
GC24-5090-1

File No. S370-34

Systems OS /VS1 Planning and Use Guide

VS1 Release 2

Preface

This publication has two objectives. The Planning por­
tion provides guidance in selecting, planning for, and/
or evaluating OS/VSl (virtual storage). The Use portion
provides guidance in using some of the features or
functions of the system. The Planning portion is for use
by installation personnel who are familiar with IBM

System/360 and who are considering the installation of
an IBM System/370. The Use portion is directed to
system programmers who maintain and/ or extend the
system.

The Planning portion contains two sections: C on­
cepts and Considerations. The Concepts section briefly
describes the functions, features, and device support
provided by VSl. It also describes the operating princi­
ples of the system. The Considerations section contains
suggestions concerning selection of various options of
the control program and suggestions concerning oper­
ations in various modes (batch, teleprocessing, and
graphics).

Second Edition (January 1973)

Appendix A contains a brief theory of operation of
the system. A glossary of VSl terms is also provided.

The reader of the Planning portion should be famil­
iar with the IBM System/370 System Summary, GA22-
7001. The Introduction to Virtual Storage in System/
370, GR20-4260 will also be helpful, as will the OS/VS
Virtual Storage Access ~[ethod Planning Guide, GC26-
3799. For a complete list of available publications, see
the IBM System/360 and System/370 Bibliography,
GA22-6822.

The Use portion of the Guide contains information
on implementing and/ or extending some of the func­
tions of the system. Each section in the Use portion is
self-contained and deals with a separate capability or
function of the control program.

The reader of the Use portion is assumed to have
the prerequisite background in programming and sys­
tem maintenance required to implement the proce­
dures contained in the Guide.

This edition applies to Release 2 of OS/VS1 and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters. Any references that
are made to OS/VS2 appear for planning purposes only. Changes are continually
made to the information contained herein; before using this publication in con­
nection with the operation of IBM systems, consult the IBM System/360 and
Systeml370 Bibliography, GA22-6822, and the current SRL Newsletter for the
editions that are applicable and current.

Information on the Virtual Storage Access Method (VSAM) and the Dynamic
Support System (DSS) is included for planning purposes only until they are avail­
able. Consult your IBM Branch Office concerning the availability dates.

Level II of TCAM will not run under Release 2 of VSl. The TCAM information
in this book is included for planning purposes until the availability of TCAM
Level IV.

Summary of Amendments

For a detailed list of changes made in this edition, see page 3.

Changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

Requests for copies of IBM publications should be made to your IBM representa­
tive or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Programming Pub­
lications, Dept. G60, P.O. Box 6, Endicott, New York 13760. Comments become
the property of IBM.

© Copyright International Business ~fachines Corporation 1972, 1973

Use Guide Reorganization
The Use portion of the Planning and Use Guide has
been rearranged. The sections are now placed in
alphabetic sequence for easier access.

TCAM Compatibility Restrictions
Under Compatibility, Restrictions (planning por­
tion), the documentation for TCAM object decks
has been modified.

Level II of TCAM will not run under Release 2 of
VSl. The TCAM information in this book is included
for planning purposes until the availability of TCAM
Level iV.

VS 1 Supported Devices
Additional devices supported under VS1 are included
in the planning portion.

Automated System Initialization
An overview of the automated system initialization
feature is given in the planning section. A new sec­
tion, ASI, is added to the Use Guide.

Remote Entry Services (RES)
A planning overview of RES is included in the plan­
ning portion. Utilization of Reader/Writer proced­
ures by RES users is explained in section PRO of the
Use Guide. Information on vVTO/WTOR for RES
users is included in section SMI.

Missing Interruption Checker (MIC)
A brief deSCription of this program is given in the
planning portion. Additional information is given
under section FEA of the Use Guide.

V-R Area Spedflcation
The topic Virtual=Real Storage Availability has been
modified for V=R specification.

Automatic Partition Redefinition
In the planning portion of this manual, the topic
Partition Redefinition has been updated. In the use
portion, section FEA includes Automatic Partition
Redefinition.

Pageable System Queue Area (PSQA)
Virtual storage area for PSQA is shown in the plan­
ning portion in the figures for storage configurations.

12K Dump Area
Virtual storage for a 12K dump area is shown in the
figures for storage configurations in the planning
portion.

Partition Deactivation/ Reactivation
This new topic is included under Operating Con­
siderations in the planning portion of this manual.

Page Boundary Loading
Loading on page boundaries is briefly discussed
under General Considerations in the planning section.

Operator Commands
The new operator commands DUMP, MSGRT, and

Summary of Amendments
for GC24-5090-1

OS/VS 1, Release 2

STOPMN are listed under the topic Operator
Commands.

OS/MFT-OS/VS1 Differences
Section DIF has been updated to include additional
MFT-VS1 differences.

Dynamic Dispatching
This optional feature is explained in section FEA
of the Use portion.

Dynamic Support System (DSS) (for planning
purposes only)

DSS information is included in section FEA of the
Use Guide.

Greenwich Mean Time
This feature is explained in section F EA of the Use
Guide.

User Modify Logical Cylinder
Using this option is explained in section FEA of the
Use Guide.

ABEND Dump for Reader/Writer
DD statements for Reader/Writer ABEND dumps
are included in section PRO.

Procedure INITD
Section PRO contains an updated INITD procedure.

Checkpointing SYSOUT Data Sets
Information on this topic is included in section PRO.

Resideni Rouiines Opiion
Lists IEABLDOO, IEAIGGOO, and IEARSVOO (IBM­
supplied standard lists for BLDL, RAM, and RSVC)
have been modified in section RRO.

Output Separation
End of job output separators information has been
added to section SEP of the Use Guide.

i/O load Balancing
I/O load balancing for non-specific requests is in­
cluded in the Features and Options (FEA) section.

DEB Validity Checking
A brief explanation of this is given in section FEA.

Message Routing Changes
Changes for multiple-line WTO and miscellaneous
items have been made in section MSG.

Real Storage Restriction Removal
The OLTEP not supported has been removed for
144K systems.

Miscellaneous
Miscellaneous additions, improvements, and correc­
tions have been made throughout this manual.

Summary of Amendments 3

4 OS/VSl Planning and Use Guide

Introduction 9

Virtual Storage 9
Advantages of VSl Virtual Storage 9

Job Entry Subsystem ... 9
Compatibility 10

Restrictions .. 10
Real Storage Restrictions 10

The Planning Guide ... 10
The Use Guide 11

Terminology 11
Multiprogramming with a Fixed Number of Tasks 11
System Initialization 11
Partitions 11
Concurrent Operation 12
Task Switching 12

Concepts .. 13

Minimum System Storage and Device Requirements
Devices Supported by VSl
Features and Facilities

I Automated Initialization
Extended Multiprogramming Capabilities
Independent Job Scheduling
Virtual=Real Execution Facility
System Management Facilities (SMF)
Job jStep CPU Timing
Job Step CPU Time Limiting .. .
Wait Time Limiting
Checkpoint/Restart .
Recovery Management Support
Partition Redefinition
System Input Readers
Input Stream from Disk
System Output Writers
Direct System Output Writers
System Restart

I ~~~o~:~~~~~n~e;~i~~s··(RES) . :
Sequence of Operation
Principies of Operation

Partition Job Class Facility
System Management Facilities
Job/Step CPU Timing
Functions of the Control Program with VS 1

Job Management
Task Management
Data Management
Recovery Management

Control Program Organization
Resident Portion of the Control Program
Nonresident Portion of the Control Program

Virtual Storage Organization
Non-pageable Area
Pageable Area
System Input Readers
Problem Program Partitions
System Task Partitions
Virtual=Real Execution
Virtual=Real Storage Availability
System Output Writers

Checkpoint jRestart
Partition Redefinition

Partition Combination
Identity Change
Partition Recovery
Partition Definition Processing

13
14
15
15
15
16
16
16
16
16
16
16
16
16
16
16
17
17
17
18
18
18
21
21
21
22
22
22
22
22
23
23
23
24
24
25
25
25
25
27
27
27
29
29
29
29
30
30
30

Contents

Input Readers 31
Enqueueing Jobs by CLASS and PRTY 33

Job Initiation and Termination 33
Job Initiation 33
Job Termination 34

Direct System Output Writers 35
Output Writers 35
System Restart .. 36

Invoking System Restart .. 36
Jobs that Were Being Read In 37
Jobs on Input, Hold, and Output Queues 37
Jobs that Were Dequeued 37
System Output Processing 37

Standard and Optional Features 37

Considerations 39

General Considerations 39
Estimating Storage Requirements 39
Single Console vs. Multiple Consoles 39
P ARTITNS Macro Instruction 40
Page Boundary Loading 40
U sing Resident Reenterable Routines 40
Placing System Data Sets on Direct Access Devices 41

Blocking the Procedure Library 41
Sharing Direct Access Storage Devices (DASD)
with Other Systems .. 41

Choosing Number and Size of Partitions 41
Choosing Appropriate Job Classes 42

Default Job Class 42
Priority Scheduling wHhin Job Classes 42

Assigning Job Names 43
Formatting Problem Program Messages 43
Single Reader or Multiple Readers 43
Choosing System Output Writers 43

Choosing Direct System Output Writers 43
Use of Multiple Writers 44

A voiding System Interlocks 44
Data Set Integrity 44

Batch Processing 45
Choosing Number and Size of Partitions 45
Assigning Job Classes to Jobs 45
Assigning Partitions to Job Classes 45

Choosing Output Classes 45
Telecommunications 46

Choosing Number and Size of Partitions 46
Assigning Job Classes to Jobs 46
Assigning Partitions to Job Classes 46
VSl Telecommunications Compatibility 46

Graphics .. 47
Choosing Number and Size of Partitions 47
Assigning Job Classes to Jobs 47
Assigning Partitions to Job Classes 47
Using the Time-Slicing Feature 47
Graphics Support with VSl 47

Concurrent Peripheral Operations 48
Typical System Configurations 48

Systems with 128K Real Storage 48
Systems with 192K Real Storage 48
Systems with 384K Real Storage 48

Operating Considerations 48
Program Execution 49
Partition Definition .. 50
Partition Deactivation/Reactivation 50
Changing Output Classes 51
Handling Shared Direct Access Volumes 52
Restarting the System 52
Operator Commands 52

Contents 5

The Use Guide

Handling Accounting Information

Accounting Routines
Prerequisite Actions

Accounting Routine Conventions
Format :
Attribute
CSECT Name and Entry Point
Register Saving and Restoring
Entrances
Exit

Input Available to Accounting Routines
Output from Accounting Routines

Sample Accounting Routine
Inserting an Accounting Routine into the Control
Program

Insertion at System Generation
Insertion after System Generation

Accounting Data Set Writer
Linkage
Input
Specifying the SYSl.ACCT Data Set
Output
Use of ENQ/DEQ

ACC 1

ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 4
ACC 4
ACC 6

ACC 6
ACC 6
ACC 6
ACC 7
ACC 7
ACC 7
ACC 7
ACC 8
ACC 8

Automated System Initialization ASI 1

Advantages of Automated System Initialization
The Automated System Initialization Process
Implementation of Automatic Commands
Creating SYSl.PARMLIB Members ::::::::::

Naming Conventions for SYSl.PARMLIB
Members '" . '" .. ,

Formats of SYS l.P ARM LIB Automated
Initialization Members

Member (or Card Deck')' th~t' Li;t~ 'M~~b~r~'
to be Used

The System Parameters (NIPxxxxx) Member
The DEFINE Parameters (DFNxxxxx) Member ..
The Automatic Commands (CMDxxxxx)
Member

The Permanently Resident Volume List
Parameters (PRExxxxx) Member

The SMF Parameters (SMFxxxxx)
Member

The JES Reconfiguration Parameters (JESxxxxx)
Member

The SET Parameters (SETxxxxx) Member
The RTAM Parameters (RESxxxxx) Member

Performing Automated System Initialization
Processing Notes

The List of SYSl.PARMLIB Members to be Used ..
The System Parameters (NIPxxxxx) Member
The DEFINE Parameters (DFNxxxxx) Member
The SET Parameters (SETxxxxx) Member
The Automatic Commands (CMDxxxxx) Member

05/ MFT-OS jVS 1 Differences

ASI3
ASI3
ASI4
ASI4

ASI4

ASI4

ASI4
ASI 5
ASI5

ASI5

ASI 6

ASI6

ASI6
ASI6
ASI6
ASI 6
ASI 8
ASI8
ASI9
ASI9
ASI 9
ASI9

DIF 1

VS 1 Features and Options FEA 1

Alternate Path Retry (APR) FEA 3
Attach Function FEA 3
Attach Function Made Resident ., FEA 3
Automatic Partition Redefinition FEA 4
Automatic Volume Recognition (AVR) . : : : : : : : : :: FEA 4
Basic Direct Access Method (BDAM) FEA 4
Basic Indexed Sequential Access Method (BISAM) .. FEA 5
Basic Partitioned Access Method (BPAM) FEA 5
Basic Sequential Access Method (BSAM) FEA 5

6 OS/VS1 Planning and Use Guide

BLDL Table Made Non-Pageable ...
Channel Check Handler (CCH) .. '
Checkpoint Restart Facility
Consoles-Alternate and Composite Consoles
Options

Consoles-Multiple Consoles Support (MCS) ..
Conversational Remote Job Entry (CRJE) Facility
DEB Validity Checking
Device Independent Display Operator Console

FEA 6
FEA 6
FEA 6

FEA 7
FEA 7
FEA 9
FEA 9

Support (DIDOCS) FEA lO
Direct Access Volume Serial Number Verification FEA lO
Dynamic Device Reconfiguration (DDR) FEA lO
Dynamic Dispatching FEA 11
Dynamic Support Systems (DSS) FEA 12
Extract Function Made Resident FEA 13
Fetch Protect FEA 13
Graphic Programming Services (GSP, GAM) FEA 14
Greenwich Mean Time FEA 14
Identity Function Made Resident FEA 15
Indexed Sequential Access Method (ISAM) FEA 15
I/O Load Balancing FEA 15
Job Step Timing FEA 16
Machine Check Handler (MCH) FEA 16
Missing Interruption Checker , FEA 16
Multiple Wait Option FEA 17
On-Line Test Executive Program (OL TEP) FEA 17
Program Controlled Interrupt (PCI) FEA 18
Queued Indexed Sequential Access Method (QISAM) FEA 19
Queued Sequential Access Method (QSAM) FEA 19
Reenterable Load Modules Made Resident FEA 19
Resident Access Method Routines FEA 19
Shared DASD FEA 20
SPIE Routines Made Resident FEA 20
Storage Protection Option FEA 20
System Management Facilities (SMF) FEA 20
Telecommunications Option FEA 21
Time-Slicing Facility FEA 23
Trace Option FEA 24
Transient SVC Table FEA 24
Types 3 and 4 SVC Routines Made Resident FEA 25
User Modify Logical Cylinder Facility FEA 25
User-Added SVC Routines FEA 26
Validity Check Option FEA 27
Virtual Storage Access Method (VSAM) FEA 27
Volume Statistics Facility , FEA 28

JES Reconfigurability JES 1

JES Reconfigurability JES 3
JESPARMS Member in SYSl.PARMLIB JES 3
JESP ARMS Entries .. JES 3

Job Queue Format JQF 1

VSl Job Queue Formatting JQF 3
Logical Track Size-JOBQFMT JQF 3
Reserving Initiator Queue Records-JOBQLMT JQF 4
Reserving Records to Start a Writer and an Initiator-
JOBQTMT JQF 5

Message Routing Exit Routines MSG 1

Characteristics of MCS MSG 3
Writing a WTO/WTOR Exit Routine MSG 3

Programming Conventions for WTO jWTOR
Exit Routines

Messages that Don't Use Routing Codes
Adding a WTO/WTOR Exit Routine to the

MSG 4
MSG 6

Control Program .. ' MSG 6
Inserting the \VTO/WTOR Exit Routine MSG 6
\VTO/WTOR (Write to Operator/vVrite to Operator

with Reply) ~racro Instructions :\1SG 6

I

The Must-Complete Function
The ~lust-Complete Function

Scope
Requesting the Must-Complete Function
Operating Characteristics .
Programming Notes
Terminating the Must-Complete Function

The PRESRES Volume Characteristics List
The PRESRES Volume Characteristics

Creating the List
PRESRES Entry Format

Operational Characteristics
Programming Considerations

List

System Reader, Initiator, and Writer Cataloged

MUS 1

MUS 3
MUS 3
MUS 4
MUS 4
MUS 4
MUS 5

PRE 1

PRE 3
PRE 3
PRE 3
PRE 4
PRE 5

Procedures PRO 1

Reader, Initiator, and Output Writer Cataloged
PrOCedureS

Data Set Integrity for System Tasks
Reader Procedures

Procedure Requirements
The EXEC Statement
The P ARM Field in the EXEC Statement
of the Reader

DD Statement for the Input Stream
from a Local Device ...

DD Statement for the Input Stream
from a Remote Device

DD Statement for the Procedure Library
DD Statement for Storage Dump

Reader Procedure Used by Restart
Procedure Requirements

The EXEC Statement
DD Statement for the Input Stream
DD Statement for the Procedure Library .. .
DD Statement for the CPP Data Set

Initiator Procedures
IBM-Supplied Procedure
Procedure Requirements

The EXEC Statement
DD Statement for the Scheduler Work Area
Data Set (SW ADS) .. .

Dedicated Data Sets
How to Dedicate a Data Set
How to Get to Use a Dedicated Data Set

Procedure INITD
INITD Procedure Statements
The EXEC Statement
DD Statement for the Scheduler Work Area
Data Set (SW ADS)

DD Statements for the Dedicated Utility Data
Sets :

DD Statement for the Loadset Data Set
Use of Dedicated Data Sets by Processor Programs
for Utility Data Sets

Processor Program Library Data Sets as Dedicated
Data Sets

Disposition of Temporary Dedicated Data Sets
Output Writer Procedures

System Output Writers
Procedure Requirements

The EXEC Statement
DD Statement for the OUTPUT Data Set

for a Local Device .
DD Statement for Storage Dump
DD Statement for the OUTPUT Data Set
for a Remote Device

Direct SYSOUT Writer Procedures
The EXEC Statement
The DD Statement

Cataloging the Procedure

PRO 3
PRO 3
PRO 4
PRO 4
PRO 4

PRO 5

PRO 7

PRO 9
PRO 9
PRO 10
PRO 10
PRO 11
PRO 11
PRO 11
PRO 11
PRO 12
PRO 12
PRO 12
PRO 12
PRO 13

PRO 13
PRO 14
PRO 14
t'HU 15
PRO 16
PRO 17
PRO 17

PRO 17

PRO 18
PRO 18

PRO 18

PRO 19
PRO 20
PRO 21
PRO 21
PRO 21
PRO 21

PRO 23
PRO 24

PRO 25
PRO 25
PRO 26
PRO 26
PRO 27

Example of the Use of Symbolic Parameters in
Cataloged Reader, Writer, and Initiator Procedures ..

The PROC Statement
The START Command

Blocking the Procedure Library

PRO 28
PRO 29
PRO 29
PRO 29

Resident Routines Options RRO 1

BLDL and Resident Routines Feature
The Resident BLDL Table Option

Selecting Entries for the Resident BLDL Table
Table Size.
Frequency of Use

List IEABLDOO
Resident Reenterable Modules Options

The Resident Access Method Modules Option
List IEAIGGOO
List IEAIGGOI
Resident Link Library Modules Option
List IEAIGG02 ...
List IEAIGG03

The Resident SVC Routines Option
Storage Requirements
List IEARSVOO
List IEARSV01

The Resident Error Recovery Procedure Option
Storage Requirements
List IEAIGEOO

Creating Parameter Library Lists
Example
Example of the ERP Option List

Link Library List Feature

RRO 3
RRO 3
RRO 4
RRO 5
RRO 5
RRO 5
RRO 5
RRO 6
RRO 7
RRO 7
RRO 8
RRO 8
RRO 8
RRO 8
RRO 8
RRO 9
RRO 10
RRO 11
RRO 11
RRO 11
RRO 11
RRO 12
RRO 13
RRO 13

Output Separation SEP 1

SEP 3
SEP 3
SEP 3
SEP 3
SEP 4
SEP 4
SEP 4
SEP 5
SEP 6
SEP 6

Output Separation
U sing an Output Separator
Functions of the IBM Output Separator

Punch-Destined Output
Printer-Destined Output

Creating an Output Separator Program
Parameter List
Programming Considerations
Output from the Separator Program
Using the Block Character Routine

The Shared Direct-Access Device Option SHR 1

The Shared Direct-Access Device Option SHR 3
System Configuration SHR 5
Devices that Can be Shared SHR 5
Volume/Device Status SHR 5
Volume Handling SHR 6
Sharing Application Data Sets SHR 6
Reserving Devices SHR 7

The SMC Parameter of the ENQ
Macro Instruction

RESERVE Macro Instruction
The EXTRACT Macro Instruction

Releasing Devices
Preventing Interlocks
Volume Assignment
Program Libraries
Providing the Unit Control Block Address to
RESERVE

RES and DEQ Subroutines

System Macro Instructions

How to Read a Job File Control Block
OPEN-Prepare the Data Control Block
for Processing (S)

CIRB-Create IRB for Asynchronous Exit Processing

SHR 7
SHR 7
SHR 8
SHR 8
SHR 9
SHR 9
SHR 9

SHR 9
SHR 11

SMI 1

SMI 3

SMI 3
SMI 4

Contents 7

SYNCH-Synchronous Exits to Processing Program ..
SYNCH Macro Definition

Programming Notes
Example

STAE-Specify Task Asynchronous Exit
STAE-Execute and Standard Form
ST AE-List Form

Programming Notes
Scheduling of ST AE Exit and Retry Routines .. ,

ATIACH-Creat a New Task
IMGLIB-Open or Close SYSl.IMAGELIB
QEDIT-Linkage to SVC 34
EXTRACT-Provide Information from TCB Fields ..

EXTRACT-List Form
EXTRACT-Execute Form

WTO/WTOR-Write to Operator .. " .. ,
"VTO-Stand.ard. Form
WTO-List Form
WTO-Execute Form
WTOR-Standard Form , '"
WTOR-List Form
WTOR-Execute Form

SMI 5
SMI 5
SMI 5
SMI 5
SMI 6
SMI 6
SMI 7
SMI 8
SMI 9
SMI 11
SMI13
SMI 13
SMI 15
SMI 16
SMI 17
SMI 18
S~H 18
SMI 19
SMI20
SMI20
SMI 21
SMI22

Adding SVC Routines to the Control Program . SVC 1

Writing SVC Routines
Characteristics of SVC Routines
Programming Conventions for SVC Routines

Inserting SVC Routines into the Control Program
Specifying SVC Routines
Inserting SVC Routines During the System
Generation Process

8 OS/VSl Planning and Use Guide

SVC 3
SVC 3
SVC 3
SVC 8
SVC 8

SVC 8

How to Use the Tracing Routine TRC 1

How to Use the Tracing Routine
Table Entry Formats
Location of the Table

The Time Slicing Facility

TRC 3
TRC 3
TRC 3

The Time Slicing Facility

TSL 1

TSL 3
TSL 3
TSL 3
TSL 4
TSL 4

System Configuration and System Relationships
Prerequisite Actions

System Initialization Time
How to Invoke the Time Slice Facility

Time Slicing's Effect on the A TT ACH and CHAP
Macro Instructions TSL 4

TSL 4
TSL 5
TSL 5

Using the Time Slice Facility
Operating Characteristics
Effect of System Tasks on Time-Slice Groups

Writing System Output Writer Routines WWT 1

Writing System Output Writer Routines
Output Writer Functions
Conventions to be Followed
General Processing Performed b~' St~~d~rd' O'~t~~t .. .
Writer

Control Character Transformations
Card Punch Unit : : : : : : : : : : : : : :
Printer Unit

WWT3
WWT3
WWT3

WWT 5
WWT 7
WWT 8
WWT 8

Appendix A: Theory of Operation APA 1
Glossary GLO 1
Index .. IND 1

VSl provides support for IBM System/370 computing
systems at the intermediate level. This support is com­
parable to that provided in the non-relocate environ­
ment by the System/360 Operating System with Multi­
programming with a Fixed Number of Tasks (os MFT).

Several enhancements are included in VSl that make
it a more effective and versatile operating system. Two
of the more significant of these enhancements are V ir­
tual Storage and Job Entry Subsystem.

I Note: Throughout this manual, the suffix "K" denotes the
value 400 (hexadecimal), or 1024 (decimal).

Virtual Storage

Virtual storage provides the user with a storage capac­
ity of up to 16,777,216 bytes, which he can use to oper­
ate his computing system. (With the minimum 128K
real storage system, the user is limited to two mega­
bytes, or 2,097,152 bytes, of virtual storage.) The vir­
tual storage is contained on auxiliary storage devices
(direct access storage devices) in units of 2048 bytes,
referred to as pages. These pages are transferred into
and out of real storage (that part of the system storage
from which the CPU can directly obtain instructions
and data and to which it can directly return results)
with relocation (address translation) to available areas
of real storage, as they are needed by the system or by
the user's programs. The process is called paging.
Page-in obtains a page from auxiliary storage and
page-out returns a page to aUXiliary storage. This pag­
ing is handled by the VSl control program and is
completely transparent to the user. (Operating systems
that do not support virtual storage are referred to as
non-relocate systems.) For a comprehensive discussion
of virtual storage and the paging process, refer to the
IBM System/370 System Summary, GA22-7001, in the
section titled Virtual Storage and to the Introduction
to Virtual Storage in System/370, GR20-4260.

Advantages of VS J Virtual Storage

• Jobs requiring more address space than the avail­
able real storage can execute in an VSl environment.

• Real storage can be dynamically allocated on an
as-used or as-required basis.

• Real storage that was unused, by partitions, in an
os MFT system can be recovered with VSl and used

Introduction

by other partitions, because virtual address space
in a partition does not require real storage until it is
addressed.

• The small partition scheduling requirements of os
MFT do not exist in VSl because virtual address
space sufficient for scheduler requirements is pro­
vided for all partitions. Thus, no partition is forced
to wait for scheduling by another.

= Programs with large design points can be tested
on machines with smaller real storage. The per­
formance of these programs will be directly related
to their storage requirements versus real storage
availability.

• Future processors can be written for VSl with few
storage restrictions.

• Infrequently executed system tasks do not require
real storage to be permanently reserved for their
use. These programs can be paged in on demand.

• Virtual storage can be reserved for unscheduled
top-priority jobs.

• Partition redefinition requirement is reduced.

job Entry Subsystem

The Job Entry Subsystem (JES) is the name of a cen­
tralized system facility that prOvides spooling and
scheduling of VSl primary input and output streams.
Priority command routing and new operator com­
mands simplify many operator tasks.

JES performs three basic functions:

l. All primary input streams are read from the input
device and stored on a direct access storage device
in a format convenient for later processing by the
system and by user's programs.

2. System (and selected user) print and punch output
is similarly stored on a direct access storage device
until a convenient time for printing or punching.

3. If system resources are the objects of contention,
JES schedules the activities to assure the highest
degree of system availability.

The first two of the preceding functions are referred
to as spooling. Spooling prOvides the follOWing advan­
tages:

Introduction 9

• Non-sharable devices, generally unit record devices,
are used at full rated speed if enough buffers are
available.

• Non-sharable devices are used only for the time
required to read, print, or punch the data.

Without spooling, the device is occupied for the
entire time that a job is reading input or writing out­
put. Thus, the device runs only as fast as the job can
accept or generate data.

Because data is stored on a direct access storage
device, jobs or their output can be processed in a dif­
ferent order from that in which they "vere submitted.
This ability to control system work is called job queue­
ing. Jobs can be scheduled by class, and by priority
within class.

The ability to spool input and output and to queue
jobs significantly improves system performance and
configurability by centralizing and scheduling heavily
used functions and by utiliZing resources more effi­
ciently. Other improvements, such as reduced system
overhead, simpler operator procedures, and increased
system availability are possible through the use of
the Job Entry Subsystem. Certain portions of JES are
more fully discussed in this publication in the Concepts
section under the headings Input Readers, and Out­
put Writers.

Compatibility
Current os MFT object programs will execute in VSl
virtual storage with the exceptions of those noted here
in Restrictions. Some programs may require virtual=
real execution and will not use demand paging. (This is
covered more fully in the Concepts section of this book
under the heading Virtual=Real Execution.) Current
os data sets will process in the VSl system without mod­
ification or conversion.

Sequentially organized DOS data sets (SAM) that are
portable between DOS and os MFT without conversion
or other user intervention will be fully portable be­
tween DOS and VSl.

VSl is upward compatible to VS2. This compatibility
includes source program code, object program code,
job control language, and conventions and standards.
For a description of OS/VSI-DS/VS2 differences, refer to
the OS/VS2 Planning and Use Guide, GC 28-0600.

Restrictions

Existing os programs that will not operate under VSl
without modification include those that:
l. Are time-dependent.
2. Are written to deliberately cause program excep­

tions.

10 OS/VS1 Planning and Use Guide

3. Use machine-dependent data.
4. Use the program status word (psw) bit 12 (the

ASCII bit).
5. Use low-address storage reserved for special pur­

poses (psw).
6. Depend on devices or facilities not supported or

available in System/370 or VSl.
7. Require model-dependent System/360 functions.
8. Attempt to read or write SYSlN or SYSOUT data by

other than the SAM access method (that is, EXCP
will not work on these data sets).

9. Depend on a valid UCB pointer in the TIOT for
SYSIN / SYSODT data sets.

10. Include TCAM object decks. TCAM message control
programs and TCAM message processing programs
using the lCOPY, TCOPY, QCOPY, and TCHNG macro
instructions must be reassembled and linkage
edited. TCAM message processing programs not
using any of these macro instructions need only
to be re-linkage edited.

The Use part of this publication contains a resume
of some of the more significant differences between
OS/MFT and os/vsl. This resume is the section OS/
MFT-OS/VSl Differences. It will be of particular in­
terest to system programmers who are involved in an
MFT to VSl conversion.

Real Storage Restrictions

VSl requires lOOK bytes of available real storage to sup­
port the standard features listed under Standard and
Optional Features in this publication. Lack of avail­
able real storage reduces the capabilities of VSl. For
example, the following restrictions apply to the 128K
real storage configuration:

• Only one partition is supported.

I
. The generalized trace facility, dynamic support

system (DSS), and OLTEP are not supported.

• A maximum of two megabytes of virtual storage
may be specified.

For the 144K real storage configuration, the follow­
ing restrictions apply:

• Two-partition support is the recommended maxi­
mum.

• The external trace option of the generalized trace
facility is not supported.

The Planning Guide

The Concepts section of this publication is intended
for data processing executives responsible for selection
of a system, and planners and system analysts who

must understand its operation to plan for its efficient
use, and to establish installation procedures. To accom­
plish this, the Concepts section presents a sample
sequence of operation describing the initiation, execu­
tion, and termination of a set of jobs of various cate­
gories and priOrities. This sequence of operation is
followed by a description of the principles of operation
of the VSI system, describing the operation of each
major component of the system.

The Considerations section contains information of
interest to data processing executives, planners, and
system analysts. It also describes VSI considerations
of interest to system programmers who will establish
programming conventions for their installations, and
machine room supervisors and operators who will
establish operating procedures.

Information in the Considerations section is pre­
sented in these major topics.
1. General considerations, which apply to all types of

jobs to be run under control of VSl.
2. Batch considerations, which apply to "batched" pro­

duction jobs such as compilation, file maintenance,
and report generation.

3. Telecommunication considerations, which apply to
telecommunications message processing and mes­
sage switching jobs under VSl.

4. Graphics considerations, which apply to jobs which
involve the mM 2250 or 2260 Graphic Displays.

5. CPO considerations, which apply to concurrent pe­
ripheral operations under VSl.

6. Typical storage configurations.
7. Operating considerations, which outline system

characteristics or actions that are of special interest
to the machine operator.

The Use Guide
The Use Guide consists of self-contained sections, each
of which provides information on how to modify, ex­
tend, or implement capabilities of the VSI control pro­
gram. It is directed to system programmers who have
the responsibility for maintenance of the system. It is
assumed that readers of the Use Guide are thoroughly
familiar with the design of VSI and with its features.

Although the information in one section is some­
times related to information in another, or to informa­
tion in the Planning Guide, all sections are written as
separate and complete units. This organization has
been used to reduce cross-referencing and to facilitate
the addition of new sections.

Terminology

Unique terminology is explained as it is presented.
Additionally, a Glossary is prOvided in the back of

the book. Certain basic definitions, however, are essen­
tial to understanding the terms as they are introduced.
These basic definitions are given in the following
paragraphs.

Multiprogramming with a fixed Number of Tasles

Multiprogramming refers to the concurrent execution
of several units of work (tasks), anyone of which
would, in a single-program environment, occupy the
computing system until the task is finished.

Note: Throughout this publication, job refers to an externally
specified unit of work (a problem program specified by a JOB
card), and task refers to any unit of work that must be performed
by the Central Processing Unit (CPU), under control of a Task
Control Block (TCB).

The Significance of multiprogramming is that it pro­
vides increased throughput and better utilization of
resources. A typical task makes use of only a small part
of the resources available in the system. In a single­
program environment, this means that overall applica­
tion of resources is low. In a multiprogramming envi­
ronment, however, resource application is markedly
improved, because the relatively limited demands of
each of several tasks combine to produce a net demand
that is more efficient in terms of the system's capa­
bilities.

The phrase "a fixed number of tasks';' indicates that
the maximum number of tasks the system is capable
of performing at one time is determined at system
generation. The number of tasks that can be performed
at one time can be varied during and after system
initialization.

System Initialization

System initialization is the preparation to execute those
elements of OSjvSI that reside in the pageable and non­
pageable area of virtual storage. This preparation is
performed by the Nucleus Initialization Program (NIP)
when the system is brought into real storage through
the initial program loading (IPL) procedure, and is
supplemented by operator action.

Partitions

Virtual storage is divided into a pageable area and a
non-pageable area. The pageable area is further di­
vided, by the user, into a number of discrete areas
called partitions. The number of tasks that can execute
in each partition depends on whether or not the pro­
grammer has made use of the ATTACH facility.

When the ATTACH facility is not used, only one task
will execute in each partition. The number of parti-

Introduction 11

tions defined determines the number of tasks that can
execute concurrently.

VVhen the ATIACH facility is used, each task can
attach any number of subtasks (up to a maximum of
between 196 and 249). Each subtask will then execute
in the same partition as the attaching task.

The reason for the variation in the number of attach­
able sub-tasks involves the use of TCBS (task control
blocks). Each attached sub-task requires a TCB. A max­
imum of 255 TCBS is available in the system. Of these,
the system requires a minimum of 5. Also, each active
partition (or task active in a partition) requires one
TCB. In a single partition configuration, with minimuin
system options, six TCBS are not available for subtask­
ing. This reduces the number available for subtasks
to 249. As more system options and/ or partitions are
added, additional TCBS are required, up to a maximum
of 59. This produces the lower limit of 196 available
for subtasking.

Each partition has a fixed priority within the system.
Partition 0 has the highest priority and partition 51
has the lowest priority. The priority determines which
partition will gain control of the CPU first when a wait
condition occurs.

The small partition, as it is defined under os MIT

(a partition too small to contain the scheduler), does
not exist in VSl.

Concurrent Operation

In a multiprogramming system, tasks are performed
concurrently. This is a significant programming con­
cept. Execution is not simultaneous, or overlapped, or
alternating in a fixed pattern. Each task is contained

12 OS/VSl Planning and Use Guide

within a partition. The determination of which task
gains control is based on "waits" and "posts". Waiting
for an event, such as the completion of an input/ output
operation, removes the task from contention for con­
trol. Posting of the task, which signals that the awaited
event has been completed, causes the task to be placed
in a "ready" status. The task that becomes active is the
highest priority task that is ready. This high-priority
task proceeds until another event causes the task to
relinquish control. The relinquishing of control by one
task, and the gaining of control by another task, is
called task switch.

Task Switching

There are two ways in which a task switch can occur:
1. The active task relinquishes control because it must

wait for the completion of an event, such as an
input/ output operation.

2. Control is seized by a higher-priority ready task as
a result of an interruption signaling an event for
which it has been waiting.

The first case illustrates how multiprogramming en­
sures optimum utilization of resources. Whenever one
unit of work cannot proceed, another (highest-priority)
is advanced. In a single-program environment, no work
can proceed while the single task waits for an event.
The second case illustrates how an internal balance
between the tasks is achieved. When a task has control,
it retains control only until a task of higher priority be­
comes ready to proceed.

VSl is an IDM System/370 Operating System option
that provides extended multiprogramming capabilities
and increased flexibility to the Operating System user
whose system has 128K bytes or more of available real
storage.

The system may reside on any of the following devices:
• IDM 2305-2 Fixed Head Storage Unit
• IDM 2314 or 2319 Direct Access Storace Facility
• IBM 3330 Disk Storage
• IBM 3333 Disk Storage and Control

Systems with VSl can use the Shared Direct Access
Storage Device (Shared DASD) feature. This feature
allows two or more independently-operating comput­
ing systems to use common direct access storage de­
vices. VSl can share devices with other configurations
of the IDM System/370 Operating Sy~tem.

As many as 15 multi-step jobs can proceed concur­
rently with the operation of input readers, output writ­
ers, and as many direct system output writers as there
are available devices. Each job is associated by job
class with a discrete area of virtual storage k..nown as
a partition. Partitions are either problem program
(maximum of 15) or system task partitions with a
combined maximum of 52 partitions. With JES, readers
and writers do not run in a partition, and consequently,
the RDR/WTR classes of as MFT are not required in VSl.

When a iob must wait for comnletion of an event
J .L

such as an input/ output operation, another job of lower
priority is allowed to proceed. When the higher-prior­
ity job is ready to resume, the lower-priority job's
processing is suspended and control of the CPU is re­
turned to the higher-priority job. The priority of each
job is determined by the partition in which it resides.
Jobs are directed to a given partition or group of par­
titions through the CLASS parameter of the JOB card.

By using the CLASS parameter to denote different
types of jobs, the user can direct jobs to partitions con­
sistent with the jobs' characteristics. Process-limited
jobs, for instance, can be directed to low-priority parti­
tions so that they do not interfere with efficient process­
ing of jobs that do not require the CPU as often. Tele­
communications jobs can be directed to higher-priority
partitions so that the system response time to the termi­
nal user is minimal. If equal intervals of CPU time are to
be allotted to certain graphics or other jobs, these jobs
can be directed to time-slicing partitions (if the time­
slicing feature is included in the system). If direct
system output writers are used, the job class of a job

Concepts

must be a job class that the writer can process. Direct
system output writers can handle up to 15 different
job classes. The CLASS parameter can be used to estab­
lish which jobs are going to be handled by direct sys­
tem output writers. Additional applications of the
CLASS parameter can be established, based on any job
characteristics meaningful to the installation.

To use VSl efficiently, both system and application
programmers must understand how it operates. Be­
cause other user personnel may be interested in a
summary of VSl operation, without recourse to logic
descriptions, this section of the publication contains
these major topics:

l. Minimum System Storage and Device ReqUirements
describes the minimum system configuration re­
quired to support VSl.

2. Devices supported by VSl.

3. Features and Facilities lists the functional capabili­
ties of VSl and describes each briefly.

4. Sequence of Operation describes the scheduling, ini­
tiating, and terminating of a series of jobs.

5. Principles of Operation describes in detail how each
functional component of VSl operates, and what it
does.

Minimum System Storage and
Device Requirements

A computing system using VSl must have at least 128K
bytes of available real storage and the following de­
vices and features:

• Dynamic Address Translation (DAT)

• Standard multiplexor channel with associated in­
put/ output devices

• One selector and/ or block multiplexor channel with
associated input/ output devices including an ffiM

2314/2319 Direct Access Storage Facility, or an
IBM 3330 Disk Storage, or an IBM 3333 Disk Storage
and Control

• Storage protection

• Program event recording

• Monitor call
The system configuration must include at least three I IDM 2314/2319 disk drives or two IBM 3330 disk drives.

If the shared direct access device feature is selected,
the system must also include one IDM 2314 combined
with a 2844 AUXiliary Storage Control Unit, or one of

Concepts 13

the following units equipped with a two-channel
switch:
• IB:M 2305-2 Fixed Head Storage Unit
• IBM 2314/2319 Direct Access Storage Facility
• IBM 3330 Disk Storage
or
• a 4-channel switch with the IBM 3330 Disk Storage
• a 4-channel switch with the IBM 3333 Disk Storage

and Control

Devices Supported by VSl

VSl provides support for the following hardware de­
VIces:

CPUs

IBM Model 135
Model 145
Model 15511
Model 158

DASD

Processing Unit
Processing Unit
Processing Unit
Processing Unit

IBM 2305-2 Fixed Head File
2314 Disk
2319 Disk
2835-2 Control Unit
2844 Control Unit
3330 Disk
3333 Disk Storage and Control
3830-1, -2 Control Unit
Integrated File Adapter for Models 135 and 145

Tape

IBM 240112/3/4
2415
2420
2495
2671
2803
2804
2816
2822
3410
3411
3420
3803

MICR/OCR

OCR
OCR
OCR

Tape
Tape
Tape
Tape Cartridge Reader
Paper Tape Reader
Control Unit
Control Unit
Tape Switch
Paper Tape Control Unit
Tape
Tape
Tape
Control Unit

IBM 1275
1287
1288
1419 MICR (PCI adaptor required)

Displays / Consoles

IBM 1052-7 Console
2150 Console
2250-1, -3 Display IConsole
2260-1, -2 Di"playl Keyho::l rd
2265 Display
2840 Control Unit
2845 Control Unit
2848 Control Unit
3210 Console
3213 Console Printer
3215 Console
Display Console (for Model 3158)

14 OS/VSI Planning and Use Guide

Printers

IBM 1403-N1, 2, 3, 7 Printer
1404-2 Printer (1403 support only)
1443-N1 Printer
2821 Control Unit
3211-1, -2 Printer
3811 Control Unit
Integrated Printer Adapter for Model 135

Reader / Punch

IBM 1442-N1, 2
2501
2520
2540
2596
2821
3505
3525

Reader IPunch
Reader
Reader IPunch
Reader IPunch
96 Column Reader (1442 support only)
Control Unit
Reader
Punch

Transmission Control Unit

IBM 2701 Transmission Control Unit
2702 Transmission Control Unit
2703 Transmission Control Unit
2715 Transmission Control Unit
2772 Multi-purpose Control Unit
2955 Data Adapter Unit
3705 Communications Controller
7770 Audio Response Unit
Integrated Communications Adapter for Model 135

Start/Stop Terminals

IBM 1030 Data Collection System
1050 Data Collection System
1060 Data Collection System
2721 Portable Audio Terminal
2740 Communication Terminal (Models 1 & 2)
2741 Communication Terminal (Modell)
2760 Optical Image Unit

ATT 83B3 A TT Terminal
WU 115A Teletype
'Vorld Trade Telegraph Terminals
TWX 33/35 ATT Teletype Terminal
IBM System!7 Processor Station

Binary Synchronous Terminals

IBM 1130 Processor Station
1800 Processor Station
2770 Data Communications System
2780 Data Transmission Terminal
2790 Data Communications System
2972-8, -11 General Banking Station
System/3 Processor Station
System/360 Processor Station
System/360, Model 20 Processor Station
System 1370 Processor Station
3270 Information Display System
3735 Programmable Buffered Terminal

Console device support provided in VSl is sum­
marized in Figure 1. scs represents Single Console
Support and MCS represents Multiple Console Sup­
port. The numbers in parentheses under MCS indicate
the maximum number of devices supported. Blank
spaces indicate no support as a system console.

~ ~
, ,

<' ., , ~

Console
System Support System Console Support

Type
SCS MCS MCS+ DIDOCS '

3215 X (current 1052) X X(32) X(32)

3210 X icurrent 1052) X X(32) X(32)

3213 X (current 1052)

1403 X X X(32) X(32)

3211 X

2501 X

2520 X

2540 X X X(32) X(32)

3505 X X X(32) X(32)

2250 X MOD 1, 3
X(32)

X MOD 1 X(32)

X X(32)

X X X(1) X(1)

X (via BTAM) X(32) X(32)

* Display Console for Model 158 Processing Unit

Figure 1. VSl Console Device Support

Features and Facilities

VSl makes possible the concurrent execution of up
to 15 separate jobs within a single computing system
having only one central processor, while continuing to
provide all other applicable services of the IBM Sys­
tem/370 Operating System. Other features of VSl in­
clude:

I. Automated Initialization.
I

• Virtual Storage (up to 16,777,216 bytes).

• Independent job scheduling.

• Virtual=real execution facility.

• System Management Facilities (SMF).

• Job/step CPU timing.

• Job step CPU time limiting.

• WAIT time limiting.

• Checkpoint/ restart.

• Recovery Management Support

• Redefinition of partition sizes and characteristics
during operation.

• System input readers.

• Reading of an input stream from an IBM 2314, 2319,
3330, or tape.

• System output writers.

• Direct system output writers.

• Restarting the system without losing enqueued jobs.

• Concurrent execution of tasks within a partition.

• Remote Entry Services (RES)

Some of the features are described briefly in the
follOwing paragraphs and explained in detail under
the heading Principles of Operation.

Automated Initialization

This feature, when used, makes the initialization pro­
cess more rapid and flexible. It can reduce the operator's
role in the process to a single entry on the console.
Flexibility comes from the use of the SYSl.PARMLIB data
set (or card reader) to hold members (or control
cards) that contain the system initialization param­
eters. By proper definition of the parameters, each
initialization tailors the system to better meet the needs
of the anticipated job mixture.

Before initialization, a system programmer enters
the needed parameters in SYSl.PARMLIB members by
using the IEBUPDTE utility. During initialization, the
nucleus initialization program (NIP) requests the op­
erator to "SPECIFY SYSTEM AND/OR SET PARAMETERS".

To use automated initialization, the operator simply
enters (via the console) a reference to the list of
SYSl.PARMLIB members to be used. The list of members
may itself be a member of SYSl.PARMLIB, or it may be
a card deck. In this way, the operator's role is reduced
to a brief response to a system message.

This implementation enables much more rapid ini­
tializations than others, which involve the operator's
manually entering all the needed parameters via the
console. Automated system initialization may be in­
voked at the user's convenience. That is, unless the
operator uses the new keywords for automated system
• ••• 1- _..1 1 I _ _ 1 _ I 1 Imnallzanon, tne manual entry proceaure mus"(oe
followed. This feature requires no changes in the sys­
tem generation options, but the implementation of
automatic start commands is slightly changed. Its use is
more fully described in the Use portion of this guide
under the heading Automated System Initialization.

Extended Multiprogramming Capabilities
VSl permits 15 problem program jobs to operate
concurrently in the system. Jobs are scheduled into
partitions through use of the CLASS parameter on the
JOB statement, in conjunction with the PRTY parameter.
The CLASS parameter may designate one of the 15 avail­
able job classes, A-O. With the storage protection and
fetch protection features, each of these jobs is pro­
tected from damage by other jobs, and the system
areas are protected from all problem programs.

Concepts 15

Independent Job Scheduling

All partitions are independent with respect to job
scheduling and initiation. Jobs are scheduled into the
first available problem program partition that services
the corresponding job class. Jobs are initiated accord­
ing to the PRTY parameter on their JOB cards.

Virtual = Real Execution Facility

The Virtual=Real execution facility permits the user
to have real storage available for any of his programs
that will not run in the normally paged environment
of VSl. Real storage will be allocated, at job execution
time, with real storage addresses equivalent to virtual
storage addresses on a byte basis, for the equivalent
amount of virtual storage he has defined for the job
involved. Multiple virtual=real jobs can execute con­
currently if enough real storage is available in the sys­
tem to accommodate the jobs. Programs that will not
run in a paged environment are identified, and the
facili ty is discussed in more detail, in this section of
the publication under the heading Virlual=Real Ex­
ecution.

System Management Facilities (SMF)

SMF is optional with VSl. SMF collects and, optionally,
records system, job management, and data manage­
ment information, and provides control program exits
to installation-supplied routines that can periodically
monitor the operation of a job or job step.

Job/Step CPU Timing

Job/step CPU timing is a standard SMF feature with
VSl. The amount of time that each job or job step
has control of the CPU is calculated by task manage­
ment routines. If SMF=BASIC is selected, this value is
passed to the user-supplied accounting routine if one
is provided; if SMF=FULL is selected, the value is passed
to the SMF user exit routines as provided.

Job Step CPU Time Limiting

This feature allows the user to specify the maximum
amount of time that a job step can use the CPU. How­
ever, if the SMF option is selected and a user exit
routine is provided, this routine can extend the time
limit so that processing can continue.

Wait Time Limiting

This feature suspends processing of a job step if the
job step remains in a wait state for more than an
established time limit. If the SMF option is selected,

16 OS/VS1 Planning and Use Guide

the installation can determine the time limit by pro­
viding a user exit routine that can extend the time
limit.

Checkpoint/Restart

The checkpoint/restart facility provides an opportu­
nity to restart a job that terminates abnormally due to
a hardware, programming, or system error. The restart
is permitted either at the beginning of a job step or
at a checkpoint within a job step. In either case, the
restart may be automatic or may be deferred until the
job is resubmitted.

Recovery Management Support

Recovery management is a service provided in VSl that
overcomes the damaging effects that a computer, chan­
nel, or 1/ a device malfunction might otherwise have on
a program in progress.

Partition Redefinition

With the facility of partition redefinition, virtual stor­
age can be reconfigured during system initialization
or during operation, provided that the partitions to be
redefined at:e contiguous. The partitions will quiesce
automatically and require no intervention beyond the
DEFINE command. The number of partitions in the sys­
tem can be decreased, or increased within the limits
established at system generation (SYSGEN). Partition
attributes may be changed also, including the job
class (es), sizes of the partitions, identification, de­
activation/ reactivation characteristics, and time-slicing
attributes.

System Input Readers

System input readers, as they exist in as MFT, do
not exist in VSl. Instead, the Job Entry Subsystem
(JES) , residing in its own area of virtual storage,
processes all system input, reading and spooling the
input to the appropriate data sets. JES accepts job con­
trollanguage statements and data in the input stream,
including multiple data sets for the same job step, and
transcribes that data onto a direct access device for
retrieval by the problem program. An input job stream
on cards is illustrated in Figure 2. Input to JES from
tape or disk can be blocked.

Input Stream from Disk

VSl allows the user to establish a disk storage drive
(IBM 2314, 2319, or 3330) as a system input device.
Data in the input stream is permitted, including mul-

III III

I I I II I I I I
II 00 I 0 0 I 00000000 III 0 I 00 100 100 10100010000 101000011001000110000000000000000000 0000

II ; ; ; i ; ; i I; '; .'1' \' I; 'I' .1; 11' i" 'II i'. '1' i' i' '{ 'I' 't '1' '11 'I' '1' 'I' 'I' 'I' 'I' '1' '1' i ;1 ;' ;';';' ;' I;' ;' ~" 'I' 'i 'I' ~' I;' '1' 't 't ;" ;' ;' ;';' 'I' ;';' ;' 't 'I" 'I'i 't ;; 'i 'I' 'i '1' 'I' ;"

11111111112 11111111111112 211111111111111111111111111111111 2 111111111111111111111

3333333131333333333313333313313331333133133311333 311113 3 3 J 3

~ 44 4 4 444444444414444444414444414444444444144444444444444444 4 4 4 444444444444444444

55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 515 5 5 5 5 515 5 5 5 5111 555555555555555555555155555555555555555555 5

666166666666166666666666666666666666661666666666616666 6 6 616 6 6 6 666666666666666666

717 7 717 7 17171717 7 7 717 7 7 7 7 17 7 7 7 7 71717 7 17 7 17 71717 7 7 17 7 7 7 7 7 7 17 7 7 17 7 7 7 7 7 7 17 7 7 7 7 17 7 7 7

8818 8 8 8 8 8 8 8 8 8 88888881188888111888888881818 8 8 8 8 8 8 81818 8 8 8 818 8 8 8888888888888888888

9999991999999999999999999199999999999999999999999999 999
1 ? 3 I ., 6 7 9 91Dll I] ,. 15151111192121 2lZ3247'52621?ll293G]1 ll3l3AJ5:K3138l!'O'l '2'3U'5'8"'8',5051 S2~]S'S5S&SIS8SU&&1 ii2U""H661&R6510n 127] ,. 151617181980

Figure 2. Input Job Stream

tiple data sets for the same job step, providing the
facility for:

1. Reading input from sequentially organized data
sets.

2. Deblocking of blocked input records.
3. Automatically switching volumes if end-of-volume

is detected on a data set extending across volumes,
or if concatenated data sets are being processed.

4. Starting more than one reader for the same disk
storage unit.

System Output Writers

System output writers, resident in partitions as they
are in as MFT, do not exist in VSl. Instead, system out­
put, with the exception of direct system output, is
written by JES output writer(s), resident in the page­
able supervisor area of virtual storage. Each output
writer can handle as many as eight different output
classes. More than one writer can service the same
output class.

Direct System Output Writers

Direct system output writers are a job scheduler func­
tion. They enable a job's output data sets to be written
directly to an output device during execution of the
job.

Direct system output writers operate in problem
program partitions. As many writers can operate in a
partition as there are devices available. Each writer
must be assigned to only one device and can process
one system output class. Problem program output can
be handled by a direct system output writer if the job
class of the problem program is an eligible job class
and the problem program is executing in the same
partition as the writer.

System Restart

It is sometimes necessary to shut down the system
while needed information still exists on the job queue
data set (SYSl.SYSJOBQE). Such occasions might be

Concepts 17

end-of-shift, end-of-day, scheduled maintenance, sys­
tem malfunction, or power failure. System restart per­
mits all enqueued input and output jobs that had
been entered in the job queue to remain there for
subsequent retrieval by the system. Jobs that were
being processed at the time of shutdown must be re­
started.

VS 1 Subtasking

VSl allows the user to have any number of tasks (up
to a maximum of between 196 and 249) executed con­
currently within a partition. This feature provides the
user with:
• An ATTACH function that can create subtasks.
• A DETACH function that removes completed tasks

requested by the ATTACH routine.
• A CHAP function that allows a problem program to

change dispatching priorities of the tasks within the
partition.

Remote Entry Services (RES)

Remote entry services (RES) is an extension of JES and
provides the remote terminal (work station) users
with the same batch computing facilities that are
available at the central installation. It allows jobs to
be submitted from a work station and output to be
routed back to the same work station and/ or to other
work stations. Besides accepting job input and routing
output, RES facilities provide for sending messages be­
tween users and showing jop, terminal, or work station
status.

RES support consists of:

• Additions to existing JES components
• Modifications to the command processor for the

commands LISTBC, LOGON, LOGOFF, ROUTE, and SEND
• The RES data sets SYSl.UADS and SYSl.BRODCAST
• The Remote Terminal Access Method (RTAM)
• Extensions to WTO and WTOR functions
• IKJRBBMP-a new standard utility used to create

and build SYSl.UADS and SYSl.BRODCAST.
Except for RTAM, all changes to VSl to support RES

are always in the system. SYSl. UADS and SYSl.BRODCAST
are required if remote users are to use the system.
SY~l.UADS is also required if the central operator LOGON/
LOGOFF function is to be used. Otherwise, these data
sets mayor may not be specified (if present, they are
used).

RTAM is the only part of the RES package that is not
present in any way in the system unless it is specifically
included by a separate RTAM system generation. It is
the only teleprocessing access method used by RES.
RTAM resolves all work station, communication line,

18 OS/VSl Planning and Use Guide

and transmission code dependencies. It is started on a
communication line basis rather than on a terminal/
work station basis.

To initiate processing, the central operator issues
a START RTAM command, which, in turn, starts one or
more communications lines. Additional lines may be
started later by entering a MODIFY command specifying
lines previously allocated to RTAM.

The priority of a job read in from a remote user may
be determined by the QID entry built at IPL time. The
QID table is built from the SYSl.UADS data set.

Jobs entered from remote work stations are placed
on the system input queues. Ho\vevcr, for each remote
user, there are 36 output queues (classes A-Z and 0-9)
and 1 output hold queue in addition to the system
output and hold queues. This, of course, requires addi­
tional space on the job queue data set (SYSl.SYSJOBQE).

For details on RES and RTAM, including machine and
additional space requirements, see the OS/VSl RES
System Programmers Guide, GC28-6878.

Sequence of Operation

To illustrate the concepts of VSl, a sample sequence
of operation is described here. (For an overview of
the processing performed by various components of
the control program, refer to Appendix A.)

In the job stream shown in Figure 2, the following
CLASS parameters appear on the JOB cards:

1. CLASS=N
2. CLASS=D
3. CLASS=L
4. CLASS=J
5. CLASS=M
6. CLASS=C
7. None
8. CLASS= J ,PRTY=12
9. CLASS=C

The system is loaded by use of the normal IPL pro­
cedure and initializes itself by use of the nucleus
initialization program (Figure 3). After system initiali­
zation, the contents of virtual storage are as shown in
Figure 4. The job class identifiers assigned to each
partition at system generation are the alphabetic char­
acters shown in the upper right comer of the parti­
tions. Partitions 0 and 1 are shown as not active. Fig­
ure 5 illustrates the input work queues established at
system initialization. When a START command is en­
tered for the reader, the reader begins reading the
job stream and entering jobs into the input work
queues for each CLASS (Figure 6). The START com­
mands for the initiator and writer are also entered.

The initiator in P4 now schedules the first job
(Figure 7). Because N is the primary job class as­
signed to P4, the initiator searches the CLASS=X queue

Figure .'3. Contents of Virtual Storage after Nucleus Initialization

Figure 4. Contents of Virtual Storage after System Initialization

Figure 5. Input Work Queue after System Initialization

Figure 6. Input Work Queues after First Three Jobs Have Been Entered

Nucleus
System
Queue:
Area

Figure 7. Contents of Virtual Storage after START Commands

Concepts 19

first (job 1 has been placed on thc queue by this time),
and job 1 is initiated and given control (Figure 8).
The reader continues reading the input stream, plac­
ing jobs in their appropriate queues. As soon as a job
is completely read in, it may be scheduled if a partition
servicing the particular job class is available. Job 3 will

I be scheduled into P2 (because L is the secondary class
for P2) and job 4 will be scheduled into P3 (because J
is the secondary class) when they have been read in.
Because job 7 has no CLASS parameter, it is placed on
input work quepe A (the default job class). Job 8, with
a PRTY parameter specifying priority 12, would be

placed on input queue J ahead of job 4 if job 4 had not
already been scheduled. At this point jobs 1 through
9 have been read and placed on their appropriate
queues (Figure 9).

vVhen job 1 has finished processing, a scheduler is
brought into P4 to terminate the job. The scheduler
now searches input work queue N for a job for P4.
Because the CLASS=N queue is empty, the CLASS=C

queue is searched. Job 6 is waiting on the queue; there­
fore, it is scheduled into P4. At this pOint, the contents
of virtual storage are as shown in Figure 10.

Figure 8. Cont~~ts of Virtual Storage after First Job has been Scheduled

Figure 9. Input Work Queues after All Nine Jobs Have Been Entered

Figure 10. Contents of Virtual Storage with Three Partitions Active

20 OS /VS 1 Planning and Use Guide

Principles of Operation

This topic describes the principles of operation of
YSl. Included are:
• Partition job class facility.
• Priority within job class.
• Job/step CPU timing
• Virtual storage organization.
• Checkpoint/ restart.
• Partition redefinition.
• System input readers.
• Scheduling process.
• System output writers.
• Direct system output writers.
• System restart.

Figure 11 illustrates a configuration referred to
throughout the remaining discussion of Principles of
Operation. P / P denotes problem program partition.

Partition Job Class Facility

The partition job class facility allows one or more
partitions to be assigned to selected jobs. During sys­
tem generation, a partition must be assigned to service
each job class that will be used. These assignments
may be modified later. (See Partition Redefinition in
this section.) Each problem program partition may
be assigned as many as 15 job classes designated by
the alphabetic characters A through O. These job class
designations have no inherent meaning; they can be
used to denote any job characteristic, which would in­
fluence the choice of partitions for the job, meaningful
to the installation. More than one partition may be as­
signed to service the same job class (es). In Figure 11,
P3 is assigned to job classes C, J, and A; P4 is as­
signed to N, C, and D. These partition job class
identifiers are used by the system to determine which
input queue is searched first by an initiator servicing
a specific partition. (See Problem Program Partitions
in this section.) The sequence in which jobs are se­
lected from each input work queue is determined by
the PRTY parameter. (See EnqueUing Jobs by CLASS
and PRTY in this section.)

Figure 11. Sample Five-Partition Configuration

The partition (s) in which a job executes is con­
trolled by using the CLASS parameter on the JOB state­
ment. The format of this keyword parameter is:

CLASS=job class

where job class is the alphabetic identifier (A-O) as­
Signed to the job. If this parameter is omitted from
the JOB card, a job class of A is assigned by the sys­
tem. All 15 job classes may be used, provided at
least one partition has been assigned to each of the
classes specified. When a job class for a particular
job is designated (by the CLASS parameter), the job is
executed only in a partition that has been assigned to
service that class. If more than one partition is as­
signed to service that job class, the job is executed in
the Rrst available problem program partition. A typi­
cal JOB card may be specified as follows:

IIJOBPAY JOB 661,'JDOE',CLASS=C,PRTY=12
I

In the configuration illustrated in Figure 11, this
JOB card causes the job to execute in either P3 or P4,
whichever is available first.

System Management Facilities

S:MF is included at system generation by specifying
SMF= in the SCHEDULR macro instruction. (This param­
eter replaces ACCTRTN= in os MFT.) There are three
options for SMF:
sMF=NoTsUPPLIED-specifies that the user does not

want any SMF processing.
SMF=BAslc-specines that user-written accounting rou­

tines are being provided. JES accounting informa­
tion and two additional exits are also provided.

SMF=FuLL-specifies that the full system-management
facilities routines are to be provided. VSl provides
two additional exits and additional JES accounting
information.

The collected information is written onto data sets
on direct access devices.

Pageable
Supervisor
and JES

Concepts 21

Job/Step CPU Timing

Job/step CPU timing is a standard SMF feature in VSI.
CPU timings are calculated for each job step. This
value is then passed, along with an accumulated value
for the entire job, to a user-supplied accounting rou­
tine for further processing.

Note: The CPU timings include only the active time that the
CPU has control of the job step. It does not include the wait
time or the time used by the initiator and terminator for that job.

Functions of the Control Program with VSl

The control program routines of VSI have four major
functions: job management, task management, data
management, and recovery management.

Job Management

Job management is the processing of communications
from the programmer and operator to the control pro­
gram. There are two types of communications:

1. Operator commands, which start, stop, and modify
the processing of jobs in the system.

2. Job control statements, which define work being
entered into the system.

Processing of these commands and statements is re­
ferred to as command processing and job processing,
respectively.

Task Management

Task management routines monitor and control the
entire operating system, and are used throughout the
operation of both the control and processing programs.
Task management has seven major functions:

• Interruption supervision.
• Task supervision.
• Virtual storage supervision.
• Page supervision.
• Contents supervision.
• Overlay supervision.
• Timer supervision.

The task management routines are collectively re­
fClTed to as the "supervisor."

Data Management

Data management routines control all operations asso­
ciated with input/ output devices: allocating space on
volumes, channel scheduling, storing, naming, and
cataloging data sets, moving data between real and
auxiliary storage, and handling errors that occur dur-

22 OS/VSl Planning and Use Guide

ing input/ output operations. Data management rou­
tines are used by processing programs and control
program routines that require data movement. Process­
ing programs use data management routines primarily
to read and write required data, and also to locate
input data sets and to reserve aUXiliary storage space
for output data sets of the processing program.

Data management routines are:

• Input/ output (I/O) supervisor, which supervises
input/ output requests and interruptions.

• Access methods, which communicate with the I/O
supervisor.

• Catalog managemellt, whit.:h maintains the catalog
and locates data sets on auxiliary storage.

• Direct access device space management (DADSM),
which allocates auxiliary storage space.

• Open/ close/ end-of-volume, which performs re­
quired initialization for I/O operations and handles
end-of-volume conditions.

The Virtual Storage Access Method, VSAM, is an­
nounced but not available. VSAM is an access method
for use with direct access storage devices on IBM Sys­
tem/370 with VS. VSAM creates and maintains two types
of data sets. One is sequenced by a key field within
each record and is called a key-sequenced data set.
Data records are located by using the key field and an
index that records each key field and the address of the
associated data, similar to ISAM. The other is sequenced
by the time of arrival of each record into the data set
and is called an event-sequenced data set. Data records
are located by using the records displacement from
the beginning of the data set. The displacement is
called the relative byte address (RBA). The RBA is simi­
lar to the relative block address used with BDAM.

VSAM stores, retrieves, and updates user data records
in these types of device-independent data sets. VSAM
stores data records in a new data format designed for
long term data stability and for data base applications.
Data in both types of data sets can be accessed either
sequentially or directly.

VSAM enhances many ISAM capabilities including
device independence, concurrent processing, and the
kinds of accessing supported. It prOvides additional
password security protection. VSAM creates and main­
tains separate VSAM catalogs that contain specialized in­
formation about each VSAM data set and are used to link
a data set with its index. VSAM includes a multifunction
utility program that will define, delete, print, copy, and
provide backup and portability of VSAM data sets and
maintain the separate catalogs. An interface routine to
allow most ISAM programs access to VSAM data sets is
also proVided. For a more detailed explanation of
VSAM, see the OS/VS Virtual Storage Access ~let7wd
Planning Guide, GC26-3799. -

Recovery Management

Recovery management services are provided through
the following programs:

'Jfachine-Check Handler: This program processes
machine-check interruptions. Depending on the sever­
ity of the malfunction, the machine-check handler (1)
restores the system to normal operation, (2) termi­
nates tasks associated with the malfunction so the sys­
tem can resume processing, or (3) places the system
in a wait state. In all cases, the machine-check handler
program writes diagnostic messages and error records.

Channel-Check Handler: This program receives con­
trol after the detection of a channel data check, chan-
nel control check, or interface control check. For chan­
nel control checks and interface control checks, CCH:
• Indicates the results of the analysis of the error for

later use by the error recovery procedures when
they set up for a retry of the 110 operation.

• Constructs a record of the error environment. vVhen
this record is later recorded, a message is issued to
inform the operator that a channel-detected error
has been recorded on LOGREC.

For channel data checks, CCH constructs a record Jf
the error. The error recovery prOcedures do not require
information from CCH to retry 110 operations on which
channel data checks occurred.

Dynamic Device Reconfiguration: This program,
upon receiving a request from the operating system
or from the operator, permits a demountable volume
to be moved from one device to another and reposi-
tinnprl if np"pcc~n.T n;c n'lpthnrl ;c llCt:>rl tr. h""'VlCC UQr;_
'-.&.'-'..a. """"'-"LL~V"-''-'...,U'-40 ... J':1I.""' v""" ... ~ u>J '-A. ... V U J .l"CA..:J.:I 't' U.l. ...

ous 110 errors, and is done without abnormally termi­
nating the affected job or reperforming an initial
program load (IPL).

Alternate Path Retry: This program allows an 1/0

operation that has developed an error on one channel
path to be retried on another channel path, if another
channel path is assigned to the device performing the
110 operation. Alternate path retry also provides the
capability to vary a path to a device online or offline.

~1issing Interruption Checker (JllC): This program
polls active 110 operations to determine if a channel
end andlor device end interruption has been pending
for more than an installation-specified period of time.
Also, it provides a reminder message for mount re­
(luests. For more detailed information, sep the Fea­
tures and Options (FEA) section in the Use portion of
this mannal.

Control Program Organization

The control program is on auxiliary storage in three
partitioned data sets created when the system is gen­
erated. These data sets are:

• The XUCLEUS partitioned data set (SYSl.NUCLEUS),
which contains the Nucleus Initialization Program
(NIP) and the resident portion of the control pro­
gram.

• The SVCLIB partitioned data set (SYSl.SVCLIB), which
contains nonresident svc routines, nonresident error­
handling routines, and the access methods routines.

• The LINKLIB partitioned data set (SYSl.LINKLIB) ,
which contains other nonresident control program
routines and IBM-supplied processing programs.

Resident Portion of the Control Program

The resident portion (nucleus) of the control program
is in SYSl.NUCLEUS. It is made up of those routines, con­
trol blocks, and tables that are brought into storage at
initial program loading (IPL) and are never overlaid
by another part of the operating system. The nucleus
is loaded into the non-pageable area of virtual storage.

The resident task management routines include:

• Interrupt supervision.
e Virtual storage supervision.
• Page supervision.
• Timer supervision.

They also include portions of the routines that per­
form:

• Task supervision.
• Contents supervision.
• Overlay supervision.

The resident job management routines are those rou­
tines of the communications task that receive com­
mands from the operator, and the master scheduler
task.

Cornmunications Task: The communications task
processes the following types of communication be­
tween the operator and the system:

• Operator commands, issued through a console.
• Write-to-operator (WTO) and write-to-operator with

reply (WTOR) macro instructions.
• Interruptions caused when the IKTERRUPT key is

pressed, to switch from the primary console to an
alternate console.

'Jl aster Scheduler Task: The master scheduler task
processes job queue manipulation commands and par­
tition definition. For example, a HOLD or DEFIKE com­
mand is processed by the master scheduler task.

Concepts 23

I

I

Virtual = Real

Partition n-l

Figure 12. Virtual Storage Organization

The resident data management routines are the
input/ output supervisor and the BLDL routines of the
partitioned access method.

Optionally, other access method routines may be
made resident.

The user may also select resident reenterable rou­
tines, which are access method routines from SYSl.SVCLIB,
and other reenterable routines from SYSl.LINKLIB. At
system generation, the user specifies that he wants such
routines resident in virtual storage. At IPL, he identi­
fies the specific routines desired in the RAM=entry. The
selected routines are loaded during system initializa­
tion and reside in the high end of virtual storage (see
Figure 12). The resident BLDL table is standard. It
contains directory entries for selected modules from
the linkage or svc libraries.

Normally transient svc routines (that is, types 3 and
4 svc routines) can be made resident through the RSVC
option, specified by the user. NIP loads these routines
adjacent to the resident reenterable routines. If there
are no resident rcenterabie routines, the routines are
loaded adjacent to the transient areas. (See Figure 12.)

Nonresident Portion of the Control Program

The nonresident portion of the control program com­
prises routint"s tllat are loaded .\.nto virtual storage as
thcy art' nceded, ;:;rel \\hIe11 can be o-;,ydaid after their

24 OSVSI }-'lelT',·,i.·,..,. H'1.d T:se Cuide

Pageable
System
Queue

Resident
Error
Recovery

I P;-':;'c€GureS

I/o Superv isor
Transient Area

svc
Transient Area

completion. The nonresident routines operate from the
partitions and from two sections of the pageable super­
visor area called transient areas.

The non-resident routines which perform job man­
agement are collectively referred to as the scheduler.

Virtual Storage Organization

In a single task environment, virtual storage is divided
into two areas: the non-pageable area, and the page­
able area. In multiprogramming with a fixed number
of tasks, the page able area is divided further into as
many as 52 discrete areas called partitions. Figure 12
shows the division of virtual storage.

The non-pageable area, located in the lower portion
of virtual storage, contains the resident portion of the
control program, and control blocks and tables used by
the system. The size of the non-pageable area depends
on the number of partitions established by the user,
and the control program options selected at system
generation.

The \'Sl system nucleus occupies an area containing
at least 54K bytes in virtual storage.

Partitions are defined within the pageable area, lo­
cated in the upper portion of virtual storage, at system
generation. The number of partitions may be varied
\vitb.in thenmnber specified at system generation~ and

the sizes and job classes of partitions may be rede­
fined at system initialization or during operation. Each
partition may be occupied by a processing program, or
by control program routines that prepare job steps for
execution (job management routines), or that handle
data for a processing program (access method routines).

Provided the total number of partitions does not
exceed 52 and enough computing system resources are
available, VSI provides for the concurrent execution
of as many as 15 problem programs. Each program
is located in its own partition of virtual storage, with
input readers and output writers, under control of JES,

I being located in the JES portion .af the pageable. sup.er­
visor area. The VSI system prOVIdes for task sWItchmg
among the tasks in the partitions, and between those
tasks and the communications task and master sched­
uler task in the system area.

Non-pageable Area

The non-pageable area is that part of virtual storage I into which the nucleus and SQA is loaded at IPL. The
storage protection key of the non-pageable area is zero
so that its contents can be modified by the control
program only.

System Queue Area: Thc system queue area is lo­
cated in the resident supervisor area of virtual storage.
As SQA is needed, it is extended dynamically in both
real and virtual storage. It contains ENQ/DEQ control
blocks and command scheduling control blocks (CSCBS).
In addition, if the communications task cannot obtain
WTO buffer space, SQA is used.

The size of the system queue area is initially estab­
lished at system generation (via the SYSQUE parameter
of the CTRLPROG macro instruction). It can be modified
at IPL time.

The system queue area also contains task related
control blocks for each active subtask. In this case,
the size of the system queue area is determined by:
the number of partitions, and the number of subtasks
that can be concurrently active. The size of the sys­
tem queue area, established during system generation,
should be retained.

The system queue area (SQA) is established by NIP
adjacent to the fixed area and provides the virtual stor­
age space required for tables and queues built by the
control program. The SQA must be at least 4K bytes for
a minimum one-partition system. Its storage protection
key is zero so that it can be modified by control pro­
gram routines only. Data in the system queue area
indicates the status of all tasks.

Pageable Area

Figure 13 shows how the contcnts of each partition in
the pageable area are organized and how they are
related to the rest of virtual storage. Routines are
brought into the high or low portion of a VSI par­
tition. Job management routines, processing programs,
and routines brought into storage via a LINK, ATTACH,
or XCTL macro instruction, are loaded at the lowest
available address. The highest portion of the partition
is occupied by the user parameter area and user save
area. The next portion of the partition is occupied by
the task input/output table (TIOT), which is built by
a job management routine (I/O device allocation rou­
tine). This table is used by data management routines
and contains information about DD statements.

Each partition may be used for a problem program
as well as for system tasks. When the control program
requires virtual storage to build control blocks or work
areas, it obtains this space from the partition of the
processing program that requested the space. Access
method routines and routines brought into storage via
a LOAD macro instruction are placed in the highest
available locations below the task input/ output table.

Working storage and data areas are assigned from
the highest available storage in a partition.

The high portion of the pageable area is occupied by
the pageable Sllper\Tisor routines, the dllmp area, page­
able SQA, the JES routines, and it also contains two
transient areas into which certain nonresident routines
are loaded when needed: the svc transient area (2048
bytes) and the I/O supervisor transient area (1024
bytes). These areas are used by nonresident svc rou­
tines and nonresident I/O error-handling routines, re­
spectively, which are read from SYSl.SVCLIB.

Each transient area contains only one routine at a
time. When a nonresident svc or error-handling rou­
tine is required, it is read into the appropriate tran­
sient area. The transient area routines operate with a
protection key of zero, as do other routines in this area.

System Input Readers

System input readers, resident in partitions as they
exist in os MFT, do not exist in VSI. Instead, system in­
put is handled by the JES reader(s), resident in the
pageable supervisor area of storage. For additional
information concerning the JES reader, see the explana­
tion under the heading Input Readers in this section.

Problem Program Partitions

VSI permits up to 15 partitions to be specified for prob­
lem programs. Each partition may have up to 15 job
class identifiers; more than one partition may be as­
signed to service the same job class (es). Problem pro­
gram partitions must be at least 64K in virtual size.

Concepts 25

I

Routines
Brought in Routines,

Via LINK, Available
and User User

ATTACH Routines nOT Parameter Save

and XCTL
Virtual Storage

Brought in Area Area

Macro Via LOAD

Nucleus

Instructions

System
Queue
Area

(Lowest
Priority
Partition)

Figure 13. Division of Virtual Storage

Macro-

Problem programs run concurrently with system
readers and writers. vVhen a problem program in a
partition is terminated, a scheduler is brought into that

partition to retrieve another job from the input work

queue for the appropriate job class (es). Control is then

given to the appropriate task; for example, if a problem

program is retrieved from an input queue: control is

given to the program for execution,

26 OS/VSl Planning and Use Guide

(Highest
Priority
Partition)

For example, in Figure 11, P4 is assigned job classes
N, C, and D. If a job of class]\' has just been termi­
nated, the initiator first searches the job class N input
work queue. 1£ no class N jobs exist, the initiator
searches for job class C jobs; if no class C jobs exist,
the job class D input quev_c is searched. If all three
queues are empty, the partition remains dormant until
[mother job with class ~~, C, or D is read into the sys-,

H.ttl:';'

System Task Partitions

Up to 37 system task partitions are available in VSl.
They are specified as system task partitions, by the
user, by the c-s parameter of the PARTITNS macro in­
struction. They may be used in VSl to ensure that par­
titions are available to:
• Start and stop readers and writers.
• Process mount procedures.
• Run conversational remote job entry readers.
• Run the generalized trace facility.

System task partitions are not required to run readers
and writers in VSl as they were in OS/MFT. Readers and
writers in VSl (other than direct system output writers)
operate from the pageable supervisor area of storage.

Virtual = Real Execution

Real storage in VSl consists of a non-pageable section
and a pageable section. The resident supervisor, includ­
ing the nucleus and the system queue area occupy the
non-pageable area. The pageable area is occupied by
pages of programs (user's and systems) which are
brought into it for execution and are then returned to
auxiliary storage. This is referred to as a paged en­
vironment.

I Two types of programs exist that cannot run in a
paged environment:
L EXCP programs that modify the channel program

while it is active, such as OLTEP.
2. Programs that are highly time-dependent, such as

1419 programs.

I To permit these programs to operate under VSl, a
facility is provided that permits the user to specify how

l much real storage he wants available for his programs
in a non-paged environment. He does this by specify­
ing ADDRSPC=REAL and REGION=nnnK, where nnnK is
equal to the real storage required for his job, on the
JOB or EXEC JCL statement. Storage will be allocated
based on the REGION= parameter or, if REGION= is
omitted, on the speCification in his reader procedure.
Storage will be allocated at job execution time as
needed. Virtual addresses will still be processed by the
dynamic address translation feature, but page tables
will be built so that the translated addresses are the

Virtual = Real
Area
PIP

Figure 14. Contents of Virtual Storage with Virtual = Real Specified

same as the untranslated addresses. Figure 14 shows
the contents of virtual storage in a virtual=real situa­
tion. The problem program in partition 2 requires
virtual=real storage.
Unit Record Applications: Because of the program­
ming overhead in IOS due to virtual storage support,
certain unit record applications may take longer in
VSl than in MFT. To avoid this situation the follOwing
applications can be run in a virtual=real (V=R) envi­
ronment.

OCR Applications-1287-1288 programs which do not
take advantage of JES run slower in a paged environ­
ment than they would under OS/MFT. Testing has in­
dicated that OCR applications from OS/MFT have no
appreciable degradation when run V=R on VSl.

Card Reader Applications-A job accessing a card
reader and using the CNTRL macro may run slower.
This is due to the fact that these applications add
processing time to the system overhead. This can be
avoided by using the V=R facility.

Unless you have these speCific types of programs in
your library, and have verified that the preceding sit­
uations are present, running unit record jobs in V=R
mode is not recommended and will have an adverse
effect on system performance.

Virtua/=Real Storage Availability

The system default for the size of the V=R area is 512K
or the real storage size of the machine, whichever is
less. For systems larger than 512K, the user can specify
a V=R area greater than 512K and less than or equal to
the real storage size of the machine. He must specify
this value at system initialization time in response to
message IEAlOIA.

No firm rules or proven formulas exist for determining
the amount of real storage that will be available for
virtual=real execution in the system at a given time.
This is due to the number of system operations that
affect the availability of real storage space. However,
the following considerations should help the user to
understand the system use of real storage and to plan
his work load and workflow accordingly.

PiP piP
Pageable
Supervisor
and J ES

Concepts 27

\ . The size of the sysgened nucleus affects the amount
of real storage available for V=R execution. The
basic nucleus for a 128K real storage system operat­
ing one partition requires 64K. This includes 6K for
Recovery Management Support (RMS) and 4K for
System Queue Area (SQA). As more features, op­
tions, or support are sysgened in, the nucleus size
increases and less real storage is available for V=R
opera tions.

• When a request for V=R area is received, the sys­
tem scans the V=R area for the requested amouul
of contiguous real storage. If an area is located that
contains unused pages, the request for V=R space
can be honored immediately. If a conditionally suit­
able area (containing no long-term fixed pages) is
located, it is assumed to be conditionally available
to honor the V=R request. Pages within this area are
tagged for interception and subsequent use for V=R
execution. When all pages in the area are no longer
required for currently executing programs and have
been paged out or relocated in real storage, the area
becomes available and the V=R request can then be
honored.

• Real storage for SQA, when specified at sysgen or
NIP time, is appended to the nucleus. This real stor­
age, like the nucleus and RMS area, is not availab!e
for V=R execution. If too little SQA has been speci­
fied, the system will dynamically extend the SQA, in
increments of 2K bytes, as required. The extension
will probably last until the next IPL. This extension
further reduces the V=R area and may additionally
cause real storage fragmentation, since the 2K ex­
tension will be located in what the system deems
the optimum locr .. tion. This location may not be the
most optimum from the standpoint of V=R execu­
tion. As a worst case example, the extended SQA
might be located in the middle of the V=R area,
which would reduce the contiguous available stor­
age in the area by half.

• Protected Queue Area (PQA) space also affects the
amount of available V=R space. At initial partition
definition time, a minimum of 2K of real storage is
reserved for PQA for each partition defined. If addI­
tional PQA is required during processing, the system
also extends the PQA in increments of 2K bytes.
These increments are also placed in the optimum
location from the system standpoint and this may
cause the same sort of fragmentation as noted for
SQA extension. In all events, the PQA is not avail­
able for V=R execution. As with SQA, the PQA exten­
sions will probably last until the next IPL.

28 OS/VS1 Plannin~ and Use Guide

• PCI FETCH, if used, can cause a fixed PQA or SQA
overflow. Each time a module must be brought into
virtual storage, a 1600-byte work area is required
and must be fixed. If the request is from a problem
program, the work area is taken out of fixed PQA.
If the request is from the system, the work area is
taken from fixed SQA. Extensions of PQA and SQA
are handled as previously described.

• JES (Job Entry Subsystem) requires one page of
real storage to be long-term fixed. This page will be
fixed right after NIP time and will remain for the
duration of the IPL.

• Some components of the system cannot tolerate
page faults during their operation. A page fault
occurs when a "page not in real storage" is referred
to by an active page. To eliminate the possibility
of page faults occurring, these components may
"long-term fix" required pages in real storage. These
pages cannot be moved within real storage or paged
out to aUXiliary storage. These pages are fixed by
the system in optimum locations (for system use)
and may cause the same storage fragmentation and
reduction of V=R area as preViously noted. These
pages remain fixed until they are freed by the com­
ponent, at which time additional contiguous V=R
area may become available.

• The system reserves an area of 36K that is used for
EXCP I/O (short-term fixes) and paging. Two pages
of this area are reserved as a "safety valve" in ca3e
PQA or SQA needs to be extended due to an overflow
condition. This area is reserved to reduce the possi­
bility of the system being unable to continue pro­
cessing due to lack of real storage to accept pages
needed for system functions. The area may, or may
not be used by the system, but it is reserved and
further reduces the area available for V=R requests.
The reservation remains the same, regardless of the
real storage size of the system involved. On a small
real storage size system, this can be a significant
factor in V=R area availability.

• VSl is a paging system. Real storage is managed by
the control program in a manner that will prove
most efficient for currently executing programs.
This may prove to be the least efficient for V=R
operations. The system will make all effort possible
to honor requests for V=R area, but current opera­
tions still take precedence.

\Vith the number of variables that can occur in real
storage usage during system processing, it is impossi­
ble to predict v=n storage availability at any given

time. Each installation will have to depend upon expe­
rience to determine the most feasible allocations for
SQA and PQA based on job mix and job flow for the in­
stallation. Experience should also determine when it is
most feasible to run jobs with V=R requirements. In
theory, they should be run as soon as possible after
IPL to assure the maximum provision of available V=R
area.

System Output Writers

System output writers, resident in partitions as they
are in os MFT, do not exist in VSl. Instead, system
output, with the exception of direct system output, is
written i?y JES output writer (s), resident in the page­
able supervisor area of storage. For additional infor­
mation concerning the JES writer, see the explanation
under the heading Output Writers in this section.

Direct System Output ';Y riter Partitions: Direct sys­
tem output writers operate in partitions. To control the
writing of a job's output, the direct system output
writer must be operating in the same partition as the
job; also, the job's class must be an eligible job class.
An eligible job class is one that has been assigned to
the direct system output writer when the writer was
started. Direct system output writers can handle up to
15 different job classes.

Checkpoint IRestart

The checkpoint/ restart facility permits a restart either
at the beginning of a job step (step restart) or at a
checkpoint within a job step (checkpoint restart).
A checkpoint is requested by issuing a CHKPT macro
mstruction; a step restart is requested by induding
special parameters in the job control statements for
the job.

In a checkpoint restart, the restart must be executed
in the same virtual storage area as was used for the
original execution. The required virtual storage must
be contained within one partition. Furthermore, the
partition must be a problem program partition. Restart
may also be delayed if a DEFINE command entered by
the operator changes the boundaries of the partition.
In a step restart, there are no such restrictions.

A CHKPT macro should not be issued by a subtask or
by a job step task that has active subtasks.

Partition Redefinition

Partition redefinition allows the operator to change the
number of partitions, their size, and their job classes
at any time after initial program loading (IPL). Adja­
cent partitions may be combined to accommodate jobs

with large storage requirements; these partitions may
be reestablished subsequently (within system genera­
tion limits) when the need for a large partition has
passed. Job classes assigned to a partition may be
changed also, to accommodate changes in the work
load for one or more job classes.

In addition, if the time-slicing feature is included
in the system, the number of time-slicing partitions
can be decreased, or increased within system genera­
tion limits, the range of the highest and lowest parti­
tion number to be time-sliced can be changed, or the
amount of time to be allotted to each task can be
modified. All time-slicing attributes may also be can­
celed.

Partition redefinition is invoked in any of three
ways, depending on whether it is invoked during or
after system initialization. At system initialization, the
partition configuration may be changed by replying
'YES' to message IEE80lD 'CHANGE PARTlTlOKS?'. Alter­
natively, partition redefinition may be invoked after
system initialization by entering the operator com­
mand, DEFINE, either with or without the keyword
PARM=membername. Without the keyword, the op­
erator redefines the partitions manually. With the
keyword, the system redefines the partitions auto-

I matically by referencing a member in SYSl.PARMLIB.

I
For further information, see the VSl Features and
Options section.

Note: The DEFINE command cannot be entered through the
input stream.

Partition Combination

Adjacent partitions may be combined as soon as their
jobs have been terminated. If an unending job is being
executed in a partition that is to be combined with an
adjacent partition, the unending job must first be ter­
minated with a CANCEL or STOP command. All other
partitions that are to be combined are made quiescent
by the system as soon as their current tasks are com­
pleted. Any number of adjacent partitions may be com­
bined. For example, in Figure 11, P2 and P3 may be
combined into one larger partition of 128K. However,
P2 and P4, PI and P3, may not be combined. When P2
and P3 are combined, the new configuration is as
shown in Figure 15. P2 or P3 may be made the inac­
tive partition. When P2 and P3 are combined, the job
classes to be serviced by the new partition (P2) must
be determined. If no change in job class (es) is speci­
fied, the classes currently being serviced by P2 remain
as the job class assignments of the new partition. (See
Identity Change.) The inactive partition (P3) is made
nondispatchable until it is recovered.

Concepts 29

PiP

64K

Figure 15. Partition Configuration after Combination

Figure 16. Partition Identification after Combination

With the storage protection and fetch protection
features, a unique protection key is available for each
problem program partition. A list is kept of each avail­
able key for subsequent reassignment to combined or
recovered partitions. When partitions are combined
or recovered, the first available protection key on the
list is assigned to them.

Note: Storage assignment increases through partition redefini­
tion should be made in increments of 64K bytes. If they are not,
the system rounds the value to the next 64K increment.

Identity Change

Partition redefinition also allows the job classes speci­
fied at system generation or at system initialization to
be changed. When partitions are combined or recov­
ered, the job class (es) that will be assigned to the
resulting partitions must be determined. In Figure 15,
P2 and P3 were combined into the larger partition P2.
However, the original partitions each had three job
classes. Therefore, the decision must be made whether
to choose new job classes or some combination of the
six old classes. For example, P2 could be aSSigned job
classes C, A, and M, or a new job class could be speci­
fied, such as O. A new configuration is illustrated in
Figure 16. If a new job class identifer(s) is not in­
cluded during partition combination, the job class (es)
originally assigned to the partition which remains ac­
tive is unchanged. As a result, some jobs already en­
queued on the input queue may not have a partition
aSSigned to service them.

. 30 OS/VS1 Planning and Use Guide

PiP

128K

Partition Recovery

64K 64K

Pageable
Supervisor
and JES

Partitions that were combined may be reestablished,
or recovered. In Figure 15, P3 is now inactive, but is
to be recovered. Once again the decision must be made
as to which job classes will be assigned to both P2 and
P3. P2 and P3 need not retain their original size, nor
their previous job classes. With P3 recovered, Figure
17 shows a possible new configuration.

Note: When recovering partitions, a job class(es) must be
specified for the partitions being recovered, since only the cur-
rently active partition has a job class(es) assigned. .

Par,ition Definition Processing

As shown in Figure 18, when the operator enters
either DEFINE or the reply 'YES' to the 'CHANGE PARTI­

TIONS?' message, the system requests that the defini­
tions be entered. If 'LIST' was specified, the system
lists the current partition configuration, including the
time-slicing specifications, if this feature was chosen.
(The operator must remember to CANCEL all affected
unending jobs before redefining the system. If he does
not, the new partition definitions do not take effect.)
After definitions are entered, the system checks their
validity and also inhibits scheduling subsequent jobs
into the affected partitions. The system will stop any
active direct system output writer in the affected parti­
tion. When the current jobs have been terminated, the
new definitions are implemented. The Considerations
section contains operating considerations associated
with partition redefinition .

Figure 17. Partition Configuration after Recovery

Figure 18. Partition Definition Processing

Input Readers

VSl allows the user to specify as many input readers
as he desires, within the limits of the virtual storage
allocation he has made for his JES area at sysgen time.
The readers are part of JES, are resident in the page­
able supervisor area of storage, and operate concur­
rently with writers and with problem programs. The
maximum number of readers required is specified at
sysgen time in the RDR parameter of the JES macro in­
struction or at IPL time by the JES reconfiguration facil­
ity. One reader is assumed if the parameter is omitted.

All input to VSl, except console-entered commands,
passes through the JES reader(s). The JES reader is
started for each input stream by entering a START com­
mand, and it continues to service an input device
until terminated by a STOP command or until end-of­
£Ie is encountered on a device other than a card reader.

When the JES reader is initialized, the Job Entry
Peripheral Services (JEPS) monitor, a part of JES, ini­
tializes work area storage for input stream dependent
information and attaches the reader as a subtask for
each input stream started. The reader examines the
records and separates them into commands, job con­
trol, and data.
The functions of the JES reader are to:

1. Scan each job statement for valid jobname, class,
type of run, and priority keywords.

2. Obtain a time stamp containing the start time as
each job is encountered in the input stream.

3. Give an internal VSl identification consisting of a
number concatenated with the job name.

4. Send to the command processing section of the JES

reader all commands not within a job. The com­
mand is processed according to a specified disposi­
tion that may include:
• Execute the command.
• Write the command on the console and execute.
• Write the command on the console and ask the

operator whether or not to execute.
• Ignore the command.

S. Put all the JCL for the job into a JCL spool data set.

Concepts 31

6. Take a job-end time stamp when the job has been
completely read. The real time in the .lES reader is
calculated for the job. The total number of state­
ments read for the job is available at this time. If no
error has been encountered, the job is enqueued by
class and priority on the job queue. If an error has
been encountered, the job is deleted and, if an un­
recoverable I/o error occurs, the reader is closed.

Commands

Data

lNO:

Yes

Ves

Yes.

Put data on dis!,
associating H
with proper iob
step

Store JCL i"
Yes appropriate
____J...... data set for

the prece6h~~

iob

Figure ;_9. JES Input Reader ?~ncessh_',:

7. Bypass all input from the input stream, if requested,
until a job with a specified name is encountered.

8. Complete processing for the current input stream
when an end-of-RIe is encountered on all devices ex­
cept a card reader. The JEPS monitor is called to
indicate that the reader has been stopped.
Figure 19 is a graphic representation of JES input

reader processing.

Enqueuing Jobs by CLASS and PRTY

A job definition, containing a disk entry record and
accounting records, is created for each job read by the
input readers and is placed in the queue specified by
the CLASS parameter. Jobs are entered into the input
work queues for each class according to the PRTY pa­
rameter (PRTY values range from a low of 0 to a high
of 13). One input work queue exists for each of the 15
job classes. Jobs having the same class and priority are
placed in the queue first-in I nrst-out (FIFO). When the
input work queue for a job class contains one or more
jobs, termination of a job in any partition assigned to
service work for that job class is followed by selection
of the next highest-priority job from the input queue.
Selection and initiation of the new job does not require
operator intervention.

For example, if CLASS=D, PRTY=12 is specified on the
JOB statement, the job is placed on the input work
queue for job class D, behind any previously enqueued
PRTY=12 jobs, but ahead of all jobs of lower priority.

Note: If no PRTY parameter is specified on the JOB card,
the job is assigned the default priority specified in the reader
procedure.

The PRTY parameter applies only to initiation prior­
ity, not to dispatching priority. Dispatching priority
determines which job should be given control of the
CPU. In VSl, dispatching priority is derived from the
relative position of the partitions: PO has highest prior­
ity, P51lowest.

The dispatching priority of a task is determined by
the relative position of the task control block (TCB)
on the dispatching queue. (The dispatching queue is
the chain of TeBS indicated by the TeBTeB fields.)

If subtasking is not used, all TCBS are established in
the nucleus at system 2:eneration. These are ordered to
provide a disp~tching'-' priority starting with resident
system task TCBS, through the job step task TCB of the
highest priority partition (PO), to the successively
lower priority partitions' TCBS (Pl-P51). Control of the
CPU is given to the program represented by the highest­
priority ready TCB.

If subtasking is used, TCBS established at system
generation in the nucleus represent the resident system
tasks and the job step task of each partition. However,
each job step task can attach subtasks, each of which

I will have a TCB located in the partition's protected
queue area. The dispatching priority is initially the
same as the partition's priority. The dispatching pri­
ority differs from the partition's priority when a job
step task issues a CHAP (change priority) macro in­
struction to change its dispatching priority. If dis­
patching priorities are not changed, each partition's
job step task is dispatched before its subtasks, which
are then dispatched in the order in which they were

attached. vVhen all of a job step's subtasks have been
dispatched, the job step task of the next lower partition
can be dispatched.

If the time-slicing feature was specified at system
generation, the effective dispatching priority of a group
of time-sliced partitions can be altered. Time-slicing
allows the user to establish one group of consecutive
partitions in which the task in each of the partitions is
aSSigned a uniform interval of time to retain control of
the CPU. When the allotted time has elapsed, the next
lower-priority ready task gains control of the CPU for
its allotted time. This process continues until either all
tasks are waiting and completed, or until a task of
higher-priority becomes ready.

Job Initiation and Termination

The job scheduler contains the initiation, interpreta­
tion, allocation, and termination portions of the control
program. As illustrated in Figure 20, the job initiation
portion selects jobs from input work queues and deter­
mines which type of output writer to use for each out­
put class. As each problem program is executed, it
retrieves its input (SYSIN) data from the direct access
device where it was previously stored by the input
reader. (Note that this retrieval takes place at direct
access speeds, which is faster than reading input data
directly from a card reader.) During problem program
execution, output data directed to an output class is
recorded on a direct access device, or written directly
to the output device, depending on the type of output
writer selected.

Jobs are scheduled for execution according to:
1. Their job class identifier.
2. Their priority within the job class queue.
3. An available partition corresponding to the appro­

priate job class.
When a job is complete, the scheduler performs the

required termination and informs a system output
writer that the data produced by the problem program
is ready to be written on the specified device.

Job Initiation

An initiator may be started in each problem program
partition that is defined at sysgen time. When each
initiator is started, job management allocates an area
on DASD called SWADS (scheduler work area data set).
Each SWADS holds the tables for the problem program
currently handled by that particular initiator. Thus, it
is a sequential data set that is reusable; that is, the
tables for a new job overlay those from the previous
job. The sw ADS is deallocated when the STOP command
for that initiator is processed. (For a description and
discussion concerning SYSl.SYSJOBQE, see section JQF in

Concepts 33

Figure 20. The VSl System

the (Tse portion of this manual.) The initiator selects
a job from the input work queues established by the
system input reader and schedules it for execution.
Initiators obtain jobs for partitions based on the job
classes assigned to the partitions, and the priority of
the jobs within their job classes .. The initiator inter­
faces to allocation procedures for device allocation.
The job is then scheduled for execution. An initiator
is given control after a job has been terminated.

When the job terminates, the initiator then sched­
ules the next available job into its partition and passes
control to the first step of that job. When system out­
put writers are used, output data sets are placed on
direct access storage devices while the job is being pro­
cessed. The output data sets are enqueued by output
class and subsequently retrieved by system output
writers.

:34 as iVSl Planning and Cse Guide

Job Termination

The termination portion of the control program deter­
mines first whether step termination or job termination
is to be performed. Step termination includes dispos­
ing of data sets, deallocating input/ output devices,
processing condition codes, and executing an account­
ing routine. If the job contains additional steps, control
is returned to the initiator to schedule the next job
step. Job termination is performed after the last step
of a job has been terminated. An accounting routine
is executed; data set disposition and input/ output de­
allocation that could not be done at step termination
are completed.

If the job used direct system output writers, its out­
put was written directly to an output device or devices:
no intermediate device had to be used and no output
work is enqueued.

If the job used system output writers, its output is
entered in the output work queue for processing by
the system output writer. Output work queue members
are enqueued within output class according to the
PRTY parameter on the JOB card. Jobs having the same
output class and priority are placed in the queue FIFO.
For example, if a single output class is specified for
system messages and all output for a particular prob­
lem program, the output work queue for that class
includes, at job termination:
1. All system messages produced at job initiation, such

as allocation messages.
2. All system messages produced during job termina­

tion.
3. All problem program output.

This output is transferred to the speCified output
device in the order shown. Different types of output,
such as system messages and problem program data,
are never intermixed.

Data sets for a job are enqueued on the output work
queue according to output class and priority, so that
they can be written by an output writer. These data
sets may include data sets produced during a job step,
as well as control program messages. Depending on
its characteristics and the way it is to be processed by
the control program, a data set may be assigned to any
one of 36 output classes (A-Z, 0-9) defined at an in­
stallation. A particular o~tput clas~ may reflect such
characteristics as priority of the data, type of device
to record it, or location or department to which it is
to be sent. (See Choosing Output Classes in the Con­
sideratiom section.)

Direct System Output Writers

Direct system output writers write problem program
and system messages, produced by the initiator/termi­
nator, directly to system output devices. Valid output
devices are: printer, punch, and magnetic tape.

Direct system output writers are started in problem
program partitions and are initialized before the prob­
lem program gets control of the partition. vVhen the
problem program writes its output, the output will go
directly to the output device assigned to the direct
system output writer. System output writers can han­
dle as many as 15 different job classes. If no job
class (es) is specified in the START command, job classes
to be processed are obtained from:

First, the partition information block; then, the direct system
output procedure.

If job classes are specified in the START command, they
override those specified in the other two sources. For
example: if the operator enters the command,

START DSO.P3,283,,(JOB CLASS=ABC,OUTCLASS=B)

any job running in partition 3 with a jobclass of A, B,
or C and an output class of B will have its output writ­
ten directly to tape device 283.

The job class and output class of a direct system out­
put writer can be changed by use of the MODIFY com­
mand. For example: if the operator enters the com­
mand,

MODIFY 283,JOBCLASS = DE,OUTCLASS = A

any direct system output writer writing to output
device 283 will process jobs with a jobclass of D or
E, and an output class of A.

Direct system output writers can be stopped by a
STOP command. The STOP command may specify a
partition ID, which will cause all DSO in the partition
to be stopped, or it may specify a device, which will
cause only DSO to the particular device to be stopped.

A user-supplied DSO procedure may be used, but it
must execute the IBM-supplied direct system output
writer.

Output Writers

Output writers write system output data sets created
by problem programs, and system messages produced
by the initiator/terminator tasks. All system output
data sets are written on direct access storage devices.
These are used as the input data sets for the output
writers. Valid output devices for an output writer are
printer, punch, and magnetic tape.

When a job is terminated, system messages and out­
put data are enqueued in the appropriate system out­
put queue. One system output queue exists for each
output class. Queues are serviced in the order specified
in the START command for the writer. As many as eight
output classes may be specified. These classes override
those in the writer cataloged procedure. The writer
dequeues the first entry from the primary queue. If
there are no entries in the primary queue, the writer
dequeues the first entry in the secondary queue. This
continues through the eighth queue, or until the writer
finds work.

VSI allows the user to specify as many system out­
put writers as he desires, within the limits of the vir­
tual storage allocation he has made for his JES area
at sysgen time. The writers are part of JES, are resi­
dent in the pageable supervisor area of storage, and
operate concurrently with readers and with problem
programs. The maximum number of writers required
is specified at sysgen in the WTR parameter of the JES
macro instruction or at IPL time by the JES reconfigu-

Concepts 35

ration facility. One writer is assumed if the parameter
is omitted.

All VSl output data, with the exception of direct
system output data, must pass through the JES writer.
The data includes output data sets and data sets con­
taining system messages and job control language. The
writer is invoked for each output stream by entering a
START command. It continues to service an output de­
vice until terminated by a STOP command.

When the JES writer is initialized, the JEPS monitor
initializes work area storage for output stream depen­
dent information and attaches the writer as a subtask
for each output stream started.

The JES writer uses job entry central services to
obtain output data and system messages in the order
they appear in the specific output class queue. The
writer processes one copy of the job's JCL, system mes­
sages, and output data set, unless otherwise specified.
Multiple copies can be provided by so specifying in
the job's JCL, or by the WRITER command.

When all output for a job is processed, an account­
ing linkage routine is called for final job accounting
and the job is completely removed from the system.
At this time, the space held by the job on the spool
and queue devices is freed.

A user-written output writer procedure may also
be used. This procedure may execute a user-written
writer program or the ffiM-supplied writer. If a user­
written writer procedure is used, it must be placed in
SYSl.PROCLIB and named in the START command.

System Restart

Because it is sometimes necessary to shut down the
system (end-of-shift, end-of-day, normal maintenance,
or system malfunction), system restart allows the sys­
tem to resume operation without having to reenter jobs
that have been enqueued. Information concerning jobs
on the input, hold, and output queues, and jobs in in­
terpretation, initiation, execution, or termination, is
preserved for use when the system is reloaded (see
Figure 21). When the system is restarted, the operator
receives messages describing the status of each job
in the system. If the job was not enqueued, the job­
name is written out at the console. If the job was under
control of a scheduler, the jobname and stepname are
given. In addition, the operator is informed of whether
allocation was being performed for the job, or whether
the job was being executed or terminated.

Invoicing System Restart

After the system is reloaded, and after nucleus initiali­
zation, system restart may be invoked by omitting the
"F" suffix from the Q=(unitname,[F]) parameter of
the SET command, or by omitting the Q=parameter

36 OS/VSl Planning and ese Guide

Figure 21. System Restart Processing

entirely. This is valid only for the initial SET command,
and cannot be done at any other time. This omission
indicates to the system that the job queue data set
(SYSl.SYSJOBQE) already exists in proper format, and
requires only initialization.

Jobs that Were Being Read In

When the system must be restarted, jobs that were
being read in are deleted from the job queue and must
be resubmitted.

Jobs on Input, Hold, and Output Queues

All jobs that were enqueued on their appropriate job
class, hold, or output class queues, rernain there for
subsequent processing when the system is restarted.
No operator action is required.

Jobs that Were Dequeued

Jobs that were dequeued from an input or hold queue
mayor may not have been completely interpreted. If
interpretation was not complete, system restart re­
enqueues the job where it will be subsequently de­
queued by an initiator and reinterpreted. If interpre­
tation was complete, the job will be scheduled for
restart if possible. Otherwise, the job will be canceled,
and output data sets created for the job will be en­
queued.

With the restart facility, any job that was in step
termination at restart time is executed starting at the
next step of the job, after system restart is complete.
Any job that requested restart is restarted at the cur­
rent step, after system restart is complete, if the fol-
lowing ~ondition~ are satisfied: -

• The step completed the allocation phase (that is,
the phase between allocation and step termination).

• System completion code 2F3, designating system
restart, was specified as eligible for restart.

• The operation replied YES to the verification request
(message IEF22SD) to restart the job.

System Output Processing

Output jobs that were being processed by a system
output writer are requeued to reprocess any data sets
that had not been written completely at the time the
system was shut down. No operator action is required.
All system messages and data sets that had not been
processed are written by the first eligible output writer
started. System log data sets are queued to output class
A by system restart routines.

Standard and Optional Features

The standard features included in VSl are:

1. Same as OS/MFT, Release 20.1.

2. Linkage Editor/Loader.

3. System Assembler.

4. Storage Protection.

5. Jobstep Interval Timer.

6. Identify.

7. Job Entry Subsystem.

8. Recovery Management:
a. MCH (Machine Check Handler) .
b. CCH (Channel Check Handler) .

9. Page Supervisor.

10. Access Methods:
a. BSAM.

b. QSAM.

c. BDAM.

d. BPAM.

11. Utilities:
a. System Utilities

b.

c.

IEHATLAS

IEHDASDR

IEHTh'1TT

IEHIOSUP

IEHLIST

IEHMOVE

IEHPROGM

IFHSTATR

n"d-Q ~af- TTf-n~f-~c.£'
LJ'u..\..u. U\..III,. v \..~~..1.\....1.,

IEBCOMPR

IEBCOPY

IEBDG

IEBEDIT

IEBGENER

IEBISAM

IEBUPDTE

IEBPTPCH

IEBTCRIN

Independent Utilities

IBCDASDI

IBCDMPRS

ICAPRTBL

12. Service Aids:

HMAPTFLE

HMASPZAP

HMBLIST

Concepts 37

HMDPRDMP

HMDSADMP

IFCOIPOO

IFCEREPO

IMCJOBQD

Generalized Trace Facility (GTF)

13. Multitasking.
14. On-Line Test Executive Program (OLTEP).

15. Remote Entry Services (RES).
16. Automated System Initialization.
17. Partition Deactivation/Reactivation.
18. Missing Interruption Checker.

19. Automatic Partition Redefinition.
20. User Modify Logical Cylinder Facility.
21. Greenwich Mean Time (GMT).

The optional features available for VSl are:
1. Selected resident svc routines.

2. Selected resident modules from LINKLIB.

3. PCI FETCH.

4. Operator communication during initialization.

5. System Log.
6. Dynamic Device Reconfiguration (DDR).

7. Checkpoint/ Restart.

38 OS/VS1 Planning and Use Guide

8. Multiple Console Support (MCS).

9. System Management Facility (SMF).

10. Shared Direct Access Storage Device (DASD).

11. Device Independent Display Operators Console
Support (DIDOCS).

12. Time Slicing.
13. Access Methods:

BTAM

TCAM

GSP/GAM

BISAM

QISAM

VSAM

RTAM

14. Alternate Path Retry.
15. Automatic Volume Recognition (AVR).

16. Integrated Emulators.
17. Conversational Remote Job Entry (CRJE).

18. I/O Load Balancing.
19. DEB Validity Checking.
20. DynamiC Dispatching.
21. Fetch Protection.
22. Dynamic Support System (DSS) (for planning pur­

poses only).
23. Direct Access Volume Serial Number Verification.

In preparing for the use of VSl, data processing plan­
ners and system programmers should evaluate not
only the characteristics and requirements of the jobs
to be processed by the system, but the characteristics
and facilities of the system that influence how a job is
processed once it has been presented to the system.
Some of these characteristics are general and apply
equally to all types of jobs. Others are related directly
to job type. A third category of characteristics, al­
though related to job types, is exhibited primarily in
system operation, and must be considered by machine
room supervisors and machine operators.

In this section, the topic General Considerations
describes items of interest primarily to planning per­
sonnel, that should be considered before generation
of a VSl system. The next four topics-Batch Pro­
cessing, Telecommunications, Graphics, and Concur­
rent Peripheral Operation-describe considerations
important to the systems programmer and the applica­
tion programmer. These four topics are organized
similarly, in «checklist" fashion, so that the reader
interested in a given job type need read only General
Considerations and the topic corresponding to the job
type in which he is interested, to learn all considera­
tions pertinent to that job type. Because partition
configurations depend on the amount of real and vir­
tual storage available as well as on the types of jobs
to be run, the topic Typical System Configurations
describes partition arrangements for systems with 128K
bytes, 192K bytes, and 384K bytes of real storage.
These configurations are general, but should be help­
ful for planning. The seventh topic, Operating C on­
siderations briefly describes characteristics of VSl that
may affect operating procedures.

General Considerations

Several considerations apply to all phases of the sys­
tem; these must be considered regardless of the type
of job that is being run. They include:
• Estimating storage requirements.
• U sing resident reenterable routines.
• Placing system data sets on direct access devices.
• Sharing direct access devices with other systems.
• Choosing the number and size of partitions.
• Specifying appropriate job classes.
• Assigning job names.
• Formatting problem program messages.

Considerations

• ChOOSing output writers.
• A voiding system interlocks.

Estimating Storage Requirements

Refer to the publication OSjVSl Storage Estimates,
GC24-5094, for information on estimating the storage
requirements for your system.

Single Console vs. Multiple Consoles

Through multiple console support (MCS), an installa­
tion may use one primary (or master) console and
multiple secondary consoles where each console is
dedicated to one or more system functions (for ex­
ample, tape library, disk library, or teleprocessing
control). MCS services all consoles concurrently, cre­
ating an environment for operator j system interaction
that gives each console the appearance of being the
only console on the operating system. Each console
operator receives only those messages from the system
that arc related to the commands that he enters and
to his assigned functions.

MCS. provides the mechanism to:
• Route messages to selected functional areas.
• Allow a user-written exit routine to modify the

message's routing and descriptor codes prior to the
issuance of the message.

• Switch to an alternate console if a primary console
should fail.

• Allow automatic message deletion on devices such
as display tubes (graphics).

• Support a hard copy log for the recording of routed
messages, operator commands, and system re­
sponses.

Selective message routing, provided under MCS, is
the ability to route both problem program and system­
initiated messages to functional areas and the SYSLOG
device. Messages appear only on consoles that have
been specifically deSignated to receive the messages.
In this manner, a console whose function is to receive
tape messages, for example, is prevented from receiv­
ing messages not pertinent to that function.

A system generation option is provided to permit
insertion of a resident, user-written exit routine in the
communications task. The exit routine receives control
prior to routing any WTO and WTOR messages whose
routing codes will be used by the operating system.

Considerations 39

The exit routine may examine but not modify the mes­
sage text; however, the exit routine may modify the
message's routing and descriptor codes. Messages will
only be sent to those locations specified in the modified
routing codes.

MCS permits console switching, which can be initi­
ated automatically, by operator command, or by the
operator manually pressing the interrupt key on the
system control panel:

• Automatic console switching to an alternate con­
sole occurs when permanent hardware errors are
detected by the operating system.

• Command-initiated console switching occurs when
the system accepts a valid VARY operator command.
Command-initiated console switching is used to re­
structure the system console configuration and the
hard copy log. Console switching to an alternate
console can be performed by placing the original
console either online or offline.

• Manual switching is limited to the master console
(primary console device) and is initiated by press­
ing the interrupt key on the system control panel.
Manual switching to a new master console is used
when the master console is inoperative and the
hardware failure cannot be detected by the system.

Messages can be automatically deleted from the
screen on the operator console with CRT display by
using the DOM macro instruction. When a system or
problem program no longer requires that a message
be displayed-for example, if a WTO macro instruc­
tion was issued and the message is no longer needed­
a DOM macro instruction should be issued to delete the
message from the screen.

MCS allows buffered or immediate hard copy. Thus,
no information is lost when messages and operator
commands are deleted from graphic displays. In addi­
tion, the hard copy device can be used as a collection
point for all messages and commands. Routing codes
and the time, if the timer option is present, are pre­
fixed to all messages and commands that are sent to
the hard copy log. The system log-the only buffered
hard copy device supported-must be specified at sys­
tem generation, and can be modified at system initiali­
zation or during system operation. If hard copy is
desired on a console, the hard copy device can be
specified at system generation, at system initialization,
or during system operation. Although the system log
is supported with or without the MCS option, the hard
copy log is only supported with the MCS option.

Note: If the multiple console support (MCS) option is selected
when coding the SCHEDULR macro instruction, a SECONSLE macro
instruction must be included for each console except the master
console; that is, for the alternate to the master console and for
each additional secondary console.

40 OS/VS1 Planning and Use Guide

PARTITNS Macro Instruction

The PARTITNS macro instruction must be used. It estab­
lishes the maximum number of partitions for an instal­
lation. The maximum number of partitions that an
installation intends to use should be established at
system generation, because this number can be re­
duced during system initialization or during operation.
Unnecessary system generations may be avoided be­
cause the number of partitions in use may never
exceed the number established at system generation.
Therefore, if the maximum number of partitions that
might be used at some later date is generated, the
system does not have' to be regenerated to increase
the number of partitions in the system. The attributes
of each partition are established as follows:

Pn(C-class,S-size)

where the characters P, C-, and S- must appear as
shown.

n specifies the partition number (0 to 51).
class specifies the function of the partition as follows:

S = system task partition
xxx = problem program partition specified as alphabetic

characters from A through a that indicate the job
classes that can use the partition.

size specifies the size of the partition from 0 to the maximum
in 64K increments without the K.

Notes:
• Partitions may be specified in any order as long as every

partition in the sequence is included.
• Partition sizes will be rounded up to 64K boundaries.
• No more than 37 system task partitions may be specified.
• At least 1, but no more than 15, problem program (user)

partitions may be specified.

Page Boundary Loading

Aligning a control section or a named common area on
a page boundary can be used to effect a lower paging
rate, thus making more efficient use of real storage. To
accomplish this alignment, the CSECT or common area
is named on either the PAGE statement or the ORDER

statement with the P operand. Either statement causes
the linkage editor to locate the CSECT (or common area)
on a page boundary within the load module. (When a
note list is present, it precedes and is contiguous to the
load module.) See OSjVS Linkage Editor and Loader,
GC26-3813, for using page boundary alignment.

Using Resident Reenterable Routines

The resident reenterable load module feature allows
problem programs to share reenterable code. It pro­
vides improved performance by plaCing frequently
used modules in the resident reenterable routine area.

Resident reenterable routines may be made non-page­
able or pageable at the user's option.

The feature uses the RAM parameter to make pos­
sible the pre-loading of both access method modules
from the svc library and any user-written reenterable
modules from the link library. The feature uses four
module lists created at system generation time. At
system initialization, the user can either cancel the
feature entirely Or provide up to four different lists of
access method and other reenterable modules of his
own choosing to be loaded into the resident reenter­
able routine area.

In an operating environment where any problem
program issues an ATTACH, LINK, LOAD, or XCIL macro
instruction to request use of a reenterable module that
is not resident in its partition, the supervisor will search
the resident reenterable routine area for the module.
No additional copies need be brought into virtual
storage. Therefore, frequently used reenterable load
modules should be loaded into the area. Any user­
written reenterable load module and the loader mod­
ules from the link library can be loaded into the area
by including it in one of the lists of modules specified;
type 3 and 4 svc routines, however, must be loaded
only into the RSVC area.

Piacing System Data Sets on Direct Access Devices

Several factors must be considered when putting sys­
tem data sets (SVCLIB, MACLIB, SYSPOOL, LINKLIB, PROC­
LIB, PARMLIB, SWADS, PAGE, and SYSJOBQE) on direct
access storage devices. If all nine data sets are on the
same device, throughput is decreased because of ex­
cessive arm interference. To increase throughput, data
sets should be balanced on devices; devices should be
balanced on channels. The ideal condition would be to
have each data set on a different direct access device,
and each device on a separate channel. In installations
with smaller systems, it would be best to have SYS­
JOBQE, SYSPOOL, and LIKKLIB on the same direct access
device on channell, and SVCLIB, PROCLIB, PARMLIB,
SWADS, PAGE, and MACLIB on another device on chan­
nel2.

Whenever more than one library is to be placed on I a 2314, 2319, 3330, or 3333 disk storage device, arm
movement can be substantially reduced by placing the
volume table of contents (VTOC) approximately mid­
way between the first and last cylinders being used.
The data sets, starting with the most frequently refer­
enced, can then be alternately placed on both sides of
the VTOC with the least referenced data sets farthest
from the VTOC.

Blocking the Procedure Library

Blocking the procedure library conserves DASD storage

space. The procedure library may be blocked during
system generation or afterwards by using utilities.

Blocking the procedure library during system gener­
ation is done by pre-allocating the procedure library
with RECFM=FB and BLKSIZE= (a multiple of 80). Dur­
ing stage II of system generation, the IEHMOVE utility
program blocks the procedure library on the new
system.

A preliminary study used a typical procedure library
containing 54 procedures to determine the most ef­
ficient blocking factor to conserve DASD storage space.
Blocking factors from 1 to 40 (BLKSIZE=80 to 3200)
were used. It was found that blocking factors in the
range 8 to 12 were most efficient. For example, on a
specific DASD, an unblocked procedure library required
30 tracks but a blocked procedure library (with block­
ing factors in the range 8 to 12) required only 21
tracks, a reduction of 30% in DASD storage space.

Sharing Direct Access Storage Devices (DASD)
with Other Systems

If the shared DASD feature is selected at system genera­
tion, considerations should be given to volume assign­
ment and classification (read only or read/write) of
common data sets. Volume handling and device reser­
vation procedures must be carefully defined, because
the shared DASD feature cannot prevent or resolve inter­
locks between systems.

Choosing Number and Size of Partitions

The number of partitions needed at an installation de­
pends primarily on the number of different job cate­
gories (that is, batch, graphics, telecommunications,
and cpo) expected to run concurrently. At least one
partition" mu~st be specified for each· category. The
number of partitions for each category, based on the
number of jobs expected to be run in each, should
then be established. In practice, the maximum number
of partitions for which there is available virtual storage
should be established. If fewer partitions are needed
during operation, the number of partitions can be
reduced by the operator either at system initialization
or during operation. If necessary, partitions may be
reestablished up to the limit specified at system gen­
eration.

Note: If the maximum number of partitions is established at
system generation, the size of the system queue area (SQA) at
system generation also should reflect this maximum number.
Then, if the number is reduced at system initialization, the SQA

can also be reduced, by replying to message IEA101A 'SPECIFY

SYSTEM PARAMETERS'.

Within the limits of the system, the maximum num­
ber of partitions that can be specified depends on the
amount of real and virtual storage available. If a job

Considerations 41

is known to exceed the size of its intended partition,
an adjacent partition can be eliminated and its storage
reassigned to the other partition. Reassignment of con­
tiguous partitions can be accomplished without inter­
fering with unaffected partitions.

Choosing Appropriate Job Classes

A system installation can be set up for maximum ef­
ficiency and throughput by properly using the partition
job class concept. Particularly, the processing charac­
teristics of jobs likely to execute concurrently must be
examined. Failure to consider job mix can lead to de­
grading system performance. Multiprogrammed jobs
can, under certain circumstances, run slower than they
would if processed sequentially. The required balance
can be achieved simply with proper use of the CLASS

parameter by:
• Establishing the job characteristics to be controlled,

based on the typical processing workload.
• Establishing a suitable partition structure com­

patible with the job characteristics to be monitored.
• Establishing the convention that jobs having cer­

tain characteristics are to be directed, through the
CLASS parameter, to the appropriate partitions.

Typical job characteristics are:
• High compute, low input/ output time.
• Balanced compute and input/ output time.
• Low compute time, high input/ output time.
• Use of specific types of input/output equipment,

such as 2250 terminals, magnetic tape only, or tele­
communications terminals.

• Large real storage requirements.
• Small real storage requirements.
• Large virtual storage requirements.
• Small virtual storage requirements.
• Setup or non-setup jobs.
• Use of preallocated data sets.
• Time-slicing considerations.

With this type of categorization, job mix can be
balanced for improved throughput. For example, one
partition can be established for high-input/ output jobs
and another for high compute-time jobs. Process­
limited jobs (such as compilers) can then be aSSigned
to the high compute-time partition, and jobs with high
input/ output requirements (such as sort programs, and
reading and writing of data sets) to the input/ output I

partition. Normal job scheduling should then produce
a satisfactory job mix. Because jobs are queued by the
CLASS parameter, and because each partition is sched­
uled for its next job immediately after the preceding
one is complete, the system as a whole tends to exe­
cute complementary jobs concurrently.

42 OS/VS1 Planning and Use Guide

The CLASS parameter may also be used to direct jobs
that are to be time-sliced to partitions that were de­
fined as time-slicing partitions. However, when using
the time-slicing feature, caution should be taken when
assigning a job class to a particular job. If a job is to be
time-sliced, it must be assigned a job class that will
be serviced by a time-slicing partition. Likewise, if the
job is not to be time-sliced, it should not be assigned
a job class that a time-slicing partition has been as­
signed to service.

A partition should be established to service each job
class specified on a JOB card. If a job is assigned to an
unserviced job class, it remains on the input queue for
that class indefinitely, or until the operator discovers
(by use of the DISPLAY N command) that the job has
not been executed.

Default Job Class

If no CLASS parameter is specified on the JOB card, the
system assigns job class A to the job. Therefore, a
partition should not be assigned to service job class A
unless all jobs run at the installation will fit into that
partition. It is advisable to make job class A either a
secondary or tertiary job class in one or more parti­
tions, to ensure that any jobs that are assigned the
default job class will be executed.

The default job class is given to a job only when no
CLASS parameter is specified, not when an incorrect job
class is given. For example, if P2 is specified as job
classes M and L (Figure 11), P3 as C, J, and A, and
P4 as N, C, and D, the following JOB card illustrates
an invalid job class specification:

/ IMFT JOB ,'MYJOB',MSGLEVEL=O,CLASS=G

Because job class G is an invalid job class for this
particular configuration, the job will not be assigned
job class A. It is placed on the CLASS=C queue, and is
never initiated. It remains there indefinitely until the
operator discovers that the job has not been executed.
Therefore, extreme caution should be used when
choosing a job class for the job to ensure that a parti­
tion has been specified for that job class. To prevent
delays in processing jobs with "invalid" job class deSig­
nators, the operator should enter DISPLAY N periodically
to obtain a listing of the jobs on the hold and input
work queues. Jobs with CLASS= specified outside the
range A-O (for example, CLASS=P) will be abnormally
terminated.

Priority Scheduling within Job Classes

Jobs within job classes can be initiated according to a
priority specified in the PRTY parameter on the JOB

card. For example, several jobs may be designated job

class B. vVithin this group of jobs, some are to be
initiated before others. Therefore, higher priorities can
be assigned to these jobs with the PRTY parameter.
This affects only the way the job is initiated, not the
way it is dispatched. If no PRTY parameter is specified,
jobs are assigned the default priority established in
the reader procedure and are initiated FIFO for each
job class. Therefore, each group of jobs for a partic­
ular job class should be analyzed to determine if some
are to be initiated before others, and to assign these
preferred jobs higher priorities.

Assigning Job Names

Any valid job name is acceptable to the VSl system.
Therefore it is possible that jobs with identical job
names could be in the system at the same time. These
duplicate-name jobs could be on the s~me. inp~t
queues, different input queues, or executing m dif-

. ferent partitions. The existence of these duplicate-name
jobs could cause confusion when using the DISPLAY,

CANCEL HOLD RELEASE and RESET commands. For ex­
ample, 'if a ~NCEL co~mand is entered for a job ~
the hold queue or an input queue, the system wIll
cancel the first job encountered if duplicate job names
are in the queue.

To prevent this confusion, a procedure should be
established \Xlhich will ensure that all jobs have unique
names. This could be done, for example, by varying a
portion of the jobname, that is, JOBPAYl, JOBPAY2, etc.,
to reHect sequence of input. Other methods of unique
identification for jobs could be derived from applica­
tion, programmer's name, time-of-day, date, or any
combination of these which would satisfy the needs of
an installation.

In addition, job names of PO, PI, ... P51 should not
be assigned because these are the partition identifiers.
For example, if a job is assigned a name of P4, and a
CANCEL command is entered for this job, both the job
named P4 and the job that is running in partition 4
will be canceled.

Formatting Problem Program Messages

In VSl it is necessary to relate WTO and WTOR mes­
sages to the problem program which issued them. In
order to do this, a partition identifier is added to each
message issued by a problem program partition. The
maximum length of WTO messages is 122 characters.
The maximum length of WTOR messages is 119 char­
acters.

The VSl form of a WTO message is:

PHASE A ENTERED Pn

Similarly, WTOR messages in VSl include the partition
identifier as follows:

id REPLY 8 CHARACTER NAME Pn

Single Reader or Multiple Readers

In determining whether to have more than one reader,
the number of problem program partitions necessary
for the installation should be considered. It might be
advisable to specify more than one reader. For exam­
ple, the user could specify one reader for cards, one
reader for magnetic tape, and a third for disk.

The primary consideration is to analyze the jobs and
to determine which input device will have the majority
of the input in terms of CPU time. If this device is the
card reader, then one reader should probably be speci­
fied to read the input stream from the card reader
continuously. If, on the other hand, there is a long
input stream on magnetic tape and/ or direct access
storage~ a reader should be specified for each of these
devices. If there is only one long input stream, it would
be advisable to specify one reader for that particular
device .

Choosing System Output Writers

If pOSSible, records to be written by a system output
writer should be blocked. This improves throughput,
because less input/ output time is required, and disk
arm interference is reduced. However, additional vir­
tual storage must be provided within the problem
program partition, where the records are initially
blocked, and within the JES area, to which the logical
records are read. (The additional space required, in
each case, is equal to the logical record length times
the blocking factor plus the input buffer space.)

Choosing Direct System Output Writers

Since the user has a choice between direct system out­
put writers and system output writers, the following
factors should be considered when deciding \vhich
type of writer to use:
• Each direct system output writer can process only

one output class per partition and needs one I/ °
device assigned to it. In a system with several active
partitions, there will probably not be enough I/O

devices to run direct system output writers in all
partitions for all output classes. In this case it is
possible to have jobs running with more than one
output class. A direct system output writer could
handle one output class and system output writers
could handle the others.

• Direct system output writers cannot handle output
from system tasks, jobs canceled while on the input
queue, and jobs failed by the reader/interpreter. It
is necessary to start a system output writer to han­
dle these types of output.

• System output writers and direct system output
writers could be used together. If the output queue
is filled, direct system output writers could be

Considerations 43

started in the active partitions. This would allow
the system output writers to clear the output queue,
without stopping work in the problem program
partitions.

Use of Multiple Writers

The use of multiple output writers has several advan­
tages. In general, a unique output writer can be used
for each requirement in the system. For example, the
following output classes might be assigned:
• An output class for all system messages.
• An output class for all high-priority printed output,

or for printed output rey'uiring special forms.
• An output class for all punched output.
• An output class for all output to magnetic tape.

By specifying the appropriate output class in the DD

statement, the programmer selects the particular de­
vice on which his output is to be recorded. Because
writers can share output classes, a writer can have a
primary and a secondary function. For example, if
output class B is assigned to a high-priority printer,
and output class C to a "background" printer, the high­
priority printer processes only high-priority output
(SYSOUT=B) .

If no high-priority data is waiting on the output
work queue, the output writer performs its secondary
function by taking a job from the SYSOUT=C queue.
The advantage in this use of multiple writers is not
only that it makes writers available for certain types
of unique work, but that it also permits them to per­
form other work when circumstances permit.

Note: Problem programs can access SYSOUT data sets only
through BSAM and QSAM. They can no longer access them
using EXCP.

44 OS /VS 1 Planning and Use Guide

Avoiding System Interlocks

A problem can occur when a task controls a resource,
but is waiting for another resource which is under con­
trol of a second task. If the second task is waiting, and
needs the resource now under control of the first task,
a system interlock condition will occur. The first task
cannot give up its resource until the second task re­
linquishes the resource it controls, and vice versa. The
two tasks are therefore in a deadlock; processing can­
not continue in either partition.

Two ways to avoid this problem are:
1. Request all resources initially; do not begin an ir­

reversible course of action until all required re­
sources have been obtained.

2. If the program is holding a formerly obtained re­
source which may prevent acquisition of another
resource, release the resource before requesting the
other resource(s). If the former resource is still re­
quired, request it together with the other resource(s).

Data Set Integrity

An interlock may also occur during job initiation, if a
job requests one or more data sets which are reserved
for use by another job which is currently executing in
the system. In order to prevent this interlock, the oper­
ator is notified of the condition through a series of
console messages. The operator must then make a
decision, based on his knowledge of the jobs in the
system, the system configuration, and the data sets in
use. He may wait for the requested data set(s) to
become available, he may place the job on the hold
queue, or he may cancel the job being initiated.

Batch Processing
If the installation's work is primarily batch jobs, several
factors must be considered when the system is initi­
alized, and when it is operating. First, the number,
size, and job class (es) for each partition must be deter­
mined. Then the decision must be made as to which
partitions, if any, should contain direct system output
writers. The proper output classes for the installation
must also be determined.

Choosing Number and Size of Partitions . .

The number and size of partitions depends on the
amount of real and virtual storage available in the
system and on any virtual=real requirements that may
exist for specific jobs. The best configuration for a par­
ticular installation usually depends on the type of job
most frequently run.

Assigning Job Classes to Jobs

Every job should be assigned a job class, using the
CLASS parameter. For batch processing of input/output­
limited jobs, each job should be assigned a job class
that corresponds to a high-priority partition. Process­
limited jobs should be assigned to a lower-priority par­
tition. In addition, jobs that can be executed without
having any special input/ output setups (that is, "non­
setup" jobs such as a FORTRAN compiler), or that have
preallocated data sets, can be directed to a high­
priority partition for fast throughput.

Assigning Partitions to Job Classes

After the job classes have been assigned to jobs, ap­
propriate partitions must be assigned to service those
jobs. If the partitions do not have the appropriate job
classes specified, the job classes can be changed (see
Partition Redefinition in the Concepts section), or the
CLASS parameter can be changed on the JOB card, be­
fore the job is entered in the input stream.

Choosing Output Classes

At an installation it may be advisable to set up certain
output classes for specific duties. For example, output
class A could be for system messages, and class B for
problem program output. Or, class A could be for sys­
tem messages, class B for problem program output
for the accounting department, class C for problem
program output for the purchasing department, etc.

Note: System messages are assigned an output class through
the MSGCLASS parameter on a JOB card. Problem program
output is assigned an output class through the SYSOUT param­
eter on a DD card.

Another approach would be one in which output
class A represents printer system message output, class
B represents punched card output, class C represents
magnetic tape output, and class D represents printer
problem program output. Up to 36 output classes may
be specified. When using special forms on the printer,
the operator should ensure that system messages are
not written on the special forms. This possibility can
be eliminated by establishing a different output class
for output requiring the special forms.

Note: An identification problem may arise if system messages
are assigned an output class different from problem program
output. Therefore, it may be helpful for the programmer to
print, as the first line of output, his name and department, if he
chooses to use different classes for message and problem pro­
gram output. This would also alleviate some operator problems.
(See Operating Considerations in this section.)

When the system log option is present, system log
data sets must be assigned an output class. The assign­
ment can be made at system generation by using the
WTLCLSS operand of the SCHEDULR macro instruction.
Two log data sets are provided for recording the data
sent to the log. To avoid the situation where the second
data set becomes full before the first data set can be
__ ._!.L.L~_ L.~.LL. .LL.~ ~;~~ ~£ L.~ rln n ~~ ~ n~rl h~ r.., ~.,.J­
W!.llleU, UUU.l Lue '::'.LL.CO U.L LUCO \..Lena. '::'COL'::' a.u\..! LUCO VUL'pUL

writer class must be considered at system generation.
To be sure that a full log data set is processed in a
reasonable period of time, a unique output message
class should be assigned for the log data sets and a
writer should be assigned multiple output classes with
the log class having the highest priority.

Considerations 45

Telecommunications

VSl enables telecommunications jobs to be run con­
currently with other types of jobs such as batch,
graphics, and concurrent peripheral operation (cpo).
Several VSl considerations are of interest to the tele­
communications user.

These considerations include the number of telecom­
munications partitions required, their placement in the
system, their size, and their job class (es) .

Choosing Number and Size of Partitions

Telecommunications jobs arc considered unending in
that they are scheduled only once, and are terminated
only when a CANCEL command is entered, that is, for
partition redefinition. (See Partition Redefinition in the
Concepts section.) There must be at least one partition
for each telecommunication job being run. The size of
the partition depends upon the size of the telecom­
munications control program used by the installation.

To avoid delays in servicing lines, a telecommuni­
cations job should have unrestricted access to the re­
sources of the central processor. For this reason, it is
best to run telecommunications jobs in high-priroity
partitions. Because the telecommunications job is not
alone in the system, its activities should cause mini­
mum interference with jobs in other partitions, and it
should not be susceptible to interference from these
other jobs.

Assigning Job Classes to Jobs

Each telecommunications job should have a unique
job class assigned to it. The message control partition
(PO) should have a different job class from the mes­
sage processing partition. Caution must be taken to

46 OS/VSl Planning and Use Guide

avoid assigning job classes to problem programs that
correspond to the job class(es) of the telecommuni­
cations partitions. Caution must also be taken to assure
that all telecommunications jobs are assigned class
parameters corresponding to those defined for the
high-priority teleprocessing partitions in the system.

Assigning Partitions to Job Classes

Each telecommunications partition should also have a
unique job class so that the appropriate jobs may be
directed to that partition. If the job classes are to be
changed, a CANCEL command must first be entered
to terminate the unending job, and then the system
may be redefined. (See Partition Redefinition in the
Concepts section.) Likewise, if the partition is not as­
Signed to the telecommunications job class, the tele­
communications job may never be initiated.

VS 1 Telecommunications Compatibility

VSl BTAM (Basic Telecommunications Access Method)
and VSl TCAM (Telecommunications Access Method)
are the same externally as their equivalents in os. Both
types of programs will run, without modification, in the
VSl environment after reassembly. The reassembly al­
lows the existing programs to benefit from the virtual
storage feature of VSl. The user is cautioned that if any
internal changes have been made to either os BTAM

or os TCAM to tailor them for a particular need, similar
changes must be made to the VSl versions to retain
their compatibility. For more information about BTAM,

refer to OS/VS Basic Telecommunications Access
Method, GC27-6980. For more information about
TCkM, refer to OS TCAM Concepts and Facilities,
GC30-2022, and OS/VS TeAM Programmer's Guide,
GC30-2034.

Graphics

Graphic jobs in a VSl environment are subject to sev­
eral general considerations. A graphics job associ­
ated with an unbuffered IBM 2250 Display Unit may
operate with reduced performance if high telecom­
munications activity interferes with its access to the
central processor for regenerating the display. In this
case the relative importance of the graphics and tele­
communications jobs must be determined, and the de­
cision made as to which to run in the higher-priority
partition. Additional considerations for VSl include
assigning job classes to jobs, choosing the partition to
service graphics jobs, using the time-slicing option, and
assigning partitions to job classes.

Choosing Number and Size of Partitions

There must be at least one partition for each graphics
job being run. The partition size depends upon the size
of the graphics job. Generally, graphics jobs should be
run in a high-priority partition to cause minimum
interference with other jobs. If telecommunications
and graphics are being run in the same system, the
best performance would be gained by placing the tele­
communications job in a high-priority problem pro­
gram partition, and the graphics job in a relatively
high-priority partition also.

Assigning Job Classes to Jobs

Graphics jobs should have a unique job class assigned
to them, to ensure that they are executed in the se­
lected partition.

Assianina Partitions to Job Classes

A g;aphics partition should be assigned a unique job
class that corresponds to the job classes assigned to the
graphics jobs. This ensures that jobs will be enqueued
on the proper input queue, and executed in the appro-

priate partition. The partition could also be assigned
secondary and tertiary job classes to reduce idle time.
If the partition's job class is to be changed, and a
graphics job is being run, a CANCEL command must be
issued for the graphics job, and then the partition may
be redefined.

Using the Time-Slicing Feature

The time-slicing feature of assigning uniform intervals
of CPU time to a group of consecutive partitions is pro­
vided at system generation. (The number of time­
slicing partitions and the time interval for each task
are specified in the TMSLICE parameter of the CTRLPROG

macro instruction.) The ability to get uniform response
time is useful in a graphics environment, particularly
for concurrent applications involving graphics ter­
minals. To minimize contention for the CPU with other
jobs, it is best to establish the higher-priority partitions
as time-slicing partitions.

Graphics Support with VS 1

The Graphic Subroutine Package (GSP) provides IB~f
2250 graphics support for PLjI, FORTRAN, and COBOL F

and is externally equivalent to as MFT Release 21.0.
The Graphics Access Method (GA:\f) provides sup­

port for the IB:\f 2250 and IBM 2260 display units and
is externally equivalent to as ~fFT Release 21.0.

For more information about GSP, refer to the OSjVS
Graphic Subroutine Package (GSP) for FORTRAN IV,
COBOL, and PLj i, GC27-6973. For more information
about GAM, refer to the OSjVS Graphic Programming
Services (GPS) for the IB}.,! 2250 Display Unit, GC27-
6971, and to the OSjVS Graphic Programming Services
(CPS) for the IBlvt 2260 Display Station (Local At­
tachment), GC27-6972.

Ccmsiderations 47

Concurrent Peripheral Operations
Concurrent Peripheral Operation (CPO) is the capa­
bility of perfonning utility functions such as card-to­
tape, tape-to-print, or tape-to-punch while other jobs
in the system continue processing. Execution of CPO

jobs in VSI involves the same general considerations
for assigning job classes to jobs and partitions as for
telecommunications and graphics jobs. CPO jobs should
be assigned a class that corresponds to that of the CPO

partitions. The CPO partition should be assigned a job
class different than that for any other partition.

Typical System Configurations
This topic describes partition configurations for sys­
tems with 128K, 192K and 384K bytes of real storage.
These configurations are based on the considerations
presented in the preceding four topics. Working con­
figurations will depend on the individual requirements
of each installation. The values for virtual=real areas
shown in these configurations do not represent the
actual size of the space available for V=R jobs. This is
due to dynamiC allocation of real storage by the system.
See the Storage Estimates publication for estimates of
the actual space requirements for any specific config­
uration.

Note: In Figures 22-25, do not assume that the portions of
real storage above (to the right of) SQA space exist as shown
in the figure; pages of JES, problem programs, etc., may be
scattered throughout the available real storage. Also, this area
above the SQA space includes the 36K reserved by the system
(see the earlier topic V irtllal= Real Storage Availability).

Systems with 128K Real Storage

A 128K system can support one configuration. The two
parts of Figure 22 show possible storage configurations,
real and virtual, for a minimum system, and illustrate
the relationship of real and virtual storage.

Systems with 192K Real Storage

A 192K system makes possible a variety of configura­
tions. Depending on the requirements of the installa­
tion, the most likely configurations will include two
large (128K or larger) batch partitions, or three or
four smaller (64K or larger) batch partitions. In either
case, several system output writers could be provided
to support the batch partitions. Figure 23 illustrates
the first case, with two large batch partitions.

Systems with 384K Real Storage

The choice of configurations available with 3841<: bytes
of real storage is so great that no "typical" system can
be defined. Figure 24 shows a possible configuration
with five batch partitions.

Figure 25 shows a possible configuration with a tele­
processing job running with four batch partitions of
varyin g sizes.

Operating Considerations

The operator of a VSI system must be aware of sev­
eral considerations related primarily to program execu­
tion, partition definition, output class reassignment,
restarting the system, and operator commands. If the
system has the shared DASD option, the operator must
also consider shared volume handling. These consid­
erations are explained in the following paragraphs.

Available for
Problem Programs
and for SCP

I

Nucleus
(including RMS
and SQA)

Virtual =
Real Area

Problem
Program
Area

I Protected
IQueue
IArea

Pageable Supervisor
(Including 12K Dump
Area) and JES, and
Pageab I e Sys tem
Queue Area I

I 320K

Figure 22. Storage Configurations for 128K System

48 OS/VSl Planning and Use Guide

I

Virtual =
(including Real Area
RMS and SQA)

Figure 23. Storage Configurations for a 192K System

Virtual =
Real
Area

Figure 24. Storage Configurations for a 384K System

Program Execution

Because 15 problem programs can be executed con­
currently, the system places additional responsibility
on the VSl operator. At times he may become busy
replying to system messages and problem program
messages, placing special forms in the printer, etc.
Therefore, whenever possible, he should perform pre-

Avai lable for
Problem Programs
and for SCP

Available for
Problem Programs
and for SCP

and JES, and
Pageable System
Queue Area

320K

I P Pageable
I Q Supervisor
I A (Including 12K
I Dump Area)
I and JES, and
I Pageable
: System Queue
4K Area 448K

paratory work, such as obtaining and/ or mounting
required volumes, ahead of the required time. When
responding to problem program messages, the operator
should respond to the highest priority task first; that is,
the message from the partition with the lowest num­
ber. The operator must also remember that problem
program and system messages may be intermingled on
the console device.

Considerations 49

Virtual =

Real
Area

Available for
Problem Programs
and SCP

25

Figure 25. Storage Configurations for Teleprocessing and Batch Processing

In addition, because jobs may not be completed in
the same order as they were entered in the system, the
operator must ensure that the correct output is re­
turned to each programmer.

The operator may also be required to start system
input readers and output writers at certain times dur­
ing operation. He may be given a specific time each
day, or may have to use his judgment based on work
load for the system.

Partitio., Definition

Even th, . the installation may not intend to use the
maximL lumber of partitions at all times, the system
must be regenerated if the number of partitions origi­
nally specified is increased. Therefore, the maximum
number of partitions expected to be used should be
specified at system generation. Partitions can then be
redefined to decrease the number in use.

Caution must be observed when redefining parti­
tions. Before redefining partitions, the operator should
check the job class (es) of all pending jobs and ensure
that the prospective partition definitions have job
classes corresponding to the jobs that will be executed.
This includes knOWing the job classes of jobs which
have already been placed on the input or hold queues,
but have not been executed. (This can be accom­
plished by issuing the DISPLAY Q command.) If pos­
sible, he should also check pending jobs for their size
requirement (by checking the job class versus the size
of the partition assigned to service that job class) and
compare this with the size of the job partitions. If they

. 50 OS/\'Sl Planning and Cse Cuide

are originally assigned a CLASS parameter that corre­
sponds only to a large partition, they should be re­
assigned to a large partition.

If the time-slicing feature is included in the system,
the operator should not specify the same job class for
both a time-sliced partition and a partition that is not
time-sliced. For example, do not specify a partition
with job classes B, C, D in a time-sliced group, and a
partition with job classes D,E,F outside the group.
Doing so would allow a job with a CLASS parameter of
D to be executed either inside or outside the time­
sliced group regardless of the programmer's intentions
for that job. Also, a partition in a time-sliced group
should not be assigned to service jobs with job classes
of A, because A is the default job class, and the same
problem could arise.

After all redefinitions have been completed, message
IEFB05I 'DEFINITION COMPLETED' is issued. The operator
must enter either a START INIT command for each of the
partitions that have been redefined, or a START INIT.

ALL command.

Partition Deactivation/Reactivation

This function enables the operator to declare a parti­
tion eligible or ineligible for deactivation, or to reac­
tivate any deactivated partition. The function is
available at IPL time and, through the use of the DE­

FINE command, after IPL. The operator may display
the current status of the partitions by using the LIST

option of the DEFIXE command, or by using the DIS­

PLAY .. \ command .

At nucleus initialization time, the operator can vary
the function of timed task reactivation by responding
to message IEAIOIA SPECIFY SYSTEM AND/OR SET PARA­

METERS FOR RELEASE xx.yy.sss with the keyword
REACT=d. d is a decimal digit from 0-9, the number
of seconds for the timed interval. The value is used by
the page supervisor at system wait time in an attempt
to reactivate the highest priority partition currently
deactivated. Task reactivation is executed when the
specified time interval has elapsed, the paging rate has
diminished to zero, and sufficient real storage has be­
come available to reinstate the deactivated task. The
fewer the number of seconds used for the interval, the
more likely a partition may become reactivated. How­
ever, the availability of real storage space for pages is
still the prime prerequisite for reactivation.

If REACT=d is not specified, deactivation/reaction
works as follows:

• When a partition is deactivated, the time elapsed
since the last reactivation is used to set a delay
interval. When that interval elapses, the zero page­
rate interval is set. This second interval is deter­
mined by the number of active tasks. When no pag­
ing for the zero page-rate interval has occurred, and
enough real storage is available, the highest priority
task is reactivated. The delay interval is reset to its
maximum value, determined by the real storage
size.

Though the operator can declare any partition in­
eligible for deactivation, he should exercise care in the
selection. A problem program partition should be de­
clared ineligible for deactivation only if activity within
that partition is judged to be critical to the process­
ing environment. For example, if a user-written tele­
processing application was deactivated (by the page
supervisor), the user's entire teleprocessing network
might fail.

Whenever the system operator reinstates a currently
deactivated job, time should be the only criterion in the
decision. For example, a job such as a payroll run
might have to be "rushed" through the system. When­
ever such a decision is made, other active tasks should
be eligible for deactivation. If this is not done, the
amount of real storage available for paging may be
decreased to such a low level that the currently active
partitions cause the system to run inefficiently. That is,
each active task requires pages for itself, which in turn
causes another task to begin paging, and so forth. This
condition is called "thrashing". For all practical pur­
poses, a system that is thrashing is running only the
page supervisor task.

When the operator determines that a partition has
been deactivated for a relatively long period of time,
several actions are available:

• He can specify that the deactivated partition be
reactivated for the duration of the job executing in
that partition. At job completion, the partition is
then elegible for deactivation should a shortage of
pages develop again.

• He can put a hold on the job queue. As jobs in the
active partitions end, the deactivated partitions can
become active and complete their tasks. The queue
can then be released and processing can continue.

• He can stop an active partition. Assuming that
stopping the partition reduces the paging activity,
the results would be comparable to putting a hold
on the job queue.

• He can cancel the job in the deactivated partition,
stop the partition, and re-enter the lob in the lob
qu~ue wh~re it can be selected by an~ther partiti~n.

Regardless of what technique is used, it is imperative
to remember that the partition was deactivated because
its activity was detrimental to the system as a whole.
With this in mind, it would be wise in most cases to
stop a deactivated partition after applying one of the
preceding methods.

For specifying partition eligibility for deactivation
and reactivation, see message IEE802A and message
IEE803A in the OS/VS System Messages publication.

Changing Output Classes

The output classes with which a writer is associated
can be changed at any time, through proper use of the
MOl>IFY command, or a combination of STOP and START

commands. A program with a special forms require­
ment can obtain exclusive use of a printer by informing
the operator to enter a MODIFY command. A STOP com­
mand followed by a START command for the same
writer. but snecifvinQ' a uniaue OUIDut class. could also
be entered. The .I ST;P co~and c~uses th~ writer to
stop at the end of the job it is currently executing. The
operator then inserts the required forms and issues the
new START command. That command would limit use
of the printer to the data set associated with the new
output class until another STOP and START command
sequence for the printer is issued. The MODIFY com­
mand can also be used to change the conditions under
which the output writer pauses for servicing of its
device.

For example, a writer named ONE, originally estab­
lished to service output classes A, B, and C, could be
changed to service only data sets for output class D by
issuing the command:

MODIFY WTR.ONE,CLASS = D

Handling Shared Direct Access Volumes

If the shared DASD feature is selected at system genera­
tion, additional responsibilities are imposed on the

Considerations 51

operator. Volume mounting and dismounting instruc­
tions are normally issued by the operating system. In
a shared DASD environment, volume handling must be
initiated by the operator and must be conducted in
parallel on both sharing systems. Thus thorough oper­
ator communication from system to system must be
maintained.

Restarting the System

To restart the system after it has been shut down, the
same steps taken in initially starting the system are
followed, except when the SET command is entered.
Either the "F" suffix from the "Q= (unitname, [F])"
parameter is omitted, or the entire "Q= " parameter
is omitted.

The following command illustrates this procedure:

SET DATE=yy.ddd,CLOCK=hh.mm.ss

By omitting the "Q= " parameter, job queue data set
information is saved. When restarting the system to
save the information, the operator must make certain
that all auxiliary storage volumes which were in use
remain available. This ensures that the job queue data
set, spool data sets, and SWADS data sets accurately

52 OS/VSl Planning and lise Guide

reflect the conditions which existed when a restart be­
came necessary.

Operator Commands

The following commands, and their respective abbrev­
iations, may be used in a VSI system:

CANCEL C RELEASE
CONTROL K REPLY
DEFINE N RESET
DISPLAY D SET
DUMP START
HALT Z STOP
HOLD H STOPMN
LOG L SWAP
MODE SWITCH
MODIFY F UNLOAD
MONITOR MN VARY
MOUNT M WRITER
MSGRT MR WRITELOG

A
R
E
T
S
P

PM
G
I
U
V

WTR
W

Note: The commands are subject to the following restrictions:
• The DEFINE, HALT, MODE, SWAP, and WRITER

commands are not allowed in the input stream; they must
be entered through a console.

• The DUMP and MODE commands cannot be abbreviated.
Be sure to use the correct abbreviations for operator

commands. For example, at system initialization, if you
inadvertently key in S for SET, the system assumes you
are giving a START command. It queues the command,
and waits for a SET command.

Publication References

The Use Guide

The Use Guide contains sections covering the following topics:

Handling Accounting Information
Automated System Initialization
OSjMFT-OSjVSl Differences
VSl Features and Options
]ES Reconfigurability
Job Queue Format
Message Routing Exit Routines
The Must-Complete Function
The PRESRES Volume Characteristics List
System Reader, Initiator, and 1-VTiteT Cataloged Pioceduies
Resident Routines Option
Output Separation
T he Shared Direct Access Device Option
System M aero Instructions
Adding SVC Routines to the Control Program
How to Use the Tracing Routine
The Time Slicing Facility
Writing System Output Writer Routines
Appendix A: Theory of Operations
Glossary

Reference is made in the Use Guide to other os/vs publications. These references
do not include the complete title and order number of the publication. To
facilitate use of this publication, complete ,titles and order numbers of the
referenced books are indicated here.

OS/VS Data Management Services Guide .. GC26-37S3
OS/VS Data Management Macro Instructions .. GC26-3793
OS/VS]CL Reference .. GC2S-00IS

OS/VS Message Library Publications
VSl System Messages .. CC3S-loo1
System Codes GC3S-I003
Routing and Descriptor Codes GC3S-I004

Operator's Library Publications

OS/VSl Reference .. GC38-0110
OS/VS Console Configurations .. GC38-0120

OS jVSl RES System Programmer's Guide .. GC28-6878
OS/VS Service Aiils .. GC2S-0633
OS/VSl Storage Estimates .. GC24-5()94
OSjVS Supervisor Services and Macro Instructions GC27-6979

OS/VSl System Data Areas .. ' SY28-()6()5

OS/VS System Generation Introduction .. GC26-3790

OS/VSl System Generation Reference .. GC26-3791

OS/VS Utilities .. GC35-0005

The Use Guide 1

Conventions used in
Illustrations of Coding

Certain conventions are used to illustrate the format
of macro instructions included in this publication.
These conventions are:

• Letters in capitals, numbers, and punctuation marks
(except as noted below) must be coded exactly as
shown.

• Brackets, []; braces, {} ; ellipses, ... ; and sub­
scripts are never coded.

• Lowercase letters represent variables for which you
must substitute specific information or specific
values.

• Items or groups of items within brackets are op­
tional. They may be omitted at your discretion.
Conversely, the lack of brackets indicates that an
item or group of items must be coded.

• Stacked items enclosed in braces represent altern­
ative items. Only one of the stacked items should
be coded.

• If an alternative item is underlined, it is the de­
fault value. The system will automatically assume
it is your choice if none of the items is coded.

• An ellipsis indicates that the preceding item or
group can be coded two or more times in succes­
sion.

2 OS/VSl Planning and Use Guide

Handling Accounting Information

You may add accounting facilities to your vsl opera­
ting system. This section describes the input avail­
able to an accounting routine; the characteristics and
requirements of an IBM-supplied data set writer that
may be used to log accounting infonnation generated
by an accounting routine; and how to insert an ac­
counting routine into the control program. Conven­
tions to be followed in preparing an accounting rou­
tine are also noted.

Section Outline

Handling Accounting Information

Accounting Routines
Prerequisite Actions ...

Accounting Routine Conventions
Format
Attribute
CSECT Name and Entry Point
Register Saving and Restoring ...
Entrances
Exit

Input Available to Accounting Routines
Output from Accounting Routines

Sample Accounting Routine
Inserting an Accounting Routine into the Control
Program .

Insertion at System Generation
Insertion after System Generation

... Accounting Data Set \;l/riter
Linkage
Input
Specifying the SYS l.ACCT Data Set
Output
Use of ENQ/DEQ

Handling Accounting Information

ACC 1

ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 3
ACC 4
ACC 4
ACC 6

ACC 6
ACC 6
ACC 6
ACC 7
ACC 7
ACC 7
ACC 7
ACC 8
ACC 8

ACC 1

ACC 2 OS/VSl Planning and Use Guide

Accounting Routines

Prerequisite Actions

Your installation may prepare accounting routines for insertion in your vs1
operating system. These routines are inserted in the control program during, or
after, system generation.

At system generation you must specify that an accounting routine is to be
supplied. This is done through the sMF=parameter of the system generation
SCHEDULR macro instruction.

This specification causes the linkage to your accounting routine to be installed
in the scheduler component of the system being generated, and makes usable the
accounting data set writer routine. If you are not going to install your accounting
routine until after the system is generated, a dummy accounting routine (named
IEFACI'RT) is also placed in the system at this time. Insertion of accounting
routines in the control program is discussed later in this section.

Accounting Routine Conventions

Format

Attribute

CSECr Name and Entry
Point

Register Saving and
Restoring

Entrances

Exit

Your accounting routine may consist of one or more control sections.

An accounting routine written for insertion in your vsl operating system must
be serially reusa:ble.

The control section containing the entry point of your accounting routine, and
the entry point, must be named IEFACI'RT.

The content of registers 0 through 14 must be saved upon entry to your ac­
counting routine and restored prior to exiting.

Control is given to your accounting routine at the following times:
• Step initiation
• Step termination
• Job termin-ation

You can use the RETURN macro instruction to restore the contents of the general
registers and return control to the operating system.

Handling Accounting Information ACC 3

Input Available to Accounting Routines

Register 0 contains an entrance code, indicating at what time the acoounting
routine is being given control.

Register 0 = 8: Step initiation
= 12: Step termination
= 16: Job termination

Register 1 contains the starting address of a list of pointers to items of account­
ing information. Each pointer is on a fullword boundary. The sequence of
pointers in the list and the items of information provided are des:cribed in Figure
ACC 1.

User accounting routines should only use pointers that are in the list addressed
by register 1. Other pointers are subject to change in subsequent releases.

Output from Accounting Routines

ACC 4

You can write output in three ways: by issuing console messages; by using the
standard system output; by using an IBM-supplied accounting data set writer.

1. Console messages-You can use write to operator (wro) or write to operator
with reply (WTOR) macro instructions.

2. System output-Assemble the following calling sequence into your routine.
The contents of register 12 must be the same as when your accounting
routine was entered, and register 13 must contain the address of an area
of 32 fullwords.

VVhen writing an accounting routine for inclusion in the job scheduler,
you must be aware that register saving conventions within the control pro­
gram are different from those for problem programs. In the job scheduler,
registers are saved in the sequence 14-12 in a 15-word save area. There
is no place provided to save register 13. You must provide some other means
of saving register 13; you may either save it in another register or provide
an additional save area that is not known to the control program. This can
be done by adding a word to the end of the save area that is provided
and is addressed as SAVE + 60.

Name Operation Operand

MVC 36 (4,12), MSGADDR MOVE MESSAGE ADDRESS
MVC 42 (2,12), MSGLEN AND LENGTH TO SYSTEM
L REG15, VCONYS TABLE BRANCH AND LINK
BALR REG14, REG15 TO MESSAGE ROUTINE

MSGADDR DC A (MSG)

MSG DC C'text of message'
MSGLEN DC H 'two character length of message'
VCONYS DC V (lEFYS)

3. Accounting data set writer-This writer places accounting records you have
constructed in your accounting routine in a data set named SYS1.Accr. The
data set must reside on a permanently resident direct access device. You
must provide, in your accounting routine, linkage to the writer, and pass
the beginning addr.ess of the record to be written, to it. Use of the data
set ,vriter is covered later in this section.

OS IVS 1 Planning and Use Guide

Byte

Byte

Byte

Job Name
Pointer

Programmer
Name Poi nter

Job Name
8 Bytes

Programmer
Name 20 Bytes

I

Byte

4

Byte

Step Name
Pointer

Job Running
Time Pointer

Pointer + 3

Step Name

8 Bytes

Job Running Time
3 Bytes

Entry Count 1 Byte

The step name pointer is zero at job
termination

A right justified binary number represents
job running time in hundredths (0.01) of a
second.

If a programmer deferred restart occurs, the
time used during the original execution is
omitted from the job time passed to a user
routine.

The entry count byte contains the l1umber
of job accounting entries picked up from
the JOB statement. Commas used to denote
omitted entries are counted. I I Job Account;n.

16 Data Fields
Pointer

Byte

Byte

24

or

Step Running
Ti me Poi nter

00 I A byte of zeros indicates that the JOB
statement did not contain accounting inf ormation.

I I

Byte I Byte I Byte I

Count
I

Data Count I Data Count
I

00 I I
....

n I Datan

These data fields contain the accounting information that was specified in the JOB statement. The first byte of each field

contains the number of bytes of data that follow. The last data field is followed by a byte of zeros.

A data field - consisting only of the first, or count byte, is developed for an omitted accounting 6ntiY. The byte contains
zeros, indicating that no data is present for that field. In this case:

When (a, b" d) appears in the JOB statement

Byte
I

Byte
I

Byte
I

I I I
Count I Data Count

b
I Data

b
00 Countd I Data

d
00

Note:

a I a
I

I I
Use the entry-count byte (job running time pointer + 3) to determine if you have processed all the accounting

data fields.

The step running time pointer is zero at job termination.

The step running time is not on a full word boundary. A binary number, right justified,
represents step running time in hundredths (0.01) of a second.

Step Running Time llf an automatic restart occurs, the system gives control to a user routine prior to restarting; step
3 Bytes time passed is the time used by the step. Upon successful completion of a step that was auto-

Pointer + 3 matically restarted, the step time passed to a user routine does not include the time used by the

I step during its original execution. If a programmer deferred restart occurs, the time used during
Entry Count 1 Byte

..... _______ --' the original execution is not included in the step time passed to a user routine.

Step Accounting
Data Fields
Pointer

This pointer is
zero at job
termination

The step accounting data fields conform
to the same specifications as the job ac­
COLnting data fields.

Number of step accounting entries picked up from the EXEC statement. Commas used to

denote omitted entries are counted.

Byte

I I "Flags" and Step
28 Number Pointer

Pointer + 1

"Flags" Byte I
Setting bit 7 of this byte to 1 effects job
Cancellation.

~--------------'

Step Number Byte I
This byte contains the number of the job
step currently being processed. The first
step in the job is 1.

Note: You can use the flag byte to cancel the execution of a job whose accounting information does not conform to your installation's
standards. You can equate step initiation for the first step in a job to job initiation, i.e., the step number byte contains 1.

Figure ACC 1. Accounting Information Available to User

Handling Accounting Information Ace 5

Sample Accounting Routine A sample accounting routine, showing use of the data set writer, output to
system output, and issuance of console messages, is stored under the member
name SAMACTRT in the SYSl.SAMPLIB data set furnished with the starter operating
system.

Inserting an Accounting Routine into the Control Program

Insertion at System
Generation

Insertion after System
Generation

Your accounting routine can be inserted in the control program in two ways;
by placing the routine on the SYSl.AOSOO data set used in system generation
or by placing the routine in the appropriate load module of the control program
after system generation. The effect of either action is to replace a dummy ac­
counting routine with your accounting routine.

To insert your accounting routine into the control program during system genera­
tion, you must, prior to the start of the system generation process, place your
routine in the SYSl.AOSOO data set, using the linkage editor. The SYSl.AOSOO data
set (furnished with the starter operating system) contains load modules which
are combined during the system generation process to form the load modules
composing the control program. In response to the specification made in the
system generation SCHEDULR macro instruction, your accounting routine is in­
corporated in the appropriate load modules for the system being generated.

You mu8t place your accounting routine in the SYSl.AOSOO data set under the
name IEFACTRT. You will be replacing the dummy accounting routine-also
named IEFACTRT.

To insert your accounting routine into the control program after system genera­
tion you place the routine in load modules of the scheduler component of the
generated control program, using the linkage editor. The scheduler load modules
are in the linkage library (SYSl.LINKLIB data set) of the generated sy8tem. The
affected load modules are as follows:

load module IEFw21sD-step initiation
load module IEFsD161-step/job termination

An example of the input for a linkage editor run to insert your accounting
routine into the job scheduler follo~s:

/ /jobname
/ /stepname
/ /SYSPRINT
/ /SYSUTI
//SYSLMOD
/ /SYSLI~

JOB
EXEC
DD
DD
DD
DD

(object code)

IJ\'CLUDE
ALIAS
ENTRY
NAME

(parameters)
PGM=IEWL, (parameters)
SYSOUT=A
UNIT=SYSDA,SP ACE= (parameters)
DSNAME=SYSl.LINKLIB,DISP=OLD

*

This sequence must be
repeated for each
scheduler load module
into which you wish
to insert accounting

SYSLMOD(load module name} routines.
alias names
entry point name
load module name (R)

ACC 6 OS/VSl Planning and Use Guide

In this example "load module name" represents the appropriate scheduler load
module as identified in the preceding text. To ensure accuracy in identifying
the correct alias names and entry point names for the load modules, obtain these
names from the system generation listing produced during generation of the
system you are working with. These names are specified in the system genera­
tion Stage II linkage editor output for the linkage editor execution that produced
the load module.

Accounting Data Set Writer

Linkage

Input

Specifying the SYS 1.ACCT
Data Set

The accounting data set writer (module IEFW AD) is inserted in the appropriate
scheduler load modules during system generation when accounting routine in­
clusion is specified in the SCHEDULR macro instruction. These are the same
modules in which your accounting routine is inserted. Scheduler storage re­
quirements are increased by the amount of storage needed by your accounting
routine plus 2600 bytes. The writer places accounting records developed by
your routine in a data set named SYS 1. ACCT.

Your accounting routine links to the writer via the following mechanism:

L R15,VCON
BALR 14,15

VCON DC V(IEFWAD)

Your accounting routine passes in register 1 the address of the accounting record
to be written. -

The record format is:

DS 3H - space used by the data set writer

DC H' _' - contains the number of bytes of data being passed. This number
cannot exceed the capacity of 1 track on the direct access volume
being written on.

DC _ - the data to be written in SYSl.ACCT.

Registers 13, 14, and 15 are used as specified by operating system conventions
(14 and 15 are used for linkage, as previously shown; 13 must point to an
18-word save area).

The SYSl.ACCT data set must be pre-allocated on a direct access volume that will
be permanently resident. The data set must be named SYSl.ACCf, have no secon­
dary extents, and be allocated contiguous space. Do not catalog the data set.

1£ your installation has two permanently resident volumes available for ac­
counting routine use, you may create two SYSl.ACCf data sets and utilize the
console messages and replies to notify the system of the data set to be addressed.

Handling Accounting Information Ace 7

Output

Use of ENQ/DEQ

If the IEFW AD routine successfully writes your record in the SYS1.ACCf data set,
the routine returns control to your accounting routine immediately. If the
routine fails to write your record, it uses messag.e IEF507n to bring the error
condition to the attention of the operator. (See the appropriate OS/VS Messages
Library publication for the text of, and answers to the message.) Depending
upon his answer, the routine may try again to write your record in the SYS1.ACCf

data set.
In any case, a code is returned to your routine indicating either that the

record was written successfully, or, if it was not written successfully, the cause
of the failure. The return codes are described in the following:

Contents Type Meaning

Register 15

0 D The record was written to the data set.

4 D The record was not written to the data set because the record
exceeds the length of one track.

8 D The record was not written to the data set because there is no
more space in the data set.

12 D The record was not written to the data set because no space
had been allocated to the data set.

16 D The record was not written to the data set because a perma-
nent lID error was encountered while trying to write it.

20 D The record was not written to the data set because the
previously last record could not be found.

24 D Operator gave invalid device address.

Register 0

n B Number of tracks still available in the data set. (Valid only if
register 15 is zero.)

Type - Type of number: D - Decimal, B - Binary

IEFWAD enqueues on the major queue name SYSIEFSD and the minor queue name
WD.

ACC 8 OS/VSl Planning and Use Guide

Automated System Initialization

This section describes the usc of the automated system
initialization feature. This feature makes the system
initialization process quick and flexible through the
use of Sysl.p ARMLIB data set members to hold sys­
tem initialization parameters. Use of this feature sig­
nificantly reduces the operator's role in the initializa­
tion process.

Nate: The term initialization here refers to the period begin­
ning when the IPL program is loaded and ending when the
system is ready to perform meaning!ul work for the user. It
involves all responses and commands issued by the operator
until the system is initialized.

Section Outline

Automated System Initialization ASI 1

Advantages of Automated System Initialization
The Automated System Initialization Process
Implementation of Automatic Commands
Creating SYSl.PARMLIB Members

Naming Conventions for SYSl.PARMLIB
Members

Formats of SYSl.PARMLIB Automated
Initialization Members

Member (or Card Deck) that Lists Members
to be Used

The System Parameters (NIPxxxxx) Member
The DEF!~E Parameters (DFNxxxxx) Member ..
The Automatic Commands (CMDxxxxx)
Member

The Permanently Resident Volume List
Parameters (PRExxxxx) Member

The S~1F Parameters (SMFxxxxx)
Member

The JES Reconfiguration Parameters (JESxxxxx)
Member

The SET Parameters (SETxxxxx) Member
The RTAM Parameters (RESxxxxx) Member

Performing Automated System Initialization
Processing Notes

The List of SYSl.PARMLIB :'v1embers to be Used ..
The System Parameters (NIPxxxxx) Member
The DEFINE Parameters (DFNxxxxx) Member
The SET Parameters (SETxxxxx) Member
The Automatic Commands (G\fDxxxxx) Member

Automated System Initialization

ASI3
ASI3
ASI4
ASI4

ASI 4

ASI4

ASI4
ASI 5
ASI5

ASI5

ASI 6

ASI6

ASI6
ASI6
ASI6
ASI 6
ASI 8
ASI 8
ASI 9
ASI 9
ASI 9
ASI 9

ASI 1

ASI2 OS/VS1 Planning and Use Guide

Advantages of Automated System Initialization

Automated system initialization is a standard feature available for use at your
convenience. It requires no changes in system generation options and provides
the following advantages over the other procedures, which involve the operator's
making lengthy entries on the system console:
• The responsibility of altering the system is placed directly on the system

programmer.
• The flexibility of keeping system initialization parameters in SYSl.PARMLIB

members permits each system initialization to be a tailoring process that en­
ables the system to better meet the needs of the anticipated job mixture.

• The time needed for initialization is reduced.
~ The operator's role is reduced, thus freeing him to do other tasks.
• The operator may see only one entry across systems, thus eliminating con­

fusion over vlhich system is being initialized.
• Informational messages not critical to the operator can be eliminated until

the initialization is complete.
• Redefinition of partition sizes, job classes, and time slicing can be done with

a minimum of operator involvement.

The Automated System Initialization Process

Use of automated system initialization involves first the creation of members in
SYSl.PARMLIB and then the processing of these members by the nucleus initializa­
tion program (NIP) and the master scheduler initialization (MSI) program:

Process

Before Initialization

System programmer creates initializa­
tion members in SYS1.PARMLIB by
using the I EBUPDTE utility.

At Initialization

NIP request operator to "SPECIFY
SYSTEM AND/OR SET
PARAMETERS" .

NIP uses the entries in the list to modify
the standard default list of
SYS1.PARMLIB members to be used.

NIP references the modified I ist to get
the name of the system parameters
member. NIP processes th is member
and then continues with the other
parameters entered by the operator.

NIP passes the modified list to MSI and
gives control to MSI, which processes all

other members indicated on the
modified list.

Initialization is complete.

Comments

Naming conventions must be followed.

The keyword identifies either a member of
SYS1.PARMLIBor a card reader. The mem­
ber or card deck so identified I ists the mem­
bers of SYS1.PARMLIB that hold the
initialization parameters to be used.

The operator is advised if any abnormal
conditions or invalid parameters are
detected.

The operator is advised if any abnormal
conditions or invalid parameters are
detected.

Automated System Initialization AS! 3

Implementation 01 Automatic Commands

Although system generation options used in osjvsl Release 1 have not been
changed for automatic commands, a new implementation is now used. Any auto­
matic commands must be put in an automatic commands member of SYSl.PARMLIB
and automated system initialization must be invoked. The automatic START com­
mands formerly generated via the START!, STARTR, and STARTW parameters of the
SCHEDULR system generation macro must be placed in an automatic commands
member. A system generation deck containing these parameters can be used to
generate the new-release system, but the parameters are ignored.

Creating SYS1.PARMLlB Members

Naming Conventions for

SYS1.PARMLIB Members

Formats of SYS1.PARMLIB

Automated Initialization

Members

Member (or Card Deck)

that Lists Members
to be Used

You can use the IEBUPDTE utility program to place parameter lists in members of
the system parameter library, SYSl.PARMLIB. (This utility is also used to main­
tain the members of Sysl.p ARMLIB.) The parameter lists are composed of 80-
byte records, formatted much like the entries that the operator would be re­
quired to make in a manual initialization. The format, contents, and processing
of these parameter lists are described in the following paragraphs.

The names used for the SYSl.PARMLIB members that hold parameters for use in
automated system initialization signify the types of parameters they hold. Each
name consists of from three to eight characters, the first three of which signify
the member's contents:

First Three
Characters

NIP
JES
DFN
SET
PRE
CMD
SMF
RES

Contents of the Member
System Parameters
JES Reconfiguration Parameters
DEFINE Parameters
SET Parameters
Permanently Resident Volume List Parameters
Automatic Commands
SMF Parameters
RT AM Parameters

The name used for a member of SYSl.PARMLIB that lists the other members to be
used in an initialization is not bound by this "first three characters" convention.

In general, the formats of the automated system initialization members are the
same as the formats that the operator would use if he were entering the param­
eters on the system console. The format of each type of automated initialization
member is described in the following paragraphs.

The following format restrictions apply to the listing member referenced by the
AUTO keyword and the card deck referenced by the RDR keyword. This member
(or card deck) consists of a list of member names to be used to alter the de­
fault list of member names in NIP.

ASI4 OS/VSl Planning and Use Guide

The System Parameters

(NIPxxxxx) Member

The DEFINE Parameters

(DFNxxxxx) Member

The Automatic Commands
(CMDxxxxx) Member

• Each record (or card) holds only one member name.

• A member name may start anywhere in the record (or card) as long as it is
completed by column 71.

• A member name must be delimited by a blank.

• Comments may be placed after the delimiter.

• A record (or card) having its first 71 columns blank is ignored.

• The member names must be consistent with the naming conventions pre­
viously described. (The naming conventions permit you to list the member
names in any order.)

• Adding "NULL" to the three required characters to form a member name (for
example, SMFNULL) causes the corresponding entry in the default list to be
made null (blanks).

This member consists of entries made in the same format as if they were entered
by an operator at the console. The following format restrictions apply to this
type of member:

• The AUTO and RDR keywords are invalid entries.

• An entry may start anywhere in the record as long as it is completed by
column 71.

• Continuation onto several cards is signalled by either
the CONT keyword; or
a comma followed by a blank.

This member consists of the parameters of the DEFINE command in the same
format as if they were entered by an operator at a console. The following for­
mat restrictions apply to this member:

• An entry may start anywhere in the record, but it must be completed by
column 71.

• All records are read and processed in the order they are read in as long as they
are syntactically correct.

To determine which parameters you want to place in the member, see the
parameter descriptions in the response to message IEE802A in as jVS Message
Lihrary: VSl System Messages.

This member consists of any system commands you want executed during sys­
tem initialization; for example, START commands, LOGON commands, and VARY

commands. The commands must be in the same format as if they were entered
by an operator at the console. All commands contained in this member are dis­
played on the console unless NOLIST was specified in the AUTO or RDR keywords.
The following format restrictions apply to this member:

• Only one command per record is allowed. No continuation is permitted.

• An entry may start anywhere in the record, but it must be completed by
column 71.

Automated System Initialization ASI5

The Permanently Resident
Volume List Parameters

(PRExxxxx) Member

The SMF Parameters

(SMFxxxxx) Member

The JES Reconfiguration
Parameters (JESxxxxx)

Member

The SET Parameters
(SETxxxxx) Member

The RT AM Parameters
(RESxxxxx) Member

For a description of this member, see the PRESRES description in the section The
PRESRES Volume Characteristics List.

The SMFXXXXX member controls SMF operations. This member consists of a series
of parameters contained in 80-character card-image records. To determine which
parameters you want to place in the member, see the description of SMFDEFLT
parameters in OS/VS System Management Facilities (SMF), GC35-0004.

For a description of this member, see the JESPARMS description in the section
]ES Reconfigurability.

Unless it is necessary to override the values specified at sysgen, do not specify
JESXXXXX (that is, let the null entry be generated). This allows the system to
bypass all the I/O related to overriding the sysgen-specified values.

This member consists of the parameters of the SET command in the same format
as if they were entered by an operator at a console, with these exceptions:

• The unit address (unitaddr) in the Q= and PROC= keywords has been replaced
with a volume identification (volid).

• A new keyword, QPARM= (jobqueue parameters), has been added. For a de­
scription of the jobqueue parameters, see message IEF423A in OS/VS A1.essage
Library: VSl System Messages, GC38-1001.

• The DATE, CLOCK, and GMT operands cannot be used in this member. If DATE
and CLOCK are specified, they must be in reply to message IEAIOIA or in a SET
command issued after initialization. If GMT is specified, it must be in reply to
message IEAIOIA.

For a description of this member, see the discussion of the SYSl.PARMLffi mem­
ber in the RES System Programmers Guide.

Performing Automated System Initialization

During initialization, NIP generates the message

IEAlOIA SPECIFY SYSTEM AND/OR SET PARAMETERS FOR RELEASE xx.yy.sssss

where:

xx is the release number
yy is the release level
sssss is the system type

The operator's response to this message consists of a selection of keyword param­
eters. The formats and purposes of all parameters are described in OS/VS
Alessage Library: OS/VSl System Messages, GC38-1001.

ASI 6 OS/VSl Planning and Use Guide

Because of automated system initialization, the following parameters are in­
cluded in the list of eligible keywords. Their purposes are briefly as follows:

Keyword Purpose

AUTO

RDR

DATE

CLOCK

GMT

Q

PROC

SPOOL

To specify a SYSl.PARMLIB member that lists other members to be used in
automated system initialization. The NOLIST option of this keyword prevents
the sending to any consoles non-critical informational messages issued by NIP or
MSI.

To specify a readied card reader holding a deck of cards that lists members of
SYSl.PARMLIB to be used in automated system initialization. The NOLIST
option of this keyword prevents sending non-critical informational messages, issued
by NIP or MSI, to any consoles.

To set the date in the TOD (time-of-day) clock.

To set the time of day in the TOD clock.

To express the time of da); in Green\vich 11ean Time.

To specify the DASD that holds the system job queue (SYSl.SYSJOBQE).

To specify the DASD that holds the system procedure library (SYSl.PROCLIB).

To override spool parameters.

DEVSTAT To specify device type (s) for NIP device status checking. Devices of the type (s)
indicated are tested for a not-ready condition. The UCB for any checked device
in a not-ready condition is marked as offline. Otherwise, each UCB is left marked
as online.

Automated system initialization results if either AUTO or RDR is specified in the
reply to message IEAlOlA. A normal (manual) initialization results otherwise.

In an automated initialization, the SET parameters DATE, CLOCK, and GMT

should be specified in the reply to message IEAlOlA only if they must be changed.
The other SET parameters (Q, PROC, and SPOOL) should be specified in the reply
to message IEAlOlA if a SET parameters member is not used or if like parameters
in the SET parameters member to be used must be overridden. Another oppor­
tunity for specifying SET parameters is not given unless an error occurs.

If NIP detects a parameter in the wrong format or an invalid parameter, NIP

issues a message indicating the error. The operator must then respecify the
parameter and any system or SET parameter that NIP has not yet processed. (NIP

processes the parameters in the same sequence as they were entered by the
operator and does not process any parameters after an error is encountered.)

In a manual initialization, the operator may specify the SET parameters Q,

PROC, and SPOOL in either the reply to message IEAlOlA or the reply to message
IEEll4A, which occurs after NIP has completed its processing. If they are specified
in the reply to message lEA lOlA, message IEEl14A is not generated.

NIP processes each keyword in the reply to message IEAlOlA in the same
sequence that the operator specifies them. Therefore, to override any keyword (s)
specified in the system parameters member for a particular initialization, the key­
word (s) must be specified after the AUTO or RDR keyword in the reply to message
IEAlOlA.

The NOLIST subparameter of AUTO and RDR takes effect after the time is entered,
so it cannot affect any entries made prior to the AUTO or RDR keyword entry.
NOLIST prevents the generation of the lEE lOlA READY message and other non­
critical messages.

Automated System Initialization ASI7

Processing Notes

The List of SYS1.PARMLIB
Members to be Used

Any SET parameters (Q, PROC, and SPOOL) passed from NIP to MSI override the
corresponding keywords specified in the SET parameters member.

Note: The term "SET parameters" is used differently here than in other systems where such
parameters were specified by an operator's use of the SET command. In VSl, the SET com­
mand is not related to Q, PROC, and SPOOL parameters.

The list of SYSl.PARMLffi member names referenced by the AUTO or RDR keyword
contains the names of the members in the following table. If neither AUTO nor
RDR is specified by the operator, the default list shown in the following table is
used during initialization.

Default
Members List

System Parameters Null Entry*
JES Reconfiguration Parameters JESPARMS
DEFINE Parameters Null Entry*
SET Parameters Null Entry*
Permanently Resident Volume List Parameters PRESRES
Automatic Commands Null Entry*
SM F Parameters SMFDEFLT
RTAM Parameters (if RES is included at SYSGEN) RESPARMS

*A Null Entry consists of all blanks

Use of the default list results in the manual initialization procedure, with the
exception that the SET parameters can be specified in the reply to message
IEAIOIA along with system parameters, or in the reply to message IEEl14A, but
not at both times. Processing of the list ends when:

• An end-of-file condition occurs on the card reader or

• The number of entries processed equals the number of entries in the default
list.

If the list provided contains fewer member names than the default list, the re­
maining names are taken from the default list. The default list is thus altered by
the names provided in the member. Once the default list has been altered, NIP

processes its member (the system parameter member) for system parameters
before continuing to process the operator's other replies to the message IEAIOIA.

If the system parameters member is null, no member is processed. Any change
to the sysgen specifications must have been entered in response to the IEAIOIA
message.

If a syntax error occurs, processing up to that point will have been completed,
and the default list will have been altered up to that point. The record contain­
ing the syntax error is written to the console and control is returned to the
operator.

ASI 8 OS/VSl Planning and Use Guide

The System Parameters

(NIPxxxxx) Member

The Define Parameters

(DFNxxxxx) Member

The SET Parameters

(SETxxxxx) Member

The Automatic Commands I (CMDxxxxx) Member

Processing of this member is the same as if the parameters had been entered by
the operator at the console. An error in this member not only terminates the
processing of this member, but also terminates processing of any keywords that
followed the AUTO or RDR keyword entered by the operator.

Processing of this member is the same as if the parameters had been entered by
the operator at the console. Error detection and recovery are also the same as if
the entry was a reply by the operator.

Processing of this member is the same as if the parameters had been entered by
the operator at the console.

Processing of this member is the same as if the parameters had been entered by
the operator at the console. All commands are displayed on the console unless
NOLIST was specified in the AUTO or RDR keyword.

Automated System Initialization ASI9

AS! 10 as /VS 1 Planning and Use Guide

OSjMFT-OSjVSl Differences

This section contains a resume of some of the more
significant differences between OS/MFT and os/vsl. It
is intended as a quick reference aid for the system
programmer involved in a conversion from MIT to
vsl. The differences appear in random order, and the
sequence of their presentation in no way implies a
level of importance or significance, Differences listed
include enhancements, resh'ictions, and changes
necessitated by the implementation of a virtual storage
system.

as/MIT - as/VSl Differences DIF 1

DIF 2 OS/VSl Planning and Use Guide

OS/MFT - OS/VSl Differences

1. JES readers and writers do not require a partition, but a partition must be
available to start and stop them. Additionally:

• The start reader and start writer commands do not require partition iden­
tifiers.

• A "hot reader" capability is provided for unit record readers. (Unit record
readers remain ready to process input, after being started, until they are
stopped. It is not necessary to issue a reader START command after reloading
the reader following an empty hopper condition.)

• A WRITER command enhancement is provided to control writer output ac­
tivity, such as the number of copies, forward space functions, and backspace
functions.

• The sequence of the writer output has been changed. The output now
follows the sequence:

JMCL I Messages and JCL are interspersed for multi-step jobs.
essages j

Program output

2. The number of job classes that may be specified per partition has been in­
creased from 3 to 15.

3. The interpreter function is no longer a subtask of the reader. Instead, the
function occurs at job initiation time, as a subroutine to the initiator.

4. The contents of the job queue has been changed in vsl. A SWADS data set is
now provided for each initiator, and this reduces the contention that exists
for the job queue in MFT.

5. With the implementation of JES, a spool data set is provided. In addition to
SYSIN and SYSOUT, JCL, messages, WTP messages, and system log data sets are
included in the spool data set.

6. Programs compiled using PL/r F and using the teleprocessing facilities of this
language translator cannot be run under vsl because PL/r Fuses QTAM as its
teleprocessing access method. These programs can be recompiled using the
PL/I checkout compiler or the PL/r optimizing compiler, both of which use
TCAM as their teleprocessing access method.

7. Programs which previously required storage approaching 64K, 128K, 192K,
etc. may require an additional 64K of virtual partition area to accommodate
the system requirements (such as PQA area) of vsl.

8. MFT supports tape and disk for SMF output. vsl supports disk only for SMF
output.

9. Programs that modify active ccw strings require changes in order to execute
in a virtual storage system.

10. Commands in the input stream between jobs are processed at reader time;
those within the job, at interpreter time.

as/MIT - as/VSl Differences DIF 3

DIF 4

11. Users with I/O appendages must code a page-fix appendage in their pro­
grams to interface with lOS and fix the I/O appendages associated with the
program.

12. Changes ar.e required in all programs that declare or reference certain psw
fields directly, such as the system mask, interrupt code, condition code,
program mask, ILC, and bit 12 of the psw.

13. Programs using the SSK and ISK instructions will be affected because the
operand 1 register now contains the "change and reference" bits as well as
the storage key and fetch protect bit.

14. The SSM instruction will have degraded performance due to interrupt pro­
cessing.

15. Programs that execute the LPSW instruction must be carefully checked be­
cause of the changes in the psw format.

16. No EXCP support is provided for SYSIN/SYSOUT data sets.

17. DSCBS and user labels are not supported with SYSIN/SYSOUT data sets.

18. SMF data set compatibility is not supported because the format and content
of SMF records has changed under vsl.

19. vs1 does not support:

Main storage hierarchies (obviated by virtual storage concept)
QT AM (superseded by TCAM)
RJE (superseded by RES)
IEBUPDAT (superseded by IEBUPDTE)
TESTRAN (low usage component of MFT)
G JP (low usage component of MFT)
SGJP (low usage component of MFT)
IBCRCVRP (superseded by IEHA TLAS)
HASP
IMAPTFLE (replaced by HMAPTFLE)
IMDMDMAP (replaced by HMBLIST)
IHGUAP Utility (low usage component of MFT)

20. vs1 does not support these devices:
IBM 1017

1018
1285
2301
2303
2305-1
2311
2.321
2841
7772

21. MFT provides three reader procedures with the system. vs1 provides two,
RDR and RDRT. RDR400 and RDR3200 are not included in vs1. vs1 also includes
two writer procedures, WTR and WTRT.

22. Partitions in vs1 have a minimum size of 64K and must be multiples of 64K
in size.

23. The resident svc, RAM, and BLDL default lists have been changed in vsl.

24. Resident options may be made non-page able or pageable in vsl.

OS/VS1 Planning and Use Guide

25. All problem program output is spooled to DASD by JES under vsl and unit
record UCBs are not created. Any user programs that handle conditions
such as print overflow (channel 12) by checking bits in the UCB will not
operate properly.

26. vsl TCAM line groups can contain a maximum of 32 lines, except for the IBM

2260 (local attachment), for which there is no maximum.

27. RBS, etc. are not part of the problem program area in vsl. They have been
moved to the PQA.

28. A PQA (one per partition) is provided in vsl. This does not exist in as/MFr.

29. Programs that reference storage not obtained with GETMAIN or referenced
after a FREEMAIN may not execute.

30. In MFT systems, SYSIN blocking factors are selected prior to job initiation, and
BSAM users have to either write code accommodating the block size selected
or explicitly provide JCL overrides. In vsl, the blocking done by the system
is transparent to the user. For the BSAM interface, records are dynamically re­
blocked to user requirements during execution.

31. No DADSM facilities (OBTAIN, SCRATCH, RENAME) are supported for the SYSIN/

SYSOUT data set in vsl.

32. SYSOUT data sets can only be written sequentially without repositioning. No
support is provided for NOTE/POINT, for update, or for reading SYSOUT. Once
written, SYSOUT records cannot be erased or overlaid.

33. In vsl, NOTE/POINT support for SYSIN is restricted as follows:
a. The user must save four bytes of data (TTRL) instead of three as in MFT.

b. POINT to following record (TTR01) is not supported.
c. Track numbers (TT) do not begin with 0 and are not in ascending sequence.

34. No SYSIN support is provided for update or for overlaying or adding to the
data.

35. SYSIN support for variable length records is not compatible. For MFT, block
and record descriptor fields must be punched (in binary) in the input card
image. In vsl, the entire 80-byte image is treated as data, and block and
record descriptor fields are prefixed to it. Both blocked and unblocked formats
are supported for SYSIN, but spanned records are not. (vs and VBS are sup­
ported for SYSOUT along with the other variable length formats.)

36. All SYSIN records processed by QSAM contain one logical record per original
80-byte card image. It is not possible to divide cards into multiple logical
records or combine multiple cards into a single lOgical record except by
using BSAM with user deblocking routines.

37. BSAM SVCS BSP and FEOV are not supported in vsl and will result in an error
return if issued.

38. SYNADF may only be issued from within a SYNAD exit in vsl.

as/MIT - as/VSl Differences DIF 5

DIF 6

39. SAM chained scheduling is supported for V==R jobs only. If a user IS not running
V==R and specifies chained scheduling, regular scheduling will be substituted.

40. TCAM message control programs and TCAM message processing programs
using the ICOPY, TCOPY, QCOPY, and TCHNG macro instructions must be re­
assembled and linkage edited. TCAM message processing programs not using
any of these macro instructions only need to be re-linkage edited.

41. Additional JCL parameters are provided in the JOB and EXEC statements to
facilitate running V==R jobs.

42. MFT reader procedures will not run in vsl after release 1. Because the PARM

field of the EXEC statement is changed, user reader procedures must be up­
dated.

43. MFT stand-alone DASDI will not run in vsl after release 1 because the IPL text
has been changed.

44. In MFT (and in release 1 of vsl), reentrant user programs could modify
themselves (for example, store registers into the user area). Such attempts
will now cause a protection check.

OS/VSl Planning and Use Guide

VS 1 Features and Options

This section contains a brief description of some of
the features and options available in vsl. Although
comprehensive coverage of all the features and op­
tions available is not provided, this section will serve
as an aid to the planner responsible for determining
if a specific optional feature or option should be in­
cluded in (or excluded from) the system at system
generation time. Features and options are arranged in
the section in alphabetic sequence.

Section Outline

VSl Features and Options FEA 1

Alternate Path Retry (APR) FEA 3
Attach Function FEA 3
Attach Function Made Resident FEA 3
Automatic Partition Redefinition FEA 4
Automatic Volume Recognition (A VR) FEA 4
Basic Direct Access Method (BDAM) FEA 4
Basic Indexed Sequential Access Method (BISAM) .. r Cor\. 5
Basic Partitioned Access Method (BP AM) FEA 5
Basic Sequential Access Method (BSAM) FEA 5
BLDL Table Made Non-Pageable FEA 6
Channel Check Handler (CCH) FEA 6
Checkpoint Restart Facility FEA 6
Consoles-Alternate and Composite Consoles
Options FEA 7

Consoies-Multiple Consoles Support (MCS) FEA 7
Conversational Remote Job Entry (CRJE) Facility .. FEA 9
DEB Validity Checking , FEA 9
Device Independent Display Operator Console
Support (DIDOCS)

Direct Access Volume Serial Number Verification .. ,
Dynamic Device Reconfiguration (DDR)
Dynamic Dispatching
Dynamic Support Systems (DSS)
Extract Function Made Resident

I Fetch Protect
Graphic Programming Services (GSP, GAM)

I Greenwich Mean Time
Identity Function Made Resident
Indexed Sequential Access Method (ISAM)
I/O Load Balancing
Job Step Timing
Machine Check Handler (:NICH)
Missing Interruption Checker
Multiple Wait Option
On-Line Test Executive Program (OL TEP)
Program Controlled Interrupt (PCI)
Queued Indexed Sequential Access Method (QISAM)
Queued Sequential Access Method (QSAM)

FEA 10
FEA 10
FEA 10
FEA 11
FEA 12
FEA 13
FEA 13
FEA 14
FEA 14
FEA 15
FEA 15
FEA 15
FEA 16
FEA 16
FEA 16
FEA 17
FEA 17
FEA 18
FEA 19
FEA 19

Continued -

VSl Features and Options FEA 1

Reenterable Load Modules Made Resident FEA 19
Resident Access Method Routines FEA 19
Shared DASD FEA 20
SPIE Routines Made Resident FEA 20
Storage Protection Option FEA 20
System Management Facilities (SMF) FEA 20
Telecommunications Option FEA 21
Time-Slicing Facility FEA 23
Trace Option FEA 24
Transient SVC Table " FEA 24
Types 3 and 4 SVC Routines Made Resident FEA 25
User Modify Logical Cylinder Facility FEA 25
User-Added SVC Routines FEA 26
Validity Check Option FEA 27
Virtual Storage Access Method (VSAM) FEA 27
Volume Statistics Facility FEA 28

FEA 2 OS/VSl Planning and Use Guide

VS 1 Features and Options

Alternate Path Retry (APR)

A;;ach Function

Status: Optional. (The function is standard with the system but is effective
only when the OPTCHAN= operand of the IODEVICE macro is coded.)

The alternate path retry (APR) option allows an I/O operation that has de­
veloped an error on one channel path to a device to be retried on another
channel path to the same device. This can be done only if another channel path
has been assigned to the device performing the I/O operation. APR also provides
the capability to vary a path to a device online or offline by use of the VARY

command.

APR can handle:

• Up to four paths to one device.

• The ninth drive on a 2314.

\Vhile it is not module-dependent, APR performs its function usefully only in
a system that has the channel check handler (CCH) and alternate paths to at
least some of the I/O devices. CCH checks for channel errors, analyzes the error,
and produces an interface that aids in setting up an alternate path retry.

The operation of the selective retry function of APR, in conjunction with the I/O

supervisor, does not depend on anything you do. The operator can initiate the
VARY path function by entering the VARY PATH command in the input stream or
~t the console.

Status: Standard.

The ATIACH function, with subtasking, creates subtasks so that the issuing
program and the program requested in the ATIACH macro instruction compete
for system resources. The function allows more than one task to be operative
within a partition.

Attach Function Made Resident

Status: Standard.

The routines that make up the ATIACH function are resident in storage in vsl.
This function is optionally resident in os MFT. Having the routines resident
eliminates the necessity of bringing them into the supervisor transient area each
time an ATIACH macro instruction is issued.

VSl Features and Options FEA 3

Automatic Partition Redefinition

Status: Standard.

The addition of the keyword PARM==membemame to the DEFINE command
allows the operator to redefine partitions more easily. Using this keyword, the
operator can specify a SYS1.PARMLIB member containing partition redefinitions.
This causes the system to go to that member to obtain the redefinitions. The
operator is thus relieved from entering the redefinitions from the console.

The member consists of entries in the same format as if they were entered from
the console. If END is not in the parameters, the redefinition can continue through
operator replies. No restriction is made on where entries must start, but the last
entry must be completed by column 71. Blank records are ignored. The param­
eters contained in the member are the same as those given in response to
message IEE802A (see OSjVS Message Library: VSl System Messages, GC38-
1001) .

Automatic Volume Recognition (AVR)

Staus: Optional. Included when VLMOUNT=AVR is specified in the SCHEDULIl
macro instruction.

This feature issues volume mounting instructions to the operator to minimize
the time lost in performing job setups. The operator can premount labeled
volumes on any available tape or disk device. The identification of the volume
and the device used is automatically recorded in a table.

When a particular volume is needed for job setup, the table containing the
volume information is searched. If the required volume is already mounted, the
usual procedure of issuing a volume mounting message is bypassed. This
feature is advantageous in installations where work schedules are normally set
in advance and follow a repeated pattern.

Basic Direct Access Method (BDAM)

FEA 4

Status: Standard.

In the Basic Direct Access Method (BDAM), records within a data set are
organized on direct access volumes in any manner chosen by the programmer.
Storage and retrieval of a record is by actual or relative address within the data
set. This address can be that of the desired record or a starting point within
the data set where a search for the record, based on a key furnished by the
programmer, begins. Addresses are also used by BDAM as a starting point for
searching for available space for new records.

OS/VSI Planning and Use Guide

Basic Indexed Sequential Access Method (BISAM)

Status: Optional. Included when ACSMETH=ISAM is specified in the DATAMGT

macro instruction.

Sequential and direct processing are provided by the Indexed Sequential Ac­
cess Methods (ISAM). Records are maintained in control field sequence by key.
The system maintains a multilevel index structure that allows retrieval of any
record by its key. Additions can be made to an existing ISAM data set without
rewriting the data set.

The Basic Indexed Sequential Access Method (BISAM) stores and retrieves
records randomly from an indexed sequential data set. Selective reading is
performed using the READ macro instruction, specifying the key of the logical
record to be retrieved. Individual records can be replaced or new records ca.ll
be added randomly.

Basic Partitioned Access Method (BPAM)

Status: Standard.

The Basic Partitioned Access Method (BPAM) is designed for efficient storage
and retrieval of discrete sequences of data (members) belonging to the same
data set on a direct access device. Each member of the data set has a simple
name. The data set includes a directory that relates the member name with the
address where the sequence begins. Members may be added to a partitioned data
set as long as space is available in the directory and the data set

Basic Sequential Access Method (BSAM)

Status: Standard.

In the Basic Sequential Access Method (BSAM), data is sequentially organi­
zed and physical blocks of data are stored or retrieved. The READ/WRITE macro
instruction causes the initiation if an input/output operation. The completion
of these operations is tested by using synchronization macro instructions. Auto­
matic translation between EBmIC and ASCII codes is provided for magnetic tape
labels and record form-ats.

VSl Features and Options FEA 5

BLDL Table Made Non-Pageable

Status: Optional. Invoked by the specification of OPTIONS=BLDL in the
CTRLPROG macro instruction.

The BLDL table is always resident in vsl. However, the user has options as to
the entries he wishes to include in the table and as to whether he wants the
table to be pageable or non-pageable. Having the table non-pageable eliminates
the necessity of paging the table into real storage whenever the function is re­
quired. See the Resident Routines Options seotion of this publication for a com­
prehensive discussion of the function.

Channel Check Handler (CCH)

Status: Standard.

The Channel Check Handler (CCH) intercepts channel-check conditions, per­
forms an analysis of the environment, and facilitates recovery from channel­
check conditions by allowing for the scheduling of device-dependent error re­
covery procedures by the input/output supervisor, which will determine whether
the failing channel operation can be retried.

Checkpoint Restart Facility

FEA 6

Status: Optional. The facility is standard in the system, but the user must
code the RESIDNT= (ACSMETH) parameter in the CTRLPROG macro instruction
to use it. You can also indicate the ABEND codes that you want to be eligible
or ineligible for automatic restart, in the NOTELIG and ELIGBLE parameters
of the CKPTREST macro instruction.

The checkpoint/restart facility expands the use of the restart capabilities that
are provided by the RD parameter of the JOB and EXEC statements. The RD para­
meter permits execution of jobs to be restarted automatically at a job step after
abnormal termination occurs.

Checkpoint/restart enables you to write checkpoint macro instructions (CHKPT)
at various points in your program to record job status information. Then when
an ABEND occurs, your program can be restarted automatically at the last of these
points, or restart can be deferred until a later time, when the job can be resub­
mitted and the RESTART parameter in the JOB statement used. The RD parameter
can also be used to suppress partially or totally the checkpoint/restart facility.

The following restrictions apply to the establishment of a checkpoint by the
CHKPT macro instruction.

• When the checkpoint is established, the jab step must comprise a single task.
The job step task must be the only task when the job step is restarted.

OS/VSl Planning and Use Guide

• A checkpoint cannot be established by an exit routine that returns control
to the control program.

• If a STIMER or WTOR macro instruction has been issued, a checkpoint cannot
be established before the time interval is completed or the operator's reply is
received.

Under certain conditions, such as the following, a checkpointed job may not be
restarted at will:

• If a job took a checkpoint while running V=R, that job cannot be restarted
while another partition is using part or all of the req aired V=R space. The job
to be restarted must wait until the V=R space is available before restart is
possible.

• If a job took a checkpoint while running V=R, and the system queue area
(SQA) has expanded into the V=R space required to restart the job, restart is
not possible until the system is re-IPLed and the V=R address space is again
made available.

Consoles - Alternate and Composite Console Options

Status: Optional. Alternate consoles are optionally specified in the ALTCONS=
parameter of the SCHEDULR macro instruction.

One primary console must always be specified for any vsl operating system.
One alternate console can be specified. A composite console, such as a card
reader and a printer, can be specified as a primary or an alternate console. The
composite console is considered one console even though it may consist of
two different physical devices.

The following guidelines apply when Multiple Console Support (MCS) is not
selected:

• A primary console must be specified in the SCHEDULR macro instruction.

• A composite console can be used as a primary or an alternate console.

• When a graphic device is going to be active as a console, a device that pro­
duces printed output must be specified.

Consoles - Multiple Consoles Support (MCS)

Status: Optional. Included by specification of the OPTIONS=MCS parameter
of the SCHEDULR macro instruction.

You must specify the multiple console support (MCS) option to have two or
more consoles active during execution. One console must be speCified in the
SCHEDULR macro instruction; it is called the "master" console. An alternate con­
sole for the master console must be specified in the ALTCONS parameter of the
SCHEDULR macro instruction. A SECONSLE macro instruction must be coded defining

VSI Features and Options FEA 7

FEA 8

the alternate as a secondary console. Additional secondary consoles can be defined
with SECONSLE macro instructions-up to a maximum of 31 secondary consoles.
For all consoles for which no alternate console is specified, the master console
is automatically assigned as the alternate.

A hard copy log can be specified either at system generation or by the operator
during system initialization or execution. A hard copy log is required when there
is more than one active console during initialization or execution, or when there
is an active graphic console. The hard copy log can be the system log that is
contained on SYSl.SYSVLOGX and SYSl.SYSVLOGY, or it can be a console with output
capability. If the log is required, the system records the operator commands,
the system commands and responses, and the messages with routing codes of 1,
2, 3, 4, 7, 8, and 10 on the hard copy log. Additional messages can be recorded
if desired.

Routing codes and descriptor codes are required for all messages handled by
a system using MCS. Messages that already exist can be assigned routing codes
at system generation time or, by default, they will be sent to the master console.

Routing codes are assigned to all new operator messages (WTO and WTOR).

They designate what function the message is connected with and determine
where a message will be sent. A system generation parameter provides the
ability to supply routing codes to all operator messages that already exist and
do not have routing codes.

Each console is assigned one or more routing codes. The routing codes as­
signed to a console are matched to the routing codes assigned to WTO and WTOR

messages. If there is a match, the message is sent to the console. Some messages,
such as a message that is broadcast to all active consoles, are not routed by the
routing code.

Descriptor codes must be specified for all new operator messages. They are
specified in the WTO or WTOR macro instructions. They designate how a message
is to be printed or displayed.

All commands have been arranged by function into four command code
groups: informational, system control, I/O control, and console control.

An exit, just before the routing codes of a message are checked, to enable
you to supply your own routine to add, delete, or change routing and descriptor
codes is provided. (See the Message Routing Exit ROtltines section of this publi.
cation for a description of the exit routine.)

The following guidelines must be used:

• If HARDCPY=SYSLOG is specified in the SCHEDULR macro instruction during
system generation, then at IPL time the operator must change the HARDCPY

parameter to refer to the address of an operator console that has output
capability. The device should not be the master console. The HARDCPY speci­
fication can be changed back after the message IEE14lr has been received.

• Master console must be specified in the CONSOLE keyword parameter of the
SCHEDULR macro instruction.

• An alternate console to the master console must be specified in the ALTCONS

keyword parameter of the SCHEDULR macro instruction.

• The alternate for the master console must be defined in the CONSOLE parameter
of a SECONSLE macro instruction to make it a secondary console.

• A console with at least printing output capability must be specified as the
hard copy log. Although the system log is not a console, and does not directly
produce printed output, it can be used.

OS/VSl Planning and Use Guide

• A record of the operator commands, system commands and responses, and
routing codes 1, 2, 3, 4, 7, 8, and 10 should be maintained.

• Up to 31 secondary consoles can be specified with SECONSLE macro instructions.
They can all have alternate consoles specified. If no alternate is defined, then
the master console automatically becomes the alternate.

• A 2250 display unit can be specified as a master, secondary, or alternate
console.

• Any number of the consoles can be composite consoles.

• Routing and descriptor codes are assigned to all new operator messages that
are written.

Conversational Remote Job Entry (CRJE) facility

DEB Validity Checking

Statu.s'; Optional. Included by speci£cation of the OPTIONS=CRJE parameter
in the SCHEDULR macro instruction.

The conversational remote job entry (CRJE) facility provides remote access
to the operating system from printer-keyboard terminals. Authorized terminal
users can conversationally prepare and update programs and data, submit them
for os background processing, and receive the output either at the central in­
stallation or at the remote terminal.

CRJE is specified at system generation time in order to have the necessary
modules included in the system. After generation, you must create the specific
CRJE system required for your installation. There are thr.ee macro instructions
available for this job-CRJELINE, CRJETABL, and CRJEUSER. You set up a job that
includes the CRJE macro instructions necessary to specify y"our system; ,,"·ou may
include your 'Own routines. The assembler translates these macro instructions
and creates the required modules. The linkage editor incorporates the modules
into the 'Operating system.

SYSl.MACLIB must be in the operating system so that the assembler can expand
the macro instructions. SYSl.TELCMLIB must be in the system to hold some of
the CRJE load modules as well as the telecommunication subroutines. Enough
system queue space must be specified in the CTRLPROG macro instruction during
system generation to handle the necessary eRJE space requirements.

Status: Standard. Reduced DEB validity checking is obtained by specifying
OPTIOKS=KODEBCHK in the CTRLPROG macro instruction.

DEB validity checking is designed to prevent a user's data set (associated with
a given DEB) from being read or modified, either aCCidentally or intentionally,
by another user program. In full DEB validity checking, system OPEN routines
provide protected DEB entry creation and validation, IOS provides additional (and
important) validation each time 110 is performed, and system CLOSE routines
provide DEB entry validation and deletion.

Although some degree of data set security is achieved by the OPEN and CLOSE
functions, it is substantially reduced without the IOS portion of DEB validity check­
ing. Specification of OPTIONS=NODEBCHK removes IOS linkage to the DEB validity
check module, thus limiting the overall effectiveness. In installations where data
set security is a primary concern, full DEB validity checking should be allowed
(that is, OPTIONS=NODEBCHK should not be specified).

VSl Features and Options FEA 9

Device Independent Display Operator Console Support (DIDOCS)

Status: Optional.

The device independent display operator console support (DIDOes) provides
uniform operator console support for a range of display devices. DIDOes is in­
cluded in your system when a display console and multiple console support
(MCS) are specified.

DIDoes provides the capability to:

• Print out messages from the vsl control program and problem programs to
the display console device.

• Enter commands from the display console to the control program by the
alphanumeric keyboard and/or the light pen, when available.

• Print two out-of-line status displays as requested by the status display support.

Status display support provides for the presentation of information to a system
operator clearly and understandably. It also provides the ability for messages
to a display device to be displayed out of line in a special area of the screen.
This allows related messages to be grouped together and easily read by the
operator.

Direct Access Volume Serial Number Verification

Status: Optionally Excludable. The facility will be included in the system
unless OPTIONS=NODAV is specified in the CTRLPROG macro instruction.

The direct access volume serial number verification facility checks or verifies
the volume serial number of a volume after an unsolicited device-end interrupt
condition has been corrected and the volume has been put back online.

When an unsolicited device-end interrupt is received from a direct access
device, the r/o supervisor ensures that the volume serial number of the mounted
volume agrees with the volume serial in the unit control block (UCB).

Dynamic Device Reconfiguration (DDR)

FEA 10

Status: Optionally Excludable. The facility will be included in the system
unless OPTIONS=NODDR or NODDRSYS is specified in the CTRLPROG macro in­
struction.

The dynamic device reconfiguration option allows a demountable volume to
be moved from one device to another and repositioned if necessary without
abnormally terminating the job or redoing IPL. A request to move a volume may
be initiated by either the system or the operator.

The system transfers control to the DDR routines when a permanent r/o error
occurs. These routines then determine whether another device of the same type
to which the volume can be moved is available. When another device is avai),..
able, the system requests a volume swap by issuing a message to the operator.
The operator must answer this message by entering a SWAP command.

OS/VS1 Planning and Use Guide

I Dynamic Dispatching

Notes:

• You should not code specific unit addresses in programs that will be processed on a
system that has DDR.

• The direct access serial number verification routines must be in the system that has
the DDR routines.

For FETCH: When I/O errors occur while the FETCH routines are addressing
the SVCLID, the DDR system residence routines receive control, and, if possible,
request a swap. For this to occur, OPTIONS=DDRSYS must be specified in the
CTRLPROG macro instruction and the conditions listed above must exist.

For DDR Sy~em Residence Routines: When these routines are specified in the
OPTIONS keyword parameter of the CTRLPROG macro instruction, another keyword
parameter, ALTSYS, must also be specified.

If high availability is important to the installation, a duplicate system residence
volume is advisable. However, to use such a volume, writing on any part of the
system residence volume other than SYSl.LOGREC would have to be prohibited.

The alternate residence device specified during system generation can be
changed at IPL time by the operator.

For NOMandard Labels: If you want DDR and have nonstandard magnetic
tape labels, OPTIONS=DDRNSL must be specified. A nonstandard label routine
with the name NSLREPOS must be supplied. This routine can either be added
during system generation using the SVCLID macro instruction, or be link-edited
into SVCLID after the system generation process is completed.

For DR when EXCP is Used: When the EXCP macro instruction is used to ad­
dress magnetic tape drives in a program that will run under a system with
DDR, REPOS==Y or N must be coded in the DCB macro instruction to indicate
whether an accurate block count is being maintained.

Status: OptionaI. Included in the system by specification of the DYNPART=
and DYNINTR= parameters of the CTRLPROG macro instruction.

Dynamic dispatching is intended to prevent cpu-dominant tasks from mo­
nopolizing the CPU while I/O resources are idle and I/O dominant tasks are
dispatchable. It is unlikely to aid environments in which most tasks are either
CPU -dominant or I/o-dominant.

Dynamic dispatching provides for the alteration of dispatching priorities of
selected tasks as they are being executed. It calculates the dispatching priorities
so that tasks can, in some cases, use the system resources more efficiently.
Dynamic dispatching not only alters the handling of each task as the task's
characteristics change, but it also evaluates itself and alters itself based on its
effectiveness in handling the tasks under its control.

Dynamic dispatching distinguishes between I/o-bound tasks and cpu-bound
tasks. I/o-bound tasks receive the higher priority. Initially, all tasks are deSignated
as I/o-bound. As each task is dispatched, its activity is monitored for a pre­
determined time interval. At the end of this time interval, each task is designated
as either I/o-bound or cpu-bound.

VSI Feahlles and Options FEA 11

Specifications at system generation time may be changed by the operator via
response to message IEAIOIA, issued by the nucleus initialization program (NIP).
For the sysgen parameters, see the System Generation Reference publication.
For an explanation of the responses to message IEAIOIA, see the VSl System
Messages publication. The following shows a comparison of the sysgen param­
eters and the message responses with a brief explanation.

Sysgen
Parameter

DYNPART= (Pn-Pm)

DYNINTR= (a, b, c, d)

Explanation

Specifies contiguous
partition (s) for
which dynamic dispatching
will be used.

a
delta value to be added to
or subtracted from time-slice
value at end of each
statistics interval
b
lower bound of time-slice
that may be given to a task
c
ratio of CPU to 1/ 0 bound
tasks
d
length of statistics interval

IEAIOIA Message
Response

DDG= (pn-pm)
DDG=, may be used to
cancel dynamic dispatching
for the duration of this IPL.

DDDEL=nn

DDMIN=nnn

DDRA TIO=nnn

DDSTAT=nnnnn

Note: Any partition that is part of the dynamic dispatching: group must Hot be time sliced.

Dynamic Support System (DSS)

FEA 12

Status: Announced but not available. This information is for planning purposes
only.

The dynamic support system (DSS) is an optional interactive debugging pro­
gram that can be used by an IBM programming system representative or other
authorized maintenance person to help identify and correct causes of pro­
gramming failures. DSS requires the program event recording (PER) hardware
feature of the System/370.

DSS has its own I/O capability and has access to both real and virtual storage.
When DSS is executing, it is stand-alone and has control of the system. It can
gain control from and return control to os/vs through its monitoring functions
and the integral operator's console (system restart is not necessary).

Because DSS takes control from the system on each activation, time dependen­
cies cannot be maintained. Thus, DSS should not be used while a time-sensitive
program, such as a teleprocessing or time-slice task, is running. When DSS is in
control, no other processing takes place unless DSS is being used only for monitor­
ing. In that case, normal multiprogramming continues, reduced only by the
processing of DSS.

OS/VS1 Planning and Use Guide

The various features of the DSS language include:

• Displaying and altering real storage, virtual storage, and registers.

• Providing control for the program event recording (PER) hardware of the
System/370.

• Stopping operation of the system at any instruction or PER interrupt, perform­
ing maintenance functions, and resuming operations.

• Saving information within DSS for later use or writing out the information on
high-speed printers or on tape.

• Using tape or card readers for secondary command input buffers.

• Writing procedures that are often used for reiterative command sequences.

Though changes can be made by DSS, ~1.ey are not permanent. Any modifica­
tions made to the system are not carried over to the next IPL. Also, DSS cannot
modify itself, IPL, or NIP.

Extract Function Made Resident

Fetch Protect

Status: Standard.

This function is optionally resident in OS/MFT but is included as a standard
function in os/vsl. Having the function resident eliminates the necessity of bring­
ing the routines into the supervisor transient area every time an EXTRACf macro
instruction is issued.

The EXTRACf macro instructIOn provides your program with information con­
tained in specified fields of the task control block (TCB) of either the task that
issued the macro instruction or, in a multiprogramming environment, one of
; teo "" h+<> C'lr" ..I.c....:l ..:JIU.JJ\..u.~.£\....:l.

Status: Optional.
macro instruction.

Included by specifying SECURITY:.FPROT in the CfRLPROG

Fetch protect provides security for user data by preventing any user from
examining the contents of another user's area of storage. This protection includes
the entire dynamic storage area (virtual storage partitions assigned to job steps
and system tasks) and all non-key 0 subpools. Partitions are initially fetch
protected by the DEFINE command.

A combination of hardware and software support guards the non-key 0 contents
of a partition from disclosure to any non-key 0 task operating in another partition.
The PQA and SQA subpools and the nucleus are not fetch protected so that non-

VSI Features and Options FEA 13

key 0 tasks can still reference these areas. When storage from the PQA is deallo­
cated and returned to the partition, virtual storage management executes the
SSK instruction, setting the fetch protect bit.

With a 2K block fetch protected, no task can access it unless the task's current
psw has key 0 or the 4-bit storage key for that block. Attempts to do so result in
fetch protection program checks.

Graphic Programming Services (GSP, GAM)

Status: Optional. Included by specifying the appropriate parameters in the
GRAPHICS macr'O instruction.

The graphic programming services control graphic input and 'Output and a
set 'Of problem-oriented routines that are used as building blocks in the con­
struction 'Of graphic processing programs. The graphic subroutine package (GSP)

allows the FORTRAN IV, COBOL F, or PL/I F pr'Ogrammer to use the graphic pro­
gramming services.

The problem-oriented routines generate graphic instructions for displaying
various images and alphameric information 'On the 2250 display unit. These
routines function as part of the problem program and are reached by a CALL or
LINK macro instructi'On.

Greenwich Mean Time (GMT)

FEA 14

Status: Standard.
command.

Utilized through use of the GMT parameter in the REPLY

The Greenwich Mean Time feature allows the user to maintain a time clock
that is independent of local time. This is especially advantageous for teleprocess­
ing operations that extend across time zones.

The TOD clock can be changed only at IPL time and requires that the GMT

parameter be placed in the reply command. This parameter is optional, and if
coded must give the date and time in Greenwich Mean Time. If the GMT param­
eter is not used, the system assumes that the date and time are local and does
not alter the TOD clock.

If the GMT parameter is used, the local time and date are maintained by estab­
lishing an offset from Greenwich Mean Time. This offset is established at system
generation time by using the TZ parameter of the CTRLPROG macro. The offset
(local clock) can be changed during IPL in response to messages IEAIOIA and
IEE055A (see VSl System Messages) or after IPL by the SET command.

All system-issued time stamps are given in local time. To obtain GMT time
stamps, a store clock (STCK) instruction must be used. For the format of the
STCK instruction, see System/370 Principles of Operation.

OS/VS1 Planning and Use Guide

Identify Function Made Resident

Status: Standard.

This function is optional under OS/MFT but is standard in vsl. Having the
identify routines resident eliminates the necessity of bringing them into the
supervisor transient area every time the IDENTIFY macro instruction is issued.

The IDENTIFY macro instruction is used to inform the supervisor of an em­
bedded entry point within a load module.

After the IDENTIFY macro instruction has been executed, the entry point can
be referred to by an ATTACH, LINK, XCTL, or LOAD macro instruction.

Indexed Sequential Access Method (ISAM)

1'/0 Load Balancing

The Indexed Sequential Access Method (ISAM) is comprised of the Basic In­
dexed Sequential Access Method (BISAM) and the Queued Indexed Sequential
Access Method (QISAM). See the write-ups on these two access methods in this
section.

Status: Optionally excludable. This facility will be included in the system
unless OPTIONS=:NOLOADBAL is speci£ed in the SCHEDULR macro instruction.

I/O load balancing allocates data sets to devices in such a way as to attempt
to equalize the amount of I/O contention on each device. This facility can be
used only for non-speci£c requests (that is, where no volume serial number or
device address is speci£ed).

I/O load balancing attempts to select the best device for data set allocation by
conSidering many variables. It accumulates information about the speed of the
device, counts the number of I/O events to each device, and compares the charac­
teristics of different devices in determining the best device to be allocated. I/O

load balancing selects this best candidate for device allocation. If space is not
available on that volume, the next best choice is used.

VSl Features and Options FEA 15

Job Step Timing

Status: Standard.

Job step timing is an optional feature under OS/MFT but is a standard feature
in vsl.

Each job step can be timed and the time limits enforced. The amount of time
used is recorded after a job step is finished. In addition, the following are in­
cluded in this option: the ability to request the date plus the time of day, to
change the time at midnight, and to request, check, and cancel intervals of time.

Machine Check Handler (MCH)

Status: Standard.

This program processes machine-check interruptions. Depending upon the
severity of the malfunction, the machine check handler:

• Restores the system to normal operation

• Terminates tasks associated with the malfunction so the system can resume
processing, or

• Places the system in a wait state.

In all cases, the machine-check handler program writes diagnostic messages
and error records.

Missing Interruption Checker (MIC)

FEA 16

Status: Standard. Program must be started by the operator (start mic.pn).

The MIC (missing interruption checker) is a program that polls active I/O

operations to determine if a channel end and/or device end interruption has been
pending for more than three minutes (default time). When this occurs, or when
the system has issued a mount request and the request has not been satisfied
within the time period, message IGF991E is issued. (See the OS/VS System Mes­
sages publication for an explanation of the message and for operator action.)

After message IGF991E is issued, the operator is given the specified time
interval in which to respond. When that interval expires, the message is issued
again. The action is repeated until the operator makes the necessary action.

OS/VSl Planning and Use Guide

Multiple Wait Option

The time interval can be changed through the use of a separate 8-byte CSECT

(IGFINTVL) residing on SYSl.LINKLIB with IGFTMCHK. To change the interval,
IGFINTVL must be replaced in the user's LINKLIB as follows:

fiREPLACE

IIASMLK

II

/ / ASM.SYSIN

IGFINTVL

IILKED.SYSLMOD

f ILKED.SYSIN

JOB MSGLEVEL=l

EXEC ASMFCL,

DD

CSECT

PARM.LKED='XREF,LET,LIST,NCAL,RENT'

DC CL8'OOttOOOO'

END

DD

DD

DSN=SYSl.LINK, DISP=OLD

ENTRYIGFTMCHK

NAME IGFTMCHK(R)

X

Where: tt (two decimal characters) is the user-defined time interval. It expresses the interval
in minutes to be used in checking for DCB conditions. Zero or non-numeric characters cause
a default of three minutes.

Status: Standard.

The number of events that can be specified in a WAIT macro instruction can
be extended from 1 to a maximum of 255. The WAIT macro instruction specifies
that the task issuing the macro instruction should continue in control only after
a particular event has occurred. An event could be the completion of an input
or output operation or, in a multiprogramming system, the completion of another
task.

On-Line Test Executive Program (OLTEP)

Status: Standard.

The On-Line Test Executive Program (OLTEP) is a function designed to direct
the selection, loading, and execution of the On-Line Test sections (OLTS). OLTEP~

with the OLTS, allows the testing of input/output devices used with the system
concurrent with the running of customer jobs.

VSl Features and Options FEA 11

Concurrent debug with OLTEP is not supported in the first release of os/vsl
for systems with 144K or less of real storage.

The oLTEP/oLT system is designed to:

• Diagnose 110 errors

• Verify 110 device repairs and engineering changes

• Exercise a device requiring dynamic adjustments

• Check the operation of 110 devices

• Verify the integrity of customer data

OLTEP operates as a job under os/vsl and is called by standard job control
statements. It operates under control of the operating system at all times and
uses the system facilities to accomplish the tests. It competes with other jobs
in the system for the use of system facilities when running in a multiprogram­
ming environment.

Definition of test runs can be entered by console or non-console devices.
Prompting is available on consoles to assist in defining tests to be run.

IBM Field Engineering will supply the OLTS to the customer on magnetic tape
or cards. The OLTS must be reformatted and link edited into a partitioned data
set in order to be used under the operating system.

OLTEP must normally be executed in the non-pageable (virtual=real) area of
real storage. It requires a minimum virtual partition of 64K and 36K bytes of
real storage. The logout analysis program, which runs under OLTEP similar to
an OLT, does not require virtual=real storage.

The initial release of OLTEP must run in the virtual-real storage area and is
not supported on systems with less than 144K of real storage.

Program Controlled Interrupt (PCI)

FEA 18

Status: Optional. Included by specification of FETCH-PCI in the CTRLPROG

macro instruction.

The program controlled interrupt (PCI) facility permits the program to cause
an 110 interruption during execution of an 110 operation. PC! provides a means
of alerting the program of the progress of chaining during an 110 operation.

PCI fetch is able to bring a program into storage with only one seek of the
disk if:

• A buffer is always available for relocation dictionaries.

• No errors occur during the 110 operation.

• No cylinders are crossed while bringing in the program.

• The speed of the central processing unit allows PC! to modify the channel com­
mand word before it reaches the channel.

OS/VSl Planning and Use Guide

An additional WAIT and seek are required each time a buffer is not available.
A seek is required each time an error occurs or a cylinder is crossed. If the
speed of the central processing unit does not allow PCI to perform its function in
time, the number of seeks needed by the standard fetch are required.

Queued Indexed Sequential Access Method (Q/SAM)

Status: Optional. Included when ACSMETH=ISAM is specified in the DATAMGT
macro instruction.

Sequential and direct processing are provided by the Indexed Sequential
Access Method (ISAM). Records are maintained in control field sequence by
key. The system maintains a multilevel index structure that allows retrieval of
any record by its key. Additions can be made to an existing ISAM data set without
rewriting the data set.

The Queued Indexed Sequential Access Method (QISAM) is used to create
an indexed sequential data set or to retrieve and update records sequentially
from such a data set. Synchronization of the program with the completion of
input/output transfer, and record blocking/deblocking are automatic. QISAM
is also used to reorganize an existing data set.

Queued Sequential Access Method (QSAM)

Status: Standard.

In the Queued Sequential Access Method (QSAM), logical records are re­
trieved or stored as requested. The access method anticipates the need for
records based on their sequential order, and normally will have the desired
record in storage, ready for use, before the request for retrieval. When writing
data, the program normally continues as if the record had been written im­
mediately, although the access method routines may block it with other logical
records and defer the actual writing until the output buffer has been filled. As
with BSAM, automatic translation between EBCDIC and ASCII codes is provided
for magnetic tape labels and record formats.

Reenterable Load Modules Made Resident
Resident Access Method Routines

Status: Standard.

Reenterable load modules from SYSl.LINKLIB and SYSl.SVCLIB and reenterable
access method modules from SYSl.LINKLIB are resident under vsl. Having these
modules resident eliminates the necessity of bringing them into storage when­
ever they are required.

Standard lists are used during IPL to indicate the load modules that are to
be made resident. See the Resident Routines Options section for a complete dis­
cussion of this function.

VSI Features. and Options FEA 19

Shared DASD

Status: Optional. Included by specification of FEATURE=SHARED in the
IODEVICE macro instruction.

Up to four central processing units can access the same direct access device
concurrently, depending upon the device configuration.

See the Shared Direct Access Device Option section for a complete discussion
of this function.

SPIE Routines Made Resident

Storage Protection Option

Status: Standard.

The routines that make up the Set Program Interruption Element (sPIE) fune­
tion are resident in storage in vsl. This function is optionally resident in OS/MFT.
Having the function resident eliminates the necessity of bringing it into storage
whenever the SPIE macro instruction is issued.

The SPIE macro instruction specifies the address of a routine to be used when
specified program interruptions occur in the task that issued the macro instruc­
tion.

Status: Standard.

This is an optional feature under OS/MFT but is standard in vsl.

Storage protection keys are assigned to 2K areas of storage that are designated
for use by either the system (storage protection key of 0) or problem programs
(storage protection keys of 1-15). This feature prohibits the modification, by a
problem program, of areas of storage other than those identified with the
problem program's storage protection key. The system has access to all allocated
storage protection keys and may, on occasion, use non-key 0 areas.

System Management Facilities (SMF)

FEA 20

Status: Optional. Included (or excluded) by specification of the appropriate
parameter in the SMF= operand of the SCHEDULR macro instruction.

The System Management Facilities (SMF) collect and optionally record system,
job management, and data management information. They also provide control
program exits to installation-supplied routines that can periodically monitor the
operation of a job or a job step.

OS/VSl Planning and Use Guide

SMF collect such information as:

System configuration

Job and job step identification

CPU wait time

CPU time used by each job and job step

Virtual or real storage requested by each job step

Virtual or real storage used by each job step

Paging statistics on a job step and system basis

110 device use by each job step

Temporary and non-temporary data set use by each job and job step

Temporary and non-temporary data set status

Status of removable direct access volumes

Input count by each job and job step

Output count by each job

Output writer records by each job

Allocation recovery records by each job

VARY ONLINE and OFFLINE records

It is possible to suppress the writing of all, or of selected, SMF records at IPL

time.

The SMF exits to installation-written routines allow certain parameters to be
passed to them to identify the job and job step being processed and to provide
accounting and operating information. These exit routines can cancel jobs, write
records to the SMF data set, open and use their own data sets, and suppress the
writing of certain SMF records.

Telecommunications Option

Status: Optional. Included by specification of BTAM and! or TeAM in the
DATAMGT macro instruction.

The telecommunications option is comprised of two access methods, the Basic
Telecommunications Access Method (BTAM) and the Telecommunications Ac­
cess Method (TCAM).

BTAM provides the basic facilities required to process a telecommunications
program. These include facilities for creating terminal lists and for performing
the following operations:

Initiating and answering calls to and from terminals on switched networks

Polling and addressing terminals on non-switched multi-point lines

Changing the status of terminal lists

Transmitting and receiving messages

Code translation

Retransmitting messages which are received with detected errors

Providing on-line terminal test facilities

Keeping error statistics

VSl Features and Options FEA 21

FEA 22

BTAM supports binary synchronous communications on a variety of low,
medium, and high speed start/stop devices.

BTAM supports binary synchronous communications over non-switched (leased
or private direct conneotion) and switched (dial) networks in a System/370 to
terminal communication.

Optional communication serviceability facilities are available in BTAM. They
include error recovery procedures, diagnostic error information, error counts,
and on-line terminal tests. It is recommended that these facilities be included,
since they increase system availability.

os/vsl BTAM supports the same functions as os BTAM and requires no addi­
tional programmer training. The user is cautioned concerning internal changes
he may have made in os BTAM. Similar changes will be required in vsl BTAM.

The Telecommunications Access Method (TeAM) is a general purpose tele­
processing support program. It provides:

• A regionalized, general-purpose teleprocessing access method with facilities
that permit exchange of data between a central System/370 and remote
terminals.

• A control program designed to optimize the allocation and scheduling of a
computer's resources in a real-time teleprocessing environment.

• A high-level language composed of macro instructions designed specifically
to facilitate the construction of a teleprocessing network control program.

TeAM provides unified management of terminal devices, local and remote,
including binary synchronous communication devices, through a single message
control program. The TCAM application program interface has been defined to
provide maximum compatibility with BSAM (READ/WRITE level) and QSAM

(GET/PUT level), yet provide the ability to identify or specify source and destina­
tion of terminal I/O. Network control functions may be provided in an application
program able to issue TeAM operator control commands.

Teleprocessing applications using TeAM are constructed by providing a mes­
sage control program and one or more TeAM application programs.

The TeAM message control program serves as an interface between remote
terminals, user-written application programs, and secondary storage devices on
which messages are queued until their destinations are available to receive
them. The message control program controls the flow of messages to and from
the terminals, application programs, and queuing devices in a manner that
optimizes allocation and scheduling of the computer's resources.

TeAM permits the user to code one or more application programs and inter­
face these with the message control program. Application programmers are
insulated from the teleprocessing environment. They issue ordinary GETS and
PUTS or READS and WRITES to move data between the message control program
and application program work areas.

TeAM application programs can be SAM compatible, and may be debugged in
a non-teleprocessing environment using BSAM or QSAM as the access method,

OS/VSl Planning and Use Guide

Time-Slicing Facility

with a tape, card reader, disk, card punch, printer, etc. as I/O devices. Once de­
bugged, many application programs can be plugged into TCAM without reas­
sembly by changing a single job-control statement. The user can specify that
either messages or user-defined records be transferred when he issues his
GET/READ or PUT/WRITE macros.

TCAM offers an extensive set of service facilities including:

• A set of operator commands that allow the user to determine the status of his
teleprocessing system and alter, activate, or deactivate portions of that sys­
tem by entering appropriate commands from the system console, remote
terminals, or application programs.

• A checkpoint/restart facility that allows the user to specify that his message
control program environment be restored following system failure or close-

• A facility for selectively logging incoming or outgoing messages or message
segments.

• Comprehensive debugging aids, including error-recovery and event-recording
facilities, and utilities that permit debugging information to be dumped to
tape or disk and then printed out.

• An on-line test facility that allows the user to test transmission control units
and remote terminals without closing down the message control program or
deallocating the device being tested.

OS TCA~~f message control programs must be reassembled to run in the os/vsl
environment. This reassembly allows the message control programs to benefit
from the virtual storage capability of vsl. Under vsl, TCAM runs as a subsystem
in a virtual partition. Certain TCAM elements, such as the buffer pool, I/O ap­
pendages, control blocks, and tables are fixed in real storage for the duration
of the TeAM task.

Status: Optional. Invoked by specification of the appropriate parameters in
the TMSLICE= operand of the CTRLPROG macro instruction.

When the time-slicing facility is included in the system, you can establish
a group of partitions or tasks (called a time-slice group) that are to share the
use of the CPU, each for the same fixed interval of time. This is done for jobs
scheduled into a group of consecutive partitions that have been defined as the
partitions to be used for time slicing.

The priority of a job can be changed by the CHAP macro instruction so that its
priority will fall within the range of the priorities for the partitions defined for
time slicing. This job will then be handled in the same manner as the other
jobs in the time slice group.

When a member of the time-slice group has been active for the fixed interval
of time, it is interrupted and control is given to another member of the group,
which will, in tum, have control of the CPU for the same length of time. In

VSl Features and Options FEA 23

Trace Option

Transient SVC Table

this way, all member tasks are given an equal slice of CPU time, and no task
or partition within the group can monopolize the cpu.

Only partitions that are assigned to the time-slice group will be time-sliced,
and they are time-sliced only when the first partition in the group is the highest
priority ready task. Dispatching of the partitions continues within the group
until all the partitions are in a waiting state, or until a partition with a higher
priority is in a ready state.

The group of tasks to be time-sliced (selected by priority or partition range)
and the length of the time slice are specified at system generation time in the
CTRLPROG macro instruction. This can be modified in vsl through the DEFL.""E

command. Any task or partition in the system that is not defined within the time­
slice group is dispatched under the current priority structure; that is, the task
or partition is dispatched only when it is the highest priority ready task or par­
tition on the TCB queue. The maximum number of milliseconds, a number speci­
fied from a range of 20 to 9999, is the amount of time that each ready task
is to have control of the CPU during one pass through the group.

Status: Optional. Included when the TRACE= parameter is specified in the
CI'RLPROG macro instruction.

A tracing routine aids in debugging and maintenance of the system.

The tracing routine stores information pertaining to start I/O (SIO) instruction
execution, supervisor (svc) interruptions, external interruptions, program check
interruptions, and I/O interruptions in the trace table. When the table has been
completely filled, the succeeding entries overlay the existing ones.

During system generation, only the size of the table is specified. However, when
this system generation parameter is specified, the trace program routines are
also included as part of the control program.

Status: Optional. Included when OPTIONS=TRSVCI'BL is specified in the
CTRLPROG macro instruction.

The relative track address (TTR) of all transient supervisor (svc) routines are
included as part of the resident table of control program svc routines. (See the
description in Types 3 and 4 SVC Routines Made Resident in this section.)

FEA 24 OS/VSl Planning and Use Guide

Types 3 and 4 SVC Routines Made Resident

Status: Optional. Included when RESIDENT=TRSVC is specified in the CTRLPROG

macro instruction.

Modules of types 3 and 4 supervisor (svc) routines can be made permanently
resident in storage.

Types 3 and 4 svc modules are loaded and made resident at IPL time. When
this option is specified, the transient svc table option is assumed. The svc table
is a table containing the relative track addresses of all transient svcs. This table
is also stored in the resident portion of the control program.

The names and sizes of the types 3 and 4 svc routine modules are given in the
OS/VSl Storage Estimates publication. (See also the preceding description Tran­
sient SVC Table and the Resident Routines Options section of this publication.)

User Modify Logical Cylinder Facility

Status: Optional. Included by specification of the ALCUNIT parameter in the
JESPARMS member of SYSl.PARMLIB.

The user modify logical cylinder facility allows you to define the unit of alloca­
tion for spooling. A default value for logical cylinder definitions set at system
generation time allows for approximately 28K of DASD work space per allocation.
These values are adequate for an installation whose spool data sets (JCL, SYSIN,

SYSOUT, etc) vary in size. If your installation consistently has jobs with small spool
data sets and uses less than 28K, DASD work space is wasted. This facility allows
you to specify a smaller unit of allocation, increasing spool availability. If your
installation consistently has jobs with large spool data sets (using more than
28K), the default logical cylinder definitions could cause extra allocation pro­
cessing. Defining a larger unit decreases the number of spool allocation calls.

To modify the logical cylinder definitions, specify the unit of allocation in
bytes via the ALCUNIT parameter of the JESPARMS member of SYSl.PARMLIB. The
system converts the byte value to a value in tracks for each spool device type.
The default value, 28,672 bytes, allows for the following logical cylinder defini­
tions:

• For 2314 or 2319, a logical cylinder is 5 tracks .

• For 3330 or 2305-2, a logical cylinder is 3 tracks.

The formula used by the system to convert the byte-cylinder definition to tracks is:

ALCUNIT

B UFSIZE \'I< buffers per track

where

ALCUNIT is the specification of the spool allocation unit in bytes via the ALCUNIT

parameter in the JESPARMS member of SYSl.PARMLIB.

VSI Features and Options FEA 25

BUFSIZE IS the spool buffer size as specified in the BUFSIZE parameter in the
JES SYSGEN macro or the JESPARMS member of SYSl.PARMLIB.

buffers per track is the buffer-per-track count for the volume.

ALCUNIT must be large enough so that the logical cylinder will contain at least
one logical cylinder map (see the Master Cylinder Map size formula in the sec­
tion on Sysl.SYSPOOL in the System Generation Reference manual). It must also
be small enough that, when it is converted to tracks, it is less than 256 tracks.

The following is an example of the' JCL and control cards that might be used
to change ALCUNIT in the JESPARMS member of SYSl.PARMLIB to 5,000 bytes:

II PARMSC JOB MSGLEVEL=1

1/ SG1 EXEC PGM=IEBUPDTE,PARM=NEW,COND=(4,LT)

II SVSPRINT DO SVSOUT=A

II SVSUT2 DO DISP=OLD,DSN =SVS1.PARMLI B,UNIT=2314,VOL=SER =AOS1 02

II SVSIN DO DATA

. I ADD NAME=JESPARMS,LEVEL=01,LlST=ALL,SEQFLD=738

. / NUMBER NEWl =1,INCR=5

BUFSIZE =436,NUMBUFS=7 ,STEPWTP= 15,

SWDSLMT= 15,SPOLCAP=80,WTLRCDS200,

RDR = (R =-1 ,V =5,B=0),JOUTLlM=5000,

WTR = (W= 1 ,U=5,Z= 10,B= 132),

ALCUNIT=5000,

SPOLVOL= (SVSRSM)

~
col 10

00000001

00000006

00000011

00000016

00000021

00000026

~
col 73

Note: When ALCUNIT has been varied, system restart cannot be performed.

User-Added SVC Routines

FEA 26

Statm: Optional. Included by specification of the appropriate parameters
in the SVCLrn macro instruction.

User-written supervisor (svc) routines can be added to the control program.

All svc routines, whether they are to be transient or resident, must be listed
in the operand of the SVCTABLE system generation macro instruction.

Any resident svc routines that are to be added must be specified in the system
generation RESMODS macro instruction. The fixed storage requirement is in­
creased by the total of the sizes of the routines that are going to be added
plus the size of the control information.

OS/VSl Planning and Use Guide

Validity Check Option

Any transient svc routines that are to he added must be specified in the
SVCLIB system generation macro instruction in the operand. In this case, only
the size of the control information is added to the fixed storage requirements.

Nonstandard error routines can be one of the types of routines that are
added. User-written routines must have a value from 220 to 229. This value is
the suffix of the name IGEOO by which the error routine is named in SYSl.svCLIB.

See the section Adding SVC Routines to the Control Program in this publi­
cation for a complete discussion of this feature.

Status: Standard.

This is an optional feature under OS/MFT, but is standard in vsl. Extra validity
checking is included in the system to determine whether addresses are located
within proper boundaries. The validity checking is provided for the WAIT, POST,
and GETMAIN/FREEMAIN modules. The checking for WAIT also checks for the
number of events.

Virtual Storage Access Method (VSAM)

Statu-s: Announced, but not available.

The Virtual Storage Access :NIethod, VSAM, is announced but not available.
VSAM is an access method for use with direct access storage devices on IBM
System/370 with VS. VSAM creates and maintains two types of data sets. One is
sequenced by a key field within each record and is called a key-sequenced data
set. Data records are located by using the key field and an index that records
each key field and the address of the associated data, similar to ISAM. The other
is sequenced by the time of arrival of each record into the data set and is
called an event-sequenced data set. Data records are located by using the records
displacement from the beginning of the data set. The displacement is called
the relative byte address (RBA). The RBA is similar to the relative block address
used with BDAM.

VSAM stores, retrieves, and updates user data records in these types of device
independent data sets. VSAM stores data records in a new format designed for
long term data stability and for data base applications. Data in both types of
data sets can be accessed either sequentially or directly.

VSAM enhances many ISAM capabilities including device independence, con­
current processing, data portability, and kinds of accessing supported. It pro­
vides additional password security protection. VSAM creates and maintains sepa­
rate catalogs that contain specilized information about each VSAM data set and
are used to link a data set to its index. VSAM includes a multifunction utility
program that defines, deletes, prints, copies, and provides backup and portability
of VSAM data sets and maintains the separate catalogs. An interface routine to
allow most ISAM programs access to VSAM data sets is also provided. For a more
detailed explanation of VSAM, see the OS/VS Virtual Storage Access Method
(VSAM) Planning Guide, GC26-3799.

VSl Features and Options FEA 27

Volume Statistics Facility

Status: Optional. Included when SMF=FULL is specified in the SCHEDULR

macro instruction with appropriate operands for the ESV- and EVA= para­
meters.

The volume statistics facility is used only for magnetic tape volumes with
or without labels. It provides two functions, either or both of which can be
specified at system generation time in the SCHEDULR macro instruction.

One function is error statistics by volume (ESV). It is intended primarily to
be used with labeled volumes, but will handle an unlabeled volume if the serial
number is given to the operating system. Statistics about the number of read
or write errors and the system and unit on which the volume is located are
recorded.

The other function is error volume analysis (EVA). It is intended primarily to
be used for unlabeled or nonstandard labeled volumes. It monitors the number
of read or write errors based on the limits you provide at system generation time.

The error statistics by volume (ESV) collects a set of statistics for each labeled
tape volume whenever the volume is open. An unlabeled tape volume can be
handled if the serial number has been supplied to the operating system.

If ESV=SMF is specified at system generation time, the statistics are accumu­
lated on the system management facility (SMF) data sets SYSl.MANX and
Sys1.MANY.

If ESV=CON is specified or if ESV is not coded, an abridged version of the sta­
tistics is printed on the console. This occurs at end-of-volume or when the tape
volume is closed.

You can provide your own recording routine. ESV=CON must be specified, or
the keyword parameter can be omitted because the default is CON. The UCBS, in
the proper format, are constructed at system generation time. You can provide
your own access method, using svc 91, specify your own record format, and
select your own recording data set. If you use the record 21 format instead of
your own, you can use the IFHSTATR utility to print out the statistics.

The error volume analysis (EVA) acts as a monitor about the number of read
and write errors for unlabeled or nonstandard labeled tape volumes. You provide
the maximum limits for read errors and/or write errors and, if the maximum
is reached or exceeded, a message, IEA620I, is printed on the console.

FEA 28 OS/VSI Planning and Use Guide

JES Reconfigurability

This section explains how to temporarily modify, or
reconfigure, the Job Entry Subsystem (JES) param­
eters which were specified for your system at sysgen
time. The temporary modification occurs at IPL time
and will be effective until the next IPL.

Section Outline

JES Reconfigurability JES 1

JES Reconfigurability JES 3
JESPARMS Member in SYSl.PARMLIB JES 3
JESP ARMS Entries JES 3

JES Reconfigurability JES]

JES 2 OS/VSl Planning and Use Guide

JES Reconfigurability

JESPARMS Member in
SYS1.PARMLIB

JESPARMS Entries

JES reconfigurability permits you to make temporary modifications, at IPL time,
to the JES parameters which were specified at sysgen time. To make permanent
updates to the system JES values, you must do a new sysgen.

The JESPAR\:1S member in SYSl.PARMLIB contains the JES options or default values
that were specified at sysgen. This member also provides an example for you
to use in re-specifying any or all of the JES parameters. The parameters in
JESPARMS are checked at IPL time by a master scheduler initialization routine.
If any errors are detected during the check, a message is written on the console,
indicating the error and the JES values specified at sysgen are used by the sys­
tem. If no errors are detected, the JES values specified in JESPARMS will tem­
porarily override those specified at sysgen. If the JESPARMS member is deleted,
the JES values specified at sysgen are used.

The sysgen process uses the IEBUPDTE utility program to place JESPARMS

in SYS1.PARMLIB. This utility is also used to maintain and update JESPARMS.

Each JESPARMS entry must be an 80-byte record using positions 1 through 71
to contain the JES parameters, and the optional information field. JES parameters
can start in any position in the record, but they must be completed, with the
exception of the SPOLVOL parameter, on the same record. All parameters must
be separated by a comma. If an optional information field is present in the
record, it must be separated from the parameter(s) by at least one blank position
following the comma.

During the check at IPL time, the parameters are scanned until:

1. An error condition is found

2. A parameter not followed by a comma is found

3. The end of the data set is reached.

If either of the first two conditions occur, the remaining parameters are not
checked.

JES Reconfigurability JES 3

JES 4

Two examples of routines to modify the JES values on a temporary basis follow.
For a complete description of the JES parameters, see the VSl SYSGEN publica­
tion.

IISTEP1

/!SYSPRINT

IISYSUT1

IISYSUT2

IISYSIN

.I REPL

.I NUMBER

1*

EXEC

DO

DO

DO

DO

REPL

PGM = I EBUPDTE,PARM= MOD

SYSOUT=A

DSNAME=SYS1.PARMLlB,VOL=SER =VOLI 01 ,UNIT=2314,DISP=OLD

DSNAME=SYS1.PARMLI B,VOL=SER = VOLI 01 ,UNIT= 2314,DISP=OLD

DATA

NAME=JESPARMS,LEVEL= 01 ,LlST= ALL,SEOFLD= 738

NEW1 = 1,INCR=5

BUFSI ZE = 600,

NUMBUFS=15,

JES PARAMETER OPTIONS

STEPWTP=20,

SWDSLMT=30,

WTLRCDS=200,

JOUTLlM=5000,

RDR = (R=2,Y=5,B=9999),

WTR = (W= 1,U=0,Z=6,B=9999),

SPOLCAP=20,

SPOLVOL= (000000,111111 ,222222,333333,444444,555555,666666,777777,

888888,999999)

Note that the SPOLVOL parameter is the only parameter that can span records.
All other parameters must be started and completed on the same record.

IISTEP1

IISYSPRINT

IISYSUT1

IISYSUT2

IISYSIN

.1 REPL

.! NUMBER

1*

EXEC

DO

DO

DO

DO

REPL

PGM= IEBUPDTE,PARM=MOD

SYSOUT=A

DSNAME=SYS1.PARMLI B,VOL=SER =VOLI 01 ,UNIT= 2314,DISP= OLD

DSNAME=SYS1.PARMLI B,VOL=SER = VOLI D1,UN IT=2314,DISP= OLD

DATA

NAME =JESPARMS,LEVEL=Ol ,LlST= ALL,SEOFLD= 738

NEWl =1,INCR=5

BUFSIZE=600,NUMBUFS= 15,WTLRCDS= 200,

JOUTLlM=5000,STEPWTP= 20,SPOLCAP= 20,

SWDSLMT=30,SPOLVOL= (000000,111111 ,222222,444444,555555),

CONTINUATION OF SPOLVOL PACK

RDR= (R=2,Y=5,B=9999),

WTR= (W= 1 ,U=0,Z=6,B=9999)

Note that some parameters are combined on one record and that optional infor­
mation can be placed in the positions following the parameter and at least one
blank.

OS/VS1 Planning and Use Guide

Job Queue Format

The job queue format is specified when the system
is generated and may be altered during subsequent
system start procedures. Formatting consists of speci­
fying the number of queue records in a job queue
logical track, specifying the number of queue records
to be reserved for each initiator, and reserving queue
records needed to start at least one initiator and one
writer.

This section provides guidelines for estimating:
• The number of queue records in a job queue

logical track.
• The number of queue records to be reserved for

use by an initiator.
• The number of queue records to be reserved to

start at least one initiator and one writer.

Section Outline

Job Queue Format JQF 1

VSl Job Queue Formatting JQF 3
Logical Track Size-JOBQFMT JQF 3'
Reserving Initiator Queue Records-JOBQLMT JQF 4
Reserving Records to Start a Writer and an Initiator-
JOBQTMT JQF 5

Job Queue Format JQF 1

JQF 2 OS/VSI Planning and Use Guide

VS' Job Queue Formatting

The basic element of the system job queue (the data set Sys1.SYSJOBQE) is a
176-byte record, the queue record. The total number of queue records available
is fixed by the space allocated to the Sys1.SYSJOBQE data set. Queue records
contain some of the tables and control blocks developed by the reader, inter­
preter, and initiator control program routines.

Lack of queue records is not critical for a reader routine. Processing of a
reader is suspended until queue records become available, at which time pro­
cessing is resumed. An initiator, however, must have sufficient queue records
available to complete the initiation and running of a job. Because one or more
readers and one or more initiators may be concurrently active, steps must
be taken to ensure that queue records are available to each initiator started, so
that it may complete its operation. The main function of job queue formatting
is to reser"e queue records for initiator use.

To format the job queue, you must:
1. Designate the address of the device on which Sys1.SYSJOBQE resides, and

indicate that it is to be formatted.
2. Designate:

a. The number of queue records to be contained in a job queue logical
track. A logical track consists of a header record (20 bytes) plus the
designated number of queue records. Queue records are assigned in
terms of logical tracks.

b. The number of queue records to be reserved for use by an initiator. Each
initiator is allocated this number of records.

c. The number of queue records to be reserved to start a writer and an
initiator if queue space becomes critical.

The balance of the queue (total queue records less the reservations in items
2b and 2c) is the maximum available for use by the reader (s).

Specify initial values for items 2a, 2b, and 2c in the SCHEDULR macro instruc­
tion parameters JOBQFMT, JOBQLMT, and JOBQTMT, respectively. The System
Generation publication describes the procedure.

The service aids program IMCJOBQD provides a formatted dump of the entire
job queue, or selected portions of it. The formatted dump includes the master
queue control record (QCR) which contains the physical parameters of the job
queue. For a complete description of IMCJOBQD see the appropriate Service Aids
publication.

No comprehensive, foolproof formulas exist for calculating values of JOBQFMT,

JOBQLMT, and JOBQTMT. The values to be estimated depend on the requirements
and structure of jobs to be presented to the system. The rest of this section
provides some basic guidelines for your use in determining these values.

Logical Tracie Size-JOSQFMT

This specification affects the efficient use of queue records. Queue space is
allocated in terms of logical tracks. Unused records in a logical track are not
available for use for other jobs. Therefore, an overly large logical track size
results in wasted queue records and the reduction of job queue capacity. Con­
versely, a small logical track size can result in decreased performance if most
jobs require frequent assigning of a new logical track.

Job Queue Format JQF 3

The distinction needed here is between problem program and system tasks.
In the context of a discussion of the queue space used, all gener,alized start jobs
are considered system tasks. The job queue space required for a problem pro­
gram is quite small, whereas the space needed for a system task is considerably
larger. Thus, the factor to consider in picking a value for this parameter is the
number of system tasks run, as compared to the number of problem programs.

This trade-off is best summarized as follows:
• The larger the logical track size, the less frequently new tracks are allocated

in handling system tasks, but space will be wasted in handling problem pro­
grams. The smaller the logical track size, the more efficiently job queue
space will be used, but the overhead in processing system tasks will be in­
creased.

• The range of possible values is from 5 to 255. The default value is 5. This
minimum size is sufficient to -contain the entire input queue entry for a
problem program. This size also allows up to five data sets per SYSOUT class
other than the message class and four data sets in the message class without
requiring the allocation of more than the minimum number of tracks needed
for any job. This minimum is x+ 1 tracks, where x equals the number of
SYSOUT classes used by the job. The default of five, therefore, results in maxi­
mum space usage of the queue. A larger size would only be needed if the
generalized start function is used frequenty, and the installation wants to
decrease the number of allocations needed for the system tasks on the queue.

You may, as a starting point, wish to use the default value for JOBQFMT (five
queue records).

Reserving Initiator Queue Recorcls-JOBQLMT

JQF 4

The value specified for this parameter must take into account the possibility of
tables being written to the job queue by components other than the interpreter.
During normal job execution, this value should be equal to SWDSLMT (in the JES

sysgen macro) plus the product of the logical track size (JOBQFMT) times the
average number of SYSOUT classes used by a job. However, if the user intends
to use automatic restart in the system, this number must be 'substantially in­
creased. This is because of the conditions under which restart functions. The
job to be restarted must be reinterpreted. Therefore, a set of interpreter records
is needed. Also, the restart reader needs ten records for its own use. Finally,
if automatic checkpoint/restart is being used, some restart housekeeping records
are needed. These requirements can be summarized by the following formula:

JOBQLMT = L + S + lOA + l2A
where:

L = value of JOBQLMT if automatic restart is not used.
S = size of SW ADS, in records.
A = number of times a job may be automatically restarted.

10 = step restart housekeeping records (needed also for checkpoint).
12 = Checkpoint/restart housekeeping records (needed also for checkpoint in addition

to the ten needed for step restart).

If jobs with automatic restart may be held for operator restart, the JOBQLMT

requirement is increased even further, because the system must maintain both

OS/VSl Planning and Use Guide

the queue records and the housekeeping records for the held jobs until they
have completed processing and are written. The formula then becomes:

JOBQLMT = (H + 1) (L + S + lOA + 12A)
where:

H = number of jobs that may be held at anyone time.
Other terms are as previously described.

When a start initiator command is issued, a check is made to see if enough
free logical tracks are available to provide the required number of queue records
for the initiator. If not, the command is rejected.

Each time an initiator is started, the number of records reserved for an
initiator is added to the total number of records reserved for active initiators.
For example, if four initiators have been started and the number of records re­
served for each initiator is 25, the number of records reserved for starting a
writer and initiator if queue space becomes criticai is 80, then the totai number
of records reserved is 205. This total includes 25 records reserved for each in­
itiator, 80 records reserved for starting a writer and an initiator if queue space
becomes critical, and 25 records reserved as a basic threshold.

Reserving Records to Start a Writer and an Inifiafor-JOBQTMT

When the reserves of queue space are becoming critical, space must be avail­
able to get system tasks started (especially the writer since it returns queue
records to the system), Thus, to ensure availability of this space, the value of
JOBQTMT should be the number of records needed to start the writer and the
initiator. The amount needed to start each of these tasks may be estimated by
following the formula for SWADS size (see the OS/VSl Storage Estimates publica­
tion) taking into consideration that the JCL from the START command and the
cataloged procedure must be interpreted. The queue space needed for input
and output queue entries is automatically added by the queue manager.

Job Queue Format JQF 5

JQF 8 OS/VSl Planning and Use Guide

Message Routing Exit Routines

This section provides detailed information on how to
write user exit routines that modify the routing and
descriptor codes of WTO or WTOR messages for any
os/vs operating system that has the Multiple Console
Support Option (MCS). Information is provided on
inserting this exit routine into the resident portion of
the control program. In addition, a description of
the characteristics and configuration of MCS is sup­
plied.

Documentation of the internal logic of the super­
visor and its relationship to the remainder of the con­
trol program can be obtained through your IBM Branch
Office.

Section Outline

Message Routing Exit Routines MSG 1

Characteristics of MCS MSG 3
Writing a WTO/WTOR Exit Routine MSG 3

Programming Conventions for WTO /WTOR
Exit Routines MSG 4

Messages that Don't Use Routing Codes MSG 6
Adding a WTO/WTOR Exit Routine to the
Control Program MSG 6

Inserting the WTO/WTOR Exit Routine MSG 6
WTO/WTOR (Write to Operator/Write to Operator
with Reply) Macro Instructions MSG 6

Message Routing Exit Routines MSG 1

MSG 2 OS/VSl Planning and Use Guide

Characteristics of MCS
Multiple Console Support (Mes) is an option of vs1 that routes messages to
different functional areas according to the type of information that the message
contains. In MCS, a functional area is defined as one or more operator's consoles
that are doing the same type of work. (Some examples of functional areas are:
(1) the tape pool area, (2) the disk pool area, and (3) the unit record pool area.)
Each wro and wrOR macro instruction is assigned one or more routing codes
which are used to determine the destination of the message. There are 16 routing
codes that can be used. When the message is ready to be routed, the routing
codes assigned to the message are compared to the routing codes assigned to
each console. If any of the routing codes match, the message is sent to that
console. (For descriptions and definitions of the routing codes see the Routing
and Descriptor Codes publication.)

If the standard routing codes provided on application and system messages
do not cover special situations at your installation, the routing codes used on
the message can be modified by coding a user exit routine. The exit routine re­
ceives control prior to the routing of messages so that you can examine the
message text and modify the message's routing and descriptor codes. The sys­
tem uses your modified routing codes to route the message. Descriptor codes
provide a mechanism for message presentation and deletion and are explained
later in this section.

Automatic console switching occurs when permanent hardware errors are
detected. Command initiated console switching is provided to permit restructur­
ing of the system console configuration and the hard copy log by system operators.
Consoles can be moved into or out of functional areas at any time during system
operation.

A hard copy log option is provided to record messages, operator and system
commands, and operator and system responses to commands. The hard copy log
may be a console device or it may be the system log (SYSLOG). The number and
type of messages recorded on the log is also optional. Your installation may
wish to record a selected group of messages, or it may wish to record all messages.
If commands are recorded, the system automatically records command responses.

I Information about RES support for wro and WTOR appears in the System Macro
Instructions (SMI) section of this publication.

I . ~

Writing a WTO /WTOR Exit Routine

You write a wrO/WTOR exit routine to modify the standard routing codes and
descriptor codes. This routine will be part of the control program. If a message's
routing code field is used by the operating system to route the message, your
routine receives control prior to the routing of the message. When your routine
receives control, register 1 contains a pointer to the first word of the message
text. The message text field is 128 bytes long; followed by a 4-byte routing code
field and a 4-byte descriptor code field. Your exit routine may examine but not
modify the message text.

A message is sent to only those locations specified in the modified routing
codes. All messages with modified routing codes are sent to the hard copy log when
the log is included in the operating system. When the log is not included, the
exit routine must not suppress messages that contain a routing code of 1, 2, 3, 4,
7,8, or 10 since messages with these codes are necessary for system maintenance.
Message suppression is turning off all routing codes of a message, causing the
message to be discarded. wro messages can be suppressed. If a wrOR message
is suppressed, it is sent to the master console by the operating system.

Message Routing Exit Routines MSG 3

Programming Conventions
for WTO /WTOR Exit
Routines

Reference
Conventions Requirements

Code

Part of resident control program Yes

Size of routine Any size

Reenterable routine Optional, but must be serially reusable 1

May allow interruptions Yes 2

Name of routine Must be IEECVXIT

Disposition of general registers Registers must be saved at entry and
restored prior to returning

Format of text and codes Provided through the DSECT I EECUCM 3

May issue WAIT, XCTL, WTO or No
WTOR macro instructions

Method of abnormal termination None 4

Exit from routine RETURN macro instruction

Figure MSG 1. Programming Conventions for WTO/WTOR Exit Routines

The programming conventions for the WTO/WTOR exit routine are summarized in
Figure MSG 1. Details about many of the conventions are in the reference notes
that follow that figure. The notes are referred to by the numbers in the last
column of the figure.

Reference
Code

1

2

3

UCMMSTXT

Reference Notes

If your exit routine is to be reenterable, you cannot use macro in­
structions whose expansions store information into an inline para­
meter list.

You should write your exit routine so that program interruptions
cannot occur. If a program interruption occurs during execution
of the exit routine, the routine loses control and the communications
task is terminated.

DSECI'IEECUCM provides the format of the message text, routing codes
and descriptor codes. The pointer in register 1 points to the first
word of the message text, UCMMSTXT. The format is:

Message Text (128 Characters - padded with blanks)

UCMROUTC Routing codes (4 bytes)

UCMDESCD

Descriptor codes (4 bytes)

DSECT IEECUCM is contained in SYSl.AMODGEN

System messages have a message code as the first seven characters
of the message text. This code may be examined to aid in identifying
system messages, but it must not be modified.

MSG 4 OS/VS1 Planning and Use Guide

Reference
Code

Reference Notes

The UCMROUTC field contains the routing codes. A bit setting of
"1" indicates that the WTO or WTOR was assigned that particular
routing code. Bit assignments and their meanings are:

Bit Assignment Meaning

Byte 0
Bit 0 Routing code 1 Master console
Bit 1 Routing code 2 Master console informational
Bit 2 Routing code 3 Tape pool
Bit 3 Routing code 4 Direct access pool
Bit 4 Routing code 5 Tape library
Bit 5 Routing code 6 Disk library
Bit 6 Routing code 7 Unit record pool
Bit 7 Routing code 8 Teleprocessing control

Byte 1
Bit 0 Routing code 9 System security
Bit 1 Routing code 10 System error/maintenance
Bit 2 Routing code 11 Programmer information
Bit 3 Routing code 12 Emulator program (under os)
Bit 4 Routing code 13 Available for customer usage
Bit 5 Routing code 14 Available for customer usage
Bit 6 Routing code 15 Available for customer usage
Bit 7 Routing code 16 Reserved

Byie 2 Reserved

Byte 3 Reserved

The UCMDESCD field contains the descriptor codes. A bit setting
of "1" indicates that the WTO or WTOR was assigned that particular
descriptor code. Bit assignments and their meanings are:

Bit
Byte 0
n·, £\.
DH V

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Byte 1
Bit 0

Byte 2

Byte 3

Assignment

Descriptor code 1
Descriptor code 2
Descriptor code 3
Descriptor code 4
Descriptor code 5
Descriptor code 6
Descriptor code 7
Descriptor code 8

Descriptor code 9

Descriptor codes
10 through 16

Meaning

System failure
Immediate action required
Eventual action required
System status
Immediate command response
Job status
Application program/processor
Out-of-line message

MLWTO message in response to a
monitor or display command (exit
routine not entered for MLWTO)

Reserved

Reserved

Reserved

4 The exit routine is part of the communications task. Abnormal ter­
mination of the exit routine causes the operating system to terminate
abnormally (code of F03).

Message Routillg Exit Routines MSG 5

Messages that Don't Use
Routing Codes

The exit routine bypasses some messages. These are messages that have the
MSGTYP operand in the WTO or WTOR macro instruction coded with the JOBNAMES,
STATUS, or Y parameter, and messages that are being returned to the requesting
console; that is, a response to a DISPLAY A command. Routing of these messages
is on criteria other than the routing codes; therefore, the system bypasses the
exit routine.

Adding a WTO/WTOR Exit Routine to the Control Program

Inserting the WTO /WTOR
Exit Routine

WTO /WTOR (Write to
Operator/Write to Oper­
ator with Reply) Macro
Instructions

I

A system generation option is available to enable you to include a resident, user­
written exit routine in the communications task.

The OPTIONS=EXIT operand of the SCHEDULR system generation macro instruc­
tion controls the inclusion of the exit routine. A description of SCHEDULR is found
in the as jVSI System Generation Reference publication.

Task supervision must be performed for the exit routine when the routine
is requested at system generation. This supervision is performed every time a
message is routed by its routing codes, even if the exit routine is not present. To
maintain optimum throughput, the exit routine should not be specified at system
generation unless it will be used.

To enter your exit routine into the control program before system generation.
use the linkage editor to replace the dummy WTO/WTOR exit routine IEECVCI'E
in SYSI.AOSB with your WTO/WTOR exit routine, lEECVXIT.

To enter your exit routine into the control program after system generation, use
the linkage editor to replace the dummy WTO/WTOR exit routine IEECVCfE in the
SYSl.NUCLEUS with your WTO/WTOR exit routine.

The WTO and WTOR macro instructions have two special operands, the MSGTYP
and MCSFLAG operands. These operands should be used only by the system
programmer who is thoroughly familiar with the multiple console support (Mes)
communications task, since improper use of these operands can impede the
entire message routing scheme. These operands set Hags to indicate that certain
system functions must he performed, or that a certain type of information is
being presented by the WTO or WTOR.

I Note: Multiple-line WTO messages are not passed to the user-written WTO exit routine. The
WTOR macro instruction cannot be used to pass multiple-line messages.

The MSGTYP and MCSFLAG operands may be specified on either the standard
or list form of the WTO and WTOR macro instructions. The standard form of the
WTO macro instruction is shown here.

[symbol] WTO { 'message' }
('text' [,line type]), ...

[,ROUTCDE=(number[,number] •.. .l] [,DESC=numberj

['MSGTyp=l~oBNAMEs 11
STATUS
ACTIVE

[,MCSFLAG = (name[,name] •...)]

MSG 6 OS/VSl Planning and Use Guide

<message'

specifies that the message text is to be placed between the first and second
apostrophes.

('text' [,line type])

is used to write a multiple-line line message to the operator (no message is
passed to the user-written WTO exit routine for multiple-line message).

ROUTCDE=

specifies the routing codes to be assigned to the message.
DESC=

specifies the descriptor codes to be assigned to the message.
MSGTYP=]OBNAMES or MSGTYP=STATUS

specifies that the message is to he routed to the console which issued the
DISPLAY]OBNAMES or DISPLAY STATUS command, respectively. When the
message type is identified by the operating system, the message will be
routed to only those consoles that had requested the information. Omission
of the MSGTYP parameter causes the message to be routed as specified in the
ROUTCDE parameter.

] indicates optional name or operand; select one from vertical stack within ~ }

MSGTYP=Y or MSGTYP=N

specifies that two bytes are to be reserved in the WTO or WTOR macro ex­
pansion so that flags can be set to describe what MSGTYP functions are de­
sired. Y specifies that two bytes of zeros are to be included in the macro
expansion at displacement WTO + 4 + the total length of the message text,
descriptor code, and routing code fields. N, or omission of the MSGTYP para­
meter, specifies that the two bytes are not needed, and that the message is
to be routed as specified in the ROUTCDE parameter. If an invalid MSGTYP

value is encountered, a value of N is assumed, and a diagnostic message is
produced (severity code of 8).

When MSGTYP=Y, the issuer of the WTO or WTOR macro instruction that con­
tains the MSGTYP information must set the appropriate message identifier bit
in the MSGTYP field of the macro expansion. Prior to executing the WTO or
WTOR svc (svc 35), he must also set byte 0 of the MCSFLAG field in the macro
expansion to a value of X'lO'. This value indicates that the MSGTYP field
is to be used for the message routing criteria. When the message type is
identified by the system, the message will be routed to all consoles that had
requested that particular type of information. Routing codes, if present,
will be ignored. See Figure MSG 2 for bit definitions for MSGTYP=Y.

MSGTYP==ACTIVE

specifies that the multiple-line message is in response to a MONITOR A (MN A)

command and should be routed to the console that issued the command.

Bit Meaning

0 DISPLAY JOBNAMES

1 DISPLAY STATUS

2 Reserved for future system use. Must be zeros.

3 QI D field exists.

4-15 Reserved for future system use. Must be zeros.

Figure MSG 2. Bit Definitions for MSGTYP=Y

Message Routing Exit Routines MSG 7

MSG 8

I

I

Name Bit Meaning

----- 0 Routing and descriptor fields exist.

REGO 1 Message is to be queued to the console whose source 10 is passed
in Register O.

RESP 2 The WTO is an immediate command response.

----- 3 MSGTYP fi&ld exists.

REPLY 4 The WTO macro instruction is a reply to a WTOR macro
instruction.

BROCST 5 Message should be broadcast to all active consoles.

HROCPY 6 Message queued for hard copy only.

QREGO 7 Message is to be queued unconditionally to the console whose
source lOis passed in Re~ister O.

NOTIME 8 Time is not appended to the message.

------ 9 MLWTO indicator

----- 10-12 Invalid entry.

NOCPY 13 If the WTO or WTOR macro instruction is issued by a program in
the supervisor state, the message is not queued for hard copy.
Otherwise, this parameter is ignored.

------ 14-15 Reserved for Graphics.

Note: I nvalid specifications are ignored and produce an appropriate error message.

Figure MSG 3. MCSFLAG Parameters

MCSFLAG

specifies that the macro expansion should set bits in the MCSFLAG field as
indicated by each name coded. Names and their corresponding bit settings
are shown in Figure MSG 3.

OS/VSl Planning and Use Guide

No.

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17 I
18 I
19
20

21
22
23
24
25

26
27
28
29
30

*

ROUTCDE

Specified
Specified
Specified
Specified
Specified

Specified
Specified
Specified
Specified
Specified

Omitted
Omitted
Omitted
Omitted
Omitted

Omitted
Omitted I
Omitted
Omitted
Omitted

Omitted
Omitted
Omitted
Omitted
Omitted

Omitted
Omitted
Omitted
Omitted
Omitted

ROUTCDE, DESC, and MSGTYP parameter combinations are shown in Figure
MSG 4. Coding of anyone of ~he four keyword parameters (ROUTCDE, DESC, MSGTYP,

MCSFLAG) causes a new format WTO or WTOR to be generated.

Parameter Coded Expansion Generates

DESC MSGTYP MCSFLAG ROUTCDE DESC MSGTYP MCSFLAG

Specified Y O!)tional Codes Specified Codes Specified Zeros As Specified *
Specified N Option:!1 Codes Specified Codes Specified Field Omitted As Specified :f:t
Specified JOBNAMES Optional Codes Specified Codes Specified X'8000' As Specified :fI.
Specified STATUS Optional Codes Specified Codes Specified X'4000' As Specified :fI.
Specified Omitted Optional Codes Specified Codes Specified Field Omitted As Specified :fI.
Omitted Y Optional Codes Specified Zeros Zeros As Specified :fI.
Omitted N Optional Codes Specified Zeros Field Omitted As Specified :fI.
Omitted JOBNAMES Optional Codes Specified Zeros X'8000' As Specified :fI.
Omitted STATUS Optional Codes Specified Zeros X'4000' As Specified :fI.
Omitted Omitted Optional Codes Specified Zeros Field Omitted As Specified :fI.
Specified Y Omitted* Routing Code 2 Codes Specified Zeros X'8000'
Specified N Omitted* Routing Code 2 Codes Specified Field Omitted X'8000'
Specified JOB NAMES Omitted* Routing Code 2 Codes Specified X'8000' X'8000'
Specified STATUS Omitted* Routing Code 2 Codes Specified X'4000' X'8000'
Specified Omitted Omitted* Routing Code 2 Codes Specified Field Omitted X'8000'

Specified Y REGO/OREGO Zeros Codes Specified Zeros
I

As Specified ::#
Specified I N I REGO/OREGO Zeros Codes Specified I Field Omitted As Specified :fI.
Specified JOBNAMES REGO/OREGO Zeros Codes Specified X'8000' As Specified :fI.
Specified STATUS REGO/OREGO Zeros Codes Specified X'4OQO' As Specified :#
Specified Omitted REGO/OREGO Zeros Codes Specified !=ield Omitted As Specified i1
Omitted Y Omitted* Routing Code 2 Zeros Zeros X'8000'
Omitted N Omitted* Routing Code 2 Zeros Field Omitted X'8000'
Omitted JOB NAMES Omitted* Routing Code 2 Zeros X'8000' X'8000'
Omitted STATUS Cmitted* Routing Code 2 Zeros X'4000' X'8000'

Omitted Omitted Omitted* Field Omitted Field Omitted Field Omitted Zeros

Omitted y REGO/OREGO Zeros Zeros Zeros As Specified #
Omitted N REGO/OREGO Zeros Zeros Field Omitted As Specified #
Omitted JOBNAMES REGO/OREGO Zeros Zeros X'8000' As Specified #
Omitted STATUS REGO/OREGO Zeros Zeros X'4000' As Specified #
Omitted Omitted REGO/OREGO Zeros Zeros Field Omitted As Spec.ified #

If an MCSFLAG other than REGO or OREGO is specified, the expansion generates the same fields except that the MCSFLAG
field contains the MCSFLAG specified and the high-order bit set to 1.
High order bit set to 1 to indicate a new format macro expansion (routing code and descriptor code fields exist).

Figure MSG 4. ROUTCDE, DESC, and MSGTYP Combinations

Message Routing Exit Routines MSG 9

MSG 10 OS/VSl Planning and Use Guide

The Must-Complete Function

This section provides information concerning system
routine use of the must-complete function. This func­
tion is available to system routines operating in vsl as
an extension of the ENQ/DEQ facilities.

Section Outline

The Must-Complete Function MUS 1

The Must-Complete Function MUS 3
Scope MUS 3
Requesting the Must-Complete Function MUS 4
Operating Characteristics MUS 4
Programming Notes MUS 4
Terminating the Must-Complete Function :MUS 5

The Must-Complete Function MUS 1

MUS 2 OS/VSl Planning and Use Guide

The Must-Complete Function

Scope

System routines (routines operating under a storage protection key of zero)
often engage in updating and/or manipulation of system resources (system data
sets, control blocks, queues, etc.) that contain information critical to continued
operation of the system. These routines must complete their operations on the
resource. Otherwise, the resource may be left in an incomplete state or contain
erroneous information - either condition leads to unpredictable results.

The must-complete function is provided in the ENQ service routine to ensure
that a routine queued on a critical resource (s) can complete processing of the
resource (s) without interruptions leading to termination. The effect of the must­
complete function is to place other routines (tasks) in a wait state until the re­
questing task - the task (routine) issuing a ENQ macro instruction with the set­
must-complete (SMC) operand - has completed its operations on the resource.
The requesting task releases the resource and terminates the must-complete con­
dition through issuance of a DEQ macro instruction with the reset-must-complete
(RMC) operand.

Realize that, for the time it is in effect, the must-complete function serializes
operations to some extent in your computing system. Therefore, its use should be
minimized - use the function only in a routine that processes system data whose
validity must be ensured.

As an example, in multi task environments, the integrity of the volume table
of contents (VTOC) must be preserved during an updating process so that all
future users may have access to the latest, correct, version of the VTOC. Thus,
in this case, you should enqueue on the v"TOC and use the must -complete function
(to suspend processing of other tasks) when updating a VTOC.

Just as the ENQ function serializes use of a resource requested by many dif­
ferent tasks, the must-complete function serializes execution of tasks.

The must-complete function can be applied at two levels:

THE SYSTEM LEVEL

Only the requesting task, and system tasks included during system generation,
are allowed to execute. All other tasks in the system are placed in a wait state.

THE STEP LEVEL

In a partition, only the requesting task is allowed to execute. All other tasks in
the partition, including the initiator task, are placed in a wait state.

CAUTION

Use of the must-complete function at the system level should not be attempted
until all alternatives have been exhausted. Except for extremely unusual
conditions the system level of must-complete should never be used.

The Must-Complete Function MUS 3

Requesting the Must­
Complete Function

Operating Characteristics

Programming Notes

You request the must-complete function by coding the set-must-complete (SMC)

operand in an ENQ macro instruction. The format is:

name ENQ ~ SYSTEM t
... , SMC = 1 STEP \

You may specify SYSTEM or STEP. The parameters SYSTEM and STEP indicate
the level to vlhich the must-complete function is to apply. The other operands
of ENQ are described in the Supervisor Services and 'Nlacro Instructions publication.

Because of the properties of the TEST and USE parameters of the RET operand
of the ENQ macro instruction, the SMC operand should be used only if the RET

operand is to use the parameters HAVE or NONE (in the E-form of ENQ), or if the
RET operand is not used at all.

You may request the must-complete function only in routines operating under
a protection key of zero. If the protect key is not zero, the task using the routine
requesting «must complete" is abnormally ended.

When the must-complete function is requested, the requesting task is marked
as being in the must-complete mode and all asynchronous exits from the request­
ing task are deferred. Other tasks in the system (except the allowed tasks at the
system level) or tasks associated with the requesting task in a job step (step level)
are placed in a wait state. Thus tasks external to the requesting task are pre­
vented from initiating procedures that will cause termination of the requesting
task. Other external events, such as a CANCEL command issued by an operator,
or a job step timer expiration, are also prevented from terminating the requesting
task.

The must-complete mode of operation is not entered until the resource (s)
queued upon are available.

At the system or step level, the requesting task can cause its own abnormal
termination. If the requesting task does come to an abnormal termination before
a reset condition has been effected, the operating system is stopped at the point
of error to permit investigation of the trouble. It is then necessary to restart the
system with the initial-program-Ioad (IPL) procedure.

1. All data used by a routine that is to operate in the must-complete mode
should be checked for validity to ensure against a program-check inter­
ruption.

2. A routine that is already in the must-complete mode should avoid calling
another routine which also operates in the must-complete mode. However,
one level of nesting is permitted, when necessary, with the following
cautions:
a. A task may set the must complete mode for both the system and the step.

If multiple settings are made for either the system or the step, only the
first setting of each is effective - the others are treated as no operation.

b. The same is true for reset-must-complete. The first RMC for the system
will reset the status of the system, the first RMC for the step will reset
the status of the step, and all others will be treated as no operation.

MUS 4 OS/VSl Planning and Use Guide

Terminating the Must.
Complete Function

3. Interlock conditions that can arise with the use of the ENQ function are
discussed in the Supervisor Services and Macro Instructions publication.

Additionally, an interlock may occur if your routine issues an ENQ macro
instruction while in the must-complete mode. The resource you want to
queue on may already be queued on by a task placed in the wait state due
to the must-complete request you have made. Since the resource cannot be
released, all tasks wait.

4. The macro instructions ATIACH, LINK, LOAD, and XCIL should not be used,
unless extreme care is taken, by a routine operating in the must complete
mode. An interlock condition will result if a serially-reusable routine re­
quested by one of these macro instructions has been requested by one
of the tasks made non-dispatchable by the use of the SMC operand or was
requested by another task and has been only partially fetched.

For example, suppose routine ''b'' in task B has requested and is using
subroutine "c". Subsequently routine (Ca" in task A (of a higher priority
than task B) receives control of the processing before routine ''b'' finishes
with subroutine "c". If routine "a" issues an ENQ macro instruction with
the SMC operand and puts task B (and, thus, routine "b") in a nOll­

dispatchable condition, subroutine "c" remains assigned to routine "b".
Now, if routine "a" issues a request (via a LINK, LOAD, etc. macro instruction)
for subroutine "c", an interlock will occur between tasks A and B: task A
cannot continue since subroutine "c" is still assigned to task B, and task
B cannot continue (and thus release subroutine "c") because task A in
the must-complete mode has made task B nondispatchable.

5. The time your routine is in the must-complete mode should be kept as
short as possible-enter at the last moment and leave as soon as possible. One
suggested way is to:
a. ENQ (on desired resource (s))

h. E"Q (on same resource (s)), RE1=HA YE, SMC= { S:~M }

Item a gets the resource (s) without putting the routine into the must­
complete mode.

Later, when appropriate, issue the ENQ with the must-complete request
(item b). Issue a DEQ macro instruction to terminate the must-complete
mode as soon as processing is finished.

Terminate the must-complete function and release the resource queued upon
by coding the reset-must-complete (RMC) operand in a DEQ macro instruction.
The format is:

name DEQ . .. RMC = 5 SYSTEM t
, 1 STEP f

The parameter (SYSTEM) or (STEP) must agree with the parameter specified
in the SMC operand of the corresponding ENQ macro instruction.

Tasks placed in the wait state by the corresponding ENQ macro instruction
are made dispatchable and asynchronous exits from the requesting task are
enabled.

The Must-Complete Function MUS 5

MUS 6 OS/VSl Planning and Use Guide

The PRESRES Volume Characteristics List

This section describes the creation and use of a direct
access volume characteristics list that is placed in the
system parameter library under the member name
PRESRES.

Section Outline

The PRESRES Volume Characteristics List PRE 1

The PRESRES Volume Characteristics List
Creating the List

PRESRES Entry Format
Operational Characteristics
Programming Considerations

The PRESRES Volume Characteristics List

PRE 3
PRE 3
PRE 3
PRE 4
PRE 5

PRE 1

PRE 2 OS/VSl Planning and Use Guide

The PRESRES Volume Characteristics List

Creating the List

PRESRES Entry Format

You may use the PRESRES volume characteristics list to define the mount and
allocation characteristics of direct access device volumes used by your installation.
Use of the list enables you to predefine the mount characteristics (permanently
resident, reserved) and allocation characteristics (storage, public, private) for
any, or all, direct access device volumes used by your installation. The]CL
Reference publication provides a full discussion of the volume characteristics
and the operating system's response to the various designations. The information
presented here describes the creation of the characteristics list, the format and
content of entries in the list, and how the operating system uses the list.

You use the IEBUPDTE utility program to place the list (under the member name
PRESRES) in the system parameter library, SYSl.PARMLIB. This utility is also used
to maintain the list.

Each PRESRES entry is an 80-byte record, consisting of a 6-byte volume serial
number field, a I-byte mount characteristic field, a I-byte allocation characteristic
field, a 4-byte device type field, a I-byte mount-priority field, and an optional
information field. Commas are used to delimit the fields, except the optional
information field is always preceded by a blank. All character representation
is EBCDIC. This format is shown below.

Volume Serial
Number 6 Bytes

Device Type
4 Bytes

Optional
Information

Blank -- 1 Byte

I '- 'Allocation Characteristic -- 1 Byte

L-Mount Characteristic -- 1 Byte

The volume serial number consists of up to six characters, left justified.
Mount characteristics are defined by:

o to denote permanently resident
1 to denote reserved

The default characteristic is "permanently resident" and is assigned if any
character other than 0 or 1 is present in the field.

Allocation characteristics are defined by:

o to denote storage
1 to denote public
2 to denote private

The default characteristic is "public" and is assigned if any character other
than 0, 1, or 2 is present in the field.

The PRES RES Volume Characteristics List PRE 3

Operational Characteristics

The device type is defined by:
A 4-digit number designating the type of direct access device on which
the volume resides; for example, the ffiM 2314 Direct Access Storage Facility
is indicated by the notation 2314. Note that this field only indicates the
basic device type for the associated volume. You must advise the operator
if the device requires special features (such as track overflow) to process the
data on the designated volume.

The mount priority field is used to suppress mount messages at IPL time
for a volume; the alphabetic character N should be inserted in this field
to suppress the mount message. This field allows the user to list seldom
used volumes in the PRESRES li$t without having a mount message issued at
each IPL. 'Vhen these volumes are required, they may be mounted and attri­
butes will be set from the PRESRES list entry. If the user does not wish to have
the mount message suppressed, he may omit the mount priority field and the
preceding comma.

The optional information field contains:
Any descriptive information about the volume that you may wish to enter.
This information is not used by the system, but is available to you on a print­
out of the list. If necessary, comments may start in the second byte after the
mount priority field or if the mount priority field is omitted, in the second
byte following the comma after the device type field.

Embedded blanks are not permitted in the volume serial, mount, allocation, or
device type fields.

Upon receiving control from the nucleus initialization program (NIP), the sched.­
uler compares the volume serial numbers in the PRESRES characteristics list with
those of currently mounted direct access volumes. Each equal comparison results
in the assignment to the mounted volume of the characteristics noted in the
PRESRES entry. (Fields in the unit control block for the device on which the
volume is mounted are set to reRect the desired characteristics.) If the volume
is: the IPL volume; the volume containing the data sets SYSl.LINKLffi, SYSl.PROCLffi,
Sysl.SYSJOBQE; or a phYSically nondemountable volume, the mount characteristic
(permanently resident) has already been assigned and only the allocation char­
acteristic is set.

A mounting list is issued for the volumes in the PRESRES characteristics list that
are not currently mounted (except those for which mounting messages have been
suppressed) and the operator is given the option of mounting none, some, or all
of the volumes listed. The mount and allocation characteristics for the volumes
mounted by the operator are set according to the PRESRES list entry for the vol­
ume. The operator selects the unit on which the volume is to be mounted.

The applicable OS/VS Messages Library publication describes the operator
messages and responses associated with the use of the PRESRES volume character­
istics list.

After the scheduler has finished PRESRES processing, reading of the job input
stream begins and the PRESRES list is not referred to again until the next !PL.

Volume characteristics assigned by a PRESRES list entry are inviolate. They
cannot be altered by subsequent references to the volume in the input stream.

PRE 4 OS/V51 Planning and Use Guide

Programming Considera­
tions

Note:
1. A PRESRES entry identifying a physically nondemountable volume will appear in the mount

list issued to the operator if the volume (device) is OFFLINE or is not present in the system.
2. Use of the PRESRES list can only be suppressed by deleting the member from the para­

meter library (Sys1.PARMLIB).

3. Only the first 102 volumes on the PRESRES list can be placed on the mount list.

The only way to assign an allocation characteristic other than "public" to volumes
whose mount characteristic is "permanently resident" is through a PRESRES char­
acteristic list entry.

Selection of the volumes for which PRESRES entries are to be created should be
done so that critical volumes are protected. Since the combination of mount and
allocation characteristics assigned to a specific volume determine the types of
data sets that can be placed on the volume and its usage, you can exercise effec­
tive control over the volume through a PRESRES list entry.

The PRESRES Volume Characteristics List PRE 5

PRE 6 OS/VSl Planning and Use Guide

System Reader, Initiator, and Writer Cataloged Procedures

I
I
I

In vsl, readers, initiators, and output writers are con­
trolled by cataloged procedures. This section describes
the reader, initiator, and writer cataloged procedures
that are supplied by IBM, and tells how to write your
own.

Section Outline

System Reader, Initiator, and Writer Cataloged
Procedures PRO 1

Reader, Initiator, and Output Writer Cataloged
Procedures PRO 3

Data Set Integrity for System Tasks PRO 3
Reader Procedures PRO 4

Procedure Requirements Plt-O 4
The EXEC Statement PRO 4
The PARM Field in the EXEC Statement
of the Reader PRO 5

DD Statement for the Input Stream
from a Local Device PRO 7

DD Statement for the Input Stream
from a Remote Device PRO 9

DD Statement for the Procedure Library PRO 9
DD Statement for Storage Dump PRO 10

Reader Procedure Used by Restart PRO 10
Procedure Requirements PRO 11

The EXEC Statement PRO 11
DD Statement for the Input Stream PRO 11
DD Statement for the Procedure Library PRO 11
DD Statement for the CPP Data Set PRO 12

Initiator Procedures PRO 12
IBM-Supplied Procedure PRO 12
Procedure Requirements PRO 12

The EXEC Statement PRO 13
DD Statement for the Scheduler Work Area
Data Set (SW ADS) PRO 13

Dedicated Data Sets PRO 14
How to Dedicate a Data Set PRO 14
How to Get to Use a Dedicated Data Set PRO 15

Procedure INITD PRO 16
INITD Procedure Statements PRO 17
The EXEC Statement PRO 17
DD Statement for the Scheduler Work Area
Data Set (SWADS) PRO 17

DD Statements for the Dedicated Utility Data
Sets PRO 18

DD Statement for the Loadset Data Set PRO 18
Use of Dedicated Data Sets by Processor Programs
for Utility Data Sets PRO 18

Processor Program Library Data Sets as Dedicated
Data Sets PRO 19

Continued -

Reader, Initiator, and Writer Cataloged Procedures PRO 1

Disposition of Temporary Dedicated Data Sets ..
Output Writer Procedures

System Output Writers
Procedure Requirements

The EXEC Statement
DD Statement for the OUTPUT Data Set

for a Local Device .
DD Statement for Storage Dump
DD Statement for the OUTPUT Data Set

for a Remote Device
Direct SYSOUT Writer Procedures

The EXEC Statement
The DD Statement

Cataloging the Procedure
Example of the Use of Symbolic Parameters in
Catalog>9d Reader, Writer, and Initiator Procedures ..

The PROC Statement
The START Command

Blocking the Procedure Library

PRO 2 OS/VSl Planning and Use Guide

PRO 20
PRO 21
PRO 21
PRO 21
PRO 21

PRO 23
PRO 24

PRO 25
PRO 25
PRO 26
PRO 26
PRO 27

PRO 28
PRO 29
PRO 29
PRO 29

Reader, Initiator, and Output Writer Cataloged Procedures

Data Set Integrity for
System Tasks

In vsl, system readers, initiators, and output writers are controlled by cataloged
procedures. These procedures reside in the procedure library (SYS1.PROCLIB) and
provide the parameters required for operation of the readers, initiators, and
writers.

IBM supplies cataloged procedures for readers, initiators, and for output writers.
You can:
• Use the IBM -supplied procedures.
• Use the IBM-supplied procedures, and override given parameters.
• Write and use your own cataloged procedures.
• Write and use your own cataloged procedures, and override given parameters.

The START command starts a reader, an initiator, or an output writer, and desig­
nates the procedure to be used. If you use the START command to start a problem
program, there will be no SMF recording, or checkpoint/restart done for that job.
You can override given parameters in the cataloged procedure by specifying the
desired parameters in the START command. For a complete description of the
START command, see the appropriate OS/VS Operators Library publication.

Some of your installation's parameters may differ consistently from those in the
IBM-supplied procedure. If so, you may wish to use your own cataloged pro­
cedure, rather than respecifying the parameters in every START command. You
can use your own cataloged procedure by:
1. Writing the procedure in the required format.
2. Adding the procedure to the procedure library.
3. Specifying the procedure name in the START command.

To test your procedure by reference in another job but before adding it to the
procedure library, format it as an in-stream procedure. See the OS/VS Job Control
Language Reference publication for a description of in-stream procedures. (In­
sh"eam procedures can be used with any reader.)

If the parameter values in a cataloged reader, initiator, or writer procedure
change frequently, use symbolic parameters in place of ordinary parameters. You
may then assign values to the symbolic parameters in the START operator com­
mand. For a description of the START operator command, see the appropriate
OS/VS Operators Library publication. An illustration of the use of symbolic
parameters is given in this section under Example of the Use of Symbolic Param­
eters.

Note: Symbolic parameters cannot be used for the program name on the EXEC statement in the
reader, initiator, or writer procedure.

Access during a job to a named data set depends on the disposition assigned it
in the DD statement. If a data set is named (DsNAME=anyname) and its status
is either OLD or NEW (Dlsp=status), the operating system gives exclusive control
of that data set name to that job for the life of the job.

If you start several concurrent system tasks (such as several readers or several
writers) using the same cataloged procedure, this data set integrity feature would
nevertheless permit only one reader, or one writer, to execute at a time. To avoid
this undesirable serialization of access (and hence, of the tasks) for readers, the
SYS1.PROCLIB data set is assigned a status of SHR (in place of OLD). To avoid this
for writers, the SYSOUT data set name is exempted from the protection of the data
set integrity feature (since SHR cannot be assigned in place of NEW).

Reader, Initiator, and \\Triter Cataloged Procedures PRO 3

Reader Procedures

Procedure Requirements

The EXEC Statement

lliEVMPCR is the cataloged procedure called when you issue mount commands.
This procedure resides in SYSl.PROCLIB. When not using an mM-supplied cata­
loged procedure library, you should add IEEVMPCR to your own procedure library
so that the mount commands can be properly executed. You can do this by using
the lliBCOPY utility program.

A cataloged procedure for a reader requires two job control statements: an EXEC
statement and a DD statement. A second DD statement may be necessary if the pro­
cedure library required is not SYSl.PROCUB. See DD Statement for the Procedure
Library in this section for specific details on when this statement is required.

I A third DD statement can be provided for reader ABEND. See DD Statement for
Storage Dump in this section. The names and purposes of these statements are
listed here:

• An EXEC statement with the step name IEFPROC specifies the reader program.

• A DD statement named IEFRDER provides the reader with a description of the
input stream.

• A DD statement named IEFPDSI describes the procedure library (optional).

• A DD statement named SYSABEND/SYSUDUMP requests a storage dump (optional)
mM supplies two reader procedures for vsl named RDR and RDRT. RDR is used

with local unit record input devices and RDRT is used with local non-unit record
input devices. The two procedures follow. Your installation must modify the
reader procedure for use with remote devices (see Procedure Requirements).

Procedure: RDR

I I IEFPROC EXEC PGM = IEFVMA X
I I PARM = 'bppttttsscccrlaaaaefh'

I I IEFRDER DO UNIT = 2540, LABEL = (,NL), VOLUME = SER = SYSIN, X
I I DCB = (LRECL = 80, RECFM = F)

Procedure: RDRT

I I IEFPROC EXEC PGM = IEFVMA, X
I I PARM = 'bppttttsscccrlaaaaefh'

I / IEFRDER DO UNIT = 2400, LABEL = CNU, VOLUME = SER = SYSIN, X
/ / DCB = (LRECL = 80. RECFM = F, BLKSIZE = 80)

A description of the PARM values is included under the heading The PARM
Field in the EXEC Statement of the Reader later in this section. The mM-SUp-

I plied value of the P ARM field in the EXEC statement of both the RDR and RDRT pro­
cedures is PARM=='00600300005010EOOOIIA'.
When creating your own reader procedure, you must conform to the procedure
format and the statement requirements. Use the IBM-supplied procedures as
examples. The statement requirements are explained individually in the following
paragraphs.

When creating a reader procedure for use with remote unit record input de­
vices, you must provide an EXEC statement as explained here, and a DD state­
ment as explained in DD Statement for the Input Stream from a Remote Device
in this section.
The EXEC statement specifies the reader program and also passes a set of param­
eters to it. The format of the EXEC statement is:

, / IEFPROC

I I

EXEC PGM = IEFVMA,
PARM = 'bppttttsscccrlaaaaefh'

The step name must be IEFPROC, as shmvn. The parameter requirements are as
follows:

PRO 4 OS/VSI Planning and Use Guide

The PARM Field in the
EXEC Statement of the
Reader

PGM=IEFVMA

specifies the reader program. The name of the program must be IEFVMA, as
shown.

PARM== <bppttttsseeerlaaaaefh'

is a set of parameters for the reader and interpreter. This parameter field
must consist of 21 characters, but the last seven have default values and
need not be specified. Their meanings are explained in the following text.

b - character from 0 through 7, which indicates what the ADDRSPC== default
will be, whether an account number is required or not, and whether a
programmer name is required. The following chart shows the meaning
of each possible character.

PARM field value b

Character ADDRSPC = default Acct. info. req'd Pgmr name req'd

0 VIRT no no
1 VIRT no yes

2 VIRT yes no
3 VIRT yes yes

4 REAL no no
5 REAL no yes

6 REAL yes no
7 REAL yes yes

pp - two numeric characters from 00 to 13 that indicate the default priority
for jobs read from this input stream. When no priority is specified in the
JOB statement, this default priority is assigned to the job.

ttttss - six numeric characters that indicate the default for the maximum
time (in minutes and seconds) that each job step may run.

eee - three numeric characters from 001 to 999 that indicate the default
real size assigned to job steps read from this input stream when running
virtual=real jobs.

r - a numeric character from 0 to 3 which specifies the disposition of com­
mands from this input stream. The r parameter is used by the reader
or interpreter whether or not the command is authorized to be entered
into the input stream (see aaaa parameter). The reader and interpreter,
if r is:

0- passes the command to the command scheduling routine to be exe­
cuted.

1- displays the command (by a WTO macro instruction), and passes it
to the command scheduling routine to be executed.

2 - displays the command (by a WTO macro instruction), asks the oper­
ator whether the command should be executed (by a WTOR macro
instruction), and passes the command to the command scheduling
routine if the operator replies in the affirmative.

3 - ignores the command (treated as a no-operation).

The WTO and WTOR macro instructions issued by the reader and inter­
preter are sent to the primary console in systems without the multiple

Reader, Initiator, and 'Writer Cataloged Procedures PRO 5

PRO 6

I

console support (Mes) option and to the Mes master console in systems
with the Mes option.

l- a numeric character 0 or 1 that specifies the bypass label processing op­
tions. 0 signifies that the BLP parameter in the label field of a DD state­
ment is to be ignored. The label parameter is processed as NL. 1 signifies
that BLP is not to be ignored. The label parameter is processed as it
appears.

aaaa - four hexadecimal numbers. The first number must be an even number
between 0 and E. The next three numbers must be O. These numbers
indicate which operator command groups are to be executed if read from
this input stream. (WRITER commands are not allowed in the input stream.)
This parameter is valid only for systems "vith the multiple con­
sole support option. In systems without the multiple console support
option, this parameter is set to X'EOOO', permitting all commands except
DEFINE and HALT to be entered into the input stream. In systems with the
multiple console support option, default is to X'EOOO' when the param­
eter is omitted. This processing applies to those commands that are
passed to the interpreter; that is, those within some job stream, and those
commands processed in the reader outside of any job stream.

Figure PRO 1 shows the operator commands that are affected by the
aaaa parameter in an Mes environment. The commands are grouped by
function. If the command is in a group authorized by the aaaa param­
eter, it is processed. If the command is not authorized by the aaaa pa­
rameter, it is ignored and an error message is sent to the master console.

Informational commands (Group 0) are always valid when entered
into the input stream.

Command
Group Function Commands

0 Information BRDCST MONITOR SHOW
CONTROL MSG STOPMN

DISPLAY MSGRT

LOG REPLY

1 System Control CANCEL MODE STOP

CENOUT MODIFY SWAP
DEFINE RELEASE SWITCH
DUMP RESET USERID
HALT SET WRITELOG
HOLD START WRITER

2 1/0 Control MOUNT UNLOAD VARY*
SWAP

3 Console Control VARY*

1,2,3 Master Console All commands are valid, plus

CONTROL M
VARY MSTCONS
VARY HARDCOPY
V ARY CONSOLE with AUTH =

* Note: VARY (Group 2) is accepted only to vary non-console device online or offline. --
VARY (Group 3) provides only for console switching and console reconfiguration
on secondary consoles.

Figure PRO 1. Operator Command Groups

OS/VS1 Planning and Cse Guide

00 Statement for the

I
Input Stream from a

Local Device

Bit settings for the aaaa parameter are:

Bit
Bytes

o
(aa)

Bits Settings
o 1
1 1

Meaning
Group 1 commands executed
Group 2 commands executed
Group 3 commands executed
Reserved

2 1
3-7 00000

1
(aa) 0-7 00000000 Reserved

Example: If you wish to authorize commands from command groups 2
and 3 to be executed when entered into the input stream, code the aaaa
parameter '6000'.

efh - MSGLEVEL value in absence of a value in the JOB statement. Unless
there is a MSGLEVEL= entry in the JOB statement, job control statements
and allocation/termination messages are recorded in the system output
data set according to the value of the efh parameter. The values and
their effects are:

e - kind of job control statement recorded.
o - JOB statement only
1- Input statements, cataloged procedure statements, and symbolic

parameter substitution values.
2 - Input statements only.
A blank defaults to a value of O.

f - kinds of allocation/termination messages recorded.
0- None, except in the case of an ABEND condition. (In that event,

all messages are recorded.)
I-All
A blank defaults to a value of 1.

h - default message class.

Your procedure for the reader must include a DD statement that describes the
input stream. The format for this statement is:

/ / IEFRDER DO UNIT = device, LABEL = (,typel. X

/ / VOLUME = SER = SYSIN, X

I / DeB = (list of attributes) [. DSNAME = name, DISP = OLD]

This statement must be named IEFRDER, as shown. The IEFRDER statement can
be overridden with a START command. The parameter requirements are as
follows:

UNIT = device
specifies the device from which the input stream is read. This can be any
device supported by the queued sequential access method (QSAM). The
device can be specified by its address, type, or group.

Reader, Initiator, arrd \\Triter Cataloged Procedures PRO 7

PRO 8

LABEL= (,type)
describes the data set label (needed only for tape data sets). If this param­
eter is omitted, a standard label is assumed.

Note: Label types AL and AUL (American National Standard Label types) should not
be used.

VOLUME=SER=SYSIN
specifies the volume containing the input stream. This parameter is required
for magnetic tape or direct access volumes. The serial SYSIN is recommended
for identification of this volume, but other serials can be used.

Note: The volume serial numbers should not identify a volume that contains a data set
written in ASCII.

DCB= (list of attributes)
specifies the characteristics of the input stream and the number of buffers
acquired by JAM (Job Entry Subsystem-oriented Access Method). The
RECFM and LRECL subparameters must be present and only fixed 80-byte input
is valid. For unit record devices, the BLKSIZE subparameter may be modified
to take advantage of command chaining available through JAM. If you omit
the BLKSIZE subparameter, JAM acquires three buffers of the size indicated at
sysgen time. (See the System Generation Reference manual for more details.)
If the BLKSIZE subparameter is coded, the value specified on the DD state­
ment overrides the amount of buffer space required by the reader as specified
at sysgen time. BLKSIZE must be a multiple of LRECL and a BLKSIZE=800 would
allow JAM to read ten cards from the card reader with one ccw chain. Care
should be taken to ensure that BLKSIZE (if specified) is not greater than that
which was specified at sysgen. Otherwise, too little space may be available
to allow readers and writers to operate at the level specified at sysgen time.

The BUFNO parameter in the IEFRDER DD card is used to define the number
of buffers that JAM obtains. If this parameter is omitted, JAM obtains three
buffers of the specified or defaulted BLKSIZE. If coded, the only valid entry
is 1, which would cause JAM to obtain one buffer. One buffer can only be
specified when BLKSIZE has been coded to indicate that command chaining is
not being used; that is, BLKSIZE=80. Any other value is invalid and would
result in three buffers being obtained. The specification of one buffer and no
command chaining results in optimal use of storage since the JAM input
buffer will become part of the reader workarea.

The DCB subparameters must be specified as required by QSAM when read­
ing from non-unit record input devices. When starting a reader to a non-unit
record device using the IBM-supplied RDR procedure, BLKSIZE must be speci­
fied with the START command; that is,

S RDR.a,280"DCB=BLKSIZE=80

VVhen you use the RDRT procedure, it is not necessary to specify BLKSI'ZE.

DSNAME=name, DIsp=disposition
specifies the name and disposition of the input stream data set to be read.
This keyword should be used only with direct access input stream.

DISP=OLD
specifies that the input stream is an existing data set.

OS/VS1 Planning and "Cse Guide

DD Statement fei the

Input Stream from a

Remote Device

DD Statement for the
Procedure Library

Your reader procedure for use with remote devices must inclu~e a DD statement
that describes the input stream. The format for this statement is the same
as the DD statement in the IBM-supplied reader procedure used with local unit
record devices, except for a difference in the UNIT specification and the addition
of another parameter. These parameter requirements are:

UNIT=RDn

specifies the remote unit record device from which the input stream is read.
The device is specified in the form RDn, where n is the number representing
the desired device of that type.

TERM=RT

indicates that the input stream is read from a remote device.

The UNIT specification can be overridden in the START command, but TERM=RT
cannot be changed by the START command.

Your procedure for the reader can include a DD statement that defines the pro­
cedure library. For maximum performance, the user should restrict himself to
either using the IEFPDSI DD statement, as indicated here, or omitting it. When used
as illustrated or omitted, called procedures are not written to the Sysl.SYSPOOL
data set by the reader. They are instead read from the cataloged system proce­
dure library by the interpreter. You can make use of private procedure libraries
by replacing the standard IEFPDSI DD statement with one describing the private
procedure library or concatenating the private library (s) to the standard library
by using the usual JCL conventions. However, if the reader procedure refers to a
data set other than SYSl.PROCLIB, or supplies volume information, or concatenates
procedure libraries, the reader will read the called procedures from their respec­
tive libraries and write them to the Sysl.SYSPOOL data set.

I I IEFPDSI DO DSNAME = SYS1.PROCLlB, DISP = SHR

This statement must be named IEFPDSI, as shown. The parameter requirements
are:

DSNAME=Sysl.PROCLIB
identifies the procedure library. To concatenate other data sets with the
system library, you must follow the IEFPDSI DD statement with other unnamed
DD statements, thus expanding the system procedure library.

DISP=SHR
specifies that the procedure library is an existing data set and can be shared
\vith other tasks.

Reader, Initiator, and Writer Cataloged Procedures PRO 9

DD Statement for

Storage Dump

Reader Procedure Used by
Restart

Procedure Requirements

Your procedure for the reader can include a DD statement that allows you to
receive a SYSABEND or SYSUDUMP storage dump if the reader reaches ABEND. If
the SYSl.DUMP data set is properly defined and available to accept the dump, you
will receive an svc dump. Otherwise, you will receive a SYSABEND or a SYSUDUMP,
depending on which DD statement you include. If both SYSABEND and SYSUDUMP
DD statements are included, the last one found is used.

I!SYSABEND DD SYSOUT=A

or

!!SYSUDUMP DD SYSOUT=A

This statement can be named SYSABEND or SYSUDUMP, as shown.

SYSOUT=A
specifies the output class for the dump.

The procedure, named IEFREINT, used to process job control statements for a job
being restarted, is a skeleton of the normal reader procedure. Its main functions
are to define the restart reader program, named IEFVRRC, and to make the pro­
cedure library accessible to that program. The procedure is:

Procedure: IEFREINT

/ i IEFPROC EXEC PGM = IEFVRRC, RESTART READER PROGRAM X

/ / REGION = 50K, RESTART READER REGION X

/ I PARM = RESTART

/ / IEFRDER DD DUMMY

/ / IEFPDSI DD DSNAME = SYS1.PROCLlB, DISP = SHR PROCEDURE

LIBRARY

/ / IEFDATA DD DUMMY

When creating your own restart reader procedure, you must conform to the pro­
cedure format and the statement requirements. Use the IBM-supplied procedures
as examples. The statement requirements are explained individually in the fol­
lowing paragraphs.

PRO 10 OS/VS1 Planning and Use Guide

The EXEC Statement

DD Statement for the
Input Stream

DD Statement for the
Procedure Library

The EXEC statement specifies the restart reader program and passes a parameter
to it. The format for the EXEC statement is:

I I IEFPROC EXEC PGM = IEFVRRC, REGION = nnnnnK, PARM = RESTART

The step name must be IEFPROC, as shown. The parameter requirements are as
follows:

PGM=IEFVRRC
specifies the restart reader program. The name of the program must be
IEFVRRC, as shown.

REGION=nnnnnK (included for compatibility with vs2 and MVT. Not used by vsl.)

PARM=RESTART
must be coded as shown.

Your procedure for the restart reader must include a DD statement that describes
the input stream. The format for this statement is:

II I IEFRDER DD DUMMY

This statement must be named IEFRDER, as shown. The parameter requirements
are as follows:

DUMMY
must be coded as shown. System input is taken from the Sysl.SYSJOBQE data
set which is open already.

Your procedure for the restart reader must include a DD statement that defines the
procedure library. This statement must follow the IEFRDER statement which de­
scribes the input stream. The format for this statement is:

I I IEFPDSI DD DSNAME = SYS1.PROCLlB, DISP = SHR

This statement must be named IEFPDSI, as shown. The parameter requirements
are as follows:
DSNAME=sysl.PROCLIB

identifies the procedure library. To concatenate other data sets with the
system library, you may follO\v the IEFPDSI DD statement with other unnamed
DD statements thus expanding the system procedure library.

DISP=SHR
specifies that the procedure library is an existing data set.

Reader, Initiator, and \\Triter Cataloged Procedures PRO 11

DO Statement for the
cpp Data Set

Initiator Procedures

IBM-Supplied Procedure

Procedure Requirements

Your procedure for the restart reader must include a DD statement that defines the
cpp (concurrent peripheral processing) data set. Since the data is akeady in the
checkpoint data set, DUMMY serves as the operand. The format for this state­
ment is:

I / / IEFDATA DO DUMMY

This statement must be named IEFDATA, as shown. The parameter requirement
is as follows:

DUMMY

must be coded as shown.

A cataloged procedure for an initiator requires two job control statements, an
EXEC statement and a DD statement for the Scheduler Work Area Data Set
(sw ADS). Additional DD statements maybe optionally added so that specific con­
trol volumes will be allocated to the initiator task.

• An EXEC statement with the step name IEFPROC specifies the initiator program.

• A DD statement with the step name IEFRDER provides the specifications for the
SWADS data set.

• Optional DD statements specify control volumes to be allocated to the initiator
task.

The initiator procedure supplied by IBM for vsl is named INIT. The INIT pro­
cedure is:

/ / IEFPROC

/ / IEFRDER

/ /
/ /

Procedure: INIT

EXEC PGM = IEFIIC, PARM = 'A, LIMIT = 13'

DO & & SWADS, UNIT = 2314, SPACE = (176, (250) "
CONTIG), DCB = (BLKSIZE = 176, LRECL = 176,
RECFM = F), DISP = (NEW, DELETE)

X
X

When creating your own initiator procedures, you must conform to the procedure
format and the statement requirements. The statement requirements are ex­
plained individually in the following paragraphs.

PRO 12 OS/VSl Planning and Use Guide

The EXEC Statement

DD Statement for the
Scheduler Work Area Data
Set (SWADS)

The EXEC statement specifies the initiator program and passes a set of parameters
to it. The format of the EXEC statement is:

I I IEFPROC EXEC

/ /

PGM = IEFIIC, PARM = 'x [en)] [, x
2

[(n
2

)] ...

[, L1MIT= K]]

X

The step name must be IEFPROC, as shown. The parameter requirements are:

PGM=IEFIIC
specifies the initiator program. The name of the program must be IEFIIC, as
shown.

PARM='x[(n)] [,x l [(n
l
)] ... [,LIMIT=K]]'

X - Job class (Letter A-O)
(One to 15 job classes may be named.) (This parameter is ignored
in vsl.)

n - (0-15), a force value priority at which all jobs from the preceding class
will be run. (This parameter is ignored in vsl.)

K - (0-15), the priority above which no job will be run by this initiator.
(This parameter is ignored in vsl.)

The preceding PARM values are allowed for compatibility with MVT and with
vs2 but are not processed in vsl.

The Scheduler Work Area Data Set (SWADs) facility is activated when the initi­
ator is started. During the system's «START INIT" processing, the data set is allo­
cated and initialized. Since SWADS is a temporary data set, care should be taken
to avoid its destruction when temporary data sets are scratched during the use
of IEHPROGM. The cataloged procedure for initiators contains a DD statement for
the sw ADS. If an installation writes its own procedure for initiators, it must in­
clude this DD statement as specified here:

IIIEFRDER DD DSNAME=&&SvVADS,DISP= (NEW,DELETE),
UNIT= ,SPACE= (, () , , CONTIG)

All parameters are required exactly as shown, except that DISP could be
omitted since NEW,DELETE is the default and UNIT and SPACE contain values deter­
mined by the installation. These fields should be specified according to the fol­
lowing:

UNIT: j\'Iust be for one of the valid DASD types (2314, 2319, 2305-2, 3330, or 3333).
It can be expressed as a unit type (2314) or as a group designation (SYSDA), as
long as the group does not include any non-supported device types, or as an
actual channel and unit address. ('Vhen expressed as unit type, a 2319 is
specified as 2314, and a 3333 is specified as 3330.)

Because all SWADS need not be on the same type device, an incompatibility
is possible if the job uses the automatic step or checkpoint/restart features
of vsl. If the SWADS of the initiator trying to restart the job has a smaller

Reader, Initiator, and \Vriter Cataloged Procedures PRO 13

Dedicated' Data Sets

How to Dedicate a Data Set

track capacity than that of the sw ADS used when the job was first run, re­
start is not possible. In this case, the operator is informed and given the
option of holding the job for restart by another initiator or of canceling
the job.

SPACE: The amount of space to request can be calculated according to a formula
provided for the purpose. The formula is found in the VSl Storage Estimates
publication. This value, of course, depends on the size of the jobs that will
be run in the installation. The subparameter CONTIG is always needed. The
actual request can be in terms of CYL, or TRK, or 176-byte blocks.

The IBM-supplied initiator procedure contains values for UNIT and SPACE. These
values should, if necessary, be changed by the installation to reflect the needs of
the specific system more accurately. You also have the ability to override these
DD parameters in your START command for the initiator. This is useful if a par­
ticular job to be run on a given day is known to be unusually large. It will be
advantageous for the installation to override the SPACE parameter when starting
the initiator, rather than risk having the job canceled for lack of SWADS space.
Generally, the overrides are useful when temporary changes are required. For
permanent changes, the procedure should be modified so that the format of the
START command is simplified.

Dedicated data sets save the time taken repeatedly to allocate (and deallocate)
space used only temporarily during a job step. A dedicated data set is allocated
space when the initiator is started and belongs to the initiator. Every job step
running under that initiator can use the dedicated data set as a temporary data
set. If you use dedicated data sets for temporary data sets, the checkpoint/restart
facility is internally suppressed. To dedicate any data set quickly to successive
jobs or job steps, you add a DD statement to the initiator procedure. An initiator
procedure (INITD) for use of dedicated data sets with processor programs has
been added to the system. To save repeated catalog searches, you may also dedi­
cate system library data sets.

The dedicated data sets feature has been implemented by adding code to the
allocation routine that, before allocating space for a temporary data set, attempts
to relate a request for a temporary data set with a dedicated data set. If the space
required for the temporary data set fits within the dedicated data set, the dedi­
cated data set space is used. If not, normal allocation takes place. The same
criterion will be used with presently coded requests for temporary data sets, that
is, if the space requested is within the range of the dedicated data set, it will
be used.

You dedicate a data set by adding a DD statement (for each data set to be dedi­
cated) to the initiator procedure. The unit must be a DASD; the space may be for
a sequential or partitioned data set. Each DD statement must be of the form:

I I ddname DD UNIT = unitparms. VOL = volparms,
SPACE = (kind, (amount, increment, dirblks)), DISP = (NEW,
DELETE)

PRO 14 OS/VS1 Planning and Use Guide

How to Get to Use a
Dedicated Data Set

ddname
A user supplied ddname must be given to identify the DD statement. The
ddname is used (in the form DSNAME=&ddname) in the DD statement of the
problem program job step which is to make use of the dedicated data set.

unitparms
Parameters that describe the unit to be used for the dedicated data set. The
unit must be a DASD. The AFF= and DEFER unit parameters may not be used.
The unit parameters specified here override those of the job step DD state­
ment for which 'the dedicated data set is used.

volparms
Volwne parameters.
A volume may be specified for each unit specified in the preceding unit
parameter entry. The volume parameters specified here override those of the
job step DD statement for which the dedicated data set is used.

(kind, (amount,increment,dirblks))
Type and size of space (in terms of CYL, 'IRK, avgbl, or ABSTR) to be allocated
to the data set. If ,dirblks is obmitted, the data set request implies sequential
organization. If "dirblks is used, the data set request implies partitioned or­
ganization.

When a dedicated data set with partitioned organization reaches an EOV
condition, the initiator must be restarted. The DD statement in the problem
program job step that is to use a dedicated data set must describe a problem
program data set of the same organization as the dedicated one. Increments,
once allocated, remain allocated until the initiator stops.

NEW,DELETE
These disposition parameters may either be coded explicitly or may take
effect by default, that is by omitting the DISP= entry.

The effect of NEW is that the data set is freshly allocated from any avail­
able space on the volume, each time a start initiator operator command is
used or the system is restarted.

The effect of DELETE is that the data set is not kept when the initiator is
stopped and the space is available for reallocation to other jobs.

DSNAME
The allocation procedure for an initiator pre-allocated data set is the same as
for any temporary data set. This procedure is simplest with no dsname= entry
in the DD statement. That results in a system assigned data set name of the
form:

SYSnumber.Rnumber.procname.RVnumber.

You may also code DSNAME=&name, DSNAME=&&name, or DSNAME=name.
These names will override those used in the job step DD statement for which
the dedicated data set is used.

DeB parameters:
DCB parameters specified here have no effect.

If you want a dedicated data set to be used for a duta set needed temporarily in
a job step, define the temporary data set in a DD statement of the form:

I I ddname

I I

I I

DD DSNAME = &ddname,

SPACE = (avgbl, (amount, increment, dirblks)),

UNIT = unitparms, DISP = (NEW, DELETE), DCB = dcbparms

Reader, Initiator, and '''riter Cataloged Procedures PRO 15

Procedure INITD

&ddname
name of the DD statement for the dedicated data set, preceded by an & sign.

(avgbl, (numbr,increment,dirblks))
Space request, in terms of average block length only, needed for this tempo­
rary data set.

An attempt to allocate the dedicated data set will be replaced by the nor­
mal allocation procedure if one of the following conditions is encountered:

• 1£ the total space (primary and increments) requested here exceeds the
total space (primary and increments) available to the dedicated data set.

• If the use of ,dirblks (presence or absence) differs from that in the DD

statement of the dedicated data set, (or if ISAM is specified).

• If the space for ,dirblks requested here exceeds the space for ,dirblks
specified in the dedicated data set.

• If the space request is shown in other than average block length.

unitparms
U nit parameters
Parameters that describe the unit to be used for the temporary data set, if
the dedicated data set is not used. Here, the unit may be a magnetic tape
unit, as well as a DASD.

NEW,DELETE

These disposition parameters must either be coded explicitly or may take
effect through default.

dcbparms
DCB parameters required for your temporary data set. Unless specified, you
may find that a previous user has left the dedicated data set with undesired
DeB parameters.

Language processor programs (such as FORTRAN compilers) make much use of
temporary data sets. To permit ready use of the dedicated data set feature with
ffiM-supplied processor procedures, IBM supplies the initiator procedure INITD.

(It becomes part of the system by including it in the SYSl.PROCLIB at system
generation time.)

INITD is an initiator procedure that dedicates five utility data sets commonly
used with IBM-supplied processor procedures. To use the dedicated data set fa­
cility with these procedures, start the INITD initiator.

Before including the INITD procedure in your system, review the space alloca­
tions, unit specifications, and ddnames used in the procedure against your re­
quirements. If they are significantly different, you may wish to code your own.

Existing procedures can be used under INITD initiators. However, the job
stream may be aft"ected as described under Disposition of Temporary Data Sets.
Procedures designed for the dedicated data set feature remain operative with­
out the presence of the dedicated data set feature. In short, the procedure will
run under any initiator regardless of whether that initiator has dedicated data
sets.

PRO 16 OS/VSl Planning and Use Guide

INITD Procedure Statements

The EXEC Statement

DO Statement for the
Scheduler Work Area Data
Set (SWADS)

The INI'ID procedure is as follows:

Procedure: INITD

/ / IEFPROC EXEC PGM==IEFIIC,PARM=='A,LlMIT=13'
/ / IEFRDER DO DSN =&&SWADS,UNIT=SYSDA, X
/I SPACE:o (176,(250) "CONTIG) ,DISP= (NEW,DE LETE)
/ / SYSABEND DO SYSOUT=A,SPACE==(TRK,(1,10))
/ / SYSUT1 DO DSNAM E = &UT1 ,SPACE = (1700,(200,100) "CONTI G), X
/I UNIT= (SYSDA,SEP= IEFRDER)
/ / SYSUT2 DO DSNAME=&UT2,SPACE= (1700,(200,100)), X
/I UNIT= (SYSDA,SEP=SYSUT1)
/ / SYSUT3 DO DSNAME =&UT3,SPACE = (1700,(200,100)), X
/I UNIT= (SYSDA,SEP=SYSUT2)
/ / SYSUT4 DO DSNAM E = &UT4,SPACE = (460, (700, 100)), X
/I UNIT= (SYSDA,SEP==SYSUT3)
/ / LOADSET DO DSNAME=&LOADSET,UN IT= (SYSDA,SEP =SYSUT1), X
/I SPACE = (3600,(1 00,10))

Each of the statements shown in the preceding illustration is explained in detail
in the following. In addition to describing the reason for or effect of the use of a
parameter, the description distinguishes between those parameters that must be
coded as shown and those that you may override or substitute for.

The EXEC statement for the procedure is:

/ / IEFPROC EXEC PGM = IEFIIC, PARM == 'A, LIMIT == 13'

IEFPROC

The step name. Must be coded as shown.

EXEC

The job control statement name. Must be coded as shown. Defines the begin­
ning of a job step.

PGM=IEFIIC

The program to be executed in this job step. IEFsD060 is the name of the initi­
ator program. Must be coded as shown. \Vhether dedicated data sets are used
depends on the DD statements that follow, not on the name of the program.

PARM=<A,uMIT=13'

Parameter list for the initiator program. A is the class of jobs to be processed,
LIMlT=13 is the dispatch priority limit for this initiator. These values are
included for compatibility with MVT and vs2, but are ignored in vsl.

The DD statement for the sw ADS data set used with the INITD procedure is the
same as that described previously under the writeup of the INIT procedure.

Reader, Initiator, and ·Writer Cataloged Procedures PRO 17

DO Statements for the
Dedicated Utility Data Sets

DO Statement for the Loadset
Data Set

Use of Dedicated Data Sets
by Processor Programs for
Utility Data Sets

Four DD statements in the INITD procedure allocate space to four commonly used
utility (or scratch) data sets. The statements are:

/ / SYSUT1 DD DSNAME = &UT1, SPACE = (1700, (200, 100),. CONTIG),

I! UNIT == SYSDA

//SYSUT2 DD DSNAME = &UT2, SPACE == (1700, (200, 100)),

I! UNIT = (SYSDA, SEP == SYSUT1)

/ / SYSUT3 DD DSNAME = &UT3, SPACE == (1700, (200, 100)),

I! UNIT = (SYSDA, SEP = (SYSUT1, SYSUT2))

/ / SYSUT4 DD DSNAME = &UT4, SPACE = (460, (700, 100)),

1/ UNIT = (SYSDA, SEP = (SYSUT1, SYSUT2, SYSUT3))

DSNAME
The leading & sign marks the name as that of a temporary data set.

SPACE =
The first three data sets will be assigned space that can accommodate 200
blocks of 1700 bytes. When that space is exhausted, additional space will be
allocated for 100 blocks at a time. Additionally, for the first data set, SYSUTI,
all the primary space is to be continguous when allocated. The fourth data set
is to be allocated space for 700 blocks of 460 bytes initially. When exhausted,
space is to be allocated for 100 blocks at a time.

UNIT=
Space is to be allocated from direct access storage devices. If possible, each
data set is to be on a separate device from every other data set to avoid
contention for the device.

In the INITD procedure, the dedicated data set for the object module, the loadset
data set, is defined as follows:

/ I LOADSET DD DSNAME = &LOADSET, SPACE = (3600, (100, 10)),

II UNIT = (SYSDA, SEP = SYSUT1)

LOADSET
DDName of the dedicated data set.

DD
Data definition statement

DSNAME=&LOADSET
A temporary dataset

sPAcE=(3600,(100,10))
Space allocation commonly used in compilers.

UNIT=
Space is to be allocated on a DASD but not the same one as the SYSUTI data
set.

Presently, processor programs show the temporary nature of the utility data sets
by omitting a DSNAME= entry. If these DD statements are revised with the addition
of a DSNAME=&name entry, the system will attempt to use dedicated data sets of
the INITD program for job steps processed under that initiator. To illustrate the
necessary change, let us look at a present DD statement and the change required.,

PRO 18 OS/VSl Planning and Use Guide

Processor Programs Library
Data Sets as Dedicated
Data Sets

The following is a DD statement from the COBECLG procedure for which a tempo­
rary data set will be allocated:

II SYSUT1 DD UNIT =- SYSDA, SPACE = (1024, (200,65))

The temporary character of this data set is shown by the absence of a DSNAME=
entry. To force consideration of the dedicated dataset, assuming that the step is
running under the INITD procedure, add a DSNAME=&name (or &&name) entry
referring to the dedicated data set to be considered for use:

II SYSUT1

1/
DD UNIT = SYSDA, SPACE = (1024, (200,65)), DSNAME =

&SYSUT1
x

With the addition of the dedicated data set feature, the allocation progFam now
first searches the DD statements in the initiator procedure for an already existing
data set with a DD name like that following the & sign (the symbolic name). If the
allocation program finds such a data set, it next determines whether the organi­
zation (sequential, partitioned) of the dedicated data set is the same as that of
the temporary data set and whether the total space requirements (primary and
increments) of the temporary data set fall within the total space allocation of the
dedicated data set. If there is no dedicated data set with the symbolic name,
the organizations are not the same, or the temporary space does not fit within the
dedicated space, the initiator will attempt normal allocation. It is for the latter
event that unit parameters should be present.

Processor programs library data sets, such as the COBOL library, for example, may
be referred to repeatedly in a batch of jobs. To save allocating the system data set
in each job and step, the system data set can be dedicated in an initiator pro­
cedure. Caution must be exercised when dedicating system libraries or other non­
temporary data sets. The DD statement in the initiator procedure must have the
disposition specified as OLD or SHR and KEEP to prevent the deletion of the data set
when the initiator is stopped. In the same manner the disposition on the job step
DD statement referencing the dedicated library must also be OLD or SHR and KEEP
or PASS to allow the dedication to take place without a space comparison. The
example data set references are as follows.

The following is the DD statement in the COBECLG procedure that results in the
allocation of the COBOL library to the job step calling the procedure:

II SYSLIB DD DSNAME = SYS1.COBLlB, DISP = (SHR, KEEP)

Reader, Initiator, and \Vriter Cataloged Procedures PRO 19

(

Disposition of Temporary
Dedicated Data Sets

The explicit data set reference (DSNAME=SYSl.COBLIB) requires a search of the
catalog in each job step using the procedure. To save the repeated catalog search,
move the DD statement to the initiator procedure and replace it in the COBECLG
procedure with a DD statement in which the DSNAME=&name entry refers to the
ddname of the dedicated data set. Allocation treats this as a dedication request,
dedicated if so found. The new DD statement in the COBECLG procedure, after
adding the present one to the initiator procedure, is:

// SYSLIB DD DSNAME = &SYSLI B, DISP = (SH R, KEEP)

The result is one catalog search per initiator start instead of one catalog search
every job step. However, keep in mind that this COBECLG procedure requires the
initiator with the dedicated data set. Using this modified procedure with an un­
modified initiator will result in failure to allocate.

Allocation/termination routines do not delete temporary dedicated data sets at
the end of each job step, but, instead, keep them until the initiator stops; this
occurs even if there is a specification of DISP= (NEW,DELETE) or DISP=(MOD,DELETE)
on the DD statement for the data set. Therefore, if you attempt to use such a data
set a second time in the same job, it will contain data from the previous use. This
can be a problem if you are using ca~aloged procedures and run the same pro­
cedure twice within the same job. For example: assume that you use the proce­
dure PLILFLCLG twice within the same job and it uses a dedicated data set with
a disposition of (MOD,PASS) for the compile step and (OLD,DELETE) for the linkage
edit step. When the procedure is entered for the second time, the object module
produced by the second compile step will be placed in back of the object module
produced by the first compile step. Since both object modules are assigned iden­
tical names by the compiler, only the first will be linkage edited.

You can avoid this problem by not using dedicated data sets for jobs that run
the same cataloged procedure twice. Alternatively, you could submit each cata­
loged procedure as separate jobs instead of submitting them as separate job steps
within the same job.

You can use the following chart to determine the disposition, by allocation/
termination, of temporary dedicated data sets.

If you code
DISP=

NEW
OLD/SHR
MOD
,DELETE
,PASS
,KEEP

Allocation/termination treats it as:

OLD
OLD
OLD
KEEP
PASS
KEEP

PRO 20 OS/VSl Planning and Use Guide

Output Writer Procedures

System Output Writers

Procedure Requirements

The EXEC Statement

A cataloged procedure for output writers requires two job control statements:
an EXEC statement and a DD statement. A second DD statement can be provided
for writer ABEND. See D D Statement for Storage Dump in this section.
• An EXEC statement with the step name IEFPROC specifies the output writer

program.
• A DD statement named IEFRDER defines the output data set.
• A DD statement named SYSABE~T})/SYSUDUMP requests a storage dump (optional).

mM supplies two output writer procedures for vsl named WTR and WTRT. WTR is
used with local unit record output devices and WTRT is used with local non-unit
record output devices. The two procedures follow. Your installation must modify
the writer procedure for use with remote devices (see Procedure Requirements).

Procedure: WTR

//IEFPROC EXEC IEFOSC01, X

/ / PARM =0 'PA'

//lEFRDER DO UNIT = 1403, VOLUME =0 (" , 35), X

i/ DSNAME == SYSOUT, DISP == (NEW, KEEP), X

/ / DCB == (LRECL == 133), X

1/ RECFM == FM

Procedure: WTRT

//IEFPROC EXEC PGM == I EFOSC01 ,PARM == 'PA'
IIIEFRDER DO UNIT == 2400, VOLUME == (" ,35), DSNAME == SYSOUT, X
II DISP == (,KEEP), X
1/ DCB == (RECFM == FM, LRECL == 133, BLKSIZE == 133)

When creating your own output writer procedure, you must conform to the pro­
cedure format and the statement requirements. Use the IBM-supplied procedure
as an example. The statement requirements are explained individually in the
following paragraphs. When creating a writer procedure for use with remote
unit record output devices, you must provide an EXEC statement, as explained
here, and a DD statement as explained in DD Statement for the Output Data Set
for a Remote Device in this section.

The EXEC statement specifies the output writer program and passes a set of pa­
rameters to it. The format for the EXEC statement is:

I/IEFPROC EXEC PGM == IEFOSC01, X

II PARM == 'cxxxxxxxx, seprname,#,TR,no,nnnn.v'

The step name must be IEFPROC, as shown. The parameter requirements are
as follows:

PGM=lEFoscOI
specifies the output writer program. The name of the program must be
IEFoscOl, as shown.

Reader, Initiator, and Writer Cataloged Procedures PRO 21

PRO 22

PARM==<CXXXxxxxx,seprname,#,TR,no,nnnn,y'
is a set of parameters for the output writer program. The parameters are
positional and a comma must be present to indicate the absence of a param­
eter. The various parameters are explained:

c - an alphabetic character, either P (for printer) or C (for punch) that
specifies the type of control characters for the output of the writer.

xxxxxxxx - from one to eight (no padding required) single-character class
names for system output. These specify the type of output that the
writer can process, and also establish the priority of the output classes,
with the highest priority on the left. If class name parameters are in­
cluded in the START command, they override this entire set of class names
in the cataloged procedure.

seprname - the name of the program (up to eight characters) that provides
job separation in the output data set. You can specify the name IEFosc06
to use the output separator supplied by IBM, or you can specify the
name of your own program, which must reside in the link library
(SYSl.LINKLIB). This subparameter may be omitted, in which case no
output separator is used. (Output separators are described in the Output
Separation section.)

- the number (1, 2, or 3) of separator pages (printer) or cards (punch)
produced by the IBM-supplied output separators. This parameter is valid
only if SEPRNAME is present and will default to three if omitted. This
parameter is also passed to user-written output separator programs (see
Output Separation, a preceding section of this publication).

TR - The TR parameter causes the writer to translate any unprintable char­
acter to a blank. This parameter is valid only when the output device is
a printer and the function is not performed if TR is omitted.

no - the number of lines per page of printed output, with a maximum value
of 254. This line count is only in effect when the data set does not
contain control characters. This parameter is valid only when the output
device is a printer and will default to 60 if omitted.

nnnn - checkpoint interval. The number of pages (for printer) or logical
records (for punch/tape devices) between checkpOints. This optional
specification causes the writer to checkpoint SYSOUT data sets. SYSOUT
data sets that are smaller than the indicated checkpoint interval are not
checkpointed. If the number is not a multiple of 10, it is rounded down
to the nearest multiple of 10.

Output Device Type

Printer - nnnn==20 for a 1403 would cause a checkpoint in a data
set approximately once a minute.

Punch/Tape - nnnn==300 for a 2540 would cause a checkpoint in a
data set approximately once a minute.

y - the number of end-of-job separator (1, 2, or 3) pages to be passed to the
output separator program. The IBM-supplied separator prints that number
of pages. This is valid only if seprname has been specified and output is
destined for a printer device. Printer or punch destination is based on
DD information, control character specification, and the writer parm field
for non unit record devices.

OS/VSl Planning and Use Guide

DD Statement for the

I· OUTPUT Data Set for a

Local Device

Your procedure ror the output writer must include a DD statement that defines the
output data set. The format for this statement is:

//IEFRDER DD UNIT = device, LABEL = (,type), X

/I VOLUME = (, , , voicountl, X

/I DSNAME = anyname, DISP = (NEW, KEEP), X

/I DCB = (list of attributes), X

/I UCS = (code [, FOLD][, VERIFY] I, X

/I FCB = (image-id ~ ,ALIGN ~
,VERIFY)

This statement must be named IEFRDER, as shown. The parameter requirements
are as follows:

uNIT=device
specifies the printer, magnetic tape, or card punch device on which the out­
put data set will be written. The devices that can be used are: 1403, 1442,
1443, 2400, 2400-1, 2400-2, 2400-3, 2400-4, 2520, 2540, 3211, or 3525 with
read feature.

LABEL= (,type)
describes the data set label (needed only for tape data sets). If this param­
eter is omitted, a standard label is assumed.

VOLUME= (",volcount)
limits the number of tape volumes that can be used by this writer during its
entire operation (from the time it is started to the time it is stopped). This
parameter is not required for printer or card punch devices.

DSNAME=anyname
specifies a name for the output data set (tape only), so that it can be 're­
ferred to by subsequent job steps. This name is also necessary for specifica­
tion of the KEEP subparameter in the DISP field.

DISP= (NEW,KEEP)

specifies the KEEP subparameter to prevent deletion of the output data set
(tape only) at the conclusion of the job step.

DCB= (list of attributes)
specifies the characteristics of the output stream and the number of buffers
acquired by JAM. The RECFM and LRECL subparameters must be present in
your procedure. For unit record devices, the BLKSIZE subparameter may be
modified to take advantage of command chaining available through JAM.
If you omit the BLKSIZE subparameter, JAM will acquire three buffers of the
size indicated at system generation time (seethe VSl SYSGEN manual for
more details). If the BLKSIZE subparameter is coded, the value specified on
the DD statement overrides the amount of buffer space required by the writer
as specified at sysgen time. BLKSIZE must be a multiple of LRECL, and a
BLKSIZE=-798 would allow JAM to accumulate six 133-byte print records be·
fore initiating the 1/0 to the output device. Care should be taken to ensure
that BLKSIZE, if specified, is not greater than that specified at sysgen. Other­
wise, not enough space may be available to allow readers and writers to
operate at the level specified at sysgen.

The BUFNO parameter in the IEFRDER DD card is used to define the number
of buffers that JAM obtains. If this parameter is omitted, JAM will obtain

Reader, Initiator, and Writer Cataloged Procedures PRO 23

DO Statement for

Storage Dump

three buffers of the specified or defaulted BLKSIZE. If coded, the only valid
entry is 1, which causes JAM to obtain one buffer. One buffer can only be
specified when BLKSIZE has been coded to indicate that command chaining is
not being used. Any other value is invalid and would result in three buHers
being obtained. The specification of one buHer with no command chaining
results in optimal use of storage since the JAM output buffer will become part
or the writer workarea.

The DCB subparameter must be specified as required by QSAM when writing
to non-unit record output devices. 'When starting a writer to a non-unit
record device using the IBM-supplied WTR procedure, BLKSIZE must be
specified with the START command, that is,

S WTR.W,2BO" DCB=BLKSIZE=l33

When you use the WTRT procedure, it is not necessary to specify BLKS12E.

ues= (code [,FOLD] [, VERIFY])

specifies the code for a universal character set (ues) image that will be
loaded into the ues buffer. FOLD causes bits zero and one to be ignored when
comparing characters between the ues buffer and the print line buHer. This
option allows lowercase character codes to be printed in uppercase by an
uppercase chain/train. VERIFY causes the ues image specified to be output
for the printer. The ues parameter is optional and is valid only when the
output device is a 3211 printer or a 1403 printer.

FCB= (image-id [,ALIGN])
,VERIFY

causes a fonns control buffer (FCB) image with the specified image-id to be
loaded into the FCB. One of two optional parameters, ALIGN or VERIFY, can
be coded. ALIGN and VERIFY each allow the operator to align fonns. VERIFY

also causes the FCB image to be output for the printer. The FCB parameter is
optional and is valid only when the output device is a 3211 printer.

Your procedure for the writer can include a DD statement that allows you to
receive a SYSABEND or SYSUDUMP storage dump if the writer reaches ABEND.
If the SYSl.DUMP data set is properly defined and available to accept the
dump, you will receive an svc dump. Otherwise, you will receive either a
SYSABEND or a SYSUDUMP, depending on which DD statement you include.

//SYSABEND DD SYSQUT=A

or

/ISYSUDUMP DD SYSQUT=A

This statement can be named SYSABEND or SYSUDUMP, as shown. If both DD state­
ments are included, the last one found is used.

SYSOUT==A
specifies the output class for the dump.

PRO 24 OS/VSl Planning and Use Guide

I DD Statement for the

OUTPUT Data Set for

a Remote Device

Direct SYSOUT Writer
Procedures

Your writer procedure for use with remote devices must include a DD statement
that describes the OUTPUT data set. The format for this statement is the same as
the DD statement in the IBM-supplied writer procedure used with local unit record
devices except for a difference in the UNIT specification and the addition of
another parameter. These parameter requirements are:

UNIT==aan

specifies the remote unit record device used to handle the output.

aa - either PR (for printer) or PU (for punch) designates the device type.

n - a numeric character that represents the desired device of that type.

TERM==RT

indicates that the output is going to a remote device.

The direct SYSOUT writer is an option in vsl that causes program output to be
written directly from the problem program synchronously, with the exception of
system messages, with execution of the problem program. There are two IBM­
supplied direct system output writer procedures; DSO and DSOJS. The difference
in the two procedures is that DSO JS provides that output separators are written
prior to the problem program output. A user-supplied procedure can be invoked,
but it must execute the IBM-supplied direct system output writer. Both IBM­
supplied procedures require two job control statements; an EXEC statement and
a DD statement.

• The EXEC statement is named IEFPROC.

• The DD statement is na..T!1ed IEFF.DEF. and describes the ultimate output data set.

The procedures supplied by IBM follow. If you wish to create your own pro­
cedure, follow their formats.

IIIEFPROC

IIIEFRDER
1/

EXEC

DO

Procedure: DSO

PGM = IEFDSO, REGION = 8K, PARM = (PA ••• Al

UNIT = 2400. DSN = SYSOUT. DISP = (NEW. KEEP).
LABEL = (, SL), VOL = (, •• 05). DCB = (BUFNO = 3)

Procedure: DSOJS

IIIEFPROC EXEC PGM = IEFDSO, REGION = 8K, PARM = (PA, IEFOSC06,3,A)

I/IEFRDER DO
1/

UNIT = 2400, DSN = SYSOUT, DISP = (NEW, KEEP).
LABEL = (,SL), VOL = (, , ,05), DCB = (BUFNO = 3)

Reader, Initiator, and Writer Cataloged Procedures

X

X

PRO 25

The EXEC Statement

The DD Statement

The EXEC statement specifies the direct SYSOUT writer. It is also used to give the
writer program operating information.

IIIEFPROC EXEC PGM = IEFDSO, REGION = 8K, PARM = (ex, seprname,
I I nosep, jjj)

IEFPROC
Name of the EXEC statement. It is required as shown.

IEFDSO
Name of the writer program.

REGION=8K
Space required by IEFDSO to start. This parameter is included for compati­
bility with MVI' and vs2. It is not used by vsl.

PARM=
Information for the lEFDSO program.

c - A letter, P for printer, or C for card punch, that describes the ultimate
hard-copy medium. Must be given.

x - The SYSOUT class to be processed. If stated here, and in the START com­
mand, the latter ru]es. If not stated here, it must be given in the START
command.

,seprname
Output separation program name. This may be omitted, but a comma must
be written if other items follow.
IEFOSc06 - Name of the ffiM-supplied separator program.

,flOSep

,iii

Number of output separators. This may be omitted if seprname is included,
but a comma must be written if other items follow. The default value is
three.

Job classes to be processed. From one to fifteen letters (A-O) showing the
job classes to be processed. If any job classes are named in the START com­
mand, they overrule all stated here. If none are named here, the job classes
are those assigned to the partition for which this writer is started.

This DD statement describes the kind of volume to be used and the format of the
data set.

I/IEFRDER DO UNIT = name, DSN = anyname, DISP = (NEW, KEEP), X
/ / LABEL = (, SLl. VOL = (, , , voleount, DCB = (list)

IEFRDER
Name of the DD statement. Required as shown for IEFDSO.

name
Any form of unit identification may be used, such as OOE, 2400, or TAPE.
Multiple parallel units (UNIT=2400,2) cannot be used.

PRO 26 OS/VS1 Planning and Use Guide

Cataloging the Procedure

DSN=anyname
Name of a non-temporary data set. A name must be given. If stated here and
in the START command also, the latter rules. The name is used in the dis­
position messages at step termination, and must be used to identify the data
set if it is to be printed later from tape.

DISP= (NEW,KEEP)

Required disposition.

LABEL= (,SL)

If DSO is being used to write to magnetic tape, standard label tapes are re­
quired. The label description may be stated explicitly or may be omitted,
in which case SL is assumed.

",volcount

list

1-225. The maximum number of volumes a data set to be processed by this
writer will have. This determines the amount of job queue space allocated
to each SYSOUT data set processed by this writer. After the first five volumes,
each subsequent 15 require another job queue record. If omitted, one is as­
sumed. If stated here and also in the START command, the latter rules. This
value cannot be given in the DD statement of a job to be processed.

The following DCB parameters gain control only if they are not also given in
the SYSOUT DD statement or in the DCB macro instruction (that is, default
values can be stated in this procedure):

BFALN, BFTEK, BUFL, BUFNO, BLKSIZE, LRECL, RECFM, NCP, IllARCHY, UCS.

The following DCB parameters, if stated here, override all except those given
in a START command:

CODE, DEN, MODE, OPTCD, PRTSP, STACK, TRTCH.

Use the IEBUPDTE utility program to add your reader, initiator, or writer proce­
dures to the cataloged procedure library (SYSl.PROCUB). Use of this program is
fully explained in the OS/VS Utilities publication.

The following example shows the control statements needed to add a reader
procedure and an output writer procedure to the procedure library. For this ex­
ample, the reader procedure is named RDPRoc4, and the output writer procedure
is named WTPRoc2.

The EXEC statement in this example specifies the IEBUPDTE program. The
PARM=NEW parameter indicates that all input to the utility program is contained
in the data set defined by the SYSIN statement.

The ADD control statement furnishes the name of the member to be added to
the procedure library. The three numbers following the member name indicate:

• The level of modification (00 indicates first run).
• The source of the modification (0 indicates user-supplied).
• The printed output desired (ALL indicates print entire updated member and

control statements).

Reader, Initiator, and Writer Cataloged Procedures PRO 27

The NUMBER statement specifies the sequence numbers for records within the
new member. With this statement, the number 00000010 is assigned to the first
record of the new procedure, and subsequent records are incremented by
00000010.

II NEWPROCS JOB 09# 770,D.P.BROWN

/I EXEC PGM = IEBUPDTE, PARM = NEW

II SYSPRINT DO SYSOUT = A

IISYSUT2 DO DSNAME = SYS1.PROCLlB, DISP = OLD

/I SYSIN DO DATA

· I ADD RDPROC4, LEVEL = 00, SOURCE = 0, LIST = ALL

· / NUMBER NEW1 = 10, INCR = 10

IIIEFPROC EXEC PGM = IEFVMA, X

/I PARM = '00101005010EOO001A'

IIIEFRDER DO UNIT = 2400-2, LABEL = (, NL), X

/I VOLUME = SER = SYSIN, X

1/ DCB = (BLKSIZE = 80, LRECL = 80, BUFL = 80, X

/I BUFNO = 1, RECFM = F, TRTCH = C, DEN = 0)

IIIEFPDSI DO DSNAME = SYS1.PROCLlB, DISP = SHR

· I ADD WTPROC2, LEVEL = 00, SOURCE = 0, LIST = ALL

· I NUMBER NEW1 = 10, INCR = 10

IIIEFPROC EXEC PGM = IEFOSC01, X

1/ PARM = 'PAC'

IIIEFRDER DO UNIT = 2400-2, LABEL = (,NL), VOLUME=(",40), x
/I DSNAME = SYSOUT, DISP = (NEW, KEEP), X

/I DCB = (BLKSIZE = 133, LRECL = 133, RECFM = F, X

1/ TRTCH = C)

/ *

Example of the Use of Symbolic Parameters in Cataloged Reader,
Writer, and Initiator Procedures

PRO 28

Symbolic parameters in a cataloged procedure that is started by the START

operator command may be assigned values in the START command that starts the
procedure. In this manner, any parameter in the EXEC or in any DD statement
may be assigned a value at the time the procedure is started.

A cataloged procedure that uses symbolic parameters may also have a PROC

statement that shows the default values for the symbolic parameters. Keywords
that may be used in a JOB, EXEC, or DD statement cannot be used as symbolic
parameters. (For example, you cannot say that DISP is equal to ®ION.) How­
ever, subparameter keywords of the DD statement can be used as symbolic param­
eters. (For example; you may code BUFNO=&BUFNO.)

OS/VS1 Planning and Use Guide

The PROC Statement

The START Command

The following example shows a reader procedure that contains symbolic
parameters.

/ / RDPR5 PROC STI ME = 030, MCS = EOOO, MSG L = 01,

I! PDSI = 'SYS.1. PROCLlB'

/ / IEFPROC EXEC PGM = IEFVMA

/I PARM = '001&STIME.05010&MCS&MSGL.A'

/ / IEFRDER DO UNIT = 2400, LABEL = (,NL), VOLUME =SER=SYSIN,

I! DCB = (BLKSIZE = 80, LRECL = 80, BUFL == 80,

I! BUFNO = 1, RECFM = F)

IIIEFPDSI DO DSNAME = &PDSI, DISP = SHR

In the preceding illustration the PROC statement assigns default values to the
symbolic parameters &STIME,&MCS,&MSGL,&PDSI.

These same symbolic parameters are assigned values with the following START
command:

START RDPR5, STIME '"' 035, MCS = EOOO, MSGL = 11, PDSI = 'SYS1. USER'

Blocking the Procedure Library

You may, in some cases, improve the use of direct access space and gain per­
formance advantages by blocking the procedure library. It may be blocked at
system generation or subsequently by using the operating system utilities. Block
size must be a multiple of 80.

The following example shows the control statements needed to block the pro­
cedure library using the IEBCOPY and IEHPROGM utility programs. Step CI of job
BLOCK copies the procedure library and blocks it to 400. It deletes the old copy
and catalogs the new copy under the name of LIBCOPY. Step RI renames the pro­
cedure library to Sysl.PROCLIB and catalogs it under that name.

Reader, Initiator, and \Vriter Cataloged Procedures PRO 29

IIBLOCK JOB ACCT, 082, MSGLEVEL = 1

/I C1 EXEC PGM= IEBCOPY

II SYSUT1 DO DSNAME = SYS1. PROCLlB, UNIT = 2314, DISP = (OLD,

/I DELETE, KEEP)

IISYSUT2 DO DSNAME = LlBCOPY, UNIT = 2314, VOLUME = X

/I SE R = 111111, X

/I DISP = (NEW, CATLG, DELETE), DCB = (RECFM = FB, X

/I LRECL = 80, X

/I BLKSIZE = 400), SPACE = (TRK, (50, 1, 10))

II SYSPRINT DO SYSOUT = A

II SYSIN DO DUMMY

I *
/I Rl EXEC PGM = IEHPROGM

11001 DO UNIT = 2314, VOLUME = SER = 111111, DISP = OLD

II SYSPRINT DO SYSOUT = A

II SYSIN DO

RENAME DSNAME = LlBCOPY,VOL=2314= 111111 ,NEWNAME=
SYS1.PROCLIB

CATLG DSNAME = SYS1.PROCLlB,VOL=2314=111111

I *

PRO 30 OS/VSl Planning and Use Guide

Resident Routines Options

The resident routines options are the BLDL feature, the
resident reenterable modules feature, and the RSVC and
RERP features. These features permit preloading into
storage routines (or at least their addresses) that other­
wise would be repeatedly loaded each time the rou­
tines are requested. The purpose of these options is to
improve performance by reducing or eliminating the
access time required to obtain the routines with which
these options are concerned.

The link list feature, also described in this section,
permits references to the link library to be extended
to other data sets.

Section Outline

Resident Routines Options RRO 1

BLDL and Resident Routines Feature RRO 3
The Resident BLDL Table Option RRO 3

Selecting Entries for the Resident BLDL Table .. RRO 4
Table Size RRO 5
Frequency of Use RRO 5

List IEABLDOO RRO 5
Resident Reenterable Modules Options RRO 5

The Resident Access Method Modules Option RRO 6
List IEAIGGOO RRO 7
List IEAIGG01 RRO 7
Resident Link Library Modules Option RRO 8
List IEAIGG02 RRO 8
List IEAIGG03 RRO 8

The Resident SVC Routines Option RRO 8
Storage Requirements RRO 8
List IEARSVOO RRO 9
List IEARSV01 RRO 10

The Resident Error Recovery Procedure Option RRO 11
Storage Requirements RRO 11
List IEAIGEOO RRO 11

Creating Parameter Library Lists RRO 11
Example RRO 12
Example of the ERP Option List RRO 13

Link Library List Feature RRO 13

Resident Routines Options RRO 1

BRO 2 OS/VSl Planning and Use Guide

BLDL and Resident Routines features

The BLDL, reenterable modules, RSVC and RERP options, when included in your
system, enable you to make resident in the pageable supervisor area:
1. AIl, or a selection of, link or svc library directory entries.
2. A selected group of access method routines.
3. A selected group of type 3 and 4 svc routines.
4. A selected group of error recovery procedures.
5. Reenterable routines from the link library, and svc library.

Placement occurs during the system initialization process. The routines or
svc/link library entries may be pageable or fixed (RERP routines are always fixed)
and reside in the pageable supervisor. Additionally, the fixed items are long-term
fixed in the high end of real storage. That is, the fixed items occupy space in
both virtual and real storage but are not subject to paging.

In the following discussions, the term resident is often used. As applied to the
resident routines option, resident means existing in the pageable supervisor area
and may be pageable or fixed, depending on the option selected (RAM or RAMF,
RSVC or RSVCF, BLDL or BLDLF) .

These options are included in the system when it is generated. The System
Generation Reference publication describes the procedure.

You specify:
1. the link library (SYS1.LINKLIB) and svc library (SYs1.sVCUB) routines and

directory entries
2. the access method routines
3. the type 3 and 4 svc routines
4. the error recovery procedures to be made resident through lists of linkage

library, access method, svc routine and error recovery procedure load module
names placed in the parameter library (SYS1.PARMLIB).

Standard lists (as shown in Figure BRO 1) exist for every option. The standard
list (so called because its member name in the parameter library is predefined)
is automatically referred to during the initialization process when the option is
either selected or defaulted to during sysgen and is neither canceled or modified
in response to message IEAIOIA SPECIFY SYSTEM AND/OR SET PARAMETERS FOR
RELEASE xx.yy.sssss. All standard lists, except IEABLDOO, are built at sysgen.
IEABLDOO is copied from the starter system. Some standard lists contain module
names and some lists are null.

A portion of this section disousses the function of each option, the creation of
the parameter library lists, and, lists the content of the resident access method
modules and resident type 3 and 4 svc routines standard lists. The M~8age Li­
brary publication describes the message (message number IEAIOIA) and replies
associated with the options.

The Resident BLDL Table Option

System issued ATTACH, LINK, LOAD, or XCTL macro instructions requesting load
modules from partitioned data sets cause a search of the data set directory for
the location of the requested module (the BLDL table operation) and a fetch of
the module. The resident BLDL table option eliminates the directory search re­
quired during execution of these macro instructions when a load module (whose
directory entry is resident) is requested from the linkage or svc libraries.

This option builds lists of directory entries for use by ATTACH, LINK, WAD, or
XCI'L macro instructions requesting linkage or svc library load modules. During

Resident Routines Options RRO 3

Option Pageable Fixed Pageable Fixed Pageable Fixed Fixed

~ BLDL BLDL RSVC RSVC RAM RAM RERP

How to specify CTRLPROG CTRLPROG CTRLPROG CTRLPROG

at SYSGEN Defaulted OPTIONS = RESIDNT = RESIDNT = Defaulted Defaulted RESIDNT =
BLDL TRSVC TRSVC ERP

Standard list
IEAIGGOO IEAIGG01

associated with IEABLDOO IEABLDOO IEARSVOO IEARSV01 IEAIGEOO

the option
IEAIGG02 IEAIGG03

How to specify
BLDL = BLDLF = RSVC = RSVCF = RAM = RAMF= RERP =

at IPL -- -- --- -- --- -- ---

May be speci-
fied at IPL
whether or not Yes Yes No No Yes Yes No

specified at
SYSGEN

Number of
lists which may 2 2 1 1 4 4 1
be specified

Names on the SVC or link SVC or link Type 3 and 4 Type 3 and 4 Access method Access method Error recovery

list library rou- library rou- SVC routines SVC routines and re- and re- procedure

routines routines enterable link enterable I ink routines
library library
routines routines

Library of SYS1.SVCLI B SYS1.SVCLI B SYS1.SVCLlB SYS1.SVCLI B SYS1.SVCLlB SYS1.SVCLlB SYS1.SVCLlB

residence SYS1.LlNKLIB SYS1.LlNKLIB SYS1.LlNKLIB SYS1.LlNKLIB

Figure RRO 1. Resident Routines Options

Selecting Entries for the
Resident BlOl Table

execution of the BLDL operation in the macro instruction routines, the library
directory is searched only when the directory entry for the requested load
module is not present in the resident BLDL table.

You list, in a member of SYSl.PARMLffi, the names of those linkage or svc library
load modules whose directory entries are to be made resident. The member
name for the standard list is IEABLDOO. The load module names must be listed
in the same order as they appear in the directory; that is, they must be in
ascending collating sequence. Creation of parameter library lists is discussed
later in tIlis section. The next part of this section provides guidelines for choosing
the content of the list.

Notes:
1. Directory entries in the resident table are not updated as a result of updating the load

module in the library. The old version of the load module is used until an IPL opera­
tion takes place and the new directory entry for the module is made resident.

2. BLDL and BLDLF are mutually exclusive. By specifying either one during system
initialization, the other is overridden.

Any load module in the linkage or svc library may have its directory entry
placed in the resident BLDL table. Other items you should consider are:

1. Table size (probably only a factor if BLDLF is used).
Linkage library - Each entry requires 40 bytes.
svc library - Each entry requires 32 bytes.

2. Frequency of use of the load module.

RRO 4 OS/VSl Planning and Use Guide

Table Size

Frequency of Use

List IEABLDOO

The BLDL table, when BLDL is specified; occupies pageable storage (virtual stor­
age) and the table size is usually not a problem. The BLDL table, when BLDLF is
specified, occupies real storage and each installation should carefully consider
how much real storage it can afford to dedicate for this function.

Since fixed resident routines reduce the amount of real storage available for
paging, your installation's workload should be carefully considered before select­
ing the BLDLF option. The BLDL option, on the other hand, will always be beneficial
for any frequently-used load modules.

For Link Library Lists: The scheduler, linkage editor, and language processor(s)
are possible selections for link library lists.

For SVC Library Lists: In general, use any module from the svc library you
would consider for residence (for example, the RAM option). You should not
create lists for the following because they are not necessary:

• Load 1 of type 3 and 4 svcs (that is, IGCOOxxx) .
• Modules selected for RAM, RERP, RSVC, RAMF, or RSVCF usage.

Recommended modules should be chosen from access methods and ERPS. You
should always avoid placing the following modules in the BLDL list because they
have internal BLDL tables and internal directory entries: OPEN, CLOSE, TCLOSE, EOV,
FEOV, SCRATCH, ALLOCATE, IEHATLAS, SETPRT, STOW, machine-check 'handler mod­
ules.

You can put the svc library list in SYSl.PARMLIB using the member name
IEABLDnn. This nn will be picked up when the operator specifies the system
parameters with the response BLDL=XX,nn.

The code to support the resident BLDL table option is standard in vsl.

The ffiM supplied standard list IEABLnOO is:
I SYSl.LINKLIB DEVMASKT,GO,HEWLOADR,IEEVRCTL,IEEVST AR,IEF ALRET,

IEFIRC,IEFIRET,IEFSDA66,IEFSD060,IEFSD065,IEFSD161,
IEFSD162,IEFSD263,IEFSD510,IEFV4221,IEFWCOOO,IEFWDOOO,
IEFW21SD,IEFW42SD,IEFX5000,IEWL,IEWLDRGO,IEWLOAD,
IEWLOADR,IEWSZOVR,LINKEDIT

x
X
X
X

Resident Reenterable Modules Options

These options make it possible to pre-load reenterable modules into storage.
These two options (the resident access method modules option and the resident
link library modules option) use similarly named load lists (IEAICC ..) and share
an operator reply (RAM= and RAMF=) at initialization time to refer to their
separate lists.

The system has standard resident access method lists (IEAICCOO and IEAIGGOI)
and standard resident link library module lists (IEAIcc02 and IEAIcc03) which are
used unless you have ohanged them or ask for the use of other lists in the
operator reply to message IEAIOIA.

Resident Routines Options RRO 5

The Resident Access
Method Modules Option

To use both access method modules and link library modules options, the
operator reply is RAM and/or RAMF=kk,ll,mm,nn. Each pair of letters represents
a pair of alphanumeric characters (like 01) that identify a list of either access
method or link library modules.

These options place reenterable load modules in storage and create a resident
list of the modules. A LOAD, LINK, XCTL, or ATIACH macro instruction requesting
any module first scans the resident list. If the module is listed, no fetch operation
is required.

You may list, in a member of SYSl.PARMLIB, the load module names of modules
to be made resident. Standard lists of most frequently used modules are supplied
by IBM. The content of the standard IBM-supplied lists is tabulated at the end
of this description. If you desire your modules to be put into the IBM standard
lists IEAIGGOO-03, you may use the sysgen LINKLIB and SVCLm macros.

The storage space required for each access method module consists of the byte
requirements of the module and its associated load request block (LRB). The
Storage Estimates publication provides the byte requirements for access method
modules eligible to be made resident. The code supporting the option is standard
in vsl.

Most access method modules placed in storage are "only loadable". ATIACH,
LINK, and XCTL macro instructions must not refer to such modules.

You may alter the standard access method list (or create alternative lists) to
include other access method modules.

For example, if checkpoint/restart is used, the following access method rou­
tines must be resident:

• IGG019cl, IGG019c2, and IGG019c3 if track overflow is used to write the data set.

• IGG019HT (a page£x appendage) if virtual storage is specified for the task.

When a composite console is used, an alternative list should include BSAM
modules for card readers and printers.

If you specify either the 3330 or the 2305 I/O devices in your system, add the
following modules to the standard RAM list (IEAIGGOO):

IGG019C4, IGG019FN, IGG019FP, and IGG019EK

IGG019CO must also be resident and is on the standard RAM list.

If you use the SAM 'search direct' option, you are strongly advised to make
IGG019FN, IGG019FP, and IGG019c4 resident through the standard RAM list. Per­
formance is improved and required partition size is decreased if these modules
are resident.

To be eligible for use with the resident access method option, access method
load modules must be reenterable.

RRO 6 OS/VSI Planning and Use Guide

List IEAIGGOO

List IEAIGGOl

The content of the IBM-supplied standard list IEAIGGOO is:

Module Name Access Method Function

IGG019FP SAM Channel end (appendage), search-direct
IGG019AN QSAM (SB) Backward move-format F, FB, U records
IGG019AM QSAM (SB) Backward locate-format F, FB, U records
IGG019BE BSAM
IGG019AG QSAM (SB)

Magnetic tape forward space or backspace
GET move with CNTRL-format V records (card
reader)

IGG019AK QSAM (SB) PUT move, format F, FB, U records
IGG019AJ QSAM (SB) PUT locate, format V, VB records
IGG019AB QSAM (SB) CET locate, format V, VB records
IGG019AL QSAM (SB) PUT move, format V, VB:records
IGG019AD QSAM (SB) CET movC), format V, VB records
IGG019BD BSAM NOTE/POINT tape
IGG019AC QSAM (SB) GET move, format F, FB, U records
IGG019AV QSAM (SB) PUT locate for dummy data set
IGG019AA (SB) GET locate, format F, FB, U records QSAM
IGG019C] SAM Read length check, format V records (appendage)
IGG019CO SAM Channel end (format U)
IGGOl9C4 SAM End-of-extent (appendage-find new extent)
IGG019EK SAM RPS, SIO, CE, and XE appendages
IGG019FN SAM SIO and page-fix (appendage)-RPS
IGG019DJ QSAM (SB) GET jPUT jPUTX JES compatibility interface

processing
IGG019AQ QSAM (SB) GET synchronization routine
IGG019BC BSAM NOTE/POINT disk
IGG019DK BSAM READ/WRITE/CHECK JES compatibility interface

IGG019AI QSAM (SB)
processing
PUT locate, format F, FB, U records

IGG019AR QSAM (SB) PUT synchronization routine
IFGAAABA SAM Verify GET/PUT/POINT requests by JES compati-

bility interface modules
IGG019CI SAM Length check, format FB records (appendage)
IGG0l9BB BSAM CHECK (all devices)
IGG019CC SAM Schedules I/O for tape, direct access
IGG019BA BSAM READ /WRITE (all devices)
IGGOl9CH SAM End-of-extent check (data extent block)

(appendage)
IGG019HT SAM SIO and page-fix (appendage)
IGG019CD SAM Schedules I/O for direct access output

SB=simple buffering
SAM=common sequential access method routines

If the system generation statements specify the use of both MCS and of an IBM
2740 Communication Terminal as an operator's console, list IEA!GGOO is extended
by adding the following module names:

IGG019MA BTAM Read/write module
IGG019MB BTAM Appendage
IGG019MO BTAM 2740 module
IGG019MR BTAM Online Test Control module

If the system generation statements specify that the IBM 3211 Printer is to be
included in the system, the following modules are added to the list:

IGG019FR
IGG019FS
IGG019Ff

Modules specified with sysgen macro SVCLIB VlllTUAL= , whose names begin
with characters other than IGC,IGX, or ICE are also put on list IEAIGGOO.

The IBM-supplied standard list IEAIGG01 contains modules specified with the
sysgen macro SVCLIB RESIDNT=, whose names begin with characters other than IGC,
IGX, or IGE. If there are no module names for list IEAIGG01, it is created as a null
member (it exists on SYsI.PARMLIB, but has no entries).

Resident Routines Options RRO 7

Resident Link Library
Modules Option

List IEAIGG02

List IEAIGG03

The storage space required for each link library module consists of the byte re­
quirements of the module and its associated loaded program request block (LPRB).
The code supporting the option is standard in vsl.

To utilize the option in your system:

• Add a list or lists of names of reenterable modules to be preloaded, to the
parameter library. Each module name must be followed by its alias names
(separated by commas).

• Have the operator specify your list or lists in his RAM= or RAMF= reply at
IPL time.

Note: Small (real storage) users should not use RAMF. This further reduces real storage
space for paging.

• As an alternative, you can have your modules put on the standard lists
IEAICc02 and 03. A description of these lists follows.

The IBM-supplied standard list IEAICC02 contains modules specified with the
sysgen macro LlNKLIB VIRTUAL=. If there are no module names for list IEAlGG02,
it is created as a null member (it exists on SYS 1. PARMLIB , but has no entries).

The IBM -supplied standard list IEAIcc03 contains modules specified with the
sysgen macro LINKLIB RESIDENT=. If there are no module names for list IEAICc03,
it is created as a null member (it exists on SYSl.PARMLIB, but has no entries).

The Resident SVC Routines Option

Storage Requirements

This option makes any of the type 3 and 4 svc routine load modules resident in
storage. Some, or all, of the modules associated with a svc service routine may
be made resident. Placing the most frequently used svc load modules of a sys­
tem service routine, such as OPEN, in storage improves system pedormance. For
type 3 svc load modules and initial type 4 svc load modules, the svc table entries
associated with these modules are adjusted to reflect an entry point address
rather than a relative track address. A resident svc load list is used by the Ken.

macro instruction for transfer of control between resident type 4 svc load modules.
You list, in a member of SYSl.PARMLIB, the type 3 and 4 svc load modules to be

made resident. The member names for the standard lists are IEARSVOO and 01.
Such standard lists (shown later) are built by IBM in Sysl.PARMLffi of the generated
system. The creation of parameter library lists is discussed later in this chapter.

If your system includes the multiple console support (MCS) function, to
improve MCS performance you should add to the standard list IGcOOO7B, the name
of the first load module of the svc 72 routine.

II Note: Small (real storage) users should not use RSVCF. This further reduces real storage
space available for paging.

The VSl Storage Estimates publication provides the byte requirements of type
3 and 4 svc routines eligible to be made resident. The byte requirement of the
code supporting the option is also provided.

RRO 8 OS/V51 Planning and Use Guide

List IEARSVOO The content of the IBM supplied standard list IEARSVOO is:

Module
Name
IGGOl9lL
IGGOl99L
ICCOOOIC
IGC0007B
IGGOCLC2
IGGOCLC7
ICGOCLF2
IGC0003B
IFG0202G
IGGOl93G
IGC3503D
IGGOl93E
IGG0203A
IGC0203E
IGGOl93A
IGGOl93C
IFGOl97A
IFG0200X
IGCOEOIC
IGG0201N
IFGOI95C
IFGOl95K

IFGOl95H

IGC1203D
IGC0403D
IFG0200Z
IFGOl96T
IFGOl96Q
IFGOl96N
IFG0194H
IGC0003E
IGC0103E
IGC020lF
IFG0552R
IFGOl95B

IFGOl94F
IFG0193B
IFG0202F
IGGC201X
IGG02GIA
IGG0191G
IFG01941
IGC01993
IGG01991
IGC01915
IGG0290D
IGG0290C
IGG0290B
IGG0299A
IGG0290A
IGG0290F
IGG0290E
IGG0325H
IGG0325G
IGC0325E

IGG0325D
IGG0325B
IGG0325A
IGG029R1
IGC0003D
IGG019lC
IGGOl931
IGGOl911
IGGOI911

Function
Open-Access method executor
Open-Access method executor
ABEND-Control module
Router and control module
Catalog-Locate processing
Catalog-Third load of update, exit processing, and error handling
Catalog-SYSCTLG and BP AM directory formatter
Allocate-Initialization
Close-Tape volume disposition function
Load required BDAM module
DISPLAY /MONITOR processor
Open executor number 3
BDAM executor
WTP routine
Open executor number I
Open executor number 2
Open-Access method executor return function
Close-Access method executor
ABEND-Subtask processing
RCI close intercept
Open-No tape label positioning function
Open-Standard label INPUT/MOD header label
2 function
Open-Standard label INPUT/MOD header label
I and 2 function
Reply processor routine (MCS)
Command routine
Close-Tape standard trailer label function
Open-S~andard label header label writing
Open-Tape standard label date protection
Open-Standard label output security function
Open-Tape volum3 verification function
WTO/WTOR/WTP (SVC 35 processor)
\VTOR processor
Purge (SVC 16-third load)
EOV-Tape input standard trailer label and volume disposition functions
Open-Standard label position function;
INPUT /MOD header label I function
Open-Tape mount verification function
Open-Tape initial common function
Close-Tape volums disposition function
Close-Access method executor
Close-Access method executor
Open-Access method executor
Open-Tape final common function
Open-Access method executor
Open-lOB and buffer construction
Open-Access method executor
Scratch-Format 4 DSCB (VTOC) updating
Scratch-Format 5 DSCB (free space) updating
Scratch-Format 6 DSCB updating, split-cylinder data sets
Scratch-DSCB removal for formats 1, 2, and 3
Scratch-Password protection interface, VTOC search
Scratch-Volume mounting and verification
Scratch-~ount message building
Allocate (non-ISAM)-Updating format 4 DSCB and error handling
Allocate (non-ISAM)-Update format 5 DSCB
Allocate (non-ISAM)-Build format I and 3 DSCBs, non-split cylinder
data sets
Allocate (non-ISAM)-Search free space
Allocate (non-ISAM)-Request conversion and type determination
Allocate-Duplicate format I DSCB search
RPS-Set up module
Chain manipulator
Open-Access method executor
Open-Access method executor
Open-Access method executor
Open-Access method executor

Resident Routines Options RRO 9

List IEARSVO 1

Module
Name

IGG0191]
IFG0232Z
IFG0232D
IGG01910
ICCOGOIC
IGCOBOIC
IFG0201R
IGG0191D
IGG0201W
IFG0553P
IGG0191F
IGG0199W
IGG0193K
IGG0199G
IFG0551H
IGG0203K
IGG0201Y
IGG0201Z
IGG01917
IGG01910
IGG0198L
IGG0196B
IGG0191B
IFG0552X
IFG0551F
IFG0202E
IGG0196A
IGG0191A
IGG0191N
IFG0195J
IFG0195A
IFGOl94E
IFG0196M
IFG0l96L
IFG0196]
IGC0107B
IFG0202J
IFG0202K
IFG0196X

Function

Open-Access method executor
TCLOSE-Direct access final function
TCLOSE-Direct access input and output functions
Open-Access method executor
Alternate entry point for ABEND control module
ABEND-WTO purge processing
Close-Direct access write DSCB and output user labels function
Open-Direct access executor
Close-Access method executor
EOV-Direct access input initial function
Open-Access method executor
Open-Access method executor
JES open executor function
Open-Access method executor
EOV-Initialize work area and determine device type
JES close executor function
Close-Release work areas and buffers
Close-SAM executor
Open-Second load of load executor
Open-Load executor (first load)
Open-Access method executor
Open-Main executor (second load)
Open-Main executor (first load)
EOV-Direct access input concatenation/end-of-data function
EOV-Initial read JFCB function
Close-Write file mark
Open-DEB construction (second load)
Open-DEB construction (first load)
Open-Access method executor
Open-DSCB to JFCB merge (direct access)
Open-DSCB to JFCB merge (direct access)
Open-Unit selection and DSCB read
Open-Merge DCB to JFCB
Open-Merge and DCB exit routine
Open-JFCB to DCB merge
1052 processor module
Close-Restore system function
Close-Restore user function
Open (final)-JFCB to DSCB merge, SYSOUT limit, write JFCB
functions; EXCP appendages

IFG0200Y Close-Access method interface and write DSCB
IGG0200G Close-Access method executor return/interface
IFG0202L Close-Final load
IFG0200W Close-Access method interface
IFG0200V Close-Initialization and read JFCB and DSCB
IGC0002° Close-Initial load
IGCOOOIF Purge routine
IGC0001I Open-Initial load
IGC0005E EOV-Initialload
IGG0196I Open-Access method executor
IFG0193A Open-Volume serial function
IFG0196V Open-Access method determination
IFG0198N Open-Rewrite JFCB and final load
IFG0196W Open-Access method executor
IGG0190S Open-Access method executor

*The last (eighth) character is a 12 and 0 punch. This character has no assigned graphic
in EBCDIC. In BCD, the graphic is ? (the question mark).

Also, modules specified with the sysgen macro SVCLIB VIRTUAL= , whose names
begin with ICC or ICX, are put on list IEARSVOO.

The IBM-supplied standard list IEARSVOI contains modules specified with the
sysgen macro SVCLIB RESIDNT= , whose names begin with ICC or ICX. If there
are no module names for list IEARsvOl, it is created as a null member (it exists on
SYsl.PARMLIB, but has no entries).

RRO 10 OS/VS1 Planning and Use Guide

The R.esident Error R.ecovery Procedure Option

Storage Requirements

List IEAIGEOO

This option places error recovery procedures in fixed storage. Some, or all, of the
modules associated with the handling of an II a error may be made resident. If
an II a device frequently requires ERP processing, system performance improves
if the error recovery procedures are made resident. The list of those error re­
covery procedures that may be made resident is contained in the Storage
Estimates publication. An II a supervisor request for an error recovery pro­
cedure will result in a search of the resident error recovery procedure list. If the
error recovery procedure is resident, no fetch operation is required.

You list, in a member of SYSl.PARMLIB, the module names of error recovery
procedures to be made resident. The member name for the standard list is
IEAIGEOO. The error recovery procedures should be listed by expected frequency
of use; the least used module is first in the list. Note: The format of the IBM­
supplied IEAIGEOO list contains the required library name, SYS1. SVCLIB, and no
error recovery procedure names, unless the user specifies the names of ERPS on
the sysgen macro SVCLIB. After system generation, IEAIGEOO can be updated to
indicate which error recovery procedures are to be made resident or an alter­
nate list can be created. The creation of parameter library lists is discussed later
in this section.

The VSl Storage Estimates publication provides the byte requirements of
error recovery procedures that may be made resident. The byte requirement of
the code supporting the option is also provided.

The IBM-supplied standard list IEAIGEOO contains modules specified with the
sysgen macro SVCLIB RESIDNT= or VIRTUAL = , whose names begin with IGE. If
there are no module names for list IEAIGEOO, it is created as a null member
(it exists on Sysl.p ARMLIB, but has no entries).

Creating Parameter Library Lists

Use the IEBUPDTE utility program to construct the required lists of load module
names in the parameter library. Standard member names for these lists are shown
in Figure BRa 1, plus LNKLSrt)() for the link library list option.

These are the member names that the nucleus initialization program reads from
SYs1.PARMLIB if the option was either specified or defaulted to at sysgen and
neither canceled nor modified by the operator's response to message IEA101A.

Note: The nucleus initialization program (NIP) will search the system catalog to locate the
SYS1.PARMLIB data set. If it is not found in the catalog, SYS1.PARMLIB is assumed
to reside on the IPL volume. If no VTOC entry can be found, the operator will receive
message IEA211I "OBTAIN FAILED FOR SYSl.PARMLIB DATA SET". Message IEA208I
"fff FUNCTION INOPERATIVE" will follow. The fff parameter-RAM, BLDL, RSVC, or
RERP-shows which of the functions cannot be implemented. Processing will continue; how­
ever, any resider..t functions dependent on parameter lists contained in the parameter library
will be omitted from the system nucleus.

Resident Routines Options RRO 11

Example

RRO 12

Except for LNKLSTOO, your input format (to IEBUPDTE) for the lists is the same
for all options, consisting of library identification followed by the load module
names. You use 80-character records with the initial or only record containing
the library identification. Continuation is indicated by placing a comma after
the last name in a record and a non blank character in column 72. Subsequent
records must start in column 16.

The initial record format (with continuation) is:
1

[b ... J
SYSl.LINKLIB
SYSl.SVCLIB b ... namel,name2,name3,

Subsequent records do not contain the library name.
SYSl.LINKLIB indicates that linkage library load module names follow.
SYSl.SVCLIB indicates that svc library module names follow.

72

.X

You may also construct alternative lists and place them in the parameter
library. Member names for these alternative lists are of the form:

IEABLDxx for the BLDL option
IEAIGGxx for the resident access method option
IEARSVxx for the resident SVC routine option
IEAIGExx for the resident error recovery procedure option
LNKLSTOO for the link library list option

where xx can be any two alphameric characters.
Use of the alternative lists is indicated by the operator at initialization time.

The operator may indicate that the standard list is to be used; that alternative
lists are to be used; or that the option(s) will not be used. In the last case, no
resident BLDL table, access method routines except several standard ones, svc
routines or error recovery procedures are made resident.

The following coding illustrates the format and content of a BLDL option list that
might be used to support the resident BLDL table option. The operator, at IPL time,
would have to indicate the member name, IEABLDAE to the system. The load
module names listed are from the assembler (E), linkage editor, and scheduler
components of the operating system. Note that the module names are listed in
ascending collating sequence as required for the resident BLDL option. Resident
access method or svc modules should be listed in order of anticipated frequency
of use.

IIBLDLIST EXEC PGM=IEBUPDTE,PARM=NEW
/ISYSPRINT DD SYSOUT=A
I/SYSUT2 DD DSNAME=SYSl.PARMLIB,DISP=OLD
/ISYSIN DD *
.! ADD NAME=IEABLDAE,LIST=ALL
.! NUMBER NEWl=Ol,INCR=02

SYS1.LINKLIB GO,IEEGESTO,IEEGKIGM,IEEICIPE,IEEIC2NQ,IEEIC3JF, X

./ EI\DUP
/*

IEEQOTOO,IEFINTQS,IEFKl,IEFSD008,IEFW21SD,IEFXA, X
IETASM,IETDI,IETEl,IETE2,IETE2A,IETE3,IETE3A,IETE4M, X
IETE4P ,IETE4S,IETE5,IETE5A,IETE5E,IETE5P ,IETINP ,IETMAC, X
IETPP,IETRTA,IETRTB,IET07 ,IET071 ,IET08,IET09,IET09I, X
IETI O,IET 1 OB,IET21A,IET21B,IET21 C,IET21D, IE\VL,IEWSZOVR

Note: During initialization the operator reply "L" may be used in conjunction with a list
specification and causes the content of the list to be printed. You should use this feature
initially (especially with extensive lists) to easily identify format errors; for example, a 9
character name, or incorrect name specifications.

OS/VS1 Planning and Use Guide

Example of the ERP Option
List

link Library List Feature

rrl.. .c 11 _. _ _ 1'. ·n . • . ,,. , • •
.LUe ~ouowm~ cOQlllg lllUsuares tne rormat and content ot an ERP optIOn list
that may be used to support the resident ERP option. The operator, at IPL time,
would have to indicate the member name, IEAIGE01, to the system. The load
module names listed are the optical reader ERPS, write-to-operator, statistics up­
date, I/O purge, OBR and SDR/CCR modules. The system must he sysgened with
the RERP option to load any list.

IIERPLIST EXEC PGM=IEBUPDTE,PARM=NEW
/ /SYS'PRINT DD SYSOUT=A
/ISYSUT2 DD DSNAME=SYS1.PARMLIB,DISP=OLD
IISYSIN DD *
.i ADD
./ NUMBER
SYSl.SVCLIB

./ ENDUP
/*

NAME=IEAIGE01,LIST=ALL
NEW1=Ol,INCR=02
IGE0011B,IGEOO11C,IGEOO11D,
IGEOO25C,IGE0125C,IGE0225C,
IGEOO25D,IGEOO25E,IGEOO25F,
IGE0125F,IGE0525F

X
X
X

The link library list (LNKLsTOO) enables you to concatenate up to 16 data sets,
on multiple volumes, to form SYSl.LINKLIB. LNKLSTOO is included in the system
when it is generated as a required member of SYSl.PARMLIB. If SYSl.PARMLIB does
not include the member LNKLSTOO, SYSl.LINKLIB is used as the system link library
and a warning message is provided.

Note: The amount of space required for SYSl.PARMLIB is discussed in the VSl Storage
Estimates publication.

LNKLSTOO contains one member, SYSl.LINKLIB. After system generation you will
have the option of adding members via the IEBUPDTE utility program. Each
member may have up to 16 extents. After making additions to Sysl.svCllB,
SYSl.LINKLIB, or data sets concatenated to LINKLIB via LNKLSTOO, and before using
the additions, IPL should be performed to update the description of the link
and/ or svc library in storage.

Your input format (to IEBUPDTE) consists of 80 character records. Continuation
is indicated by placing a comma after the last name in a record and a non­
blank character in column 72. Subsequent records must start in column 16. The
initial format is:

[b ...] SYSl.LINKLIB

To add member names to LNKLSTOO, replace the initial record with:

[b ...] SYSl.LIKKLIB,name1,name2,name3, ...

The appropriate OS/VS Message Library publication describes the NIP mes­
sages associated with LNKLSTOO.

Resident Routines Options RRO 13

RRO 14 OS/VS1 Planning and Use Guide

Output Separation

In vsl, the system output writer can use the output
separator facility to write separation records prior to
writing the output of each job and optionally for
printer-destined output, at the conclusion of writing
the output. These separation records make it easy to
identify and separate the various job outputs that are
written contiguously on the same printer or card
punch device.

This section describes the output separator that is
supplied by IBM, and tells how to write your own.

Sedion Outline

Output SeparationSEP 1

Output Separation SEP 3
Using an Output Separator SEP 3
Functions of the IBM Output Separator SEP 3

Punch-Destined Output SEP 3
Printer-Destined Output SEP 4

Creating an Output Separator Program SEP 4
Parameter List SEP 4
Programming Considerations SEP 5
Output from the Separator Program , SEP 6
Using the Block Character Routine SEP 6

Output Separation SEP 1

SEP 2 OS/VSl Planning and Use Guide

Output Separation In vsl, both the system output writer and the direct SYSOUT writer may be used
by a problem program to channel its output eventually to a printer or punch.
\Vhen this is done, however, the system output stream goes uninterruptedly from
one job to another, making it difficult to separate the output of one job from that
of another, unless output separation is provided for.

The output separator facility of the operating system provides a means of
identifying and separating the output of various jobs processed by the same
output unit. To do this, the separator writes separation records to the system
output data set prior to the writing of each job's output. The end-of-job separator
option, available only under the system output writer, assures the programmer
that he has received all the output from his job. The separation records are
written upon conclusion of writing a job's output.

You can use the output separator that is supplied by mM, or you can create
and use your own output separator programs.

I Note: User-written output separator routines are not supported to RTAM devices.

Using an Output Separator

The output separator function operates under control of both the system output
writer and the direct SYSOUT writer. To use the function, the separator program
must reside in the link library (SYSl.LINKLIB), and its name must be included as
a parameter in either of the output writer procedures (the second part of the
PARM field in the EXEC statement). Cataloged procedures for both writers are
fully described in the System Reader, Iniiiator, and Writer Cataloged Procedures
section. If the separator function is selected, the end-of-job separator option may
be specified by placing the number of trailing separators to be written in the
parameter field of the writer procedure.

Functions of the IBM Output Separator

Punch-Destined Output

The IBM-supplied output separator resides in the link library (SYSl.LINKLIB).
When its name, IEFosc06, is specified as a parameter in an output writer cata­
loged procedure, that output writer uses it to separate job output. The type of
separation provided by the separator depends on whether the output is punch­
destined or printer-destined.

For punch-destined output, the IBM-supplied separator provides one to three
specially punched cards (deposited in stacker 1) prior to the punched card
output of each job (see the description of the PARM values of the EXEC statement
in the section Output Writer Procedures). Each of these separator cards is
punched in the following format:

Columns 1 to 34 - blanks
Columns 35 to 42 - jobname
Columns 43 to 44 - blanks
Column 45 - output classname
Columns 46 to 80 - blanks I Not" No end of job separators are available for punch-destined output.

Output Separation SEP 3

Printer-Destined Output For printer-destined output, the IBM-supplied separator provides one to three
specially printed pages prior to printing the output of each job (see the de­
scription of the PARM values of the EXEC statement in the section Output Writer
Procedures). Each of these three separator pages is printed in the following
format:
• Beginning at the channel 1 location (normally near the top of the page), the

jobname is printed in block character format over 12 consecutive lines. The first
block character of the 8-character jobname begins in column 11. Each block
character is separated by 2 blank columns.

• The next 2 lines are blank.
• The output classname is printed in block character format covering the next

12 lines. This is a I-character name, and the block character begins in column
55.

• The remaining lines to the bottom of the page are blank.
In addition to the preceding, a full line of asterisks (*) is printed twice (over­

printed) across the folds of the paper. These lines are printed on the fold pre­I ceding each of the 1 to 3 separator pages, and on the fold following the last
page. This feature provides easy separation of job output in a stack of printed
pages.

For printer-destined output with the IBM -supplied separator, you must include
a channel 9 punch in addition to the channell punch on the carriage control tape
or in the forms control buffer (FCB). The channel 9 punch controls the location of
the line of asterisks and should correspond to the bottom of the page. To print the
line of asterisks on the fold of the pages, you must also offset the printer regis­
tration.

End-of-job separators provided by the IBM-supplied routine are identical to
those printed prior to the output, except that no asterisks are printed after the
last page. For remote devices that do not support channel 9 (for example, the
IBM 2780), the output separator consists only of block letters (the line of asterisks
is not printed).

Creating an Output Separator Program

Parameter List

You can write your own output separator program by using the information pro­
vided by either output writer and by conforming to the requirements explained
in the following text. Your separator program, when added to the link library
(Sysl.LINKLIB), is invoked by specifying its name as a parameter in the EXEC

statement of the output writer cataloged procedure.

Either output writer provides your separator program with a 4-word parameter
list of needed information. When your program receives control, register 1 con­
tains the address of a 4-word parameter list, and the parameter list contains the
following:

Bytes 0 - 3

Bytes 4 - 7

Bytes 8 - 11

Bytes 12 - 15

In this word. byte 0 contains switches that indicate the type of
output unit. Byte 1 contains the number of separator pages or
cards (in binary) requested. and bytes 2 and 3 are reserved for
future use.

This word is the address of the output DeB (data control block!.

This word is the address of an 8-character field containing the
jobname.

This word is the address of a 1-character field containing the out­
put classname.

SEP 4 OS/VSl Planning and Use Guide

Programming Considera­
tions

In the parameter list, the three high-order bits of byte 0 are switches that your
separator program uses to determine the type of output unit. The first bit to the
left is set to 1 if the output unit is a 1442 punch device. The second bit is set to 1
if the output unit is a punch device or a tape device with punch-destined output.
The third bit is set to 1 if the output unit is a printer or punch device. The result­
ing bit combinations indicate the following:

III . 1442 punch device
011 . 2520 or 2540 punch device
001 . 1403, 1443, or 3211 printer device
010 . tape device with punch-destined output
000 . . tape device with printer-destined output
xxx. 1. xx channel 9 not supported on this device
xxx. . .. 1 DSO
xxx. .. 10· Separator routine entered after writing output

The parameter list also points to the DCB for the output data set. This DCB is
established for the queued sequential access method (QSAM), and is already
open when your separator program receives control.

The address of the jobname and the address of the output classname are pro­
vided in the parameter list so that this information may be used in the separation
records written by your separator program.

If you are using the (asynchronous) system output writer, your separator pro­
gram, if specified in the output writer cataloged procedure, is brought in by a
LINK macro instruction issued from module IEFOscOl or IEFOsc02 of the output
writer. Your separator program may be any size, but space must be provided
at sysgen or overridden at IPL with a PARMLIB entry (see the appropriate VSl
SYSGEN publication for more details). If your job falls into a job class using
the (synchronous) direct SYSOUT writer, your separator program (if specified in
the procedure) is brought into virtual storage by use of a LOAD macro instruction.
After performing separation on all devices required for the SYSOUT data sets in
that step, the program is released by means of a DELETE macro instruction.

CAUTION
Since the separator program operates with the supervisor protection key, but in
the program mode, your separator program must insure data protection during
its execution.
When writing a separator program, you must observe the following program­

ming requirements:
• Your program must conform to the standard linkage conventions. This includes

saving and restoring the contents of registers 0 through 12, and 14. These
registers can be preserved with the SAVE and RETURN macro instructions. When
your program receives control, the address of a standard save· area is in
register 13.

• Your program must use the PUT macro instruction in the locate mode to write
separation records on the output data set. (This method is required by the
QSAM DCB that is open for the output data set.)

• Your program must establish its own synchronous error exit routine, and the
address of this routine must be placed into the DCBSYNAD field of the output
DCB. This gives control to your error exit routine in case an uncorrectable I/O

error occurs while writing your program's output.
• Your program should use the RETURN macro instruction to return control to the

output writer. Before returning, your program must free any main storage it
obtained during its operation, and your program must place a return code
(binary) in register 15. The return codes Signify:
0- Successful operation.
S - Unrecoverable output error (should be set if your error exit routine is

entered).
Output Separation SEP 5

Output from the
Separator Program

Using the Block
Character Routine

Your separator program can write any kind of separation identification. The
jobname and the output classname for each job are available through the param­
eter list for inclusion in your output, if desired. You can use an IBM-supplied
routine that constructs block characters (explained later). You can punch as
many separator cards or print as many separator pages as you deem necessary.

The output from your separator program must conform to the attributes of
the output data set. These attributes, which can be determined from the open
output DCB pointed to by the parameter list, are:
• Record format (fixed, variable, or undefined length).
• Record length.
• Type of carriage control characters (machine, ANSI, or none).

For printer-destined output, you can begin your separation records on the same
page as the previous job output, or skip to any subsequent page. However, your
separator program should skip at least one line before writing any records? be­
cause in some cases the printer is still positioned on the line last printed.

After completing the output of your separation records, your separator program
should write sufficient blank records to force out the last separation record. This
also allows your error exit routine to obtain control if an uncorrectable output
error occurs while writing the last record. The requirements are:
• One blank record for printer-destined output.
• Three blank records for punch-destined output.

For printer-destined output, your separator program can use an IBM-supplied
routine to construct separation records in a block character format. This routine
is a reenterable module named IEFsn095, and resides in the module library
(SYSl.AOSBO) .

The block character routine constructs block letters (A to Z), block numbers
(0 to 9), and a blank. Your program furnishes the desired character string and
the construction area. The block characters are constructed one line position at
a time. Each complete character is contained in 12 lines and 12 columns; there­
fore, a block character area consists of 144 print positions. For each position, the
routine provides either a space or the character itself.

The routine spaces 2 columns between each block character in the string.
However, the routine does not enter blanks between or within the block charac­
ters. Your program must prepare the construction area with blanks or other
desired background before entering the block character routine.

To use the IBM-supplied block character routine, your separator program
executes the CALL macro instruction with the entry point name of IEFsn095. Since
the block characters are constructed one line position at a time, complete con­
struction of a block character string requires 12 entries to the routine. Each time
you enter the routine, you must provide the address of a 4-word parameter list
in register l. The parameter list must contain the following:

Bytes 0 - 3

Bytes 4 - 7

Bytes 8 - 11

Bytes 12 - 15

This word is the address of a field containing the desired character

string in EBCDIC format.

This word is the address of a full word field containing the line
count as a binary integer from 1 to 12. This represents the line

position to be constructed on this call.

This word is the address of a construction area in main storage
where the routine will construct a line of the block character
string. The required length in bytes of this construction area is
14n-2, where n represents the number of characters in the string.

This word is the address of a fullword field containing, in binary,
the number of characters in the string.

SEP 6 OS/VSl Planning and Use Guide

The Shared Direct-Access Device Option

This section describes the Shared Direct Access
Storage Device option (Shared DASD) of vsl. It des­
cribes the functions of the option, its operating en­
vironment, and volume acceptability. It also explains
operating procedures and data set considerations that
the systems programmer must be aware of in using
the option. The section also describes a procedure
for finding unit control block addresses necessary
for using the RESERVE macro instruction: it also shows
an assembler language subroutine that issues a
RESERVE and can be called by a higher level language.

Section Outline

The Shared Direct-Access Device Option SHR 1

The Shared Direct-Access Device Option
System Configuration
Devices that Can be Shared
Volume/Device Status
Volume Handling
Sharing Application Data Sets
Reserving Devices

The SMC Parameter of the ENQ
Macro Instruction

RESERVE Macro Instruction
The EXTRACT Macro Instruction

Releasing Devices
Preventing Interlocks
Volume Assignment
Program Libraries
Providing the Unit Control Block Address to
RESERVE

RES and DEQ Subroutines

The Shared Direct-Access Device Option

SHR 3
SHR 5
SHR 5
SHR 5
SHR 6
SHR 6
SHR 7

SHR 7
SHR 7
SHR 8
SHR 8
SHR 9
SHR 9
SHR 9

SHR 9
SHR 11

SHR 1

SHR 2 OS/VSl Planning and Use Guide

The Shared Direct-Access Device Option

The Shared DASD option allows computing systems to share direct access storage
devices. Systems can share common data and consolidate data when necessary;
no change to existing records, data sets, or volumes is necessary to use the facility.
However, reorganization of volumes may be desirable to achieve better per­
formance. Briefly, the sharing is accomplished by a two-channel or four-channel
(3330 and 3333 only) switch which allows a shared control unit to be switched
between channels from different systems. The switching is controlled by program
use of the RESERVE macro instruction which reserves a shared device or volume
for the use of one system until it is freed by the program's issuing a DEQ macro
instruction. If a RESERVE macro instruction is used before the system in which
the macro instruction is used has access to the shared device, the macro instruc­
tion will take effeot only after the system gains access to the device.

The Shared DASD facility can only be included in a system at system generation
time. A two-channel switch facility is shmvn in Figure SHR 1. A four-channel
switch facility is shown in Figure SHR 2.

The two-channel switch
handles concurrent
accesses and device
reservations on a first­
come first-serve basis.

* In multiprogramming systems, the RESERVE macro instruction also

serial izes use of the same resource between tasks in the system.

Figure SHR 1. General Shared DASD Environment

The Shared Direct-Access Device Option SHR 3

The four-channel switch

accesses and device
reservations on a first­
come first-serve basis.

* In mulitprogramming systems, the RESERVE macro instruction also
serializes use of the same resource between tasks in the system.

I Figure SHR 2. General Shared DASD Environment, 4-Channel Switch

SHR 4 OS/VSl Planning and Use Guide

System Configuration

Devices that Can Be Shared

Volume/Device Status

The Shared DASD option can be used with any combination of configurations of
the operating system. Identical operating system configurations are not necessary
for systems to share devices unless they share the system data set SYS1.LINKLIB.

The option requires no additional equipment except the 2-channel switch, the
4-channel switch, or the IBM 2844 Auxiliary Storage Control unIt, which does
not require the 2-channel switch. Any of your installation's applications data
sets can be shared; SYSCTLG can be shared when it does not reside on a systems
residence volume. The following system data sets cannot be shared:

SYSl.SVCLIB
SYSl.NUCLEUS
SYSl.LOGREC
SYSl.SYSJOBQE
PASSWORD data set
SYSl.SYSPOOL
SYSl.SWADS
SYSl.PAGE

SYSCTLG (on system residence volume)
SYSl.ACCT
SYSl.MANX
SYSl.MANY

The following control units and devices are supported by the Shared DASD option:

1. IBM 2314 or 2319 Direct Access Storage Facility equipped with the 2-channel
switch-IBM 2314 Disk Storage Module.

2. IBM 2314 Direct Access Storage Facility combined with the IBM 2844 Auxiliary
Storage Control-IBM Disk Storage Module. Device reservation and release are
supported by this combination with or without the presence of the 2-channel
switch. Two channels-one from System A and one from System B-may be
connected to the combination. In addition, the 2-channel switch may be in­
stalled in either or both of the control units, thus permitting as many as four
systems to share the devices.

3. IBM 2835 Storage Control Unit with 2-channel switch-IBM 2305-2 Fixed Head
Storage Facility.

4. IBM 3830-1 Storage Control Unit with 2-channel or 4-channel switch-IBM
3330 Disk Storage.

5. IBM 3830-2 Storage Control Unit with 2-channel or 4-channel switch-IBM
3333 Disk Storage and Control.

Alternate channels to a device from anyone system may only be specified for
the IBM 2314 Direct Access Storage Facility.

The Shared DASD option requires that certain combinations of volume character­
istics and device status be in effect for shared volumes or devices. One of the
following combinations must be in effect for a volume or device:

System A

1. Permanently resident
2. Reserved
3. Removable
4. OHline

Systems B,C,D

Permanently resident
Reserved
OfHine
Removable or reserved

If a volume/device is marked removable on anyone system, the device must
be in oHline status on all other systems. The mount characteristic of a volume
and/ or device status may be changed on one system as long as the resulting com­
bination is valid for other systems sharing the device. No other combination of
volume characteristics and device status is supported or detected if present.

The Shared Direct-Access Device Option SHR 5

Volume Handling

Sharing Application Data
Sets

Volume handling on the Shared DASD option must be clearly defined since operator
actions on the sharing systems must be performed in parallel. You should make
sure that operators understand the following rules when the Shared DASD option
is in effect:

l. Operators should initiate all shared volume mounting and dismounting opera­
tions. The system will dynamically allocate devices unless they are in reserved
or permanently resident status. Only the former of the two can be changed by
the operator.

2. Mounting and dismounting operations must be done in parallel on all sharing
systems. A VARY OFFLINE must be effected on all systems before a device may
be dismounted.

3. Valid combinations of volume mount characteristics and device status for all
sharing systems must be maintained. To IPL a system, a valid combination
must be established before device allocation can proceed. This valid com­
bination is established either by

a. Specifying mount characteristics of shared devices in PRESRES (See the
section The PRESRES Volume Characteristics List.)

b. Varying all sharable devices off line prior to issuing start commands and
then following parallel mount procedures described in the appropriate
Operator's Library publication.

As indicated previously, all application data sets can be shared, but you must
give special consideration to the classification of these data sets. It is recommend­
ed that you classify your shared data sets as read only or read/write. A read-only
data set may be read by all sharing systems but is never updated by them.
A read/write data set may be read or written-updated by all sharing systems.
Read-only data sets are not reserved for the duration of their use; read/write
data sets must be reserved for data set protection.

If a data set is seldom updated, but is read often, it is wise to classify it
as read only. Minimizing reservation of devices will minimize the interference
between systems.

A shared data set may be updated, effecting a device reservation for the write
operation only, if the records being read are independent of each other. An
example of such a data set with independent records is a private job library.
Such a library may be reserved for the write operation only as long as members
are not being deleted.

A system update time should be defined for updates to read-only data sets.
For system update time the operator must vary omine, on all but one system,
the device upon which the data set resides. Then the system update may be per­
formed on the system to which that device is dedicated without any need to re­
serve the device. Processing of data sets by the linkage editor and utility programs
constitutes update runs-the data sets they process are regarded as read/write
data sets. You may want to prepare a routine that will issue a RESERVE macro
instruction, invoke the program to be executed, and issue a DEQ macro instruc­
tion after program execution.

SHR 6 OS/VSl Planning and Use Guide

Reserving Devices

The SMC Parameter of the
ENG Macro Instruction

RESERVE Macro Instruction

There is no protection for shared data sets acrGSS job steps. That is, the
RESERVE and DEQ for a data set must be done within each step (task); if devices
are still reserved at the end of a task, device release is effected. Therefore, it
is possible for one system to reserve a device and update a data set on that
device between the execution of two steps in the other systems which are using
that data set. There is no guarantee that a data set will remain unchanged between
execution of steps.

The RESERVE macro instruction is used to reserve a device for use by a particular
system; it must be issued by each task needing device reservation. The :RESERVE
macro instruction protects the issuing task from interference by other tasks in
the system. Each task issuing the RESERVE macro instruction must also use the
DEQ macro instruction to release the device; two RESERVE instructions for the
same resource without an intervening DEQ will result in an abnormal termination
unless the second one specifies the keyword parameter RET=. (If a restart occurs
when a RESERVE is in effect for devices, the system will not restore the RESERVE;
the user's program must reissue the RESERVE.) Even if a DEQ is not issued for a
particular device, termination routines in all operating system configurations
will release devices reserved by a terminating task.

The Set-Must-Complete (SMC) parameter available with the EXQ macro in­
struction may also be used with RESERVE; this parameter is discussed in the sec­
tion The M ust-C omplete Function.

The use of the RESERVE macro instruction is explained here:

[symbol] RESERVE (qname address, rname address,

[marne length], SYSTEMS) [. RET 0 ~~~fEn ,UCB 0 po;n,., add,ess

qname
is the address in storage of an 8-character name. Every task (within the
system) issuing RESERVE against the same resource (data and device) must
use the same qname-rname combination to represent the resource. The qname
should not start with Sys.

rname address

E
S

is the address in storage of a name used in conjunction with the qname
to represent the resource. The rname can be qualified, and may be 1 to 255
bytes in length.

specify either exclusive control of the resource (E); or shared control with
other tasks in the system (S). E is the default condition.

The Shared Direct-Access Device Option SHR 7

The EXTRACT Macro
Instruction

Releasing Devices

rname length
is the length, in bytes, of rname. If omitted, the assembled length of rname
is used. If zero (0) is specified, the length of mame must be contained in
the first byte of the field designated by the rname address.

SYSTEMS
specifies that the resource represented by qname-rname is known across
systems as well as within the system whose task is issuing RESERVE, that is
the resource is shared between systems.

RET=
specifies a conditional request for all of the resources named in the RESERVE
macro instruction. If the operand is omitted, the request is unconditional. The
types of conditional requests are as follows:
TEST

USE

tests the availability status of the resources but does not request control
of the resources.

specifies that control of the resources be assigned to the active task
only if the resources are immediately available. If any of the resources
are not available, the active task is not placed in a wait condition.

HAVE
specifiet that control of the resources is requested only if a request has
not been made previously for the same task.

Return codes are provided by the control program only if RET=TEST, RET=
USE, or RET=HAVE is designated; otherwise, return of the task to the active
condition indicates that control of the resource has been assigned to the
task. Return codes are identical to those supplied by the ENQ macro instruc­
tion (see the Supervisor Services and ~lacros publication).

uCB=pointer address
This keyword specifies either:
1. The address of a fullword that contains the address of the Unit Control

Block (UCB) for the device to be reserved.
2. A general register (2-12) that points to a fullword containing the address

of the unit control block for the device to be reserved.

To use the Shared DASD option in higher level languages, you may wish to
write an assembler language subroutine to issue the RESERVE macro instruction.
You should pass to this subroutine the following information: ddname, qname
address, rname address, rname length, and RET parameter.

The EXTRACT macro instruction is used to obtain the address of the task input/
output table (TIOT) from which the UCB address can be obtained. This section
explains some procedures for finding the UCB address.

The DEQ macro instruction is used in conjunction with RESERVE just as it is used
with ENQ. It must describe the same resource and its scope must be stated as
SYSTEMS; however, the uCB=pointer address parameter is not required. If the
DEQ macro instruction is not issued by a task which has previously reserved a
device, the system will free the device when the task is terminated.

SHR 8 OS/VSl Planning and Use Guide

Preventing Interlocks

Volume Assignment

Program Libraries

Providing the Unit Control
Block Address to RESERVE

Certain precaution must be taken to avoid system interlocks when the RESERVE

macro instruction is used. The more often device reservations occur in each
sharing system, the greater the chance of interlocks occurring. Allowing each
task to reserve only one device minimizes the exposure to interlock. The system
cannot detect interlocks caused by program use of the RESERVE macro instruction
and enabled wait states will occur on the system (s) .

Since exclusive control is by device, not by data set, you must ,consider which
data sets reside on the same volume. In this environment it is quite possible for
two tasks in two different systems-processing four different data sets on two
shared volumes-to become interlocked. For example, data sets Xl and X

2
reside

on device X and data sets Y I and Y 2 reside on device Y. Task A in system A
reserves device X in order to use data set Xl; task B in system B reserves
device Y in order to use data set Y

I
. Now task A in system A tries to reserve

device Y in order to use data set Y 2 and task B in system B tries to reserve
device X in order to use data set X

2
• Neither can ever regain control and thus,

will never complete normally and the job (s) should be canceled. In any en­
vironment in which job step time limits are specified, the task (s) in the interlock
would be abnormally terminated when the time limit expires. Moreover, an
interlock could mushroom, encompassing new tasks as these tasks try to reserve
the devices involved in the existing interlock.

When assigning program libraries to shared volumes, precaution must be taken
to avoid interlock. For example, SVCLIB foOr system A resides on volume X, while
SVCLIB for system B resides on volume Y. Task A in system A invokes a direct access
device space management function for volume Y, resulting in that device being
reserved. Task B in system B invokes a similar function for volume X, reserving
that device. However, since the DADSM functions are transient svcs, each load
module transfers to another load module via XCTL. Since the SVCLIB for each sys­
tem resides on a volume reserved by the other system, the XCTL macro instruction
cannot complete the operation, therefore an interlock occurs. In this particular
case, since no access to SVCLIB is possible, both systems will eventually enter an
enabled wait state.

The EXTRACT macro instruction is used to obtain information from the Task
Control Block (TCB). The address of the TIOT can be obtained froOm the TCB in
response to an EXTRACT macro instruction. Prior to issuing an EXTRACT macro
instruction, the user sets up an answer area in storage which is to receive
the requested information. One full word is required for each item to be provided

The Shared Direct-Access Device Option SHR 9

SHR 10

by the control program. If the user wishes to obtain the TIOT address he must
issue the following form of the macro instruction:

EXTRACT answer-area address, FIELDS=TIOT

The address of the TIOT is then returned by the control program, right-adjusted,
in the full word answer area.

The TIOT is constructed by job management routines and resides in storage
during step execution. The TIOT consists of one or more DD entries, each of
which represents a data set defined by a DD statement fOT the jobstep. Each
entry includes the DD name. Associated with each DD entry is the UCB address of
the associated device. In order to find the UCB address, the user must locate
the DD entry in the TIOT corresponding to the DD name of the data set for which
he intends to issue the RESERVE macro instruotion.

The UCB address may also be obtained via the DEB and DCB. The Data Control
Block (DCB) is the block within which data pertinent to the current use of the
data set is stored. The address of the Data Extent Block (DEB) is contained at
offset 44 decimal after the DCB has been opened. The DEB contains an extension
of the information in the DCB. Each DEB is associated with a DCB, and the two
point to each other.

The DEB contains information concerning the physical characteristics of the
data set and other information that is used by the control program. A device
dependent section for each extent is included as part of the DEB. Each such ex­
tent entry contains the UCB address of the device to which (that portion of) the
data set has been allocated. In order to find the UCB address, the user must locate
the extent entry in the DEB for which he intends to issue the RESERVE macro in­
struction. (In disk addresses of the form MBBCCHHR, the M indicates the extent
number starting with 0.)

Following are suggested procedures for finding the UCB address of the device
to be reserved.

If the data set is a multivolume sequential data set, it must be assumed that
all jobs will process that data set in a sequential manner starting with the first
volume of the data set. In this case, by issuing a RESERVE for the first volume
only, the user effectively reserves all the volumes of the data set.

For data sets using the queued access methods in the update mode or for
unopened data sets:

1. Extract the TIOT from the TCB.

2. Search the TIOT for the DD name associated with the shared data set.

3. Add 16 to the address of the DD entry found in step 2. This results in a
pointer to the UCB address in the TIOT.

4. Issue the RESERVE macro specifying the address obtained in step 3 as the
operand of the UCB keyword.

For opened data sets:

1. Load the DEB address from the DCB field labeled DCBDEBAD.

2. Load the address of the field labeled DEBDVMOD in the DEB obtained in step
1. The result is a pointer to the UCB address in the DEB.

3. Issue the RESERVE macro specifying the address obtained in step 2 as the
operand of the UCB keyword.

OS/VSl Planning and Use Guide

RES and DEQ Subroutines

For EDA.:M data sets the uSer may reserve the device at any point in his process­
ing in the following manner:

1. Open the data set successfully.

2. Convert the block address used in the READ/WRITE macro to an actual device
address of the form MBBCCHHR.

3. Load the DEB address from the DeB field labeled DeBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the direct access address by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in the
DEB for the next READ/WRITE operation. The sum is also a pointer to the DCB

address for this extent.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the
operand of the DCB keyword.

If the data set is an ISAM data set, QISAM in the load mode should be used
only at system update 'time. Further, if it is a multivolume ISAM data set, it must
be assumed that all jobs will access the data set through the highest level index.
The indexes should never reside in storage when the data set is being shared.
In this case, by issuing a RESERVE macro for the volume on which the highest
level index resides, the user effectively reserves the volumes on which the prime
data and independent overflow areas reside. The following procedures may be
used to achieve this:

1. Open the data set successfully.

2. Locate the actual device address (MBBCCHH) of the highest level index. This
address can be obtained from the DeB.

3. Load the DEB address from the DCB field labeled DCBDEBAD.

4. Load the address of the field labeled DEBDVMOD in the DEB.

5. Multiply the "M" of the actual device address located in step 2 by 16.

6. The sum of steps 4 and 5 is the address of the correct extent entry in
the DEB for the highest level index not in core. This extent entry is also a
pointer to the DCB address.

7. Issue the RESERVE macro specifying the address obtained in step 6 as the
operand of the DCB keyword.

The following assembler language subroutine may be used by FORTRAN, COBOL,

or assembler language programs to issue the RESERVE and DEQ macro instructions.
Parameters that must be passed to the RESDEQ routine, if the RESERVE macro in­
struction is to be issued, are:

DDNAME

Address of the eight character name of the DDCARD for the device that you wish
to reserve.

QNAME

Address of an 8-character name.

RXAME LEXGTH

Address of one byte (a binary integer) that contains the R..'XAME length value.

The Shared Direct-Access Device Option SHR 11

SHR 12

RNAME

Address of a name from 1 to 255 characters in length.
The DEQ macro instruction does not require the uCB=pointer address as a para­

meter. If the DEQ macro is to be issued, a fullword of binary zeros must be
placed in the DDNAME field before control is passed.

RESDEQ CSECT
SAVE (l4,12),T SAVE REGISTERS
BALR 2,0 SET UP ADDRESSABILITY
USING *,2
ST 13,SA VE+4
LA 1J,SAVE ADDRESS OF MY SAVE AREA IS STORED
ST 11,8 (13) IN THIRD WORD OF CALLER'S SAVE AREA
LR 13,11 ADDRESS OF MY SAVE AREA
LR 9,1 PARAMETER LIST ADDRESS POINTER
L 3,0(9) ADDRESS OF PARAMETER LIST
CLC O{4,3),=F'0' DDNAME PARAMETER OR WORD OF ZEROS
BE WANTDEQ WORD OF ZEROS IF DEQ IS REQUESTED

*PROCESS FOR DETERMINING THE UCB ADDRESS USING THE TIOT
XR 11,11 REGISTER USED FOR DD ENTRY
EXTRACT ADDRTIOT,FIELDS=TIOT
L 7,ADDRTIOT ADDRESS OF TASK 110 TABLE
LA 7,24(7) ADDRESS OF FIRST DD ENTRY

NEXTDD L 5,0(3) ADDRESS OF DDNAME
CLC 0(8,5),4(7) COMPARE DDNAMES
BE FINDUCB
IC 11,0(7) LENGTH OF DD ENTRY
LA 7,0(7,11) ADDRESS OF NEXT DD ENTRY
CLC o(4,7),=F'0' CHECK FOR END OF TIOT
BNE NEXTDD
ABEND 200,DUMP DDNAME IS NOT IN TIOT, ERROR

FINDUCB LA 8,16(7) ADDRESS OF WORD IN TIOT THAT
* CONTAINS ADDRESS OF UeB
*PROCESS FOR DETERMINING THE QNAME REQUESTED
WANTDEQ L 7,4(3) ADDRESS OF QNAME

MVC QNAME(8) ,O(7) MOVE IN QNAME
*PROCESS FOR DETERMINING THE RNAME AND THE LENGTH OF RNAME

L 7,8(3) ADDRESS OF RNAME LENGTH
MVC RNLEN+3(l),0(7) MOVE BYTE CONTAINING LENGTH
L 7,RNLEN
STC 7,RNAME STORE LENGTH OF RNAME IN THE

FIRST BYTE OF RNAME PARAMETER
FOR RES/DEQ MACROS

*
*

L
BCTR
EX
CLC
BE
RESERVE
B

ISSUEDEQ DEQ
RETURN L

RETURN
BCR

MOVERNAM MVC
ADDRTIOT DC
SAVE DS
QNAME DS
RNAME DS
RNLEN DC

E:\,D

OS/VS1 Planning and Use Guide

6,12(3)
7,0
7,MOVERNAM
O(4,3),=F'0'
ISSUEDEQ

ADDRESS OF RNAME REQUESTED
SUBTRACT ONE FROM RNAME LENGTH

MOVE IN RNAME

(QNAME,RNAME,E,O,SYSTEMS), UCB= (8)
RETURN
(QNAME,RNAME,O,SYSTEMS)
13,SA VE+4 RESTORE REGISTERS AND RETURN
(14,12),T
15,14
RNAME+ 1(0),0(6)
F'O'
18F
2F
CL256
F'O'

System Macro Instructions

This section contains the description and formats of
macro instructions that allow you either to modify
control blocks or to obtain information from control
blocks and system tables.

Section Outline

System Macro Instructions
How to Read a Job File Control Block

OPEN-Prepare the Data Control Block
for Processing (S)

CIRB-Create IRB for Asynchronous Exit Processing .
SYNCH-Synchronous Exits to Processing Program ..

SYNCH Macro Definition
Programming Notes
Example , '" ., .

STAE-Specify Task Asynchronous Exit
STAE-Execute and Standard Form
STAE-List Form

Programming Notes

SMI 1

SMI 3

SMI 3
SMI 4
SMI 5
SM! 5
SMI 5
SMI 5
SMI 6
SMI 6
SM! 7
SMI 8

ScheduHng of ST AE Exit and Retry Routines .. , SMI 9
ATTACH-Creat a New Task SMI 11
IMCLIB-Open or Close SYSl.IMACELIB SMI 13
QEDIT -Linkage to SVC 34 SMI 13
EXTRACT-Provide Information from TCB Fields .. SMI 15

EXTRACT-List Form SMI 16
EXTRACT-Execute Form SMI 17

WTOjWTOR-Write to Operator SM! 18
WTO-Standard Form SMI 18
WTO-List Form SMI 19
WTO-Execute Form SMI 20
WTOR-Standard Form SMI 20
WTOR-List Form SMI 21
WTOR-Execute Form SMI 22

System Macro Instructions SMII

SMI2 OS/VS1 Planning anel t'se Guide

How to Read a job file Con;rol Block

OPEN-Prepare the Data
Control Block for
Processing (5)

To accomplish the functions that are performed as a result of an OPEN macro
instruction, the OPEN routine requires access to information that you have supplied
in a data definition (DD) statement. This information is stored by the system in
a job file control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In special ap­
plications, however, you may find it necessary to modify the contents of a JFCB

before issuing an OPEN macro instruction. To assist you, the system provides the
RDJFCB macro instruction. This macro instruction causes a specified JFCB to be
read into main storage from the job queue in which it has been stored. Format
and field description of the JFCB is contained in the VSl System Data Areas publi­
cation.

When subsequently issuing the OPEN macro instruction, you must indicate, by
specifying the TYPE=J option, that you have supplied a modified JFCB to be used
during the initialization process.

The JFCB is returned to the job queue by the OPEN routine or the OPENJ routine,
if any of the modifications in the following list occur. These modifications can
occur only if the information is not originally in the JFCB.

• Expiration date field and creation date field merged into the JFCB from the
DSCB.

• Secondary quantity field merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DCB.

• Volume serial number fields added to the JFCB.

• Data set sequence number field added to the JFCB.

• N umber of volumes field added to the JFCB.

If you make these, or any other modifications; and you want the }FCB retlJ.rned
to the job queue, you must set the high-order bit of field JFCBMASK+4 to one.
This field is in the JFCB. Setting the high-order bit of field JFCBMASK+4 to zero
does not necessarily suppress the return of the JFCB to the job queue. If the OPEN

or OPENJ routines have made any of the preceding modifications, the JFCB is re­
turned to the job queue. To inhibit writing the JFCB back to the job queue
during an OPENJ, the field JFCBTSDM should be set to X'08' prior to issuing the
OPEN macro.

The OPEX macro instruction initializes one or more data control blocks so that
their associated data sets can be processed.

A full explanation of the operands of the OPEK macro instruction is contained in
the OS/VS Data Management Macro Instructions publication. The TYPE=J option,
because it is used in conjunction with modifying a JFCB, should be used only by
the system programmer or only under his supervision.

System Macro Instructions SMI3

CIRS-Create IRS for Asynchronous Exit Processing

S~U 4

The CIRB macro instruction is included in SYSl.MACLIB and must be included in
your system at system generation time if you intend to use it. The issuing of this
macro instruction causes a supervisor routine (called the exit effector routine)
to create an interruption request block (IRB). In addition, other operands of this
macro instruction may specify the building of a register save area andlor a work
area to contain interruption queue elements, which are used by supervisor routines
in the scheduling of the execution of user exit routines.

Name Operation Operand

[symbol] CIRB {EP = addrx }, KEY~ ~~~ SUPR '
MODE= ~S~:R ~.

EP

KEY

fSTAB = code,]

{SVAREA = NO f,
YES

[WKAREA = value]

specifies the entry point address of the user's asynchronous exit routine.

specifies whether the user's asynchronous routine will operate with a CPU pro­
tection key established by the supervisory program (SUPR) or with a protec­
tion key obtained from the task control block of the task for which the macro
instruction is issued (pp).

MODE

STAB

specifies whether the user asynchronous routine will be executed in the
problem program (pp) state or in a supervisory (SUPR) state.

indicates the status condition of the interruption request block. The 'code~
parameter may be either of the following:

(RE) to indicate that the IRB is reusable in its current form.

(DYN) to indicate that the storage area assigned to the IRB is to he made
available (that is, freed) for other uses when the asynchronous exit
routine is completed.

SVAREA

specifies whether a register save area (of 72 bytes) is to be obtained from
the storage assigned to the problem program. If it is, the address of
this save area is placed in the IRB. The asynchronous exit routine then follows
the system register saving convention of using the SAVE and RETURN macro
instructions. In this manner, a generalized subroutine can be used as an
asynchronous exit routine.

WKAREA

specifies the number of double words (given as a decimal value) required for
an area in which the routine issuing the macro instruction can construct inter­
ruption queue elements.

OS/VSl Planning and Use Guide

SYNCH-Synchronous Exits to Processing Program

SYNCH Macro Definition

Programming Notes

Example

The SYXCH macro instruction is a system macro instruction that permits control
program supervisor call (svc) routines to make synchronous exits to a processing
program.

Name Operation Operand

[symbol] SYNCH ~ entry-point ~
(15)

entry-point

specifies the address of the entry point for the processing program that is to
be given control.

If (15) is specified, the entry-point address of the processing program
must have been pre-loaded into parameter register 15 before execution of
this macro instruction.

MACRO
&NAME SYNCH

AIF
AIF

&:\,A:\1E LA
AGO

.REG AIF
&NAME LR
.SVC SVC

MEXIT
.NAMEIT AKOP
&NAME SVC

MEXIT

&EP
('&EP' EQ ' ,) .Cl

('&EP' (1,1) EQ ' (') .REG
15,&EP LOAD E~TRY POI~T ADDRESS.
.SVC
('&EP' EQ ' (15) ,) .NAMEIT
15,&EP(1) LOAD ENTRY POINT ADDRESS.
12 ISSUE SYNCH SVC

12 ISSUE SYNCH SVC

.El IHBERMAC 27,405
MEND

In general, you use the SYXCH macro instruction when a control program in the
supervisor state is to give temporary control to a processing program routine, and
you expect the processing program to return control to the supervisor state. The
program to which control is given must be in storag.e when the macro instruction
is issued. The use of this macro instruction is similar to that of the BALR instruction
in that register 15 is used for the entry point address. When the processing pro­
gram returns control, the supervisor state bit, the storage protection key bits,
the system mask bits and the program mask bits of the program status word are
restored to the settings they had before execution of the SYNCH macro instruction.

As a result of an OPE X macro instruction, label processing may be carried out
to a point at which a user's processing program indicates that private processing
is desired (or necessary). The control program's open routine then will issue a
SY~CH macro instruction giving the entry point of the subroutine required for
the user's private label processing.

System Macro Instructions SMI5

STAE-Specify Task Asynchronous Exit

STAE-Execute and
Standard Form

The STAE macro instruction permits control to be returned to a user exit routine
when a task is scheduled for ABEND. When you issue the STAE macro instruction,
a STAE control block (SCB) is created and initialized with the address of your
user exit routine. If you issue multiple STAE requests within the same program, the
SCB associated with the last issued STAE request becomes the active SGB: it will be
the first to gain control when an ABEND is scheduled. If the active SCB is cancelled,
the preceding SCB, if there is one, will become the active SCB.

Notes:
• You cannot cancel or overlay an SCB not created by your program.
• The execution of a LINK macro instruction does not cancel the active SCB for the pro­

gram in control.

Name Operation Operand

[symbol] STAE L::::J , ~ :~ ! [,PARAM = I;,. J [XCTL =~::SfJ address

[tUIESCE!] [,PURGE = ~~~~ ,ASYNCH = ~~~s!J
MF = (E, [remote list address] [(1)])

exit address

ov

CT

specifies the address of a STAE exit routine to be entered if the task issuing
this macro instruction terminates abnormally. If 0 is specified, the last 8GB

created is canceled and the previously created 8GB becomes current. The
address may be loaded into one of the general registers (r 1) 2 through 12.

Nate: If you use the execute form of the macro and specify a zero, the exit address
in the parameter list will be zeroed.

indicates that the parameters passed in this STAE macro instruction are to
overlay the data currently in the SCB.

indicates the creation of a new active SCB.

PARAM=

specifies the address of a parameter list containing data to be used by the
STAE exit routine when it is scheduled for execution. The address may be
loaded into one of the general registers (r?) 2 through 12.

XCTL=YES

indicates that the STAE macro instruction will not be canceled if an XCI'L

macro instruction is issued.

XCTL=NO

indicates that the STAE macro instruction will be canceled if an XC1'L is issued.

SMI6 as /VS 1 Planning and Use Guide

ST AE-List Form

FunGE=QUIESCE

indicates that all active input/output operations will be purged with the
quiesce option. If this fails, active input/output operations will be purged
with the haIt option.

Note: If you use the execute form of the STAE macro instruction and omit the PURGE
parameter, QUIESCE will not be the default; the option specified for the preceding use
of ST AE will be used.

PURGE=HALT

indicates that all active input/output operations will be purged with the
haIt option.

, PURGE==NONE

indicates that all active input/output operations will not be purged
ASYNCH=NO

indicates that asynchronous exit processing will be prohibited while STAE

exit processing is being done.
ASYNCH=YES

indicates that asynchronous exit processing will be allowed while STAE exit
processing is being done.

MF= (E, [remote list address] [(1) J)
indicates the execute form of the STAE macro instruction using a remote
parameter list. The address of the remote parameter list can be loaded into
register 1, in which case MF= (E, (1)) should be coded.

Note: When using the execute form of the STAE macro instruction and omitting the
ASYNCH parameter, the option specified for the preceding use of STAE will be used.

Use the list form of the STAE macro instruction to construct program parameter
lists. The description of the execute and standard form applies to the list form
with the following exceptions:
exit address

any address that may be ~'Titten in an A-type address constant.
MF=L

indicates the list form of the STAE macro instruction.

You should be aware of several conditions when you use the PURGE and ASYNCH

parameters of the STAE macro instnlction:
• If your user exit routine requests a supervisor service that requires asyn­

chronous interruptions to complete its normal processing, you must specify
ASYNCH=YES.

• You must specify ASYXCH=YES if you use an access method that requires
asynchronous interruptions to complete its normal processing and you have
specified PURGE=QUIESCE.

• If you are using the Indexed Sequential Access ~tfethod (ISA:M) and specify
PURGE=HALT, only the I/O event for which the PURGE is done will be posted.
Subsequent ECBS ,,,,ill not be posted; this canses the ISA::\:1 CHECK routine to treat
purged input/output operations as waiting input/output operations and you
will never get past the CHECK in your program.

• You must specify ASYXCH=YES when you have the following combination of
conditions: an access method that requires asynchronous interruptions to
complete its normal processing, a speCification of PURGE=XOXE, and a request
of CHECK in your user exit routine.

System ~facro Instructions SMI7

Programming Notes

• If you specify PURGE=HALT and an ISAM data set is being updated when a
failuTe occurs, part of the data set may be destroyed.

• If quiesced input/output operations are not restored and you are using ISAM,

the !SAM CHECK routine will treat purged input/output operations as waiting
input/output operations and part of the IS AM data set may be destroyed if
it is being updated when a failure occurs.

• If input/output 'Operations are allowed to complete while your exit routine
is in progress and there is a failure in the I/O processing, you will encounter an
ABEND recursion when the I/O interrupt occurs. This can be misleading because
it will appear that your exit routine failed while the actual cause of the failure
was in the I/O pr'Ocessing.

When control is returned to the user after the STAE macro instruction has been
issued, register 15 contains one of the following return codes:

Code Meaning

00 An SCB is successfully created, overlaid, or canceled.
04 Storage for an SCB is not available.
08 The user is attempting to cancel or overlay a non-existent SCB, or is issuing a ST AE

in his STAE exit routine.
OC The exit routine or parameter list address is invalid.
10 The user is attempting to cancel or overlay an SCB not associated with his level

of control.

When a program with an active STAE environment encounters an ABEND situa­
tion, control is returned to the user through the ABEND/STAE interface routine at
the STAE exit routine address. The register contents are as follows:

• Register 0:

C ode Indication

o Active I/O at time of ABEND was quiesced and is restorable.
4 Active I/O at time of ABEND was halted and is not restorable.
8 No I/O was active at the time of the ABEND .

• Register 1: Address of a 104-byte work area:

o

8

16

24

ST AE exit routine parameter I ABEND completion code

list addr or 0

PSWat time of ABEND

Last PIP PSW b~fore ABEND

Registers 0-15 at time of ABEND (64 bytes)

If problem program issued STAE:

88 Name of ABENDing program or 0
r---,-----------------------~~------------------------~

96 Entry point addr of ABENDing I 0
program

SMI8 OS/VSl Planning and esc Guide

Scheduling of ST AE
Exit and Retry Routines

88

96

If supervisor program issued STAE:

Request block address of
ABENDing program

• Registers 2-12: Unpredictable.

I
o

• Register 13: Address of a supervisor save area.

• Register 14: Address of an svc 3 instruction.

• Register 15: Address of the STAE exit routine.

o

Registers 13 and 14, if used by the STAE exit routine, must be saved and re­
stored prior to returning to the calling program. Standard subroutine linkage
conventions are employed.

If storage was not available for the work area, the register contents upon
entry to the STAE exit routine are as follows:

• Register 0: 12.

• Register 1: ABEND completion code, as in the TCBCMP field.

• Register 2: Address of STAE exit parameter list.

The STAE exit routine may contain an ABEND, but must not contain either a
STAE or an ATTACH macro instruction. At the time the ABEND is scheduled, the
STAE exit routine must be resident as part of the program issuing STAE, or bro.Ught
into storage via the LOAD macro instruction.

Each STAE exit routine is represented by one or more STAE control blocks (SCBS).

Each STAE control block is queued in a last-in, first-out order to the TCB (TCBNSTAE

field) of the task within which they were created.

If a task is scheduled for abnormal termination, the exit routine specified by
the most recently issued STAE macro instruction (represented by the highest STAE

control block on the queue) is given control and executes under a program re­
quest block created by the SYNCH service routine. The STAE exit routine must
specify, by a return code in register 15, whether a retry routine is to be scheduled.
If no retry routine is to be scheduled (return code=O), abnormal termination
continues.

If the STAE exit routine indicates that a retry routine has been provided (re­
turn code=4), register 0 must contain the address of the retry routine and
register 1 must contain the address of the same work area passed to the exit
routine. (The first word of the work area may be modified by the exit routine
to point to another parameter list in the partition.) The STAE control block is freed
and the request block queue is purged of all RBS from the RB of the program
that is being terminated up to, but not including, the RB of the program that
issued the STAE macro instruction. This is done by placing an svc 3 instruction in
the old psw field of each RB to be purged. In addition, open DCBS which can be

System Macro Instructions SMI9

SM! 10

associated with the purged RBS are closed, and queued I/O requests associated
with these DCBS being closed are deleted from the I/O restore chain.

The RB purge is an attempt to cancel the effects of partially executed pro­
grams that are at a lower level in the program hierarchy than the program under
which the retry will occur. However, certain effects on the system will not be
canceled by this RB purge. Examples of these effeots are as follows:

• Subtasks created by a program to be purged.

• Resources allocated by the ENQ macro instructions.

• DCBS that exist in dynamically acquired storage.

When your STAE exit routine gains control, it can examine the code in register
o to determine if there were active input/output operations at the time of the
ABEND and if the input! output operations are restorable. If there are quiesced
restorable input/output operations, you can restore them, in the STAE retry
routine, by using word 26 in the work area. Word 26 contains the link field
passed as a parameter to svc restore. svc restore is used to have the system re­
store all I/O requests on the I/O restore chain.

You can selectively restore specific I/O requests on the I/O restore chain by
using word 2 in the work area. Word 2 contains the address of the first I/O

block on the I/O restore chain. You can use this address as a starting point for
issuing EXCP for the I/O requests that you want to restore.

In supervisor mode, you may want the failing task to remain in its present
status and not be reestablished. A retry routine may be scheduled without a
purge of the RB chain by returning to the ABEND/STAE interface routine with an
8 in register 15, and registers 0 and 1 initialized as previously described. If the
STAE retry routine is scheduled, the system automatically cancels the active SCB

and the preceding SCB, if there is one, will become the active SCB. If you want
to maintain STAE protection against ABEND, you must re-establish an active SCB

within the retry routine, or you must issue multiple STAE requests prior to the
time that the retry routine gains control.

The STAE exit routine must specify by a return code in register 15 one of the
following:

Return Code Action to be Taken

o No retry provided. Abnormal termination is to continue.

4 A retry routine is to be scheduled and the request block queue is to be
purged.

8 A retry routine is to be scheduled but the request block queue is not to be
purged (if the user is not in supervisor mode, this return code will be
ignored and abnormal termination processing continues).

When the RB queue is not to be purged, a new PRB is created for the retry
routine and placed on the RB queue immediately after the SVRB for the ABEND

routine, so that when the ABEND routine returns via an svc 3 instruction the retry
routine will receive control.

1£ the RB queue is to be purged, the STAE retry routine is executed under the
PRB that issued the STAE being processed for this abnormal termination.

as IVS 1 Planning and Use Guide

Like the STAE exit routine, the STAE retry routine must be in storage when
the exit routine detennines that retry is to be attempted. If not already resident
within your program, the retry routine may be brought into storage by the LOAD

macro instruction by either the user's program or exit routine.

Upon entry to the STAE retry routine, register contents are as follows:

• Register 0: 0

• Register 1: Address of the work area, as previously described, except that word
2 now contains the address of the first I/O block and word 26 now contains
the address of the I/O restore chain.

• Registers 2-13: Unpredictable.

• Register 14: Address of an svc 3 instruction.

• Register 15: Address of the STAE retry routine.

The retry routine should use the FREEMAIN macro instruction to free the 104
bytes of storage occupied by the work area when the storage is no longer needed.
This storage should be freed from subpool 0 which is the default subpool for
the FREEMAIN macro instruction.

Again, if the ABEND/STAE interface routine was not able to obtain storage for
the work area, register 0 contains a 12; register 1, the ABEND completion code
upon entry to the STAE retry routine; and register 2, the address of the first I/O

block on the restore chain, or 0 if I/O is not restorable.

Note: If the program using the STAE macro instruction terminates by the EXIT macro in­
struction, the EXIT routine cancels ail seBs related to the terminating program. If the
program terminates by the XCTL macro instruction, the EXIT routine cancels all SCBs related
to the terminating program except those SCBs that were created with the XCTL=YES option.
If the program terminates by any other means, the terminating program must reinstate the
previous SCB by canceling all SCBs related to the terminating program.

ATTACH-Create a New Task

This explicit form of ATTACH permits greater flexibility in both the use and the
result of use of the ATTACH macro instruction. This form of the macro instruotion
differs from the implicit form by the addition of six keyword parameters to those
described for the implicit form in the OS/VS Supervisor Services and Macros
publication. Only the added six parameters are shown and explained in this
description.

These six parameters can be used only with tasks whose protection key is
zero. If they are used with other tasks, the default values are used.

Name Operation Operands

[Symbol) ATTACH {YES } {SUPV} {YES} ... ,JSTCB = NO ,SM = PROB ,SVAREA = NO

{ZERO} {YES} . ,KEY = PROB ,GIVEJPO = NO ,JSCB = Jscbaddr

System Macro Instructions SMI11

S.MI 12

Ordinary ATTA(,"'l! macro instruction parameters. See the description in the
OS/VS Supervisor Services and Macros publication.

]STCB

,SM

Address to be placed in the TCBJSTCB field of the TCB of the newly created
task. The address determines whether the attached task is a new job step
or a task in the present job step. A new job step is required if the ownership
of programs is to pass from the attaching to the attached task, that is, if
you are coding GIVEJPQ=YES in the macro instruction. (Also, see the follow­
ing note.)

YES-Address of the TCB of the newly created task, that is, this TCB points to
itself, thus creating a ne\v job step. A new job step is required if owner­
ship of programs is being transferred from the attaching to the attached
task, that is, if you are coding GIVEJPQ=YES in the macro instruction.

No-Address of the TCB of the task using the ATTACH, that is, the attached
task is to be a task in the present job step.

Operating state of the machine when executing the attached task.
supv-Supervisor mode.
PRoB-Problem program mode.

,SVAREA

,KEY

Need for save area.

YEs-A save area is needed for the attaching task. The ATTACH routine will
obtain a '/2 byte save area. If both attaching and attached tasks share
subpool zero, the save area is obtained there, otherwise it is obtained
from a new 2K byte block.

No-No save area is needed.

Protection/key of the newly created (attached) task.
ZERo-Zero.
PROB-COPY the key from the TCEPKF field of the TCE for the task using the

ATTACH.

,GIVEJPQ
Ownership of programs used by the attaching task. If ownership is to pass
to the attached task, the attached task must be a new job step, that is, you
must use JSTCB=YES. (Also see the following note.)
YES-PaSS ownership to the newly created task. On completion of the new

task all programs, both those passed to the new task by the old and
those acquired by it, are freed.

No-Ownership of programs used by the attaching task remain with that
task; programs acquired by the attached task remain with it. The at­
tached task shares use of the programs of the attaching task during their
common existence. At the conclusion of the attached task, the programs
it acquired are freed; when the attaching task terminates, its programs
are freed.

,]SCB
Job step control block address.

OS/VSl Planning and Use Guide

If specified, that job step control block is used for the new task. If not
specified, the job step control block of the attaching task is also used for the
new task.

Note: If the task to be attached is to be a separate step OSTCB=YES), ownership of programs
may be passed (GIVEJPQ=YES) or retained (GIVEJPQ=NO). If the newly attached task
is not to be a separate step (JSTCB=NO), ownership of programs cannot be passed but
must be retained (GIVEJPQ=NO). The following table summarizes these combinations.

JSTCB =

YES NO

GIVEPJQ = YES Valid Invalid

NO Valid Valid

IMGUB-Open or Close SYS l.lMAGELlB

The IMGLIB macro instruction is used to 'Open or close SYSl.IMAGELIB. When issued
to open the image library, it is usually followed by a BLDL macro instruction and a
LOAD macro instruction which, respectively, search the library for the image and
load it into storage.

Name Operation Operand

[symbol] IMGLlB OPEN, deb addr
CLOSE

OPEN

specifies that SYSl.IMAGELIB is to be opened and the address of the DCB

returned in register one.

CLOSE

specifies that IMAGELIB is to be closed.

deb addr

QEDIT-Linkage to SVC 34

is either the address of the IMAGELIB DeB or is a register containing the
IMAGELIB DCB address.

The QEDIT macro instruction generates the required entry parameters and the
linkage to svc 34 for the following uses:

• Dechaining and freeing of a CIB from the CIB chain for a task.

• Setting a limit for the number of CIBS that may be simulraneously chained
for a task.

System ~facro Instructions SMI 13

SMI 14

The format of the QEDIT macro instruction and an explanation of the operands
are as follows:

Name Operation Operand

[symbol] QEDIT ORIGIN = address [, BLOCK = address]

[, CI BCTR = number]

ORIGIN

The address of the pointer to the first crn 'On the ern chain fDr the task. This
address is obtained using the EXTRACT macro instruction. If ORIGIN is the only
parameter specified, the entire CIB chain will be freed.

,BLOCK

The address of the crn that is to be freed from the ern chain for a task.

,CIBCTR

An integer (from 0 to 255) to be used as a limit for the number of CIBS

to be chained at anyone time for a task.

address
Any address valid in an RX instruction or one of the general registers (2-12)
previously loaded with the indicated address. The register must be designated
by a number or symbol added within the parentheses.

OS/VS1 Planning and Use Guide

EXTRACT -Provide Information from TCB Fields

The EXTRACT macro instruction provides information from specified fields of the
task control block or a subsidiary control block for either the active task or
one of its subtasks. The information is placed in an area provided by the
problem program in the order shown in Figure SMI l.

The standard form of the EXTRACT macro instruction is written as follows.
Information about the list and execute forms follows this description.

Name Operation Operand

[symbol] EXTRACT answer area address [,tcb location address]

,~'

,F IE LDS = (codes)

answer area address
is the address in virtual storage of one or more consecutive fullwords, start­
ing on a fullword boundary. The number of fullwords required is the same
as the number of fields specified in the FIELDS operand, unless FIELDS=(ALL)
is coded. FIELDS= (ALL) requires seven fullwords.

tcb location address
specifies the address of a fullword on a fullword boundary containing the
address of a task control block for a subtask of the active task.

<s' indicates that information is requested from the task control block for
the active task. 's' is assumed if the operand is omitted or if it is coded to
specify an address of O.

FIELDS=
is one or more of the following sets of characters, written in any order
and separated by commas, which are used to request the associated task
control block information. The information from the requested field is re­
turned in the relative order shown in Figure SMI 1. If the infO!rmation from
a field is not requested, the associated fullword is omitted. If ALL is specified,
the answer area includes all the fields in Figure SMI 1 from GRS to TIOT,
including the reserved word. Addresses are always returned in the low-order
three bytes of the fullword, and the high-order byte is set to O. Fields for
which no address or value has been specified in the task control block are
set to O.
ALL-requests information from the GRS, FRS, RESERVED, AETX, PRI, CMC, and

TIOT fields.
GRS-the address of the general register save area used by the control pro­

gram to save the general registers (in the order of 0 through 15) when
the task is not active.

FRs-the address of the floating-point register save area used by the control
program to save the floating-point registers (in the order of 0, 2, 4, 6)
when the task is not active.

AETX-the address of the end-of-task exit routine specified in the ETXR operand
of the ATTACH macro instruction used to create the task.

pRI-the current limit (third byte) and dispatching (fourth byte) priorities
of the task. The two high-order bytes are set to O.

CMc-the task completion code. If the task is not complete, the field is set
to O.

System Macro Instructions SMI15

EXTRACT-List Form

TIOT--the address of the task input! output table.
coMM-the address of the command scheduler communications list. The list

consists of a pointer to the communications event control block, and a
pointer to the command input buffer. The high-order bit of the last pointtr
is set to one to indicate the end of the list.

N ote: You must provide an answer area consisting of contiguous fullwords, one for each
of the codes specified in the FIELDS operand, with the exception of the ALL code. IT ALL
is specified, you must provide a 7-word answer area to accommodate the GRS, FRS,
RESERVED, AETX, PRI, CMC, and TIOT fields. The ALL code does not include COMM.

For example, if FIELDS=(TIOT,GRS,PRI) is coded, a 3-word answer area is required 1

and the extracted information appears in the answer area in the same relative order as shown
in Figure SMI 1. (That is, GRS is returned in the first word, PRI in the second word,
TIOT in the third word.)

answer area address

GRS ADDRESS

FRS ADDRESS

Reserved (set to zero)

AETX ADDRESS

PRI I VALUE I VALUE

CMC COMPLETION CODE

TIOT ADDRESS

COMM ADDRESS

1 ... --------- 4 bytes ----------tt I

Figure SMI 1. Field Order for the EXTRACT Answer Area

The list form of the EXTRACf macro instruction is used to construct a control
program parameter list.

The description of the standard form of the EXTRACf macro instruction explains
the function of each operand. The description of the standard form also indicates
which operands are totally optional and which are required in at least one of
the pair of list and execute forms. The format description below indicates the
optional and required operands in t..~e list form only.

SMI16 OS /VS 1 Planning and Use Guide

EXTRACT-Execute Form

Name Operation Operand

[symbol] EXTRACT [answer area address] ['~ ~~ location address }]

[,FIELDS= (codes)] ,MF= L

symbol
is any symbol valid in assembler language.

address
is any address that may be written in an A-type address constant.

codes
are one or more of the sets of characters defined in the description of
the standard form of the macro instruction, Each use of the FIELDS operand
in the execute form overrides any previous codes.

MF=L

indicates the list form of the EXTRACT macro instruction.

A remote control program parameter list is referred to, and can be modified by,
the execute form of the EXTRACT macro instruction.

The description of the standard form of the EXTRACT macro instruction explains
the function of each operand. The description of the standard form also indicates
which operands are always optional and which are required in at least one of
the pair of list and execute forms. The following format description indicates
the optional and required operands in the execute form only.

Name Operation Operand

[symbol] EXTRACT [answer area address] [~ ib location address ~]

I. FIE LDS" Icodes II,M F" C' ~ control p cogram list D
address

(1)

symbol
is any symbol valid in assembler language.

System Macro Instructions SMI 17

address
is any address that is valid in an RX-type instruction, or one of general
registers 2 through 12, previously loaded with the indicated address. The
register may be designated symbolically or with an absolute expression, and
is always coded within parentheses.

codes
are one or more of the sets of characters defined in the the description
of the standard form of the macro instruction. Any previous FIELD operands
are canceled and must be respecified if required for this execution of EX­

TRACT.

MF= (E, { (~ntrol program list address })

indicates the execute form of the macro instruction using a remote control
program parameter list. The address of the control program parameter list
can be coded as described under "address" or can be loaded into register 1,
in which case code MF=(E, (1)).

WTO/WTOR-Write to Operator

WTO-Standard Form

A special operand allows key-O users to route messages to remote work stations.
The user must specify the sueue identification number of the remote station.

The format of the standard form of the WTO macro is:

Name Operation Operands

[symbol) WTO {,message' }
('text'[,Iine type)) •...

[.ROUTCDE=(number[.number ...] I]

LDESC=(number[.number ...] I]

['MSGTypl~OBNAMEsll
STATUS
ACTIVE

[.MCSF LAG~(name[.name ...)))

[.010= nnnnn]

Only the two operands described here are required for RES support. The use of
all the other operands is explained in OSjVS Supervisor Services and Macro
Instructions, GC27-6979.

<message'

is the text of the message to be sent to the RES work station. The maximum
length is 125 characters. The text may contain any characters that can be
used in a c-type DC instruction.

QID=nnn11'n

is the decimal queue identification number of the remote user who is to
receive the message. If the QID is not equal to zero, only the indicated remote
station will receive the WTO (R). If the QID equals zero, normal routing is used.

SMI 18 OS/VSl Planning and Use Guide

WYO-List Form

Specification of this parameter causes the macro to generate the MSGTYP

field and to place the binary QID immediately following MSGTYP. Byte 0, bit
3 in MSGTYP is set on (set to 1) to indicate that a QID is present. Byte 0, bit 3
of MCSFLAG is set on to indicate that the MSGTYP field exists.

WTO produces the following return codes:

Return Code

'00'

X'04'

X'08'

X'OC'

X'lO'

X'l4'

X'80'

X'84'

X'88'

X'8e'

X'gO'

Meaning

No errors

Number of lines in parameter list is zero or greater than ten. If
zero, request ignored. If greater than ten, only ten are printed.

Passed message id cannot be matched with any existing unended
ML WTO chain. Request ignored.

Invalid line type encountered. Message terminated at that point.

Request had routing code of 11 (WTP). Not allowed for MLWTO.
Request ignored.

In ML WTO request, queue to hardcopy only bit on in the
MCSFLAG field. Request ignored.

Unauthorized user of remote \VTO (R) (not supervisor or key-O
user). Request ignored.

QID invalid (too large). Request ignored.

Receiver not logged on. Request ignored.

RTAM unable to find space. Request ignored.

RTAM unable to queue message. Request ignored.

The format of the list form of WTO is:

Name Operation Operands

[symbol] WTO f'text·l.nne type) l }
'message'

[,ROUTCOE=(number [,number .. .J) 1
[,OESC=(number[,number ...])]

['MSGTYP=l~OBNAMEsll
STATUS
ACTIVE

[,MCSF LAG=(name [,name ...]) 1

[tnnnfJ ,QIO= Y

N

The QID operand is required for RES support.

QID==

nnnnn - is the decimal queue identification number of the remote user who
is to receive the message.

Y - indicates that the 2-byte QID field should be generated and set to X'OOOO'.

N - indicates that the QID field should not be generated.

System Macro Instructions SMI19

WTO-Execute Form

WTOR-Standard Form

The execute form of the WTO macro is:

Name Operation Operands

symbol WTO MF= (E,
{Control program I ist address p

(1)

[010= {addreSS}]
(regl

The QID operand is required for RES support.
QID=

address - specifies the address of the 2-byte binary QID. The macro moves
the QID from the specified location to the QID field in the parameter list.

(reg) - specifies the register containing the address of the 2-byte binary QID.

The macro moves the QID to the QID field in the parameter list.

The fonnat of the standard form of the WTOR macro is:

Name Operation Operands

[symbol] WTOR 'message', reply address, length of reply
,ecb address

LROUTCOE=(number Lnumber ...] l]
[,DESC=(number [,number ...] l]

[MSGTYP= {~fJ
[,MCSFLAG=(name Lname ...] l]
LOIO=nnnnn]

Only the operands described here are required for RES support. The use of the
other operands is explained in OS/VS Supervisor Services and Macro Instructions,
GC27-6979.

'message'
is the text of the message to be sent to the RES work station. The maximum
length is 125 characters. The text may contain any characters valid in a
c-type DC instruction.

reply address
is the virtual address of the area into which the reply is to be placed.

SMI20 OS/VSl Planning and Use Guide

WTOR-List Form

length of reply
is the length of the reply message (minimum of one byte).

ecb address
is the address of the ECB (event control block) to be used to indicah>

completion of the reply.

QID= nnnnn
is the decimal queue identification number of the remote user who is h'

receive the message. If the QID is not equal to zero, only the indicated remob'
station will receive the WTO (R). If the QID equals zero, normal routing is usC'd

Specification of this parameter causes the macro to generate the MSGTYi

field and to place the binary QID immediately following MSGTYP. Byt<: n
bit 3 in MSGTYP is set on (set to one) to indicate that a QID is present
Byte 0, bit 3 of MCSFLAG is set on to indicate that the MSGTYP field ('xi"b;

WTOR produces the following return codes:

'00'
'80'

'84'
'88'
'8e'
'90'

No errors
Unauthorized issuer of remote \VTO (R)­
not supervisor of key-O user
QID invalid-too large
Receiver not logged on
RTAM unable to find space
RTAM unable to queue message

The list form of WTOR is:

Name Operation Operands

symbol WTOR 'message', [reply address]
,[length of reply] , [ecb address]
,MF=L [,ROUTCOE= (number [,number ...])]

[,OESC= (number [,number ...])]

[MSGTYP= ~~fJ
[,MCSFLAG= (name [,name .. .l)]

[{""non}] ,010= Y

N

The QID operand is required for RES support.

QID::=

1111n11n - is the decimal queue identification number of the remote user who
is to receive the message.

r - indicates that the 2-byte QID field should be generated and set to X'OOOO'.

N - indicates that the QID should not be generated.

System Macro Instructions S:\H 21

WTOR-Execute Form The execute form of the WTOR macro is:

Name Operation Operands

[symbol] WTOR , [reply address], [length of reply]
,[ecb address]

MF= (e ~control program list addressp
, , (1)

[010= ~ addressn
(reg)

The QID operand is required for RES support.

QID=

address - specifies the address of the 2-byte binary QID. The macro moves
the QID from the specified location to the QID field in the parameter list.

(reg) - specifies the register containing the address of the 2-byte binary QID.

The macro moves the QID to the QID field in the parameter list.

SM! 22 as / VS 1 Planning and Use Guide

Adding SVC Routines to the Controi Program

This section provides detailed information on how to
write an svc routine and insert it into the control pro­
gram portion of vsl.

Documentation of the internal logic of the super­
visor and its relationship to the remainder of the con­
trol program can be obtained through your mM Branch
Office.

Section Outline

Adding SVC Routines to the Control Program SVC 1

Writing SVC Routines SVC 3
Characteristics of SVC Routines SVC 3
Programming Conventions for SVC Routines SVC 3

Inserting SVC Routines into the Control Program SVC 8
Specifying SVC Routines SVC 8
Inserting SVC Routines During the System

Generation Process SVC 8

Adding SVC Routines to the Control Program SVC 1

SVC 2 OS/VSl Planning and Use Guide

Writing SVC Routines

Characteristics of SVC
Routines

Programming Conventions
for SVC Routines

Because your svc routine will be a part of the control program, you must follow
the same programming conventions used in svc routines supplied with vs1.

Four types of svc routines are supplied with vsl and the programming con­
ventions for each type differ. The general characteristics of the four types are
described in the following text, and the programming conventions for all types
are shown in tabular form.

All svc routines operate in the supervisor state. You should keep the following
characteristics in mind when deciding what type of svc routine to write:

• Location of the routine-Your svc routine can be either in virtual storage at
all times as part of the resident control program, or on a direct access device
as part of the svc library. Types 1 and 2 svc routines are part of the resident
control program, and types 3 and 4 are in the svc library.

• Size of the routine-Types 1, 2, and 4 svc routines are not limited in size.
However, you must divide a type 4 svc routine into load modules of 2048
bytes or less. The size of a type 3 svc routine must not exceed 2048 bytes.

• Design of the routine-Type 1 svc routines must be reenterable or serially
reusable; all other types must be reenterable. If you wish to aid system facilities
in recovering from machine malfunctions, your svc routines should be
refreshable.

• Interruption of the rautine-\Vhen your svc routine receives control, the CPU

is masked for all maskable interruptions but the machine check interruption.
All type 1 svc routines must execute in this masked state. If you want to
allow interruptions to occur during the execution of a type 2, 3, or 4 svc
routine, you must change the appropriate masks. If you expect that a type
2, 3, or 4 svc routine will run for an extended period of time, it is recommended
that you allow interruptions to be processed where possible.

The programming conventions for the four types of svc routines are summarized
in Figure svc 1. Details about many of the conventions are in the reference notes
that follow the table. The notes are referred to by the numbers in the last
column of the table. If a reference note for a convention does not pertain to
all types of svc routines, an asterisk indicates the types to which the note refers.

Adding SVC Routines to the Control Program SVC 3

Conventions Type 1 Type 2 Type 3 Type 4 Reference
Code

Part of resident control
program Yes Yes No No

Size of routine Any Any ~2048 Each load
bytes module

~ 2048
bytes

Reenterable routine Optional, Yes Yes Yes 1
but must
be serially
reusable

May allow interruptions No Yes Yes Yes 2

Entry point Must be the first byte of the routine or load
module, and must be on a doubleword boundary

Number of routine Numbers assigned to your SVC routines should
be in descending order from 255 through 200

Name of routine IGCnnn IGCnnn IGCOOnnn IGCssnnn 3
Register contents at entry Registers 3, 4, 5, and 14 contain communication 4
time pointers; registers 0, 1, and 15 are parameter

registers

May contain relocatable Yes Yes No* No* 5
data

Can supervisor request Not Yes* Yes* Yes* 6
block (SVRB) be extended applicable

May issue WAIT macro No Yes* Yes* Yes* 7
instruction

May issue XCTL macro No No No Yes* 8
instruction

May pass control to what None Any Any Any
other types of SVC
routines

Type of linkage with other Not Issue supervisor call (SVC) instruc-
SVC routines Applicable tion

Exit from SVC routine Branch using return register 14

Method of abnormal Use resi- Use ABEND macro instruction or 9
termination dent ab- resident abnormal termination

normal routine
termination
routine

Figure SVC 1. Programming Conventions for SVC Routines

SVC 4 OS/VS1 Planning and Use Guide

Reference
Code

1

2

3

4

SVC Routine
Types Reference Notes

all If your svc routine is to be reenter able, you cannot
use macro instructions whose expansions store in­
formation into an inline parameter list.

all Write svc routines so that program interruptions
cannot occur. If a program interruption does occur
during execution of an svc routine, the routine
loses control and the task that called the routine
terminates.

all

all

If a program interruption occurs and you are
modifying a serially reusable svc routine, a system
queue, control blocks, etc., the modification will
never complete; the next time the partially modified
code is used, the results will be unpredictable.

You must use the following conventions when
naming svc routines:

• Types 1 and 2 must be named IGCnnn; nnn is
the decimal number of the svc routine. You must
specify this name in an ENTRY, CSECT, or START

instruction.

• Type 3 must be named I GCOOnnn; nnn is the
signed decimal number of the svc routine. This
name must be the name of a member of a parti­
tioned data set.

• Type 4 must be named ,IGCssnnn; nnn is the
signed decimal number of the svc routine, and
ss is the number of the load module minus one.
For example, ss is 01 for the second load module
of the routine. This name must be the name
of a member of a partitioned data set.

Before your svc routine receives control, the con­
tents of all registers are saved. For type 4 routines,
this applies only to the first load module of the
routine.

In general, the location of the register save area
is unknown to the routine that is called. When
your svc routine receives control, the status of the
registers is as follows:

• Registers 0 and 1 contain the same information
as when the svc routine was called.

• Register 2 contains unpredictable information.

• Register 3 contains the starting address of the
communication vector table.

Adding SVC Routines to the Control Program SVC 5

SVC 6

Reference
Code

5

6

7

OS/VSl Planning and Use Guide

SVC Routine
Types

3,4

2,3,4

Reference Notes

• Register 4 contains the address of the task con­
trol block (TCB) of the task that called the svc
routine.

• Register 5 contains the address of the super­
visor request block (SVRB), if a type 2, 3, or 4
svc routine is in control. 1£ a type 1 svc routine
is in control, register 5 contains the address of
the last active request block.

• Registers 6 through 12 contain unpredictable
information.

• Register 13 contains the same information as
when the svc routine was called.

• Register 14 contains the return address.

• Register 15 contains the same information as
when the svc routine was called.

You must use registers 0, 1, and 15 if you want
to pass information to the calling program. The
contents of registers 2 through 14 are restored
when control is returned to the calling program.

Because relocatable address constants are not re­
located when a type 3 or 4 svc routine is loaded
into virtual storage, you cannot use them in coding
these routines; nor can you use macro instructions
whose expansions contain relocatable address con­
stants. Types 1 and 2 are not affected by this re­
striction since they are part of the resident control
program.

You can extend the SVRB, in 8-byte increments, from
96 bytes up to 144 bytes. The extended area is
available as a work area during execution of your
routine only if you specify the extension during
the system generation process. When your svc
routine receives control, register 5 contains the ad­
dress of the SVRB to which the extended save area
is appended.

You cannot issue the WAIT macro instruction unless
you have changed the system mask to allow 1/0

and external interruptions. If you have allowed
these interruptions, you can issue WAIT macro 1n-

Reference
Code

8

9

SVC Routine
Types

4

all

Reference Notes

structions that await either single or multiple events.
The event control block (ECB) for single-event waits
or the ECB list and ECBS for multiple-event waits
must be in pageable storage.

When you issue an XGrL macro instruction in a
routine under control of a type 4 SVRB, the new load
module is brought into a transient area.

The contents of registers 2 through 13 are un­
changed when control is passed to the load module;
register 15 contains the entry point of the called
load module.

Type 1 svc routines must use the resident abnormal
termination routine to terminate any task. The
entry point to the abnormal termination routine is
in the communication vector table (CVT). The sym­
bolic name of the entry point is CVTBTERM,

Types 2, 3, and 4 svc routines must use the ABEND

macro instruction to terminate the current task, and
must use the resident abnormal termination routine
to terminate a task other than the current task.

Before the resident abnormal termination routine
is entered, the CPU must be masked for all maska:ble
interrtlptions but th.e machine check interruption,
and registers 0, 1, and 14 must contain the follow­
ing:

• Register 0 contains the address of the TCB of the
task to be terminated.

• Register 1 contains the following information:
Bit 0 is a 1 if you want a dump taken.
Bit 1 is a 1 if you want to terminate a job step.
Bits 2-7 are zero.
Bits 8-19 contain the error code.
Bits 20-31 are zero.

• Register 14 contains the return address. The
resident abnormal termination routine exits by
branching to the address contained in register
14.

The contents of register 15 are destroyed by the
abnormal termination routine.

Adding SVC Routines to the Control Program SVC 7

Inserting SVC Routines into the Control Program

Specifying SVC Routines

Inserting SVC Routines
During the System Genera­
tion Process

You insert svc routines into the control program during the system generation
process.

Before your svc routine can be inserted into the control program, the routine
must be a member of a cataloged partitioned data set. You must name this data
set sysl.name, where the name is a name of your choice.

The following text gives a description of the information you must supply
during the system generation process. You will find a description of the macro
instructions required during the system generation process in the VSl SYSGEN
publication.

You use the SVCTABLE macro instruction to specify the svc number, the type of
svc routine, and, for type 2, 3, or 4 routines, the number of double words in the
extended save area.

To insert a type 1 or 2 svc routine into the resident control program, use the
RESMODS macro instruction. You must specify the name of the partitioned data
set and the names of the members to be inserted into the control program. Each
member can contain more than one svc routine.

To insert a type 3 or 4 svc routine into the svc library, use the SVCLffi macro
instruction. You must specify the name of the partitioned data set and the names
of members to be included in the svc library. The member names must conform
to the conventions for naming type 3 and 4 routines; that is, IGCOOnnn and
IGCssnnn.

SVC 8 OS/VSI Planning and Use Guide

How to Use the Tracing Routine

This section describes the function of the tracing
routine, and provides a detailed description of the in­
formation made available by the tracing routine.

Section Outline

How to Use the Tracing Routine TRC 1

How to Use the Tracing Routine TRC 3
Table Entry Formats TRC 3
Location of the Table TRC 3

How to Use the Tracing Routine TRC 1

TRC 2 OS/VSl Planning and Use Guide

How to Use the Tracing Routine

Table Entry Formats

Location of the Table

The tracing routine is a vsl feature which you can use as a debugging and
maintenance aid. The tracing routine stores, in a table, information pertaining
to the following conditions:
• SIO instruction execution.
• svc interruption.
• I/O interruption.
• Dispatching interruption.

You can include the tracing routine and its table in the control program during
the system generation process. This is done using the TRACE option in the
CTRLPROG macro instruction. The format of this option requires you to supply
the number of entries in the table. Each table entry can contain information
relating to one of the traced conditions. When the last entry in the table is filled,
the next entry will overlay the first.

Table entry formats are as follows:

0 X'S' X'10' X'12'

I/O
I/O old PSW

Interrupt
Channel Status Word 2cuu

SID
SID

I Device I CAW Channel Status Word 30xx
cc Address

SVC SVC old PSW Reg 0 Reg 1 OOSVC#

Dispatch New PSW New TCB Old TCB 10xx

xx represents meaningless information.

SID cc is the Start I/O condition code.

For a Start I/O CSW to be valid, SID cc must be one, otherwise
the CSW contents are meaningless.

The addresses of the last entry made in the table, the beginning of the table, and
the end of the table are contained in a 12-byte field. The address of this field is
contained in the fullword starting at location 20. The format of the field is as
follows:

0 31 0 31 0 31

Address Address Address
of the Last Entry of the Table Beginning of the Table End

If requested through the SDATA operand of the SNAP macro, the dump lists the
SIO, SVC, I/O, and dispatching interruptions table entries, starting with the oldest.
A number is assigned to each entry and the oldest entry is 0001.

How to Use the Tracing Routine TRC 3

TRC 4 OS/VSl Planning and Use Guide

The Time Slicing Facility

This section describes the time slicing facility, a sys­
tem generation option available with vsl. Use of this
facility allows the grouping of tasks of equal priority
or partitions into a time-slice group so that each
task within the group is limited to a £Xed interval of
CPU time each time it is given control. The facility is
included in the system mainly to provide a method
of controlling response time of a task.

Included in the section are a description of the
facility, how it fits into the system, and the applications
for which it is most effective. It also describes the
prerequisite actions that must be taken, the use of
the time slicing facility, and its operating charac­
teristics.

Section Outline

The Time Slicing Faci!ity ... TSL 1

The Time Slicing Facility TSL 3
System Configuration and System Relationships TSL 3
Prerequisite Actions TSL 3

System Initialization Time TSL 4
How to Invoke the Time Slice Facility TSL 4

Time Slicing's Effect on the ATTACH and CHAP
Macro Instructions TSL 4

U sing the Time Slice Facility TSL 4
Operating Characteristics TSL 5
Effect of System Tasks on Time-Slice Groups TSL 5

The Time Slicing Facility TSL 1

TSL 2 OS/VSl Planning and Use Guide

The Time Slicing Facility

System Configuration and
System Relationships

Prerequisite Actions

The time slicing facility allows the user to establish a group of tasks (called
the time-slice group) or partitions that are to share the use of the CPU, each for
the same, fixed interval of time. When a member of the time-slice group has
been active for the fixed interval of time, it is interrupted and control is given
to another member of the group, which will, in turn, have control of the CPU

for the same length of time. In this way, all member tasks are given an equal
slice of CPU time, and no task or partition within the group can monopolize the
CPU.

In vsl, only partitions that are assigned to the time-slice group will be time­
sliced, and they are time sliced only when the first partition in the group is the
highest-priority ready task. Dispatching of the partitions continues within the
group until all the partitions are in a waiting state, or until a partition with a
higher priority is in a ready state.

The group of tasks to be time sliced (selected by priority or partition range)
and the length of the time slice are specified by the installation at system genera­
tion time. This can be modified in vsl through the DEFINE command. Any task
or partition in the system that is not defined within the time-slice group is dis­
patched under the current priority structure; that is, the task or partition is
dispatched only when it is the highest priority ready task or partition on the TCB

queue.

The time slicing facility can be used with any vsl configuration. The time slicing
facility is especially useful in a graphics environment or in any application of a
conversational nature where concurrent tasks may involve conversation between
the user and the problem program through a terminal. Establishing a time-slice
group within this environment enables those tasks to be performed with a uni­
form response time.

Time slicing is specified in the TMSLICE parameter of the CTRLPROG system genera­
tion macro instruction. The group (s) of tasks or partitions to be time sliced and
the length of the time slice are specified in this parameter.

In vsl, a group of contiguous partitions defines the time-slice group. All tasks
scheduled into those partitions are time sliced and are treated as though they
had the same dispatching priority. Only one group of tasks can be specified to be
time sliced. For example, a time-slice group for vsl might be specified during
system generation, as follows:

CTRLPROG TMSLlCE = (P4 - P6, SLC - 256)

In this example, partitions P4, P5, and P6 make up the time-slice group and
are assigned a time slice of 256 milliseconds for each and every task executing
in these partitions.

The Time Slicing Facility TSL 3

System Initialization Time

How to Invoke the Time
Slice Facility

Time Slicing1s Effect on the
ATTACH and CHAP
Macro Instructions

If time slicing has been selected during system generation, the group of tasks
to be time sliced and the length of the time slice can be modified during system
initialization. In vs1, modifications to the time-slicing specifications are made
in much the same way as other partition modifications. At system initialization,
changes can be indicated by replying <YES' to the message: <IEE801D CHANGE
PARTITIONS?'. After system initialization, changes can be indicated through
the DEFINE command. In both cases, changes are actually made by responding
to the message: <IEE002A ENTER DEFINITION' or <IEE803A CONTINUE DEFINITION' with
the new TMSL reply. With this reply, the operator can request a list of current
time-slicing specifications, change the range of time-slicing partions and the time
interval, or cancel time-slicing specifications altogether.

Time slicing is invoked through either the JOB statement or through the use of
the ATTACH and CHAP macro instructions.

If a task is part of the time slice group because its jobclass is assigned to
a time slice partition, the task gains control according to the position of the
time slice partition with respect to other partitions.

If a task becomes part of the time slice group through the use of ATTACH or
CHAP, the task gains control according to the priority used with ATTACH or CHAP.

The task gains control, as part of the time slice group, when the partition with the
same priority gains control (even though the task resides in a partition that is
not part of the time-slice group). Equally, a task that is time sliced may use
ATTACH or CHAP with a priority that does not fall within the range of priorities
assigned to the time-slice group. The attached or changed task is not part of
the time-slice group even though it resides in a time slice partition.

New tasks can be introduced into a time-slice group through the use of the
ATTACH and CHAP macro instructions, when the attaching or new priority selected
is equal to that of a time-'slice group. These new tasks conform to all the rules
for time slicing.

The CHAP macro instruction may remove a task from a time-slice group. If it
does, this terminates all that task's time-slice characteristics. The ATTACH macro
instruotion may create a task that is not a member of a time-slice group, even
though the originating task was.

Using the Time Slice Facility

TSL 4

The time-slice group is composed of a group of contiguous partitions and all tasks
scheduled into those partitions are time sliced. Also, each partition in the system
is assigned to at least one job class. Since a job is scheduled into a partition
according to the CLASS parameter on the JOB statement, careful consideration
should be given to the job-class assignment in order to enable the user to control
the use of time slicing at his installation. For example,

1. Partitions PO-P2 have been assigned as the time-slice partitions

2. The partitions have been assigned the following job classes:

PO=G, Pl=G, P2=(G,D), P3=B, P4=(B,C,D)

OS/VSl Planning and Use Guide

Operating Characteristics

Effect of System Tasks on
Time-Slice Groups

In this example, the user can ensure that a job will be time sliced by specifying
CLASS=G on the JOB statement. This specification guarantees that the scheduler
will initiate the job only into a partition assigned to CLASS G, that is, PO, PI,
or P2. Since PO-P2 have been designated as time-slice partitions, that job will
be time sliced.

CAUTION
Note that if the CLASS parameter of a job was D, the job mayor may
not be time sliced, depending on whether it is initiated into partition P2 or P4.
See the appropriate Message Library publication (message IEE802A) for in­
formation on warning the operator about such situations.

Time slicing is assigned both by partition (as shown) and by dispatch priority
of the job classes assigned to the time slice partitions. If a program uses the
ATTACH or CHAP macro instruction, the priority used with ATIACH or CHAP de­
termines whether the attached or changed task is time sliced, not the partition
in which it resides. (However, a program cannot exceed the limit priority
assigned its jobclass.) See the Supervisor Services and Macros publication for a
discussion of dispatch and limit priority.

The time-slicing mechanism operates within the structure of the current dis­
patcher. A priority is assigned to a group of tasks that are to be time sliced. The
time slicing occurs among the tasks in the group only when the priority level of
the group is the highest priority level that has a ready task. Each task or parti­
tion in the group is dispatched for the specified time slice. The time slicing con­
tinues until either all tasks or partitions are waiting, or a task or partition of
higher priority than that of the group becomes ready.

The dispatcher will recognize that a priority level is one that is being time
sliced; it will determine which task or partition within the group is to be dis­
patched and then dispatch that task or partition for the maximum time interval.
If the time slice task loses control prior to the expiration of its interval (because
an implicit or explicit wait is issued, or because a higher priority task or partition
becomes ready), the remainder of the time is not saved. That is, when control
returns to the time-slice group, the next ready task or partition in the group is
given control, not the interrupted task or partition.

The time slicing option is included in the system mainly to provide a method
of controlling response time of a task. However, since it is being implemented
in a priority dispatcher, any task of a higher priority than that of the time-slice
group will be dispatched first, if it is ready. Note also that the time-slicing
mechanism applies only to the problem program priorities, 0-13. Priorities 14
and 15 are reserved for the system and cannot be time sliced. Therefore, the
response time of a time-slice task can be affected by the processing of system
tasks, such as readers, writers, master scheduler, etc., which will always run
at a higher priority than the time-slice group. Therefore, to guarantee response
time, the time slice group should be defined in the high priority partitions.

Non-interactive jobs should not be run concurrently and time sliced since this
may significantly decrease performance.

The Time Slicing Facility TSL 5

TSL 6 OS/VSI Planning and Use Guide

Writing System Output Writer Routines

This section provides guidelines for writing your own
output writer routines for your vsl operating system.

Section Outline

Writing System Output Writer Routines , WWT 1

Writing System Output Writer Routines WWT 3
Output Writer Functions WWT 3
Conventions to be Followed WWT 3
General Processing Performed by Standard Output
Writer WWT 5

Control Character Transformations WWT 7
Card Punch Unit WWT 8
Printer Unit WWT 8

Writing System Output Writer Routines \VWT 1

WWT2 OS/VSl Planning and Use Guide

Writing System Output Writer Routines

Output Writer Fundions

When a job is executing, system messages and data sets specifying the SYSOUT

parameter (for example, in the DD statement) are recorded on direct access de­
vices, unless the job falls into a job class assigned to a direct SYSOUT writer. In
that case, both messages and data addressed to a SYSOUT data set are written
directly to the device for the direct SYSOUT writer for that job class. (Messages
for jobs canceled on the input queue and jobs failed by the reader, and data
produced by system tasks cannot be processed by direct system output writers.)

When the job completes (assuming it doesn't use a direct SYSOUT writer),
entries are made in system output class queues that represent the data sets and
messages directed to the output classes. Later, system output writers remove these
entries from the queues and process the data they represent. Processing consists
of transcribing system messages and data sets to the output device. The data set
writer routine used for a data set may be specified by name in a DD statement,
otherwise, a standard IBM-supplied writer routine is used; The standard routine
transcribes the data set to the specified output device, making only those data
format and control character transformations required to conform to the attributes
specified for the output data set.

The following material describes how you may write a nonstandard data set
writer routine. I Nate: User-written output writer routines are not supported to RTAM devices.

Before writing or modifying an output writer routine, you should be familiar with
the functions performed by the standard data set writer for vsl. (For the re­
mainder of this section the vsl data set writer is referred to as the standard
writer.) In general, these functions include opening the data set (referred to as
an input data set) that contains the processed information, obtaining the records
of the data set, checkpointing the data set if requested, making any necessary
transformations in record format or control character attributes, and placing these
(possibly transformed) records in the output data set, which appears on a
specified output device. The standard writer also must close the input data set
and restore system conditions to the state they were in before the writer routine
was invoked. The standard writer in vsl is attached (by the ATIACH macro
instruction) at START time and no longer uses a subtask for normal data set
processing.

Conventions to be Followed

To use your own output writer routine, you must specify the name of your
routine as a parameter in the SYSOUT operand of a DD statement (see the Job
Control Language publication). (This parameter is ignored if the job falls into
a jobclass assigned to a direct SYSOUT writer.) Your routine must be in the system
library (Sysl.LINKLIB). A writer routine is not limited in size except that size may
influence the partition requirements of the system output writer (see the OS/VSl
Storage Estimates publication).

Writing System Output Writer Routines WWT3

WWT4

I

Byte 0

Bytes 1-3

Bytes 4- 7

Bytes 8-11

Bytes 12-15

Output Device Indicator.
Bit 0 (High-order bit): If this bit is on (set to 1), the output

unit is a 1442 punch.
Bit 1 If this bit is on, the output unit is either a punch or a

tape with a punch as the ultimate destination.
Bit 2 If this bit is on, the output unit is either a printer or a

punch.
Bits 3-7 No significant information.

Not used (i.e., do not contain information significant to data set
writers, but must be left intact,)

This word contains the address of the data control block (DCB) for
the opened output data set to be referred to by the writer.

This word contains the DCB address for the input data set from
which your writer will obtain logical records. (At the time this 12-
byte parameter list is given to your writer, the input data set is not
open.)

Pointer to the CANCEL ECB for this writer. The ECB will be posted
by the CANCE L command, and the user writer may take any
desired action.

Figure WWT l. Parameter List Referred to by Register 1

Your routine is attached (by the ATIACH macro instruction) when a data set
requiring the routine is to be processed. The standard linkage conventions for
attaching are used. Any storage required for work areas and tables should be
obtained by the GETMAIN macro instruction and released by the FREEMAIN macro
instruction. Your output writer routines must be reenterable.

When your routine is finished, it must return control to the standard writer by
using the RETURN macro instruction.

After job management routines perform initialization requirements and open
the output data set into which your writer routine will put records, control is
given to your routine by the ATIACH macro instruction. At this time, general
registers 1 and 13 contain information that your program must use. Register 1
contains the storage address of a 16-byte list. Figure 'VWT 1 describes the infor­
mation in this parameter list. Your writer should check the CANCEL ECB that is
passed in the parameter list if the writer is to be cancelable.

The switches indicated by the three high-order bit settings in byte 0 should be
used to translate control character information from the input data set records to
the form required by the output data set records. Based on the indications given
in Figure WWT 1, the high-order three bits of byte 0 signify the type of output
device as follows:

III 1442 punch unit
011 2520 punch unit or 2540 punch unit
001 1403 printer, 1443 printer, or 3211 printer unit
010 tape unit with ultimate punch destination
000 tape unit with ultimate printer destination

When your writer gets control, it must preserve the contents of registers 0
through 12, and 14. Register 13 contains the address of a standard register save
area where you are to save the contents of these registers. You can save the
contents of register 13 by using the SAVE macro instruction.

An output writer routine must issue an OPEN macro instruction to open the
desired input data set residing on a direct access device as a result of the

OS/VSl Planning and Use Guide

previous execution of a processing program. (Note: The output data set used by
a writer is opened by a job management routine before control is given to the
writer. This output data set must be given records by a PUT macro instruction
operating in the <locate' mode. The OS/VS Data Management Macro Instructions
publication describes this macro instruction.)

Your data set writer must provide a SYNAD routine to process errors associated
with the output as well as the input data set.

Before the OPEN macro instruction is issued, the DCBD macro instruction can be
used to symbolically define the fields of the DCB, and the EXLIST and/or SYNAD

routine addresses can be inserted. Other than SYNAD, no modifications can be
made to the output DCB.

After your routine finishes writing the output data set, it must close the input
data set and return using the RETURN macro instruction. A return code must be
placed in register 15. This code should indicate that an unrecoverable output
error either has occurred (code of 8) or has not occurred (code of 0).

General Processing Performed by Standard Output Writer

This section provides a general description of the procedures followed by the
standard writer. If you write your own writer routine, you may wish to delete,
modify, or add to some of these procedures, depending on the characteristics of
your data set (s). However, your procedures must be consistent with operating
system conventions.

SAVING REGISTER CONTENTS

Upon entering the writer program, your program must save the contents of the
general registers, as previously discussed.

OBTAINING STORAGE FOR WORK AREAS

In this work area, switches are established, record lengths and control characters
are saved, and space is reserved for other uses. You should obtain storage by
a GETMAIN macro instruction.

PROCESSING INPUT DATA SET (s)

To process a data set, the writer must get each record individually from the input
data set, transform (if necessary) the record format and the control characters
associated with the record in accordance with the output data set requirements,
and put the record in the output data set. Data set processing by the standard
writer can be considered in three aspects.

1. The first consideration is what must be done before actually obtaining rec­
ords from an input data set. If the output device is a printer, provision must
be made to handle the two forms of record control character that may accom­
pany a record in an output data set. The printer is designed so that if the
output data set records contain machine control characters, a record (line)
is printed before the effect of its control character is considered. However, if
ANSI control characters are used in the output data set records, the control
character effect is considered before the printer prints a record. See Control
Character Transformations.

Thus, if all the input data sets do not have the same type of control char­
acters, it may be desirable to avoid overprinting of the last line of one data
set with the first line of the following data set. If the records of the input

Writing System Output Writer Routines WWT5

WWT 6

data set have machine control characters (mcc) and the output data set
records are to have ANSI control characters (acc), the standard writer pro­
duces a control character that indicates one line should be skipped before
printing the first line of output data.

If the input data set records have acc and the output data set records are
to be written with mcc, the standard writer prints a line of blanks before
printing the first actual output data set record. Following this line of blanks,
a one-line space is generated before the first output record is printed. The
preceding <printer initialization' procedure (or a similar one based on the
characteristics of your data sets) is recommended.

2. After an input data set is properly opened and any necessary printer initiali­
zation is completed, the writer obtains records from the input data set.
The standard writer uses a unique interface to the spool manager to open,
close, and obtain each input record. As each record is obtained, its control
character must be adjusted, if necessary, to agree with that required for
output. If a control character is added to the input record, it is placed to the
left of the first byte of data. The standard writer receives only undefined
format records from the spool manager and passes them to the JEs-oriented
access method (JAM). The record format specified for the output data set
is ignored for unit record devices. For a tape output device, the correct
format is constructed by JAM before the record is written. For fixed-length
record output, the length of the records in the output data set is obtained from
the DCBLRECL field of the DCB. If an input record length is greater than the
length specified for the records of the output data set, the necessary right­
hand bytes of the input record are truncated. If the input record length is
smaller than the output record length, JAM left-justifies the input record and
adds blanks on the right end to give the correct length.

When the output record length is variable and the input record length is
fixed, JAM constructs each output record by adding variable record control
information to the output record. The record control information is four bytes
long and is added to the left end of the record. If the output record is not
at least 18 bytes long, it is further modified by padding bytes (blanks) added
to the right end of the record. If the output record length does not agree with
the length of the output buffer, JAM makes the proper adjustment.

Note:
The input and output interfaces utilized by the standard writer are not available to
user writer routines. The writer constructs the normal QSAM interface before attaching
the user routine. Since the output data set is previously opened, a user writer routine
must adhere to the established conventions. The output data set is opened to receive
records from the PUT macro instruction operating in the locate mode. It is the respon­
sibility of the user's routine to verify that correct control characters and record formats
are passed to QSAM.

The input DCB for the user routine is initialized to use the GET macro in locate mode.
This can be overridden before OPEN, if desired.

3. The third aspect to consider is an end-of-input data set routine. The stand­
ard writer handles output to either a card punch unit or a printer unit, as
reauired. Outout to an intermediate device such as a tape unit is considered
in light of the'" ultimate destination (for example, punch or printer). If proper
consideration is not given, all records from a given data set may not be avail­
able on the output device until the output of records from the next data set
is started or until the output data set is closed. When the output data set is
closed, the standard writer automatically puts out the last record of its last
input data set.

OS/VSl Planning and Use Guide

Punch Output
Normally, when the standard writer is using a card punch as the output device,
the last three output records are not in the collection pockets of the punch
when the input data set is closed. To put out these three records with the rest
of the data set and with no intervening pauses, the writer provides for three
blank records following the aotual data set records.

Printer Output
\\Then the standard writer uses a printer as an output device, the last record
of the input data set is not normally put in the output data set when the
input data set is closed. To force out this last record, the writer generates a
blank record that follows the last record of the actual data set.

The problem of overprinting the last line of one data set by the first line of the
following data set must also be considered. Depending on the combination of
input record control character and required output record control character, a
line of blanks and a spacing control character may be used either individually or
in combination to preclude overprinting. (Note: If overprinting is desired for
some reason, control characters in the data set records themselves may be used to
override the effect (but not the action) of the previously described solutions to
overprinting.)

CHECKPOINTING OUTPUT DATA SETS
If the system output writer procedure specifies a SYSOUT data set checkpoint
interval, each SYSOUT data set using that writer procedure is checkpointed at
the specified intervals. Should the system be re-IPLed with warmstart prior to
completion of writing out a data set, the operator (in reply to message IEF595D
DDD WTR, RESUME AT CHECKPOINT-REPLY Y OR N) can specify that the writing of

. the data set resume at the last checkpoint or at the beginning of the data set.
I

CLOSING INPUT DATA SET (s)
After the standard writer finishes putting out the records of an input data set~
it closes the data set before returning control to the system output writer. You
must close all input data sets.

RELEASING STORAGE
The storage and buffer areas obtained for the writer must be released to the
system before the writer relinquishes control. The FREEMAIN macro instruction
should be used for this.

RESTORING REGISTER CONTENTS
The original contents of general registers 0 through 12, and 14 must be restored.
The RETURN macro instruction is used for this. To inform the operating system of
the results of the processing done by the writer, a return code is placed in
general register 15 before control is returned. If the writer routine terminates
because of an unrecoverable error on the output data set, the return code is 8;
otherwise, the return code is O. Unrecoverable input errors must be handled by
the data set writer.

Control Character Transformations

To help determine what you can do with a writer routine, the control character
transformation features of the standard writer are described.

Effectively there are nine control character combinations that can occur be­
tween input data set records and output data set records. Both data sets may
have records whose control characters are either ANSI (American National Stand­
ards Institute) type (acc) or machine type (mcc), or the records may not con-

Writing System Output vVriter Routines WWT7

Card Punch Unit

Printer Unit

Machine Control Characters ANSI
Stacker Unit 2540 Punch 2520 Punch 1442 Punch Control Characters

1. P1 00000001 00000001 10000001 11100101 (V)

2. P1 00100001 00100001 10100001
Column Binary

3. P2 01000001 01000001 11000001 11100110 (W)

4. P2 01100001 01100001 11100001
Column Binary

5. RP3 10000001
6. RP3 10100001

Column Binary

Figure ""VVT 2. Control Character Translation for Punch Unit Output

tain any control characters. However, within any given data set, the records all
must contain the same form of control character. The standard writer has pro­
cedures to handle control character transformations for both an output to a card
punch unit and an output to a pinter unit.

If an input data set record does not have a control character, the standard writer
produces one that indicates output into pocket 1 of the punch. If the output unit
is a tape unit and the ultimate destination is a punch unit, the standard writer
assumes that the punch unit is either a 2540 or a 2520 unit and sets a control
character accordingly. The standard writer translation of punch-type control
characters is given in Figure WWT 2. In this table, the first three columns of figures
are machine control character codes, and the right hand column of figures repre­
sents ANSI control character codes. Each record that requires a control character
has one of these 8-bit codes attached to it. Input records whose control characters
are mcc and are shown in horizontal rows 1, 2, 5, and 6 are given the acc code of
'V' if they are placed in an output data set that has acc. An mcc given in rows 3 or
4 is changed to an acc code of 'W'. However, if translation is from an acc input to
an mcc output, the standard writer translates the control character into the appro­
priate mcc on the same horizontal row.

When the output unit is a printer, the standard writer prevents overprinting
between data sets. If the successive data sets contain records with the same type
of control character, there is no overprinting problem. If the control characters
vary from one data set to the next, the standard writer solutions are applications of
the technique illustrated by Figure WWT 3. In this figure, the possible forms of the
input record control characters are given in the left hand column. The three right
hand columns (containing cases 1-9) represent the possible forms of the output
record control characters. Within each of the 12 main sections of the figure is
shown a symbolic representation of a data set whose records possess the indicated
form of control character. Each record consists of a print line representation and
a control character representation (where appropriate). For records with acc,
the control character is shown preceding the print line, since the effect of the
control character occurs before the line is printed. For records with mcc, the
converse is shown. An input record with no control character is treated as if it
had an acc. Because of this variance in the printer's mechanical action, whenever
there is a control character transformation, the standard writer places a trans­
formed control character with an output data set record other than the record
to which the character was attached in the input data set.

\V\VT 8 OS/VSl Planning and Use Guide

INPUT DATA SET OUTPUT DATA SET

RECORD FORMATS RECORD FORMATS

Machine ANSI No Control Character

Machine G) JJ @; J ® J

I P1c 11
p

2
C

21 Ip nCn I Ip1C1 1
p

2C21 IPnCn I BoSe I IS1
P

11
C

1
P

21 I C n-1 P n I C n Boll P 1 I P2 1 I
P I Bo I n

ANSI 0v" J JJ ® JJ ® J

I C1P1 1C
2

P
21 Ic/nl IBoc 11

p
1

C
21 Ipn-1Cn I PnS11BoSc I IC1P11

C
2

P
21 IC/n IScBo I I P 1

I
P2 1 I P n I Bo I

(j) ® ®
No Control Character* J J .j J .jJJ J J .j J ; J

I S1 P 11S1 P 21 IS1
P

n I IBoSn I P 1
S

1 I I P n-1
S

1 I PnS11BoSc I ISnP11S1P21 IS 1
P

n I ScBo11
P

1 I P21 I Pn I Bo I
.j = Writer generated.
* = No control character on input causes the standard writer to generate an ANSI control character as indicated.

Bo = A print line of blanks.
C,-Cn = Control characters of records 1-N of a given data set.
P1-P.,:: Print lines of a given data set.

S1 = A control character causing a 1-line space.
Sc = A control character causing spacing to be suppressed.
Sn = A control character causing a skip to channel 1.

Figure WWT 3. Symbolic Representation of Record Formats

In Figure WWT 3, cases 1 and 5 represent situations in which there is the same
type of control character in the output as there is in the input. Thus, for records 1
through n, there is no change in the record fonnat. However, there is a provision
to allow for the possibility that two consecutive input data sets may have different
control characters. In this case, a minimum separation between the data sets as
they appear in the output data set is provided as indicated by the printing of
blanks and suppressing the spacing of the printer to allow another control char­
acter to take effect. The 'extra' record (Sc Bo or Bo Sc) provides the more impor­
tant function of forcing out the last record of the current data set before the
writer's processing of that data set is done.

In cases 2 and 4 of Figure WWT 3, the output data set records have different con­
trol characters than the input data set records. Case 2 shows that the standard
writer generates a I-line space control character to precede the first print line of the
output. When the output is written, each control character of an input record is
then attached to the next record. The last input record control character (Cn) is at­
tached to a line of blanks (Bo). In case 4, the first input record control character
is attached to a line of blanks, and each of the other control characters is attached
to a preceding record, as indicated. The last input record (P n) has a writer­
generated space I-line control character attached to it before the buffering and
forcing record (Bo Sc) generated by the writer is put out.

Writing System Output Writer Routines WWT9

WWT 10

Cases 7 and 8 show that the standard writer first generates a 'skip to channell'
control character and then generates '1 line space' control characters for all but the
last control character. The last control character is the space suppression character
shown as part of the buffering or forcing record generated.

Cases 3, 6, and 9 show that if no control characters are required in the output
data set, the records are printed consecutively and a line of blanks generated by
the writer is printed after the final record in a data set. Any control characters
appearing in the input data set are dropped in the output data set.

Notice that in all cases involving control characters in the output data set, the
standard writer allows for (1) an output record to force the printing of the last
record of an input data set and (2) a means of minimum buffering between data
sets by using generated control characters and print lines in conjunction with the
actual data set control characters.

The standard writer translation of printer-type control characters is given in
Figure WWT 4. In this table, the type of action indicated is given in the left-hand
column. The middle column and the right-hand column show, respectively, the
bit settings of the control character byte for machine type and ANSI type control
characters corresponding to the entries in the left-hand column. A control charac­
ter transformation is effected by changing the bit-configuration of the control
character byte as indicated in the table.

When machine control characters are used which indicate spacing or skipping
without writing (bit 6 set to 1, for example, write and space 0-00000011) the
standard writer generates the indicated ANSI control character and also generates
a blank record of the proper type and length.

Machine Type Control ANSI

Action Desired (1403, 1443,3211 Printers) Type Control

Write space 0 00000001 01001110

Write space 1 00001001 01000000

Write space 2 00010001 11110000

Write space 3 00011001 01100000

Write skip to channel 1 10001001 11110001

Write skip to channel 2 10010001 11110010

Write skip to channel 3 10011001 11110011

Write skip to channel 4 10100001 11110100

Write skip to channel 5 10101001 11110101

Write skip to channel 6 10110001 11110110

Write skip to channel 7 10111001 11110111

Write skip to channel 8 11000001 11111000

Write skip to channel 9 11001001 11111001

Write skip to channel 10 11010001 11000001

Write skip to channel 11 11011001 11000010

Write skip to channel 12 11100001 11000011

Figure WWT 4. Control Character Translation for Printer Unit Output

OS/VS1 Planning and Use Guide

Appendix A: Theory of Operation

Figure APA 1 describes the overall processing How
through each job cycle. The paragraphs in the figures
describe the processing perfonned by various com­
ponents of the control program as it loads the nucleus,
reads control statements, initiates the job step, causes
processing to begin or end in other partitions, and
terminates the job step.

Appendix A: Theory of Operation APA 1

Initialize
Work

Queues

Interpret
Commands

Figure APA 1. VSl Theory of Operation (Part 1 of 4)

APA2 OS IVS 1 Planning and Use Guide

To load the nucleus, the operator sets the LOAD UNIT
switches to the device 0:1 which the system residence
volume is mounted and presses the LOAD button on the
operator control panel. This causes an IPL record to be
read and to be given control. This record causes the
second IPL record to be read, which in turn, enables the
rest of the IPL program to be read into real storage.

The IPL program searches the volume label of the system
residence volume to locate the volume table of contents
(VTOC). The VTOC is then searched for the address of the
nucleus data set (SYS1. NUCLEUS). The nucleus is brought
;nto the system area, and NIP is brought into the pageable
area. NIP receives control from the IPL program. It performs
both required and optional initialization for control program
operation including initializing the Communication Vector
Table (CVT), and general system initialization, such as
determining user options. After completing its processing,
NIP posses control to the master scheduler task (MST) which
initializes virtual storage, including JES.

Partitions are establ ished by the master scheduler at
system initialization according to the sizes and job class(es)
established at system generation by the PARTlTNS macro
instruction. The MST also places a copy of the Initiator/
Terminator into each partition. The communications task
receives control from the MST and communicates with the
operator to request any partition changes. After the
requested changes, if any, have been made by the definition
routines, the work queues are initialized. The automatic
commands are displayed, and the READY message is
issued.

SUPERVISOR

Initiate Writer
in the

Pageable
Supervisor

Area

Initiate Reader
in the

Pageable
Supervisor

Area

Read and Spool
Control Statements

Build Tables and
Enter Job on

Appropriate Input
Work Queue

Write Data in
Input Stream onto

Spool Storage Device

Bring
Initiator/

Terminator
Into

Partition

Figure APA 1. VS1 'Theory of Operation (Part 2 of 4)

When the required SET command is entered, the com­
munications task calls the master scheduler command
schedul ing routine to have the command executed. An
automatic START reader command or a subsequent operator­
entered START reader command initiates a reader previously
loaded in the pageable supervisor area. If a START writer
command is entered, a writer is initiated and made dis­
patchable in the pageable supervisor area.

When the reader gets control, it reads control state­
ments, commands, data, and procedures from the input
stream. Th is information is placed on the appropriate
direct-access storage device data set (SYSl .SYSPOOL).
Information from the JOB, EXEC, and DD statements
controls the execution of each job step.

The reader also builds disk entry records and accounting
records for each job and places them in the input work
queue (SYSl .SYSJOBQE) corresponding to the CLASS
parameter of the JOB statement.

After the reader has completed processing all input for
a job and has entered the job on an input work queue, all
initiators that are waiting for that job class are posted.

After receiving control, the initiator prepares to
initiate the highest priority job in its primary input work
queue. Using information that the reader extracted from
the DD statement, the initiator processes the user accounting
routine and then passes control to the interpreter, wh ich
runs as a subroutine of the initiator. The interpreter
locates and interprets the JCL for the job and builds the
following tables:

• Job control table (JCT) for the job being read.
• Step control table (SCT) for the step being read.
• Data set enqueue table (DSENQ) for the job being read.
• Job file control block (JFCB) and step input/output

table (SlOT) for each data set being used or created
by the job step.

• Volume table (VOLT) containing each volume serial
number to be used by the job.

• Other tables are constructed if needed to completely
interpret the JCL for the job.

The interpreter places these tables and control blocks in
the Scheduler Work Area Data Set (SWADS). Information
from these tables and control blocks is updated with
information in the data control block (DCB) and data set
control block (DSCB) or volume label when a data set is
opened during step execution.

Appendix A: Theory of Operation APA3

Interpret Job

Determine Step to
Be Initiated

Locate Input
Data Sets

Assign
Input/Output

Devices to Data
Sets

Allocate
Auxiliary

Storage Space

Write Tables
and

Control Blocks

SUPERVISOR

Bring Problem
Program Into

Partition

Figure APA 1. VSI Theory of Operation (Part 3 of 4)

APA4 OS /VS 1 Planning and Use Guide

The interpreter then returns control to the initiator,
which does the following:

Locates Input Data Sets: The Allocation routine, running
as a subroutine of the initiator/terminator, determines the
volume containing a given input data set by examining the
JFCB, or by searching the catalog. This search is performed
by a catalog management routine entered from allocation.

Allocates I/O Devices: A job step cannot be initiated
unless there are enough I/O devices to fill its needs.
Allocation determines whether the required devices are
available, and makes specific assignments. If necessary,
messages are issued to the operator to request the mounting
of volumes.

Allocates Auxiliary Storage Space: Direct access volume
space required for new data sets of a job step is acquired
by the allocation routine, which uses the Direct Access
Device Space Management (DADSM) routines.

The JFCBs, which contain information concerning the
data sets to be used during step execution, are written on
auxiliary storage. This information is used when a data set
is opened, closed, and when the job step is terminated.

The initiator transfers control to the problem program
it is initiating.

The problem program can be an IBM - suppl ied processor
(e.g., COBOL, I inkage editor), or a user - written program.
The problem program uses control program services for
operations such as loading other programs and performing
I/O operations.

SUPERVISOR

OPEN/CLOS E/EOV

Set Up for Dump,
if Required

Load
Initiator/

Dispose of
Data Sets,

Write Messages

Dequeue Entry From
Appropriate SYSOUT

Queue

Write Data and
Messages onto
User - Specified

Device

Delete Entry
From the Queue

Figure APA 1. VSl Theory of Operation (Part 4 of 4)

The problem program processes until it terminates either
normally or abnormally, though it may not retain exclusive
control of the CPU. Control always is received by the
highest priority task that is ready to execute.

When the problem program terminates, the supervisor
receives control. The supervisor uses the OPEN/CLOSE/
EOV routines to close any open data control blocks.

Under abnormal termination conditions, the supervisor
may also provide special termination procedures, such as
a storage dump. The supervisor passes control to the
initiator/terminator, which is brought into the partition
in which termination is to occur.

The initiator/terminator releases the I/O devices, and
disposes of data sets used and/or created during the job
step by reading tables prepared during initiation (JCT,
SCT, TIOT, etc.). These tables include information such
as disposition of data sets. It then executes an installation
accounting routine if one is provided.

At termination of a job not using direct system output
processing, an entry is made on the user specified output
work queue (SYSl .SYSJOBQE)i later the problem program
output data can be written by a system output writer from
a system direct -access storage device (SYSl .SYSPOOL)
to a user - specified device. The initiator/terminator
then initiates the next job.

An output writer operates concurrently with readers,
problem programs, and other writers. When the START
command is issued for a writer, the writer dequeues the
first entry in the specified output (SYSO,UT) class queue.
If no requests have been enqueued in that output queue
from the problem programs, the writer is placed in a
wait condition until a job is terminated that has system
messages or output data sets in the specified class. After
the entry is dequeued from the output queue, the writer
transmits the data sets to the specified card punch,
magnetic tape unit, or printer. When the last record
has been processed, the writer deletes the queue entry
before deo,ueuing the next entry

Appendix A: Theory of Operation APA 5

APA 6 OS/VSI Planning and Use Guide

active page: A page in real storage that can be addressed.

active page queue: A queue of pages in real storage that are
currently assigned to tasks. Pages on this queue are eligible
for placement on the available page queue. See also available
page queue, hold page queue.

address translation: The process of changing the address of
a data item or an instruction from its virtual address to its
real storage address. See also dynamic address translation.

available page queue: A queue of the pages whose real storage
is currently available for allocation to any task. See also active
page queue, hold page queue.

basic control (Be) mode: A mode in which the features of a
System/360 computing system and additional System/370
features, such as new machine instructions, are operational on
a System/370 computing system. See also extended control
(EC) mode.

Be mode: See basic control mode.

change bit: A bit associated with a page in real storage; the
change bit is turned ON by hardware whenever the associated
page in real storage is modified. In VSl, there is a change bit
in the storage key associated with each 2K storage block.

channel program translation: In a channel program, replacement
by software of virtual addresses with real addresses.

control registers: A set of registers used for operating system
control of relocation, priority interruption, program event re­
cording, error recovery, and masking operations.

DAT: See dynamic address translation.

demand paging: Transfer of a page from external page storage
to real storage at the time it is needed for execution.

disabled page fault: A page fault that occurs when I/O and ex­
ternal interruptions are disallowed by the CPU.

dormant state: A state in which the active pages of a job have
been paged-out.

DSS: See dynamic support system.

dynamic address translation (DAT): (1) The change of a virtual
storage address to a real storage address during execution of
an instruction. See also address translation. (2) A hardware
feature that performs the translation.

dynamic area: The portion of virtual storage that is divided
into partitions that are assigned to job steps and system tasks.
See also pageable dynamic area, nonpageable dynamic area.

dynamic support system (DSS): An interactive debugging facility
that allows authorized maintenance personnel to monitor and
analyze events and alter data.

EC mode: See extentied control mode.

enabled page fault: A page fault that occurs when I/O and
external interruptions are allowed by the CPU.

Glossary

extended control (Ee) mode: A mode in which all the features
of a System/370 computing system, including dynamic address
translation, are operational. See also basic control (BC) mode.

external page address: An address that identifies the location of
a page in a page data set. This address is computed from the
page number each time a page is to be transferred between
real storage and external page storage.

external page storage: The portion of auxiliary storage that is
used to contain pages.

external page storage management: A set of routines in the
paging supervisor that control external page storage.

fixed: In VS1, not capable of being paged out.

fixed BLDL table: A BLDL table that the user has specified
to be fixed in the lower portion of real storage.

fixed page: A page in real storage that is not to be paged out.

hold page queue: A queue to which pages in real storage are
initially assigned through operations such as page-in or page
reclamation. See also active page queue, available page queue.

input stream control: See]ES reader.

invalid page: A page that cannot be directly addressed by
the dynamic address translation feature of the central process­
ing unit.

]Ees: See job entry central services.

]EPS: See job entry peripheral services.

]ES: See job entry subsystem.

]ES reader: The part of the job entry subsystem that controls
the input stream and its associated job control statements.
Synonymous with input stream control.

]ES writer: The part of 'the job entry subsystem that controls
the output of specified data sets. Synonymous with output
stream control.

fob entry central services (fEeS): The part of the job entry
subsystem that provides centralized storage and retrieval of:
(1) system input and output data for each job, (2) control tables
representing jobs, and (3) job tables used during job execution.

fob entry peripheral services (fEPS): The part of the job entry
subsystem that schedules and performs reader and writer
operations.

job entry subsystem (fES): A system facility for spooling, job
queueing, and managing the scheduler work area data sets.

lock/unlock facility: A supervisor facility that controls the exe­
cution of instruction strings when a disabled page fault occurs.

Glossary GLO 1

main storage: See real storage, virtual storage.

memory: See real storage, virtual storage.

missi~g page interruption: See page fault.

nonpageable dynamic area: An area of virtual storage whose
virtual addresses are identical to real addresses; it is used for
programs or parts of programs that are not to be paged during
execution. Synonymous with V=R dynamic area.

nonpageable partition: In VS1, a subdivision of the nonpageable
dynamic area that is allocated to a job step or system task that
is not to be paged during execution. In a nonpageable parti­
tion, each virtual address is identical to its real address. Sy­
nonymous with V=R partition.

OS/VS: See Operating System/Virtual Storage.

Operati~g System/Virtual Storage: A compatible extension of
the System/360 Operating System that supports relocation
hardware and the extended control facilities of System/370.

OUTLIM (output limiting) facility: A facility that monitors the
number of logical records produced for SYSOUT data sets.

output stream control: See JES writer.

page: (1) A fixed-length block of instructions, data, or both,
that can be transferred between real storage and ext.emal page
storage. (2) To transfer instructions, data, or both between
real storage and external page storage.

page control block (PCB): A control block that indicates the
status of a paging request.

page data set: A data set in external page storage, in which
pages are stored.

page fault: A program interruption that occurs when a page
that is marked "not in real storage" is referred to by an active
page. Synonymous with page translation exception.

page fixing: Marking a page as nonpageable so that it remains
in real storage.

page number: The part of a virtual storage address needed to
refer to a page.

page reclamation: The process of making addressable the con­
tents of a page in real storage that has been marked invalid.
Page reclamation can occur after a page fault or after a
request to fix or load a page.

page table (PGT): A table that indica.tes whether a page is
in real storage and correlates virtual addresses with real storage
addresses.

page translation exception: A program interruption that occurs
when a virtual address cannot be translated by the hardware
because the invalid bit in the page table entry for that address
is set. Synonymous with page fault.

page wait: A condition in which the active request block for
a task is placed in a wait state while a requested page is
located in real storage or is brought into real storage.

pageable dynamic area: An area of virtual storage whose ad­
dresses are not identical to real addresses: it is used for pro­
grams that can be paged during execution. Synonymous with
V=V dynamic area.

GLO 2 OS/VS1 Planning and Use Guide

pageable partition: In VS1, a subdivision of the pageable
dynamic area that ig allocated to a job step or system task
that can be paged during execution. Synonymous with V=V
partition.

paging: The process of transferring pages between real and
external page storage.

paging device: A direct access storage device on which a page
data set (and possibly other data sets) are stored.

paging rate: The average number of page-ins and page-outs per
unit of time.

paging supervisor: A part of the supervisor that allocates and
releases real storage space for pages and initiates page-in and
page-out operations.

PCB: See page control block.

PER: See program event recording.

PGT: See page table.

PQA: See protected queue area.

program event recording (PER): A hardware feature used to
assist in debuggipg ~rograms by detecting program events.

protected queu" areiJ (PQA): In VS1, an area located at the
high address end of each virtual storage partition.

real address: The address of a location in real storage.

real storage: The storage of a System/370 computing system
from which t~ central processing l,lnit can directly obtain in­
structions and data and to which it can directly return results.

real storage pa.g,e table (RSPT): In VS1, a table that contains
an entry for each 2~ storage block in real storage. This table is
the centralized inf<)rinatiQU interface for real storage manage­
ment.

reference bit: .t\. bit associated with a page in real storage; the
reference bit is tumed "ON" by hardware whenever the associ­
ated page in real storage is referred to (read or stored into). In
VS1, there is a reference bit in Ute storage key associated
with each 2K storage block. .

relocate hardWtlre: ~e dynamic address translation.

request paramet~r list (RPL): A list of parameters that accom­
panies a request for job entry subsystem services.

scheduler work. area data set (SW ADS): In VS1, a data set on
auxiliary storage that contains most of the job management con­
trol blocks (such' as the JeT, JFCB, SCT, and SlOT). There is
one SW ADS for each initiator.

segment: A continuous, 64K area of virtual storage that is allo­
cated to a job or system task.

segment table (SGT): A table used in dynamic address transla­
tion to control user' access to virtual storage segments. Each
entry indicates the length, location, and availability of a corre­
sponding page table.

segment table entry (STE): An entry in the segment table that
indicates the length, location, and availability of a corresponding
page table.

segment translation exception: A program interruption that
occurs when a virtual address cannot be translated by the
hardware because the invalid bit in the segment table entry
for that address is set.

seT: See segment table.

space record: A record that separates page slots in a page
data set.

SQA: See system queue area.

STE: See segment table entry.

static CP area: In VSI, those portions of virtual storage that
are allocated, during system generation and initial program load,
to control program functions.

storage block: A 2K block of real storage to which a storage key
can be assigned.

supervisor lock: An indicator used to inhibit entry to disabled
code while a disabled page fault is being resolved.

S'l-VADS: See scheduler work area data set.

system lock: In VSI, an indicator in the communications vector
table, used to inhibit the dispatching of any task, except paging
supervisor tasks.

system queue area (SQA): An area of virtual storage reserved
for system-related control blocks.

thrashing: A condition in which the system can do little useful
work because of excessive paging.

translation tables: Page tables and segment tables.

virtual address: An address that refers to virtual storage and
must, therefore, be translated into a real storage address when
it is used.

virtual equals real (V=R) storage: An area of virtual storage
that has the same ran~e of addresses as real stora~e and is
used for a program or part of a program that cannot be paged
during execution.

V=R dynamic area: See nonpageable dynamic area.

V=R partition: See nonpageable partition.

V=V dynamic area: See pageable dynamic area.

virtual storage: Addressable space, that appears to the user as
real storage, from which instructions and data are mapped into
real storage locations. The size of virtual storage is limited by
the addressing scheme of the computing system and by the
amount of auxiliary storage available, rather than by the actual
number of real storage loctions.

virtual storage partition: In VSI, a division of the dynamic area
of virtual storage, established at system generation.

working set: The set of a user's pages that must be active in
order to avoid excessive paging.

Glossary GLO 3

OLO 4 OS/VSI Planning and Use Guide

abbreviations of valid operator commands 52
access methods, definition 22
accounting

data set writer ACC 7
information available to the user, Figure ACC 1 ACC 5
routine attribute, conventions, and format ACC 3

adding
a WTOjWTOR exit routine to the control

program MSG 6
SVC routines to the control program SVC 1

advantages of automated system initialization ASI 3
advantages of VS 1 virtual storage 9
ALCUNIT parameter for JESPARMS FEA 25, FEA 26
alternate path retry (APR)

function of recovery management 23
general description FEA 3

Appendix A, theory of operation APA 1
appropriate job classes, general considerations 42
APR (alternate path retry) function of recovery

management 23
assigning job classes to jobs

with batch processing 45
with graphics 47
with telecommunications 46

assigning job names, considerations 43
assigning partitions to job classes

with batch processing 45
with graphics 47
with teiecommunications 46

ASYNCH parameter of STAE, considerations SMI7
A IT ACH facility, subtasks with 12
ATTACH function

general description FEA 3
used with subtasking 18

ATTACH macro instruction SMI 12
automated system initialization 13, ASI 1

advantages ASI 3
creating SYSl.PARMLIB members ASI 4
formats of SYSl.PARMLIB members ASI 4

CMDxxxxx member ASI 5
DFNxxxxx member ASI 5
JESxxxxx member ASI 6
NIPxxxxx member ASI 5
PRExxxxx member ASI 6
RESxxxxx member ASI 6
SETxxxxx member ASI 6
SMFxxxxx member ASI 6

implementation of automatic commands ASI 4
listing members to be used ASI 4, ASI 8
naming conventions for SYSl.PARMLIB members ASI4
operator responses ASI 6

parameters ASI 7
performing AS I 6
process of ASI 3
processing notes ASI 8

automatic
commands ASI 4
console switching with MCS MSG 3
partition redefinition 26, FEA 4
volume recognition (A VR), general description FEA 4

avoiding system interlocks 44

basic
direct access method (BDAM) general

description FEA 4

index

indexed sequential access method (BISAM)
general description FEA 5

partitioned access method (BP AM), general
description FEA 5

sequential access method (BSAM), general
description FEA 5

batch processing considerations 45
BDAM (basic direct access method) FEA 4
BISAM (basic indexed sequential access method)
bit definitions for MSGTYP= Y, Figure MSG 2
BLDL

FEA 5
MSG 7

option RRO 3
option list example RRO 12
table made non-pageable, general description FEA 6

block character routine, function of SEP 6
blocking the procedure library PRO 29, 41
BP AM (basic partitioned access method) FEA 5
BSAM (basic sequential access method) FEA 5

catalog management, definition 22
cataloged reader procedures PRO 4
cataloging the procedure PRO 27
caution

concerning cataloged procedures PRO 3
concerning output separators SEP 5
concerning use of Must-Complete function MUS 3
concerning CLASS parameter in time-slicing 1 ~L 5

CCH (channel check handler) function of recovery
management 23

changing output classes as an operating consideration 51
channel check handler (CCH) function of recovery

management 23
channel check handler (CCH), general description FEA 6
CHAP function, used with subtasking 18
characteristics of

MCS MSG 3
SVC routines SVC 3

checkpointing output data sets V/\VT 7
checkpointing SYSOUT data sets PRO 22
checkpoint jrestart 16

definition 29
facility, general description FEA 6

choosing
appropriate job classes, general considerations 42
direct system output writers, considerations 43
number and size of partitions with batch processing
number and size of partitions with graphics 47
number and size of partitions with telecommunications
number and size of partitions, general considerations
output classes with batch processing 45
system output writers, considerations 43

CIRB
create IRB for asynchronous exit processing SMI 4
macro instruction SMI 4

CLASS parameter
caution during time-slicing TSL 5
in the JOB statement 21
of JOB statements, enqueuing jobs by 33
used to determine priorities 13

codes returned to accounting routine ACC 8
coding

conventions, in illustrations Use 2
to block a procedure library PRO 30
to catalog a procedure PRO 28

Index

45

46
41

IND 1

communications task, function 23
compatibility

between OS/MFT and OS/VSl 10
telecommunications 46

concurrent
operation, basic definition 12
peripheral operations (CPO) considerations 48

configurations, shared DASD SHR 5
considerations

affecting virtual=real storage availability 27, 28
for using the Must-Complete function MUS 4
in using VS 1 39
output separator SEP 5
PRESRES volume characteristics list PRE 5

console
device support 14
switching under MCS, how accomplished 40
switching with MCS MSG 3

consoles
alternate and composite consoles option, general

description FEA 6
multiple console support (MCS), general

description FEA 7
contents of virtual storage with virtual=real

specified, Figure 14 27
contents of

the output work queue 35
virtual storage after first job is scheduled, Figure 8 20
virtual storage after nucleus initialization, Figure 3 19
virtual storage after system initialization, Figure 4 19
virtual storage after START commands, Figure 7 19
virtual storage with three partitions active, Figure 10 20

control character
transformations, standard output writer \VWT 7
translation for printer unit output

Figure WWT 4 WWT 10
translation for punch unit output,

Figure WWT 2 WWT 8
control program organization 23
conventions

for accounting routines ACC 3
for output writers W\VT 3
for SVC routines SVC 3
for WTO /WTOR exit routines MSG 4
used in illustrations of coding Use 2

conversational remote job entry (CR]E) facility, general
description FEA 9

CPO (concurrent peripheral operations) definition and
considerations 48

creating parameter library lists RRO 11
creating SYSl.PARMLIB members for auto

initialization ASI 4
CSECT name and entry point of accounting routines ACC 3

DADSM (direct access device space management),
definition 22

data management function of the control program and
routines 22

data set integrity
how to maintain 44
with cataloged procedures PRO 3

data sets, sharing SHR 6
DD statement

dedicated utility data sets PRO 18
direct sysout writer procedures PRO 26
for storage dump, reader procedure PRO 10
for storage dump, writer procedure PRO 24
input stream from local device, reader procedure PRO 7
input stream from remote device, reader

procedure PRO 9
input stream, restart reader procedure PRO 11
loadset data set PRO 18

IND 2 OS/VSl Planning and Use Guide

output dataset for local device, writer procedures PRO 23
output data set for remote device PRO 25
procedure library, reader procedures PRO 9
procedure library, restart reader procedure PRO 11
CPP data set, reader procedure PRO 12
SW ADS, initiator procedures PRO 13
SW ADS, INITD procedure PRO 17

DDR (dynamic device reconfiguration)
function of recovery management 23

deactivation /reactivation of partitions 50
DEB validity checking FEA 9
debugging and maintenance, tracing routine TRC 3
dedicated data sets

how to dedicate PRO 14
initiator procedures PRO 14
library data sets as PRO 19
temporary, disposition of PRO 20
use by processor programs PRO 18
INITD procedure PRO 16

dedicated utility data sets, DD statement PRO 18
default job class 42
DEQ

assembler language subroutine SHR 11
macro instruction, use with RESERVE SHR 8
macro instruction, Must-Complete function MUS 5

description of return codes (to accounting routine) ACC 8
DETACH function, used with subtasking 18
determining task control of a partition (POSTS and
WAITS) 12

device independent display operator console support
(DIDOCS) FEA 10

device requirements, minimum system 13
devices

supported as consoles in VSl 15
supported by VSl 14
that can be shared SHR 5

differences, OS/MFT-OS/VSl DIF 1
direct access

device space management, definition 22
volume serial number verification, general

description FEA 10
direct system output (DSO)

routines, function of 35
writer partitions 29
writer procedures PRO 25
writers 17

dispatching
dynamic FEA 11
interruption, table entry format TRC 3
priority of a task, how determined 33

disposition of temporary dedicated data sets PRO 19
division of virtual storage, Figure 13 26
DSO (direct system output)

procedure PRO 25
writer partitions 29
writers, function of 35

DSO]S procedure PRO 25
DSS (dynamic SUppOlt system) FEA 12
dynamic device reconfiguration (DDR)

function of recovery management 23
general description FEA 10

dynamic dispatching FEA 11
dynamic support system (DSS) FEA 12

ENQ macro instruction
shared DASD SHR 7
Must-Complete function MUS 4

enqueuing jobs by CLASS and PRTY 33
entrances to accounting routines ACC 3
entries for the resident BLDL table RRO 4
ERP option list example RRO 13
error recovery procedure, reSident, option RRO 11

estimating storage requirements in VSl 39
example of

a MODIFY command 35
a START DSO command 35
assembler language subroutine for RESERVE
and DEQ SHR 12

BLDL and ERP option list RRO 12
coding to block a procedure library PRO 30
coding to catalog a procedure PRO 28
linkage editor input for adding an accounting

routine ACC 6
routines to modify JES values JES 4
symbolic parameters PRO 29

EXEC statement
direct sysout writer procedures PRO 26
for restart reader procedure PRO 11
in reader procedures PRO 4
initiator procedures PRO 13
writer procedures PRO 21
INITD procedure PRO 17

exit and retry routines, ST AE SMI 9
exits from accounting routines ACC 3
extended multiprogramming capabilities 15
EXTRACT function made resident, general

description FEA 13
EXTRACT macro instruction SMI 15, SHR 8

features and facilities 15
fetch protect FEA 13
field order for the EXTRACT answer area, Figure SMI 1
SMI16

fixed real storage requirement for JES 25
format of

accountinlZ routines ACC 3
ATTACH- SMI 11
CIRB SMI4
DD statement for input to a reader procedure PRO 7
DD statement, procedure library, reader

procedures PRO 9
EXEC statement, reader procedures PRO 4
EXTRACT SMI 15
IMGLIB SMI 13
PRESRES entry PRE 3
QEDIT SMI 14
RESERVE macro instruction SHR 7
STAE SMI 6
SYNCH SMI5
SYSl.PARMLIB members ASI 4
WTO/WTOR macro instruction MSG 6

formatting
problem program messages 43
the job queue JQF 3

functions of
control program with VSI 22
direct system output writers 35
job scheduler, job initiation and termination 33
output writer WWT 3
IBM output separator SEP 3
JES 9
JES input readers 31

general shared DASD environment, Figure SHR 1 SHR 3
general shared DASD environment, 4-channel switch,
Figure SHR 2 SHR 4

glossary G LO 1
GMT (greenwich mean time) FEA 14
graphic programming services (GSP, GAM), general

description FEA 14
graphics

considerations 47
support with VSl 47

greenwich mean time (GMT) FEA 14

handling
accounting information ACC 1
shared direct access volumes as an operating

consideration 52
hard copy log option with ~ICS ~ISG 3
how to

read a job file control block S~1I.3
use the tracing routine TRC 1

I/O interruption, table entry format TRC 3
I/O load balancing FEA 15
IBM-supplied

direct system output writer procedures PRO 25
initiator procedure PRO 12
output writer procedures PRO 21
reader procedures PRO 4

identify
function made resident, general description FEA 15

identity change, parlitions 30
IEABLDOO, contents RRO 5
IEAIGEOO, contents RRO 11
IEAIGGOO, contents RRO 7
IEAIGGOI, contents RRO 7
IEAIGG02, contents RRO 8
IEAIGG03, contents RRO 8
IEARSVOO, contents RRO 9
IEARSVOl, contents RRO 10
IEFREINT procedure PRO 10
IMCJOBQD, used to dump job queue JQF 3
IYIGLIB

macro instruction SMI 13
open or close SYSl.IMAGLIB SMI 13

implementation of automatic commands ASI 4
independent job scheduling 16
indexed sequential access method (ISAM), general
description FEA 15

INIT procedure PRO 12
IN lTD procedure PRO 16
initialization, system, automated 15, ASI 1
initialization, system, basic definition 11
initiator

functions of 33
procedures PRO 12

input/output (I/O) supervisor, definition 22
input

-available to accounting routines ACC 4
job stream, Figure 2 17
readers 31
stream from disk 16
to the accounting data set writer ACC 7
work queues after all nine jobs are entered, Figure 9 20
work queues after first three jobs have been

entered, Figure 6 19
work queues after system initialization, Figure 5 19

inserting
accounting routine into the control program after
sysgen ACC 6

an accounting routine into the control program ACC 6
an accounting routine into the control program at
sysgen ACC 6

SVC routines during system generation SVC 8
SVC routines into the control program SVC 8

interlocks, preventing, shared DASD SHR 9
interruption checker, missing (MIC) 23, FEA 16
introduction 9

JES (Job Entry Subsystem) 9
input reader processing, Figure 19 32
input readers, functions of 31
real storage fixed requirement 28
reconfigurability JES 1
writer, functions of 35

Index IND 3

JESPARMS
entries JES 3
member, SYSl.PARMLIB JES 3

job card example, specifying CLASS and PRTY 21
job characteristics, typical 42
job classes eligible for partition definition 21
job control statements, definition of in job

management 22 .
job disposition during system restart 36
job entry subsystem (JES) 9

real storage fixed requirement 28
job file control block, how to read SMI 3
job initiation and termination, functions of the

job scheduler 33
job initiation, functions of initiation 33
job mcmagemeut function uf the cOlltlU1 program 22
job name considerations 43
job priorities, general discussion 13
job queue format JQF 1
job scheduling, factors affecting 33
job step timing, general description FEA 16
job step CPU time limiting 16
job termination, functions of 34
job/step CPU timing 16, 22
JOBQFMT, considerations and default value JQF 4
JOBQLMT

considerations JQF 4
formula JQF 4, JQF 5

jobs with V =R requirements, when to run 28

levels of Must-Complete function MUS 3
libraries, program, shared volumes SHR 9
library lists, parameter RRO 11
link library list feature RRO 13
linkage to the accounting data set writer ACC 7
list IEAIGGOI RRO 7
list

IEABLDOO RRO 5
IEAIGEOO RRO 11
IEAIGGOO RRO 7
IEAIGGOI RRO 7
IEAIGG02 RRO 8
IEAIGG03 RRO 8
IEARSVOO RRO 9
IEARSVOI RRO 10

load balancing, 110 FEA 15
loading on page boundary 40
LOADSET data set, DD statement PRO 18
location of

the trace routine table TRC 3
SVC routines SVC 3

logical cylinder, user_modify facility FEA 25
logical track size, JOBQFMT JQF 4

machine check handler (MCH)
function of recovery management 23
general description FEA 16

master scheduler task, function 23
maximum number of

concurrent jobs in VSl 13
problem program partitions 13
system task partitions 27

!-.{CH (machine check handler) function of
recovery management 23

MCS (multiple console support), provisions of ,39
characteristics YISG 3
option FEA 7

MCSFLAG operand of the \VTO /\VTOR macro
instruction ~ISG 6

MCSFLAG parameters, Figure ~1SG 3 MSG 8

Ii\D 4 OS/\'SI Planning and Use Guide

message routing exit routines MSG 1
messages that don't use routing codes MSG 6
MFT (multiprogramming with a fixed number of tasks),

basic definition 11
MIC (missing interruption checker) 23, FEA 16
minimum

increment for storage assignment increases 29
size of problem program partitions 25
size of system queue area 25
system device requirements 13
system storage requirements 13

missing interruption checker (MIC) 23, FEA 16
modify logical cylinder facility for user FEA 25
modifying

JES values, examples JES 4
routing and descriptor codes MSG 3
time slicing values at system initialization TSL 4

MSGTYP operand of the WTO IWTOR macro
instruction MSG 6

multiple console support (MCS) 39
with message routing exit routines MSG 1

multiple line WTO
descriptor code MSG 5
format MSG 6
MCSFLAG parameters, Figure MSG 3 MSG 8

multiple wait option, general description FEA 17
multiprogramming with a fixed number of tasks (MFT),

basic definition 11
Must-Complete function MUS 1

naming conventions for SYS1.PARMLIB member ASI 4
non-pageable area

in virtual storage 11
of virtual storage 24, 25

nonresident portion of the control program,
contents 24

nucleus area requirements 25

on-line test executive program (OL TEP), general
description FEA 17

OPEN macro instruction SMI 3
open Iclose/ end-of-volume, definition 22
OPEN, prepare the data control block for processing SMI 3
operands of

ATTACH SMI 12
CIRB SMI4
EXTRACT SMI 15
IMGLIB SMI 13
QEDIT SMI 14
RESERVE SHR 7
STAE SMI 6
SYNCH SMI5

operating considerations of VS 1 48
operating

characteristics of the Must-Complete
function MUS 4

characteristics of time slicing TSL 5
operation sequence 18
operational characteristics, PRESRES volum~

characteristics list PRE 4
operator command

definition of in job management 22
groups, Figure PRO 1 PRO 6
restrictions 51
with abbreviations 51

operator responses for automated system initialization ASI 6
optional features of VSl 38
OS/~fFT-OS/VSl differences DIF 1
OS/VSl, general descriptions 9

output
classes 35
from accounting routines
from the separator program
separation SEP 1

ACC 4
SEP 6

separator functions SEP 3
separator program requirements SEP 4
to the accounting routine ACC 8
work queue, contents of 31
writer conventions WWT 3
writer functions WWT 3
writer procedure, cataloged PRO 21
writers, function of 35

page boundary loading 40
page fault

definition 28
long-term fixed pages 28

pageable area
in virtual storage 11
of virtual storage 24, 25

pageable system queue area (PSQA) 25
in figures 24, 48-50

paged environment
definitions 27
restrictions 27

pages, in virtual storage 9
paging, definition of 9
parameter library lists RRO 11
parameter list referred to by Register 1,

Figure WWT 1 WWT 4
parameters of

ATTACH SMI 12
CIRB SMI 4
EXTRACT SMI 1.5
IMGLIB SMI 13
PARM field, reader EXEC statement PRO 5
QEDIT SMI 14
RESERVE SHR 7
STAE SMI6
SYNCH SMI5

P ARM field, reader EXEC statement
partition

PRO 5

combination, partitions that may be combined 29
configuration after combination, Figure 15 30
configuration after recovery, Figure 17 31
contents 25
partition deactivation/reactivation 50
definition as an operating consideration 50
definition processing, how accomplished 30
definition processing, Figure 18 31
identification after combination, Figure 16
identity change 30
job class facility 21
priorities within the system 12
priorities, general discussion 13
queue area (PQA), extension of 28
recovery and restriction 30
redefinition 16, 29

30

redefinition, automatic partition
redefinition, how invoked and used

29, FEA 4
29

size increments 40
sizes and number of, general considerations

partitions
basic definition 11
that may be combined 29

PARTITNS macro instruction 40

41

PARTITNS macro instructions, used to define system
task partitions 27

performing automated system initialization ASI 6
placing system data sets on direct access devices,

considerations 41

POST, determining tnsk C'oTltro1 of a pal-titio!!. 12
prerequisite actions

for including accounting routines ACC 3
using time slicing TSL 3

PRESRES
entry format PRE 3
volume characteristics list PRE 1

preventing interlocks, shared DASD SHR 9
principles of operation 21
printer output, output writer \VWT 7
printer-destined output, separator functions
priorities

general discussion 13
partition, within the system 12

priority scheduling within job classes 42
problem program partitions 25

maximum number 13
minimum size 25

procedure
cataloging PRO 27
library blocking PRO 29

SEP 4

requirements, initiator procedure PRO 12
requirements, reader procedure for restart PRO 10
requirements, writer procedures PRO 21

processing performed by standard output writer \V\VT 5
program controHed interrupt (PCI), general

description FEA 18
program execution as an operating consideration 49
program libraries, shared volumes SHR 9
programming

considerations, output separator SEP 5
considerations, PRESRES volume characteristics
list PRE 5

conventions for SVC routines SVC 3
conventions for SVC routines, Figure SVC 1
conventions for WTO/WTOR exit routines

Figure MSG 1 MSG 4

SVC 4

notes concerning the, Must-Complete function MUS 4
no~es concerning ST AE s~n 8

protection key of system queue area
providing UCB address to RESERVE
PRTY

25
SHR 9

parameter in JOB card, job initiation 15
parameter of JOB statement, enqueuing jobs by 33

publication references, in Use Guide Use 1
punch output, output writer WWT 7
punch-destined output, separator functions
PURGE parameter of STAE, considerations

QEDIT
linkage to SVC 34 SMI 13
macro instruction SMI 13

SEP 3
SMI7

queued indexed sequential access method (QISAM), general
description FEA 19

queued sequential access method (QSAM), general
description FEA 19

RDR procedure
RDRT procedure
reader procedures

PRO 4
PRO 4

cataloged PRO 4
requirements PRO 4
used by restart PRO lO

reading a job file control block
real storage

available for V =R requests
definition of 9
restrictions 10

SMI3

28

reactivation of deactivated partitions 51
record formats, output writer W\VT 9

Index IND 5

recovery management
function of the control program 23
support 16

redefinition of partitions 16, 29
automatic 29, FEA 4
how invoked and used 29

reenterable
load modules made resident, general description FEA 19
modules option RRO 3, RRO 5

references to publications in Use Guide Use 1
register

saving and restoring with accounting routines ACC 3
saving conventions in the job scheduler ACC 4

releasing devices, shared DASD SHR 8
remote entry services (RES) 18

reader procedures PRO 4, PRO 9
writer procedures PRO 21, PRO 25
WTO /WTOR macro for remote users SMI 18-SMI 22

requesting the Must-Complete function MUS 4
requirements

for initiator procedures PRO 12
of an output separator program SEP 4

RERP option RRO 3, RRO 4, RRO 9
RES (see remote entry services)
RESERVE

assembler language subroutine SHR 12
macro instruction SHR 7
providing the UCB address to SHR 9

reserving
devices, shared DASD SHR 7
initiator queue records, JOBQLMT JQF 4
records to start a writer and an initiator
JOBQTMT JQF 5 '

resident
access method modules option RRO 6
access method routines, general description FEA 19
error recovery procedure option RRO 11
link library modules option RRO 8
portion of the control program, contents 23
reenterable modules options RRO 5
reenterable routines, general discussion 40
routines options RRO 1
routines options, Figure RRO 1 RRO 4
task management routines 23
SVC routines option RRO 8

respecifying JES members JES 3
restart reader procedure PRO 10
restarting the system, how to 52
restrictions

concerning operator commands 52
concerning VS1 10
of paged environment 27
partition recovery 30
real storage 10

return codes for ST AE SMI 8
ROUTCDE, DESC, and MSGTYP combinations

Figure MSG 4 MSG 9 '
RSVC option RRO 3, RRO 8

sample accounting routine, reference to ACC 6
scheduler work area data set (SW ADS) 33

for INITD procedure PRO 17
for initiator procedures PRO 13

scheduling of ST AE exit and retry routines S\lI 9
selecting entries for the resident BLDL table RRO 4
sequence of operation 18
serializing operations, Must-Complete function MUS 3
shared

DASD, general description FEA 20
direct access device option SHR 1
direct access storage device, with VS1 13

IND 6 OS/VS1 Planning and Use Guide

sharing
application data sets SHR 5
direct access storage devices with other systems 41

single console vs multiple consoles 39
single reader or multiple readers, determining factors 43
SIO interruption, table entry format TRC 3
sizes of SVC routines SVC 3
SMC parameter of ENQ SHR 7
sp2cifying

SVC routines SVC 8
SYSl.ACCT data set ACC 7

SPIE routines made resident, general description FEA 20
spooling, in JES 9
SQA (system queue area) 25
STAE

execute and standard form SMI 6
exit and retry routines S\lI 9
list form SMI 7
macro instruction SMI 6
specify task asynchronous exit SMI 6

standard and optional features of VS1 37
standard output writer processing WWT 5
STEP level of Must-Complete function MUS 3
step termination, functions of 34
storage

assignment increases, minimum increment 29
configuration and definition SMI 5
configuration for a 128K system, Figure 22 48
configurations for a 192K system, Figure 23 49
configurations for a 384K system, Figure 24 49
protection option, general description FEA 20
requirements, minimum system 13

subtasking
dispatching priority of 33
in VS1 18

subtasks with ATTACH facility 12
supervisor, task management routines 22
SVC

interruption, table entry format TRC 3
routines, adding them to the control program SVC 1
routines, resident, option RRO 8

S\V ADS (scheduler work area data set) 33
for INITD procedure PRO 17
for initiator procedures PRO 13

symbolic
parameters in cataloged procedures PRO 28
representation of record formats, Figure W\VT 3 WWT 9

SYNCH macro instruction SMI 5
system

configuration, time slicing TSL 3
data sets on direct access devices, considerations 41
device requirements, minimum 13
initialization, basic definition 11
initialization, automated 15, ASI 1
input readers 16, 25
interlocks, avoiding 44
level of Must-Complete function MUS 3
macro instructions SMI 1
management facilities (SMF) 16, 21
management facilities (SMF), general description FEA 20
nucleus area requirements 25
output processing 37
output writers 17, 29
queue area (SQA), 25
queue area, contents 25
queue area, extension of 28
queue area, pageable 25

in figures 24, 48-50
queue area, protection key 25
queue area, size 25
reader, initiator, and writer cataloged procedures PRO 1
residence devices for VS1 13
restart 17

restart processing, Figure 21 36
restart, how invoked 36
restart, how to 52
restart, job disposition 37
restart, reasons for 36
storage requirements, minimum 13
task effect on time-slice groups TSL 5
task partitions, maximum number 27
task partitions, use of 27

SYSl.ACCT data set, how to specify ACC 7
SYSl.BRODCAST data set 18
SYSl.LINKLIB, contents 23
SYSl.NUCLEUS, contents 23
SYSl.SVCLIB, contents 23
SYSl.SYSJOBQE queue record JQF 3
SYSl.UADS data set 18

table size, BLDL table RRO 4
task control block (TCB), use to determine dispJtching
priority 33

task dispatching priority, how determined 33
task management function of the control program 22
task switch, basic definition 12
task switching, how it can occur 12
tasks, number in each partition 11
TCB (task control block), use to determine dispatching

priority 33
telecommunications

compatibility 46
considerations 46
option, general description FEA 21

terminating the Must-Complete function MUS 5
the VS 1 system, Figure 20 34
theory of operation, Appendix A APA 1
time slicing facility TSL 1
time slicing

effect on ATTACH and CHAP TSL 4
facility, function TSL 3
facility, general description FEA 23
feature, use with graphics 47
how to invoke TSL 4
how to use TSL 4
prerequisite actions TSL 3

trace option, general description FEA 24
trace routine table location TRC 3
tracing routine, how to use TRC 1
transient SVC table made resident, general

description FEA 24
type 3 and 4 SVC nmtines made resident, general

description FEA 25
typical job characteristics 42
typical system configurations 48

unit record applications, considerations in VSl 27
Use Guide contents Use 1
use of an output separator SEP 3
use of multiple writers, advantages 44
user exit routines MSG 1
user-added SVC routines SVC 1

general description FEA 26

user modify logical cylinder facility FEA 25
using resident reenterable routines, general discussion 40
using the time-slicing feature 47

V=R requirement jobs, when to run 27
vaild operator commands 52
validity check option, general description FEA 27
virtual storage

access method (VSAM) 22
access method (VSAM), general deSCription FEA 27
advantages 9
general description 9
organization 24
organization, Figure 12 24

viItual=real
area, for unit record applications 27
execution 27
execution facility 16
storage availability 27

volume jdevice status under shared DASD SHR 5
volume

assignment, shared DASD SHR 9
handling with shared DASD SHR 6
statistics facility, general description FEA 28

VSAM (virtual storage access method) 22, FEA 27
VSl

console device support, Figure 1 15
features and facilities 15
features and options FEA 1
general considerations in use of 39
graphics support 47
operating considerations 48
standard and optional features 37
subtasking 18
supported devices 14
telecommunications compatibility 46
valid operator commands 52

wait time limiting 16
WAITS, determining task control of a partition 12
writing

system output writer routines WWT 1
SVC routines SVC 3
WTO/WTOR exit routine MSG 3

WTO for RES users
execute form SMI 20
list form SMI 19
return codes SMI 19
standard form SMI 18

WTOR for RES users
execute form SMI 22
list form SMI 21
return codes SMI 21
standard form SMI 20

WTO jWTOR (write to operator/write to operator with
reply) macro MSG 6
for RES users SMI 18

WTR procedure PRO 21
WTRT procedure PRO 21

Index IND 7

OS/VSl
Planning and Use Guide
GC24-S090-1

Your views about this publication may help improve its usefulness; this form will
be sent to the author's department for appropriate action. Using this form to request
system assistance or additional publications will delay response, however. For more
direct handling of such requests, please contact your IBM representative or the
IBM Branch Office serving your locality.

Yes

• Does the publication meet your needs? 0

• Did you find the material:

Easy to read and understand? 0
Organized for convenient use? 0
Complete? 0
Well illustrated? 0
Written for your technical level? 0

• What is your occupation?

• How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?

To learn about operating procedures?

Your comments:

o
o
o

No

0

0
0
0
0
0

... -'\s an instructor in class?

As a student in class?

As a reference manual?

If you would like a reply, please supply your name and address on the reverse
side of this form.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
{Elsewhere. an IBM office or reDresent::ltiv~ will hp. h!=lnn" tn fnrUT':lrA unn .. ""' ""_f-... \

....,
w
o
o

READER'S
COMMENT
FORM

GC24-5090-1

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

Fold

I nternational Business Machines Corporation
Department G60
P. O. Box 6
Endicott, New York 13760

First Class
Permit 170
Endicott
New York

.. .1
Fold Fold

If you would like a reply, please print:

Your Nanre __ __

COm~yName--Deputnrent ______________________________________ __

Sueet Addre~ ____________________________________ __
Ory ________________________________ __

rtrnlliI
®

Intematlonal BUllne .. Machines Corporation
Data Processing Division

Sm~ ______________________ __

1133 Welltchellter Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Zip Code _____ _

,

o en
.........
< en

-:!!
ro
Z
~
en
w
'-J
o
I w

.:e
""tJ
::::!.
::J
r-+
CD
Q.

::J

C
en
~
G')
()
N
+=-I
U"1
o
(0
o
I
~

)1)]300
(t)

1ntemati0n81 BusIRe .. MadtInes Corporation
Data Processing DIY
1133 WelichelierAvenue, White PlaIn., New York 10604
(U.s.A. on")

ISM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Intemallonal)

o
en -..
< en
--Ii

."
Q)'

2,
- --.,--

S·
co
Q) :­

::J
0-

C
CIJ
CD

Cf c;
5: ..
(1) ---:E-
CD

