
Systems

GC24-51 00-4
File No. 8370-36

OSjVS1 JCL Services

Release 6.7

Fifth Edition (January 1979)
This edition, GC24-5100-4, applies to Release 6.7 of OS/VS 1 and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters. This edition
incorporates the following two supplements:

GC24-5134 (SUS, OS/VSl MSS Enhancements: March 15, 1977)
GC24-5131 (SU6, OS/VS 1 Subsystem Attachment Support; October 6, 1977)

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult IBM System/370 Bibliography,
GC20-000 1, for the editions that are applicable and current.

This edition, GC24-5100-4, is a major revision of GC24-S 100-3.

Summary of Amendments
For a detailed list of changes, see page iii.

This publication has been photocomposed through ATMS (an IBM Program Product)
and TERMTEXT/Format (an IBM Installed User Program). For information regarding
those programs, contact your IBM representative or the IBM branch office in your
locality.

Changes or additions to the text and illustrations are indicated by a vertical line to the left
of the change.

Publications are not stocked at the address given below: requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

This publication has been produced by IBM Corporation, Programming Publications,
Dept. G60, PO Box 6, Endicott, New York, U.S.A. 13760.

© Copyright International Business Machines Corporation 1973, 1975, 1976, 1977, 1979

Summary of Amendments
for GC24-5100-4
VSl Release 6.7

This revision incorporates the following supplements:
GC24-5134 March 15, 1977 (SU 5)
GC24-5131 October 6, 1977 (SU 6)

Miscellaneous
Corrections and updates resulting from reader's comments are
included.

Summary of Amendments
for GC24-5100-3
VS 1 Release 6

IBM 3203 Model 4 Printer
The 3203 Model 4 Printer is supported on System/370 Models
138 and 148. The IBM standard character sets for the 3203
Printer are listed in the section titled, "Requesting a Special
Character Set."

IBM 3800 Printing Subsystem
The Burster-Trimmer-Stacker feature is supported.

Summary of Amendments
for OS/VSl JCL Services

Miscellaneous
Editorial Changes and changes resulting from reader's com­
ments are included.

Summary of Amendments
for GC24-5100-2
VS 1 Release 5

IBM 3800 Printing Subsystem
The IBM 3800 Printing Subsystem information in this publica­
tion is for planning purposes only until the product becomes
available.

This edition describes the JCL parameters associated with the
IBM 3800 Printing 'Subsystem. These parameters are CHARS,
FLASH, FCB, and MODIFY.

High-Density Dump
Describes the use of CHARS and FCB parameters to produce a
compressed dump print out on the IBM 3800 Printing Subsys­
tem.

Miscellaneous
Editorial changes and changes resulting from reader's com­
ments are included.

Summary of Amendments iii

iv OS/VSl JCL Services

OS/VSl JCL Services describes the operating system
services that can be requested by coding parameters of
JCL (job control language). This publication is for ap­
plications programmers with a basic knowledge of
computer operating systems and some familiarity with
JCL. Background information on VSl (Virtual Storage,
Option I) is in the IBM System/370 System Summary,
GA22-7001.

This book contains the OS/VS 1 information that was
in OS/VS JCL Services, GC28-0617, and changes to
VSl JCL since VSl Release 2. The book also incorpo­
rates "Appendix D: Creating and Retrieving Indexed
Sequential Data Sets" and "Appendix E: Creating and
Retrieving Generation Data Sets," from OS/VSl JCL
Reference, GC28-06IS. Miscellaneous changes and
additions have been made to some of this material.

Part I, JCL Defines the Job, describes the nine JCL

statements and the organization of services used in this
book. It also includes a list of JCL services, noting the
publication in which each is described, and the param­
eter, subparameter, or statement used to request the
service. All JCL services are not described in this publi­
cation.

Part 2, Descriptions of JCL Services, is grouped into
the following chapters:

Running Your Job
Describing and Defining Data Sets
Special Data Sets
Obtaining Output
Cataloged and In-Stream Procedures

Each chapter is divided into sections describing when
or why to request the service discussed, and how to
request or control the service.

JCL parameters are discussed only in the context of
requesting services. Complete descriptions of these
parameters are in the OS/VSl JCL Reference,
GC24-5099.

Other publications to which the text refers:

Data Processing Glossary, GC20-1699

IBM System/370 Bibliography, GC20-0001

Preface

IBM 3800 Printing Subsystem Programmer's Guide,
GC26-3846

Forms Design Reference Guidefor the IBM 3800
Printing Subsystem, GA26-1633

Introduction to Virtual Storage in System/370,
GR20-4260

Operator's Library: OS/ VSl Reference,
GC38-0110

OS/ VSl Checkpoint/Restart, GC26-3876

OS/VSl Data Managementfor System Programmers,
GC26-3837

OS/VSl Data Management Macro Instructions,
GC26-3872

OS/VSl Data Management Services Guide,
GC26-3874

OS/VSl Debugging Guide, GC24-5093

OS/VSl Planning and Use Guide, GC24-5090

OS/ VSl RES: Workstation Users Guide,
GC28-6879

OS/VSl Supervisor Services and Macro Instructions,
GC24-5103

OS/VSl Utilities, GC26-3901

OS/VSl Access Method Services, GC26-3840

OS/VSl IBM 3540 Programmer's Reference,
GC24-5110

Preface v

vi OS/VSl JCL Services

Contents

Chapter 1: JCL Defines the Job .. 1-1
JCL Statements .. I-I
Introducing the JCL Services ... 1-1
List of JCL Services ... 1-3

Chapter 2: Descriptions of JCL Services .. 2-1
Running Your Job ... 2-1

Job Scheduling ... 2-1
Req uesting Storage for Execution of a Program .. 2-2
Conditional Execution of Job Steps .. 2-3
Restarting a Job .. 2-5

Defining and Describing Data Sets ... 2-8
Req uesting Units and Volumes for Data Sets .. 2-8
Req uesting S pace for a Single Data Set .. 2-14
IBM 3850 Mass Storage System Considerations ... 2-17
Requesting Space for a Group of Data Sets .. 2-18
Disposition Processing of Data Sets ... 2-21
Insuring Data Set Integrity .. 2-24

Special Data Sets ... 2-25
Creating and Using Private and Temporary Libraries 2-25
Defining a Dummy Data Set .. 2-28
Using a Dedicated Data Set for Allocating a Temporary Data Set 2-28
Creating and Retrieving Generation Data Sets .. 2-29
Creating and Retrieving Indexed Sequential Data Sets 2-32
Identifying Associated Data Sets ... 2-35

Obtaining Output ... 2-35
Controlling the Output Listing of JCL Statements, Messages, and Dumps 2-36
Writing Output Data Sets ... 2-37
Req uesting Multiple Copies of an Output Data Set 2-39
Copy Modification ... 2-40
Printer Form and Character Control .. 2-40
Forms Overlay .. 2-42
Bursting of Output ... 2-42
Controlling Output to a Workstation .. 2-42

Cataloged and In-Stream Procedures .. 2-44
Writing Cataloged and In-Stream Procedures .. 2-44
Using Cataloged and In-Stream Procedures .. 2-45
Using Symbolic Parameters ... 2-48

Glossary .. G-I

Index .. I-I

Figures
Figure I-I. Each JCL Statement Has a Purpose ... 1-1

Figure 2-I. Combinations of Mount and Use Attributes 2-10

Figure 2-2. System Action for Determining if Enough Space is
Available to Satisfy Primary Quantity .. 2-16

Figure 2-3. Defining a Temporary Data Set in Order to Use the Space
Allocated to a Dedicated Data Set ... 2-29

Figure 2-4. Identification of Cataloged Procedure Statements on
the Output Listing .. 2-48

Figure 2-5. Identification of In-Stream Procedure Statements on
the Output Listing .. 2-48

Contents vii

(

viii OSjVSl JCL Services

You can write programs in anyone of a number of
languages, which the operating system translates into
machine language to execute your instructions and
perform your work. You define the job (a collection of
related problem programs) that you submit to the sys­
tem with JCL (job control language).

Ajob can consist of one or more job steps; each job
step is a unit of work associated with one processing
program or one cataloged procedure and related data.
(A cataloged procedure is a set of job control state­
ments that has been placed in a partitioned data set
called the procedure library; you can retrieve a cata­
loged procedure by coding its name on an EXEC state­
ment.) You identify each job step with an EXEC

(execute) statement; each data set used by a job step,
with a DO (data definition) statement; and the job it­
self, with a JOB statement. These three job control
statements and six additional statements are summa­
rized under "JCL Statements," later in this chapter.

In addition to identifying data sets, job steps, and
the job, you can code parameters on JCL statements to
request resources and services from the operating sys­
tem. The operating system is responsible for managing
all the resources of the computing system and automat­
ically performs many services in processing your job;
however, you can influence the processing of your job
by coding JCL parameters. For example, the operating
system selects your job for execution, but you can in­
fluence when your job is selected, or you can delay its
selection, by coding parameters on the JOB statement.
You can ask for resources - for example, you can
request a specific volume on which you want a data set
written. A list of services provided by coding JCL par­
ameters and an outline of the organization of services
used in this book are included under "Introducing the
JCL Services," later in this chapter.

JCL Statements
The job control language contains nine statements.
Figure 1-1 summarizes the purpose of each statement.

Basically, each job requires only the use of the JOB

statement (to identify the job), EXEC statements (to
identify each step), and DD statements (to identify data
sets used by the job). The null statement is optional,
but its use at the end of a job ensures that JCL state­
ments from another job are not read as part of your
job; the delimiter statement can be used to indicate the
end of data in the input stream. Code PROC and PEND

statements when you write an in-stream procedure.
(An in-stream procedure is a set of job control state­
ments placed in the input stream that can be used any
number of times during ajob by naming the procedure

Chapter 1: JCL Defines the Job

on an EXEC statement.) The use of these statements in
in-stream procedures, and the optional use of the PROC

statement in cataloged procedures, is discussed in the
section "Writing Cataloged and In-Stream Proce­
dures." Use the command statement to submit com­
mands through the input stream. On the comment
statement, you can include information to make your
programs more understandable by other programmers
and by yourself. Coding details and a description of
each statement are included in the OS/VSl JCL
Reference, listed in the Preface.

JeL is given its versatility by its two types of para me­
ters: positional parameters must appear in a specified
order on a JCL statement; keyword parameters consist of
a keyword followed by one or more values and must
follow any positional parameters coded on the state­
ment. Complete lists of all the possible positional and
keyword parameters that can be coded on JCL state­
ments, and syntax rules for coding these parameters,
are in the OS/VSl JCL Reference, listed in the Pre­
face.

Statement Purpose

job (JOB) marks the beginning of a job; assigns
a name to the job

execute (EXEC) marks the beginning of a job step;
identifies the program to be executed
or the cataloged or in-stream proce-
dure to be called; assigns a name to
the step

data definition (DO) identifies a data set and describes its
attributes

delimiter (/ * or two indicates the end of data placed in
characters designated the input stream
by the user)

null (/ /) marks the end of a job

procedure (PROC) for cataloged procedures, assigns
default values to parameters defined
in the procedure; for in-stream pro-
cedures, marks the beginning of the
procedure

procedure end (PEND) marks the end of an in-stream proce-
dure

comment (/ / *) contains comments

command enters operator commands through
the input stream

Figure 1-1. Each JCL Statement Has a Purpose

Introducing the JCL Services
JCL services described in this publication are divided
into the following chapters:

Running Your Job
Defining and Describing Data Sets
Special Data Sets

Chapter 1: J CL Defines the Job 1-1

Obtaining Output
Cataloged and In-Stream Procedures

Each chapter is divided into sections describing
individual services: why you would want to request the
service and how to request the service.

Not every service provided by JCL is included in this
book. The list on the next few pages will acquaint you
with the services available, where the service is de­
scribed, and what statement, parameters or subparame­
ters you code to request the service.

The list is divided into the following areas:

Running Your Job
Defining and Describing Data Sets
Special Data Sets
Obtaining Output
Cataloged and In-Stream Procedures
TCAM Services

1-2 OS/VSl JCL Services

Individual services provided by coding subparameters
of the DCB parameter are not included: the services you
can reque~t with DCB subparameters depend on what
access method you are using. Forlists OfDCB subpar­
ameters that can be coded for each access method, see
the OS/VSI JCL Reference, listed in the Preface; ser­
vices provided by manyDCB subparameters are de­
scribed in greater detail in OS/VSI Data Manage.ment
Services Guide, listed in the Preface. For example, the
OS/VSI JCL Reference tells you the data set organiza­
tions you can request in the DSORG subparameter; the
OS/VSI Data Management Services Guide describes
the different data set organizations in detail.

List of JCL Services

RUNNING YOUR JOB

Service Publication(s) JeL Statement, Parameter, or Subparameter Used
where Described

conditional execution of job steps JCL Services, "Conditional COND parameter on JOB or EXEC statement
Execution of Job Steps"

delaying job initiation JCL Services, "Job TYPRUN=HOLD parameter on JOB statement
Scheduling".

executing programs contained in librar- JCL Reference, "PGM PGM parameter on EXEC statement
ies Parameter"

ISSP (Installation specified selection JCL Services, "Job PROFILE AND MPROFILE on JOB statement;
parameters), using Scheduling" and" Obtain- SYSOUT=PROFILE on DO statement

ing Output"

job class, assigning JCL Services, "Job CLASS or PROFILE parameter on JOB statement
Scheduling"

job priority, assigning JCL Services, "Job PRTY or PROFILE parameter on JOB statement
Scheduling".

job scheduling JCL Services," Job PRTYor PROFILE, CLASS or PROFILE, and TYPRUN=HOLD
Scheduling" parameters on JOB statement

limiting the amount of time a job uses JCL Reference, "TIME TIME parameter on JOB statement
the CPU Parameter"

limiting the amount of time a job step JCL Reference, "TIME TIME parameter on EXEC statement
uses the CPU Parameter"

MSS (Mass Storage System) considera- JCL Services, "Mass Stor- UNIT,VOL=SER,SPACE,MSVGP parameters on DO statement.
tions age System

Considerations"

passing accounting information to ac- JCL Reference, ".ACCl ACCT parameter on EXEC statement
counting routines Parameter"

passing information to processing pro- JCL Reference, "PARM PARM parameter on EXEC statement
gram Parameter"

restarting a job Checkpoint/Restart, "Use RDparameter on JOB or EXEC statement; REST ART parame-
of the Restart Facilities", ter on JOB statement

JCL Services, "Restarting a
Job"

scanning JCLfor errors JCL Reference, "TYPRUN TVPRUN=SCAN parameter on JOB statement
Parameter"

specifying accounting information JCL Reference, accounting information parameter on JOB statement
"Accounting Information

Parameter"

storage for execution of a program, re- JCL Services, "Requesting .'. REGION and ADDRSPC parameters on JOB or EXEC state-
questing Storage for Execution of a nient

Program;'

Chapter 1: JCL Defines the Job 1-'-3

DEFINING AND DESCRIBING DATA SETS (Part 1 of 2)

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

assigning specific tracks on a direct ac- JeL Services, "Requesting SPACE parameter on DO statement
cess volume to a data set Space for a Single Data

Set"

bypassing disposition processing JeL Services, "Defining a DUMMY or DSNAME=NULLFILE parameter on DO statement
Dummy Data Set"

cataloging a data set JeL Services, "Disposition CA TLG subparameter of DISP parameter on DO statement
Processing of Data' Sets"

completing the data control block Data Management Services DCB parameter on DO statement
Guide "The Data Control
Block"; JeL Reference,

"DCB Parameter"

contiguous space for a data set, re- JeL Services, "Requesting CONTIG subparameter of SPACE parameter on DO statement
questing Space for a Single Data

Set"

data set disposition, specifying JeL Services, "Disposition DISP parameter on DO statement
Processing of Data Sets"

exclusive control of a data set, request- JeL Services, "Insuring DISP parameter on DO statement
ing Data Set Integrity"

identifying a data set to the system JeL Reference, "Identifying DDNAME, DSNAME, and LABEL parameters on DO statement
a Data Set to the System"

including data in the input stream JeL Reference, ". • , DATA, and DLM parameters on DO statement
Parameter", "DATA
Parameter", "DLM

Parameter"

insuring data set integrity JeL Services, "Insuring DISP parameter on DO statement
Data Set Integrity"

keeping a data set JeL Services, "Disposition KEEP subparameter of DISP parameter on DO statement
Processing of Data Sets"

label type, specifying JeL Reference, "LABEL LABEL parameter on DO statement
Parameter"

multiple units, requesting JeL Services, "Requesting unit count or P subparameter of UNIT parameter on DO state-
Units and Volumes for a ment

Data Set"

multivolume data sets, creating and re- JeL Services, "Requesting unit count and volume sequence number subparameters of
trieving Units and Volumes for a VOLUME parameter on DO statement

Data Set"

optimizing channel use JeL Reference, "AFF AFF parameter on DO statement
Parameter"

passing a data set JeL Services, "Disposition PASS subparametar of DISP parameter on DO statement
Processing of Oata Sets"

1-4 OS/VSl JCL Services

DEFINING AND DESCRIBING DATA SETS (Part 2 of 2)

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

postponing definition of a data set JCL Reference, "DDNAME DDNAME parameter on DD statement
Parameter"

private volumes, using JCL Services, "Requesting PRIVATE and RETAIN subparameters of VOLUME parameter
Units and Volumes for a on DD statement

Data Set"

protecting a data set JCL Reference, "Label PASSWORD, NOPWREAD, RETPD, and EXPDT subparameters
Parameter" of LABEL parameter on DD statement

releasing unused space JCL Services, "Requesting RLSE subparameter of SPACE parameter on DD statement
Space for a Single Data

Set"

shared control of a data set, requesting JCL Services, "Insuring SHR subparameter of DISP parameter on DD statement
Data Set Integrity"

sharing tracks or cylinders between data JCL Services, "Requesting SPLIT parameter on DO statement
sets Space for a Group of Data

Sets"

sharing units between data sets JCL Services, "Requesting AFF subparameter of UNIT parameter on DD statement
Units and Volumes for a

Data Set"

sharing volumes between data sets JCL Services, "Requesting SER or REF subparameter of VOLUME parameter on DO state-
Units and Volumes for a ment

Data Set"

space for directory or index, requesting JCL Services, "Requesting SPACE or SUBALLOC parameter on DO statement
Space for a Single Data

Set"

space for a group of data sets, request- JCL Services, "Requesting SPLIT or SUBALLOC parameter on DD statement
ing Space for a Group of Data

Sets"

space for a single data set, requesting JCL Services, "Requesting SPACE parameter on DD statement
Space for a Single Data

Set"

suballocating data sets JCL Services, "Requesting SUBALLOC parameter on DD statement
Space for a Group of Data

Sets"

uncataloging a data set JCL Services, "Disposition UNCATLG subparameter of DISP parameter on DD statement
Processing of Data Sets"

units, requesting JCL Services, "Requesting UNIT parameter on DD statement
Units and Volumes for a

Data Set"

unit separation, requesting JCL Services, "Requesting SEP subparameter of UNIT parameter on DD statement
Units and Volumes for a

Data Set"

using MSS (Mass Storage System) JCL Reference, "UNIT UNIT parameter on DD statement
Parameter"

volumes, requesting JCL Services, "Requesting VOLUME parameter on DD statement
Units and Volumes for a

Data Set"

whole cylinders, requesting JCL Services, "Requesting ROUND subparameter of SPACE parameter on DD statement
Space for a Single Data

Set"

Chapter 1: JCL Defmes the Job 1-5

SPECIAL OAT A SETS

Service Publication(s} JCL Statement, Parameter, or Subparameter Used
where Described

checkpoint data set, defining Checkpoint/Restart, "Use SYSCHK DO statement
of the Checkpoint

Facilities"; JCL Services,
"Restarting a Job"

concatenated data sets, defining JCL Reference, DO statements
"Programming Notes"

dedicated data sets, using for allocating JCL Services, "Using a DO statement
a temporary data set Dedicated Data Set for Allo-

cating a Temporary Data
Set"

dummy data set, defining JCL Services, "Defining a DUMMY or DSNAME=NULLFILE parameter on DO statement
Dummy Data Set"

generation data groups, creating and JCL Services, "Creating DO statement
using and Retrieving Generation

Data Sets"

indexed sequential data sets, creating Data Management Services DO statement
and using Guide, "Processing an In-

dexed Sequential Data
Set"; JCL Services,

"Creating and Retrieving In-
dexed Sequential Data

Sets"

private libraries, creating and using JCL Services, "Creating JOSUS or STEPUS DO statement
and Using Private and Tem-

porary Libraries"

temporary libraries, creating and using JCL Services, "Creating DO statement
and Using Private and Tem-

porary Libraries"

1-6 OSjVSl JCL Services

OBTAINING OUTPUT (Part 1 of 2)

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

abnormal termination dump. requesting JCL Services, "Controlling SYSABEND or SYSUDUMP DD statement
the Output Listing of JCL

Statements. Messages, and
Dumps"

alignment of forms, requesting JCL Services, "Printer ALIGN subparameter of FCB parameter on DD statement
Form and Character

Control"

assigning messages to an output class JCL Services, "Controlling MSGCLASS or MPROFILE parameter on JOB statement
the Output Listing of JCL

Statements, Messages, and
Dumps"

assigning an output data set to an out- JCL Services, "Writing Out- SYSOUT parameter on DD statement
put class put Data Sets"

bursting of output JCL Services, "Bursting of BURST parameter on DD statement
Output"

character set and arrangement selection JCL Services, "Printer UCS or CHARS parameter on DD statement
Form and Character

Control"

controlling the output listing of JCL JCL Services, "Controlling MSGLEVEL and MSGCLASS (or MPROFILE) parameters on
statements, messages and dumps the Output Listing of JCL JOB statement; SYSABEND or SYSUDUMP DD statement

Statements, Messages, and
Dumps"

listing of JCL statements and messages, JCL Services, "Controlling MSGLEVEL and MSGCLASS (or MPROFILE) parameters on
requesting the Output Listing of JCL JOB statement

Statements, Messages, and
Dumps"

controlling output to a workstation JCL Services, "Controlling SYSOUT, DEST parameter on DD statement
Output to a Workstation"

copy modification JCL Services, "Copy MODIFY parameter on DD statement
Modification"

delaying the writing of an output data set JCL Services, "Writing Out- HOLD=YES parameter on DD statement
put Data Sets"

dump, requesting JCL Services, "Controlling SYSABEND or SYSUDUMP DD statement
the Output Listing of JCL

Statements, Messages, and
Dumps"

fold option, requesting when you request JCL Services, "Printer FOLD subparameter of UCS parameter on DD statement
a special character set Form and Character

Control"

forms control JCL Services, 'Printer FCB parameter on DD statement
Form and Character

Control'

forms overlay JCL Services, "Forms FLASH parameter on DD statement
Overlay"

holding an output data set JCL Services, "Writing Out- HOLD=YES parameter on DD statement
put Data Sets"

Chapter 1: JCL Defines the Job 1-7

OBTAINING OUTPUT (Part 2 of 2)

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

multiple copies of an output data set JCL Service$, "Requesting COPIES parameter on DO statement
Multiple Copies of an Out-

put Data Set"

operator verification of special character JeL Services, "Printer VERIFY sub parameter of UCS parameter on DO statement
sets on a 3211 or 3203-4 printer, re- Form and Character
questing Control"

operator verification of a specific FCB JCL Services, "Printer VERIFY subparameter of FCB parameter on DO statement
module request Form and Character

Control"

printer form and character control JCL Services, "Printer UCS, FCB, or CHARS, and parameters on DO statement
Form and Character

Control"

routing output to another destination JeL Services, "Controlling DEST parameter on DO statement
Output to a Workstation"

special character set, requesting JCL Services, "Printer UCS or CHARS parameter on DO statement
Form and Character

Control"

special output form, requesting JeL Services, "Printer SYSOUT parameter on DO statement
Form and Character

Control"

specifying an output device JCL Services, "Writing Out- UNIT parameter on DO statement
put Data Sets"

suppressing the writing of an output JCL Services, "Defining a DUMMY or DSNAME=NULLFILE parameter on DO statement
data set Dummy Data Set"

using an installation-written writer rou- JCL Services, "Writing Out- SYSOUT parameter on DO statement
tine put Data Sets"

writing output data sets JCL Services, "Writing Out- SYSOUT or UNIT parameter on DO statement
put Data Sets"

1-8 OS/VSl JeL Services

CATALOGED AND IN-STREAM PROCEDURES

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

adding DO statements to a procedure JCL Services, "Using Cata- DO statement
loged and In-Stream

Procedures"

assigning values to symbolic parameters JCL Servic'Js, "Using Sym- PROC or EXEC statement
bolic Parameters"

calling cataloged and in-stream proce- JCL Services, "Using Cata- EXEC statement
dures loged and In-Stream

Procedures"

modifying parameters on EXEC and DO JCL Services, "Using Cata- EXEC statement
statements in a procedure loged and In-Stream

Procedures"

nullifying symbolic parameters JCL Services, "Using Sym- EXEC or PROC statement
bolic Parameters"

using cataloged and in-stream proce- JCL Services, "Using Cata- EXEC, DO statements
dures loged and In-Stream

Procedures"

using symbolic parameters JCL Services "Using Sym- PROC, EXEC, DO statements
bolic Parameters"

writing cataloged and in-stream proce- JCL Services, "Writing Cat- PROC, PEND, EXEC, DO statements
dures aloged and In-Stream

Procedures"

TCAM SERVICES

Service Publication(s) JCL Statement, Parameter, or Subparameter Used
where Described

accessing messages received from a JCL Reference, "QNAME QNAME parameter on DO statement
terminal via TCAM Parameter"

indicating that a data set is going to or JCL Reference, "TERM TERM parameter on DO statement
coming from a terminal Parameter"

Chapter 1: JCL Defines the Job 1-9

1-10 OS/VSl JCL Services

Chapter 2: Descriptions of JCL Services

Running Your Job
The operating system is responsible for reading your
job into the system, interpreting your JCL statements to
determine the requirements of your job and job steps,
satisfying those requirements, scheduling your job, and
selecting it for execution. The system automatically
performs most of these services for you, but you can
code JCL parameters to influence how these services are
performed and to request resources your job requires
for its execution.F or example, the system schedules
your job for execution, but you can influence when
yourjob is selected by coding the CLASS and PRTY (or
the PROFILE parameter) parameters on the JOB state­
ment.

This chapter is divided into the following sections:
Job Scheduling
Requesting Storage for Execution of a Program
Conditional Execution of Job Steps
Restarting a Job

Job Scheduling
As the system reads in jobs, it places them in an input
queue. The input queue is divided into job class
queues where each job is placed according to its priori­
ty. Jobs in the same class with the same priority are
placed inthe input queue in the order they were read
into the system. An initiator selectsjobs from the input
queue. (An initiator can be thought of as a guide as­
signed to lead jobs of specified classes through the
system. There can be only as many jobs active in the
system concurrently as there are initiators started by
the operator.) An initiator is assigned job classes to
process: it selects jobs from the first class assigned to it
according to the priority of the jobs until no more jobs
exist in that class, and then selects jobs from the next
class assigned. You influence where your job is placed
in the input queue by assigning a job class and priority
to your job.

Although you can influence your job's selection by
assigning ajob class and priority, you cannot predict
whether a job in one job class queue will be selected for
execution before another job in a different job class
queue. For jobs in the same job class queue, you can­
not be certain that one job will complete execution
before the other job is selected, even if you assign a
higher priority to the first job. For example, you might
submit two jobs, JOBA and JOBB, where JOBA must
complete execution before JOBB is initiated --JOBA

might create records that JOBB will use. You have to
delay JOBB'S initiation until JOBA completes execution.
You can delay thejoh's initiatioIl until required resour­
ces.areavailableby coding TYPRUN=HOLD on the JOB

statement.

Assigning a Job to a Job Class
Each installation establishes job classes to group jobs
with similar characteristics. By assigning jobs to job
classes, the installation tries to avoid contention be­
tween jobs that require the same resources by prevent­
ing them from running concurrently. For example, the
installation might assign jobs that run for less than one
minute to class C and jobs that have high I/O require­
ments to class D. When ajob's characteristics could
place it in one of several job classes (that is, ajob might
run for less than one minute and have high I/O require­
ments), you must determine which characteristic is
most important in achieving a good balance of jobs in
the system. The job class itself is a letter from A to Z, or
a number from 0 to 9; its meaning is defined by the
individual installation.

You can assign your job to a job class by coding the
CLASS parameter on the JOB statement:

//PGM JOB ... CLASS=C

If the installation's system programmer has generated
the ISSP (installation specified selection parameters)
tables, job class may also be assigned by specifying the
PROFILE parameter on the JOB statement. An example
is shown in this section under "Assigning Job Class and
Priority Using ISSP." If you do not code the CLASS

parameter or the PROFILE parameter, the reader assigns
a default class of A (unless the default class was
changed by the installation) to the job. If you code an
incorrect job class (other than A-Z, 0-9), the job is ab­
normally terminated. If you code an inactive job class
(a class that has not been assigned to an initiator) the
job is placed in the input queue but is not selected until
an initiator is started to process that job class.

Dynamic Dispatching and Time Slicing: Dynamic
dispatching and time slicing are two options that can
be specified during system generation to provide for
more efficient use of the CPU (central processing unit).
They are described in the OS/VSl Planning and Use
Guide, listed in the Preface. Both options cannot be
included in the same system.

Your installation assigns job classes to each parti­
tion; specific job classes should be assigned to parti­
tions that include dynamic dispatching or time slicing.
To take advantage of dynamic dispatching or time
slicing, assign your job to the appropriate job class
established by your installation.

Chapter 2: Descriptions of JCL Services 2-1

Assigning a Priority to Your Job
Within each job class,jobs are selected for execution
from the input queue according to job priority. Jobs
with the same class and priority are placed in the input
queue in a first-in-first-outorder.

Assign a priority toyour job by coding the PRTY
parameter on the JOB statement:

IIPGM JOB ... CLASS=C,PRTY=10

If the installation's system programmer has generat­
ed the ISSP (installation specified selection parameters)
tables, priority may also be assigned by specifying the
PROFILE parameter on the JOB statement.· An example
is shown in this section under "Assigning Job Class and
Priority Using ISSP." The priority is a number from 0
to ~3: ~3 is the highest priority. In the above example,
an mltlator assigned to process job class C begins exe­
cution OfPGM after all jobs in class C with a higher
priority and before all jobs in class C with a lower pri­
ority. If other jobs in class C also have a priority of 10,
the initiator chooses the job that was read into the sys­
tem first.

If you do not code a priority or the PROFILE parame­
ter, the system assigns the default established in the
reader procedure.

Users with RES R T AM remote workstations can limit
the scheduling priority of jobs submitted from a works­
tation with the PRIORITY field in SYSl.UADS. If the
priority limit in UADS is less than the value on the JOB
card, the job is assigned the lower UADS value for
scheduling. However, all outputs for that job are as­
signed the priority specified on the JOB card. This al­
lows a remote user the ability to place a priority on his
output without disrupting the scheduling scheme set up
by the system programmer.

Note: The system programmer can establish a number less than 13
as the hig~~st pri?rity for jobs submitted from a workstation. If you
are submlttmg a Job from a work station and code a priority greater
than the established limit, that priority will be replaced by the de­
fault.

Assigning Job Class and Priority Using ISSP
ISSP (installation specified selection parameters) tables
of attributes can be defined by the system programmer
at your installation to help assign your job to ajob
class and a priority to your job. ISSP can also be used to
assign a message or a data set to an output class, as
described ina later chapter, "Obtaining ()utput".

Describe the job with the PROFILE keyword on your
JOB statement, using the parameters supplied by the
system programmer to make up a profile string, and
the job class and priority are assigned for you. The
general format to follow when using the PROFILE par­
ameter to assign job class and priority is:

IIPGM JOB ... PROFILE='job profile string '

2-2 OS/VSl JCL Services

In the following example, the system programmer has
provided:

• Type of run (RUN) as production (PROD), or test
(TEST)

• Type of language (LANG) used (FORT, COBOL, PL/l,
BAL, and *, where asterisk (*) is any character
value)

• Estimated execution time (TIME) as (10, 25, 100, *,
where asterisk (*) is any number greater than 100
and is the default)

• Jobs requiring setup (SETUP).
If you are running a PL/I compile job of the shortest
duration (10), and requiring setup, code:

IIPGM JOB ... PROFILE=('RUN=TEST,
II LANG=PL1 ','TIME=(10),SETUP ')

F or additional information concerning the use of
ISSP, see the section "Installation Specified Selection
Parameters" in the OS/VSl Planning and Use Guide,
listed in the Preface.

Delaying Job Initiation
To delay a job's initiation, code TYPRUN=HOLD on the
JOB statement. The job is held until the operator issues
a RELEASE command for the job. You must notify the
operator when you delay ajob's initiation. No message
is issued when a job is read into the system, and if the
operator does not check, he does not know that ajob
has been held. When the operator releases the job, it is
eligible for execution.

For example, you are submitting two jobs, JOBA
and JOBB. JOBB requires a data set created by JOBA.
You can delay the initiation of JOBB until JOB A com­
pletes execution:

IIJOBB JOB ... TYPRUN=HOLD

Include a note with your job to tell the operator that
JOBB is being held and should be released when JOBA
completes execution. The operator issues a DISPLAY
command to learn if JOBA has completed execution.
When JOBA is complete, he issues the RELEASE com­
mand for JOBB.

Requesting Storage for Execution of a Pro­
gram
In VS, storage available for execution of your programs
is divided into real storage and virtual storage:

• Real storage is the storage of System/370 from
which the CPU can directly obtain instructions and
data and to which it can directly return results.

• Virtual storage is addressable space that appears
to the user as real storage, from which instructions
and data are mapped into real storage locations.

When a program is selected, it is brought into virtual
storage and divided into pages. The supervisor is re-

sponsible for transferring pages of your program from
external page storage to real storage for execution.
This paging is done automatically by the supervisor; to
you, it appears as if your entire program exists in real
storage. (The concept of paging is described in detail in
Introduction to Virtual Storage in System/370,·1isted in
the Preface.)

When to Request Real Storage for a Program
F or most programs, the supervisor transfers pages of
your program to real storage as they are required for
execution; not all pages of your program are necessari­
ly in real storage at one time and the pages that are in
real storage at once do not necessarily occupy contigu­
ous space. Certain programs, however, must have all
their pages in contiguous real storage while they are
executing - they cannot be paged during execution.
These programs include:

• Programs that modify a channel program while it
is active, such as the Online Test Executive Pro­
gram (OLTEP).

• Programs that are highly time-dependent, such as
the Magnetic Ink Character Recognition (MICR)
programs.

These programs must be placed into an area of vir­
tual storage called the nonpageable dynamic area,
whose virtual addresses are identical to real addresses;
they are the only programs for which you should re­
quest virtual=real storage.

To identify a virtual=real program, specify
ADDRSPC=REAL on the JOB or EXEC statement. For the
size of the required real storage, specify REGION=nK.
Thiscoding on the JOB statement specifies that each
step of the job must not be paged during its execution.
To specify these requirements foraspecific step, code
ADDRSPC=REAL and REGION=nK on the EXEC state­
ment for that step. If the ADDRSPC parameter is coded
on the JOB statement, it is ignored on EXEC statements
in the job. Unless changed by the installation, the de;.
fault assumed if you do not code the ADDRSPC parame­
ter is ADDRSPC=VIRT, indicating that the program can
be paged during its execution.

How to Request Storage with the REGION Par­
ameter
Code the REGION parameter only for programs that
must not be paged during their execution - the
REGION parameter is ignored unless you also
codeADDRsPC=REAL. If you code ADDRSPC=REAL but
do not code the REGION parameter, the system supplies
a default established in the reader procedure.

In the REGION parameter, specify the flUIIlberof
contiguous 1024-byte ·areas of real storage requIred. If
you request an odd number, the system increases the
number to the next even number.

The amount you specify must include any addition­
al requests your program makes during its execution
(for example, a request made with the GETMAIN macro
instruction). Any request for additional storage is actu­
ally a request for real storage from the area specified in
the REGION parameter. The size of your request has no
relationship to the size of the virtual storage partition,
since the job does not execute in virtual storage; the
maximum size you request depends on the physical size
of the nonpageable dynamic area. System activity at
the time the request is made may reduce the amount of
available contiguous real storage and delay execution
of the program.

Note: Main storage hierarchy support and the rollout/rollin feature
are not supported in VS 1. However, you need not recode statements
that contain the ROLL parameter or that contain REGION specifi­
cations originally made for hierarchy support. The system checks the
ROLL parameter for correct syntax, but otherwise ignores it. In the
REGION parameter, the system rounds the values specified to even
numbers, if the numbers were odd, and add the values. For example,
if a REGION parameter originally specified for hierarchy support is:

//PGM JOB ... REGION=(11K,18K)

the system rounds 11K to 12K, adds the values, and assigns 30K of
real storage to each step ofthejob named PGM.

The REGION parameter can be coded on either the
JOB or EXEC statement. When you code the REGION
parameter on the JOB statement, you are requesting
that much storage for each step of the job; to specify a
different region size for each step, code the REGION
parameter on the EXEC statements of the job steps in
the job. (If the REGION parameter is coded on the JOB
statement, REGION parameters coded on the job's EXEC
statements are ignored.)

In the following example, you are specifying that
each job step must be entirely in real storage during its
execution and are requesting that the system assign 60
contiguous 1024-byte areas of real storage to each step.

//PGM JOB ... ADDRSPC=REAL,REGION=60K

Conditional Execution of Job Steps
Depending on the results of one step of a job, you may
not wish to execute subsequent steps. If a compilation
fails, you would not want to waste computing time
attempting subsequent linkage editing or execution
steps. You can specify tests to determine whether to
bypass Of execute job steps, based on the results from
t>revious steps.

The results of a job step can be reflected in a return
code, a number from 0 to 4095. The compiler, assem­
bler, and linkage editor programs and problem pro­
grams written in assembler language, PL/1, FORTRAN,
American National Standard, COBOL, and RPG can set
return codes. Some return codes are standard for cer­
tain programs. For example, a return code of 8 issued
by a compiler or linkage editor indicates that serious
errors were found and execution is likely to fail. In

Chapter 2: Descriptions of JCL Services 2-3

problem programs you can assign a number as the
return code to signify a certain condition. For example,
if STEP 1 of a job reads accounts to be processed in sub­
sequent job steps, you might set a return code of 10 if
no delinquent accounts are found. Before you execute
STEP3 to process delinquent accounts, you could test
the return code from STEP 1; if the return code from
STEPI is 10 (no delinquent accounts): you can skip
STEP3. You specify the test to check the return code
from STEPI by coding the COND parameter of the job
control language. You can code the COND parameter
on either a JOB or EXEC statement.

Note: Return codes issued by each step are included on the output
listing. If a step does not issue a return code, however, the message is
still printed and can contain meaningless information.

Specifying Return Code Tests
In the COND parameter, you can specify up to eight
tests to determine if the system should bypass a job
step. (If you specify more than eight tests, the system
issues a JCL error message and the job fails.) Each test
consists of a number from 0 to 4095 and a logical oper­
ator indicating how that number is to be compared
with the return code. The logical operators are:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
NE (not equal to)
L T (less than)
LE (less than or equal to)

If the system determines that a comparison is true,
the job step is skipped (if COND was coded on the EXEC
statement) or all remaining job steps are skipped (if
COND was coded on the JOB statement).

For example, if you code COND=«10,GT),(20,LT)),
you are asking, "Is 1 0 greater than the return code or is
20 less than the return code?"

If the return code is 12, neither test is satisfied and
no job step is skipped. All the tests you specify must be
false if processing is to continue without skipping any
job steps.

If the return code is 25, the first test is still false, but
the second test is satisfied: 20 is less than 25. The sys­
tem bypasses one job step or all remaining job steps,
depending on where the COND parameter was coded:
on the EXEC statement or the JOB statement.

Determining Further Execution of the Job
Code the COND paralIleter on the JOB statement to
determine if execution of the job should continue.

The test you specify in the COND parameter on a JOB
statement checks the return code from each step before
the next step is processed. At the end of each step, the
initiator compares the return code from the step with
the number (or numbers) you specified in the COND
parameter on the JOB statement. If any of the tests is

2-4 OS/VSl JCL Services

satisfled, the rest of the steps are bypassed and the job
is terminated.

F or example, a program written in the assembler
lang~age issues return codes indicating the severity of
errors found in the program: a return. code of 0 indi;.
cates no errors or warnings were found; 4 indicates
possible errors; and higher return codes indicate more
severe errors. The job consists of a compiler step, link­
age editor step, and execution step. If any errors are
found, you want the job terminated. Because all steps
issue the same return codes to indicate the· same condi­
tions, it is practical to code the COND parameter on the
JOB statement:

IIPGM JOB ... COND= (4 , LE)

Determining the Execution of a Single Step
By coding COND on the EXEC statement, you can deter­
mine whether a single step is executed or bypassed.
You should code COND on the EXEC statement when:

• You want to specify different tests for each job
step.

• You specify a true test and you want to skip just
that one step, rather than bypass all subsequent
steps in the job.

• You want to name a specific step whose return
code is to be tested.

• You want to specify special conditions for execut-
ing a job step.

The initiator checks the.COND parameter.on the EXEC
statement. If one of the tests you specify is satisfied, the
system bypasses that step and goes on to the next step.

You can instruct· the system to test the return code
from a particular step or from every preceding step.
Include the name of the step if you want just that step's
return code tested; if that step was bypassed or abnor­
mally terminates, the test is ignored. If you do not in­
clude a stepname, the system checks the return code
from every preceding step.

STEPI of ajob prepares a company's payroll; STEP3
makes a monthly deduction for additional health insur­
ance coverage. If the deduction is not to be made this
week from any of the paychecks, STEP 1 issues a return
code ofl5. On the EXEC statement for STEP3 you can
instruct the system to skipSTEP3 if no deduction is to
be made:

IISTEP3 EXEC .~.COND=(15,EQ,STEP1)

If a preceding step called a procedure, you can re­
quest the system to check the return code issued by a
step in the procedure by coding the stepname and pro­
cedure stepname .. In.the above example, if the return
code was issued by a procedure step named PROCSTEP
in a procedure called by $TEP1, you would·code:

I/STEP3EXEC ... COND=(15,EQ,
II . STEP1.PROCSTEP)

Note: If a job step refers to a data set created in a preceding step,
that data set does not exist if the preceding step was bypassed. If a
data set was cataloged in a preceding job step and you make a back­
ward reference to that data set, unit and volume information for the
data set is not available if the preceding step was skipped.

In addition to specifying conditions for bypassing a
step, you can specify conditions for ex(!cuting a step.
Normally, all subsequent steps are bypassed if one step
abnormally terminates. However, you can request the
system to execute a step even if a previous step abnor­
mally terminated by coding EVEN in the COND parame­
ter:

IISTEP3 EXEC ... COND=EVEN

To instruct the system to execute a step only if a
previous step abnormally terminated, code ONLY:

IISTEP3 EXEC ... COND=ONLY

If, however, the error causing termination occurs
during the scheduling of the job, before the program
receives control, the rest of the job steps are bypassed
even if you do code EVEN or ONLY - this happens if
the system encounters JCL errors or is unable to allo­
cate space to a data set.

Note: If a job step that specifies the EVEN or ONLY subparameter
refers to a data set that was to be created or cataloged in a preceding
step, the data set may be incomplete if the step creating it abnormally
terminated.

When you code the EVEN or ONLY sub parameter,
you can also specify up to seven tests to check return
codes from previous steps. If one of the return code
tests is satisfied, even though the conditions for the
EVEN or ONLY sub parameter are also satisfied, the step
is bypassed. The return code tests override the EVEN or
ONL Y sub parameter if the conditions both specify are
met.

If you code:

IISTEP5 EXEC ... COND=((10,EQ,STEP1),
II (20,LT) ,EVEN)

you are instructing the system to:
1. Bypass STEP5 if lOis equal to the return code is­

sued by STEP 1.

2. Bypass STEP5 if 20 is less than the return code
issued by any previous step.

3. Execute STEP5 if the return code tests are not satis­
fied, even if a previous step abnormally termi­
nated.

Specifying Tests on Both the JOB and EXEC
Statements
The COND parameter on the JOB statement overrides
the COND parameter on an EXEC statement: if the test
specified on the JOB statement is satisfied, all subse­
quent steps are bypassed no matter what you code in

the COND parameter on the EXEC statements of these
steps.

Restarting a Job
When a job step abnormally terminates, you may have
to resubmit the job for execution; this means lost com­
puter time and a delay in obtaining the desired results.
The operating system provides checkpoint/restart to
reduce the effects of abnormal termination. When a
job step terminates abnormally or when a system fail­
ure occurs, checkpoint/restart allows you to restart the
step from the beginning or from a checkpoint within
the step. You can request that the restart automatically
follow abnormal termination or you can request restart
later by submitting a new job.

This chapter describes how you code JCL to request
checkpoint/restart services; a complete description of
planning for and using the checkpoint/restart facility is
documented in OS/ VSl Checkpoint/Restart, listed in
the Preface.

Types of Restart
Basically, there are two types of restart:

• Step restart, from the beginning of a job step.
• Checkpoint restart, from a checkpoint within a job

step. You establish checkpoints in a job step by
coding the CHKPT macro instruction for each
checkpoint. (The CHKPT macro instruction is de­
scribed in OS/ VSl Data Management Macro
Instructions, listed in the Preface.)

You can request that either type of restart automatical­
ly follow abnormal termination (called automatic res­
tart) or you can request either type by submitting a new
job (called deferred restart).

When you submit a job for deferred restart, you
actually resubmit the original job with certain changes
indicating where restart is to occur (at the beginning of
a step or at a checkpoint within the step). Ifnecessary,
you can make more extensive changes, such as correc­
tions to data that is processed after restart. At times,
you may wish to make such changes and then restart a
job step that has terminated normally but has produced
incorrect results.

Automatic restart is possible only when the abnor­
mal completion code is one of a set of codes specified
at system generation. All automatic restarts must be
authorized by the operator. If there is an uncorrectable
error during the automatic step or checkpoint restart,
the output data sets for the job are printed, providing
the output from all of the steps up to and including the
step that abnormally terminated. You also receive a
virtual storage dump if you provided a SYSABEND or
SYSUDUMP DD statement in your job. (For details on
requesting a dump, see the section "Controlling the
Output Listing of JCL Statements, Messages, and
Dumps.")

Chapter 2: Descriptions of JCL Services 2-5

Requesting Restart
Specify the type of restart that can occur by coding the
RD (restart definition) parameter on the JOB or EXEC

statement. If you want to allow different types of res­
tart for the different steps in your job, code the RD

parameter on the EXEC statement; when the RD param­
eter is coded on the JOB statement, the restart request
applies to every step in the job, and any RD parameters
coded on EXEC statements are ignored. The RD param­
eter is also ignored for system tasks and generalized
start jobs.

One of four possible subparameters can be coded:
• R - Automatic step restart is permitted if no

checkpoint is established in the step before abnor­
mal termination occurs. If a checkpoint is estab­
lished before the step abnormally terminates, only
checkpoint restart can occur, unless you cancel the
CHKPT macro instruction before restart is per­
formed. If you do cancel the CHKPT macro in­
struction before restart is performed (by coding a
CHKPT macro instruction and specifying CANCEL),

automatic step restart can be performed.
• RNC - Automatic step restart is allowed and

automatic checkpoint restart is not allowed. Spec­
ifying RD=RNC suppresses the action of all CHKPT

macro instructions included in your program.
• N C - Neither automatic step restart nor auto­

matic checkpoint restart is allowed. The action of
all CHKPT macro instructions is suppressed.

• NR - CHKPT macro instructions can establish
checkpoints but automatic restart (whether check­
point or step) is not allowed. Code RD=NR when
you might want to resubmit the job at a later time
and restart the job from a checkpoint.

F or example, if you code:

//PGM JOB ... RD=RNC

automatic step restart is permitted; automatic check­
point restart is not allowed.

When you resubmit a job to be restarted (deferred
restart), you must code the RESTART parameter on the
JOB statement. If you omit the RESTART parameter,
execution of the job is not resumed at a point you indi­
cate, execution of the entire job is repeated.

In the RESTART parameter, specify the step at which
execution should be resumed (deferred step restart) or
the step and checkpoint (deferred checkpoint restart).
When you specify a checkpoint, execution of the job is
resumed within the step.

As the first subparameter, specify the step at or
within which execution will be resumed. If a step calls
a cataloged procedure and you want to resume execu­
tion at or within a step in the procedure, specify both
the job step name and procedure step name; for exam­
ple:

2-6 OS/VS 1 JCL Services

//PGM JOB ... RESTART=JOBSTEP2.PROCSTP3

Execution begins at PROCSTP3 in the cataloged proce­
dure called by JOBSTEP2. If you want execution to be­
gin at or within the first step, you can code an *. For
example:

//PGM JOB ... RESTART=*

Execution resumes at the beginning of the first step; if
the first step calls a cataloged procedure, execution
begins at the first step in the procedure.

To resume execution within a step, follow the step­
name with the name of the checkpoint:

//PGM JOB ... RESTART=(*,CHKPT2)

In this example, execution resumes at CHKPT2 in the
first step of the job.

If you request deferred checkpoint restart, you must
include a DD statement in the resubmitted job that
defines the checkpoint data set.

Defining the Checkpoint Data Set: The name of
the DD statement defming the checkpoint data set must
be SYSCHK and the statement must immediately pre­
cede the first EXEC statement of the resubmitted job.
(If you do include a SYSCHK DD statement, but restart
is to begin at a step, the statement is ignored.)

The checkpoint data set contains entries describing
the checkpoints you created in the job. (For informa­
tion on creating checkpoints in your job, see OS/VSI
Checkpoint/Restart, listed in the Preface.) The system
automatically writes these entries into a checkpoint
data set; the serial number of the volume on which a
checkpoint is written is included in the console message
printed after the writing of the checkpoint entry. You
must indicate on the SYSCHK DD statement which vol­
ume contains the checkpoint entry you are using.

When the checkpoint data set is not cataloged, you
code the VOLUME parameter and specify the volume
serial number of the volume on which the checkpoint
entry is written. If the checkpoint data set is cataloged,
you need not code the VOLUME parameter unless the
checkpoint entry exists on a tape volume other than the
first volume of the data set; then, you must code either
a volume sequence number or the volume serial num­
ber. If you code a volume serial number, you must
code the UNIT parameter.

In the DSNAME parameter, you code the name of the
checkpoint data set; if the data set is partitioned, do not
include a member name. The DISP parameter must
specify or imply a status of OLD and disposition of
KEEP. Code the LABEL parameter if the data set does
not have standard labels; if the data set exists on 7-
track magnetic tape with nonstandard or no labels, you
must also code DCB=TRTCH-C. (The TRTCH subparam­
eter of the DCB parameter specifies the recording tech-

nique for seven-track tape; for details, see "DCB
Parameter" in the OS/VSl JCL Reference, listed in the
Preface; details on specifying label type are also includ­
ed in the OS/VSl JCL Reference under "LABEL Par­
ameter.")

F or example, the checkpoint data set named CHKLIB
is cataloged and the checkpoint entry you are using
exists on the first volume of the data set:

IIALAS JOB RESTART=(*,CHKPT2)
IISYSCHK DD DSNAME=CHKLIB,DISP=OLD
IISTEP1 EXEC

In the following example, the checkpoint data set
named TRY.AGAIN is not cataloged and exists on 7-
track magnetic tape with nonstandard labels; the
checkpoint entry you are using to restart the step exists
on the volume with serial number 438291:

IIALACK JOB RESTART=(STEP2,CHKPT4)
IISYSCHK DO DSNAME=TRY.AGAIN,DISP=OLD,
II UNIT=3400-2,
II VOL=SER=438291,
II LABEL=(,NSL) ,DCB=TRTCH=C

If the RESTART parameter on the JOB statement in the
preceding example were REST AR T=STEP2, deferred step
restart would be performed and the SYSCHK DD state­
ment would be ignored.

Modifying a Job Before Deferred Restart
You can make changes to your job before submitting it
for deferred restart. For example, you might vary de­
vice and volume configurations, alter data, or request
restart on an alternate system with the same configura-
tion used originally.

Some changes, however, are required before restart­
ing the step. You must check all backward references
to steps that precede the restart step, and eliminate all
backward references used in the PGM and COND par­
ameters on the EXEC statement and the SUBALLOC
parameter and VOLUME=REF=reference on the DO
statements. (A backward reference of
VOLUME=REF=reference is allowed if the referenced
statement includes the volume serial numbers in the
SER subparameter of the VOLUME parameter.)

Other required changes depend on whether you are
requesting deferred step restart or deferred checkpoint
restart; they are described below.

Making Changes Before Deferred Step Restart:
Modifications before performing deferred step restart
may be required in two cases:

• A data set was defined as NEW during the original
execution. If it was created during the original
execution, you must change the data set's status to
OLD, define a new data set, or delete the data set
before resubmitting the job.

• A data set was passed and was to be received by
the restart step or a step following the restart step.
If the passed data set is not cataloged, you must
supply, in the receiving step, volume serial num­
bers, device type, data set sequence number, and
label type. (Label type cannot be retrieved from
the catalog.)

To limit the number of modifications required be­
fore you resubmit the job, you can assign conditional
dispositions during the original execution. (Data sets
assigned a temporary name or no name can only be
assigned a conditional disposition of DELETE.) If defer­
red step restart will be performed, conditional disposi­
tions should be used:

• To delete all new data sets created by the restart
step.

• To keep all old data sets used by the restart step,
other than those passed to the step. (If a nontem­
porary data set is defined as DISP=(OLD,DELETE),
it is very important that you assign a conditional
disposition of KEEP.)

• To catalog all data sets passed from steps preced­
ing the restart step to the restart step or to a step
following the restart step.

Making Changes Before Deferred Checkpoint Res­
tart: When performing deferred checkpoint restart,
the system automatically makes some modifications for
the restart step, using information contained in the
checkpoint entry.

An internal representation of your statements is kept
as control information within the system. Some of the
control information for the restart step or steps follow­
ing the restart step may have to be modified before
execution can be resumed at a checkpoint. The follow­
ing modifications for the restart step are automatically
made by the system, using information contained in the
checkpoint entry:

• The status of data sets used by the step is changed
from NEW to OLD. (If a new data set was assigned
a nonspecific volume and was not opened before
the checkpoint was established, this change is not
made.)

• If nonspecific volumes were requested for a data
set used in the restart step, the assigned device
type and volume serial numbers are made part of
the control information.

• F or a multivolume data set, the volume being
processed when the checkpoint was established is
mounted.

The only required modification that you must make
to a control statement is to supply certain information
about a data set that was being passed by a step preced­
ing the restart step to a step following the restart step.
You must supply, in the receiving step, volume serial
numbers, device type, data set sequence number, and

Chapter 2: Descriptions of JCL Services 2-7

label type. You do not have to make these modifica­
tions if, during the original execution, you assigned a
conditional disposition of CA TLG to such data sets and
used standard labels. If the data set is cataloged, the
system can retrieve this information from the catalog.
(Label type cannot be retrieved from the catalog.) You
should also use conditional dispositions to keep all data
sets used by the restart step. Data sets assigned a tem­
porary name or no name can only be assigned a condi­
tional disposition of DELETE. Therefore, if you plan a
deferred checkpoint restart, you should not define your
data sets as temporary. (For any nontemporary data
set that may be deleted, it is very important that you
assign a conditional disposition of KEEP.)

Before resubmitting the job for checkpoint restart,
you can make other modifications to control statements
associated with the restart step or steps following the
restart step. The following items apply to the step in
which restart is to occur:

• You can alter the DO statements in the restart step,
but the statements must have the same names as
used originally. You can also include additional
DO statements.

• If a data set was open at the time a checkpoint was
established and restart is to begin at that check­
point, DD statements in the restart step can define
the same data set. If there is no need to process a
data set after restart, you can define the data set
by coding the DUMMY parameter or
DSNAME=NULLFILE on the DO statement provided
that:

1. The basic sequential access method (BSAM)

or the queued sequential access method
(QSAM) was being used to process the data
set when the checkpoint was established,

2. the data set is not the checkpoint data set
that is being used to restart the job step, and

3. the job step is not restarted from a check­
point that was established in an end-of­
volume exit routine for the data set. The
name of the DO statement must be the same
as the one used for the data set during the
original execution of your program.

• If DUMMY is not specified, the DO statements must
define the same data sets. Also, the data sets must
not have been moved on the volume or onto an­
other volume.

• If a data set was not open when the checkpoint
was established and is not needed during restart,
you can replace the parameters used to define the
data set with the DUMMY parameter.

• You can alter the data in the restart step. If you
omit the data, a delimiter statement is not re­
quired, unless the data was preceded by a DD

D AT A statement.

2-8 OS/VS 1 JCL Services

Defining and Describing Data Sets
You must define every data set your job uses or creates
on a DD (data definition) statement. The OS/VSl JCL
Reference, listed in the Preface, describes every param­
eter you can code on a DD statement and illustrates the
parameters necessary to create, retrieve, and extend
data sets. This chapter describes in greater detail how
to request certain resources for a data set and how you
can instruct the system to handle a data set. This chap­
ter contains the following sections:

Requesting Units and Volumesfor Data Sets
Requesting Space for a Single Data Set
Requesting Space for a Group of Data Sets
Disposition Processing of Data Sets
IBM 3850 Mass Storage System Considerations
Insuring Data Set Integrity

Requesting Units and Volumes/or Data Sets
On the DD statement defining a data set, you indicate
the device on which the data set can be found or will
be written by specifying unit and volume information.
Input! output devices are grouped according to a device
type, such as direct access, magnetic tape, unit record,
graphic. A unit is a particular device: a 2314 direct
access device, a 1403 unit record device; a volume is a
section of auxiliary storage that is serviced by a single
read/write mechanism, such as a reel of magnetic tape,
a drum, or a disk pack.

Specifying Volume Information
Volumes must be mounted on direct access and mag­
netic tape devices before they can be used. To inform
the system on which volume an existing data set can be
found or a new data set will be created, you make a
specific or nonspecific volume request.

Specific Volume Requests: A specific volume request
informs the system of the volume serial number(s) of
the volume(s) you require. For an existing data set you
must make a specific volume request; when you are
creating a data set, you can make either a specific or
nonspecific volume request.

A volume request is specific when:

• The data set is passed from an earlier step or is
cataloged. The system obtains the volume serial
numbers from the passed data set queue or from
the catalog. You need not code the UNIT and
VOLUME parameters, unless you want to request a
private volume, retain a private volume (the vol­
ume on which a passed data set resides is automat­
ically retained), code a volume sequence number,
or request additional volumes or units. Each of
these options is further described in the following
paragraphs.

• You specify the serial numbers in the SER subpar­
ameter of the VOLUME parameter, for example,
VOL=SER=(948762,94523I).

• You refer the system to an earlier specific volume
request to copy the volume serial numbers by cod­
ing the name of a passed or cataloged data set or a
previous DD statement in the REFsubparameter of
the VOLUME parameter. To refer the system to a
passed or cataloged data set, you code
VOL=REF=dsname. To refer to a DD statement in
the same step, code VOL=REF=* .ddname; in a pre­
ceding step, VOL=REF=* .stepname.ddname; or in
a procedure step that is in a procedure called by a
preceding step,
VOL=REF=* .stepname.procstepname.ddname.

Nonspecific Volume Requests: Nonspecific volume
requests can be made only for new data sets. When you
make a nonspecific volume request, you do not specify
volume serial numbers; you need not code the VOLUME
parameter unless you are requesting a private volume,
want to retain the private volume you request, or re­
quest more than one volume.

Note: After volumes are assigned to your data sets, space for the
data sets is allocated on those volumes. Data sets for which you
made nonspecific volume requests are allocated space in the order
their DD statements appear in the job; as a result, the order of the
nonspecific volume requests in a job step can influence whether the
data sets can be allocated the space they require. For example, if a
data set requiring a small amount of space precedes a large data set,
space for the small data set may be allocated on a volume with a
great deal of free space; however, the space left on the volume after
the small data set is allocated may be insufficient to satisfy the large
request. In general, it is best to place nonspecific volume requests for
data sets that require a great deal of space before other nonspecific
volume requests in the job step.

Volume State: The system assigns the following attri­
butes to every volume to define the state of the volume:

• The mount attribute controls when a volume can
be demounted.

• The use attribute controls when a volume can be
assigned to satisfy a specific or nonspecific volume
request.

• The nonsharable attribute controls whether the
volume can be shared by two or more data sets.

The operator and system programmer at your instal­
lation can designate the state of volumes. Ina special
member of SYS I.PARMLIB. called PRESRES, the system
programmer can predefine mount and use attributes
for any or all of the direct-access volumes at your in­
stallation. The operator can define or change a
volume's state by issuing the MOUNT and UNLOAD
commands.

The Mount Attribute: A volume must be mounted
on a unit before you can use it. A volume is temporari­
ly mounted by the operator to satisfy a volume request,
or it is permanently mounted. The system assigns a

mount attribute to a volume to control when it can be
demounted. The mount attributes are:

• Permanently resident
• Reserved
• Removable.
Permanently resident volumes are volumes that can

never be demounted. In the PRESRES member of
SYS l.PARMLIB you can designate any direct-access vol­
ume as permanently resident, but the following vol­
umes are always permanently resident:

• All volumes that cannot be physically demounted,
such as a 2305 drum storage volume

• The volume from which the system is loaded (the
system residence volume)

• Volumes containing system data sets that are used
without being allocated.

Reserved volumes remain mounted until the opera­
tor issues an UNLOAD or VARY OFFLINE command.
You can reserve both direct-access and tape volumes.
A volume is usually designated as reserved to avoid
repeated mounting and demounting of the volume
when it is used by a group of related jobs. For exam­
ple, a volume containing a private library to be used by
a group of jobs can be reserved while those jobs are
being run. A volume is reserved when you designate it
as reserved in the PRESRES member of SYS l.PARMLIB or
when the operator issues a MOUNT command for that
volume.

Removable volumes can be demounted after their
last use in a job step or when the units on which they
are mounted are required for other volumes. All vol­
umes not designated as either permanently resident or
reserved are removable. The operator can change a
removable volume to a reserved volume by issuing the
MOUNT command.

The Use Attribute: The system assigns a use attribute
to each volume to indicate that the volume can be as­
signed to satisfy either specific volume requests only or
specific and nonspecific volume requests.

The use attributes are:
• Private
• Public
• Storage
• Scratch.
You can assign the private attribute to direct-access

and tape volumes. Allocate a private volume only to
satisfy a specific request. Demount the volume at the
end of the step unless:

• The volume is being used by another job
• The volume is permanently resident or reserved
• The data set on the volume is passed
• You code RETAIN in the VOLUME parameter.
Only direct-access volumes can be assigned public

or storage attributes. Allocate a public volume to tem­
porary data sets when no specific volume is requested.

Chapter 2: Descriptions of JCL Services 2-9

These volumes are commonly referred to as scratch
volumes. You can also allocate a public volume to
satisfy a specific request. You can change a public
volume to private by coding the PRIV ATE subparameter
of the VOLUME parameter.

Allocate a storage volume to temporary or nontem­
porary data sets when no specific volume serial number
is requested. A storage volume can also be allocated to
satisfy a specific volume request when you specify the
volume serial number of the storage volume.

Assign the scratch attribute to tape volumes only. It
is similar to the public attribute for direct-access vol­
umes. Scratch volumes are assigned to satisfy nonspe­
cific volume requests for temporary data sets. A
scratch volume becomes private if you code the
PRIV A TE subparameter, a specific request for the vol­
ume is made,. or the data set residing on the volume is
nontemporary.

Combinations of mount and use attributes are sum­
marized in Figure 2-1.

The Nonsharable Attribute: You can assign the
nonsharable attribute only to removable direct-access
volumes. You can allocate a nonsharable volume to
only one job step at a time; other jobs requiring the

Temporary Data Nontemporery
Set Data Set

Volume State Type of Volume Request

Public / Permanently Nonspecific or Specific
Resident i Specific

Private /Permanently Specific Specific
Resident i

Storage /Permanently Nonspecific or Nonspecific or
Resident i Specific Specific

Public/Reserved i Nonspecific or Specific
Specific

Private/Reserved (Tape Specific Specific
and direct access)

Storage / Reserved i Nonspecific or Nonspecific or
Specific Specific

Public/Removable i Nonspecific or Specific
Specific

Private /Removable Specific Specific
{Tape and direct
access)

Scratch (Tape only) Nonspecific or Nonspecific or
Specific Specific

iDirect access volumes only.

Figure 2-1. Combinations of Mount and Use Attributes

2-10 OS/VS 1 JCL Services

.

. ..

volume must wait until the job step currently using the
volume releases control.

The system assigns the' nonsharable attribute to
direct-access volumes that might require demounting
during execution of the step that requested the volume.
Then()nsharable attribute is always assigned to a vol­
umewhen:

• You make a specific volume request and re,quest
more volumes than the number of devices allocat­
ed.

• You request unit affinity to a data set defined
earlierin the job'step and the data sets reside on
different volumes. (Unit affmity is described un­
der"Sharing a Unit Between Data Sets".)

Never assign the nonshaiable attribute to a permanent­
ly resident or reserved volume.

Using Private Volumes: If you request a private
volume, the system attempts to assure that you will be
the only user using that volume, unless another job
makes a specific volume request for that volume. To
request a private volume, code PRIV ATE as the first
subparameter in the VOLUME parameter.

You can code PRIVATE with both specific and non­
specific volume requests. For example,·you are making

How Assigned How Demounted

PRESRES Entry MOUNT Always mounted
command or by default

PRESRES Entry or MOUNT Always mounted
command

PRESR.ES Entry or MOUNT Always mounted
command

PRESRES Entry or MOUNT UNLOAD or VARY
command OFFLINE command

PRESRESEntry or MOUNT UNLOAD or VARY
command (Only MOUNT OFFLINE command
command for tape.)

PRESRES Entry or MOUNT UNLOAD or VARY
command OFFLINE command

VOl,UME=PRIVATE is not When unit is required by
Coded on the DO statement another volume .

... VOUJME=PRIVATE is coded After its use, or at end of
on. the 00 statement (Specific job if RETAIN or PASS is
request or a nontemporary coded.
data set for tape also causes
this assignment.)

Any tape data set (Scratch When unit is required by
volume becomes private if another volume.
VOLl,JME=PHIVATE is coded,
specific request is made, or
data set is nOl1temporary.)

a specific volume request for a direct-access volume
and want the volume to be private:

VOL=(PRIVATE,SER=485267)

For a tape request, private is implied if:
• A specific request, except for a received data set

which was not private when it was passed.
• Disposition of KEEP, CATALOG, UNCATALOG, or, if

a non temporary data set name is specified, PASS.

The system automatically demounts the volume at
the end of the job step unless the volume is being used
by another job, the data set is passed, you code RETAIN

in the VOLUME parameter, or the volume is permanent­
ly resident or reserved (permanently resident volumes
are volumes that cannot be physically demounted or
that contain system data sets; reserved volumes are
volumes that remain mounted until the operator issues
an UNLOAD command). If you expect to use a data set
for which you requested a private volume in a subse­
quent step, you can code RETAIN to ensure that the
volume remains mounted:

VOL=(PRIVATE,RETAIN)

The volume remains mounted unless the system
needs to use the drive for a later allocation request. If
the data set resides on more than one volume and the
volumes are mounted in sequential order, only the last
volume is retained.

You need not code RETAIN for a passed data set; the
volume on which a passed data set resides remains
mounted unless the system needs to use the drive for a
later allocation request. (See "Passing a Data Set" in
this section for additional information about a passed
data set.)

Multivolume Data Sets: If you are creating or ex­
tending a data set that may require more than one vol­
ume, you should request in the volume count
sub parameter of the VOLUME parameter the maximum
number of volumes that may be required. If you are
defining an existing multivolume data set and would
like to begin processing with other than the first vol­
ume, code the volume sequence number subparameter.

Requesting Multiple Volumes: You request multiple
volumes in the volume count subparameter of the
VOLUME parameter. The maximum number of vol­
umes you can request is 255; because each volume
must be mounted on a unit before it can be used, you
must:

• Request as many units as volumes so that each
volume will be mounted on a device, or

• F or direct access volumes, make sure the volumes
are nonsharable. A nonsharable volume can be
allocated to only one data set at a time and, there­
fore, can be demounted after its use by your job so

that another volume can be mounted. When you
make a specific volume request and request more
volumes than units, the system automatically as­
signs the nonsharable attribute to the volumes.
For a nonspecific request for direct access vol­
umes, you must code PRIVATE in the VOLUME

parameter. (The system automatically demounts
tape volumes so you do not have to code PRIVATE

for tapes.) For example, if you are making a non­
specific volume request for a data set that requires
three direct access volumes, you would code:

VOL=(PRIVATE",3)

Positioning Within a Multivolume Data Set: When
you are reading or lengthening an existing multivolume
data set, you can instruct the system to begin process­
ing other than the first volume by coding the volume
sequence number subparameter.

Usually you code a volume sequence number when
you are defining an existing cataloged or passed data
set; for example,

IlsTATE DO ... VOL=(,,3,REF=DATASET)

DATASET is a cataloged data set; the system obtains the
volume serial numbers from the catalog and begins
processing with the third volume.

If you specify volume serial numbers for an existing
data set, the system starts with the volume correspond­
ing to the volume sequence number. For example,

IITHIS DO ... VOL=(,,2,SER=(550001,
II 550002,550003))

The system begins processing with volume 550002.
Volumes 550001 and 550003 are also allocated to the
data set and will be mounted when required.

Sharing Volumes Between Data Sets: To conserve
space and to use fewer volumes, you can request that
data sets be assigned the same volume. Data sets on the
same volume have volume affinity.

You can request volume affinity either implicitly or
explicitly:

• By specifying the same volume serial numbers for
the data sets in the SER subparameter of the
VOLUME parameter.

• By using the REF subparameter of the VOLUME

parameter to indicate that volumes identified in
the catalog or on an earlier DD statement in the
job are to be assigned to the data set being de­
fined.

You should not use nonspecific volume references
between storage volumes and public volumes. Like­
wise, within one job step, you should not create a data
set and then refer to it on a second DD statement using
DISP=OLD. Doing either may cause unsuccessful execu­
tion of the job step.

Chapter 2: Descriptions of JCL Services 2-11

Specifying Unit Information
You provide the system with the information it needs
to assign a device to a data' set in the UNIT parameter.
To indicate what unit or type of unit you want, code
one of the following:

• The unit address
• The device type
• The user-assigned group name.
The unit address is a 3-character address made up of

the channel, control unit, and unit number. For exam­
ple, unit 180 indicates you want channell, control unit
8, and unit o. Specifying a unit address, however, lim­
its unit assignment: the system can assign only that
specific unit and, if the unit already is being used, the
job must be delayed or canceled.

A device type corresponds to a particular set of I/O

devices and their features. For example, 2400-2 repre­
sents 2400-series magnetic tape units with 7 -track capa­
bility and data conversion. For this device type you
specify:

UNIT=2400-2

The system assigns an available 2400 tape unit with
those features. (See OS/VSl JCL Reference, listed in
the Preface, for a device type list.)

When you code UNIT=3330V, the system assigns
available storage in the Mass Storage System.

Each installation can also define user-assigned group
names during system generation to signify a group of
devices that may not all be of the same type. When you
code a group name, you allow the system to assign any
available device included in the group. For example, if
the group named DISK includes all 2314 and 3330 disk
storage facilities and you code UNIT=DISK, the system
assigns an available 2314 or 3330 device.

If a group contains more than one device type (for
example, SYSSQ may refer to all tape and direct access
devices), you should not code the group name when
defining an existing data set. The volume on which the
data set resides may require a device different from the
one assigned to it. For example, if the data set resides
on a tape volume, it must be assigned to a tape device.

Requesting More than One Unit: To increase oper­
ating efficiency, you can request multiple units for a
multivolume data set or for a data set that may require
additional'volumes. When each required volume is
mounted on a separate device,· execution of the job step
is not interrupted to allow the operator to demount and
mount volumes. You should always request multiple
units when the data set may be extended to a new vol­
ume if:

• The data set resides on a permanently resident or
reserved volume. Permanently resident and re­
served volumes cannot be demounted to mount a
new volume.

2~12 OS/VSl JCL Services

• The data set shares cylinders with other data sets
or is suballocated space. (Suballocated data sets
and data sets that share cylinders are described in
the section "Requesting Space.for a Group of
Data Sets.")

You request multiple units by:
• Coding the unit count subparameter in the UNIT

parameter, or
• Requesting parallel mounting.
You can request as many as 59 units in the unit

count subparameter; for example, if you want three
2314's allocated to your data set, code:

UNIT=(2314,3}

You can request parallel mounting when you make a
specific volume request. The system counts the number
of volumes requested (by counting the vohime serial
numbers specified on the DD statement or counting the
volume serial numbers in the catalog or passed data set
queue) and assigns that number of devices. You code P

in place of the unit count subparameter:

IIAMPLE DD DSNAME=ENUF,DISP=OLD,
II UNIT=(2314,P},
II VOL=SER=(40653,13262}

The system assigns two 2314's to the data set defined
by AMPLE - one for each volume requested in the
VOLUME parameter.

Deferred Mounting of Volumes: If your job step
includes a data set that might not be used, depending
on conditions determined in the job step, you can re­
quest that the system not mount the volume containing
the data set until the data set is opened. This saves time
mounting the volume before the job step beginsexecu­
tion.

Code the DEFER subparameter:

UNIT=(2314"DEFER}

The system will assign a 2314 to the data set but will
not request that the volume be mounted until it is re­
quired.

The DEFER subparameter should not be coded on a
DD statement that defines an indexed sequential data
set or that defines a new data set to be written to a di­
rect access device.

Unit Separation: When you make nonspecific vol­
ume·requests for data sets, the system chooses volumes
to be assigned to the data sets. An optional· feature of
VSl, called I/O load balancing, controls the choice of
volumes and devices so that I/O contention· on each
device is equalized. I/O load balancing monitors the
activity to each device; in choosing a device, it consid­
ers such variables as the speed of the device and the
number of I/O events to each device. Because I/O load

balancing reduces contention for devices on a system­
wide basis, there is no need to request unit separation
for data sets by coding the SEP sub parameter of the
UNIT parameter: if SEP is coded for a new direct access
data set, it is ignored.

Your installation can include the I/O load balancing
feature in the system during system generation. If I/O
load balancing is not included, requests for unit separa­
tion are valid: you can request that a data set not be
assigned to the same device as other data sets.

To request unit separation, code the SEP parameter
and list up to eight ddnames of DO statements that
define data sets that should not share a device with the
data set you are defining:

IINOSHARE DO ... UNIT=(2314,
II SEP=(DD1,DD2,DD3))

The data set defined by NOSHARE will be assigned to
a device different from the devices assigned to 001,

DD2, and 003. The DO statements you list (in this ex­
ample, 001,002, and DD3) must precede this statement
and must be included in the same job step. If one of
the listed DO statements defines a dummy data set, the
system ignores the unit separation request for that data
set.

U nit separation requests have meaning only for
direct access devices. If the system cannot satisfy a
request for unit separation, either because of insuffi­
cient devices available or because of insufficient space,
the request is ignored.

Sharing a Unit Between Data Sets: To conserve
the number of devices used in a job step, you can re­
quest that an existing data set be assigned to the same
device or devices assigned to a data set defined earlier
in the job step. When two or more data sets are as­
signed the same device, the data sets are said to have
unit affinity. When the data sets reside on different
volumes, unit affinity implies deferred mounting for
one of the volumes, since both volumes cannot be
mounted on the same device· at the same time.

You request unit affinity by coding
UNIT=AFF=ddname on a DO statement. The ddname is
the name of an earlier DD statement in the same job
step, and the system obtains uriit information from this
statement. The data set defined on the DO statement
that requests unit affinity is assigned the same device
or devices as the data·set defined on the named DD

statement. If the ddname refers to a DD statement that
defmes a dummy data set, the 4ata set defined on the
DD statement requesting unit affinity is assigned a
dummy status.
If all of the following conditions are present, the mimed
data set might write over the data set defined on the DD
statement requesting unit affmity:

• The named .DD statement requests a scratch tape.

• The data set defined on the DD statement request­
ing unit affinity is opened before the data set on
the named DO statement.

• The tape is not unloaded before the OPEN of the
data set defined on the named DD statement.

Note: Unit affinity cannot be requested for a new, direct access data
set; if you do request unit affinity for a new data set, your job is
abnormally terminated. Also, an old direct access data set should
never have unit affinity to a new, non-specific direct access data set.

When You Do Not Have to Code the UNIT Par­
ameter: In a few cases, the system obtains unit inform­
ation from sources other than the UNIT parameter. In
these cases, you do not have to code the UNIT parame­
ter:

• When the data set is cataloged. For cataloged data
sets, the system obtains unit and volume informa­
tion from the catalog. However, if
VOLUME=sER=serial number is coded on a DD

statement that defmes a cataloged data set, the
system does not look in the catalog. In this case,
you must code the UNIT parameter. If the VOLUME
parameter is not coded but you request a device in
the UNIT parameter, the request for a particular
type of device is ignored. (A request for additional
devices is, however, honored.)

• When the data set is passed from a previous job
step. For passed data sets, the system obtains unit
and volume information from an internal table.
However, ifvOLUME=SER=serial number is coded
on a DO statement that defines a passed data set,
the system does not look in the internal table. In
this case, you must code the·uNIT parameter. If
the VOLUME parameter is not coded but you re­
quest a device in the UNIT parameter, the request
for a particular type of device is ignored. (A re­
quest for additional devices is, however, honored.)

• When the data set is to use the same volumes as­
signed to an earlier data set, that is, when
VOLUME=REF=reference is coded. In this case, the
system obtains unit and volume information from
the earlier DD statement that specified the volume
serial number or from the catalog. If you request a
device in the UNIT parameter, the request for a
particular type of device is ignored. (A request for
additional devices is, however, honored.)

• When the volumes used by the data set are the
same as those of a previous DD statement in the
same step, the same unit i~ used for the common
volumes in both DD statements. The unit specifi­
cation still applies to any ~(m.common volumes.
The system never assigns the same volumes to two
different units in the same step.

• When the data set is to share tracks, blocks, or
cylinders with an earlier data set, that is, when
SUBALLOC or SPLIT is coded. (The SUBALLOC and

Chapter 2: Descriptions of JeL Services 2-13

SPLIT parameters are described in the section
"Requesting Space for a Group of Data Sets.") In
this case, the system obtains unit and volume in­
formation from the earlier DD statement that spec­
ifies the total space required for all the data sets. If
the VOLUME parameter is coded, it is ignored. If
you request a device in the UNIT parameter, the
request for a particular type of device is ignored.
(A request for additional devices is, however, hon­
ored.)

In all of the cases listed above, you can code the UNIT
parameter when you want additional devices assigned.

You must not code the UNIT parameter when defin­
ing a data set included in the input stream. If UNIT is
coded on aDD * or DD DATA statement, the job isab­
normally terminated.

Bypassing Allocation of Units and Volumes: When
you define a data set as a dummy data set, allocation is
bypassed: no units, volumes, or direct access space is
allocated to the data set. ·To define a dummy data set,
you code the DUMMY parameter or assign the data set
name NULLFILE in the DSNAME parameter. For details,
see the section "Defining a Dummy Data Set."

Requesting Space for a Single Data Set
You must request space for every data set you create
on a direct access volume. To request space for a single
data set, code the SPACE parameter on the DD state­
ment defining the data set. Request space for a group
of data sets by coding the SPLIT or SUBALLOC parame­
ters (see the section "Requesting Space for a Group of
Data Sets"). Space for VSAM clusters or components is
created by the Access Method Services DEFINE com­
mand. For a description of DEFINE, see OS/VSl Ac­
cess Method Services, listed in the Preface.

The SPACE parameter provides two ways to. request
space:

• Tell the system how much space you want and let
the system assign specific tracks.

• Tell the system the specific tracks on which you
want the data set written.

Letting the system assign specific tracks is the easiest
and most frequently-used method of requesting space.
The other methods of requesting space are available to
increase performance, by minimizing access time and
therefore increasing the efficiency of input! output
operations. In most applications, however, the increase
in efficiency by using alternate methods of requesting
space is negligible. Examples of the types of applica­
tions that benefit from assigning. specific tracks (or by
coding the SPLIT and SUBALLOC parameters, in the
section "Requesting Space for a Group of Data Sets")
are in the detailed description of each method.

2-14 OS/VSl JCL Services

Letting the System Assign Specific Tracks
The easiest way to request space is to let the system
assign specific tracks. You need specify only the unit of
measurement to be used to compute the space require­
ment, and the number of units of measurement your
data set requires. Also, this form of the SPACE parame­
ter offers several options; you can request:

• A secondary quantity, to be used if the data set
runs out of space

• Space for a directory or index
• Release of unused space
• Contiguous space
• Whole cylinders.
The required subparameters and each of the options

are discussed in the following paragraphs.

The Basic Request: Unit of Measurement and
Primary Quantity: When the system assigns specific
tracks, you must specify only the unit of measurement
the system should use to allocate space and the quanti­
ty of space you need, called the primary quantity. As
the unit of measurement, you can specify:

• The average block length of the data, for blocks
• TRK, for tracks
• CYL, for cylinders.
As the primary quantity, code an integer, indicating

how many blocks, tracks, or cylinders you require.
It is easiest to specify an average block length. The

system computes the least number of tracks required to
contain the number of blocks you specify and allocates
that number. Specifying block length also maintains
device independence: you can code a group name that
includes different direct access devices in the UNIT
parameter, or you can change the device type in the
UNIT parameter without altering your space request.
(When a group name includes both tape and direct
access devices, the SPACE parameter is ignored if a tape
volume is assigned·to the data set.)

If the blocks have keys, you must also code the DCB
subparameter KEYLEN on the DD statement and specify
the key length, that is, DCB=KEYLEN=key length. For
example, the average block length of your data is 1,024
bytes and you expect to write 75 blocks of data; each
block is preceded by a key that is 8 bytes long. The
simplest space request, then, is:

IIREQUEST DD ... SPACE=(1024,(75)),
II DCB=KEYLEN=8

The system computes the number of tracks you
need, depending on what device you request in the
UNIT· parameter.

When you specify TRK or CYL, you must compute
the number of tracks or cylinders required; you should
consider such variables as the device type, track capac­
ity, tracks per cylinder, cylinders per volume, data
length (block size), key length, and device overhead.

These variables, and examples of estimating space
requirements for partitioned and indexed sequential
data sets, are described in OS/VSl Data Management
Services Guide, listed in the Preface, under "Data Set
Disposition and Space Allocation." Figures illustrating
direct access capacities and track capacities are includ­
ed in the OS/VSl JCL Reference, listed in the Preface.

Requesting Whole Cylinders: Cylinder allocation
allows faster input/output of sequential data sets than
does track allocation. When you request space in terms
of average block length, you can request that the space
allocated begin and end on cylinder boundaries: code
ROUND as the last subparameter in the SPACE parame­
ter. For example, extending the previous example of a
data set requiring 75 blocks with an average block
length of 1024, you would code:

IIREQUEST DD ... SPACE=(1024,(75),
II "ROUND)

The smallest number of whole cylinders needed to
contain your request will be allocated.

How the System Satisfies Your Primary Request:
Enough available space must exist on one volume to
satisfy your primary request. If enough space is not
available on a single volume, the system abnormally
terminates the step or searches another volume, de­
pending on the type of volume request you make. Fig­
ure 2-2 illustrates system action for determining if
enough space is available to satisfy your primary re­
quest.

The system attempts to allocate the primary quanti­
ty in contiguous tracks or cylinders. If contiguous
space is not available, the system satisfies the request
with as many as five noncontiguous extents (blocks) of
space. (If you specify user labels by coding SUL in the
LABEL parameter the system allocates up to four non­
contiguous extents of space. The system allocates a
track for user labels separate from the primary quanti­
ty; this one track is considered an extent. Therefore,
the system allocates as many as four additional extents
to satisfy the primary quantity.) The system uses the
limit of five extents for the primary quantity to main­
tain a level of performance for input! output opera­
tions. If a data set is too fragmented on a volume, the
speed of input! output operations is proportionately
reduced.

In some applications, high efficiency of
input/ output operations may be important - you can
assure that contiguous space is allocated by coding the
CONTIG subparameter. See "Requesting Contiguous
Space" later in this section for details.

A Secondary Request for Space: In the primary

quantity, you need not anticipate all future demands
for space for a data set. You can code a secondary re­
quest for space, to be used only if the data set exceeds
its allocated space. The secondary quantity will be
allocated up to 15 times.

Code an integer following the primary quantity that
indicates how many additional tracks, cylinders, or
blocks should be allocated. If your request is in units of
blocks, you must code the maximum block length of
your data, in either the DCB macro instruction or the
BLKSIZE subparameter of the DCB parameter on the DD

statement. The system uses the maximum block length
to compute how many additional tracks to allocate.

A secondary quantity can be requested when you
create a data set or when you retrieve an existing data
set, whether or not you coded a secondary quantity in
the original request. A secondary request for an exist­
ing data set is in effect only for the duration of the job
step and overrides an original request if one was made.
For example, when you created a data set named
DARTS, you did not code a secondary quantity. You
are retrieving the data set in a later job to lengthen it
and want to request 50 additional blocks of space:

IIPUB DD DSN=DARTS,DISP=OLD,
II SPACE=(1024,(100,50»,
II DCB=BLKSIZE=2048

The secondary request for 50 blocks is in effect only for
the duration of this step. The unit of measurement and
primary quantity must be recoded exactly as they ap­
peared in the original request.

How the System Satisfies Your Secondary Request:
The system allocates the secondary quantity every time
your data set has used its allocated space. The system
attempts to allocate additional space contiguous with
the primary quantity. If contiguous space is not avail­
able, the system allocates five noncontiguous extents of
space equaling the secondary quantity.

Secondary space need not be allocated on the same
volume as the primary quantity. However, for data sets
whose disposition is NEW or MOD, the system allocates
all requested space on the same volume until it deter­
mines insufficient space is available or until it has allo­
cated sixteen extents of space to the data set on one
volume. If either of these conditions occurs, the system
allocates space on the next volume specified for a spe­
cific request or the system requests that a scratch vol­
ume be mounted for a nonspecific request as long as
sufficient volumes were specified in the volume count.
(See "Multivolume Data Sets" in the section
"Requesting Units and Volumes for Data Sets.")

When allocating a secondary quantity for a data set
with a disposition of OLD (that is, a data set that is
preallocated or is being written over), the system goes
to the next volume, if you specified one, and determine
if there is already a secondary quantity allocated. If

Chapter 2: Descriptions of JCL Services 2-15

Type of Volume Request System Action

Specific volume request (that is, For a single volume If sufficient space is not available, job step is abnormally terminated.
volume serial numbers are speci-
fied)

For multiple volumes Search volumes in order specified until
(1) Finds volume with sufficient space. (Volumes with insufficient

space for primary quantity are still used to allocate secondary
quantity, if necessary.)

(2) Determines none of specified volumes contain sufficient space--
job step is abnormally terminated

Nonspecific volume request (that is, system chooses vol- If space is not available on first volume chosen, system chooses another
ume) volume and continues search, causing volumes to be mounted if neces-

sary, until:
(1) Volume with sufficient space is found.
(2) Determines that no volume with sufficient space is available. The

job step is abnormally terminated.

Figure 2-2. System Action for Determining if Enough Space is Available to Satisfy Primary Quantity

there is, the system will use that space instead of mak­
ing another allocation. If you didn't specify another
volume, the space will be allocated on the current vol­
ume. If you did specify another volume and no space is
already allocated there for the data set, secondary
space will be allocated there.

Requesting Space for a Directory or Index: If you
are creating a partitioned data set, you must request
space for a directory. A directory is an index used by
the system to locate members in a partitioned data set.
It consists of 256-byte records, and you must specify, in
the SPACE parameter, how many records the directory
is to contain. You should request enough space for a
directory to allow for growth of the data set. The direc:­
tory is in the beginning of the primary space, and you
cannot lengthen it by requesting a secondary quantity
as you can lengthen the data set itself. If you run out of
space in the directory, you must recreate the data set.
For a complete description of the directory, including
details on member entries that will enable you to com­
pute the number of records to request, see "Processing
a Partitioned Data Set" in the OS/ VSl Data Manage­
ment Services Guide, listed in the Preface.

If you are creating an indexed seqvential data set
that occupies more than one cylinder and are not defin­
ing the index on a separate DD statement, you may
request space for an index if the data set occupies more
than one cylinder: code an integer indicating how
many cylinders should be allocated for the index in
addition to the primary quantity. (The space request
for an indexed sequential data set must be in terms of
cylinders.)

F or a partitioned data set the directory" is allocated
from th~ space you request as the primary quantity.
Therefore, you must consider the size of your directory
in estimating the primary space request. For an index­
ed sequential data set the space requested for the index
is added to the primary quantity. The system deter-

2-16 OS/VSl JCL Services

mines whether you are requesting space for a directory
or an index by examining the DSORG subparameter of
the DCB parameter on the DD statement.
DCB=DSORG=IS or DCB=DSORG=ISU must be included
on any DD statement defining an indexed sequential
data set. If neither is specified, the system assumes you
are requesting space for a directory.

F or example, you are creating an indexed sequential
data set and requesting 2 cylinders for an index:

IIINDEXDS DO ... SPACE=(CYL,(10,,2)),
II DCB=DSORG=IS

The system recognizes that you are requesting space for
an index because of the DCB sub parameter DSORG=IS.

Requesting Contiguous Space: If the system cannot
allocate the primary quantity in contiguous space, it
allocates as many as five extents of noncontiguous
space equaling the primary request, as described earlier
in this section under "How the System Satisfies Your
Primary Request." The efficiency of input! output
operations decreases when space for your data set is
divided. However, in most applications, the effect is
negligible; only when you are defining an empty data
set for suballocation (see the section "Requesting
Space for a Group of Data Sets") or certain system
data sets (for example, SYS1.PARMLIB) is contiguous
space required. "

Although contiguous space is not required for most
data sets in applications programs, a high level of effi­
ciency in input! output operations might be desired for
some applications, notably in teleprocessing. To ensure
that contiguous space is allocated, code the CONTIG

subparameter:

IIRESERVS DO DSN=FLIGHTS4,
II DISP=(NEW,KEEP),
II SPACE=(CYL,(50)"CONTIG),
II UNIT=2314,VOL=SER=436921

If contiguous space is not available, the job is abnor­
mally terminated.

If you code a secondary quantity and request conti­
guous space, the primary request is satisfied with conti­
guous space, but the secondary quantity will not neces­
sarily be contiguous. The default for MSS (Mass Stor­
age System) is CONTIG if you specify MSVGP without
SPACE. (See OS/VSl JCL Reference, listed in the Pre­
face, for additional information about the SPACE par­
ameter.)

Releasing Unused Space: When a data set has been
created and you do not expect to lengthen it, you can
release unused space that was allocated to the data set.
You should always do this if you made a large, safe
request for primary space. Code RLSE in the SPACE

parameter.
You can code RLSE when you create a data set or if

you open an existing data set for output (the unused
space is released when the data set is closed). If you
requested space in units of tracks, unused tracks are
released; in units of cylinders, unused cylinders are
released; in units of blocks, unused tracks or cylinders,
whichever the system allocated, are released. When
coding RLSE for an existing data set, you should recode
the unit of measurement and primary quantity exactly
as they appeared in the original request. Failure to do
so can cause unpredictable results and possibly cause
lost records or no record found. For example, if your
original request was:

SPACE=(TRK,(100,50))

You can release unused tracks by coding, when you
retrieve the data set:

SPACE=(TRK,(100),RLSE)

Assigning Specific Tracks
You can request that specific tracks on a volume be
allocated to your data set. This is the most stringent
request for space: if any of the tracks you request are
occupied the system abnormally terminates the job.
Usually, you request specific tracks in order to place a
frequently-used data set near the volume table of con­
tents (VTOC) to minimize access arm movement and
thereby increase the speed of I/O operations. A library
that is heavily referenced might be a good candidate
for placement near the VTOC. However, in most appli­
cations, requesting specific tracks is unnecessary.

To request specific tracks, you must code:
• ABSTR as the first subparameter, indicating abso­

lute tracks
• A primary quantity, specifying the numberof

tracks to be allocated
• The relative track number of the first track to be

allocated.

For a partitioned data set, you must also specify the
number of records you want allocated for a directory.
If you are defining an indexed sequential data set that
occupies more than one cylinder and are not defining
the index on a separate DD statement, you must request
space for an index. The number of tracks for the index
must be equal to one or more cylinders and any other
DD statement defining the indexed sequential data set
(a separate DD statement defining an overflow area)
must also request specific tracks. The space for the
index or directory is allocated from the primary quanti­
ty.

To determine the relative track number, count the
first track of the first cylinder on the volume as 0, and
count through the tracks on each cylinder until you
reach the track on which you want the data set to start.
(You cannot request track 0.) The system automatical­
ly converts the relative track number to an address; this
address varies with different devices. For indexed se­
quential data sets, the relative track number must cor­
respond to the first track on a cylinder. Capacities of
direct access devices are included in the OS/VSl JCL
Reference, listed in the Preface.

F or example, you are creating an indexed sequential
data set named WEBSTER on volume 727104 on a 2314
direct access device. You need 4 cylinders for the pri­
mary quantity, which includes 1 cylinder for the index.
WEBSTER is a heavily-used library and you want to
place it near the VTOC. On volume 727104, the VTOC

begins on the seventh cylinder. On a 2314 direct access
device, 20 tracks equal 1 cylinder. To place WEBSTER

directly before the VTOC, starting at the beginning of
the third cylinder, you would code:

IIINDEXDS DD DSN=WEBSTER,DISP=(,KEEP),
II UNIT=2314,
II VOL=SER=7271 04,
II SPACE=(ABSTR,
II (80,40,20)),DCB=DSORG=IS

80 is your primary quantity, equalling 4 cylinders; 40 is
the relative track number of the first track on the third
cylinder; 20 is your request for I cylinder for the index.

IBM 3850 Mass Storage System Considera­
tions
If you are using MSS (Mass Storage System) for new
data set requests, these JCL parameters require special
consideration:

UNIT
• Set to 3330V.

·VOL=SER
• Mutually exclusive of MSVGP.

• You must code SPACE parameter.

Chapter 2: Descriptions of JCL Services 2-17

• If you do not code VOL=SER, you must code either
SPACE or MSVGP (or you may code both).

SPACE
• IfVOL=SER is coded, you must code SPACE.
• If MSVGP is coded, SPACE is optional.

MSVGP
• Mutually exclusive of VOL=SER, VOL=REF, and '

SUBALLOC.
• SPACE parameter is optional except for BPAM,

ISAM, and VSAM data sets.
• If you do not code the SPACE parameter, the de­

fault is that specified for the group.
• Mutually exclusive of the ABSTR keyword of the

SPACE parameter. If you are using MSS enhance­
ments, MSVGP is mutually exclusive of the ABSTR,
MXIG, and ALX keywords of the SPACE parameter.

• In MsvGP=(id,ddname) the ddname refers to the
name of the DO statement that identifies a Master
Out data set that is to be separated from a Master
In data set.

If you request a new nonspecific 3330V permanent
data set and do not specify the MSVGP parameter, a
mounted 3330V STORAGE volume is used. If one does
not exist, a volume is selected from SYSGROUP.

If you request a new nonspecific 3330V temporary
data set and do not specify the MSVGP parameter, a
public or storage volume is used. If one does not exist,
a volume is selected from SYSGROUP.

When coding MsvGP=(id,ddname) the ddname
must be a nonblank name of a prior DO statement
within the same step as the MSVGP OD statement. Only
one ddname can be coded and it must be coded with
the group id.

F or a nonspecific temporary or permanent request,
allocation to a SYSGROUP volume is guaranteed by
specifying VOL=PRIVATE or MSVGP=SYSGROUP. If you
specify VOL=PRIVATE, you must also code the SPACE
parameter.

You should use the catalog facilities for all data sets
residing in MSS. You should catalog new data sets
when they are created. When data sets are processed so
that they can be extended to other volumes, the catalog
should be updated. When you reference an existing
data set, you should locate it with the catalog.

Unless data sets within an MSS group have unique
data set names, an abend occurs. When a data set is
extended to multiple volumes with a MOUNT from EOV,
MSSC (Mass Storage System Communicator) cannot
determine that the volume being chosen does not con­
tain a data set with the same name as the one being
extended.

To extend multivolume data sets to a nonmounted
volume, the unit count on the UNIT parameter must be
less than the volume count on the VOLUME parameter.

2-18 OS/VSl JCL Services

To guarantee allocation of a nonsharable UNIT, you
must specify MSVGP or VOL=PRIVATE.

All volumes containing part of a multivolume data
set must be specified with a catalog reference or a vol­
ume serial DO list, if the data set can be extended. No
data is considered for data reuse if the data is part of a
multivolume data set (including GOG ALLS), or has an
esoteric volume name. Data reuse is not considered for
a mulivolume data set even if parallel mounting or
volume count=unit count is specified in the JCL.

MSSC selects nonspecific mass storage volumes for
allocation as primary volumes. MSSC selects nonspecif­
ic MSS volumes for EOV as secondary volumes. For a
new nonspecific data set whose volumes are selected by
MSSC, request only one device with JCL so that only the
primary volume is requested by allocation.

If an old multivolume data set resides on volumes
within a group, specify parallel mount on the UNIT
parameter of the DO statement, or specify a unit count
equal to the number of volumes containing the data
set.

For MSS, parallel mounting, Unit=(3330V,P), is hon­
ored for all generations of a Generation Data Group
retrieved by coding the Generation Data Group name
without a generation number.

You should not specify deferred mounting for vol­
umes belonging to a MSVGP if requests for new data
sets are in that job step using MSVGP for the same
group.

MSSC provides cylinder increment default space
allocation if you specify MSVGP without the SPACE
parameter. The SPACE parameter can be used to code
track or block size increments. If you want nonconti­
guous primary space allocation, you must specify the
SPACE parameter.

To create a BPAM or ISAM data set with a nonspecific
request within a specified MSVGP, you must specify the
SPACE and MSVGP parameters. The MSVGP space de­
faults do not support BPAM or ISAM data sets.

Requesting Space for a Group of Data Sets
You must request space for every data set you create
on a direct access volume. This is usually done for each
data set by coding the SPACE parameter, or, for VSAM
clusters or components, by the DEFINE command. (See
the section "Requesting Space for a Single Data Set.")
In some cases, to increase performance, you may want
to place a group of data sets on a single volume in a
certain order. JCL provides two methods for doing this;
you can:

• Share cylinders between two or more related data
sets in a single job step; portions of each data set
occupy tracks within every allocated cylinder.
This method is useful when you are processing
large data sets with corresponding records.

• Suballocate space for each data set from an empty
data set you define that contains enough space for
all the data sets in the group; the data sets can be
placed in contiguous space in a specific order.

More detailed examples of when to use each method
are included in the detailed description of the method.

Sharing Cylinders Between Data Sets
Sharing cylinders between data sets is useful when you
are creating two or more large data sets with corre­
sponding records. For example, a college has one data
set that contains students' names, identification num­
bers, and addresses; a second data set contains each
student's courses; a third data set lists all the courses,
the enrollment in each course, and the grade earned by
each student in each course. If these data sets share
cylinders, considerable time can be saved when they
are processed: each data set occupies a portion of the
tracks in every allocated cylinder; movement of the
access arm is decreased and processing time is therefore
decreased. The decrease in time, however, is significant
only for large data sets. If other data sets are using the
volume concurrently, the benefit is lost, so you should
request a private volume. (For details on requesting a
private volume, see "Using Private Volumes" in a pre­
vious section "Requesting Units and Volumes for Data
Sets.")

To share cylinders, you define the data sets by cod­
ing a sequence of DO statements using the SPLIT par­
ameter to request space.

Sequence of DD Statements: Each DO statement in
the sequence defines one of the data sets in the group.
On the first DO statement, you must:

• Define the first data set in the group.
• Request space for all the data sets in the group; if

the system cannot allocate this space on a single
volume, the job is abnormally terminated.

• Indicate the number of tracks per cylinder are to
be allocated to this data set.

• Code unit and volume information.
Optionally, code a secondary quantity, which is

allocated to any data set in the group that runs out of
space.

On subsequent DO statements in the sequence, the
SPLIT parameter simply indicates the number of tracks
per cylinder to be allocated to the data set. You need
not code unit and volume information: the VOLUME

parameter, if coded, is ignored. The UNIT parameter is
also ignored, with the exception of a request for addi­
tional devices. (See "Requesting a Secondary
Quantity," laterin this section, for details on when to
request additional devices.)

You can request space for the data set either in
terms of average block length or cylinders. The way
you indicate the number of tracks per cylinder to be

allocated to each data set depends on the unit of meas­
urement you code.

Requesting Blocks of Space: To request blocks of
space, specify the average block length of the data and
the number of blocks you expect to write for all the
data sets combined. The system computes the number
of cylinders required, depending on what device you
request in the UNIT parameter.

To indicate the number of tracks per cylinder to be
allocated to each data set, specify a percent of the total
tracks on a cylinder. The system computes the number
of tracks the percent indicates and rounds down to the
next full track; as a result, the percent you request must
equal at least one full track or the step is abnormally
terminated. For example, if you request 5% of the
tracks on a cylinder on a 3330, you are requesting .95
track and the job step is abnormally terminated; if you
request 10% of the tracks on a 3330, you are requesting
1.90 tracks and the system allocates one track per cylin­
der.

In the following example, the average block length
of your data is 1,024 bytes and you need 800 blocks for
three data sets. You want to allocate 20% of the tracks
on each allocated cylinder to the first data set, named
CAMEL; 35% to the data set named LLAMA; and 45% to
the data set named OSTRICH. The DO statements would
be:

IIDD1
II
II
IIDD2
II
IIDD3
II

DD DSN=CAMEL,DISP=(,KEEP),
UNIT=2314,VOL=SER=253540,
SPLIT=(20,1024,(BOO))

DD DSN=LLAMA,DISP=(,KEEP),
SPLIT=35

DD DSN=OSTRICH,DISP=(,KEEP),
SPLIT=45

You choose the percent of tracks to be allocated to
each data set so that, when you reach the end of a cyl­
inder, you will have finished processing the portions of
all three data sets on that cylinder. You must' consider
the size of each data set, the size of the records in each
data set, and the type of operation you are performing,
for example, reading, writing, modifying records.

Requesting Cylinders: To request cylinders, you
specify CYL as the unit of measurement and an integer
indicating the number of cylinders to be allocated for
all the data sets in the group. When you specify CYL,

you must compute the number of cylinders required,
considering the device typ~, track capacity, tracks per
cylinder, cylinders per volume, data length (block size),
key length, and device overhead. These variables are
described in OSjVSl Data Management Services
Guide, listed in the Preface. Figures illustrating direct
access capacities and track capacities are included in
the OSjVSI JCLRejerence, listed in the Preface.

Chapter 2: Descriptions of JCL Services 2-19

To indicate the number of tracks per cylinder to be
allocated to each data set, you simply specify a number
of tracks. For example, you are requesting 7 cylinders
on a 2314 for three data sets named KING, QUEEN, and
JACK. On a 2314, each cylinder contains 20 tracks:
KING should occupy 8 tracks per cylinder; QUEEN, 6
tracks per cylinder; and JACK, 6 tracks per cylinder.
You would code:

IIDDA DD DSN=KING,DISP=(,KEEP),
II UNIT=2314,
II VOL=SER=123456,
II SPLIT=(8,CYL,(7»
IIDDB DD DSN=QUEEN,DISP=(,KEEP),SPLIT=6
IIDDC DD DSN=JACK,DISP=(,KEEP) ,SPLIT=6

You choose the number of tracks per cylinder to be
allocated to each data set so that, when you reach the
end of a cylinder, you will have finished processing the
portions of all three data sets on that cylinder. You
must consider the size of each data set, the size of the
records in each data set, and the type of operation you
are performing, for example, reading, writing, modify­
ing records.

Requesting a Secondary Quantity: You can specify a
secondary quantity of blocks or cylinders in the SPLIT
parameter on the first DD statement in the sequence.
The system allocates additional blocks or cylinders to
any data set in the group that runs out of space. (If you
request blocks, you must code the maximum block
length of the data in the BLKSIZE subparameter of the
DCB parameter or in the DCB·macro instruction. The
system uses the maximum block size to determine how
many additional tracks to allocate.) If you do not re­
quest a secondary quantity and a data set runs out of
space, the job step abnormally terminates.

Additional space is not split with the other data sets
and can be allocated on another volume, if you re­
quested multiple volumes in the VOLUME parameter. If
the data set might be extended to another volume, you
should also request an additional device. The volume
containing the shared data sets need not be demounted,
then, in order to mount the volume for the secondary
quantity. You request multiple devices in the UNIT
parameter. (See "Requesting More than One Unit" in
the section "Requesting Units and Volumes for Data
Sets.") You can code the request for an additional
device on any DD statement in the sequence.

For example, in a preceding example, you requested
800 blocks with an average block length of 1,024 bytes.
The first data set required 20% of the tracks on each
cylinder. To include a secondary request for 35 addi­
tional blocks, you could code:

IIDD1 DD DSN=CAMEL,DISP=(,KEEP),
II UNIT=(2314,2),
II VOL=(PRIVATE,,2),
II SPLIT=(20,1024,(800,35»

2-20 OS/VSl JCL Services

An additional unit and volume is requested in case the
secondary quantity must be allocated on another vol-:
ume.

Suballocating Space
The method of suballocating space is primarily used to
reserve a block of space for a group of data sets. You
first create a master data set in contiguous space on a
single volume that contains no data and has enough
space for all the data sets in the group. Then you su­
ballocate space from the master set for data sets in the
group. An installation might reserve blocks of space
for different departments, for distinct applications, or
to give programmers a certain amount of work space.

F or example, a master data set reserves 8 cylinders
of space on a 2314 for use by an accounting depart­
ment, DEPT41. DEPT41 creates four data sets, suballo­
cating space for each from the master data set. Each
new data set is assigned to the first available area of
unused space in the master data set, so that the data
sets can be placed in a specific order (that is, in the
order in which they are defined). IfDEPT41 is process­
ing some of these data sets at the same time, processing
time can be decreased by making the volume on which
they reside private. (A private volume cannot be allo­
cated to satisfy a nonspecific volume request; therefore,
other data sets are not allocated to a private volume
unless they specifically request it by coding its volume
serial number.) Access arm movement is decreased,
because all the data sets occupy a contiguous area on
the volume and other data sets are not using the vol­
ume.

Defining the Master Data Set: You define the mas­
ter data set by coding the SPACE parameter, which
offers two methods for requesting space: letting the
system assign specific tracks and requesting specific
tracks. When you let the system assign specific tracks,
you code a subset of the available subparameters. You
must code:

• The unit of measurement and primary quantity
• CONTIG to request contiguous space.
Optionally, you can code the ROUND subparameter

to request whole cylinders when the unit of measure­
ment is average block length. Both methods of request­
ing space are described in detail in the section
"Requesting Space for a Single Data Set" The specific
subparameters listed above are described under "The
Basic Request: Unit of Measurement and Primary
Quantity, Requesting Contiguous Space," and
"Requesting Whole Cylinders" in that section.

You must include unit and volume information on
the DD statement defining the master data set. Suffi­
cient contiguous space to satisfy the primary quantity
must exist on a single volume or the job step is abnor­
mally terminated.

F or example, to define the master data set to be used
by DEPT41, you could code:

IIMASTER DO DSN=DEPT41,DISP=(,KEEP),
II UNIT=2314,VOL=SER=123456,
II SPACE=(CYL,(8)"CONTIG)

Suballocating Space from the Master Data Set:
To suballocate space from the master data set, you
code the SUBALLOC parameter, which is like the SPACE

parameter when you let the system assign specific
tracks. You must specify a unit of measurement and a
primary quantity. (The unit of measurement need not
be the same as you specified when defining the master
data set.) Optionally, you can request secondary space
and space for a directory. For details on coding these
requests, see "The Basic Request: Unit of Measure­
ment and Primary Quantity, A Secondary Request for
Space," and "Requesting Space for a Directory or
Index" in the section "Requesting Space for a Single
Data Set." Details on how a secondary space request is
satisfied are included below.

In the SUBALLOC parameter, you must also identify
the master data set from which space is to be suballo­
cated. (See "Identifying the Master Data Set" in this
section.)

Note: Space suballocated by cylinder starts at the beginning of the
free space in the master data set, and is aligned to a cylinder bound­
ary only if the free space begins on a cylinder boundary.

How a Secondary Space Request is Satisfied: Sec­
ondary space allocated for your data set is not allocated
from the master data set and can be allocated on a
separate volume, if you requested more than one vol­
ume when you defined the master data set. If the data
set might extend to another volume, you should also
request an additional device, so that the volume con­
taining the master data set need not be demounted.
You can request an additional device in the UNIT par­
ameter on either the DD statement defining the master
data set or the DD statement defining the data set to be
suballocated. (For details on how to request an addi­
tional device, see "Requesting More than One Unit" in
the section "Requesting Units and Volumes for Data
Sets.") With the exception of a request for an addition­
al device, the UNIT and VOLUME parameters are ig­
nored, if coded on a DD statement that defines a subal­
located data set.

Identifying the Master Data Set: In the SUBALLOC

parameter, you must identify the master dataset from
which space is to be suballocated. You can suballocate
space from an existing master data set. That is, you
need not create the master data set in the same job as
you create a data set to be suballocated. However, your
job must include a DD statement defining the master
data set. You refer to this DD statement in the
SUBALLOC parameter by coding:

• ddname - if the DD statement defining the mas­
ter data set appears in the same job step.

• stepname.ddname - if the DD statement appears
in an earlier job step.

• stepname.procstepname.ddname - if the DD

statement appears in a procedure step that is part
of a cataloged or in-stream procedure called by an
earlier job step.

Example of Suballocating Space for Data Sets: An
accounting department, DEPT41, defines a master data
set reserving 8 cylinders of space on a 2314. Three data
sets are suballocated from this space in two different
jobs:

• The first data set, named FIRST, is a partitioned
data set requiring 3 cylinders: you must request
space for a directory containing 10 records.

• The second data set, named SECOND, requires 50
tracks; you also want to request a secondary quan­
tity of 25 tracks. If space for the secondary quanti­
ty is not available on the same volume as the mas­
ter data set, you want the secondary quantity allo­
cated on another volume: you must request multi­
ple volumes when defining the master data set and
request an additional device.

• In a later job, you define a third data set, named
THIRD. The average block length of the data in
THIRD is 1024 bytes and you expect to write 100
blocks of data.

You would code:

IIJOBA
IisTEP1
IIMASTER
II
II
II
II
IIsUB1
II
II
IisTEP2
IIsUB2
II
II
II
IIJOBB
IlsTEPA
llMASTER
IIsUB3
II
II

JOB
EXEC PGM=INVENT
DO DSN=DEPT41,

DISP=(NEW,CATLG) ,
UNIT=2314,
VOL=(PRIVATE,,2) ,
SPACE=(CYL,(8) "CONTIG)

DO DSN=FIRST,DISP=(,KEEP),
SUBALLOC=(CYL,(3,,10) ,
MASTER)

EXEC PGM=REDO
DD DSN=SECOND,DISP=(,KEEP),

JOB

UNIT= (,2),
SUBALLOC=(TRK,(50,25) ,
STEP1.MASTER)

EXEC PGM=CONVERT
DD DSN=DEPT41,DISP=OLD
DO DSN=THIRD,DISP=(,KEEP),

SUBALLOC=(1024,(100),
MASTER)

Disposition Processing of Data Sets
Disposing of data sets at the end of a job step is
disposition processing. You request disposition process­
ing by coding the DISP parameter on the DD statement
defining the data set. In the DISP parameter, you can
code:

• Data set status as the first subparameter, indicat­
ing whether the data set is new, is old, can be
shared with other jobs, or can be lengthened.

Chapter 2: Descriptions of JCL Services 2-21

• Normal disposition as the second sub parameter,
indicating how the data set should be handled if
the job step terminates normally.

• Conditional disposition as the third subparameter,
indicating how the data set should be handled· if
the job step terminates abnormally.

If you do not code one of the subparameters, or omit
the DISP parameter entirely, the system supplies default
values, as described under "Default Disposition Proc­
essing."

Specifying Data Set Status
You indicate a data set's status by coding one of the
following:

• NEW - The data set is being created in this job
step.

• OLD - The data set existed before this job step.
• SHR - The data set existed before this job step

and can be read simultaneously by other jobs.
• MOD - The system assumes the data set exists

and positions the read/write mechanism after the
last record in the data set. If the volume informa­
tion for the data set is supplied on the DO state­
ment, in the system catalog, or passed with the
data set from a previous step and the data set is
not there, the system issues an appropriate error
message.

When you code SHR, you are requesting shared control
of the data set and your job should be reading the data
set only. When you code NEW, OLD, or MOD, you are
requesting exclusive control of the data set. Shared and
exclusive control are described in the section "Insuring
Data Set Integrity."

Specifying a Disposition for the Data Set
You can specify one disposition, called a normal dispo­
sition, to be used when the job step terminates normal­
ly (that is, successfully) and another disposition, called
the conditional disposition, to be used when the job
step terminates abnormally.

For normal disposition, you can request as the sec-
ond subparameter that the data set be:

• Deleted by coding 0 ELETE
• Kept by coding KEEP
• Cataloged by coding CA TLG
• Uncataloged by coding UNCATLG
• Passed by coding PASS.
For conditional disposition (the third subparameter

of the DISP parameter), you can code all of the above
with the exception of PASS.
For VSAM data sets whose volume and unit status have
been obtained from the catalog,· the only disposition
supported is KEEP. The system changes all other nor­
mal and conditional dispositions to KEEP.

Disposition processing differs for data sets on direct
access volumes and data sets on magnetic tape vol-

2-22 OS/VS I JCL Services

urnes. A direct access volume contains a VTOC (volume
table of contents) which consists of control blocks de­
scribing the data sets and available space on the vol­
ume. The handling of tape and direct access volumes
when you specify a particular disposition is described
below.

Deleting a Data Set: Specifying DELETE requests
that the data set's space on the volume be released at
the end of the job step (when coded as the normal dis­
position) or if the step abnormally terminates (when
coded as the conditional disposition). If the data set
resides on a public tape volume, the tape is rewound
and the volume is available for use by other job steps.
If the data set resides on a private volume, the tape
rewinds and unloads. If the data set exists on a direct
access volume, the control block describing the data set
is removed from the VTOC and the space on the volume
is then available to other data sets.

In one case, however, a data set on a direct access
volume is not deleted, even though you specify
DELETE: when the expiration date or retention period
has not expired. You can specify a length of time that a
data set must be kept by assigning a retention period or
expiration date in the LABEL parameter on the DO
statement. Specifying a retention period or expiration
date is described in the OS/VSl JCL Reference, listed
in the Preface, under "LABEL Parameter."

If you are deleting a cataloged data set, the entry for
the data set in the system catalog is also removed, pro­
vided the system obtained volume information for the
data set directly from the catalog (that is, the volume's
serial number was not coded on the DD statement). If
the system did not obtain volume information from the
catalog, the data set is still deleted but its entry in the
catalog. remains. If an error is encountered while at­
tempting to delete a data set, its entry in the catalog is
not removed. (The data set might be deleted, depend­
ing on where the error occurs.) You can use the
IEHPROGM utility program to delete an entry from the
catalog. (The IEHPROGM utility is described in
OS/VSl Utilities, listed in the Preface.)

DELETE is the only valid conditional disposition for
a data set with no name or a temporary name.

Keeping a Data Set: Specifying KEEP instructs the
system to keep a data set intact until a subsequent job
step or job requests that the data set be deleted or until
the expiration date or retention period is passed. (You
can specify an expiration date or retention period, indi­
cating the length of time a data set must be kept, in the·
LABEL parameter on the DD statement. If you do not
specify a time period, the system assumes a retention
period of 0 days. Coding an expiration date or reten­
tion period is described under "LABELParameter" in
OS/VSl JCL Reference, listed in the Preface.)

F or data sets on direct access devices, the entry de­
scribing the data set in the VTOC and the data set itself
are kept intact. For data sets on tape, the volume is
rewound and unloaded and a KEEP message is issued to
the operator.

Cataloging a Data Set: To more easily keep track of
and retrieve data sets, the system provides a cataloging
facility. The catalog is itself a data set that is organized
into levels of indexes; entries in the lowest-level index
contain data set names and volume information for the
data sets. You can group collections of data sets by
cataloging them; when retrieving a cataloged data set,
you do not have to specify volume information, you
need only code the DSN AME parameter and a status in
the DISP parameter other than NEW.

To request that a data set be cataloged, code CATLG

as the disposition; the system does a CATBX which au­
tomatically creates any missing index levels. (See
OS/VSl Data Management/or System Programmers,
listed in the Preface.) The disposition CA TLG implies
KEEP.

You can specify a disposition of CATLG for an al­
ready cataloged data set. Do this when you are adding
output to the data set (a status of MOD is coded) and
the data set may exceed one volume. If the system
obtained volume information for the data set from the
catalog (that is, the volume's serial number was not
coded on the DD statement) and you code
DISP=(MOD,CATLG), the system updates the entry to
include the volume serial numbers of any additional
volumes.

A collection of cataloged data sets that are kept in
chronological order is a GDG (generation data group).
The entire GDG is stored under a single data set name;
each data set within the group is called a generation
data set, and is associated with a generation number
that indicates how far removed the data set is from the
original generation. When you create a new generation
data set (for example, A.B.C(+ I)), you may specify a
disposition of PASS or CA TLG. When you specify PASS

be sure to catalog or delete the passed version before
you create and catalog an additional new version,
A.B.C(+2). For more information on defining and creat­
ing generation data groups, see the section "Creating
and Retrieving Generation Data Sets."

You must not assign the disposition CA TLG to a data
set name enclosed in apostrophes.

Uncataloging a Data Set: To remove the entry de­
scribing a data set from the catalog, code UNCA TLG as
the disposition. Specifying UNCATLG does not request
the initiator to delete the data set - just the reference
in the catalog is removed. When you request use of the
data set in a subsequent job or job step, you must in­
clude volume information on the DD statement.

Passing a Data Set: Ifmore than one step in ajob
requests the same data set, each step using the data set
can pass the data set for use by a subsequent step.
When a data set is passed, the volume containing the
data set remains mounted, unless the system needs to
use the drive for a later allocation request; when a
subsequent step uses that data set, allocation and dis­
position processing does not have to be performed for
the data set.

To pass a data set, you code PASS as the normal
disposition; PASS cannot be specified as the conditional
disposition. You continue to code PASS each time the
data set is referred to until the last time it is used in the
job. At this time, you assign it a fmal disposition. If
you do not assign the data set a fmal disposition, the
system deletes the data set if it was created in the job
and keeps the data set if it existed before the job.

However, if a passed data set has not been received
and a job step abnormally terminates, the passed data
set assumes the conditional disposition specified the
last time it was passed.

If the data set exists on a direct access volume, the
volume remains mounted. A magnetic tape volume
containing a passed data set remains mounted, but the
tape is rewound between steps unless you request oth­
erwise in the CLOSE macro instruction. (A description
of the CLOSE macro instruction is included in OS/VSl
Data Management Macro Instructions, listed in the
Preface.)

Notes:

• If the status of a data set is NEW and you want to pass it, you
can omit the term NEW. However, you must indicate its ab­
sence with a comma, for example, DISP=(,PASS).

• If the system finds it necessary to remove the volume contain­
ing a passed data set, it ensures through messages to the opera­
tor that the volume is remounted before its next use. Therefore,
it is unnecessary for you to code RETAIN in the VOLUME
parameter of a DD statement that specifies a disposition of
PASS.

• If several data sets in a job have the same name, care should be
taken when any are to be passed. Only one of these data sets
can be passed at a time, that is, a job step must receive and not
pass a data set before another data set with the same name can
be passed. A data set can not be passed more than once, unless
it is received before it is passed again.

• If you are assigning a disposition to a private library, which is
defined on a JOBLIB DD statement, refer to the section
"Creating a Private Library," later in this publication.

Receiving a Data Set: If you want a subsequent
step to receive a passed data set, omit the VOL= param­
eter on the DD statement receiving the passed data set.
This DD statement must identify the data set through
the DSNAME parameter, and must contain the DISP=

parameter. You should not provide unit information
unless you want additional units allocated to the data
set.

If a passed data set is not received by a subsequent
step within ajob, the normal default of KEEP for old
data sets and DELETE for new data sets is assumed. If a

Chapter 2: Descriptions of JCL Services 2-23

passed data set has not been received and a job step
abnormally terminates, the passed data set assumes the
conditional disposition specified the last time it was
passed.

A data set may not be received by more than one DD

statement within the same step, even if the receiving
DD statement passes it again. One way to have a sec­
ond DD statement within the same step reference a
received data set is to code VOL=REF=*.ddname.

Default Disposition Processing
If you either fail to code the DISP parameter, or omit
one of the subparameters, the system supplies default
values.

• Data set status (first subparameter) default is
NEW.

• Normal data set disposition (second subparame­
ter) default is determined by:

a. the data set status.
OLD, SHR, or MOD (when volume informa­
tion is available) specified in the first sub­
parameter causes the system to keep the
data set.
NEW (specified or default) or MOD (when
volume information is not available) speci­
fied in the first sub parameter causes the sys­
tem to delete the data set.

b. the PASS disposition specified in a prior step
for a passed data set with a status of other
than NEW.

• Conditional data set disposition (third subparame­
ter) - if not specified and the step abnormally ter­
minates, the system uses normal data set disposi­
tion (second subparameter) specification or de­
fault to process data sets.

If the step fails before execution begins (during unit
allocation for example), the system keeps existing data
sets and deletes new data sets regardless of the disposi­
tion specified.

Bypassing Disposition Processing
If you define a data set as a dummy data set, the DISP

parameter, if coded, is ignored and disposition process­
ing is not performed. For details, see the section
"Defining a Dummy Data Set."

Insuring Data Set Integrity
Your job must receive control of the nontemporary
data sets it requests: you can request either exclusive
control, allowing no other job to use the data set, or
shared control, allowing the data set to be used by oth­
er jobs that also request shared control. The process of
securing control of data sets for use by ajob is called
data set integrity processing.

2-24 OS/VSl JCL Services

Data set integrity processing avoids conflict between
two or more jobs that request use of the same data set.
For example, two jobs, one named READ and another
named MODIFY, both request the data set FILE. READ

wants only to read and copy certain records; MODIFY

deletes some records and changes other records in the
.data set FILE. If both jobs have control of FILE concur­
rently, READ cannot be certain of the records contained
in FILE (cannot be sure of the integrity of the data set).
MODIFY should have exclusive control of the data set;
READ can share control of FILE with other jobs that
also want only to read the data set. You indicate the
type of control a data set requires in the DISP parameter
on the DD statement defining the data set.

Exclusive Control of a Data Set
When a job has exclusive control of a data set, no other
job can use that data set until termination of the job
that refers to the data set. Ajob should have exclusive
control of a data set in order to modify, add, or delete
records.

When you don't need exclusive control of the entire
data set, you can request exclusive control of a block of
records by coding the DCB, READ, WRITE, and RELEX

macro instructions. (These instructions are described
in OSjVSl Data Management Macro Instructions,
listed in the Preface.)

To request exclusive control of a data set, you code
NEW, OLD, or MOD as the first subparameter of the DISP

parameter.

Shared Control of a Data Set
A data set on a direct access storage device can be used
concurrently by several jobs, if these jobs request
shared control of the data set; however, none of the
jobs should change the data set in any way.

To request shared control, you code SHR as the first
sub parameter in the DISP parameter. If more than one
step of your job requests a data set, you must code SHR

every time you define the data set if it is to be used by
concurrently executing jobs. Data set integrity process­
ing is performed once for a job. A data set has one type
of control, either shared or exclusive, for the entire job.
If you code NEW, OLD, or MOD on any reference to a
data set, the system assigns exclusive control to the data
set for the entire job; a reference requesting exclusive
control overrides any number of references requesting
shared control.

How the System Performs Data Set Integrity
Processing
Data set integrity processing is performed only for
nontemporary data sets. (A temporary data set is, by
definition, a new data set that is created and deleted in
the same job. Another job cannot request a temporary

data set; therefore, there is no possibility of conflict,
and data set integrity processing is unnecessary.)

The system recognizes a nontemporary data set by
the data set name assigned to it in the DSNAME param­
eter. You do not have to code the DSNAME parameter
for temporary data sets; if you do, the name begins
with the characters &&. Any data set name, then, that
does not begin with & & indicates a nontemporary data
set, even though the data set may be created and delet­
ed within the job. (A data set name preceded by one
ampersand is treated as a symbolic parameter if a
value is assigned to it; otherwise it is treated as the
name of a temporary data set. Symbolic parameters
and assigning values to symbolic parameters are de­
scribed in the section "Using Symbolic Parameters.")

To secure control of a data set for a job, the system
enqueues on the data set, marking the data set as re­
quested by that job and noting what kind of control
was requested. The job receives control of the data set
if:

• The data set is not being used by another job.

• The data set is being used by another job but both
the job requesting the data set and the job using
the data set request shared control.

For example, ajob named READ requests shared
control of a data set named FILE; if FILE is being used
by a job named LOOK A T and LOOK AT also requests
shared control, both READ and LOOK AT can use the
data set at the same time.

A job does not receive control of a data set if:

• The data set is being used by another job and that
job has exclusive control.

• The data set is being used by another job (with
either exclusive or shared control), but the job
requesting use of the dataset requests exclusive
control.

For example, the job named MODIFY requests exclu­
sive control of the data set FILE; FILE is already being
used by the job LOOKAT. MODIFY cannot receive con­
trol of the data set until LOOKA T has terminated.

If any of the data sets that a job requests are not
available, the system issues a message to the operator
indicating the unavailable data sets.

The operator replies with one of these responses:

• RETRY - the initiator attempts to enqueue again
on the data sets.

• CANCEL - execution of the job is canceled.

• HOLD - the job is placed in a HOLD state until
released by the operator when the data sets are
available.

Special Data Sets
Data sets to satisfy a special purpose are usually de­
fined with a special ddname, a specific data set name,
or a specific parameter. Special data sets are described
in the following sections:

Creating and Using Private and Temporary Libraries
Defining a Dummy Data Set
Using a Dedicated Data Set/or Allocating a Tempo­
rary Data Set
Creating and Retrieving Generation Data Sets
Creating and Retrieving Indexed Sequential Data
Sets

Creating and Using Private and Temporary
Libraries
A library is simply a partitioned data set - a data set
in direct access storage that is divided into partitions,
called members, each of which can contain a program
or part of a program. Each partitioned data set con­
tains a directory (or index) that the control program
can use to locate a program in the library. All pro­
grams that can be executed must be in a library
(members of a partitioned data set). There are three
types of libraries:

• The system library
• Private libraries
• Temporary libraries.
The system library is a partitioned data set named

SYS I.LINKLIB that contains frequently used programs
and programs used by the system. You need not define
the system library in your job; the system automatically
looks in the system library for a program you want
executed.

A private library is a partitioned data set that con­
tains programs not used frequently enough to warrant
being in the system library. You inform the system that
a program exists in a private library by coding a DD
statement defining that library. You can define a pri­
vate library to be used throughout the job by coding a
DO statement with the ddname JOBLIB, or define a
library to be used in a specific step by coding a DD
statement with the ddname STEPLIB.

A temporary library is a partitioned data set created
in the job to store a program, as a member of the parti­
tioned data set, until it is executed in a following step.
For example, if in your job you want to assemble, link­
age edit, and then execute a program, you must make
the output of the linkage editor a member of a library.
Any library that you create and delete in the same job
is a temporary library.

To execute a program contained in a library, code
the PGM·parameter as the first parameter on the EXEC
statement. If the program is in the system library, sim­
ply code the prograin name (PGM=program name). If
the program is in a private library, code either

Chapter 2: Descriptions of JCL Services 2-25

PGM=program name or PGM=*.stepname.ddname or
PGM=* .stepname.procstepname.ddname. Stepname
and procstepname identify the job step or job step and
procedure step defining the library; the named DD
statement must define the library; the named DD state­
ment must define the program as a member of a parti­
tioned data set. To call a program contained in a tem­
porary library not defined with a JOBLIB DD or STEPLIB
DD statement, you must code
PGM=* .stepname.ddname or
PG M=* .stepname.procstepname.ddname.

If you define a private library, the system looks first
in that library for a program you want executed; if it
does not find the program in the private library, it then
searches the system library.

This section describes how to code JCL statements to·
create or retrieve private and temporary libraries.
Complete information on creating a. partitioned data
set, adding members to and deleting members from a
partitioned data set, is included in OS/ VSI Data Man­
agement Services Guide, listed in the Preface.

Creating a Private Library
Use the JOBLIB or STEPLIB DD statement to create a
private library. The JOBLIB DD statement must appear
immediately after the JOB statement - do not use the
ddname JOBLIB unless you are defining a private li­
brary. The library defined with a JOBLIB DD statement
is automatically available to every step in your job.
The STEPLIB DD statement is included among the DD
statements in a step and is available only to that step
unless you pass the library or redefine it in subsequent
steps. Because the library defined on a JOBLlB DD
statement is available to every step, it is easier to create
a library with the JOBLIB DD statement.

When you create the library on the JOBLIB DD state­
ment, you are creating a partitioned data set. Steps in
your job must add members to the library before those
members (programs) can be used by subsequent steps.

On the JOBLIB DD statement, assign the library a
name in the DSNAME parameter and give unit and vol­
ume information in the UNIT and VOLUME parameters.
(A partitioned data set must be contained on one direct
access volume; if, however, you make a nonspecific
volume request, you need not code the VOLUME par­
ameter.) Request space for the entire library in the
SP ACE parameter, and assign a data set status and dis­
position in the DISP parameter. Code NEW as the data
set status and either CA TLG or PASS as the data set dis­
position. When you specify CATLG, the library iscata­
loged, available throughout the job,and kept at the
end of the job. When you specify PASS, the library is
available throughout the job, but is deleted at job ter­
mination. (If you do not code a disposition, or code a
disposition other than CA TLG or PASS, the system as­
sumes PASS.) You must also code the DCB parameter if

2-26 OS/VSl JCL Services

complete data control block information is not includ­
ed in the data set label.

Adding Members to a Private Library: You add
members to the library in job steps within the job.
Code a DD statement that defines the library and
names the member to be added to the library: in the
DSNAME parameter, follow the library name with the
name of the program you are adding to the library, for
example, DSNAME=LIBRARY(PROGRAM). Do not code
the SPACE parameter: you requested space for the en­
tire library on the JOBLIB DD statement. In the DISP
parameter, specify MOD as the data set status: the parti­
tioned data set already exists since you created it in the
JOBLIB statement, and you are lengthening it with a
new member. If you cataloged the library in the JOBLIB
DD statement, that is, coded DISP=(NEW,CATLG), you
must not respecify CA TLG when you add a member:
you need not code a disposition at all. For a cataloged
library, you do not have to specify unit and volume
information, except in one instance: if you are adding
a member to the library in the first step of your job,
you must supply unit and volume information; the
library is not cataloged until the first step completes the
execution. You can refer to the JOBLIB DD statement
for unit and volume information by coding
VOL=REF=*.JOBLIB.

In the following example, JOBLIB DD statement cre­
ates a library named GROUPLIB; STEPl adds the pro­
gram named RATE to the library; STEP2 calls the pro­
gram RATE:

IIEG JOB
IIJOBLIB DD
II
II
II
II
IISTEP1 EXEC
IIADDPGMD DD
II
II
IISTEP2 EXEC

DSNAME=GROUPLIB,
DISP=(NEW,CATLG),
UNIT=2314,
VOL=SER=7271 04,
SPACE=(CYL,(50,3,4))
PGM=FIND
DSNAME=GROUPLIB(RATE),
DISP=MOD,
VOL=REF=*.JOBLIB
PGM=RATE

In STEP l, the system looks for the program named FIND
in the system library - the private library created on
the JOBLIB DD statement does not yet have any mem­
bers. In STEP2, the system looks for the program named
RA TE first in the private library.

Retrieving an Existing Private Library
If you are retrieving several programs from one library
(that is, several steps in your job will be using the li­
brary), use the JOB LIB DD statement to derme the li­
brary: the library is available in every step of the job
for which you do not code a STEPLIB DD statement.
The JOBLIB DD statement must appear immediately
after the JOB statement. To make a library available in
a single step, derme the library on a STEPLIB DD state-

ment. The STEPLIB DD statement is included with the
DD statements for a step (in no specific order) and is
available only to that step, unless you pass the library
and retrieve it in a subsequent step. Use the ddnames
JOBLIB and STEPLIB only when you are defining private
libraries.

The system searches for a program in the private
library you define before it searches the system library.
If both JOBLIB and STEPLIB DD statements appear in a
job, the STEPLIB definition has precedence, that is, the
private library defined by the JOBLIB DD statement is
not searched for any step that contains the STEPLIB
definition. If you want the JOBLIB definition ignored
but the step does not require use of another private
library, define the system library on the STEPLIB DD
statement:

IISTEPLIB DO DSNAME=SYS1.LINKLIB,
II DISP=SHR

You retrieve a private library as you would any
partitioned data set: if the library is cataloged, or in the
case of a STEPLIB definition, passed from a previous
step, you need not specify unit and volume informa­
tion; otherwise, you must code the UNIT and VOLUME
parameters.

F or both cataloged and uncataloged libraries, you
code: the DSNAME parameter, specifying the name of
the library; the DCB parameter, if complete data control
block information is not included in the data set label;
and the DISP parameter, specifying data set status and
disposition. Normally, specify SHR as the data set sta­
tus: SHR indicates that the data set is old, but also al­
lows other jobs to simultaneously use the library. All
references to the library in your job must specify SHR if
the data set is to be shared. Use caution if you code
SHR when you add members to the library in your job.
(A discussion of sharing a data set is in the section
"Insuring Data Set Integrity.") Code PASS as the data
set disposition for a library defined on the JOBLIB DD
statement: PASS makes the library available throughout
the job. (If you do not code a disposition, the system
assumes PASS.) For a library defined on a STEPLIB DD
statement, code any valid disposition, depending on
how you want the data set treated after its use in the
job step: for example, if the library is not cataloged,
and you want it to be cataloged, code CA TLG; if you
want the library deleted, code DELETE.

The following job includes both JOBLIB DO and
STEPLIB DO statements:

IICAMILLE
IIJOBLIB
II
IISTEP1
IisTEP2
IlsTEPLIB
II
II

JOB
DO DSNAME=LIB5.GRP4,

DISP=SHR
EXEC PGM=FIND
EXEC PGM=GATHER
DO DSNAME=ACCOUNTS,

DISP=(SHR,KEEP),
UNIT=2314,VOL=SER=727104

In STEP 1, the system searches the library named
L1B5.GRP4, defined on the JOBUB DO statement, for the
program named FIND. In STEP2, the system searches
the library named ACCOUNTS, defined on the STEPLIB
DO statement, for the program named GATHER. If the
program is not found in the private library, the system
searches the system library.

You can add a program to an existing library by
coding a DO statement in ajob step that defines the
library and names the program to be added (see
"Adding Members to a Private Library" for details on
coding this DO statement). The new member must be
added to the library before it can be executed, that is,
the step that adds the program to the library must pre­
cede the step that calls the program. Do not code 'SHR
as the data set's status when modifying the library.

Concatenating Private Libraries: If your job uses
programs contained in several libraries, you can conca­
tenate these libraries on one JOBUB DD statement or
one STEPLIB DO statement; all the libraries you conca­
tenate must be existing libraries. Omit the ddname
from all the DO statements defining the libraries, except
the first:

IIJOBLIB
II
II
II
II
II
II

DO DSNAME=D58.LIB12,
DISP=(SHR,PASS)

DO DSNAME=D90.BROWN,
DISP=(SHR,PASS),
UNIT=3330,VOL=SER=411731

DD DSNAME=A03.EDUC,
DISP=(SHR,PASS)

This entire group must appear immediately after the
JOB statement. When you concatenate libraries using
STEPLlB,as the ddname, the entire group appears as
part of the DO statements for the step.

The system searches the libraries for a program in
the order in which the DO statements defining the li­
braries are coded.

Temporary Libraries
Temporary libraries are created,and deleted within the
job. It is not necessary to define a temporary library on
a JOBUB DO or STEPLlB DD statement: simply code a
DO statement creating a partltioned data set and add­
ing the program to it in the step that produces the pro­
gram. You can then retrieve this program in a subse­
quent step.

F or example, STEP2 illustrated below calls the pro­
gram HEWL, which linkage edits object modules to
form a load module that can be executed. You must
place ,the results of the linkage edit step in a library, so
that a subsequent step can use those results. Since the
results are not a program other jobs will call, it is logi­
cal to place the program in a temporary library:

Chapter 2: Descriptions of JCL Services 2-:-27

IISTEP2 EXEC
IISYSLMOD DD
II
II
II
IISTEP3 EXEC

PGM=HEWL
DSNAME=&&PARTDS(PROG) ,
UNIT=2314,
DISP=(NEW,PASS),
SPACE=(1024,(50,20,1))
PGM=*.STEP2.SYSLMOD

You call the program in STEP3 by naming the step in
which the library was created andthe name of the DD

statement that defines the program as a member of a
library. If STEP2 had called a procedure, and the DD

statement named SYSLMOD were included in
PROCSTEP3 of the procedure, you would code
PG M=* .STEP2.PR OCSTEP3.SYSLMOD.

Defining a Dummy Data Set
To save processing time, you might not want a data set
to be processed every time the job is executed. For
example, while testing a program, you might want to
suppress the writing of an output data set until you are
sure it will contain meaningful output; you might want
to skip the reading of a data set to be used only once a
week. When you define a dummy data set,
input/output operations are bypassed, disposition
processing is not performed, and devices and storage
are not allocated to the data set.

You define a dummy data set by:

• Coding the DUMMY parameter on the DD state­
ment, or

• Assigning the data set name NULLFILE in the
DSNAME parameter on the DD statement.

Coding the DUMMY Parameter
Code DUMMY as the first parameter on the DD state­
ment. DUMMY is a positional parameter that must
precede all keyword parameters on the DD statement.

When the DUMMY parameter is coded, all other
parameters on the DD statement, with the exception of
the DCB parameter, are ignored. (The parameters are
checked for syntax, however; if a parameter is coded
incorrectly, a JCL error message is issued.) Therefore,
although you may code UNIT, VOLUME, and DISP, no
devices or external storage is allocated to the data set
and no disposition processing is performed. The DCB

parameter must be coded if you would code it for nor­
mal I/O operations. For example, when an OPEN rou­
tine requires a BLKSIZE specification to obtain buffers
and BLKSIZE is not specified in the DCB macro instruc­
tion, you should supply this information in the DCB

parameter on the DD statement. (A description of the
DCB parameter is included in the OS/VSl JCL
Reference, listed in the Preface.) When a DD statement
that overrides a procedure DD statement contains the
DUMMY parameter, all of the parameters coded on the
procedure DD statement are nullified, except for the
DCB parameter,.

2-28 OS/VSl JCL Services

If you request unit or volume affinity with a dummy
data set, the data set requesting affinity is assigned a
dummy status. (Unit and volume affinity are described
in the section "Requesting Units and Volumes for Data
Sets.")

When you want the data set to be processed, replace
the DD statement containing the DUMMY parameter
with a DD statement containing the parameters re­
quired to define the data set. When a procedure DD

statement contains the DUMMY parameter, you can
nullify it by coding the DSNAME parameter on the over­
riding DO statement and assigning a data set name
other than NULLFILE.

Coding DSNAME=NULLFILE
Assigning the name NULLFILE in the DSNAME parame­
ter has the same effect as coding DUMMY. The data set
is assigned a dummy status; no devices or storage are
allocated and no disposition processing is performed.
All parameters except for DSNAME and DCB are ig­
nored. (You must code the DCB parameter when defin­
ing a dummy data set if you would code it for normal
I/O operations.)

When you want the data set to be processed, replace
the name NULLFILE with another data set name.
(Assigning names to data sets is described in the
OS/VSl JCL Reference, listed,in the Preface, under
"Specifying the DSNAME Parameter.")

Requests to Read or Write a Dummy Data Set
When your program asks to read a dummy data set, an
end-of-data-set exit is taken immediately. When your
program requests that the data set be written, the re­
quest is recognized but no data is transmitted. Your
program must use the BSAM (basic sequential access
method) or QSAM (queued sequential access method)
when requesting to write a dummy data set; if any oth­
er access method is used, the job is terminated. If you
define a data set as a dummy data set, the DISP param­
eter, if coded, is ignored and disposition processing is
not performed. For details, see the section "Defining a
Dummy Data Set."

Using a Dedicated Data Set for Allocating a
Temporary Data Set
Temporary data sets are created and deleted within the
same job. To save the time required to repeatedly as­
sign and release space to temporary data sets, your
installation can define dedicated data sets. To create a
dedicated data set, your installation adds a DD state­
ment defining the dedicated data set to an initiator
procedure. (An initiator procedure is simply the cata­
loged procedure for an initiator.) When the initiator is
started, space is allocated to the dedicated data set;

every job step running under the initiator can then use
the dedicated data set as a temporary data set.

Defining the Temporary Data Set
The parameters that define the temporary data set are
illustrated in Figure 2-3.

The system uses the space allocated to the dedicated
data set for your data set, unless:

• The total space (primary and secondary requests)
requested for the temporary data set exceeds the
total space (primary and secondary requests) allo­
cated to the dedicated data set.

• The temporary data set and dedicated data set do
not both have either sequential or partitioned or­
ganization. For example, if the dedicated data set
is partitioned (therefore, space for a directory is
requested in the SPACE parameter) and the tempo­
rary data set is sequential (no space for a directory
is requested), the dedicated data set is not used.

• Both the temporary and dedicated data sets are
partitioned, but the temporary data set's request
for a directory is larger than the space allocated
for the dedicated data set's directory.

• The temporary data set is an ISAM data set.

If any of these conditions are true, normal allocation
of the temporary data set occurs.

Parameter Comments

DSNAME= &ddname Ddname specifies the name of the
DD statement in the initiator pro-
cedure that defines the dedicated
data set.

SPACE You must request space in terms
of average block length; any sec-
ondary quantity you code over-
rides a secondary quantity speci-
fied for the dedicated data set. If
the data set is partitioned, include
a request for the directory.

UNIT This must be coded, in case the
dedicated data set is not used.
You can request either a magnet-
ic tape or direct access device.

DISP If coded, the DISP parameter
must specify (NEW,DELETE).

DCB Unless you code required DCB
subparameters for the data set,
the system uses DCB subparame-
ters coded by a previous user of
the dedicated data set. If you
code a secondary quantity in the
SPACE parameter, you must
specify the maximum block length
of your data in the BLKSIZE
subparameter.

Figure 2-3. Defining a Temporary Data Set in order to Use the
Space Allocated to a Dedicated Data Set

F or example, the ddname of a dedicated data set is
DEDICAT. To request that the space allocated to
DEDICA T be used for a temporary data set, you code:

/1001 DO OSNAME=&OEOICAT,UNIT=2314,
II SPACE=(1024,(100,25»,
II OISP=(NEW,
II DELETE),OCB=BLKSIZE=2048

Your installation sets up the guidelines for using
dedicated data sets. When an initiator is started, the
operator can assign job classes to it to process: certain
job classes can always be assigned to an initiator con­
taining a dedicated data set. When you assign your job
to one of these job classes, you can use the dedicated
data set. The same ddname defining a dedicated data
set can be included in more than one initiator proce­
dure: you could code this ddname when you want to
use a dedicated data set. The guidelines for knowing
when a dedicated data set will be available to your job
depend on the individual installation.

Creating and Retrieving Generation Data
Sets
A generation data set is one of a collection of succes­
sive, historically related, cataloged data sets known as a
generation data group. The system keeps track of each
data set in a generation data group as it is created so
that new data sets can be chronologically ordered and
old ones easily retrieved.

To create or retrieve a generation data set, identify
the generation data group name in the DSNAME param­
eter and follow the group name with a relative genera­
tion number. When creating a generation data set, the
relative generation number tells the system whether
this is the first data set being added during the job, the
second, the third, etc. When retrieving a generation
data set, the relative generation number tells the system
how many data sets have been added to the group since
this data set was added.

A generation data group can consist of cataloged
sequential, partitioned, indexed sequential (if the data
set is defined on one DO statement), and direct data sets
residing on tape volumes, direct access volumes, or
both. Generation data sets can have like or unlike DeB

attributes and data set organizations. If the attributes
and organizations of all generations in a group are
identical, the generations can be retrieved together as a
single data set (up to 255 data sets can be retrieved in
this way).

Before You Define the First Generation Data Set
Before you define the first generation data set, you
must build a generation data group index.This index
provides lower-level entries for as many generation
data sets (up to 255) as you would like to have in your

Chapter 2: Descriptions of JCL Services 2-29

generation data group. The system uses these lower­
level indexes to keep track of the chronological order of
the generation data sets. The index must reside on the
system residence volume, or an alternate control vol­
ume. Use the IEHPROGM utility program to build your
index; this program is described in OS/ VSl Utilities,
listed in the Preface.

Another requirement of generation data groups is
that a data set label list exist on the same volume as the
index. The system uses this label to refer to DCB attri­
butes when you define a new generation data set.
There are two ways to satisfy this requirement: (I)
create a model data set label before you define the first
generation data set; or (2) use the DCB parameter to
refer the system to an existing cataloged data set each
time you define a new generation data set.

Creating a Model Data Set Label: To create a
model data set label, define a data set and request that
it be placed on the same volume as the generation data
group index. This ensures that there is always a data
set label on the same volume as the index to which the
system can refer.

The name you assign to the data set may be the
same as or different than the name assigned to the
generation data group. (If you assign the same name
for both, the data set associated with the model data set
label cannot be cataloged.) You may request a space
allocation of zero tracks or cylinders. The DCB attri­
butes you can supply are DSORG, OPTCD, BLKSIZE,
LRECL, KEYLEN, RKP, and RECFM.

This is an example of creating a model data set la­
bel:

IIDD1 DD DSNAME=PAY.WEEK,
II DISP=(NEW,KEEP),
II UNIT=2314,VOLUME=SER=SYSRES,
II SPACE=(TRK,O) ,DCB=(RECFM=FB,
II LRECL=240,BLKSIZE=960)

You need not create a model data set label for every
generation data group whose indexes reside on the
same volume. Instead, you may create one model data
set label to be used by any number of generation data
groups. If you create only one model, you should not
supply any DCB attributes. When you create a genera­
tion data set, specify the name of the model in the DCB
parameter and follow the name with a list of all the
DCB subparameters required for the new generation
data set, that is, DCB=(dsname,list of attributes).

Referring the System to a Cataloged Data Set: If
there is a cataloged data set that resides on the same
volume as your generation data group index and you
are sure that data set will exist as long as you are add­
ing data sets to your generation data group, you need
not create a model data set label. When you create a

2-30 OS/VSl JCL Services

generation data set, specify the name of the cataloged
data set in the DCB parameter, that is, code
DCB=dsname. If all the DCB attributes are not con­
tained in the label of the cataloged data set, or if you
want to override certain attributes, follow the data set
name with these attributes, that is, code
DCB=(dsname,list of attributes).

Creating a Generation Data Set
When defining a new generation data set, always code
the DSNAME, DISP, and UNIT parameters. Other param­
eters you might code are the VOLUME, SPACE, LABEL,
and DCB parameters.

DSNAME Parameter: In the DSNAME parameter,
code the name of the generation data group followed
by a number enclosed in parentheses. This number
must be I or greater. If this is the first data set you are
adding to a particular generation data group during the
job, code + I in parentheses. Each time during the job
you add a data set to the same generation data group,
increase the number by one.

Any time you refer to this data set later in the job,
use the same relative generation number as was used
earlier. At the end of the job, the system updates the
relative generation numbers of all generations in the
group to reflect the additions. Unpredictable results
may occur if you use a relative generation number that
causes the actual generation number to exceed G9999.

DISP Parameter: Assign new generations a status of
NEW and a disposition of PASS or CA TLG in the DISP
parameter, that is, code DISP=(NEW,PASS) or
DISP=(NEW,CATLG). If you specify a disposition of
PASS, take care to catalog or delete the passed version
before you create and catalog a new version. For ex­
ample, if you created A.B.C(+1) with a disposition of
PASS, then you must not catalog A.B.C(+2) until you
delete or catalog A.B.C(+1).

UNIT Parameter: The UNIT parameter is required
on any DD statement that defines a new generation
data set unless vOLUME=REF=reference is coded. In
the UNIT parameter, identify the type of devices you
want (tape or direct access).

Another way to request a device is to code
UNIT=AFF=ddname, where the named DD statement
requests the device or device type you want.

VOLUME Parameter: You may assign a volume in
the VOLUME parameter or let the system assign one for
you. The VOLUME parameter can also be used to re­
quest a private volume (PRIVATE), to retain the private
volume (RETAIN), and to indicate that more volumes
may be required (volume count).

SPACE Parameter: Code the SPACE parameter only
when the generation data set is to reside on a direct
access volume. You can code the SPLIT or SUBALLOC
parameter in place of the SPACE parameter if the data
set's organization permits the use of these parameters.

LABEL Parameter: You can specify label type, pass­
word protection (PASSWORD), and a retention period
(EXPDT or RETPD) in the LABEL parameter. If the data
set will reside on a tape volume and is not the first data
set on the volume, specify a data set sequence number.

DCB Parameter: A model data set label may have
the same name as the group name. If this is so, and if
the label contains all the attributes required to define
this generation, you need not code the DCB parameter.
If all the attributes are not contained in the label, or if
you want to override certain attributes, code these attri­
butes in the DCB parameter, that is, code DCB=(list of
attributes).

If a model data set label has a different name than
the group name and if the label contains all the attri­
butes required to define this generation data set, only
the name of the data set associated with the model data
set label need be coded. Code the name in the DCB
parameter, that is, DCB=dsname. If all the attributes
are not contained in the label, or if you want to over­
ride certain attributes, follow the data set name with
these attributes, that is, code DCB=(dsname,list of attri­
butes).

If no model dat~ set label exists, you must code the
name of a cataloged data set that resides on the same
volume as the generation data group index, that is,
code DCB=dsname. If all the attributes are not con­
tained in the label for this data set, or if you want to
override certain attributes, follow the data set name
with these attributes, that is, code DCB=(dsname,list of
attributes).

Retrieving a Generation Data Set
To retrieve a generation data set, you always code the
DSNAME and DISP parameters. Other parameters you
might code are the UNIT, LABEL, and DCB parameters.

If a generation data set is created but not opened,
that is, left empty, and DISP=(NEW,CATLG) is specified,
the system does not know the data set has not been
opened, and catalogs it anyhow. Then, if the level of
this unopened generation data set is specified in JCL, it
is the data set to be allocated. The system does not
allocate the next opened data set before the unopened
generation data set.

For example, A.B.C(+I) and A.B.C(+2) are created in
that order and only AB.C(+ I) is opened, AB.C(+2) be­
comes the "current" generation because it was the most

recently created and, for data retrieval, is referenced as
AB.C(+O) in JCL. The unopened data set, and not the
one that was opened, is allocated to the job/step.

DSNAME Parameter: In the DSNAME parameter,
c~de the name of the generation data group followed
by a number enclosed in parentheses. The number you
code depends on how many new generation data sets
have been added to the group since this generation
data set was added. If none has been added before the .
job, code a zero (0). If one has been added before the
job, code (-1). Decrease the number by 1 until you
determine the present relative generation number of
the data set, then code this number.

When you refer to this data set later in the job, use
the same relative generation number as was used earli­
er, even if another generation has been added during
the job. An exception occurs when you delete one gen­
eration during a job, and in a later step of the same job
reference a generation earlier than the one deleted.
You must now add one to the relative generation num­
ber of the data set you reference. You can avoid this
situation by deleting a generation data set in the last
step of a job.

If you want to retrieve all generations of a genera­
tion data group as a single data set, or if your want to
retrieve all generations of a generation data group by
concatenation, in order, starting with the most recent
data set and with unity affinity to the most recent data
set, code the generation data group name without a
generation number, for example,
DSNAME=WEEKLY.PAYROLL. You can retrieve all gen­
erations by concatenating them only if the attributes
and organization of all generations are identical.

Note: Relative generation numbers are based on the catalog as it
existed at the start of the job, plus any changes made by cataloging
new members of the data set during the job.

DISP Parameter: The DISP parameter must always be
coded. The first subparameter of the DISP parameter
must be OLD, SHR, or MOD. You must assign a disposi­
tion as the second subparameter. You should avoid
coding PASS as the second sub parameter when you
retrieve a generation data set.

UNIT Parameter: Code the UNIT parameter when
you want more than one device assigned to the data set.
Code the number of devices you want in the unit courit
subparameter, or, if the data set resides on more than
one volume and you want as many devices as there are
volumes, code P in place of the unit count subparame­
ter.

LABEL Parameter: Code the LABEL parameter
when the data set has other than standard labels. If the

Chapter 2: Descriptions of JCL Services 2-31

data set resides on a volume and is not the first data set
on the volume, specify the data set sequence number.

DCB Parameter: Code DCB=(list of attributes) when
the data set has other than standard labels and DCB
information is required to complete the data control
block. Do not code DCB=dsname when retrieving a
generation data set.

Resubmitting a Job for Restart
Certain rules apply when you refer to generation data
sets in a resubmitted job (the RESTART parameter is
coded on the JOB statement).

For step restart: If step restart is performed, genera­
tion data sets that were created and cataloged in steps
preceding the restart step must not be referred to in the
restart step or in steps following the restart step by
means of the same relative generation numbers that
were used to create them. Instead, you must refer to a
generation data set by its present relative generation
number. For example, if the last generation data set
created and cataloged was assigned a generation num­
ber of + 2, it would be referred to a 0 in the restart step
and in steps following the restart step. In this case, the
generation data set assigned number of + 1 would be
referred to as -1.

For checkpoint restart: If generation data sets created
in the restart step were kept instead of cataloged
(DISP=(NEW,CATLG,KEEP) was coded), you can, during
checkpoint restart, refer to these data sets and genera­
tion data sets created and cataloged in steps preceding
the restart step by means of the same relative genera­
tion numbers that were used to create them.

Generation data sets can be created and retrieved using
utility programs. The method of doing this is described
in OS/ VSl Utilities, listed in the Preface.

Examples of Creating and Retrieving Generation
Data Sets
The following job step includes the DO statements that
could be used to add three data sets to a generation
data group.

IISTEPA EXEC
IIDD1 DD
II
II
II
IIDD2 DD
II
II
II
IIDD3 DD
II
II
II
II

PGM=PROCESS
DSNAME=A.B.C(+1),
DISP=(NEW,CATLG),
UNIT=2400,VOL=SER=13846,
LABEL= (, SUL)
DSNAME=A.B.C(+2),
DISP=(NEW,CATLG),
UNIT=2314,VOL=SER=10311,
SPACE=(480,(150,20»
DSNAME=A.B.C(+3),
DISP=(NEW,CATLG),
UNIT=2305,VOL=SER=28929,
SPACE=(480,(150,20» ,
DCB=(LRECL=120,BLKSIZE=480)

1.-32 OS/VS 1 JCL Services

The first two OD statements do not include the DeB
parameter; therefore, a model data set label must be 'on
the same volume as the generation data group index
and must have the same name as the generation data
group (A.B.C). Because the DCB parameter is coded on
the third DO statement, the attributes LRECL and
BLKSIZE, along with the attributes included in the mod­
el data set label, are used.

The following job includes the DO statements re­
quired to retrieve the generation data sets defined
above, when no other data sets have been added to the
generation data group.

JOB CLASS=B
EXEC PGM=REPORT9

IIJWC
IISTEP1
IIDDA
II
IIDDB
IIDDC

DD DSNAME=A. B. C (.... 2) ,DISP=OLD,
LABEL=(,SUL)

DD DSNAME=A.B.C(-1),DISP=OLD
DD DSNAME=A.B.C(O),DISP=OLD

Creating and Retrieving Indexed Sequential
Data Sets
ISAM (indexed sequential access method) data sets are
created and retrieved using special subsets of OD state­
ment parameters and subparameters. Each data set can
occupy up to three different areas of space:

1. The prime area contains data and. related track
indexes. It exists for each indexed sequential data
set.

2. The overflow area contains overflow from the
prime area when new data is added. It is optional.

3. The index area contains master and cylinder in­
dexes for any indexed sequential data set that has
a prime'area occupying more than one cylinder.

Indexed sequential data sets must reside on direct
access volumes. The data set can reside on more· than
one volume and the device types of the volumes may in
some cases differ.

Creating an Indexed Sequential Data Set
One to three DO statements can define a new indexed
sequential data set. When you use three DD statements
to define the data set, each DO statement defines a dif­
ferent area and the areas must be defined in the follow­
ing order:

1. Index area.

2. Prime area.

3. Overflow area.

When you use two OD statements to define the data
set, the areas must be defined in the following order:

1. Index area. 1. Prime area.
or

2. Prime area. 2. Overflow area.

When' you define the data set with one DD state­
ment, you are defining the prime area and, optionally,
the index area.

When you define the data set with more than one
DD statement, assign a ddname only to the first DD
statement; the name field of the other statements must
be blank.

The only DD statement parameters that can be cod­
ed when defining a new indexed sequential data set are
the DSNAME, UNIT, VOLUME, LABEL, DCB, DISP, SPACE,
SEP, and AFF parameters. When to code each of these
parameters and what restrictions apply are described in
the following paragraphs.

DSNAME Parameter: The DSNAME parameter is
required on any DD statement that defines a new tem­
porary or nontemporary indexed sequential data set.
To identify the area you are defining, follow the
DSNAME parameter with the area: DSNAME=name
(INDEX), DSNAME=name (PRIME), or DSNAME=name
(OVFLOW). If you are using only one DD statement to
define the data set, code DSNAME=name (PRIME) or
DSNAME=name.

When reusing previously allocated space to create
an indexed sequential data set, the DSNAME parameter
must contain the name of the old data set to be over­
laid.

UNIT Parameter: The UNIT parameter is required
on any DD statement that defines a new indexed se­
quential in the UNIT parameter and must not request
DEFER.

If separate DD statements define the prime and in­
dex areas, you must request the same number of direct
access devices for the prime area as there are volumes
specified in the VOLUME parameter. You may request
only one direct access volume for an index area and
one for an overflow area.

A DD statement for the index area or overflow area
can request a device type different than the type re­
quested on the other statements.

Another way to request a device is to code
UNIT=AFF=ddname (except for new data sets), where
the named DD statement requests the direct access de­
vice or device type you want.

VOLUME Parameter: The VOLUME parameter is
required only if you want an area of the data set writ­
ten on a specific volume or the prime area requires use
of more than one volume. (If the prime area and index
area are defined on the same statement, you cannot
request more than one volume on the DD statement.)
Either supply the volume serial number or numbers in

the VOLUME parameter or code
VOLUME=REF=reference. In all cases, the VOLUME
parameter can be used to request a private volume
(PRIV ATE) and to retain the private volume (RETAIN).

Note: If a new ISAM data set is being created with a nonspecific
volume request and its DSNAME already exists on a volume eligible
for allocation, the job may fail due to duplicate names on the vol­
ume. Under these conditions, successful allocation depends on where
the old data set resides in relation to eligible devices. Failure of this
type can be corrected by either scratching the old data set or renam­
ing the new data set before resubmitting the job.

LABEL Parameter: The LABEL parameter need only
be coded to specify a retention period (EXPDT or
RETPD) or password protection (PASSWORD).

DCB Parameter: The DCB parameter must be coded
on every DD statement that defines an indexed sequen­
tial data set. At minimum, the DCB parameter must
contain DSORG=IS or DSORG=ISU. Other DCB subpar­
ameters can be coded to complete the data control
block if it has not been completed by the processing
program. When you use more than one DD statement
to define the data set, code all the DCB sub parameters
on the first DD statement. Code DCB= * .ddname on the
remaining statement or statements; ddname is the
name of the DD statement that contains the DCB sub­
parameters.

When reusing previously allocated space and recrea­
ting an ISAM data set, code the desired changes in the
DCB parameter on the DD statement. Although you are
creating a new data set, some DCB subparameters can­
not be changed if you want to use the space the old
data set used. The DCB subparameters you can change
are: BF ALN, BLKSIZE, CYLOFL, DSORG, KEYLEN, LRECL,
NCP, NTM, OPTCD, RECFM, and RKP.

DISP Parameter: If you are creating a new data set
and not reusing preallocated space, the DISP parameter
need only be coded if you want to keep, DISP=(,KEEP),
catalog, DISP=(,CATLG), or pass, DISP=(,PASS), the data
set. If you are reusing previously allocated space and
recreating an ISAM data set, code DISP=OLD. The new­
ly created data set overlays the old one.

To catalog the data set when DISP=(,CATLG) is cod­
ed, or to pass the data set when DISP=(,PASS) is coded,
define the data set on only one DD statement. If the
data set was defined on more than one DD statement
and the volumes on which the data set now resides
correspond to the same device type, you can use the
IEHPROGM utility program to catalog the data set. Ref­
er to OS/VSl Utilities, listed in the Preface, for details.

SP ACE Parameter: The SPACE parameter is re­
quired on any DD statement that defines a new indexed
sequential data set. Use either the recommended non-

Chapter 2: Descriptions of JCL Services 2-33

specific allocation technique or the more restricted
absolute track (ABSTR) technique. If you use more than
one DD statement to define the data set, all must re­
quest space using the same technique.

Nonspecific Allocation Technique: You must request
the primary quantity in cylinders (CYL). When the DD

statement that defines the prime area requests more
than one volume, each volume is assigned the number
of cylinders requested in the SPACE parameter.

Use the index subparameter of the SPACE parameter
to indicate how many cylinders are required for an
index. When you use one DD statement to define the
prime and index areas and you want to explicitly state
the size of the index, code the index subparameter.

The CONTIG subparameter can be coded in the
SPACE parameter. However, if you code CONTIG on
one of the statements, you must code it on all of them.

You cannot request a secondary quantity for an
indexed sequential data set. Also, you cannot code the
subparameters RLSE, MLXIG, ALX, and ROUND.

AbstJiute Track Technique: The number of tracks
you request must be equal to one or more whole cylin­
ders. The address of the beginning track must corre­
spond with the first track of a cylinder other than the
first cylinder on the volume. When the DD ~tatement

that defines the prime area requests more than one
volume, space is allocated for the prime area beginning
at the specified address and continuing through the
volume and onto the next volume until the request is
satisfied. (This can only be done if the volume table of
contents of the second and all succeeding volumes is
contained within the first cylinder of each volume.)

The index subparameter of the SPACE parameter is
used to indicate how many tracks are required for an
index. The number of tracks that you specify must be
equal to one or more cylinders. When you use one DD

statement to define the prime and index areas and you
want to explicitly state the size of the index, code the
index sub parameter.

SEP or AFF Parameter: Code the SEP or AFF par­
ameter only if you want channel separation from the
area or areas defined on the preceding statement or
statements in the group. In order for the areas to be
written using separate channels, you must also request
devices by their actual address (for example,
UNIT=190).

Note: If the indexed sequential data set is to reside on more than one
volume and an error is encountered as the volumes are being allocat­
ed to the data set, use the IEHPROGM utility program to scratch the
data set labels on any of the volumes to which the data set was suc­
cessfully allocated before you resubmit the job. This utility program
is described in OS / VS 1 Utilities, listed in the Preface.

2-34 OS/VSI JCL Services

Area Arrangement of an Indexed Sequential Data
Set
When you create an indexed sequential data set, the
arrangement of the areas is based on two criteria:

• The number of DD statements used to define the
data set.

• What area each DD statement defines.

An additional criterion is used when you do not in­
clude a DD statement that defines the index area:

• Is an index size coded in the SPACE parameter on
the DD statement that defines the prime area?

For additional information on area arrangement of
an indexed sequential data set, see OS/VSl JCL
Reference, listed in the Preface.

Retrieving an Indexed Sequential Data Set
If all areas of an existing indexed sequential data set
reside on volumes of the same device type, you can
retrieve the entire data set with one DD statement. If
the index or overflow resides on a volume of a different
device type, you must use two DD statements. If the
index and overflow reside on volumes of different de­
vice types, you must use three DD statements to retrieve
the data set. The DD statements are coded in the fol­
lowing order:

1. First DD statement - defines the index area

2. Second DD statement - defines the prime area

3. Third DD statement - defines the overflow area

The only DD statement parameters that you can
code when retrieving an indexed sequential data set are
the DSNAME, UNIT, VOLUME, DCB, and DISP parameters.
When to code each of these parameters and what re­
strictions apply are described in the following para­
graphs.

DSNAME Parameter: The DSNAME parameter is
always required. Identify the data set by its name, but
do not include the term INDEX, PRIME, or OVFLOW. If
the data set was passed from a previous step, identify it
by a backward reference.

UNIT Parameter: The UNIT parameter must be cod­
ed unless the data set resides on one volume and was
passed. You identify in the UNIT parameter the device
type and the number of these devices required.

If the data set resides on more than one volume and
the volumes correspond to the same device type., you
need only one DD statement to retrieve the data set.
Request one device in the UNIT parameter per volume.
If the index or overflow area of the data set resides on a
different type of volume than the other areas, you must
use two DD statements to retrieve the data set. On one

DD statement, request the device type required to re­
trieve the index or overflow area. On the other D D

statement, request the device type and the number of
devices required to retrieve the prime area and the
overflow area if the overflow area resides on the same
device type. If the index and the overflow areas reside
on different device types from the prime area, a third
DD statement is needed.

VOLUME Parameter: The VOLUME parameter must
be coded unless the data set resides on one volume and
was passed from a previous step. Identify in the
VOLUME parameter the serial numbers of the volumes
on which the data set resides. Code the serial numbers
in the same order as they were coded on the DD state­
ments used to create the data set.

DCB Parameter: You must code the DCB parameter
unless the data set was passed from a previous step.
The DCB parameter must always contain DSORG=IS or
DSORG=ISU. You can code other DCB subparameters to
complete the data control block if it has not been com­
pleted by the processing program.

DISP Parameter: The DISP parameter must always
be coded. The first subparameter of the DISP parame­
ter must be OLD or SHR. You can, optionally, assign a
disposition as the second subparameter.

Examples of Creating and Retrieving an Indexed
Sequential Data Set
The following job step includes the DD statement that
could be used to create an indexed sequential data set.
Each area of the indexed sequential data set is defined
on a separate DD statement.

IIOUTPUT4
IIGROUP1
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

EXEC PGM=INCLUOE
DO OSNAME=PART86 (INDEX) ,

OISP=(,KEEP),UNIT=3330,
VOLUME=SER=538762,
SPACE=(CYL,10"CONTIG),
DCB=(DSORG=IS,RECFM=F,
LRECL=80,RKP=1,KEYLEN=8)

DO DSNAME=PART86 (PRIME) ,
OISP=(,KEEP) ,
UNIT=(2314,2),
VOLUME=SER=(538763,
538764) ,SPACE=(CYL,(25)"
CONTIG),DCB=*.GROUP1

DO DSNAME=PART86(OVFLOW),
DISP=(,KEEP),UNIT=2314,
VOLUME=SER=538765,
SPACE=(CYL,15"CONTIG),
DCB=(*.GROUP1,OPTCD=I)

The following job step includes the DD statements
required to retrieve the indexed sequential data set
created above.

IIINPUT12
IIRET4

EXEC PGM=ADD
DO DSNAME=PART86,

II
II
II
II
II
II
II
II

DCB=DSORG=IS,UNIT=3330,
DISP=OLD,
VOLUME=SER=538762

DD DSNAME=PART86,
DCB=DSORG=IS,
UNIT=(2314,3),DISP=OLD,
VOLUME=SER=(538763,
538764,538765)

Two DD statements are required to retrieve the data
set because the index area resides on a volume of a
different device type than the volumes on which the
prime and overflow areas reside.

Identifying Associated Data Sets
Associated data sets reside on diskette, are separate
from the in-stream data, and are to be spooled as SYSIN

data sets. Identify associated data sets by specifying a
data set identifier (DSID) and, optionally, a volume
identifier on the DD* or DD DATA statement in the job
stream. For additional information about associated
data sets, see OS/VSl IBM 3540 Programmer's
Reference, as listed in the Preface.

Subsystem Data Sets
There are no special requirements for subsystem data
sets. They are defined by application programmers
using the DD statement keyword SUBSYS. For further
information on subsystem data sets see the publication,
OS/VSl Planning and Use Guide, as listed in the Pre­
face.

Note: Checkpoint restart is not supported for job steps that contain
DD statements specifying SUBSYS. The action of the CHKPT
macro is suppressed for such job steps.

Obtaining Output
Output from your job can include a listing of JCL state­
ments and messages, a dump in the event of abnormal
termination, and output data sets. You request output
by coding JCL parameters. Output data sets and dumps
must be defined on DD statements; you request listings
of JCL statements and messages by coding parameters
on the JOB statement. When you request that an output
data set be printed, you can also request options that
control how the data set is printed.

This chapter includes the following sections:

Controlling the Output Listing of J CL Statements,
Messages, and Dumps

Writing Output Data Sets

Requesting Multiple Copies of an Output Data Set
Copy Modification

Printer Forms and Print Chain Control

Forms Overlay

Chapter 2: Descriptions of JCL Services 2-35

Bursting of Output

Controlling Output to a Workstation

Controlling the Output Listing of JCL
Statements, Messages, and Dumps
The system produces messages about your job concern­
ing allocation of units and volumes, disposition of data
sets, and termination of job steps and the job. You can
request that these messages, called
allocation/termination messages, and/or the JCL state­
ments from your job and from cataloged procedures
called by your job be included on an output listing.
Vou route allocation/termination messages to an out­
put device by assigning the messages from your job to
an output class.

If a step abnormally terminates, you can also re­
quest a dump, containing the contents of parts of virtu­
al storage. You must include a DD statement, defining
a data set to contain the dump, with the job control
statements for the step.

Requesting Listing of JCL Statements and Mes-
sages ~

By coding the MSGLEVEL parameter on the JOB state­
ment, you inform the system of what statements and
messages you want included on the output listing.

As the first subparameter, you code 0, I, or 2, to
indicate what statements you want:

o

2

The JOB statement only.

All JCL statements from the job (which includes
in-stream procedures) and from cataloged proce­
dures called by the job, including the internal repre­
sentation of cataloged procedure statements after
symbolic parameters are substituted.

Input JCL statements from the job, which includes
in-stream procedures. (Statements from cataloged
procedures called by the job are not included.)

The notation used on the output listing to identify
cataloged and in-stream procedure statements is de­
scribed in the section "Using Cataloged and In-Stream
Procedures. "

As the second subparameter, you code 0 or I to in­
struct the system to write:

o
No allocation/termination messages, unless the job
abnormally terminates. If the job does terminate
abnormally, allocation/termination messages are
included on the output listing.

2-36 OSjVSl JCL Services

All allocation/termination messages.

If you omit the MSGLEVEL parameter or one of the
subparameters, the default value in the input reader
procedure is used. This default is (I, I), which requests
all JCL statements and all allocation/termination mes­
sages, unless changed by your installation.

For example, if you want only the JOB statement
displayed and all allocation/termination messages,
code:

//PGM JOB ... MSGLEVEL=(O,1)

If the IBM-supplied default is used, you can omit the
second subparameter and code:

//PGM JOB ... MSGLEVEL=O

Assigning Messages to an Output Class
To route system messages to a system output device,
you assign the messages to an output class. Output
classes, designated by a letter (A-Z) or a number (0-9),
are defined by the installation to group output that will
be written to the same device. For example, class w
might be reserved for output to be written to a printer
and requiring a special form.

You assign messages to an output class by coding
the MSGCLASS parameter on the JOB statement:

//PGM JOB ... MSGCLASS=W

If the installation's system programmer generated the
ISSP (installation specified selection parameters) tables,
a message may also be assigned to an output class by
specifying the MPROFILE parameter on the JOB state­
ment. An example showing the use of ISSP to assign a
message to an output class is shown in the section
"Writing Output Data Sets."

If you do not code the MSGCLASS parameter, or
MPROFILE parameter, a default value established in the
input reader procedure is used. This default is A unless
changed by your installation.

Ordinarily, you want system messages for ajob to be
written to the same device as output data sets from that
job: assign the same output class to output data sets
and messages or omit the MSGCLASS parameter and
assign the default output class for messages to output
data sets. (Y ou assign data sets to an output class in the
SYSOUT parameter on the DO statement; see the section
"Writing Output Data Sets.")

Requesting an Abnormal Termination Dump
To obtain a dump if a job step abnormally terminates,
code a DO statement defining a data set to which the
dump can be written. The name of the DO statement
must be either SYSABEND or SYSUDUMP. (If you in-

clude more than one DO statement defining a dump,
only the last statement is used.)

• When you code SYSUDUMP as the ddname, the
dump contains only the contents of the processing
program's virtual storage area.

• Coding SYSABEND provides a dump containing
the processing program's virtual storage area, the
system nucleus, the page able supervisor, and the
entire system queue area. (The system queue area,
SQA, is an area of virtual storage reserved for,
system-related control blocks).

Complete descriptions of dumps, including dumps
in high-density format available with the IBM 3800
Printing Subsystem, and information on reading
dumps are included in the OS/ VSl Debugging Guide,
listed in the Preface.

To have the dump printed, either assign the dump to
an output class in the SYSOUT parameter on the DO

statement or code the UNIT parameter and specify the
unit record device. For details, see the section "Writing
Output Data Sets." (If you do not receive the dump
you expect, it may be because the dump was canceled
by the operator.) To store the dump, define the data set
as you would any other data set, coding the DSNAME,

DISP, UNIT, VOLUME, and, if the data set will exist on a
direct access device, SPACE parameters. In the DISP

parameter, code DELETE as the normal disposition: if
the job terminates normally, you do not need the
dump. You can code KEEP or CA TLG as the conditional
disposition, but it is not necessary. The system does not
delete a data set defined with a SYSABEND DD or
SYSUDUMP DD statement if the step abnormally termi­
nates.

The following DD statement requests that a dump be
printed if the job step abnormally terminates:

IISYSUDUMP DO SYSOUT=A

To store the dump, you could code:

IISYSUDUMP DO DSNAME=DUMP,
II DISP=(NEW,DELETE),
II UNIT=2400,VOL=SER=147958

Specifying Dump Format on the IBM 3800 Print­
ing Subsystem
The IBM 3800 Printing Subsystem allows you to option­
ally request system-formatted high-density problem
program dumps. You specify high-density format op­
tions with CHARS=DUMP (204 characters per line)
and/or FCB=STD3 (8.1ines per inch) parameters on the
SYSABEND or SYSUDUMP DD statement. Parameter
specification for controlling the dump formatting op­
tions is:

CHARS=DUMP FCB=STD3 Characters Lines

Specified Specified Per Line
Per
Inch

NO NO 120 6
YES NO 204 6

NO YES 120 8

YES YES 204 8

You should submit only one dump formatting DD

statement per job step.

The following DD statement requests the system to
produce a dump that is 204 characters per line and 8
lines per inch.

IISYSABEND DO ... ,FCB=STD3,CHARS=DUMP

Writing Output Data Sets
The two ways to instruct the system to write output
data sets are:

• Assign the data set to an output class.

• Specify the device on which the output will be
written.

When you assign a data set to an output class, it is
written by routines called output writers, that include
the system output writer and the DSO (direct system
output) writer. When you specify the device you want,
allocation routines assign that device, if it is available,
exclusively to the job that requests it and data manage­
ment routines write the output.

Assigning Output Data Sets to Output Classes
The purpose of output classes is to group output with
similar characteristics that will be written to the same
device. The 36 possible output classes are each desig­
nated by a letter from A through z or a number from 0
through 9. The letter and number names have no in­
herent meaning. Each installation defines its own out­
put classes when the system is generated. For example,
output class w might contain output to be written to a
printer and requiring a special form; class J might be
reserved for high-volume output.

To assign an output data set to an output class,code
the SYSOUT parameter on the DD statement defining
the data set: '

IIDATAS~T DO SYSOUT=W

If the system programmer has generated the ISSP

,(installation specified selection parameters) tables, you
can assign an output data set to an output class by us­
ing the PROFILE keyword parameter instead of the
CLASSNAME positional parameter on the SYSOUT DD

statement.

If yo~ want the output data set and the messages
from your job to be printed on the same output listing,

Chapter 2: Descriptions of JCL Services 2-37

specify the same output class in the SYSOUT parameter
as you specified for messages in the MSGCLASS parame­
ter. If the output classes are selected through ISSP,·
describe the output using the same profile string with
both the PROFILE (on the DD statement) and MPROFILE
(on the job statement) keywords. Additional informa­
tion and an example showing the use of ISSP to assign
output classes is shown in this section under "Assigning
Output Classes Using ISSP." If you omitted the
MSGCLASS and MPROFILE parameters, code the default
output class for messages in the SYSOUT parameter.
(For details on coding the MSGCLASS parameter, see
the section "Controlling the Output Listing of JCL
Statements, Messages, and Dumps.")

Processing Output Classes: The operator controls
the processing of output classes by issuing commands
to start writers (the START command), modify the
classes of output the writer processes (the MODIFY com­
mand), and stop the writer (the STOP command). In the
START command, the operator can assign output
classes to the writer to be processed; if he does not
specify output classes, defaults from the writer proce­
dure are used.

The system output writer is the most efficient way to
write output. The output is first written to a direct
access device. When a system olltput writer is started,
it writes the output from the direct access device to a
system output device according to the output classes it
was assigned to process and, within an output class,
according to the priority of the job that produced the
output. (Output in a single output class from jobs with
the same priority or from a single job are written in a
first-in-first-out order.) System output devices are sim­
ply the devices on which output classes are written,
including printers, punches, arid magnetic tape.

The DSO (direct system output writer) is also avail­
able to write output classes. The DSO writer writes
output data sets directly from ajob to a system output
device while the job is executing; messages from the job
are first written to a direct access device and then writ­
ten to a system output device at job termination.

Using an Installation-Written Writer Routine:
Instead of using the IBM-supplied output writer routine,
your installation can provide its own routine. If you'
want your installation's routine to be used, specify the
name of the. routine in the SYSOUT parameter. For
example, if you are assigning an output data set to class
B and want the installation-written routine named
WRITE to be used to write the data set, code:

IIOUTPUT DO SYSOUT=(B,WRITE)

Delaying the Writing of an Output Data Set: You

2-38 OS/VSIJCL Services

can delay the writing of an output data set until the
operator requests that the data set be written. The
reasons to delay writing a data set are varied. For ex­
ample, if a data set is very large and not immediately
needed, you might no~ want to monopolize an output
device until other, smaller data sets are written: if a
data set requires special forms that are not immediately
available, for example, a data set containing payroll
information requires 5,000 payroll checks, the data set
is not printed until the operator supplies those forms; if
you are routing the data set to another destination, the
data set is not printed until that destination requests it.

To delay writing the output, code HOLD=YES on the
DD statement defining the data set:

IILARGE DO SYSOUT=W,HOLD=YES

The data set is placed in the held status until the opera­
tor releases it by issuing a ROUTE or RELEASE com­
mand. Notify the operator when you code HOLD=YES
for a data set: when a data set is held, no message is
sent to the operator. If you are routing the data set to
another destination, you can notify that destination by
coding a SEND command. Details on routing a data set
to another destination and coding the SEND command
are included in the section "Controlling Output to
Workstations."

Job Separators: To make it easier to separate the
output from different jobs, your installation can in­
clude a routine in the writer procedure to write job
separators, for example, three listing pages or three
punched cards containing the name of the job whose
output follows and the output class.

The operator can specify one of two writer proce­
dures for DSO (direct system output) processing: the
DSO procedure or the DSOJS (direct system output with
job separators) procedure. If DSOJS is specified, job
separators are automatically written to separate the
output from different jobs.

Assigning Output Class Using ISSP
ISSP (installation specified selection parameters) tables
of attributes can be defined by the system programmer
at your installation to help assign a message or data set
to an output class. The parameters supplied by the
system programmer are used to make up profile strings,
which are used to describe the job's output. .

A message is assigned to an output class by coding
the MPROFILE parameter with the message profile
string on the JOB statement, using the following format:

IIPGM JOB ... ,.MPROF:ILE=
II 'message profile string'

Assign a data set to an output class by coding the
PROFILE parameter with the sysout profile string on the
SYSOUT DD statement. The following example, show-

ing the general format,omits the SYSOUT classname
positional parameter, because the class name is speci­
fied by the PROFILE keyword parameter.

IIDATASET DD SYSOUT=PROFILE=
II 'sysout profile string'

In the following example, the system programmer
has provided:

a. Type of form (FORM) as
(ENVELOPE,CHECK,MULTI,SINGLE), and

b. Number of pages (PAGES) up to 10 (10),11 to 50
(50), or over 50 (*), the default value.

If you wish to print a job on single-part paper, with
an estimated length of 35 pages, and you require the
message output class to be the same as the data set
output class, code:

IIPGM
II

JOB ... ,MPROFILE='FORM=SINGLE,
PAGES=50'

IIDATASET DD SYSOUT=(... ,PROFILE=
('FORM=SINGLE' ,'PAGES=50'» II

F or additional information concerning the use of
ISSP, see the section "Installation Specified Selection
Parameters" in the OS/VSl Planning and Use Guide,
listed in the Preface.

Specifying the Device
To write an output data set without using the output
writers, you can code the UNIT parameter on the DO

statement defining the data set and specify the device
on which you want the data set written. The system
allocates the device exclusively to your job if the device
is available: no other job can write output to that de­
vice until it is released. Jobs cannot share an output
device as they can when you assign output to output
classes.

Data management routines write the output from
the program to the device specified in the UNIT param­
eter. As a result, no job identification is written with
the output.

If you code both the UNIT parameter and the
SYSOUT parameter when defining a data set, the UNIT

parameter is ignored.

Specifying a particular output device in the UNIT

parameter is the least efficient method to route system
output.

Suppressing the Writing of an Output Data Set
Whether you route an output data set by coding the
SYSOUT parameter or the UNIT parameter, you can
suppress the writing of the data set by defining it as a
dummy data set. This is useful when you are testing a
program and do not want data sets printed until you

are sure they will contain meaningful output. Suppress­
ing the writing of a data set saves processing time.

If you are routing an output data set by coding the
SYSOUT parameter, code the DUMMY parameter to
define the data set as a dummy data set. When DUMMY

is coded, the SYSOUT parameter is ignored and the data
set is not written.

If you are specifying the device on which the data
set will be written in the UNIT parameter, you can as­
sign the data set a dummy status by coding DUMMY or
by assigning the data set name NULLFILE. All parame­
ters other than DUMMY or DSNAME=NULLFILE and

·DCB are ignored; no units are assigned to the data set.
When your program requests that the data set be writ­
ten, the request is recognized but no data is transmit­
ted. Your program must use the BSAM (basic sequen­
tial access method) or QSAM (queued sequential access
method) when requesting to write a dummy data set; if
any other access method is used, the job is terminated.

For details on coding the DUMMY parameter or
DSNAME=NULLFILE, see the section "Defining a Dum­
my Data Set."

Requesting Multiple Copies of an Output
Data Set
You can control the number of hard copies produced
by the printer, punch, or tape. You can obtain as many
as 255 copies of an output data set by:

• Coding the COPIES parameter on the DD statement
defining the data set, or

• Requesting that the operator specify the desired
number of copies in the REPEAT parameter of the
WRITER command.

Requesting Multiple Copies with the COPIES
Parameter
When you assign a data set to an output class in the
SYSOUT parameter (see the section "Writing Output
Data Sets,") you can also code the COPIES parameter
and request as many as 255 copies of the data set:

IIRECORD DD SYSOUT=W,COPIES=32

In the above example, you are requesting 32 copies
of the data set. If you omit the COPIES parameter, a
default value of I is assumed.

With a 3800 Printing Subsystem, you can also speci­
fy multiple copies of each page, followed by the same
number of copies of each successive page. Specifica­
tion of a value greater than 255 causes the system to
cancel the job. For the coding format and examples,
see "COPIES Parameter" in the OS/VSl JCL Reference,
listed in the Preface.

Chapter 2: Descriptions of JCL Services 2-39

For information and restrictions on coding COPIES
when you specify the device with the UNIT parameter,
see "Rules for Coding" under "COPIES Parameter" in
the·OS/VSl JCL Reference, listed in the Preface.

Requesting Multiple Copies with the WRITER
Command
You can obtain multiple copies of an output data set by
requesting that the operator specify the number of
copies in the REPEAT paraineter of the WRITER com­
mand. For example, if the operator specifies
REPEA T=2, two additional copies of the data set cur­
rently being processed are printed. The command must
be issued while the writer is processing the data set.

If you want multiple copies of all the output data
sets in one class for ajob, the operator can specify both
the number of additional copies desired and the sub­
parameter JOB in the REPEAT parameter of the WRITER
command; for example:

REPEAT=(3,JOB)

When JOB is specified, the number indicates you want
additional copies of all the data sets for the job; in this
example, four copies of each data set are printed. The
command must be issued while the writer is processing
the job's output.

A maximum of 254 additional copies can be speci­
fied. If multiple copies are requested in both the
COPIES parameter on the DO statement and in the
WRITER command, the number of copies specified in
the command overrides the number specified on the
DO statement. For further information, including copy
control for the IBM 3800 Printing Subsystem, see
OS/VSl JCL Reference, listed in the Preface.

Copy Modification
With the IBM 3800 Printing Subsystem, copy modifica­
tion allows the printing of predefined data on all pages
of a specific copy or copies of a data set. For example,
column headings or explanatory remarks could vary
from copy to copy of the same printed page of data.
Copies might also be personalized with the recipient's
name, address, and other desired information. Blanks
or printable graphic characters could be used to sup­
press the printing of variable data on particular copies
of a page. This is a function done in other printers by
using short or spot carbon in the forms set.

The predefined data is constructed, and stored as a
copy modification module by using the IEBIMAGE utili­
ty program (see "The IEBIMAGE Utility Program" in
the IBM 3800 Printing Subsystem Programmer's
Guide). The module is then identified and used by
means of the MODIFY parameter, coded on the output

2-40 OS/VSl JCL Services

DD statement. See "MODIFY parameter" in the
OS/ VSl JCL Reference for the format specification.

Printer Form and Character Control
When requesting that an output data set be printed,
you can give the system special instructions on how to
print the data set; you can request:

• A special output form.

• A special character set or arrangement, when out­
put is being printed by a 3203-4 or 3211 Printer
with the universal character set feature or by a
3800 Printing Subsystem.

• A specific FCB (forms control buffer) module that
controls the number of lines per inch printed and
the length of the form, when the data set is written
to a 3203-4 or 3211 Printer or a 3800 Printing Sub­
system.

• Printing of predefined information on output
printed on the 3800 Printing Subsystem.

• Overlay of printed output with a specified forms
image.

Requesting a Special Output Form
To request that an output data set be printed on a spe­
cial form, include the form number in the SYSOUT
parameter on the DD statement defining the data set.
For example, if you assign the data set OUTPUT to out­
put class W which routes the data set to a printer and
you want OUTPUT printed on form 1014, code:

!!OUTPUT DO SYSOUT=(W" 1014)

The system issues a message to the operator instructing
him to supply form 1014 to the printer. The system
does not issue a message telling the operator to mount

special forms on{:~L~OO}Printing Subsystem if

FORMDEF=
BYPASS

is specified at system generation or by the operator via
the SETPRT command.

Requesting a Special Character Set
The ucs (universal character set) feature allows for

different sets of characters to be printed for commercial
and scientific applications. This feature can be request­
ed for 3203-4,3211, or 1403 Printers during system
generation.

To request a special character set for a 3203-4,3211,
or 1403 Printer, specify the code identifying the charac ..
ter set in the ucs parameter. The codes for the IBM
standard special character sets are:

3211 Characteristics

A11 Arrangement A, standard EBCDIC character
set, 48 characters

H11 Arrangement H, EBCDIC character set for
FORTRAN and COBOL, 48 characters

G11 ASCII character set
P11 PL/1 alphameric character set
T11 Character set for text printing, 120 characters

1403 or
Characteristics 3203-4

AN Arrangement A, standard EBCDIC character
set, 48 graphics.

HN Arrangement H, FORTRAN/COBOL EBCDIC
character set, 48 graphics.

PCAN Arrangement A, preferred character set, 48
graphics.

PCHN Arrangement H, preferred character set, 48
graphics.

PN PL/1 character set, 60 graphics.
ONC PL/1 commercially preferred character set, 60

graphics.

ON PL/1 scientifically preferred character set, 60
graphics.

RN FORTRAN/COBOL commercial, 52 graphics.
SN Text printing, commercial, 84 graphics.

TN Text printing, scientific, 120 graphics.
XN High speed alphameric, 1403 model 2, 40

graphics.
YN High speed alphameric, 1403 model N1, 42

graphics.

Not all of these character sets may be available at
your installation. In addition, your installation can
design character sets to meet special needs; these char­
acter sets are assigned a unique code by the installa­
tion.

The operator is responsible for mounting the print
train corresponding to the character set you request. If
you do not code the ucs parameter, the operator sup­
plies a default.

You can code the ucs parameter with the UNIT

parameter or with the SYSOUT parameter:

//OUTPUT DD UNIT=3211,UCS=T11
//OUTPUT DD SYSOUT=C,UCS=A11

Note: UCS is ignored on the SYSOUT DD statement if the printer is
a 1403 or if CHARS is specified for the 3800.

Requesting the Fold Option: You request the fold
option when uppercase and lowercase data is to be
printed in uppercase only. To request folding, code
FOLD following the character set you request:

UCS=(T11,FOLD)

You must specify a character set code when you re­
quest folding.

Requesting Operator Verification: You can request
that the operator visually verify that the character set
image corresponds to the graphics of the chain or train
mounted on the printer. The character set image is
displayed on the printer before the data set is printed.
Code VERIFY as the last sub parameter in the UCS par­
ameter:

UCS=(A11"VERIFY)

You must specify a character set code when you re­
quest operator verification.

Requesting Character Arrangements With a 3800
Printing Subsystem
The CHARS parameter allows the specification of a
character arrangement table name or names to be used
when printing with the 3800. The table names supplied
for the 3800 include all the print train names that are
standard for the 1403-Nl and 3211 Printers, and oth­
ers. Groups of these table names are selected at system
generation. See your system programmer to learn the
names available at your installation.

Up to four character arrangement tables can be used
to print a data set. For details on specifying them, see
"CHARS Parameter" in the OS/VSI JCL Reference,
listed in the Preface. When more than one character
arrangement table is specified, you can dynamically
select the one you want by coding OPTCD=J as a DCB

subparameter and coding the first byte of each output
data line (following the print control character) as a
table reference character. For considerations before
doing this, see the discussion of OPTCD=J in the IBM
3800 Printing Subsystem Programmer's Guide, listed in
the Preface.

Further support for the 3800 is provided by the
IEBIMAG E utility program. With it you can modify or
construct character arrangement tables and graphic
character modification modules, to allow substitution
of existing or user-designed characters. For details on
using this program, and for planning for the 3800, see
the IBM 3800 Printing Subsystem Programmer's Guide,
listed in the Preface.

The ucs (universal character set)parameter may be
specified on the same output DD statement with the
CHARS parameter to permit redirection of output be­
tween the 3800 and other printers. Also, if CHARS is
not specified, the 3800 recognizes a valid character
arrangement specified with ucs. The FOLD keyword is
not recognized by the 3800, but using the GFlO, GFI2, or
GF15 character arrangement table provides the folding
effect.

Chapter 2: Descriptions of JCL Services 2-41

Requesting Forms Control
You request a specific forms control image for a 3203-4
or 3Z II Printer by coding an image identifier in the FCB
(forms control buffer) parameter. For the 3800 Print­
ing Subsystem, you specify the FCB module name with
the FCB parameter. Although the FCB image for the
3203~4 or 3211 and the FCB module for the 3800 serve
the same purpose, they are constructed in different
manners and are not intercbangable between the two
printers.

For either the 3203-4/3211 or the 3800, the FCB
image or module is stored on and retrieved for use
from SYSl.IMAGELIB. For the 3203-4 or 3211 Printer,
information on IBM-supplied FCB images and on defin­
ing and adding user images to SYSl.IMAGELIB is in
OS/VS1.Data Managementfor System Programmers,
listed in the Preface. For the 3800, analogous informa­
tion on FCB modules is in the IBM 3800 Printing Sub­
system Programmer's Guide, listed in the Preface.

Requesting Alignment of Forms for a 3203-4 or
3211 Printer: To request the operator to check the
alignment of the printer forms before the data set is
printed, code ALIGN as the second subparameter of the
FCB parameter:

//OUTPUT DD UNIT=3211,FCB=(STD1,ALIGN)

The ALIGN subparameter is not used by the 3800.

Requesting Operator Verification: You can request
that the operator visually verify that the image dis­
played on the printer is the desired image by coding
VERIFY as the second subparameter of the FCB parame­
ter. You cannot code ALIGN if you code VERIFY. For
example:

//OUTPUT DD SYSOUT=A,FCB=(STD2,VERIFY)

If output class A routes output to a 3203-4, 3211, or a
3800, the FCB image or module named STD2 is loaded
into the printer and operator verification is requested.

Forms Overlay
With the IBM 3800 Printing Subsystem, the forms over­
lay feature allows printing the image from a forms
overlay negative together with the data being printed.
This reduces the need for preprinted forms, and for
changing of forms.

The FLASH parameter on the 3800 DD statement
identifies the overlay to be used and the number of
copies on which that overlay is to be printed. See
"FLASH Parameter" in the OS/VSl JCL Reference,
listed in the Preface for details on specifying this par­
ameter. For information on designing and making or
obtaining forms overlay negatives, see the Forms De-

2-42 OS/VSl JCL Services

sign Reference Guide for the IBM 3800 Printing
Subsystem, listed in the Preface.

Bursting of Output
With the optional burster-trimmer-stacker added, the
IBM 3800 Printing Subsystem can separate continuous
form paper into individual sheets. The BURST parame­
ter is used to specify to the operator whether the output
is to go to the burster-trimmer-stacker or to the contin­
uous forms stacker. For further information, and ex­
amples, see "BURST Parameter" in the OS/VSl JCL
Reference.

Controlling Output to a Workstation
With RES (remote entry services) you can submit jobs
to a central computing center from a workstation and
route output to workstations. This avoids the ineffi­
cient procedure of putting the jobs from a workstation
together, submitting them to the central computing
center, having the operator there enter the jobs, and
waiting for the output. You enter jobs directly from the
workstation, and output from jobs is printed or
punched on remote devices, routed directly from the
central computing center to the workstation.

When you submit ajob from a workstation, the
output is automatically returned to your workstation.
You simply assign output data sets to an output class in
the SYSOUT parameter and messages from your job to
an output class in the MSGCLASS parameter. The sys­
tem output writer offers many of the same options for
writing data sets that you can request when submitting
the job at the central computing center. You can re­
quest:

• That a data set be held until the operator requests
that it be printed (see "Delaying the Writing of an
Output Data Set" in the section "Writing Output
Data Sets").

• A special output form by specifying a form num­
ber in the SYSOUT parameter (see the section
"Printer Forms and Print Chain Control").

• Multiple copies of the data set (see the section
"Requesting Multiple Copies of an Output Data
Set").

RES provides an additional option: whether you are
at a remote station or at the central computing center,
you can request that a data set be routed to another
destination. To do this, code the DEST parameter, as
described in this chapter. A data set can also be routed
to another destination by use of the operator command
ROUTE, which is described in Operators Library:
OS/VSl Reference, listed in the Preface.

Routing Output to Another Destination
Users at workstations are grouped into destinations.
Each destination is identified by a user identification of
1-7 alphameric characters, established by the system
programmer. (The central computing center is identi­
fied by the user identification CENTRAL.) A worksta­
tion can be identified by a single identification (for
example, a branch office of a bank), or by several iden­
tifications (for example, a separate identification for
each of the departments at a college).

Each user identification is associated with an au­
thorization value, also established by the system pro­
grammer, that controls to whom it can send output. A
destination can send output only to other destinations
with an authorization value equal to or greater than its
own. This provides a means to control the output a
destination can receive. For example, a shipping de­
partment is assigned an authorization value equivalent
to 6 (the value is actually expressed in hexadecimal);
destinations that can send output (orders, inventories,
etc.) to the shipping department are assigned authori­
zation values lower than or equal to 6; destinations that
cannot send output to the shipping department are
assigned authorization values greater than 6. Every
destination, however, can send output to CENTRAL.

To route an output data set to another destination,
code the identification of that destination in the DEST
parameter on the DD statement defining the data set:

IIRECORDs DD SYSOUT=A,DEST=LOCS

If you do not code the DEST parameter, or code an
invalid identification, the output is automatically re­
turned to you. If you are not authorized to send output
to the specified destination, the output is returned to
you with a warning message.

You can notify another destination of the output it
will receive by issJling the SEND command, as de­
scribed later in this section under "Sending Messages
to Other Destimttions."

Sending Messages to Other Destinations: The
SEND command allows users to send messages to one
another and to the central operator. At a workstation,
the operator is usually the only one who would enter
the SEND command from the console. However, an
applications programmer can code the SEND command
on a command statement to be included in the input
stream. This discussion addresses the SEND command
only in the following situations:

• You wish to notify another destination that you
have routed a data set to it.

• You wish to notify another destination that a data
set routed to it is in the held status.

Not every option of the SEND command is included
here; for a complete description, see OS/VSl RES:
Workstation User's Guide, listed in the Preface.

To issue the SEND command in one of the above
situations, code:

• SEND or SE, to identify the command.

• The text of the message enclosed in apostrophes,
limited to 115 characters, including blanks.

• The destination to which the message is directed,
USER=userid. (Multiple destinations can be speci­
fied, if they are enclosed in parentheses.)

• When the message is to be sent. If you do not
indicate this, the system assumes NOW - the mes­
sage is sent as soon as the command statement is
processed; if the destination receiving the message
is not logged-on, the message is not sent and a
diagnostic message is returned to you. Usually you
will want to specify LOGON; the message is sent
immediately, if the receiving destination is logged­
on. If the destination is not logged-on, the mes­
sage is saved and sent when the destination next
establishes connection with the central system.

The command statement can be included in the
input stream, either within a job (before an EXEC state­
ment, a null statement, or another command state­
ment) or between jobs. However, if the command is
placed between jobs and is coded incorrectly, the com­
mand is not executed and no message is sent: it is saf­
est, then, to include a command statement within a job.
(Complete details on coding a command statement are
included in the OS/VSl JCL Reference, listed in the
Preface.)

F or example, you are routing a data set containing
bank records to the destination identified as DEPT58
and are placing the data set in the held status:

IIRECORDS DD SYSOUT=A,DEST=DEPTS8,
II HOLD=YES

This DD statement is included in the job named
COMPUTE - when a data set is placed in the held sta­
tus, it is identified by the name of the job that pro­
ducedit.

You want to send a message to DEPT58, notifying
them that the data set is in the held status:

II SEND 'data set from job COMPUTE held',
II USER=DEPTS8,LOGON

To remove this data set from the held status, the opera­
tor at DEPT58 issues a ROUTE command, specifying the
name of the job that produced the output (in this case
COMPUTE) and HOLD=NO.

Chapter 2: Descriptions of JCL Services 2-43

Cataloged and In-Stream Proce­
dures
Applications that require many control statements and
are used on a regular basis can be considerably simpli­
fied through the use of cataloged and in-stream proce­
dures. A cataloged procedure is a set of job control
statements placed in a partitioned data set known as
the procedure library. An in-stream procedure is a set
of job control statements placed in the input stream
within a job. You can execute a procedure simply by
specifying its name on an EXEC statement in your job.

This chapter describes how to write and use cata­
loged and in-stream procedures; it is divided into the
following sections:

Writing Cataloged and In-Stream Procedures
Using Cataloged and In-Stream Procedures
Using Symbolic Parameters

Writing Cataloged and In-Stream Proce­
dures
Cataloged and in-stream procedures are simply the job
control statements needed to perform an application,
A procedure contains one or more procedure steps, each
step consisting of an EXEC statement that identifies the
program to be executed and 00 statements defining the
data sets to be used or produced by the program. The
program you request on the EXEC statement must exist
in a private library or the system library. If you do
request a program that is contained in a private library,
the procedure step calling that program must include a
DD statement with the ddname STEPLIB that defines the
private library; the STEPLIB DD statement is described
in the section, "Creating and Using Private and Tem­
porary Libraries."

Cataloged and in-stream procedures cannot contain:

• EXEC statements that refer to other cataloged or
in-stream procedures.

• JOB, delimiter, or null statements.

• DO statements defining private libraries to be used
throughout the job (DD statements with the
ddname JOB LIB).

• DD statements defining data in the input stream
(statements including the * or DATA parameters).

Identifying an In-Stream Procedure
To identify an in-stream procedure, you code the PROC

and PEND job control statements.

On the PROC statement, which must be the first
statement in an in-stream procedure, you assign the
procedure a name. This name is the name that a pro­
grammer codes to call the procedure. Optionally, you
can also assign default values to symbolic parameters

2-44 OS/VSl JCL Services

contained in the procedure and code comments. (A
symbolic parameter is a symbol preceded by an amper­
sand that stands for a parameter, a subparameter, or a
value in a procedure; including symbolic parameters in
a procedure is described in detail in the section "Using
Symbolic Parameters.") If you do not assign default
values to symbolic parameters on the PROC statement,
you cannot code comments. The simplest form of the
PROC statement, to identify an in-stream procedure
named PAYROLL, would be:

IIPAYROLL PROC

The PEND statement marks the end of the in-stream
procedure. You can include a name on the PEND state­
ment and comments, but these are optiona1. Both of
the following examples are acceptable:

IIENDPROC PEND end of in-stream procedure
II PEND

The following example illustrates an in-stream pro­
cedure named SALES consisting of two procedure steps.
Note that STEP2 includes a STEPLIB DO statement to
define the private library in which the program
JUGGLE can be found.

IISALES
IISTEP1
IIDD1A
II
IIDD1B
II
IISTEP2
IISTEPLIB
II
IIDD2A
II

PROC
EXEC
DD

DD

EXEC
DD

DD
PEND

PGM=FETCH
DSNAME=RECORDS(BRANCHES) ,
DISP=OLD
DSNAME=RECORDS(MORGUE) ,
DISP=MOD
PGM=JUGGLE
DSNAME=PRIV.WORK,
DISP=OLD
SYSOUT=A

Placing a Cataloged Procedure in a Procedure
Library
The major difference between cataloged and in-stream
procedures is that in-stream procedures are placed
within the job that calls them, and cataloged proce­
dures must be placed in a procedure library before they
can be used. A procedure library is simply a partitioned
data set containing cataloged procedures. IBM supplies
a procedure library named SYS 1.PROCLIB, but your
installation can have additional procedure libraries
with different names. When a programmer calls a cata­
loged procedure, he receives a copy of the procedure;
therefore, a cataloged procedure can be used by more
than one programmer simultaneously.

To add a procedure to a procedure library, you use
the IEBUPDTE utility program. You can also use the
IEBUPDTE utility to permanently modify an existing
procedure. (Before modifying an existing cataloged
procedure, however, you must notify the operator; he
must delay the execution of jobs that might use the
procedure library while it is being updated.) Details on
using the IEBUPDTE utility are included in OS/VSl

Utilities, listed in the Preface. Before placing a cata­
loged procedure in a procedure library, you can test it
by first running it as an in-stream procedure.

No special job control statements are used to identi­
fy a cataloged procedure. Never use the PEND state­
ment. The PROC statement is optional. You need code
the PROC statement as the first statement in a cataloged
procedure only when you want to assign default values
to symbolic parameters. The name of the PROC state­
ment is not necessarily the name of the cataloged pro­
cedure; you assign the procedure a name when you add
it to the procedure library.

Allowing for Changes in Cataloged and In-Stream
Procedures
The usefulness of cataloged and in-stream procedures
is destroyed if a programmer who uses the procedure
must permanently modify the procedure every time he
wants to make a change. When you write a procedure,
you can define, as symbolic parameters, those parame­
ters, subparameters and values that are likely to vary
each time the procedure is used. For details on coding
symbolic parameters, see the chapter "Using Symbolic
Parameters. "

Using Cataloged and In-Stream Procedures
To use a cataloged or in-stream procedure, you specify
the procedure name on an EXEC statement; you can
modify the procedure by adding DD statements, over­
riding, adding, or nullifying parameters on EXEC and
DD statements, and assigning values to symbolic par­
ameters. Calling and modifying procedures is ex­
plained in greater detail in the following paragraphs.

How to Call Cataloged and In-Stream Procedures
To call a cataloged or in-stream procedure, identify the
procedure on the EXEC statement of the step calling the
procedure by coding as the first operand on the EXEC

statement:

• The procedure name, or

• PROC= the procedure name.

A cataloged procedure must exist in the procedure
library before you attempt to use it - if the cataloged
procedure exists in SYSI.PROCLIB, the job that adds the
procedure to the library must terminate before the job
that calls it is selected for execution. The input stream
reader is responsible for fetching cataloged procedures
you call that exist in a private procedure library (as
opposed to the IBM-supplied procedure library,
SYS I.PROCLIB). Therefore, a cataloged procedure in a
private procedure library must exist before a job that
calls it is read into the system. When using an in­
stream procedure, include the procedure, beginning
with a PROC statement and ending with a PEND state-

ment, with the job control language for your job; the
procedure must follow the JOB statement but appear
before the EXEC statement that calls it. You can include
as many as fifteen uniquely-named in-stream proce­
dures in one job and can use each procedure as many
times as you wish in the job.

To call a cataloged procedure named PROCESSA,

you would code:

II CALL EXEC PROCESSA or
IICALL EXEC PROC=PROCESSA

On the EXEC statement, you can also code changes
you would like to make for this execution of the proce­
dure.

Modifying Cataloged and In-Stream Procedures
You can modify a procedure by:

• Assigning values to, or nullifying, symbolic par­
ameters contained in the procedure.

• Overriding, adding, or nullifying parameters on
EXEC and DD statements in the procedure; that
priority is replaced by the default.

• Adding DD statements to the procedure.

All changes you make are in effect only during the
current execution of the procedure. For a discussion of
symbolic parameters, see the section "Using Symbolic
Parameters." . Other modifications are described in the
following sections.

Modifying Parameters on an EXEC Statement:
To override, add, or nullify a parameter on an EXEC

statement in a procedure, identify on.the EXEC state­
ment that calls the procedure the parameter you are
changing, the name of the EXEC statement on which
the parameter appears, and the change to be made:

IICALL EXEC procedurename,
II parameter.procstepname=value

When overriding a parameter, the value you code for
the parameter on the EXEC statement calling the proce­
dure replaces the value assigned in the procedure. '
When adding a parameter, that parameter is used in the
execution of the procedure step. When nullifying a
parameter, you do not follow the equal sign with a
value; the value assigned to the parameter in the proce­
dure is ignored. All changes you make are in effect
only for the current execution of the procedure.

You can make more than one change to each EXEC

statement in the procedure, and you can change par­
ameters on more than one EXEC statement in the proce­
dure. You cannot, however, change the PGM parame­
ter. When making changes on different steps in the
procedure, you must code all changes for one proce­
dure step before changes to a subsequent step.

Chapter 2: Descriptions of J CL Services 2-45

F or example, the first three EXEC statements in a
procedure named IRISH are:

IISTEP1 EXEC PGM=YEATS,PARM=' *14863'
IISTEP2 EXEC PGM=NOLAN
IISTEP3 EXEC PGM=SYNGE,TIME=(2,30)

and you want to make the following changes:

• Nullify the P ARM parameter in STEP 1.

• Add the COND parameter, specifying the test
(8,L T), in STEP2.

• Change the time limit in the TIME parameter in
STEP3 to 4 minutes.

On the EXEC statement calling the procedure, you
would code:

IICALL EXEC IRISH,PARM.STEPI=,
II COND.STEP2=(8,LT),
II TIME.STEP3=4

You can omit naming the procedure step when you
change a parameter. When you do this, the procedure
is modified as follows:

• If the PARM parameter is coded, it applies only to
the first procedure step. A PARM parameter that
appears in a later EXEC statement in the called
procedure is nullified.

• If the TIME parameter is coded, it applies to the
total procedure. The TIME parameter is nullified if
it appears on any of the EXEC statements in the
called procedure.

• If any other parameter is coded, it applies to every
step in the called procedure. Nullifying the par­
ameter on the EXEC statement calling the proce­
dure causes that parameter to be ignored on every
EXEC statement in the procedure; if you assign a
value to the parameter on the EXEC statement call­
ing the procedure, the parameter is overridden
where it appears in the procedure and added to
EXEC statements in the procedure on which it does
not appear.

F or example, assume the EXEC statements in a pro­
cedure named COMPUTE are:

IISTEP1 EXEC PGM=LIST,TIME=(1,30)
IISTEP2 EXEC PGM=UPDATE,RD=NC,TIME=2
IISTEP3 EXEC PGM=CHECK,RD=RNC,COND=ONLY

You want to make the following changes:

• Assign a time limit of 4 minutes to the entire pro­
cedure; TIME parameters on individual EXEC state­
.ments in the procedure are nullified.

• Allow automatic step restart for each step of the
job by coding RD=R. The RD parameter is added
to the first step of the job and overrides the RD

parameters in STEP2 and STEP3.

2-46 OS/VSl JCL Services

To call the procedure and make these changes, you
would code:

IICALL EXEC COMPUTE,TIME=4,RD=R

During the execution of the procedure, the EXEC

statements appear to the system as:

IISTEP1 EXEC PGM=LIST,RD=R
IISTEP2 EXEC PGM=UPDATE,RD=R
IISTEP3 EXEC PGM=CHECK,RD=R,COND=ONLY

Any parameter changes that affect every step of the
job (by omitting the procedure step name) must be
coded on the EXEC statement calling the procedure
before changes to parameters on different steps (that is,
you include the procedure step name).

Modifying Parameters on a DD Statement: To
override, add, and nullify parameters on a DD state­
ment in a procedure, you include a DD statement con­
taining the changes you want to make after the EXEC

statement that calls the procedure. The name of the DD

statement containing the changes is composed of the
procedure step name and the ddname of the DD state­
ment in the procedure:

Ilprocstepname.ddname DD parameter=value

When overriding a parameter, the value you code
replaces the value assigned to the parameter in the
procedure. You can also override a parameter in the,
procedure by coding a mutually exclusive parameter
on the DD statement containing the changes. (A table
of mutually exclusive parameters on the DD statement
is included in the OSjVSl JCL Reference, listed in the
Preface.) When adding a parameter, the parameter is
added to the DD statement in the procedure for the
current execution of the procedure. When nullifying a
parameter, you do not follow the equal sign with a
value; that parameter in the procedure is ignored.Y ou
should not attempt to nullify a parameter when you are
replacing it with a mutually exclusive parameter. All
changes you make are in effect only for the current
execution of the procedure.

Coding mutually exclusive parameters on a DD

statement in a procedure normally causes the system to
issue an error message. If you override that statement
the system does not issue the error message, even if the
overriding statement does not affect the mutually ex­
clusive parameters. In this case the first coded of the
mutually exclusive parameters takes precedence.

You can change more than one parameter on a DD

statement and you can change parameters on more
than one DD statement in the procedure. However, the
DD statements containing the changes must be coded in
the same order as the corresponding DD statements in
the procedure.

F or example, the first two steps of the cataloged
procedure TEA are:

IISTEP1
IIDD1A
II
II
IIDD1B
IisTEP2
IIDD2A
II

EXEC
DD

DD
EXEC
DD

PGM=SUGAR
DSNAME=DRINK,DISP=(NEW,
DELETE) ,
UNIT=2400,VOL=SER=568998
UNIT=SYSSQ
PGM=LEMON
UNIT=2314,DISP=(,PASS),
SPACE=(TRK,(20,2))

and you want to make the following changes:

• Change the disposition on the DD statement
named DDIA to CATLG.

• Change the unit on the DD statement named DDIB

to TAPE.

• Change the SPACE parameter on the DO statement
named DD2A to SPACE=(CYL,(4,1)).

When calling the procedure, you would code:

IICALL EXEC TEA
IISTEP1.DD1A DD DISP=(NEW,CATLG)
IISTEP1.DD1B DD UNIT=TAPE
IISTEP2.DD2A DD SPACE=(CYL,(4,1))

When changing DCB subparameters, you need code
only those subparameters you are changing. The DCB

subparameters you do not code (and for which you do
not code a mutually exclusive sub parameter) remain
unchanged. For example, a DD statement named DOl

in a procedure step named STEP I contains
DCB=(BUFNO= I,BLKSIZE=80,RECFM=F,BUFL=80). To
change the block size to 320 and the buffer length to
320, you would code:

IISTEP1.DD1 DD DCB=(BLKSIZE=320,
II BUFL=320)

The subparameters BUFNO and RECFM remain un­
changed.

To nullify the DCB parameter, you must nullify each
subparameter. For example, if a DO statement in a
procedure contains
DCB=(RECFM=FB,BLKSIZE= 160,LRECL=80), you must
code DCB=(RECFM=,BLKSIZE=,LRECL=) in order to
nullify the DCB parameter.

To nullify the DUMMY parameter, code the DSNAME

parameter on the overriding DO statement and assign a
data set name other than NULLFILE. To nullify all the
parameters on a DD statement other than DCB, code
DUMMY on the overriding DO statement. (The DUMMY

parameter is described in the section, "Derming a
Dummy Data Set.")

Modifying Parameters on DD Statements that De­
fine Concatenated Data Sets: When a concatenation
of data sets is dermed in a cataloged procedure and you
attempt to override the concatenation with one DD

statement, only the first (named) DO statement is over­
ridden. To override others, you must include an over­
riding DO statement for each DD statement; the DO

statements in the input stream must be in the same
order as the DO statements in the procedure. The sec­
ond and subsequent overriding statements must not be
named. If you do not wish to change one of the conca­
tenated DO statements, leave the operand field blank
on the corresponding DO statement in the input stream.
(This is the only case where a blank operand field for a
DO statement is valid.)

For example, suppose you are calling a procedure
that includes the following sequence of DD statements
in STEPC:

IIDD4
II
II
II
II
II

DD DSNAME=A.B.C,DISP=OLD
DD DSNAME=STRP,DISP=OLD,UNIT=2314,

VOL=SER=X12182
DD DSNAME=TYPE3,DISP=OLD,UNIT=2314,

VOLUME=SER=BL1421
DD DSNAME=A.B.D,DISP=OLD

To override the DD statements that define the data sets
named STRP and A.B.D, you would code:

IISTEPC.DD4 DD
II DD DSNAME=INV.CLS,DISP=OLD
II DD
II DD DSNAME=PAL8,DISP=OLD,
II UNIT=2314,VOL=SER=125688

Adding DD Statements to a Procedure: You can
add DO statements to a procedure when you call the
procedure. These additional DO statements are in effect
only during the current execution of the procedure.

To add a DO statement to a procedure step, follow
the EXEC statement that calls the procedure and any
overriding DO statements for that step with the addi­
tional DD statement. The ddname of the DD statement
identifies the procedure step to which this statement is
to be added and must be assigned a name that is differ­
ent from all the ddnames in the procedure step. Jfyou
do not identify the procedure step in the ddname, the
system assumes you are adding the DD statement to the
first step of the procedure.

F or example, the first step of a cataloged procedure
named MART is:

IISTEP1 EXEC PGM=DATE
IIDDM DD DSNAME=BPS(MEMG),DISP=OLD,
II UNIT=2314,VOLUME=SER=554982
IIDDN DD UNIT=SYSSQ

and you want to make the following changes:

• Change the UNIT parameter on the statement
named DON to UNIT= 180.

• Add a DO statement, specifying UNIT= 181.

Chapter 2: Descriptions of JCL Services 2-47

When calling the procedure, you would code:

IIPROC EXEC MART
IISTEP1.DDN DD UNIT=180
IISTEP1.DDO DD UNIT=181

Identifying Procedure Statements on an Output
Listing
You can request that cataloged and in-stream proce­
dure statements be included on the output listing by
coding 1 as the first subparameter in the MSGLEVEL

parameter on the JOB statement. (For a description of
the MSGLEVEL parameter, see the section "Controlling
the Output Listing of JCL Statements, Messages, and
Dumps.") Procedure statements are identified on the
output listing as illustrated in Figures 2-4 and 2-5. The
output listing also shows the symbolic parameters and
the values assigned to them.

Using Symbolic Parameters
To be modified easily, cataloged and in-stream proce­
dures can contain symbolic parameters. A symbolic
parameter is a symbol preceded by an ampersand that
stands for a parameter, a subparameter, or a value. In
the following procedure step, the symbolic parameters
are underlined:

IISTEP1
II
IIDD1
II
II
IIDD2
II

EXEC PGM=UPDATE,
ACCT=(PGMG,&DEPT)

DD DSNAME=INIT,
UNIT=&DEVICE,
SPACE=(CYL,(&SPAtE,10))

DD DSNAME=CHNG,UNIT=2400,
DCB=BLKSIZE=&LENGTH

When this procedure is executed, every symbolic
parameter must either be assigned a value or nullified;
the changes are in effect only for the current execution
of the procedure. Therefore, the procedure can be
modified each time it is executed, without being per­
manently changed. Details on how to assign values to
or nullify symbolic parameters are included in this
section under "Assigning Values to and Nullifying
Symbolic Parameters." A description of how to include
symbolic parameters when writing a cataloged or in­
stream procedure follows.

Defining Symbolic Parameters When Writing a
Procedure
Any parameter, subparameter, or value in a procedure
that may vary each time the procedure is called is a
good candidate for definition as a symbolic parameter.
For example, if different values can be passed to a
processing program by means of the PARM parameter
on one of the EXEC statements, you could define the
PARM field as one or more symbolic parameters, (for
example, PARM=&ALLVALS or PARM=&DECK&CODE).

The symbolic parameter itself is one to seven al­
phameric and national (#, @, $) characters preceded

2-48 OS/VSI JCL Services

Columns

123

XX cataloged procedure statement you did not over-
ride

XI cataloged procedure statement you did override

XX· cataloged procedure statement, other than a com-
ment statement, that the system considers to con-
tain only comments ... comment statement

Figure 2-4. Identification of Cataloged Procedure Statements on the
Output Listing

Columns

123

++ in-stream procedure statement you did not over-

ride

+1 in-stream procedure statement you did override

++. in-stream procedure statement, other than a com-

ment statement, that the system considers to con-

tain only comments ... comment statement

Figure 2-5. Identification of In-Stream Procedure Statements on the
Output Listing

by a single ampersand. The first character must be
alphabetic or national. Since a single ampersand de­
fines a symbolic parameter, you code double amper­
sands when you are not defining a symbolic parameter.
For example, if you want to pass 543&LEV to a process­
ing program by means of the PARM parameter, you
must code PARM=543&&LEV. The system treats the dou~
ble ampersand as if a single ampersand had been cod­
ed, and only one ampersand appears in the results.

Keyword parameters that you can code on the EXEC

statement (ACCT, ADDRSPC, COND, PARM, RD, REGION,

and TIME) cannot be used as the name of a symbolic
parameter. For example, you cannot code
®ION=200K or REGION=®ION on the EXEC

statement, but you can code REGION=&SIZE.

The definitions used to signify symbolic parameters
should be consistent in all the cataloged and in-stream
procedures at an installation. For example, every time
the programmer is to assign his department number to
a symbolic parameter, no matter which procedure he is
calling, the symbolic parameter could be defined as
&DEPT. In different procedures, you could code ACCT=

(43877,&DEPT) and DSNAME=LIBRARY.&DEPT.TALLY.

The programmer would assign his department number
to the symbolic parameter wherever that symbolic
parameter appears in a procedure.

The same symbolic parameter can appear more than
once in a procedure, as long as the value assigned to
the symbolic parameter is a constant in the procedure.
Therefore, you could use &DEPT more than once in a
procedure, if the department number to be assigned is
the same in each case. But if you have two DD state­
ments and include a symbolic parameter for the prima­
ry quantity of the space request on each DD statement,
you would not want to use the same symbolic parame­
ter, since the requests for primary quantity could be
different for the two data sets. Only one value can be
assigned to each symbolic parameter used in a proce­
dure; if you assign more than one value to a symbolic
parameter, only the first value is used and that value is
substituted wherever the symbolic parameter occurs.

Note: Symbolic parameters are not acceptable in the DSID, VOL­
UME, and DLM keywords on a DD* or DD DATA statement.
Doing this may cause unpredictable results.

Assigning Default Values to Symbolic Parameters:
You can assign default values to the symbolic parame­
ters coded in the procedure on the PROC statement.
The PROC statement must always appear as the first
statement in an in-stream procedure; the PROC state­
ment must be coded as the first statement in a cata­
loged procedure only if you want to assign defaults.
Generally, you should assign defaults to every symbol­
ic parameter in a procedure to limit the amount of
coding necessary each time the procedure is called. For
details see "Assigning Values to and Nullifying Sym­
bolic Parameters," later in this section.

Caution Concerning Leading and Trailing Com-
mas: All symbolic parameters must be assigned values
or nullified before the procedure is executed. (When
you write a procedure, you can assign default values to
the symbolic parameters, or the programmer can assign
values when he calls the procedure; for details, see
"Assigning Values to and Nullifying Symbolic
Parameters", later in this section.) When a symbolic
parameter is nullified, a delimiter, such as a leading or
trailing comma, is not automatically removed. Only
when the symbolic parameter is a positional
subparameter followed by other subparameters should
the comma remain. In other cases, the remaining com­
ma causes a syntax error.

For example, you code for a unit request:

UNIT=(2314,&MORE,DEFER)

If &MORE is nullified, the comma before it must re­
main, since the unit count subparameter is positional
and a comma must indicate its absence if other subpar­
ameters follow. When &MORE is nullified, the parame­
ter appears as:

UNIT=(2314"DEFER)

However, if you code:

VOLUME=SER=(111111,&SERNO)

and &SERNO is nullified, a leading comma remains and
causes a JCL syntax error. If a symbolic parameter is a
positional parameter followed by other parameters in
the statement, such as

//DEFINE DD &POSPARM,DSN=ATLAS,DISP=OLD

the comma remains at the beginning of the operand
field if &POSPARM is nullified and again causes a syntax
error.

In these cases, you should not code the comma.
When a symbolic parameter follows information that
does not vary, such as in
VOLUME=SER=(1111 1l,&SERNO), you do not have to
code any delimiter. The system recognizes the symbol­
ic parameter when it encounters the single ampersand.
F or this example, you would code:

VOLUME=SER=(111111&SERNO)

When a value is assigned to the symbolic parameter, a
comma must be included in the value, that is,
SERNO= 1,222222 I. (Since the comma is a special char­
acter, the value is enclosed in single apostrophes. For
rules on when special characters must be enclosed in
apostrophes, see the OS/VSl JCL Reference; listed in
the Preface.)

When a symbolic parameter precedes information
that does not vary, a period may be required after the
symbolic parameter to distinguish the end of the sym­
bolic parameter from the beginning of the information
that does not vary. A period is required after the sym­
bolic parameter when the character following the sym­
bolic parameter is one of these:

• Alphabetic

• Numeric

• Period

• One of the three national characters (#, @, or $).

The system recognizes the period as a delimiter and the
period does not appear in the procedure after the sym­
bolic parameter is assigned a value or nullified. (A
period appears after the value when two consecutive
periods are coded.)

Therefore, you should place a period after a symbol­
ic parameter that stands for a positional parameter
followed by other parameters in the statement:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

If &POSPARM is nullified, the statement appears as:

//DEFINE DD DSN=ATLAS,DISP=OLD

Chapter 2: Descriptions of JCL Services 2-49

When you assign a value to &POSPARM, you must in­
clude a comma:

POSPARM='DUMMY,'

These rules are in effect whenever you concatenate a
symbolic parameter with information that does not
vary. For example, placing a symbolic parameter after
information that does not vary:

• DSNAME=LlBRARY(&MEMBER)

• DSNAME=USERLlB.&LEVEL

In these examples, the system recognizes the symbolic
parameter when it encounters the &.

And placing a symbolic parameter before informa­
tion that does not vary:

• PARM=&OPTION+15

&OPTION is not followed by period because of the
+.

• DSNAME=&QUAL.246

The period is required because a numeric charac­
ter follows the symbolic parameter.

• DSNAME=&DOCNO .. TXT

The period is required because a period follows
the symbolic parameter. A single period appears
in the results.

You can also define two or more symbolic parame­
ters in succession without including a comma, for ex­
ample, PARM=&OECK&COOE. If a comma is desired in
the results, a comma must then be included in the
value assigned to the symbolic parameter.

Assigning Values to and Nullifying Symbolic Par­
ameters
When a procedure containing symbolic parameters is
used, each symbolic parameter must either be assigned
a value or nullified. Symbolic parameters are assigned
values or nullified in one of two ways:

• The programmer who uses the procedure codes
the symbolic parameter on the EXEC statement
calling the procedure, either assigning it a value or
nullifying it.

• The programmer who writes the procedure assigns
a default value to or nullifies the symbolic param­
eter on the PROC statement, which must be the
first statement in an in-stream procedure and can
be the first statement in a cataloged procedure.

The default assigned to a symbolic parameter on a
PROC statement is overridden when that symbolic par­
ameter is assigned a value or nullified on the EXEC
statement that calls the procedure.

2-50 OS/VS I JCL Services

Default values are not necessarily assigned to sym­
bolic parameters in a procedure. Before using any
procedure, you must find out what symbolic parame­
ters are used, the meaning of each symbolic parameter,
and what default, if any, is assigned. The PROC state­
ment is optional in cataloged procedures; if the PROC
statement is riot included, no default values can be
assigned to symbolic parameters in the procedure.

You need not code the symbolic parameters in any
specific order when you assign values to or nullify
them.

Assigning a Value to a Symbolic Parameter: To
assign a value to a symbolic parameter, you code:

symbolicparameter=value

Omit the ampersand that precedes the symbolic param­
eter in the procedure. For example, if the symbolic
parameter &NUMBER appears on a DO statement in the
procedure, code NUMBER=value on the PROC state­
ment (if you are writing the procedure and assigning
defaults) or on the EXEC statement that calls the proce­
dure (if you are using the procedure and want this
value to be in effect only for the current execution of
the procedure).

The rules for assigning values to symbolic parame­
ters are:

• The length of the value you assign is limited only
in that the value cannot be continued onto anoth­
er statement. However, when a symbolic parame­
ter is concatenated with other information (for
example, a data set name is
LIBRARY.&DEPT .. MACS), the combined length of
the value you assign and the concatenated inform­
ation cannot exceed 120 characters.

• If the value contains special characters, enclose
the value in apostrophes (the enclosing apos­
trophes are not considered part of the value). If
the special characters include apostrophes, each
must be shown as two consecutive apostrophes.

• If more than one value is assigned to a symbolic
parameter as a default on the PROC statement,
only the first value encountered is used; likewise,
if more than one value is assigned to a symbolic
parameter on an EXEC statement, only the first
value encountered is used.

• If a symbolic parameter is a positional parameter
followed by other parameters in the statement, it
should be followed in the procedure by a period
instead of a comma; for example:

//DEFINE DD &POSPARM.DSN=ATLAS,DISP=OLD

Symbolic parameters that are keyword subparame­
ters should appear in the procedure without a preced­
ing comma; for example:

VOLUME=SER=(111111&SERNO)

This is necessary so that, if the symbolic parameter is
nullified, a leading or trailing comma does cause a JCL

syntax error. (For a discussion of this, see "Caution
Concerning Leading and Trailing Commas," earlier in
this section.)

In these cases, you must include a comma when you
assign a value to the symbolic parameter, that is,

POSP ARM= 1 DUMMY, 1

SERNO=',222222 1

Since the comma is a special character, the value must
then be enclosed in apostrophes.

Nullifying a Symbolic Parameter: To nullify a
symbolic parameter, code:

symbolic parameter=

Omit the ampersand that precedes the symbolic param­
eter in the procedure and do not follow the equal sign
with a value.

For example, a DD statement in an in-stream proce­
dure named TIMES is:

11008 DDDSN=DATA,DISP=(OLD,&DISP,KEEP)

If you are writing the procedure and want to nullify
&DISP as a default on the PROC statement, code:

IITIMES PROC DISP=

If you are calling the procedure, and no default was
assigned to &DISP, or if &DISP was assigned a value on
the PROC statement, you would nullify the parameter

on the EXEC statement that calls the procedure by cod­
ing:

IICALL EXEC TIMES,DISP=

Example of a Procedure Containing Symbolic Par­
ameters
The cataloged procedure named PAYROLL contains the
following statements:

II PROC DEPT=D58,GROUP=PGMRA,
II DEVICE=2314,
II VOLCNT=2,SERNO=,
II POSPARM='DUMMY,'
IISTEP1 EXEC PGM=GATHER
IIDD1A DO DSNAME=FILE.&DEPT .. CLASSA,
II DISP=OLD
IISTEP2 EXEC PGM=DEDUCT
IIDD2A DO DSNAME=MEDICAL(&GROUP),
II DISP=MOD
IIDD2B DO DSNAME=LIST,UNIT=&DEVICE,
II VOL= (, , & VOLCNT)
IISTEP3 EXEC PGM=COMPUTE
IIDD3A DO DSNAME=MASTER,UNIT=2314,
II VOL=SER=(111111&SERNO)
IIDD3B DO &POSPARM.SYSOUT=A

The PROC statement is included in order to assign de­
faults to the symbolic parameters in the procedure.

When using this procedure, you want to override the
following symbolic parameters and assign these values:

&GROUP

&VOLCNT

&SERNO

&POSPARM

CLERK

3

222222

nullify

On the EXEC statement that calls the procedure, you
would code:

IICALL EXEC PAYROLL,GROUP=CLERK,VOLCNT=3,
II SERNO=' ,222222 1 ,POSPARM=

Chapter 2: Descriptions of JCL Services 2-51

2-52 OSjVSl JCL Services

The following terms are defined as they are used in
this manual. If you do not find the term you are
looking for, refer to the Index or to the IBM Data
Processing Glossary, listed in the Preface.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its defini­
tions from the American National Standard Vocabu­
lary for Information Processing (Copyright C 1970
by American National Standards Institute, Incorpo­
rated), which was prepared by Subcommittee X3K5

on Terminology and Glossary of American National
Standards Committee X3. ANSI definitions are mark­
ed with an *.

allocation/termination messages. messages produced by the
system concerning allocation of resources, disposition of data sets,
and termination of job steps and the job.

automatic restart. a restart that takes place during the current
run, that is, without resubmitting a job; an automatic restart can
occur within a step or at the beginning of a step. Contrast with
deferred restart.

backward reference. a facility of the job control language that
permits you to copy information from, or refer to, DO statements
that appear earlier in the job.

catalog. the collection of all data set indexes that are used by
the control program to locate a volume containing a specific data
set.

cataloged data set. a data set that is represented in an index or
hierarchy of indexes in the system catalog; the indexes provide
the means for locating the data set.

cataloged procedure. a set of job control statements that has
been placed in a partitioned data set called the procedure library
and that can be retrieved by coding the name of the procedure on
an execute (EXEC) statement or started by a START command.

checkpoint data set. a sequential or partitioned data set con­
taining a collection of records (called checkpoint entries) that
contain the status of a job and the system at the time the records
are written. These records provide the information necessary for
restarting a job without having to return to the beginning of the
job.

checkpoint restart. the process of resuming a job at a check­
point within the job step that was abnormally terminated. The
restart can be automatic or deferred, where deferred restart in­
volves resubmitting the job. Contrast with step restart.

checkpoint/restart facility. a facility for restarting execution of
a program at some point other than at the beginning, after the
program was terminated due to a program or system failure. A
restart can begin at a checkpoint within a job step or at the begin­
ning of a job step.

command statement. a job control statement that is used to

Glossary

issue commands to the system through the input stream.

comment statement. a job control statement used to include
information that may be helpful in running a job or reviewing an
output listing.

concatenated data sets. a group of logically connected data sets
that are treated as one data set for the duration of a job step.

data definition (DO) statement. a job control statement that
describes a data set associated with a particular job step.

data management. a major function of the operating system
that involves organizing, cataloging, locating, storing, retrieving,
and maintaining data.

data set. the major unit of data storage and retrieval in the
operating system, consisting of a collection of data in one of
several prescribed arrangements and described by control inform­
ation to which the system has access.

dedicated data set. a data set assigned to an initiator that is
allocated space when the initiator is started; every job step run­
ning under the initiator can use the dedicated data set as a tempo­
rary data set.

deferred restart. a restart performed by the system on resub­
mission of a job by the programmer; deferred restart can begin
within a step or at the beginning of a step. Contrast with auto­
matic restart.

delimiter statement. a job control statement used to mark the·
end of data.

direct system output (OSO) writer. a job scheduler function
that controls the writing of a job's output data sets directly to an
output device during execution of the job.

dispatching priority. a number assigned to tasks, used to deter­
mine the order in which they will use the central processing unit.

disposition processing. a function performed by the initiator at
the end of a job step to keep, delete, catalog, or uncatalog data
sets, or pass them to a subsequent job step, depending on the data
set status or the disposition specified in the DISP parameter of
the DO statement.

dummy data set. a data set for which operations such as disposi­
tion processing, input/output operations, and allocation are by­
passed.

*dump. (I) to copy the contents of all or part of storage, usually
from an internal storage into an external storage. (2) the data
resulting from the process as in (I).

execute (EXEC) statement. a job control statement that marks
the beginning of a job step and identifies the program to be exe­
cuted or the cataloged or in-stream procedure to be used.

external page storage. the portion of auxiliary storage that is
used to contain pages.

Glossary G-l

folding. a technique used with the universal character set (UCS)
feature on an impact printer to allow each of the 256 possible
character codes to print some character on a chain or train with
fewer graphics. For example, it allows the printing of uppercase
graphic characters when lowercase are not available in the charac­
ter array on the chain or train.

forms control buffer (FCB). a buffer that is used to store verti­
cal formatting information for printing, each position correspond­
ing to a line on the form.

generation data group (GDG). a collection of data sets that are
kept in chronological order; each data set is called a generation
data set.

generation data set. one generation of a generation data group.

group name. a generic name for a collection of I/O devices, for
example, DISK or TAPE.

indexed sequential data set. a data set in which each record
contains a key that determines its location. The location of each
record is computed through the use of an index.

initiator. the job scheduler function that selects jobs and job
steps to be executed, allocates input/output devices for them,
places them under task control, and at completion of the job,
supplies control information for writing job output on a system
output unit.

initiator procedure. the cataloged procedure that controls an
initiator.

input queue. a queue (waiting list) of job definitions on direct
access storage arranged in order of assigned job class and as­
signed priority.

in-stream procedure. a set of job control statements placed in
the input stream that can be used any number of times during a
job by naming the procedure on an execute (EXEC) statement.

job. a collection of related problem programs, identified in the
input stream by a JOB statement followed by one or more EXEC
and DD statements.

job class. anyone of a number of job categories that can be
defined by the installation to classify jobs. By classifying jobs and
directing initiators to initiate specific classes of jobs, it is possible
to control the mixture of jobs that are performed concurrently.

job class queue. a waiting list of job definitions within the input
queue in which jobs assigned the same class are arranged in order
of priority; jobs with the same class and priority are placed in a,
first-in-first-out order.

job control language (JCL). a high-level programming lan­
guage used to code job control statements.

*job control statement. a statement in a job that is used in
identifying the job or describing its requirements to the operating
system.

job priority. a value assigned to a job that, together with an
assigned job class, determines the priority to be used in schedul­
ing the job and allocating resources to it.

G-2 OS/VSI JCL Services

job (JOB) statement. the job control statement that identifies
the beginning of a job. It contains such information as the name
of the job, an account number, and the class and priority assigned
to the job.

job step. a unit of work associated with one processing program
or one cataloged procedure and related data. A job consists of
one or more job steps.

job step task. a task that is initiated by an initiator in accord­
ance with specifications in an execute (EXEC) statement.

keyword parameter. a parameter that consists of a keyword,
followed by one or more values.

library. a partitioned data set; see private library, system li­
brary, temporary library.

mass storage system (MSS). a storage system made up of a
library of tape cartridges, a set of direct-access volumes, and a
mechanism to transfer data between the two.

mutually exclusive parameters. parameters that cannot be
coded on the same job control statement.

nonpageable dynamic area. an area of virtual storage whose
virtual addresses are identical to real addresses; it is used for
programs or parts of programs that are not to be paged during
execution.

nonsharable volume. a volume that cannot be assigned to two
or more data sets.

nonspecific volume request. a request that allows the system to
select suitable volumes.

nontemporary data set. a data set that exists after the job that
created it terminates.

null statement. a job control statement used to mark the end of
a job's control statements and data.

output class. anyone of up to 36 different categories, defined at
an installation, to which output data produced during a job step
can be assigned. When an output writer is started, it can be di­
rected to process from one to eight different classes of output
data.

output listing. a form that is printed at the end of a job that
contains information such as job control statements used by the
job, diagnostic messages about the job, data sets created by the
job, or a dump.

page. a fixed-length block of instructions, data, or both, that
can be transferred between real storage and external page storage.

partition. see virtual storage partition.

partitioned data set. a data set in direct access storage that is
divided into partitions, called members, each of which can con­
tain a program or part of a program. Each partitioned data set
contains a directory (or index) that the control program can use to
locate a program in the library.

passed data set. a data set allocated to a job step that is not
deallocated at step termination but that remains available to a
subsequent step of the same job.

PEND statement. a job control statement used to mark the end
of an in-stream procedure.

permanently resident volume. a volume that cannot be physi­
cally demounted or that cannot be demounted until it is varied
offline (that is, removed from the control of the central processing
unit).

positional parameter. a parameter that must appear in a speci­
fied order.

private library. a user-owned library that is separate and dis­
tinct from the system library.

private volume. a mounted volume that the system can allocate
only to a data set for which a specific volume request is made.

PROC statement. a job control statement that must mark the
beginning of an in-stream procedure; it can also be used, in both
cataloged and in-stream procedures, to assign values to symbolic
parameters in the procedure.

procedure library. a partitioned data set containing cataloged
procedures; the IBM-supplied procedure library is named
SYS 1.PROCLlB.

procedure step. that' unit of work associated with one process­
ing program and related data within a cataloged or in-stream
procedure. A cataloged or in-stream procedure consists of one or
more procedure steps.

qualified name. a data set name that is composed of mUltiple
names separated by periods (e.g., A.B.C.). For a cataloged data
set, each name corresponds to an index level in the catalog.

queue. a waiting lint: or list formed by items in a system waiting
for service; for example, tasks to be performed or output to be
written by a writer.

reader procedure. the cataloged procedure that controls the
input stream reader.

real storage. the storage of a system/370 computing system
from which the central processing unit can directly obtain instruc­
tions and data, and to which it can directly return results.

remote entry services (RES). the functions added to the job
entry subsystem that allow servicing of remote devices by the job
entry subsystem. These services allow jobs and their associated
input and output to be entered from remote devices, processed at
the central system, and then transmitted back to remote devices.

reserved volume. a volume that remains mounted until the
operator issues an UNLOAD command.

restart facility. see checkpoint/restart facility.

return code. a value placed in the return code register at the
completion of a program. The value is established by the user
and may be used to influence the execution of succeeding pro­
grams or, in the case of an abnormal end of task, may simply be
printed for programmer analysis.

segment. a continuous 64K area of virtual storage, which is
allocated to a job or system task.

specific volume request. a request for volumes that informs the
system of the volume serial numbers.

supervisor. the part of the control program that coordinates the
use of resources and maintains the flow of CPU operations.

symbolic parameter. a symbol preceded by an ampersand that
stands for a parameter or the value assigned to a parameter or
subparameter in a cataloged or in-stream procedure. Values are
assigned to symbolic parameters when the procedure in which
they appear is called.

system generation. the process of using an operating system to
assemble and link together all of the parts that constitute another
operating system.

system library. a partitioned data set named SYS l.LlNKLlB
that contains frequently used programs and programs used by the
system.

system output device. a device assigned to record output data
for a series of jobs.

system output writer. a job scheduler function that writes
output data sets onto a system output device, independently of the
programs that produced the data sets.

SYS1.LINKLIB data set. see system library.

SYS1.PROCLIB data set. see procedure library.

table reference character. a numeric character (0, 1, 2, or 3)
corresponding to the order in which the character arrangement
table names have been specified with the CHARS keyword.

task. a unit of work for the central processing unit from the
standpoint of the control program; therefore, the basic multipro­
gramming unit under the control program.

temporary data set. a data set that is created and deleted in the
same job.

temporary library. a library that is created and deleted within a
job.

time slicing. an optional feature that can be used to prevent a
task from monopolizing the central processing unit and thereby
delaying the assignment of CPU time to other tasks.

unit address. the three-character address of a particular device,
specified at the time a system is installed; for example, 191 or 293.

universal character set (UCS) feature. a printer feature thRt
permits the use of a variety of character arrays.

virtual storage. addressable space that appears to the user as
real storage, from which instructions and data are mapped into
real storage locations. The size of virtual storage is limited by the
addressing scheme of the computing system and by the amount of
auxiliary storage available, rather than by the actual number of
real storage locations.

Glossary G-3

virtual storage partition. a division of the dynamic area of
virtual storage, established at system generation, that is allocated
to a job step or a system task.

volume. that portion of an auxiliary storage device that is acces­
sible to a single read/write mechanism.

volume table of contents (VTOC). a table on a direct access
volume that describes each data set on the volume.

G-4 OS/VS I JCL Services

workstation. a terminal device that mayor may not be a CPU.
At a workstation, an operator can connect into a central system
via LOGON, enter jobs, and receive output.

writer procedure. the cataloged procedure that controls the
output stream writer.

++ 2-48
+/ 2-48
++* 2-48
&

coding to use dedicated data set 2-28
identifying symbolic parameter 2-48

&&
identifying temporary data set 2-25

*parameter on DO statement
not used in cataloged or in-stream procedures 2-44

*** 2-48

abnormal termination dump, requesting 2-36
abnormal termination of a step

default disposition processing 2-24
requesting a dump 2-36
restarting the job 2-5 - 2-8
conditional data set disposition 2-22
tests for conditional execution of job steps 2-3 - 2-5

absolute track technique 2-34
ABSTR subparameter of SPACE parameter 2-17, 2-34
adding a cataloged procedure to a library 2-44
adding DO statements to a procedure 2-32, 2-47
adding members to a private library 2-26
adding parameters to JCL statements

on DO statements 2-46, 2-47
on EXEC statements 2-45, 2-46

adding records to a data set
requesting exclusive control 2-24

additional devices, requesting 2-12
additional space for a data set, requesting

SPACE parameter 2-14
SPLIT parameter 2-19
SUBALLOC parameter 2-21

address, unit 2-12
AOORSPC parameter 2-3
AFF sub parameter of UNIT parameter 2-13

cannot be coded for new data set 2-13
ALIGN subparameter of FCB parameter 2-42
alignment of forms, requesting

with ALIGN subparameter 2-42
with VERIFY subparameter 2-42

allocating space for data sets
SPACE parameter 2-14 - 2-19
SPLIT parameter 2-19,2-20
SUBALLOC parameter 2-21

allocation/termination messages
definition G-l
requesting listing 2-36

ampersand
coding as special character 2-48
coding to use dedicated data set 2-29
identifying symbolic parameter 2-48
identifying temporary data set 2-25

apostrophes
as special characters 2-50
to enclose values 2-50

assigning data sets to the same unit
(see unit affinity)

assigning data sets to the same volume
(see volume affinity)

assigning job class and priority using ISSP 2-2
assigning jobs to a job class 2-1, 2-2
assigning messages to an output class 2-36, 2-37
assigning output classes using ISSP 2-38
assigning output data sets to an output class 2-37
assigning priority to a job 2-1
assigning specific tracks to a data set 2-17

assigning values to and nullifying
symbolic parameters 2-50, 2-51

assigning values to symbolic parameters
as default 2-49, 2-50
caution concerning use of commas 2-49
rules for assigning values 2-49
when procedure is called 2-48

associated data sets (on diskette) 2-35
authorization values

controlling the routing of data sets 2-42
automatic checkpoint restart 2-5

system action if uncorrectable error 2-5
automatic restart 2-5

definition G-I
system action if uncorrectable error 2-5

automatic step restart 2-5
system action if uncorrectable error 2-5

average block length of data in space request
(see block length subparameter)

A II character set 2-41

backward reference
definition G-I
resolving for deferred restart 2-7

basic request: unit of measurement and primary
quantity 2-14

basic sequential access method (BSAM)
used to write a dummy data set 2-28

BSAM
(see basic sequential access method)

BLKSIZE subparameter
when making a secondary space request 2-15

block length subparameter
SPACE parameter 2-14

must be specified to use dedicated data set 2-29
SPLIT parameter 2-19
SUBALLOC parameter 2-21

block size of data, in a secondary space request
(see BLKSIZE subparameter)

bursting of output, 3800 2-42, 1-7
burster-trimmer-stacker feature, 3800 2-42
bypassing data set allocation

defining a dummy data set 2-28
bypassing disposition processing

defining a dummy data set 2-28
bypassing I/O operations

defining a dummy data set 2-28
bypassing job steps

COND parameter 2-4,2-5

calling a cataloged procedure 2-45
calling an in-stream procedure 2-45
catalog

definition G-l
cataloged data set

definition G-l
generation data set 2-29 - 2-32

label information 2-30
unit information 2-30, 2-31
retrieving 2-30

specifying unit and volume information 2-12, 2-13
cataloged procedure

adding to procedure library 2-44
allowing for changes 2-45
D D statement

adding 2-47
modifying parameters on 2-46, 2-47

definition G-l

Index

Index 1-1

duration of changes 2-45 - 2-47
list of related JCL services 1-8
output listing

identification of statements on 2-48
requesting 2-36

using 2-45
using symbolic parameters 2-48 - 2-51
writing 2-44, 2-45

cataloging a data set
CATLG subparameter of DISP parameter 2-22

cataloging a passed data set
as conditional disposition in event of restart 2-8

CATLG subparameter of DISP parameter 2-22
changing a data set

requesting exclusive control 2-24
channt:~ programs, active 2-3
character set codes 2-41
character sets, requesting 2-41
checkpoint data set 2-6

definition G-I
checkpoint entries in checkpoint data set

written automatically by system 2-6
checkpoint restart

automatic 2-5
deferred 2-5
definition G-I

checkpoints, establishing 2-5
checkpoint/restart facility

definition G-I
using 2-5 - 2-8

CHKPT macro instruction 2-5
CLASS parameter on JOB statement 2-1
command statement I-I

definition G-I .
SEND command 2-43

commas, with symbolic parameters 2-49
comment statement I-I

definition G-I
concatenated data sets

definition. G-I
modifying parameters in cataloged or in-stream
procedures 2-47

concatenating private libraries 2-27
concatenating symbolic parameters 2-50
concurrent use of a data set by several jobs 2-24
COND parameter

coded on JOB statement 2-4,2-7
coded on EXEC statement 2-4, 2-5
deferred restart backward reference 2-7

conditional disposition of data sets
assigned for restart facilities 2-7
specified in DISP parameter 2-21 - 2-23

conditional execution of job steps 2-4 - 2-7
conserving number of units used in job steps

unit affinity 2-13
conserving space on volumes

volume affinity 2-11
CONTlG subparameter of SPACE parameter 2-16
contiguous space

requesting 2-16
required for suballocated data sets 2-20

control of CPU by a task
determined with dynamic dispatching 2-1
determined with time slicing 2-1

control of nontemporary data sets, obtaining
exclusive control 2-24
shared control 2-24
when a job can receive control 2-24, 2-25

controlling output to a workstation 2-42
controlling the output listing of JCL statements,
messages, and dumps 2-36

controlling printing of data sets

1-2 OS/VS I JCL Services

length of form and lines per inch 2-40
special character sets 2·40

COPIES parameters 2-39
creating a multivolume data set

requesting volumes 2-11
creating and retrieving generation data sets 2-30, 2-31
creating and using private and temporary libraries 2-25 - 2-28
CYL subparameter .

SPACE parameter 2-14,2-19
SPLIT parameter 2-19

cylinders, requesting
(see CYL subparameter)

cylinders, sharing 2-19

data definition (DD) statement I-I
definition G-I
defining data in the input stream

not in cataloged or in-stream procedures 2-44
data management

definition G-I
routines used to write an output data set 2-38

DA T A parameter on DD statement
not used in cataloged or in-stream procedures 2-44

data set
definition G-l
disposition processing 2-21 - 2-23
system action when unavailable for job 2-24

data set disposition
modifying for restart 2-7
specifying in DISP parameter 2-21 - 2-23

data set integrity, insuring 2-24
data set integrity processing 2-24
data set label, model 2-30
data set name

temporary 2-25
nontemporary 2-25

data set status
MOD 2-22
NEW 2-22
OLD 2-22
SHR 2-22

DCB macro instruction
exclusive control of part of a data set 2-24

DCB parameter
BLKSIZE subparameter 2-15
coded when

creating generation data set 2-30
creating ISAM data set 2-32
defining a dummy data set 2-28
retrieving generation data set 2-31
retrieving ISAM data set 2-34
using a dedicated data set 2-29

KEYLEN subparameter 2-14
modifying 2-47
TRTCH subparameter 2-6
used to create private library 2-26
used to retrieve private library 2-26

DD statement
(see data definition statement)

dedicated data set
definition G-I
using for allocating a temporary data set 2-29

default disposition processing 2-24
default values

COPIES parameter 2-40
data set disposition

conditional disposition 2-24
normal disposition 2-24

data set status 2-24
job class (CLASS parameter) 2-1
job priority (PR TY parameter) 2-1
image identifier (FCB parameter) 2-42

message class (MSGCLASS parameter) 2-38
message level (MSG LEVEL parameter) 2-36
REG ION parameter 2-3
special character sets 2-40
symbolic parameters 2-49, 2-50

DEFER subparameter of UNIT parameter 2-12
deferred checkpoint restart 2-5 - 2-8

identifying step and checkpoint restarted 2-6
deferred mounting of volumes 2-12
deferred restart 2-5 - 2-8

definition G-l
deferred step restart 2-5 - 2-8

identifying step to be restarted 2-6
DEFINE command 2-14
defining and describing data sets

disposition processing of data sets 2-21 - 2-23
insuring data set integrity 2-24
list of related JCL services 1-4, 1-5
requesting space for a single data set 2-14
requesting space for a group of data sets 2-16
req uesting units and volumes 2-8 - 2-13

defining checkpoint data set 2-6
defining a dummy data set 2-28
defining symbolic parameters 2-48
delaying job initiation 2-1
delaying mounting of volumes 2-12
delaying the writing of an output data set 2-38
DELETE subparameter of DISP parameter

direct access data sets 2-22
tape data sets 2-22

deleting a data set
requested in DISP parameter 2-22

deleting new data sets
as conditional disposition in event of restart 2-7

deleting records from a data set
requesting exclusive control of the data set 2-24

deleting unused space for a data set 2.-17
delimiter statement 1-1

definition G-l
not used in cataloged or in-stream procedures 2-44

delimiting a positional symbolic parameter in a
procedure 2-49

DEST parameter 2-42
destination

description 2-42
specifying in DEST parameter 2:'42,2-43

determining the execution of a job step
coding COND on the EXEC statement 2-4

determining further execution of a job
coding COND on the JOB statement 2-4

device type
specifying in UNIT parameter 2-12

devices, requesting additional 2-12
direct access data sets

disposition processing 2-21 - 2-23
requesting shared control 2-24

direct access volumes
used to contain partitioned data sets 2-25
volume positioning for passed data sets 2-23

direct system output with job separators (DSQJS) 2-38
direct system output (DSO) writer 2-38

definition G-l
directory, requesting space for

SPACE parameter 2-16
SUBALLOC parameter 2-21

DISP parameter
coded when

creating generation data set 2-30
creating ISAM data set 2-32
creating private library 2-25
retrieving generation data set 2-31

retrieving IS AM data set 2-34
retrieving private library 2-25
storing a dump 2-37

conditional disposition 2-22, 2-23
data set status 2-22
normal disposition 2-22, 2-23
requesting control of a data set 2-24

disposing of data sets
when step terminates abnormally 2-22, 2-23
when step terminates normally 2-22, 2-23

disposition processing
conditional disposition 2-21 - 2-23
definition G-l
normal disposition 2-21 - 2-23

DSNAME parameter
coded when

creating generation data set 2-30
creating ISAM data set 2-32
retrieving generation data sets 2-31
retrieving ISAM data sets 2-34
using a dedicated data set 2-29

nontemporary data set 2-25
temporary data set 2-25
to create dummy data set 2-28
to create private library 2-26
to nullify DUMMY 2-47
to retrieve private library 2-27
to store a dump 2-37

DSNAME=NULLFlLE
used to create dummy data set 2-28
used when restarting a step 2-8

DSO writer 2-38
DSOJS 2-38
DSORG subparameter of DCB parameter

used when requesting space for an index 2-16
dummy data set

bypassing allocation 2-14
bypassing disposition processing 2-24
bypassing I/O operations 2-39
defining 2-28
definition G-l
unit separation with 2-12
used when restarting a step 2-8

DUMMY parameter
used to create dummy data set 2-28
used to override parameters 2-47
used when restarting a step 2-8

dump, requesting 2-37
definition G-l

dynamic dispatching 2-1

end-of-data-set exit
taken when reading a dummy data set 2-28

enqueueing on a data set 2-24
EVEN subparameter of COND parameter 2-5

ignored if error occurs during job scheduling 2-5
exclusive control of a data set

of part of a data set 2-24
overriding request for shared control 2-24
requesting 2-24

EXEC statement (see execute statement)
execute statement 1-1

definition G-l
within cataloged or in-stream procedure 2-44

executing a job step
requested in COND parameter 2-4

executing programs contained in libraries 2-25
temporary library 2-27

existing data sets
default disposition processsing 2-24
volume request 2-8

Index 1-3

exit list facility of DCB macro instruction
specifying address of forms control buffer 2-42

expiration date of a data set
when DELETE is coded 2-22
when KEEP is coded 2-22

extending a data set
requesting additional space 2-15
requesting multiple units 2-12

external page storage 2-3
definition G-l

FCB 2-40, 2-42
FCB images, standard 2-42
FCB parameter 2-42
FOLD subparameter of UCS parameter 2-41
folding 2-41
forms control buffer (FCB) 2.,.40, 2-42

definition G-2
forms control, requesting 2-42

GOG
(see generation data group)

generation data group (GOG)
definition G-2
specifying disposition of CA TLG 2-22

generation data set 2-30 - 2-32
creating 2-30
definition G-2
name 2-30
retrieving 2-31
specifying disposition of CA TLG 2-22
with deferred restart 2-32

generic device type
(see device type)

group name 2-12
definition G-2
used to define existing data set 2-12

group of data sets, requesting space
SPLIT parameter 2-20
SUBALLOC parameter 2-21

grouping devices
group name 2-12

grouping jobs with similar characteristics
purpose of job classes 2-1

grouping output with similar characteristics
purpose of output classes 2-37

G 11 character set 2-41

HOLD parameter 2-38
holding a data set 2-38
holding ajob until resources are available 1-7,2-1
how the system satisfies your primary request 2-15
H 11 character set 2-41

identifying an in-stream procedure 2-44
identifying the data set from which space is to be

suballocated 2-21
identifying the master data set 2-21
identifying procedure to be executed

cataloged procedure 2-45
in-stream procedure 2-45

identifying procedure statements on output listings
cataloged procedure 2-48
in-stream procedure 2-48

IEBUPDTE utility program
used to add cataloged procedure to library 2-44
used to modify a cataloged procedure 2-44

IEHPROGM utility
used to delete entry from catalog 2-22

image for printing a data set, requesting 2-42
image identifier, coding in FCB parameter 2-42
inactive job class 2-1

1-4 OS/VSl JCL Services

increasing efficiency of input/output operations
requesting unit separation 2-12

incremental quantity in space request
(see secondary quantity)

index, specifying space for 2-16
indexed sequential data set

assigning specific tracks 2-17
cannot code DEFER subparameter 2-12
creating 2-32
definition G-2
example of 2-35
requesting space for an index 2-16
retrieving 2-34
unit restrictions 2-33, 2-34

influencing when a job is selected for execution
assigning job class 2-1
assigning job priority 2-2
delaying job selection 2-2

informing the system of volume serial numbers
specific volume request 2-8

initiator
definition G-2
selecting jobs for execution 2-1

initiator procedure
adding dedicated data sets 2-28
definition G-2

input/output devices, requesting 2-12,2-13
input/output operations, bypassing 2-28, 2-39
input queue 2-1

definition G-2
installation specified selection parameters

(see ISSP)
installation-written writer routine, using 2-38
in-stream procedures

allowing for changes 2-44
assigning values to symbolic parameters 2-50
DO statement

adding DO statements 2-47
adding parameters 2-46
nullifying parameters 2-46
overriding parameters 2-46

definition G-2
duration of changes 2-46
EXEC statement

adding parameters to 2-45, 2-46
nullifying parameters 2-45, 2-46
overriding parameters 2-45, 2-46

modifying 2-45
related JCL services 1-4, 1-5
using 2-45
using symbolic parameters 2-48 - 2-51
writing 2-44, 2-45

insuring data set integrity 2-24
I/O load balancing

unit separation requests unnecessary 2-12
ISSP (installation specified selection parameters)

to assign a data set to an output class 2-38
example 2-39

to assign a job to a job class 2-2
example 2-2

to assign a message to an output class 2-36, 2-38
example 2-38

to assign a priority to a job 2-2
example 2-2

JCL
(see job control language)

job 1-1
definition G-2

job class 2-1
and dynamic dispatching 2-1
and time slicing 2-1

definition G-2
using ISSP 2-2

job class queue 2-1
definition G-2

job control language (JCL) I-I
definition G-2
list of JCL services 1-3 - 1-9

job control statements 1-1
definition G-2

job initiation, delaying 2-1,2-2
job priority 2-1

definition G-2
using ISSP 2-2

job scheduling 2-1, 2-2
job selection, influencing

assigning job class 2-1
assigning job priority 2-1
delaying job selection 2-2

job separators 2-38
JOB statement I-I

definition G-2
not used in cataloged or in-stream procedures 2-44

job step 1-1
conditional execution 2-4 - 2-6
definition G-2
naming, to test return code 2-4, 2-5

job step selection 2-1
job step task

definition G-2
JOBLIB DD statement

not used in cataloged or in-stream procedures 2-44
concatenating libraries 2-27
creating a private library 2-26
with STEPLIB DD statement 2-26
placement of statement in job 2-26
retrieving a private library 2-26

KEEP subparameter of DISP parameter
coded in event of restart 2-6 .
direct access data sets 2-22
implied with CATLG 2-22
tape data set 2-22

keeping a data set 2-6
KEYLEN subparameter of DCB parameter

space request in units of blocks 2-14
keylength

(see KEYLEN subparameter of DCB parameter)
keyword parameter I-I

definition G~2
LABEL parameter on DD statement

generation data set 2-31
ISAM data set 2-33

leading commas, with symbolic parameters 2-49
length restriction

concatenating a symbolic parameter 2-50
value assigned to symbolic parameter 2-50

lengthening a data set
MOD subparameter of DISP parameter 2-22
multivolume data set 2-11
requesting additional space 2-15
requesting exclusive control 2-24

library
definition G-2
private 2-25
system 2-25
temporary 2-25, 2-27

limitation of specifying unit address 2-11
limiting modification for restart

coding conditional dispositions for data sets 2-6
list of J CL services 1-3 - 1-9

listing of JCL statements, requesting 2-36
listing of procedure statements, requesting

cataloged procedure 2-36
in-stream procedure 2-36

LOGON operand of SEND command 2-43

main storage hierarchy support
REGION parameter specifications 2-3

mass storage system (MSS) 2-17
JCL service list 1-3, 1-5
req uesting space for a single data set 2-14

maximum number of copies of output data set 2-39
maximum number of units you can request 2-12
maximum number of volumes you can request 2-11
message class parameter 2-37
message level parameter 2-37
messages from your job, routing 2-37
messages, sending

(see also SEND command)
when routing output to workstations 2-43

minimizing access arm movement
sharing cylinders 2-19
suballocating space 2-21

MOD subparameter ofDISP parameter 2-22
requesting exclusive control of data set 2-24

model data set label 2-30
MODIFY command to change output classes 2-38
modifying a cataloged procedure

permanently modifying 2-45
when calling the procedure 2-46 - 2-48
with symbolic parameters 2-48 - 2-51

modifying control statements for deferred restart
checkpoint restart 2-6
step restart 2-7

modifying a data set
requesting exclusive control 2-24

modifying an in-stream procedure
when calling the procedure 2-46 - 2-48
with symbolic parameters 2-48 - 2-51

modifying parameters in a procedure
on DD statements 2-46 - 2-48
on EXEC statements 2-45, 2-46

mount attribute 2-9
MPROFILE parameter

to assign a data set to an output class 2-38
example 2-38

to assign a message to an output class 2-36
example 2-37

MSGCLASS parameter on JOB statement 2-36
MSGLEVEL parameter on JOB statement· 2-36
MSS (see mass storage system)
MSVGP parameter

without SPACE parameter 2-17
new MSS data sets 2-17

multiple copies of an output data set
requested with COPIES parameter 2~39
requested with WRITER command 2-40

mUltiple units, requesting
for group of data sets to be suballocated 2-20
when to request 2-12

multiple volumes, requesting
for group of data sets to be suballocated 2-20
for multivolume data set 2-11

multivolume data sets 2-11
mounting for deferred checkpoint restart 2-7
requesting units 2-12
requesting volumes 2-11

mutually exclusive parameters
definition G-2
used to override a parameter in a procedure 2-46

Index 1...:5

name of a data set
temporary data set 2-25
nontemporary data set 2-25

NC subparameter of RD parameter 2-6
NEW subparameter of DISP parameter

data set status 2-22
requesting exclusive control 2-24

new data sets
default disposition processing 2-24
modifying disposition for deferred step restart
on direct access devices

coding DEFER subparameter 2-12
specifying data set status 2-22
volume request 2-8

NR subparameter of RD parameter 2-6
nonpageable dynamic area 2-2

definition G-2
nonsharable volume

definition G-2
requesting for multivolume data set 2-10

nonspecific volume request 2-9
definition G-2
not between storage and public volumes 2-11
order of request in a job step 2-9
preparation for deferred checkpoint restart 2-7
satisfying space request 2-14

non temporary data sets
definition G-2
requesting control 2-24

normal disposition of data sets 2-21 - 2-23
notifying another destination of output data sets

being held 2-43
being routed to the destination 2-43

notifying the operator
when modifying a cataloged procedure 2-44
of jobs in held status 2-2
when you hold a data set 2-38

NOW operand of SEND command 2-43
null statement I-I

not used in cataloged or in-stream procedures 2-44
definition G-2

NULLFILE, data set name
used to create dummy data set 2-28

nullifying parameters in a procedure
DCB parameter 2-47
DUMMY parameter 2-47
on DO statements 2-47
on EXEC statements 2-45
symbolic parameters 2-50

as default 2-50
leading and trailing commas 2-49
when procedure is called 2-49

obtaining output
controlling output listing of JCL statements,
messages, and dumps 2-36

controlling output to a workstation 2-42
list of related JCL services 1-6 - 1-9
printer forms and print chain control 2-40 - 2-42
multiple copies of an output data set 2-39
writing output data sets 2-37 - 2-39

old data sets
specifying data set status 2-22

OLD subparameter of DISP parameter
data set status 2-22
requesting exclusive control 2-24

ONLY subparameter of COND parameter 2-5
ignored if error occurs during job scheduling 2-5

operator verification, requesting
of image 2-42
of special character set 2-41

optimizing CPU and I/O resources I-I

1-6 OS/VS I JCL Services

order of coding changes to procedure steps
on DD statements 2-47
on EXEC statements 2-45

order of nonspecific volume requests 2-9
order of searching libraries for a program 2-26

when libraries are concatenated 2-27
output

printing dumps 2-36
printing listing of JCL statements 2-36
printing output data sets 2-37
printing system messages 2-36

output class
definition G-2
for data sets 2-37
for messages 2-36

output data sets
routing to workstations 2-42
writing 2-37

output device
(see system output device)

output form
requested in SYSOUT parameter 2-40

output listing
definition G-2
identifying cataloged procedure statements 2-48
identifying in-stream procedure statements 2-48
preventing printout of data sets 2-38
requesting allocation/termination messages 2-36
requesting dump 2-36
requesting JCL and procedure statements 2-36

output writers
direct system output (DSO) writer 2-37
system output writer 2-38

output writer routine
IBM-provided 2-38
installation-written routine 2-38

overflow area 2-32
overriding symbolic parameter default values 2-50
overriding original secondary space request 2-15
overriding parameters in a procedure

on the DO statement 2-46
on the EXEC statement 2-45

overriding positional symbolic parameters 2-49

P subparameter of UNIT parameter 2-12
page 2-2 '

definition G-2
parallel mounting 2-12
parameters on EXEC statement

cannot be defined as symbolic parameters 2-48
P ARM parameter

modified in procedure 2-46
partition

(see virtual storage partition)
partitioned data set

definition G-2
requesting space for a directory 2-16

PASS subparameter of DISP parameter 2-23
volume positioning for direct access data set 2-23
volume positioning for tape data set 2-23

passed data set
data set disposition 2-23
definition G-3
modifying for deferred checkpoint restart 2-7
modifying for deferred step restart 2-7
on private volumes 2-10
without UNIT parameter coded 2-12

passing a private library
defined by JOBLIB DO statement 2-26
defined by STEPLIB DD statement 2-26

PEND statement I-I
definition G-3

use in in-stream procedure 2-44
percentage of tracks per cylinder to be allocated 2-19
permanently resident volume

definition G-3
private volume not demounted 2-10

PG M parameter
in cataloged or in-stream procedure 2-46
deferred restart backward reference 2-7
to retrieve from a private library 2-25
to retrieve from a temporary library 2-25

placement of jobs in input queues
job selection 2-1
jobs with same class and priority 2-1

placement of jobs in job class queues
job selection 2-1
jobs with same priority 2-1

placing a cataloged procedure in a library 2-44
placing an in-stream procedure in input stream 2-44
placing jobs in held status 2-2
positional parameter 1-1

definition G-3
DUMMY parameter 2-28
when a symbolic parameter 2-49

positioning within a multivolume data set 2-11
preventing job initiation 2-2
primary quantity, specifying

SPACE parameter 2-14
print chain control parameter

(see UCS parameter)
printer display of character set images, requesting

VERIFY subparameter of UCS parameter 2-41
printer forms and chain control 2-40 - 2-42
printers

character sets for 3211 printer 2-41
priority

(see job priority)
private library

creating 2-25
definition G-3
retrieving

to be used throughout a job 2-26
to be used in a specific step 2-27
using 2-25

PRIV ATE subparameter of VOLUME parameter 2-9, 2-10
private volume

definition G-3
requesting 2-9, 2-10
retaining 2-9, 2-10
specific requests for a direct access volume 2-9, 2-10
specific requests for a tape volume 2-9, 2-10

PROC statement 1-1
definition G-3
use in cataloged procedure 2-44
use in in-stream procedure 2-44
symbolic parameter default values 2-49

procedure end (PEND) statement 1-1, 2-44
definition G-3
use in in-stream procedure 2-44

. procedure library
definition G-3
IBM-supplied 2-44
installation-supplied 2-44

procedure statement
(see PROC statement)

procedure step 2-44
definition G-3

processing a multi-volume data set 2-11
processing output classes 2-38
PROFILE parameter

to assign ajob to ajob class 2-1,2-2
example 2-2

to assign priority to a job 2-1, 2-2
example 2-2

programs which require real storage 2-2
programs that can set return codes 2-3
programs that exist in a library, retrieving 2-25 - 2-27
programs that modify active channel programs

requesting real storage 2-3
providing unit information

(see UNIT parameter)
PR TY parameter 2-1
public volume

deleting data set on
purpose of job classes 2-1
purpose of output classes 2-37
P 11 character set 2-41

QSAM
(see queued sequential access method)

qualified data set name
definition G-3

queue
(see also input queue; job class queue)
definition G-3

queued sequential access method (QSAM)
used to write a dummy data set 2-28

R su bparameter of RD parameter 2-6
RD parameter of JOB statement 2-6
READ macro instruction

to get exclusive control of part of a data set 2-24
reader procedure

default for job class 2-1
default for job priority 2-2
definition G-3

reading a data set
requesting shared control 2-24

reading a dummy data set 2-28
reading a job into the system

placement on queues for job selection 2-1
reading a multivolume data set 2-11
real storage

definition G-3
requesting 2-2

REAL subparameter of ADDRSPC parameter 2-3
receiving a data set
REF subparameter of VOLUME parameter

making specific volume request 2-9
used to request volume affinity 2-11

REGION parameter 2-3
ignored if ADDRSPC=REAL is not coded 2-3
meaning if ADDRSPC=REAL is coded 2-3

relative generation number 2-30
relative track number

determining 2-17
placing a data set on a volume 2-17

RELEASE command 2-2
releasing a job from held status 2-2
releasing space on direct access volumes

when deleting a data set 2-22
unused space for a data set 2-17

RELEX macro instruction
to get exclusive control of part of a data set 2-24

remote entry services
assigning job priority 2-2
controlling output to a workstation 2-42

options available for output 2-42
definition G-3
su bmitting jobs to central computing center 2-42

removing a job from held status
RELEASE command 2-2

REPEAT parameter of WRITER command 2-40

Index 1-7

requesting
a secondary quantity 2-20
alignment of forms 2-42
contiguous space 2-16
forms control 2-42
multiple copies of an output data set 2-39
operator verification 2-41, 2-42
space for a group of data sets 2-16
space for a single data set 2-14
special character sets 2-40, 1-8
units and volumes for data sets 2-8
whole cylinders 2-15

requests for additional storage by a program 2-3
requests to read or write a dummy data set 2-28
RES .

(see remote entry services)
reserved volume

definition 0-3
private volume not demounted 2-9

restart facility
(see checkpoint/restart facility)

RESTART parameter on JOB statement 2-6
restarting a job step

at beginning of job step 2-5
within a step 2-5

resubmitting a job for execution
at beginning of a step 2-6

RETAIN subparameter 2-9
coded for multivolume data set 2-9
unnecessary to code for passed data set 2-11
with volume parameter 2-11

retaining a private volume 2-9
retention period

when DELETE is coded 2-22
when KEEP is coded 2-22

retrieving
existing private library 2-26
generation data set 2-31
indexed sequential data set 2-34
program in a library 2-25

return codes
assigned by user 2-3
definition 0-3
note about listing of return codes 2-4
standard 2-3

return code tests, specifying 2-4
rewinding tapes

when DELETE is coded 2-22
when KEEP is coded 2-22
when PASS is coded 2-23

RLSE sub parameter of SPACE parameter 2-17
RNC subparameter of RD parameter 2-6
ROUND subparameter of SPACE parameter 2-15
ROUTE command

to release data from held status 2-38, 2-43
routing output data sets

assigning an output class 2-37
coding the UNIT parameter 2-39
to another destination 2-43
to same device as messages 2-37

routing system messages
assigning an output class 2-36
to same device as data sets 2-36

running your job
conditional execution of job steps 2-4
job scheduling I-I
list of related JCL services 1-3
requesting storage for program execution 2-2
restarting a job 2-5 - 2-8

satisfying nonspecific volume requests
note concerning order of requests 2-9

1-8 OS/VSI JCL Services

satisfying space request, system action
primary quantity 2-15
secondary quantity 2-15
SPACE parameter 2-14
SPLIT parameter 2-19, 2-20
SUBALLOC parameter 2-21

scheduling jobs for execution 2-1, 2-2
SE command

(see SEND command)
secondary quantity for space, requesting

SPACE parameter 2-16 .
specifying block size when requesting blocks 2-15
SPLIT parameter 2-19, 2-20
SUBBALLOC parameter 2-21

segment
definition 0-3

selecting jobs for execution 2-1
delaying job selection 2-1, 2-2
job class 2-1,2-2
job priority 2-1

SEND command
coded on command statement 2-43
limit of message 2-43
including in input stream 2-43
notifying destination of output data set

being routed to it 2-43
placed in held status 2-43

specifying when message should be sent 2-43
sending messages to other destinations 2-43
sending messages to workstations 2-43

(see also SEND command)
S EP su bparameter of UN IT parameter 2-13
separating data sets on different devices 2-12
separating output from different jobs 2-38
sequence of DD statements

concatenated data sets 2-27
sharing cylinders between data sets 2-19
suballocating space 2-20

SER subparameter of VOLUME parameter
making specific volume request 2-9
used to request volume affinity 2-11

shared control of data sets, requesting 2-24
sharing cylinders between data sets

SPLIT parameter 2-19
sharing a data set

requested in DISP parameter 2-24
sharing a library 2-26
sharing an output device between jobs

DSO writer 2-38
system output writer 2-38

sharing units 2-13
sharing volumes 2-11
SHR subparameter of DISP parameter

data set status 2-22
requesting shared control 2-24
sharing a private library 2-27

simplifying frequently-used applications
using cataloged or in-stream procedures 2-45 - 2-48

SPACE parameter
creating a private library 2-26
defining an empty data set for suballocation 2-20
requesting space for a data set

letting the system assign specific tracks 2-14
requesting specific tracks 2-17

storing a dump 2-37
using a dedicated data set 2-29

space on a direct access volume, requesting
for a group of data sets

SPLIT parameter 2-19,2-20
SUBALLOC parameter 2-21

for a single data set
SPACE parameter

the system assignment of specific tracks 2-14
requesting specific tracks 2-17

for VSAM clusters or components 2-14, 2-17
special characters in symbolic parameters 2-48
special character set, requesting 2-40
special data sets

private and temporary libraries 2-25 - 2-34
defining a dummy data set 2-28
list of related JCL services 1-6
allocating a temporary data set 2-28, 2-29

special form for output
requested in SYSOUT parameter 2-40

specific tracks for a data set
letting the system assign 2-14
requesting 2-17

specific volume request
definition G-3
informing system of volume serial numbers 2-8
requesting parallel mounting 2-12
satisfying space request 2-15

specifying device for an output data set 2-39
specifying same volume serial numbers for data sets

(see volume affinity)
SPLIT parameter

requesting space for a group of data sets 2-18
unit request 2-12

stacker-burster-trimmer feature, 3800 2-42
standard FCB images 2-42
ST ART command

used by operator to start a writer 2-38
starting a writer 2-38
status of data sets

changed for deferred restart 2-7
specified in DISP parameter 2-22

step restart
automatic 2-5
deferred 2-5

STEPLIB DD statement
concatenating libraries 2-27
defining the system library 2-26
included in procedure step 2-44
precedence over JOBUB DD statement 2-27
used to retrieve a private library 2-26, 2-27

STOP command
used by operator to stop a writer 2-38

storage for program executi011-, requesting 2-2
SUBALLOC parameter

requesting space for a group of data sets 2-21
resolving deferred restart backward reference 2-7

suballocating space on one volume
SUBALLOC parameter 2-21
unit request 2-13

Subsystem Data Sets 2-35
supervisor

definition G-3
responsible for paging 2-3

suppressing processing of a data set
DSNAME=NULLFILE 2-28
DUMMY parameter 2-28

symbolic parameters
assigning values to and nullifying 2-50, 2-51

as default 2-51
when procedure is called 2-50, 2-51

defining 2-48 - 2-51
assigning defaults 2-49
use of leading and trailing commas 2-49
considerations for defining values as symbolic
parameters 2-48

preceding unvarying information 2-50
on EXEC statements in a procedure 2-48
two or more in succession 2-50

definition G-3
examples of 2-51
nullifying 2-51

SYSABEND DD statement 2-36
contents of dump 2-37

SYSCHK DD statement
defining checkpoint data set for deferred
checkpoint restart 2-6

ignored for deferred step restart 2-6
SYSOUT parameter

coding with UCS parameter 2-40
installation-provided writer routine 2-38
for output routed to workstation 2-42
output class 2-37
special form number 2-40
used to print a dump 2-37

system failure
resubmitting a job 2-5 - 2-8

system generation
definition G-3

system library 2-25
definition G-3

system messages, routing 2-37
system output device 2-37

definition G-3
system output writer 2-38

definition G-3
used to route output to workstations 2-42

SYSUDUMP DD statement 2-37
contents of dump 2-37

SYS l.LlNKLlB data set 2-25
(see also system library)

SYS l.PROCLlB data set 2-44
(see also procedure library)

task
definition G-3

TCAM JCL services, list of 1-9
telecommunications access method (TCAM)

list of J CL services 1-9
temporary data set

conditional disposition of DELETE 2-22
data set integrity processing unnecessary 2-22
defining to use dedicated data set 2-28, 2-29
definition G-3

temporary library
creating 2-27
definition G-3
using 2-27

termination before step begins execution
data set disposition processing 2-24

test to determine job or step execution
specified in COND parameter 2-4

TIME parameter
modified in procedure 2-46

time-dependent programs
requesting real storage 2-3·

time intervals for using CPU
dynamic dispatching 1-1
time slicing 1-1

definition G-3
tracks, requesting

in SPACE parameter
letting the system assign tracks 2-14

requesting specific tracks 2-17
trailing commas with symbolic parameters 2-49
trimmer-burster-stacker feature, 3800 2-42
TRK subparameter

of SPACE parameter 2-14
TRTCH subparameter of DCB parameter

specifying when defining checkpoint data set 2-6

Index 1-9

TSO
(see time sharing option)

type of control of non temporary data sets
exclusive 2-24
shared 2-24

TYPRUN=HOLD 2-2
T II character set 2-41

U CS parameter 2-41
coded with SYSOUT parameter 2-42
coded with UN IT parameter 2-42

unavailable data sets, system action 2-24
uncataloging a data set 2-23
UNCATLG subparameter of DISP parameter 2-23
unit

(see also UNIT parameter)
req uested in UN IT parameter 2-12

unit address 2-12
definition G-3

unit affinity
cannot be requested for new data sets 2-13
requested in UN IT parameter 2-12
requested with dummy data set 2-28

unit count subparameter 2-12
unit information, obtained from sources other than

UN IT parameter 2-12
UN IT parameter

coded when
creating generation data set 2-30
creating ISAM data set 2-32
retrieving generation data set 2-31
retrieving ISAM data set 2-34

coding with UCS parameter 2-42
creating private library 2-26
printing a dump 2-37
requesting multiple units 2-12
requesting units 2-12
requesting unit affinity 2-12
requesting unit separation 2-12
storing a dump 2-37
when not to code UN IT parameter 2-12

unit separation, requesting 2-12
unnecessary with I/O load balancing 2-12

units of blocks, requesting space in terms of
SPACE parameter 2-14

space equal to one or more cylinders 2-15
SPLIT parameter 2-19

universal character set (U CS) feature 2-41
definition G-3

use attribute 2-9
user identification, coding in DEST parameter 2-42
user label on data set

effect on space allocation 2-15
using cataloged and in-stream procedures 2-45
using fewer units

requesting unit affinity 2-12
using fewer volumes

requesting volume affinity 2-11
using symbolic parameters 2-48

V=R dynamic area
(see nonpageable dynamic area)

VERIFY subparameter
of FCB parameter 2-42
of U CS parameter 2-41

verifying character set image 2-41
verifying image of printer form 2-42
VIRT subparameter of ADDRSPC parameter 2-3
virtual storage 2-2

definition G-3
virtual storage partition

definition G-4

[-10 OS/VSl JCL Services

does not affect size of request for storage 2-3
volume .

(see also VOLUME parameter)
definition G-4'
requested in VOLUME parameter 2-8

volume affinity
requested using REF subparameter. 2-11
requested using SER subparameter 2-11
requested with dummy data set 2-28

volume count subparameter 2-11
VOLUME parameter

coded when
creating generation data set 2-30
creating ISAM data set 2-32
retrieving ISAM data set 2-34

creating private library 2-26
nonspecific volume requests 2-9
requesting private volumes 2-10
requesting volume affinity 2-11
requesting volumes for multivolume data set

on direct access devices 2-11
on tape 2-11

retaining private volumes 2-9
specific volume request 2-8

volume sequence number sub parameter 2-11
volume serial numbers, specifying 2-9
volume state

mount attribute 2-9
nonsharable attribute 2-10
use attribute 2-9

volume table of contents (VTOC) 2-22
definition G-4

volumes, requesting 2-8 - 2-10
(see also VOLUME parameter)
maximum number 2-11

VOLUME=REF
copying volume serial numbers 2-9
deferred restart backward reference 2-7

VSAM request for space 2-14, 2-18
VTOC

(see volume table of contents)

workstation
controlling output to 2-42

options available for output 2-42
definition G-4

WRITE macro instruction
exclusive control of part of a data set 2-24

writer
(see output writers)

WR[TER command 2-40
writer procedure

definition G-4
writing cataloged and in-stream procedures 2-44
writing a dummy data set 2-28
writing output data sets 2-37
writing output directly to the output device

direct system output (DSO) writer 2-38
writing system output

by direct system output (DSO) writer 2-38
by system output writer 2-38

XX 2-48
XX* 2-48
XI 2-48

3203-4 printer
printer form and character control 2-41
requesting alignment of forms 2-42
requesting forms control 2-42
requesting operator verification 2-41, 2-42, 1-8

req uesting special character sets 2-40, 1-8
321(printer

req uesting a special character set 2-40
requesting a specific image 2-42

3800 Printing Subsystem
high-density dump format 2-37

requesting multiple copies 2-40
printer form and character control 2-40 - 2-42

3850 Mass Storage System
(see mass storage system (MSS»

Index 1-11

GC24-51 00-4

-~--- - ---- -------- - - -~-----_ .. ----- _ ... -

®
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N. V. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U. s. A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N. V., U. s. A. 10601

~
()
r-
en
co
:2 o·
co en

!i
ro
z
o
en
c.v
"-I
o
I

c.v
m

