| [t}
[

1
T
.."i

I
MVS/Extended Architecture Licensed

Loader Logic Program

Order Number LY26-3901-1
File Number S370-31

Restricted Materials of IBM Program Number 5665-284
Licensed Materials—Property of IBM Version 1, Release 1.2
©» Copyright IBM Corp. 1972, 1987

Order Number LY26-3901-1
File Number S370-31

]
MVS/Extended Architecture Licensed

]
Loader Logic Program
Restricted Materials of IBM Program Number 5665-284
Licensed Materials—Property of IBM Version 1, Release 1.2

¢ Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of ;BM

Second Edition (January 1987)

This edition replaces and makes obsolete the previous edition,
tggg*gggé-o, and its technical newsletters, LN26-8114 and

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, Licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Changes™ following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent publication of the page affected.
Editgrial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM Svystem/370, 30xx, and 4300
Processors Bibliography, GC20-9001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
below, your order will be delayed because publications are not
stocked there.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials
of International Business Machines Corporation. ®© Copyright
International Business Machines Corporation 1972, 1982, 1983,
1987. All rights reserved.

Restricted Materials of IBM
Licensed Materials — Property of IBM

PREFACE

This publication applies to Version 1 and Version 2 of
MVS/Extended Architecture Data Facility Product (MVS/XA DFP).

This publication contains the following:

"Introduction® describes the loader as a whole, including
its relationship to the operating system. This section also
describes the major divisions of the program and how they
work together.

"Method of Operation™ provides an overview of, and an
introduction to, the logic of the loader. This section also
contains detailed descriptions of specific operations.

"Organization of the Loader"™ describes the organization of
the loader and the control flow within it.

"Microfiche Directory"™ directs the reader to named areas of
code in the program listing, which is contained on
microfiche cards.

"Data Areas" illustrates the layout of tables and control
blocks used by the loader. These layouts may not be
essential for an understanding of the program's logic, but
they are essential for analysis of storage dumps.

"Diagnostic Aids™ includes the general contents of the
register at entry points to program components, definitions
of the internal error codes, and a list of service aids
available with the loader.

"Appendix. Error Messages, Etc." on page 102 contains a list
of error messages and the routines and CSECTs in which they
originate. This section also contains a list of loader
input conventions and restrictions, and detailed
descriptions of input record formats.

" ist of Terms and Abbreviations" lists the terms and
abbreviations used in this book, and what they mean.

An index is also included.

PREREQUISITE KNOWLEDGE

To use this book effectively, you should be familiar with the
following topics:

® Copyright IBM Corp.

Assembler language functions and specifications under
Assembler H

How to analyze a main storage dump from MVS/XA

General concepts of the linkage editor and loader.

1972, 1987 Preface 1iii

Restricted Materials of IBM
Licensed Materials = Property of IBM

RS emMple 1 e ion APP = on_rrog r.lllll‘ AQnauUadase
Reference, GC26-4037, for a description of basic assembler

language functions.

MYS/Extended Architecture Debugaina Handbook, LC28-1164
through LC28-1168, for details on how to analyze a main
storage dump.

MVS/Ext led Architect Lint Edidt L1 | U
Guide (GC26-4011 for Version l; GC26-4143 for Version 2) for
a description of the linkage editor and loader.

RELATED PUBLICATIONS

References are made within the text to various related
publications. Separate tables of related publications for
Version 1 and Version 2 are provided below.

VERSION 1
order

Short Title Publication Title Number

Assembler H V2 Assembler H Version 2 GC26-4037

Application Application Programming:

Programming: Language Reference

Language

Reference

Debugging MVS/Extended Architecture LC28-11641

Handbook Debugaginag Handbook, Volumes | LC28-1165
1 through 5 - LC28-1166
’ LC28-1167

L.C28-1168

JCL MyS/Extended Architecture GC28-1148
JCL

Linkage Editor MVS/Extended Architecture GC26-4011

and Loader Linkage Editor and Loader

User's Guide

Supervisor MVS/Extended Architecture GC28-1154

Services and Svstem Proaramming lLibrarv:

Macro Supervisor Services and

Instructions Macro Instructions

Note:

1 All five volumes may be ordered under one order number,
LBOF-1015.

iv MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

VERSION 2

Oorder
Short Title Publication Title Number
Assembler H V2 Assembler H Version 2 GC26-4037
Application Application Programming:
Programming: Language Reference
Language
Reference
Debugging Vd LC28-11641
Handbook i » Volumes LC28-1165
1 through 5 LC28-1166
LC28-1167
LC28~-1168
JCL MVSs/Extended Architecture GC28-1148
JCL
Linkage Editor MVSs/Extepnded Architecture GC26-4143
and Loader Linkage Editor and lLoader
User's Guide
Supervisor MVS/Extended Architecture GC28-1154
Services and Svstem Programming Library:
Macro Supervisor Services and
Instructions Macro Instructions
Note:

All five volumes may be ordered under one order number,

LBOF-1015.

® Copyright IBM Corp. 1972, 1987

Preface v

Restricted Materials of IBM
Licensed Materials — Property of IBM

| RELEASE 1.2 LIBRARY UPDATE. JANUARY 1987

| SERVICE CHANGES

Information has been added, corrected, or deleted to reflect
technical service changes.

vi MVS/XA Loader Logic ®© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

CONTENTS

Introduction 1
Purpose 1
Functions 1
Virtual Storage Requirements 2
Environment 4
Physical Characteristics 4
Operational Considerations &
Input Module Structure 5
External Symbol Dictionary (ESD) 7
Relocation Dictionary (RLD) 7
Interrelationship of Control Dictionaries 7
Loader Options 8
General Theory of Operation 9

Method of Operation 11
Steps of the loader Operation 11
Initialization 11
Input Control and Buffer Allocation 11
Primary Input Processing 12
External Symbol Dictionary Processing 12
Text Record Processing 12
Relocation Dictionary Processing 12
Address Constant Relocation Processing 12
Secondary Input Processing 13
Final Processing
Identifying Loaded Program 13
End of Loading
Initialization (HEWLIOCA) 13
Analyzing Control Information 14
Initializing Virtual Storage 15
Readying Data Sets 15
Redrive 16
Input Control and Buffer Allocation 16
Buffer Management (HEWBUFFR) 17
Buffer Deallocation 17
Buffer Allocation 17
Reading Object Module Input from an External Device 18
Reading Internal Object Module Input 19
Reading Load Module Input 20
Primary Input Processing 21
External Symbol Dictionary (ESD) Processing (HEWLESD) 22
Preliminary ESD Processing 24
CESD Searching 25
No-Match Processing 26
Match Processing 34
Text Record Processing 38
Processing Object Module Text (HEWLTXT) 38
Processing Preloaded Text (HEWLMOD) 39
Processing Load Module Text (LMTXT) 39
Relocation Dictionary (RLD) Processing (HEWLRLD) 41
Relocating Address Constants (HEWLERTN) 43
End Processing 45
END Card Processing 45
End-of-Module Processing 46
Secondary Input Processing (HEWACALL) 46
Resolving ERs from the Link Pack Area 46
Resolving ERs from the SYSLIB Data Set 47
Final Processing for the Loaded Program 48
Assigning Addresses for Common Areas (COMMON) 468
Assigning Addresses for External DSECT Displacements
(PSEUDOR) 49
Issuing Unresolved ER Messages 49
Checking the Loaded Program's Entry Point 49
Identifying the Loaded Program 51
End of Loading 51
Loader Processing Termination 51
Loader Control Termination 52
Operation Diagrams 53

® Copyright IBM Corp. 1972, 1987 Contents

vii

viii

Restricted Materials of IBM
Licensed Materials - Property of IBM

Diagram A0. Overall Loader Operation (Below-the-Line
Loading) 54

Diagram Al. Overall Loader Operation (Above-the-Line
Loading) 55

Diagram A2. Loader Invocation 57

Diagram Bl. Loader/Scheduler Interface and Initialization 58

Diagram Cl. Primary Input Control and Buffer Allocation 59
Diagram Dl1. Object Module Processing 60

Diagram D2. Load Module Processing 1

Diagram D3. ESD Record Processing (Generalized) 62
Diagram DG. Example of Input ESD Processing of SD-Section
Definition (HEWLESD) 63

Diagram D5. Example of Input ESD of ER-External Reference
Processing (HEWLESD) 64

Diagram Dé6. Example of ESD ID Translation 65

Diagram D7. Object Module Text Processing 66

Diagram D8. Load Module Text Processing (Below-the-Line
Loading) 67

Diagram D9. Load Module Text Processing (Above-the Line
Loading) 68

Diagram D10. RLD Record Processing 69

Diagram E1l. Secondary Input Processing 70

Oorganization of the Loader 71
Routine Control-Level Tables 72

Microfiche Directory 80

Data Areas 83
HEWLDDEF 94

Diagnostic Aids 98
Error Code Definitions 100
Serviceability Aids 101

Appendix. Error Messages, Etc. 102

Input Conventions 103

Input Record Formats 104

Compiler/Loader Interface for Passed Data Sets 116
Identify Macro Instruction—Identifying Loaded Program 120

List of Terms and Abbreviations 122
Index 123

MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of IBM

EIGURES

o e o o

-
WO VOONOIOULIDNWN -

16,

® Copyright IBM Corp.

Loader Storage Layout (Below-the-Line Loading) 2

Loader Storage Layout (Above~the-Line Loading) 3
Loader Control Logic Flow 5

Object Module and Load Module Structure 6

Example of an Input Module

Loader Options 9

Load Module Storage Allocation for Buffer and DECBs 18
Freed Areas from Buffer-DECB Allocation 19

?torige23110cation of Buffers and DECBs for Object Module
npu

Object and Load Module Processing Differences 21

ESD Entry Types and Functions

Tables Used in the CESD Search 26

No-Match Processing Required for Input Entry Types 26
Storage Allocation (Below-the-Line-Loading) 28
Storage Allocation (Above-the-Line Loading) 29

Translation Control Table and Translation Table 33
Overall Relationship of Tables 34

Symbol Resolution 35

Loading the Text from a Load Module Record 4l
Relocation of Address Constants 44

BLDL List and Address List 48

Loader Organization 71

HEWLOADR—Level 1 72

HEWLOADR—Level 2 72

HEWLOADR—Level 3 74

HEWLOADR—Level 4 77

Data Area Construction and Usage 83

Address List 84

BLDL List 84

CESD Control Table (CMTYPCHN) 85

CESD Entry 86

Condensed Symbol Table Entry 87

Data Event Control Block (DECB) 88

Extent Chain Entry 89

IDENTIFY Parameter List 90

HEWLDCOM DSECT—Communication Area 91

HEWLDDEF CSECT 94

INITMAIN DSECT Definition 95

RLD Table Entry 96

Translation Control Table 96 '
Translation Table 97

Register Contents at Entry to Routines 98

Internal Error Code Definitions 100

Module Map Format Example 101

Error Message/Issuer Cross-Reference Table 102

SYM Input Record (Card Image)—Ignored by the Loader 105
ESD Input Record (Card Image) 106

Text Input Record (Card Image) 107

RLD Input Record (Card Image) 108

END Input Record—Type 1 (Card Image) 109

END Input Record—Type 2 (Card Image) 109

SYM Record (Load Module)—Ignored by the Loader 110

CESD Record (Load Module) 111

Scatter/Translation Record—Ignored by the Loader 112

Control Record (Load Module) 113

Relocation Dictionary Record (Load Module) 114

Control and Relocation Dictionary Record (Load Module) 115

Record Format of IDRs (Load Module)—Ignored by the
Loader 116

DCB List 117

Internal Data Area in Fixed-Length Record Format 118
Internal Data Area in Variable-Length Record Format 119
MOD Record (Card Image) 119

1972, 1987 Figures

ix

Restricted Materials of IBM
Licensed Materials — Property of IBM

INTRODUCTION

This section provides a general description of the loader. It
includes the purpose and functions of the program, its physical
and environmental characteristics, and operational
considerations necessary for its use. The generalized theory of
loading is also discussed in this section.

The purpose of the loader is to combine input object and load
modules into an executable program in virtual storage. In this
regard, the loader performs the basic functions of the linkage
editor and program fetch to obtain high-performance loading.
(The loader can be used only when special linkage editor
processing [such as overlaying modules] is not required.)

Using the loader can provide advantages of increased system
throughput and conservation of auxiliary storage space. System
throughput can be increased through:

. Elimination of scheduler overhead, since loading and
execution occur in a single job step

U Elimination of linkage editor I/0 for intermediate and final
output

. Elimination of certain linkage editor functions, such as
control statement processing and overlay structuring

. Reduction of time required for reading input, through
improved buffering techniques

. Reduction of time required for library search, through use
of link pack resident modules

. Elimination of time required to read input from an external
device, through use of an internal input data area prepared
by a compiler

Auxiliary storage space is conserved through:

. Deferring inclusion of processor library routines until load
time, thus reducing space required for the program. (This
applies to a production environment in which jobs are
selected from a job library.)

. Eliminating space formerly needed for the linkage editor
intermediate and output data sets.

The loader performs the basic logical functions of the linkage
editor and of the program fetch module. Like the linkage
editor, the loader combines and links the input modules. In
addition, the loader assigns actual machine addresses to the
resulting program and then passes control directly to the
program for execution. In this regard, the loader functions as
the program fetch module does.

As part of the link-loading procedure, the loader also
automatically deletes duplicate copies of a module, and can
include modules from a system library.

® Copyright IBM Corp. 1972, 1987 Introduction 1

Restricted Materials of IBM
Licensed Materials — Property of IBM

YVIRTUAL STORAGE REQUIREMENTS

Loader operation requires about 25K bytes of virtual storage.!
(This amount does not include the storage for the loaded program
and the condensed symbol table.) The storage for loader
operation includes that for loader code (about 16K bytes), for
the data management access methods (about 6K bytes), and for
loader buffers and tables (about 3K bytes). If the access
methods are resident, and if the loader code is resident in the
link pack area, part of the loader storage may be allocated from
system storage.

Figure 1 shows the loader virtual storage layout when loading
below the l6-megabyte virtual storage line. Figure 2 on page 3
shows the storage layout when loading above the lé6-megabyte
virtual storage line.

Below-the-Line-Storage

High
Address
Loader Con- . Freed after pro-
trol gET::AIN{ Register save area for LOAD of Loader (72 bytes) } g:::\ execuzon
LOADER (Processing)
L Freed before pro-
gram execution
(l
TABLES (Dynamic) J
- T N

Loader
Processor ﬁ Loaded Program
GETMAIN

Descriptive information about loaded program

L Freed after pro-

gram execution

LOADER (CONTROL)

OPERATING SYSTEM

CONTROL PROGRAM

Low

Address

Figure 1. Loader Storage Layout (Below-the-Line Loading)

1 The actual amount required depends on the type of input
used. (For example, input produced by the PL/I compiler
requires a minimum of 10K bytes for loader tables.)

2 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

High
Above-the-Line Storage Address
Loaded Program Freed after
> program
execution
Descriptive information about loaded program
J
Low
Address
. High
Below-the-Line Storage Address
Loader Con- Register save area for LOAD of Loader {72 bytes Freed after
trol GETMAIN { eg! ve area 0 ader (ytes) program execution
LOADER (Processing)
Freed before
r program execution
(1
TABLES (Dynamic) J
Loader
Processor
GETMAIN
Load Module Text Buffer
\.
LOADER (Control)
OPERATING SYSTEM
CONTROL PROGRAM
Low
Address

Figure 2. Loader Storage Layout (Above-the-Line Loading)

® Copyright IBM Corp. 1972, 1987 Introduction 3

. Restricted Materials of IBM
Licensed Materials — Property of IBM

The loader can be used either in batch mode, or under the time
sharing option (TSO).

It can be used in one of three ways:

1. As a job step, when the loader is specified on an EXEC job
control statement in the input stream

2. es a subprogram, via the execution of a LOAD macro
instruction, a LINK macro instruction, or an XCTL macro
instruction

3. As a subtask in multitasking systems, via execution of an
ATTACH macro instruction.

Loader operation requires access to a primary input source, the

a et. Input may be from a card reader, magnetic
tape, or a direct access device. Input may be a concatenation
of data sets from different types of devices. Input may also be
in the form of an internal input data area prepared by a
compiler.

An automatic search of a system library can occur to complete
the input. The automatic search requires use of the

set. The SYSLIB data set is defined only as a partitioned data
set., SYSLIB may also be concatenated; however, SYSLIB input
consists of object modules only, or load modules only.

When the link pack area is available, the loader can include
resident modules listed in the contents directory entry queue in
the loaded program.

The loader uses the SYSLOUT data set for both diagnostic
messages and module maps, and uses the SYSTERM data set only for
diagnostic messages. These data sets may be used in conjunction
with each other or separately.

PHYSICAL_ CHARACTERISTICS

The loader consists of a control portion and a processing

portion. The control portion handles linkages to and from the:

processing portion (which performs the actual program loading),

and to and from the loaded program for its execution. Figure 3

:2 p?gedS illustrates the relationship between the portions of
e loader.

The loader consists of two loads, the first contains module
HEWLCTRL, the control portion. The other load contains control
sections HEWLDDEF, HEWLIOCA, HEWLRELO, HEWLIDEN, and HEWLLIBR,
which together perform program loading. Because of the
interrelationships among module functions, the loader is not a
candidate for overlay structuring.

The control portion of the loader executes in 24-bit addressing
mode; the processing portion executes in 31-bit addressing mode.
Both portions of the loader reside below the l6-megabyte virtual
storage line.

OPERATIONAL CONSIDERATIONS

Loader operation depends on the types of input received and on
the types of user options specified.

Input to the loader may be in the form of load modules produced
by the linkage editor, and/or as object modules produced by the
following language processors: ALGOL, COBOL, FORTRAN, PL/I, RPG,

4 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

Figure 3.

HEWLOADR

HEWLDRGO (ALIAS LOADER)

Processing Portion
of I.ooder

Control Portion of Loader

LOAD EP = HEWLOAD

—

CALL HEWLOAD

(Performs program loading)

;

RETURN

R¥1 - program name
DELETE EP = HEWLOAD

LOADED PROGRAM

ATTACH v

WAIT
DETACH

RETURN To Caller

(

RETURN

Loader Control Logic Flow

and Assembler.?

Input may be from an external device,

be as one or more internal object modules (that is, a data area
that resides in virtual storage and consists of contiguous

object module records).

If inputting an internal data area,

object module records containing the instructions and data of
the program (text) can be omitted from the data area itself and

replaced by passing a pointer to the text.

The loader then

performs its usual functions of relocation and linkage on the

text without having to read or move it.

If the loader is processing an internal data area, you cannot

concatenate input from an external device to it.

INPUT MODULE STRUCTURE

©® Copyright IBM Corp.

Object modules and load modules have basically the same logical

structure (see Figure 4 on page 6).

. Control dictionaries,

Each consists of:

containing the information necessary

to resolve symbolic cross-references between control

sections of different modules.

. Text,

containing the instructions and data of the program.
If an internal object module is being processed,

text

prepared by a compiler may be omitted and replaced by a

pointer to its location.

2 If the input consists only of load modules,
specify the loaded program's entry point.

1972, 1987

the user nust

Introduction

or it may

the

Restricted Materials of IBM
Licensed Materials = Property of IBM

U End-of-module indication (END statement in object modules;
EOM indicator in load modules).

Linkage Editor Input

Linkage Editor Output

Object Module Load Module
ESD CESD
./ Llinkage \
TXT >\ Editor) > Control
RLD TXT
END EOM/RLD

Figure 4. Object Module and Load Module Structure

The instructions and data of any module may contain symbolic
references to specific areas of code. The symbols may be
defined and referred to in the same module, or may be defined in
one module and referenced in another. Thus, symbolic references
are either internal or external with respect to the module in
which they occur. A symbol that refers to external code is
called an external reference (ER). External and internal
references are made through address constants.

The loader performs its function of changing all address
constants to actual machine addresses by manipulating the input
modules' control dictionaries.

Object modules usually contain two control dictionaries: an
external symbol dictionary (ESD) and a relocation dictionary
(RLD). If the module contains no relocatable address constants,
an RLD is not present.

Load modules are a composite of object modules, and, therefore,
contain a composite ESD (CESD). Load modules contain RLDs also,
unless there are no relocatable address constants. General
descriptions of the control dictionaries follow. For detailed
descriptions, see the Appendix.

6 MVS/XA Loader lLogic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

External Symbol Dictionary (ESD)

The external symbol dictionary contains entries for all external
symbols defined or referenced within a module. Each entry
indicates the symbol and its type, and gives its position (if
any) within the module. For example, there is an ESD entry for
each control section, entry point, common area, and external
dumnmy section. (An external dummy section defines a
displacement within an area, obtained during execution of the
input program via a GETMAIN macro instruction. External DSECTs
are also referred to as pseudo registers.)

Relocation Dictionary (RLD)

The relocation dictionary (RLD) contains at least one entry for
every relocatable address constant (thus, one for every external
and internal reference) in a module. An RLD entry identifies an
address constant by indicating both its location within a
control section, and the external symbol (in the ESD) whose
value determines the value of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and associated text are related through
a system of numbers known as ESD identifiers (ESD IDs). An ESD
ID is assigned to each external symbol according to its
sequential appearance in an object module. The external symbol
dictionary entries (created by a compiler or an assembler) have
the same sequential order, so the ESD ID gives the dictionary
entry number of an external symbol.3 (The linkage editor
renumbers the ESD IDs to maintain the ordered relationship when
combining modules into a load module.)

Although ESD IDs do not appear in ESD entries, they are used in
label definitions, text items, and RLD entries to refer to the
symbols in the ESD.

In RLD entries the ESD IDs are used to show two relationships
between the RLD and ESD entries:

. The RLD relocation pointer (R pointer) gives the ESD ID for
the symbol to which the address constant refers.

. The RLD position pointer (P pointer) gives the ESD ID for
the CSECT in which the address constant occurs.

Figure 5 on page 8 illustrates the two cases of RLD pointers.
The text of CSECT A contains two address constants, X and Y. X
refers to a symbol within CSECT A. Therefore, both pointers of
X's associated RLD entry give the ESD ID of CSECT A. The value
field of Y, however, refers to a symbol in a different control
section, CSECT C. Thus, the R pointer of the entry for Y gives
the ESD ID for CSECT C, the external reference; the P pointer
gives the ESD ID for CSECT A.

3 In an object module, an ESD item with type=LD cannot have
associated text or dependent address constants (see YESD
Processing"), and so is excluded from the numbering system.

® Copyright IBM Corp. 1972, 1987 Introduction 7

Restricted Materials of IBM
Licensed Materials = Property of IBM

TEXT ITEM OF CSECT A

400

500 3

ESD
Symbol Type Origin Length
CSECT A SO 000 500 4\
(———p CSECT C ER 000 0
l”‘» CSECT B SO 500 1000
|
|
| 000 1
l 1
- _
I X A (A)
l 300
| v| a©
|
|
\

TEXT ITEM OF CSECT B

RLD
R 4 Flag Address
1 1 F 300
L . 2 1 F 400
1

. \L /

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary.
The entry in the ESD for CSECT C results from the reference to CSECT C in the text of CSECT A,
This reference is at location 400. (CSECT B has no relocatable address constants.)

Figure 5. Example of an Input Module

LOADER OPTIONS

User options may be specified by parameters listed on the EXEC
job control statement4, or may be passed internally by a program
requesting the loader via LINK, LOAD, ATTACH, or XCTL macro
instruction.5 If the options are not user specified, the
defaults provided by the loader are used.

If the options are passed internally, the user can also provide
alternatives for the standard ddnames and for the standard
SYSLIN and SYSLIB DCBs.

4 See JCl manual.
5 See Supervisor Services and Macros.

8 MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

Figure 6 describes the loader options. Parameters are listed
with their associated options. Some options use different
parameters to specify either the choice or the refusal of the
option. For example, NOCALL signifies that the library call
option (CALL) is not to be used. (In this case, the third
possible parameter was retained for compatibility with the

linkage editor option NCAL.)
for the options.

Figure 6 also indicates defaults

Note to Figure 6:

The loader assigns an entry point to the loaded program if no

name was specified.

GENERAL THEORY OF OPERATION

In processing input modules, the loader assigns virtual-storage
addresses to the control sections to be included in the loaded
The loader also resolves external references in the

program.
CSECTs.

Parameters Options Defaults

RES NORES The loader searches the link pack area queue for RES
resident modules after primary input completes,
but before the SYSLIB data set is opened.

MAP NOMAP The loader produces a list of external names and NOMAP
their actual storage addresses.

CALL The loader performs an automatic search of the CALL

NOCALL SYSLIB data set for unresolved external names.

NCAL

LET NOLET The loader passes control to the loaded program NOLET
despite the occurrence of a severity 2 error
condition during loading.

SIZE= Specifies the maximum amount of dynamic storage to SIZE=300K
be obtained for loader processing.

EP= Specifies an external name to be used as the entry No
point of the loaded program. default?

PRINT The loader attempts to open the SYSLOUT data set PRINT

NOPRINT for diagnostic output.

TERM Error messages are directed to the SYSTERM data NOTERM

NOTERM set as well as to the SYSLOUT data set.

NAME= Specifies the name to use as the name of the GOo!?
loaded program.

AMODE= Specifies the addressing mode to be in effect when 26
entering the module at its entry point.

RMODE= Specifies the residence mode that applies to the 2%
module.

Figure 6. Loader Options

Because the origin of each input module was assigned
independently by a language translator, the order of the

addresses in the input is unpredictable.
for example, may have the same origin.)

(Two input modules,
The loader assigns an
address to the first control section and then assigns storage

addresses, relative to this origin, to all other CSECTs.

® Copyright IBM Corp. 1972, 1987

Introduction

9

Restricted Materials of IBM
Licensed Materials — Property of IBM

Because cross-references between CSECTs in different modules are
symbolic, they are resolved (translated into machine addresses)
relative to the virtual-storage addresses assigned to the loaded
program.

10 MVS/XA Loader Logic ®© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of IBM

METHOD OF OPERATION

This section describes the logic of the loader. It contains an
introduction that emphasizes the flow of primary data and
control information through tables and buffers. This section
also contains detailed functional descriptions of the loader.

The logic introduction refers to the operation diagrams
associated with a particular function. The detailed functional
descriptions refer to the corresponding steps of a function
through lettered references. For example, (A) refers to the
portion of a diagram that shows the GETMAIN function in "Diagram
Bl. Loader/Scheduler Interface and Initialization" on page 58.
(The diagrams follow the text of this section.)

At the end of this section are illustrations of the internal
loader tables at strategic points in processing (Figure 14 on
page 28 and Figure 15 on page 29). These illustrations stress
the changes to data; the diagrams stress movement of data. Used
together, the two sets of figures offer quick recall.

STEPS OF THE LOADER OPERATJON

Initialization

The loader control portion, which acts as an interface with the
supervisor, loads the processing portion of the loader and
passes to it the parameter list received. The system interface
is shown in "Diagram Al. Overall Loader Operation
(Above-the-Line Loading)" on page 55. See also "Diagram AO.
Overall Loader Operation (Below-the-Line Loading)"™ on page 54.

When the loader begins processing, it performs initialization to
prepare for all subsequent processing. The operations included
in initial processing are:

. Analyzing control information

. Initializing virtual storage

. Initializing DCBs

U Opening data sets.

“"Diagram Bl. Loader/Scheduler Interface and Initialization™ on
page 58 shows initialization processing.

Input Control and Buffer Allocation

The loader reads input and allocates buffers as required for the
current input module. Object modules from SYSLIN (primary input
data set) and from SYSLIB (secondary input data set) are read
into the object module buffers. (However, if input is an
internal data area, buffers are not allocated and the data area
itself is considered one buffer.) Control information from load
modules (including ESD and RLD records) is read into the RLD
buffer. in below-the-line loading, Text from load modules is
read directly into the loaded program's storage area. In
above~the-line loading, text from load modules is read into the
load module text buffer and then moved into the loaded program's
storage area. "Diagram Cl. Primary Input Control and Buffer
Allocation™ on page 59 shows input control and buffer
allocation.

® Copyright IBM Corp. 1972, 1987 Method of Operation 11

Restricted Materials of IBM
Licensed Materials — Property of IBM

Primary Input Processing

The loader performs the processing for all SYSLIN modules. (All
overlay and scatter control statements from load modules and SYM
records are ignored.) "Diagram Dl1. Object Module Processing" on
page 60, and "Diagram D2. Load Module Processing"™ on page 61,
both show the flow of primary input processing.

External Symbol Dictionary Processing

The ESD records from object modules and CESD records from load
modules describe symbols that have been defined for external
use. The loader makes entries for the symbols in the CESD, and
also makes entries in the translation table that allow
translation of the input ESD IDs to CESD addresses. The loader
calculates storage addresses and stores them in the CESD
entries. See "Diagram D3. ESD Record Processing (Generalized)"
on page 62 through "Diagram D6. Example of ESD ID Translation®
on page 65, for depictions of external symbol dictionary
processing.

Text Record Processing

For an object module, the loader translates the ID of a text
record to the proper CESD entry address. The CESD entry
contains the storage address assigned to the CSECT. MWhen the
loader finds the address for the text, it moves the text from
the object module's buffer to the loaded program's storage. For
load modules, the loader translates the IDs of all CSECTs in a
text record and thus finds their assigned virtual-storage
addresses. In below-the-line loading, the loader reads the
record directly into the loaded program's storage area. CSECTs
at the end of the record that are to be deleted are not read.
CSECTs within the record that are to be deleted are overlaid
when the CSECTs that are to be kept are compressed. In
above-the-line loading, the loader reads the record into the
load module text buffer, located in below-the-line storage. If
all CSECTs in the record are not to be kept, the entire record
is moved into the loaded program's storage area, above the line.
If all CSECTs in the record are not to be kept, only the CSECTs
to be kept are moved into the loaded program's storage area.

See "Diagram D7. Object Module Text Processing™ on page 66,
through “"Diagram D9. Load Module Text Processing (Above-the Line
Loading)" on page 68, for depictions of text record processing.

Relocation Dictionary Processing

The loader builds its RLD table from information contained in
the RLD records. It processes the RLD records of object modules
from the object module buffer, and those of load modules from
the RLD buffer. The loader uses the relocation and position (R
and P) pointers to determine the addresses of the address
constants (adcons), and uses the flag field to determine the
method of address constant relocation required. "Diagram D10.
RLD Record Processing" on page 69 shows relocation dictionary
processing.

Address Constant Relocation Processing
When resolving external references in the CESD, the loader uses

the RLD table entries chained to the CESD entry to relocate the
related address constants in the loaded text.

12 MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of IBM

Secondary Input Processing

If some unresolved external references remain after all SYSLIN
input has been processed, the loader tries to resolve them from
system library routines. If RES is specified, the loader first
tries to resolve the references from link pack area routines.
When this is possible, the loader uses the addresses of the
referenced routines in the link pack area to resolve the address
constants used to symbolically refer to them. Finally, the
loader opens the SYSLIB data set, if necessary. The loader then
loads any library modules that can be used to resolve ERs in the
loaded program. The modules are located via the BLDL and FIND
macro instructions. The loader processes the modules, depending
on whether they are object or load modules, in the same manner
as it processes primary input. "Diagram El. Secondary Input
Processing" on page 70 shows secondary input processing.

Final Processing

After processing all input for the loaded program, the loader:

. Assigns addresses for the common areas and for displacements
in the external dummy section

. Issues messages for unresolved ERs

. Determines the address of the loaded program's entry point.

Identifying Loaded Program

If program loading is successful, the loader issues an IDENTIFY
macro instruction to pass the name of the program to be executed
to the control program.¢ At this time, a condensed symbol table
may also be constructed for use by test facilities available
under the Time Sharing Option while the program is executing.

End of Loading
Before ending loader processing, the loader:

. writes out the diagnostic message dictionary and any
remaining diagnostic messages

. closes data set DCBs
. sets up return information

. frees storage not required for the loaded program.

INITIALIZATION (HEWLIOCA)

When the loader begins processing, it analyzes control
information, performs initialization of main storage and of data
sets, and allocates initial buffers for the data sets. See
"Dlagggm Bl. Loader/Scheduler Interface and Initialization®™ on
page .

This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

©® Copyright IBM Corp. 1972, 1987 Method of Operation 13

Restricted Materials of IBM
Licensed Materials — Property of IBM

ANALYZING CONTROL INFORMATION

Loader operation depends on the control information. Control
information consists of the options, ddnames of the data sets,
and the data control block addresses to be included in loader
processing. The loader uses the information passed by the user
or the defaults. (The defaults are contained in the control
section HEWLDDEF.)

(A) To analyze the control information, the loader obtains a
temporary work area, INITMAIN. (See "Data Areas™ on page 83 for
the contents of INITMAIN.) The loader saves the default ddnames
and option indicators in the temporary work area. An EXTRACT
macro instruction is then issued to determine whether the loader
is currently operating under Time Sharing Option, and an
indicator is set in INITMAIN. If the processing portion of the
loader was invoked through the entry point HEWLOAD, another
indicator is set to show that identification of the loaded
program is desired. The loader then scans the user's options
and resets the default indicators in INITMAIN, when necessary.

If the SIZE option is specified, the associated user's value
replaces the default value. However, if the option was
specified incorrectly, the default value is used.

Specifying the EP option saves the associated entry point name
in INITMAIN.

Specifying the NAME option saves the associated program name in
INITMAIN. Otherwise, the default name %%GO is used.

If the user specified the AMODE option, the loader verifies that
the value is either 24, 31, or ANY. If so, the value is saved
in INITMAIN; if not, the loader ignores the AMODE option.

If the user specified the RMODE option, the loader verifies that
the value is saved in INITMAIN; if not, the loader ignores the
RMODE option.

After all the loader options have been processed, the loader
examines the AMODE and RMODE values. If only one was provided
in the options, the loader supplies the implied companion value.
If the user specified both values in the options, the loader
verifies that the combination is valid. If not, the loader
ignores both specified values.

The loader then checks for user-specified ddnames to be used in
specifying data sets. If present, these ddnames also replace
the default names.

Finally, the loader checks for the addresses of alternates for
the data control blocks. Both addresses, if specified, must be
26-bit-only addresses; otherwise, they are ignored. The loader
will accept a SYSLIN control block if it describes an internal
data area. It saves the address of the SYSLIN control block and
sets an indicator for an internal SYSLIN data area in INITMAIN.
(The SYSLIN control block, which is not a data control block, is
described in "Internal SYSLIN Control Block" under
"Compiler/Loader Interface for Passed Data Sets" in the
Appendix.)

The loader will accept an alternate SYSLIB DCB if the alternate
SYSLIB DCB describes a data set that has been opened. The
loader also saves the address of this DCB and sets an indicator
for an open library data set in INITMAIN.

14 MVS/XA Loader Logic ‘ ® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

INITIALIZING VIRTUAL STORAGE

READYING DATA SETS

(B) Using the GETMAIN macro instruction, the loader obtains the
required below-the-line storage from the supervisor. The
request is conditional and variable. The maximum amount
requested is for that specified by the SIZE option; the minimum
is 2K bytes. If the supervisor does not return storage, the
loader then issues an unconditional GETMAIN request for the
minimum amount. If at least 2K bytes of storage is still
unavailable, an 804 or 80A system abend occurs.

If the supervisor returns virtual storage space, the loader
establishes its permanent communication area. (The
communication area is described in "Data Areas"™ on page 83.)
The loader then moves the information stored in INITMAIN to the
communication area.

If a user option specified an RMODE value of ANY, the loader
obtains the required above-the-line storage from the supervisor
using the GETMAIN macro instruction. The request is conditional
and variable. The minimum and maximum values are the same as
those used in obtaining below-the-line storage. If the
supervisor does not return storage, loading takes place in the
below-the-line storage already obtained. If the supervisor
returns virtual storage space, the loader initializes values in
the communication area required for above-the-line loading.

Save areas for use during loading are allocated and chained
backward and forward. Finally, the INITMAIN area is returned to
the system via a FREEMAIN macro instruction. The area is then
available for data management functions required for loading.

(C) The loader performs initialization required for use of its
data sets. If the TERM option was specified, space is reserved
for a SYSTERM DCB, two DECBs, and two buffers. Unless an
internal SYSLIN data set was passed to the loader, a SYSLIN DCB
must be prepared and opened. Similarly, unless the NOPRINT
option was specified, a SYSLOUT DCB must be prepared and opened.

DCBs for the data sets are constructed using a model DCB
contained in the loader. The ddnames and basic attributes are
placeg into the constructed DCBs before the data sets are
opened.

During opening, other data set attributes are checked. These
include record format, record and block sizes, and the number of
buffers to be allocated for the data set. If record and block
sizes are not defined, the loader uses the following defaults:

. For SYSLIN, both values are set to 80.

o For SYSLOUT, both values are normally set to 121. However,
if the loader is operating in time-sharing mode, the record
length of the SYSLOUT data set is set to 81 so output can be
easily directed to a terminal.

Because the loader allocates buffers for its data sets, it does
not require the buffer allocation supplied by the Open routine.
The loader indicates this by setting the DCBBUFNO field in the
DCB to zero. The value that was found in the DCBBUFNO field is
stored in DCBNCP.

The loader determines whether the data sets opened successfully.
If SYSLOUT is open, the loader allocates the number of buffers
and DECBs specified in the DCBNCP field in the DCB, and sets a
flag indicating that the SYSLOUT data set is usable. The
diagnostic output page heading is set up and printed. The
loader then constructs, in the SYSLOUT buffer, a list of the
options used, the amount of virtual storage received for loader
processing, and the entry point and program names, if specified.
After printing this list, the loader prints out any invalid

© Copyright IBM Corp. 1972, 1987 Method of Operation 15

Restricted Materials of IBM
Licensed Materials — Property of IBM

options received and any errors encountered during the opening
procedure. Finally, if the MAP option was chosen, the MAP
heading is constructed and printed.

If the opening of SYSLOUT was not successful, the MAP option

indicator is set to OFF and storage allocated for the data set's
DCB is released.

Next, the loader determines whether the SYSLIN data set opened
successfully. If an error occurred during opening of SYSLIN,
loading terminates. If SYSLIN opened properly, the loader sets
the "unlike attributes™ indicator in the DCB to signify that
SYSLIN may consist of a concatenation of data sets with unlike
record formats. The buffers for the first input module are then
allocated as described under "Buffer Allocation™ on page 17.

Redrive

If the loader encounters a control section having an RMODE of 24
while loading a program above the line (because the first
control section encounted had an RMODE of ANY), the loader will
abandon the above-the-line loading. The loader then releases
the above-the-line storage obtained, and closes and reopens the
SYSLIN data set. Finally, the loader reinitializes the
communication area for below-the-line loading and restarts the
loading process. An error message is issued indicating that
this second attempt at loading was made.

INPUT CONTROL_AND BUFFER ALILOCATION

To read input, the loader determines whether the current input
consists of object or load modules, and whether it resides on an
external device or in virtual storage. This is indicated by
indicators (CMFLAG3) in the communication area as well as by the
record format of the DCB. (The format is undefined [U] for load
modules, fixed [F)] for either object modules on an external
device or internal object modules, and variable [V] for internal
object modules.) If the input data set resides on an external
device, buffers are allocated and primed.

If the input data set is an internal data area consisting of
internal object modules, no allocation or priming of buffers
occurs and the data area itself is considered one buffer.

In any case, the records are read and processed until the end of
the current data set is recognized, either through the
end-of-concatenation or end-of-file condition for a data set
residing on an external device, or through the end-of-buffer
condition for an internal data area.?” (No check for the END
card or EOM indication is made during the reading procedure; the
end condition is only recognized when the record is processed.)
When it reaches the end of the current input, the loader checks
for additional SYSLIN input.8

Another data set in SYSLIN is indicated unless both the
end-of-file and end-of-concatenation switches are set to ON.
When the loader opens a new data set in SYSLIN input, the loader
determines the new attributes by using the same procedures as

thgse used during loader initialization for the first input data
set.

7 The end-of-buffer condition signifies both end-of-file and
end-of-concatenation conditions for an internal data area.

The end-of-concatenation switch is set during the data set
opening if another data set is concatenated to the current
one. If there is no other SYSLIN input, the
end-of-concatenation and end-of-file switches are both set
to ON. They are tested at the end of each module.

16 MVS/XA Loader Logic ® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

BUFFER MANAGEMENT (HEWBUFFR)

Buffer Deallocation

Buffer Allocation

In general, the loader allocates storage individually for DECBs
and buffers. Thus, for a single data set, buffer allocation
actually consists of several separate allocations. These
allocations are made from contiguous storage whenever feasible.
All allocations are made from the highest available address in
loader processing storage. When no longer needed, allocated
space is made available for use by subsequent modules.

If both the current and previous inputs consist of load modules,
the loader uses the same buffer and DECBs. This is possible
because the buffer-DECB requirement for load modules is
constant. Figure 7 on page 18 illustrates the buffers and DECBs
required for reading load modules. If either the current or the
previous data set consists of object modules, the loader frees
(deallocates) the storage used for the previous buffer-DECB
allocation.

A pointer to the first freed area is maintained at CMFRECOR.
(See Figure 8 on page 19.) The first four (4) bytes of each
freed area are used to store a pointer to the next freed area in
the chain. The second four (4) bytes give the size of the
current area. (The size is always rounded to doubleword value.)
See Figure 8 for an illustration of freed area chaining.

Before chaining an area deallocated from a DECB or a buffer, the
loader checks the area's location against the pointers of the
other areas in the chain for contiguity. Contiguous freed areas
are combined under a single pointer. For example, in Figure 8,
Freed Area 1 could consist of areas from three separate
deallocations: One from each DECB and one for the buffer.

After freeing any previously used buffers, the loader allocates
DECBs and buffers for the current input module. For object
module input, a DECB is allocated and cleared, and the address
of the DCB is stored in it. Then, the related buffer is
allocated and its address stored in the DECB. (The size of the
buffer is obtained from DECBBLKSI and the number from DCBNCP,
where the value from DCBBUFNO was stored.) The allocation
procedure repeats until the specified number of buffers has been
allocated. However, after the first time, each DECB is chained
to the one before. The last DECB is chained to the first. (See
Figure 9 on page 20 for an illustration of an allocation for
object module input.) The loader also sets a pointer to the
DECB chain in the communication area at CMRDECPT, sets the 1/0
flags to indicate object module input, and saves the buffer size
in the communication area for later deallocation.

For load module input, the loader allocates the required two
DECBs, clears them, chains them together, and stores the address
of the DCB in them. The required buffer, called the RLD buffer,
is then allocated and its address stored in the first DECB. The
loader stores a pointer to this buffer in the communication area
at CMGETREC, and a pointer to the first DECB in CMRDECPT. (No
buffer is allocated for load module text). In below-the-line
loading, the loader reads load module text directly into the
loaded program's storage area. In above-the-line loading, the
loader reads load module text into the load module text buffer
located in below-the-line storage, and moves the text into the
loaded program's storage area above the line. The RLD buffer
size is stored in the DECB, and finally the I/0 flags are set to
indicate load module input.

In allocating buffers and DECBs for load or object module input,
the loader attempts to reuse any storage freed from previous
allocations. The loader examines each entry in the freed area

® Copyright IBM Corp. 1972, 1987 Method of Operation 17

Restricted Materials of IBM
Licensed Materials = Property of IBM

CMRDCBPT

Input DCB

CMRDECPT CMGETREC
\
Control and RLD record DECB (
¥
S~o | 236 O
= ~ 4 ——-DECDCBAD o °
°
DECAREA @ o o |® Control and RLD 256
record buffer bytes
\ DECDECPT\
\
\
\\ Text record DECB
\

~ — —~ DECDCBAD

[~——— DECDECPT

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
pointers in the communications area (HEWLDCOM,.

Figure 7.

Load Module Storage Allocation for Buffer and DECBs

chain to determine whether the related storage is sufficient for
the current DECB or buffer.

If the area is too small, the next entry is tested. If the size
of an area equals the required size (rounded to doubleword
value), the loader unchains the area and constructs the buffer
or the DECB. If the size of the freed area is greater than that
of the required area, the chain pointer for that area is updated
to show the size and location of the remainder.

If no area in the chain is adequate for the current buffer or
DECB, the loader makes the allocation from its processing
storage not previously allocated (prime storage). If this
allocation requires an area so large that it would exhaust the
table and buffer area, the loading process terminates and sends
a prigtgd message to indicate that available storage was
exceeded.

READING OBJECT MODULE INPUT FROM AN EXTERNAL DEVICE

Because of the fixed format of object module records, the loader
can initiate the reading of physical sequential blocks before
they are actually needed for processing. To accomplish this,
the loader primes the buffers after allocating them for object
modules. Priming consists of initiating READ macro instructions
for all buffers except one. MWhen the loader requires the first
record for processing, a READ macro instruction is issued for
the unfilled buffer, and a CHECK macro instruction is issued for
the first primed buffer.

At the beginning of processing for a module, the DECB pointer
(CMRDECPT) specifies the DECB associated with the first primed
buffer (see Figure 9.) The pointer to the current logical
record also specifies the beginning of that buffer. As each
record is processed, the loader updates the logical record

18 MVS/XA Loader Logic ® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

High Address
Communications Area (HEWLDCOM)
CMFRECOR
2304
Freed Area 1
Note:
304 304 is the size of
2000+~ Area 1,
240 is the size of
Area 2,
1240
Freed Arec 2
240
1000
= &
Low Address

Loader Processing Storage

Figure 8. Freed Areas from Buffer-DECB Allocation

pointer to the next record. MWhen all records in the buffer have
been processed, the loader updates the DECB pointer to the one
for the next filled buffer, and issues a READ macro instruction
for the completed buffer. The procedure repeats until the end
of the module is recognized.

READING INTERNAL OBJECT MODULE INPUT

Record formats for internal object modules prepared by a
compiler may be of fixed or variable type. After initialization
of the data area containing the internal object module records,
the pointer to the current logical record points to the
beginning of the data area. As each new logical record is
requested, the loader updates the pointer to the next record in
the data area, using the DCBRECFM field in the SYSLIN control
block to determine whether fixed- or variable-length records are
being processed. The end of the module is recognized when the
length of the processed records equals the length specified in
the DCBBLKSI field. At this time, the end-of-file and
end-of-concatenation switches are set to ON.

©® Copyright IBM Corp. 1972, 1987 Method of Operation 19

Restricted Materials of IBM
Licensed Materials = Property of IBM

CMRDCBPT CMRDECPT CMGETREC
I | /
\ DECB 1 Buffer 1
-] Record 1
[320 y
emm T R T T~~~ DECDCBAD Record 2
-
sl Y DECAREAeweas
- \\ DECAREA Record 3
/ ?\
'\ DECDECPT o Record 4
\
1\
| \ DECB 2 Buffer 2
\
|
\ _> Record |
Input DCB I N [320 -
: ~~F -pecpceadp etc.
| DECAREA wee-- 8
|
\ DECDECPT \
\\
\ DECB 3 Buffer 3
\
N\ 4
\\ 320 /’ T
~ /7
DECDCBAD p 320
DECAREA-=~=1-7 bytes
—0DECDECPT l
Note: CMRDCBPT, CMRDECPT, and CMGETREC are ¢80 bytes—»
located in HEWLDCOM . CMRDECPT points to
the DECB/buffer being processed. CMGETREC
points to the logical record being processed.
Figure 9. Storage Allocation of Buffers and DECBs for Object Module Input
READING LOAD MODULE INPUT
For load modules, the record format type is undefined, but the
order in which record types may be processed is limited. For

20 MVS/XA Loader Logic

example, control records are required before the related text
record can be read. All nontext records of load modules read
into the same buffer. This buffer, the RLD buffer, has the same
length as the maximum length of nontext records processed by the
loader (256 bytes).

In below-the-line loading the loader allocates a DECB for
reading load module text, but does not allocate a buffer because
the text is read directly into the loaded program's assigned
area. In above-the-line loading the loader allocates both a
DECB for reading load module text, and a load module text
buffer, into which all the text is read before being moved to
the loaded program's assigned area. The loader determines the
address that receives the text during module processing. At the
time a text record is read, the following record is also read
because it is always nontext.

® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of IBM

OCESSING

After determining the current record type, the loader performs
one of the following types of processing for the primary input
(object and/or load modules from the SYSLIN data set):

U External symbol dictionary (ESD) processing

. Text record processing

. Relocation dictionary (RLD) processing

[Address constant relocation processing

] End processing (including end of module and END card)

U MOD record processing.

If an invalid record type is encountered, a diagnostic message

is issued.

In addition, if an internal input data area is being

processed, the end-of-concatenation and end-of-file switches are
set to ON so that no further input will process.

Figure 10 shows processing differences for object and load

modules
shown in "Diagram Dl.
in "Diagram D2.

Input module processing for object and load modules is
Object Module Processing" on page 60, and
Load Module Processing"™ on page 61.

Type of .

Processing | Object Module Load Module

ESD 1. Input is an ESD record. 1. Input is a CESD record.

2. The loader performs preliminary 2. The loader performs
processing for NULL, PC, and LD preliminary processing for
entries. SD, LR, PC, and HULL

entries.

Text The loader processes text from the After processing the entire
object module buffer one ID at a ID/length list, the loader reads
time. load module text directly into

the loaded program's storage
area. (below-the-line loading),
or into the load module text
buffer (above-the-line loading).

RLD No difference. No difference.

Relocation No difference. No difference.

End The loader processes the END state- The loader performs
ment for each CSECT, and performs end-of-module processing.
end-of-module processing.

MOD The loader determines the origin of Not processed.

(internal the compiler-loaded text for the

object module and equates this address

modules with what would normally be the

only) loader-assigned address.

Figure 10. Object and Load Module Processing Differences

©® Copyright IBM Corp. 1972,

Load module record types consist of composite ESD, control, RLD,

control/RLD, text, SYM, IDR and scatter/translation.

loader recognizes a SYM, IDR,

When the

or scatter/translation record, it

simply ignores that record and requests another control record.
Descriptions follow for those load module records that the

loader dges process.
formats in "Appendix.

1987

(For detailed descriptions, see the record
Error Messages, Etc."™ on page 102.)

Method of Operation 21

Restricted Materials of IEM
Licensed Materials = Property of IBM

. CESD: Each record contains no more than 15 ESD entries.?
The first 8 bytes give the following control information for
the entries in that record: (1) the ESD ID of the first
entry, (2) the number of bytes occupied by the entries, and
(3) an indication of whether the CESD entries contain
overlay segment numbers, or AMODE and RMODE data.

. Control: These records give control information about the
module text on the following text record. They contain the
related ESD IDs and the lengths of each control section in
the following text record, and an indication of EOM, when
pertinent. Control records also contain a channel command
word (CCHW), the linkage editor-assigned relative address,
and the total length of the text record. The loader uses
this information to read the text.

. Text: These records contain the control sections with the
module instructions and data. A text record can contain a
maximum of 60 control sections.

. RLD: These records contain the RLD entries used to relocate
address constants in the preceding text. MWhen the text
contains a large number of relocatable symbols, the related
RLD entries may require several records.

. Control/RLD: These records combine a control and an RLD
record into one physical block. They contain RLD entries
related to a previous text record, and the control
information for the following text record.

The object module records ESD, RLD, TXT and END, contain
information similar to that described above. In addition, an
internal object module can contain the MOD record. This record
contains control information about the text of the module which
has already been loaded by a compiler or other text-generating
processor. The control information contains the virtual storage
address of the text, the address of the byte following the
estimated or actual end of the text, and optional extent
information. If a MOD record appears as the first record of an
internal object module, all following text records are ignored
until an END statement processes.

EXTERNAL SYMBOL DICTIONARY (ESD) PROCESSING (HEWLESD)

The loader processes records from the input record External
Symbol Dictionary (ESD) to resolve symbols used in internal and
external addressing. Resolution ensures that each named
locztiogoin the text for the loaded program has a unique
symbol.

To resolve symbols the loader builds a composite ESD (CESD) from
individual ESDs and CESDs in the input. The loader creates CESD
entries as required during processing of input entries. See
"Dit? Areas" on page 83 for detailed descriptions of CESD
entries.

Because of the outcome of ESD processing, the loader CESD
contains only one entry for each uniquely named text location,
regardless of the number of input ESD entries containing the.
symbol for that location.!! For a single module, the loader
records multiple ESD entries for a symbol in the translation

° The loader can accept a maximum of 1024 ESD entries per
input module.

10 Names for areas of private code or for external dummy
section displacements need not be unique, because they are
treated in a special way. These are defined by PC and PR
entries, respectively.

11 The only exception involves control sections with identical

22 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

table.!'2 Each entry in the translation table corresponds to one
input ESD entry for a symbol, and contains a pointer to the CESD
entry for the symbol.

A translation table entry occupies the same position in the
table as the identifying number (ESD ID) of the associated ESD
entry. For example, if an input ESD entry has an ESD ID of
three, its corresponding entry is the third one in the
translation table. Using this relationship, the loader converts
input ESD IDs via the translation table into the appropriate
CESD address.

The loader's ESD processing depends on the function of each
input entry. The function of an entry is identified by the type
indication in the entry. Figure 1l gives the function specified
by each type. The table also indicates whether a particular
type can occur in object and/or load module external symbol
dictionaries.

When the loader creates a CESD entry it chains it to others with
the same type indication. Then, in processing each new input
entry, the loader determines by searching the chains, whether a
CESD entry with the associated symbol already exists. (The
loader only searches for types related to the current input
entry's type.) In certain cases, special preliminary processing
is performed to delay or to bypass the CESD search.

CESD processing is shown in "Diagram D3. ESD Record Processing
(Generalized)" on page 62 through "Diagram D6. Example of ESD 1D
Translation”™ on page 65.

marked "delete™

Type Function Occurrence Comments
SD (section Defines the Object & load —
definition) beginning of a named
CSECT.
PC (private code) Defines the Object & load —_
beginning of an
unnamed CSECT.
PC (private code) Defines the Load only The delete

indication means
that the associated
text and RLDs are to
be deleted.

beginning of an
unnamed CSECT not to
be included in the
loaded program. For
example, a SEGTAB
created by the
linkage editor.

LD (label
definition)

Defines a label by
giving its location
relative to the
beginning of the
CSECT containing the
label.

The defined label
cannot be referenced
directly because the
LD entry has no ESD
ID. The loader
changes the type to
LR in the CESD
entry.

Object only

Figure 11 (Part 1 of 2).

® Copyright IBM Corp.

ESD Entry Types and Functions

names. In this case,

two entries, one of which is flagged
"delete,"™ are kept in

the CESD.

12 The loader clears the

translation table after processing
each module.

1972, 1987 Method of Operation 23

Restricted Materials of IBM
Licensed Materials - Property of IBM

Type Function Occurrence Comments
LR (label Defines a label by Load only An LR entry contains
reference) giving its location an ESD ID and can,

relative to the therefore, be
beginning of the referenced by an RLD
CSECT containing the entry.

label.

ER (external
reference)

Refers to a symbol
not defined in the
same module
containing the
reference.

Object & load

CM (common)

Defines a common
area whose virtual
storage address is
assigned during

Object & load The area may be
named or unnamed. An
unnamed area is

called "blank

loading. common .
PR (pseudo Defines a Object & load The external DSECT
register) displacement within defines the area
an external dummy obtained by the
section. loaded program via a
GETMAIN macro
instruction.
NULL Indicates that the Object & load Only one entry for

entry is to be
ignored.

NULL is made in the
loader's CESD.

WX (weak external
reference)

Object & load The loader processes
a WX entry as an ER
entry with a "weak

call®" flag.

Defines an external
reference that is
not to be resolved
by automatic library
call.

Figure 11 (Part 2 of 2).

ESD Entry Types and Functions

Preliminary ESD Processing

26 MVS/XA Loader Logic

When the loader processes load modules it does not necessarily
receive CESD entries in the same order as the linkage editor
assigned the relative addresses. Therefore, it processes no
entries for symbols that define module text locations until all
entries for the module have been received.

The loader delays the processing by placing, on a temporary
chain, the CESD entries it constructs for the SD, LR, and PC
(not marked "delete") entries. Before chaining an entry the
loader places its ID and segment number in the CESD entry.
entries are chained in the order of their linkage
editor-assigned addresses.

The

Besides performing preliminary processing for load module
location definitions, the loader also determines whether an
input entry type is NULL, PC, LD, LR, or WX. These entries (in
both object and load modules), are handled as follows:

NULL
The loader does not perform a CESD search for NULL entries,
because these entries have no effect on ESD resolution.
When the first NULL entry for a module is recognized, a
CESD entry is created. This CESD entry is cleared and
marked "delete." (See the CESD entry description in "Data
Areas" on page 83.) The loader places a pointer to the
entry in the communication area (CMNULCHN) and makes a
translation table entry. (See "Making a Translation Table

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials ~ Property of IBM

CESD Searching

Entry" on page 32.) For all following NULL entries,
processing consists only of making a translation table
entry that refers to the CESD entry pointed to by CMNULCHN.

PC
The loader does not perform a CESD search for PC entries
because it treats them as unique. For each PC entry the
loader creates a CESD entry. Processing continues as
described under "No-Match Processing”™ for SD entries.

PC "delete"
ESleoader treats PC entries that are marked "delete" as
s.

LD and LR
LD and LR entries depend on their related section
definitions (SDs). Therefore, before performing the CESD
search, the loader inserts the CESD entry address for the
SD in the LD or LR entry. The address is obtained by
translating the SD ID contained in the LD or LR.

If the input contains an object module, it is possible
(through physical rearrangement of an object deck) to
receive an LD before the related SD. The SD's CESD entry
address cannot be placed in the LD until the SD's entry is
created. Whenever this occurs, the LD is placed on a
temporary LD chain. At the end of each input ESD record,
the temporary LD chain is processed to determine whether a
required SD was received. When the SD associated with an
LD has been received, its CESD entry address is placed into
thebL?. The loader then searches the CESD for a matching
symbol.

WX
The loader treats WX entries as ER entries that are marked
"weak call." The "“weak-call"™ flag, like the "never-call™
flag, specifies those external references that are not to
be resolved by automatic library call. However, the
following difference arises in match processing: If a WX
entry matches an ER entry in the CESD, the "weak-call"™ flag
is set to OFF. If an ER entry with a "never-call" flag
gatches an ER entry in the CESD, the flag is left set to

In general, an input ESD entry requires resolution processing.
The loader does this by searching the CESD for a matching
$Kmbol. To direct the search, the loader uses two tables.

ese are:

° HIERTBLE, which specifies which CESD chains to search for a
particular entry type, and the order in which the chains are
to be searched

. CMTYPCHN, which contains the address of the first entry in
each CESD chain

Figure 12 on page 26 shows the relationship between the two
tables.

The loader determines the tvype of an input ESD entry and begins
to search the first chain specified by HIERTBLE. (If the type
is LD, the loader performs the search as if it were an LR.) The
symbol from the input entry is compared to the symbol in each
chained entry. If no matching symbol is found and end of chain
is recognized, the next chain specified by HIERTBLE is
searched.'3 If no matching symbol is found in any of the
appropriate chains, a CESD entry for the symbol is created and
chained. A translation table entry is also made, if
appropriate. (See "No-Match Processing"™ on page 26.) If a

® Copyright IBM Corp. 1972, 1987 Method of Operation 25

Restricted Materials of IBM
Licensed Materials — Property of IBM

matching symbol is found, symbol resolution occurs. (See "Match
Processing” on page 34.)

Input ESD
Entry Type

!

LD

ER

LR

PC

CcM

PR

NULL

~

Order of Type Chain

Search

Figure 12.

HIERTBLE CMTYPCHN

2 0

5 3 SD LD ER LR PC CM PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain

Address | Address | Address | Address | Address | Address | Address | Address

0 1 2 3 4 5 6 7
0 2 3 5
Noles:

2 3 0 5 .

The HIERTBLE entries identiiy by number the CMTYPCHN entries.

For example. zero (0) in the HIERTBLE refers to the SD chain address in CMTYPCHN.

When more than one type chain can be searched for a symbol,
5) the order 1s specified by HIERTBLE. For example, if an input

0| 3 ESD entry 1s an SD. the HIERTBLE entry specifies that the ER, SD, CM,

and LR chains are to be searched in that order.

»
»

Tables Used in the CESD Search

No-Match Processing

26 MVS/XA Loader Logic

When it receives a symbol for the first time, the loader
performs processing that depends on the type of the input entry
for the symbol. This always includes construction of the CESD
entry, which differs by entry type. No-match processing also
includes construction of a translation table entry. HNo-match
processing does not trigger construction of a translation table
entry for LD entries.

If the user specified the MAP option the loader formats a map
entry for each symbol (except ERs). See Figure 68 on page 107
for an example of map output. The loader prints the map entries
on the SYSLOUT data set.

Figure 13 summarizes the processing performed for each input
entry type.

Translation
Input Entry CESD Table Map
Type Entry Entry Entry
SD X X X

Figure 13 (Part 1 of 2). No-Match Processing Required for Input
Entry Types

132 Whenever a new entry on a chain is examined, a pointer to
that entry is stored in the communication area (CMPREVPT).
Should the next entry on the chain be a match, the pointer
at CMPREVPT is used to update the chain.

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

Translation
Input Entry CESD Table Map
Type Entry Entry Entry
LD X X
LR X X X
ER X X
CM X X
PR X X

Figure 13 (Part 2 of 2). No-Match Processing Required for Input
Entry Types

Note: Because CM and PR entries are assigned addresses during
final processing, they are also mapped at that time.

MAKING A CESD ENTRY: For each input entry type, the loader
makes a CESD entry. A HWX entry type is treated as an ER input
entry type with a "weak-call" flag. The loader first obtains
the storage required for the entry (22 bytes). Whenever
possible, the loader uses storage previously allocated for CESD
entries that were later freed. (A CESD entry can be freed as a
result of preliminary ESD processing or resolution processing.)
The loader chains freed entries together. A pointer to the
chain resides in the communication area at CMESDCHN; the pointer
is updated as the freed entries are used.

If there are no freed CESD entries, the loader allocates storage
for the entry from the highest available processing storage.
(See Figure 14 on page 28, and Figure 15 on page 29.) If the
space required for the entry exceeds available storage, the
loading process terminates with an error message. 1In
below-the-line loading, the loader determines this by comparing
the pointer for the beginning of the loader's tables (CMLOWTBL)
with the overflow pointer for the highest address used for the
loaded program's text (CMLSTTXT). 1In above-the-line loading,
the loader compares the pointer for the beginning of the
loader's tables with the end address of the load module's text
buffer (TXTBUFND).

©® Copyright IBM Corp. 1972, 1987 Method of Operation 27

. Restricted Materials of IBM
Licensed Materials — Property of IBM

Below-the-Line-Storage

Communications area

n

DECBs and buffers for output

Initial DECBs and buffers for input

Additional buffers and DECBs for input

CMLOWTBL —>»

V\

l

Direction of table and buffer allocations

Direction of program growth

T

(HEWLDCOM)
Save areas =
Input DCB
Qutput DCB

_CMHITBL

High Address

CMNXTTXT —»

* Text already loaded for the current module \
CMMOfLNG {no "‘no-length" CSECTSs)

Text already in storage for the program being loaded

CMBEGADR >

Low Address

Return parameter list area

CMMAINPT

Notes: CMBEGADR
CMHITBL
CMLOWTBL
CMLSTTXT
CMMODLNG
CMNXTTXT
CMMAINPT

= Beginning address ot loaded program

= End address of Loader processing storage below the line

= Lowest address allocated for buffers and tables

= Highest address already used for the loaded program’s text

= Length of text already loaded for the current module. not including ““no-length™ CSECTs
= Lowest address used for the current module

= Beginning address of ioaded program space

Figure 14. Storage Allocation (Below-the-Line-Loading)

28 MVS/XA L

oader Logic

® Copyright IBM Corp. 1972,

1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

Above-the-Line Storage

High Address

_—/”'\

Direction of program growth

!

Text olready loaded for the current module
CMMODLNG ¢ ino - length** CSECTs) X | CMLSTIXT

CMNXTTXT — f— — — —_—————n— - - — — — ——— — —]

Text alrecdy in storage for the program being loaded

CMBEGADR >
Return parameter list area

CMMAINPT o
Low Address

Below-the-Line Storage CMHITBL

High Address
Communications area
(HEWLDCOM)

i

Save areas =

Input DCB
Output DCB

DECBs and buffers for output

Initiol DECBs and buffers for input

Additional buffers and DECBs for input

CMLOWTBL —>

!

Direction of table and buffer allocations

\‘—_/"'—_\

TXTBUFND L

Load module text buffer

TXTBUFST ——p

Notes: TXTBUFST = Beginning of load module text butfer
TXTBUFND = End address of load module text butfer

Figure 15. Storage Allocation (Above-the-Line Loading)

© Copyright IBM Corp. 1972, 1987 Method of Operation 29

Restricted Materials of IBM
Licensed Materials — Property of IBM

After obtaining storage for the CESD entry, the loader stores
descriptive information in the entry. The specific kind of
information stored depends on the input entry type. Handling of
the various entry types is described below:

SD

30 MVS/XA Loader Logic

The loader moves the symbol from the input entry to the
CESD entry.

The loader determines whether an ESD item from a load
module contains a segment number or AMODE/RMODE data.
Segment numbers are ignored; AMODE/RMODE data is verified
and copied to the CESD entry. The loader treats ESD items
from an object module as having AMODE/RMODE data; that data
is verified and copied to the CESD entry.

The loader next determines whether the RMODE for the loaded
program was specified by a user option, or is to be taken
from the first CSECT loaded. If the RMODE was specified by
user option, then the obtaining of storage for the loaded
program (either above or below the line) and the
initialization of the communication area was already
appropriately done; allocation of following storage is
bypassed. However, if the RMODE is to be taken from the
first CSECT loaded, and if the current ESD item represents
the first CSECT loaded, and if the RMODE for that CSECT is
ANY, then the storage for the loaded program has not been
obtained and the communication area was not properly
initialized.

If the RMODE for the first CSECT loaded is 24, loading

occurs below the line in the storage already obtained and
according to the initialization of the communication area
already done; allocation of following storage is bypassed.

The loader obtains required above-the-line storage from the
supervisor module via the GETMAIN macro instruction. The
request is conditional and variable. The minimum and
maximum values are the same as those used in obtaining
below-the-line storage. If the supervisor module does not
return storage, loading occurs below the line in the
storage already obtained and according to the
initialization of the communication area already done. If
the supervisor module returns virtual storage space, the
loader initializes values in the communication area
required for above-the-line loading.

The loader then assigns an address to the defined CSECT by
adding the length of all previously defined CSECTs for this
module to the loader-assigned address of the first CSECT in
the module. (In the communication area, the length of all
previously defined CSECTs is found at location CMMODLNG.

If the CSECTS are passed through text records, the loader
assigned address of the first CSECT is found at CMNXTTXT.
If the CSECTS are pointed to by MOD records, the
loader-assigned address of the first CSECT is found at
location CMCOREl.) For CSECTs pointed to by MOD records,
the resulting address is stored in the CESD entry for the
SD, assigned by the loader as the address of the CSECT.

For CSECTs passed through text records, however, the
resulting address is compared to the overflow pointer—the
beginning address of the loader tables (CMLOWTBL) in
below-the-line loading, or the highest address of the
loaded program area (ATLHIADR) in above-the-line loading.
If there is no more unused storage, the loading process
terminates and sends an error message. Otherwise, the
resulting address is stored in the CESD entry for the SD as
the loader-assigned address of the CSECT.

Next, the loader clears the CESD flag field (except for the
entry's type indication), and computes the relocation
constant. The relocation constant is computed by
subtracting the input address (specified by the input SD

®© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials = Property of IBM

entry) from the loader-assigned address. The loader stores
the relocation constant in the CESD entry.

If loading is taking place above the line, the loader
verifies that each CSECT loaded (that is, added to the CESD
as a CSECT to be kept) has an RMODE of ANY. If a CSECT
having an RMODE of 24 is encountered, the loader indicates
that t?? redrive condition exists (see "Redrive" on

page 16).

If the option to specify the entry point name for the
loaded program was used, the loader determines whether the
SD with that name was already received. If not, the loader
compares the specified entry point name to the symbol for
the currently defined CSECT (the symbol in the CESD entry).
If the names are the same, the loader-assigned address is
stored as the entry point address in CMEPADDR.

For a specification of an SD entry, the loader determines
whether the CSECT length specified in the input entry
equals zero. If so, the loader sets the "no length"
indicators in the communication area and in the CESD entry
itself. If the length is positive, it is added to CMMODLNG
to calculate the next CSECT address. If the MAP indicator
is set to ON, the MAP entry is made for the SD.

Finally, the loader puts the CESD entry on the SD chain
pointed to in the CMTYPCHN table. Chaining consists of
storing the pointer to the last SD entry (found in
CMTYPCHN) in the current CESD entry's chain pointer. Then
the address of this entry becomes the current pointer in
CMTYPCHN. After chaining the entry, a translation table
entry is made.

LD or LR

CM

PR

© Copyright IBM Corp.

The loader processes input LD entries in the same manner as
it processes input LR entries. The_name from the input
entry is moved to the CESD entry Then the loader-assigned
address for the defined label is determined by adding the
relocation constant (found in the CESD entry for the
related SD) to the input address of the LD or LR entry. 1If
the instructions and data for the module have been passed
through text records, and if the loader-assigned address
exceeds available storage, the loading process terminates
and sends an error message. Otherwise, the address is
stored in the CESD entry.

The loader sets the type indication in the CESD entry to
LR. Finally, the relocation constant is computed. This
value equals the loader-assigned address minus the input
relative address. The relocation constant is also stored
in the CESD. If the related SD entry was marked "“delete,"
the loader makes an ER entry instead of an LR, and sets the
Ydelink™ flag in the entry to signify that all address
constants referring to it should be adjusted.

To make a CM entry, the loader uses two separately obtained
22-byte areas. The first area obtained is used as an
extension to the CM entry. In this portion, the loader
stores the length and the address assigned to the common
area in the input. Then the loader obtains the second
22-byte area and stores in it the name for the common area
and the entry's tvype indication. (This area is the one
pointed to by the translation table and the CM chain.) The
loader clears 3 bytes in the entry to be used as a pointer
to related ERs, and sets a pointer to the extended portion
ofdthe CM entry. Finally, a translation table entry is
made.

For a PR entry, the loader moves the information describing
the external DSECT from the input entry to the CESD entrvy.
The 3-byte field to be used as a pointer to the related

1972, 1987 Method of Operation 31

Restricted Materials of IBM
Licensed Materials — Property of IBM

RLDs is cleared, and the entry is chained to the other PR
entries. (PRs are chained in the order they were input.)
For a DSECT displacement definition, a translation table
entry is also required.

ER
For an ER entry, the loader moves the name and type from
the input entry to the CESD entry. If the input ER entry
is marked "never call," the loader sets the "never-call™
indicator in the CESD entry. If the input ER entry is
marked "weak call," the loader similarly sets the
"weak-call" indication. The loader then chains the ER
entry to the other ERs and makes a translation table entry.

MAKING A TRANSLATION TABLE ENTRY: The loader uses the
translation control table to direct building of the translation
table.}% The translation control table consists of 32 fullword
entries beginning at location CMTRCTRL in the communication
area. Each entry is a pointer to a possible 32-entry extent to
be allocated for the translation table. The loader allocates
th: extents as required, depending on the number of incoming ESD
entries.

The entries of one extent correspond to consecutive ESD IDs in a
single module. For example, the entries of the first extent
correspond to ESD IDs from 1 to 31. Those of the second extent
correspond to IDs 32 to 63, and so forth. (Because the initial
4 bytes are used for indexing purposes, the first extent
contains only 31 translation table entries.) Thus, the position
designated for creation of a particular translation table entry
depends on the ESD ID of the associated input entry.

Figure 16 shows an illustration of the translation control table
and the translation table.

To make a translation table entry, the loader first determines
whether the input ID is valid. (See "Diagram D6. Example of ESD
ID Translation" on page 65, reference (A).) If an ID is not
valid, an error message is printed and loading continues with
the next input ESD entry. (An ID is not valid if it is less
than one [1] or greater than 1023.)

If an ID is valid, the loader then determines, by examining the
translation control table, whether the extent for this ID has
been allocated. If not, the loader allocates an area for
thirty-two 4-byte entries, and stores the beginning address of
the area in the translation control table entry for this extent.
The area is allocated from the highest available storage in the
loader's table and buffer space. If not enough loader
processing storage remains to make the allocation, loading
terminates and sends an error message.

After the extent allocation completes, the loader clears the
extent. The loader then calculates the entry address in the
extent for this ID. The address of the CESD entry related to
the input entry ID is stored in the translation table entry.

If the CESD entry is an ER, the loader sets the high-order bit
of the first byte of the translation table entry to one (1).
(This setting indicates absolute relocation.)

Figure 17 on page 3% shows the overall relationship of tables
used in ESD processing.

14 For each input module, the loader reinitializes the
translation table.

32 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

CMTRCTRL

Y

1B

-~ o Extent # 1
0
32
TRANSLATION CONTROL TABLE
33
34
35
63
Extent ¥ 2

Figure 16. Translation Control Table and Translation Table

TRANSLATION
TABLE EXTENTS

© Copyright IBM Corp. 1972, 1987

Method of Operation

33

Restricted Materials of IBM
Licensed Materials = Property of IBM

Translation Control Table
(CMTRCTRL)

/ / { CESD Control Table
(CMTYPCHN)
SD LD ER LR PC cm PR NuLL
chain | chain =0 chain chain =0 choin =0 | chain =0 ch(‘ﬂn chain =0
o] o
1 64 CESD entry for last CESD entry for last
2 . i el SD recewed untesolved ER received
. [so] [| [e] Ao entry for last
32 PR received
: Lol | [[m=]
: . SO CESD entry ER CESD entry
3 : Lol T [Tso] Jol & T Ter]
Extent) . : e O PRed RLD ent
. 95 —~ "
63 Extent 3
Extent 2 RLD entry RLD entry
Three Extents of the CESD eatry for first
Translation Table PR received
Figure 17. Overall Relationship of Tables

Match Processing

34 MVS/XA Loader Logic

If the loader finds a match for an input symbol during the CESD
search, it then performs symbol resolution. Through resolution,
the loader ensures that each named location within the text of
the loaded program has a unique symbol.!5 Also, all references
to a named location are set to the correct loader-assigned
virtual storage address.

If two named locations have the same symbol, only one of them
can be retained for the loaded program. The loader determines
which to retain on the basis of ESD entry type. The general
rules used in symbol resolution follow.

If the entry already in the CESD has type:

SD, it is always retained.

LR, it is always retained.

CM, it is retained, except when the input type is SD.
ER, it is always changed to the input type.

15

This does not refer to PC AND PR names, which need not be

unique.

© Copyright IBM Corp. 1972, 1987

Restricted Materials of

IBM

Licensed Materials — Property of IBM

If two entries have both matching symbols and types that
indicate they should be retained, the loader retains the first
entry received.

Figure 18 gives a summary of symbol resolution.

Input Type CESD Type Result
SD ER SD
SD SD
CM SsD
LR LR
cM M CM
ER CM
SD SD
LR LR?
LD/LR ER LR
LR LR
SD SD2
CM CcM2
ER SD SD
ER ER
LR LR
CM CM

Figure 18. Symbol Resolution

Notes to Figure 18:

1

2

Match results in an error.

Match results in an error if the SD for the LD/LR is not
marked "delete.™

INPUT ENTRY TYPE IS SD:

CESD

CESD

® Copyright IBM Corp.

type is ER

The loader changes the ER entry in the CESD to an SD entry.
The entry is made as described under "No-Match Processing"
for an SD entry. This consists of:

. Chaining the entry to other SDs
. Updating the cumulative length of the loaded program

. Determining whether the ER entry is the loaded
program's entry point name

. Mapping the entry
J Making a translation table entry.

If RLDs were chained to the ER entry, they are relocated as
described under "Relocation Processing." Also, the loader
takes the SD entry off the ER chain, using the pointer to
the previous entry on the chain (CMPREVPT). If there are
no previous entries, the loader sets the ER entry in the
type chain table (CMTYPCHN) to 0.

type is SD

If the original SD is not flagged "delete,™ the loader
obtains space for another CESD entry and moves the name and
loader-assigned address of the original entry into the new
one. The relocation constant is then computed by
subtracting the input address from the loader-assigned
address. A "delete"™ indicator is set to show that text and
RLDs related to the current input SD should be deleted. 1If
the text for the CSECT was pointed to by a MOD record

1972, 1987 Method of Operation 35

CESD

CESD

Restricted Materials of IBM
ticensed Materials = Property of IBM

rather than passed through text records, the text cannot be
deleted and, thus, the cumulative module length (CMMODLNG)
is updated to include this CSECT. Finally, the entry is
chained to existing SD entries and a translation table
entry is made. If the original SD is flagged "delete," the
original entry is used.

type is CM

The loader changes the existing CM entry to an SD entry.
Because the extended portion of the CM entry is no longer
needed, the loader chains it to the freed CESD entries
(pointed to by CMESDCHN). First, however, the loader
obtains the length of the common area from the extended
portion. For the SD entry, the loader retains the one with
the greater length between the first length and the length
specified in the input SD. To change the CM entry to an SD
entry, the loader performs the same processing described
above for the SD-ER match.

type is LR

The loader sets the "delete" indicator in the CESD entry so
the text associated with the input SD will not be loaded.
The relocation constant is updated to reflect the
difference between the relative address in the input entry
and the loader-assigned address in the CESD entry. The
loader makes a translation table entry referring to the
existing LR entry in the CESD.

INPUT ENTRY TYPE IS CM:

CESD

CESD

CESD

CESD

type is CM

The loader determines the greater length between the
extended portion of the CESD entry and the length specified
in the input CM. This greater length is retained in the
CESD entry. The loader stores the new input address in the
extended portion of the CM entry. A translation table
entry is also made.

type is ER

To change an ER entry to a CM, the loader obtains a 22-byte
area for the extended portion and chains it to the existing
entry. The loader stores the type, address, and length
from the input entry in the extended portion of the CESD
entry. The CM type indicator is set, and the entry is
unchained from the ERs. The loader chains the entry to the
other CMs and makes a translation table entry.

type is SD

The relocation factor in the CESD entry is updated to
reflect the CM relative address, and a translation table
entry is made.

type is LR

The loader issues an error message for matching symbols
with conflicting types. Nevertheless, the relocation
constant is updated and a translation table entry is made
for both entries.

INPUT ENTRY TYPE IS LD OR LR: MWith one exception, LD and LR
entries are processed in the same way. The difference is that,
because an LD entry has no ESD ID, the loader does not make a
translation table entry for an LD.

CESD

36 MVS/XA Loader Logic

type is ER

The loader changes the ER entry to an LR entry. The loader
assigns a virtual storage address for the symbol by adding
the relocation constant from the related SD entry to the
relative address in the input LR entry. Next, the loader
calculates the relocation constant by subtracting the input
address from the loader-assigned address. Both the
relocation constant and the loader-assigned address are
stored in the LR entry in the CESD. Any RLDs that were
chained to the ER entry are relocated. The loader checks
the LR name for the user-specified entry point and makes a

® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

CESD

CESD

CESD

MAP entry, if mapping is required. Then, the loader takes
the CESD entry off the ER chain and chains it to the LR
chain. If the input entry was an LD entry, no translation
table entry is made. Otherwise, the loader makes a
translation table entry.

type is LR

If the SD entry pointed to by the LR entry is not marked
"delete,” the loader issues an error message for matching
symbols with conflicting types. In any case, the loader
updates the relocation constant in the existing CESD entry.
The loader makes a translation table entry referring to the
LR in the CESD if the input entry was an LR from a load
module. If not, a translation table entry is required.

type is SD
Processing is the same as that described above for an
LD/LR-LR match.

type is CM

The loader saves the input address in the extended portion
of the CM entry. The loader makes a translation table
entry only if the input entry was an LR from a load module.
If the SD pointed to by the LR entry is not marked
"delete," the loader issues an error message for matching
symbols with conflicting types.

INPUT ENTRY TYPE IS ER: Whenever the loader makes a translation
table entry for an input ER, it sets an indicator for later use.

(The indicator signifies during RLD processing that the
loader-assigned address is to be used for relocation of any RLDs
with this ID.)

CESD type is SD

CESD

CESD

CESD

The loader makes a translation table entry referring to the
SD entry.

type is ER

If the input ER is marked "never call,"™ the loader also
sets the "never-call" indicator in the CESD entry. If the
"delink" indicator is set to ON, the loader sets the
indicator set to OFF. In any case, a translation table
entry is made referring to the ER entry in the CESD. If
either ER is marked "weak call,®" the "weak-call" flag is
set to OFF. If both ERs are marked "weak call," the flag
remains set to ON.

type is LR
The loader makes a translation table entry referring to the
LR entry. :

type is CM

The loader sets the input address in the extended portion
of the CM entry to zero, and makes a translation table
entry referring to the CM entry.

INPUT ENTRY TYPE IS PR: A PR entry can only be matched to
another PR entry. When two of these definitions of external
DSECT displacements have matching symbols, the loader sets the
existing CESD entry to specify the greater of the two given
displacement lengths. The loader also determines the most
restrictive boundary alignment specified in the two PR entries.

(For

example, doubleword alignment is more restrictive than

fullword.) The PR entry in the CESD is changed, if necessary.,
to specify this alignment.

© Copyright IBM Corp. 1972, 1987 Method of Operation 37

i

Restricted Materials of IBM
Licensed Materials — Property of IBM

TEXT RECORD PROCESSING

Text record processing consists of loading those‘CSECTs required
for the loaded program into their assigned locations. The
loader determines whether a CSECT is to be retained or deleted
by examining the CESD entry for that CSECT's ID. The
translation table is used to obtain the CESD entry.

The way the loader processes text records depends on whether the
current input is an object or a load module. If the input is an
object module, the loader reads all the records for the module,
including text, into virtual-storage buffer areas and then
processes each record in turn. For load modules, the loader
uses the information in the text control records to process the
text before reading it into its assigned storage (below-the-line
%oaging; or into the load module text buffer (above-the-line
oading).

Processing Object Module Text (HEWLTXT)

When a text record is recognized during processing of an object
module, the ID contained in the record is translated into a CESD
entry address. The loader translates the ID by first ensuring
that the ID is valid, and then using the translation control
table to obtain the corresponding translation table entry.

The translation procedure is the same as the one used prior to
allocating a translation table extent. (See "Making a
Translation Table Entry" on page 32.)

In processing text, the loader considers an ID invalid if no
translation table entry exists for it. Thus, an ID between the
allowable limits of one (1) and 1023 is invalid if it was not
received during ESD processing. For any invalid ID, the loader
issues an error message and then tr1es to process the next
record. (Object module text processing is shown in "“Diagram D7.
Object Module Text Processing® on page 66.)

(A) If a translation table entry does exist for an ID, the
entry contains the address of the CESD entry for the related
text. The loader determines whether the CESD entry is marked
"delete.” If it is, the loader skips the text record and tries
to process the next record.

(B) If the CESD entry is not marked "delete,"™ the loader sets
an indicator to show that some text was received for this
module. If the "no length"™ indicator in the CESD entry was set
to ON, an indicator is set in the communication area to show
that text was received for a "no length"™ CSECT. The loader then
calculates the address for this text in the loaded program's
virtual-storage area. The address equals the displacement of
the text from the beginning of the input, added to the
relocation constant contained in the CESD entry.

(C) Next, the loader checks whether the text would exceed
available storage, by adding the length of the text to the
assigned virtual-storage address. The resulting end address for
the text is compared to the overflow pointer (the beginning
address of the loader tables [CMLOWTBL] in below-the-line
loading) or the highest address of the loaded program area
(ATLHIADR) in above-the-line loading. If the text would
overlap, loading terminates abnormally.

If there exists sufficient unused storage for the text, the
loader moves the text from the buffer area to the assigned
address in the loaded program's area. Finally, the loader
updates the pointer to the highest address used for the loaded
program's text (CMLSTTXT).

38 MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

Processing Preloaded Text (HEWLMOD)

If a SYSLIN data area consisting of internal object modules is
passed to the loader, one MOD record may be substituted for all
text records within a module. Upon encountering a MOD record,
the loader checks that an internal object module is being
processed, that no ESD records have been received for the
module, and that some control information is contained in the
MOD record. If any of these conditions is not met, the record
is ignored. Otherwise, indicators are set to show that a MOD
record and text have been received for the module. If the
origin of the first CSECT is specified, it is saved in the
communication area at location CMCOREl. Similarly, the address
of the byte following the estimated, or actual, end of the text
is saved at location CMCOREZ2.

Extent information used by the identification routine (HEWLIDEN)
is saved in chained entries pointed to by location CMXLCHN in
the communication area. These entries contain the address and
length of the extent, and a pointer to the next entry in the
chain. The number of extents is saved at location CMNUMXS in
the communication area. Later, the identification routine uses
these entries to build a parameter list for the IDENTIFY macro
instruction.

If the entry point of the program has not previously been
defined, the address of the first extent is saved as the default
entry point of the program.

Processing Load Module Text (LMTXT)

The loader uses the text control (or control/RLD) record to
process load module text. The control record contains an
ID/length list with an entry for each CSECT in the following
text record. By processing the IDs consecutively, the loader
determines which CSECTs from the record are to be retained as
part of the loaded program.

Load module text processing is shown in "Diagram D8. Load Module
Text Processing (Below-the-Line Loading)" on page 67, and in
"Diagram D9. Load Module Text Processing (Above-the Line
Loading)" on page 68.

PROCESSING THE ID/LENGTH LIST: The loader obtains each ID in
turn from the length list and attempts to translate each one
(via the translation control and translation tables) to a CESD
entry address. If the loader determines during translation that
an ID is invalid, the loader skips over the invalid record. If
there are more records in the module, the loader continues
processing the module.

If the translation of the ID is successful, the loader checks
for the "delete" flag in the CESD entry (obtained by the
translation process). If the entry is marked "delete," the
loader adds the length from the ID/length list entry to the sum
gfltzedlengths of any immediately preceding CSECTs to be

elete

The accumulated sum is used to truncate the text record when
CSECTs at the end of the record are to be deleted. Therefore,
only the sum of those consecutive CSECTs which are to be deleted
at the end of the record, is used. To accomplish this the
loader reinitializes the sum of these lengths to zero whenever a
following CSECT is to be retained. (CSECTs to be deleted can be
scattered throughout a text record.)

If the CESD entry for a text ID is not marked "delete," the
loader determines whether the current CSECT is the first one to
be retained from the text record. If it is, the loader saves
the relative relocation constant from the related CESD entry.
(After completely processing the ID/length list, the loader uses
this relocation constant to calculate the proper main storage
address for reading the text record.) After saving the

© Copyright IBM Corp. 1972, 1987 Method of Operation 39

Restricted Materials of IBM
Licensed Materials — Property of IBM

relocation constant, the loader sets an indicator to show that
at least one CSECT from this record is to be retained, and that
its relocation constant was saved. (Only one relocation
constant per control record is used, because the text record is
read in as a whole.)

Each time the loader recognizes a CSECT to be retained, it
updates the pointer to the last address used for text (CMLSTTXT)
E%Lg?gi?g the length of the CSECT to the previous value of

READING THE TEXT: After processing all IDs in the ID/length
list, the loader prepares to read the text into storage, either
directly into the load program's storage area in below-the-line
loading, or into the load module text buffer in above-the-line
loading. The loader:

. Adds the relocation constant and beginning delete length to
the CCH address from the text control record to obtain the
loadezia?signed address of the text. (See Figure 19 on
page .

U Obtains the actual read count by subtracting the sum of the
lengths of consecutive, deleted CSECTs at the end of the
text record from the text length in the control record.

. Adds the read count to the loader-assigned address to
determine whether sufficient unused storage remains for the
text. If not, an error message is issued and loading
terminates.

) Determines by examining the control record's type whether
the text record is the last record in the module.

If the record is not the last one, the loader determines whether
any CSECTs from the record are to be deleted. If not, the text
record and the following control record are read. (The control
record is read into the RLD buffer.)

If the text record is the last one in the module, or if any
CSECTs from the record are to be deleted, the loader reads in
only the text record. If an end-of-file occurs, the loader
terminates module-text processing and issues an error message;
then the loader goes to end-of-module processing.

CHECKING CSECT STORAGE ADDRESSES: If CSECTs to be deleted were
scattered among the CSECTs to be retained, the loader deletes
these scattered CSECTs after the text has been read either into
the loaded program's storage area in below-the-line loading, or
into the load module text buffer in above-the-line loading.

The loader ensures that each CSECT is in the location determined
during ESD processing. To do this, the loader again translates
each ID in the ID/length list to obtain the related CESD entry.

If a CESD entry for an ID is marked "delete," the loader
continues translating successive IDs until it finds one that is
not marked "delete." The loader determines whether the related
CSECT is in the correct place by comparing its current address
to the loader-assigned address found in the CESD entry. If the
text is correctly placed, the loader continues to translate IDs.

40 MVS/XA Loader Logic ® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

High Address

{

CSECT | CSECT CSECT
A 8 C

Input Text Record

CSECT C
CSECT B
Loader - Assigned CSECT A’
Address of —p-
CSECT C CSECT 8
S
Low Address coecT A
Loaded Progrom Text Storage
Note:

CSECT A' and CSECT B' are to be deleted.
The text read address is, therefore, the Loader-assigned address of CSECT C.

During later text processing, the Loader moves CSECT C to its proper location
over CSECT A' and CSECT B',

Figure 19.

Loading the Text from a Load Module Record

If a CSECT is in the wrong place, the CSECT is moved to the
loader-assigned address. Before checking the next ID in the
ID/length list, the loader updates the address of the current
CSECT with the length of the current CSECT in order to get the
current address of the next CSECT. When all CSECTs are in the
correct location, the loader continues processing the module
with the next record.

In above-the-line loading, the loader determines whether any
CSECTs that were read into the load module text buffer are to be
deleted. If not, the entire text record is moved into the
loaded program's storage area above the line.

Next, the loader determines whether a control record was read at
the same time as was the text record. If so, the loader
continues processing the module with that control record.
Otherwise, the end of the module has been reached, and the
loader goes to end-of-module processing.

RELOCATION DICTIONARY (RLD) PROCESSING (HEWLRLD)

Processing of relocation dictionary records consists of building
the loader's RLD table from information in the input RLD
records. RLD record processing is the same for object and load
module input. (Relocation of address constants is performed as
the RLD is encountered, unless the referenced CSECT is not in
virtual storage.)

® Copyright IBM Corp. 1972, 1987 Method of Operation 41

Restricted Materials of IBM
Licensed Materials — Property of IBM

RLD record processing is shown in "Diagram D10. RLD Record
Processing"™ on page 69.

To build the RLD table, the loader tests the R and P pointers of
the entries in an RLD record for validity.!¢ These pointers
consist of ESD IDs describing an address constant. The P
pointer gives the ESD ID of the control section containing the
address constant; the R pointer gives the ESD ID of the symbol
referred to by the address constant.

Because the pointers act as IDs, they are valid if translation
vields the address for the ID to a CESD entry. If an invalid ID
is received, the loader issues an error message and continues
RLD record processing by going to the next entry having
different R and P pointers.

The loader first translates the P pointer. If the CESD entry
for that ID is marked "delete,®" the loader skips all RLD entries

with the same R and P pointers. If the CESD entry is not marked
"delete," the loader checks the validity of the R pointer,
:nlefs the RLD entry is for a cumulative pseudo register (CXD
vype).

(A) After ensuring that the RLD pointers are valid, the loader
makes an RLD table entry for the input entry. (The loader uses
the storage from a freed RLD entry, if possible. Otherwise,
storage gor the entry is obtained from the highest available
storage.

The loader stores, in the RLD table entry, the loader-assigned
address of the address constant. The address is obtained by
adding the relocation constant from the CESD entry identified by
the P pointer to the value found in the address field of the
input RLD entry. (If the RLD is for a cumulative external DSECT
displacement, it is chained from location CMCXDPT in the loader
communication area; the next RLD entry is then processed.) The
loader moves the flag field from the input entry to the RLD
table. If the translation table entry indicates that the R
pointer refers to an ER entry, the loader sets an indicator in
the RLD table for absolute relocation.

After completing the RLD table entry, the loader determines
whether relocation is possible by determining the type of the
CESD entry. Processing for the CESD entry types is as follows:

s$Db, PC, LR
The loader clears the chain field of the RLD table entry
and relocates the address constant. (See "Relocating
Address Constants.%)

CM, ER created from LR
The loader delinks the RLD entry. That is, it subtracts
the input address of the CM or ER from the value in the
address constant. The RLD entry is then chained to the CM
or ER entry for later relocation after the loader-assigned
address is defined.

PR, ER
The RLD table entry is chained to the related CESD entry
when the address for the CESD symbol is assigned. (See
"Match Processing.")

(B) After processing an RLD entry, the loader continues
processing the entries in the RLD record until it reaches the
end of the record. If the R and P pointers for the next entry
are the same as for the current entry, the loader does not
recheck them for validity. Instead, the RLD table entry is made

16 RLD entries for address constants referring to a cumulative
pseudo register are only tested for a valid P pointer,
because the R pointer is always zero (CXD-type RLD).

62 MVS/XA Loader Logic ©® Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials — Property of IBM

directly. If the pointers for the next entry are different from
the current entry, the loader performs the validity check.

RELOCATING ADDRESS CONSTANTS (HEWLERTN)

Address constant relocation is the replacement of an address
constant in the text of the loaded program with the actual
virtual-storage address. Whenever possible, the loader
relocates address constants as it encounters their RLD entries.

The loader processes three types of relocatable address
constants:

. A-type constants, used to reference a location in the same
CSECT as the constant

o V-type constants, used to reference a location in a
different CSECT

* Q-type constants, used to reference a displacement in an
external dummy section.

In general, the virtual storage address equivalent of an address
constant is calculated