guide

(

GET

I OUTPUT I OUTPUT I

PUT

c

Exchanged

GET=::.:~==:==~;==::=~~_--,
mmmmm ~

Exchanged

LA
NEXTREC GET

LR

·PUT
LR
B

WORKAREADS
INDCB DCB
OUTDCB DCB

O,WORKAREA
INDCB,(O)
0, 1

OUTDCB,(O)
0, 1
NEXTREC
CLSO
MACRF=(GT) , --­
MACRF=(PT), ---

Figure 37. Exchange Buffering with MACRF=GT and MACRF=PT

GET

A

B

GET

"

Notice that the DeB macro instruction for the output data set specifies move mode;.this
is required.

Exchange Buffering-GET -locate, PUT -substitute: The GET macro instruction (step A,
Figure 39) locates the next input record. Its address is returned in register 1. You must
then move the record to a work area. You can process the record either before or after
the move. .

The plJt macro instruction (step B, Figure 39) specifies the address of the work area
containing the next output record. The system returns the address of the next output

OUTPUT OUTPUT

NEXTREC GET INDCB

PUTX OUTDCB,INDCB
B NEXTREC

Exchanged
INDCB DeB MACRF=(GL) , ---
OUTDCB DCB MACRF=(PM),---

INPUT OUTPUT

Figure 38. Exchange Buffering with MACRF=GL and MACRF=PM

Part 2: Data Management Processing Procedures 79

GET

A IOUTPUT I OUTPUT I

B I INPUT

GET Exchanged

c

LA
NEXTREC. GET

LR
USING
LA
LH
SH
EX

PUT
LR
B

MOVEREC MVC
WORKAREADS
INDCB DCB
OUTDCB DCB

DCBD

6,WORKAREA
INDCB
7 , 1
IHADCB,S
S,INDCB
4,DCBLRECL
4, =H' '1 '
4,MOVEREC

OUTDCB,(6)
6, 1
NEXTREC
0(1,6),0(7)
CLSO
MACRF=(GL),--­
MACRF=(PT) , --­
DSORG=(LR)

Figure 39. Exchange Buffering with MACRF=GL and MACRF=PT

buffer available for use as a work area in register 1. That address is passed to the move
(MVC) instruction in register 6. The GET macro instruction (step C, Figure 39) locates
the next input record. You must then move the record to the new work area. Notice that
the previous work area becomes part of the output buffer (step C).

Note that if records other than format-F records are being moved, the length attribute of
the MVC instruction must be changed as shown by the code beginning with the USING
statement in Figure 39. If the record is more than 256 bytes long, you can code a move
routine or use an MVeL instruction to process the complet. record.

Buffering Techniques and GET/PUT Processing Modes: As you can see from the
previous examples, the most efficient code is achieved by use of automatic buffer pool
construction, and GET-locate and PUTX-output with either simple or exchange
buffering. Figure 40 summarizes the combinations of buffering techniques and
processing modes that can be used. Notice, for example, that if you use PUT-locate and
GET -substitute, you must provide a work area and you must also move the record from
the work area to the output buffer.

RELSE-Release an Input Buffer

When using the queued access technique to process a sequential or indexed sequential
data set, you can direct the system to ignore the remaining records in the input buffer
being processed. The next GET macro instruction retrieves a record from another buffer.
If format-V spanned 'records are being used, the next logical record obtained may begin
on·any segment in any subsequent block.

If·you are using move mode, the buffer is made available for refilling as soon as the
RELSE macro instruction is issued. When you are using locate mode, the system does
not refill the buffer until the next GET macro instruction is issued. If a PUTX macro
instruction has been used, the block is written before the buffer is refilled.

80 OS/VS 1 Data Management Services Guide

(

Output Buffering: Simple Exchange Simple Exchange Simple Simple Exchange Simple Exchange

Q)
Q)

Q) Q)
Q) Q) Q) Q) > co > > co > co Q) > (.) 0 0 (.) 0 0 (.) > 0 S2 E E S2 E E S2 0 E

Input ~ E ~ ~ ~ ~ ~ ~ ~ a> :::::> ,.!. ::> Q) ::> ::> :::::> Q) Input :::::> ::> :::::> Q) Q)' Q)' Q)' Q)

Buffering: --. ::J 0... 0... 0... '"0 0... 0... 0... +-' +-'
0... 0... 0... ::J ::J ~ Buffering: ::J ::J ::J ::J ::J ::J Q)' Q)' Q)' ' ~8~ Q)' Q)' Q)' '+-' ,,!: Q) +-' +-'

Simple Q)' ai ai Q)'';:; Q),-

Exchange
Q),-

'';:; Q) '';:; Q) '';:; '';:; +-' +-' +-' +-'+-,
> > > > (I') co co co co (I') ~ ~ ~ co co co co (I') VI co (I') > (I') > (I') (I')

0 0 0 0.0 (.) (.) (.) (.).0 (.) (.) (.) (.).0 .0 (.) .0 0 .00 .0.0
E E E E a 0 0 ..2 o ::J ,~~~ ..2 0 S2 o ::J ::J 0 a E a E ::J ::J

~ j:: - (I')

~ -:- ~ 'r-;- (I') (I')

Actions ~ ~ ~ ~~ ~ ~~ I- '.- I- ~ ~ 1-1- 1-1- ~~ ~~ ~~

+
w w w w::> w w w w:::::> w g:::::> w w w w:::::> w:::::> w:::::> w:::::> w:::::>
(!) (!) (!) (!)o... (!) (!) (!) (!)o... (!):::;::.o... (!)' (!) (!) (!)o... (!)o... (!)o... (!)o... (!)o...

Program must move X X X X X X
record

System moves record X X X X X X X X X

System moves record X
segment

Record is not moved X X

Work area required X X X X X X X X X

PUTX - output can X X X X
be used

Figure 40. Buffering Technique and GET/PUT Processing Modes

TRUNC-Truncate an Output Buffer

When using the queued access technique to process a sequential dat~ set, you can direct
the system to write a short block. The first,record in the next buffer is the next record
processed by a PUT -output or PUTX-output mode.

If the locate mode is being' used, the system assumes that a record has been placed in the
buffer segment pointed to by the last PUT macro instruction.

The last block of a data set is truncated by the Close routine. Note that a data set
containing format-F records with truncated blocks cannot be read from direct-access
storage as efficiently as a standard format-F data set.

GETBUF-Get a Buffer from a Pool

The GETBUF macro instruction can be used with the basic access technique to request a
buffer from a buffer pool constructed by the BUILD, GETPOOL, or OPEN macro
instruction. The address of the buffer is returned by the system in a register you specify
when you issue the macro instruction. If no buffer is available, the register contains 0
instead of an address.

Part 2: Data Management Processing Procedures 81

FREEBUF-Return a Buffer to a Pool

The FREEBUF macro instruction is used with the basic access technique to retuma
buffer to the buffer pool from which it was obtained by a GETBUF macro instruction.
Although the buffers need not be returned in the order in which they were obtained, they
must be returned when they are no longer needed.

FREEDBUF-Retum a Dynamic Buffer to a Pool

Any buffer obtained through the dynamic buffer option must be released before it can be
used again. When you are processing a direct data set, if you do not update the block in
the buffer and thus free the buffer when the block is written, you must use the
FREEDBUF macro instruction. If there is an uncorrectable input/output error, the
control program releases the buffer. When you are processing an indexed sequential data
set, if ~you do not update the block in the buffer or if there is an uncorrectable input
error, :the control program releases the buffer when the next READ macro instruction is
issued on the same DECB, unless you use the FREEDBUF macro instruction.

To effect the release, you must specify the address of the DECB that was used when the
block was read using the dynamic buffering option, as well as the address of the DCB
associated with the data set being processed.

Processing.a Sequential Data Set
Data sets residing on all volumes other than direct-access volumes must be processed
sequentially. In addition, a data set residing on a direct-access volume, regardless of
organization, can be processed sequentially. This includes data sets created using ISAM
or a similar access method. Since the entire data set (prime, index, and overflow areas)

(

will be processed, care should be taken to determine the type of records being processed. I
This feature of the operating system allows you to write your program with little regard ~

for the type of device to be used when the program is executed, except for restrictions on
the use of certain device-dependent macro instructions and processing options.

Either the queued or the basic access technique may be used to store and retrieve the
records of a sequential data set. Additionally, a technique called chained scheduling can
be used to accelerate the input/output operations required for a sequential data set.

Data Format-Device Type Considerations

Before execution of your program, you must supply the operating system with both the
record format (RECFM) and device-dependent (DEVD) information in a DCB macro
instruction, a DD statement, or a data set label. The DCB subparameters for the DD
statement differ slightly from those describ~d here. A complete description of the DD
statement and a glossary of DCB subparameters are contained in OS/VSl JCL
Reference.

The record format (RECFM) parameter of the DCB macro instruction specifies the
characteristics of the records in the data set as fixed-length (RECFM=F),
variable-length (RECFM=V or D), or undefined-length (RECFM=U). Fixed-length
blocked records (RECFM=FB) can be specified as standard (RECFM=FBS), which
means there are no truncated (short) blocks or unfilled tracks within the data set, with
the possible exception of the last block or track. Data sets with a fixed-length, standard
format were described previously under "Fixed-Length Records, Standard Format."

As an optional feature, a control character can be contained in each record. This control
character will be recognized and proc~ssed if the data set is printed or punched. The
control characters are transmitted on both tapes and direct-access volumes. The presence
of a control character is indicated. by M or Ajn the RECFM field of the data control

82 OS/VS 1 Data Management Services Guide

Magnetic Tape (TA)

block. M denotes machine code; A denotes American National Standards Institute
(ANSI) code. If either M or A is specified, the character must be present in every record;
the printer space (PRTSP) or stacker select (STACK) field of the DCB is ignored. The
optional control character must be in the first byte of format-F and format-U records
and in the fifth byte of format-V records and format-D records where BUFOFF=L.
Control character codes are listed in "Appendix B: Control Characters." The
device-dependent (DEVD) parameter of the DCB macro instruction specifies the type of
device on which the data set's volume resides:

TA magnetic tape
PT paper tape reader
PR printer
PC card punch
RD card reader
DA direct-access device or

Mass Storage System (MSS) virtual volumes

Format-F, V, D, and U records are acceptable for magnetic tape. Format-V records are
not acceptable on 7 -track tape if the data conversion feature is not available. ASCII
records are not acceptable on 7 -track tape.

When you create a tape data set with variable-length record format (V or D), the control
program pads any data block shorter than 18 bytes. For format-V records, it pads to the
right with binary zeros so that the data block length equals 18 bytes. For format-D
(ASCII) records, the padding consists of ASCII circumflex (» characters which are
equivalent to X'SE's.

Note that there is no minimum requirement for blocksize; however, if a data check
occurs on a magnetic-tape device, any record shorter than 12 bytes in a read operation or
18 bytes in a write operation will be treated as a noise record and lost. No check for
noise will be made unless a data check occurs.

Tape density (DEN) specifies the recording density in bits per inch per track, as shown
in Figure 41. If this information is not supplied, the highest applicable density is assumed.

Recording Density

DEN 7-Track Tape 9-Track Tape
o 200
1 556
2 800 800 (NRZI)
3 1600 (PE)
4 6250 (GCR)

NRZI is for non-return-to-zero-inverted mode
PE is for phaseen.coded mode
GCR is for group coded recording mode

Note: Specifying DEN=O for a 7-track 3420 tape attached to a 3803-1 will result in 556 bits per
inch recording, but corresponding messages and tape labels will indicate 200 bits per inch
recording density.

Figure 41 Tape Density (DEN) Values

The track recording technique (TRTCH) for 7-track tape can be specified as:

C Data conversion is to be used. Data conversion makes it possible to write 8 binary
bits of data on 7 tracks. Otherwise, only 6 bits of an 8-bit byte are recorded. The
length field of format-V records contains binary data and is not recorded correctly
without data conversion.

E Even parity is to be used; if E is omitted, odd parity is assumed.

Part 2: Data Management Processing Procedures 83

T BCDIC to EBCDIC translation is required.

Paper-Tape Reader (PT)

The paper-tape reader accepts format-F and format-U records. If you use QSAM, you
should not specify the records as blocked. Each format-U record is followed by an
end-of-record character. Data read from paper tape may optionally be converted into the
System/370 internal representation of one of six standard paper-tape codes. Any
character found to have a parity error will not be converted when the record is
transferred into the input area. Characters deleted in the conversion process are not
counted in determining the block size.

The following symbols indicate the code in which the data was punched. If this
information is omitted, I is assumed.

I IBM BCD perforated tape and transmission code (8 tracks)
F Friden (8 tracks)
B' Burroughs (7 tracks)
C National Cash Register (8 tracks)
A ASCII (8 tracks)
T Teletype l (5 tracks)
N No conversion

Note that when you are using QSAM, the processing mode must be move mode.

Card Reader and Punch (RD fPC)

Format-F and U records are acceptable to both the reader and punch; format-V records
are acceptable to the punch only. The device control character, if specified in the
RECFM parameter, is used to select the stacker; it is not punched. The first 4 bytes
(record descriptor word or segment descriptor word) of format-V records or record
segments are not punched. For format-V records, at least 1 byte of data must follow the
record or segment descriptor word or the carriage control character.

Each punched card corresponds to one physical record. Therefore, you should restrict the
maximum record size to 80 (EBCDIC mode) or 160 (column binary mode) data bytes.
When mode (C) is used for the card punch, BLKSIZE must be 160 unless you are using
PUT. Then YO\l can specify BLKSIZE as 160 or a multiple of 160, and the system
handles this as described earlier under "PUT-Write a Record" in the section "Queued
Access Techniques." You can specify the read/punch mode of operation (MODE)
parameter as either card image (column binary) mode (C) or EBCDIC mode (E). If this
information is omitted, E is assumed. The stacker selection parameter (STACK) can be .
specified as either 1 or 2 to indicate which bin is to receive the card. If it is not specified,
1 is assumed.

For all QSAM, RECFM=FB, card punch data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be treated as
RECFM=F.1f the system builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not specified, the
adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. You may insure the buffer size by specifying the
BUFL parameter before the first time the da~a set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the system will build a new
buffer pool of the correct size each time the data set is opened.

1 Trademark of the Teletype Corporation

84 OS/VS 1 Data Management Services Guide

(

(

Printer (PR)

Note that when QSAM is used, punch error correction on the IBM 2540 Card Read
Punch is automatically performed only for data sets usi:p.g three or more buffers without
the chained scheduling feature.

The 3525 Card Punch accepts only format-F records for print data sets and for
associated data sets. Other record formats are allowed for the read data set, the punch
data set, and the interpret punch data set. See OS and OS/VS Programming Support
for the IBM 3505 Card Reader and IBM 3525 Card Punch for more information
on programming for the 3525 Card Punch.

Records of format-F, V, and U are acceptable to the printer. The first 4 bytes (record
descriptor word or segment descriptor word) of Jormat-V records or record segments are
not printed. For format-V records, at least 1 byte of data must follow the record or
segment descriptor word or the carriage control character. The carriage control
character, if specified in the RECFM parameter, is not printed. The system does not
position the printer to channell for the first record unless specified by a carriage control
character.

Because each line of print corresponds to one record, the record length should not
exceed the length of one line on the printer. For variable-length spanned records, each
line corresponds to one record segment, and blocksize should not exceed the length of
one line on the printer.

If carriage control characters are not specified, you can indicate printer spacing (PRTSP)
as 0, 1, 2, or 3. If it is not specified, 1 is assumed.

For all QSAM, RECFM=FB, printer data sets, the block size in the DCB will be
adjusted by the system to equal the logical record length. This data set will be treated as
RECFM=F. If the system builds the buffers for this data set, the buffer length will be
determined by the BUFL parameter. If the BUFL parameter was not specified, the
adjusted block size is used for the buffer length.

If the DCB is to be reused with a block size larger than the logical record length, you
must reset DCBBLKSI in the DCB and insure that the buffers are large enough to
contain the largest block size expected. You may insure the buffer size by specifying the
BUFL parameter before the first time the data set is opened or by issuing the
FREEPOOL macro instruction after each CLOSE macro so the ~ystem will build a new
buffer pool of the correct size each tim@ the data set is opened.

Direct-Access Device (DA)

Direct-access devices accept records of format-F, V, or U. If the records are to be read
or written with keys, the key length (KEYLEN) must be specified. In addition, the .
operating system has a standard track format for all direct access volumes. Each track
contains data information as well as certain control information such as:

• The address of the track

• The address of each record

• The length of each record

• Gaps between areas

A complete description of track format is contained in the section "Direct-Access Device
Characteristics." Your only concern in creating a sequential data set is to allow for an
8-byte track descriptor record (capacity record or RO). when requesting space on a
direct-access volume. In addition, device overhead, which varies with the device, must be
allocated for each block on the track.

Part 2: Data Management Processing Procedures 85

Device Control

The operating system provides you with six macro instructions for controlling
input/ output devices. Each is, to varying degrees, device-dependent. Therefore, you
must exercise some care if you wish to achieve device independence.

When you use the queued access technique, only unit record equipment can be controlled
directly. When using the basic access technique, limited device independence can be
achieved between magnetic-tape.and direct-access ,devices. You must check all read or
write operations before issuing a device control macro instruction.

CNTRL-Control an I/O Device

The CNTRL macro instruction performs these device-dependent control functions:

• Card reader stacker selection (SS)

• Printer line spacing (SP)

• Printer carriage control (SK)

• Magnetic-tape backspace (BSR) over a specified number of blocks

• Magnetic-tape backspace (BSM) past a tapemark and forward space over the
tapemark

• Magnetic-tape forward space (FSR) over a specified number of blocks

• Magnetic-tape forward space (FSM) past a tapemark and a backspace over the
tapemark

Backspacing moves the tape toward the load point; forward spacing moves the tape away
from the load point.

Note that the CNTRL macro instruction cannot be used with an input data set
containing variable-length records on the card reader.

You can use the CNTRL macro instruction to position DOS tapes that contain
embedded DOS checkpoint records if you specify OPTCD=H in the DCB parameter
field of the DD statement. The CNTRL macro instruction cannot be used to backspace
DOS 7-track tapes that are written in data convert mode and contain embedded
checkpoint records.

PRTOV-Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the printer carriage control
tape or the forms control buffer (FCB). An overflow condition causes either an
automatic skip to channell or, if specified, transfer of control to your routine for
overflow processing. If you specify an overflow exit routine, set DCBIFLGS to X'OO'
before issuing another PRTOV.

If the data set specified in the DCB is not for a printer, no action is taken.

SETPRT -Printer Setup

The SETPR T macro instruction is-used to initially set or dynamically change the
specifications of the 3800 Printing Subsystem. For additional information on how to use
the SETPRT macro with the 3800 printer, see IBM 3800 Printing Subsystem
Programmer's Guide.

(

For printers that have a universal character set (UCS) buffer or a forms control buffer
(FCB), the SETPRT macro instruction is used to fetch UCS and FCB images from the C
image library (SYS1.IMAGELIB) and load them into their respective buffers. Note that

I FCB images for the 3203 or 3211 and 3800':are not compatible. The'universal character

86 OS/VS 1 Data Management Services Guide

I sets for the 1403, or 3203 and the character arrangement tables for the 3800 are also
incompatible.

The SETPRT macro allows you to request the operator to verify loading of the buffer.
I For the 1403,3203, and 3211 printers, the SETPRT macro allows you to specify the

printing of lowercase EBCDIC characters in uppercase when no uppercase/lowercase
print chain or train is available.

For a printer that has no carriage control tape, you can use the SETPRT macro
instruction to load the FCB, to request operator verification of .buffer loading, and to
allow the operator to align the paper in the printer.

The FCB contents can be fetched from the system library or defined in your program
through the exit list of the DCB macro instruction, as discussed under "Exit List
(EXLST)." "

When issued, the SETPRT macro instruction loads a special UCS buffer from the system
library. The library contains images of standard IBM character sets and of your own
special character sets. The operator can be requested to verify the loaded image after
mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or unblock printer data checks.
When data checks are blocked, unprintable characters are treated as blanks and do not
cause an error condition.

If the specified UCS or FCB image is not found in the image library (or DCB exit list for
an FCB image), the operator is requested to specify a different one (message IEC127D
is issued).

BSP-Backspace a Magnetic Tape or Direct-Access Volume

The BSP macro instruction backspaces one block on the magnetic tape or direct-access
volume being processed. The block can then be. reread or rewritten. An attempt to
rewrite the block destroys the contents of the remainder of the tape or track.

The direction of movement is toward the load point or beginning of the extent. You may
not use the BSP macro instruction if the track overflow option was specified or if the
CNTRL, NOTE, or POINT macro instruction is used. The BSP macro instruction should
be used only when other device control macro instructions could not be used for
backspacing.

Any attempt to backspace across a file mark will result in a "return code of X'04' and
your tape or direct-access v~lume will be positioned after the file mark. This means you
cannot issue a successful backspace command once your EODAD routine is entered
unless you first reposition the tape or direct-access volume'into your data set. (CLOSE
TYPE=T can get you positioned at the end of your data set.)

You can use .the BSP macro instruction to backspace DOS tapes containing embedded
DOS checkpoint records. If you use this means of backspacing, you must test for and
bypass the embedded checkpoint records. You cannot use ~he BSP macro instruction for
DOS 7 -track tapes written in translate mode.

NOTE-Return the Relative Address of a Block

The NOTE. macro instruction requests the relative address of the block just read or
written. In a multivolume data set, the address is relative to the beginning of the volume
currently being processed.

The address provided by the operating system is returned in register 1. The address is in
the form of a 4-byte relative block address for magnetic tape; for a direct-access device,
it is a 4-byte relative track address. The amount of unused space available on the ,track of
the direct-access device is returned in register O.

Part 2: Data Management Processing Procedures 87

POINT-Position to a Block

The POINT macro instruction causes repositioning of a magnetic tape or direct-access (
volume to a specified block. The next read or write operation begins at this block. In a
multivolume data set, you must ensure that the volume referred to is 'the volume
currently being processed. If a write operation follows the POINT macro instruction, all
of the track following the write operation is erased unless the data set is opened for
UPDAT. POINT is not meant to be used before a WRITE macro instruction when a data
set is opened for UPDAT. You can use the POINT macroinstruction to position DOS
tapes that contain embedded checkpoint records if you specify OPTCD=H in the DCB
parameter field of the DD statement. The POINT macro instruction cannot be used to
backspace DOS 7 -track tapes that are written in data convert mode and contain
embedded checkpoint records.

When using the POINT macro for a direct-access device that is opened for OUTPUT,
OUTIN, or INOUT, and the record format is not standard, the number of blocks per
track may vary slightly.

Device Independence

The ability to request input/output operations without regard for the physical
characteristics of the I/O devices makes it possible for you to write one program that will
fulfill a variety of needs. Device independence may be useful for:

• Accepting data from a number of recording devices, such as a disk pack, 7- or 9-track
magnetic tape, or unit-record equipment. This situation could arise when several types
of data-acquisition devices are feeding a centralized complex.

• Observing constraints imposed by the availability of input/output devices (for
example, when devices on order have not been installed).

• Assembling, testing, and debugging on one System/370 configuration and processing
on a different configuration. For example, a 2314 drive can be used as a substitute for
several magnetic-tape units.

Device independence is not difficult to achieve, but requires some planning and
forethought. There are two areas of planning necessary to achieve device
independence-system generation considerations and programming considerations.

System Generation Considerations

You can provide for device independence when the system is generated by generating a
system that not only meets the current input/output configuration requirements but .
includes anticipated device attachments. Creating such a system entails looking ahead at
expected delivery of input/output devices and, during system generation, constructing
the necessary control blocks and tables. Thus, when the devices are delivered, they need
only be physically attached. The operating system recognizes the devices without
modification. However, until the devices are physically connected, the operator must
designate them as being offline, using the VARY command or using automatic device
status initialization. For information on automatic device status initialization, see
OS / VS 1 System Generation Reference.

When new device attachments cannot be fully anticipated, you can add new devices by
performing an I/O device generation. This is a limited type of system generation that
enables you to change your 110 configuration without regenerating other parts of the
system.

System generation techniques for effecting a smooth transition to new input/output
devices do not include addition of new device types. When support for new devices is

88 OS/VS 1 Data Management Services Guide

(

(

provided, a new system must be generated. A complete description of system generation
techniques is contained in OS / VS 1 System Generation Reference.

r Programming Considerations

Each of three data set organizations-partitioned, indexed sequential, and
direct-requires the use of a direct-access device. De,vice independence is meaningful,
then, only for a sequentially organized d~ta set, that is, a data set where one block of
data follows another, thus allowing input or output to be on a magnetic tape drive, a
direct-access device, a card read/punch, a printer, or a spooled data set.

Your program will be device-independent if you do two things:

• Omit all device-dependent macro instructions and macro instruction parameters from
your program.

• Defer specifying any required device-dependent parameters until the program is ready
for execution. That is, supply the parameters on your data definition (DD) statement
or during the open exit routine.

In examining the following list of macro instructions, consider only the logical layout of
your data record without regard for the type of device used. Also, consider that any
reference to a direct-access volume is to be treated like a reference to magnetic tape, that
is, you must create a new data set rather than attempt to update.

OPEN
I Specify INPUT, OUTPUT, INOUT, OUTIN, OUTINX, or EXTEND. The

parameters RDBACK and UPDAT are device-dependent and cause an abnormal
termination if directed to a device of the wrong type.

READ
Specify forward reading (SF) only.

WRITE
Specify forward writing (SF) only; use only to create new records.

PUTX
Use only output mode.

NOTE/POINT
These macros are valid for both magnetic-tape and direct-access volumes.

BSP
This macro is valid for magnetic-tape or direct-access volumes. However, its use
would be an attempt to perform device-dependent action.

CNTRL/PRTOV
These macros are device-dependent.

DCB Subparameters

MACRF
Specify R/W or G /P. Processing mode can also be indicated.

DEVD
Specify DA if any direct-access device may be used. Magnetic-tape and unit-record
equipment DCBs will fit in the area provided during assembly. Specify unit-record
devices only if you expect never to change to tape or direct-access devices. Key length
(KEYLEN) can be specified on the DD statement if necessary.

Part 2: Data Management Processing Pro~edures 89

RECFM, LRECL,·BLKSIZE
These can be specified in the DD statement. However, you must consider maximum
record size for specific devices, and track overflow cannot be specified unless (
supported. .

DSORG
Specify sequential organization (PS or PSU).

OPTCD
This subparameter is device-dependent; specify it in the DD statement.

SYNAD
. Any device-dependent error checking is automatic. Generalize your routine so that no
dewce-dependent information is required.

Chained Scheduling /or'l/O Operations

To accelerate the input/output operations required for a data set, the operating system
provides a technique called chained scheduling. When requested, the system bypasses
the normal I/O routines and dynamically chains several input/output operations'
together. A series of separate read or write operations, functioning with chained
scheduling, is issued to the computing system as one continuous operation. In a

. nonpageable partition or address space, the program-controlled interruption (PCI) flag in
the CCWs is used for synchronization of the I/O operations.

The I/O performance is improved by reduction in both the CPU time and the channel
start/stop time required to transfer data within virtual storage. Some factors that affect
performance improvement are:

• Address space type (real or virtual)

• BUFNO for QSAM

• The number of overlapped requests for BSAM

• Other activity on the CPU and channel

The effects of rotational delay are also reduced since several successive blocks, requested
separately, can be retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained scheduling is specified must be
assigned at least two and preferably three buffers with QSAM, or must have a value of at
least two and preferably three for NCP with BSAM or BP AM.

Chained scheduling will not be used where it is not allowed.

A request for chained scheduling will be ignored and normal scheduling used if any of
the following are encountered when the data set is opened:

• BDAM CREATE, that is, MACRF=(WL)

• Track overflow

• UPDAT in the operand of the OPEN macro instruction

• Exchange buffering

• CNTRL macro instruction to be used

• Device type is paper tape reader

• Bypassing of embedded DOS checkpoint records on tape input data sets

• Spooled data sets (SYSIN or SYSOUT)

90 OS/VS 1 Data Management Services Guide

(

• A print data set or any associated data set for the 3525 Card Punch. (See OS and
OS/VS Programming Support for the IBM 3505 Card Reader and IBM 3525
Card Punch for more information on programming for the 3525.)

The number of channel·program segments that can be chained is limited to the value
specified in the NCP operand of BSAM and BPAM DCBs, and to the value specified in
the BUFNO operand of QSAM DCBs.

When chained scheduling is being used, the automatic skip feature of the PRTOV macro
instruction for the printer will not function. Format control must be achieved by ANSI or
machine control characters. (Control characters are discussed in more detail in Part 1
under "Control Character," in Part 2 under "Data Format-Device Type
Considerations," and in "Appendix B: Control Characters.") When you read
undefined-length records with QSAM, the DCBLRECL field is equal to the BLKSIZE
field, not the actual record length. The entire block is moved to your work area in the
move mode. When you are using QSAM under chained scheduling to read
variable-length, blocked, ASCII tape records (format-DB), you must code BUFOFF=L
in the DCB for that data set.

Note also that if you are using BSAM with the chained scheduling option to read
format-DB records and have coded a value for the BUFOFF operand other than
BUFOFF=L, the input buffers will be converted from ASCII to EBCDIC as usual, but
the record length returned to the DCBLRECL field will equal the block size, not the
actual length of the record read in; the record descriptor word (ROW), if present, will
not have been converted from ASCII to binary.

When chained scheduling is used on the 2540 Card Read Punch, error recovery
procedures are not performed.

Chained scheduling is most valuable for programs that require extensive input and output
operations. Because a data set using chained scheduling may monopolize available time
on a channel, separate channels should be assigned, if possible, when more than one data
set is to be processed.

Search Direct lor Input Operations

To accelerate the input operations required for a data set on DASD, the operating system
provides a technique called search direct. Search direct reads in the requested record and
the count field of the second record. This allows the operation to get the next record
directly, along with the count field of the following record. 'Search direct can be used
with all record formats except format-UT, format-FST, format-FS, format-FBS, and
spanned. You reqdest search direct by coding OPTCD=Z in the DCB macro instruction.
For FS and FBS records, the access method routines always use a form of search-direct
processing. Search direct cannot be used under the following conditions:

• In conjunotion with the NOTE and POINT macro instructions

• When you specify the UPDAT option of the OPEN macro instruction

• For partitioned data sets

Part 2: Data Management Processing Procedures 91

Creating a Sequential Data Set

OPEN
NEXTREC GET

AP
UNPK
PUT
B

As discussed earlier, a processing program should be developed using, as much as (
possible, factors that are constant, with variable factors specified at execution. For that .
reason, the following examples are generalized as much as possible. They are neither
exhaustive nor intended as complete examples. Rather, they are presented as
introductory sequences.

In creating a sequential data set on a magnetic tape or direct-access device, you must do
the following:

• Code DSORG=PS or PSU in the DCB macro instruction

• Code a DD statement to describe the data set (See OS/VSI JCL.)

• Process the data set with an OPEN macro instruction (data set is opened for output or
-OUTIN),a series of PUT or WRITE and CHECK macros, and then a CLOSE macro

Tape-to-Print, Move Mode-Simple Buffering: In Figure 42, the GET -move and
PUT-move require two movements of the data records. If the record length (LRECL)
does not change in processing, only one move is necessary; you can process the record in
the input buffer segment. A GET -locate can be used to provide a pointer to the current
segment.

Tape-to-Print, Locate Mode-Simple Buffering: This example (Figure 43) is similar to
that in Figure 42. However, since there is no change in the record length, the records can
be processed in the input buffer. Only one move of each data record is required.

Tape-to-Print, Substitute Mode-Exchange Buffering: Although the initial problem is
the same, the solution described in Figure 44 takes advantage of exchange buffering,
which eliminates the need to move the data record, and makes direct reference to
i~dividual fields within a record through the use of a dummy control section (DSECT).
The use of the DSECT allows symbolic reference to be made for storage-to-storage
operations; therefore, the length attributes need not be explicitly stated.

(INdATA"OUTDATA,(OUTPUT))
INDATA,WORKAREA
NUMBER,=P'1'
COUNT, NUMBER
OUTDATA,COUNT
NEXTREC

Move mode

Record count adds 6
bytes to each record

TAP ERROR SYNADAF
LA

ACSMETH=QSAM
0, 68(0, 1)

Control program returns message
address in register 1.

ST
PUT
SYNADRLS
L
RETURN

ENDJOB CLOSE

WORKAREA DS
COUNT DS
NUMBER DC
SAVE14 DS.
INDATA DCB

14,SAVE14
OUTDATA,(O)

14,SAVE14

(INDATA"OUTDATA)

CLSO
CL6
PL4'O'

SYNAD routine prints part of
the message (beginning wi th
the unit number) as a 56-byte
fixed-length record. It then
returns to the control
program.

F
DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC,

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Figure 42. Creating a Sequential Data Set-Move Mode, Simple Buffering

92 OS/VS 1 Data Management Services Guide

C

~
~

OPEN (INDATA, ,OUTDATA, (OUTPUT) ,ERRORDCB, (.OUTPUT))
NEXTREC GET INDATA Locate mode

LR 2, 1 Save pointer
AP NUMBER,=P'1'
UNPK ° (6 , 2) , NUMBER P!:'ocess in input area
PUT OUTDATA Locate mode
MVC 0(50,1),0(2) Move record to output buffer
B NEXTREC

TAP ERROR SYNADAF ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) Shift nonblank message fields
MVI 78(1),C'

,
Blank end of message

MVC 79(49, 1) , 78(1)
ST 2,128(1) Save address for debugging
CH 0,=H'4' Test SYNADAF return code
BE MOVERCD Branch if data read
BL PRINTIT Branch if data not read
CLI 128(1), C'

,
See if data read anyway

BE' PRINTIT Branch i~ definitely no data
MOVERCD MVC 78(50,1),0(2) Add input record to message
PRINTIT LA 0,4(1) Load address of message

LR 2,14 Save return address
PUT ERRORDCB,(O) Pri~t message (move mode)
SYNADRLS Release message and save area
LR 14,2 Restore return address
L 2,SAVE2 Restore register 2 contents
RETURN Return to control program

ENDJOB CLOSE (INDATA"OUTDATA"ERRORDCB)

NUMBER DC PL4'0'
INDATA DCB DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC, C

SYNAD=TAPERROR,EODAD=ENDJOB
OUTDATA DCB DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL)
ERRORDCB DCB DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V, C

BLKSIZE=128,LRECL=124
SAVE2 OS F

Figure 43. Creating a Sequential Data Set-Locate Mode, Simple Buffering

Retrieving a Sequential Data Set

In retrieving a sequential data set on a magnetic tape or direct-access device, you must
do the following:

• Code DSORG=PS or PSU in the DCB macro instruction

• Tell the system where your data set is located (by coding a DD statement; see
os /VSl JCL Reference.

• Process the data set with an OPEN macro instruction (data set is opened for input,
INOUT, RDBACK, or UPDAT), a series of GET or READ macros and then a
CLOSE macro.

Updating a Sequential Data Set

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following
rules apply:

• You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,
GET, and PUTX macro instructions.

Part 2: Data Management Processing Procedures 93

OPEN
LA

NEXTREC GET
LR
USING
AP
UNPK
PUT
LR
B

(INDATA"OUTDATA,(OUTPUT),ERRORDCB,(OUTPUT»
o ,GIVEAWAY Set up for first buffer
INDATA, (0) Substitute mode
2, 1 Pointer to next record
RECORD,2 Establish address of DSECT
NUMBER,=P'1'
COUNT ,NUMBER
OUTDATA,RECORD
0, 1
NEXTREC

Substi tute mode
Exchange work area

TAP ERROR SYNADAF ACSMETH=QSAM SYNAD routine is same

ENDJOB CLOSE

DS
GIVEAWAY DS
NUMBER DC
INDATA DCB

OUTDATA DCB

DSECT

as in previous example
(INDATA"OUTDATA"ERRORDCE)

OD
CLSO
PL4'-'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GT),BFTEK=E,BFALN=D,

EROPT=ACC,SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PT),BFTEK=E,BFALN=D,

EROPT=ACC

C

C

RECORD
COUNT
RESTOFIT

DS CL6
DS CL44

Figure 44. Creating a Sequential Data Set-Substitute Mode, Exchange Buffering

• You cannot use chained scheduling.

• You cannot delete any record or change its length; you cannot add new records.

• The data set must be on a direct-access device.

A record must be retrieved by a READ or GET macro instruction before it can be
updated by a WRITE or PUTX macro instruction. A WRITE or PUTX macro
instruction does not need to be issued after each READ or GET macro instruction. The
READ and WRITE macro instructions must be execute forms that refer to the same
DECB; the DECB must be provided by the list forms of the READ or WRITE macro
instructions. (The execute and list forms of the READ and WRITE macro instructions
are described in OS/VSl Data Management Macro Instructions.)

Updating With Overlapped Operations: To overlap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. You
cannot overlap read with write operations, however, as operations of one type are started
or resumed. Note that each concurrent read or write operation requires a separate
channel program and a separate DECB. If a single DECB were used for successive read
operations, only the last record read could be updated.

In Figure 54, overlap is achieved by having a read or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF =E and MF =L.

Extend~ng a Sequential Data Set

If you want to add records at the end·of your data set, you must open the data set for , I output with DISP=MOD specified in the DD statement, or the EXTEND option
specified in the OPEN macro. You c~n then issue PUT or WRITE macros to the data set.

94 OS/VS 1 Data Management Services Guide

(

(

Determining the Length 0/ a Record When Using the BSAM
READ Macro

DCB

When you read a sequential data set, you can determine the length of the record in one
of the following four ways, depending upon the record format of the data set:

• For fixed-length, unblocked records, the length of all records is the value in the
DCBBLKSI field of the DCB.

• For variable-length records, the block descriptor word in the record contains the
length of the record.

• For fixed-length blocked or undefined-length records, the following method can be
used to calculate the.block length. (This method should not be used when reading
track overflow records on a device with the rotational position sensing (RPS) feature
or when using chained scheduling on any device. The length of a record cannot be
determined when using chained scheduling.) After checking the DECB for the READ
request but before issuing any subsequent data management macro instructions that
specify the DCB for the READ request, obtain the lOB address from the DECB. The
lOB address can be loaded from the location 16 bytes from the start of the DECB.

Obtain the residual count from the channel status word (CSW) that has been stored in
the ~nput/output block (lOB). The residual count is in the halfword 14 bytes from the
start of the lOB. Subtract this residual count from the number of data bytes requested
to be read by the READ macro instruction. If "S" was coded as the length parameter
of the READ macro instruction, the number of bytes requested is the value of .
DCBBLKSI at the time the READ was issued. If the length was coded in the READ
macro instruction, this value is the number of data bytes and it is contained in the
halfword 6 bytes from the beginning of the DECB. The result of the subtraction is the
length of the block read. See Figure 45.

OPEN(DCB,(INPUT))
LA
USING

READ
READ

CHECK
LH
L
SH

CHECK
LH
L
SH

MVC
READ

CHECK
LH
L
SH

DCB
DCBD

DCBR,DCB
IHADCB,DCBR

DECB1,SF,DCB,AREA1, IS'
DECB2,SF,DCB,AREA2,SO

DECB1
WORK 1 , DCBBLKS I
WORK2,DECB1+16
WORK1 , 14(WORK2)

DECB2
WORK1,DECB2+6
WORK2,DECB2+16
WORK 1 , 1 4 (WORK2)

DCBBLKSI,LENGTH3
'DECB3,SF,DCB,AREA3

DECB3
WORI<1,LENGTH3
WORK2,DECB+16
WORK1 , 14(WORK2)

... RECFM=U,NCP=2, ...

Block size at time of READ
lOB addr~ss
WORK 1 has block length

Length requested
lOB address
WORK 1 has block length

Length to be read

Block size at time of READ
lOB address
WORK 1 has block length

Figure 45. One Method of Determining the Length of the Record When Using BSAM to Read Undefined-Length Records

Part 2: Data Management Processing Procedures 95

• For undefined-length records, the LRECL operand should be omitted; the actual
length can be supplied dynamically in a READ/WRITE macro instruction. (This
method should not be used when reading track overflow records on a -device with the (
rotational position sensing (RPS) feature or when using chained scheduling on any'
device.) When an undefined-length record is read, the actual length of the record is
returned by the system in the DCBLRECL field of the data control block.

Writing a Short Block When Using the BSAM WRITE Macro

When you are writing blocks for a sequential data set, you can change the length of a
block if you have fixed-blocked record format. The DCB block size field (DCBBLKSI)
can be changed to specify a block size that is shorter than what was originally specified
for the data set. The DCBBLKSI field must be changed before issuing the WRITE macro
instruction and must be a multiple of the LRECL parameter in the DCB. Any
subsequent WRITE macro instructions issued will write records with the new block
length untii the block size is changed again. The DCB block size field should not be
changed to specify a block size that is greater than what was originally specified for the
data set.

Processi.ng a Partitioned Data Set
A partitioned data set can be stored only on a direct-access device. It is divided into
sequentially organized members, each made up of one or more records (see Figure 46).
Each member has a unique name, 1 to 8 characters long, stored in a directory that is part
of the data set. The records. of a given member are stored or retrieved sequentially.

The main advantage of using a partitioned data set is that you can retrieve any individual
member once the data set is opened without searching the entire data set. For example, a
program library can be stored as a partitioned data set, each member of which is a (
separate program or subroutine. The individual members can be added or deleted as ~
required. When a member is deleted, the member name is removed from the directory,
but the space used by the member cannot be reused until the data set is reorganized.

Directory
Records

Entry for
Member A

I Entry for I Entry for
Member 8 I Member C

Member K

Member A

Figure 46. A Partitioned Data Set

96 OS/VS 1 Data Management Services Guide

Entry for
Member K

Member 8

Member A

Member K

Space from
Deleted
Member

Available
Area

(

The directory, a series of records at the beginning of the data set, contains an entry for
each member. Each directory entry contains the member name and the starting location
of the member within the data set, as shown in Figure 46. IIi addition, you can specify up
to 62 characters of information in the entry. The directory entries are arranged in
alphameric collating sequence by name.

The track address of each member is re~orded by the system as a relative track address
within the data set rather than as an absolute track address. Thus, an entire data set can
be moved without changing the relative track addresses in the directory. The data set can
be considered as one continuous set of tracks regardless of how the space was actually
allocated.

If there is not sufficient space available in the directory for an additional entry, or not
enough space available within the data set for an additional member, no new members
can be stored.

Partitioned Data Set Directory

Count

D
Bytes

Key

The directory of a partitioned data set occupies the beginning of the area allocated to the
data set on a direct-access volume. It is searched and maintained by the FIND and
STOW macro instructions. The directory consists of member entries arranged in
ascending order according to the binary value of the member name or alias.

Member entries vary in length and are blocked into 256-byte blocks. Each block
contains as many complete entries as will fit in a maximum of 254 bytes; any remaining
bytes are left unused and are ignored. Each directory block contains a 2-byte count field
that specifies the number of active bytes in a block (including the count field). As shown
in Figure 47, each block is preceded by a hardware-defined key field containing the
name of the last member entry in the block, that is, the "member name with the highest
binary value.

Each member entry contains a member name or alias. There can be as many as 16 aliases
for each member. Each entry also contains the relative track address of the member and
a count field, asshown in Figure 48. In addition, it may contain a user data field. The last
entry in the last directory block has a name field of maximum binary value-allIs.

NAME
specifies the member name or alias. It contains up to 8 alphameric characters,
left-justified and padded with blanks if necessary.

TTR
is a pointer to the first block of the member; TT is the number of the track, relative to
the beginning of the data set, and R is the number of the block, relative to the
beginning of that track.

Note: This pointer is created by adding 1 to the TTR for the last block of the
previous member (which is an end-of-file mark). If track TT is full, the next block will
begin at record 1 of track TT + 1, and the pointer will.be updated accordingly. The
control program finds the block by searching in multitrack. mode using TT(R-l) as a

Data
Name of
Last
Entry in
Block

Number of '
Bytes Used
(Maximum

256)

Member Member
Entry A Entry B

Member
Entry N

Unused

'--y---/
8

'-- ~~------_________________ ~ ____________________ JI
---y_. V

2 2~

Figure 47. A Partitioned Data Set Directory Block

Part 2: Data Management Processing Procedures 97

Member
Name

8

Pointer to
First Record
of Member

TTR

Bits

Optional User Da
C

I TTRN I I TTRN TTRN
......
~~-'~,~--------------~~---------

, " 0-31 halfwords
'- " (Maximum 62 bytes)

1 If Number of Number of User
Name is an User Data Data Halfwords

Alias TTRNs

o 1-2 3-7

Figure 48. A Partitioned Data Set Directory Entry

c
search argument.

specifies the number of halfwords. contained in the user data field. It may also contain
additional information about the user data field, as shown below:

Bits o '-2 3-7

I I
o when set to 1, indicates that the NAME field contains an alias.

1-2 specifies the number of pointers to locations within the member.

A maximum of three pointers is allowed in the user data field. Additional pointers
may be contained in a record referred to as a note list, discussed below. The
pointers can be updated automatically if the data set is moved or copied by a utility
program such as IEHMOVE. The data set must be marked unmovable under the
following conditions:

• More than three pointers are used in the user data field.

• The pointers in the user data field or note list do not conform to the standard
format.

• The pointers are not placed first in the user data field.

• Any direct access address (absolute or relative) is embedded in any data blocks
or in another data set that refers to this data set.

3-7 contains a binary value indicating the number of halfwords of user data. This
number must include the space used by pointers in the user data field.

98 OS/VS 1 Data Management Services Guide

(

You can use the user data field to provide variable data as input to the STOW macro
instruction. If pointers to locations within the member are provided, they must be 4 bytes
long and placed first in the user data field. The user data field format is as follows:

User Data

I HRN I HRN I HRN I Optional

TI is the relative track address of the note list or area to which you are pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional pointers contained in a
note list pointed to by the TIR. If the pointer is not to a note list, N=O.

A note list consists of additional pointers to blocks within the same member of a
partitioned data set. You can divide a member into subgroups and store a pointer to the
beginning of each subgroup in the note list. The member may be a load module
containing many control sections (CSECTs), each CSECT being a subgroup pointed to
by an entry in the note list. You get the pointer to the beginning of the subgroup by
using the NOTE macro instruction after you write the first record of the subgroup.
Remember that the pointer to the first record of the member is stored in the directory
entry by the system.

If the existence of a note list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility program such as
IEHMOVE. Each 4-byte entry in the note list has the following format:

I HRX I
TT is the relative track address of the area to which you are pointing.

R is the relative block number on that track.

X is available for any use.

To place the note list in the partitioned data set, you must use the WRITE macro
instruction. After checking the write operation, use the NOTE macro instruction to
determine the address of the list and place that address. in the user data field of the
directory entry.

Process;ng a Member of a Partitioned Data Set

Because a member of a partitioned data set is sequentially organized, it is processed in
the same manner as a sequential data set. Either the basic 0'1' queued access technique
can be used. However, you cannot alter the directory when using the queued technique.

To locate a m.ember or to process the directory, several macro instructions are provided
by the operating system. The BLDL macro instruction can be used to structure a list of
directory entries in virtual storage; the FIND macro instruct!on locates a member of the
data set for subsequent processing; the STOW macro instruction adds, deletes, replaces,
or changes a member name in the directory. To use these macro instructions, you must
specify DSORG=PO or POD in the DCB macro instruction. Before issuing a FIND,
BLDL, or STOW macro instruction, you must check all preceding input/output
operations for completion.

Part 2: Data Management Processing Procedures 99

BLDL-Construct a Directory Entry List

The BLDL macro instruction is used to place directory information in virtual storage.
The data is placed in a build list, which you construct before the BLDL macro instruction
is issued. The format of the list is similar to that of the directory. For each member name
in the list, the system supplies the address of the member and any additional information
contained in the directory entry. Note that if there is more than one member name in the
list, the member names must be in collating sequence regardless of whether the members
are from the same library or from different libraries. .

You can optimize retrieval time by directing a subsequent FIND macro instruction to the
build list rather than the directory to locate the member to be processed.

The build list, as shown in Figure 49, must be preceded by a 4-byte list description that
indicates the number of entries in the list and the length of each entry (12 to 76 bytes).
The first 8 bytes of each entry contain the member name or alias. The next 6 bytes must
be available to contain the starting address of the member plus some control data. If
there is no user data entry, only the TTR and C fields are required. If additional
information is to be supplied from the directory, up to 62 bytes can be reserved.

FIND-Position to a Member

list
Description FFLL

To determine the starting address of a specific member, you must issue a FIND macro
instruction. The system places the correct address in the data control block so that a
subsequent input or output operation begins processing at that point.

There are two ways you can direct the system to the right member when you use the
FIND macro instruction: specify the address of an area containing the name of the
member or specify the address of the TTR field of the entry in a build list you have
created by using the BLDL macro instruction. In the first case, the system searches the
directory of the data set for the relative track address; in the second case, no search is
required because the relative track address is in the build list entry.

(Each entry starts on halfword boundary)

I I

Filled i~ by BLDL

Member TTR K Z C ' '-User Data
words) Name (C) (3) (1) (1) (1) (C Half

) -- -
-

Programmer Supplies:
F F Number of member entries in list.
LL Even number giving byte length of each entry (minimum of 12).

Member name Eight bytes, left-justified.

BLDL Supplies:
TTR Member starting location.

K If on~y data set = O. If concatenation = number.
Not required if no user data.

Z Source of directory entry. Private library = O.
link library = 1. Job or step library = 2.
Not required if no user data.

C Same C field from directory. Gives number of user data halfwords.
User data As much as will fit in entry.

Figure 49. Build List Format

100 OS/VSl Data Management Services Guide

(

(

If you want to process only one member, you can process it as a sequential data set
(DSORG=PS) using either BSAM or QSAM. You indicate the name of the member you
want tQ process and the name of the partitioned data set'in the DSNAME parameter of
the DD statement. When you open the data set, the system places the starting address in
the data control block so that a subsequent GET or READ macro instruction begins
processing at that point. You cannot use the FIND, BLDL, or STOW macro instructions
when you are processing one member as a sequential data set.

STOW-Update the Directory

When you add several members to a partitioned data set, you must issue a STOW macro
instruction after writing each member so that an entry for each one will be added to the
directory. To use the STOW macro instruction, DSORG=PO or POU must be specified
in the DCB macro instruction.

You can also use the STOW macro instruction to delete, replace, or change a member
name in the directory, as well as to store additional information with the directory entry.
Since an alias can also be stored in the directory the same way, you should be consistent
in altering all names associated with a given member. For example, if you replace a
member, you must delete related alias entries or change them so that they point to the
new member.

If you add only one member to a partitioned data set and indicate the member name in
the DSNAME parameter of the DD statement, it is not necessary for you to use BPAM
and a STOW macro instruction in your program. If you wish to do so, you may use
BP AM and STOW, or BSAM or QSAM. If you use a sequential access method, or if you
use BP AM and issue a CLOSE macro instruction without issuing a STOW macro
instruction, the system will issue a STOW macro instr.uction using the member name you

I have specified on the DD statement. When the system issues the STOW, the directory
entry that is added is the minimum length (12 bytes). This automatic STOW macro
instruction will not be issued if the CLOSE macro instruction is a TYPE=T. The DISP
parameter on the DD statement determines what directory action parameter will be
chosen by the system for the STOW macro instruction.

If DISP=NEW or MOD was specified, a STOW macro instruction with the add option
will be issued. If the member name on the DD statement is not pre'sent in the data set
directory, it will be added. If the member name is already present in the directory, the
task will be abnormally terminated.

If DISP=OLD was specified, a· STOW macro instruction with the replace option will be
issued. The member name will be inserted into the directory, either as an addition if the
name is not already present or as a replacement if the name is present.

Thus, with an existing data set, you should use DISP=OLD to force a member into the
data set; you should use DISP=MOD to add members with protection against the
accidental destruction of an existing member.

Creating a Partitioned Data Set

If you have no need to add entries to the directory, that is, the STOW and BLDL macro
instructions will not be used, you can create a new data set and write the first member as
follows (see Figure 50):

• Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

• Indicate in the DD statement that the data is to be stored as a member of a new
partitioned data set, that is, DSNAME=name (membername) and DISP=NEW.

• Request space for the member and the directory in the DD statement.

Part 2: Data Management Processing Procedures 101

//PDSDD

OUTDCB

DD

DCB

• Process the member with an OPEN macro instruction, a series of PUT or WRITE
macro instructions, and then a CLOSE macro instruction. A STOW macro instruction
is issued automatically when the data set is closed.

As a result of these steps, the data set and its directory are created, the records of the
member are written, and a 12-byte entry is made in the directory.

To add additional members to the data set, follow the same procedure. However, a
separate DD statement (with the space request omitted) is required for each member.
The disposition should be specified as modify, DISP=MOD. The data set must be closed
and reopened each time a new member is specified.

To take full advantage of the STOW macro instruction, and thus the BLDL and FIND
macro instructions in future processing, you can provide additional information with each
directory:entry. You do this by using the basic access technique, which also allows you to
process more than one member without closing and reopening the data set, as follows
(see Figure 51): '

• Request space in the DD statement for the members and the directory.

• Define DSORG=PO or DSORG=POU in the DCB macro instruction.

• Use WRITE and CHECK to write and check the member records.

• Use NOTE to note the location of any note list written within the member, if there is
a note list.

---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(100,5,7)),
DISP=(NEW,KEEP)

--,DSORG=PS,DDNAME=PDSDD,---

C

OPEN (OUTDCB, (OUTPUT))
PUT [or WRITE]

CLOSE (OUTDCB) Automatic Stow

Figure 50. Creating One Member of a Partitioned Data Set

102 OS/VS 1 Data Management Services Guide

(

(

//PDSDD

OUTDCB

*

*

*
*

*
*

DD

DCB
OPEN
WRITE
CHECK

WRITE
CHECK

NOTE
ST

WRITE
CHECK
NOTE
ST
STOW

--,DSNAME=MASTFILE,SPACE=(TRK,(100,5,7)),DISP=MOD

--,DSORG=PO,DDNAME=PDSDD,-­
(OUTDCB,(OUTPUT))
** Wri te and check first record of member.

The system will supply the relative
track address for the directory entry.
Wr i te and check remaining records of
member.

If you are dividing the member into
subgroups, note the location of the first
record in subgroup, storing pointer
in note list.
Wri te note list at end of member.

Note location of note list, storing
pointer in list for STOW.
Enter information in directory for
this member after all records and note
lists are written.

Repeat from ** for each additional member

CLOSE (OUTDCB)

Figure 51. Creating Members of a Partitioned Data Set Using STOW

• When all the member records have been written, issue a STOW macro instruction to
enter the member name, its location pointer, and any additional data in the directory.

• Continue to write, check, note, and stow until all the members of the data set and the
directory entries have been written.

Retrieving a Member 0/ a Partitioned Data Set

To retrieve a specific member from a partitioned data set, either the basic or queued
access technique can be used as follows (see Figure 52):

• Code DSORG=PS or DSORG=PSU in the DCB macro instruction.

• Indicate in the DD statement that the data is a member of an existing partitioned data
set by coding DSNAME=name(membername) and DISP=OLD.

• Process the mem\?er with a,n OPEN macro instruction, a series of GET and READ
macro instructions, and then a CLOSE macro instruction.

//PDSDD DD --,DSNAME=MASTFILE(MEMBERK),DISP=OLD

INDCB . 'DCB -- , DSORG=PS, DDNAME=PDSDD,--
OPEN (INDCB) Automatic Find
GET (or READ)
CLOSE (INDCB)

Figure 52. Retrieving One Member of a Partitioned Data Set

When your program is executed, the directory is searched automatically and the location
of the member is placed in the DCB.

To process several members without closing and reopening, or to take advantage of
additional data in the directory, this technique should be used (see Figure 5"3):

• Code DSORG=PO or POU in the DCB macro instruction.

Part 2: Data Management Processing Procedures 103

• Build a list (BLDL) of needed member entries from the directory.

• Indicate in the DD statement the data set name of the partitioned data set by coding
DSNAME=name and DISP=OLD.

• Use the FIND or POINT macro instruction to prepare for reading the member
records.

• The records may be read from the beginning of the member, or a note list may be read
first, to obtain additional locations that point to subcategories within the member.

• Read (and check) the records until all those required have been processed.

• Point to additional categories, if required, and read the records.

• Repeat this procedure for each member to be retrieved.

//PDSDD

INDCB

DD

DCB
OPEN
BLDL

--,DSNAME=MASTFILE,DISP=OLD

--,DSORG=PO,DDNAME=PDSDD,-­
(INDCB)

Build a list of selected member names
in virtual storage.

FIND (or POINT)
**Read note list.

READ
CHECK
POINT
READ
CHECK

Repeat from ** for each additional member.

CLOSE (INDCB)

Locate subgroup by using note list.

Read member records.

Figure 53. Retrieving Several Members of a Partitioned Data Set Using BLDL, FIND, and POINT

Updating a Member of a Partitioned Data Set

Updating in Place

A member of a partitioned data set can be updated in place, or can be deleted and
rewritten as a new member.

When you update in place, you read records, process them, and write them back to their
original positions without destroying the remaining records on the track. The following
rules apply:

• You must specify the update option (UPDAT) in the OPEN macro instruction. To
perform the update, you can use only the READ, WRITE, CHECK, NOTE, POINT,
FIND, and BLDL macro instructions.

• You cannot update concatenated partitioned data sets.

• You cannot use chained scheduling.

• You ~annot delete any record or change its length; you cannot add new records.

A record must be retrieved by a READ macro instruction before it can be updated by a
WRITE macro instruction. Both macro instructions must be execute forms that refer to
the same DECB; the DECB must be provided by a 'list form. (The execute and list forms
of the READ and WRITE macro instructions are described in OS/VSl Data
Management Macro Instructions.)

104 OS/VS 1 Data Management Services Guide

(

(

Updating With QSAM: You can update a member of a partitioned data set using the
locate mode of QSAM (DCB specifies MACRF=PL) and using the PUTX macro
instruction. The DD statement must specify the data set and member name in the
DSNAME parameter. This method allows only the updating of the member specified in
the DD statement.

Updating With Overlapped Operations: To over].ap input/output and CPU activity, you
can start several read or write operations before checking the first for completion. You
cannot overlap read and write operations, however, as operations of one type must be
checked for completion before operations of the other type are started or resumed. Note
that each concurrent read or write operation requires a separate channel program and a
separate DECB. If a single DECB were used for successive read operations, only the last
record read could be updated.

In Figure 54, overlap is achieved by having a read or write request outstanding while
each record is being processed. Note the use of the execute and list forms of the READ
and WRITE macro instructions, identified by the operands MF =E and MF =L.

Rewriting a Member

There is no actual update option that can be used to add,or extend records in a
partitioned data set. If you want to extend or add a record within a member, you must
rewrite the complete member in another area of the data set. Since space is allocated
when the data set is created, there is no need to request additional space. Note, however,
that a partitioned data set must be contained on orie volume. If sufficient space has not

/ /PDSDD DD DSNAME=MASTFILE(MEMBERK),DISP=OLD,---

UPDATDCB DCB
READ
READ

DSORG=PS,DDNAME=PDSDD,MACRF=(R,W),NC~=2,EODAD=FINISH
DECBA,SF,UPDATDCB,AREAA,MF=L Define DECBA

AREAA
AREAB

DS
DS

DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB
Define buffers

OPEN
LA
LA

READRECD READ
NEXTRECD READ

CHECK

(UPDATDCB,UPDAT)
2,DECBA
3,DECBB
(2) , SF , MF=E
(3) , SF , MF=E
(2)

(If update is required, branch to R2UPDATE)

LR
LR
LR
B

4,3
3,2
2,4
NEXTRECD

Open for update
Load DECB addresses

Read a record
Read the next record
Check previous read operation

If no update is required,
swi tch DECB addresses in
registers 2 and 3
and loop

In the follOWing statements, HR2" and HR3" refer to the records that were read using the DECBs whose addresses are in
registers 2 and 3, respectively. Either register may point to either DECBA or DECBB .

R2UPDATE CALL UPDATE, ((2))
CHECK (3)
WRITE (2),SF,MF=E
(If R3 requires an update, branch to R3UPDATE)
CHECK (2)
B READRECD

R3UPDATECALL UPDATE,«3))
WRITE (3),SF,MF=E
CHECK (2)
CHECK (3)
B READRECD

FINISH CLOSE (UPDATDCB)

Figure 54. Updating a Member of a Partitioned Data Set

. Call routine to update R2
Check read for next record (R3)
Wri te updated R2

If R3 requires no update, check
wri te for R2 and loop
Call routine to update R3
Write updated R3
Check write for R2
Check write for R3
Loop
End-of-Data exit routine

Part 2: Data Management Processiqg Procedures 105

been allocated, the data set must be reorganized by the IEBCOPY utility program.

When you rewrite the member, you must provide two DCBs, one for input and one for (, ,."
output. Both DCB macro instructions can refer to the same data set, that is, only one DD
statement is required.

You can reflect the change in location of the member either automatically, by indicating
a disposition of OLD, or by using the STOW macro instruction. Although the old
member is, in effect, deleted, its space cannot be reused until the. data set is reorganized.

Processing an Indexed Sequential Data Set
The organization of an indexed sequential data set allows you a great deal of flexibility in
the operations you can perform. The data set can be read or written sequentially,
individual records can be processed in any order, records can be deleted, and new
records can be added. The system automatically locates the proper position in the data
set·for new records and makes any necessary adjustments when records are deleted.
However, when accessing an indexed sequential data set, the key of user control blocks
and user storage must be in the same protection key as that specified in the TCB
(TCBPKF).

The queued access technique must be used to create an indexed sequential data set. It
can also be used to sequentially process or update the data set and to add records to the
end of the data set. The basic access technique can be used to insert new records
between records already in the data set and to update the data set directly.

Indexed Sequential Data Set Organization

The records in an indexed sequential data set are arranged according to collating
sequence by a key field in each record. Each block of records is preceded by a key field
that corresponds to the key of the last record in the block.

An indexed sequential data set resides on direct-access storage devices and can occupy
up to three different areas:

• Prime Area-This area, also called the prime data area, contains data records and
related track indexes. It exists for all indexed sequential data sets.

• Overflow Area-This area contains records that overflow from the prime area when
new data records are added. It is optional.

• Index Area-This area contains master and cylinder indexes associated with the data
set. It exists for a data set that has a prime area occupying more than one cylinder.

The indexes of an indexed sequential data set ate analogous to the card catalog in a
library. For example, if the library user knows the name of the book or the author, he
can look in the card catalog and obtain a catalog number that will enable him to locate
the book in the book files. He would then go to the shelves and proceed through rows
until he found the shelf containing,the book. Usually each row contains a sign to indicate
the beginning and ending numbers of all books in that particular row. Thus, as he
proceeded through the rows, he would compare the catalog number obtained from the
index with the numbers posted on each row. Upon locating the proper row, he would
then search that row for the shelf that contained the book. Then he would look at the
individual book numbers on that shelf until he found the particular book.

106 OS/VS 1 Data Management Services Guide

(

Prime Area

Index Areas

~ 100

Data
10

Data
150

ISAM uses the indexes in much the same way to locate records in an indexed sequential
data set.

As the records are written in the prime area of the data set, the system accounts for the
records contained on each track in a track index area. Each entry in the track index
identifies the key of the last record on each track. There is a track index for each cylinder
in the data set. If more than one cylinder is used, the system develops a higher-level
index called a cylinder index. Each entry in the cylinder index identifies the key of the
last record in the cylinder. To increase the speed of searching the cylinder index, you can
request that a master index be developed for a specified number of cylinders, as shown
in Figure 55.

Rather than reorganize the whole data set when records are added, you can request that
space be allocated f~r addition~l records in an overflow area.

Records are written in the prime area when the data set is created or updated. The last
track of prime data is reserved for an end-of-file mark. The portion of Figure 55 labeled
Cylinder 1 illustrates the initial structure of the prime area. Although the prime area can
extend across several noncontiguous areas of the volume, all the records are written in
key sequence. Each record must contain a key; the system automatically writes the key
of the highest .record before each block.

When the ABSTR option of the SPACE parameter of the DD statement is used to
generate a multivolume prime area, the VTOC of the second volume and on all
succeeding volumes must be contained within cylinder 0 of the volume.

The operating system generates track and cylinder indexes automatically. Up to three
levels of master indexes are created if requested.

Master Index

I 450 I 900 2000
1

Cylinder Index

200 300 375 450

500 600 700 900

..
1000 1200 15~0 2000

Cylinder 1 ~ Cylinder 11 Cylinder 12

Track
1

1500
;

1
2000 100 200 200·

Index
~

Data Data Data Prime
20 40 100 Data

Data Data Data Prime
175 190 200· Data

Overflow

Figure 55. Indexed Sequential Data Set Organization

Part 2: Data Management Processing Procedures 107

Track Index: This is the lowest level of index and is always present. There is one track
index for each cylinder in the prime area; it is written on the first track(s) of the cylinder
that -it indexes. .

The index consists of a series of paired entries, that is, of a normal entry and an overflow
entry for each prime track. For fixed-length records, each normal entry (and also
DCBFIRSH) points to either record 0 or the first prime record on a shared track. For
variable-length records, the normal entry contains the key of the highest record on the
track and the address of the last record on the track. The overflow entry is originally the
same as the normal entry. (This is why 100 appears twice on the track index for
cylinder 1 in Figure 55.) The overflow entry is changed when records are added to the
data set. Then the overflow entry contains the key of the highest overflow record and the
address of the lowest overflow record logically associated with the track. Figure 56
shows the format of a track index.

If all the tracks allocated for the prime data area are not used, the index entries for the
unused ones are flagged as inactive. The last entry of each track index is a dummy entry
indicating the end of the index. When fixed-length record format has been specified, the
remainder of the last track of each cylinder used for a track index contains prime data
records if there is room for them.

Each index entry has the same format. It is an unblocked, fixed-length record consisting
of a count, a key, and a data area. The length of the key corresponds to the length of the
key area in the record to which it points. The data area is always 10 bytes long. It
contains the full address of the track or record to which the index points, as well as the
level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a cylinder index
entry. There is one cylinder index for a data 'set, each entry of which points to a track
index. Since there is one track index per cylinder, there is one cylinder index entry for
each cylinder in the prime data area, except in the case of a I-cylinder prime area. As
with track indexes, inactive entries are created for any unused cylinders in the prime data
area.

Normal/Overflow
Pair

Normal/Overflow
Pair

,,----------------~~----------------~,,~--------------~~----------------~,

Normal
Entry

Overflow
Entry

Normal Overflow
Entry Entry

f,----".~----..., ,.~---...,..~----~, ,.~---...,..~---~,,.,---~~----~,

Key 1 Data2 Key3 Data4 Key1 Data2 Key3 Data4

1 Normal key = key of the highest record on the prime data track

2Normal data = address of the prime data track

30verflow key = key of the higheit overflow record logically associated with the prime data track

40verflow data = address of the lowest overflow record logically associated with the prime data track

Notes:

~

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries .
• This figure is a logical representation only; that is, it makes no attempt to show the physical size .of track index entries.

Figure 56. Format of Track Index Entries

-108 OS/VS 1 Data Management Services Guide

(

(

(

Overflow Areas

Master Index: As an optional feature, the operating system creates, at your request, a
master index. The presence of this index makes long, serial searches through a large,
cylinder index unnecessary.

You can specify the conditions under which you want a master index created. For
example, if you have specified NTM=3 and OPTCD=M in your DCB macro instruction,
a master index is created when the cylinder index ex<teeds 3 tracks. The master index
consists of one entry for each track of cylinder index. If your data set is extremely large,
a higher-level master index is created when the first-level master index exceeds three
tracks. This higher-level master index consists of one entry for each track of the
first-level master index. This procedure can be repeated for as many as three levels of
master index.

As records are added to an indexed sequential data set, space is required to contain those
records that will not fit on the prime data track on which they belong. You can request
that a number of tracks be set aside as a cylinder overflow area to contain overflows
from prime tracks in each cylinder. An advantage of using cylinder overflow areas is a
reduction of search time required to locate overflow records. A disadvantage is that there
will be unused space if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can request an independent
overflow area. Overflow from anywhere in the prime data area is placed in a specified
number of cylinders reserved solely for overflow records. An advantage of having an
independent overflow area is a reduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow records in an
independent area.

If you request both cylinder overflow and independent overflow, the cylinder overflow
area is used first. It is a good practice to request cylinder overflow areas large enough to
contain a reasonable number of additional records and an independent overflow area to
be used as the cylinder overflow areas are filled.

Adding Records to an Indexed Sequential Data Set

Either the queued access technique or the basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted between records
already in the data set must be inserted by the basic access method using WRITE KN
(key new). Records added to the end of a da~a set, that is, records with successively
higher keys, may be added to the prime data area or the overflow area by the basic
access method using WRITE KN, or they may be added to the prime data area by the
queued access technique using the PUT macro instruction.

Inserting New Records into an Existing Indexed Sequential Data Set

As you add records to an indexed sequential data set, the system inserts each record in its
proper sequence according to the record key. The. remaining records on the track are
then moved up one position each. If the last record does not fit on the track, it is written
in the first available location in the overflow area. A lO-byte link field is added to the
record put in the overflow area to connect it logically to the correct track. The proper
adjustments are made to the track index entries. This procedure is illustrated in
Figure 57.

Subsequent additions are written either on the prime track or as part of the overflow
chain from that track. If the addition belongs after the last prime record on a track but
before a previous overflow record from that track, it is written in the first available
location in the overflow area. Its link field contains the address of the next record in the
chain.

Part 2: Data Management Processing Procedures 109

Initial Format

Add Records
25 and 101

Add Records
26 and 199

100

10

150

10

101

10

101

Track
1

Track
1

Overflow Entry

20

175

20

150

200

20

150

Track
2

Track
Index

40 100
Prime
Data

190 200

Overflow

Track
Index

25 40
Prime
Data

175 190

Overflow

Track
Index

26
Prime

I 25

Data

190 J ___ ~75 ________ _

Overflow

Figure 57. Adding Records to an Indexed Sequential Data Set

Adding New Records to the End of an Indexed Sequential Data Set

Records added to the end of a data set, that is, records with successively higher keys,
may be added by the basic access method using WRITE KN (key new), or by the queued
access method using the PUT macro instruction (resume load). In either case records
may be added to the prime data area.

When you use the WRITE KN macro instruction, the record being added is placed in the
prime data area only if there is room for it on the prime data track containing the record
with the highest key currently in the data set. If there is not sufficient room on that track,
the record is placed in the overflow area and linked to that prime track even though
additional prime data tracks originally allocated have not been filled.

When you use the PUT macro instruction (resume load), records are added to the prime
data area until the space originally alloca,ted is filled. Once this allocated prime area is
filled, you can add records to the data set using WRITE KN, in which case they will be

110 OS/VSl Data Management Services Guide

(

~

(

placed in the overflow area. Resume load is discussed in more detail later under
"Creating an Indexed Sequential Data Set."

In order to add records with successively higher keys using the PUT macro instruction
(resume load):

• The key of any record to be added must be higher than the highest key currently in
the data set.

I. The DD statement must specify DISP=MOD, or the EXTEND option must be
specified in the OPEN macro instruction.

• The data set must have been successfully closed when it was created or when records
were previously added using the PUT macro instruction.

You may continue to add fixed-length records in this manner until the original space
allocated for prime data is exhausted.

When you add records to an indexed sequential data set using the PUT macro instruction
(resume load), new entries are also made in the indexes. During resume load on a data
set with a partially filled track and/or a partially filled cylinder, the track index entry
and/ or the cylinder index entry is overlaid when the track or cylinder is filled. If resume
load abnormally terminates after these index entries have been overlaid, a subsequent
resume load will get a sequence check when adding a key that is higher than the highest
key at the last successful CLOSE but lower than the key in the overlaid index entry.
When the SYNAD exit is taken for a sequence check, register 0 contains the address of
the highest key of the data set.

Maintaining an Indexed. Sequential Data Set

An indexed sequential data set must be reorganized occasionally for two reasons:

• The overflow area will eventually be filled.

• Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data set and on your
timing and storage requirements. There are two ways you can accomplish reorganization:

• You can reorganize the data set in two passes by writing it sequentially into another
area of direct-access storage or magnetic tape and then recreating it in the original
area.

• You can reorganize the data set in one pass by writing it directly into another area of
direct-access storage. In this case, the area occupied by the original data set cannot be
used by the reorganized data set.

The operating system maintains statistics that are pertinent to reorganization. The
statistics, written on the direct-access volume and available in the DCB for checking,
include the number of cylinder overflow areas, the number of unused tracks in the
independent overflow area, and the number of references to overflow ~ecords other than
the first. They appear in the RORG 1, RORG2, and RORG3 fields of the DCB.

t

If you indicate when creating or updating the data set that you want to be able to flag
records for deletion during updating, you can set the delete code (the first byte of a
fixed-length record or the fifth byte of a variable-length record) to X'FF'. If a flagged
record is forced off its prime track during a subsequent update, it will not be rewritten in
the overflow area, as shown in Figure 58, unless it has the highest key on that cylinder.
Similarly, when you process sequentially, flagged records are not retrieved for processing.
During direct processing, flagged records are retrieved like any other records, and you
should check them for the delete code.

Part 2: Data Management Processing Procedures 111

Fixed Length

Variable
Length

Initial Format

Record 100 is
marked for deletion
and record 25 is
added to the
data set

Note that to use the delete option, RKP must be greater than 0 for fixed-length records
and greater than 4 for variable-length records.

Key Data

I ~X'F_FI~i ____ ~--~ __ ~l
I

Delete Code

Key Data

Delete Code

10 20 40 100

150 175 190 200

10 20 25 40

150 175 190 200

Figure 58. Deleting Records From an Indexed Sequential Data Set

112 OS/VSl Data Management Services Guide

(

~

(

Indexed Sequential Buffer and Work Area Requirements

The only case in which you will ever have to compute the buffer length (BUFL)
requirements for your program is when you use the BUILD or GETPOOL macro
instruction to construct the buffer area. If you are creating an indexed sequential data set
(using the PUT macro instruction), each buffer must be 8 bytes longer than the blocksize
to allow for the hardware count field, that is:

Buffer length = 8 + Blocksize

I
(8) Data

.~ ______ ~~ ____________ (_B_L_K_SI_Z_E_) ____________ ~
~~--------------------- Buffer---------------------

One exception to this formula arises when you are dealing with an unblocked format-F
record whose key field precedes the data field; its relative key position is 0 (RKP=O). In
that case the key length must also be added~ that is:

Buffer length = 8 + Key length + Record length

(8)
Key

(KEYLEN)
Data

(LRECL)

.... ...----------- Buffer -----------I~~

The buffer requirements for using the queued access technique to read or update (using
the GET or PUTX macro instruction) an indexed sequential data set are discussed
below.

For fixed-length unblocked records when both the key and data are to be read and for
variable-length unblocked records, padding is added so that the data will be on a
doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Blocksize

Key
Padding

Link Data

(KEYLEN) (10) (BLKSIZE)

...... ----------- Buffer ----------.-.. ..

For fixed-length unblocked records when only data is to be read:

Buffer length = 16 + LRECL

Padding Link Data
(6) (10) (LRECL)

.... _---------- Buffer-----------t~~

Part 2: Data Management Processing Procedures 113

For fixed-length blocked records:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) (BLKSIZE)

Buffer------------........

For variable-length blocked records, padding is 2 if the buffer starts on a fullword
boundary that is not also a double word boundary or 6 if the buffer starts on a
doubleword boundary, that is:

Buffer length = 12 or 16 + Blocksize

Link Data
Padding (10) (BLKSIZE)

...... _---------- Buffer----------.......

If you are using the input data set with fixed-length, unblocked records as a basis for
creating a new data set, a work area is required.

The size of the work area is given by:

Work area = Key length + Record length

Key
Data

(LRECL)

"'~-----------Work Area--------...... ~ ...

If you are reading only the data portion of fixed-length unblocked records or
variable-length records, the work area is the same size as the record, that is:

Work area = Record length

Data
(LRECL)

Work Area ---------........

When you use the basic access technique to update records in an indexed sequential data
set, the key length field need not be considered in determining your buffer requirements.
The area for fixed-length records m:ust be:

Buffer length = 16 + Blocksize

Padding Link Data
(6) (10) (BLKSIZE)

... 4----------- Buffer ----------~

114 OS/VSl Data Management Services Guide

(

(

For variable-length records, padding is 2 if the buffer starts on a fullword boundary that
is not also a doubleword boundary or 6 if a buffer starts on a doubleword boundary.
Thus, the area must be:

Buffer length = 12 or 16 + Blocksize

Padding
Link
(10)

Data
(BLKSIZE)

.... ~-----------Buffer----------... _~

You can speed up the process of adding fixed-length or variable-length records to a data
set by using the MSW A parameter of the DCB macro instruction to provide a special
work area for the operating system. The size of the work area (SMSW parameter in the
DeB) must be large enough to contain a full track of data, the count fields of each block,
and the work space for inserting the new record.

The size of the work area needed varies according to the record format and the device
type. You can calculate it during execution using device-dependent information obtained
with the DEVTYPE macro instruction and data set information from the DSCB obtained
with the OBTAIN macro instruction. The DEVTYPE and OBTAIN macro instructions
are discussed in OS/VSl Data Management for System Programmers.

Note that you can use the DEVTYPE macro instruction only if the index and prime areas
are on devices of the same type or if the index area is on a device with a larger track
capacity than that of the device containing the prime area. If you are not trying to
maintain device independence, you may precalculate the size of the work area needed
and specify it in the SMSW field of the DeB macro instruction. The maximum value for
SMSW is 65,535.

For calculating the size of.the work area, refer to the storage device capacities shown in
Figure 66 under "Estimating Space Requirements" and the device overhead formulas
given in the same section.

For fixed-length blocked records, SMSW is calculated as follows:

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN

The formula for fixed-length unblocked records is

SMSW = HIRPD(KEY!--EN + LRECL + 8) + 2

The value for HIRPD is in the index (format-2) DSCB.' OS';VSl System Data Areas
shows the exact location of this field in the index DSCB. If you don't use the MSW A and
SMSW parameters, the control program supplies a work area using the formula
BLKSIZE + LRECL + KEYLEN.

For variable-length records, SMSW may be calculated by one of two methods. The first
method may lead to faster processing although it may require more storage t~an the
second method. '

I

The first method is as follows:

SMSW = HIRfD(BLKSIZE + 8) + LRECL + KEYLEN + 10

The second method is as follows:

SMSW =(Track Capacity-Bn + 1)(BLKSIZE)+8(HIRPD)+ LRECL+ KEYLEN + 1 0+ (RE~-N-KEYLEN)
Bi

In all of the above formulas, the terms BLKSIZE, LRECL, KEYLEN, and SMSW are
the same as the parameters in the DeB macro instruction. REM is the remainder of the

Part 2: Data Management Processing Procedures t t 5

division operation in the formula and N is the first constant in the Bi formulas described
in Figure 67. (REM-N-KEYLEN) is added only if it is positive. The second method
yields a minimum value for SMSW. Therefore, the first method is va~d only if its (
application results in a value higher than the value that would be derived from the second .
method. If neither MSW A nor SMSW is specified, the control program supplies the work
area for variable-length records, using the second method to calculate the size.

Another technique to increase the speed of processing is to provide space in virtual
storage for the highest-level index. To specify the address of this area, use the MSHI
operand of the DCB. When the address of this area is specified, you must also specify its
size, which you can do by using the SMSI operand of the DCB. The maximum value for
SMSI is 65,535. If you do not use this technique, the index on the volume must be
searched.

The size of the storage area (SMSI parameter) varies. To allocate that space during
execution, you can find the size of the high-level index in the DCBNCRHI field of the
DCB dupng Y9ur DCB exit routine or after the data set is open. Use the DCBD macro
instruction to gain access to the DCBNCRHI field (see "Modifying the Data Control
Block" in Part O. You can also find the size of the high-level index in the DS2NOBYT
field of the index (format 2) DSCB, but you must use the utility program IEHLIST to
print the information in the DSCB. You can calculate the size of the storage area
required for the high-level index by using the formula

SMSI = (Number of Tracks)(Number of Entries) (Key Length + 10)
in High-Level Index per Track

The formula for calculating the number of tracks in the high-level index is in the section
"Calculating Space Requirements for an Indexed Sequential Data Set" in Part 3. When a
data set is shared and has the DCB integrity feature (DISP=SHR), the high-level index
in storage is not updated when DCB fields are changed.

Controlling an Indexed Sequential Data Set Device

An indexed sequential data set is processed sequentially or directly. Direct processing is
accomplished by the basic access technique. Because you provide the key for the record
you want read or written, all device control is handled automatically by the system. If
you are processing the data set sequentially, using the queued access technique, the
device is automatically positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several separate sections of the
data set. You do this by using the SETL macro instruction, which directs the system to
begin sequential retrieval at the record having a specific key. The processing of
succeeding records is the same as for normal sequential processing, except that you must
recognize when the last desired record has been processed. At this point, issue the
ESETL macro instruction to terminate sequential processing. You can then begin
processing at another point in the data set.

SETL-Specify Start of Sequential Retrieval

The SETL macro instfuction enables you to retrieve records starting at the beginning of
an indexed sequential data set or at any point in the data set. Processing that is to start at
a point other than the beginning can be requested in the form of a record key, a key class
(key prefix), or an actual address of a prime data record. ,

The key class concept is useful because you d<? not have to know the whole key of the
first record to be processed. A key class comprises all of the keys that begin with
identical characters. The key class is defined by specifying the desired characters of the
key class at the address specified in the lower-limit operand of the SETL macro and
setting the remaining characters to the right of the key class to binary zeros.

116 OS/VS 1 Data Management Services Guide

To use actual addresses, you must keep an account of where the records were written
when the data set was created. The device address of the block containing the recorp just
processed by a PUT -move macro instruction is availaQle in the 8-byte data control block
field DCBLPDA. For blocked records the address is the same for each record in the
block.

Normally, when a data set is created with the delete option specified, deleted records
cannot be retrieved using the QISAM retrieval mode. When the delete option is not
specified in the DCB, the SETL macro options function as follows:

SETL B - Start at first record in the data s~t

SETL K - Start with record, having the specified key

SETL KH - Start with fecord whose key is equal to or higher than the specified key

SETL KC - Start with first record having a key that falls into the specified key class

SETL I - Start with the record found at the specified direct-access address in the
prime area of the data set

Because the DCBOPTCD field in the DCB can be changed after the data set is created
(by respecifying the OPTCD in the DCB or DD card), it is possible to retrieve deleted
records. In this case, SETL functions as noted above.

When the delete option is specified in the. DCB, the SETL macro options function as
follows:

SETL B - Start retrieval at first nondeleted record in the data set

SETL K - Start retrieval at record matching the specified key if that record is not
deleted. If the record is deleted, an NRF (no record found) indication is set
in the DCBEXCD field of the DCB, and SYNAD is given control

SETL KH - Start with first nondeleted record whose key is equal to or higher than the
specified key

SETL KG - Start with first nondeleted record having a key that falls into the specified
key class or follows the specified key class

SETL I - Start with first nondeleted record following the specified direct-access
address

With the delete option not specified, QISAM retrieves and handl~s records marked for
deletion like nondeleted records.

Note: Regardless of the SETL or delete option specified, the NRF condition will be
posted in the DCBEXCD field of the DCB, and SYNAD is given control if the key or
key class: .

• Is higher than any key or key class in the data set

• Does not have a matching key or key class in the data set

ESETL--End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving records from an
indexed sequential data set. A new scan limit can then be set, or processing terminated.
An end-of-data-set indication automatically terminates retrieval. An ESETL macro
instruction must be executed before another SETL macro instruction (described above)
using the same DCB is executed.

Note: An ESETL macro instruction should be executed before another SETL macro
instruction if the previous SETL macro instruction completed with an error.

Part 2: Data Management Processing'Procedures 117

Creating an Indexed Sequential Data Set

You can create ail indexed sequential data set in one step or in several steps. You can (' C

create the data set either by writing all records in a single step or by writing one group of
records in one step and writing additional groups of records in subsequent steps. Writing
records in subsequent steps is resume loading. When using either one step or several
steps, you must present the records for writing in ascending order by key.

To create an indexed sequential data set by the one-step method, you should proceed as
follows:

• 'Code DSORG=IS or DSORG=ISU and MACRF=PM or MACRF=PL in the DCB
macro instruction.

• Specify in the DD statement the DCB attributes DSORG=IS or DSORG=ISU, record
length (LRECL), blocksize (BLKSIZE), record format (RECFM), key length
(KEYLEN), relative key position (RKP), options required (OPTCD), cylinder
overflow (CYLOFL), and the number of tracks for a master index (NTM). Specify
space requirements with the SPACE parameter. To reuse previously allocated space,
omit the SPACE parameter and code DISP=(OLD, KEEP).

• Open the data set for output.

• Use the PUT macro instruction to place all the records or blocks on the direct-access
volume.

• Close the data set.

The records that compose a newly created data set must be presented for writing in
ascending order by key. You can merge two or more input data sets. If you want a data
set with no records (a null data set), you must write at least one record when you create
the data set. You can subsequently delete this record to achieve the null data set. (

If records are blocked, you should not write a 1-byte record with the hexadecimal value
FF. This value is used for padding; if it occurs as the last record of a block, the record
cannot be retrieved.

When creating an indexed sequential data set, a procedure called loading, you can
improve performance by using the full-track-index-write option. You do this by
specifying OPTCD= U in the DCB. This causes the operating system to accumulate
track-index entries in virtual storage. Note that the full-track-index-write option can be
used only for fixed-length records.

If you do not specify this option, the operating system writes each normal-overflow pair
of entries for the track index after the associated prime data track has been written. If
you specify this option, the operating system accumulates track-index entries in virtual
storage until either there are enough entries to fill a track or end-of -data or
end-of-cylinder is reached. Then the operating system writes these entries as a group,
writing one group for each track of track index. This option requires allocation of more
storage space (the space in which the track-index entries are gathered), but the number
of 110 operations required to write the index can be significantly decreased.

When you specify the full-track-index-write option, the track index entries are written as
fixed-length unblocked records. If·a large enough area of virtual storage is not available,
the entries are written as they are created, that is, in normal-overflow pairs.

Once an indexed sequential data set has been created, its characteristics cannot be
changed. However, for added flexibility, the system allows you to retrieve records using
either the queued access technique with simple buffering, or the basic access technique ("
with dynamic buffering.

t t 8 OS/VS 1 Data Management Services Guide

IIINDEXDD DD
II

IIINPUTDD DD

ISLOAD START

DCBD
ISLOAD CSECT

OPEN
NEXTREC GET

LR
PUT
B

CHECKERR L
USING
TM
BO
TM
BO
TM
BO

Rest of error checking
Error routine

Tape-to-Disk-Indexed Sequential Data Set: The example in Figure 59 shows the
creation of an indexed sequential data set from an input tape containing 60-character
records. The key by which the data set is organized is in positions 20-29. The output
records will be an exact image of the input, except that the records will be blocked. One
track per cylinder is to be reserved for cylinder overflow. Master indexes are to be built
when the cylinder index exceeds six tracks. Reorganization information about the status
of the cylinder overflow areas is to be maintained by the system. The delete option will
be used during any future updating.

To create an indexed sequential data set in more than one step, create the first group of
records using the one step method described above. This first section must contain at
least one data record. The remaining records can then be added to the end of the data set
in subsequent steps using resume load. Each group to be added must contain records
with successively higher keys: This method allows you to create the indexed sequential
data set in several short time periods rather than in a single long one.

This method also allows you to provide limited recovery from uncorrectable output
errors. When an uncorrectable output error is detected, do not attempt to continue
processing or to close the data set. If you have provided a SYNAD routine, itshould
issue the ABEND macro instruction to terminate processing. If no SYNAD routine is
provided, the control program will terminate your processing. If the error shows that
space in which to add the record was not found, you must close the data set; issuing
subsequent PUT macro instructions can cause unpredictable results. You should begin
recovery at the record following the end of the data as of the last successful close. The
rerun time is limited to that necessary to add the new records, rather than to that
necessary to recreate the whole data set.

When you extend an indexed sequential data set with resume load, the disposition
parameter of the DD statement must specify MOD. To ensure that the necessary control
information is in the DSCB before attempting to add records, you should at least qpen

DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=240,CYLOFL=1,
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19,
KEYLEN=10),UNIT=3330,SPACE=(CYL,25"CONTIG),---

o

DSORG=IS

(IPDATA"ISDATA,(OUTPUT))
IPDATA Locate mode

C
C

0,1
ISDATA,(O)

Address bf l!'ecord in register
Move mode

NEXTREC

3,=A(ISDATA)
IHADCB,3
DCBEXCD 1 ., X ' 04 '
OPERR
DCBEXCD1 , X' 20'
NOSPACE
DCBEXCD2,X'80'
SEQCHK

Ini tialize base for errors

Uncorrectable error

Space not found

Record out of sequence

End of job routine (EODAD FOR IPDATA)
IPDATA DCB
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR

Figure 59. Creating an Indexed Sequential Data Set

Part 2: Data Management Processing Procedures 119

and close the data set successfully on a version of the system that includes resume load.
This need be done only if the data set was created on a previous version of the system.
Records may be added to the data set by resume load until the space allocated for prime (
data in the first step has been filled.

During resume load on a data set with a partially filled track and! or a partially filled
. cylinder, the track index entry and/or the cylinder index entry is overlaid when the track

or cylinder is filled. If resume load abnormally terminates after these index entries have
been overlaid, a subsequent. resume load will result in a sequence check when it adds a
key that is higher than the highest key at the last successful CLOSE but lower than the
key in the overlaid index entry. When the SYNAD exit is taken for a sequence check,
register 0 contains the address of the high key of the data set.

During resume load processing for variable-length records, the new records will be
loaded on the next' sequential prime data track. The end of the old data set may have a
partially filled track.

Retrieving and Updating an Indexed Sequential Data Set

Sequential Retrieval and Update

To sequentially retrieve and update records in an indexed sequential data set:

• Code DSORG=IS or DSORG=ISU to agree with what you specified when you
created the data set, and MACRF=GL, MACRF=SK, or MACRF=PU in the DCB
macro instruction.

• Code a DD statement for retrieving the data set. The data set characteristics and
options are as defined when the data set was cre",ted.

• Open the data set.

• Set the beginning of sequential retrieval (SETL).

• Retrieve records and process as required, marking records for deletion as required.

• Return records to the data set.

• Use ESETL to end sequential retrieval as required and reset the starting point.

• Close the data set to end all retrieval.

Sequential Updates-Indexed Sequential Data Set: Assume that, using the data set .
created in the previous example, you are to retrieve all records beginning with 915.
Those records with a date (positions 13-16) before today's date are to be deleted. The
date is in the standard form as returned by the system in response to the TIME macro
instruction, that is, packed decimal OOyyddds. Overflow records can be logically deleted
even though they cannot be physically deleted from the data set.

One way to solve this problem is shown in Figure 60.

DireCt Retrieval and Update

By using the basic indexed sequential access method (BISAM) to process an indexed
sequential data set, you can make direct references to the records in the data set for the
purpose of:

• Direct retrieval of a record by its key

• Direct update of a record

• Direct insertion of new records

120 OS/VS 1 Data Management Services Guide

~

j/INDEXDD DD DSNAME=SLATE.DICT,---

ISRETR START 0
DCBD DSORG=IS

ISRETR CSECT

USING IHADCB,3
LA 3, ISDATA
OPEN (ISDATA)
SETL ISDATA,KC,KEYADDR Set scan limit
TIME Today's date in register
ST 1, TODAY

NEXTREC' GET ISDATA Locate mode
CLC 19(10, 1) , LIMIT
BNL ENDJOB
CP 12 (4, 1), TODAY Compare for old date
BNL NEXTREC
MVI O(1), X' FF' Flag old record for deletion
PUTX ISDATA Return delete record
B NEXTREC

TODAY DS F
KEYADDR DC C'91S' Key prefix

DC XL7'O' Key padding
LIMIT DC C'916'

DC XL7'O'

CHECKERR
Test DCBEXCDI and DCBEXDE2 for error indication
Error Routines

ENDJOB CLOSE (ISDATA)

ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU)~ C

SYNAD=CHECKRR

Figure 60. Sequentially Updating an Indexed Sequential Data Set

Because the operations are direct, there can be no anticipatory buffering. However, the
system provides dynamic buffering each time a read request is made, if specified.

To ensure that the requested record is in virtual storage before you start processing, you
,must issue a WAIT or CHECK macro instruction. If you issue aWAIT macro
instruction, you must test the exception code field of the DECB. If you issue a CHECK
macro instruction, the system tests the exception oode field in the DECB. If an error
analysis routine has not been, specified and a CHECK is issued, the program is
abnormally terminated with a system completion code X'OOl'. In either case, if you wish
to determine whether the record is an overflow record, you should test the exception
code field of the DECB.

After you test the exception code field of the DECB, you need not set it to O. If you have
used a READ KU macro instruction and if you plan to use the same DECB again to
rewrite the updated record using a WRITE K macro instruction, you should not set the
field to O. If you do, your record may not be rewritten properly.

To update existing records, you must use the READ KU and WRITE K combination.
Because,READ KU implies that the record will be rewritten in the data set, the system
retains the'DECB and the buffer used in the READ KU and uses them when the record
is written. If you decide not to write the record, you should use the same DECB in
another read or write macro instruction or issue a FREEDBUF macro instruction if
dynamic buffering was used. If you issue several READ KU or WRITE K macro
instructions before checking the first one, you may destroy some of your updated records
unless the records are from different blocks.

Part 2: Data Management Processing Procedures \21

If there is the possibility that your task and another task will be simultaneously accessing
the same data set, or the same task has two or more DCBs opened for the same data set,
you should use the DCB integrity feature. You specify the DCB integrity feature by (
coding DISP=SHR in your DD statement. In this way you ensure that the DCB fields are
maintained for your program to process the data set correctly. If you do not use
DISP=SHR and more than one DCB is open for updating the data set, the results are
unpredicatable.

If you specify DISP=SHR, you must also issue an ENQ for the data set before each
input/ output request and a DEQupon completion of the request. All users of the data
set must use the same qname and rname operands for ENQ. For example, the users
might use the data set name as the qname operand. For more information about using
ENQ and DEQ, see OS/VSl Supervisor Services and Macro Instructions.

When you are using scan mode with QISAM and you want to issue PUTX, issue an ENQ
on the data set before processing it and a DEQ after processing is complete. ENQ must
be issued before the SETL macro instruction, and DEQ must be issued after the ESETL
macro instruction. When you are using BISAM to update the data set, do not modify any
DCB fields or issue a DEQ until you have issued CHECK or WAIT.

Sharing a BISAM DCB between Related Tasks: When a task using BISAM processes a
data set whose DCB is defined and opened by a related task, the task must issue an ENQ
on the DCB before an input/output request is issued and must issue a DEQ after the
WAIT or CHECK for the input/output request is issued. If the task does not enqueue
the DCB and any of its related tasks terminates abnormally, the task may enter a wait
state or a program check may occur. See OS/VSl Supervisor Services and Macro
Instructions for more information on the ENQ and DEQ macro instructions and on
multitasking.

No task should process an open BISAM DCB if any other task has used it and has
terminated. Otherwise, storage used by lOBs or other data areas may be freed by one
task which another task might try to reuse. WAITs or CHECKs may still be issued after
any of the other tasks has completed.

Direct Update With Exclusive Control-Indexed Sequential Data Set: In the example
shown in Figure 61, the previously described data set is to be updated directly with
transaction records on tape. The input tape records are 30 characters long, the key is in
positions 1-10, and the update information is in positions 11-30. The update information
replaces data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one task may be referring
to the data set at the same time. Notice that exclusive control is released after each block
is written to avoid tying up the data set until the update is completed.

Note the use of the FREEDBUF macro instruction in Figure 61. Usually, the
FREEDBUF macro instruction has two functions:

• To indicate to the ISAM routines that a record that has been read for update will not
be written back

• To free a dynamically obtained buffer

In Figure 61, since the read operation was unsuccessful, the FREEDBUF macro
instruction frees only the dynamically obtained buffer.

The first function of FREEDBUF allows you to read a record for update and then decide
not to update it without performing a WRITE for update. You can use this function even
when your READ macro instruction does not specify dynamic buffering, provided that
you have included S (for dynamic buffering) in the MACRF field of your READ DCB. (

122 OS/VSl Data Management Services Guide

~

//INDEXDD DD DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ...),---
//TAPEDD DD

ISUPDATE START 0

NEXTREC GET TPDATA,KEY
ENQ (RESOURCE,ELEMENT,E"SYSTEM)
READ DECBRW,KU,,'S' ,MF=E
WAIT ECB=DECBRW
TM DECBRW+24,X'FD' Test for any condition
BM RDCHECK but overflow
L 3,DECBRW+16 Pick up pointer to record
MVC 30(20,3), UPDATE Upda te record
WRITE DECBRW,K,M,F=E
WAIT ECB=DECBRW
TM DECBRW+24,X'FD' Any errors?
BM WRCHECK

'DEQ (RESOURCE,ELEMENT,SYSTEM)
B NEXTREC

RDCHECK TM DECBRW+24,X'80' No record found
BZ ERROR If not, go to error routine
FREEDBUF DECBRW,K,ISDATA Otherwise, free buffer
MVC AREA+19(L'KEY),KEY Key placed in positions 20-29
MVC AREA+38(L'UPDATE),UPDATE Updated information placed in

* positions 31-50 of record
WRITE DECBRW,KN"AREA-16, 's' ,MF=E Add record to file
WAIT ECB=DECBRW
TM DECBRW+24,X'FD' Test for errors
BM ERROR
DEQ (RESOUR~E,ELEMENT"SYSTEM) Release exclusive control
B NEXTREC
DS 4F BISAM WRITE KN work field

AREA DS 30C Logical record to be added
KEY DS CL10
UPDATE DS CL20
RESOURCE DC CL8'SLATE'
ELEMENT DC C'DICT'

READ DECBRW,KU,ISDATA,'S', 'S',KEY,MF=L
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA), C

MSHI=INDEX,SMSI=2000
TPDATA DCB
INDEX DS 2000C

Figure 61. Directly Updating an Indexed Sequential Qata Set

You can effect an automatic FREEDBUF simply by reusing the DECB, that is, by
issuing another READ or a WRITE KN to the same DECB. You should use this feature
whenever possible, since it is more efficient than FREEDBUF-. For example, in
Figure 61, the FREEDBUF macro instruction could be eliminated, since. the WRITE KN
addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records, you may make three
types of updates by using the basic access technique. You may read a record and write it
back with no change in its length, simply updating some part of the record. You do this
with a READ I\U followed by a WRITE K, the same way you update fixed-length
records. Two other methods for updating variable-length records use the WRITE KN
macro instruction and allow you to change the record length.

In one method, a record read for update (by a READ KU) may be updated in a manner
that will change the record length and then be written back with its new length by a
WRITE KN. In the second method, you may replace a record with another record having

Part 2: Data Management Processing Procedures 123

the same key and possibly a different length using the WRITE KN macro instruction. To
replace a record, it is not necessary to have first read the record.

In either method, when changing the record length, you must place the new length in the
.DECBLGTH field of the DECB before issuing the WRITE KN macro instruction. If you
use a WRITE KN macro instruction to update a variable-length record that has been
marked for deletion, the first bit (no record found) of the exceptional condition code
field (DECBEXC1) of the DECB is set on. If this condition is found, the record must be
written using a WRITE KN with nothing specified in the DECBLGTH field.

Do not try to use the DECBLGTH field to determine the length of a record read,
because DECBLGTH is for use with writing records, not reading them. If you are
reading fixed-length records, the length of the record read is in DCBLRECL, and if you
are reading variable-length records, the length is in the record descriptor word (ROW).

Direct Update-Indexed Sequential Data Set with Variable-Length Records: In Figure 62,
an indexed sequential data set with variable-length records is updated directly with
transaction records on tape. The transaction records are of variable length and each
contains a code identifying the type of transaction. Transaction code 1 indicates that an
existing record is to be replaced by one with the same key; 2 indicates that the record is
to be updated by appending additional information, thus changing the record length; 3 or
greater indicates that the record is to be updated with no change to its length. For this
example, the maximum record length of both data sets is 256 bytes. The key is in
positions 6-15 of the records in both data sets. The transaction code is in position 5 of
records on the transaction tape. The work area (REPLAREA) size is equal to the
maximum record length plus 16 bytes.

124 OS/VSl Data Management Services Guide

(

c

~

//INDEXDD DO
//TAPEDD DO

ISUPDVLR START

NEXTREC GET
CLI

*
BL
READ
CHECK
CLI
BH

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=1, ...),---

o

TPDATA,TRANAREA
TRANCODE,2

REPLACE
DECBRW,KU,,'S' ,IS' ,MF=E
DECBRW, DSORG=IS
TRANCODE,2
CHANGE

Determine if replacement or
other transaction
Branch if replacement
Read record for update
Check exceptional conditions
Determine if change or append
Branch if change

* CODE TO MOVE RECORD INTO REPLACEA+ 16 AND APPEND DATA FROM TRANSACTION
* RECORD

*

*

CHANGE

MVC

WRITE

CHECK
B

DECBRW+6(2),REPLAREA+16

DECBRW,KN"REPLAREA,MF=E

DECBRW,DSORG=IS
NEXTREC

Move new length from ROW
into DECBLGTH (DECB+6)
Rewri te record with changed
length

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

WRITE

*
CHECK
B

REPLACE MVC

*
WRITE

*
*

CHECK
B

CHECKERR

REPLAREA OS
TRANAREA OS
TRANCODE OS
KEY OS
TRANDATA OS

READ
ISDATA DCB
TPDATA DCB

DECBRW,K,MF=E

DECBRW, DSORG=IS
NEXTREC
DECBRW+6(2),TRANAREA

DECBRW,KN"TRANAREA-16,MF=E

DECBRW,DSORG=IS
NEXTREC

CL272
CL4
CL1
CL10
CL241

SYNAD routine

Rewr i te record with no
change of length

Move new length from ROW
in to DECBLGTH (DECB+6)
Write transaction record
as replacement for record
with the same key

DECBRW,KU,ISDATA, 'S','S',KEY,MF=L
DDNAME=INDEXDD,DSORG=IS,MACRF=(RUSC,WUAC),SYNAD=CHECKERR

Figure 62. Dire(>tly Updating an Indexed Sequential Data Set with Variable-Length Records

Part 2: Data Management Processing Procedures 125

Processing a Direct Data Set
In a direct data set, there is a relationship between a control number or identification of
each record and its location on the direct-access volume. This relationship allows you to
gain access to a record without an index search. You determine the actual organization of
the data set. If the data set has been carefully organized, location of a particular record
takes less time than with an indexed sequential data set.

Although you can process a direct data set sequentially using either the queued access
technique or the basic access technique, you cannot read record keys using the queued
access technique. When you use the basic access technique, each unit of data transmitted
between virtual storage and an 110 device is regarded by the system as a record. If, in
fact, it ,is a block, you must perform any blocking or deblocking required. For that
reason~ the LRECL field is not used when processing a direct data set. Only BLKSIZE
must be specified when you add or update records on a direct data set.

If dynamic buffering is specified for your direct data set, the system will provide a buffer
for your records. If dynamic buffering is not specified, you must provide a buffer for the
system to use.

As indicated in the discussion of direct-access devices, record keys are optional. If they
are specified, they must be used for every record and must be of a fixed length.

Organizing a Direct Data Set

In developing the organization of your data set, you can use direct addressing. When
direct addresses are used, the location of each record in the data set is known.

(

If format-F records with keys are being written, the key of each record can be used to
identify the record. For example, a data set with keys ranging from 0 to 4999 should be
allocated space for 5000 records. Each key relates directly to a location that you can ff
refer to as a relative record number. Therefore, each record should be assigned a unique "
key. If identical keys are used it is possible, during periods of high CPU and channel
activity, to skip the desired record and retrieve the next record on the track. The main
disadvantage of this type of organization is that records may not exist for many of the
keys even though space has been reserved for them.

Space could be allocated on the basis of the number of records in the data set rather than
on the range of keys. This type of organization requires the use of a cross-reference
table. When a record is written in the data set, you must note the physical location either
as an actual address or as a relative track and record number. The addresses must then be
stored in a table that is searched when a record is to be retrieved. Disadvantages are that
cross-referencing can be used efficiently only with a small data set, storage is required
for the table, and processing time is required for searching and updating the table.

A more common, but somewhat complex, technique for organizing the data set involves
the use of indirect addressing. In indirect addressing, the address of each record in the
data set is determined by a mathematical manipulation of the key. This manipulation is
referred to as randomizing or conversion. Since a number of randomizing procedures
could be used, no attempt is made h.ere to describe or explain those that might be most
appropriate for your data set.

126 OS/VSl Data Management Services Guide

(

Rete"in, to a Record in a Direct Data Set

Once you have determined how your data set is to be organized, you must consider how
the individual records will be referred to when the data set is updated or new records are
added. This is important for determining whether a return address will be required when
the data is created and, if so, in what form the return address will be used. The record
identification can be represented in any of the following forms:

Relative Block Address: You specify the relative location of the record (block) within the
data set as a 3-byte binary number. This type of reference can be used only with
format-F records. The system computes the actual track and record number. The relative
block address of the first block is O.

Relative Track Address: You specify the relative track as a 2-byte binary number and the
actual record number on that track as a I-byte binary number. The relative track address
of the first track is O.

Relative Track or Block Address and Actual Key: In addition to the relative track or block
address, you specify the address of a virtual-storage location containing the record key.
The system computes the actual track address and searches for the record with the
correct key.

Actual Address: You supply the actual address in the standard 8-byte
form-MBaCCHHR. Remember that the use of an actual address may force you to
indicate that the data set is unmovable.

Extended Search: You request that the system begin its search with a specified starting
location and continue for a certain number of records or tracks. This same option can be
used to request a search for unused space in which a record can be added.

To use the extended search option, you must indicate in the DCB the number of tracks
(including the starting track) or records (including the starting record) that are to be
searched. If you indicate a number of records, the system may actually examine more
than this number. In searching a track, the system searches the whole track (starting with
the first record); it therefore may examine records that precede the starting record or
follow the ending record.

If the DCB specifies a number equal to or greater than the number of tracks allocated to
the data set or the number of records within the data set, the entire data set is searched
in the attempt to satisfy your request.

Exclusive Control for Updating: When more than one task is referring to the same data
set, exclusive control of the block being updated is required to prevent simultaneous
reference to the sam~ record. Rather than issuing an ENQ macro instruction each time
you update a block, you can request exclusive control through the MACRF field of the
DCB and the type operand of the READ macro. The coding example in Figure 65
illustrates the use of exclusive control. After the READ macro instruction is executed,
your task has exclusive control of the block being updated. No other task in the system
requesting access to the block is given access until the operation started by your WRITE
macro is complete. If, however, the block is not to be written, you can release exclusive
control using the RELEX macro instruction.

Feedback Option: This option specifies that the system provide the address of the record
requested by a READ or WRITE macro instruction. This address may be in the same
form that wa!> presented to the system in the READ or WRITE macro instruction, or as
an 8-byte actual address. This option can be specified in the OPTCD parameter of the
DCB and in the READ or WRITE macro instruction. If this option is omitted from the
DCB but is requested in a READ or WRITE macro instruction, an 8-byte actual address
is returned to the user.

Part 2: Data Management Processing Procedures 127

The feedback option is automatically provided for a READ macro instruction requesting
exclusive control for updating. This feedback will be in the fOnTI of an actual address
(MBBCCHHR) unless feedback was specified in the OPTCD field of the DCB. In this
case, feedback is returned in the format of the addressing scheme used in the problem
program (an actual or a relative address). When a WRITE or RELEX macro instruction
is issued (which releases the exclusive control that was gotten for the READ request),
the system will assume that the addressing scheme used for the WRITE or RELEX
macro instruction is in the same format as the addressing scheme used for feedback in
the READ macro instruction.

Creating a Direct Data Set

Once the organization of a direct data set has been determined, the process of creating it
is almost identical to that of creating a sequential data set. The BSAM DCB macro
instruction should be used with the WRITE macro instruction (the form used to create a
direct data set). The following parameters must be specified in the DCB macro
instruction:

• DSORG=PS or PSD

• DEVD=DA or omitted

• MACRF=WL

The DD statement must indicate direct-access (DSORG=DA or DAD). If keys are used,
a key length (KEYLEN) must also be specified. Record length (LRECL) need not be
specified but may be used to provide compatibility with sequential access method
processing of this data set.

It is possible to create a direct data set using QSAM (no keys allowed) or BSAM (with
or without keys and the DCB specifies MACRF=W). However, this method is not
recommended because when you access this direct data set, you cannot request a
function which requires the information in the capacity record (RO) data field. For
example, the following restrictions would apply:

• Variable-length, undefined-length, or variable-length spanned record processing is not
allowed.

• The WRITE add function with extended search for fixed-length records (with or
without track overflow) is not allowed.

If a direct data set is created and updated or read within the same job step, and the
OPTCD parameter is used in the creation, updating, or reading of the data set, different
DCBs and DD statements should be used.

If you are using direct addressing with keys, you can reserve space for future format-F
records by writing a dummy record. To reserve or truncate a track for format-U or
format-V records, write a capacity record. The capacity record (RO) contains a 7-byte
data field (CCHHRLL) where CCHHR is the ID of the last record on the track, and LL
is the number of unused bytes on the track. If a WRITE SZ macro is issued for a track
with no records, R is zero and LL is the entire length of the track.

Format-F records are ,written sequentially as they are presented. When a track is filled,
the system automatically writes the capacity record and advances to the next track.
Because of the form in which relative track addresses are recorded, direct data sets
wnose records are to be identified by means other than actual address must be limited in
size to no more than 65,536 tracks for the entire data set.

(

Tape-to-Disk-Direct Data Set: In the example problem in Figure 63, a tape containing ~

204-byte records arranged in key sequence is used to create a direct data set. A 4-byte ,

128 OS/VSl Data Management Services Guide

binary key for each record ranges froti11000 to 8999, so space for 8000 records is
requested.

Adding or Updating Records on a Direct Data Set

IIDAOUTPUT DD
II
IITAPJ:.NPuT DD

DIRECT START

L
OPEN
LA

NEXTREC GET
LR

COMPARE C

* BNE
WRITE
CHECK
AH
B

DUMMY C
BH
WRITE
CHECK
AH
BR

INPUTEND LA
BR

ENDJOB CLOSE

DUMAREA DS
DALOAD DCB

TAPEDCB DCB

The techniques for adding records to a direct data set depend on the format of the
records and the organization used.

Format-F With Keys: Adding a record amounts to'essentially an update by record
identification. The reference to the record can be made by either a relative block address
or a relative track address.

If you attempt to add a record by relative block address, the system converts the address
to a relative track address. That track is searched and the new record written in place of
the first dummy record on the track. If there is no dummy record on the track, you are
informed that the write operation did not take place. If'you request the extended search
option, the new record will be written in place of the first dummy record found within
the search limits you specify. If none is found, you are notified that the write operation
could not take place. In the same way, a reference by relative track address causes the
record to be written in place of the first dummy record on that track or the first within
the search limits, if requested.

Format-F Without Keys: Here too, adding a record is really updating a dummy record
already in the data set. The main difference is that dummy records cannot be written
automatically when the data set is created. You will have to use your own method for
flagging dummy records. The update form of the WRITE macro instruction

DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA,
BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,8000),~--

9,=F'1000'
(DALOAD,(OUTPUT),TAPEDCB)
10,COMPARE
TAPEDCB
2, 1
9, O(2) Compare key. of input against

control number
DUMMY
DECB1,SF,DALOAD,(2) Wr i te data record
DECB1
9,=H'1 '
NEXTREC

C

9,=F'8999' Have 8000 records been written?
ENDJOB
DECB2,SD,DALOAD,DUMAREA Write dummy
DECB2
9,=H'1'
10
10,DUMMY
10
(TAPEDCB"DALOAD)

8F
DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT, C
DEVD=DA,SYNAD=CHECKER,---
EODAD=INPUTEND,MACRF=(GL),

Figure 63. Creating a Direct Data Set

Part 2: Data Management Processing Procedures 129

(MACRF=W) must be used rather than the add form (MACRF=WA).

You' will have to retrieve the record first (using a READ macro instruction), test for a
dummy record, update, and write.

Format-V or Format-U With Keys: The technique used to add records in this case
depends on whether records are located by indirect addressing or a cross-reference table.
If indirect addressing is used, you must at least initialize each track (write a capacity
record) even if no data is actually written. That way the capacity record indicates how
much space is available on the track. If a cross-reference table is used, you should
exhaust the input and then initialize enough succeeding tracks to contain any additions
that might be required.

To add a new record, use a relative track address. The system examines the capacity
record to :see if there is room on the track. If there is, the new record is written. Under
the extended search option, the record is written in the first available area within the
search limit. .

Format-V or Fonnat-U Without Keys: Because a record of this type does not have a key,
you can refer to the record only by its relative track or actual address (direct addressing
only). When you add a record to this data set, you must retain the relative track or a'ctual
address data (for example, by updating your cross-reference table). The extended search
option is not allowed because this option requires keys.

Tape-to-Disk Add-Direct Data Set: The example in Figure 64 involves adding records
to the data set created in the last example. Notice that the write operation adds the key
and the data record to the data set. If the existing record is not a dummy record, an
indication is returned in the exception code of the DECB. For that reason, it is better to
use the WAIT macro instruction instead of the CHECK macro instruction to test for
errors or exceptional conditions.

(

Tape-to-Disk Update-Direct Data Set: The example in Figure 65 is similar to that in [
Figure 64, but involves updating rather than adding. There is no check for dummy '"
records. The existing direct data set contains 25,000 records whose 5-byte keys range
from 00001 to 25000. Each data record is 100 bytes long. The first 30 characters are to

/ /DlRADD DD
/ /TAPEDD DD

DIRECTAD START

NEXTREC
OPEN
GET
L
SH
ST
WRITE
WAIT
CLC
BE

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT, (OUTPUT),TAPEIN)
TAPEIN,KEY
4,KEY . Set up relative record number
4,=H'1000'
4,REF
DECB,DA,DIRECT,DATA, 's' ,KEY,REF+1
ECB=DECB
DECB+1 (2), =X' 0000' Check for any errors
NEXTREC

Check error bits and take required action

DIRECT

TAPEIN
KEY
DATA
REF

DCB

DCB
DS
DS
DS

DDNAME=DlRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200,
MACRF=(WA)

F
CL200
F

Figure 64. Adding Records to a Direct Data Set

130 OS/VS 1 Data Management Services Guide

C

/ /DIRECTDD DD
/ /TAPINPUT DD

DIRUPDAT START

NEXTREC

KEYFIELD

KEY
DATA
REF
DIRECT

I
TAPEDCB

OPEN
GET
PACK
CVB
SH
ST
READ
CHECK
L
MVC
ST
WRITE
CHECK
B

DS
DC
DS
DS
DS
DCB

DCB

be updated. Each input tape record consists of a 5-byte key and a 30-byte data area.
Notice that only data is brought into virtual storage for updating.

Consideration for User Labels: User labels, if desired, must be created when the data set
is created. They may be updated, but not added or deleted, during processing of a direct
data set. When creating a multivolume direct data set using BSAM, you should turn off
the header exit entry after OPEN and turn on the trailer label exit entry just before
issuing the CLOSE. This eliminates the end-of-volume exits. The first volume, containing
the user label track, must be mounted when the data set is closed. If you have requested
exclusive control, OPEN and CLOSE will ENQ and DEQ to prevent simultaneous
reference to user labels.

Consideration for using the 2305 Fixed Head Storage: When a data set on a 2305 device
is to be used by several task~ simultaneously, or when overlapping I/O (successive
WRITEs issued without an intervening CHECK or WAIT) is used, the following
combination may produce overlaying of records:

• WRITE-add processing

• Fixed records with or without track overflow

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT, (UPDAT),TAPEDCB)
TAPEDCB,KEY
KEY, KEY
3,KEYFIELD
3, =H' 1 '
3,REF
DECBRD,DIX,DIRECT, 'S', IS' ,O,REF+1
DECBRD
3,DECBRD+12
O(30,3),DATA
3,DECBWR+12
DECBWR,DIX,DIRECT,'S' ,IS' ,O,REF+1
DECBWR
NEXTREC

OD'
XL3'O'
CL5
CL30 •
F
DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISXC,WIC),

OPTCD=RF,BUFNQ=1,BUFL=100

Figure 65. Updating a Direct Data Set

Part 2: Data Management Processing Proce<;tures 131

(

(

(

------~.---

PART 3: DATA SET DISPOSITION AND SPACE
ALLOCATION

Allocating Space on Direct-Access Volumes
When direct-access storage space is required for a data set, you specify the amount of
space needed and the device type, and the operating system selects the device and
allocates the space accordingly. This arrangement provides for flexible and efficient use
of devices and available storage space, and relieves you of considering the details
involved in efficient space control.

Before a direct-access volume can be used for data storage, it must be initialized by
either of the utility programs IBCDASDI or IEHDASDR. The utilities' functions include
in part:

• Creating the standard 80-byte volume label and writing it on cylinder 0, track 0, of
the volume.

• Initializing the volume table of contents (VTOC). The location of the VTOC depends
on the conventions your installation uses in initializing the volume.

• Writing the home address (HA) and capacity record (RO) for each track.

• Checking tracks and making alternate track assignments if necessary.

When the data set is to be stored on a direct-access volume, you must supply, in the DD
statement, control information designating the amount of space to be allocated and the
manner in which it is to be allocated.

Note: IEHDASDR and IBCDASDI cannot be used for an MSS 3330 virtual volume.
The Access Method Services utility, CREATEV, must be used. See OS/VS Mass
Storage System (MSS) Services for Space Management for a description of the
CREATEV command.

Specifying Space Requirements

The amount of space required can be specified in blocks, tracks, or cylinders. If you want
to maintain device independence, specify your space requirements in blocks. If your
request is in tracks or cylinders, you must be aware of such device considerations as
cylinder and track capacity.

Cylinder allocation allows faster input/output of sequential data sets than does track
allocation. Track allocation stops input/output at the end of every track to prevent
references on the same cylinder outside of the data set. The time difference occurs when
you use the sequential access method or the partitioned access method to read a data set
whose record format is not fixed standard (FS). If the data set is partitioned, the time
difference occurs during both loading of a module from the data ·sei and reading of the
data set's directory.

Allocation by Blocks: . When the amount of space required is expressed in blocks, you
must specify the number and average length of the blocks within the data set, as in this
eJalmple:

/ / DD SPACE=(300 I (5000, 100)), . . •

300 = average block length in bytes
5000 = primary quantity (number of blocks)

100 = secondary quantity, to be allocated if the primary quantity is not
sufficient (in blocks)

Part 3: Data Set Disposition and Space Allocation 133

Note that when average block length and secondary space allocation are being used, the
BLKSIZE parameter specified must be equal to the maximum block length.

From this information, the operating system estimates and allocates the number of tracks
required. Space is always in whole tracks. You may also request that the space allocated
for a specific number of blocks begin and end on cylinder boundaries.

You must be certain that both the quantity and the increment are large enough to contain
the largest block to be written. Otherwise, all of the space requested is allocated but
erased as the system tries to find a space large enough for the record.

Allocation by Tracks or Cylinders: The amount of space required can be expressed in
tracks or cylinders, as in these examples:

/ / DD SPACE=(TRK, (100,5)), •••
/ / DD SPACE=(CYL, (3,1)), .••

Allocation by Absolute Address: If the data set contains location-dependent information
in the form of an absolute track address (MBBCCHHR), space should be requested with
respect to the number of tracks and the beginning address, as in this example:

/ / DD SPACE=(ABSTR, (500,20)), UNIT=2314, ••.

where 500 tracks are required, beginning at relative track 20, which is cylinder 1, track O.

Allocation of Mass Storage System (MSS) Virtual Volumes: When the data set is to be
siored on an MSS virtual volume, a volume group (MSVGP) parameter may be specified
instead of using the SPACE parameter on the DD card. Before the MSVGP parameter
can be used, the volume group must be identified to MSS by the utility program
IDCAMS.

Allocation of MSS virtual volume space should be in multiples of cylinders with
secondary allocation a mUltiple of the primary to ensure maximum space usage and
minimum fragmentation.

Additional Space Allocation Options: The DD statement provides you with a great deal of
flexibility in specifying space requirements. These options are described in detail in
OS / VS 1 JCL Reference.

Estimating Space Requirements

To determine how much space your data set requires, you must consider these variables
for the device type:

• Track capacity

• Tracks per cylinder

• Cylinders per volume

• Data length (blocksize)

• Key length

• Device overhead

Figure 66 lists the physical characteristics of a number of direct-access storage devices.
"'

The term device overhead refers to the space required on each track for hardware data,
that is, address markers, count areas, gaps between records, record 0, etc. Device
overhead varies with each device and depends also on whether the blocks are written
with keys. To compute the aCtual space required for each block including device
overhead, you can use the formulas in Figure 67. Note that any fraction of a byte must
be ignored. For example, if the formula gives 15.644 bytes, you must allocate 15 bytes.

134 OS/VS 1 Data Management Services Guide

(

~

(
L

Maximum Number
Volume Block size Tracks per of Total

Device Type per Trackl Cylinder CyUnders2 Capacityl,2

2305-1 Drum 14136 8 48 5,428,224

2305-2 Drum 14660 8 96 11,258,880

2314/2319 Disk 7294 20 200 29,176,000

3330/33333

(Modell) Disk 13030 19 404 100,018,280

3330/3333
(Model 11) Disk 13030 19 808 200,036,560

3340/33444 Disk 8368 12 696
(70-megabytes) 69,889,536

348
(35-megabytes~ 34,944,768

3350 Disk 19069 30 555 317,498,850

1 Capacity indicated in bytes (when RO is used by the IBM programming system).
2 Excluding alternate cylinders.
3 The Mass Storage System (MSS) virtual volumes assume the characteristics of the 3330/3333, Modell.
4 The 3344 is functionally equivalent to the 3340 Model 70.

Figure 66. Direct-Access Storage Device Capacities

Bytes Required by Each Data Block

Track
Device Capacity Blocks With Keys Blocks Without Keys

2305-1 145681 634+KL+DL 432+DL

2305-2 148581 289+KL+DL 198+DL

2314/2319 7294 146+(KL+DL)534/5122 101+(DL)534/5123

3330/33334

(Modell 131651 191+KL+DL 135+DL
or 11)

3340/3344 85351 242+KL+DL 167+DL

3350 19254 267+KL+DL 185+DL

DL is data length.
KL is key length.

1 This value is different from the maximum block size per track because the formula for the last block on the track includes
an overhead for this device.

2 The formula for the last block on the track is 45+KL+DL.
3 The formula for the last block on the track is DL.
4 The Mass Storage System (MSS) virtual volumes assume the characteristics of the 3330/3333, Modell.

Figure 67. Direct-Access Device Overhead formulas

The formulas can be combined in the following way:

If you intend to specify your space requirements in tracks (TRK) or cylinders (CYL),
your estimate should be made as shown above. If you request absolute tracks (ABSTR),
remember that you cannot allocate track 0, cylinder O. The amount of space required for
the VTOC will reduce the space available on the rest of the volume.

If you specify your space requirements in average block length, the system performs the
computations for you.

Because a sequential data set and a direct data set are created in the same way, the
estimate and specification of space requirements are identical.· If you use the WRITE SZ
macro instruction,iyour secondary allocation for a direct data set should be at least 2
tracks. Space allo~ation for a partitioneq, data set requires that you also consider the
space used for the directory. Similarly, allocation for an indexed sequential data set

Part 3: Data Set Disposition and Space Allocation 135

requires that you consider the space needed for the prime area, index areas, and overflow
areas.

Allocating .Space lor a Partitioned Data Set

What is the average size of the members to be stored on your direct-access volume? How
many members will fit Qn the volume? Will you need directory entries for the member
names only or will aliases be used? How many? Will members be added .or replaced
frequently? All of these questions must be answered if you are to estimate your space
requirements accurately and use the space efficiently. Note, too, that a partitioned data
set cannot extend beyond one volume.

If your data set will be quite large, Or you expect to do a lot of updating, it might be best
to allocate a full volume. If it will be small or seldom subject to change, you should make
your·estimate as accurate as possible to avoid wasted space or wasted time used for
recreating the data set.

If the average member length is close to or less than the track length, the most efficient
use of the direct-access storage space may be made with a block size of 1/3 or 1/2 the
track length. For load modules, the linkage editor ighores the specified maximum block
size and uses the maximum block size for the device .. Program fetch always ignores
BLKSIZE. It may be a good practice to indicate a block length equal to track capacity,
for example, BLKSIZE=7294 for a 2314 disk. You might then ask for either 100 tracks,
or·5 cylinders, thus allowing for 729,400 bytes of data.

Assuming an average length of 70,000 bytes for each member, you need space for at
least 10 directory entries. If each member also has an average of three aliases, space for
an additional 30 directory entries is required~

Space for the directory is expressed in 256-byte blocks. Each block contains from 3 to
20 entries, depending on the length of the user data field. If you expect 40 directory
entries, request at least 8 blocks. Any unused space on the last track of the directory is
wasted unless there is enough space left to contain a block of the first member.
Therefore, the most advisable request in this case would be for 17 blocks.

Any of the following space specifications would cause the same size allocation for a 2314
disk:

SPACE=(7294,(100,,10»

. SP ACE= (CYL,(5" 1 0»

SP ACE= (TRK,(1 00" 10»

Although a secondary allocation increment has been omitted in these examples, it could
have been supplied to provide for extension of the member area. The directory size,
however, cannot be extended.

Allocating Space lor an Indexed Sequential Data Set

An indexed seque~tial data set has three areas: prime, index, and overflow. Space for
these areas can be subdivided and allocated as follows:

• Prime area-If you request a prime area only, the system automatically uses a portion
of that space for indexes, taking one· cylinder at a time as needed. Any unused space
in the last cylinder used for index will be allocated as an independent overflow area.
More than one volume can be used in most cases, but all volumes must be for devices
of the same device type.

• Index area-You can request that a separate area be allocated to contain your .
cylinder and master indexes. The index area must be contained within one vplume, but

136 OS/VSl Data Management Services Guide

(

this volume can be on a device of a different type than the one that contains the prime
area volume. If a separate index area is requested, you cannot catalog the data set with
a DD statement.

If the total space occupied by the prime area and index area does not exceed one
volume, you can request that the separate index area be embedded in the prime area
(to reduce access arm movement) by indicating an index size in the SPACE parameter
of the DD statement defining the prime area.

If you request space for prime and index areas only, the system automatically uses any
space remaining on the last cylinder used for master and cylinder indexes for overflow,
provided the index area is on a device of the same type as the prime area.

• Overflow area-Although you can request an independent overflow area, it must be
contained within one volume. If no specific request for index area is made, then it will
be allocated from the specified independent overflow area.

To request that a designated number of tracks on each cylinder be used for cylinder
overflow records, you must us~ the CYLOFL parameter of the DCB macro
instruction. The number of tracks that you can use on each cylinder equals the total
number of tracks on the cylinder minus the number of tracks needed for track index
and for prime data, that is:

Usable tracks = total tracks - (track index tracks + prime data tracks)

Note that when you create a I-cylinder data set, ISAM reserves 1 track on the last
cylinder for the end-of-file filemark.

When you request space for an indexed sequential data set, the DD statement must
follow a number of conventions, as shown below and summarized in Figure 68.

• Space can be requested only in cylinders, SPACE=(CYL,(. ..)), or absolute tracks,
SPACE=(ABSTR,(. ..)). If the absolute track technique is used, the designated tracks
must make up a whole number of cylinders.

• Data set organization (DSORG) must be specified as indexed sequential (IS or ISU)
in both the DCB macro instruction and the DCB parameter of the DD statement.

• All required volumes must be mounted when the data set is opened; that is, volume
mounting cannot be deferred.

• If your prime area extends beyond one volume, you must indicate the number of units
and volumes to be spanned, for example, UNIT = (23I4,3),VOLUME=(,,,3).

• You can catalog the data set using the DD statement parameter DISP=(,CATLG)"
only if the entire data set is defined by one DD statement; that is, if you did not
request a separate index or independent overflow area.

Part 3: Data Set Disposition and Space Allocation 137

Criteria Restrictions on Resulting
Unit Types and Arrangement

I. Number 2. Types 3. Index Number of Units of Areas
ofDD ofDD Size Requested
Statements Statements Coded?

INDEX None Separate index, prime,
PRIME and overflow areas.
OVFLOW

2 INDEX None Separate index and prime
PRIME areas. Any partially used

index cylinder is used for
independent overflow if the
index and prime areas are
on the same type of device.

2 PRIME No None Prime area and overflow
OVFLOW area with an index at its

end.

2 PRIME Yes The statement Prime area and embedded
OVFLOW defining the prime index, and overflow area.

area cannot request
more than one unit.

PRIME No None Prime area with index at
its end. Any partially
used index cylinder
is used for independent
overflow.

PRIME Yes Statement cannot Prime area with embedded
request mote than index area; independent
one unit. overflow in remainder of

partially used index
cylinder

Figure 68. Requests for Indexed Sequential Data Sets

As your data set is created, the operating system builds the track indexes· in the prime
data area. Unless you request a separate index area or an embedded index area, the
cylinder and master indexes are built in the independent overflow area. If you did ,not
request an independent overflow area, the cylinder and master indexes are built in the
prime area.

If an error is encountered during allocation of a multivolume data set, the IEHPROGM
utility program should be used to scratch the DSCBs of the data sets that were
successfully allocated. The IEHLIST utility program can be used to determine whether or
not part of the data set has been allocated. The IEHLIST utility program is also useful to
determine whether space is available or whether identically named data sets exist before
space allocation is attempted for indexed sequential data sets. These utility programs are
described in OS/VS Utilities.

Specifying a Prime Data Area

To request that the system allocate space and subdivide it as required, you should code:

//ddname DD DSNAME=dsname,DCB=DSORG=IS,
/ / SPACE=(CYL, quanti ty, CONTIG), UNIT='uni tname,
/ / DISP=(,KEEP), ---

You can accomplish the same type of allocation by qualifying your dsname with the
element indication (PRIME). This element is assumed if omitted. It is required only if
you request an independent index or overflow area. To request an embedded index area
when an independent overflow area is specified, you must indicate DSNAME=dsname

138 OS/VS 1 Data Management Services Guide

(

(PRIME). To indicate the size of the embedded index, you specify
SP ACE= (CYL, (quantity "index size».

Specifying a Separate Index Area

To request a separate index area, other than an embedded area as described above, you
must use a separate DD statement. The element name is specified as (INDEX). The
space and unit designations are as required. Notice that only the first DD statement can
have a data definition name. The data set name (dsname) must be the same.

Iiddname DD DSNAME=dsname(INDEX),---
II DD DSNAME=dsname(PRIME),---

Specifying an Independent Overflow Area

A request for an independent overflow area is essentially the same as for a separate index
area. Only the element name, OVFLOW, is changed. If you do not request a separate
index area, only two DD statements are required.

Iiddriame DD DSNAME=dsname(INDEX),---
II DD DSNAME=dsname(PRIME),---
II DD DSNAME=dsname(OVFLOW),---

Calculating Space Requirements for an Indexed Sequential Data Set

To determine the number of cylinders required for an indexed sequential data set, you
must consider the number of blocks that will fit on a cylinder, the number of blocks that
will be processed, and the amount of space required for indexes and overflow areas.
When you make the computations, consider how much additional space is required for
device overhead. Figures 66 and 67 show device capacities and overhead formulas. In the
formulas that follow, the length of the last block (or only block) must include device
overhead as given in Figure 67 as Bn.

Blocks
per track

1 + «Track capacity - Length of the last block)/(Length of other blocks»

Bt 1 + «Ct-Bn)/Bi)

The following eight steps summarize calculation of space requirements for an indexed
sequential data set.

Step 1

Once you know how many records will fit on a track and the maximum number of
records you expect to create, you can determine how many tracks you will need for your
data.

Number of tracks required = (Maximum number of blocks/Blocks per track) + 1

ISAM load mode reserves the last prime data track for the filemark.

Example: Assume that a 200,000 record part-of-speech dictionary is stored on an IBM
3330 Disk Storage, using the 3336 disk pack, as an indexed sequential data set. Each
record in the dictionary has a 12-byte key (the word itself) and an 8-byte data area
containing a part-of-speech code and control information. Each block contains 50
records; LRECL=20 and BLKSIZE=1000. Using the formula from Figure 67, we find
that each track will contain 10 blocks or 500 records. A total of 401 tracks will be
required for the dictionary.

Bt = 1 + 13,165 - (191 + 12 + 1000)
191 + 12 + 1000

= 1 + 11,962 = 1 + 9 = 10
ffii3

Records per track = (to blocks)(50 r~cords per block) = 500

Prime data tracks required (T) = 200,000 records + 1 = 401
500 recods per track

Part 3: Data Set Disposition and Space Allocation 139

Step 2

You will want to anticipate the number of tracks required for cylinder overflow areas. (
The computation is the same as for prime data tracks, but you must remember that
o'verflow records are unblocked and a 10-byte link field is added. Remember, if you
exceed the space allocated for any cylinder overflow area, an independent overflow area
is required. Those records are not placed in another cylinder overflow area.

Overflow records ==
per track (Ot)

1 + . Track capacity - Length of last overflow record
Length of other overflow records

Ot == 1 + «Ct-Rn)/Ri)

Example: Approximately 5000 overflow records are expected for the data set described
in step 1. Since 56 overflow records will fit on a track, 90 overflow tracks are required.
This is 90 overflow tracks for 401 prime data tracks, or approximately 1 overflow track
for every 4 prime data tracks. Since the 3336 disk pack has 19 tracks per cylinder, it
would probably be best to allocate 4 tracks per cylinder for overflow.

Ot == 1 + 13,165 - (191 + 12 + 20 + 10) == 1 + 12,932 == 1 + 55 == 56
191 + 12 + 20 + 10 233'"

Overflow tracks required == 5000 records == 90
56 records per track

Overflow tracks per cylinder (Oc) == 4

Step 3

You will have to set aside space in the prime area for track index entries. There will be
two entries (normal and overflow) for each track on a cylinder that contains prime data
records. The data field of each index entry is always 10 bytes long. The key length
corresponds to the key length for the prime data records. How many index entries will fit
on a track?

Index entries
per track (1t)

1 + Track capacity - Length of last index entry
Length of other index entries

It 1 + «Ct-En)/Ei) ,

Example: Again assuming use of a 3336 disk pack and records with 12-byte keys, we
find that 61 index entries will fit on a track.

1t==1+

Step 4

13,165 - (191 + 12 + 10)
191 + (12 + 10)

== 1 + 12,952 == 1 + 60 == 61
2i3

The number of tracks required for track index entries will depend on the number of
tracks per cylinder and the number of track index entries per track. Any unused space on
the last track of the track index can be used for any prime data records that will fit.

Number of track index
tracks per cylinder (Ic)

Ie

2(Tracks per cylinder-overflow tracks per cylinder) + 1
Index entries per track + 2

(2(Tc-Oc)+ 0/(lt+2)

Note that for variable-length records or when a prime data record will n~t fit on the last
track of the track index, the last track of the track index is not shared with prime data
records. In such a case, if the remainder of the division is less than or equal to 2, drop the
remainder. In all other cases, round the quotient up to the next integer.

Example: The 3336 disk· pack has 19 tracks per cylinder. You can fit 61 track index
entries per track. Therefore, you need less than 1 track for each cylinder:

Ie == 2(19-4) + 1 == 31
61 + 2 63

The space remaining on the track is (1-31/63) (13,165) = 6686 bytes.

140 OS/VS 1 Data Management Services Guide

c

This is enough for 6 blocks of prime data records. Since the normal number of blocks per
track is 10, the blocks use 6/10 of the track, and the effective value of Ic is therefore
1-6/10 = 2/5.

Note that space is required on the last track of the track index for a dummy entry to
indicate the end of the track index. The dummy entry consists of an 8-byte count field, a
key field the same size as the key field in the preceding entries" and a 10-byte data field.

Step S

Next you have to compute the number of tracks available on each cylinder for prime data
records. You cannot include tracks set aside for cylinder overflow records.

Prime data (TraCkS) (overflOW traCkS) (Index traCkS)
tracks per = per cylinder - per cylinder - per cylinder
cylinder

Pc = Tc - oc - Ic

Example: If you set aside 4 cylinder overflow tracks, and you require 2/5 of a track for
the track index, 14 3/5 tracks are available on each cylinder for prime data records.

Pc = 19 - 4 - 2/5 = 143/5

Step 6

The number of cylinders required to allocate prime space is determined by the number of
prime data tracks required divided by the number of prime data tracks available on each
cylinder. This area includes space for the prime data records, track indexes, and cylinder
overflow records.

Number of
cylinders
required

Prime data tracks required/Prime data tracks per cylinder

C T/Pc

Example: You need 401 tracks for prime data records. You can use 14-3/5 tracks per
cylinder. Therefore, 28 cylinders are required for your prime area and cylinder overflow
areas.

C = (401)/(143/5) = 27+ ~28

Step 7

You will need space for a cylinder index as well as track indexes. There is a cylinder
index entry for each track index (for each cylinder allocated for the data set). Th~ size of
each entry is the same as the size of the track index entries; therefore, the number of
entries that will fit on a track is the same as the number of track index entries. Unused
space on a cylinder index track is not shared.

Number of tracks
required for
cylinder index

Ci

(Track indexes + 1) /Index entries per track

(C+ 1)/lt

Example: You have 28 track indexes (from Step 6). Since 61 index entries fit on a track
(from Step 3), you need 1 track for your cylinder index. The remaining space on the last
track is unused.

Ci = (28 + 1)/61 = 29/61 = 0.475 < 1

Note that every time a cylinder index 'crosses a cylinder boundary, ISAM writes a dummy
index entry that lets ISAM chain the index levels together. The addition of dummy
entries can increase the number of tracks required for a given index level. To determine
how many dummy entries will be required, divide the total number of tracks required by
the number of tracks on a cylinder. If the remainder is 0, subtract 1 from the quotient. If

Part 3: Data Set Disposition and Space Allocation 141

the corrected quotient is not 0, calculate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these (
tracks and by an~ track indexes starting and stopping within a cylinder. .

Step 8

If you have a data set large enough to require master index~s, you will want to calculate
the space required according to the number of.tracks for master indexes (NTM
parameter) you specified in the DeB macro instruction or the DD statement.

If the cylinder index exceeds the NTM specification, an entry is made in the master index
for each track of the cylinder index. If the master index itself exceeds the NTM
specification, a second-level master index is started. Up to three levels of master indexes
are created if required.

The space requirements for the master index are computed,in the same way as those for
the cylinder index.

Number of tracks
required for
master indexes

= (Number of cylinder index tracks + O/Index entries per track

Mt = (Ci+O/It when Ci~NTM

M2 = (Mt+l)/It when Ml~NTM

M3 = (M2+1)/It when M2~NTM

Example: Assume that your cylinder index will require 22 tracks. Since large keys are
used, only 10 entries will fit on a track. Assuming that NTM was specified as 2, 3 tracks
will be required for a master index, and two levels of master index will be created.

Ml = (22+ 0/10 = 2.3

Note that every time a master index crosses a cylinder boundary, ISAM writes a dummy If
index entry that lets ISAM chain the index levels together. The addition of dummy ~
entries can increase the number of tracks required for a given index level. To determine
how many dummy entries will be required, divide the total number of tracks required by
the number of tracks on a cylinder. If the remainder is 0, subtract 1 from the quotient. If
the corrected quotient is not 0, calculate the number of tracks these dummy entries
require. Also consider any additional cylinder boundaries crossed by the addition of these
tracks and by any track indexes starting and stopping within a cylinder.

Summary: Indexed Sequential Space Requirement Calculations

1. How many blocks will fit on a track?

Bt = 1 + «Ct-Bn)/Bi)

2. How many overflow records will fit on a track?

Ot = 1 + «Ct-Rn)/Ri)

3. How many index entries will fit on a track?

It = 1 + «Ct-En)/Ei)

4. How many track index tracks are needed per cylinder?

Ic = (2(Tc-Oc)+ 0/(lt+2)

5. How many tracks on each cylinder can be used for prime data records?

Pc = Tc - Oc - Ic

6. How many cylinders are needed for the prime data area?

C = T/Pc

142 OS/VSl Data Management Services Guide

7. How many tracks are required for the cylinder index?

Ci == (C+ l)/H

8. How many tracks are required for master indexes?

M = (Ci+ t)/H

Control and Disposition of Data Sets
You specify two kinds of status and disposition information for the data sets you use for
your processing by coding DISP= (status,disposition) in the disposition field of the DD
statement. The first kind deals with the status of the data set when you begin processing
and the relationship of the data set to other job steps in your job or ·other jobs. The
second deals with what is to be done with t~e data set when you have completed
processing. In the latter case, you can take advantage of the catalog of the operating
system.

A data set that is being used for input has a status of OLD. If it can be used by more
than one job, the status should be specified as SHR. If you are going to add to the input
data set, specify MOD. The system automatically positions the access mechanism after
the last record when the data set is opened. A new output data set should be indicated as
NEW.

Having identified the status of the data set at the beginning of your job step, you should
specify how you want it disposed of at the end of processing. If the disposition is to be
unchanged, you need not specify anything. The status of an existing data set remains
unchanged; a new data set is deleted. The requested disposition is performed at the end
of the job step. A data set to be used in a later job can be kept (KEEP) until a
subsequent request is made to delete it. If the data set is to be used by more than one job
step in the same job, you can specify that it is to be passed (PASS).

If you specify the CA TLG disposition, the data set name is recorded in the catalog by
the system and its volume is noted. An old data set can subsequently be removed from
the catalog if you specify UNCATLG.

If you wish, you can specify one disposition to be performed if the job step terminates
normally, and a different disposition to be performed if the job step terminates
abnormally. For example, you can specify DISP=(OLD,DELETE,KEEP) if you wish to
delete a data set under normal conditions, but wish to keep it if processing is abnormally
terminated. For normal termination, you can specify any disposition-PASS, KEEP,
DELETE, CATLG, or UNCATLG; for abnormal termination, you can specify any
disposition except PASS.

Routing Data Through the System Input and Output Streams

The job entry subsystem is a system facility that provides spooling and scheduling of
input and output data streams.

Spooling includes two basic functions:

• Input streams are read from the input device and stored on an intermediate storage
device in a format convenient for later processing by the system and by the user's
program.

• Output streams are similarly stored on an intermediate device until a convenient time
for printing or punching.

Scheduling provides the highest degree of system availability through the orderly use of
system resources that are the' objects of contention.

Part 3: Data Set Disposition and Space Allocation 143

With spooling, unit record devices are used at full rated speed if enough buffers are
available, and they are used only for the time needed to read, print, or punch the data.
Without spooling, the device is occupied for the entire time that a job is doing other (
processmg.· Also, because data is stored instead of being transmitted directly, output can .
be queued in any order ~nd scheduled by class and by priority within each class.

You enter data into the system input stream by preceding it with a DD * or DD DATA
JCLstatement~ This is a SYSIN data set.

Your output data can be printed or punched from a SYSOUT dataset, which is called the
output stream. You code the SYSOUT keyword parameter in your DD statement and
designate the appropriate output class. For example,SYSOUT=A requests output class
A. The class-device relationship is established for each installation; and a list of devices
assigned to each output class will enable you to select the appropriate one. Refer to
OS/VSl JCL Reference for further information on SYSIN and SYSOUT parameters.

SYSINand SYSOUT.must be BSAM or QSAM data sets and you open and close them in
, the same manner as any other data set processed on a unit record device (except when

multiple DCBsare used to write to the same output class, the records are not
interspersed.) The DCB exit routine will be entered in the usual manner if you specify it
in an exit list.

When you use QSAM with fixed-length blocked records or BSAM, the DCB block size
parameter does not have to be a multiple of logical record length (LRECL) if the block
size is specified through the SYSOUT DD statement. Under these conditions, if block
size is greater than LRECL but not a multiple of LRECL, block size is reduced to the
nearest lower multiple of LRECL when the data set is opened. This feature allows a
cataloged procedure to specify blocking for SYSOUT data sets, even though your
LRECL is not known tt>' the system until execution.

Therefore, the SYSOUT DD statement of the go step of a compile-load-go procedure
_, can specify block size without block size being a multiple of LRECL. For further

lnformation, refer to OS/VSl JCL Reference. '
\

lJecause a SYSOUT data set is written on a direct-access device, you should omit the
DEVD operand in the DCB macro instruction, or should code DEVD=DA. Because
SYSIN and SYSOUT data sets are spooled on intermediate devices, you should also
avoid using device dependent macro instructions (such as FEOV, CNTRL, PRTOV,
BSP, or SETPRT) in processing these data sets. (See the sections, "Device Control" and
"Device Independence.") ,

The job entry subsystem contrQls all bloc;king and deblocking of your data to optimize
system operation and ignores the number of channel programs (NCP) you specify. The

, block size (BLKSIZE) and number of buffers (BUFNO) specified in your program have
no correlation with what is actually used by the job entry subsystem. T.herefore, you can
select the blocking factot: that best fits your application program with no effect on the
spooling efficiency of the system. For QSAM applications, move mode is as efficient as
locate mode.

All record formats are allowed, except that spanned records (RECFM=VS or VBS)

I cannot be specified -for SYSIN. Also, a record format of FIXED will be supplied if it is
not specified for SYSIN.: ' '

The NOTE andPOINTtmacro instructions may be used with SYSIN data sets on VS 1
systems. However, there are restrictions associated with the usage of these macros with
SYSIN. (See OS/VSl Data Management Macro Instructions.)

Your program is responsible for printing format, pagination, and header control. You can
supply control characters for SYSOUT data sets in the normal manner by specifying
ANSI or machine characters in the DCB. Standard controls are provided by default if

144 OS!VS 1 Data Management Services Guide

c

they are not specified. The length of output records must not exceed the allowable
maximum length for the ultimate device. Cards can be punched in EBCDIC mode only.

Your SYN AD routine will be entered if an error occurs· during data transmission to or
from an intermediate storage device. Again, because the specific device is indeterminate,
your SYNAD routine code should be device independent.

Note: For spooled data sets, the area address must be in the same protection key as that
specified in the TCB (TCBPKF field). If not, a system 001 ABEND will occur.

Concatenating Sequential and Partitioned Data Sets

Two or more sequential or partitioned data sets can be automatically retrieved by the
system and processed successively as a single data set. This reading technique is known
as concatenation. A maximum of 255 data sets (16, if partitioned) can be concatenated,
but they must be used only for input.

To ~ave t~e when processing two consecutive data sets on a single volume, you specify
LEA VE"in your OPEN macro instruction. Concatenated data sets cannot be read
backward.

When data sets are concatenated, the system treats the group as a single data set and·
only one data extent block (DEB) is constructed. Thus, it is important to consider the
characteristics of the individual data sets being concatenated. Data sets with like
characteristics are those that may be processed correctly using the same data control
block (DCB), input/output block (lOB), and channel program. Any exception makes
them unlike. Concatenated partitioned data sets are always treated as like and use the
attributes of the first data set only. You must inform the system if unlike data sets are
concatenated by modifying the DCBOFLGS field of the DCB. The indication must be
made before the end of the current data set is reached. You must set bit 4 to 1 by using
the instruction 01 DCBOFLGS,X'08' as described in "Modifying the Data Control
Block." If bit 4 of the DCBOFLGS field is 1, end-of-volume processing for each data set
will issue a CLOSE for the data set just read and an OPEN for the next concatenated
data set. This opening and closing procedure updates the fields in the DCB and, if
necessary, builds a new lOB and a new channel program. If the buffer pool was obtained
automatically by the open routine, the procedure also frees the buffer pool and obtains a
new one for the next concatenated data set. The procedure does not issue a FREEPOOL
for the last concatenated data set. Unless you have some way of determining the
characteristics of the next data set before it is opened, you should not reset the
DCBOFLGS field to indicate like characteristics d~ring processing.

When unlike data sets have been concatenated, you should not issue multiple input
requests, that is, a series of READ or GET macro instructions, in your program. If you
do, you will have to arrange some way to determine which requests have been completed
and which must be reissued. In any case, the GET or READ macro instruction that
detected the end of data set will have to be reissued. Figure 69 illustrates a possible
routine for determining when a GET or READ must be reissued. This restriction does
not apply to like data sets since no open or close operation is necessary between data
sets.

When the change from one data set to another is made, label exits are taken as required;
automatic volume switching is also performed for multiple-volume data sets unless they
ar~ partitioned. Your end-of-data-set (EODAD) routine is not entered until the last data
set has been processed, except, that for partitioned data sets, yourEODAD routine
receives control at the end of each member. At that time, you can process the next
member or close the data set.

You process a concatenation of partitioned data sets the same way you· process a single
partitioned <lata set with one exception; You must use the FIND macro instruction to

Part 3: Data Set Disposition and Space Allocation 145

Check

On Set
>--____ ~ Reread Switch

Off

Process

Set
Reread Switch

On

Return to
Check via Open *

Yes

DCBEXIT
~.' .

*Returns are to control

program address in register 14

Set F irst­

Time-In

Switch Off

Set Bit 4
of OFLGS

to 1

Figure 69. Reissuing a READ for Unlike Concatenated Data Sets

begin processing a member; you cannot use the POINT (or NOTE) macro instruction
until after the FIND macro instruction has been issued. Figure 53 shows how to process
a single partitioned data set using FIND. If two members of different data sets in the
concatenation have the same name, the FIND macro instruction determines the address
of the first one in the concatenation. You would not be able to process the sec.ond one in
the concatenation. The BLDL macro instruction provides the concatenation number of
the data set to which the member belongs in the K field of the build list. See the section
"BLDL-Construct a Directory Entry List" in Part 2 of this book.

If issuing an RDJFCB macro, see the RDJFCB macro instruction in OS / VS 1 Data
Management for System Programmers.

Rotational Position Sensing Considerations

Direct-access storage devices with the rotational position sensing (RPS) feature (for
example, the 3330) usually' employ channel programs that are not compatible with
direct-access storage devices that lack.the RPS feature. Therefore, if you concatenate
otherwise "like" data sets residing on devices both with and without the RPS feature,
standard (nonRPS) channel programs will be used, with a resultant loss of the I/O
overlap efficiency of rotational position sensing. Concatenated partitioned data sets are
always treated.as "like" data'sets, regardless of how the DCBOFLGS field is set in the
DCB. Data sets with undefined length record~ and track overflow (RECFM= UT
specified in the DCB) are not processed with the RPS feature.

On the other hand, if you concatenate sequential data sets with "unlike" attributes, you'll
get RPS channel programs for the data sets residing 011 RPS devices, unless any following
direct-access concatenations are nonRPS devices.

146 OS/VSl Data Management Services Guide

(

Further discussion and examples of concatenated data sets are contained in OS/VSl
JCL Reference.

Cataloging Data Sets

Index
B

)

t

The non VSAM catalog is itself a data set residing on one or more direct-access volumes.
. It is organized into levels of indexes that connect the data-set names to corresponding

volumes and data-set sequence numbers. For each level of qualification in the data-set
name, there is an index group in the catalog.

The highest level of the catalog resides on the system-residence volume. The VTOC
contains an entry for the DSCB defining the catalog and its highest-level index, the
volume index. The lowest-level index contains the simple name of the data set and the
number of the volume on which it resides.

The complete catalog can exist on the system-residence volume, or you can specify that
parts of it be constructed on other volumes. Any volume containing part of the catalog is
called a control volume. The use of control volumes allows data sets that are functionally
related to be cataloged separately. The advantages include:

• Control volumes can be moved from one processing system to another .

• System-residence requirements can be reduced by placement of seldom-used indexes
on a control volume.

For any given data set, only one level of control volume, other than the system-residence
volume, can be used. Notice that in Figure 70, index E, which is the highest-level index
on the control volume, has an entry in both volume indexes.

System-Residence Volume Control Volume

Volume Table of Contents Volume Table of Contents
Volume

,
Volume .~ Index

~
Index

DSCB DSCB

~Volume Index

Volume Index
I

E : Pointer to)
I I Volume Serial (
I P . I Index E

B I omter to EI Number of
(

~ (

I Index B L- _/ I
Control Volume) J I /

~ ~
! : Volume

Index A: Pointer to FI Number
E I Index A I

of F I I
I Volume I Volume ~ Data

FI Number G 1 Number ~ : Volume Volume) Set I of F I of G) I
1 I Index l I Number pi) E.F

/
Number

A 1 of L
I

of P ~
I

r- .J .J

Data Data Data Data
Set Set Set Set
B.F B.G E.A.L E.A.P

Figure 70. Catalog Structure on Two Volumes

Part 3: Data Set Disposition and Sn;J'.·e Al1ocation

All VSAM data sets must be cataloged in a VSAM catalog. However, non VSAM data
sets can be cataloged in a VSAM catalog instead of the system catalog. For further (
information on the VSAM catalog, see OS/VSl Access Method Services.

Permanent Mass Storage System (MSS) data sets should be cataloged to allow efficient
use of the Mass Storage Volume Control (MSVC) functions. For information on MSVC,
see OS/VS Mass Storage System (MSS) Services for Space Management.

Entering a Data Set Name in the Catalog

The catalog structure, including all levels of indexes, is initially created by the utility
program, IEHPROGM, or when a qualified data set name is cataloged. A data set name
can then be entered if the proper index levels of the name exist.

For example, jf a data set named A.B.C is to be cataloged, the volume index on the
system-residence volume must have an index entry for index A, which must point to an
index B. When the data set A.B.C is cataloged, C is entered into index Balong with the
volume serial number of the volume where data set A.B.C resides. The cataloging request
is entered as:

/ /ddnameDDDSNAME=A.B.C,DISP=(,CATLG)

The Access Method Services program may be used to catalog a data set (either VSAM or
nonVSAM) in a VSAM catalog. For more information on the Access Method Services
program, see OS/VSl Access Method Services.

Generation Data Groups
A generation data group is a group of related cataloged data sets. The manner in which
these data sets are cataloged is what makes them a generation data group. Within a
generation data group, the generations can have like or unlike DCB attributes and data
set organizations. If the attributes and organizations of all generations in a group are
identical, the generations can be retrieved together as a single data set. Each data set
within a generation data group is called a generation data set. Generation data sets are
sometimes called generations.

There are advantages to grouping related data sets. Because the catalog management
routines can refer to the information in a special index-called a generation index-in
the catalog:

• All of the data sets in the group can be refened to by a common name.

• The operating system is able to keep the generations in chronologicfll order.

• Outdated or obsolete generations can be automatically deleted by the operating
system.

The management of a generation data group depends upon the fact that generation data
sets have sequentially ordered names-absolute and relative names-t~at represent their
age. The absolute generation name is the representation used by the catalog managemeJ).t
routines in the cata)og. Older data sets have smaller absolute numbers. The relative name
is a signed integer used to refer to the latest (0), next to the latest (-1), etc. generation.
The relative number can also be used to catalog a new generation (+ 1).

148 OS/VSl Data Management Services Guide

(

Absolute Generation and Version Numbers

An absolute generation and version number is used to identify a specific generation of a
generation data group. The generation and version numbers are in the form GxxxxVyy,
where xxxx is an unsigned four-digit decimal generation number and yy is an unsigned
two-digit decimal version number. For example:

• A.B.C.GOOOOVOO is generation data set zero, version zero in the generation data
group A.B.C.

• A.B.C.GOOOI VOO is generation data set one, version zero in generation data group
A.B.C.

• A.B.C.G0009VOl is generation data set nine, version one in generation data group
A.B.C.

The number of new generations and versions is limited by the number of digits in the
absolute generation name, that is, 9999 for generations and 99 for versions.

The generation number is automatically maintained by the system. The number of
generations kept depends on the size of the generation index. For example, if the size of
the generation index allows ten entries, the ten latest generations may be maintained in
the generation data group.

The version number allows you to perform normal data set operations without disrupting
the management of the generation data group. For example, if you want to update the
second generation in a three-generation group, replace generation two, version zero, with
generation two, version one. Only one version is kept per generation.

A generation can be cataloged using either absolute or relative numbers. When a
generation is cataloged, a generation and version number is placed as a low level entry in
the generation data group. In order to catalog a version number other than VOO, you
must use an absolute generation and version number.

Relative Generation Number

As an alternative to using absolute generation and version numbers when cataloging or
referring to a generation, you can use a relative generation number. To specify a relative
number, use the generation data group name followed by a negative integer, a positive
integer, or a zero, enclosed in parentheses. For example, A.B.C(-l). A.B.C(+l), or
A.B.C(O).

The value of the specified integer tells the operating system what generation number to
assign to a new generation, or it tells the system the location (in the generation index) of
an entry representing a previously cataloged generation.

When you use a relative generation number to catalog a generation, the operating system
assigns an absolute generation number and a version number of VOO to represent that
generation. The absolute generation number assigned depends on the number last
assigned and the value of the relative generation number that you are now specifying.
For example, if in a previous job, generation A.B.C.G0005VOO was the last generation
cataloged, and you specify A.B.C(+ 1), the generation now cataloged is assigned the
number G0006VOO. Though any positive relative generation number can be used, a
number greater than 1 may cause absolute generation numbers to be skipped.

When you use a relative generation ~umber to refer to a generation that was cataloged in
a previous job, the relative number has the following meaning:

• A.B.C(O) refers to the latest existing cataloged entry.

• A.B.c(-l) refers to the next-to-the-latest entry, etc.

Part 3: Data Set Disposition and Space Allocation 149

When cataloging is requested via JCL, all actual cataloging occurs at job
termination-not at step termination. Because this is so:

• A relative number used in the JCL refers to the same generation throughout a job.

• A job step that terminates abnormally may be deferred for a later step restart. If the
step cataloged a generation data set via JCL, you must change all relative generation
numbers in the succeeding steps via JCL before resubmi~tting the job.

For example, if the succeeding steps contained the relative generation numbers:

• A.B.C(+ 1), which refers to the entry cataloged in the terminated job step.

• A.B.C(O), which refers to the next to the latest entry.

• A.B.C(-1), which refers to the latest entry"prior to A.B.C(O).

You must change them as follows before the step can be restarted: A.B.C(O), A.B.C(-l),
A.B.C(-2), etc. '

Note: New generation data group requests are cataloged with a volume serial number of
X'FF4040404040' if they are not opened, so that data set integrity is maintained and an
incorrect generation is not retrieved.

Building a Generation Index

A generation data group is managed via the information found in a generation index.
(Note that an alias name cannot be assigned to the highest level of a generation index.)
The BLDG function builds the index. The BLDG function also indicates how older or
obsolete generations are to be handled when the index is full. For example, when the
index is full, you may wish to empty it, scratch existing generations, and begin cataloging
a new series of generations.

After the index is built, a generation can be cataloged by its generation data group name
and either an absolute generation and version number or a relative generation number.

Examples on how to build a generation-data-group index are found in OS/VS Utilities.

Creating a New Generation

To create a new generation data set you must first allocate space for the generation, then
catalog the generation in the system catalog.

Allocating a Generation

To take full advantage of the facilities of the system, the allocation can be patterned
after a previously allocated generation in the same group. This is accomplished by the
specification of DCB attributes for the new generation as described below.

If you are using absolute generation and version numbers, DCB attributes for a
generation can be supplied directly in the DCB parameter of the DD statement defining
the generation to be created and cataloged.

If you are using relative generation numbers to catalog generations, DCB attributes can
be supplied either: (1) by creating a model DSCB on the volume on which the index
resides (the volume containing the SYSCTLG data set) or (2) by referring to a cataloged
data set for the use of its 'attributes. Attributes can be supplied before you catalog a
generation, when you catalog it, or at both times, as follows:

1. Create a model DSCB on the volume on which your index resides. You can provide
initial DCB attributes when you create your model; however, you need not provide
any attributes at this time. Since only the attributes in the data ~et label are used, the

150 OS/VS 1 Data Management Services Guide

(

model data set should be allocated with SPACE=(TRK,O) to conserve direct-access
space. Initial or overriding attributes can be supplied when you create and catalog a
generation) To create a model DSCB, include the following DD statement in the job
step that builds the index or in any other job step that precedes the step in which you
create and catalog your generation.

Iiname DD DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(O)),
II UNIT=yyyy,VOLUME=SER=xxxxxx,
II DCB=(applicable subparameters)

The DSNAME is the common name by which each generation is identified;:xxxxxx is
the serial number of the volume containing the catalog. If no DCB subparameters are
desired initially, you need not code the DCB parameter.

2. You do not need to create a model DSCB if you can refer to a cataloged data set
whose attributes are identical to those you desire or to an existing model DSCB for
which you can supply overriding attributes. A cataloged data set referred to in this
manner must reside on the same volume as your index. To refer to a cataloged data set
for the use of its attributes, specify DCB=(dsname) on the DD statement that creates
and catalogs your generation. To refer to an existing model, specify
DCB=(modeldscbname, your attributes) on the DD statement that creates and
catalogs your generation.

Cataloging a Generation

Passing a Generation

A generation can be cataloged through the use of normal job control language
procedures or through the use of IEHPROGM.

Using JCL to Catalog a Generation: Assuming that a generation data group index has
been built and that provisions have been made for supplying DCB attributes, a
generation is created and cataloged in the same manner as any other type of data set.

Whether you use relative numbers in job control language procedures or absolute
generation and version numbers, you need not catalog the new generation immediately.

Using IEHPROGM to Catalog a Generation: The CATLG function of IEHPROGM can
be used to catalog a generation. Again, the prerequisite for cataloging a generation is the
existence of a generation data group index in the SYSCTLG data set.

. Note: You must always use an absolute generation and version number to catalog or
uncatalog a generation using IEHPROGM. (IEHMOVE and IEHLIST also require that
absolute generation and version numbers be used.)

A new generation may be passed when created. That generation may then be cataloged
in a succeeding job step or deleted at the end of the job as in normal disposition
processing when DISP= (,P ASS) is specified on the DD statement.

However, once a generation has been created with DISP=(NEW,PASS) specified on the
DD statement, another new generation for that data group must not be cataloged until
the passed version has been deleted or cataloged. To do so would cause the wrong
generation to be used when referencing the passed generation d(,l:ta set. If that data set
was later cataloged, a bad generation would be cataloged and a good one lost.

For example, if A.B.C(+ 1) was created with DISP=(NEW,PASS) specified on the DD
statement, then A.B.C.(+2) must not be created with DISP=(NEW,CATLG~ until
A.B.C(+ 1) has been cataloged or deleted.

1 Only one model DSCB is necessary for any number of generations. If you plan to use only one model, do not supply DCB
attributes when you create the model. When you ~\lbsequently create and catalog a generation, include necessary DCB
attributes in the DD statement referring to the generation. In this manner, any number of generation data groups can refer
to the same model. Note that the catalog and model data set label are always located on a direct-access volume, even for a
magnetic tape generation data group.

Part 3: Data Set Disposition and Space Allocation 151

By using th,e proper'lCL, the advantages to this support are:

• JCL will not have to be changed in order to rerun the job.

• The lowest generation version will not be deleted from the index until a valid version
is cataloged.

Creating an ISAM Data Set as Part of a Generation Data Group

To create an indexed-sequential data set as part of a generation data group, you must:
(1) create the indexed-sequential data set separately from the generation group and
(2) use IEHPROGM to put the indexed-sequential data set into the generation group.

Use the RENAME function to rename the data set. Then use the CATLG function to
catalog the data set. For instance, if MASTER is the name of the generation data group,
and GggggVvv is the absolute generation name, you would code the following: .

RENAME DSNAME=ISAM,VOL=2314=SCRTCH,NEWNAME=MASTER.GggggVvv
CATLG DSNAME=MASTER.GggggVvv,VOL=2314=SCRTCH

Retrieving a Generation

A generation may be retrieved through the use of job control language procedures. Any
operation that can be applied to a non-generation data set can be applied to a generation.
For example, a generation can be updated and reentered in the catalog, or it can be
copied, printed, punched, or used in the creation of new generation or non-generation
data sets.

You can retrieve a generation by using either relative generation numbers or absolute
generation and version numbers.

Because two or more jobs can compete for the same resource, generation data groups
should be updated with care, as follows:

• No two jobs running concurrently should refer to the same generation data group. As
a partial safeguard against this situation, use absolute. generation and version numbers
when cataloging or retrieving a generation in a multiprogramtning environment. If you
use relative numbers, a job running concurrently may update the generation data
group index, perhaps cataloging a new generation which you will then retrieve in place
of the one you wanted.

• Even when using absolute generation and version numbers, a job funning concurrently
might catalog a new version of a generation or perhaps delete the generation you
wished to retrieve. For tWs reason, 'some degree of control should be maintained over
the execution of job steps referring to generation data groups.

152 OS/VS 1 Data Management Services Guide
)

(

Controlling Confidential Data

Password Protection for Non VSAM Data Sets

Password protection as described here applies to nonVSAM data sets only. For
information on password protection for VSAM data sets, see OS/VSl Access Method
Services.

In addition to the usual label protection that prevents opening of a data set without the
correct data set name, the operating system provides data set security options that
prevent unauthorized access to confidential data. Two levels of protection options are
available. You specify these options in the LABEL field of a DD statement with the
parameter PASSWORD or NOPWREAD .

• Password protection (specified by the PASSWORD parameter) makes a data set
UIiavailable for all types of processing until a correct password is entered by the
system operator .

• No-passwqrd-read protection (specified by the NOPWREAD parameter) makes a
data set available for input without a password, but requires that the password be
entered for output or delete operations.

If an incorrect password is entered twice, the job is terminated by the system if it is being
requested by the open or EOV routine. For a scratch or rename request, a return code is
given.

You can request password protection when you create the data set by using the LABEL
field of the DD statement in your JCL. The system sets the data set security byte either
in the standard header label 1 as shown in OS / VS Tape Labels or in the identifier data
set control block (DSCB) as shown in OS/VSl System Data Areas. Once you have
requested security protection for magnetic tapes, you cannot remove it with JCL unless
you recreate the data set and scratch the protected data set.

In addition to requesting password protection in your JCL, you must enter at feast one
record for each protected data set in a data set named PASSWORD that must be created
on the system-residence volume. You should also request password protection for the
PASSWORD data set itself to prevent both reading and writing without knowledge of
the password.

For a data set on a direct-access device you can place the data set under protection at the
same time that you enter its password in the PASSWORD data set. You can use the
PROTECT macro instruction or the IEHPROGM utility program to add, change, or
delete an entry in the PASSWORD data set; with either of these methods the system
updates the DSCB of the data set to reflect its protected status. This provision eliminates
the need for you to use JCL whenever you add, change, or remove security protection
for a data set on a direct-access device. OS/VSl Data Management for System
Programmers describes how to maintain the PASSWORD data set, including the
PROTECT mac!o instruction; OS/VS· Utilities describes the IEHPROGM utility
program.

Part 3: Data Set Disposition and Space Allocation 153

(

APPENDIX A: DIRECT-ACCESS LABELS

Only standard label formats are used on direct-access volumes. Volume, data set, and
optional user labels are used (see Figure 71). In the case of direct-access volumes, the
data set label is the data set control block (DSCB).

Tracks

Cylinder

All Remaining
Tracks of Volume

Figure 71. Direct-Access Labeling

Volume-Label Group

[

IPL Records

Volume Label

Addi~ional Labels

(OptionalL -
- 1

VTOC DSCB

Free Spac'e DSCB

DSCB

DSCB

Unused Storage
Area for Data Sets

VTOC

The volume-label group immediately follows the first two initial program loading (IPL)
records on track 0 of cylinder 0 of the volume. It consists of the initial volume label at
record 3 plus a maximum of seven additional volume labels. The initial volume label
identifies a volume and its owner, and is used to verify that the correct volume is
mounted. It can aiso be used to prevent use of the volume by unauthorized programs.
The additional labels can be processed by an installation routine that is incorporated into
the system.

The format of the direct-access volume label group is shown in Figure 72.

Appendix A: Direct-Access Labels 155

Field (3)

2 (1)

3 (6)

4 (1)

5 (5)

6 (25)

7

~
(101

I

Figure 72. initial Volume Label

Initial Volume Label Format

(Up to 7 Additional Volume Labels)
aO-Byte Physical Record

I....

Volume Label Identifier (VOL)

Volume Label Number (1)

Volume Serial Number

Volume Security

VTOC Pointer

Reserved (Blank)

Owner Name and Address Code

Blank

The 80-byte initial volume label is preceded by a four-byte key containing VOLI.

Volume Label Identifier (VOL): Field 1 identifies a volume label.

Volume Label Number (1): Field 2 identifies the relative position of the volume label in a
I volume label group. It must be written as C'1'.

The operating system identifies an initial volume label when, in reading the initial record,
it finds that the first 4 characters of the record are VOLI.

Volume Serial Number: Field 3 contains a unique identification code assigned when the
volume enters the system. You can place the code on the external surface of the volume
for visual identification. The code is normally numeric (000001-999999), but may be
any 1 to 6 alphameric or national (#, $, @) characters, or a hyphen (X'60'). If this field
is less than 6 characters, it is padded on the right with blanks.

Volume Security: Field 4 is reserved for use by installations that wish to provide security

I
for ~olumes. Make this field a C'O' unless you have your own security processing
routmes.

VToe Pointer: Field 5 of direct-access volume label 1 contains the address of the
VTOC in the form of CCHHR.

Reserved: Field 6 is reserved for future developmental purposes. Leave it blank.

156 OS/VS 1 Data Management Services Guide

(

Owner Name and Address Code: Field 7 contains a unique identification of the owner of
the volume.

All of the bytes in Field 8 are left blank.

Data Set Control Block (DSCB)
The system automatically constructs a DSCB when space is requested for a data set on a
direct-access volume. Each data set on a direct-access volume has one or more DSCBs to
describe its characteristics. The DSCB appears in the VTOC and contains
operating-system data, device-dependent information, and data set characteristics, in
addition to space allocation and other control informat.ion. There are seven kinds of
DSCBs, each with a different purpose and a different format number. For an explanation
of the seven kinds of DSCBs, see OS/VSl System Data Areas.

User Label Groups
User header and trailer label groups can be included with data sets of physically
sequential or direct organization. The labels in each group have the format shown in
Figure 73.

Field (3)

2 (1)

3 - (76)

80-Byte Physical Record (Maximum of 8)

Label Identifier (UHL if Header, UTL if Trailer)

Label Number (1 - 8)

-..... User-Specified

Figure 73. User Head.er and Trailer Labels

Each group can include up to eight labels, but the space required for both groups must
not be more than 1 track on a direct-access device~ The current minimum track size

Appendix A: Direct-Access Labels 157

allows a maximum of eight labels, including both header and trailer labels. Consequently,
a program becomes device-dependent (among direct-access devices) when it creates
more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an additional track is
normally allocated when the data set is created. No additional track is allocated when
specific tracks are requested (SPACE=(ABSTR, ... », or when tracks allocated to
another data set are requested (SUBALLOC= ...). In either case, labels are written on
the first track that is allocated.

User Header Label Group: The operating system writes these labels as directed by the
processing program recording the data set. The first 4 characters of the user header label
must be UHLl, ... , UHL8; you can specify the remaining 76 characters. When the data
set is read, the operating system makes the user header labels available to the problem
program for processing.

User Trailer Label Group: These labels are recorded (and processed) as explained in the
preceding iext for user header labels, except that the first 4 characters must be UTLl, ,
UTL8.

User Header and Trailer Label Format

Label Identifier: Field 1 indicates the kind of user header label. UHL indicates a user
header label; UTL indicates a user trailer label.

Label Number: Field 2 identifies the relative position (1-8) of the label within the user
label group.

User-Specified: Field 3 (76 bytes).

158 OS/VS 1 Data Management Services Guide

(

APPENDIX B: CONTROL CHARACTERS

Machine Code

As an optional feature, each logical record, in any record format, may include a control
character. This control character is recognized and processed if a data set is being written
to a printer or punch.

For format-F and format-U records, this character is the first byte of the logical record.

For format-V records, it must be the fifth byte of the logical record, immediately
following the record descriptor word.

Two options are available. If either option is specified in the DeB, the character must
appear in every record and other line spacing or stacker selection options also specified
in the DeB are ignored.

You can specify in the DeB that the machine code control character has been placed in
each logical record. If the record is to be written, the appropriate byte must contain the
command code bit configuration specifying both the write and the desiredcarriage .. or
stacker select operation.

The machine code control characters for a printer are as follows:

Print and Then Act Act Immediately (No Printing)

Code in Hexadecimal Action Code in Hexadecimal

01 Print only (no space)

09 Space 1 line OB

11 Space 2 lines 13

19 Space 3 lines IB

89 Skip to channel 1 8B

91 Skip to channel 2 93

99 Skip to channel 3 9B

Al Skip to channel 4 A3

A9 Skip to channel 5 AB

Bl Skip to channel 6 B3

B9 Skip to channel 7 BB

Cl Skip to channel 8 C3

C9 Skip to channel 9 CB

01 Skip to channel 10 03

09 Skip to channel 11 OB

El Skip to channel 12 E3

Appendix B: Control Characters 159

The machine code control characters for a card read punch device are as follows:

Code in Hexadecimal Action

01 Select stacker 1

41 Select stacker 2

81 Select stacker 3

Other command codes for specific devices are contained in publications describing the
control units and devices.

Extended American 'N~tionaI Standards Institute Code
In place:of machine code, you can specify control characters defined by the American
National Standards Institute, Inc. (ANSI). Whenever IBM publications refer to ANSI
code, they are as follows:

Code Action Before Printing a Line

b Space one line (blank code)
o Space two lines

Space three lines
+ Suppress space
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C . Skip to channel 12

Code Action After Punching a Card

V Select punch pocket 1
W Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If any other
character is specified, it is interpreted as 'b' or V, depending on whether it is for a printer
or a punch; no error indication is returned.

160 OS/VS 1 Data Management Services Guide

(

)

INDEX

Indexes for reference manuals are consolidated in OS/VSJ
Master Index, GC24-5104.

For additional information about any subject listed below,
refer to the publications that are listed under the same subject
in the master index.

A
abbreviations 161-164
ABE error option 35
ABEND exit 44-47
abnormal termination during open, close, EOV

processing 64,65
EST AE exit 52
for VS 1 systems
STAE exit 52
STAI exit 52

absolute actual address 28-29
allocating space for data sets containing 134
use with direct data sets 127

absolute generation name 149
ACC error option 35
access method 14

basic 58-61
queued 14,55-58
selecting 62

Access Method Services
program use of 133,148

access techniques
basic 14,58-61
queued 14,55-58

acronyms 161-164
actual track address

(MBBCCHHR) 28-29
allocating space for data sets containing 134
use with direct data sets 127,128
use with feedback option 127,128

address, direct-access storage device
absolute actual 28-29

allocating space for data set containing 134
use with direct data sets 127

direct 126,128
indirect 126
relative 29

in directories 97-99
use with direct data sets 127

AFF affinity, channel 32
alias entry in directory

effect of changing directory entry 101
specifying 97

alignment
buffer 70,71,78
data control block 49

allocat\on (see space allocation)
American National Standard Code

for Information Interchange (see ASCII block prefix;
ASCII format)

American National Standard labels 17
American National Standard Institute (see ANSI control

character; American National Standard labels)

ANSI control character
described 160
device-type considerations 83
used with chained scheduling 91
with format-D records 23
with format-F ASCII tape records 19

anticipatory buffering
omitted with basic access technique 58
with queued access technique 55

ASCII block prefix
restriction 19-20,24
with format-D records
with format-F records 19-20
with format-U records 25

ASCII format
restriction for 7-track tape 83
translating data from 13,17-18,55
translating data to 13,17-18,55,59

ASCII tape
buffer alignment 70
fixed-length records 19
undefined-length records 25
variable-length records 23-25

associated data set
restriction with chained scheduling 91

ATLAS macro 62
automatic blocking/deblocking with queued

access techniques 55
automatic cataloging of data sets 15
automatic error options (EROPT) operand of

DeB macro 35
automatic volume switching 55,68,69,145
auxiliary storage (see data set storage; direct-access storage;

magnetic tape volumes)

B
backspace

by BSP macro 87
by CNTRL macro 86

basic access technique
(see also BDAM, BISAM, BPAM, and BSAM)
blocking 58· .
buffer acquisition anti control 70,72,74
deblocking 58
definition of 58-61
overlapped I/O 58
using BDW 21

BCDIC translation to EBCDIC 84
BDAM (basic direct-access method) data set

(see also basic access technique)
access technique 126
adding records 127 -128
CHECK macro 60
creating- 128,129
dynamic buffering 74,126
exclusive control for updating 127
extended search option 127
feedback option 127,128
multivolume considerations 64
organization 126
processing 126-127

Index 165

READ macro 59
record format 129,130
restriction with chained scheduling 90
selecting an access method 62
sharing data set 51,52.
spanned variable-length records 21-23
SYNAD routine 36
updating records 129-131
user labels 38,138
WAIT macro 60,61
when sharing a data set 51,52
WRITE macro 59,60

BOW (block descriptor word) 21
BFTEK operand of DCB macro

BFTEK:::;:A 22,73
BFTEK:::;:R spanned records 59

BISAM (basic indexed sequential access method) data set
(see also indexed sequential data set)
dynamic buffering 74
retrieving 120-122
sharing a DCB 52,122
updating 120-124
when sharing a data set 51,52

BLDL macro instruction
build list format 100
coding example 104
description 100
updating a partitioned data set 104

BLKSIZE operand of DCB macro
description 32
effect of data check on 18,23
for writing a short block 96
for card reader and punch 84
for undefined-length records with QSAM 91
including block prefix 24
requirement for direct data set 126
specifying 90,134
when ignored 136,144

block count exit routine 43-44
block, data 17
block descriptor word (BDW) 21
block prefix (ASCII) records

buffer alignment 70
with format-D records 23-25
with format-F records 19,20
with format-U records 25,26

block size field (see BLKSIZE field)
blocking

automatic 55
defined 17
with basic access technique 58
with fixed-length records 18-20
with spanned records 21
with variable-length records 20-25
with undefined-length records 25-26

boundary alignment
buffer 70-71,78
data control block 49

BPAM (basic partitioned access Illethod) data set
concatenation 145-146
creating 101-103
defined 14,96,97
EODAD routine 34
processing 96-105

166 OS/VS 1 Data Management Services Guide

restriction with
chained scheduling 103
DCB ABEND exit routine 45
fixed-length records, standard format 19
search direct operation 91

retrieving member 103
space allocation for 136
updating member 104-106
when sharing a data set 51,52 .

BSAM (basic sequential access method) data set
as SYSIN/SYSOUT data sets 144
creating 92
creating a BDAM data set 128
determining the length of a record 95-96
EODAD routine 33,34
extending 94
how EODAD routine is entered 33-34
overlap of I/O 58,90
retrieving 93
to update the directory 101
updating 93-94
user labels 38
user totaling 41-42
when sharing a data set 51-52
writing a short block 96

BSP macro instruction
description 87
restriction in EO DAD routine 34

BUFCB operand in DCB macro 71
buffer

(see also FREEBUF; FREEDBUF; GETBUF; RELSE)
acquisiton and control 70-82
alignment 70,7 t, 78
automatic for ISAM 74

direct 70,74
dynamic 70,74

control 73-74
for basic access technique 70,72
length (BUFL operand of DeB macro) 71,113
number (BUFNO operand of DeB macro) 71-72,90-91
pool 70,73

(see also buffer pool)
releasing 80
segment 70
truncating 81

buffer pool
(see also BUILD; GETPOOL; FREEPOOL)
automatic construction 72,74
building 72-74
coding examples 72,73
description 70
explicit 70
freeing 72,73
getting 71,72
getting a buffer from 81
returning a buffer to 82
returning a dynamic buffer to 82
segment 70
static 70

(

c

'buffering 63
anticipatory

for queued access technique 55
omitted for basic access technique 58

direct control of 74
dynamic 70
exchange 70

restriction 90
look-ahead 55
simple 70,74-77

B UFL operand in DCB macro
for card punch 84
for constructing a buffer pool 71
for ISAM 113
for printer 85

BUFNO operand in DCB macro
affecting chained scheduling 91
affecting performance 90
when constructing a buffer pool 71,72
when ignored 144

B UFO FF operand of DCB macro
with format-DB records 91
with QSAM or BSAM 20
with variable-length records 23-25

build list format 100
(see also BLDL)

BUILD macro instruction
description 71
with ISAM data set 113

building a generation index 150
BUILDRCD macro instruction

descript,ion 71

c

restriction 23
usage 23

capacity for direct-access
cylinder 135
record 28,128,132
track 135

card punch, record format with 84-85
card reader

record format with 84
relationship with CNTRL macro 86
restriction with CNTRL macro 86

carriage control characters
defined 26
specification of in RECFM field 82-83

catalog, system 147-148
control volumes 147
entering a. data set name 148

cataloging data sets
automatic 15
defined 13
for a generation data group 148-150

CCW (see channel command word)

chained scheduling
description 82,90-91
restriction with

BDAM 90
calculating record length 95,96
CNTRL macro 90
DOS checkpoint records, embedded on tape 90
exchan~e buffering 90
format-D records 24
paper-tape reader 90
partitioned data set 104
SKP option 35
spooled data sets 90
track overflow 90,95
UPDAT operand 90
updating a st;quential data set 94
2540 Card Read Punch 91
3525 Card Punch 91

changing an address in the data control block 49-50
channel command word (CCW)

creation by OPEN 63
PCI flag in 90
use in exchange buffering 77-78
'use in simple buffering 74

channel program
effect on exchange buffering 78
execute (EXCP) 14,62
number of (NCP) 58

channel separation and affinity field of DO statement 32
character set, changing 86-87
CHECK macro instruction

description 60
to enter EODAD routine 33
to update a partitioned data set 104
to update a sequential data set 93
use with BDAM 52
use with SYNAD routine 36,58
using WAIT instead (see WAIT macro instruction)
when sharing a data set 51,52
with basic access technique 58

check routine, examining DECB 61
che-ckpointlrestart

check of JFCBFLAG 43
restriction for SVCLIB 43

CHKPT macro instruction'
use ip end-of-volume exit routine 43

CLOSE macro instruction
description 66-67
for mUltiple data sets 67
for parallel input processing 56-58
in EODAD routine 34
restriction with SYNAD 35,66
temporary close option 66-67
TYPE=T 66-67
volume positioning 64-66
with partitioned data set 102
with STOW m~cro 102-103

closing a data set 63-67
CNTRL macro instruction

device dependence 86
restrictions

with BSP macro instruction 86
with chained scheduling 90
with DOS checkpoint records 86

.Index 167

concatenation
defined 145-146
of data sets on RPS devices 146
of partitioned data sets 145-146
of sequential data sets 145-146
of unlike data sets 145
restriction with partitioned data sets 104

control buffer (see forms control buffer)
. control character

(see also CNTRL, PRTOV)
ANSI 19,23,83,91,160
carriage 18,26,159-160
code 159-160
explained 26
format-D 23
format-F 18,19
format-U 25
format-V 21
machine 83,91,159-160
specifying 82,159-160
with fixed-length records 18,19
with undefined-length records 25
with variable-length records 21

control section, dummy (DSECT) 49
control volume 147
count area 28

count-data format 28
count-key-data format 28
in device overhead 134
in ISAM index entry format 108

CREATEV command, use of 133
creating a new generation 150-152
cross reference table with direct data sets 126
CSECT statement, use of with DCBD macro 49
cylinder

allocation by 134
capacity 16,135
index

calculating space requirements for 136-139
definition 107-108

overflow
calculating space for 137,139
defined 106,109
specifying size

via CYLOFL parameter 137
CYLOFL (cylinder overflow) operand of DCB macro

when allocating ISAM data set 137
when creating ISAM data set 118

D
D-format records (see format-D records)
data access techniques (see access techniques)
data chaining 77
data check

effect on BLKSIZE 18,83
with SETPRTmacro 87

data control block (DCB)
ABEND exit

description 44-47
when available 34
where specified 34

attributes of, determining 31-33
changing an address in 49,50
creation by DCB macro instruction 15,30
description 30-31
dummy control section 49

168 OS/VS 1 Data Management Services Guide

exit
description 33,42
when available 34
when used by SYSIN/SYSOUT 144
where specified 34

fields 31-:33
initial setting of 50
modifying 30,49-50
operand of DO statement 32
primary sources·of information 30-31
sequence of completion 31
use 15
when sharing a data set 50

data definition name (ddname) field of DO statement 32
data definition (DO) statement

fields 32-33
relationship to DCB 30-31
relationship to JFCB 30-31
use 15

data errors 35-37
(see also SYNAD routine)

data event control block (DECB)
description of 61
use of 94

data management, introduction to 13-53
data mode processing

. relationship with buffers 73
data overrun 77,78
data set

characteristics 13-26
description 31-33
disposition (DISP) operand

cataloging 143
description 33
overridden by OPEN macro 68,69

identification 15
label (DSCB) 15,16,155-158

(see also magnetic tape volumes; data set control
block; labels, direct-access)

label (LABEL) field of DO statement 33
like characteristics 145
name 15
name (DSNAME) field 32
organization 14

(see also BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM data sets)

organiztion (DSORG) operand of DCB macro 32
record formats 17;.26
routing through the input/output stream 143-145
security 13,153
sharing 50-53
space allocation on direct~access volumes 133-143

estimation 134-136
for a direct data set 126
for indexed sequential data sets 136-138
for MSS volume 134
for partitioned data sets 1'36
specifying 13 3-134

storage 15,16
direct-access 16
magnetic-tape 16,17

SYSIN 143-145
SYSOUT 143-145
unlike characteristics 145

(

unmovable
direct organi-zation 127
resulting from use of MMBBCCHHR 29
specification in DSORG operand of DCB 32

(see also BDAM, BISAM, BPAM, BSAM, QISAM,
and QSAM data sets)

data set control block (DSCB)
contents of 155-157
data set label 155-157
data set security byte 153
described 16,157
index (format-2) HIRPD field of 115

DCB (see data control block)
DCB ABEND exit 44-47
DCB macro instruction 30-31

(see also data control block)
DCBBF ALN field in DCB 78
DCBBLKSI field inDCB 84,85,96
DCBCIND 1 field of DCB 78
DCBD macro instruction

restriction on use 49
use 49

DCBLPDA field of DCB 117
DCBLRECL field of DCB 96
DCBNCRHI field of DCB 116
DCBPRECL field of DCB 21
DCBSYNAD field of DCB 49
DD statement fields 32-33
ddname (see data definition name field)
deblocking, automatic 55
DECB (see data event control block)
defer nonstandard input trailer label exit 44
defining an FCB image 44
delete option

restriction when updating a sequential data set 94
r~striction with RKP 112
use with SETL 117

deletion
of indexed sequential data set records 111,112
of member name using STOW macro 101

DEN (tape density) 83
density, tape 83
DEQ macro, use of 51,52,122
descriptor word (see block descriptor word; record descriptor

word; segment descriptor word)
DEVD operand of DCB

device-class independence considerations 89
restriction with SYSOUT data sets 144
specifying 82
with BDAM 128
with SYSOUT data sets 144

device control for sequential data sets 86-88
device-dependent macro instructions 86-88
device independence 88-90
device-type considerations for data format

sequential organization 82-85
DEVTYPE macro, use of 115
direct-access device characteristic~ 27-29
direct-access volume 16

access mechanism 27
device characteristics 27-29
devices (see 2305 Fixed Head Storage; 2314 Dired Access

Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)

labels 15,155-158

record format 17-26,82,85
track, defined 27
track addressing 28-29
track format 28
track overflow 29
write validity check 29

direct addressing 126
direct data set (see BDAM data set)
direct organization (see BDAM data set)
directory (see BPAM data set)
disk drive (see 2305 Fixed Head Storage; 2314 Direct Access

Storage Facility; 2319 Disk Storage; 3330 Disk Drive;
3333 Disk Storage; 3340 Disk Storage; 3350 Disk
Storage)

Disk Operating System (see DOS tapes with embedded
. checkpoint records)

DISP operand
des,cription 33,69
for extending sequential data set 94
for indexed sequential data set 111
for partitioned data set 101-102
fortape 31,40
specifying 143
when DISP=SHR for sharing data sets 51,122
when passing a generation 151
when updating the directory 101

DOS (Disk Operating System) tapes with embedded
checkpoint records

restriction with BSP 87
restriction with chained scheduling 90
restriction with CNTRL 86
restriction with POINT 88

drum storage (see 2305 Fixed Head Storage)
DSCB (see data set control block)
DSECT statement 49
DSNAME operand of DO statement 32,101,104
DSORG operand of DCB macro

described 32
for direct data set 128
for sequential data set 93
with CLOSE TYPE= T 67
with indexed sequential data set 118
with partitioned data set 99,101-103

dummy control section for DCB 49
dummy data set, restriction with parallel input processing 56
dummy record

with direct data'set 128,129
dynamic buffering

buffer control 7Q
for direct data set 126

E

for ISAM data set 118,121
release of using FREEDBUF 82

(see also READ; RELEX; WRITE)
specifying 70

EBCDIC (extended binary coded decimal interchange code)
translation to and from ASCII 13, 17,55,~9,91

for magnetic-tape volumes 17
recordMformat dependencies 17,18

embedded index area 137,138

Index 169

end-of-data indicator 68
end-of-data routine (EODAD) 33-35

changing address·of in DCB 49-50
register contents 35
with basic access technique 58
with BSP macro 87
with concatenated data sets 145
with GET macro 55
with queued access technique 55

end-of-volume
exit routine 43
forcing 69
processing 68,69
routines, relationship with DCB ABEND exit 45,47
when EODAD routine entered 33-35

ENQ macro, use of
when sharing a data set 51,52,122

EODAD routine 33-35
changing address of in DCB 49-50
register contents 35
with basic access technique 58
with BSP macro 87
with concatenated data sets 145
with GET macro 55
with queued access technique 55

EROPT operand of DCB macro 35-36
error

analysis routine (SYNAD) 35-37
handling 61
options, automatic 35
uncorrectable 35

error routine (see SYNAD routine)
ESETL macro instruction

description 117
in EODAD routine 34
when sharing a data set 52

EST AE exit, abnormal termination 52
exchange buffering 77-80

buffer length requirements 78
effect on chained scheduling 90
examples 78-80

exclusive control
updating direct data sets 127
when sharing direct data sets 52

EXCP macro instruction 62
execute channel program (EXCP) 14
exit list 37-38
exit routine

block count 43,44
conventions 37-38
data control block (DCB) 42
DCB ABEND 44-45
defer nonstandard input trailer label 44
end-of-data 39-41
end-of-volume 43
FCB image 44
JFCBE 42,43
list 34,37
QSAM parallel input 42
register contents on entry 37
standard user label 38-41
synchronous error (SYNAD) 35-36
user totaling 41-42

exit routines identified by DCB 33
EXLST operand of DCB macro 37

170 OS/VS I Data Management Services Guide

EXTEND option
when opening data set 31,65

extended binary coded decimal interchange code (EBCDIC)
translation to and from ASCII 13,17,55,59,91

for magnetic-tape volumes 17
record-format dependencies 17 -18

extended American National Standards Institute
(ANSI) code 160

(see also ANSI control character)
extended search option for direct data sets 127

F
F-format records (see format-F records)
FCB image

exit 44
identification in JFCBE 43
relationship with SETPRT 86,87

feedback
option 127,128
with BDAM READ macro 59
with BDAM WRITE macro 60

FEOV macro instruction
description 69
ignored for SYSIN/SYSOUT data sets 69
restriction with spanned records 21,22,69
restriction with trailer label exit 40
to enter EODAD routine 33

file mark, restriction 87
FIND macro instruction

description 100- tol
in EODAD routine 34
updating a partitioned data set 104
when sharing a data set 52

fixed-length records 18-20
with parallel, input processing 56

force end-of-volume (see FEOV macro instruction) 68
format-D records 23-25

restriction with chained scheduling 24
format-F records 18-20

ASCII tapes 19-20
standard format 18-19
with card reader and punch 84
with parallel input processing 56

format-FBS records, restriction with search direct 91
format-FBT records, restriction with search direct 91

. format-FS records, restriction with search direct 91
format-U records 25-26

calculating record length 96
with card reader and punch 84
with parallel input processing 56

format-UT records, restriction with search direct 91
format-V records .20-25

block descriptor word 20,21
record descriptor word 21
segment descriptor word 22
segment control codes 22
spanned 22-23
with card punch 84
with parallel input processing 56
with user totaling 42

forms control buffer
image exit list 44

FREEBUF macro instruction
description 82
to control buffers 70

(

c

FREEDBUF macro instruction
description 82
example 123
for ISAM 121-123
when sharing data sets 52

FREEPOOL macro instruction 72-73
when issued for card punch data set 84
when issued for printer data set 85

full track-index write option

G
generation

data set 148
index 148
numbers, relative 148-150

generation data groups
absolute generation name 148,149
allocating 150,151
building an index 150
cataloging 151
creating a new 150-152
<;tefined 16,148
entering in the catalog 148
passing 151-152
relative generation name 148-150
retrieving 152

GET macro instruction
description 55
in EODAD routine 33,34
restriction with spanned records 23
to enter EODAD routine 33
updating a sequential data set 93,94
when sharing a data set 51
with format-U records 26
with parallel input processing 56,57

GETBUF macro instruction
description 81
to control buffers 70

GETPOOL macro instruction
description 71-72
with ISAM data set 113

glossary 161-164
grouping related control blocks 58

H
header label, user 38-41,158

I
IBCDASDI utility program

restriction 133
IDCAMS, MSS utility program

use of 134
IEBCOPY utility program

use of 106
IEHA TLAS utility program

use of 62
IEHDASDR utility program

restriction 133
IEHLIST utility program

useof 116,138,151
IEHMOVE utility program

use of 98,99,151
IEHPROGM utility program

use of 138,148,151,153

IHADCB macro instruction label 49,50
independent overflow area

description 109
specifying 139

index
area 106

calculating space for 136-137,139
cylinder 108

.calculating space for 136,137
master 109

calculating space for 136,137
track 108

calculating space for 137
im;lexed sequential data set

(see also BISAM and QISAM)
adding records 109-1 r 1

inserting new r~cords 109
new records at the end 110-111

areas 106-109
allocating space for 113-116,136-138
prime 107
index 107-109
overflow 109

buffer requirements 113-116
creation 118-120
deleting records 111, 112
device control 116-117
full track-index write ~ption 118
multivolume considerations 64
retrieving 120-125
SYNAD routine 37
updating 120-125

indexes of the catalog 15,16
indirect addressing 126
INOUT option

OPEN macro 65
opening magnetic tape volume 31
when using POINT macro 88

INPUT option
OPEN macro instruction 65
opening magnetic tape volume 31

input/ output device generation 88
input/output devices for use with sequential data sets

card reader and punch 84,85
direct access 85
magnetic'tape 83
paper tape reader 84
printer 85

input/output errors, recovering from 62
. interrecord gaps (IRGs) 17

lOB, relationship with SYNAD routine for BDAM 36
IRG (interrecord gap) 17
ISAM (see indexed sequential data set; BISAM; QISAM)

J
JES (job entry subsystem) 143-145
JFCB (job file control block) 30-31,64
JFCBE (job file control block extension) exit 42,43
JFCBFLAG 43
job file control block (JFCB) 30-31,64
job file control block extension (JFCBE) exit 42,43

Index 171

K
key

class 116
for direct-access devices 28
for indexed sequential data sets 106-108
protection 106
relative key position (RKP) for indexed sequential data

set 112,113,118
use of when adding records to indexed sequential data

set 109-111
use of when maintaining an indexed sequential data

set 111
use of when retrieving records from an indexed sequential

data set 120-125
KEYLEN operand of DCB macro

description 32
for direct-access device 85
for direct data set 128

KN see WRITE KN)
KU (see READ KU)

L
label exits 38-41
labels, data set 15-16,31,33

(see also magnetic-tape volumes; labels, direct-access)
labels, direct-access

data set control block 155-158
format 155-158
user label groups 157-158
volume label group 155-157

LABEL parameter of DD statement
description 33
specifying password protection 153
specifying standard labels 39

LEAVE option
for close processing 67
for concatendated data sets 145
for end-of-volume processing 68,69
for forced end-of-volume processing 69

length checking 18
link field 109,113-115
load mode for QISAM

in SYNAD routine 37
when sharing a DCB 52

load mode for BDAM when sharing data sets 52
loading an indexed sequential data set 118
locate mode processing

defined for buffering 73-74
example with exchange buffering 78-79
example with simple buffering 75-77
relationship with buffers 73
to process records that exceed 32,760 bytes 23
to update a member with QSAM 105
with GET macro instruction

creating a sequential data set, coding example 92-94
exchange buffering 78,79
simple buffering 74-76

with parallel input processing 56
with PUT macro instruction

creating a sequential data set, coding example 92
simple buffering 74-76,93-94

look-ahead buffering 55
LPALIB, restriction for checkpoint 43

172 OS/VS 1 Data Management Services Guide

LRECL operand of DCB macro
described 32
device dependence 90
restriction when calculating record length 96
to process records that exceed 32,760 bytes 23
with BDAM 128
with BSAM 96
with ISAM

buffer requirements 115
data set creation 118

with PUT macro 56
with SYSOUT data set 144

M
machine code control character 82,91,159,160
MACRF (macro instruction form) operand of DeB macro

described 33
device independence 89
dynamic buffering 122
forBDAM 128
processing mode 73
relationship with WAIT macro 60,61
to update a member using QSAM 105
when sharing a data set 51,52

magnetic-tape volumes
defined 16,17
density 83
labels

American National Standard 16,17
none 16
nonstandard 16
standard 16
user 38-39

organization 16,17
p,ositioning 16

during close processing 66-67
during end-of-volume processing 68-69

record format 17-26,83
serial number 16,17

. tape marks 17
master index 16,107
MBBCCHHR (see actual address)
modes, processing (see data mode; locate mode; move mode;

substitute mode)
modifying the data control block 30,49,50
move mode processing

defined for buffering 73
relationship with buffers 73
with exchange buffering 77
with GET macro instruction

creating a sequential data set 92
simple buffering 74-76,92

with parallel input processing 56
with PUT macro instruction

creating a sequential data set 92
simple buffering 74-76,92

MSVGP parameter on JCL statemnt 134
MSW A operand of the DCB macro 115,116
multivolume data set 68

processing for QISAM 71
multitasking mode, sharing data sets 52,64
multivolume data set

with NOTE macro 87

(

N
names

data set 15
generation data group 16,148,149

NCP (number of channel programs) operand of the DCB
macro 58,91,144

nonstandard tape labels 16
note list 99
NOTE macro instruction

description 87
restriction with

BSP macro 87
multivolume data sets 87
search direct operation 91

updating a sequential data set 93
use with partitioned data set

updating 104
NTM operand 109
null segment 23

o
offset reading 59
OMR (see optical mark read)
OPEN macro instruction

considerations for 64
description 65-66
for parallel input processing 56-58
for simultaneous opening of multiple data sets 63
for updating a sequential data set 93
functions 30,65,66
restriction with search direct 91
used for more than one data set 64
volume positioning for EOV 68

opening a data set 63-66
OPTCD operand of the DCB macro

device dependence 90
with ASCII tapes (OPTCD=Q) 55
with BDAM 127,128
with ISAM 117
request user totaling (OPTCD=T) 41

OPTCD=H (embedded checkpoints, DOS tapes) 86
OPTCD=M (master index) 109
OPTCD=T (user totaling) 41
OPTCD=Z (search direct option) 91
o UTIN option

o PEN macro 65
when opening data set 31
when using POINT macro 88

OUTINX option
when opening data set 31,65

output mode
defined 74

OUTPUT option
OPEN macro 65
when opening data set 31
when using PO INT macro 88

output stream 143-145
overflow

area 106,109
chain 109

cylinder (see cylinder overflow)
independent area 109
PROTV macro 86
records 109
track

description 28
effect on chained scheduling 90
restriction on BSP macro instruction 87
restriction with BDAM 131
restriction with parallel input processing 56
restriction with RPS feature 95

overlap of input/output
performance improvement 90
with basic access technique 58
with partitioned data sets 105
with sequential data sets 94
With queued access technique 55

p
paging environment, related control block group 58
paper-tape reader

described 84
effect on chained scheduling 90
record format with 84
with a SYNAD routine 36

parallel
data access block (PDAB) 42,56,57
input processing 42,56-58

parameter list
contents of 46
use of by DCB ABEND exit routine 45-47

partitioned data set (see BPAM data set)
PASSWORD data set 153
password protection 153
PC (card punch) record format 84
PCI flag 90
PDABD DSECT 57
PDAB (parallel data access block) 42,56,57
PDS (see BPAfd data set)
performance improvement 90
POINT macro instruction

description 88
in EODAD routine 34
restriction with

BSP macro 87
multivolume data sets '88
search direct operation 91

updating a partitioned data set 104
updating a sequential dat,a set 93

prefix, block (see block prefix)
prefix, key 116
prime data area

description 106,107
space allocation for 136,138-139

printer
overflow (PRTOV macro) 86
record format with 85
restriction with chained scheduling 91

program, describing the processing 33-48
PROTECT macro instruction 153
PRTOV macro instruction

description 86
device dependent 89
when macro will not function 86

PT (see paper-tape reader)

Index 173

PUT macro instruction
description 55-56
exchange buffering 77-80
locate mode 73-76'
used to create a sequential data set, coding

example 92-94
with format-U records 25
with indexed sequential data set 109-111
with simple buffering 74-76
with spanned records 23

(see also data mode processing; locate mode
processing; move mode processing; substitite mode
processing)

PUTX macro instruction
description 56

Q

device independence 89
for QISAM 122
UPDAT mode 77
updating a sequential data set 93,94-
when sharing a data set 51
with exchange buffering 78,80,81
with format-U records 25-26
with simple buffering 74-77
with spanned records 23

(see also output mode; update mode)

QISAM data set
(see also indexed sequential data set)
EODAD routine 34
scan mode 122
sharing 51,52
SYNAD routine 36,37
using common buffer pool 71

QSAM
(see also queued access technique)
creating a BDAM data set 128
parallel input exit 42
parallel input processing 56-58
performance improvement 90
restriction with

spanned records 21
spanned variable-length records 21-23
SYSIN/SYSOUT data sets 144
to update a directory 101
to update a member 105
user labels 38
user totaling 41-42
when sharing a data set 51,52
with card punch 84
with printer 85

queued access technique
buffer control 70,73-74
defined 55
introduced 14
processing modes (see data mode processing; locate mode

processing; move mode processing; substitute mode
processing)

174 OS/VS 1 Data Management Services Guide

R
RD (card reader) 84,85
RDBACK option 40

opening magnetic tape volume 31
restriction for variable-length records 65
restriction with SYSIN/SYSOUT data sets 65

RDW (see record descriptor word)
read backward (SB operand of READ macro) 59
READ macro instruction

description 59
device independence 89
in SYNAD routine 36
restriction in EODAD routine 34
supplying record length 96
to enter EODAD routine 33
to update existing records 121
updating a partitioned data set 104
updating a sequential data set 93,94
when sharing a data set 51,52
with basic access technique 58
with format-U records 26
with KU (key, update)

in coding example 123
RECFM operand of DCB macro

description 32
for sequential data sets 82
selecting 18, 19
with card punch 84
with card reader 84
with control character 82
with direct-access storage device 85
with magnetic tape 83
with paper tape reader 84
with printer 85
with sequential organization 82

record blocking (see blocking)
record descriptor worq (RDW) 21

data mode exception for spanned records 21
variable-length records format-D 23,24
when replaced by segment descriptor word 22·

record format 17-26
fixed-length 17-20
fixed-length for ASCII 17-20
fixed-length standard 18-20
spanned variable-length 21-23
undefined-length 17
variable-length 17,20-21

record length (LRECL) operand of the DCB macro 32
relative block address

defined 29
with direct data set 127,129
with feedback option 127,128

relative generation name 148-150
relative key position operand of the DCB macro 112,113,118
relative track address

defined 29
with direct access 127,129
with feedback option 127,128

RELEX macro instruction
exclusive" control 52,128
when sharing data sets 52

RELSE macro instruction
defined 80
to terminate buffer processing 70

reorganization of indexed sequential data set 1 1 1

(

c

REREAD option 68,69
restart end-of-volume exit routine 43
restrictions

on ASCII records
block prefix 19,20,24
on 7-track tape 83

on chained scheduling with
BDAM 90
calculating record length 95,96
CNTRL macro 90
DOS checkpoint records 90
exchange "buffering 90
format-D records 24
paper-tape reader 90
partitioned data set 104
SKP option 35
spooled data sets 90
track overflow 90,95
UPDAT operand 90
updating a sequential data set 93,94
2540 Card Read Punch 91
3525 Card Punch 91

on CNTRL macro
with BSP macro 87
with chained scheduling 90
with DOS checkpoint records 86

on data sets with same DDname 64
on DCB usage 64-65
on DCBD macro usage 49-50
on DOS checkpoint records 86-88,90
on format-D records with chained scheduling 24
on high-level index in storage 1 16
on NOTE macro with

BSP macro 87
multivolume data sets 87
search direct operation 91

on POINT macro with
BSP macro 87
multivolume data sets 88
search direct operation 91

on reading concatenated data sets backward 145
on user label exit routines 38-41
with search direct 91

resume load 1 to, 11 1,1 18-1 20
retrieving a generation 152
return code

with block count exit 44
with user labels 40

RETURN macro
relationship in SYNAD routine 35

REWIND option
for CLOSE macro 66
for FEOV macro 69

RKP (relative key position 112,113,118
RLSE parameter of DD statement 67
RORG 1, RORG2, RORG3 fields of the DCB 111
routing data sets through the input/output stream 143-145
RPS (rotational position sensing) feature

concatenating data sets on nonRPS devices 146
restriction with track overflow records

variable-length records 20
when calculating record length 95

RO record 28,128,133

s
save area, user totaling 41-42
scan mode for QISAM

in SYNAD routine 37
issuing PUTX 122

scheduling of input/output streams 143
SDW (see segment-descriptor word)
search direct for input 91
search option, extended 127
secondary storage (see data set storage; direct-access storage;

magnetic-~ape volumes)
security, data set 13,153
segment

buffer 70,71
control code 22
descriptor word.

for spanned records 22,23
indicating a null segment 23

null 23
selecting an access method 62
SEP (separation, channel) 32
sequential data set

(see also BPAM, BSAM, and QSAM data sets)
creation 92
concatenation 145-146
extending 94
retrieving 93
updating 93-94

sequential organization
defined 14
device control 86-88
device independence 88-89

SETL macro instruction 1 16-1 17
in EODAD routine 34
when sharing a data set 52

SETPRT macro instruction 86-87
·SETPRT routine 44
sharing data sets 50-53
sharing DASDs 53
simple buffering

description 74-77
when defaulted to 78
with parallel input processing 56,57

SKP error option 35
SMSI op~rand of the DCB macro 1 16
SMSW operand of the DCB macro 115,1 16
Sort/ merge program

record restriction 18
space allocation

estimating requirements 134-136
for a direct data set 126
for an indexed sequential data set 136-138
for an MSS volume" 134
for a partitioned data set 136
specifying 133,134

SP ACE parameter 32
spanned records

basic direct access method 23
considerations for 21-23
restriction with parallel input processing 56
restriction with search direct 91
restriction with SYSIN data sets 23
sequential access method 21
variable-length 21

• Index 175

spooling of SYSIN and SYSOUT data sets 143-145
restriction 90

stacker selection
control characters for 18,26
ST ACK operand 84
using CNTRL macro 86

STAE exit 46
STAI exit 46
standard format for fixed-length records 18-20
standard labels

direct-access volumes 16
magnetic-tape volumes 16,17

storage (see direct-access storage; magnetic-tape volumes)
STOW macro instruction

description 101
restriction with DCB ABEND exit 44
when sharing a data set 52

subpool 0, when shared 52
substitute mode processing

creating a sequential data set 92
defined for buffering 74
relationship with buffers 75
with exchange buffering 77,78
with GET macro instruction 78
with PUT macro instruction 78

supervisor call library, restriction 43
SVCLIB, restrictio~ 43
switching, volume

automatic
with end-of-volume 68
with FEOV macro 69
with GET macro 55
restriction with concatenated data sets 145

initiated by CHECK 60 '
SYNAD field

programming consideration 90
SYNAD routine,

changing address in DCB 49
description 35-37
macros used in 61,62
programming consideration 90
relationship with ISAM 65
relationship with SETL option 117
relationship with DECB 61
relationship with SYSIN/SYSOUT data sets 145
temporary close restriction 66
when adding records to ISAM data set 111
when sharing a data set 52
with basic access technique 58
with queued access technique 55

SYNADAF macro instruction
description 61
examples 92,93,94
use in SYNAD routine 35-37

SYNADRLS macro instruction
description 62
examples 92,93
use in SYNAD routine 36

synchronous error routine exit (see SYNAD routine)

176 OS/VSl Data Management Services Guide

SYSIN data set
FEOV macro ignored for 69
restriction with

chained scheduling 90
parallel input processing 56
spanned variable-length records 23
user totaling 41

routing data through input stream 143-145
SYSOUT data set

FEOV macro ignored for 69
restriction with

chained scheduling 90
label exits 40
spanned variable-length records 23
user totaling 41

routing data through output stream 143-145
system generation device independence

considerations 88-89
system input stream 143-145
system output stream 143-145
system output writer 143-145
SYSl,IMAGELIB

fetching images from 86
search of 44

SYS1.SVCLIB and checkpoint/restart 43

T
tape (see magnetic-tape volumes; paper-tape reader)
tape mark 17
task input/output table (TIOT) 64
TCB, use of 145
temporary close 66-67
TIOT (task input/output table) 64
totaling area, user totaling exit routine 41-42
track

addressing 28-29
defined 27
format

count-data format 28
count-key-data format 29-30

index 107,108
overflow option

description 29
effect on chained scheduling 91
restriction of BSP macro instruction 87
restriction with BDAM 132
restriction with parallel input processing 56
restriction with RPS feature 96
restriction with variable-length records 20

trailer label, user 38-41
TRTCH 83
TRUNC macro instruction

description 81
to terminate buffer processing 70

truncated blocks, format-F records 18
truncated format-U record 26
TTR (see address, direct-access storage device, relative)
TYPE=T operand 66-67

(

)

u
U-format records (see format-U records)
UCS image

relationship with SETPRT 86,87
UHL (user header label) 38-41
undefined length records (see format-U records)
UNIT operand of the DD statement 32
unlabeled magnetic tape 16-17
UPDAT option

(see also update mode)
EODAD routine entered for BSAM 34
restriction with

chained scheduling 90
search direct operation 91
SYSIN/SYSOUT data sets 65

opening a data set 31
updating a sequential data set 93
with spanned records 21

. update mode
(see also UPDA T option)
with format-U records 26
with PUTX 74
with simple buffering 75

user header label (UHL) 38-41
user label exit routine

description 38,41
exit list entry 39
restriction for data sets on volumes without standard

labels 39
restriction for SYSOUT data sets 40
with read backward 46-47

user totaling exit routine
control totals 41,42
description 41,42
exit list entry 41
how specified 41
image area address 41
relationship with end-of-volume exit 43
restricted to BSAM, QSAM 41
save area 41
totaling area 41
variable-length and spanned records 42

user trailer label (UTL) 42
utility programs, use of

IBCDASDI 133
IDCAMS 134
IEBCOPY 106
IEHATLAS 62
IEHDASDR 133
IEHLIST 116,138,151
IEHMOVE 98,99,151
IEHPROGM 138,148,151,153
initializing direct-access volume 16,133

UTL (user trailer label) 38-41

v
variable-length record (format-D) 23-25
variable-length record (format-V) 20,21

segments 21-23
spanned 21-23

restrictions with SYSIN and SYSOUT data sets 23
special considerations, with user totaling 42
with parallel input processing 56

version increment of generation data group 149
V-format records (see format-V records)

volume
control 147
defined 15
direct-access 16

(see also direct-access volume)
disposition (see DISP operand)
identification operand of DD statement 33
index (see index)
initializing 16,133
labels (see labels, direct access)
magnetic-tape (see magnetic tape volumes)
positioning 66-69
serial number 33
switching 55,68-69,145
table of contents (see VTOC)

VSAM catalog 147-148
generation data group base created in 148

VSl systems
abnormal termination during open, close, EOV

processing 64,65
action of DISP option 69
cataloging data sets 147-148
protection key usage when accessing indexed sequential

data set 106
restriction when processing open BISAM DCB 122
restriction with exchange buffering 78

VTOC (volume table of contents 15,16
catalog DSCB 147
DSCB 155
for ISAM data set 107
initializing 133
pointer 156

w
WAIT macro instruction

description 60-61
example 123
when sharing a data set 52
with bask access technique 58,60

BISAM 60,121
BDAM 52,60,130

with QSAM parallel input processing 56
WRITE macro instruction

add form 128,131
description 59,60
for format-U records 25,26
in EODAD routine 34
in SYNAD routine 35,36
programming co~sidefation 89
supplying record length 96
update form 129,130.
updating a partitioned data set 104,105
updating a sequential data set 93,94
used with BDAM 127,128
used with note list 99
when sharing a data set 51,52
with basic access technique 58
withK(key) 121,123
with KN (key, new) 109,110,123,124
writing a short block 96

write validity check option 29

Index 177

123
1403 Printer

SETPRT macro for 86·
1600 BPI 83
2305 Fixed Head Storage

capacity 135
overhead formula 135
programming considerations 131

2314 Direct Access Storage Facility
capacity 135
overhead formula 135

2319 Disk Storage
capacity 135
overhead formula 135

2400 Magnetic Tape Units
recording density 83

2540 Card Read Punch
chained scheduling restriction 91
punch error correction 85

3203 Printer SETPRT macro for 86
3211 Printer

SETPRT macro for 86
3330 Disk Drive

capacity 135
overhead formula 135

3333 Disk Storage
capacity 135
overhead formula 135

3340 Disk Storage
capacity 135
overhead formula 135

3350 Disk Storage
capacity 135
overhead formula 135

3400 Magnetic Tape Units
recording density 83

3525 Card Punch
chained scheduling ignored 91

3800 Printer
JFCBE exit for 42-43
SETPRT macro for 86-87

7-track tapes 83
800 BPI 83
9-track tapes 83

178 OS/VS 1 Data Management Services Guide

(

(

(

GC26-3874-0

®

I nternational Business Machines Corpor:ation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

(

o
Q)
r+
Q)

~
Q)

::l
Q)
cc
(I)

3
(I)
::l
r+

k 1/1

G)
c:
c:
(I)

c

'" 'I I

GLOSSARY OF ACRONYMS AND
ABBREVIATIONS

The following terms are defined as they are used in this book. If you do not find the term
you are looking for, refer to the index or to the IBM Data Processing Glossary,
GC20-1699.

A
ABE
ABEND
ACC
AFF

ANSI
ASCII
ABSTR
AL
AUL

B
BCDIC
BDAM
BDW
BFALN
BYrEK
BISAM
BLDL
BLKSIZE
BPAM
BPI
BSAM
BSM

BSP
BSR

BUFCB
BUFL
BUFNO
BUFOFF

CCW
CONTIG
CNTRL
CPU
CSW
CYLOFL

D
DA
DAU
DCB
DCBD
DD
DEB

ANSI control code (value of RECFM)
abnormal end (value of EROPT)
abnormal end (macro instruction)
accept erroneous block (value of EROPT)
affinity (channel separation parameter of DD statement or unit affinity
value of UNIT)
American National Standards Institute
American National Standard Code for Information Interchange
absolute track (value of SPACE)
American National Standard Labels
American National Standard User labels (value of LABEL)

blocked records (value of RECFM)
"binary coded decimal interchange code
basic direct access method
block descriptor word
buffer alignment (operand of DCB)
buffer technique (operand of DCB)
hasic indexed sequential access method
build list (macro instruction)
blocksize (operand of DCB)
basic partitioned access method
bits per inch
basic sequential access method
backspace past tapemark and forward space over tapemark (operand of
CNTRL)
backspace one block (macro instruction)
backspace over a specified number of blocks (records)
(operand of CNTRL)
buffer pool control block (operand of DCB)
buffer length (operand of DCB)
buffer number (operand of DCB)
buffer offset (length of ASCII block prefix by which the buffer
is offset; operand of DCB)

channel command word
contiguous space allocation (value of SPACE)
control (macro instruction)
central processing unit
channel status word
number of tracks for cylinder overflow records (operand of DCB)

format-D (ASCII variable-length) records (value of RECFM)
direct-access (value of DEVD or DSORG)
direct-access unmovable data set (value of DSORG)
data control block (control block name or macro instruction)
data control block dummy section macro instruction
data definition
data extent block

Glossary of Acronyms and Abbreviations 161

DECB data event control block
DEN magnetic tape density (operand of DCB)
DEVD device-dependent (operand of DCB) (DISP data set disposition (parameter of DD statement)
DSCB data set control block
DSORG data set orgamzation (operand of DCB)

EBCDIC extended binary coded decimal interchange code
EODAD end-of-data set exit routine address (operand of DCB)
EOF end-of-file
EOV end-of -volume
EROPT error options (operand of DCB)
ESETL end sequential retrieval (QISAM macro instruction)
EXCP execute channel program (macro instruction)
EXLST exit list (operand of DCB)

F fixed-length records (value of RECFM)
FB fixed-length, blocked records (value of RECFM)
FBS fixed-length, blocked, standard records (value of RECFM)
FBT fixed-length, blocked records with track overflow option (value of

RECFM)
FCB forms control buffer
FEOV force end-of-volume (macro instruction) .
FS fixed-length, standard records (value of RECFM)
FSM forward space past tapemark and backspace over tapemark (operand of

CNTRL)
FSR forward space over a specified number of blocks (records) (operand of

CNTRL)

GCR group coded recording (GL GET macro, locate mode (value of MACRF)
GM GET macro, move mode (value of MACRF) "-
HA home address

I/O input/ output
INOUT input then output (operand of OPEN)
lOB input/ output block
IPL initial program load
IRG interrecord gap
IS indexed sequential (value of DSORG)
ISAM indexed sequential access method
ISU indexed sequential unmovable (value of DSORG)

JCL job control language
JFCB job file control block
JFCBE job file control block extension for 3800 printer

KEYLEN key length (~perand of DCB)

LPA link pack area
LPALI~ link pack area library
LRECL logical record length (operand of DCB)

M machine control code (value of RECFM)
MACRF macro instruction form (operand of DCB)
.MOD modify data set (value of DISP)
MSHI main storage for highest-level index (operand of DCB)

(MSS Mass Storage System

162 OS/VS 1 Data Management Services Guide

MSVC
MSW.t\

Mass Storage Volume Control
main storage for work area (operand of DCB)

NCP number of channel programs (operand of DCB)
NOPWREAD no password to read a data set (vcV.ue of LABEL)
NRZI non-return-to-zero-inverted (tape recording mode)
NSL nonstandard label (value of LABEL)
NTM number of tracks in cylinder index for each entry in lowest level of

master index (operand of DCB)

OMR
OPTCD
OS/VS
OUTIN

PCI
PDAB
PDS
PE
PL
PM
PO
POU
PRECL
PRTSP
PS
PSU

QISAM
QSAM

RCE
RDBACK
ROW
RECFM
RKP
RLSE
RPS

S
SDW
SEP

SER
SETL
SF
SK
SKP
SL
SMSI
SMSW
SP
SS

-SUL
_~VC
SVCLIB
SYNAD

optical mark read
optional services code (operand of DCa)
operating system/virtual storage
'Output then input (operand of OPEN)

program-controlled interruption
parallel data access block
partitioned data set
phase encoding (tape recording mode)
PUT 'macro, locate mode (value of MACRF)
PUT macro, move mode (value of MACRF)
partitioned organization (value of DSORG)
pattitioned organization unmovable (value of DSORG)
physical record length (field of DCB)
printer line spacing (operand of DCB)
physical sequential (value of DSORG)
physical sequential unmovable (value of DSORG)

queued indexed sequential access methods
queued sequential access method

read column eliminate
read backward (operand of OPEN)
record descriptor word
record format (operand, of DCB)
relative key position (operand of DCB)
release unused space (DD statement)
rotational position sensing

standard format records (value of RECFM)
segment descriptor word
separation (channel separatiori parameter of DD statement or
unit separation value of UNIT)
volume serial number (value of VOLUME)
set lower limit of sequential retrieval (QISAM macro instruction)
sequential forward (operand of READ or WRITE)
skip to a printer channel (operand of CNTRL)
skip erroneous block (value of EROPT)
IBM standard labels (value of LABEL)
size of main-storage area for highest-level index (operand of DCB)
size of main-storage work area (operand of DCB)
space lines on a printer (operand of CNTRL)
select stacker on card reader (operand of CNTRL)
IBM standard and user labels (value of LABEL)
supervisor call
supervisor call library
synchronous error routine address (operand of DCB)

Glossary of Acronyms and Abbreviations 163

SYSIN
SYSOVT

T
nOT
TRTCH

v
VCS
VHL
UTL

V
VB
VBS
VS
VTOC

system input stream
system output stream

track overflow option (value of RECFM)
task I/O table
track recording technique (operand of DCB)

undefined length records (value ofRECFM)
universal character set
user header label
user trailer label

format-V (variable-length) records (value of RECFM)
variable-length, blocked records (value of RECFM)
variable-length, blocked, spanned records (value of RECFM)
virtual storage or variable-length, spanned records
volume table of contents

164 OS/VS1 Data Management Services Guide

(

(

I

OS/VSl Data Management Services Guide
GC26-3874-0

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions qr
requests to your local IBM representative.

If you would like a reply, please provide your name and
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation. .

Reader's
Comment
Form

GC26-3874-0

Fold and Staple
t ••••••••••••••••••••••••• ••••••••••••••• •••••• • .. .

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

... '-. .. ~
Fold and Staple

®

I nternational Business Machines Corpor.ation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(I nternational)

(

(

