
Program Product

GC28-1151-4
File No. S370-36

MVS/Extended Architecture
System Programming .
Library: System Macros
and Facilities
Volume 2·

MVS/System Product:

J ES3 Version 2 5665-291
JES2 Version 2 5740-XC6

\
--.. -. .----- ----_-- ----- -.. -...... -- ---------_ ... ----- - " -

Fifth Edition (June, 1987)

This is a major revision of, and obsoletes, GC28-1151-3. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition, with Technical Newsletter GN28-1096, applies to Version 2 Release 2, and
all subsequent releases of MVS/System Product 5665-291 or 5740-XC6 until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication in connection with the operation of IBM
systems,consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that
are applicable and current.

References in this publication to IBM products or services do not state or imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product in this publication is not intended to state or imply that
only IBM's product may be used. Any functionally equivalent product may be used
instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

Preface

This two-volume publication describes supervisor and scheduler facilities that the system
programmer can use. In this publication, a system programmer is defined as a programmer
whose programs run in supervisor state, system key 0-7 or access APF -authorized libraries.
The publication includes the macro instructions and parameters used to obtain the functions.

Volume 1, GC28-1150, contains descriptions of the supervisor and scheduler services available
to a system programmer. Most of the services described are supervisor services; however, the
scheduler functions available through the use of the DYNALLOC macro instruction are also
described. Volume 1 includes a description of the DYNALLOC macro instruction. Some of
the topics discussed in Volume 1 are also discussed in Supervisor Services and Macro
Instructions; however in Volume 1, these topics are extended to include functions that are
restricted to system programmers or used primarily by system programmers.

Volume 2 contains the formats and descriptions of the supervisor macro instructions. Volume 2
provides system programmers with the information necessary to code the macro instructions.
Each macro instruction is completely described, in Volume 2, but restrictions, requirements, and
environmental considerations for the effective use of each macro is explained in Volume 1.

Publications referenced:

Assembler H Version 2 Application Programming: Language Reference, GC26-4037

MVSJExtended Architecture Debugging Handbook Volume 1, LC28-1164

MVSJExtended Architecture Debugging Handbook Volume 2, LC28-1165

MVSJExtended Architecture Debugging Handbook Volume 3, LC28-1166

MVSJExtended Architecture Debugging Handbook Volume 4, LC28-1167

MVSJExtended Architecture Debugging Handbook Volume 5, LC28-1168

MVSJExtended Architecture Interactive Problem Control System User's Guide and Reference,
GC28-1297

MVSJExtended Architecture Interactive Problem Control System Logic and Diagnosis,
GC28-1298

MVSJExtended Architecture Message Library: System Codes, GC28-1157

OS/VS2 Planning: Global Resource Serialization, GC28-1062

MVSJExtended Architecture Supervisor Services and Macro Instructions, GC28-1154

Preface 111

MVSjExtended Architecture System Logic Library Volume 12, LY28-1250

MVSjExtended Architecture System Programming Library: Initialization and Tuning,
GC28-1149

MVSjExtended Architecture System Programming Library: Service Aids, GC28-U59

System Programming Library: Resource Access Control Facility (RACF), SC28-1343

370-Extended Architecture: Principles of Operation, GA22-7085

Notes:

1. All references to RACF in thispublication indicate the program product Resource Access
Control Facility Version 1 Release 7 (5740-XXH).

2. All references to Assembler H in this publication indicate the program product Assembler H
Version 2 (5668-962). '

IV SPL: System Macros and Facilities Volume 2

Contents

Using the Supervisor Macro Instructions 2-1
Selecting the Macro Level 2-1
Addressing Mode and the Macro Instructions 2-2
Cross Memory Restrictions for Macro Instructions 2-4
Macro Instruction Forms 2-6
Coding the Macro Instructions 2-7

ATSET - Set Authorization Table 2-10

ATTACH - Create a New Task 2-12

ATTACH (List Form) 2-21

ATTACH (Execute Form) 2-24

AXEXT - Extract Authorization Index 2-27

AXFRE - Free Authorization Index 2-29

AXRES - Reserve Authorization Index 2-31

AXSET - Set Authorization Index 2-33

BLSABDPL - Map the Exit ParaD,leter List BLSABDPL 2-35

BLSQMDEF - Define a Control Block Format 2-39

BLSQMFLD - Specifying a Control Block Format Field 2-43

BLSQSHDR - Generate Model Subheader 2-53

BLSRESSY - Map IPCS Symbol Table Record 2-55

CALLDISP - Force Dispatcher Entry 2-56

CALLRTM - Call Recovery Termination Manager 2-59

CBPZDIAG - Build Diagnostic Stack Entry 2-62

CBPZLOG - Log an MVS Configuration Program Message 2-65

CBPZPPDS - Push/Pop Diagnostic Stack Entry 2-67

CHANGKEY - Change Virtual Storage Protection Key 2-69

Contents V

CIRB - Create Interruption Request Block 2-71
Branch Entry Interface 2-71

CPOOL - Perform Cell Pool Services 2-75

CPOOL (List Form) 2-81

CPOOL (Execute Form) 2-82

DATOFF - DAT-OFF Linkage. 2-83

DEQ - Release a Serially Reusable Resource 2-85

DEQ (List Form) 2-91

DEQ (Execute Form) 2-92

DOM - Delete Operator Message 2-94

DSGNL - Issue Direct Signal 2-98

DYNALLOC - Dynamic Allocation 2-101

ENQ - Request Control of a Serially Reusable Resource 2-102

ENQ (List Form) 2-110

ENQ (Execute Form) 2-112

ESPIE - Extended SPIE 2-114
SET Option 2-114
RESET Option 2-116
TEST Option 2-117

ESPIE (List Form) 2-119

ESPIE (Execute Form) 2-120

ESTAE - Specify Task Abnormal Exit Extended 2-122

ESTAE (List Form) 2-128

ESTAE (Execute Form) 2-129

ETCON - Connect Entry Table 2-131

ETCON (List Form) 2-133

ETCON (Execute Form) 2-134

ETCRE - Create Entry Table 2-135

ETDES - Destroy Entry Table 2-138

VI SPL: System Macros and Facilities Volume 2

ETDES (List Form) 2-140

ETDES (Execute Form) 2-141

ETDIS - Disconnect Entry Table 2-142

EVENTS - Wait for One or More Events to Complete 2-143

EXTRACT - Extract TCB Information 2-147

EXTRACT (List Form) 2-150

EXTRACT (Execute Form) 2-151

FESTAE - Fast Extended STAE 2-152

FREEMAIN - Free Virtual Storage 2-155

FREEMAIN (List Form) 2-160

FREEMAIN (Execute Form) 2-161

GETMAIN - Allocate Virtual Storage 2-162

GETMAIN (List Form) 2-169

GETMAIN (Execute Form) 2-170

GQSCAN - Extract Information From Global Resource Serialization Queue 2-171

GQSCAN (List Form) 2-176

GQSCAN (Execute Form) 2-178

IEFQMREQ - Invoke SW A Manager in Move Mode 2-180

INTSECT - Intersect With the Dispatcher 2-181

10SDDT - Device Descriptor Table Build Macro 2-183

10SDMLT - Module Lists Table Macro 2-186

10SINFO - Obtain Information From the Input/Output Supervisor (lOS) 2-188

10SLOOK - Locate Unit Control Block 2-191

LOAD - Bring a Load Module into Virtual Storage 2-193

LOAD (List Form) 2-197

LOAD (Execute Form) 2-198

LOCASCB - Locate ASCB 2-199

Contents Vll

LXFRE - Free a Linkage Index 2-200

LXFRE (List Form) 2-202

LXFRE (Execute Form) 2-203

LXRES - Reserve a Linkage Index 2-204

LXRES (List Form) 2-206

LXRES (Execute Form) 2-207

MGCR - Internal START or REPLY Command 2-208

MODESET - Change System Status 2-210
Inline Code Generation 2-211
SVC Generation 2-213

MODESET (List Form) 2-214

MODESET (Execute Form) 2-215

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 2-216

NUCLKUP - Nucleus Map Lookup Service 2-218

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction 2-220

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-222
STACK Option of PCLINK 2-222
UNSTACK Option of PC LINK 2-224
EXTRACT Option of PCLINK 2-227

PGANY - Page Anywhere 2-229

PGFIX - Fix Virtual Storage Contents 2-231

PGFIXA - Fix Virtual Storage Contents 2-234

PGFREE - Free Virtual Storage Contents 2-236

PGFREEA - Free Virtual Storage Contents 2-239

PGSER - Page Services 2-240

PGSER - Fast Path Page Services 2-247

POST - Signal Event Completion 2-250

POST (List Form) 2-254

POST (Execute Form) 2-255

Vl11 SPL: System Macros and Facilities Volume 2

PROTPSA - Disable, Enable Low Address Protection 2-256

PTRACE - Processor Trace 2-258

PURGEDQ - Purge SRB Activity 2-260

PURGEDQ (List Form) 2-262

PURGEDQ (Execute Form) 2-263

QEDIT - Command Input Buffer Manipulation 2-264

RACDEF - Define a Resource to RACF 2-266

RACDEF (List Form) 2-279

RACDEF (Execute Form) 2-281

RACHECK -Check RACF Authorization 2-284

RACHECK (List Form) 2-294

RACHECK (Execute Form) 2-296

RACINIT - Identify a RACF-Defined User 2-298

RACINIT (List Form) 2-306

RACINIT (Execute Form) 2-308

RACLIST - Build In-Storage Profiles 2-310

RACLIST (List Form) 2-315

RACLIST (Execute Form) 2-316

RACROUTE - MVS Router Interface 2-318

RACROUTE (List Form) 2-323

RACROUTE (Execute Form) 2-324

RACXTRT - RACF Extraction or Encryption 2-325

RACXTRT (List Form) 2-329

RACXTRT (Execute Form) 2-330

RESERVE - Reserve a Device (Shared DASD) 2-332

RESERVE (List Form) 2-337

RESERVE (Execute Form) 2-338

Contents IX

RESUME - Resume Execution of a Suspended Request Block 2-340

RISGNL - Issue Remote Immediate Signal 2-343

RPSGNL - Issue Remote Pendable Signal 2-345

SCHEDULE - Schedule System Services for Asynchronous Execution 2-347

SDUMP - Dump Virtual Storage 2-349

SDUMP (List Form) 2-364

SDUMJ;l (Execute Form) 2-366

SETFRR - Set Up Functional Recovery Routines 2-369

SETLOCK - Control Access to Serially Reusable Resources 2-373
OBTAIN Option 2-374
Release Option 2-379
TEST Option 2-383

SETRP - Set Return Parameters 2-387

SPIE - Specify Program Interruption Exit 2-395

SPIE (List Form) 2-397

SPIE (Execute Form) 2-398

SPLEVEL - Set and Test Macro Level 2-399

SPOST - Synchronize POST 2-401

SRBSTAT - Save, Restore, or Modify SRB Status 2-402

SRBTIMER - Establish Time Limit for System Service 2-404

STAE - Specify Task Abnormal Exit 2-406

STAE (List Form) 2-409

STAE (Execute Form) 2-410

STATUS - Change Subtask Status 2-412
SET jRESET Options 2-414

SUSPEND - Suspend Execution of a Request Block 2-416

SVCUPDTE - SVC Update 2-417

SVCUPDTE (List Form) 2-422

SVCUPDTE (Execute Form) 2-424

X SPL: System Macros and Facilities Volume 2

SW AREQ - Invoke SW A Manager in Locate Mode 2-425

SW AREQ (Execute Form) 2-427

SW AREQ (Modify Form) 2-428

SYMREC - Process Symptom Record 2-429

SYMREC (List Form) 2-430

SYMREC (Execute Form) 2-431

SYNCH - Take a Synchronous Exit to a Processing Program 2-432

SYNCH (List Form) 2-435

SYNCH (Execute Form) 2-436

SYSEVENT - System Event 2-438
SYSEVENT mnemonics 2-440

Notify SRM of Transaction Completion 2-440
Control Swapping 2-444
Obtain System Measurement Information 2-446

TCTL - Transfer Control from an SRB Process 2-449

TESTAUTH - Test Authorization of Caller 2-450

T6EXIT - Type 6 Exit 2-452

VRADAT A - Update Variable Recording Area Data 2-454

VSMLIST - List Virtual Storage Map 2-458

VSMLOC - Verify Virtual Storage Allocation 2-463

VSMREGN - Obtain Private Area Region Size 2-467

WTL - Write To Log 2-469

WTL (List Form) 2-472

WTL (Execute Form) 2-473

WTO - Write to Operator 2-474

WTO (List Form) 2-482

WTO (Execute Form) 2-485

WTOR - Write to Operator with Reply 2-487

WTOR (List Form) 2-494

Contents Xl

WTOR (Execute Form) 2-496

Index X-I

Xll SPL: System Macros and Facilities Volume 2

Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

Macro Level Selected at Execution Time 2-2
Sample Macro Instruction 2-7
Continuation Coding 2-9
Return Code Area Used by DEQ 2-89
Return Code Area Used by ENQ 2-107
IHAETD Mapping Macro 2-136
RACDEF Parameters for RELEASE = 1.6 and Later
Types of Profile Checking Performed by RACHECK
RACHECK Parameters for RELEASE = 1.6 and Later
RACINIT Parameters for RELEASE = 1.6 and Later
RACLIST Parameters for RELEASE = 1.6 and Later
RACXTRT Parameters for RELEASE = 1.6 and Later
Return Code Area Used by RESERVE 2-335
List of Storage Ranges Specified by LISTA 2-357
Characters Printed or Displayed on an MCS Console
MCSFLAG Fields (WTO) 2-478
MCSFLAG Fields (WTOR) 2-491

2-276
2-290

2-292
2-304
2-314

2-327

2-470

Figures XUI

XIV SPL: System Macros and Facilities Volume 2

Summary of Amendments

Summary of Amendments
for GC28-1151-4
MVS/System Product Version 2 Release 2

This major revision describes the new BLSQSHDR, IEFQMREQ, IOSDDT, IOSDMLT,
SWAREQ, and SYMREC macros, and changes in the BLSQMFLD, DOM, SDUMP, SETRP,
SVCUPDTE, VSMLOC, WTO, and WTOR, macros. It also describes changes that affect:

• The DATOFF index entry, INDCDS.
• The aspv and aSPL parameters of the A TT ACH macro.

Summary of Amendments
for GC28-1151-3
for the following:
- MVS/System Product Version 2

Release 1.3 Vector Facility Enhancement
- MVS/System Product Version 2

Release 1.3 Availability Enhancement
- RACF Version 1 Release 7

In support of MVS/System Product Version 2, Release 1.3 Vector Facility Enhancement, this
revision contains changes to the BLSQMFLD, CALLDISP, ESPIE, SNAP, and SPIE macro
instructions for the Vector Facility.

In support of both MVS/System Product Version 2 Release 1.3 Availability Enhancement and
MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement, this revision contains
changes to the CALLDISP macro instruction.

In support of RACF Version 1 Release 7, this revision contains changes to the RACDEF,
RACHECK, RACINIT, RACLIST, RACROUTE, and RACXTRT macro instructions.

This revision also contains minor technical and editorial updates.

Summary of Amendments
for GC28-1151-2
for MVS/System Product Version 2 Release 1.3

This revision documents the new IOSINFO macro in support of MVS/System Product Version
2, Release 1.3 and maintenance changes to numerous other macros.

Summary of Amendments XV

XVI SPL: System Macros and Facilities Volume 2

Using the Supervisor Macro Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. The users of most of the macro instructions described in this publication
must be in supervisor state or PSW key 0-7 or APF-authorized or PKM 0-7; that is, MVS
restricts their use. MVS does not restrict some of the macro instructions described in this
publication, but because of the functions of the macro instructions, the installation might want
to restrict them.

This volume describes those supervisor macro instructions that should be installation-controlled.
The supervisor macro instructions intended for the application programmer are described in
Supervisor Services and Macro Instructions. Some macro instructions are totally restricted in
use; others are not restricted in use, but do contain some restricted parameters. For each macro
instruction, any restrictions are described first, followed by the macro syntax and a complete
descri pti on.

The macro instructions are available only when programming in the assembler language, and
are processed by the assembler program using macro definitions supplied by IBM and placed
in the macro library when the system was generated. The processing of the macro instruction
by the assembler program results in a macro expansion, generally consisting of data and
executable instructions in the form of assembler language statements. The data fields are the
parameters to be passed to the requested control program routine. The executable instructions
generally consist of a branch around the data, instructions to load registers, and either a branch
instruction, a supervisor call (SVC), or a PC instruction to give control to the proper program.
The exact macro expansion appears as part of the assembler output listing.

Selecting the Macro Level

Certain MVS/XA macro expansions cannot execute on an MVS/370 system. These macros are
downward incompatible. Parameters that are new for MVS/XA are not supported by the
MVS/370 versions of the downward incompatible macros. In some cases the new parameters
are ignored, in other cases they cause assembly errors. The following macro instructions are the
downward incompatible macros described in this book:

• ATTACH
• ESTAE
• EVENTS
• FESTAE
• INTSECT
• SCHEDULE SCOPE = GLOBAL
• SDUMP
• SETLOCK RELEASE,TYPE=REGIALL
• WTOR

Using the Supervisor Macro Instructions 2-1

The SPLEVEL macro instruction solves the problems associated with downward incompatible
macros. The SPLEVEL macro instruction allows an installation to assemble programs using
the MVSjXA macro library and to select either the MVSj370 System Product Version 1 Release
3 or the MVSjXA expansion of the downward incompatible macros.

Before issuing a downward incompatible macro, assembler language users can specify the macro
level that they want. They do this by issuing the SPLEVEL macro using the SET = n option,
with n = 1 or 2. If n = 1, the MVSj370 System Product Version 1 Release 3 expansion of the
macro code is generated and if n = 2, the MVSjXA expansion of the macro code is generated.
If the user does not specify the value of n, the SPLEVEL routine uses the default value of 2.
See SPL: System Modifications for information concerning the way in which an installation can
set this default.

A user can also select the level of the macro at execution time, based on the system that is
operating. The example in Figure I shows one method of selecting the macro level at
execution time. The example uses the WTOR macro instruction, but any downward
incompatible macro instruction could be substituted. The code makes use of the fact that the
CVTMVSE bit in byte CVTDCB (located at offset 116 or X'74' of the communications vector
table (CVT)) is set to 1 when MVS System Product Version 2 is operating. The CVTMVSE
field of the CVT is defined in System Product Version 2.

*

*

*
SP2

DETERMINE WHICH SYSTEM IS EXECUTING
TM CVTDCB,CVTMVSE
BO SP2

INVOKE MVS/370 VERSION OF THE MACRO
SPLEVEL SET=l
WTOR
B CONTINUE

INVOKE MVS/XA VERSION OF THE MACRO
SPLEVEL SET=2
WTOR

* RESET TO SYSTEM DEFAULT
CONTINUE SPLEVEL SET

Figure 1. Macro Level Selected at Execution Time

Addressing Mode and the Macro Instructions

Callers in either 24-bit or 31-bit addressing mode can invoke most of the macros described in
this book. The following is a list of the macro instructions, documented in this book, that
require the caller to be executing in 24-bit addressing mode and require that the parameters be
located in 24-bit addressable storage:

RACDEF
RACHECK
RACINIT
RACLIST
SPIE
STAE

2-2 SPL: System Macros and Facilities Volume 2

Note: RACF services are also available through the RACROUTE macro, which can execute in
either 24-bit or 31-bit addressing mode.

In general, a program executing in 24-bit addressing mode cannot pass parameters located
above 16 megabytes in virtual storage to a system service. There are exceptions to this general
rule. For example, a program executing in 24-bit addressing mode can:

• Free storage above 16 megabytes using the FREEMAIN macro instruction

• Allocate storage above 16 megabytes using the GETMAIN macro instruction

• Perform cell pool services for cell pools located in storage above 16 megabytes using the
CPOOL macro instruction

• Perform page services for storage locations above 16 megabytes using the PGSER macro
instruction

See the descriptions of the individual macro instructions for details.

If a program is executing in 31-bit addressing mode, the addresses specified as parameters for
the macro instructions in this book can be located above or below the 16 megabytes line unless
otherwise stated. If a parameter passed by a program executing in 31-bit addressing mode must
be located below the 16 megabytes line in virtual storage, the restriction is stated in the
description of the parameter of the macro instruction.

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of the
following macro instructions:

ATTACH
CALLDISP
ESTAE
EVENTS
FESTAE
INTSECT
MODESET
SETRP
SNYCH
WTOR

Using the Supervisor Macro Instructions 2-3

Cross Memory Restrictions for Macro Instructions

The topic "Cross Memory" in Volume 1 describes the general restrictions pertaining to cross
memory and the general functions available to callers in cross memory mode. Unless stated, a
macro service is not available in cross memory mode. A brief description of how specific macro
instructions can be used in cross memory is given here.

The following macro instructions are available to callers in cross memory mode without
restrictions:

ABEND
DSGNL
INTSECT (global intersect)
LOCASCB (locate an ASCB from an ASID)
RISGNL
RPSGNL
PTRACE
SCHEDULE
SETLOCK (for global locks)
SUSPEND
VSMREGN (provides addresses in the current address space)

The following services have special options or restrictions for cross memory mode programs:

ATSET - The issuer of this macro instruction must be executing in primary mode.

ATEXT - The issuer of this macro instruction must be executing in primary mode.

AXFRE - The issuer of this macro instruction must be executing in primary mode.

AXRES - The issuer of this macro instruction must be executing in primary mode.

AXSET - The issuer of this macro instruction must be executing in primary mode.

CALLDISP - This macro instruction is available if the caller uses the BRANCH = YES
option.

CALLRTM - This macro instruction has options and restrictions related to cross memory.

CPOOL - This macro instruction is available to all cross memory callers, except for callers
in secondary mode, who specify LINKAGE = SYSTEM.

CPUTIMER - This macro instruction can be invoked in primary cross memory mode.

ETCON - The issuer of this macro instruction must be executing in primary mode.

ETCRE - The issuer of this macro instruction must be executing in primary mode.

ETDES - The issuer of this macro instruction must be executing in primary mode.

ETDIS - The issuer of this macro instruction must be executing in primary mode.

GETMAIN/FREEMAIN (private storage) - The GETMAIN/FREEMAIN macro
instructions with the BRANCH = YES option can be used in cross memory mode to obtain

2-4 SPL: System Macros and Facilities Volume 2

private storage if the caller has current addressability to the address space and holds the
address space's local lock as a CML lock.

GETMAIN/FREEMAIN (common storage) - The GETMAINjFREEMAIN macro
instruction with the BRANCH = (YES, GLOBAL) option is available in cross memory
mode to obtain common storage.

GQSCAN - The issuer of this macro instruction must be executing in primary mode.

LXFRE - The issuer of this macro instruction must be executing in primary mode.

LXRES - The issuer of this macro instruction must be executing in primary mode.

MODESET - The inline form of the MODESET macro instruction can by used by any
callers in cross memory mode.

PCLINK - The STACK and UNSTACK options are available to issuers in primary mode.
The EXTRACT option is available to a caller with addressability to the same address space
as when PCLINK STACK was issued for the stack element from which data is being
extracted.

PGFIX/PGFREE - These macro instructions have restrictions related to cross memory. See
the description of the individual macro instruction for details.

PGSER - The ANYWHER, FIX, FREE, LOAD, OUT, and RELEASE options of this
macro are available to an enabled caller in supervisor state, key zero, who specifies branch
entry. To use the LOAD and the ANYWHER options, the issuer of PGSER must not be
running in secondary mode.

RESUME - To issue RESUME, the requestor must have current addressability to the
address space of the task being resumed. That is, the address space must be the current
address space.

SDUMP - MVSjXA dumping services format additional data required by cross memory.
The SDUMP macro instruction with the BRANCH = YES option is supported in cross
memory mode, and other options dump address spaces related to the failing address space.

SETFRR - The SETFRR macro instruction can set up a recovery environment in cross
memory mode and provides predictable entry and re-try environments in case of error.

SETLOCK (CML lock) - Programs can caU the MVSjXA lock manager using the
SETLOCK macro instruction. The program can request the local lock of another address
space (the CML lock) in order to serialize resources in the other address space. The
requestor must have an active addressing bind to the address space whose local lock he is
requesting.

SETRP - This macro instruction supports the freeing of the CML lock when a functional
recovery routine requests that termination processing continue, and it also has an improved
mechanism to get from SRB recovery to related task recovery. SETRP also supports a
cross memory mode re-try environment.

SLIP - The operator can set SLIP traps to intercept an event in cross memory mode.

U sing the Supervisor Macro Instructions 2-5

SRBSTAT - Callers must have the authority to issue a SSAR to the home address space.
The save area must be addressable from the home address space. Control returns from the
SRBST AT macro instruction in primary mode.

SSAFF - TCB subsystem affinity - This macro instruction, described in SP L: System
Modifications, has restrictions associated with cross memory.

WAIT IPOST - The WAIT and cross address space POST branch entry services provide
restricted support.

VSMLIST and VSMLOC - Callers who specify LINKAGE = SYSTEM cannot be in
secondary mode. All address returned by these macro instructions are associated with the
current address space.

See the topic "Summary of MVSjXA Facilities Available in Cross Memory Mode" in Volume I
for other functions that are available to callers in cross memory mode.

Macro Instruction Forms

When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of-line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms exist
for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of a macr.o instruction to provide a parameter list to be passed either to the
control program or to a problem program, depending on the macro instruction. The expansion
of the list form contains no executable instructions; therefore you cannot use registers in the
list form.

Use the execute form of a macro instruction in conjunction with one or two parameter lists
established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.
If you do not generate the control program parameter list using the list form of the macro, you
must provide the list yourself, initialize it, then update it directly or by explicitly specifying
keywords on the execute form.

Some macros also provide a modify form. Use the modify form of a macro instruction to
modify a parameter list created with the list form of the macro instruction.

The descriptions of the following macro instructions assume that the standard begin, end, and
continue columns are used -- for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the coding
format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see Assembler H Version 2 Application Programming:
Language Reference.

2-6 SPL: System Macros and Facilities Volume 2

Coding the Macro Instructions

The table appearing near the beginning of each macro instruction indicates how to code the
macro instruction. The table does not explain the meanings of the parameters; the parameters
are explained following the table.

Figure 2 shows a sample macro instruction, TEST, and summarizes all the coding information
that is available for it. The table is divided into three columns, A, B, and C.

rI
name

b

®---- TEST

b

MATH
~I-------i~~ HIST
V GEOG

,DATA=data addr

@)---~~ .. ,LNG=data length

,FMT=HEX
@)I----;~~ ,FMT=DEC

,FMT=BIN

,PASS=value

,grade

Figure 2. Sample Macro Instruction

name: symbol. Begin name in column 1 .

One or more blanks must precede TEST.

One or more blanks must follow TEST.

data addr: RX-type address, or register (2) - (12)

data length: symbol or decimal digit, with a maximum value of 256.

Default: FMT =HEX

value: symbol, decimal digit, or register (1) or (2) - (12).
Default: PASS=65

grade: symbol, decimal digit, or register (1) or (2) - (12).

• The first column, A , contains those parameters that are required for that macro
instruction. If a single line appears in that column, Al , the parameter on that line is
required and you must code it. If two or more lines appear together, A2 , you must code
the parameter appearing on one and only one of the lines.

• The second column, B , contains those parameters that are optional for that macro
instruction. If a single line appears in that column, BI , the parameter on that line is
optional. If two or more lines appear together, B2, although the entire parameter is
optional, if you elect to make an entry, code one and only one of the lines.

• The third column, C , provides additional information for coding the macro instruction.
When substitution of a variable is required, the following classifications are used:

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed
by 0-7 alphameric characters, with no special characters and no blanks.

U sing the Supervisor Macro Instructions 2-7

decimal digit: any decimal digit up to the value indicated in the parameter description. If both
symbol and decimal digit are indicated, an absolute expression is also allowed.

register (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12) above.
Designate the register as (0) only.

register (J): general register 1, previously loaded as indicated under register (2) - (12) above.
Designate the register as (1) only.

RX-type address: any address that is valid in an RX-type instruction (for example, LA).

A-type address: any address that can be written in an A-type address constant.

default: a value that is used in default of a specified value; that is, the value that is assumed if
the parameter is not coded. Use the parameters to specify the services and options to be
performed, and write them according to the following general rules:

• If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT = HEX), code the parameter exactly as shown.

• If the selected parameter is written in italics (for example, grade), substitute the indicated
value, address, or name.

• If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA = data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

• Read the table from top to bottom.

• Code commas and parentheses exactly as shown.

• Positional parameters (parameters without equal signs) appear first and must be coded in
the order shown. Keyword parameters (parameters with equal signs) may be coded in any
order.

• If a parameter is selected, read the third column before proceeding to the next parameter.
The third column often contains coding restrictions for the parameter.

Continuation Lines

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in column
72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

2-8 SPL: System Macros and Facilities Volume 2

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 3 shows an
example of each method.

1 10 16 44 72

t t t t t
NAME1 OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERANDS,OPERAND6,OPX

ERAND7 THIS IS ONE WAY
NAME2 OP2 OPERAND1,OPERAND2, THIS IS ANOTHER WAY X

OPERAND3,OPERAND4, X
OPERANDS,OPERAND6,OPERAND7

Figure 3. Continuation Coding

Using the Supervisor Macro Instructions 2-9

ATSET - Set Authorization Table

The ATSET macro instruction sets both the PT and SSAR authority in the home address
space's authorization table entry that corresponds to the specified authorization index (AX)
value. This action sets up authority for address spaces with the specified AX to issue a PT
instruction (PT = YES) or SSAR instruction (SSAR = YES) into the home address space.

The caller must be either in supervisor state or PKM 0-7, executing in primary mode enabled
and unlocked.

Before entry to this macro, register 13 must point to a standard register save area addressable in
primary mode. Register 2, which is modified by the macro after the registers are saved, should
not be used as the base register.

After completion, the registers contain the following information:

• Registers 0 and 1 are unpredictable.

• Registers 2 - 14 are preserved.

• Register 15 contains the return code.

The ATSET macro instruction is written as follows:

name

b

ATSET

b

AX=AXvalue

,PT=NO
,PT=YES

,SSAR=NO
,SSAR=YES

,RELATED = value

2-10 SPL: System Macros and Facilities Volume 2

name: symbol. Begin name in column 1.

One or more blanks must precede ATSET.

One or more blanks must follow ATSET.

AX value: RX-type addressor general register (0) - (12).

Default: PT = NO

Default: SSAR = NO

value: any valid macro instruction keyword specification.

The parameters are explained as follows:

AX=AXvalue
specifies the AX value for which the PT and SSAR authority are to be set. If the
RX-type address is used, it points to the address of a half word, addressable in primary
mode, that contains the AX value. If the register form is used, the AX value must be in
bits 16-31; bits 0-15 are ignored.

,PT=NO
,PT=YES

specifies whether (YES) or not (NO) a program transfer (PT) into the home address space
by routines executing with the specified AX is to be allowed.

,SSAR=NO
,SSAR=YES

specifies whether (YES) or not (NO) routines executing with the specified AX are to be
allowed to establish secondary addressability to the home address space.

,RELATED = value
specifies information used to self document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

Note: Both the PT and SSAR authority are set every time you invoke the ATSET macro
instruction. If you do not specify PT, for example, the PT authority is set off. If you
want the PT authority to remain on, you must specify PT = YES.

When control returns, register contains the following return code:

Hexadecimal
Code

o

Meaning

The selected authorization table entry has been
set

ATSET - Set Authorization Table 2-11

ATTACH - Create a New Task

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information. If you are executing in 31-bit addressing mode, you must use the MVSjXA
version of this macro instruction.

The ATTACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDENTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

On entry to the attached routine, the high order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. If bit 0 is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The address of the task control block for the new task is returned in register 1. The new task is
a subtask of the originating task; the originating task is the task that was active when the
ATT ACH macro instruction was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the ATTACH macro
instruction.

The load module containing the program to be given control is brought into virtual storage if a
usable copy is not available in virtual storage. The issuing program can provide an event
control block, in which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a parameter list whose address is passed in
register 1 to the new task. If you code neither the ECB nor ETXR parameter, the subtask is
automatically removed from the system upon completion of its execution. If you specify the
ECB parameter in the ATTACH macro instruction, the ECB must be in storage so that you
can wait on it (using the WAIT macro instruction) and the control program can post it on
behalf of the terminating task. You can also use the ATTACH macro instruction to specify
that ownership of virtual subpools is to be assigned to the new task, or that the subpools are to
be shared by the originating task and the new task.

Except for DCB and JSCB, all input parameters to the ATTACH macro instruction can reside
in storage above 16 megabytes if the issuer is executing in 31-bit addressing mode.

The description of the ATTACH macro instruction follows. The ATTACH macro instruction
is also described in Supervisor Services and Macro Instructions with the exception of the JSTCB,
SM, SVAREA, KEY, DISP, JSCB, TID, NSHSPV, NSHSPL, and RSAPF parameters. These
parameters are restricted in use to supervisor state or PSW key 0-7 programs and, therefore, are
only described here.

2-12 SPL: System Macros and Facilities Volume 2

The standard form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD = limit prior nmbr

,DPMOD=disp prior nmbr

,PARAM = (addr)
,PARAM= (addr),VL=l

,ECB = eeb addr

,ETXR = exit rtn addr

,GSPV = subpool nmbr
,GSPL=subpoollist addr

,SHSPV = subpool nmbr
,SHSPL = subpoollist addr

,SZERO=YES
,SZERO=NO

,TASKLIB=deb addr

,ST AI = (exit addr)
,ST AI = (exit addr,parm addr)
,EST AI = (exit addr)
,EST AI = (exit addr,parm addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH = YES

,TERM=NO
,TERM=YES

,JSTCB=NO
,JSTCB=YES

,SM=PROB
,SM=SUPV

,SV AREA = YES
,SVAREA=NO

,KEY=PROP
,KEY = ZERO

,DISP=YES
,DISP=NO

,JSCB = jseb addr

,TID = task id

,NSHSPV = sub pool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
,RSAPF=YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: symbol.
entry name addr: A-type address, or register (2) - (12).
list entry addr: A-type address, or register (2) - (12).

deb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

eeb addr: A-type address, or register (2) - (12).

exit rtn addr: A-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: A-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: A-type address, or register (2) - (12).

Default: SZERO = YES

deb addr: A-type address, or register (2) - (12).

exit addr: A-type address, or register (2) - (12).
parm addr: A-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for ST AI: PURGE = QUIESCE
Default for EST AI: PURGE = NONE

Note: ASYNCH may be coded only if STAI or ESTAI is specified.
Default for ST AI: ASYNCH = NO
Default for EST AI: ASYNCH = YES
Note: TERM may be specified only if ESTAI is specified.
Default: TERM = NO

Default: JSTCB = NO

Default: SM = PROB

Default: SV AREA = YES

Default: KEY = PROP

Default: DISP = YES

jseb addr: A-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID = 0

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: A-type address, or register (2) - (12).

Default: RSAPF = NO

value: any valid macro keyword specification.

ATTACH - Create a New Task 2-13

The parameters are explained below:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the entry name, or the address of the name field
of a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Notes:

1. ATT A CH processing can attach a load module in 24-bit or 31-bit addressing mode
physically resident above or below 16 megabytes virtual. The AMODE and RMODE,
which are load module attributes located in the directory entry for the load module,
provide this information. The RMODE indicates where the module is to be placed; the
AMODE indicates the addressing mode of the module. If the AMODE of the entry
point being attached is ANY, it will be attached with the same addressing mode as the
caller.

2. The task structure must not be changed via an ATTACH or DETACH between the
issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

,DCB = dcb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

,LPMOD = limit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is
omitted, the current limit priority of the originating task is assigned as the limit priority of
the new task.

,DPMOD = disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current'
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. If the
result is greater, the limit priority is assigned as the dispatching priority.

If. a register is designated, a negative number must be in two's complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of
either the new task's limit priority or the originating task's dispatching priority.

,PARAM = (addr)
,P ARAM = (addr), VL = 1

specifies the address(es) to be passed to the attached program. Each address is expanded
inline to a fullword on a fullword boundary, in the order designated. Register 1 contains
the address of the first word when the program is given control.

2-14 SPL: System Macros and Facilities Volume 2

VL = 1 should be designated only if the called program can be passed a variable number
of parameters. VL = 1 causes the high-order bit of the last address to be set to 1; the bit
can be checked to find the end of the list.

,ECB = ecb addr
specifies the address of an event control block for the new task to be used by the control
program to indicate the termination of the new task. The ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The return code (if the task is
terminated normally) or the completion code (if the task is terminated abnormally) is also
placed in the event control block. If this parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system after the subtask has
been terminated.

,ETXR = exit rtn addr
specifies the address of the end-of-task exit routine to be given control after the new task
is normally or abnormally terminated. The exit routine is given control when the
originating task becomes active after the subtask is terminated, and must be in virtual
storage when required. If this parameter is coded, a DETACH macro instruction must be
issue~ to remove the sulJtask from the system after the subtask has been terminated.

The exit routine receives control in the addressing mode of the caller of the A TT ACH
macro instruction. ATTACH processing issues an ABEND with completion code X'72A'
if a caller attempts to create two subtasks with the same exit routine in different
addressing modes.

The contents of the registers when the exit routine is given control are as follows:

Register
o
1

2-12
13
14
15

Contents
Control Program Information
Address of the task control block for the task that was
terminated
Unpredictable
Address of a save area provided by the control program
Return address (to the control program)
Address of the exit routine

The exit routine is responsible for saving and restoring the registers.

,GSPV = subpool nmbr
,GSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each of which less than 128. Except for subpool 0, ownership of
each of the specified subpools is assigned to the new task. Although you can specify
subpool zero, it cannot be transferred. When a task transfers ownership of a subpool, it
can no longer GETMAIN or FREEMAIN the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Programs of both originating task and the
new task can use the associated virtual storage areas.

ATTACH - Create a New Task 2-15

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpoo1 number.

,SZERO=YES
,SZERO=NO

specifies whether subpoo1 0 is to be shared with the subtask. YES specifies that subpoo1 0
is to be shared; NO specifies that subpoo1 0 is not to be shared.

,TASKLIB = deb addr
specifies that a task library DCB address has been supplied and is to be stored in
TCBJLB. Otherwise, TCBJLB is propagated from the originating task. If the DCB
address specifies LINKLIB, no other library is searched because searching LINKLIB
indicates the end of the search.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

,STAI = (exit addr)
,STAI = (exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI = (exit addr,parm addr)

specifies whether a ST AI or EST AI SCB is to be created; any ST AI/EST AI SCBs queued
to the originating task are propagated to the new task.

The exit addr specifies the address of the ST AI or EST AI exit routine which is to receive
control if the subtask abnormally terminates; the exit routine must be in virtual storage at
the time of abnormal termination. The parm addr is the address of a parameter list that
can be used by the STAI or ESTAI exit routine.

ATTACH processing passes control to the EST AI exit routine in the addressing mode of
the caller of the ATTACH service routine. Therefore, the EST AI exit routine can execute
in either 24-bit or 31-bit addressing mode. A STAI exit routine can execute only in 24-bit
addressing mode. If a caller in 31-bit addressing mode specifies the STAI parameter on
the ATTACH macro instruction, the caller is abended with an X'52A' completion code.

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

specifies what action is to be taken with regard to I/O operations when the sub task is
abnormally terminated. No action may be specified (NONE), a halting of I/O operations
may be requested (HALT), or a quiescing of I/O operations may be indicated
(QUIESCE).

,ASYNCH=NO
,ASYNCH=YES

specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the EST AI exit routine.

2-16 SPL: System Macros and Facilities Volume 2

• PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE = NONE is specified and the CHECK macro instruction is issued in the
EST AI exit routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop.

,TERM=NO
,TERM=YES

specifies whether the exit routine associated with the ESTAI request is also to be
scheduled in the following situations:

• CANCEL

• Forced LOGOFF

• Job step timer expirations

• Wait time limit for job step exceeded

• ABEND condition because incomplete task detached when ST AE option not specified
on DETACH

• Attaching task abnormally terminates

,JSTCB=NO
,JSTCB=YES

specifies whether the attached task is a new job step (YES) or a task in the present job
step (NO). If YES is specified, the address of the TCB of the newly created task is placed
in the TCBJSTCB field of the TCB; if NO is specified, the TCBJSTCB field of the task
using ATTACH is propagated to the new task.

Note: The JSTCB=YES option causes a new job pack area to be established for the
attached task. Any modules within the job pack area of the task issuing the ATTACH
are therefore not implicitly known to the newly attached task.

,SM=PROB
,SM=SUPV

specifies that the system is to run in problem program mode (PROB) or in supervisor
mode (SUPV) when executing the attached task.

,SV AREA = YES
,SVAREA=NO

specifies whether a save area is needed for the attaching task. If YES is specified, the
ATTACH routine obtains a 72-byte save area. If both attaching and attached task share
subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte
block.

ATTACH - Create a New Task 2-17

,KEY = PROP
,KEY = ZERO

specifies whether the protection key of the newly created task should be zero (ZERO) or
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP).

,DISP=YES
,DISP=NO

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO).

Note: If DISP=NO is specified, the attaching task must use the STATUS macro
instruction to reset the TCBANDSP nondispatchability bit to 0, before the·ATTACH
processing can be completed for the new task.

,JSCB = jscb addr
specifies the address of the job step control block. If specified, the JSCB is used for the
new task. Otherwise, the JSCB of the attaching task is also used for the new task.

Note: The JSCB parameter must specify a storage location below 16 megabytes.

, TID = task id
specifies the task identifier to be placed in the TCBTID field of the attached task.

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

specifies the virtual storage subpool number 236 or 237, or the address of a list of virtual
storage subpool numbers 236 and 237. The subpools specified will not be shared with the
subtask.

If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in
the list; each of the following bytes contains a virtual storage subpool numb~r.

,RSAPF=YES
specifies that the attached subtask may come from an unauthorized library. If, however.
it comes from an APF-authorized library and is link-edited with the APF-authorized
attribute, the step begins execution with APF authorization.

RSAPF = YES applies when all of the following conditions are met:

• The caller is running in supervisor state, system key (0-7), or both.

• The caller is running non-APF authorized.

• The task is attached in the problem program state and with a non-system key.

,RELATED = (value)
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-18 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04
08

OC

14

18

Notes:

Meaning

Successful completion.
ATTACH was issued in a STAE exit; processing not completed.
Insufficient storage available for control block
for STAI/ESTAI request; processing not completed.
Invalid exit routine address or invalid parameter
list address specified with ST AI parameter;
processing not completed.
Authorized task specifying JSTCB = YES was not itself a job
step task; processing not completed.
Attempt to create a new subtask would result in both
job step tasks and non-job step tasks being sub tasks of
current task; processing not completed.

1. For any return code other than 00, register 1 is set to zero upon return.

2. The program manager processing for ATTACH is performed under the new sub task after
control has been returned to the originating task. Therefore, it is possible for the originating
task to obtain return code 00, and still not have the subtask successfully created (for example,
if the entry name could not be found by the program manager). In such cases, the new
sub task is abnormally terminated.

Operation: Attach program SYSPROGM, which will run with protection key 0 and in
supervisor mode. Subpool 0 is not to be shared, and the new task is not to have a save area
provided.

ATTACH EP=SYSPROGM,KEY=~ERO,SM=SUPV,SZERO=NO,SVAREA=NO

Operation: Attach as a new job step the program name addressed in register 7. The new task
is to run in problem program mode, a save area is to be provided, a job step control block is
provided, subpool 0 is not to be shared, a task library DCB is provided, and the new task is to
be nondispatchable.

ATTACH EPLOC=(7},SM=PROB,JSTCB=YES,SVAREA=YES,SZERO=NO, X
JSCB=(S},DISP=NO,TASKLIB=(8}

Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

ATTACH - Create a New Task 2-19

Example 4

Operation: Cause PROGRAMl to be attached, share subpool 5, supply WORDl so the
originating task can know when the subtask is complete, and establish EXITl as an ESTAI
exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

2-20 SPL: System Macros and Facilities Volume 2

ATTACH (List Form)

Two parameter lists are used in an ATT ACR macro instruction: a control program parameter
list and a problem program parameter list. You can construct only the control program
parameter list in the list form of ATT ACR. Address parameters to be passed in a parameter
list to the problem program can be provided using the list form of the CALL macro instruction.
This parameter list can be referred to in the execute form of ATT ACR.

ATTACH (List Form) 2-21

The list form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD=limit prior nmbr

,DPMOD = disp prior nmbr

,ECB ;= eeb addr

,ETXR = exit rtn addr

,GSPV=subpool nmbr
,GSPL = subpoollist addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB=deb addr

,STAI= (exit addr)
,STAI = (exit addr,parm addr)
,EST AI = (exit addr)
,ESTAI = (exit addr,parm addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH =YES

,TERM=NO
,TERM=YES

,JSTCB=NO
,JSTCB=YES

,SM=PROB
,SM=SUPV

,SV AREA = YES
,SVAREA=NO

,KEY = PROP
,KEY = ZERO

,DISP=YES
,DISP=NO

,JSCB = jseb addr

,TID = task id

,NSHSPV = sub pool nmbr
,NSHSPL = subpoollist addr

,RSAPF=NO
,RSAPF=YES

,RELATED = value

,SF=L

name: symbol. Begin name in column l.

One or more blanks must precede ATTACH.

One or more blanks follow ATTACH.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.

disp prior nmbr: symbol or decimal digit.

eeb addr: A-type address.

exit rtn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpoollist addr: A-type address.

subpool nmbr: symbol or decimal digit.
sub pool list addr: A-type address.

Default: SZERO = YES

deb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for STAI: PURGE = QUIESCE
Default for ESTAI: PURGE=NONE

Note: ASYNCH may be specified only if STAI or ESTAl
is specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES
Note: TERM may be specified only if ESTAI is specified.
Default: TERM = NO

Default: JSTCB = NO

Default: SM = PROB

Default: SV AREA = YES

Default: KEY = PROP

Default: DISP=YES

jseb addr: A-type address.

task id: decimal digits 0-255.
Default: TID = 0
subpool nmbr: symbol, decimal digit.
subpoollist addr: A-type address.

Default: RSAPF = NO

value: any valid macro keyword specification.

2-22 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exception:

,SF=L
specifies the list form of the A TT ACH macro instruction.

Note: If RSAPF parameter is not specified on the list form of the ATTACH macro
instruction, the default is RSAPF = NO. If RSAPF = YES is specified on the list form or on a
previous execute form using the same SF = list, RSAPF = NO is ignored for any subsequent
execute forms of the ATTACH macro instruction.

Once RSAPF is specified, it is in effect for all users of that list.

ATTACH (List Form) 2-23

ATTACH (Execute Form)

Two parameter lists are used in ATTACH: a control program parameter list and an optional
problem program parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH. If only the problem program
parameter list.is remote, parameters that require use of the control program parameter list
cause that list to be constructed inline as part of the macro expansion.

2-24 SPL: System Macros and Facilities Volume 2

The execute form of the ATTACH macro instruction is written as follows:

name

b

ATTACH

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LPMOD = limit prior nmbr

,DPMOD = disp prior nmbr
,PARAM = (addr)
,PARAM= (addr),VL=i

,ECB = eeb addr

,ETXR = exit rtn addr

,GSPV = subpool nmbr
,GSPL=subpoollist addr

,SHSPV = subpool nmbr
,SHSPL = subpoollist addr

,SZERO=YES
,SZERO=NO

,T ASKLIB = deb addr

,ST AI = (exit addr)
,STAI = (exit addr,parm addr)
,ESTAI = (exit addr)
,EST AI = (exit addr,parm addr)

,PURGE = QUIESCE
,PURGE = NONE
,PURGE = HALT

,ASYNCH=NO
,ASYNCH = YES

,TERM=NO
,TERM=YES

,JSTCB=NO
,JSTCB=YES

,SM=PROB
,SM=SUPV

,SV AREA = YES
,SVAREA=NO

,KEY=PROP
,KEY = ZERO

,DISP=YES
,DISP=NO

,JSCB = jseb addr

,TID = task id

,NSHSPV = subpool nmbr
,NSHSPL = sub pool list addr

,RSAPF=NO
,RSAPF=YES

,RELATED =value

,MF = (E,prob addr)
,SF = (E,etrl addr)
,MF = (E,prob addr) ,SF= (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).
addr: RX-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)
eeb addr: RX-type address, or register (2) - (12).

exit rtn addr: RX-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (2) - (12).
sub pool list addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTAI is specified.

Note: ASYNCH may be specified only if ST AI or EST AI is specified.

Note: TERM may be specified only if EST AI is specified.

Default: JSTCB = NO

Default: SM = PROB

Default: SV AREA = YES

Default: KEY = PROP

Default: DISP = YES

jseb addr: RX-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID = 0
subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpoollist addr: RX-type address, or register (2) - (12).

Default: RSAPF = NO

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).
elrl addr: RX-type address, or register (2) - (12) or (15).

ATTACH (Execute Form) 2-25

The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exceptions:

,MF=(E, prob addr)
,SF = (E, ctrl addr)
,MF = (E, prob addr) ,SF = (E, ctrl addr)

specifies the execute form of the ATTACH macro instruction using a remote problem
program parameter list or a remote control program parameter list or both. If a
parameter list is not provided, any problem program or control program parameters are
provided in parameter lists expanded inline.

Notes:

1. If ST AI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

2. If EST AI is specified on the execute form, the following fields are overlaid; exit addr, parm
addr, PURGE, ASYNCH, and TERM. If parm addr is not specified, zero is used; if
PURGE, ASYNCH, or TERM are not specified, defaults are used.

3. If the STAIor ESTAI is to be specified, it must be completely specified on either the list or
execute form, but not on both forms.

4. If SZERO is not specified on the list or execute form, the default is SZERO = YES. If
SZERO = NO is specified on either the list form or a previous execute form using the same
SF=list, then SZERO= YES is ignoredfor any following execute forms of the macro. Once
SZERO = NO is specified, it is in effect for all users of that list.

5. If RSAPF= YES is specified on the list form of the ATTACH macro instruction or on a
previous execute form of the ATTACH macro instruction using the same SF= list,
RSAPF= NO is ignored for any subsequent execute forms of the ATTACH macro instruction.

2-26 SPL: System Macros and Facilities Volume 2

AXEXT - Extract Authorization Index

The AXEXT macro instruction returns to the caller the authorization index (AX) value of the
specified address space.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
extracted AX is placed in bits 16-31 of register 0 and bits 0-15 are set to zero. The contents of
register 1 are unpredictable.

The AXEXT macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede AXEXT.

AXEXT

b

ASID = asid value

,RELATED = value

One or more blanks must follow AXEXT.

asid value: RX-type address or register (0) - (12).
Default: current PASID.

value: any valid macro keyword specification.

The parameters are explained as follows:

ASID = asid value
specifies the ASID of the address space whose AX is to be extracted. If the RX-type
address is used, it points to a half word containing the ASID. If the register form is used,
the register must contain the ASID in bits 16-31 with bits 0-15 set to zero. If ASID is not
specified, the current P ASID is assumed.

,RELATED = value
specifies information used to self document macro instructions by "relating" functions or
services to corresponding functions or services. 1;'he format and content of the
information specified are at the discretion of the user and can be any valid coding values.

AX EXT - Extract Authorization Index 2-27

When control returns, register 15 contains the following return code:

Hexadecimal
Code

o

Meaning

The AX value of the specified address space was successfully obtained.

2-28 SPL: System Macros and Facilities Volume 2

AXFRE - Free Authorization Index

The AXFRE macro instruction returns one or more authorization index (AX) value~ to the
system. The caller must ensure that the AXs to be returned are no longer being used by any
address space or else the caller is abnormally terminated. On completion of the AXFRE macro
instruction, all authorization of the freed AX values in authorization tables for the entire system
will be purged. The caller must be dispatched in the address space that owns the AX.

The caller must be in supervisor state or PSW mask 0-7, executing in primary mode enabled
and unlocked.

Register 13 must point to a standard register save area that must be addressable in primary
mode. The list of AX values passed to the AXFRE macro instruction must also be addressable
in primary mode at the time the macro instruction is issued.

Registers 2-12 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The AXFRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One ore more blanks must precede AXFRE.

AXFRE

b One or more blanks must follow AXFRE.

AXLIST = list addr list addr: RX-type address or register (0) - (12).

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST = list addr
specifies the address of a variable length list of halfword entries that contain the AX
values to be freed. The first half word must contain the number of values in the list.

,RELATED = value
specifies information used to self document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXFRE - Free Authorization Index 2-29

When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code

o

4

Meaning

The specified authorization index or indexes were successfully freed.

The specified authorization index or indexes were not successfully freed. One or more of the
indexes could be unavailable for use.

2-30 SPL: System Macros and Facilities Volume 2

AXRES - Reserve Authorization Index

The AXRES macro instruction reserves one or more authorization index (AX) values for the
caller's use. The AX values are then owned by the current home address space.

The caller must be in supervisor state or PKM 0-7, executing in primary mode enabled and
unlocked. The parameter list passed to the AXRES macro instruction must be addressable in
primary mode at the time the macro expansion is executed. Register 13 must point to a
standard register save area that must be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The AXRES macro instruction is written as follows:

name

b

AXRES

b

AXLIST = list addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede AXRES.

One or more blanks must follow AXRES.

list addr: RX-type address or register (0) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST = list addr
specifies the address of a variable length list, addressable in primary mode, of half word
entries in which the requested AX values are to be returned. The first halfword must
contain the number of values to be returned. Enough halfwords must follow the first
entry to contain the requested number of values. If the requested number of AX values is
not available, the caller is abnormally terminated.

,RELATED = value
specifies information used to self document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXRES - Reserve Authorization Index 2-31

When control returns, register 15 contains the following return code.

Hexadecimal
Code

o
Meaning

The AX value or values were successfully reserved.

2-32 SPL: System Macros and Facilities Volume 2

AXSET - Set Authorization Index

The AXSET macro instruction sets the authorization index (AX) of the home address space to
the value specified by the caller. The AX must have been previously reserved and the address
space whose AX is being changed cannot own connected space switch entry tables. All routines
that subsequently execute with a P ASID of the address space whose AX was changed execute
with the new AX.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

Registers 2-14 are preserved. Register two, which is modified by the macro after the registers
are saved, should not be used as the base register. Register 0 contains the original AX value in
bits 16-31 with bits 0-15 set to zero. Register 15 contains the return code. The contents of
register 1 are unpredictable.

The AXSET macro instruction is written as follows:

name

b

AXSET

b

AX=AX value

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede AXSET.

One or more blanks must follow AXSET.

AX value: RX-type address or register (0) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

AX=AX value
specifies the new AX value. The RX-type address specifies a halfword containing the new
AX. If the register form is used, the register must contain the new AX in bits 16-31 and
bits 0-15 must be zero.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXSET - Set Authorization Index 2-33

When control returns, register 15 contains the following return code:

Hexadecimal
Code

o
Meaning

The AX of the home address space was set to the value specified by the caller.

2-34 SPL: System Macros and Facilities Volume 2

BLSABDPL - Map the Exit Parameter List BLSABDPL

The BLSABDPL macro instruction maps the exit parameter list (BLSABDPL), which is a data
area that enables IPCS, PRDMP, SNAP, and user-written exit routines to tailor dumps.

Using this macro, you can map the following areas within the BLSABDPL exit parameter list:

• The processor status record

• The storage access parameter list

• The select ASID parameter list

• The control block and format model processor parameter list

• The ECT parameter list

By accessing anyone of these parameter lists, the exit routine can then use the data in the
parameter list to invoke the corresponding exit service routine. For information about using
the exit service routines, see MVS/XA Interactive Problem Control System User's Guide and
Reference.

BLSABDPL - Map the Exit Parameter List BLSABDPL 2-35

The BLSABDPL macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede BLSABDPL.

BLSABDPL

b

AMDCPST = YES
AMDCPST=NO

,AMDEXIT = YES
,AMDEXIT=NO

,AMDOSEL = YES
,AMDOSEL = NO

,AMDPACC=YES
,AMDPACC=NO

,AMDPECT = YES
,AMDPECT=NO

,AMDPFMT = YES
,AMDPFMT = NO

,AMDPSEL = YES
,AMDPSEL = NO

,DSECT=YES
,DSECT=NO

One or more blanks must follow BLSABDPL.

Default: AMDCPST = NO

Default: AMDEXIT = YES

Default: AMDOSEL = YES

Default: AMDPACC=YES

Default: AMDPECT = YES

Default: AMDPFMT = YES

Default: AMDPSEL = YES

Default: DSECT = YES

The parameters are explained as follows:

AMDCPST = YES
AMDCPST=NO

specifies whether the format of the CPU status data available through the IPCS and
PRDMP storage access services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is NO.

Because the system uses DSECT AMDCPMAP to map the format of CPU status data
(when AMDCPST = YES), the system ignores the DSECT = NO option if it is
specified.

AMDEXIT = YES
AMDEXIT=NO

specifies whether the common exit parameter list (BLSABDPL) is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The common exit parameter list contains two parts: ABDPL and

2-36 SPL: System Macros and Facilities Volume 2

ADPLEXTN. DSECT=YES causes DSECT statements to be generated for both.
DSECT = NO suppresses the DSECT statements and causes ABDPL and ADPLEXTN
to be defined as the labels associated with the first bytes described in the ABDPL
and ADPLEXTN exit parameter lists, respectively.

AMDOSEL = YES
AMDOSEL=NO

specifies whether the select ASID service output data available under IPCS and PRDMP
is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

If the DSECT = NO option is specified, it is ignored. The select ASID parameter list is
always mapped using DSECT ADPLPSEL.

Because the system uses DSECT ADPLPSEL to map the select ASID parameter list
(when AMDOSEL = YES), the system ignores the DSECT = NO option if it is
specified.

AMDPACC = YES
AMDPACC=NO

specifies whether the storage access service parameter list is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The storage access service parameter list is described as ADPLPACC. DSECT = YES
causes DSECT statements to be generated for ADPLP ACC. DSECT = NO suppresses the
DSECT statements and causes ADPLPACC to be defined as the label associated with the
first byte described in the storage access service parameter list.

AMDPECT = YES
AMDPECT=NO

specifies whether the ECT service parameter list is to be mapped (YES) or suppressed
(NO).

If this parameter is not specified, the default is YES.

The ECT service parameter list is described as ADPLPECT. DSECT=YES causes
DSECT statements to be generated for ADPLPECT. DSECT = NO suppresses the
DSECT statements and causes ADPLPECT to be defined as the label associated with the
first byte described in the ECT service parameter list.

AMDPFMT = YES
AMDPFMT=NO

specifies whether the parameter list used by both the control block formatter and the
format model processor services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

The parameter list used by both the control block formatter and the format model
processor services is described as ADPLPFMT. DSECT = YES causes DSECT statements
to be generated for ADPLPFMT; DSECT = NO suppresses the DSECT statements and
causes ADPLPFMT to be defined as the label associated with the first byte described in
the parameter list.

BLSABDPL - Map the Exit Parameter List BLSABDPL 2-37

Example

AMDPSEL = YES
AMDPSEL=NO

specifies whether the select ASID service parameter list is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The ASID service parameter list is described as ADPLPSEL. DSECT = YES causes
DSECT statements to be generated for ADPLPSEL. DSECT = NO suppresses the
DSECT statements and causes ADPLPSEL to be defined as the label associated with the
first byte described in the ASID service parameter list.

DSECT=YES
DSECT=NO

specifies whether parameter lists mapped by BLSABDPL are to be mapped as DSECTs
(YES) or not (NO).

If this parameter is not specified, the default is YES.

NOTE: Output data from services can also be mapped by BLSABDPL. Output data are
always mapped as DSECTs. These DSECTs cannot be suppressed by DSECT = NO. To
determine whether DSECT=NO can suppress a specific DSECT, see the above
parameters.

Operation: Code the macro instructions to invoke the select ASID service routine (that
generates a list of selected address spaces within a dump) by reserving space for an initialized
select ASID . service parameter list and defining the mapping of the ABDPL for the user-written
exit routine.

BLSADPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO,AMDPACC=NO,
AMDPFMT=NO,AMDPECT=NO,AMDPSEL=YES

BLSADPL AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

2-38 SPL: System Macros and Facilities Volume 2

BLSQMDEF - Define a Control Block Format

The BLSQMDEF macro instruction is used to start and end the formatting model of a control
block from a dump. A control block model must begin with the BLSQMDEF macro
instruction, specifying the appropriate parameters. The end of the model is indicated by a
BLSQMDEF macro instruction with only the END keyword specified.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model. A control block model has the following structure:

• One BLSQMDEF macro instruction to begin the model definition.

• At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

• One BLSQMDEF macro instruction to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order the
fields printed in the dump. No object code producing assembler statements other than the
BLSQMFLD macro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition. The BLSQSHDR macro instruction,
which associates text strings with dumped data fields, can be used to clarify the dump for the
user.

Through the implementation of BLSQMDEF, BLSQMFLD, and BLSQSHDR users of IPCS,
PRDMP, and SNAP can control their dump output within user-written formatting routines.
For additional information, refer to MVS/XA Interactive Problem Control System User's Guide.

BLSQMDEF - Define a Control Block Format 2-39

The BLSQMDEF macro instruction is written as follows:

name

b

BLSQMDEF

b

END
current
,CBLEN = value

,BASELBL = label

,MAINTL V = name

,ACRONYM = name

,ACROLEN = value

,ACROLBL = label

,ACROFF = value

,PREFIX = value

,OFFSETS = PRINT
,OFFSETS = NOPRINT

,STRTCOL = value

,LBLSPC = value

,HEADER = name

name: symbol. Begin name in column 1.

One or more blanks must precede BLSQMDEF.

One or more blanks must follow BLSQMDEF.

Note: END is required if this BLSQMDEF macro is terminating the

format model definition. This is the exclusive use of the END parameter;
when END is specified, no other options are allowed.
label: symbol.
value: decimal constant, hexadecimal constant, or an absolute value.
Note: CBLEN is required except when the END parameter is specified.
name: 1 to 8 byte character string.

name: 1 to 8 byte character string
Note: If ACRONYM is specified, the ACROLBL or ACROFF parameters
should also be specified. If neither are, a default offset of zero is assumed.
value: decimal constant, hexadecimal constant, or absolute expression
of a number from 1 to 8, inclusive.
label: symbol.
Note: Use ACROLBL only if BASELBL is specified.
value: decimal constant, hexadecimal constant, or absolute value.
Note: 1. Use ACROFF if acronym is not at offset zero and BASELBL is

not specified

2. The ACROFF value is used when both ACROFF and
ACROLBL are specified.

value: integer constant 0 - 8 inclusive.
Default: PREFIX = 3
Default: OFFSETS = PRINT

value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: STRTCOL=O
value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: LBLSPC = 0
name: one to eight byte character string.
Note: 1. If HEADER is not specified, ACRONYM value is used.

2. If neither HEADER nor ACRONYM is specified, the control
block will not contain a heading.

The parameters are explained as followed:

END
specifies the termination of the control block model. This parameter is required ONLY
when the BLSQMDEF macro instruction is used to end the control block format. All
other parameters are ignored if this parameter is specified.

BASELBL = label
specifies the label of an assembler statement, which is to be used to calculate field offsets.
If specified, all field offsets calculated by the BLSQMFLD macro instruction will be
relative to this label. If not specified, all field offsets must be explicitly specified on the
BLSQMFLD macro instruction via the ACROFF parameter.

2-40 SPL: System Macros and Facilities Volume 2

CBLEN == value
specifies the total length of the control block. Value may be a decimal constant,
hexadecimal constant, or an absolute expression. This parameter is required except when
the END parameter is specified.

MAINTL V = name
specifies the maintenance level of the control block. The maintenance level name may be a
1 to 8 byte character string that contains no blanks.

ACRONYM = name
specifies the contents of the control block acronym field. Name may be a one to eight
byte character string that contains no blanks. If this field is specified, the ACROLBL or
ACROFF parameter should also be specified in order to define the offset of the acronym
field within the control block. If neither the ACROLBL nor the ACROFF parameter is
specified, an offset of zero is assumed.

ACROLEN = value
specifies the length of the acronym name specified by the ACRONYM parameter in the
event that the acronym name requires blanks. If omitted, the length used is the actual
length of the name specified in the ACRONYM parameter (without any blanks). Value
may be a decimal constant, hexadecimal constant, or absolute expression of a number
from zero to eight, inclusive.

ACROLBL = label
specifies the label on the assembler statement that defines the acronym field. The label
specified here is used with the label provided by BASELBL to calculate the .acronym field
offset. Use this parameter only if BASELBL is specified. The ACROLBL parameter is
ignored if ACROFF is specified.

ACROFF = value
specifies the offset of the field containing the control block acronym within the control
block. Use this parameter if the acronym is not at offset zero and BASELBL is not
specified. Value may be a decimal constant, hexadecimal constant, or absolute
expression.

PREFIX = value
specifies the number of characters to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter of the
BLSQMFLD macro. Value must be an integer constant (0 - 8, inclusive). When
PREFIX = 8 is specified, the fields will have no label. mode. If not specified, the default
is PREFIX = 3. PREFIX may be re-specified on a succeeding BLSQMFLD macro.

OFFSETS = PRINT
OFFSETS = NOPRINT

specifies whether or not the field offset information should be printed at the beginning of
each output line of the formatted control block. PRINT specifies that offset information
should be included on the formatted line; NOPRINT causes the offset information to be
suppressed. If this parameter is not specified, a default of PRINT is used.

STRTCOL = value
specifies a left margin for each line of the formatted control block. Value may be a
decimal constant, a hexadecimal constant, or an absolute expression. If not specified, or
specified as zero, the format model processor uses the value specified by IPCS or
printdump.

BLSQMDEF - Define a Control Block Format 2-41

LBLSPC = value
specifies the spacing between label fields in the formatted output. Value may be a
decimal constant, hexadecimal constant, or an absolute expression. If not specified, or
specified as zero, this indicates to the format model processor that the value specified by
IPCS, SNAP, or PRDMP should be used. This value is initially set to 20.

Note: If value is 18, the output is condensed.

HEADER = name
specifies the heading that will precede the formatted control block. Name may be any
one to eight byte character string that contains no blanks. If HEADER is omitted, the
ACRONYM value is used for the heading. If neither the ACRONYM parameter nor the
HEADER parameter is specified, the formatted control block will not have a heading.

2-42 SPL: System Macros and Facilities Volume 2

BLSQMFLD - Specifying a Control Block Format Field

The BLSQMFLD macro instruction is used to identify the fields within the dumped control
block that are to be formatted. A BLSQMFLD macro must be coded for each requested field
that will be formatted.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model for a control block, the model has the following structure:

• One BLSQMDEF macro instruction to begin the model definition.

• At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

• One BLSQMDEF macro instruction to end the model defitiition.

The order of the BLSQMFLD statements in the formatting model determines the order the
fields are printed in the dump. No object code producing assembler statements other than the
BLSQMFLD macro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition.

Through the implementation of BLSQMDEF and BLSQMFLD, users of IPCS, PRDMP, and
SNAP can control their dump output within user-written formatting routines. The BLSQSHDR
macro instruction, which associates text strings with dumped data fields, can be used to clarify
the dump for the user. For additional information, refer to MVS/XA Interactive Problem
Control System User's Guide and Reference.

BLSQMFLD - Specifying a Control Block Format Field 2-43

The BLSQMFLD macro instruction is written as follows:

name

b

BLSQMFLD

b

NAME = label
NAME=*

,SHDR=addr

,OFF=value

,LEN = value

,VIEW = (list)
,VIEW = value

,ARRAY = ((DL1,DU1),(DL2,DU2))

,ARRAY = value

,ARRAY = *

,ARRAY = END

,DTYPE = HEX
,DTYPE = EBCDIC

,NEWLINE

,NOLABEL

,CALLRTN

,PREFIX = value

,NO SPLIT

,NUMDEC

,NOCOLNM

,STR TCOL = value

,COLNUM = value

,COLSEP = value

,ITEMSEP = value

,ORDER = (l,2)
,ORDER = (2,1)

,HEXONLY

name: symbol. Begin name in column 1.

One or more blanks ml;lst precede BLSQMFLD.

One or more blanks must follow BLSQMFLD.

label: symbol.

addr: A-type address.
Note: If SHDR is specified, only CALLRTN, NEWLINE,
NOSPLIT, and VIEW are allowed.

value: decimal constant, hexadecimal constant, or absolute
value.
Note: OFF is required if BASELBL is not specified on the
BLSQMDEF macro or if NAME = * is specified on the
BLSQMFLD macro.

value: decimal constant, hexadecimal constant, or absolute
expression.
Note: LEN is required if name parameter label is
unresolved.

(list): integers between 1 and 16, inclusive.
value: decimal constant, hexadecimal constant, or absolute
value.
Default: VIEW = X'0200'

DL1,DU1,DL2,DU2: decimal constants,
hexadecimal constants, or absolute values.
value: decimal constant, hexadecimal constant, or absolute
value.
Note: LEN and OFF .are ignored when you code any specification
of ARRAY = other than ARRAY = END.
END terminates an array definition.

Default: DTYPE = HEX

value: integers between 0 and 8
Note: If omitted, value specified in the last preceding
BLSQMDEF or BLSQMFLD macro is used.

Default: Hexadecimal.

Default: Number the columns.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: value specified by SNAP, IPCS, or PRDMP.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

Default: ORDER = (1,2)

2-44 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

NAME = label
NAME = *

specifies the name of the control block field described by this BLSQMFLD macro. If
BASELBL is specified on the BLSQMDEF macro, the NAME label will be used with the
BASELBL label to calculate the offset of this field from the start of the control block. If
BASELBL was not specified on the BLSQMDEF macro, then OFF becomes required on
the BLSQMFLD macro.

A single asterisk specifies an unnamed, reserved field. Use of the single asterisk for the
name of a control block field requires that the OFF and LEN parameters be specified.
The dump formatter replaces the asterisk with a "reserved" label.

SHDR=addr
specifies the address of a character string used as a subheading in the control block
format. The address must be valid in an assembler A-type DC instruction. This
parameter should point to a one-byte length field followed by the actual heading character
string. The length byte indicates the length of the heading string only and should not
include the length of the length byte.

If this parameter is specified, only CALLRTN, NEWLINE, NOSPLIT, and VIEW can be
specified. Other parameters will be ignored.

OFF = value
specifies the offset of this field from the beginning of the control block. The value may be
a decimal constant, a hexadecimal constant, or an absolute expression. If this parameter
is specified, the value defined overrides the default field offset generated by the NAME
label on this macro and the BASELBL label on the BLSQMDEF macro.

OFF is ignored if you code any specification of ARRAY = other than ARRAY = END.

This parameter is required if the BASELBL parameter is not specified on the
BLSQMDEF macro or if NAME = * is specified on the BLSQMFLD macro.

LEN = value
specifies the length of the control block field. The value is a decimal constant,
hexadecimal constant, or absolute expression that defines the length of the control block
field. This parameter is required if no data constants with a label exist in the assembly
program as defined by the NAME parameter, or if use of the assembler length attribute
would not result in a correct length determination for the data constant representing the
field.

LEN is ignored if you code any specification of ARRAY = other than ARRAY = END.

An assembly error occurs if LEN is not specified and there is no assembler statement with
a label matching the one specified by NAME.

BLSQMFLD - Specifying a Control Block Format Field 2-45

VIEW = (list)
VIEW = value

specifies up to sixteen different views of the control block fields. Any combination of one
to sixteen view attributes can be specified for each field. The last four bits of the view
pattern of 16 are reserved for the control program. The caller of the dump formatter
provides a view pattern defining those views to be formatted.

When an attribute in the view pattern supplied by the dump formatter's caller (in
ADPLPFMT) matches an attribute in the field view pattern, the field is selected for
formatting.

The list is an unordered list of attributes; each attribute can be a decimal integer between
1 and 16, inclusive (as in VIEW=l,2, ... ,16), binary constant (as in VIEW=B'0010'), or
hexadecimal constant (as in VIEW = X'0080').

The following chart illustrates the view parameter's control block field options provided
through the specification of a 4-digit hexadecimal number. Any combination of the view
fields listed may be specified.

Hexadecimal User-defined fields to be displayed
Code

x'8000' keyfield
x'4000' summary field
x'2000' register save area
x'lOOO' linkage field
x'0800' error fields
x'0400' hexadecimal dump
x'0200' all non-reserved fields
x'OlOO' reserved fields
x'OO80' static array
x'OO40' dynamic array
x'OO20' input field
x'OOlO' output field

\
If this parameter is not specified, the default value of VIEW = X'0200' is used. See IPCS
User's Guide and Reference for more information about ADPLPFMT.

ARRAY = ((DL1,DU1),(DL2,DU2))
ARRAY = value
ARRAY = *
ARRAY = END

specifies that the succeeding BLSQMFLD statements define a set of fields that are
repeated in the control block.

Using the ARRAY parameter on the BLSQMFLD macro indicates that this particular
BLSQMFLD macro instruction is the beginning or the end of an array definition.

The LEN and OFF parameters are ignored when you code any specification of
ARRAY= other than ARRAY = END.

The VIEW specified applies to all fields within the array; therefore, the VIEW specified
on the BLSQMFLD macro that starts an array should be the composite of the VIEW on
all fields within the array.

2-46 SPL: System Macros and Facilities Volume 2

If ARRAY = ((DL1,DU1),(DL2,DU2)) is coded, a two dimensional array is specified.
DL1 is the lower limit of the first dimension, DU1 is the upper limit of the first
dimension, and similarly for DL2 and DU2 for the second dimension. If a lower limit for
a dimension is not specified, a default of 1 is provided. There is no default for the upper
limit of a dimension. However, an asterisk (*) may be coded for either the upper limit or
lower limit of the dimension to indicate that the dimension is to be provided by the
calling program at execution time.

Notes:

1. The correspondence of a dimension to either row or column is determined by the
ORDER keyword.

2. If the array is larger than 65,535 bytes, the calling program must process the array in
sections. The formatter will equate the lower limit for each dimension to the value one
for the purpose of addressing the array entries in a buffer, but will use the specified
values for the purpose of numbering rows and columns in the formatted output.

If ARRAY = value is coded, a one dimensional array (list) is specified. Value defines how
many array entries are contained in the control block.

If ARRAY = * is coded, the number of entries in the one-dimensional array (list) is to be
be provided by the calling program at execution time.

If ARRAY = END is coded, the array definition is terminated.

NEWLINE
specifies that this field must start on a new line of formatted output.

DTYPE=HEX
DTYPE = EBCDIC

specifies the type of data contained in the area to be dumped. DTYPE = HEX indicates
that the area to be dumped contains four-bit hexadecimal digits. DTYPE = EBCDIC
indicates that the area to be dumped contains eight-bit EBCDIC characters. When you
specify DTYPE = HEX, the dumped area includes the actual hexadecimal digits in the
range O-F, plus any EBCDIC characters that are equivalent to 2-digit combinations of
those digits. The equivalent EBCDIC appears within vertical bars. When you specify
DTYPE = EBCDIC, the dumped area includes only the EBCDIC characters, with nothing
between the vertical bars.

NOLABEL
specifies that the field label is not to be printed. NAME is still required for offset
calculation.

CALLRTN
specifies that the dump formatter calls the output line processing exit after the output line
containing this field has been formatted but before it is printed. The output line
processing exit entry point address is specified by the caller in the parameter list when the
dump formatter is in.voked.

PREFIX = value
specifies how many characters are to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter. Value must
be an integer constant greater than or equal to zero and less than or equal to eight. If
PREFIX is omitted from the current BLSQMFLD macro, the value specified on the last

BLSQMFLD - Specifying a Control Block Format Field 2-47

preceding BLSQMFLD or BLSQMDEF macro is used. The BLSQMDEF macro used to
start a model definition may be used to set the value of PREFIX.

NOSPLIT
specifies that the dump formatter attempts to print all the field data on the same output
line. If the data does not fit on the current output line but fits on a single output line, the
dump formatter skips to a new line prior to printing this data field.

NUMDEC
specifies that the columns and rows of a two-dimensional array be numbered in decimal.
The default is hexadecimal.

NOCOLNM
specifies that column numbers (headers) of a two-dimensional array be suppress.ed. The
default is to nU11.lber the columns. (The NUMDEC parameter controls the numbering
system used for numbering the columns.)

STRTCOL = value
specifies the left margin of the formatted output. Value indicates the number of blanks
before the first character. STRTCOL applies only to two-dimensional arrays. This
specification overrides the value defined by the STRTCOL keyword in the BLSQMDEF
macro, or by the host (lPCS, SNAP, or PRDMP), for the duration of displaying the
array. If not specified, a default of zero is provided and the formatter will use the value
specified by the host.

COLNUM = value
specifies the number of columns of a two dimensional array that are to be displayed as a
group. If not specified, or if the specified number of columns will not fit in the currently
available print buffer, the formatter will calculate a value consistent with, and not
exceeding, the maximum line length specified by IPCS, SNAP, or PRDMP.

COLSEP = value
specifies the number of blanks to be placed between the columns of a two-dimensional
array. The default is zero, and the formatter uses a calculated value.

ITEMSEP = value
specifies the number of blanks to be placed between items within an array entry. An
array entry may be a structure, and each element of the structure is referred to as an
"item". If the array entry is a single item, value will be ignored. If ITEMSEP is not
specified, a default of zero is provided and the formatter will use a calculated value when
needed.

ORDER = (1,2)
ORDER - (2,1)

specifies the order in which the data of a two-dimensional array are to be processed. If
ORDER = (1,2) is specified, the data is processed in consecutive rows. If ORDER = (2,1)
is specified, the data is processed in consecutive columns. The default is ORDER = (1,2).

HEXONLY
specifies that the data is to be displayed in hex only. If you omit HEXONL Y, the data is
displayed in both hex and EBCDIC, on the same line, with vertical bars bounding the
EBCDIC portion of the display. HEXONLY is valid only if the view parameter specifies
X'0400', which requests a hexadecimal dump.

2-48 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format functional recovery routines (FRRs).

IEAVTRP3

BLANK
ENTEXT
ENTS
RTMIWA

CSECT
BLSQMDEF CBLEN=X'0320' ,MAINTLV=HBB2102,PREFIX=4,OFFSETS=PRINT,X

HEADER=FRRS
BLSQMFLD NAME=FRRSEMP,OFF=X'OOOO' ,LEN=4,VIEW=X'0202'
BLSQMFLD NAME=FRRSLAST,OFF=X'0004' ,LEN=4jVIEW=X'0202'
BLSQMFLD NAME=FRRSELEN,OFF=X'0008' ,LEN=4,VIEW=X'0202'
BLSQMFLD NAME=FRRSCURR,OFF=X'OOOC' ,LEN=4,VIEW=X'0200'
BLSQMFLD NAME=FRRSRSA,OFF=X'OOlO' ,LEN=24,VIEW=X'0200'
BLSQMFLD SHDR=RTMIWA,VIEW=X'0200' ,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200' ,NEWLINE
BLSQMFLD SHDR=ENTEXT,VIEW=X'0200' ,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200' ,NEWLINE
BLSQMFLD NAME=FRRSXSTK,VIEW=X'0200' ,ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSKM,OFF=X'OOAO' ,LEN=2,VIEW=X'0200' ,NEWLINE
BLSQMFLD NAME=FRRSSAS,OFF=X'OOA2' ,LEN=2,VIEW=X'0200'
BLSQMFLD NAME=FRRSAX,OFF=X'OOA4' ,LEN=2,VIEW=X'0200'
BLSQMFLD NAME=FRRSPAS,OFF=X'OOA6' ,LEN=2,VIEW=X'0200' ,ARRAY=END
BLSQMFLD SHDR=BLANK,VIEW=X'0200' ,NEWLINE
BLSQMFLD SHDR=ENTS,VIEW=X'0200' ,NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200' ,NEWLINE
BLSQMFLD NAME=FRRSENTS,VIEW=X'0200' ,ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSFRRA,OFF=X'0120' ,LEN=4,VIEW=X'0200' ,NEWLINE
BLSQMFLD NAME=FRRSFLGS,OFF=X'0124' ,LEN=4,VIEW=X'0200'
BLSQMFLD NAME=FRRSPARM,OFF=X'0128, ,LEN=24,VIEW=X'0200', X

ARRAY=END
BLSQMDEF END
BLSQSHDR ' ,
BLSQSHDR 'FRR ENTRY EXTENSIONS'
BLSQSHDR 'FRR ENTRIES'
BLSQSHDR 'RTMl WORK AREA FOLLOWS FRR ENTRIES'
END

Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format a STAB control block (SCB).

IEAVTRP4 CSECT
BLSQMDEF CBLEN=X'0018' ,MAINTLV=JBB2125,PREFIX=3,OFFSETS=PRINT,X

HEADER=SCB
BLSQMFLD NAME=SCBCHAIN,OFF=X'OOOO' ,LEN=4,VIEW=X'0200'
BLSQMFLD NAME=SCBEXIT,OFF=X'0004' ,LEN=4,VIEW=X'0200'
BLSQMFLD NAME=SCBFLGS1,OFF=X'0008' ,LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBPARMA,OFF=X'0009' ,LEN=3,VIEW=X'0200'
BLSQMFLD NAME=SCBFLGS2,OFF=X'OOOC' ,LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBOWNRA,OFF=X'OOOD' ,LEN=3,VIEW=X'0200'
BLSQMFLD NAME=SCBFLGS3,OFF=X'OOlO',LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBPKEY,OFF=X'OOll' ,LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBID,OFF=X'ooi2' ,LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBRSVRE,OFF=X'0013' ,LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBXPTR,OFF=X'0014' ,LEN=4,VIEW=X'0200'
BLSQMFLD NAME=*,OFF=X'OOOO' ,LEN=X'0018' ,VIEW=X'0400' ,NOLABEL
BLSQMDEF END
End

BLSQMFLD - Specifying a Control Block Format Field 2-49

Example 3

Operation: Define the format of a very simple control block. Note that this could be done by
using a macro-invocation.

MYBLK
MYBLKABC
MYBLKDEF
MYBLKD80
MYBLKD40
MYBLKGHI
MYBLKEND

DSECT
DC
DC
EQU
EQU
DC
EQU

,
C'ABC'
X'OO'
X'80'
X'40'
v (MYENTRY)

*

My simplest control block ever
Identifier
Flags
1st flag bit
2nd flag bit
Address of my program
End of my control block

Define enough storage to get the block displayed. Note that no ENTRY
statement is required for access to CBMODEL1 from other CSECTs
since CBMODEL1 lies at the origin of the CSECT.

TITLE 'CBMODEL1--Basic Control Block Model'
CBMODEL CSECT, Start definition of simple model
CBMODEL1 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5

BLSQMFLD NAME=MYBLKABC
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of simple model

Add acronym checking, the display of the acronym in EBCDIC,
and descriptive header for the display in the dump.

TITLE 'CBMODEL2--More Elaborate Than 1st Model'
ENTRY CBMODEL2 Permit access from other CSECTs

CBMODEL2 BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLKiPREFIX=5, X

/

ACRONYM=ABC,ACROLBL=MYBLKABC, Acronym field data
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC Show it as EBCDIC data
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of alternate model
END CBMODEL1 End definition of formatting model

2-50 SPL: System Macros and Facilities Volume 2

Example 4

Operation: Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

---01--- ---02--- ---03--- ---04---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- --------

001 00010001 00010002 00010003 00010004
002 00020001 00020002 00020003 00020004
003 00030001 00030002 00030003 00030004
004 00040001 00040002 00040003 00040004
005 00050001 00050002 00050003 00050004
006 00060001 00060002 00060003 00060004
007 00070001 00070002 00070003 00070004
008 00080001 00080002 00080003 00080004
009 00090001 00090002 00090003 00090004
010 00100001 00100002 00100003 00100004

Therefore, code the macro instruction that will create a formatting model to do the following:

Number rows 1 through 10.
Number columns 1 through 4.
Use the decimal numbering system for numbering rows and columns.
Place data in to the array row by row.
Put one blank between each column.
Display 4 columns in each group.
Start printing in the second column from the left margin.
View all non-reserved fields.
Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD NAME=ARRAYX,ARRAY=«1,10),(1,4)),VIEW=X'0200', X
STRTCOL=1,COLSEP=1,COLNUM=4,NUMDEC,NOLABEL

BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200'

BLSQMFLD - Specifying a Control Block Format Field 2-51

Example 5

Operation: Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
0003000\3
00030004

00090001
00090002
00090003
00090004
0.0100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

---05--- ---06--- ---07--- ---08---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- --------

000 00010001 00020001 00030001 00040001
001 00010002 00020002 00030002 00040002
002 00010003 00020003 00030003 00040003
003 00010004 00020004 00030004 00040004

---OA--- ---OB--- ---OC--- ---OD---
ARRENTRY ARRENTRY ARRENTRY ARRENTRY
-------- -------- -------- --------

000 00060001 00070001 00080001 00090001
001 00060002 00070002 00080002 00090002
002 00060003 00070003 00080003 00090003
003 00060004 00070004 00080004 00090004

---09---
ARRENTRY

00050001
00050002
00050003
00050004

---OE---
ARRENTRY

00100001
00100002
00100003
00100004

Therefore, code the macro instruction that will create a formatting model to do the following:

Number rows 0 through 3.
Number columns 5 through 14.
Use the hexadecimal numbering system for numbering rows and columns.
Put two blanks between each column.
Display 5 columns in each group.
Start printing in the fourth column from the left margin.
View all non-reserved fields.
Print the field label ARRENTRY.

One way to code the macro:

BLSQMFLD NAME=ARRAYX,ARRAY=((5,14),(0,3)),VIEW=X'0200', X
STRTCOL=3,COLSEP=2,COLNUM=5,NOLABEL,ORDER=(2,1)

BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200'

2-52 SPL: System Macros and Facilities Volume 2

I BLSQSHDR - Generate Model Subheader

The BLSQSHDR macro instruction lets you define a text string, called a subheader, and
associate it with a particular data field in a dump format. Whenever the dump occurs, the text
string appears in the dump as an aid in spotting the associated data field.

BLSQSHDR, with its text string, should be placed after the end of the format model definition.
You create a format model definition by coding two BLSQMDEF macros, one at the beginning
of the definition and another at the end. The BLSQMFLD macros, which define the data fields
of the format model, are included between these two BLSQMDEF macros. The SHDR fields
of the included BLSQMFLD macros reference text strings (subheaders) that you have placed
after the end of the model definition. The order of the macros is:

BLSQMDEF
BLSQMFLD

BLSQMFLD
BLSQMDEF
BLSQSHDR

Thus, each BLSQSHDR macro placed after the end of the model must have a label that can be
referenced by the BLSQMFLD macros within the model. The text string of the BLSQSHDR
macro is enclosed in single quotation marks. L(x) may also be coded if the length of the string
is different than the length of the enclosed text string.

The BLSQSHDR macro instruction is written as follows:

name

b

BLSQSHDR

b

L(x)

'text'

name: symbol. Begin name in column 1.

One or more blanks must precede BLSQSHDR.

One or more blanks must follow BLSQSHDR.

x: Length of subheader - if other than
length of actual text
text: text of subheader

BLSQSHDR - Generate Model Subheader 2-53

Example

L(x)
specifies the length of the subheader. Only necessary if the length is to be different from
the length of the enclosed text string.

SHDROI BLSQSHDR 'This is a subheader'

SHDR02 BLSQSHDR L(6)' ,

2-54 SPL: System Macros and Facilities Volume 2

BLSRESSY - Map IPCS Symbol Table Record

Example

The BLSRESSY macro instruction maps the symbol table record that a user-written exit
routine (operating under IPCS) passes to the get symbol and equate symbol services.

With the BLSRESSY macro instruction, users of the get symbol and equate symbol services can
retrieve definitions described in the IPCS symbol table and create definitions for later use by the
IPCS user or by other routines. For information about the get symbol and equate symbol
services, see MVS/XA Interactive Problem Control System User's Guide and Reference.

The BLSRESSY macro instruction is written as follows:

name

b

BLSRESSY

b

DSECT=YES
DSECT=NO

name: symbol. Begin name in column 1.

One or more blanks must precede BLSRESSY.

One or more blanks must follow BLSRESSY.

Default: DSECT = YES

NOTE: Users must supply a label (name), and start it in column 1 of the BLSRESSY macro
instruction. When the BLSRESSY macro is executed, the label becomes the record name and
the prefix to the name of each field in the record.

The parameters are explained as followed:

DSECT=YES
DSECT=NO

specifies whether the record mapped by BLSRESSY is to be mapped as a DSECT (YES)
or not (NO).

Operation: Map the IPCS symbol table record but not as a DSECT.

ESSY BLSRESSY DSECT=NO

BLSRESSY - Map IPCS Symbol Table Record 2-55

CALLDISP - Force Dispatcher Entry

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of this
macro instruction.

The CALLDISP macro instruction expands into an SVC or branch that results in the caller's
status being saved in the current TCB/RB and then the dispatcher is entered. The dispatcher
then searches for the highest priority ready work to dispatch. When this task is redispatched,
control is returned to the next sequential instruction.

When control returns to the caller:

• The cross memory mode is unchanged.

• Registers 14-1 are destroyed if FIXED = NO is specified; otherwise registers are unchanged.

• No locks are held.

• Control returns enabled.

• PCLINK status is saved and restored.

The CALLDISP macro instruction is written as follows:

name

b

CALLDISP

b

BRANCH=NO
BRANCH = YES

,FIXED=YES
,FIXED=NO

,FRRSTK = SAVE
,FRRSTK = NOSAVE

name: symbol. Begin name in column 1.

One or more blanks must precede CALLDISP.

One or more blanks must follow CALLDISP.

Default: BRANCH = NO

Default: (Available only if BRANCH =YES is coded)
FIXED = YES

Default: (Available only if BRANCH = YES is coded)
FRRSTK = NOSAVE

2-56 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

BRANCH=NO
BRANCH=YES

specifies whether the branch entry (BRANCH = YES) or the SVC entry
(BRANCH = NO)to the dispatcher is to be used. BRANCH = YES is restricted to key 0
supervisor state callers. The default is BRANCH = NO. Routines that are unlocked,
have no enabled unlocked task FRRs on the stack, and are in home mode can use
BRANCH=NO. "Using the BRANCH=YES Option of the CALLDISP Macro
Instruction" in Volume 1 lists requirements for routines that use BRANCH = YES.

,FIXED = YES
,FIXED=NO

specifies that the code invoking branch entry CALLDISP is in fixed storage
(FIXED = YES) or in pageable storage (FIXED=NO). For FIXED=NO, registers 14-1
are altered.

,FRRSTK = SAVE
,FRRSTK = NOSA VE

specifies that the current FRR stack be saved and restored (FRRSTK = SAVE), if at least
one of the FRRs is an enabled unlocked task (EUT) FRR, or not saved
(FRRSTK = NOSA VE).

When FRRSTK = SAVE is specified:

• The caller must not hold any locks or an abend results.

Note: For MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement
or MVS/System Product Version 2 Release 1.3 Availability Enhancement and later
releases:

If any EUT FRRs exist, the current FRR stack is saved and the caller may hold
either the LOCAL or CML lock. CALLDISP releases the lock before going to
the dispatcher.

If no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend
occurs.

• Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs have
been deleted.

For more information, see "Suspension and Resumption of Request Blocks" in Volume I
for an explanation of the CALLDISP function used with SUSPEND/RESUME
processing.

Specifying FRRSTK = NOSA VE causes the FRR stack to be purged and the LOCAL or
CML lock to be released before entering the dispatcher.

Note: If there are any EUT FRRs on the stack, the SVC interface to CALLDISP cannot be
used; the BRANCH = YES option must be used.

CALLDISP - Force Dispatcher Entry 2-57

Example 1

Example 2

Operation: Pass control to another ready task.

CALLDISP

Operation: A non-page-fixed task with an enabled, unlocked task FRR gives control to the
dispatcher. When the task regains control, the contents of registers 14, 15, 0 and 1 will have
changed.

CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

2-58 SPL: System Macros and Facilities Volume 2

CALLRTM - Call Recovery Termination Manager

The CALLR TM macro instruction is usually used to direct the services of the recovery
termination manager to a task or address space other than itself or its caller. The recovery
termination manager selects the appropriate recovery or termination process according to the
status of the system and the requests of its invokers.

Only key zero supervisor state routines can use CALLRTM. If the current address space is
terminated (MEMTERM), control might or might not return to the caller before the
MEMTERM takes effect. See "Invoking the Recovery Termination Manager" in Volume 1 for
the complete recovery termination interface.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

The CALLR TM macro instruction is written as follows:

name

b

CALLRTM

b

TYPE = ABTERM
TYPE = MEMTERM

,COMPCOD = comp code

,REASON = code

,ASID=asid

,TCB = tcb addr

,DUMP=YES
,DUMP = NO

,STEP=NO
,STEP=YES

,DUMPOPT=parm list addr

name: symbol. Begin name in column 1.

One or more blank~ must precede CALLRTM.

One or more blanks must follow CALLRTM.

comp code: symbol, decimal digit, or register (2) - (12).

code: a symbol, decimal or hexadecimal number, or register (2) - (12).

asid: decimal digits 0-32,765 or register (2) - (15).

tcb addr: 0, or register (2) - (12).
Note: This parameter may only be specified with TYPE = ABTERM.

Default: DUMP = YES
Note: This parameter may only be specified with TYPE = ABTERM.

Default: STEP = NO
Note: This parameter may only be specified with TYPE = ABTERM.

parm list addr: register (3)-(15).

CALLRTM - Call Recovery Termination Manager 2-59

The parameters are explained as follows:

TYPE = ABTERM
TYPE = MEMTERM

specifies whether the services of the recovery termination manager are being directed
towards task termination (ABTERM) or address space termination (MEMTERM). For
MEMTERM, all recovery processing in the address space is skipped.

Unless ASID is also specified, TYPE = ABTERM is supported in home mode only. In a
cross memory environment, if ASID is not specified, the TCB must reside in the home
address space; if ASID is specified, the TCB must be in the same address space as the
ASCB.

,COMPcon = compcode
specifies the system completion code associated with the abnormal termination. This
parameter can be specified as a hexadecimal code (x'80A'), a decimal code (2058), or a
register containing a hexadecimal code; in all cases, the result is hexadecimal.

,REASON = code
specifies additional information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is any 32-bit hexadecimal
number or 31-bit decimal number. In all cases the result is hexadecimal.

If the reason code is explicitly specified using the REASON parameter, the hexadecimal
representation of the code is passed to RTM in register 6 and a flag (X'04') is set in byte
o in general register 1. If the REASON code is not specified, this flag is set to O.

The reason code value is passed to recovery exits in the SDW ACRC field of the SDW A.
This value can be altered by the SETRP macro instruction. If altered, the altered value is
sent to the next recovery exit.

,ASID=asid
specifies the address space identifier of the address space to be terminated (for
MEMTERM) or the address space identifier of the address space containing the TCB of
the task to be terminated (for ABTERM). If you omit this parameter or specify zero, the
current address space is assumed. If you specify this parameter, you must supply an
18-word work area and pass its address in register 13.

Note: The contents of register 2 is destroyed if this parameter is used.

,TCB = tcb addr
specifies the TCB address of the task to be terminated. In a cross memory environment,
if ASID is not specified, the TCB must reside in the home address space; if ASID is
specified, the TCB must be in the same address space as the ASCB.

Note: The TCB resides in storage below 16 megabytes.

,DUMP = YES
,DUMP'=NO

specifies that a dump is (YES) or is not (NO) to be taken. If the DUMPOPT parameter
is not also specified, the contents of the dump are defined by the / /SYSABEND,
//SYSMDUMP, or //SYSUDUMP DD statement and the system or user-defined defaults.

/

2-60 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

,STEP=NO
,STEP=YES

specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated.

,DUMPOPT = parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
parameter list is used to produce a tailored dump, and can be created using the list form
of the SNAP macro instruction, or a compatible list can be created. The system dump
options specified by theCHNGDUMP operator command can add to or override this
parameter list. All recovery routines entered for the failure can also add to the list of
dump options. The TCB, DCB, and STRHDR options available on SNAP are ignored if
they appear in the parameter list; the TCB used is for the task that received the ABEND
and the DCB used is provided by the ABDUMP routine. If a //SYSABEND,
//SYSMDUMP, or //SYSUDUMP DD statement is not provided, the DUMPOPT
parameter is ignored.

Note: The contents of register 3 is destroyed if this parameter is used.

Register 15 contains one of the following return codes for TYPE = MEMTERM only:

Hexadecimal
Code

o
4

Meaning

The MEMTERM request was processed successfully.

MEMTERM processing was not performed. The address space was marked as not suitable for
MEMTERM processing. RTM writes an entry to SYS1.LOGREC if it rejected the
MEMTERM request due to a damaged ASCB, if the address space must not be terminated, or
if ASID exceeds ASVTMAX.

Operation: Terminate the current address space with a completion code of 123.

CALLRTM TYPE=MEMTERM,COMPCOD=123,ASID=O

Operation: Schedule the TCB whose address is specified in register 8 for abnormal termination.
The abnormal termination of this TCB takes place in the address space identified by the ASID
specified in register 5, and has a completion code of 123.

CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8)

CALLRTM - Call Recovery Termination Manager 2-61

I CBPZDIAG - Build Diagnostic Stack Entry

The CBPZOIAG macro must be included in the unit information module (VIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SP L: System Modifications for a complete description of coding a VIM.

The CBPZOIAG macro builds a diagnostic stack entry. The diagnostic stack entry contains
debugging information that is placed in the system diagnostic work area (SOW A) if an ABEND
occurs in the VIM. The diagnostic stack entry is contained within the VIM.

Note: A UIM must not establish an EST AE to provide diagnostic information in the event that it
A BENDs. Rather, it must:

1. Specify the diagnostic information in a diagnostic stack entry, using the CBPZDIAG macro.

2. Use the CBPZPPDS macro to put the entry on the diagnostic stack in its entry logic.

3. Use the CBPZPPDS macro to remove the entry from the diagnostic stack in its exit logic.

The ESTAE routine in the control routine for the MVS configuration program (CBPMVSCP)
uses the information in the active diagnostic stack entry to fill in the SDW A. Also, the EST AE
routine builds a symptom string in the variable recording area (VRA) consisting of all the
CSECT names in the entries on the diagnostic stack.

The CBPZOIAG macro is written as follows:

name

b

CBPZDIAG

b

MODNAME = modname

CSECT = csectname

COMP=id

DESC=text

VRADA TA = label

• RELA TED = value

2-62 SPL: System Macros and Facilities Volume 2

name: symbol. Begin name in column 1.

One or more blanks must precede CBPZDIAG.

One or more blanks must follow CBPZDIAG.

modname: CBPUCnnn
n is a decimal digit.

csectname: CBPUCnnn
n is a decimal digit.

id: component identifier. 5 bytes Jong.

text: character string in quotes.

label: symbolic label

value: any valid macro keyword specification .

name
specifies the label on the diagnostic stack entry. The labels on the fields generated in the
diagnostic stack entry will start with the same characters as naine does. (If name exceeds
four characters, only the first four characters will be used in building the labels on the
generated fields.) This name is required.

MODNAME = modname
specifies the name of the load module that contains the diagnostic stack entry. If an
ABEND occurs, this value will be placed in SDWA field SDWAMODN. The module
name is eight characters long and is in the form of CBPVCnnn, where nnn is a decimal
number from 001 to 256, inclusive, for customer-written VIMs. This parameter is
required.

CSECT = csectname
specifies the name of the CSECT that contains the diagnostic stack entry. If an ABEND
occurs, this value will be placed in SDW A field SDW ACSCT. This parameter is optional.
The default for this parameter is the assembler symbol, &SYSECT.

COMP=id
specifies the component identifier of the VIM. If an ABEND occurs, this value will be
placed in SDWA field SDWACID. The component identifier should be five bytes long.
This parameter is required.

DESC=text
specifies the VIM description, which should contain the unit names of the device(s) that
the VIM supports. If an ABEND occurs, this value will be placed in SDW A field
SDW ASC. The VIM description can be a maximum of 23 bytes long. This parameter is
required.

VRADATA = label
specifies the name of an array that contains the addresses of data to be placed in the
VRA, if an ABEND occurs. The array contains the VRA keys and data lengths, in
addition to the data addresses. This parameter is optional. If it is not specified, no
specific control blocks or data areas for the VIM will be placed in the VRA. (On
IODEVICE calls, the diagnostic stack entry for CBPICBBR, which is the routine that
invokes VIMs on IODEVICE calls, causes the IODV to be placed in the VRA.)

Each entry in the VRA array contains eight bytes. The format of an entry is as follows:

Offset

o
2

3

4

Length

2

4

Function

Reserved, must be set to zero in all but the last entry in the array.

Key of VRA data, as specified in IHA VRA.

Length of VRA data.

Address of VRA data. If this field is set to zero, the EST AE routine will skip
this entry when moving data into the VRA. UIMs are permitted to
dynamically update this field while the diagnostic entry is on the diagnostic
stack.

The last entry in the VRA array must be set to X'FFFFFFFFFFFFFFFF'.

CBPZDIAG - Build Diagnostic Stack Entry 2-63

I ,RELATED = value
I specifies information used to self-document macro instructions by 'relating' functions or
I services to corresponding functions or services. The format and contents of the
I information specified are at the discretion of the user, and may be any valid coding
I values.

2-64 SPL: System Macros and Facilities Volume 2

I CBPZLOG - Log an MVS Configuration Program Message

The CBPZLOG macro can be used only in the unit information module (VIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SP L: System Modifications for a complete description of coding a VIM.

The CBPZLOG macro is used to issue a message to the MVS configuration program log file. A
VIM must have addressability to the CPVT when it issues the CBPZLOG macro. It must also
invoke the CBPZLOGR mapping macro. (CBPZLOGR maps the parameter list that is built by
the CBPZLOG macro.)

The CBPZLOG macro is written as follows:

name

b

CBPZLOG

b

MID=id

,SEV=value
,STMT = ITRHSNBR

,TEXT = label

name

name: symbol. Begin name in column 1.

One or more blanks must precede CBPZLOG.

One or more blanks must follow CBPZLOG.

id: CBPnnnI. n is a decimal digit.

value: LOGRINFO, LOGRWARN, LOGRERR, or LOGRTERM.
must be coded as shown.

label: symbolic label.

specifies the label to be generated on the first instruction in the macro expansion. The
name is optional.

MID=id
specifies the message identifier. The message identifier is seven characters long and is in
the form of CBPnnnI, where nnn is a decimal number from 900 to 999 inclusive for
user-written VIMs. This parameter is required.

SEV= va/ue
specifies the message severity. The following severities are supported:

LOGRINFO
informational message. This message has no effect on MVS configuration
processing or its return code.

CBPZLOG - Log an MVS Configuration Program Message 2-65

? •

LOGRWARN
warning message. This message has no effect on MVS configuration program
processing but will cause a return code of 4 to be issued (unless a higher severity
message is issued.)

LOGRERR
error message. This message will prevent the MVS cfJnfiguration program from
building any I/O configuration members, and will cause a return code of 8 to be
issued (unless a higher severity message is issued.)

LOGRTERM
terminating message. This message causes the MVS configuration program to
terminate its processing and issue' a return code pf 16. A UIM must never issue a
terminating' message.

This parameter, which is optional, defaults to LOGRERR ..

Note: The equates LOGIUNFO, LOGRWARN, LOGRERR and LOGRTERM are
generated by the CBPZLOGR macro.

STMT = ITRHSNBR
specifies the number of the statement in the MVS configuration program input stream
that the message refers to. Field ITRHSNBR in the internal text record header (mapped
by CBPZITRH) contains the statement number. This parameter is optional. If it is
omitted, no statement number will be associated with the message.

TEXT = label
specifies the label of the message text. This text contains up to 255 bytes of data. The
length of the text is determined by the length attribute of this field. This parameter is
required.

Note: The message service will compress multiple blanks in the text and will split the text
across multiple lines if necessary.

, .2-66 SP!-: ,S~stem ~acrqs and Facilities Vol,ume 2

I CBPZPPDS - Push/Pop Diagnostic Stack Entry

The CBPZPPDS macro must be included in the unit information module (VIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZPPDS macro is used to push an entry on (put an entry on) or pop an entry from
(remove an entry from) the diagnostic stack. A UIM must have addressability to the CPVT
when it issues the CBPZPPDS macro. It must also invoke the CBPZDIAG macro to build the
diagnostic stack entry that is to be pushed on or popped from the diagnostic stack.

The CBPZPPDS macro is written as follows:

name

b

CBPZPPDS

b

PUSH
POP

DIAG = label

,RELATED = value

name

name: symbol. Begin name in column 1.

One or more blanks must precede CBPZPPDS.

One or more blanks must follow CBPZPPDS.

label: symbolic label.

value: any valid macro keyword specification.

specifies the name on the first instruction in the macro expansion. The name is optional.

PUSH

POP

specifies that the designated diagnostic entry is to be put on the diagnostic stack. Either
PUSH or POP must be specified;

specifies that the designated diagnostic entry is to be removed from the diagnostic stack.
Either PUSH or POP must be specified.

DIAG == label
identifies the diagnostic entry. This name must be specified on the label field of the
CBPZDIAG macro invocation.

CBPZPPDS - Push/Pop Diagnostic Stack Entry 2-67

\

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

See the CBPZDIAG macro description for more information about diagnostic entries.

2-68 SPL: System Macros and Facilities Volume 2

CHANGKEY - Change Virtual Storage Protection Key

The CHANGKEY macro instruction changes the protection key and fetch protection status of
one or more pages of virtual storage. The CHANGKEY function is available only for use by
system components that execute in supervisor state and key zero. Callers can be enabled or
disabled and cannot hold any lock that would prevent RSM from obtaining any RSM lock.

The CHANGKEY function is valid for virtual storage obtained by GETMAIN in page
multiples from problem program subpools. Callers must provide an 18-word save area and
place the address of the save area in register 13. If the caller is disabled, the save area must be
in fixed storage.

The CHANGKEY macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede CHANGKEY.

CHANGKEY

b One or more blanks must follow CHANGKEY.

R,BA = page addr ,EA = page addr
L,LIST AD = list addr

page addr: A-type address or register (1) - (12).
Note: The R-type macro expansion alters the contents of register 2. EA
should not be specified as (1).
list addr: A-type address or register (1) - (12).

,KEY = stor key stor key: Decimal digit 1-15 or register (0) or register (3) - (12).

,BRANCH = YES Required.

The parameters are explained as follows:

R,BA = page addr
EA = page addr
L,LISTAD = list addr

specifies the type of CHANGKEY request:

R indicates a request to change the key of a single area of virtual
storage.

L indicates a request to change the key of one or more areas of virtual
storage.

BA specifies the address of the first byte of the first page of the
virtual storage area whose key is to be changed.

EA specifies the address of the first byte of the last page of the
virtual storage area whose key is to be changed.

CHANGKEY - Change Virtual Storage Protection Key 2-69

Example 1

Example 2

Notes:

1. BAs,EA

2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the addressing
mode of the issuer of the macro.

LIST AD specifies the address of the first double-word of a variable length parameter list
in fixed storage. The first word of each element is defined as BA above and the second
word of each element as EA above. If the high-order bit of the second word is one that
element is the last element in the parameter list.

,KEY = stor key
specifies the new storage key and fetch protection status for the virtual storage areas
specified. If the stor key specification is a decimal digit, then the supervisor assumes the
user wants fetch protection. If the user does not want fetch protection, he should specify
the protection key he wants in bits 24-27 of a register and leave bit 28 at zero to indicate
that he doesn't want fetch protection.

,BRANCH = YES
The only entry available into the CHANGKEY service routine is branch entry.

Note: The requestor must have addressability to the CVT.

Upon completion of the CHANGKEY macro instruction, register 15 contains a zero return
code. If a caller requested that the key be changed to key 0, the caller is abended with a code
X'08F'.

Operation: Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.

CHANGKEY R,BA=(REG5),EA=(REG5),KEY=8,BRANCH=YES

Operation: Change the storage key and ensure fetch protection of two noncontiguous pages of
virtual storage addressed by PAGEl and PAGE2 respectively.

CHANGKEY L,LISTAD=PLIST,KEY=lO,BRANCH=YES

PLIST DC 2A(PAGE1)
DC A{PAGE2)
DC AL1(X'80')
DC AL3 (PAGE2)

FIRST ELEMENT IN LIST
BA PART OF SECOND ELEMENT
INDICATES LAST ELEMENT IN LIST
EA PART OF SECOND ELEMENT

2-70 SPL: System Macros and Facilities Volume 2

CIRB - Create Interruption Request Block

The CIRB macro instruction causes a supervisor routine (called the exit effector routine) to
create an interruption request block (IRB). In addition, other parameters of this macro
instruction may specify the building of a register save area and/or a work area to contain
interruption queue elements, which are used by supervisor routines in scheduling the execution
of user exit routines.

Branch Entry Interface

For BRANCH = YES, the branch entry interface is as follows:

• The caller must be in supervisor state, key zero, and own the LOCAL lock and no locks
above the SALLOC lock in the locking hierarchy.

• The caller must pass a TCB address in register 4 to be used by GETMAIN when allocating
space for the IRB and for the problem program save area. Also, if a problem key is
specified in the KEY = parameter of the CIRB, the TCBPKF field of that TCB is used.

• The caller must include the CVT mapping macro.

• Upon return, register 1 contains the address of the created IRB, registers 0, and 2-1~ are
unchanged, and register 15 is unpredictable.

• Control is returned in supervisor state, key zero, with the same locks held as on entry.

Note: The IRB address is returned in register 1.

CIRB - Create Interruption Request Block 2-71

The CIRB macro instruction is written as follows:

name

b

CIRB

b

EP = entry point addr

,KEY=PP
,KEY=SUPR

,MODE=PP
,MODE=SUPR

,SVAREA=NO
,SV AREA = YES

,RETIQE=YES
,RETIQE=NO

,STAB = (DYN)

,WKAREA = workarea size

,BRANCH=NO
,BRANCH = YES

,RETRN=NO
,RETRN=YES

,AMODE = CALLER
,AM ODE = DEFINED

name: symbol. Begin name in column 1.

One or more blanks must precede CIRB.

One or more blanks must follow CIRB.

entry point addr: RX-type address, or register (0) or (2) - (12).

Default: KEY = PP

Default: MODE=PP

Default: SV AREA = NO

Default: RETIQE = YES

workarea size: Decimal digit, or register (2) - (12).
Default: zero

Default: BRANCH = NO

Default: RETRN = NO
Note: This parameter has meaning only if RETIQE = NO is specified above.

Default: AMODE = CALLER

The parameters are explained as follows:

EP = entry point addr
specifies the address of the entry point of the user's asynchronous exit routine.

,KEY=PP
,KEY=SUPR

specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro instruction (PP).

,MODE=PP
,MODE=SUPR

specifies whether the asynchronous exit routine executes in problem program (PP) or
supervisor (SUPR) mode.

2-72 SPL: System Macros and Facilities Volume 2

,SVAREA=NO
,SV AREA = YES

specifies whether to obtain a 72-byte register save area from the virtual storage assigned
to the problem program. If a save area is requested, CIRB places the save area address in
the IRB. The address of this area is passed to the user routine via register 13.

,RETIQE=YES
,RETIQE=NO

specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

,STAB = (DYN)
specifies that the IRB (including the work area) is to be freed by EXIT.

Note: If the STAB parameter is omitted from the CIRB macro instruction, the IRB
remains available for later use by the task issuing the macro.

,WKAREA = workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area
may be used to build IQEs. The first four bytes of the work area that is obtained
contains the address of the next available IQE (RBNEXAV field). The maximum size is
255 double words.

,BRANCH=NO
,BRANCH = YES

specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided.

,RETRN=NO
,RETRN=YES

specifies that the IQE is (YES) or is not (NO) returned to the available queue when the
asynchronous exit terminates.

,AMODE = CALLER
,AMODE = DEFINED

specifies the addressing mode in which the exit routine is to be given control.

If CALLER is specified, the exit routine receives control in the same addressing mode as
the caller.

If DEFINED is specified, the addressing mode of the exit routine is pointer defined. This
means that the addressing mode is determined by the setting of the high order bit of the
entry point address for the exit routine. If the bit is set, the addressing mode is 31-bit; if
the bit is not set, the addressing mode is 24-bit.

CIRB - Create Interruption Request Block 2-73

Example 1

Example 2

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit is scheduled
via the IQE interface to stage 2 exit effector, and receives control in the supervisor state. The
IRB is to be freed when it terminates. The exit receives control at the IQERTN label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface
to stage 2 exit effector is used to schedule the routine. The exit gets control at the RQETEST
label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO

2-74 SPL: System Macros and Facilities Volume 2

CPOOL - Perform Cell Pool Services

The CPOOL macro instruction creates a cell pool, obtains or returns a cell to the cell pool, or
deletes the previously built cell pool, according to the function requested.

The CPOOL macro instruction is also described in Supervisor Services and Macro Instructions
with the exception of the KEY, TCB, and LINKAGE = BRANCH parameters.
LINKAGE = BRANCH can be used only by callers in supervisor state and key o. TCB and
KEY can be used only by supervisor state, key 0-7, or APF-authorized callers. Problem
programs cannot create cell pools in subpools greater than 127. In order to create a cell pool in
a subpool greater than 127, the user must be in system key, supervisor state, or be
APF-authorized. On entry to this macro, users who specify the parameters: BUILD, DELETE,
or REGS = SAVE must pass the address of a 72-byte save area in register 13.

The caller's secondary ASID is preserved when a PC instruction is issued; however, the caller
cannot be in secondary addressing mode when issuing this macro instruction.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

CPOOL - Perform Cell Pool Services 2-75

The CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD
GET
FREE
DELETE

,UNCOND
,U
,COND
,C

,PCELLCT = primary cell count

,SCELLCT = secondary cell count

,CSIZE = cell size

,SP = subpool number

,LOC=BELOW
,LOC = (BELOW,ANY)
,LOC=ANY
,LOC=RES
,LOC = (RES,ANY)

,CPID = pool id

,CELL = cell addr

,KEY = key number

,TCB = tcb addr

,HDR=hdr

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

,REGS = SAVE
,REGS=USE

2-7 6 SPL: System Macros and Facilities Volume 2

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

Default: UNCOND
Note: This parameter can be specified only with the
GET keyword.

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

Default: PCELLCT
Note: This parameter can be specified only with the BUILD keyword.

cell size: symbol, decimal digit, or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP = 0
Note: This parameter can be specified only with the BUILD keyword.

Default: LOC = RES
Note: This parameter can be specified only with the BUILD keyword.

pool id: RX-type address or register (0), (2) - (12).
Note: This parameter must be specified with the GET, FREE, and DELETE
keywords but is optional with the BUILD keyword.

cell addr: RX-type address or register (0), (2) - (12).
Note: This parameter is required with the FREE keyword, is optional with the
GET keyword, and cannot be specified with the BUILD and DELETE keywords.

key number: decimal digits 0-15 or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

tcb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.
Note: This parameter can be specified only with the BUILD keyword.

hdr: character string enclosed in single quotes, RX-type address, or register (0), (2)
- (12).
Default: 'CPOOL CELL POOL'
Note: This parameter can be specified only with the BUILD keyword>

Default: LINKAGE = SYSTEM
Note: This parameter cannot be specified with FREE or GET conditionally.

Default: REGS = SA VE
Note: This parameter can be specified only with the GET or FREE keywords.

The parameters are explained as follows:

BUILD
GET
FREE
DELETE

specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and chaining the
cells together.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

,UNCOND
,U
,COND
,C

when used with GET specifies whether the request for a cell is conditional or
unconditional. If COND or C is specified and the cell pool is empty, the CPOOL service
routine returns to the caller without a cell and places a zero in the cell address. If
UNCOND or U is specified and the cell pool is empty, the CPOOL service routine
extends the pool in order to obtain a cell for the caller.

,PCELLCT = primary cell count
specifies the number of cells expected to be needed in the initial extent of the cell pool.
The CPOOL service module uses PCELLCT and cell size (CSIZE) to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

,SCELLCT = secondary cell count
specifies the number of cells expected to be in each secondary or non-initial extent of the
cell pool. The CPOOL service routine uses SCELLCT and CSIZE to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

,CSIZE = cell size
specifies the number of bytes in each cell of the cell pool. If CSIZE is a multiple of 8, the
cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides on
word boundaries. The minimum value of CSIZE is 4 bytes.

,SP = subpool number
specifies the subpool from which the cell pool is to be obtained. If a register or variable is
specified, the subpool number is taken from bits 24-31.

CPOOL - Perform Cell Pool Services 2-77

,LOC=BELOW
,LOC = (BELOW,ANY)
,LOC=ANY
,LOC = (ANY,ANY)
,LOC=RES
,LOC = (RES,ANY)

specifies the location of virtual storage and real storage for the cell pool. This is helpful
for users with 24-bit dependencies. The location of real storage specified in this
parameter is the location of the storage after it is fixed, either by definition or by
PGFIX, PGFIXA, or PGSER. The specification of the LOC parameter, which applies to
the location of real storage, is only guaranteed when the area is fixed.

LOC = BELOW indicates that virtual and real storage are to be allocated below 16
megabytes.

LOC = (BELOW,ANY) indicates that virtual storage is to be allocated below 16
megabytes and real storage can be anywhere.

LOC = ANY and LOC = (ANY,ANY) indicate that both virtual and real storage can be
located anywhere.

LOC = RES indicates that the location of virtual and real storage depends on the location
of the issuer of the macro. If the i~suer resides below 16 megabytes, virtual and real
storage are allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual
and real storage can be located anywhere.

LOC = (RES,ANy) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual storage is
allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual storage is
allocated anywhere. Real storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform services for cell pools
located in storage above 16 megabytes by specifying LOC=ANY or LOC= (ANY,ANY).

,CPID = pool id
specifies the address or register containing the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
all subsequent CPOOL requests containing the keywords GET, FREE, or DELETE.

,CELL = cell addr
specifies the address or register where the cell address is returned to the user by a GET or
a FREE request.

,KEY = key number
specifies the key in which storage is to be obtained. If a register is specified, the key is
taken from bits 28-31. This parameter is valid for subpools 227, 228, 229, 230, 231, and
241.

,TCB= tcb addr
specifies the TCB address for task related storage requests. The TCB must be within the
currently addressable address space. If the caller specifies zero as the TCB address, the

2-78 SPL: System Macros and Facilities Volume 2

Example 1

CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL request is
for private area storage and the caller does not specify TCB, the default is the TCB
address in PSATOLD.

Note: The TCB resides in storage below 16 megabytes.

,HDR=hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

specifies the type of linkage used in CPOOL processing. LINKAGE = SYSTEM indicates
that the linkage is via a PC instruction, LINKAGE = BRANCH indicates branch entry.
For BUILD and DELETE this processing is between the caller and CPOOL processing;
for GET UNCOND, the linkage is within CPOOL processing (that is, between the
modules IGVCPOOL and IGVCPEXT).

,REGS = SAVE
,REGS = USE

indicates whether or not registers 2-12 are to be saved. If REGS = SAVE is specified, the
registers are saved in a 72-byte user-supplied save area pointed to by register 13. If
REGS = USE is specified, the registers are not saved.

Notes:

1. If GET U,LINKAGE=SYSTEM,REGS= USE is specified, the secondary ASID will not be
preserved. In all other cases the secondary ASID is unchanged.

2. A program in secondary mode cannot use LINKAGE = SYSTEM.

The contents of the registers on return from this macro depends on the parameters specified.

Register(s)

o

2-12

5-13

13

Comment

Contains the cell pool identification

Contains the address of the cell that was obtained if GET unconditional was specified; contains zero
if GET conditional was specified and fails

Saved for BUILD and DELETE requests or if REGS = SAVE is specified

Saved if GET conditional or FREE is specified with REGS = USE

Saved if GET unconditional and REGS = USE is specified or if BUILD or DELETE is specified
with either LINKAGE = SYSTEM or LINKAGE = BRANCH

Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent and 20 cells in all subsequent extents of the cell pool.

CPOOL BUILDfPCELLCT=lO~SCELLCT=20,CSIZE=40,SP=2

CPOOL - Perform Cell Pool Services 2-79

Example 2

Example 3

Example 4

Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.

CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM

Operation: Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPlD=(2),CELL=(3)

Operation: Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage.

CPOOL DELETE,CPID=(2),LINKAGE=SYSTEM

2-80 SPL: System Macros and Facilities Volume 2

CPOOL (List Form)

The list form of the CPOOL macro instruction builds a non-executable parameter list that can
be referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT = primary cell count

,SCELLCT = secondary cell count

,CSIZE = cell size

,SP = subpool number

,LOC = BELOW
,LOC = (BELOW,ANy)
,LOC=ANY
,LOC=RES
,LOC = (RES,ANY)

,CPID = pool id

,KEY = key number

,TCB = fcb addr

,HDR=hdr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal.
Note: PCELLCT must be specified on either the list or the execute form
of the macro.

Default: PCELLCT

cell size: symbol, decimal digit.
Note: CSIZE must be specified on either the list or the execute form of the
macro.

sub pool number: symbol, decimal digit.
Default: SP=O

Default: LOC = RES

pool id: A-type address.

key number: decimal digits 0 - IS.

tcb addr: A-type address or register.
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, A-type address.

The parameters are explained under the standard form of the CPOOL macro instruction with
the following exception:

,MF=L
specifies the list form of the CPOOL macro instruction.

CPOOL (List Form) 2-81

CPOOL (Execute Form)

The execute form of the CPOOL macro instruction is written as follows:

name

b

CPOOL

b

BUILD

,PCELLCT = primary cell count

,SCELLCT = secondary cell count

,CSIZE = cell size

,SP = sub pool number

,LOC=BELOW
,LOC = (BELOW,ANy)
,LOC=ANY
,LOC=RES
,LOC = (RES,ANy)

,CPID = pool id

,KEY = key number

,TCB = teb addr

,HDR=hdr

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

,MF = (E, etrl prog)

name: symbol. Begin name in column 1.

One or ~ore blanks must precede CPOOL.

One or more blanks must follow CPOOL.

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: PCELLCT must be specified on either the list or the execute format
of the macro.

Default: PCELLCT

cell size: symbol, decimal digit, or register (0), (2) - (12).
Note: CSIZE must be specified on either the list or the execute form of the
macro.

subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP = 0

Default: LOC = RES

pool id: RX-type address or register (0), (2) - (12).

key number: decimal digits 0 - 15 or register (0), (2) - (12).

teb addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, RX-type address, or
register (0), (2) - (12).

Default: LINKAGE = SYSTEM

etrl prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro instruction with
the following exception:

,MF = (E,ctrl prog)
specifies the execute form of the CPOOL macro instruction.

2-82 SPL: System Macros and Facilities Volume 2

DATOFF - DAT-OFF Linkage

The DATOFF macro transfers control to a specified routine in the DAT-OFF section of the
nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT. Users must
include the IHAPSA mapping macro with the DATOFF macro instruction. The macro
destroys the contents of general registers 0, 14, and 15.

The DATOFF macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede DATOFF.

DATOFF

b One or more blanks must follow DATOFF.

index Note: See the description of the parameters for the valid options.

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

index
specifies the routine that is to be given control in the DAT -OFF section of the nucleus.
The possible values for index along with the entry point in the routine and the purpose of
the routine follow.

Index Entry Point Purpose

INDCDS IEAVCDS DAT-OFF Compare Double and Swap routine
INDMVCLO IEAVMVCO General DAT-OFF move character

long function
INDMVCLK IEAVMVKY General DAT-OFF move character

long in user key function
INDXCO IEAVXCO General DAT-OFF exclusive

OR character function
INDUSRI IEAVEURI User written function
INDUSR2 IEAVEUR2 User written function
INDUSR3 IEAVEUR3 User written function
INDUSR4 IEAVEUR4 User written function

Note: See SPL: System Modifications for information about how to insert a user-written
function in the nucleus.

DATOFF - DAT-OFF Linkage 2-83

Example 1

Example 2

Example 3

,RELATED = value
specifies information used to document the macro instruction and to relate the service
performed to some corresponding service or function. The format of the information
specified can be any valid coding values that the user chooses.

Operation: Invoke the general DAT-OFF move character long function. The user must supply
the following information in the registers specified:

Registers Information

2 Location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

Note: Registers 2 and 4 contain real addresses.

DATOFF INDMVCLO

Operation: Invoke the general DAT-Off exclusive OR character function. The user must
supply the following information in the registers specified:

Registers Information

2 Location of the results of exclusive OR character processing

3 Bits 24-31 contain one less than the number of bytes on which the exclusive OR is to be performed.

4 Location of the operand on which the exclusive OR is to be performed

Note: Registers 2 and 4 contain real addresses.

DATOFF INDXCO

Operation: Invoke the general DAT -OFF move character long in user key function. The user
must supply the following information in the registers specified:

Registers Information

2 Location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

6 Bits 24-27 contain the PSW key in which the MVeL is to be executed.

Note: Registers 2 and 4 contain real addresses.

DATOFF INDMVCLK

2-84 SPL: System Macros and Facilities Volume 2

DEQ - Release a Serially Reusable Resource

DEQ removes control of one or more serially reusable resources from the active task. Register
15 is set to 0 if the request is satisfied. An unconditional request to release a resource from a
task that is not in control of the resource or a request that contains invalid parameters results in
abnormal termination of the task.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(See Planning: Global Resource Serialization for additional information about global resource
serialization.)

The description of the entire DEQ macro instruction follows. The DEQ macro instruction also
appears in Supervisor Services and Macro Instructions with the exception of the RMC,
GENERIC, TCB, and DCB parameters. These parameters are restricted in use to programs
that run in supervisor state, key 0-7, or with APF authorization, and are, therefore, described
only here.

Except for the TCB and DCB, all input parameters to this macro instruction can reside in
storage above 16 megabytes for callers executing in 3l-bit addressing mode.

DEQ - Release a Serially Reusable Resource 2-85

The standard form of the DEQ macro instruction is written as follows:

b

DEQ

b

name

qnarne addr

,rnarne addr

,rnarne length

,STEP
,SYSTEM
,SYSTEMS

,RET = HAVE
,RET = NONE

,RMC=NONE
,RMC=STEP
,GENERIC = NO
,GENERIC = YES

,TCB = tcb addr

,UCB= ucb addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qnarne addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

rnarne length: symbol, decimal digit, or register (2) - (12).
Note: rname length must coded if a register is specified for rnarne addr.

Default: STEP

Default: RMC=NONE

Defalult: GENERIC = NO
Note: If GENERIC = YES is specified, you must also specify RET = HAVE
above.

tcb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.

itch addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

(
specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. The qname must be the
same name specified for the resource in an ENQ macro instruction.

,rname addr
specifies the address in virtual storage of the name used in conjunction with qname and
scope to represent the resource acquired by a previous ENQ macro instruction. The name
can be qualified and must be from 1 to 255 bytes long. The rname must be the same
name specified for the resource in an ENQ macro instruction.

2-86 SPL: System Macros and Facilities Volume 2

,rname length
specifies the length of the rname described above. The length must have the same value
as specified in the previous ENQ macro instruction. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between I and 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.

,STEP
,SYSTEM
,SYSTEMS

)

specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro instruction requesting the resource.

specifies the end of the resource description.

Note: Multiple resources can be specified with the DEQ macro instruction. You can repeat
qname addr, rname addr, rname length, and the scope until there is a maximum of 255
characters including the parentheses.

,RET = HAVE
,RET = NONE

HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources or if ENQ was
executed with ECB. A return code is set if the resource is not held. NONE specifies an
unconditional request to release all the resources. RET = NONE is the default. The
active task is abnormally terminated if it has not been assigned control of the resources.

In either case, if the resources requested for release were originally queued with the ECB
parameter specified, they are released with return code O.

,RMC=NONE
,RMC=STEP
,GENERIC = NO
,GENERIC=YES

RMC specifies that the reset must-complete function is not to be used (NONE) or that
the requesting task is to release the resources and terminate the must complete function
(STEP). The NONE or STEP subparameter must agree with the subparameter specified
in the SMC parameter of the corresponding ENQ macro instruction.

GENERIC specifies whether or not (YES or NO) all resources with the specified qname
are to be released. In order for the resource to be released, the task must have control of
or be in ECB wait for the resource. (ECB was specified on the original ENQ.) If the task
is waiting for a resource, but is not in an ECB wait, the task remains queued and waiting.

DEQ - Release a Serially Reusable Resource 2-87

The following return codes are associated with a GENERIC DEQ:

Hexadecimal
Code

o

4

8

,TCB = teb addr

Meaning

One or more resources which the task had control of or was in ECB wait for have been
released.

One or more resources were unconditionally requested by the task, but the task was not
assigned control. The task is not removed from the wait condition. However, other
resources with the same qname might have been released.

No resources were found for the specified qname.

specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the DEQ is to be done. The
caller (not the directed task) is abnormally terminated if the RET parameter is omitted
and an attempt is made to DEQ a resource not requested or not owned by the directed
task, except when ECB was specified on the original ENQ. If ECB was specified on the
ENQ and the resource is not owned by the directed task, the TCB DEQ request releases
the resources with a zero return code.

Note: The TCB resides in storage below 16 megabytes.

,VCB = ucb addr
specifies the address of a fullword that contains the address of a UCB for a reserved·
device that is now being released. This parameter is used to release a device reserved with
the RESERVE macro instruction. The DCB parameter is optional.

Note: The UCB resides in storage below 16 megabytes.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user,. and can be any valid coding values.

Return codes are provided by the control program only if RET = HA VE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing the
return codes as shown in Figure 4.

2-88 SPL: System Macros and Facilities Volume 2

Address
Returned in
Register 15

+ o

12

24

36

2 3

Return
Codes

J

RC 1

RC 2

RC 3

4

'::"

<

~

12

Return codes are
12 bytes apart.
starting 3 bytes
from the address
in register 15.

C ,------,---1 ~-,----RC N----"-----IDD
Figure 4. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the DEQ macro instruction. The return codes are
shown below.

Hexadecimal
Code

o
4

8

Meaning

The resource has been released.

The resource has been requested for the task, but the task has not been assigned control. The
task is not removed from the wait condition. (This return code could result if DEQ is issued
within an exit routine which was given control because of an interruption.)

Control of the resource has not been requested by the active task, or the resource has already
been released.

DEQ - Release a Serially Reusable Resource 2-89

Example 1

Example 2

Example 3

Example 4

Operation: Unconditionally release control of the resource in Example I of ENQ, and reset the
"must-complete" state.

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Operation: Conditionally release control of the resource in Example 2 of ENQ.

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Operation: Unconditionally release control of the resource (device) in Example I of
RESERVE.

DEQ (MAJOR3,MINOR3"SYSTEMS),UCB=(R3)

Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to the
current TCB. The length of the rname is explicitly defined as 8 characters.

DEQ (MAJOR1,MINOR1,8,STEP),RET=HAVE

2,..90 SPL: System Macros and Facilities Volume 2

DEQ (List Form)

Use the list form of the DEQ macro instruction to construct a control program parameter list.
The number of qname, rname, and scope combinations in the list form of DEQ must be equal
to the maximum number of qname, rname, and scope combinations in any execute form of
DEQ that refers to that list form. The list form of the DEQ macro instruction is written as
follows:

b

DEQ

b

name

qname addr

,
,rname addr

,rnarne length

,STEP
,SYSTEM
,SYSTEMS

,RET = HAVE
,RET = NONE

,RMC=NONE
,RMC = STEP
,GENERIC=NO
,GENERIC = YES

,TCB=O

,DCB = ucb addr

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One ore more blanks must follow DEQ.

qname addr: A-type address.

rname addr: A-type address.

rname length: symbol or decimal digit.

Default: STEP

Default: RET = NONE

Default: RMC = NONE

Default: GENERIC = NO
Note: If GENERIC = YES is specified, you must also specify RET = HAVE
above.

Note: TCB cannot be specified with RMC above, and must be specified on
the list form if used on the execute form.

ucb addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception:

,MF=L
specifies the list form of the DEQ macro instruction.

DEQ (List Form) 2-91

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the DEQ macro. The parameter list can be generated by the list form of either the DEQ or
the ENQ macro instruction.

The execute form of the DEQ macro instruction is written as follows:

b

DEQ

b

name

qnarne addr

,marne addr

,rnarne length

,STEP
,SYSTEM
,SYSTEMS

,RET=HAVE
,RET = NONE

,RMC=NONE
,RMC = STEP
,GENERIC = NO
,GENERIC = YES

,TCB = tcb addr

,UCB=ucb addr

,RELATED = value

,MP = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
then (,), and all parameters in the list should be specified as indicated at
the left.

qname addr: RX-type address, or register (2) - (12).

mame addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digits, or register (2) - (12).

Note: See note opposite (above.

Note: If GENERIC = YES is specified, you must also
specify RET = HAVE above.

tcb addr: RX-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above, and must be specified on
the execute form if used on the list form.

ucb addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-92 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception:

,MF = (E,ctrl addr)
specifies the execute form of the DEQ macro instruction using a remote control program
parameter list.

DEQ (Execute Form) 2-93

DOM - Delete Operator Message

The DOM macro instruction is used to delete an operator message or group of messages from
the display screen of the operator's console. It can also prevent messages from ever appearing
on any operator's console. When a program no longer requires that a message be displayed, it
can issue the DOM macro instruction to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message mayor may not be
displayed. If the message is being displayed, it is removed when space is required for other
messages. If the message is not yet displayed, it is removed before it gets displayed.

When a WTO or WTOR macro instruction is issued, the system assigns an identification
number to the message and returns this number (32 bits right-justified) to the issuing program
in register 1. When the display of this message is no longer needed, the issuing program can
issue the DOM macro instruction using the identification number that was returned in general
register 1.

The DOM macro instruction is written as follows:

name

b

DOM

b

MSG=addr
MSGLIST = list addr
TOKEN = addr
DOMCBLK = addr

,COUNT = addr

,SYSID = addr

,REPLY = YES

,SCOPE = SYSTEM

,SCOPE = SYSTEMS

name: symbol. Begin name in column 1.

One or more blanks must precede DOM.

One or more blanks must follow DOM.

addr: register (1) - (12), or an address.
list addr: symbol, RX-type address, or register (1) - (12).
addr: register (1) - (12), or an address.
addr: register (1) - (12), or an address

addr: register (2) - (12), or an address.

addr: register (2) - (12), or an address.

The parameters are explained as follows:

2-94 SPL: System Macros and Facilities Volume 2

MSG=
The field or register contains the message id of a message to be deleted.

MSGLIST=
specifies the address of a list of one or more fullwords, each word containing the
message id of a message to be deleted.

REPLY =
specifies that one or more WTOR messages are to be deleted. REPLY is not required,

and is invalid with DOMCBLK, TOKEN, SYSID, COUNT and SCOPE.

DOMCBLK=
specifies the address of a DOM control block that is to be used as input for the DOM
macro. Only authorized programs can issue DOMCBLK, which is mutually exclusive with
all keywords except for SCOPE.

TOKEN =
specifies a field or register containing a 4-byte token that is associated with messages to be
'deleted. When you issue WTO or WTOR to write a message, you can choose a token
value, and specify it as an input parameter to WTO(R) via the TOKEN keyword.
WTO(R) returns control to the application with a message id in register 1. To delete the
message by the TOKEN method, ignore the message id returned by WTO(R) in register 1,
and specify the token value instead, using the TOKEN keyword when you issue DOM.
TOKEN is an alternate method for identifying messages, which is independent of the
register 1 message ide

Authorized users may delete any messages originally issued under the same ASID and
system id with this keyword. Unauthorized users may delete only those messages that
were originally issued under the same jobstep TCB, ASID, and system id. The value of
the token may not be the same as the id that was returned in register 1 after a WTO or
WTOR. TOKEN is mutually exclusive with MSG, MSGLIST, COUNT, DOMCBLK,
and REPLY.

SYSID=
specifies a field or register containing the I-byte id of the system on which the message
was issued. If no message ids are specified, (that is, MSG or MSGLIST is not specified)
all messages issued from the specified system are deleted. If message ids are specified, (i.e.,
MSG orMSGLIST has been specified), messages indicated by the MSG or MSGLIST
keyword issued from the specified system are deleted.

SYSID is invaliid with DOMCBLK, COUNT, and REPLY. SYSID can be used with the
TOKEN keyword to delete all messages originally issued from a particular system with
the specified TOKEN. Authorized users may delete any messages originally issued under
the same ASID when TOKEN and SYSID are specified. Unauthorized users may delete
only those messages that were originally issued under the same jobstep TCB and ASID
when TOKEN and SYSID are specified. If an address is used, the address points to a
I-byte field which contains the system id.

COUNT =
specifies a field or register containing the one-byte count of 4-byte message ids associated
with this request. The count must be from 1 to 60. If COUNT is specified, the issuer must
not set the high order bit on in the last entry of the DOM parameter list (DOMPL). If
COUNT is not specified, the message ids are treated as 3-byte ids. If an address is used,
the address points to a I-byte field that contains the count. COUNT is invalid with
DOMCBLK, SYSID, TOKEN, and REPLY.

DOM - Delete Operator Message 2-95

Example 1

Example 2

Example 3

Example 4

Example 5

SCOPE = SYSTEM
SCOPE = SYSTEMS

specifies how to process the DOM request. If SCOPE = SYSTEMS is specified, the
DOM request is to be communicated to other processors. If SCOPE = SYSTEM is
specified, the DOM request is not to be communicated to other processors. If
SCOPE is not specified, the DOM request defaults to SCOPE = SYSTEMS.

Notes:

1. For any DOM keywords that allow a register specification, the value must be
right-justified in the register and the remaining bytes within the register must be zero.

2. ; Any authorized DOM keywords that are specified by an unauthorized program will
cause a 157 ABEND.

Operation: Delete an operator message. The message id is in register 1.

DOM MSG=(l)

Operation: Delete a list of operator messages.

DOM MSGLIST=ID2

Operation: Delete four operator messages. The number of messages to be deleted is stored in
the field named FOUR, and ID3 is the address of the list of message ids for the four messages.

DdM MSGLIST=ID3,COUNT=FOUR

Operation: Delete a single message issued on a particular system. The message ID is in register
1, and the one-byte system id is stored in the field named TWO.

DOM MSG=(l),SYSID=TWO

Operation: Delete all messages issued on a particular system. The one-byte system id is stored
in the field named SYSN AME.

DOM SYSID=SYSNAME

2-96 SPL: System Macros and Facilities Volume 2

Example 6

Operation: Delete all messages issued with a particular token on a particular system. The
four-byte token is stored in TOKEN!, and the one-byte system id is in TWO.

DOM TOKEN=TOKEN1,SYSID=TWO

DOM - Delete Operator Message 2-97

DSGNL - Issue Direct Signal

The DSGNL macro instruction uses the signal processor (SlGP) instruction to modify or sense
the physical state of a specific processor in a multiprocessing configuration. The SlGP
instruction order codes specified on t~e DSGNL macro instruction are defined as direct
services. Additional SlGP order codes defined as remote services are available through the
RlSGNL and RPSGNL macro instructions. See Principles of Operations for an explanation of
the order codes.

Programs executing in cross memory mode can issue this macro instruction.

The DSGNL macro instruction is written as follows:

name

b

DSGNL

b

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
STATUS
PREFIX
(0)

,CPU=PCCA addr

,PARAM = addr
,PARAM=(2)

2-98 SPL: System Macros and Facilities Volume 2

name: symbol. Begin name in column 1.

One or more blanks must precede DSGNL ..

One or more blanks must follow DSGNL.

PCCA addr: RX-type address, or register (1).

addr: RX-type address, or register (2).
Note: This parameter is required with PREFIX and STATUS only. It
cannot be specified with any of the other parameters.

The parameters are explained as follows:

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
PREFIX
STATUS
(0)

specifies the action to be performed. If (0) is specified, the code indicating the desired
function has already been loaded into bits 24-31 of register O. (Only the direct class
functions are valid.) The actions and codes are:

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
PREFIX
STATUS

,CPU == PCCA addr

Order Code
01
04
OS
06
09
OB
OC
OD
OE

Action
State of specified processor is to be sensed
Start function
Stop function
Restart function
Stop and store status function
Initial processor reset function
Processor reset function
Set prefix from address
Store status at address

specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA resides in storage below 16 megabytes.

,PARAM == addr
,PARAM == (2)

allows an address to be passed to the specified processor. If addr is coded, the word at
that location is loaded into register 2 and passed to the speCified processor. The contents
of that location must contain a real address. If (2) is coded, the contents of register 2 is
passed to the processor. Register 2 must also contain a real address.

When this parameter is used with PREFIX, the word passed to the specified processor is
the address to which the processor's prefix register is to be set.

When this parameter is used with STATUS, the word passed to the specified processor is
the real address at which the processor's status is to be stored.

DSGNL - Issue Direct Signal 2-99

Example 1

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

14

Meaning

Function successfully initiated, but not necessarily completed.

Function not completed because the access path to the addressed processor was busy or
the addressed processor was in a state where it could not accept and respond to the
order code.

Function unsuccessfully initiated or successful SIGP SENSE request. Status is returned
in register O.

Specified processor is either not installed, not configured into the system, or powered
off.

MSSF is currently inoperative.

With a return code of 8, register 0 contains status information from the SIGP macro
instruction. The bit settings and meanings follow:

Bits Meaning
o Equipment check
1-21 Unassigned, contains zeros
22 Incorrect state
23 Invalid parameter
24 External call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 MSSF currently inoperative
30 Invalid order code
31 Receiver check

Operation: The processor whose PCCA address is in register 1 will be placed in the STOP
state.

DSGNL STOP,CPU=(l)

2-100 SPL: System Macros and Facilities Volume 2

DYNALLOC - Dynamic Allocation

See Volume I for the description of this macro instruction.

DYNALLOC - Dynamic Allocation 2-101 ,.

ENQ - Request Control of a Serially Reusable Resource

ENQ requests the control program to assign control of one or more serially reusable resources
to a task. If any of the resources are not available, the task might be placed in a wait condition
until all of the requested resources are available. Once control of a resource has been assigned
to a task, it remains with that task until one of the programs of the same task issues a DEQ
macro instruction specifying the same resource. Register 15 is set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control of the resource has been previously requested by the
active task in another ENQ macro instruction.

You can request either shared or exclusive use of a resource. The resource is represented in the
ENQ by a pair of names, the qname and the rname, and a scope value. The scope value
determines the scope of serialization; that is, what other tasks, address spaces, or systems can
use the resource. The control program does not correlate the names with the actual resources.
ENQ simply coordinates access to whatever it is the names represent. The names may be given
meaning within a job step or across job steps. In either case, all programs for which
coordination of the resource is provided must refer to it by the same name and scope value.
You must ensure that the name and scope value are used consistently.

Issuing two ENQ macro instructions for the same resource without an intervening DEQ macro
instruction results in abnormal termination of the task, unless the second ENQ designates
RET = TEST, USE, CHNG, or HAVE. If normal termination of a task is attempted while the
task still has control of any serially reusable resources, all requests made by this task will be
automatically dequeued. If resource input addresses are incorrect, the task is abnormally
terminated.

Global resource serialization counts and limits the number of concurrent resource requests in an
address space. If an unconditional ENQ (an ENQ that uses the RET = NONE option) causes
the count of global resource serialization requests to exceed the sum of a threshold value plus a
tolerance value, an authorized caller is abended with a system code of X'538'. See "Limiting
Global Resource Serialization Requests" in Volume 1.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(Refer to Planning: Global Resource Serialization for additional information.)

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

An ENQ used with the MASID and MTCB operands provides a special form of the ENQ
macro instruction that allows a further conditional control of a resource. One task, called the

2-102 SPL: System Macros and Facilities Volume 2

"issuing task" can issue an ENQ macro for a resource specifying the ASID and TCB of another
task, called the "matching task." The MTCB and MASID operands are specified with
RET = HAVE, RET = TEST, and/or ECB = to provide additional return codes. If the issuing
task does not acquire control of the resource, it may receive a return code indicating that the
resource is controlled by the matching task. Upon receiving this return code, the issuing task
could use the resource, if serialization between itself and the matching task has been
accomplished by some pre-arranged protocol known to both the issuing and matching tasks.

The description of the ENQ macro instruction follows. The ENQ macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the SMC, ECB,
and TCB parameters. These parameters are restricted in use to programs that run in supervisor
state, PSW key 0-7, or APF authorized and are therefore only described here.

b

ENQ

b

name

qname addr

,rname addr

,
,E
,S

,rname length

,
,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET=USE
,RET = NONE

,SMC=NONE
,sMC = STEP
,ECB = ecb add,.
,TCB = tcb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E

rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rname
Note: rname length must be coded if a register is specified for rname addr.

Default: STEP

Default: RET = NONE

ecb addr: A-type address, or register (2) - (12).
tcb addr: A-type address, or register (2) - (12).
Default: SMC=NONE
Note: ECB cannot be specified with RET above. ECB and TCB can be
specified together. If TCB is specified but not ECB, then RET = CHNG,
TEST or USE must be specified above.
matching-asid addr: A-type address, or register (2)-(12).
matching-tcb addr: A-type address, or register (2)-(12).

value: any valid macro keyword specification.

ENQ - Request Control of a Serially Reusable Resource 2-103

The parameters are explained as follows:

(
specifies the beginning of the resource description.

qname addr
specifies the address in virtual storage of an 8-character name. Every program issuing a
request for a serially reusable resource must use the same qname, rname, and scope to
represent the resource.

,rname addr

,
,E
,S

specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified and must be from 1 to 255 bytes
long. If the name specified as rname is defined by an EQU assembler instruction, rname
length must be specified.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

,rname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length. If the name specified as rname, is defined by an EQU
assembler instruction, rname length must be specified.

,STEP
,SYSTEM
,SYSTEMS

specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same qname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by more than one address space.

SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macro instructions specify the same qname and rname, but one specifies
STEP and the other specifies SYSTEM or SYSTEMS, they are treated as requests for
different resources.

When global resource serialization is active, scope conversion can occur. This could result
in two requests with different scopes referring to the same resource. See Planning: Global
Resource Serialization for details.

2-104 SPL: System Macros and Facilities Volume 2

specifies the end of the resource description.

Note: Multiple resources can be specified in the ENQ macro instruction. You can repeat the
qname addr, rname addr, type of control, rname length, and scope until there is a maximum of
255 characters including the parentheses.

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is changed from shared to exclusive control.

HAVE - control of the resources is requested conditionally; that is, control is requested
only if a request has not been made previously for the same task.

TEST - the availability of the resources is to be tested, but control of the resources is
not requested.

USE - control of the resources is to be assigned to the active task only if the resources
are immediately available. If any of the resources are not available, the active
task is not placed in a wait condition.

NONE - control of all the resources is unconditionally requested.

,SMC=NONE
,SMC=STEP
,ECD = eeb addr
,TCD = teb addr

specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or that it is
to place other tasks for the step nondispatchable until the requesting task has completed
its operations on the resource (STEP).

When SMC = STEP is specified with RET = HAVE and the requesting task already has
control of the resource, the SMC function is turned on and the task continues to control
the resource.

SMC = and TCB = are mutually exclusive with the MASID parameter, therefore,
hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using the SMC
or TCB operands.

ENQ - Request Control of a Serially Reusable Resource 2-105

The return codes and status of the set must-complete function for the various RET =
specifications are as follows:

Hexadecimal Code SMC Status

RET=CHNG 0 on
4 off
8 off
14 off

RET = HAVE 0 on
8 on
14 off

RET = TEST 0 off
4 off
8 off
14 off

RET = USE 0 on
4 off
8 off
14 off
18 off

ECB specifies the address of an ECB, and conditionally requests all of the resources
named in the macro instruction. If the return code for one or more requested resources is
hexadecimal 4 or 24 and the request is not nullified by a corresponding DEQ, the ECB is
posted when all the requested resources (specifically, those that initially received a return
code of 4 or 24) are assigned to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the fullword that is
used as an ECB. If the operand is a register, then the register contains the address of the
ECB.

TCB specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the ENQ is to be done.

Note: The TCB resides in storage below 16 megabytes.

,MASID = matching-asid addr
specifies the matching task (by defining a matching ASID) for the ENQ, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the ENQ macro instruction. If the MASID
parameter is an A-type address, the address is the name of a fullword containing the
ASID. If the operand is a register, then the register contains the ASID.

Note: MASID can only be specified if MTCB is also specified.

,MTCB = matching-tcb addr
specifies the matching task (by defining a matching TCB) for the ENQ, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the ENQ macro instruction.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the ENQ and returns a return
code indicating whether the resource can be used. If the task specified by MASID and
MTCB parameters is using the resource, global resource serialization records a request for
the resource, suspends the issuing task until the resource is available, or optionally returns
a return code indicating that an ECB will be posted when the resource can be used.

2-106 SPL: System Macros and Facilities Volume 2

The MASID and MTCB parameters are specified with RET = HAVE, RET = TEST,
and/or ECB = parameters to elicit additional return codes that provide information about
the owner of the resource. If the MTCB parameter is an A-type address, the address is
the name of a fullword containing the TCB. If the operand is a register, then the register
contains the TCB.

Note: MTCB can only be specified if MASID is also specified.

,RELATED = value
specifies information used to self-document macro instructions by 'relating' functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Return codes are provided by the control program only if you specify RET = TEST,
RET = USE, RET = CHNG, RET = HAVE, or ECB =; otherwise return of the task to the
active condition indicates that control of the resource has been assigned to the task. If all
return codes for the resources named in the ENQ macro instruction are 0, register 15 contains
0. If any of the return codes are not 0, register 15 contains the address of a storage area
containing the return codes, as shown in Figure 5.

Address
Returned in
Register 15

~ o

12

24

36

--'

2 3

Return
Codes

~
RC 1

RC 2

RC 3

4

If'.,.

12

'-"

(

(

(
(

I

IL----------L--T ~--L-I -L---

RC N---L.-IDD
Figure 5. Return Code Area Used by ENQ

Return codes are
1 2 bytes a po rt,
starting 3 bytes
from the address
in register 15.

ENQ - Request Control of a Serially Reusable Resource 2-107

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro instruction. The return codes are
shown below.

Hexadecimal
Code

o

4

8

14

18

20

24

28

44

Meaning

For RET = TEST, the resource is immediately available. For RET = USE, RET = HAVE, or
ECB =, control of the resource has been assigned to the active task. For RET = CHNG, the
status of the resource has been changed to exclusive. The ECB is not posted.

For RET = TEST or RET = USE, the resource is not immediately available. For
RET=CHNG, the status cannot be changed to exclusive. For ECB=, the ECB will be posted
when available.

For RET = TEST, RET = USE, RET = HAVE, or ECB =, a previous request for control of
the same resource has been made for the same task. The task has control of resource. For
RET = CHNG, the resource has not been enqueued. If bit 3 is on -- shared control of
resource; if bit 3 of the first byte of the ENQ parameter list is off -- exclusive control. The
ECB is not posted.

A previous request for control of the same resource has been made for the same task. The
task does not have control of resource. The ECB is not posted.

For RET = HAVE, RET = USE, or ECB = , the limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless some
previous ENQ or RESERVE request caused the task to obtain control of the resource. The
ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the resource.
The issuer of the ENQ macro instruction may use the resource but it must ensure that the
owning task does not terminate while the issuer of the ENQ macro is using the resource. If
the issuer of the ENQ requested exclusive control, then this return code indicates that the
matching task is the only task that currently owns the resource. If the issuer of the ENQ
requested shared control and the owning task had requested shared control, this return code
may indicate that a previous task had requested exclusive control. The issuing task must issue
a DEQ to cancel this ENQ. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing task may use
the resource but must ensure that the matching task does not terminate while the issuing task
is using the resource. The issuing task must issue a DEQ to cancel the ENQ.

The issuing task cannot obtain exclusive control of the resource using the MASID/MTCB
ENQ. The matching task's involvement with other tasks precludes control by the issuing task.
This task must not issue a DEQ to cancel the ENQ. The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB ENQ in one or more of the
following ways:

• Another task has already issued this ENQ for this resource specifying the same
MASID/MTCB.

• The MASID/MTCB parameters specify a task that acquired control of the resource by
using the MASID/MTCB ENQ.

• The matching task requested ownership of the resource but has not yet been
granted ownership.

The ECB will not be posted. Return code 44 is never given by an ENQ RET = TEST, return
code 4 is given instead.

2-108 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step nondispatchable
until the requesting task has completed its operations on the resource.

ENQ (MAJOR1,MINOR1,E,8,STEP) ,SMC=STEP

Operation: Conditionally request control of a sharable resource in behalf of another task. The
resource is known by more than one address space, and is only wanted if immediately available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2) ,RET=USE

ENQ - Request Control of a Serially Reusable Resource 2-109

ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction, therefore, the number of qname,
rname, and scope combinations in the list form of the ENQ macro instruction must be equal to
the maximum number of qname, rname, and scope combinations in any execute form of the
macro instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

b

ENQ

b

name

qname add,

,rname add,

,
,E
,S
,
,rname length

,
,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET = USE
,RET = NONE

,SMC=NONE
,SMC = STEP
,ECB = ecb add,
,TCB=O

,MASID=O
,MTCB=O

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

qname add,: A-type address.

rname add,: A-type address.

Default: E

rname length: symbol or decimal digit.
Default: assembled length of rname
Default: STEP

Default: RET = NONE

ecb add,: A-type address.
Default: SMC = NONE
Note: ECB cannot be specified with RET above.
Note: TCB or ECB must be specified on the list form if it is used on the
execute form. ECB and TCB can be specified together. If TCB is specified
but not ECB, then RET=CHNG, TEST or USE must be specified above.

value: any valid macro ,keyword specification.

2-110 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exception:

,MF=L
specifies the list form of the ENQ macro instruction.

The list form of this macro generates a prefix followed by the parameter list, however the label
specified in MF = L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (List Form) 2-111

ENQ (Execute Form)

A remote control program parameter list is used in and can be modified by the execute form of
the ENQ macro instruction. The parameter list can be generated by the list form of ENQ.

The execute form of the ENQ macro instruction is written as follows:

b

ENQ

b

name

qname addr

,rname addr

,E
,S

,rname length
,
,STEP
,SYSTEM
,SYSTEMS

,RET=CHNG
,RET = HAVE
,RET = TEST
,RET=USE
,RET = NONE

,SMC=NONE
,SMC = STEP
,ECB = ecb addr
,TCB = tcb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ENQ.

One or more blanks must follow ENQ.

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
the (,), and all parameters in the list should be specified as indicated at the
left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).

Note: See note opposite (above.

ecb addr: RX-type address, or register (2) - (12).
tcb addr: RX-type address, or register (2) - (12).
Note: ECB cannot be specified with RET above.
Note: ECB and TCB can be specified together. If TCB is specified but not
ECB, then RET = CHNG, TEST or USE must be specified above.
matching-asid addr: Rx-type address, or register (2)-(12).
matching-tcb addr: Rx-type address, or register (2)-(12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-112 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exceptions:

,MF = (E,ctri addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=O) must be specified in
the list form. If MASID and MTCB are specified, MASID = 0 and MTCB = 0 must be
specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the label
specified in MF = L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (Execute Form) 2-113

ESPIE - Extended SPIE

The ESPIE macro instruction extends the function of the SPIE (specify program interruption
exits) macro instruction to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit
addressing mode can issue the ESPIE macro instruction. Only callers in 24-bit addressing mode
can issue the SPIE macro instruction. For additional information concerning the relationship
between the SPIE and the ESPIE macro instructions, see the section "Interruption Services" in
Volume 1.

The ESPIE macro instruction performs the following functions using the options specified:

• Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro
instruction.

• Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment) by
executing the RESET option of the ESPIE macro instruction

• Determines the current SPIEjESPIE environment by executing the TEST option of the
ESPIE macro instruGtion

The following description of the ESPIE macro instruction also appears in Supervisor Services
and Macro Instructions with the exception of interruption type 17. This interruption type
designates page faults and its use is restricted to an installation-authorized system programmer.

SET Option

The SET option of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(interruptions)

,PARAM = list addr

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address or register (2) - (12).

interruptions: decimal numbers 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: «2, 4), (7, 10»
combinations: (2, 3,4, (7, 10»

list addr: A-type address or register (2) - (12).

2-114 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

SET
indicates that an ESPIE environment is to be established.

,exit addr
specifies the address of the exit routine to be given control when program interruptions of
the type specified by interruptions occur. The exit routine will receive control in the same
addressing mode as the issuer of the ESPIE macro instruction.

,(interrup tions)
indicates the interruption types that are being trapped. The interruption types are:

Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17

Interruption Type

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponent overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide
Page fault

These interruption types can be designated as one or more single numbers, as one or more
pairs of numbers (designating ranges of values), or as any combination of the two forms.
For example, (4,8) indicates interruption types 4 and 8; «4,8)) indicates interruption types
4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to O. Interruption types not specified above (except for type 17) are handled
by the control program. The control program forces an abend with the program check as
the completion code. If an EST AE-type recovery routine is also active, the SDW A
indicates a system-forced abnormal termination. The registers at the time of the error are
those of the control program.

Note: For both ESPIE and SPIE - If you are using vector instructions and an
interruption of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the exception
extension code (the first byte of the two-byte interruption code in the EPIE or PIE) to
determine whether the exception was a vector or scalar type of exception.

,P ARAM = list addr
specifies the fullword address of a parameter list that is to be passed by the caller to the
exit routine.

ESPIE - Extended SPIE 2-115

Example 1

Example 2

On return from the SET option of the ESPIE macro instruction, the registers contain the
following information:

Register Content

o Unpredictable

Token representing the previously active SPIE/ESPIE environment

2-13 Unchanged

14 Unpredictable

15 Return code of 0

Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the user-parameter list
to be used by the exit routine.

ESPIE SET,EXIT,(1,4) ,PARAM=PARMLIST

Operation: Give control to the exit routine located at EXIT when a page fault occurs.

ESPIE SET,EXIT,(17)

RESET Option

The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment and
restores the SPIE/ESPIE environment specified by token.

The RESET option of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ESPIE.

ESPIE

b One or more blanks must follow ESPIE.

RESET

,token token: RX-type address or register (1) or (2) - (12).

2-116 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

RESET
indicates that the current ESPIE environment is to be deleted and the previously active
SPIEjESPIE environment specified by token is to be re-established.

,token
specifies a fullword that contains a token representing the previously active SPIEjESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE trap was established using the SET option of the ESPIE macro instruction.

If the token is zero, all SPIEs and ESPIEs are deleted.

On return from ESPIE RESET, the contents of the registers are as follows:

Register Contents

o Unpredictable

Token identifying the new active SPIEjESPIE environment

2-13 Unchanged

14 Unpredictable

15 Return code of 0

Operation: Cancel the current SPIE/ESPIE environment and restore the SPIEjESPIE
environment represented by the contents of TOKEN.

ESPIE RESET,TOKEN

TEST Option

The TEST option of the ESPIE macro instruction determines the active SPIEjESPIE
environment and returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ESPIE.

ESPIE

b One or more blanks must follow ESPIE.

TEST

,parm addr parm addr: RX-type address, or register (1) or (2) - (12).

ESPIE - Extended SPIE 2-11 7

Example 1

The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIEjESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

,parm addr
specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

o Address of the user-exit routine (3l-bit address with the high-order bit set to 0)

Address of the user-defined parameter list

2 Mask of program interruption types

3 Zero

On return from ESPIE TEST, the registers contain the following information:

Register

0

1-13

14

15

Contents

Unpredictable

Unchanged

Unpredictable

Return code as follows:

Code Meaning

o An ESPIE exit is active and the four-word parameter list contains the the information
specified in the description of the parm addr parameter.

4 A SPIE exit is active. Word 1 of the parameter list described under parm addr contains
the address of the current PICA. Words 0, 2, and 3 of the parameter list are
unpredictable.

8 No SPIE or ESPIE is active. The contents of the four-word parameter list are
unpredictable.

Operation: Identify the active SPIEjESPIE environment. Return the information about the exit
routine in the four-word parameter list, PARMLIST. Also return, in register 15, an indication
of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

2-118 SPL: System Macros and Facilities Volume 2

ESPIE (List Form)

Example 1

The list form of the ESPIE macro instruction builds a non-executable problem program
parameter list that can be referred to or modified by the execute form of the ESPIE macro
instruction.

The list form of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(in terruptions)

,PARAM = list addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: A-type address.
Note: This parameter must be specified on either the list or the execute form
of the macro instruction.

interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3,4, 7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3,4, (7, 10))

list addr: A-type address.

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

,MF=L
specifies the list form of the ESPIE macro instruction.

Operation: Build a non-executable problem program parameter list that will cause control to
be transferred to the exit routine, EXIT, for the interruption types specified in the execute form
of the macro instruction. Provide the address of the user parameter list, PARMLIST.

LISTl ESPIE SET,EXIT"PARAM=PARMLIST,MF=L

ESPIE (List Form) 2-119

ESPIE (Execute Form)

The execute form of the ESPIE macro instruction can refer to and modify the parameter list
constructed by the list form of the ESPIE macro instruction.

The execute form of the ESPIE macro instruction is written as follows:

name

b

ESPIE

b

SET

,exit addr

,(interruptions)

,PARAM = list addr

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

exit addr: RX-type address or register (2) - (12).
Note: This parameter must be specified on either the list or the execute form
of the macro instruction.

interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8, 9, 10)
ranges of values: «2, 4), (7, 10»
combinations: (2, 3,4, (7, 10»

list addr: RX-type address or register (1) or (2) - (12).

ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

,MF = (E,ctrl addr)
specifies the execute form of the ESPIE macro instruction using a remote control program
parameter list.

2-120 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Give control to a user-exit routine for interruption types 1, 4, 6, 7, and 8. The exit
routine address and the address of a user-parameter list for the exit routine are provided in a
remote control program parameter list at LISTl.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE (Execute Form) 2-121

EST AE - Specify Task Abnormal Exit Extended

This macro can be assembled compatible between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information. If you are executing in 31-bit addressing mode, you must use the MVSjXA
version of this macro instruction.

The ESTAE macro instruction allows the user to intercept a scheduled ABEND. Control is
given to a user-specified recovery routine in which the user can, for example, perform
pre-termination processing, diagnose the cause of ABEND, and specify a retry address if he
wishes to avoid the termination. These recovery routines operate in both problem program and
supervisor modes.

The addressing mode in which the EST AE macro expansion executes becomes the addressing
mode in which the ESTAE exits and retry routines execute (that is, the ESTAE exits and retry
routines execute in the same addressing mode as the issuer of the EST AE macro instruction.)

Note: The ESTAE macro instruction is not supported in cross memory mode .

. The description of the EST AE macro instruction follows. The EST AE macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the BRANCH,
SVEAREA, KEY, RECORD, AND TOKEN parameters. These parameters are restricted in
use, and, therefore, are described only in here.

"EST AE-Type Recovery Routines" in Volume 1 describes the complete interface to the EST AE
exit routine.

2-122 SPL: System Macros and Facilities Volume 2

The standard form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow EST AE.

exit addr
o

exit addr: A-type address, or register (2) - (12).

,CT
,OV

,PARAM = listaddr

,XCTL=NO
,XCTL = YES

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

,ASYNCH = YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,BRANCH=NO
,BRANCH = YES,
SVEAREA = save addr

,KEY = SAVE
,KEY = storage key

,RECORD=NO
,RECORD = YES

,TOKEN = token addr

,RELATED = value

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL=NO

Default: PURGE = NONE

Default: ASYNCH = YES

Default: TERM ~ NO

Default: BRANCH = NO
save addr: A-type address, or register (2) - (12) or (13).

storage key: any numeral in the range 0-15.

Default: RECORD = NO

token addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

exit addr
o

,CT
,OV

specifies the 31-bit address of an ESTAE recovery routine to be entered if the task issuing
this macro instruction terminates abnormally. The recovery routine executes in the
addressing mode of the issuer of the EST AE. If 0 is specified, the most recent EST AE
routine is canceled.

specifies the creation of a new EST AE exit (CT) or indicates that parameters passed in
this EST AE macro instruction are to overlay the data contained in the previous EST AE
routine (OV).

,P ARAM = list addr
specifies the 31-bit address of a user-defined list containing data to be used by the ESTAE
routine when it is scheduled for execution.

ESTAE - Specify Task Abnormal Exit Extended 2-123

,XCTL=NO
,XCTL=YES

specifies that the ESTAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

specifies that all outstanding requests for I/O operations are not to be saved when the
EST AE routine gets control (HALT) or that I/O processing is to be allowed to continue
normally when the EST AE routine gets control (NONE) or that all outstanding requests
for I/O operations are to be saved when the EST AE routine is taken (QUIESCE). If
QUIESCE is specified, the user's retry routine can restore the outstanding I/O requests.

PURGE = NONE specifies that all control blocks affected by input/output processing can
continue to change during ESTAE routine processing. If you specify PURGE = NONE,
and the ABEND was originally scheduled because of an error in input/output processing,
an ABEND recursion develops when an input/output interruption occurs, even if the
ESTAE routine is in progress. Thus, it will appear that the ESTAE routine failed when,
in reality, input/output processing caused the failure.

Note: If you specify PURGE = HALT while using ISAM:

• -Only the input/output event on which the purge is done will be posted. Subsequent
event control blocks (ECBs) will not be posted.

• The ISAM check routine will treat purged I/O as normal I/O.

• Part of the data set might be destroyed if the data set is being updated or added to
when the failure occurred.

,ASYNCH=YES
,ASYNCH=NO

specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user's EST AE routine is executing.

ASYNCH=YES must be coded if:

• Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the EST AE routine.

• PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE = NONE is specified and the ESTAE routine issues the CHECK macro
instruction for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

2-124 SPL: System Macros and Facilities Volume 2

,TERM=NO
,TERM = YES

specifies that the EST AE routine will be scheduled (YES) or will not be scheduled (NO)
in the following situations:

• Cancel by operator

• Forced logoff

• Expiration of job step timer

• Exceeding of wait time limit for job step

• ABEND condition because of DETACH of an incomplete subtask when the ST AE
option was not specified on the DETACH

• ABEND of the attaching task when the EST AE macro instruction was issued by a
subtask

• ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the EST AE routine is entered because of one of the preceding reasons, re-try is not
permitted. If a dump is requested at the time of ABEND, it is taken before entry into the
EST AE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs for the
task to be detached:

• All ESTAE routines are entered.

• The most recently established ST AE routine is entered.

• All ST AI/EST AI routines are entered unless one of the ST AI routines issues return
code 16.

In these cases, entry to the routine occurs before dumping and re-try is not permitted.

,BRANCH=NO
,BRANCH = YES ,SVEAREA = save addr

specifies that an SVC 60 entry to the ESTAE service routine is to be performed (NO) or
that a branch entry is to be performed (YES). The save area is a 72-byte area used to
save the general registers. If the caller is not in key zero, the KEY parameter must be
specified.

,KEY = SAVE
,KEY = storage key

specifies that supervisor state users who are not in key zero can use the branch entry
interface to the EST AE service routine.

If the user specifies KEY = SAVE, the system saves the current PSW protection key in
register 2 and issues a set protection key instruction (SPKA) to change to protection key
zero. When the ESTAE service routine returns control, it restores the original PSW key
from register 2. Therefore, the user should save register 2 before the macro expansion

EST AE - Specify Task Abnormal Exit Extended 2-125

and restore it afterwards. Specifying KEY = SAVE destroys the contents of register 2
during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may specify it
directly in the form KEY = (0-15) to eliminate saving and restoring the original protection
key. This procedure eliminates an IPK instruction and prevents the use of register 2 in
the macro expansion.

,RECORD=NO
,RECORD = YES

specifies that the system diagnostic work area (SDW A) is not to be writ~en to
SYS1.LOGREC (NO) or that the entire SDWA (including the fixed length base, the
variable length recording area, and the recordable extensions) is to be written to
SYSl.LOGREC (YES).

,TOKEN = token addr
specifies that a four-byte token is to be associated with the EST AE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented because the
EST AE cannot be canceled or overlaid unless the same token is specified.

With CT (create): ESTAE processing places the token created for this request in the
location specified by token addr as well as in the EST AE paramete.r list.

With OV (overlay): EST AE processing locates the specified ESTAE routine for the
current RB and replaces the routine information. If there are any newer ESTAE routines
for the RB, they are deleted.

With 0 (cancel): EST AE processing locates the specified EST AE routine for the current
RB and deletes the routine. Any newer EST AE routines for the RB are deleted.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user, and may be any valid coding
values.

Control returns to the instruction following the EST AE macro instruction. When control
returns, register 15 contains one of the following ~eturn codes:

Hexadecimal
Code

00
04

OC

10
14
18

Meaning

Successful completion of EST AE request.
ESTAE OV was specified with a valid exit address, but the current exit is either
nonexistent, not owned by the user's RB,or is not an ESTAE exit.
Cancel or an exit address equal to zero was specified, and either there are no exits
for this TCB, the most recent exit is not owned by the caller, the most
recent exit is not an ESTAE exit, or the ESTAE was created with the TOKEN parameter
and on a delete request, either the token was not specified or does not match.
An unexpected error was encountered while processing this request.
ESTAE was unable to obtain storage for an SCB.
The ESTAE was created with the TOKEN parameter and on an
overlay request, either the token was not specified or does not match.

2-126 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Example 4

Example 5

Operation: If an error occurs, pass control to the EST AE routine specified by register 4, allow
asynchronous exit processing, do not allow special error processing, do not branch enter SVC
60, and default to CT (create) and PURGE = NONE.

ESTAE (4),ASYNCH=YES,TERM=NO,BRANCH=NO

Operation: If an error occurs, pass control to the EST AE routine specified by register 4. The
address of the EST AE parameter list is in register 2. Place the token associated with this
EST AE routine in TOKENFLD.

ESTAE (4),PARM=(2) , TOKEN=TOKENFLD

Operation: If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt 1/0, allow special error processing, branch enter SVC 60, use
the 72-byte save area at SADDR, and execute the execute form of the macro instruction.
EXEC is the label of the EST AE parameter list built by a list form of the macro instruction
elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT,TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E,EXEC)

Operation: Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, 1/0 will be halted, no asynchronous exits
will be taken, ownership will be transferred to the new request block resulting from any XCTL
macro instructions.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

Operation: Provide the pointer to the recovery code in the register called EXITPTR, place the
address of the EST AE parameter list in register 9. Register 8 points to the area where the
ESTAE parameter list (created with the MF=L option) was moved.

ESTAE (EXITPTR) ,PARAM=(9) ,MF=(E,(8))

ESTAE - Specify Task Abnormal Exit Extended 2-127

ESTAE (List Form)

The list form of the EST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the EST AE macro instruction is written as follows:

name

b

ESTAE

b

exit addr

,PARAM = list addr

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

ASYNCH=YES
,ASYNCH=NO

,TERM=NO
,TERM=YES

,RECORD=NO
,RECORD = YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ESTAE.

One or more blanks must follow ESTAE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE = NONE

Default: ASYNCH = YES

Default: TERM = NO

Default: RECORD = NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ESTAE macro instruction, with
the following exception:

,MF=L
specifies the list form of the EST AE macro instruction.

2-128 SPL: System Macros and Facilities Volume 2

EST AE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the EST AE macro instruction. The control program parameter list can be generated by the
list form of the EST AE macro instruction. Any combination of exit addr, PARAM = ,
XCTL=, PURGE=, ASYNCH=, TERM=, RECORD=, and TOKEN = can be specified to
dynamically change the contents of the remote EST AE parameter list. If TOKEN was
previously specified and is to be used again without change, TKNPASS = YES must be coded.
Any fields not specified on the macro instruction remain as they were before the current
EST AE request was made.

The execute form of the EST AE macro instruct~on is written as follows:

name

b

ESTAE

b

exit addr
o
,CT
,OV

,PARAM = list addr

,XCTL=NO
,XCTL=YES

,PURGE = NONE
,PURGE = QUIESCE
,PURGE = HALT

,ASYNCH = YES
,ASYNCH=NO

,TERM=NO
,TERM = YES

,BRANCH=NO
,BRANCH = YES,
SVEAREA = save addr

,RECORD=NO
,RECORD = YES

,TOKEN = token addr

,TKNPASS=NO
, TKNPASS = YES

,RELATED = value

,MF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede EST AE.

One or more blanks must follow ESTAE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

save addr: RX-type address, or register (2) - (12) or (13).

token addr: RX-type address, or register (2) - (12).

Default: TKNPASS=NO

value: any valid macro keyword specification.

etrl addr: RX-type address, or register (1) or (2) - (12).

EST AE (Execute Form) 2-129

The parameters are explained under the standard form of the ESTAE ma~ro instruction, with
the following exceptions:

,TKNPASS=NO
,TKNP ASS = YES

specifies that a previously-specified token, indicated in the parameter list, should be
ignored (NO), or should remain part of the specification (YES).

,MF = (E,ctrl addr)
specifies the execute form of the EST AE macro instruction using a remote control
program parameter list.

2-130 SPL: System Macros and Facilities Volume 2

ETCON - Connect Entry Table

The ETCON macro instruction connects one or more previously created entry tables to the
specified linkage table indexes in the current home address space. If an entry table is connected
to a system linkage index (an index reserved with the SYSTEM = YES option of the LXRES
macro instruction), the entry table is connected to the linkage table of every address space, both
present and future.

The restrictions on the use of the ETCON macro instruction are as follows:

• If an entry table contains entries that cause address space switches, the entry table owner
must have previously established authorization to issue PT and SSAR instructions to the
home address space.

• An entry table can be connected only once to a single linkage table.

• The linkage index and the entry table being connected must be under the same ownership.

Any violation of these restrictions causes the caller to be abnormally terminated.

The connection created by the ETCON macro instruction remains in effect until one of the
following occurs:

• The ETDIS macro instruction removes the connection.

• The entry table owner terminates.

• The address space to which the table is connected terminates unless the connection was to a
system linkage index.

• The system is re-IPLed.

The caller must be in supervisor state or PKM 0-7, executing in primary mode, enabled, and
unlocked. The parameter list passed to the ETCON macro instruction must be addressable in
primary mode at the time the macro instruction is issued. Register 13 must point to a standard
register save area that must also be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

ETCON - Connect ,Entry Table 2-131

The ETCON macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ETCON

b One or more blanks must follow ETCON.

TKLIST = addr addr: RX-type address or register (0) - (12).

,LXLIST = addr addr: RX-type address or register (0) - (12).

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = address
specifies the address of a list of fullword tokens representing the entry tables to be
connected to the linkage table. The first entry in the list must be the number of tokens
that follow (from 1 to 32). The tokens are the values returned in register 0 when the
ETCRE·macro instruction is issued.

,LXLIST = addr
specifies the address of a list of linkage index values to which the specified entry tables are
to be connected. The list contains fullword entries, the first of which must be the number
of linkage index values that follow (from 1 to 32). The number of linkage indexes must
be the same as the number of tokens. The first entry table is connected to the first
linkage index; the second entry table is connected to the second linkage index, and so on.

,RELATED = value
specifies information used to self document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code

o

Meaning

The specified connections were successfully made.

2-132 SPL: System Macros and Facilities Volume 2

ETCON (List Form)

The list form of the ETC ON macro instruction constructs a non- executable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form of the macro
instruction.

The list form of the ETC ON macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ETCON

b One or more blanks must follow ETCON.

TKLIST = addr addr: A-type address.

,LXLIST = addr addr: A-type address.

,RELATED = value value: any valid macro keyword specification.

,MF=L

The parameters are explained under the standard form of the ETCON macro instruction, with
the following exception:

,MF=L
specifies the list form of the ETCON macro instruction.

ETCON (List Form) 2-133

ETCON (Execute Form)

"' ..

The execute form of the ETCON macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the ETCON macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCON.

ETCON

b One or more blanks must follow ETCON.

TKLIST = addr addr: RX-type address or register (0) - (12).

,LXLIST = addr addr: RX-type address or register (0) - (12).

,RELATED = value value: any valid macro keyword specification.

,MF = (E,entl addr) entl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETCON macro instruction with
the following exception:

,MF = (E,cnti addr)
specifies the execute form of the ETCON macro instruction. This form uses a remote
parameter list.

2-134 SPL: System Macros and Facilities Volume 2

ETCRE - Create Entry Table

The ETCRE macro instruction causes a program call entry table to be built based upon
descriptions of each entry. A token representing the created entry table is returned to the
requestor. This token must be used in all subsequent references to the entry table.

The created entry table is owned by the cross memory resource ownership task in the current
home address space. When the cross memory resource ownership task terminates, entry tables
are disconnected and freed.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The list of descriptions specified by ENTRIES must also be addressable in
primary mode when the macro instruction is issued.

Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. On return,
register 0 contains the 32-bit token associated with the new entry table. The contents of register
1 are unpredictable.

The ETCRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede ETCRE.

ETCRE

b One or more blanks must follow ETCRE.

ENTRIES = addr addr: RX-type address of register (0) - (12).

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

ENTRIES = addr
specifies the address of the description of the entry table to be built. The entry table
description is a table consisting of a single 4 byte table header followed by one 20 byte
description element for each entry table entry to be built. The description elements must
appear in ascending sequence based on the entry index number. The IHAETD mapping
macro defines the format to which the entry table description must conform as shown in
Figure 6.

ETCRE - Create Entry Table 2-135

OFFSETS

a (0)

a (0)
1 (1)
2 (2)

a (0)

a (0)
1 (1)

2 (2)

4 (4)

4 (4)

8 (8)

An entry index value that does not have a description results in an invalid entry in the
entry table. If the program name field in an entry table description entry contains zeroes,
an invalid entry is created for that entry index. A program call to an invalid entry causes
the caller to be abnormally terminated. The ETCRE caller is abnormally terminated if
any of the reserved fields are nonzero or if the system cannot locate the specified program
name.

,RELATED = value
specifies information used to self-document macro instructions by relating functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

TYPE LENGTH NAME

STRUCTURE 4 ETD

UNSIGNED
UNSIGNED
UNSIGNED

STRUCTURE

UNSIGNED
BITSTRING
1 ...

.1 ..

. . 11 1111
UNSIGNED

CHARACTER

UNSIGNED

A-ADDRESS

1 ETDFMT
1 ETDRSVI
2 ETDNUM

20 ETDELE

1
1

2

8

4

4

ETDEX
ETDFLG
ETDSUP

ETDXM

ETDRSV2
ETDRSV3

ETDPRO

ETDPROI

ETDPR02

DESCRIPTION

ENTRY TABLE DESCRIPTION LIST
DESCRIBES THE INPUT LIST TO
THE ETCRE MACRO

FORMAT NUMBER MUST BE ZERO
RESERVED MUST BE ZERO
NUMBER OF ENTRY DESCRIPTIONS
THAT FOLLOW (MAX OF 256)
ELEMENT DESCRIPTION. ONE
FOR EACH ENTRY TO BE ASSIGNED

INDEX FOR THIS ENTRY (0 ORIGIN)
FLAG BYTE
IF ONE, THE PROGRAM IS TO
EXECUTE IN SUPERVISOR STATE,
IF ZERO, PROBLEM STATE
CROSS MEMORY SPACE SWITCH. IF
ZERO THE ENTRY WILL NOT CAUSE
A SPACE SWITCH. IF ONE, THE
PROGRAM WILL EXECUTE IN THE
ADDRESS SPACE OF THE CREATOR
OF THE ENTRY TABLE WITH THE
AUTHORIZATION OF THAT ADDRESS
SPACE .
RESERVED. MUST BE ZERO
RESERVED. MUST BE ZERO

PROGRAM NAME OR THE VIRTUAL
ADDRESS TO BE GIVEN CONTROL.
IF A PROGRAM NAME, THE NAMED
PROGRAM MUST BE ON THE ACTIVE
LPA QUEUE (FLPA OR MLPA) OR
BE IN THE PLPA. IF AN ADDRESS,
ETDPR01 MUST BE ZERO AND
ETPR02 MUST BE THE ADDRESS.
BIT a OF THE ADDRESS FIELD
SPECIFIES THE ADDRESSING MODE
IN WHICH THE ROUTINE IS TO RECEIVE
CONTROL. (IF SET TO 1, THE
ADDRESSING MODE IS 31-BITi IF
SET TO 0, THE ADDRESSING MODE IS
24-BIT.

FIRST WORD OF ETDPRO

SECOND WORD OF ETDPRO

Figure 6 (Part 1 of 2). IHAETD Mapping Macro

2-136 SPL: System Macros and Facilities Volume 2

OFFSETS TYPE LENGTH NAME DESCRIPTION

12 (C) BITSTRING 2 ETDAKM 16 BIT AUTHORIZED KEY MASK.
BIT 0 REPRESENTS KEY 0, ETC.
IF A BIT IS ON, THE
CORRESPONDING KEY IS
AUTHORIZED TO CALL THIS ENTRY

1 ... ETDAKO BIT REPRESENTING KEY 0
.1 .. ETDAK1 BIT REPRESENTING KEY 1
· .1. ETDAK2 BIT REPRESENTING KEY 2
· .. 1 ETDAK3 BIT REPRESENTING KEY 3

1 ... ETDAK4 BIT REPRESENTING KEY 4
.1 .. ETDAK5 BIT REPRESENTING KEY 5
· .1. ETDAK6 BIT REPRESENTING KEY 6
... 1 ETDAK7 BIT REPRESENTING KEY 7

13 (D) 1 ... ETDAK8 BIT REPRESENTING KEY 8

.1 .. ETDAK9 BIT REPRESENTING KEY 9
· .1. ETDAKA BIT REPRESENTING KEY 10
... 1 ETDAKB BIT REPRESENTING KEY 11

ETKAKC BIT REPRESENTING KEY 12
.1 .. ETDAKD BIT REPRESENTING KEY 13
· .1. ETDAKE BIT REPRESENTING KEY 14
... 1 ETDAKF BIT REPRESENTING KEY 15

14 (E) BITSTRING 2 ETDEKM 16 BIT EXECUTION KEY MASK.
BIT 0 REPRESENTING KEY 0, ETC.
IF A BIT IS ON, THE CALLED
PROGRAM IS AUTHORIZED TO
USE THE KEY.

1 ... ETDEKO BIT REPRESENTING KEY 0
.1 .. ETDEK1 BIT REPRESENTING KEY 1
· .1. ETDEK2 BIT REPRESENTING KEY 2
· .. 1 ETDEK3 BIT REPRESENTING KEY 3

1 ... ETDEK4 BIT REPRESENTING KEY 4
.1 .. ETDEK5 BIT REPRESENTING KEY 5
· . 1. ETDEK6 BIT REPRESENTING KEY 6
· .. 1 ETDEK7 BIT REPRESENTING KEY 7

15 (F) 1 ... ETDEK8 BIT REPRESENTING KEY 8
.1 .. ETDEK9 BIT REPRESENTING KEY 9
· .1. ETDEKA BIT REPRESENTING KEY 10
... 1 ETDEKB BIT REPRESENTING KEY 11

1 ... ETDEKC BIT REPRESENTING KEY 12
.1 .. ETDEKD BIT REPRESENTING KEY 13
· .1. ETDEKE BIT REPRESENTING KEY 14
... 1 ETDEKF BIT REPRESENTING KEY 15

16 (10) CHARACTER 4 ETDPAR PARAMETER TO BE PASSED

TO THE CALLED PROGRAM.

Figure 6 (Part 2 of 2). IHAETD Mapping Macro

When control returns, register 15 contains the following return code:

Hexadecimal
Code

o

Meaning

The entry table is successfully created.

ETCRE - Create Entry Table 2-137

ETDES - Destroy Entry Table

The ETDES macro instruction destroys a previously-created entry table. Only the address
space that owns the entry table can destroy it. At the time ETDES is issued, the entry table
must not be connected to any linkage tables unless PURGE = YES is coded. If any outstanding
connections still exist and PURGE = YES is not coded, the entry table is not destroyed and the
caller is abnormally terminated.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area the must be addressable in
primary mode. The parameter list passed to ETDES must also be addressable in primary mode
a t the time ETD ES is issued.

Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The ETDES macro instruction is written as follows:

name

b

ETDES

b

TOKEN = addr

,PURGE=NO
,PURGE=YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: RX-type address or register (0) - (12).

Default: PURGE=NO

value: any valid macro keyword specification.

The parameters are explained as follows:

TOKEN=addr
specifies the address of the full word token (returned by the ETCRE macro instruction)
associated with the entry table to be destroyed.

2-138 SPL: System Macros and Facilities Volume 2

,PURGE=NO
,PURGE=YES

specifies whether (YES) or not (NO) the entry table is to be disconnected from all linkage
tables and then destroyed.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding services. The format and contents of the information specified
can be any valid coding values.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

o

4

Meaning

The specified entry table was destroyed.
There were no connections to linkage indexes.
The specified entry table was destroyed. There
were connections to linkage indexes, PURGE = YES was
specified, and the entry table was disconnected.

ETDES - Destroy Entry Table 2-139

ETDES (List Form)

The list form of the ETDES macro instruction constructs a non-executable parameter list. The
execute form of the macro can refer to this parameter list, or a copy of it for reentrant
programs.

The list form of the ETDES macro instruction is written as follows:

name

b

ETDES

b

TOKEN = addr

,PURGE=NO
,PURGE = YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: A-type address.

Default: PURGE=NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the ETDES macro instruction with
the following exception:

,MF=L
specifies the list form of the ETDES macro instruction.

2-140 SPL: System Macros and Facilities Volume 2

ETDES (Execute Form)

The execute form of the ETDES macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the ETDES macro instruction is written as follows:

name

b

ETDES

b

TOKEN=addr

,PURGE=NO
,PURGE=YES

,RELATED = value

,MF = (E,cntl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede ETDES.

One or more blanks must follow ETDES.

addr: RX-type address or register (0) - (12).

Default: PURGE=NO

value: any valid macro keyword specification.

cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETDES macro instruction with
the following exception:

,MF = (E,enti addr)
specifies the execute form of the ETDES macro instruction. This form uses a remote
parameter list.

ETDES (Execute Form) 2-141

ETDIS - Disconnect Entry Table

The ETDIS macro instruction disconnects one or more entry tables from the home address
space's linkage table.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed by the requestor must also be addressable in primary
mode at the time the macro is issued.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, sh9uld not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The ETDIS macro instruction is written as follows:

name

b

ETDIS

b

TKLIST = addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede ETDIS.

One or more blanks must follow ETDIS.

addr: RX-type address or register (0) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = addr
specifies the address of a list of 1 to 32 fullword tokens, returned by the ETCRE macro
instruction, identifying the entry tables to be disconnected from the home address space's
linkage table. The first entry of the list must be a fullword count of the number of tokens
(1 to 32) in the list.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code

o

Meaning

The entry table is successfully disconnected.

2-142 SPL: System Macros and Facilities Volume 2

EVENTS - Wait for One or More Events to Complete

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information. If you are executing in 31-bit addressing mode, you must use the MVSjXA
version of this macro instruction.

The EVENTS macro instruction is a functional specialization of the WAIT ECBLIST = macro
facility with the advantages of notifying the program that events have completed and the order
in which they completed.

The macro performs the following functions:

• Crea tes and deletes EVENTS tables.

• Initializes and maintains a list of completed event control blocks.

• Provides for single or multiple ECB processing.

The description of the EVENTS macro instruction follows. The EVENTS macro instruction is
also described in Supervisor Services and Macro Instructions with the exception of the
BRANCH parameter. This parameter is restricted to programs that run in supervisor state, key
0, and own the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

EVENTS - Wait for One or More Events to Complete 2-143

The EVENTS macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede EVENTS.

EVENTS

b One or more blanks must follow EVENTS.

ENTRIES = nmbr nmbr: decimal digits 1-32767.
ENTRIES =DEL,TABLE= tab addr
TABLE = tab addr

,ECB = ecb addr
,LAST = last addr

,WAIT = YES
,WAIT=NO

,BRANCH=NO
,BRANCH = YES

tab addr: symbol, RX-type address, or register (2) - (12).
Note: If the ENTRIES parameter is specified as indicated in the first two
formats, no other parameters may be specified.

ecb addr: symbol, RX-type address, or register (2) - (12).
last addr: symbol, RX-type address, or register (2) - (12).
Note: If LAST is specified, WAIT must also be specified.

Default: BRANCH = NO

The parameters are explained below:

ENTRIES=n
n is a decimal number from 1 to 32,767 which specifies the maximum number of
completed ECB addres~es that can be processed in an EVENTS table concurrently.

Note: When this parameter is specified, no other parameter should be specified.

ENTRIES = DEL, TABLE = tab addr
specifies that the EVENTS table whose address is specified by TABLE = tab addr is to be
deleted. The user is responsible for deleting all of the tables he creates; however, all
existing tables are automatically freed at task termination.

Notes:

1. When this parameter is specified, no other parameter should be specified.

2. TABLE resides in 24-bit addressable storage.

TABLE = tab addr
specifies either a register number or the address of a word containing the address of the
EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

2-144 SPL: System Macros and Facilities Volume 2

,WAIT=NO
,WAIT=YES

specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS TABLE (specified by the TABLE = parameter).

,ECB = ecb addr
specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro instruction should be used to initialize any
event-type ECB. To avoid the accidental destruction of bit settings by a system service
such as an access method, the ECB should be initialized after the system service that will
post the ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.

Notes:

1. Register 1 should not be specified for the ECB address.

2. This parameter may not be specified with the LAST= parameter.

3. The ECB can reside above or below 16 megabytes.

4. If only ECB initialization is being requested, neither WAIT= NO nor WAIT= YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

,LAST = last addr
specifies either a register number or the address of a word containing the address of the
last EVENT parameter list entry processed.

Notes:

1. Register 1 should not be specified for the LAST address.

2. This parameter should not be specified with the ECB = parameter.

3. The WAIT macro must also be specified.

4. LAST resides in 24-bit addressable storage.

,BRANCH=NO
,BRANCH = YES

specifies that an SVC entry (BRANCH = NO) or a branch entry (BRANCH = YES) is to
be performed.

EVENTS - Wait for One or More Events to Complete 2-145

Example 1

Example 2

The following shows total processing via EVENTS

EVENTS and ECB Initialization

EVENTS ENTRIES=1000

ST R1,TABADD

WRITE ECBA

LA R2 ,ECBA ...

EVENTS TABLE=TABADD,ECB=(R2)

Parameter List Processing

LOOP1

LOOP2

EVENTS

LR
B
EVENTS
LR
EQU

TM
BO
LA
B

Deleting EVENTS Table

EVENTS

TABADD DS

TABLE=TABADD,WAIT=YES

R3,R1 PARMLIST ADDR
LOOP2 GO TO PROCESS ECB
TABLE=TABADD,WAIT=YES,LAST=(R3)
R3,R1 SAVE POINTER
* PROCESS COMPLETED EVENTS

O(R3),X'80' TEST FOR MORE EVENTS
LOOP1 IF NONE, GO WAIT
R3,4(,R3) GET NEXT ENTRY
LOOP2 GO PROCESS NEXT ENTRY

TABLE=TABADD,ENTRIES=DEL

F

Processing One ECB at a Time.

NEXTREC

RETEST

TABLE

EVENTS
ST

GET
ENQ
READ
LA
EVENTS

WRITE
LA
EVENTS
LTR
BNZ

B

DS

ENTRIES=10
1,TABLE

TPDATA,KEY
(RESOURCE,ELEMENT,E"SYSTEM)
DECBRW,KU,,'S' ,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3) ,WAIT=YES

DECBRW,K,MF=E
3,DECBRW
TABLE=TABLE,ECB=(3),WAIT=NO
1,1
NEXTREC

RETEST

F

2-146 SPL: System Macros and Facilities Volume 2

EXTRACT - Extract TCB Information

The EXTRACT macro instruction causes the control program to provide information from
specified fields of the task control block or a subsidiary control block for either the active task
or one of its subtasks. The control program places the information in an area that the problem
program provides. For a description of this area see "Providing an EXTRACT Answer Area"
in the Subtask Creation and Control section in Volume 1. When the extract macro is issued, its
parameter list must reside in 24-bit addressable storage.

Notes:

1. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it is the user's
responsibility to ensure that the TIOT contains the UCB address. To find the UCB address,
refer to the topic "Finding the UCB Address" in Volume 1.

2. Because the parameter list for EXTRACT must be in 24-bit addressable storage, the standard
form of the EXTRACT macro can only be issued by programs residing in 24-bit addressable
storage

The standard form of the EXTRACT macro instruction is written as follows:

name

b

EXTRACT

b

answer addr

,'8'
,teb addr

,FIELDS = (teb info)

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: A-type address, or register (2) - (12).

teb addr: A-type address, or register (2) - (12).
Default: 'S'

teb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID

The parameters are explained as follows:

answer addr
specifies the address of the answer area to contain the requested information. The area is
one or more fullwords, starting on a fullword boundary. The number of fullwords must
be the same as the number of fields specified in the FIELDS parameter, unless ALL is
coded. If ALL is coded, seven fullwords are required.

Note: answer addr resides in 24-bit addressable storage.

EXTRACT - Extract TCB Information 2-147

Example 1

,'S'
,tcb addr

specifies the address of a full word on a fullword boundary containing the address of a
task control block for a subtask of the active task. If'S' is coded or is the default, no
address is specified and the active task is assumed.

Note: The TCB address resides in 24-bit addressable storage.

,FIELDS = (tcb info)
specifies the task control block information requested:

ALL

GRS

FRS

AETX

PRI

CMC

TIOT

COMM

TSO

PSB

TJID

ASID

requests information from the GRS, FRS, reserved, AETX, PRJ, CMC, and TJOT fields. (If
ALL is specified, 7 words are required just for ALL.) .

is the address of the save area used by the control program to save the general registers 0-15
when the task is not active.

is the address of the save area used by the control program to save the floating point registers
0, 2, 4, and 6 when the task is not active.

is the address of the end of task exit routine specified in the ETXR parameter of the
ATTACH macro instruction used to create the task.

is the current limit (third byte) and dispatching (fourth byte) priorities of the task. The two
high-order bytes are set to zero.

is the task completion code. If the task is not complete, the field is set to zero.

is the address of the task input/output table.

is the address of the command scheduler communications list. The list consists of a pointer to
the communications event control block and a pointer to the command input buffer, and a
token. (If a token exists, the high order bit of the token field is set to one). The token is used
only with internal START commands. See "Issuing an Internal Start Command" in Volume
1.

is the address of a byte in which a high bit of 1 indicates a TSO address space, and a high bit
of 0 indicates a non-TSO address space.

is the address of the TSO protected step block, which is extracted from the job step control
block.

is the address space identifier (ASID) for a TSO address space, and zero for a non-TSO
address space.

is the address space identifier.

Operation: Provide information from all the fields of the indicated TCB except ASID.
WHERE is the label of the answer area, ADDRESS is the label of a fullword that contains the
address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

2-148 SPL:· System Macros and Facilities Volume 2

Example 2

Example 3

Operation: Provide information from the current TCB, as above.

EXTRACT WHERE,'S' ,FIELDS=(ALL,TSO,COMM,PSB,TJID)

Operation: Provide information from the command scheduler communications list. ANSWER
is the label of the answer area and TCBADDR is the label of a fullword that contains the
address of the subtask TCB from which information is to be extracted.

EXTRACT ANSWER,TCBADDR,FIELDS=(COMM)

EXTRACT - Extract TCB Information 2-149

EXTRACT (List Form)

The list form of the EXTRACT macro instruction is used to construct a remote control
program parameter list.

The list form of the EXTRACT macro instruction is written as follows:

name

b

EXTRACT

b

answer addr

,'S'
,tcb addr

,FIELDS = (tcb info)

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede EXTRACT.

One or more blanks must follow EXTRACT.

answer addr: A-type address.

tcb addr: A-type address.
Default: 'S'

tcb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exception:

,MF=L
specifies the list form of the EXTRACT macro instruction.

2-150 SPL: System Macros and Facilities Volume 2

EXTRACT (Execute Form)

The execute form of the EXTRACT macro instruction uses, and can modify, a remote control
program parameter list. If the FIELDS parameter, restricted in use, is coded in the execute
form, any TCB information specified in -a previous FIELDS parameter is canceled and must be
respecified if required for this execution of the macro instruction.

The execute form of the EXTRACT macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede EXTRACT.

EXTRACT

b One or more blanks must follow EXTRACT.

answer addr answer addr: RX-type address, or register (2) - (12).

,'S' teb addr: RX-type address, or register (2) - (12).
,teb addr

,FIELDS = (teb info) teb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID

,MF = (E,etrl addr) elrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exception:

,MF = (E, etrl addr)
specifies the execute form of the EXTRACT macro instruction using a remote control
program parameter list.

Note: The parameter list must reside in 24-bit addressable storage.

EXTRACT (Execute Form) 2-151

FEST AE - Fast Extended ST AE

This macro can be assembled compatibly between MVSjXA and MVSj370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

FESTAE users executing in 31-bit addressing mode (the A bit in the PSW is on) must recompile
using the MVSjXA FESTAE macro expansion so that the exit routine gets control in 31-bit
addressing mode.

The FEST AE macro instruction allows an SVC to establish an EST AE recovery routine with
minimal overhead and no locking requirements. The EST AE routine activated by FEST AE
receives control in the same sequence and under the same conditions as though created by the
EST AE macro instruction. The FEST AE macro instruction can be issued in cross memory
mode as long as the currently addressable address space is the home address space. The
interface to the FESTAE exit is described in Volume 1 under "Using the FESTAE Macro
Instruction. "

2-152 SPL: System Macros and Facilities Volume 2

The FESTAE macro expansion has no external linkage. The macro instruction is written as
follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede FESTAE.

FESTAE

b One or more blanks must follow FEST AE.

O,WRKREG = work reg addr
EXITAD R = exit addr

work reg addr: Register (1) - (14).
exit addr: Register (1) - (14).

,RBADDR=svrb addr

,TCBADDR=tcb addr

,PARAM=list addr

,XCTL=NO
,XCTL=YES

,PURGE = NONE
,PURGE = HALT
,PURGE = QUIESCE

,ASYNCH = YES
,ASYNCH=NO

,TERM=NO
,TERM = YES

,RECORD=NO
,RECORD = YES

,ERRET = label

svrb addr: Register (1) - (14).

tcb addr: Register (1) - (14).

list addr: Register (1) - (14).

Default: XCTL = NO

Default: PURGE = NONE

Default: ASYNCH = YES

Default: TERM = NO

Default: RECORD = NO

label: any valid assembler name.

The parameters are explained as follows:

0, WRKREG = work reg addr
specifies that the current EST AE routine be canceled if it was created by FEST AE. An
error occurs if the current EST AE routine was not created by FEST AE. A work register
must be specified for use by the FEST AE macro expansion.

,EXIT ADR = exit addr
specifies a register that contains the address of an EST AE routine to be entered if the task
terminates abnormally. This register is used subsequently as a work register.

,RBADDR = svrb addr
specifies a register that contains the address of the current SVRB prefix (RBPRFX).
RBADDR must be specified if EXIT ADR has also been specified. The specified register
is not altered.

FESTAE - Fast Extended STAE 2-153

Example 1

,TCBADDR = teb addr
specifies the register containing the current TCB address. This register is not altered, and
its specification results in the generation of more efficient code.

Note: The TCB resides in storage below 16 megabytes.

,P ARAM = list addr
specifies the register containing the address of a user-defined parameter list that contains
data to be used by the EST AE routine. The routine receives this address when it is
scheduled for execution.

The use of this parameter list is optional, but the user should zero out any spurious data
it might contain whether or not he intends to use it. If the user does not select the
P ARAM option, the routine receives instead the 24-byte parameter area in the SVRB. In
this case, the user must locate this SVRB parameter area and initialize it with appropriate
data.

,ERRET = label
specifies a label within the CSECT issuing the FESTAE for which addressability has been
established. The FEST AE macro instruction branches to this label if it is returning a
code other than zero. This option saves the user the instructions necessary to check the
return code. If the user does not specify the ERRET option, control returns instead to
the instruction immediately following the FEST AE macro instruction. The return code is
in register 15.

All the other FEST AE parameters have the same meaning as their EST AE counterparts.

Upon conclusion of FESTAE processing, control resumes at the instruction following the
FESTAE macro instruction. Register 15 then contains one of the following return codes:

Hexadecimal
Code

00
08

OC

Meaning

Successful completion of the FESTAE request.
A previous create has been issued with FESTAE for
this SVRB; the request has been ignored.
Cancel has been specified under one of the following
conditions:
1) There is no exit for this TCB.
2) The most recent exit is not owned by the caller.
3) The most recent exit was not created by FESTAE.

Operation: In case of an abnormal termination, execute the ESTAE routine specified by
register 2, allow asynchronous processing, do not allow special error processing, default to
PURGE = NONE, and pass the parameter list pointed to by register 7 to the ESTAE routine.

FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), X
PARAM=(REG7),ASYNCH=YES,TERM=NO

2-154 SPL: System Macros and Facilities Volume 2

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual storage, or an entire
virtual storage subpool, previously assigned to the active task as a result of a GETMAIN
macro instruction. FREEMAIN is supported in a cross memory environment. The active task
is abnormally terminated if the specified virtual storage does not start on a doubleword
boundary or, for an unconditional request, if the specified area or subpool is not currently
allocated to the active task. Register 15 is set to 0 to indicate successful completion. For a
conditional FREEMAIN, register 15 is set to 4 if the specified area or subpool is not currently
allocated to the active task.

In the parameters discussed below, EU, LU, and VU specify unconditional requests and result
in the same processing as E, L, and V, respectively. The two formats for these requests are
available to maintain compatibility with the GETMAIN formats. Users of the FREEMAIN
macro instruction who are freeing virtual storage with addresses greater than 16 megabytes
must use either the RC or RU form of the macro instruction. All addresses specified with the
RC or RU form of the macro are treated as 31-bit addresses.

The description of the FREEMAIN macro instruction follows. The FREEMAIN macro
instruction is also described in Supervisor Services and Macro Instructions with the exception of
the BRANCH and KEY parameters. These parameters are restricted to programs running.
supervisor state, key 0 and, therefore, are only described here.

FREEMAIN - Free Virtual Storage 2-155

The standard form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC,LA = length addr
LU,LA=length addr
L,LA = length addr
VC
VU
V
EC,LV = length value
EU ,LV = length value
E,L V = length value
RC,L V = length value
RC,SP = sub pool nmbr
RU,LV = length value
RU,SP = sub pool nmbr
R,L V = length value
R,SP = sub pool nmbr

,A = addr

,SP = sub pool nmbr

,BRANCH = YES
,BRANCH = (yES,GLOBAL)

,KEY=nmbr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
sub pool nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Notes: 1. If R,SP = (0) is specified with no other parameters, the high

order byte of register 0 must contain the subpool number
and the low order 3 bytes must contain zero.

2. For a subpool FREEMAIN, if RC,SP = sub pool numbr or
RU,SP=subpool nmbr or R,SP = sub pool nmbr is specified,
no other parameters except RELATED can be specified.

3. RC and RU are the only parameters that can be
used to free storage above 16 megabytes.

addr: A-type address, or register (2) - (12).
Note: If R, RC, or RU is coded, register (1) can also be specified.

subpool nmbr: symbol, decimal digit, or register (2) - (12).
If R,SP = (0) is specified, the high order byte of register 0 must contain the
subpool number and the low order 3 bytes must contain the length value.

Note: BRANCH = (YES, GLOBAL) may be specified with
RC or RU above. Also, the macro expansion uses register 4 for
the address of the global save area pointed to by the CVT. The previous
contents of register 4 is overridden.

nmbr: decimal digits 0-15, or register (2) - (12).
Note: This parameter may be specified only with BRANCH and RC or RU
above.

value: any valid macro keyword specification.

2-156 SPL: System Macros and Facilities Volume 2

The parameters are explained below:

LC,LA = length addr
LU,LA = length addr
L,LA = length addr
VC
VU
V
EC,L V = length value
EU,LV = length value
E,L V = length value
RC,L V = length value
RC,SP = subpool nmbr
RU,LV = length value
RU,SP = subpool nmbr
R,L V = length value
R,SP = subpool nmbr

specifies the type of FREEMAIN request:

LC, LV, and L indicate conditional (LC) and unconditional (LU and L) list requests and
specify release of one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage areas
must start on a doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V) variable
requests and specify release of single areas of virtual storage. The address and length of
the virtual storage area are provided at the address specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element requests
and specify release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area is
provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register
requests and specify release of single areas of virtual storage from the subpool indicated,
or specifies release of the entire subpool indicated. If the release is not for the entire
subpool, the address of the virtual storage area is indicated in the A parameter. The
length of the area is indicated in the LV parameter. The virtual storage area must start
on a doubleword boundary. .

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if the
virtual storage being freed is not allocated to the active task. However some abends
cannot be prevented. An unconditional request indicates that the task is to be
abnormally terminated in this situation.

2. Callers in either 24-bit or 31-bit addressing mode can use RC or RU to free storage
above 16 megabytes.

3. If the address of the area to be freed is greater than 16 megabytes, you must use RC or
RU.

FREEMAIN - Free Virtual Storage 2-157

LA specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. One word is required for each virtual storage area to be released; the
high-order bit in the last word must be set to I to indicate the end of the list. Each word
must contain the required length in the low-order three bytes. The fullwords in this list
must correspond with the fullwords in the associated list specified in the A parameter.
The words must not be in the area to be released. If this rule is violated and if the words
are the last allocated items on a virtual page, the whole page is returned to storage and
the FREEMAIN abends with an OC4.

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of
8. If R is coded, LV = (0) may be designated; the high-order byte of register 0 must
contain the subpool number, and the low-order three bytes must contain the length (in
this case, the SP parameter is invalid).

,A=addr
specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. The input should not reside within the area to be released. If this
rule is violated and if the input is within the area and is the last allocated item on a
virtual page, the whole page is returned to storage and the FREEMAIN abends with an
OC4. If E, EC, EU, R, RC, or RU is designated, one word, which contains the address of
the virtual storage area to be released, is required. If V, VC, or VU is coded, two words
are required; the first word contains the address of the virtual storage area to be released,
and the second word contains the length of the area to be released. If L, LC, or LUis
coded, one word is required for each virtual storage area to be released; each word
contains the address of one virtual storage area. If R, RC, or RU is coded, any of the
registers I through 12 can be designated, in which case the address of the virtual storage
area, not the address of the fullword, must have previously been loaded into the register.

,SP = subpool nmbr
specifies the subpool number of tl.?-e virtual area to be released. The subpool number can
be between 0 and 255. The SP parameter is optional and if omitted, subpool 0 is
assumed. If R is coded, SP= (0) can be designated, in which case the subpool number
must be previously loaded into the low-order byte of register O.

For subpool freemains, the SP parameter specifies the number of the subpool to be
released. Subpool freemains can be issued only for the following subpoo1s: 1-127, 229,
230, 233, 236, 237, 240, and 250-253; and if the caller is in key 0, subpool O. Any attempt
to issue a subpool freemain for any other subpool causes a 478 or 40A abend. (See
Volume 1 for a list of the characteristics of the valid subpools.) If R,SP = (0) is specified
with no other parameters, the high-order byte byte of register 0 must contain the subpool
number and the low-order 3 bytes must contain zero.

,BRANCH=YES
,BRANCH = (YES,GLOBAL)

specifies that a branch entry is to be used instead of an SVC entry. If (yES,GLOBAL) is
specified, the entry point to service global storage requests without the need for the local
address space lock will be used. However, the caller must not hold any lock higher than
the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG lock (for
subpools 231 and 241) and the caller must be disabled.

If BRANCH = YES is specified, the caller must pre-load register 4 with the TCB address,
pre-load register 7 with the ASCB address, and hold the local address space lock of the

2-158 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

ASCB address specified in register 7 prior to entry. Register 3 will be destroyed if RC or
R U was specified.

Callers in cross memory mode can use the BRANCH = YES parameter of the
FREEMAIN macro instruction. If the caller is in cross memory mode, the storage is freed
in the currently addressable address space. The caller must hold the CML lock for the
currently addressable address space; load register 7 with the address of the ASCB of the
currently addressable address space; and load register 4 with zero or the address of a TCB
in the currently addressable address space. If register 4 contains a zero, the storage that is
freed is associated with the current job step task that owns the cross memory resources in
the currently addressable address space (that is, the TCB anchored in ASCBXTCB).

If BRANCH = (yES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control is returned to the
caller. Additionally, the SP parameter may only designate subpools 226,227, 228, 231,
239, 241, or 245.

,KEY = key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage was
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be freed in the specified storage protection key.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid coding values.

When control is returned, register 15 contains one of the following return codes. A code
other than 0 is possible only for conditional forms.

Hexadecimal
Code

00
04
08

12

Meaning

Virtual storage was freed.
Not all virtual storage was freed.
Part of area being freed is still fixed.
This condition causes an A 78, AOS, or AOA abend unless
the TCBEOTFM indicator is on.
Page table is paged out.

Operation: Free 400 bytes of storage addressed by register 2 via a branch entry. If the storage
is successfully freed, register 15 contains 0; otherwise, register 15 contains a nonzero value.

FREEMAIN EC,LV=400,A=(2) ,BRANCH=YES

Operation: Free 48 bytes of the storage (addressed by register 5) in subpool 231. Register 3
has been preset to contain the storage key of the storage to be released. If the request is
unsuccessful, the caller is abnormally terminated.

FREEMAIN RU,LV=48,A=(5),SP=231,KEY=(3),BRANCH=(YES,GLOBAL)

FREEMAIN - Free Virtual Storage 2-159

FREEMAIN (List Form)

Use the list form of the FREEMAIN macro instruction to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LU
L
VC
VU
V
EC
EU
E

,LA = length addr
,LV = length value

,A = addr

,SP = subpool nmbr

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede. FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Notes: 1. LA may only be specified with LC, LU, or Labove.

2. LVmay only be specified with EC, EU, or E above.

addr: A-type address.

subpool nmbr: symbol or deci~al digit.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions:

,MF=L
specifies the list form of the FREEMAIN macro instruction.

2-160 SPL: System Macros and Facilities Volume 2

FREE MAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the FREEMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro instruction is written as follows:

name

b

FREEMAIN

b

LC
LV
L
VC
VV
V
EC
EV
E

,LA = length addr
,LV = length value

,A=addr

,SP = sub pool nmbr

,BRANCH = YES

,RELATED = value

,MF = (E,ctrl prog)

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Notes: 1. LA may only be specified with LC, LV, or Labove.

2. LV may only be specified with EC, EV, or E above.

addr: RX-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (0) or (2) - (12).

value: any valid macro keyword specification.

ctrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions:

,MF = (E,ctrl prog)
specifies the execute form of the FREEMAIN macro instruction using a remote control
program parameter list.

FREEMAIN (Execute Form) 2-161

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to allocate one or more areas
of virtual storage to the active task. For task related subpools, the virtual storage areas are
allocated from the specified subpool in the virtual storage area assigned to the associated job
step. The virtual storage areas each begin on a doubleword or page boundary and are not
cleared to 0 when allocated. (The storage is zeroed for the first allocation of a page.) The total
of the lengths specified must not exceed the length available. For most subpools, the storage
will be released when the task assigned ownership terminates, or through the use of the
FREEMAIN macro instruction. For information on when storage that is obtained with a
GETMAIN macro is released, see MVS/XA System Logic Library: Virtual Storage
Management, LY28-1790.

The options R, LC, LU, VC, VU, EC, or EU can be used by callers in either 24-bit or 31-bit
addressing mode. If one of these options is specified, storage area addresses and lengths will be
treated as 24-bir addresses and values. The parameter list addresses and the pointers to the
length and address lists in the parameter lists (if present) will be treated as 31-bit addresses if
the caller's addressing mode is 31-bit; otherwise, they will be treated as 24-bit addresses.

The options RU, RC, VRU, and VRC can be used by callers in either 24-bit or 31-bit
addressing mode. However, all values and addresses will be treated as 31-bit values and
addresses. The GETMAIN macro is also described in Supervisor Service and Macro Instructions
with the exception of the BRANCH and KEY parameters. These parameters are restricted in
use to programs running supervisor state, key O.

2-162 SPL: System Macros and Facilities Volume 2

The description of the GETMAIN macro instruction follows.

name

b

GETMAIN

b

LC,LA = length addr,A = addr
LU,LA = length addr,A = addr
VC,LA = length addr,A=addr
VU ,LA = length addr,A = addr
EC,L V = length value,A = addr
EU,LV = length value,A=addr
RC,L V = length value
RU,LV=length value
R,L V = length value
VRC,LV= (maximum length value,
minimum length value)
VRU,LV= (maximum length value,
minimum length value)

,SP = subpool nmbr

,BNDRY= DBLWD
,BNDRY = PAGE

,BRANCH = YES
,BRANCH = (yES,GLOBAL)

,KEY = key number

,LOC = BELOW
,LOC = (BELOW,ANy)
,LOC = (ANY)
,LOC = (ANY,ANy)
,LOC=RES
,LOC = (RES,ANy)

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R,
RC, or RU is specified, register (0) may also be specified.
addr: A-type address, or register (2) - (12).
Note: RC, RU, VRC, or VRU must be used for addresses
greater than 16 megabytes.

maximum length value: symbol, decimal, digit, or register (2) - (12).
minimum length value: symbol, decimal, digit, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (2) - (12).
Note: If R,LV = (0) is specified above, SP may not be specified.

Default: BNDRY= DBLWD
Note: This parameter may not be specified with R above.

Note: BRANCH = (yES,GLOBAL) may only be specified with RC, RU,
VRC, or VRU above. Also, the macro expansion uses register 4 for the
address of the global save area pointed to by the CVT. The previous
contents of register 4 is overridden. The macro expansion also uses register
3.

key number: decimal digits 0-15, or register (2) - (12).
Default: KEY = 0
Note: This parameter may be specified only with BRANCH and RC, RU,
VRC, or VRU; and subpools 226, 227, 228, 229, 230, 231, and 241.

Default: LOC = RES
Note: This parameter can only be used with RC, RU, VRC, or VRU.
On all other forms, L0C = BELOW is used.

value: any valid macro keyword specification.

GETMAIN - Allocate Virtual Storage 2-163

The parameters are explained below:

LC,LA = length addr, A = addr
LU,LA = length addr, A=addr
VC,LA = length addr, A=addr
VU,LA = length addr, A=addr
EC,LV=length value, A=addr
EU,LV = length value, A = addr
RC,LV = length value
RU,LV = length value
R,L V = length value
VRC,LV = (maximum length value,minimum length value)
VRU,LV = (maximum length value,minimum length value)

specifies the type of GETMAIN request:

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and specify
requests for one or more areas of virtual storage. The length of each virtual storage area
is indicated by the values in a list beginning at the address specified in the LA parameter.
The address of each of the virtual storage areas is returned in a list beginning at the
address specified in the A parameter. No virtual storage is allocated unless all of the
requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable requests, and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is between the two values at the address specified in the LA parameter. The address
and actual length of the allocated virtual storage area are returned by the control program
at the address indicated in the A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests, and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is indicated by the parameter, LV = length value. The address of the allocated virtual
storage area is returned at the address indicated in the A parameter.

RC indicates a conditional register request, and RU and R indicate unconditional register
requests. RC, RU, and R specify requests for single areas of virtual storage. The length
of the single virtual area is indicated by the parameter, LV = length value. The address of
the allocated virtual storage area is returned in register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional (VRU)
requests for a single area of virtual storage. The length returned will be between the
maximum and minimum lengths specified by the parameter LV = (maximum length value,
minimum length value). The address of the allocated virtual storage is returned in register
1 and the length in register O.

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if virtual
storage is not allocated to the active task. An unconditional request indicates that the
task is to be abnormally terminated in this situation.

2. The LC, LU, VC, VU, EC, EU, and Rforms of the GETMAIN macro instruction can
only be used to obtain virtual storage with addresses below 16 megabytes. The RC, RU,
VRC, and VRU forms of the GETMAIN macro instruction can be used to obtain
virtual storage with addresses above 16 megabytes.

2-164 SPL: System Macros and Facilities Volume 2

LA specifies the virtual storage address of consecutive fullwords starting on a full word
boundary. Each fullword must contain the required length in the low-order three bytes,
with the high-order byte set to O. The lengths should be multiples of 8; if they are not,
the control program uses the next higher multiple of 8. If VC or VU was coded, two
words are required. The first word contains the minimum length required, the second
word contains the maximum length. If LC or L U was coded, one word is required for
each virtual storage area requested; the high-order bit of the last word must be set to I to
indicate the end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV = length value specifies the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the control program uses the next higher
multiple of 8. If R is specified, LV = (0) may be coded; the low-order three bytes of
register 0 must contain the length, and the high-order byte must contain the subpool
number. LV = (maximum length value, minimum length value) specifies the maximum and
minimum values of the length of the storage request.

The A parameter specifies the virtual storage address of consecutive fullwords, starting on
a fullword boundary. The control program places the address of the virtual storage area
allocated in one or more words. If E was coded, one word is required. If LC or LU was
coded, one word is required for each entry in the LA list. If VC or VU was coded, two
words are required. The first word contains the addres$ of the virtual storage area, and
the second word contains the length actually allocated. The list must not overlap the
virtual storage area specified in the LA parameter.

,SP = subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be allocated.
The subpool number must be a valid 'subpool number between 0 and 255. See "Virtual
Storage Management" in Volume 1 for a list of the valid subpools. If this parameter is
omitted, subpool 0 is assumed.

Note: Callers executing in supervisor state and key zero, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this storage via
the SDUMP macro instruction, they must specify subpool 252 rather than O.

,BNDRY=DBLWD
,BNDRY=PAGE

specifies that alignment on a doubleword boundary (DBL WD) or aligI1lllent with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

The BNDRY = PAGE keyword is ignored if the request specifies one of the following
subpools 226, 233-235, 239,245, or 253-255. Requests for storage from these subpools are
fulfilled from a single page, unless the request is greater than a page.

,BRANCH = YES
,BRANCH = (YES,GLOBAL)

specifies that a branch entry is to be used instead of an SVC entry. If (yES,GLOBAL) is
specified, the entry point to service global storage requests without the need for the local
lock is used. The caller must be disabled by obtaining the CPU lock to provide
system-recognized disablement and must not hold any lock that would prevent VSM from
obtaining the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG
lock (for subpools 231 and 241). If BRANCH=YES is specified,the caller must pre-load
register 4 with the TCB address, pre-load register 7 with the ASCB address, and hold the
local lock prior to entry. The contents of register 3 is destroyed if RC, RU, VRC, or
VR U is specified.

GETMAIN - Allocate Virtual Storage 2-165

Callers in cross memory mode can use the BRANCH = YES parameter of the GETMAIN
macro instruction. If the caller is in cross memory mode, the storage is allocated in the
currently addressable address space. The caller must hold theCML lock for the currently
addressable address space; load register 7 with the address of the ASCB of the currently
addressable address space; and load register 4 with zero or the address of a TCB in the
currently addressable address space. If register 4 contains a zero, the allocated storage is
associated with the current job step task that owns the cross memory resources in the
currently addressable address space (that is, the TCB anchored in ASCBXTCB).

If BRANCH = (yES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control returns to the caller.
The caller must be disabled and must not hold any locks that would prevent VSM from
obtaining the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG
lock (for subpools 231 and 241). Additionally, the SP parameter may only designate
subpools 226, 227, 228, 231, 239, 241, or 245.

,KEY = key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage is to be
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be obtained in the specified storage protection
key. The KEY parameter cannot be specified unless the BRANCH parameter is also
specified.

,LOC=BELOW
,LOC = (BELOW,ANY)
,LOC=ANY
,LOC = (ANY,ANY)
,LOC=RES
,LOC = (RES,ANY)

specifies the location of virtual storage and real storage. This is especially helpful for
callers with 24-bit dependencies. When LOC is specified, real storage is allocated
anywhere until the storage is fixed (by the PGFIX, PGFIXA, or POSER macro
instructions). After the storage is fixed, virtual and real storage are located in the
following manner.

LOC = BELOW indicates that real and virtual storage are to be located below 16
megabytes.

LOC = (BELOW,ANy) indicates that virtual storage is to be located below 16 megabytes
and real storage can be located anywhere.

LOC = ANY and LOC = (ANY,ANY) indicate that virtual and real storage can be located
anywhere.

Note: The LOC parameter is not valid for fixed subpools. For fixed subpools the actual
location of the virtual storage area depends on the subpool specified. If the subpool is
supported (backed) above 16 megabytes, GETMAIN attempts to locate the virtual
storage area above 16 megabytes. If this is not possible, OETMAIN locates the virtual
storage below 16 megabytes. If the subpool is not supported above 16 megabytes,
OETMAIN also locates th~ virtual storage below 16 megabytes. See "Virtual Storage
Management" in Volume 1 for a list of valid subpools and their characteristics. For
example, LSQA subpools will be backed anywhere regardless of the LOC parameter
specified.

2-166 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

LOC = RES indicates that the location of virtual and real storage depends on the location
of the caller. If the caller resides below 16 megabytes, virtual and real storage are to be
located below 16 megabytes; if the caller resides above 16 megabytes, virtual and real
storage are to be located anywhere.

LOC = (RES,ANY) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is to be
located below 16 megabytes; if the caller resides above 16 megabytes, virtual storage can
be located anywhere. In either case, real storage can be located anywhere.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

When control is returned on conditional type requests (LC, EC, VC, RC, VRC), register 15
contains one of the following return codes:

Hexadecimal
Code

00
04
08

Meaning

Virtual storage requested was allocated
No virtual storage was allocated
Real storage was not available for backing the request
or internal storage management control blocks.

The contents of registers 0, 1, and 15 are not preserved when the GETMAIN macro instruction
is issued.

Operation: Obtain 248 bytes of storage from the user's region via a branch entry. If the
routine is in supervisor state, subpool 252 is used; otherwise, subpool 0 is used. If the storage
cannot be obtained, the caller is abnormally terminated.

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES

Operation: Obtain one page of storage from the common service area, and cause the acquired
storage to be initialized with a storage key of 9. A return code of 0 (if successful)or 4 (if
unsuccessful) is returned.

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL) ,BNDRY=PAGE,KEY=9

Operation: Obtain 400 bytes of storage from subpool 10. If the storage is available, the
address will be returned in register 1 and register 15 will contain 0; if storage is not available,
register 15 will contain 4.

GETMAIN RC,LV=400,SP=lO

GETMAIN - Allocate Virtual Storage 2-167

Example 4

Example 5

Operation: Obtain 48 bytes of storage from default subpool O. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available, the task will
be abnormally terminated.

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR DS F

Operation: Obtain a maximum of 4096 or a minimum of 1024 bytes of virtual storage, with
addresses above or below 16 megabytes. Indicate that if the real storage is fixed, it should also
be located above or below 16 megabytes. If the storage is available, the address will be
returned in register 1 and the length of the storage allocated will be returned in register 0; if the
storage is not available, the task will be terminated.

GETMAIN VRU,LV=(4096,1024),LOC=ANY

2-168 SPL: System Macros and Facilities Volume 2

GETMAIN (List Form)

Use the list form of the GETMAIN macro instruction to construct a control program
parameter list. The list form of the GETMAIN macro instruction cannot be used to allocate
virtual storage with addresses greater than 16 megabytes.

The list form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA = length addr
,LV = length value

,A = addr

,SP = sub pool nmbr

,BNDRY=DBLWD
,BNDRY = PAGE

,RELATED = value

,MF=L

name: Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: A-type address.
length value: symbol or decimal digit.
Notes: 1. LA may be specified with EC or EV above.

2. LV may not be specified with LC, LV, VC or VV above.

addr: A-type address.

sub pool nmbr: symbol or decimal digit.

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

,MF=L
specifies the list form of the GETMAIN macro instruction.

GETMAIN (List Form) 2-169

GETMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the GETMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN. The execute form of the GETMAIN macro instruction
cannot be used to allocate virtual storage with addresses greater than 16 megabytes.

The execute form of the GETMAIN macro instruction is written as follows:

name

b

GETMAIN

b

LC
LV
VC
VV
EC
EV

,LA = length addr
,LV = length value

,A=addr

,SP = sub pool nmbr

,BNDRY= DBLWD
,BNDRY=PAGE

,BRANCH = YES

,RELATED = value

,MF = (E,etri prog)

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

length addr: RX-type address or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12).
Note: LA may not be specified with EC or EV above.
Note: LV may not be specified with LC, LV, VC, or VV above.

addr: RX-type address, or register (2) - (12).

sub pool nmbr: symbol, decimal digit, or register (0) or (2) - (12).

Default: BNDRY=DBLWD

value: any valid macro keyword specification.

elrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

,MF = (E,ctrl prog)
specifies the execute form of the GETMAIN macro instruction using a remote control
program parameter list.

2-170 SPL: System Macros and Facilities Volume 2

GQSCAN - Extract Information From Global Resource Serialization
Queue

Use the GQSCAN macro instruction to obtain the status of resources and requestors of those
resources. The GQSCAN macro instruction, in conjunction with the ISGRIB mapping macro,
enables you to obtain resource information from system control blocks without knowing the
exact structure or location of the control blocks.

The issuer of the GQSCAN macro instruction must be executing in primary mode. To use
SCOPE = GLOBAL and SCOPE = LOCAL, you must be in supervisor state or key 0 and you
should be aware that improper use of these parameters degrades system performance.

Global resource serialization counts and limits the number of outstanding global resource
serialization requests. A global resource serialization request is any ENQ, RESERVE, or
GQSCAN that causes an element to be inserted into a queue in the global resource serialization
request queue area. See "Limiting Global Resource Serialization Requests" in Volume 1.

Register 13 must contain the address of an 18-word save area, which can be provided through
the use of standard linkage conventions.

On return, register 0 contains two halfword values. The first (high order) halfword contains the
length of the fixed portion of each RIB returned; the second (low order) half word contains the
length of each RIBE returned. Register 1 contains the number of RIBs that were copied into
the area provided. Register 15 contains the return code. In order to interpret the data that the
GQSCAN service routine returns in the user-specified area, you must include the ISGRIB
mapping macro as a DSECT in your program. ISGRIB maps the resource information block
(RIB) and the resource information block extent (RIBE) as shown in the Debugging Handbook.

GQSCAN - Extract Information From Global Resource Serialization Queue 2-171

The standard form of the GQSCAN macro instruction is written as follows:

name

b

GQSCAN

b

AREA = (area addr,area size)

,REQLIM = value
,REQLIM = MAX

,SCOPE = ALL
,SCOPE = STEP
,SCOPE = SYSTEM
,SCOPE = SYSTEMS
,SCOPE = LOCAL
,SCOPE = GLOBAL

,RESERVE = YES
,RESERVE=NO
,RESNAME= (qname addr[,mame
addr, mame length),
[GENERlqSPECIFIC),
qname length)

,SYSNAME= (sysname addr [,asid
value))

,QUIT = YES
,QUIT=NO

,REQCNT = value
,OWNERCT = value,WAITCNT =
value
,OWNERCT = value
,W AITCNT = value

,TOKEN = addr

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

area addr: RX-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT = YES.

value: symbol, decimal digit, register (2) - (12), or the word MAX.
Default: REQLIM = MAX

Default: SCOPE = STEP

Default: All resources requested with RESERVE and all resources
requested with ENQ.
qnpme addr: RX-type address or register (2) - (12).
mame addr: RX-type address or register (2) - (12).
mame length: decimal digit, register (2) - (12).
Default: assembled length of rname.
Default: qnarne length of eight.
sysnarne addr: RX-type address or register (2) - (12).
asid value: symbol, decimal digit, or register (2) - (12).
Notes: mame addr can be provided only when qname addr is used. mame
length must be coded if a register is specified for marne addr. An asid value
can be coded only when the sysname addr is used.

Default: QUIT=NO
Note: QUIT = YES is mutually exclusive with all parameters but TOKEN.

value: decimal digit or register (2) - (12).
Default: REQCNT = 0

addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

AREA = (area addr, area size)
specifies the location and size of the area where information extracted from the global
resource serialization resource queues is to be placed. The minimum size is the amount
needed to describe a single resource, approximately 296 bytes, which is the length of the
fixed portions of the RIB and the maximum size marne rounded up to a fullword value.

2-172 SPL: System Macros and Facilities Volume 2

,REQLIM = value
,REQLIM = MAX

specifies the maximum number of owners and waiters to be returned for each resource,
which can be any value between 0 and 215_1. MAX specifies 215_1.

,SCOPE = ALL
,SCOPE = STEP
,SCOPE = SYSTEM
,SCOPE = SYSTEMS
,SCOPE = LOCAL
,SCOPE = GLOBAL

specifies that you want information only for resources having the indicated scope. STEP,
SYSTEM, or SYSTEMS is the scope specified on the resource request. If you specify
SCOPE = ALL (meaning STEP, SYSTEM, and SYSTEMS), the system returns
information for all resources the system recognizes that have the specified RESNAME,
RESERVE, or SYSNAME characteristics. If you specify SCOPE = LOCAL, information
is returned about this system's resources that are not being shared with other systems in
the ring. If you specify SCOPE = GLOBAL, information is returned about resources that
are being shared with other systems in the ring. Remember that entries in the resource
name lists can cause the scope to change.

,RESERVE = YES
,RESERVE = NO
,RESNAME = (qname addr[,rname addr,rname lengthj,[GENERICISPECIFIC j, qname length)
,SYSNAME = (sysname addr [,asid value J)

For most requests, RESERVE = YES specifies that information is to be returned for
resources requested with the RESERVE macro instruction. If a RESERVE macro
instruction is issued for a device that is not shared, global resource serialization treats the
RESERVE request as an ENQ and the GQSCAN macro instruction does not return
information for the resource request when RESERVE=YES.

RESERVE = NO specifies that information is to be returned for resources requested with
the ENQ macro instruction.

RESNAME (with rname) indicates the name of one resource.

The qname addr specifies the virtual storage address of the 8-character major name of the
requested resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor name used
in conjunction with the major name to represent a single resource. Information returned
is for a single resource unless you specify SCOPE =.ALL, in which case it could be for
three resources (STEP, SYSTEM, and SYSTEMS) or SCOPE = LOCAL in which case it
could be for two resources (STEP and SYSTEM) if there is a matching name in each of
these categories. If the name specified by rname is defined by an EQU assembler
instruction, the rname length must be specified.

The rname length specifies the length of the minor name. If you use the register form, the
low-order (rightmost) byte contains the length. The length must match the rname length
specified on ENQ or RESERVE.

GENERIC specifies that the rname of the requested resource must match but only for the
length specified. For example, an ENQ for SYSl.PROCLIB would match the GQSCAN
rname specified as SYSI for an rname length of 4.

GQSCAN - Extract Information From Global Resource Serialization Queue 2-173

SPECIFIC specifies that the rname of the requested resource must exactly match the
GQSCAN marne.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the length of the qname in the resource name that must match
the GQSCAN name.

SYSNAME specifies that information is to be returned for resources requested by tasks
running on an MVS system whose system name matches the one specified by SYSNAME,
where sysname addr is the address of an 8-byte field that contains the system name, and
asid value specifies a 4-byte address space identifier, right justified. Information returned
includes only those resources whose sysname addr and asid value match the ones specified.
SYSNAME=O or SYSNAME=(O,asid value), specifies that the system name is that of
the system on which GQSCAN is issued.

,QUIT = YES
,QUIT=NO

indicates whether or not you want to terminate the current global resource serialization
queue scan. If QUIT = YES is specified with TOKEN, GQSCAN processing terminates
the current GRS queue scan and releases the storage allocated to accumulate the
information specified in the token.

,REQCNT = value
,OWNERCT = value, WAITCNT = value
,OWNERCT = value
,W AITCNT = value

specifies that you only want information about resources that fall into the following
categories:

• The total number of requestors (that is, owners plus waiters) is greater than or equal
to REQCNT.

• The total number of owners is greater than or equal to OWNERCT.

• The total number of waiters is greater than or equal to WAITCNT.

If you do not specify REQCNT, you can specify both OWNERCT and W AITCNT. If
you specify REQCNT, you cannot specify either OWNERCT or W AITCNT.

,TOKEN = addr
specifies the address of a fullword of storage that the GQSCAN service routine can use in
subsequent invocation to provide you with any remaining information. If the token is
zero, the scan starts at the beginning of the resource queue. You must zero the token
each time you want the scan to start over. If the token is not zero, the scan resumes at
the point indicated by the token.

2-174 SPL: System Macros and Facilities Volume 2

When GQSCAN returns control, register 15 contains one of the following return codes:

Hexadecimal
Code

o

4

8

C

10

14

Meaning

Queue scan processing is complete. Data is now in the area you specified.
On a resumed GQSCAN, the code signifies that there are no more
resources to match your request.

Queue scan processing is complete. No resources matched your request.

The area you specified was filled before queue scan processing completed.
If you specified TOKEN, process the information in the area and issue
GQSCAN again specifying the TOKEN returned to you. If you did not
specify TOKEN, you must begin again and either specify a larger area or
specify a TOKEN.

Queue scan encountered an abnormal situation while processing. The information
in your area is not meaningful. The values in registers 0 and I are
also meaningless.

An invalid SYSNAME was specified as input to queue scan. The information
in your area is not meaningful.

The area you specified was filled before queue scan processing completed.
Your request specified TOKEN =, but you have too many outstanding ENQ or
RESERVE and GQSCAN requests. The information in your area is valid but
incomplete. The scan cannot be resumed.

GQSCAN - Extract Information From Global Resource Serialization Queue 2-175

GQSCAN (List Form)

The list form of the GQSCAN macro instruction is used to construct a non-executable
parameter list. This parameter list, or a copy of it for reentrant programs, can be referred to by
the execute form of the GQSCAN macro instruction.

The list form of the GQSCAN macro instruction is written as follows:

name

b

GQSCAN

b

AREA = (area addr, area size)

,REQLIM = value
,REQLIM = MAX

,SCOPE=ALL
,SCOPE = STEP
,sCOPE = SYSTEM
,SCOPE = SYSTEMS

,RESERVE = YES
,RESERVE=NO
,RESNAME=(qname addr [,rname
addr, rname length],
[GENERlqSPECIFIC],
qname length)

,sYSNAME= (sysname addr[,asid
value])

,QUIT=YES
,QUIT=NO

,REQCNT = value

,OWNERCT = value
,W AITCNT = value

,TOKEN = addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

area addr: A-type address.
area size: symbol, decimal digit.
Notes: 1. This parameter cannot be specified with QUIT = YES.

2. AREA is required on either the list or the execute form of the
macro instruction.

value: symbol, decimal digit or the word MAX.
Default: REQLIM = MAX

Default: SCOPE = STEP

Default: All resources requested with RESERVE and all
resources requested with ENQ.
qname addr: A-type address.
rname addr: A-type address.
rname length: decimal digit.
Default: assembled length of rname.
Default: qname length of eight.
sysname addr: A-type address,
asid value: symbol, decimal digit.
Notes: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid
value can be coded only when the sysname addr is used.

Default: QUIT = NO
Note: Only TOKEN and MF = L can be specified with QUIT = YES.

value: decimal digit.
Default: REQCNT = 0

addr: RX-type address.

2-176 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the GQSCAN macro instruction with
the following exception:

,MF=L
specifies the list form of the GQSCAN macro instruction.

GQSCAN (List Form) 2-177

GQSCAN (Execute Form)

The execute form of the GQSCAN macro instruction can refer to and modify a remote
parameter list built by the list form of the macro. There are no defaults for any of the
parameters in the execute form of the macro instruction.

The execute form of the GQSCAN macro instruction is written as follows:

name

b

GQSCAN

b

AREA = (area addr ,area size)

,REQLIM = value
,REQLIM = MAX

,SCOPE = ALL
,SCOPE = STEP
,SCOPE = SYSTEM
,SCOPE = SYSTEMS
,SCOPE = LOCAL
,SCOPE = GLOBAL

,RESERVE=YES
,RESERVE=NO
,RESNAME= (qname addr[,rname
addr,rname length],
[GENERICISPECIFIC],
qname length)
,SYSNAME= (sysname addr[,asid
value])

,QUIT = YES
,QUIT=NO

,REQCNT = value

,OWNERCT = value
,W AITCNT = value

,TOK.eN = addr

,MF = (E,parm list addr)

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

area addr: RX-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Notes: 1. AREA cannot be specified with QUIT = YES.

2. AREA is required on either the list or the execute form of the
macro instruction.

value: symbol, decimal digit, register (2) - (12), or the word MAX.

Note: SCOPE = LOCAL and SCOPE = GLOBAL cannot be
coded on the list form of this macro.

Default: All resources requested with RESERVE
and all resources requested with ENQ.
qname addr: RX-type address or register (2) - (12).
rname addr: RX-type address or register (2) - (12).
rname length: decimal digit, register (2) - (12).
Default: assembled length of rname.
sysname addr: RX-type address or register (2) - (12).
asid value: symbol, decimal digit, or register (2) - (12).
Note: rname addr can be provided only when qname addr is used. rname
length must be provided if a register is specified for rname addr. An asid
value can be coded only when the sysname addr is used.

Default: QUIT=NO
Note: Only TOKEN and MF=(E, parm list addr) can be specified with
QUIT=YES.

value: decimal digit or register (2) - (12).

addr: RX-type address of register (2) - (12).

parm list addr: RX-type address or register (2) - (12).

2-178 SPL: System Macros and Facilities'Volume 2

The parameters are explained under the standard form of the GQSCAN macro instruction with
the following exception:

,MF = (E,parm list addr)
specifies the execute form of the GQSCAN macro instruction. This form uses a remote
parameter list defined by parm list addr.

GQSCAN (Execute Form) 2-179

I IEFQMREQ - Invoke SW A Manager in Move Mode

This macro is used to invoke the Move SW A manager in move mode. The IEFQMREQ macro
instruction, which has no parameters, is written as follows:

name name:

b One or more blanks must precede IEFQMREQ.

IEFQMREQ

b One or more blanks must follow IEFQMREQ.

2-180 SPL: System Macros and Facilities Volume 2

INTSECT - Intersect With the Dispatcher

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic "Selecting the Macro Level" for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The INTSECT macro instruction is used to serialize processing with the dispatcher (specifically,
when altering the dispatching queues or TCB/ASCB dispatchability). The only routines that
may use the INTSECT macro are those in supervisor state, key O ..

There are two levels of intersect, local and global. The LOCAL lock must be held before
requesting the local intersect. The dispatcher lock must be held before requesting the global
intersect. After the operation that required serialization has completed, the intersect must be
released by issuing the INTSECT macro instruction with the RESET option before freeing the
appropriate lock. Programs executing in cross memory mode can use INTSECT with the
TYPE = GLOBAL option.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

The INTSECT macro instruction is written as follows:

name

b

INTSECT

b

SET
RESET

,TYPE = GLOBAL
,TYPE = LOCAL

,ID=symbol

,RELATED = value

name:

One or more blanks must precede INTSECT.

One or more blanks must follow INTSECT.

value: any valid macro keyword specification.

INTSECT - Intersect With the Dispatcher 2-181

Example 1

The parameters are explained as follows:

SET
RESET

specifies whether to obtain or release the intersect.

,TYPE = GLOBAL
,TYPE = LOCAL

specifies the level of intersect to be used.

,ID=symbol
specifies an identifier that indicates the function name of the intersecting routine.

Note: Specific ids are defined only for the control program. Other users should omit this
keyword. Routines omitting the ID keyword should release the INTSECT before calling
any other routine.

,RELATED = value
specifies information used to self-document macro instructions. This is done by "relating"
functions or services to corresponding functions or services. The format and content of
the information specified are at the discretion of the user, and may be any valid coding
values.

Operation: The LOCAL lock has already been obtained. Request to hold the local intersect.

INTSECT SET,TYPE=LOCAL

2-182 SPL: System Macros and Facilities Volume 2

I IOSDDT - Device Descriptor Table Build Macro

The 10SDDT macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. The IOSDDT macro builds a device descriptor table (DDT). The DDT, which must
reside in SYSl.NUCLEUS, is the vector table to the device dependent exits for a device. The
lOS DDT macro is located in SYSl.AMODGEN. See SPL: System Modifications for a
complete description of coding a UIM.

A device descriptor table (DDT) is a vector table that lOS uses to locate the device support
routines. The system requires one of these tables for each device in the I/O configuration,
although similar devices may share the same DDT. When conditions arise during I/O
operations for which specific device dependent processing is required, lOS gives control to the
exit routines through the vector entries in the DDT.

To build the DDT, you use the 10SDDT macro. With this macro, you specify the module
names of the DDT exit routines for the devices supported by that DDT. These exit routines
perform the processing for various system functions that occur when the system performs I/O
operations. The parameters of the 10SDDT macro allow you to specify the following kinds of
routines, which receive control from lOS when the appropriate condition arises:

• The start I/O exit routine

• The trap exit routine

• The translate CCW table

• The ERP message routine

• The DDR exit routine

• The unsolicited interrupt exit routine

• The sense exit routine

• The end of sense exit routine

• The MIH exit routine

• The device initialization exit routine

• The channel program scan exit routine

• The subsystem ID

The information in the DDT is created from the parameters of the 10SDDT macro. The label
that you specify on the 10SDDT macro is required because it is used as the CSECT name for
the DDT being generated. When the system is IPLed, the DDT for each device in the I/O
configuration becomes part of the nucleus. Each use of the 10SDDT macro generates one
DDT.

IOSDDT - Device Descriptor Table Build Macro 2-183

The IOSDDT macro instruction is written as follows:

name name:

b One or more blanks must precede IOSDDT.

IOSDDT

b One or more blanks must follow IOSDDT.

SIOEXIT = epname entry point name

,TRPEXIT = epname entry point name

,TCCWTAB = epname entry point name

,ERPEXIT= (epname,type) entry point name

,DDREXIT= (epname,type) entry point name

,UNSEXIT = epname entry point name

,SNSEXIT = epname entry point name

,EOSEXIT = epname entry point name

,MIHEXIT = epname entry point name

,DSEXIT = epname entry point name

,CPS EXIT = epname entry point name

,SSYSID = ssname subsystem name

The parameters are explained as follows:

name
specifies name of the DDT. IOSDDT uses this name on the CSECT statement that it
generates for the DDT. The name parameter is required.

SIOEXIT = epname
specifies the name of the start I/O exit entry point.

TRPEXIT = epname
specifies the name of the trap exit entry point.

TCCWTAB = epname
specifies the name of the translate CCW table entry point.

2-184 SPL: System Macros and Facilities Volume 2

ERPEXIT = (epname,type)
specifies the name of the ERP message entry point. Type describes whether the entry
point name is to be treated as an entry point name address or a module name. Type can
be specifed as A for address or N for EBCDIC name. If A is specified, the module is
loaded into the nucleus region from SYSl.NUCLEUS .. If N is specified, the module is
loaded into the LPA from the LINK LIST concatenation. If neither is specified, N is the
default.

DDREXIT = (epname,type)
specifies the name of the DDR exit entry point Type describes whether the entry point
name is to be treated as an entry point name address or a module name. Type can be
specifed as A for address or N for EBCDIC name. If A is specified, the module is loaded
into the nucleus region from SYSl.NUCLEUS .. If N is specified, the module is loaded
into the LPA from the LINK LIST concatenation. If neither is specified, N is the default.

UNSEXIT = epname
specifies the name of the unsolicited interrupt exit entry point.

SNSEXIT = epname
specifies the name of the sense exit entry point.

EOSEXIT = epname
specifies the name of the end of sense exit entry point.

MIHEXIT = epname
specifies the name of the MIH exit entry point.

DSEXIT = epname
specifies the name of the device service exit entry point.

CPSEXIT = epname
specifies the name of the channel program scan exit entry point.

SSYSID = ssname
specifies the name of the subsystem ID, which can be one to four characters.

Note: ¥Jhen both ERPEXIT and DDREXIT are specified as EBCDIC module names,
IOSDDT verifies that both specified module names have the same 4-character prefix. If the
prefixes are not the same, IOSDDT issues an MNOTE and not does generate a DDT.

IOSDDT - Device Descriptor Table Build Macro 2-185

I IOSDMLT - Module Lists Table Macro

The IOSDMLT macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. The IOSDML T macro builds a module list table (ML T). See SP L: System
Modifications for a complete description of coding a UIM.

The Module Lists Table (MLT) must reside in SYS1.NUCLEUS. It identifies the nucleus and
LPA modules required to support the device you are defining, and that need to be loaded
during the IPL process. For example, the MLT for an unsupported printer would designate all
the modules that must be loaded into the nucleus and the LPA to support that printer. Note
that the ML T must list all the nucleus and LPA device support modules for the device
regardless of whether the modules are provided by you or by IBM.

To build a module lists table, use the IOSDMLT macro. Each IOSDMLT macro that you code
creates an MLT CSECT. The label specified on the IOSDMLT macro, which is required, is
used as the CSECT name. As parameters of the IOSDML T macro, you specify a set of
nucleus-resident module names and a set of LPA-resident module names. Each use of the
IOSDMLT macro generates one MLT, which resides in a separate module. The IOSDMLT
macro resides in SYSl.AMODGEN.

The IOSDML T macro instruction is written as follows:

name name:

b One or more blanks must precede IOSDMLT.

IOSDMLT

b One or more blanks must follow IOSDMLT.

NUCL= (nucid< ,nucid> ... J nucid: name of nucleus module

,LPAL= (lpaid< ,/paid> .. .) {paid: name of LPA module

The parameters are explained as follows:

name
specifies the name of the MLT. IOSDMLT uses this name on the CSECT statement that
it generates for the MLT. The name parameter is required. Note that IOSDMLT
generates an END statement at the end of its expansion.

2-186 SPL: System Macros and Facilities Volume 2

NUCL= (nucid< ,nucid> ... J
specifies the names of the nucleus modules that are to be loaded from SYSl.NUCLEUS
into the nucleus region if the device associated with this ML T is defined in the I/O
configuration.

,LP AL = (/paid < ,lpaid> ...)
specifies the names of the LPA modules to be included in the module list table CSECT.

IOSDMLT - Module Lists Table Macro 2-187

10SINFO - Obtain Information From the Input/Output Supervisor
(lOS)

The IOSINFO macro instruction obtains the subchannel number for a specified unit control
block (UCB) from the input/output supervisor (lOS). The macro returns the subsystem
identification word (SID), which identifies the subchannel number of the UCB, in a
user-specified location. The SID is a fullword value whose first halfword contains X'OOOl' and
ending half word contains the subchannel number.

A subchannel is associated with a UCB at NIP time. If the subchannel and the UCB become
disassociated during system operation, the subchannel number in the SID might not be valid. If
the UCB is disassociated from the subchannel at the time that the IOSINFO service routine is
invoked, IOSINFO can detect the situation and notify the user via a return code. If the UCB is
disassociated from the subchannel after the service routine is invoked, IOSINFO can give no
notification of this to the caller.

The issuer of IOSINFO must be executing:

• In 31-bit addressing mode
• In either task mode or SRB mode
• Locked or unlocked

Additionally, the issuing program uses the CVT and PSA control blocks. All addresses must be
31-bit addresses.

Before entry to this macro, register 13 must contain the address of a standard 18-word save
area.

The IOSINFO macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede IOSINFO.

IOSINFO

b One or more blanks must follow IOSINFO.

FUNCTN =SUBCHNO

,UCB=ucb addr ucb addl': A-type address or register (0) - (15).

,OUTPUT = output addr output addr: A-type address or register (0) - (14).

,RTNCDE = l'etcde addl' l'etcde addr: A-type address or register (0) - (15).

2-188 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

FUNCTN=8UBCHNO
specifies that a subchannel number is to be obtained.

,UCB = uch addr
specifies the address of a fullword on a fullword boundary containing the address of a
unit control block (DCB).

,OUTPUT = output addr
specifies the address of a fullword on a full word boundary that will contain the subsystem
identification word (SID) upon completion.

The SID is a full word value that identifies the subchannel. The first halfword is X'OOO 1 "
and the last halfword contains the subchannel number.

The output address must reside in 31-bit addressable storage.

,RETCDE = retcde addr
specifies the address of a fullword on a fullword boundary that will contain the return
code upon completion.

The return code address must reside in 31-bit addressable storage.

After completion, the contents of the registers are as follows:

• Register 0 is unpredictable.
• Register 1 (unless the return code is 4) contains the SID.
• Registers 2-13 are preserved.
• Register 14 is unpredictable.
• Register 15 contains a return code.

When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Meaning

The address specified on the OUTPUT parameter contains the SID. *
The UeB was disassociated from the subchannel at the
time of the IOSINFO service routine invocation.

* In some cases, the subchannel number in the SID might not be valid. Any disassociation of
the DCB and the subchannel means the subchannel number in the SID is not valid. If the ueB
is disassociated from the subchanne1 after the IOSINFO service routine invocation, no
notification can be given.

lOS INFO - Obtain Information From the Input/Output Supervisor (IOS) 2-189

Example 1

Example 2

Example 3

Operation: Obtain the subchannel number for a UeB whose address is in register 1. Specify
the SID output to be placed in register 2 and the return code to be placed in register 3.

IOSINFO FUNCTN=SUBCHNO,UCB=(1),OUTPUT=(2),RTNCODE=(3)

Operation: Obtain the subchanne1 number for a UeB whose address is in location ADDR.
Specify the SID output to be placed in location ADDX and the return code to be placed in
register 3.

IOSINFO FUNCTN=SUBCHNO,UCB=ADDR,OUTPUT=ADDX,RTNCODE=(3)

Operation: Obtain the subchannel number for a UeB whose address is in register 2. Specify
the SID output to be placed in register 3 and the return code to be placed in location ADDR.

IOSINFO FUNCTN=SUBCHNO,UCB=(2),OUTPUT=(3),RTNCODE=ADDR

2-190 SPL: System Macros and Facilities Volume 2

IOSLOOK - Locate Unit Control Block

The IOSLOOK macro instruction locates the unit control block (UCB) associated with a device
address. To use lOS LOOK, you must be executing in supervisor state. Register 13 must point
to a 16-word save area where the macro instruction stores registers 0 through 15 at offset O.
You must also include a DSECT for both the CVT (using the CVT mapping macro) and the
IOCOM (using the IECDIOCM mapping macro).

The lOS LOOK macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede IOSLOOK.

IOSLOOK

b

DEV= (reg)

,UCB= (reg)

One or more blanks must follow IOSLOOK.

reg: Register (0) - (12), (14), (15).
Default: DEV = (6).

reg: Register (0) - (12).
Default: UCB = (7).

The parameters are explained as follows:

DEV= (reg)
specifies a general purpose register, symbolic or absolute, that contains the hexadecimal
device number, right justified. If this parameter is omitted, register 6 is assumed.

,UCB= (reg)
specifies a general purpose register, symbolic or absolute, that will be used to return the
address of the UCB common segment. If this parameter is omitted, register 7 is assumed.

If the UCB address cannot be found, then the contents of this register are unpredictable.

Note: The UCB must reside in 24-bit addressable storage.

IOSLOOK - Locate Unit Control Block 2-191

Example 1

When control returns, register 15 contai11s one of the following return codes.

Hexadecitnal .
Code

00
04

Meaning

UCB address was found
Device number was invalid or no UCB exists.

Operation: Find the UeB address for device 250. Register 2 contains the value X'00000250'.
The DCB address is to be returned in register 5 and UCBPTR is equated to 5 .

. IOSLOOK DEV= (2) ,ueB';:; (UCBPTR)

2-192 SPL: System Macros and Facilities Volume 2

LOAD - Bring a Load Module into Virtual Storage

The LOAD macro instruction is used to bring the load module containing the specified entry
name into virtual storage, if a usable copy is not available in virtual storage. Load services
places the load module in storage above or below the 16 megabytes line depending on the
RMODE of the module, which is specified in the directory entry for the module.

The responsibility count for the load module is increased by one. On output, the high-order
byte of register 1 contains the authorization code of the loaded module and the low-order three
bytes contain the module's length in doublewords. Control is not passed to the load module;
instead, the virtual storage address and the addressing mode of the designated entry point is
returned in register O. The load module remains in virtual storage until the responsibility count
is reduced to 0 through task terminations or until the effects of all outstanding LOAD requests
for the module have been canceled (using the DELETE macro instruction described in
Supervisor Services and Macro Instructions), and there is no other requirement for the module.

Load sets the high-order bit of the entry point address in register 0 to indicate the module's
AMODE, which is obtained from the directory entry for the module. If the module's AMODE
is 31-bit, it sets the indicator to 1; if the module's AMODE is 24-bit, it sets the indicator to 0;
and if the module's AMODE is ANY, it sets the indicator to correspond to the caller's
AMODE.

The GLOBAL,EOM, and ADDR parameters are restricted to authorized users
(APF-authorized, in PSW key 0-7, or in supervisor state).

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set or must have been specified in an IDENTIFY macro instruction. If the
entry name was previously specified in an IDENTIFY macro instruction, no attempt is made to
bring in an additional copy of the module. If the specified entry name cannot be located, the
task is abnormally terminated.

LOAD - Bring a Load Module into Virtual Storage 2-193

The LOAD macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede LOAD.

LOAD

b One or more blanks must follow LOAD.

EP = entry name entry name: symbol.
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

,ADDR=/oad addr

,GLOBAL = YES
,GLOBAL = (yES,P)
,GLOBAL = (yES,F)
,GLOBAL=NO

,EOM=NO
,EOM=YES

,LOADPT = addr

,RELATED = value

*entry name addr: RX-type address or register (2) - (12); A-type
address or register (2) - (12).
*list entry addr: RX-type address, or register (2) - (12); A-type address or
register (2) - (12).

*deb addr: RX-type address, or register (1) or (2) - (12); A-type address or
register (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

Default: LSEARCH = NO

load addr: A-type address or register (2) - (12).

Default: GLOBAL = NO
If GLOBAL = YES is specified, the default is GLOBAL = (YES,P).

Default: EOM = NO
Note: GLOBAL must be specified with EOM = YES.

addr: A-type address or register (2) - (12).
Note: ADDR cannot be specified with LOADPT.

value: any valid macro keyword specification.

* If you code any of the parameters: LSEARCH, ADDR, GLOBAL, EOM, or LOADPT, you will obtain a
macro-generated parameter list. Therefore, except for the error routine address, all addresses must be specified
as A-type addresses or registers (2) - (12).

The parameters are explained below:

EP = entry name
EPLOC = entry name addr
DE = list entry addr

specifies the entry name, the address of the name, or the address of the name field in a
60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Note: The task structure must not be changed via an ATTACH or DETACH between
the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

2-194 SPL: System Macros and Facilities Volume 2

,DCB = deb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the
BLDL mentioned above.

If the DCB parameter is omitted or if DCB = 0 is specified when the LOAD macro
instruction is issued by the job step task, the data sets referred to by either the STEPLIB
or JOBLIB DD statement are first searched for the entry name. If the entry name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB = 0 is specified when the LOAD macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by the T ASKLIB operand of previous A TT ACH macro instructions in
the subtask chain are first searched for the entry name. If the entry name is not found,
the search is continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,ERRET = err rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend
code that would have resulted had the task abended, and register 15 contains the reason
code that is associated with the abend. The routine does not receive control when input
parameter errors are detected.

,LSEARCH=NO
,LSEARCH = YES

specifies whether (YES) or not (NO) you want the library search limited to the job pack
area and to the first library in the normal search sequence.

,ADDR = load addr
specifies that the module is to be loaded beginning at the designated address. The address
must specify a doubleword boundary. Storage for the module must have been previously
allocated in the requestor's key. The system does not search for the module and does not
maintain a record of the module once it is loaded. If you code the ADDR parameter,
you must also code the DCB parameter (not DCB = 0) and you must not code GLOBAL
or LOADPT.

Note: The RMODE of the load module must agree with this address. If the user
specifies an address above 16 megabytes in virtual, the load module must have an
RMODE of ANY.

,GLOBAL = YES
,GLOBAL = (YES,P)
,GLOBAL = (yES,F)
,GLOBAL=NO

specifies whether the module is to be loaded into the pageable common service area (CSA)
(GLOBAL = (yES,P) or GLOBAL = YES), loaded into fixed CSA (GLOBAL = (yES,F»,
or not loaded into CSA (GLOBAL = NO). (The module must not have been previously
loaded into CSA with different attributes by the same job step, the module must also be
reentrant and must reside in an APF-authorized library.) For GLOBAL = (YES,F), the
module must not be marked as requiring alignment on a page boundary. If you code the
GLOBAL parameter, you cannot code the ADDR parameter.

LOAD - Bring a Load Module into Virtual Storage 2-195

Example 1

Example 2

If the requested module resides in the link pack area, the LOAD request performs as
though the GLOBAL parameter was omitted. The LOAD request locates the module in
the link pack area, allows access to it, but does not load a copy of the desired module
into the common service area.

Note: A load request with the GLOBAL option does not cause the loaded module to be
implicitly known to other address spaces. The loaded module can be accessed by other
address spaces, however, only the requesting task is accountable for it (and may therefore
delete it).

,EOM=YES
,EOM=NO

indicates whether a module in global storage is to be deleted when the address space
terminates (EOM = YES) or when the task terminates (EOM = NO). If you code EOM,
you must also code GLOBAL.

,LOADPT = addr
specifies that the starting address at which the module was loaded is to be returned to the
caller at the indicated address. If you code LOADPT, you cannot code ADDR.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Operation: Bring a load module with entry name PGMLKRUS into virtual storage. Let the
system find the module from available libraries.

LOAD EP=PGMLKRUS

Operation: Bring a load module with entry name PGMEOM into page able CSA storage and
return the load address at location PGMLPT.

LDPGM LOAD EP=PGMEOM,EOM=YES,LOADPT=PGMLPT,GLOBAL=(YES,P)

PGMLPT DS A LOAD ADDRESS RETURNED HERE

2-196 SPL: System Macros and Facilities Volume 2

LOAD (List Form)

The list form of the LOAD macro instruction builds a non-executable parameter list that can be
referred to by the execute form of the LOAD macro.

The list form of the LOAD macro instruction is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,LSEARCH = NO
,LSEARCH = YES

,ADDR=load addr

,GLOBAL = YES
,GLOBAL = (YES,P)
,GLOBAL = (YES,F)
,GLOBAL=NO

,EOM=NO

,EOM=YES

,LOADPT = addr

,RELATED = value

,SF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

Default: LSEARCH = NO

load addr: A-type address.

Default: GLOBAL = NO
If GLOBAL = YES is specified, the default is GLOBAL = (YES,P).

Default: EOM = NO
Note: GLOBAL must be specified with EOM = YES.

addr: A-type address.
Note: ADDR cannot be specified with LOADPT.

value: any valid macro keyword specification.

The parameters are explained under the standard form of LOAD macro instruction with the
following exception:

,SF=L
specifies the list form of the LOAD macro instruction.

LOAD (List Form) 2-197

LOAD (Execute Form)

The execute form of the LOAD macro instruction can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the LOAD macro instruction is written as follows:

name

b

LOAD

b

EP = entry name
EPLOC = entry name addr
DE = list entry addr

,DCB = deb addr

,ERRET = err rtn addr

,LSEARCH = NO
,LSEARCH = YES

,ADDR=load addr

,GLOBAL = YES
,GLOBAL = (yES,P)
,GLOBAL = (YES,F)
,GLOBAL=NO

,EOM=NO
,EOM=YES

,LOADPT = addr

,RELATED = value

,SF = (E,/ist addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LOAD.

One or more blanks must follow LOAD.

entry name: symbol.
entry name addr: RX-type address or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).

err rtn addr: RX-type address, or register (2) - (12).

Default: LSEARCH = NO

load addr: RX-type address or register (2) - (12).
Note: For an RX-type address, the operand is treated
as the address of a field that contains the actual load address.

Default: GLOBAL=NO
Note: If GLOBAL = YES is specified, the default is GLOBAL = (YES,P).

Default: EOM = NO
Note: GLOBAL must also be specified with EOM = YES.

addr: RX-type address or register (2) - (12).
Note: ADDR cannot be specified with LOADPT.

value: any valid macro keyword specification.

list addr: RX-type address or register (2) - (12) or (15).

The parameters are explained under the standard form of LOAD macro instruction with the
following exception:

,SF = (E,list addr)
specifies the execute form of the LOAD macro instruction.

2-198 SPL: System Macros and Facilities Volume 2

LOCASCB - Locate ASCB

The LOCASCB macro instruction is used to locate the ASCB address associated with a
specified ASID.

The LOCASCB macro instruction uses registers 0, 1, 14, and 15.

If the caller is concerned that the ASCB might terminate while being referenced, the caller
should provide some serialization to prevent ASCB termination by holding either the CMS lock
or the dispatcher lock.

Programs executing in cross memory mode can invoke the LOCASCB macro instruction.

The LOCASCB macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede LOCASCB.

LOCASCB

b One or more blanks must follow LOCASCB.

ASID = asid addr asid addr: RX-type address or register (0) - (15).

The parameter is explained as follows:

ASID = asid addr
specifies the RX-type address of a half word that contains the ASID whose ASCB is to be
located or the register that contains the ASID in bits 16-31. (Bits 0-15 of the register are
ignored.) If the caller specifies 0), the ASID need not be copied into register 1 by the
macro expansion.

When LOCASCB returns control, register 1 contains the results of the locate operation as
follows:

• If register 1 is positive, it contains the ASCB address.

• If register 1 is negative or zero, the specified ASID is invalid.

, LOCASCB - Locate ASCB 2-199

LXFRE - Free a Linkage Index

The LXFRE macro instruction frees one or more linkage indexes. You cannot free a linkage
index that was reserved with the SYSTEM option. (See the LXRES macro instruction). Before
issuing the LXFRE macro instruction, disconnect all entry tables associated with the linkage
index, unless you specify FORCE = YES. If you do not disconnect the entry tables and do not
specify FORCE = YES, linkage indexes are not freed and the routine is abnormally terminat~d.

The requestor must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed to this macro instruction must also be addressable in
primary mode when the macro instruction is issued.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The standard form of the LXFRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede LXFRE.

LXFRE

b One or more blanks must follow LXFRE.

LXLIST = list addr list addr: RX-type address or register (0) - (12).

,FORCE=NO
,FORCE=YES

,RELATED = value

Default: FORCE=NO

value: any valid macro keyword specification.

The parameters are explained as follows:

LXLIST = list addr
specifies the address of a variable length list of fullword entries. The first word in the list
must contain the number (l to 32) of linkage indexes to be freed. Each entry following
the first must contain a linkage index value specified in the form returned by the LXRES
macro instruction. .

2-200 SPL: System Macros and Facilities Volume 2

,FORCE=NO
,FORCE = YES

specifies whether (YES) or not (NO) the linkage index is to be freed even if entry tables
are currently connected to it. Any connected entry tables are disconnected before the
linkage index is freed. FORCE = NO is the default.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified can be any valid coding values.

When LXFRE returns control, register 15 contains contains one of the following return codes:

Hexadecimal
Code

o

4

8

Meaning

The specified linkage indexes were freed.
No entry tables were connected.

The specified linkage indexes were freed.
Entry tables were connected, but FORCE was
specified and was successfully executed.

Some of the specified linkage indexes were freed.
Entry tables were connected. FORCE was
specified but one or more of the necessary
disconnects failed. No action by the issuer
of LXFRE is required in this situation.

LXFRE - Free a Linkage Index 2-201

LXFRE (List Form)

The list form of the LXFRE macro instruction is used to construct a non-executable parameter
list. The execute form of the LXFRE macro instruction can refer to or modify the parameter
list.

The list form of the LXFRE macro instruction is written as follows:

name

b

LXFRE

b

LXLIST = list addr

,FORCE=NO
,FORCE = YES

,RELATED = value

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede LXFRE.

One or more blanks must follow LXFRE.

list addr: A-type address.

Default: FORCE=NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the LXFRE macro instruction with
the following exception:

,MF=L
specifies the list form of the LXFRE macro instruction.

2-202 SPL: System Macros and Facilities Volume 2

LXFRE (Execute Form)

The execute form of the LXFRE macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the LXFRE macro instruction is written as follows:

name

b

LXFRE

b

LXLIST = list addr

,FORCE=NO
,FORCE = YES

,RELATED = value

,MF = (E,entl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede LXFRE.

One or more blanks must follow LXFRE.

list add,.: RX-type address or register (0) - (12).

Default: FORCE=NO

value: any valid macro keyword specification.

entl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the LXFRE macro instruction with
the following exception:

,MF = (E,enti addr)
specifies the execute form of the LXFRE macro instruction. This form uses a remote
parameter list.

LXFRE (Execute Form) 2-203

I
I
I

LXRES - Reserve a Linkage Index

The LXRES macro instruction reserves one or more linkage indexes for the caller's use. The
reserved linkage indexes are owned by the cross memory resource ownership task of the current
home address space. The linkage index reservation applies across all linkage tables in the
system and remains in effect until one of the following happens:

• An LXFRE macro instruction explicitly frees a reserved linkage index.

• The cross memory resource ownership task terminates.

• The opera tor re-IPLs the system.

The requestor must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed to the LXRES macro instruction must also be
addressable in primary mode at the time the macro instruction is issued.

On return registers 3-14 are preserved, register 15 contains the return code, and the contents of
registers 0 and 1 are unpredictable. Register 2, because it is modified by the macro after the
registers are saved, should not be used as the base register.

The standard form of the LXRES macro instruction is written as follows:

name

b

LXRES

b

LXLIST = list addr

,SYSTEM=NO
,SYSTEM = YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: RX-type address or register (0) - (12).

Default: SYSTEM = NO

value: any valid macro keyword specification.

2-204 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

LXLIST = list addr
specifies the address of a variable-length list of fullword entries. The first fullword in the
list must contain the number (1 to 32) of linkage index values to be returned. The list
must be long enough to contain the requested number of values. The linkage index values
are returned in the list entries in the proper position for ORing with the entry index to
form a PC number.

,SYSTEM=NO
,SYSTEM = YES

specifies whether (YES) or not (NO) the linkage indexes are being reserved for system
connections. If YES is specified, a subsequent ETCON macro instruction specifying the
linkage index causes all address spaces to be connected to the entry table.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On return, register 15 contains the following return code:

Hexadecimal
Code

o

Meaning

The specified linkage indexes were successfully
reserved.

LXRES - Reserve a Linkage Index 2-205

LXRES (List Form)

The list form of the LXRES macro instruction is used to construct a non-executable parameter
list. The execute form of the macro instruction can then refer to this list or a copy of it for
reentrant programs.

The list form of the LXRES macro instruction is written as follows:

name

b

LXRES

b

LXLIST = list addr

,SYSTEM=NO
,SYSTEM = YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: A-type address.

Default: SYSTEM = NO

value: any valid macro keyword specification.

The parameters are explained under the standard form of the LXRES macro instruction with
the following exception:

,MF=L
specifies the list form of the LXRES macro instruction.

2-206 SPL: System Macros and Facilities Volume 2

LXRES (Execute Form)

The execute form of the LXRES macro instruction can refer to and modify a remote parameter
list constructed by the list form of the macro instruction.

The execute form of the LXRES macro instruction is written as follows:

name

b

LXRES

b

LXLIST = list addr

,SYSTEM=NO
,SYSTEM = YES

,RELATED = value

,MF = (E,entl addr)

name:symbol. Begin name in column 1.

One or more blanks must precede LXRES.

One or more blanks must follow LXRES.

list addr: RX-type address or register (0) - (12).

Default: SYSTEM = NO

value: any valid macro keyword specification.

entl addr: RX-type address or register (0) - (12).

The parameters are explained as under the standard form of the LXRES macro instruction with
the following exception:

,MF = (E,cntZ addr)
specifies the execute form of the LXRES macro instruction and cntZ addr is the name or
address of the list form of the macro.

LXRES (Execute Form) 2-207

MGCR - Internal START or REPLY Command

The MGCR macro instruction can be used to start a program or subsystem from within your
program and to pass 31 bits of information to the started program in the form of a token. The
MGCR macro instruction can also be used to issue a reply to a WTOR macro instruction.

The issuer must be in supervisor state, PSW key 0-7.

The MGCR macro instruction is written as follows:

name

b

MGCR

b

command-buffer-address

name: symbol. Begin name in column 1.

One or more blanks must precede MGCR.

One or more blanks must follow MGCR.

command-buffer-address: RX-type address or register (1) or (2) - (12).

The parameters are explained as follows:

command-buffer-address
specifies the address of a command buffer that contains the following information.

Name Length

flags1 1 byte

length 1 byte

fla<:Js2 2 bytes

text up to
126 bytes

token 31 bits
right-
justified'

Notes:

Contents

If bit 0 is one, then flags2 must contain
meaningful information. Bits 1-7 must be zero.

Length of the buffer up to but not
including the 4-byte token field.

X'0800' - token is present.
X'OOOO' - token is not present.

Command, operands, and optional comments
as follows: command operands comments

An optional field containing any desired
information, such as an identifier that
indicates the issuing program.

1. Register 0 must contain zero.
2. The command buffer must be located in 24-bit addressable storage.
3. A token is meaningful only with the ST ART command.

2-208 SPL: System Macros and Facilities Volume 2

Example 1

Register 15 contains one of the following return codes as the result of a START command. No
return codes result from the REPLY command.

Hexadecimal
Code

00

08

Meaning

Start command processed successfully.
Register 0 contains the right justified ASID
of the started address space.

Start command failed.

Operation: Issue an internal start command for the catalogued procedure labeled PROG.

SR
MGCR

INPUT DC
DC
DC
DC

TOKEN DC

0,0
INPUT

X'80'
ALl (TOKEN-INPUT)
X'0800'
C'S PROG'
AL4(DATA)

For further examples of the internal REPLY command, refer to User Exits.

MGCR - Internal START or REPLY Command 2-209

MODESET - Change System Status

If you are executing in 31-bit addressing mode, you must use the MVSjXA version of this
macro instruction.

The MODESET macro instruction is used to change system status by altering the PSW key
and/or PSW problem state indicator. It causes a supervisor routine (IEAVMODE) to alter the
RB old program status word (RBOPSW) so that the desired PSW is loaded when MODESET
returns to the caller. MODESET also generates inline code that saves and/or changes the
protection key in the current PSW. The MODESET macro instruction has two forms: the
form that generates an SVC and the form that generates inline code.

The form that generates inline code uses the SPKA instruction (see Principles of Operation) and
can execute in supervisor or problem program state. If a problem state caller's key is marked
as authorized in the PSW-key mask in control register 3, the inline form can execute in problem
state. The inline form can be used by programs executing incross memory mode. If the key
you specify is TCB, RBTl, or RBT234, you must also ensure that current addressability is to
the home address space.

The form that generates an SVC is executable by users in supervisor state, under PSW key 0-7,
or APF-authorized. The SVC form cannot be used in cross memory mode.

The macro instruction does not generate any return codes.

2-210 SPL: System Macros and Facilities Volume 2

Inline Code Generation

The standard form of the MODESET macro instruction that generates inline code is written as
follows:

name

b

MODESET

b

EXTKEY=key
KEY ADDR = new key addr
KEYREG = new key reg

,SA VEKEY = old key addr

,WORKREG=work reg

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

key: one of the following:
SCHED SRM
JES SUPR
RSM DATAMGT
VSM TCAM

ZERO
TCB
RBTI
RBT234

new key addr: A-type address or register (2).

Notes:

KEY2
KEY3
KEY4
KEY?

1. WORKREG is required if the following are specified:

EXTKEY = TCB EXTKEY = RBT234
EXTKEY = RBTI KEYADDR = A-type address

2. The WORKREG parameter should be register 1-15 if one of these four
parameters is specified because WORK REG is used as a base register on
the SPKA instruction. WORKREG=O sets the PSW key to zero.

new key reg: register 1-15 without parentheses; may be symbolic.

old key addr: A-type address or register (2).

Notes:
1. If KEYADDR = (2) is specified above, then SAVEKEY = (2) cannot be

specified.
2. The WORK REG parameter is required if SA VEKEY = A-type address is

specified.
3. IfWORKREG and SAVEKEY are specified with KEYREG, the

KEYREG register should be different from the WORKREG register.
Also, if SAVEKEY is specified with KEYREG, the KEYREG register
should not be register 2.

work reg: decimal digits 0-15 without parentheses.

value: any valid macro keyword specification.

The parameters are explained as follows:

EXTKEY=key
specifies the key to be set in the current PSW or the address of the key.

SCHED - Scheduler key.

JES - Job entry subsystem key.

RSM - Real storage management key.

VSM - Virtual storage management key.

SRM - System resource management key.

SUPR - Supervisor key.

MODESET - Change System Status 2-211

/

DATAMGT - Data management key.

TCAM - Telecommunications access method key.

ZERO - Key of zero is to be set.

TCB - Key is to be obtained from TCB field TCBPKF.

RBTI - Key is to be obtained from the RBOPSW field of the active RB of type 1
SVC routine issuing MODESET.

RBT234 - Key is to be obtained from the RBOPSW field of the active RB preceding
SVRB of type 2,3, or 4 SVC routine issuing MODESET.

KEY2 - Key of 2 is to be set.

KEY3 - Key of 3 is to be set.

KEY 4 - Key of 4 is to be set.

KEY7 - Key of 7 is to be set.

KEYADDR=new key addr
specifies a location 1 byte in length which contains the key in bit positions 0-3. If register
(2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are ignored). This
parameter permits a previously saved key to be restored. If TCB, RBTI or RBT234 is
specified as the key address, the TCB mapping macro IKJTCB is required. The user is
expected to establish addressability to the TCB with a USING statement.

KEY REG = new key reg
specifies a register that contains a key value in bit positions 24-27.

,SA VEKEY = old key addr
specifies a location 1 byte in length where the current PSW key is to be saved, in bit
positions 0-3. If register (2) is specified, the key is left in register 2.

,WORKREG=work reg
specifies the register into which the contents of register 2 are to be saved while performing
the SA VEKEY function, or the working register to be used by the EXTKEY or
KEY ADDR function. If WORKREG = 2 is specified, no register saving takes place.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-212 SPL: System Macros and Facilities Volume 2

SVC Generation

Example 1

Example 2

Example 3

The standard form of the MODESET macro instruction that generates an SVC is written as
follows:

name

b

MODESET

b

KEY = ZERO
KEY = NZERO

,MODE = PROB
,MODE=SUP

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

Note: KEY is required if MODE is not specified.

Note: MODE is required if KEY is not specified.

value: any valid macro keyword specification.

The parameters are explained as follows:

KEY = ZERO
KEY = NZERO

specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the
value in the caller's TCB (NZERO).

,MODE=PROB
,MODE = SUP

specifies that the PSW problem state indicator (bit 15) is to be either turned on (PROB)
or turned off (SUP). If the MODESET operation completes with a problem state PSW,
the PSW-key mask in control register 3 is changed to authorize only the key specified by
the problem state PSW.

Operation: Save the current PSW key, and change the key to that of the scheduler.

MODESET EXTKEY=SCHED,SAVEKEY=KEYSAVE,WORKREG=l

Operation: Change to supervisor mode and key zero.

MODESET KEY=ZERO,MODE=SUP

Operation: Save the current key at location KEY and set the key to the value contained in bits
24-27 of register 3.

MODESET KEYREG=REG3,SAVEKEY=KEY,WORKREG=4

MODESET - Change System Status 2-213

MODESET (List Form)

The list form of/the MODESET macro instruction that generates an SVC is written as follows:

name

b

MODESET

b

KEY = ZERO
KEY = NZERO

,MODE=PROB
,MODE = SUP

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede MODESET.

One or more blanks must follow MODESET.

Note: KEY is required if MODE is not specified.

Note: MODE is required if KEY is not specified.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exception:

,MF=L
specifies the list form of the MODESET macro instruction.

2-214 SPL: System Macros and Facilities Volume 2

MODESET (Execute Form)

The execute form of the MODESET macro instruction that generates an SVC is written as
follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede MODESET.

MODESET

b One or more blanks must follow MODESET.

RELATED = value, value: any valid macro keyword specification.

MF = (E,/ist addr) list addr: RX-type address, or register (1).

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exception:

MF = (E,list addr)
specifies the execute form of the MODESET macro instruction, using a parameter list
address.

MODESET (Execute Form) 2-215

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction

The NIL macro instruction is used to provide a lock on a byte of storage on which an and
immediate (NI) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed by another
processor at the same time. Storage modification during NIL processing is accomplished by
using the compare and swap (CS) instruction.

For details on the and immediate and compare and swap instructions, see Principles of
Operation.

The NIL macro instruction is written as follows:

name

b

NIL

b

byte addr

,mask

,REF=stor addr

,WREGS= (regl,reg2,reg3
,WREGS = (regl,reg2)
,WREGS= (regl"reg3)
,WREGS= (,reg2,reg3)
,WREGS = (regl)
,WREGS = (,reg2)
,WREGS= ("reg3)

name: symbol. Begin name in column 1.

One or more blanks must precede NIL.

One or more blanks must follow NIL.

byteaddr: RX-type address.

mask: symbol or self defining term.

stor addr: RX-type address.

regl: symbol, or decimal digits 0-15.
reg2: symbol, or decimal digits 1-15.
reg3: symbol, or decimal digits 0-15.
Default for reg 1: 0
Default for reg2: 1
Default for reg3: 2

2-216 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the AND function is to be applied.

,mask
specifies the value to be ANDed to the byte at the address specified above.

,REF = star addr
specifies the address of a storage location on a fullword boundary. This address provides
the means by which the compare and swap instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4095. The two addresses must be addressable via the
same base register.

,WREGS = (reg I, reg2,reg3)
,WREGS= (regl,reg2)
,WREGS = (reg 1 "reg3)
,WREGS = (,reg2,reg3)
,WREGS= (regl)
,WREGS = (,reg2)
,WREGS = ("reg3)

specifies the work registers to be used to perform the compare and swap instruction. reg!
is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and reg3 is
used to contain the mask.

Operation: Turn off bit ASCBXMET in byte ASCBCSl. The reference field, ASCBFW3,
specifies the word being updated.

NIL ASCBCS1,X'FF'-ASCBXMET,REF=ASCBFW3

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 2-217

NUCLKUP - Nucleus Map Lookup Service

The NUCLKUP macro instruction can be used either to retrieve the address and AMODE of a
nucleus CSECT or ENTRY or to retrieve the name and address of the nucleus CSECT, which
is pointed to by a given address within the CSECT.

This macro runs in the key and state of the caller. Onentry to this macro, register 13 must
point to a 72-byte register save area.

The NUCLKUP macro instruction is written as follows:

name

b

NUCLKUP

b

BYNAME,NAME = name id
BYADDR,NAME = name loc

,ADDR=addr

name: symbol. Begin name in column 1.

One or more blanks must precede NUCLKUP.

One or more blanks must follow NUCLKUP.

name id: 8-byte literal (enclosed in apostrophes), or the address of the
8-byte literal which can be either an RX-type address, or register (1) -
(12).
name loc: RX-type address or register (1) - (12).

addr: RX-type address, or register (0) or (2) - (12).

The parameters are explained as follows.

BYNAME
BYADDR

specifies the function to be performed. If BYNAME is specified, the user supplies the
name of a CSECT or ENTRY and receives the address and AMODE of that CSECT or
ENTRY. If BY ADDR is specified, the user supplies an address within a CSECT and
receives the name and address of the CSECT.

,NAME = name id
,NAME = name loc

specifies the name or the location of the name of the CSECT depending on the option
requested. If the user specifies BYNAME, name id contains the 8-character name to be
searched for or the address of that name. If the user specifies BYADDR, name loc will
contain the address of the 8-byte area in which the CSECT name is to be returned..

2-218 SPL: System Macros and Facilities Volume 2

Example 1

,ADDR=addr
contains the address to be searched for if BYADDR is specified; contains the address of
the CSECT or ENTRY that is returned if BYN AME is specified.

The NUCLKUP service routine sets bit 0 of the word containing the address returned on
a BYNAME request to indicate the AMODE. For example, if the requestor's AMODE
is 31-bit and the AMODE of the CSECT is ANY, the NUCLKUP service routine sets bit
o to 1. The setting of bit 0 is summarized in the following table:

Requestor's AMODE AMODE of CSECT

24 31 ANY

24 0 1 0
31 0 1 1

When control is returned, the registers contain the following information:

Register

o

2-14

15

Meaning

For a BYNAME request, the address and AMODE of the CSECT or ENTRY; for a BYADDR
request, the 31-bit address of the CSECT

For a BYNAME request, the high-order byte is zero and the low-order three bytes contain the
length from the entry point to the end of the CSECT; for a BYADDR request, unchanged

Unchanged

Return code

The return codes in register 15 are as follows:

Hexadecimal
Code

o
4

8

Meaning

The request was satisfied.

The request was not satisfied.

For a BYNAME request, the name was not found and the location containing the address WI

set to zero.

For a BYADDR request, the address was not found in the nucleus and the location containi
the name was set to zero.

The request was not satisfied because the type of request was not specified correctly. The
locations containing the name and address were set to zero.

Operation: Place the address and AMODE of entry point lEA VESTU in register O.

NUCLKUP BYNAME,NAME='IEAVESTU' ,ADDR=(O)

NUCLKUP - Nucleus Map Lookup Service 2-219

OIL - Provide a Lock Via an OR IMMEDIATE (01) Instruction

The OIL macro instruction is used to provide a lock on a byte of storage on which an or
immediate (01) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed by another
processor at the same time. Storage modification during OIL processing is accomplished by
using the compare and swap (CS) instruction.

For details on the or immediate and compare and swap instructions, see Principles of Operation.

The OIL macro instruction is written as follows:

name

b

OIL

b

byte addr

,mask

,REF = stor addr

,WREGS= (regJ,reg2,reg3)
,WREGS= (regJ,reg2)
,WREGS= (regJ"reg3)
,WREGS = (,reg2,reg3)
,WREGS= (regJ)
,WREGS= (,reg2)
,WREGS= ("reg3)

name: symbol. Begin name in column 1.

One or more blanks must precede OIL.

One or more blanks must follow OIL.

byte addr: RX-type address.

mask: symbol or self defining term.

stor addr: RX-type address.

regJ: symbol, or decimal digits 0-15.
reg2: symbol, or decimal digits 0-15.
reg3: symbol, or decimal digits 0-15.
Default for reg 1: 0
Default for reg2: 1
Default for reg3: 2

2-220 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the OR function is to be applied.

,mask
specifies the value to be ORed to the byte at the address specified above.

,REF = stor addr
specifies the address of a storage location on a full word boundary. This address provides
the means by which the compare and swap instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4095. The two addresses must be addressable via the
same base register.

,WREGS= (regJ,reg2,reg3)
,WREGS= (regJ,reg2)
,WREGS= (regJ"reg3)
,WREGS= (,reg2,reg3)
,WREGS= (regJ)
,WREGS= (,reg2)
,WREGS= ("reg3)

specifies the work registers to be used to perform the compare and swap instruction. regl
is used to contain the "old" byte; reg2 is used to contain the "updated" byte; and reg3 is
used to contain the mask.

Operation: Turn on bit ASCBXMET in byte ASCBCSl. The reference field ASCB specifies
the area containing the word being updated.

OIL ASCBCS1,ASCBXMET,REF=ASCB

OIL - Provide a Lock Via an OR IMMEDIATE (OI}Instruction 2-:-221

PCLINK - Stack, Unstack, or Extract Program Call Linkage
Information

Routines that receive control as a result of a PC instruction use the PC LINK macro instruction
to provide a standardized method of maintaining PC linkage information. PCLINK has three
forms:

• PCLINK STACK saves some of the environment when a routine gets control as a result of
a PC instruction.

• PCLINK UNST ACK restores that environment before the routine issues a PT instruction
to return control to the calling routine.

• PCLINK EXTRACT retrieves information from the saved environment.

STACK Option of PCLINK

To use PCLINK STACK you must be in primary mode and supervisor state. You must not
change registers 13-4 between the time you get control and the time you issue PC LINK
STACK.

The STACK option of the PC LINK macro instruction is written as follows:

name

b

PC LINK

b

STACK

,INKEY = ZERO

,OUTKEY = CALLER
,OUTKEY = ZERO
,OUTKEY= KEYn

,SAVE=YES
,SAVE=NO

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PCLINK.

One or more blanks must follow PCLINK.

Default: OUTKEY = CALLER
KEYn: Any valid PSW key value where n = O-F.

Default: SAVE = YES

value: any valid macro keyword specification.

2-222 SPL: System Macros and Facilities Volume 2

STACK,INKEY = ZERO
specifies that the PSW key is zero upon entry to PCLINK. If this parameter is not
specified, the macro expansion temporarily changes the PSW key to zero.

,OUTKEY = CALLER
,OUTKEY=ZERO
,OUTKEY = KEY n where n is O-F

specifies the setting of the PSW key after the PCLINK macro instruction has completed.
Specifying CALLER causes the PSW key to be restored to the value it had on entry.
Specifying ZERO sets the PSW key to zero. Specifying a key value indicates a specific
value for the key.

,SAVE = YES
,SAVE=NO

specifies whether (YES) or not (NO) to preserve registers 8 - 12. The save area used is
different from the area addressed by register 13. SAVE = YES is the default. Processing
is more efficient if you code SAVE = NO.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On completion of PCLINK STACK,. the registers are as follows:

RO, RI
R2

R3, R4
R5
R6, R7
RS-RI2

R13

Rl4

R15

Unchanged
Bits 0-23 contain bits 8-31 from register 2 at the time the
macro was issued. Bits 24-31 contain the PCLINK caller's PSW key.
Unchanged
Linkage register to return from PCLINK STACK
Unchanged
Unchanged if SAVE = YES
Unpredictable if SAVE = NO
0, to ensure that the first save area created after the PC
does not point to a previous save area.
Stack token to uniquely identify the stack entry created.
This token is required for the UNSTACK and EXTRACT forms
of PC LINK.
Unchanged

PCLINK .. Stack, Unstack, or Extract Program Call Linkage Information 2-223

UNSTACK Option of PCLINK

To use PCLINK UN STACK, you must be in supervisor state. In addition, if you specify
PCLINK UNSTACK,THRU and the token contained in the specified register indicates the
stack element most recently queued for that unit of work, you must be in primary mode and the
PASID must be the same as when the stack element was created.

The· UNST ACK option of the PC LINK macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PCLINK.

PC LINK

b One or more blanks must follow PCLINK.

UN STACK

,THRU = (reg)
,TO = (reg)
,PURGE = YES

,INKEY=ZERO

,OUTKEY = STACK
,OUTKEY = ZERO

,SAVE = YES
,SAVE=NO

,ERRET = addr

,RELATED = value

reg: Register (0) - (15).

Default: OUTKEY = STACK

Default: SAVE = YES

acldr: RX-type address or register (0) - (13) or (15).

value: any valid macro keyword specification.

The parameters are explained as follows:

UNSTACK,THRU= (reg)
specifies that the stack element identified by the token contained in the specified register,
as well as all more recently stacked elements, are to be removed from the requestor's
stack. The stack element specified by the token is used to restore registers. If the system
cannot process the request, the routine specifie'd by the ERRET parameter gets control; if
the ERRET parameter is not specified, the requestor is abnormally terminated.

Processing is more efficient if you issue a separate PC LINK UNSTACK,THRU for each
stack element you want to dequeue rather than unstacking several elements at a time.

If the token you specify represents the most recently enqueued stack element, the P ASID
when UNSTACK,THRU is issued must be the same as the PASID when PC LINK
ST ACK was issued for that element.

2-224 SPL: System Macros and Facilities Volume 2

When a PC LINK UNSTACK,THRU is completed, the PSW program mask is restored
from the stack element identified by the token and the registers are as follows:

,TO=(reg)

RO-Rl
R2

R3
R4-R7
R8-R12

Rl3,R14
R15

Unchanged
Bits 24-27 contain the PSW key from the
stack element identified by the token
As saved by PCLINK STACK
Unchanged
Unchanged if SAVE = YES is specified
Unpredictable if SAVE = NO is specified
As saved by PCLINK STACK
Unchanged

specifies that all stack elements stacked more recently than the element identified by the
token contained in the specified register are to be removed from the stack. The element
identified by the token remains on the stack. If the system cannot process the request, the
routine specified by the ERRET parameter gets control; if the ERRET parameter is not
specified, the requestor is abnormally terminated.

Use the TO parameter for stack cleanup in an FRR or ESTAE retry routine or in an
FRR that is going to retry.

When a PCLINK UNST ACK, TO is completed, the registers are as follows:

,PURGE = YES

RO,RI
R2

R3-R7
R8-R12

Rl3
R14-R15

Unpredictable
Unchanged if INKEY = ZERO is specified and ERRET is not
specified, otherwise, PSW key of PCLINK caller
Unchanged
Unchanged if SAVE = YES is specified
Unpredictable if SAVE = NO is specified
Unchanged
Unpredictable

specifies that each stack element is to be freed until no more exist on the requestor's
stack. Any element that resides in a terminated address space as well as elements stacked
prior to it are not freed, but the stack pointer indicates an empty stack and the PC LINK
request returns normally to the caller.

The ERRET parameter cannot be used with PURGE.

When the PCLINK UNST ACK,PURGE is completed, the registers are as follows:

RO,Rl
R2

R3-R7
R8-R12

R13
R14-R15

,INKEY = ZERO

Unpredictable
Unchanged ifINKEY = ZERO is specified, otherwise PSW key of
PCLINK caller
Unchanged
Unchanged if SAVE = YES is specified
Unpredictable if SAVE = NO is specified
Unchanged
Unpredictable

specifies that the PSW key is zero on entry to PCLINK. If this parameter is not
specified, the macro expansion temporarily changes the key to zero.

PC LINK - Stack, Unstack, or Extract Program Call Linkage Information 2-225

,OUTKEY = STACK
,OUTKEY = ZERO

specifies the setting of the PSW key after the PCLINK request is completed. Specifying
OUTKEY = ZERO returns to the caller in key zero. Specifying OUTKEY = STACK
restores the key to the value contained in the stack element identified by token.
OUTKEY = STACK is the default.

This parameter is valid only with PCLINK UNSTACK,THRU.

,SAVE=YES
,SAVE=NO

specifies whether (YES) or not (NO) registers 8 - 12 are to be preserved. The save area
used for these registers is not the area pointed to by register 13.

,ERRET = addr
specifies the address of an exit routine to be given control if PCLINK UNST ACK
encounters an error. ERRET is valid only with the TO and THRU parameters.

The ERRET exit routine receives control in the addressing mode of the caller of
PCLINK. When an ERRET exit routine gets control, the cross memory state is the same
as when the PCLINK macro instruction was issued. The registers are as follows:

RO,Rl,R3,R13
R2
R4-R7
RS-R12

R14
R15

Unpredictable
PSW key of PCLINK caller
Unchanged
Unchanged if SAVE = YES is specified
Unpredictable if SAVE = NO is specified
The token passed as input
4 - stack was empty
8-input token is invalid
12 ~·an address on the STKE queue is invalid
16 - AI1~ASID on the STKE queue is invalid
20 - Unknown error

,RELATED = value
specifies information u~ed to self-document macro instructions by "relating" functions or
services to correspondin'g ·services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

2-226 SPL: System Macros and Facilities Volume 2

EXTRACT Option of PCLINK

To use PC LINK EXTRACT, you must either be in PSW key 0, supervisor state, or have a
PSW key mask authorized for key O.

In addition, you must have addressability to the same address space as when PC LINK STACK
was issued for the stack element from which you are extracting data.

PCLINK EXTRACT modifies registers 0, 1, 14, and 15. If ALL=YES is specified, registers
13-4 are also modified.

The EXTRACT option of the PC LINK macro instruction is written as follows:

name

b

PC LINK

b

EXTRACT

,TOKEN = (reg)

,ALL=YES
,SVAREA= (reg)
,RETADR= (reg)
,PARM15 = (reg)
,PARMO= (reg)
,PARMI = (reg)
,KEY = (reg)
,ASID= (reg)
,LP= (reg)
,ENTRY = (reg)

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PCLINK.

One or more blanks must follow PCLINK.

reg: Register (0) - (15).

value: any valid macro keyword specification.

The parameters are explained as follows:

EXTRACT,TOKEN = (reg)
specifies a register that contains a 32-bit stack token identifying the most recently stacked
element.

,ALL = YES
specifies that all information stored in the stack element identified by the token is to be
extracted. The stored information is placed into the same registers (registers 13, 15, and
0-4) it was in when PCLINK STACK was issued. Registers 5 and 14 are not restored.

,SV AREA = (reg)
specifies a register into which the address of the program call issuer's save area is to be
placed.

PCLINK - Stack, Unstack. or Extract Program Can Linkage Information 2-227

,RETADR= (reg)
specifies a register into which the AMODE (in which control is to be returned), the return
address, and PSW problem state bit are to be placed. These occupy bits 0,1-30, and 31,
respectively.

,P ARMl5 = (reg)
,PARMl = (reg)
,PARMO= (reg)

specifies a register into which the contents of register 15 (P ARM 15), register 1 (P ARM 1),
or register 0 (PARMO) at the time PC LINK STACK was issued are to be placed.

,KEY = (reg)
specifies a register into which the PC issuer's PSW key is to be placed. The key occupies
bit positions 24-27, which are the same positions as those used by the IPK instruction.

,ASID = (reg)
specifies a register into which the PC issuer's PSW key mask (bits 0-15) and ASID (bits
16-42) are to be placed.

,LP= (reg)
specifies a register into which the latent parameter pointer is to be placed.

,ENTRY = (reg)
specifies a register into which the contents of register 5 as established by the PCLINK
STACK macro instruction are to be placed. Bit ° of the register used by the ENTRY
parameter specifies the addressing mode of the program call routine that issued the
PCLINK macro instruction.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

2-228 SPL: System Macros and Facilities Volume 2

PGANY - Page Anywhere

Some fixed pages are assigned within the first 16 megabytes of storage. The real storage
manager (RSM) assumes that once a page has been fixed, it is likely to be fixed again.
Therefore, RSM sets a bit to indicate that a page was previously fixed and required storage in
the first 16 megabytes of real storage. The next time that page is loaded, RSM tries to put it in
the first 16 megabytes in anticipation of a fix. Use the PGANY macro instruction to indicate to
RSM that no further page fixe~ are planned for a particular page and that the next time the
page is loaded, RSM can put it anywhere.

Entry is by means of an SVC. The caller can be in either problem or supervisor state and must
not hold any locks. On entry, register contents are as follows:

Register 0
Register 1

Zero
If bit 0 of byte 0 is 1, register 1 contains
a pointer to the virtual subarea list,

If bit 0 of byte 0 is 0, registers 1 and 15
contain a virtual subarea list entry.

On return, register contents are as follows:

Registers 0-1

Registers 2-14

Registers 15

Unpredictable

Unchanged

Return code

The PGANY macro instruction is written as follows:

name

b

PGANY

b

L,LA = list addr

R,A = start addr

,EA = end addr

name: symbol. Begin name in column 1.

One or more blanks must precede PGANY.

One or more blanks must follow PGANY.

list addr: RX-type address or register (1) or (2) - (12).

start addr: RX-type address or register (1), (2) - (12).

end addr: RX-type address or register (15), (2) - (12).
Note: Cannot be specified unless R is specified.
Default: EA = start addr + 1.

PGANY - Page Anywhere 2-229

The parameters are explained as follows:

L

R

specifies that the virtual subarea list (VSL) is being supplied with this request. (See the
topic "Input to Page Services" in Volume 1 for a description of the virtual subarea list.)

,LA = list addr
specifies the address of the virtual subarea list.

specifies that the necessary parameters will be passed in registers. A virtual subarea list is
not being supplied.

,A = start addr
specifies the address of the start of the virtual area.

,EA = end addr
specifies the end + 1 byte of the virtual area. If this parameter is not coded, the
default is the start address + 1.

Note: start addr and end addr must be located in 24-bit addressable storage.

Upon completion, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

10

14

Meaning

Operation completed normally.

Parameter error, X'l71' abend, operation
terminated because of invalid address
in VSL entry.

Parameter error, X'171' abend, operation
terminated abnormally because the VSL
list was invalid.

Environmental error, X'028' abend.

For return codes 04 and 10, registers are loaded before the abend as follows:

RO
Rl
R2-RIO
Rll
R12
R13-R14
R15

Unpredictable
Abend code
Unpredictable
Address of input VSL list or 0 for R-form
o (ECB address = 0)
Current VSL entry being processed
Return code

2-230 SPL: System Macros and Facilities Volume 2

PGFIX - Fix Virtual Storage Contents

The PGFIX macro instruction makes virtual storage areas, below 16 megabytes, resident in real
storage and ineligible for page-out while the requesting task's address space occupies real
storage. The PGSER macro instruction performs this function for addresses either above or
below 16 megabytes. PGFIX (and PGSER) ignore requests to fix storage in a system area that
has the fixed attribute (for example, the LSQA and SQA). A FIX request for a page in the
LSQA or SQA will not cause the page to be backed by real storage below 16 megabytes. A
subsequent PGFREE is effective only if issued by the same task. The PGFIX function is
available only to authorized system functions and users.

PGFIX does not prevent pages from being paged out when an entire address space is swapped
out of real storage. Consequently, when using the PGFIX macro instruction, you can not
assume a constant real address mapping for fixed pages that are susceptible to swapping.

The standard form of the PGFIX macro instruction is written as follows:

name

b

PGFIX

b

R
L

,LA = list addr

,A = start addr

,ECB = ecb addr

,EA = end addr

,LONG=Y
,LONG=N

,RELEASE=N
,RELEASE=Y

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIX.

One or more blanks must follow PGFIX.

list addr: A-type address, or register (1) or (2) - (12).

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: LONG=Y

Default: RELEASE = N
Note: RELEASE = Y may only be specified with EA above.

value: any valid macro keyword specification.

PGFIX - Fix Virtual Storage Contents 2-231

The parameters are explained as follows:

R
specifies that no parameter list is being supplied with this request.

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list (VSL). See the topic "Input
to Page Services" in Volume 1 for a description of the VSL.

,A = start addr
specifies the start address of the virtual area to be fixed.

Note: start addr must be located in 24-bit addressable storage.

,ECB = ecb addr
specifies the address of the ECB that is used to signal event completion. If the ECB
address specified is zero, (ECB = 0 or ECB:::;:: (register) where the contents of the register
specified is 0), the fix request is compJetely satisfied before control is returned ..

Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that
the list and associated ECBs are fixed in real storage before issuing the WAIT. The.
PGFIX service routine ens~res that the specified ECB is fixed.

,EA = end addr
specifies the end address + 1 of the virtual area to be fixed .

. Note: end addr m'ust be located in 24-bit addressable storage.

,LONG=Y
,LONG=N

specifies that the relative real time duration anticipated for the fix is long (Y) or short
(N).

,RELEASE=N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y)
before the fix is done.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified.are at the discretion of the user, and may be any valid coding
values.

2-232 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Upo,n completion, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08
10

Meaning

Operation completed normally; ECB posted complete.

Operation abnormally terminated with a X'l7l' abend. Operation incomplete because of
invalid address virtual subarea list entry; ECB posted complete. See Message Library: System
Codes for a complete description of the register contents after a X' 171' abend.

Operation proceeding; ECB will be posted when all requested pages are fixed in real storage.

Operation abnormally terminated with a X'l7l' abend. Virtual subarea list entry or ECB
address invalid; no ECB is posted. See Message Library: System Codes for a complete
description of the register contents after a X'l71' abend.

The ECB is unchanged if the request was initiated but not complete (return code 8), or if an
ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code:

o operation completed 'successfully.
4 operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code:

o operation completed successfully.
'4 operation incomplete because of paging error; requesting TCB

will be abnormally terminated.

The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full
4096-byte page containing the specified byte is actually fixed. The storage is long fixed.

PGFIX R,A=(R3),ECB=(R5)

Operation: Fix virtual storage without using a virtual subarea list. Storage is long fixed.

PGFIX R,A=(R3),EA=(R4),ECB=ECBl

Operation: Fix, but not long-fix, virtual storage, and ensure that the pages fully included in the
address range are forfeited before fixing the area specified by registers 3 and 4.

PGFIX R,A=(R3) ,EA=(R4) ,ECB=(R5) ,LONG=N,RELEASE=Y

PGFIX - Fix Virtual Storage Contents 2-233

PGFIXA - Fix Virtual Storage Contents

Output

Restrictions

The PGFIXA macro instruction makes virtual storage areas, below16 megabytes, resident in
real storage and ineligible for page-out while the requesting task's address space occupies real
storage. The PGSER macro instruction performs this function for addresses either above or
below 16 megabytes. The PGFIXA function is available only to key zero and supervisor state
users. The PGFIXA macro instruction executes short-term, synchronous page fixes. The
preferred area(s) of storage are intended for long term page fixes. A long term page fix in the
V = R or non-preferred areas may delay V = R functions or CONFIG STORAGE commands.
All fix processing is assumed to be short-term and is complete when control is returned to the
issuer of the macro.

PGFIXA does not prevent pages from being paged out when an entire address space is swapped
out of real storage. Consequently, when using the PGFIXA macro instruction, you cannot
assume a constant real address mapping for fixed pages that are susceptible to swapping.

If the PGFIXA is successful, control is returned enabled to the user, all pages are fixed, and
register 15 contains a return code of zero.

If the PGFIXA is unsuccessful, the user will be abended with a system completion code bf
X'17l' or a system complete code of 028. For X'17l' abends, all pages processed up to, but not
including the page causing the error, will be fixed. Register 10 will contain the address of the
pages in error when the abend is issued. No pages will be fixed in the event ofaX'028' abend.

Use of the PGFIXA macro instruction is subject to the following restrictions:

• Can be used only for short term synchronous fixes.

• The user must be in supervisor state with a protection key of zero.

• The user must not hold any spin locks.

• The program mask byte in the PSW is zero and interrupts are enabled upon return from
the PGFlXA.

• The user is responsible for freeing any pages fixed via the PGFlXA. A corresponding
PGFREEA macro instruction should be issued. In addition, an FRR should be established
during the period where fixes are outstanding. The FRR should free the frames in case
there is an unexpected error.

• DSECTs for the IHAPSA, CVT, and IHAPVT must be provided.

2-234 SPL: SystepI Macros and Facilities Volume 2

Example 1

Example 2

• The user must ensure that the end address is greater than or equal to the start aadress.

• The SAVE keyword can only be used with TYPE = R.

The standard form of the PGFIXA macro instruction is written as follows:

name

b

PGFIXA

b

,TYPE=L
,TYPE=R

,SAVE = YES
,SAVE=NO

name: symbol. Begin name in column 1.

One or more blanks must precede PGFIXA.

One or more blanks must follow PGFIXA.

Default: TYPE = R

Default: SAVE = YES

The parameters are explained as follows:

TYPE=L
TYPE=R

specifies the type of input. When L is specified, register 1 is to contain the address of a
virtual subarea list (VSL) fixed in storage. (See the topic "Input to Page Services" in
Volume 1 for a description of the VSL.) By specifying TYPE=L, registers 1 through 13
are saved. If TYPE = R is specified, then register 1 contains the address of the first byte
to be fixed in a contiguous range and register 2 contains the address of the last byte to be
fixed (actual end address). When TYPE = R is specified, the registers saved depend upon
what is specified on the SAVE parameter.

Note: All other users of the PGFIX, PGFIXA (TYPE = L), and PGFREEA macro
instructions must specify the actual end address plus one.

,SAVE = YES
,SAVE=NO

specifies the registers to be saved for TYPE = R. Registers 1 through l3 are saved if
SAVE = YES is specified or if the default is taken. Registers 2 through 10 are saved if
SAVE = NO is specified.

Operation: Use PGFIXA to fix virtual storage without using a virtual subarea list. Registers 2
through 10 will be saved.

FIXl PGFIXA TYPE=R,SAVE=NO

Operation: Use PGFIXA to fix virtual storage using a virtual subarea list. Registers 1 through
13 will be saved.

FIX2 PGFIXA TYPE=L

PGFIXA - Fix Virtual Storage Contents 2-235

PGFREE - Free Virtual Storage Contents

The PGFREE macro instruction makes virtual storage pages, below 16 megabytes, that were
fixed via the PGFIX macro instruction eligible for page-out. The PGSER macro instruction
performs this function for addresses either above or below 16 megabytes. The PGFREE
function is available only to authorized system functions and users. PGFREE must be issued
by the same task that issued the PGFIX, otherwise PGFREE has no effect.

Note: A fixed page is not considered page able until the number of PGFREEs issued for the
page is equal to the number of PGFIXes previously issued for that page. That is, a page is not
automatically made pageable as the result of issuing a PGFREE macro instruction.

The standard form of the PGFREE macro instruction is written as follows:

name

b

PGFREE

b

L

,LA= list addr

R

,A = start addr

,ECB = ecb addr

,EA = end addr

,ANYWHER=N
,ANYWHER=Y

,RELEASE=N
,RELEASE=Y

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PGFREE.

One or more blanks must follow PGFREE.

list addr: A-type address, or register (1) or (2) - (12).

start addr: A-type address, or register (1) or (2) - (12).

ecb addr: A-type address, or register (0) or (2) - (12).

end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1

Default: ANYWHER = N

Default: RELEASE = N
Note: RELEASE = Y may only be specified with EA above.

value: any valid macro keyword specification.

2-236 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr

R

specifies the address of the first entry of a virtual subarea list (VSL). See the topic "Input
to Page Services" in Volume 1 for a description of the VSL.

specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be freed.

Note: start addr must be located in 24-bit addressable storage.

,ECB = ecb addr
specifies the address of the ECB that was used in a prior PGFIX request. This parameter
is used if there is any possibility that the ECB for the previously issued PGFIX was not
posted complete.

,EA = end addr
specifies the end address + 1 of the virtual area to be freed.

Note: end addr must be located in 24-bit addressable storage.

,ANYWHER=N
,ANYWHER=Y

On subsequent page-ins, assign real storage frames below 16 megabytes in anticipation of
a page fix (N) or on subsequent page-ins, assign real storage frames anywhere (Y). The
ANYWHER option takes effect only when the page fix count goes to zero. The default is
ANYWHER=N.

,RELEASE=N
,RELEASE=Y

specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

PGFREE - Free Virtual Storage Contents 2-237

Example 1

Example 2

Example 3

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

10

Meaning

Operation completed normally.

Operation abnormally terminated. Operation incomplete because of invalid address in virtual
subarea list entry.

Operation abnormally terminated. Virtual subarea list entry or ECB address invalid.

Operation: Free the storage in Example 1 of standard-form PGFIX.

PGFREE R,A=(R3)

Operation: Free the storage in Example 2 of standard-form PGFIX.

PGFREE R,A=(R3),EA=(R4)

Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages fully
included in the address range.

PGFREE R,A=(R3),EA=(R4),ECB=(R5),RELEASE=Y

2-238 SPL: System Macros and Facilities Volume 2

PGFREEA - Free Virtual Storage Contents

Restrictions

Output

The PGFREEA macro instruction makes virtual storage areas, below 16 megabytes, that were
fixed by the PG FIXA macro instruction eligible for page-out. The PGSER macro instruction
performs this function for pages either above or below 16 megabytes. The PGFREEA function
is available only to key zero and supervisor state users.

The standard form of the PGFREEA macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PGFREEA.

PGFREEA

b One or more blanks must follow PGFREEA.

No additional parameters are specified.

Use of the PGFREEA macro instruction is subject to the following restrictions:

• The issuer of the PGFREEA must provide a fixed virtual subarea list (VSL) or chain of
them, pointed to by register 1.

• The user must be in supervisor state, protection key O.

• The user must provide DSECTs for IHAPSA, CVT, and IHAPVT.

If the PGFREEA is successful, all pages will be freed and register 15 will contain a return code
of zero. If unsuccessful, all pages up to, but not including the one that caused the abend will be
freed. The user will be abended with a system completion code ofX'171'.

PGFREEA - Free Virtual Storage Contents 2-239

PGSER - Page Services

The PGSER macro instruction and its fast path version perform the same paging services that
PGANY, PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD, PGOUT, and PGRLSE
perform for addresses below 16 megabytes. PGSER performs these services for addresses either
above or below 16 megabytes.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the caller is executing in 31-bit addressing mode.

The services are:

• Page fix equivalent to PGFIX
• Fast path to fix virtual storage
• Page free equivalent to PGFREE
• Fast path to free virtual storage
• Page load equivalent to PGLOAD
• Page out equivalent to PGOUT
• Page release equivalent to PGRLSE
• Page anywhere equivalent to PGANY

This macro is also described in Supervisor Services and Macro Instructions with the exception
of the restricted parameters. The parameters FIX and FREE are restricted to APF -authorized,
key zero, or supervisor state callers. The parameters BRANCH = SPECIAL and BRANCH = Y
are restricted to enabled, supervisor state, key zero callers; users of these options must provide
the address of an 18-word save area in register 13. (See the section "Branch Entry to the
PGSER Routine" in volume 1 for more information about branch entry.) The RELEASE
option of the macro is restricted to supervisor state key zero users if the common area is being
released. Non-authorized users can release only the private area.

Regardless of the addressing mode, all addresses passed in registers are used as 31-bit addresses.
All RX-type addresses are assumed to be in the addressing mode of the caller.

2-240 SPL: System Macros and Facilities Volume 2

The syntax of the fast path version of POSER is presented separately following this standard
description. The standard form of the POSER macro instruction is written as follows:

name

b

PGSER

b

R
L

,FIX
,FREE
,LOAD
,OUT
,RELEASE
,ANYWHER

,LA = list addr

,A = start addr

,EA = end addr

,TCB = teb addr

,ECB = ecb addr

,RELEASE=Y
,RELEASE=N

,LONG=Y
,LONG=N

,BACKOUT=Y
,BACKOUT=N

,KEEPREL=Y
,KEEPREL=N

,ANYWHER=Y
,ANYWHER=N

,BRANCH=Y
,BRANCH=N

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede PGSER.

One or more blanks must follow PGSER.

list addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.
Note: This parameter is valid only with L.

start addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.
Note: This parameter is valid only with R.

Default: EA = start addr
end addr: RX-type address or register (2), (5) - (12) for branch entry; or
register (15), (2) - (12) for SVC entry.
Note: This parameter is valid only with R.

Default: TCB = 0
tcb addr: RX-type address or register (4), (5) - (12).
Note: This parameter can be specified only if FIX; FREE, LOAD, or
OUT and BRANCH = Yare specified.

Default: If FREE or LOAD is specified, ECB = O.
ecb addr: RX-type address or register (0), (5) - (12) for branch entry;
or register (0), (2) - (12) for SVC entry.
Note: This parameter is required if FIX is specified; is optional if FREE
or LOAD is specified; and is invalid for OUT, RELEASE, or
ANYWHER. For synchronous page fix the ECB address must be O.

Default: RELEASE = N
Note: This parameter may be specified only if FIX, FREE, or LOAD is
specified.

Default: LONG=Y
Note: This parameter may be specified only if FIX is specified.

Default: BACKOUT = Y
Note: This parameter may be specified only if FIX is specified.

Default: KEEPREL = N
Note: This parameter may be specified only if OUT is specified.

Default: ANYWHER = N
Note: This parameter may be specified only if FREE is specified.

Default: BRANCH = N

value: any valid macro keyword specification.

PGSER - Page Services 2-241

R
L

,FIX

specifies the manner in which the input is supplied. If R is specified, the user supplies the
starting and ending addresses of the virtual area for which the service needs to be
performed. Before processing the request, page services puts these addresses in registers 1
and 15, respectively. If L is specified, the user supplies the address of the page services
iist (PSL), which specifies the virtual area for which the service is to be performed. Before
processing the request, page services puts the address of the PSL in register 1. See the
topic "Input to Page Services" in Volume 1 for a description of the PSL.

,FREE
,LOAD
,OUT
,RELEASE
,ANYWHER

indicates the function to be performed.

FIX specifies that the virtual storage areas are to reside in real storage and are ineligible
for page-out while the address space is swapped in. This parameter does not prevent
pages from being paged out when the entire address space is swapped out of real storage.
FIX will ignore a request to fix storage in a system area that has the fixed attribute (for
example, the LSQA and SQA). A FIX request for a page in the LSQA or SQA will not
cause the page to be backed by real storage below 16 megabytes.

FREE specifies that the virtual storage areas that were previously fixed via the FIX'
option are eligible for page-out. A fixed page is not considered pageable until the number'
of FREE and FIX requests for the page are equal.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area
specified, in anticipation of future needs.

OUT specifies that a page-out operation is to be initiated for the virtual storage area
specified.

RELEASE specifies that all real and auxiliary storage, associated with the virtual storage
area specified, is to be released.

ANYWHER applies to virtual storage areas that did not specify LOC = (BELOW,ANY)
or LOC=(ANY,ANY) or LOC=ANY on a GETMAIN request, that have been
previously fixed, and probably will not need to be fixed again. ANYWHER specifies that
the virtual storage area specified can be placed either above or below 16 megabytes real
on future page-ins.

,LA = list addr
specifies the address of the page services list (PSL) for L requests.

,A = start addr
specifies the address of the start of the virtual area for R requests.

,EA = end addr
specifies the address of the end of the virtual area for R requests.

2-242 SPL: System Macros and Facilities Volume 2

,TCB=tcb addr
specifies either zero or the address of the TCB to be assigned ownership of fixes for a FIX
request or fixes for a FREE request. If zero is specified, no TCB is assigned ownership of
the request. Cross memory callers must specify zero.

For OUT and LOAD requests, the POSER routine associates the request with a
particular TCB so that the request can be purged if the task terminates before the request
is complete. For SVC entry (BRANCH = N), the POSER routine uses the current TCB.

Note: The TCB resides in storage below 16 megabytes.

,ECB = ecb addr
specifies the address of the ECB that is used to signal event completion for an
asynchronous FIX or LOAD request. If the caller is in cross memory mode or if the
caller requests a synchronous page fix (a FIX for which the caller is suspended until the
entire FIX request is complete), the ECB must be zero (ECB = 0 or ECB = (r), where (r)
represents a register that contains zero).

For a FREE request, ECB specifies the address of the ECB that was used in a previous
FIX request. If this parameter is specified, any pages in the previous FIX request that are
not yet fixed, will not be fixed. If L is specified, the PSL chain must contain the
addresses of the virtual pages in the same order in both the FREE and the previous FIX
request. Also, the ECB for the FIX request will not be posted if it was not yet posted at
the time of the FREE request.

If the ECB parameter is not specified on a FREE request, only the fix counts for the valid
pages in storage at the time of the FREE request are decreased. This will not affect the
paging activity and the posting of the ECB associated with the original FIX request.

If an ECB is supplied on a FIX or LOAD request, the caller must check the return code
because the ECB will not be posted if the return code is zero. If an ECB is not supplied,
it is not necessary to check the return code because control returns to the caller only if the
request was successfully completed; if unsuccessful, page services abnormally terminates
the caller.

For all callers that supply an ECB, page services verifies that the ECB address is in an
area allocated via GETMAIN and if the caller is not in key 0, page services also verifies
that the ECB is in the caller's protect key. Before posting the ECB, page services again
verifies that the ECB is located in an allocated area and that the ECB is in the caller's
protect key. (This is to check that the allocated area has not been freed via FREEMAIN
and the protect key has not been changed.) It is the user's responsibility to ensure that
the page containing the ECB is not freed and that the key is not altered. If either test
fails, page services does not post the ECB.

,RELEASE=Y
,RELEASE=N

specifies that all the real and auxiliary storage associated with the virtual storage areas is
to be released to the system (Y) or that all'the real and auxiliary storage associated with
the virtual storage areas is not to be released to the system (N).

PGSER - Page Services 2-24 3

,KEEPREL=Y
,KEEPREL=N

specifies that the virtual pages should be validated again after the page-out completes (Y);
or that the virtual pages will be marked invalid and the real storage frames freed- for reuse
(N).

,LONG=Y
,LONG=N

specifies that the relative real time anticipated for the FIX is long (Y); or that the relative
real time anticipated for the FIX is short (N). (In general, the duration of a fix is long if
it can be measured in seconds.)

,BACKOUT=Y
,BACKOUT=N

specifies the procedure to follow when a non-allocated page is encountered during the
processing of a FIX request. If BACKOUT = Y, all pages fixed as part of the request are
freed before returning to the caller. If BACKOUT = N, the pages previously fixed as part
of the request are not freed and no further processing is done before returning to the
caller.

,ANYWHER=N
,ANYWHER=Y

specifies that on subsequent page-ins, page services is to assign real storage frames below
16 megabytes in anticipation of a page-fix (N); or on subsequent page-ins, page services is
to assign real storage frames anywhere (Y). The ANYWHER option takes effect only
when the page-fix count goes to zero.

,BRANCH=Y
,BRANCH=N

specifies whether or not this is a branch entry.

If BRANCH = Y is specified, it is a branch entry; and users of this option must provide
the address of an 18-word save area in register 13. Register 2 contains the ending
address.

If BRANCH = N is specified, it is an SVC entry. Register 15 contains the ending address.

Cross memory callers must use BRANCH=Y.

,RELATED = value
provides information to document the macro by relating the service performed to some
corresponding function or service. The format can be any valid coding value that the user
chooses.

On return the register contents are as follows:

Register Contents

0-4 The contents are destroyed and unpredictable.

5-13 The contents are unchanged.

14 The contents are destroyed and unpredictable.

15 This register contains the return code.

2-244 SPL:System Macros and Facilities Volume 2

The return codes, given in register 15, along with the option used and the meaning follow:

Option

FIX

FIX

FREE

LOAD

LOAD

OUT

RELEASE

ANYWHER

Code

o

8

o

o

8

o
C

o

o

Meaning

The operation completed normally
and the ECB will not be posted.

The operation is proceeding,
the ECB (if available) will be posted
with X'OO' when the requested
pages are fixed.

The operation completed normally.

The operation completed normally
and the ECB will not be posted.
If no ECB is supplied, the operation
is completed or proceeding.

The operation is proceeding.
The ECB will
be posted with X'OO' when all
page-ins are complete.

The operation completed normally.
At least one page in the requested range
was not paged out.

The operation completed normally.

The operation completed normally.

If a error is found in one of the parameters, the requestor is abnormally terminated with a
system abend code of X'18A' and one of the following hexadecimal reason codes is provided in
register 15:

Hexadecimal
Code

4

4

10

Meaning

A page-fix operation abnormally terminated
cause of an invalid address in a PSL
entry. The ECB will not be posted.
A page-release operation abnormally terminated
because either a page release was attempted
for permanently backed storage or a non-system
key caller attempted to release storage
in a different key.
A page-fix, page-free, or a page-load
operation abnormally terminated because the
PSL or ECB address was invalid.

Callers not authorized to use a specific service are abnormally terminated with a system abend
code of X'28A' and a hexadecimal error code of X' 1 0' in register 15. If an environmental error
is encountered while processing the page-services request, the caller is abnormally terminated
with a system abend code of X'028' and a hexadecimal error code of X'14' in register 15. A
unique reason code is also provided in register 0 for these errors.

PGSER - Page Services 2-245

Example 1

Example 2

Example 3

Example 4

Example 5

Operation: Synchronously fix the page that starts at the address given in register 1 and ends at
the address given in LOADWORD. Use branch entry. No particular TCB is associated with
this request.

PGSER R,FIX,A=(l) ,ECB=O ,EA=LOADWORD, TCB=O ,BRANCH=Y

Operation: Free the page specified in the PSL pointed to by register 2. The ECB address is
given in register 8. Use branch entry. Release all real and auxiliary storage associated with this
virtual area. Do not attempt to back the area below 16 megabytes on future page-ins.

PGSER L,FREE,LA=(2) ,ECB=(8) ,RELEASE=Y,ANYWHER=Y,BRANCH=Y

Operation: Load the page specified in the PSL pointed to by register 1. Supply an ECB of
zero.

PGSER L,LOAD,LA=(l),ECB=O

Operation: Perform a page-out for the virtual area starting at the address given in register 1
and ending at the address given in register 5. The address of the TCB is given in register 8.
Use branch entry.

PGSER R,OUT,A=(l) ,EA=(5) ,TCB=(8),BRANCH=Y

Operation: Perform a page-out for the virtual area specified in the PSL located at
LOADWORD. Use branch entry.

PGSER L,OUT,LA=LOADWORD

2-246 SPL: System Macros and Facilities Volume 2

PGSER - Fast Path Page Services

The fast path PGSER macro instruction performs FIX and FREE requests for users on
performance paths. The following restrictions apply to this special fast path service:

• Short term fixes only

• No ECB

• No TCn

• No VIO window pages

• Key 0, supervisor state callers only

• Enabled

• Register 13 must point to an 18-word save area in non-pageable storage.

• If the list format of the macro instruction is used, all user-defined short page service lists
(SSLs) must be valid in nonpageable storage.

The fast path PGSER macro does not verify any of the restricted conditions. It is the user's
responsibility to verify the restricted conditions and to provide recovery to purge FIX requests
when the task terminates before a page service request is complete.

PGSER - Fast Path Page Services 2-247

The fast path PGSER macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PGSER.

PGSER

b One or more blanks must follow PGSER ..

R
L

,FIX
,FREE

,LA = list addr

,A = start addr

,EA = ending addr

,BACKOUT=Y
,BACKOUT=N

,ASCB=addr

,RELATED = value

list addr: RX-type address or register (1), (5) - (12).
Note: This parameter is valid only if L is specified.

start addr: RX-type address or register (1), (5) - (12).
Note: This parameter is valid only if R is specified.

ending addr: RX-type address or register (2), (5) - (12).
Note: This parameter is valid only if R is specified.

Default: BACKOUT=Y
Note: This parameter is valid only for FIX requests.

addr: RX-type address or register (5) - (12).

value: any valid macro keyword specification.

,BRANCH = SPECIAL

The parameters are explained as follows:

R
L

specify the manner in which the input is supplied. If R is specified, the user supplies the
starting and ending addresses of the virtual storage area for which the service is to be
performed. Before processing the request, page services puts these addresses in registers 1
and 2, respectively. If L is specified, the user supplies the address of the short page
services list (SSL), which specifies the virtual storage area for which the service is to be
performed. Before processing the request, page services puts the address of the SSL in
register 1. See the topic "Input to Page Services" in Volume 1 for a description of the
SSL.

,FIX
,FREE

indicate the function to be performed.

FIX specifies that the virtual storage areas are to reside in real storage and are ineligible
for page-out while the address space is swapped in. This parameter does not prevent
pages from being paged out when the entire address space is swapped out of real storage.
FIX will ignore a request to fix storage in a system area that has the fixed attribute (for
example, the LSQA and SQA). A FIX request for a page in the LSQA or SQA will not
cause the page to be backed by real storage below 16 megabytes

2-248 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

FREE specifies that th~ virtual storage areas that were previously fixed via the FIX
option are eligible for page-out. A fixed page is not considered pageable until the number
of FREE and FIX requests for the page are equal.

,LA = list addr
specifies the address of the short page service list (SSL) for L requests.

,A = start addr
specifies the address of the start of the virtual area for R requests.

,EA = end addr
specifies the address of the end of the virtual area for R requests.

,BACKOUT=Y
,BACKOUT=N

specify the procedure to follow if an unallocated page is encountered during the
processing of a fix request.

If BACKOUT = Y is specified, all pages fixed as part of the request will be freed before
returning to the caller.

If BACKOUT = N is specified, the pages previously fixed as part of the request will not
be freed before returning to the caller. In this situation, no further pages are processed
once an unallocated page is encountered.

,ASCB = address of ASCB
specifies the address of the ASCB for the currently addressable address space.

Note: The ASCB must reside in 24-bit addressable storage.

,RELATED = value
specifies information used to document the macro instruction and to relate the service
performed to some corresponding service or function. The format of the information
specified can be any valid coding values that the user chooses.

,BRANCH = SPECIAL
specifies a branch entry call to the fast path FIX and FREE services. If
BRANCH = SPECIAL is specified, users must provide an I8-word save area in
non-pageable storage.

Operation: Fix 4096 bytes of storage starting at the address BUFFER. The address of the
ASCB is in register 6.

PGSER R,FIX,A=BUFFER,EA=BUFFER+4095,BRANCH=SPECIAL,ASCB=(6)

Operation: Free the area specified in the SSL defined at LISTSSL. Use the ASCB in
PSAAOLD.

L 5,PSAAOLD
PGSER L,FREE,LA=LISTSSL,ASCB=(5) ,BRANCH=SPECIAL

PGSER - Fast Path Page Services 2-249

POST - Signal Event Completion

Use the POST macro instruction to have the specified ECB (event control block) set to indicate
the occurrence of an event. If this event satisfies the requirements of an outstanding WAIT or
EVENTS macro instruction, the waiting task is taken out of the wait state and dispatched
according to its priority. The bits in the ECB are set as follows:

Bit 0 of the specified ECB is set to 0 (wait bit).
Bit 1 is set to 1 (complete bit) .
Bits 2 through 31 are set to the specified completion code.

The description of the POST macro instruction follows. The POST macro instruction is also
described in Supervisor Services and Macro Instructions, with the exception of the ASCB,
ERRET, ECBKEY, BRANCH, and MEMREL parameters. These parameters are restricted ir
use to programs that are authorized (supervisor state, APF-authorized, or PSW key 0-7)and,
therefore, are only described here. The BRANCH = YES parameter is further restricted to
supervisor state and key O.

2-250 SPL: System Macros and Facilities Volume 2

The standard form of the POST macro instruction is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB = addr ,ERRET = err addr
,ASCB=addr"ERRET=err addr,
ECBKEY=key

,BRANCH = YES
,BRANCH=NO

,MEMREL = YES
,MEMREL=NO

,RELATED = value

name: symbol. Begin name in column 1.

One or 'more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12),
except (10).

comp code: symbol, decimal or hexadecimal digit, or register (0), (2) - (9),
(10), or (12).
Range of values: 0 - 23°_1
Default: 0

addr: RX-type address, or register (2) - (9), (12).
err addr: RX-type address, or register (2) - (9), (12).
addr: RX-type address, or register (2) - (9), (12).
err addr: RX-type address, or register (2) - (9), (12).
key: symbol, decimal or hexadecimal digit,
or register (2) - (9), (12).
Range of values: 0 - 15 (decimal)
Default: None.
Note: If the register form is specified,
bits 24-27 of the register must contain the key.

Default: BRANCH = NO

Default: MEMREL = YES
Note: MEMREL can be coded only if BRANCH = YES, and the ASCB
and ERRET parameters are coded.

value: any valid macro keyword specification.

The explanation of the parameters is as follows:

ecb addr
specifies the address of the fullword event control block representing the event.

,comp code
specifies the completion code to be placed in the event control block upon completion.

,ASCB = addr ,ERRET = err addr
specifies the address of the ASCB of the address space containing the ECB being posted,
and the address of the routine to be given control when a POST failure is detected. See
the topic "Cross Memory Post" in Volume 1 for information on the addressing mode in
which the exit routine receives control.

Note: The ASCB must reside in 24-bit addressable storage

,ASCB = addr ,ERRET = err addr ,ECBKEY = key
specifies the address of the ASCB containing the ECB being posted, the address of the
routine to be given control when an error condition resulting from a POST failure is
detected, and the storage protection key of the ECB. to be posted. If the ECB does not
identify a current wait condition against it, the ECB is checked against the key before it is
updated with the post completion code. Otherwise, the ECB is checked against the

POST - Signal Event Completion 2-251

protection key of the waiting task. (See the topic "Cross Memory Post" in Volume 1 for
information about the addressing mode in which the exit routine receives control.)

Note: The ASCB must reside in 24-bit addressable storage

,BRANCH = YES
,BRANCH=NO

specifies branch entry (YES) or SVC entry (NO). The default is BRANCH = NO.

If BRANCH = YES is specified and the ASCB address is not specified, the caller must
hold the local lock and be in non-cross memory mode. For branch entry callers, registers
0-9, 12, and 13 are preserved. For SVC callers, registers 2-14 are preserved.

If the caller specifies the ASCB address, holds the local lock of the home address space,
and specifies MEMREL=YES (or allows it to default), then the current address space
must be the home address space and registers 1-9 are preserved. If the ECBKEY
parameter is not specified, register 0 is also preserved.

If the caller specifies the ASCB address and either does not hold home's local lock or has
specified MEMREL = NO, only register 9 is preserved.

,MEMREL = YES
,MEMREL=NO

specifies whether the error routine specified by the ERRET parameter runs in the caller's
address space (YES) or in the master scheduler's address space (NO). The default is
MEMREL = YES.

If the caller holds the LOCAL lock of the home address space, MEMREL also indicates
which registers the POST routine saves.

• If the LOCAL lock is held and MEMREL = YES is specified or defaulted to, registers
o through 9 and register 14 are saved.

• If the LOCAL lock is not held or MEMREL = NO is specified, only register 9 and
register 14 are saved.

If the LOCAL lock is held and MEMREL = YES, the current address space must be the
home address space. The macro's results are unpredictable if the current address space is
not the home address space.

If the LOCAL lock is not held or MEMREL = NO, the current address space can be any
address space. Thus, when the cross memory mode and the lock status of the caller is
unknown, specify MEMREL = NO.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-252 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Operation: Post an event control block whose address is ECB, where the address space
containing the ECB has an ASCB specified by register 5, and where ERRRTN is the routine to
be given control on error conditions.

POST ECB,ASCB=(REG5),ERRET=ERRRTN

Operation: Post the ECB from example 1 with a hexadecimal completion code of 3FF.

POST ECB,X'3FF' ,ASCB=(REG5),ERRET=ERRRTN

POST - Signa] Event Completion 2-253

POST (List Form)

The list form of the POST macro instruction is written as follows:

name

b

POST

b

ech addr

,ASCB = addr,ERRET = err addr
,ASCB = addr,ERRET = err addr,
ECBKEY=YES

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: A-type address.

addr: A-type address.
err addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the POST macro instruction, with the
following exceptions:

,MF=L
specifies the list form of the POST macro instruction.

,ASCB = addr ,ERRET = err addr ,ECBKEY = YES
specifies that the storage protection key of the ECB is defined in the execute form of the
POST macro instruction.

Note: The ASCB resides in 24-bit addressable storage.

2-254 SPL: System Macros and Facilities Volume 2

POST (Execute Form)

The execute form of the POST macro instruction is written as follows:

name

b

POST

b

ecb addr

,comp code

,ASCB = addr,ERRET = err addr
,ASCB = addr ,ERRET = err addr,
ECBKEY = key

,RELATED = value

,MF = (E,prob addr)

name: symbol. Begin name in column 1.

One or more blanks must precede POST.

One or more blanks must follow POST.

ecb addr: RX-type address, or register (2) - (12).

comp code: symbol, decimal or hexadecimal digit, or register (0) or (2) -
(12).
Range of values: 0 - 23°_1

addr: RX-type address, or register (2) - (12).
err addr: RX-type address, or register (2) - (12).

key: symbol, decimal or hexadecimal digit, or register (2) - (12).
Range of values: 0 - 15 (decimal).
Default: None.
Note: If the register form is specified, bits 24-27 of the register must contain
the key.

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the POST macro instruction, with the
following exception:

,MF = (E,prob addr)
specifies the execute form of the POST macro instruction using a remote control program
parameter list.

POST (Execute Form) 2-255

PROTPSA - Disable, Enable Low Address Protection

Restrictions

The PROTPSA macro instruction manipulates control register 0 to disable or enable low
address protection. Low address protection requires programs that modify storage in address
range 0-511 to disable low address protection before making the modification and then to
enable low address protection after making the modification.

The PROTPSA macro instruction has the following restrictions:

• Users must include a DSECT for the PSA (viathe IHAPSA mapping macro).

• PROTPSA must execute in supervisor state, protection key O.

• I/O and external interrupts must be disabled while low address protection is disabled.

• The user must not call or transfer control to another program while low address protection
is disabled.

• Low address protection should be disabled for a minimum amount of time.

The PROTPSA macro instruction is coded as follows:

name

b

PROTPSA

b

DISABLE
ENABLE

name: symbol. Begin name in column 1.

One or more blanks must precede PROTPSA.

One or more blanks must follow PROTPSA.

Default: None.
Note: One or the other keyword must be specified.

2-256 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

DISABLE
specifies that low address protection will be disabled until a PROTPSA ENABLE
instruction is executed.

ENABLE
specifies that low address protection will be enabled until a PROTPSA DISABLE is
issued.

Operation: Disable low address protection so that the restart new PSW can be modified and
then enable low address protection.

PROTPSA DISABLE
MVC FLCRNPSW,NEWPSW
PROTPSA ENABLE

PROTPSA - Disable, Enable Low Address Protection 2-257

PTRACE - Processor Trace

The PTRACE macro instruction creates a trace table entry and places it in the system trace
table. The entry consists of an event identifier, the contents of a designated range of general
registers or storage locations, and system supplied status information.

When using this macro, the user must provide the following information:

• The type of trace entry that is to be created
• The data to be recorded in the trace entry

The PTRACE macro instruction can only be issued with DAT-ON. The caller must be in key 0
and supervisor state but can be in cross memory mode and in either 24 or 31-bit addressing
mode. All addresses passed to the PTRACE routine are treated as 31-bit addresses. PTRACE
users must include the IHAPSA and IHATRVT mapping macros and register 13 must point to
a 72-byte save area that can be used by the PTRACE service.

The PTRACE macro instruction is written as follows:

name

b

PTRACE

b

TYPE=USRn

,REGS = (regl,reg2)
,REGS = (I)

,SAVEAREA = STANDARD

name: symbol. Begin in name in column 1.

One or more blanks must precede PTRACE.

One or more blanks must follow PTRACE.

n: hexadecimal digit 0 - F.

Default: REGS = (1)
reg1: decimal digit 2 - 12.
reg2: decimal digit 2 - 12.

The parameters are explained as follows:

TYPE=USRn
specifies a user-event explicit trace entry identified by the hexadecimal number n. Trace
processing places this number in the trace entry for identification purposes.

2-258 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

,REGS = (regJ ,reg2)
,REGS =(1)

defines the data to be placed in the user's trace entries. Multiple trace entries are created
if more than 5 registers or 5 words of data are requested.

If REGS = (regJ,reg2) is specified, the data is located in a range of registers, where regJ
specifies the first register in the range and reg2 specifies the last register in the range. The
register number, reg2, must always be greater than or equal to the register number, regJ.
A maximum of 11 words of data can be indicated for tracing using REGS = (regJ ,reg2).

If REGS = (1) is specified or used as the default, register 1 must contain the 31-bit address
of a parameter list. The high order bit of this address must be set to O. If REGS = (1) is
specified, up to 1024 words of data can be recorded. The parameter list contains N + 1
fullword entries. The first word contains the number of words of data (N) to be recorded.
This is followed by the N words of data to be placed in the user's trace entries.

,SAVEAREA = STANDARD
specifies that register 13 contains the 31-bit address of a 72-byte save area that can be
used by the PTRACE routine.

When control is returned, registers 2-13 are restored to their original values, but the original
contents of registers 0, 1, 14, and 15 are destroyed. On exit, register 15 contains the following
return code:

Hexadecimal
Code

o

Meaning

The function completed successfully.

Operation: Create a trace table entry for user event 4. Registers 5, 6, and 7 contain the user
data to be recorded.

PTRACE TYPE=USR4,REGS=(5,7),SAVEAREA=STANDARD

Operation: Create trace table entries for user event C. Register 1 contains the address of a
parameter list containing the data to be recorded.

PTRACE TYPE=USRC,REGS=(l) ,SAVEAREA=STANDARD

PTRACE - Processor Trace 2-259

PURGEDQ - Purge SRB Activity

The PURGEDQ macro instruction allows a task to purge particular SRB activity. Because an
SRB routine is dispatched asynchronously to the actual issuance of a SCHEDULE macro
instruction, the conditions that existed in the system at the time the SCHEDULE was issued
may have totally changed by the time the routine is dispatched. If, in this time interval, the
environment that the asynchronous routine requires to run successfully has been changed, the
results are unpredictable. For this reason, the PURGEDQ macro instruction is available to:

• Dequeue SRBs not yet dispatched.

• Allow processing for previously scheduled SRBs to complete.

• "Clean up" each dequeued SRB.

All parameters of this macro are optional. The parameters determine the target address space
and limit the scope of the purge. When purging SRBs scheduled in the current space,
PURGEDQ waits for dispatched SRBs to terminate. PURGEDQ does not purge or wait for
terminations of SRBs scheduled into address spaces other than the current address space once
they have been dispatched. The issuer of PURGEDQ is not informed of SRBs that cannot be
purged.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

The standard form of the PURGEDQ macro instruction is written as follows:

name

b

PURGEDQ

b

RMTR = RMTR addr

,ASID = A SID addr

,ASIDTCB = TCB addr

name: symbol. Begin name in column 1.

One or more blanks must precede PURGEDQ.

One or more blanks must follow PURGEDQ.

RMTR addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).

TCB addr: RX-type address, or register (2) - (12).

2-260 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

RMTR = RMTR addr
If specified, limits the purge to SRBs that contain the same address in field SRBRMTR.
This parameter has no effect on the execution of the resource manager termination
routine specified in SRBRMTR.

,ASID = A SID addr
specifies the ASID of the address space (target address space) into which the SRB was
scheduled. If omitted, the current address space is assumed.

,ASIDTCB = TeB addr
Provides a method of limiting the scope of the purge. ASIDTCB specifies the address of
a double word that optionally defines a TCB address and/or ASID to match against fields
SRBPTCB and SRBPASID respectfully. When non-zero values are specified, only SRBs
that match the specified value will be purged. When the TCB address is non-zero, the
ASID field must also be non-zero. If the ASIDTCB parameter is omitted, SRBPASID
and SRBPTCB will be matched against the current address space ID and current TCB
address. The double word has a format similar to field SRBFLC, which contains
SRBP ASID and SRBPTCB. The format of the double word is:

bytes 0-1 Reserved
bytes 2-3 ASID for match with SRBPASID or zero.
bytes 4-7 TCB address for match with SRBPTCB or zero.

ASID must be specified is TCB address is specified.

Note: The TCB resides in storage below 16 megabytes.

Operation: Purge all SRBs scheduled into the current address space, related to the current
(terminating) task, and associated with the resource manager termination routine located at
RESCLEAN.

PURGEDQ RMTR=RESCLEAN

PURGEDQ - Purge SRB Activity 2-261

PURGEDQ (List Form)

Example 1

The list form of the PURGEDQ macro instruction is used to construct a remote program
parameter list.

The list form of the PURGEDQ macro instruction is written as follows:

name

b

PURGEDQ

b

RMTR = RMTR addr

,ASID = A SID addr

,ASIDTCB= TCB addr

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede PURGEDQ.

One or more blanks must follow PURGEDQ.

RMTR addr: A-type address.

ASID addr: A-type address.

TCB addr: A-type address.

The parameters are explained under the standard form of the PURGEDQ macro instruction,
with the following exception:

,MF=L
specifies the list form of the PURGEDQ macro instruction.

Operation: Specify the resource manager termination routine located at RESCLEAN and
produce the parameter list to be used by the execute form of the PURGEDQ macro instruction.

STATPDQ PURGEDQ RMTR=RESCLEAN,MF=L

2-262 SPL: System Macros and Facilities Volume 2

PURGEDQ (Execute Form)

Example 1

The execute form of the PURGEDQ macro instruction uses a remote control program
parameter list. The parameter list is constructed using the list form of PURGEDQ.

The execute form of the PURGEDQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede PURGEDQ.

PURGEDQ

b One or more blanks must follow PURGEDQ.

RMTR = RMTR addr RMTR addr: RX-type address, or register (2) - (12).

,ASID=ASID addr ASID addr: RX-type address, or register (2) - (12).

,ASIDTCB = TCB addr TCB addr: RX-type address, or register (2) - (12).

,MF = (E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the PURGEDQ macro instruction,
with the following exception:

,MF = (E,ctrl addr)
specifies the execute form of the PURGEDQ macro instruction, using a remote control
program parameter list.

Operation: Purge all SRBs scheduled into the address space given in register 6 and associated
with the resource manager termination routine located at RESCLEAN. Indicate that the
remote control program parameter list is located at STATPDQ.

PURGEDQ ASID=(6),RMTR=RESCLEAN,MF=(E,STATPDQ)

PURGEDQ (Execute Form) 2-263

QEDIT - Command Input Buffer Manipulation

The QED IT macro instruction generates the required entry parameters and processes the
command input buffer for the following uses:

• Dechaining and freeing of a command input buffer (CIB) from the CIB chain for a task.

• Setting a limit for the number of CIBs that maybe simultaneously chained for a task.

The QEDIT macro instruction is written as follows:

name

b

QEDIT

b

ORIGIN = CIB addr ptr .

,BLOCK=CIB addr
,CIBCTR = CIB nmbr

name: symbol. Begin name in column 1.

·One or more blanks must precede QEDIT.

One or more blanks must follow QEDIT.

CIB addr ptr: RX-type address, or register (0),(2) - (12),

CIB addr: RX-type address, or register (1), (2) - (12).
CIB nmbr: decimal digit, with a maximum value of 255
or register (l), (2) - (12).

The parameters are explained as follows:

ORIGIN = CIB addr ptr
specifies the address of the pointer to the first CIB chain for the task. This address is
obtained using the EXTRACT macro instruction. If ORIGIN is the only parameter
specified, the caller must be executing under system key 0-7; in this case, the entire CIB
chain is freed.

,BLOCK = CIB addr
specifies the address of the CIB to be freed from the CIB chain for a task.

2-264 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

,CIBCTR = CIB nmbr
specifies the limit for the number of CIBs to be chained at any time for a task.

Notes:

1. When using any address returned from the EXTRACT macro instruction as input to the
QEDIT macro instruction, the user must use the IEZCOM mapping macro to establish
addressability based on the address returned by EXTRACT.

2. The CIB must reside in 24-bit addressable storage.

, When control is returned, register 15 contains one of these return codes:

Hexadecimal
Code

00

04

08

Meaning

The required function was successfully completed.

The CIB to be deleted was not found on any eIB chain.

The limit for the number of CIBs to be chained was exceeded; an issuer who made a request to
free all the CIBs on a chain was not in supervisor state and protect key zero; or the user
provided an invalid address for the pointer to the CIB chain, an invalid address for the CIB
address, or an invalid CIB number as input to the macro.

Operation: Free the entire CIB chain, where register 8 contains the address of the pointer to
the CIB chain.

QEDIT ORGIN=(8)

Operation: Free the CIB whose address is in register 5 from the CIB chain. Register 8
contains the address of the pointer to the CIB chain.

QEDIT ORIGIN=(8),BLOCK=(5)

QEDIT - Command Input Buffer Manipulation 2-265

RACDEF - Define a Resource to RACF

The RACDEF macro instruction is used to define, modify, or delete resource profiles for the
Resource Access Control Facility (RACF). RACF uses the profiles to perform RACHECK
authorization checking. RACHECK authorization checking verifies the user's authority to
perform the corresponding resource manager function on the resource. The RACDEF caller
must be authorized (APF-authorized, in system key 0-7, or in supervisor state).

A RACF user can change or add the RACDEF parameters, OWNER, LEVEL, UACC, or
AUDIT by means of the RACDEF preprocessing and postprocessing exit routines. These
routines are described in System Programming Library: Resource Access Control Facility
(RACF).

Systems using RACF Version 1, Release 6 or later, do not have to unconditionally deny all
access requests that do not have sufficient authority. This release of RACF provides the
option, through the specification of the WARNING parameter on the RACDEF macro, of
issuing a warning message during RACHECK macro processing instead of failing the
RACHECK request.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in 31-bit
addressing mode, who want to utilize the RACDEF function, can code the RACROUTE
macro.

The standard form of the RACDEF macro instruction is written as follows:

name

b

RACDEF

b

ENTITY = profile name addr

,VOLSER = vol addr

,TYPE = DEFINE
,TYPE = DEFINE,NEWNAME =
new dsn addr
,TYPE =ADDVOL,OLDVOL =
old vol addr
,TYPE =CHGVOL,OLDVOL =
old vol addr
,TYPE = DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

name: symbol. Begin name in column l.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: A-type address, or register (2) - (12).

vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS = 'DATASET' and DSTYPE not equal
to M when a discrete profile name is used.

new dsn addr: A-type address, or register (2) - (12).
old vol addr: A·type address, or register (2) - (12).

Default: TYPE = DEFINE

Default: DSTYPE = N

2-266 SPL: System, Macros and Facilities Volume 2

JNSTLN=parm list addr

,CLASS = 'c/assname'
,CLASS = class name addr

,MENTITY = entity addr

,MCLASS = 'classname'
,MCLASS=class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER = YES

,ACEE = acee addr

,UNIT = unit addr

,SPECIAL = YES
,SPECIAL = NO

,OWNER = owner id addr

,LEVEL = number
,LEVEL = reg

,UACC=ALTER
,UACC=CONTROL
,UACC = UPDATE
,UACC=READ
,UACC=NONE
,UACC = reg

,DATA = data addr

,AUDIT=NONE
,AUDIT = audit value
,AUDIT = (audit value (access
level) ,audit value (access level) , ...)
,AUDIT = (reg)

,RACFIND = YES
,RACFIND = NO

,CHKAUTH = YES
,CHKAUTH=NO

,GENERIC = YES
,GENERIC = ASIS

,WARNING=YES
,WARNING=NO

,RELEASE = number

,FILE SEQ = reg
,FILESEQ = number

,EXPDT = expir-date addr
,RETPD = retn-period addr

,ACCL VL = (access value addr)
,ACCL VL = (access value addr,
parm list addr)

,T APELBL = STD
,TAPELBL=BLP
,TAPELBL=NL

,CATGORY=addr

,SECL VL = addr

,ERASE=YES
,ERASE=NO

,NOTIFY = notify-id addr

parm list addr: A-type address, or register (2) - (12).

'c/assname ': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

entity addr: A-type address, or register (2) - (12).

'c/assname ': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: MCLASS = 'DATASET'

volser addr: A-type address, or register (2) - (12).

Default: MGENER=ASIS

acee addr: A-type address, or register (2) - (12).

unit addr: A-type address, or register (2) - (12).

Default: SPECIAL = NO

owner id addr: A-type address, or register (2) - (12).

Default: zero.
reg: register (2) - (12).

reg: register (2) - (12).

data addr: A-type address or register (2) - (12).

Note: AUDIT is valid only if TYPE = DEFINE is specified.
audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: READ
reg: register (2) - (12).

Default: CHKAUTH=NO

Default: GENERIC = ASIS

Default: WARNING = NO
Note: WARNING is valid only if TYPE = DEFINE
is specified.

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
number: 1-9999

expir-date addr: A-type address or register (2) - (12).
retn-period addr: A-type address or register (2) - (12).
Default: see description of parameter.

access value addr: A-type address or register (2) - (12).
parm list addr: A-type address, or register (2) - (12).

Default: T APELBL = STD

addr: A-type address, or register (2) - (12).

addr: A-type address, or register (2) - (12).

Default: ERASE = NO

notify-id addr: A-type address or register (2) - (12).

RACDEF - Define a Resource to RACF 2-267

The parameters are explained as follows:

ENTITY = profile name addr
specifies the address of the name of the discrete or generic profile that is to be defined to,
modified, or deleted from RACF. The profile name is a 44-byte DASD data set name for
CLASS = 'DATASET' or a 6-byte volume serial name for CLASS = 'DASDVOL' or
CLASS = 'TAPEVOL'. The lengths of all other profile names are determined by the class
descriptor table. The name must be left justified in the field and padded with blanks.

,VOLSER=vo! addr
specifies the address of the volume serial number:

• For TYPE = ADDVOL, of the new volume to be added to the definition of the data
set.

• For TYPE=ADDVOL and CLASS='TAPEVOL', of the new volume being added to
the tape volume set identified by ENTITY.

• For TYPE = DEFINE and CLASS = 'DATASET', of the catalog (for a VSAM data
set), or of the volume on which the data set resides (for a non-VSAM data set).

The volume serial number is optional if DSTYPE = M is specified; it is ignored if the
profile name is generic.

The field pointed to by the specified address contains the volume serial number (padded
to the right with blanks, if necessary, to make six characters).

,TYPE = DEFINE
,TYPE = DEFINE ,NEWNAME = new dsn addr
,TYPE = ADDVOL ,OLDVOL = old vol addr
,TYPE = CHGVOL ,OLDVOL = old vol addr
,TYPE = DELETE

specifies the type of action to be taken:

• TYPE = DEFINE - The definition of the resource is added to the RACF data set, and
the current user is established as the owner of the defined entity.

• TYPE = DEFINE,NEWNAME = - If NEWNAME is specified, the address points to
a 44-byte field containing the new name for the data set that is to be renamed.
NEWNAME is only valid with CLASS = 'DATASET'. NEWNAME is not valid
with DSTYPE=T.

• TYPE = ADDVOL - The new volume is added to the definition of the specified
resource. For the DATASET class, the OLDVOL address specifies a previous
volume of a multi-volume data set. For the TAPEVOL class, the ENTITY address
specifies a previous volume of a tape volume set. This parameter applies only to
discrete profiles.

• TYPE = CHGVOL - The volume serial number in the definition of the specified
resource is changed from the old volume serial number identified in OLDVOL to the
new volume serial number identified in the VOLSER parameter. This parameter
applies only to discrete profiles. TYPE=CHGVOL is not valid with DSTYPE=T.

2-268 SPL: System Macros and Facilities Volume 2

• TYPE = DELETE - The definition of the resource is removed from the RACF data
set. (For a multivolume data set or a tape volume set, only the specified volume is
removed from the definition.)

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

specifies the type of data set associated with the request:

• N for non-VSAM
• V for VSAM
• M for model profile
• T for tape

If DSTYPE = T is specified and tape data set protection is not active, the processing will
be the same as for RACDEF CLASS = 'TAPEVOL'. Specify DSTYPE only for
CLASS = 'DATASET'.

Note: Do not specify DSTYPE = M unless RACF Version 1, Release 4 or later is
installed on your system.

,INSTLN = parm list addr
specifies the address of an area that is to contain parameter information meaningful to the
RACDEF installation exit routines. This information is passed to the installation exit
routines when they are given control from the RACDEF routine.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACDEF installation exit routines.

,CLASS = 'classname'
,CLASS = class name addr

specifies that a profile is to be defined, modified, or deleted in the specified class. If an
address is specified, the address must point to a one-byte length field followed by the class
name (for example, DATASET or TAPEVOL). The class name should be no longer than
eight characters.

,MENTITY = entity addr
specifies the address of the name of the discrete or generic profile profile that is to be used
as a model in defining the ENTITY profile. The profile can belong to any class, as
specified by the MCLASS parameter, and can be either a discrete or a generic profile.
MENTITY can be specified with TYPE = DEFINE but not with
TYPE = DEFINE,NEWNAME = new dsn addr. The name is contained in a 44-byte field
pointed to by the specified address. The name is left justified in the field and padded with
blanks.

,MCLASS = 'classname'
,MCLASS = class name addr

specifies the class to which the profile defined by MENTITY = belongs. If an address is
specified, the address must point to a one-byte length field followed by the class name.
The class name should be no longer than eight characters. The default is
MCLASS = 'DATASET'.

RACDEF - Define a Resource to RACF 2-269

,MVOLSER = volser addr
specifies the address of the volume serial number of the volume associated with the profile
in the MENTITY operand. The field pointed to by the specified address contains the
volume serial number, padded to the right with blanks, if necessary, to make six
characters.

This parameter is required if MENTITY specifies a discrete profile name in the
DATASET class.

,MGENER=ASIS
,MGENER=YES

specifies whether the profile name defined by MENTITY is to be treated as a generic
name.

• If MGENER = ASIS is specified, the profile name is considered a generic only if it
contains a generic character: an asterisk (*) or a percent sign (%).

• If MGENER = YES is specified, the profile name is considered a generic, even if it
does not contain a generic character: an asterisk (*) or a percent sign (%).

MGENER is ignored if the GENCMD option on the RACF SETROPTS command is
not specified for the class (see RACF Command Language Reference).

,ACEE = acee addr
specifies the address of the accessor environment element (ACE E) to be used during
RACDEF processing. If no ACEE is specified, RACF uses the TASK ACEE pointer
(TCBSENV) in the extended TCB. If the TASK ACEE pointer is zero, RACF uses the
main ACEE. The main ACEE's address is in the ASXBSENV field in the address space
extension block.

,UNIT = unit addr
specifies the address of a field containing unit information. UNIT is valid only if
TYPE = CHGVOL or TYPE = DEFINE is specified. If a unit address is specified, the
unit information in the data set profile is replaced by the unit information pointed to by
this unit address. The unit address must point to a field containing a one-byte length field
(whose value can range from 4 through 8) followed by the actual unit information. If the
value in the length field is 4, the unit information is assumed to contain a copy of the
information in the UCBTYP field of the UCB. Otherwise the unit information is
assumed to be in the generic form (for example, 3330-1). This parameter is ignored for
generic names.

,SPECIAL == YES
,SPECIAL = NO

specifies whether or not a RACDEF operation is to be completed if the requestor has the
SPECIAL attribute.

This keyword is designated primarily for use by RACF commands.

,OWNER = owner id addr
specifies the address of a field containing the profile owner's id. OWNER is valid if
TYPE = DEFINE is specified. The owner's id must be a valid (RACF-defined) userid or
group name. The address must point to an 8-byte field containing the owner's name,
left-justified and padded with blanks.

2-270 SPL: System Macros and Facilities Volume 2

Note: RACF does not check the validity of the owner's id if it has been added or
modified by the RACDEF preprocessing and/or postprocessing exit routines.

,LEVEL = number
,LEVEL =reg

specifies a level value for the profile. LEVEL is valid only if TYPE = DEFINE is
specified. The level number must be a valid decimal number in the range 0 to 99. If a
register is specified, its low-order byte must contain the binary representation of the
number.

Note: RACF does not check the validity of this number if it has been added or modified
by the RACDEF preprocessing and/or postprocessing exit routines.

,UACC=ALTER
,UACC = CONTROL
,UACC=UPDATE
,UACC=READ
,UACC=NONE
,UACC=reg

specifies a universal access authority for the profile. UACC is valid only if
TYPE = DEFINE is specified. UACC must contain a valid access authority (ALTER,
CONTROL, UPDATE, READ, or NONE). If a register is specified, the low-order byte
must contain one of the following valid access authorities:

X'80' - ALTER
X'40' - CONTROL
X'20' - UPDATE
X'lO' - READ
X'Ol' - NONE

Note: RACF does not check the validity of the universal access authority if it has been
added or modified by the RACDEF preprocessing and/or postprocessing exit routine.

,DATA = data addr
specifies the address of a field that contains up to 255 characters of installation-defined
data to be placed in the profile. DATA is valid only if TYPE = DEFINE is specified. The
data address must point to a field containing a one-byte length field (whose value can
range from 0 to 255) followed by the actual installation-defined data.

,AUDIT = NONE
,AUDIT = audit value
,AUDIT = (audit value (access level) ,audit value (access level) , .. .)
,AUDIT = (reg)

specifies the types of accesses and the access levels that are to be logged to the SMF data
set. AUDIT is valid only if TYPE = DEFINE is specified.

For audit value, specify one of the following: ALL, SUCCESS, or FAILURES. You
may optionally specify an access level(access authority) following each audit value.

Access Levels:

• READ, the default access level value, logs access attempts at any level.
• UPDATE logs access attempts at the UPDATE, CONTROL, and ALTER levels.
• CONTROL logs access attempts at the CONTROL and ALTER levels.
• ALTER logs access attempts at the ALTER level only.

RACDEF - Define a Resource to RACF 2-271

Note: For more information about specific audit values and access levels, please see the
RACE Command Language Reference.

RACF resolves combinations of conflicting specifications by using the most encompassing
specification. Thus, in the case of the following:

ALL (UPDATE) ,FAILURES (READ)

RACF assumes SUCCESS(UPDATE),FAILURES(READ).

For compatibility with previous releases, register notation can also be specified as
AUDIT = reg if the register is not given as a symbolic name ALL, SUCCESS, or
FAILURES.

Logging is controlled separately for SUCCESS and FAILURES, and can also be
suppressed or requested via the RACHECK post-processing installation exit routine.

If a register is specified, its low-order byte must contain one of the following valid audit
values:

Bit

o
1
2
3
4-5
6-7

Meaning

ALL
SUCCESS
FAILURES
NONE
Qualifier for SUCCESS
Qualifier for FAILURES

The qualifier codes are as follows:

00
01
10
11

READ
UPDATE
CONTROL
ALTER

Only one of bits 0-3 can be on. If ALL is specified, the two qualifier fields can be used to
request different logging levels for successful and unsuccessful events.

Note: RACF does not check the validity of the audit type if it has been added or
modified by the RACDEF preprocessing and/or postprocessing exit routine.

,RACFIND = YES
,RACFIND = NO

specifies whether or not a discrete profile is involved in RACDEF processing. When
TYPE = DEFINE is specified, RACFIND = YES means that a discrete profile is to be
created. When TYPE = DELETE, DEFINE with NEWNAME, CHGVOL, or ADDVOL
is specified, RACFIND = YES means that a discrete profile already exists.

RACFIND = NO means (when TYPE = DEFINE) that no discrete profile is to be created,
but some authorization checking is required. For other types of action, no discrete profile
should exist.

2-272 SPL: System Macros and Facilities Volume 2

,CHKA UTH = YES
,CHKAUTH = NO

specifies whether or not an internal RACHECK ATTR = ALTER is to be done to verify
that the user is authorized to perform the operation.

CHKAUTH = YES is valid when either TYPE = DEFINE,NEWNAME = or
TYPE = DELETE is specified.

For DSTYPE=T, specifies that an internal RACHECK ATTR=UPDATE will be done
to verify that the user is authorized to define a data set (TYPE = DEFINE), delete a data
set (TYPE = DELETE), or add a volume (TYPE = ADDVOL).

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACFDEF release 1.7 parameter EXPDT you must be using RACF1. 7 on your system
and specify RELEASE = 1. 7. If you specify a parameter with an incompa ti ble release
level, the parameter will not be accepted by the macro processing. An error message will
be issued at assembly time. For the parameters that are valid for RELEASE = 1.6 and
later, see Figure 7 on page 2-276.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACDEF macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

,FILESEQ = number
,FILESEQ = reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The number must be in the range 1 - 9999. If a register is specified, it must
contain the file sequence number in the low-order half-word. If CLASS = 'DATASET'
and DSTYPE = T are not specified, FILE SEQ is ignored.

,EXPDT = expir-date addr
,RETPD = retn-period addr

specifies the address containing information about the data set's expiration date or RACF
security retention period.

EXPDT = expir-date addr specifies the address of a three-byte field containing the data
set's expiration date. The date is given in packed decimal form as YYDDDF, where YY
is the year and DDD is the day number. The year must be in the range 01 through 99,
and the day number must be in the range 1 through 366.

RETPD = retn-period addr specifies the address of a two-byte field containing the number
of days after which RACF protection for the data set expires. The value specified must
be in the range 1 through 9999.

If neither EXPDT nor RETPD is specified, a default RACF security retention period is
obtained from the RETPD keyword specified on a prior RACF SETROPTS command.

These parameters are valid only if CLASS = 'D AT ASET' and DSTYPE = T.

RACDEF - Define a Resource to RACF 2-273

,ACCL VL = (access value addr)
,ACCLVL = (access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
address must point to a field containing a one-byte length field (with a value that can
range from 0-8) followed by an eight-character string that will be passed to the RACDEF
installation exit routines. The parameter list address points to a parameter list containing
additional information to be 'passed to the RACDEF installation exit routines.

RACF does not check or modify this information.

,TAPELBL= STD
,TAPELBL = BLP
,TAPELBL = NL

specifies the type of tape labelling to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL=BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL=NL or BLP, the user will not
be allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

The T APELBL parameter is passed to the RACDEF installation exits.

This parameter is primarily intended for use by data management routines to indicate the
label type from the LABEL keyword on the JCL statement.

This parameter is only valid for CLASS = 'DATASET' and DSTYPE=T, or
CLASS = 'TAPEVOL'. The default is T APELBL = STD

,CATGORY=addr
Specifies the address of a list of installation-defined category name identifiers. Each
identifier is a two-byte field whose binary value identifies an entry in the
installation-defined list of category names.

The list starts with a full word that contains the number of entries in the list.

This keyword is designated primarily for use by RACF commands.

,SECLVL = addr
Specifies the address of a list of installation-defined security level identifiers. Each
identifier is a half word, containing a value that corresponds to an installation-defined
security level name.

The identifiers must be in the range 1 - 254. Only one identifier may be passed in the list.

The list must start with a full word containing the number of entries in the list (currently,
only 0 or 1).

2-274 SPL: System Macros and Facilities Volume 2

,ERASE=YES
,ERASE=NO

specifies whether the DASD data set, or the released space, is to be erased when it is
deleted or part of its space is to be released for reuse.

• If ERASE = YES is specified, the data set will be erased when it is deleted, or released
for reuse.

• If ERASE = NO is specified, the data set will not be erased, deleted, or released.

Note: This parameter may be overridden by the RACF SETROPTS command.

The default is ERASE = NO.

,NOTIFY = notify-id addr
specifies the address of an eight-byte area containing the userid of the RACF-defined user
who is to be notified when an unauthorized attempt to access the resource protected by
this profile is detected.

,GENERIC = YES
,GENERIC = ASIS

specifies whether the resource name is treated as a generic profile name. If GENERIC is
specified with CLASS = DEFINE, NEWNAME, then GENERIC applies to both the old
and new names. GENERIC is ignored if the GENCMD option on the RACF
SETROPTS command is not specified for the class (see RACF Command Language
Reference).

This keyword is designed primarily for use by RACF commands.

• If GENERIC = YES is specified, the resource name is considered a generic profile
name, even if it does not contain a generic character: an asterisk (*) or a percent sign
(%).

• If GENERIC = ASIS is specified, the resource name is considered a generic only if it
contains a generic character: an asterisk (*) or a percent sign (%).

,WARNING=YES
,WARNING =NO

WARNING is valid only if TYPE = DEFINE is specified. If WARNING = YES is
specified, access is granted to the resource and the event is logged as a warning if either
the SUCCESS and/or FAILURES logging is requested.

This keyword is designed primarily for use by RACF commands.

RACDEF - Define a Resource to RACF 2-275

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

.ACEE= X X

ACCLVL= X

AUDIT = X X

CATEGORY = X

CHKAUTH= X X

CLASS = X X

DATA = X X

DSTYPE=N, V, or X X
M

DSTYPE=T X

ENTITY = X X

ERASE = X

EXPDT= X

FILESEQ= X

GENERIC = X X

INSTLN= X X

LEVEL = X X

MCLASS= X

MENTITY= X X

MGENER= X

MVOLSER= X X

NOTIFY = X

OWNER = X X

RACFIND= X X

RELEASE = X X

RETPD= X

SECLVL= X

TAPELBL= X

TYPE = X X

SPECIAL = X X

UACC= X X

UNIT = X X

VOLSER= X X

WARNING = X X

Figure 7. RACDEF Parameters for RELEASE = 1.6 and Later

2-276 SPL: System Macros and Facilities Volume 2

Return Codes and Reason Codes

When control is returned, register 15 contains one of these return codes. (If register 15 contains
0, then register ° contains a reason code.)

Hexadecimal
Code

00

04

08

Meaning

RACDEF has completed successfully. Register 0
contains one of the following reason codes:

00 indicates a normal completion.

04 indicates RACFIND = NO was specified and no generic
profile applying to the data set was found.

RACDEF has completed processing. Register 0
contains one of the following reason codes:

00 indicates the following:
For TYPE = DEFINE, the resource name was previously
defined.
For TYPE = DEFINE,NEWNAME, the new
resource name was previously defined.
For TYPE = DELETE, the resource name was not
previously defined.

04 indicates for TYPE = DEFINE that the dataset name
was previously defined on a different volume and
that the option disallowing duplicate datasets
was specified in ICHSECOP at IPL.

RACDEF has completed processing. Register 0
contains one of the following reason codes:

00 indicates the following:
For TYPE = DEFINE, the check for
authority to allocate a data set or
create a profile with the specified
name has been failed.
For TYPE = DELETE or TYPE = DEFINE,NEWNAME
if CHKA UTH = YES is specified, the
authorization check has been failed.
For TYPE = ADDVOL,OLDVOL the old value
was not defined.

04 indicates for TYPE = DEFINE that no profile was
found to protect the dataset and that the RACF
protect-all option is in effect.

08 indicates TYPE = DEFINE or TYPE = ADDVOL,OLDVOL and
DSTYPE = T were specified. And the user is not authorized
to define a data set on the specified volume.

OC indicates TYPE = DEFINE and DSTYPE=T
were specified. And the user is not authorized
to define a data set with the specified name.

lO indicates DSTYPE=T or CLASS=TAPEVOL
was specified. And the user is not
authorized to specify LABEL = (,BLP).

RACDEF - Define a Resource to RACF 2-277

Example

Hexadecimal
Code

OC

10

64

Meaning

For TYPE = DEFINE,NEWNAME, the old data set name was
not defined; or if the generation data group (GDG)
modeling function is active, an attempt
was made to rename a GDG name to a name
that requires the creation of a new
profile; or if generic profile checking is
active, the old data set name was protected
by a generic profile and there is no generic
profile that will protect the new data set
name. This last case refers only to an
attempt to rename an existing profile, which
cannot be found.

For TYPE = DEFINE with MENTITY, the model resource
was not defined.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACDEF macro;
however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

Operation: Invoke RACF to define a non-VSAM data set residing on the volume pointed to
by register 8. Register 7 points to the data set name. All successful requests for update
authority to the data set are to be audited, as well as all unsuccessful ones. A discrete profile is
to be created.

RACDEF ENTITY=(R7) ,VOLSER=(R8) ,CLASS='DATASET' ,
AUDIT= (SUCCESS (UPDATE) ,FAILURES) ,
RACFIND=YES

2-278 SPL: System Macros and Facilities Volume 2

RACDEF (List Form)

The list form of the RACDEF macro instruction is written as follows:

name

b

RACDEF

b

ENTITY = profile name addr

,VOLSER = vol addr

,TYPE = DEFINE
,TYPE = DEFINE,NEWNAME =
new dsn addr
,TYPE = ADDVOL,OLDVOL =
old vol addr
,TYPE = CHGVOL,OLDVOL =
old vol addr
,TYPE = DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS = 'classname'
,CLASS = class name addr

,MENTITY = entity addr

,MCLASS = 'c/assname'
,MCLASS = class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER = YES

,ACEE = acee addr

,UNIT = unit addr

,SPECIAL = YES
,SPECIAL = NO

,OWNER = owner id addr

,LEVEL = number
,LEVEL = reg

name: symbol. Begin name in column I.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: A-type address.
Note: ENTITY must be specified on either the list or the execute form of
the macro.

vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS = 'DATASET' and DSTYPE
not equal to M when a discrete profile name is used.

new dsn addr: A-type address, or register (2) - (12).
old vol addr: A-type address, or register (2) - (12).

Default: TYPE = DEFINE

Default: DSTYPE = N

parm list addr: A-type address, or register (2) - (12).

'classname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

entity addr: A-type address, or register (2) - (12).

'c/assname': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: MCLASS = 'DATASET'

volser addr: A-type address, or register (2) - (12).

Default: MGENER=ASIS

acee addr: A-type address, or register (2) - (12).

unit addr: A-type address, or register (2) - (12).

Default: SPECIAL = NO

owner id addr: A-type address, or register (2) - (12).

Default: zero.
reg: register (2) - (12).

RACDEF (List Form) 2-279

,UACC=ALTER
,UACC = CONTROL
,UACC = UPDATE
,UACC=READ
,UACC=NONE
,UACC=reg

,DATA = data addr

,AUDIT=NONE
,AUDIT = audit value
,AUDIT = (audit value (access
level) ,audit value (access level))
,AUDIT = (reg)

,RACFIND = YES
,RACFIND=NO

,CHKAUTH = YES
,CHKAUTH = NO

,GENERIC = YES
,GENERIC = ASIS

,WARNING=YES
,WARNING=NO

,RELEASE = number

,FILESEQ = reg
,FILESEQ = number

,EXPDT = expir-date addr
,RETPD = retn-period addr

,ACCL VL = (access value addr)
,ACCLVL = (access value addr,
parm list addr)

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL = NL

,CATGORY = addr

,SECL VL = addr

,ERASE = YES
,ERASE=NO

,NOTIFY = notify-id addr

,MF=L

reg: register (2) - (12).

data addr: A-type address or register (2) - (12).

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: READ
reg: register (2) - (12).

Default: CHKAUTH = NO

Default: GENERIC = ASIS

Default: WARNING = NO
Note: Warning is valid only if TYPE = DEFINE
is specified.

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
number: 1-9999

expir-date addr: A-type address or register (2) - (12).
reIn-period addr: A-type address or register (2) - (12).
Default: see description of parameter.

access value addr: A-type address or register (2)"- (12).
parm list addr: A-type address, or register (2) - (12).

Default: T APELBL = STD

addr: A-type address, or register (2) - (12).

addr: A-type address, or register (2) - (12).

Default: ERASE=NO

notify-id addr: A-type address or register (2) - (12).

The parameters are explained under the standard form of the RACDEF macro instruction, with
the following exception:

,MF=L
specifies the list form of the RACDEF macro instruction.

2-280 SPL: System Macros and Facilities Volume 2

RACDEF (Execute Form)

The execute form of the RACDEF macro instruction is written as follows:

name

b

RACDEF

b

ENTITY = profile name addr

,VOLSER= vol addr

,TYPE = DEFINE
,TYPE = DEFINE,NEWNAME =
new dsn addr
,TYPE = ADDVOL,OLDVOL =
old vol addr
,TYPE = CHGVOL,OLDVOL =
old vol addr
,TYPE = DELETE

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,CLASS = 'classname'
,CLASS = class name addr

,MENTITY = entity addr

,MCLASS = 'classname'
,MCLASS = class name addr

,MVOLSER = volser addr

,MGENER = ASIS
,MGENER=YES

,ACEE = acee addr

,UNIT = unit addr

,SPECIAL = YES
,SPECIAL = NO

,OWNER = owner id addr

,LEVEL = number
,LEVEL = reg

name: symbol. Begin name in column 1.

One or more blanks must precede RACDEF.

One or more blanks must follow RACDEF.

profile name addr: RX-type address.
Note: ENTITY must be specified on either the list or the execute form of
the macro.

vol addr: RX-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS = 'DATASET' and DSTYPE
not equal to M when a discrete profile name is used.

new dsn addr: RX-type address, or register (2) - (12).
old vol addr: RX-type address, or register (2) - (12).

Default: TYPE = DEFINE

Default: DSTYPE = N

parm list addr: RX-type address, or register (2) - (12).

'classname': 1-8 character name.
class name addr: RX-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

entity addr: RX-type address, or register (2) - (12).

'classname ': 1-8 character name.
class name addr: RX-type address, or register (2) - (12).
Default: MCLASS = 'DATASET'

volser addr: RX-type address, or register (2) - (12).

Default: MGENER = ASIS

acee addr: RX-type address, or register (2) - (12).

unit addr: RX-type address, or register (2) - (12).

Default: SPECIAL = NO

owner id addr: RX-type address, or register (2) - (12).

Default: zero.
reg: register (2) - (2).

RACDEF (Execute Form) 2-281

,UACC=ALTER
,UACC = CONTROL
,UACC = UPDATE
,UACC=READ
,UACC=NONE
,UACC=reg

,DATA = data addr

,AUDIT = NONE
,AUDIT = audit value
,AUDIT = (audit value (access
level) ,audit value (access level))
,AUDIT = (reg)

,RACFIND = YES
,RACFIND = NO

,CHKAUTH = YES
,CHKAUTH=NO

,GENERIC = YES
,GENERIC = ASIS

,WARNING = YES
,WARNING=NO

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,FILESEQ = reg
,FILESEQ = number

,EXPDT = expir-date addr
,RETPD = retn-period addr

,ACCL VL = (access value addr)
,ACCLVL = (access value addr,
parm list addr)

,TAPELBL=STD
,TAPELBL=BLP
,TAPELBL=NL

,CATGORY= addr

,SECL VL = addr

,ERASE=YES
,ERASE = NO

,NOTIFY = notify-id addr

,MF = (E,ctrl addr)

reg: register (2) - (12).

data addr: RX-type address or register (2) - (12).

audit value: ALL, SUCCESS, or FAILURES
access level: READ, UPDATE, CONTROL, or ALTER
Default: READ
reg: register (2) - (12).

Default: CHKAUTH = NO

Default: GENERIC = ASIS

Default: WARNING = NO
Note: Warning is valid only if TYPE = DEFINE
is specified.

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
number: 1-9999

expir-date addr: RX-type address or register (2) - (12).
retn-period addr: RX-type address or register (2) - (12).
Default: see description of parameter.

access value addr: RX-type address or register (2) - (12).
parm list addr: A-type address, or register (2) - (12).

Default: T APELBL = STD

addr: RX-type address, or register (2) - (12).

addr: RX-type address, or register (2) - (12).

Default: ERASE=NO

notify-id addr: RX-type address or register (2) - (12).

ctrl addr: RX-type address, or register (1) or (2) - (12).

2-282 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the RACDEF macro instruction, with
the following exception:

,MF = (E,ctri addr)
specifies the execute form of the RACDEF macro instruction using a remote control
program parameter list.

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACDEF release 1.7 parameter EXPDT you must be using RACF 1.7 on your system
and specify RELEASE = 1.7. If you specify a parameter with an incompatible release
level, the parameter will not be accepted by the macro processing. An error message will
be issued at assembly time. For the parameters that are valid for RELEASE = 1.6 and
later, see Figure 7 on page 2-276.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACDEF macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code X'64' will be generated.

RACDEF (Execute Form) 2-283

RACHECK - Check RACF Authorization

The RACHECK macro instruction is used to provide authorization checking when a user
requests access to a RACF-protected resource. The RACHECK macro instruction is also
described in the Supervisor Services and Macro Instructions, with the exception of the
PROFILE, CSA, ACEE, and LOG parameters. These parameters are restricted in use and
must only be used by programs that are authorized (APF-authorized, in system key 0-7, or in
supervisor state).

Systems using RACF Version 1, Release 6 or later, have the option to temporarily grant access
requests to users who do not have sufficient authority instead of unconditionally denying
requests. In this case, RACF issues a warning message instead of failing the request. RACF
provides this option on an individual basis; installations can use the warning facility selectively
via the WARNING = YES keyword of the RACDEF macro for that particular profile, without
affecting the access control provided by other RACF profiles.

RACHECK bypasses the warning processing if the OWNER keyword is specified, as this
indicates that the request is coming from a RACF command processor.

Notes:

1. Do not use the DSTYPE=M or OWNER parameters unless RACF Version 1, Release 4 or
later is installed on your system.

2. Do not use the ACCLVL or RACFIND parameters unless RACF Version 1, Release 5 or
later is installed on your system.

3. Only callers in 24-bit addressing mode can issue this macro. Callers executing in 31-bit
addressing mode, who want to use the RACHECK!unction, can code the RACROUTE
macro.

2-284 SPL: System Macros and Facilities Volume 2

The standard form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

PROFILE = profile addr
ENTITY = (resource name addr)
ENTITY = (resource name addr ,CSA)

,VOLSER=vol addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = number

,ATTR=READ
,ATTR=UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG = NOFAIL
,LOG=NONE
,LOG = NOSTAT

,OLDVOL = old vol addr

,APPL = 'applname'
,APPL = applname addr

,ACEE = acee addr

,OWNER = owner ID addr

,ACCL VL = (access value addr)
,ACCLVL = (access value addr,
parm list addr)

,RACFIND = YES
,RACFIND=NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL = NL

,STATUS=NONE
,STATUS = ERASE

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: A-type address, or register (2) - (12).
resource name addr: A-type address, or register (2) - (12).

vol addr: A-type address, or register (2) - (12).
Note: VOLSER is required only for CLASS = 'DATASET' and DSTYPE
not equal to M when a discrete profile name is used and only when
ENTITY is also coded.

'classname ': 1-8 character name.
class name addr: A-type address, or register (2) - (12).
Default: CLASS = 'DATASET' .

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: ATTR = READ

Default: DSTYPE = N

parm list addr: A-type address, or register (2) - (12).

Default: LOG = ASIS

old vol addr: A-type address, or register (2) - (12).

applname addr: A-type address, or register (2) - (12).

acee addr: A-type address, or register (2) - (12).

owner ID addr: A-type address, or register (2) - (12).

access value addr: A-type address or register (2)-(12).

parm list addr: A-type address or register (2)-(12).

Default: GENERIC =ASIS

reg: register (2) - (12).
number: 1-9999

Default: T APELBL = STD

Default: STATUS = NONE

RACHECK - Check RACF Authorization 2-285

The parameters are explained as follows:

PROFILE = profile addr
ENTITY = (resource name addr)
ENTITY = (resource name addr, CSA)

ENTITY = (resource name addr) specifies that RACF authorization checking is to be
performed for the resource whose name is pointed to by the specified address. The
resource name is a 44-byte DASD data set name for CLASS = 'DATASET' or a 6-byte
volume serial number for CLASS = 'DASDVOL' or CLASS = 'T APEVOL'. The length of
all other resource names is determined from the class descriptor tables. The name must
be left justified in the field and padded with blanks.

PROFILE = profile addr specifies that RACF authorization checking is to be performed
for the resource whose profile is pointed to by the specified address.

ENTITY = (resource name addr,CSA) specifies that RACF authorization checking is to
be performed for the indicated resource, and that a copy of the profile is to be maintained
in main storage. The storage acquired for the profile is obtained from the common
storage area (CSA), and is fetch-protected, key zero storage. The issuer of RACHECK
must free this storage when the profile is no longer needed. (The profile subpool number
and length are part of the profile data being returned.) If CSA is specified and the return
code produced by the RACHECK macro instruction is 00 or 08, the address of the profile
is returned in register 1.

By establishing and maintaining a resource profile, the resource manager can reduce the
I/O required to perform RAcF authorization checks on highly-accessed resources.

,VOLSER = vol addr
specifies the volume serial number, as follows:

• For non-VSAM DASD data sets and tape data sets, this is the volume serial number
of the volume on which the data set resides.

• For VSAM DASD data sets and tape data sets, this is the volume serial number of
the catalog controlling the data set.

The volume serial number is optional if DSTYPE = M is specified; it is ignored if the
profile name is generic.

The field pointed to by the specified address contains the volume serial number padded to
the right with blanks, if necessary, to make six characters. VOLSER= is only valid and
must be supplied with CLASS = 'DATASET', (unless DSTYPE = M is specified) and if
ENTITY is also coded.

,CLASS = 'classname'
,CLASS = classname addr

specifies that RACF authorization checking is to be performed for a resource of the
specified class. If an address is specified, the address must point to a one-byte field
indicating the length of the classname, followed by the class name (for example
DATASET, DASDVOL or TAPEVOL).

2-286 SPL: System Macros and Facilities Volume 2

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACHECK release 1.7 parameter FILESEQ you must be using RACF 1.7 on your
system and specify RELEASE = 1.7. If you specify a parameter with an incompatible
release level, the parameter will not be accepted by the macro processing. An error
message will be issued at assembly time. For the parameters that are valid for
RELEASE = 1.6 and later, see Figure 9 on page 2-292.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

,ATTR=READ
,ATTR=UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR=reg

specifies the access authority of the user or group permitted access to the resource for
which RACF authorization checking is to be performed:

READ - RACF user or group can open the resource only to read.

UPDATE - RACF user or group can open the resource to write or read.

CONTROL - For VSAM data sets, RACF user or group has authority equivalent to
the VSAM control password. For non-V SAM data sets and other resources, RACF
user or group has UPDATE authority.

AL TER - RACF user or group has total control over the resource.

If a register is specified, the register must contain one of the following codes in the
low-order byte of the register:

X'02' - READ
X'04' - UPDATE
X'08' - CONTROL
X'80' - ALTER

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

specifies the type of data set associated with the request:

• N for non-VSAM
• V for VSAM
• M for model profile
• T for tape

RACHECK - Check RACF Authorization 2-287

If DSTYPE = T is specified and tape data set protection is not active, the processing will
be the same as for RACHECK CLASS = 'T APEVOL'. DSTYPE should only be specified
for CLASS = 'DATASET'.

Note: Do not specify DSTYPE=M unless RACF Version 1, Release 4 or later is
installed on your system.

,INSTLN = parm list addr
specifies the address of an area that is to contain parameter information meaningful to the
RACHECK installation exit routine. This information is passed to the installation exit
routine when it is given control from the RACHECK routine.

The INSTLN parameter can be used by an application program acting as a resource
manager that needs to pass information to the RACHECK installation exit routine.

,LOG = ASIS
,LOG = NOFAIL
,LOG = NONE
,LOG = NOSTAT

specifies the types of access attempts to be recorded on the SMF data set:

ASIS - Attempts to be recorded are as specified on the ADDSD or AL TDSD command
that was issued for the data set or the RDEFINE or RAL TER command for the tape or
DASD volume.

NOF AIL - If the authorization check fails, the attempt is not recorded. If the
authorization check succeeds, the attempt is recorded as in ASIS.

NONE - The attempt is not to be recorded.

NOSTAT - The attempt is not to be recorded and no resource statistics are to be updated.

,OLDVOL = old vol addr
specifies a volume serial:

• For CLASS = 'DATASET', within the same multivolume data set specified by
VOLSER=.

• For CLASS = 'TAPEVOL', within the same tape volume specified by ENTITY =.

RACF authorization checking will verify that the OLDVOL specified is part of the same
multivolume data set or tape volume set.

The specified address points to the field that contains the volume serial number padded to
the right with blanks, if necessary, to make six characters.

,APPL= 'app/name'
,APPL = applname addr

specifies the name of the application requesting authorization checking. The applname is
not used for the authorization checking process but is made available to the installation
exit routine(s) called by the RACHECK routine. If the address is specified, the address
must point to an 8-byte field containing the application name left justified and padded
with blanks.

2-288 SPL: System Macros and Facilities Volume 2

,ACEE = acee addr
specifies the address of the accessor environment element (ACEE) to be used for checking
authorization during RACHECK processing. If no ACEE is specified, RACF uses the
TASK ACEE pointer (TCBSENV) in the extended TCB. Otherwise, or if the TASK
ACEE pointer is zero, RACF uses the main ACEE for the address space. The main
ACEE is pointed to by the ASXBSENV field of the address space extension block.

,OWNER = owner ID addr
specifies a profile owner id that is compared with the profile owner id in the owner field
of the RACF profile. If the owner names match, the access authority allowed for that
userid is 'ALTER'. The address must point to an 8-byte field containing the owner name,
left-justified and padded with blanks.

If OWNER is specified, any WARNING and OPERATIONS attribute processing is
bypassed.

This keyword is primarily intended for use by the RACF command processors to check a
user's authority to access the profile specified.

Note: Do not specify OWNER unless RACF Version 1, Release 4 or later is installed on
your system.

,ACCL VL = (access value addr)
,ACCLVL = (access value addr,parm list addr)

specifies the tape label access level information for the MVS tape label functions. The
access value pointed to by the specified address is a one byte length field, containing the
value (0-8) of the length of the following data, followed by an eight-character string that
will be passed to the RACHECK installation exit routines. The optional parameter list
pointed to by the specified address contains additional information to be passed to the
RACHECK installation exit routines. RACF does not inspect or modify this
information.

Note: Do not use the ACCLVL parameter unless RACF Version 1, Release 5 or later is
installed on your system.

,RACFIND=YES
,RACFIND=NO

indicate,s whether or not the resource is protected by a discrete profile. The RACF
processing and the possible return codes are given in Figure 8. Note that in all cases, a
return code of X'OC' is also possible.

Note: Do not use the RACFIND parameter unless RACF Version 1, Release 5 or later
is installed on your system.

RACHECK - Check RACF Authorization 2-289

Operand

RACFIND = YES

RACFIND=NO

RACFIND not
specified

Generic ProfIle Checking
Inactive

Look for discrete profile;
if found, exit with
return code 00 or 08.
If no discrete profile is
found, exit with return
code 08.

No checking. Exit
with return code 04.

Look for discrete profile;
if found, exit with
return code 00 or 08.
If no discrete profile is
found, exit with return
code 04.

Generic ProfIle Checking
Active

Look for discrete profile;
if found, exit with
return code 00 or 08.
Look for generic profile;
if found, exit with return code 00
or 08.
Exit with return code 08 if neither
a discrete nor a generic profile
is found.

Look for generic profile;
if found, exit with
return code 00 or 08.
if not found, exit with
return code 04.

Look for discrete profile;
if found, exit with
return code 00 or 08.
Look for generic profile;
if found, exit with return code 00
or 08.
Exit with return code 04 if neither a
discrete nor a generic profile is found.

Figure 8. Types of Profile Checking Performed by RACHECK

,GENERIC = YES
,GENERIC = ASIS

specifies whether the resource name is to be treated as a generic profile name. If
GENERIC is specified with CLASS = DEFINE, NEWNAME, then GENERIC applies to
both the old and new names. GENERIC is ignored if the GENCMD option on the
RACF SETROPTS command is not specified for the class (see RACF Command
Language Reference).

This keyword is designed primarily for use by RACF commands.

• If GENERIC = YES is specified, the resource name is considered a generic profile
name, even if it does not contain either of the generic characters: an asterisk (*) or a
percent sign (0/0).

• If GENERIC = ASIS is specified, the resource name is considered a generic only if it
contains either of the generic characters: an asterisk (*) or a percent sign (0/0).

,FILESEQ = number
,FILESEQ = reg

specifies the file sequence number of a tape data set on a tape volume or within a tape
volume set. The value must be in the range 1 - 9999. If a register is specified, it must
contain the file sequence number in the low-order half-word. If CLASS = 'DATASET'
and DSTYPE = T are not specified, FILESEQ is ignored.

2-290 SPL: System Macros and Facilities Volume 2

,TAPELBL= STD
,TAPELBL=BLP
,TAPELBL = NL

specifies the type of tape label processing to be done:

• STD - IBM or ANSI standard labels.
• BLP - bypass label processing.
• NL - non-labeled tapes.

For TAPELBL= BLP, the user must have the requested authority to the profile ICHBLP
in the general resource class FACILITY. For TAPELBL=NL or BLP, the user will not
be allowed to protect volumes with volume serial numbers in the format "Lnnnnn."

This parameter is primarily intended for use by data management routines to indicate the
label type from the LABEL keyword on the JCL statement.

This parameter is valid only for CLASS = 'DATASET' and DSTYPE=T, or
CLASS='TAPEVOL'. The default is TAPELBL=STD.

,STATUS = NONE
,STATUS = ERASE

Specifies whether or not RACHECK is to return the erase status of the given data set.
This parameter is valid only for CLASS = 'DATASET' and a DSTYPE value other than
T. The default is STATUS = NONE.

RACHECK - Check RACF Authorization 2-291

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

ACEE= X X

ACCLVL= X X

APPL= X X

ATTR= X X

CLASS = X X

DSTYPE=N, V, or X X
M

DSTYPE=T X

ENTITY = X X

FILESEQ= X

GENERIC = X X

INSTLN= X X

LOG = X X

OLDVOL= X X

OWNER = X X

PROFILE = X X

RACFIND= X X

RELEASE = X X

STATUS = X

TAPELBL= X

VOLSER= X X

Figure 9. RACHECK Parameters for RELEASE = 1.6 and Later

2-292 SPL: System Macros and Facilities Volume 2

Return Codes and Reason Codes

Example

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

64

Meaning

The user is authorized by RACF to obtain use of a
RACF-protected resource. Register 0
contains one of the following reason codes:

00 indicates a normal completion.

04 indicates STATUS = ERASE was specified and the
data set is to be erased when scratched. Or the
warning status of the resource was requested by the RACHECK
issuer setting bit '10' at offset 12 decimal
in the RACHECK parameter list and the resource is
in warning mode.

The specified resource is not protected by RACF.
Register 0 contains the following
reason code:

00 indicates a normal completion.

The user is not authorized by RACF to obtain use
of the specified RACF-protected resource.
Register 0 contains the following
reason code:

00 indicates a normal completion.

04 indicates STATUS = ERASE was specified and the
data set is to be erased when scratched.

08 indicates DSTYPE=T or CLASS='TAPEVOL'
was specified and the user is not authorized
to use the specified volume.

OC indicates the user is not authorized to
use the data set.

10 indicates DSTYPE = T or CLASS = 'T APEVOL'
was specified and the user is not authorized
to specify LABEL = (,BLP).

The OLDVOL specified was not part of the multivolume
data set defined by VOLSER, or it was not part of the
same tape volume defined by ENTITY.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACHECK macro;
however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

Operation: Perform RACF authorization checking using the standard form, for a non-VSAM
data set residing on the volume pointed to by register 8. Register 7 points to the data set name
and the RACF user is requesting the highest level of control over the data set. The
"RACF-indicated" bit in the data setls DSCB is on. Logging and statistics updates are not to
be done.

RACHECK ENTITY=((R7)) ,VOLSER=(R8) ,CLASS='DATASET' ,
ATTR=ALTER,RACFIND=YES,LOG=NOSTAT

x

RACHECK - Check RACF Authorization 2-293

RACHECK (List Form)

The list form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

PROFILE = profile addr
ENTITY = (resource name addr)
ENTITY = (resource name addr,CSA)

,VOLSER=vo/ addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = number

,ATTR=READ
,ATTR = UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG=ASIS
,LOG = NOFAIL
,LOG = NONE
,LOG = NOSTAT

,OLDVOL = old vol addr

,APPL = 'applname'
,APPL = applname addr

,ACEE = acee addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: A-type address.
resource name addr: A-type address.
Note: PROFILE or ENTITY is required on either the list or the execute
form of the macro.

vol addr: A-type address.
Note: VOLSER is required on either the list or the execute form of the
macro, but only for CLASS = 'DATASET' and DSTYPE not equal to M
when a discrete profile name is used. If required, VOLSER must be
specified on either the list or the execute form of the macro.

'classname': 1-8 character name.
class name addr: A-type address.
Default: CLASS = 'DATASET'

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: ATTR = READ

Default: DSTYPE = N

parm list addr: A-type address.

Default: LOG = ASIS

old vol addr: A-type address.

applname addr: A-type address.

acee addr: A-type address.

2-294 SPL: System Macros and Facilities Volume 2

,OWNER = owner ID addr

,ACCLVL = (access value addr)
,ACCLVL=(access value addr,
parm list addr)

,RACFIND = YES
,RACFIND = NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

,TAPELBL = STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS = NONE
,STATUS = ERASE

,MF=L

owner ID addr: A-type address.

access value addr: A-type address or register (2)-(12).

parm list addr: A-type address or register (2)-(12).

Default: GENERIC = ASIS

reg: register (2) - (12).
number: 1-9999

Default: TAPELBL = STD

Default: STATUS = NONE

The parameters are explained under the standard form of the RACHECK macro instruction
with the following exception:

,MF=L
specifies the list form of the RACHECK macro instruction.

RACHECK (List Form) 2-295

RACHECK (Execute Form)

The execute form of the RACHECK macro instruction is written as follows:

name

b

RACHECK

b

PROFILE = profile addr
ENTITY = (resource name addr)
ENTITY = (resource name addr,CSA)

,VOLSER=vol addr

,CLASS = 'classname'
,CLASS = class name addr

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,ATTR=READ
,ATTR = UPDATE
,ATTR = CONTROL
,ATTR = ALTER
,ATTR=reg

,DSTYPE=N
,DSTYPE=V
,DSTYPE=M
,DSTYPE=T

,INSTLN = parm list addr

,LOG = ASIS
,LOG = NOFAIL
,LOG = NONE
,LOG = NOSTAT

,OLDVOL = old vol addr

,APPL = 'app/name'
,APPL = applname addr

,ACEE = acee addr

,OWNER = owner ID addr

name: symbol. Begin name in column 1.

One or more blanks must precede RACHECK.

One or more blanks must follow RACHECK.

profile addr: RX-type address,or register (2) - (12).
resource name addr: RX-type address, or register (2) - (12).
Note: PROFILE or ENTITY is required on either the list or the exec'\lte
form of the macro.

vol addr: RX-type address, or register (2) - (12).
Note: VOLSER is required on either the list or the exeC'\lte form of the
macro, but only for CLASS = 'DATASET' and DSTYPE not equal to M
when a discrete profile name is used. If required, VOLSER must be
specified on either the list or the execute form of the macro.

'classname': 1-8 character name:
class name addr: RX-type address, or register (2) - (12).
Default: CLASS = 'DATASET'

number: 1.6 or 1.7
Default: RELEASE = 1.6

reg: register (2) - (12).
Default: A TTR = READ

Default: DSTYPE = N

parm list addr: RX-type address, or register (2) - (12).

Default: LOG = ASIS

old vol addr: RX-type address, or register (2) - (12).

app/name addr: RX-type address, or register (2) - (12).

acee addr: RX-type address, or register (2) - (12).

owner ID addr: RX-type address, or register (2) - (12).

2-296 SPL: System Macros and Facilities Volume 2

,ACCL VL = (access value add,.)
,ACCL VL = (access value add,.,
parm list add,.)

,RACFIND = YES
,RACFIND:; NO

,GENERIC = YES
,GENERIC = ASIS

,FILESEQ = reg
,FILESEQ = number

,TAPELBL=STD
,TAPELBL = BLP
,TAPELBL=NL

,STATUS = NONE
,STATUS = ERASE

,MF = (E,etrl addr)

access value add,.: RX-type address or register (2)-(12).
RX-type address or register (2)-(12).
pa,.m list add,.:

Default: GENERIC = ASIS

reg: register (2) - (12).
number: 1-9999

Default: T APELBL = STD

Default: STATUS = NONE

etrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RACHECK macro instruction
with the following exceptions:

,MF = (E,ctrl addr)
specifies the execute form of the RACHECK macro instruction.

,RELEASE = (number, CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACHECK release 1.7 parameter FILE SEQ you must be using RACF 1.7 on your
system and specify RELEASE = 1.7. If you specify a parameter with an incompatible
release . level, the parameter will not be accepted by the macro processing. An error
inessage will be issued at assembly time. For the parameters that are valid for
RELEASE = 1.6 &nd later, see Figure 9 on page 2-292.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACHECK macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code X'64' will be generated.

RACHECK (Execute Form) 2-297

RACINIT - Identify a RACF-Defined User

The RACINIT macro instruction is used to provide Resource Access Control Facility (RACF)
user identification and verification. The macro instruction identifies a user and verifies that the
user is defined to RACF and has supplied a valid password and/or operator identification card
(OIDCARD parameter).

To issue the RACINIT macro instruction with the NEWPASS keyword, the calling module
must be authorized (APF-authorized, in system key 0-7, or in supervisor state). To issue the
RACINIT macro without the NEWPASS keyword, the calling module must either be
authorized (APF-authorized,in system key 0-7, or in supervisor state) or in the
RACF-authorized caller table and fetched from an authorized library.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in 31-bit
addressing mode, who want to use the RACINIT function, can code the RACROUTE macro.

2-298 SPL: System Macros and Facilities Volume 2

The standard form of the RACINIT macro instruction is written as follows:

name

b

RACINIT

b

USERID = userid addr
,PASSWRD = password addr

,START = procname addr

,NEWPASS = new password addr

,GROUP = group addr

,PGMNAME = programmer name
addr

,ACTINFO = account addr

,OIDCARD = oid addr

,TERMID = terminal addr

,JOBNAME = jobname addr

,ENVIR = CREATE
,ENVIR = CHANGE
,ENVIR = DELETE

,INSTLN = parm list addr

,APPL = 'applname'
,APPL = applname addr

,ACEE = acee addr

,SUBPOOL = sub pool number

,SMC=YES
,SMC=NO

,PASSCHK = YES
,PASSCHK = NO

,ENCRYPT = YES
,ENCRYPT = NO

,RELEASE = number

,STAT=ASIS
,STAT=NO

,LOG = ASIS
,LOG = ALL

name: symbol. Begin name in column I.

One or more blanks must precede RACINIT.

One or more blanks must follow RACINIT.

userid addr: A-type address, or register (2) - (12).
password addr: A-type address, or register (2) - (12).

procname addr: A-type address, or register (2) - (12).

new password addr: A-type address, or register (2) - (12).

group addr: A-type address, or register (2) - (12).
Default: zero.

programmer name addr: A-type address, or register
(2) - (12).

account addr: A-type address, or register (2) - (12).

oid addr: A-type address, or register (2) - (12).

terminal addr: A-type address, or register (2) - (12).

jobname addr: A-type address, or register (2) - (12).

Default: ENVIR = CREATE
Notes:
I. ENVIR = CHANGE may not be specified with USERID =,

PASSWRD=, START = , NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.

2. ENVIR = DELETE may not be specified with APPL=, USERID=,
PASSWRD=, START = , NEWPASS=, GROUP = , ACTINFO=,
PGMNAME =, OIDCARD = , or TERMID = parameters.

parm list addr: A-type address, or register (2) - (12).

applname addr: A-type address, or register (2) - (12).

acee addr: A-type address, or register (2) - (12).

subpool number: decimal digit 0-255.

Default: SMC = YES

Default: PASSCHK = YES

Default: ENCRYPT = YES

number: 1.6 or 1.7
Default: RELEASE = 1.6

Default: STAT=ASIS

Default: LOG = ASIS

RACINIT - Identify a RACF-Defined User 2-299

The parameters are explained as follows:

USERID = use rid addr
specifies the user identification of the user who has entered the system. The address
points to a one-byte length field, followed by the userid.

,P ASSWRD = password addr
specifies the currently defined password of the user who has entered the system. The
address points to a one-byte length field, followed by the password.

,START=procname addr
specifies the PROC name of a started task. The address points to an eight-byte area
containing the PROC name (left-justified and padded with blanks, if necessary). The
START parameter is not used by RACINIT authorization checking, but it is passed to
the installation exit routine.

,NEWP ASS = new password addr
specifies the password which is to replace the user's currently defined password. The
address points to a one-byte length field, followed by the password.

,GROUP = group addr
specifies the group specified by the user who has entered the system. The address points
to a one-byte length field, followed by the group name.

,PGMNAME = programmer name addr
specifies the address of the name of the user who has entered the system. This twenty
byte area is passed to the RACINIT installation exit routine; it is not used by the
RACINIT routine.

,ACTINFO = account addr
specifies the address of a field containing accounting information. This 144 byte area is
passed to the RACINIT installation exit routine; it is not used by the RACINIT routine.
The accounting field, if supplied, should have the following format:

• First byte of field contains the number (binary) of accounting fields.

•. Following bytes contain accounting fields, where each entry for an accounting field
contains a one-byte length field, followed by the field.

,OIDCARD = oid addr
specifies the address of the currently defined operator identification card of the user who
has entered the system. The address points to a one-byte length field, followed by the
operator ID card.

,TERMID = terminal addr
specifies the address of the identifier for the terminal through which the user is accessing
the system. The address points to an eight byte area containing the terminal identifier.
The area must reside in a non-task-related storage subpool.

,JOBNAME = jobname addr
specifies the address of the JOB name of a background job. The address points to an
eight byte area containing the JOB name (left justified and padded with blanks, if
necessary). The JOBNAME parameter is not used by RACINIT authorization checking,
but it is passed to the installation exit routine.

2-300 SPL: System Macros and Facilities Volume 2

,ENVIR = CREATE
,ENVIR = CHANGE
,ENVIR = DELETE

specifies the action to be performed by the user initialization component regarding the
accessor environment element (ACEE):

CREATE­

CHANGE-

DELETE -

The user should be verified and an ACEE created.

The ACEE should be modified according to other parameters
specified on RACINIT.

The ACEE should be deleted. This parameter should only be
used if a previous RACINIT has completed successfully.

,INSTLN = parm list addr
specifies the address of an area containing parameter information meaningful to the
RACINIT installation exit routine. This area is passed to the installation exit when the
exit routine is given control from the RACINIT routine.

The INSTLN parameter can be used by an installation having a user verification or job
initiation application, and wanting to pass information from one installation module to
the RACINIT installation exit routine.

,APPL = (applname'
,APPL = applname addr

specifies the name of the application issuing the RACINIT. If an address is specified, the
address must point to an 8-byte application name, left justified and padded with blanks, if
necessary.

,ACEE = acee addr
specifies the address of the ACEE.

For ENVIR = DELETE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be deleted. If ACEE = is not specified, and
the TCBSENV field for the task using the RACINIT is non-zero, the ACEE pointed to
by the TCBSENV is deleted, and TCBSENV is set to zero. If the TCBSENV and
ASXBSENV fields both point to the same ACEE, then ASXBSENV is also set to zero. If
no ACEE address is passed, and TCBSENV is zero, the ACEE pointed to by
ASXBSENV is deleted, and ASXBSENV is set to zero.

For ENVIR = CHANGE: specifies the address of a fullword that contains the address of
the accessor environment element (ACEE) to be changed. If ACEE = is not specified,
and the TCBSENV field for the task using the RACINIT is non-zero, the ACEE pointed
to by the TCBSENV is changed. If TCBSENV is 0, then the ACEE pointed to by
ASXBSENV is changed.

For ENVIR=CREATE: specifies the address of a full word into which the RACINIT
function will place the address of the ACEE created. If an ACEE is not specified, the
address of the newly created ACEE is stored in the TCBSENV field of the task control
block. If the ASXBSENV field is set to binary zeros, the new ACEE address is also
stored in the ASXBSENV field of the ASXB. If the ASXBSENV field is non-zero, it is
not modified. The TCBSENV field is set unconditionally.

RACINIT - Identify a RACF-Defined User 2-301

Notes:

1. If you omit USERID, GROUP, and PASSWRD and if you code ENVIR=CREATE or
if ENVIR=CREATE is used as the default, you will receive a return code of X'OO' and
obtain an ACEE that contains an * (X'5C') in place of the USERID and group name.

2. If ACEE is specified with ENVIR = CREATE, RACF suppresses the creation of a
modeling table (MDEL) to reduce the amount of CSA and/or LSQA storage required
by IMS/VS and CICS/VS installations.

,SUBPOOL = subpool number
specifies the storage subpool from which the ACEE and related storage are obtained.

,SMC=YES
,SMC=NO

specifies the use of the step-must-complete function of RACINIT processing. SMC = YES
specifies that RACINIT processing should continue to place other tasks for the step
non-dispatchable. SMC = NO specifies that the step-must-complete function is not used.

Note: SMC=NO should not be used ifDADSM ALLOCATE/SCRATCH functions
execute simultaneously in the same address space as the RACINIT function.

,P ASSCHK = YES
,PASSCHK=NO

specifies whether or not the user's password is to be verified. P ASSCHK = YES specifies
that RACINIT verifies the user's password. PASSCHK=NO specifies that the user's
password is not verified.

,ENCRYPT = YES
,ENCRYPT = NO

specifies whether or not RACINIT will encrypt the old password, the new password, and
the OIDCARD data passed to it.

YES signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are not pre-encrypted. RACINIT encrypts the data before storing it in the user
profile or using it to compare against stored data. ENCRYPT = YES is the default for
this keyword.

NO signifies that the data specified by the PASSWRD, NEWPASS, and OIDCARD
keywords are already encrypted. RACINIT bypasses the encryption of this data before
storing it in, or comparing it against, the user profile.

Note: The exit routine ICHDEX01 can also perform the encryption.

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACINIT release 1.7 parameter STAT you must be using RACF 1.7 on your system and
specify RELEASE = 1. 7. If you specify a parameter with an incompatible release level,
the parameter will not be accepted by the macro processing. An error message will be
issued at assembly time. For the parameters that are valid for RELEASE = 1.6 and later,
see Figure 10 on page 2-304.

2-302 SPL: System Macros and Facilities Volume 2

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACINIT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

,STAT = AS IS
,STAT=NO

specifies whether the statistics controlled by the installation's options on the RACF
SETROPTS command are to be maintained or ignored for this execution of RACINIT.
This parameter also controls whether a message is to be issued when the logon is
successful.

Note: Messages are always issued if the RACINIT processing is unsuccessful.

If STAT = ASIS is specified or taken by default, the messages and statistics are controlled
by the installation's current options on the RACF SETROPTS command.

If STAT = NO is specified, the statistics are not updated. And, if the logon is successful,
no message is issued.

The default is STAT = ASIS.

,LOG = ASIS
,LOG = ALL

specifies when log records are to be generated.

If LOG = ASIS is specified or defaulted to, only those attempts to create an ACEE that
fail will generate RACF log records.

If LOG = ALL is specified, any request to create an ACEE, regardless of whether it
succeeds or fails, will generate a RACF log record. The default is LOG = ASIS.

RACINIT - Identify a RACF-Defined User 2-303

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a specific parameter is valid are marked with an ·X'.

Parameter RELEASE = RELEASE =

1.6 1.7

ACEE= X X

ACCTINFO= X X

APPL= X X

ENCRYPT = X X

ENVIR= X X

GROUP = X X

INSTLN= X X

JOBNAME= X X

LOG = X

NEWPASS= X X

OIDCARD= X X

PASSCHK= X X

PASSWRD= X X

PGMNAME= X X

RELEASE = X X

SMC= X X

START = X X

STAT = X

SUBPOOL= X X

TERMID= X X

USERID= X X

Figure 10. RACINIT Parameters for RELEASE = 1.6 and Later

2-304 SPL: System Macros and Facilities Volume 2

Return Codes and Reason Codes

When control is returned, register 15 contains one of these return codes:

Hexadecimal Code

00

04

08

OC

10

14

18

lC

20

24

28

2C

30

34

64

Meaning

RACINIT has completed successfully.

The user profile is not defined to RACF.

The password is not authorized.

The password has expired.

The new password is invalid.

The user is not defined to the group.

RACINIT was failed by the installation exit routine.

The user access has been revoked.

RACF is not active.

The user's access to the specified group has been
revoked.

OIDCARD parameter is required but not supplied.

OlD CARD parameter is invalid for specified user.

The user is not authorized to use the terminal.
Register 0 contains one of the following reason codes:
00 indicates a normal completion.

04 indicates the user is not authorized to access
the system on this day, or at this time of day.

08 indicates the terminal may not be used on this
day, or at this time of day.

The user is not authorized to use the application.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACINIT macro;
however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

RACINIT - Identify a RACF-Defined User 2-305

RACINIT (List Form)

The list form of the RACINIT macro instruction is written as follows:

name

b

RACINIT

b

USERID = userid addr
,PASSWRD = password addr

,START = procname addr

,NEWPASS=new password addr

,GROUP = group addr

,PGMNAME = programmer name
addr

,ACTINFO = account addr

,OIDCARD = oid addr

,TERMID = terminal addr

,JOBNAME = jobname addr

,ENVIR = CREATE
,ENVIR = CHANGE
,ENVIR = DELETE

,INSTLN = parm list addr

,APPL = 'applname'
,APPL = applname addr

,ACEE = acee addr

,SUBPOOL = sub pool number

,SMC=YES
,SMC=NO

,PASSCHK = YES
,PASSCHK=NO

,ENCRYPT = YES
,ENCRYPT = NO

,RELEASE = number

name: symbol. Begin name in column 1.

One or more blanks must precede RACINIT.

One or more blanks must ~ollow RACINIT.

userid addr: A-type address.
password addr: A-type address.

procname addr: A-type address.

new password addr: A-type address.

group addr: A-type address.

programmer name addr: A-type address.

account addr: A-type address.

oid addr: A-type address, or register (2) - (12).

terminal addr: A-type address.

jobname addr: A-type address.

Default: ENVIR = CREATE
Notes:
1. ENVIR = CHANGE may not be specified with USERID =,

PASSWRD=, START = , NEWPASS=, ACTINFO=,
PGMNAME =, OlD CARD = , or TERMID = parameters.

2. ENVIR = DELETE may not be specified with APPL =, USERID =,
PASSWRD=, START = , NEWPASS=, GROUP = , ACTINFO=,
PGMNAME =, OIDCARD = , or TERMID = parameters.

parm list addr: A-type address.

applname addr: A-type address.

acee addr: A-type address.

subpool number: decimal digit 0-255.

Default: SMC = YES

Default: PASSCHK = YES

Default: ENCRYPT = YES

number: 1.6 or 1.7
Default: RELEASE = 1.6

2-306 SPL: System Macros and Facilities Volume 2

,STAT=ASIS
,STAT=NO

,LOG=ASIS
,LOG=ALL

,MF=L

Default: STAT = ASIS

Default: LOG = ASIS

The parameters are explained under the standard form of the RACINIT macro instruction,
with the following exception:

,MF=L
specifies the list form of the RACINIT macro instruction.

RACINIT (List Form) 2-307

RACINIT (Execute Form)

The execute form of the RACINIT macro instruction is written as follows:

name

b

RACINIT

b

USERID = userid addr
,PASSWRD = password addr

,START=procname addr

,NEWPASS = new password addr

,GROUP = group addr

,PGMNAME = programmer name
addr

,ACTINFO = account addr

,OIDCARD=oid addr

,TERMID = terminal addr

,JOBNAME = jobname addr

,ENVIR=CREATE
,ENVIR = CHANGE
,ENVIR = DELETE

,INSTLN = parm list addr

,APPL = 'applname'
,APPL = applname addr

,ACEE = acee addr

,SUBPOOL = sub pool number

,SMC=YES
,SMC=NO

,PASSCHK = YES
,PASSCHK = NO

,ENCRYPT=YES
,ENCRYPT = NO

name: symbol. Begin name in column 1.

One or more blanks must precede RACINIT.

One or more blanks must follow RACINIT.

userid addr: RX-type address, or register (2) -(12).
password addr: RX-type address, or register (2) - (12).

procname addr: RX-type address, or register (2) - (12).

new password addr: RX-type address, or register (2) - (12).

group addr: RX-type address, or register (2) - (12).
Default: zero.

programmer name addr: RX-type address, or register
(2) - (12).

account addr: RX-type address, or register (2) - (12).

oid addr: RX-type address, or register (2) - (12).

terminal addr: RX-type address, or register (2) - (12).

jobname addr: RX-type address, or register (2) - (12).

Default: ENVIR = CREATE
Notes:
1. ENVIR=CHANGE may not be specified with USERID=,

PASSWRD=, START = , NEWPASS=, ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.

2. ENVIR = DELETE may not be specified with APPL =, USERID =,
PASSWRD=, START = , NEWPASS=, GROUP = , ACTINFO=,
PGMNAME =, OIDCARD =, or TERMID = parameters.

parm list addr: RX-type address, or register (2) - (12).

applname addr: RX-type address, or register (2) - (12).

acee addr: RX-type address, or register (2) - (12).

subpool number: decimal digit 0-255.

Default: SMC = YES

Default: PASSCHK = YES

Default: ENCRYPT = YES

2-308 SPL: System Macros and Facilities Volume 2

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,STAT=ASIS
,STAT = NO

,LOG=ASIS
,LOG=ALL

,MF = (E,etrl addr)

number: 1.6 or 1.7
Default: RELEASE = 1.6

Default: STAT=ASIS

Default: LOG = ASIS

entl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the RACINIT macro instruction,
with the following exception: .

,MF = (E~ctrl addr)
specifies the execute form of the RACINIT macro instruction using a remote control
program parameter list.

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. For instance, to use the
RACINIT release 1.7 parameter STAT you must be using RACF 1.7 on your system and
specify RELEASE = 1. 7. If you specify a parameter with an incompatible release level,
the parameter will not be accepted by the macro processing. An error message will be
issued at assembly time. For the parameters that are valid for RELEASE = 1.6 and later,
see Figure lOon page 2-304.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACINIT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code X' 64' will be genera ted.

RACINIT (Execute Form) 2-309

RACLIST - ~uild In-Storage Profiles

RACLIST is used to build in-storage profiles for RACF defined resources. RACLIST
processes only those resources described by class descriptors. The primary advantage of using
the RACLIST macro is to use the resource grouping function and to improve resource
authorization checking performance.

The module calling the RACLIST macro instruction must either be authorized
(APF-authorized, in system key 0-7, or in supervisor state) or in the RACF-authorized caller
table and fetched from an authorized library.

Notes:

1. Only callers in 24-bit addressing mode can issue this macro. Callers executing in 31-bit
addressing mode, who want to utilize the RACLIST function, can code the RACROUTE
macro.

2. For RACF Version 1, Release 6, all parameters and parameter lists must reside below 16
megabytes.

3. For RACF Version 1, Release 7, all parameters and parameter lists are assumed to reside
below 16 megabytes when the caller is executing in 24-bit addressing mode.

2-310 SPL: System Macros and Facilities Volume 2

The standard form of the RACLIST macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede RACLIST.

RACLIST

b One or more blanks must follow RACLIST.

CLASS = 'classname'
CLASS = classname addr classname addr: A-type address or register (2) - (12).

,LIST = list addr

,ACEE = acee addr

,INSTLN = parm list addr

,APPL 'app/name'
,APPL = applname addr

,SUBPOOL = (sub#l ,sub#2)

,ENVIR = CREATE
,ENVIR = DELETE

,OWNER=YES
,OWNER=NO

,RELEASE = number

list addr: A-type address or register (2) - (12).

acee addr: A-type address or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

applname addr: A-type address or register (2) - (12).

sub#,sub#2: decimal digit 0-255.

Default: ENVIR = CREATE

Default: OWNER=NO

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained as follows:

CLASS = 'classname'
CLASS = classname addr

specifies that RACLIST is to build an in-storage profile for the resources of the specified
class. If an address is specified, the address must point to an 8-byte field containing the
class name, left justified and padded with blanks, if necessary. The class name must be
defined by a class descriptor; if not, the class is not considered to be defined.

,LIST=addr
specifies the address of a list of resource names for which RACLIST is to build the
in-storage profiles. The list consists of a 2-byte field containing the number of the names
in the list, followed by one or more variable length names. Each name consists of a
I-byte length field, followed by the name. A zero in the 2-byte field causes the operand
to be omitted. If LIST = is omitted, in-storage profiles are built for all the profiles
defined to RACF in the given class as well as each member for a resource grouping
associa ted wi th the specified class.

Note: This operand can be specified only with ENVIR=CREATE. If
ENVIR = DELETE is specified, the RACLIST macro instruction issues a return code of
18.

RACLIST - Build In-Storage Profiles 2-311

,ACEE = acee addr
specifies the address of the accessor control environment element (ACEE). The ACEE
points to the in-storage profiles. If an ACEE is not specified, RACF uses the TASK
ACEE pointer in the extended TCB called the TCBSENV. Otherwise, or if the TASK
ACEE pointer is zero, RACF uses the main ACEE to obtain the list of the in-storage
profiles. The main ACEE is pointed to by the ASXBSENV field of the address space
extension block. If an ACEE is not specified and there is no main ACEE, the in-storage
profiles are not constructed.

,INSTLN = parm list addr
specifies the address of an area that contains parameter information for the RACLIST
installation exit. The address is passed to the installation exit when the exit is given
control by the RACLIST routine. The INSTLN parameter can be used by an application
or an installation program to pass information to the RACLIST installation exit.

,APPL = 'applname'
,APPL = applname addr

specifies the name of the application requesting the authorization checking. This
information is not used for the authorization checking process but is made available to
the installation exit(s). If an address is specified, it should point to an 8-byte area
containing the application name, left justified and padded with blanks, if necessary.

,SUBPOOL = (sub#l ,sub#2)
specifies the subpool numbers of the storage into which the components of the in-storage
profiles are to be built. Sub#l represents the subpool of the profile index. Sub#2
represents the subpool of the profile proper. If the subpools are not specified they default
to subpool 255. Registers can be used to specify sub#l and sub#2.

,ENVIR = CREATE
,ENVIR = DELETE

specifies the action to be performed by the RACLIST macro.

CREATE - In-storage profiles for the specified class are to be built. The RACLIST
function issues a return code of 18, if an in-storage list currently exists for the specified
class.

DELETE - The in-storage profiles for the specified class are to be freed. If class is not
specified, the in-storage profiles for all classes are freed .

. Note: It is the responsibility of the user issuing the RACLIST macro to assure that no
multi-tasking that results in the issuing of a RACHECK, FRACHECK, RACINIT, or
RACLIST macro instruction occurs at the same time that the RACLIST occurs.

2-312 SPL: System Macros and Facilities Volume 2

,OWNER = YES
,OWNER=NO

specifies that the resource owner is to be placed in the profile access list with the ALTER
authority. If the OWNER = operand is omitted, the default is NO.

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE == 1.6 and later, see Figure lIon page 2-314.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACLIST macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

RACLIST - Build In-Storage Profiles 2-313

Parameters For RELEASE = 1.6 and Later

The RELEASE values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

ACEE= X X

APPL==; X X

CLASS = X X

ENVIR= X X

INSTLN= X X

LIST = X X

OWNER = X X

RELEASE = X X

SUBPOOL= X X

Figure 11. RACLIST Parameters for RELEASE = 1.6 and Later

Return Codes and Reason Codes

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Code

00

04

08

OC

10

14

18

lC

64

Meaning

RACLIST function completed successfully.

Unable to perform the requested function.
Register 0 contains additional codes as follows:

o - Unable to establish an ESTAE environment.

I - The function code (the third byte of the parameter
list) does not represent a valid function.
'01' represents the RACF manager;
'02' represents the RACLIST macro.

The specified class is not defined to RACF.

An error was encountered during RACLIST processing.

RACF and/or the resource class is not active.

RACLIST installation exit error occurred.

Parameter list error.

RACF CVT does not exist (RACF is not installed)
or an insufficient level of RACF is installed.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACLIST macro;
however, the list form of the macro does not have the proper
RELEASE parameter. Macro processing terminates.

Note: If the resource class specified by the CLASS = operand is inactive, RACLIST does not
build the in-storage profiles and a code of OC is returned. If the resource group class is not
active, RACLIST builds an in-storage profile but only from the individual resource profiles;
resource group profiles are ignored.

2-314 SPL: System Macros and Facilities Volume 2

RACLIST (List Form)

The list form of the RACLIST macro instruction is written as follows:

name

b

RACLIST

b

CLASS = 'classname'
CLASS = classname addr

,LIST = list addr

,ACEE = acee addr

,INSTLN = parm list addr

,APPL = 'applname'
,APPL = applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR = CREATE
,ENVIR = DELETE

,OWNER=YES
,OWNER=NO

,RELEASE = number

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACLIST.

One or more blanks must follow RACLIST.

classname addr: A-type address.

list addr: A-type address.

acee addr: A-type address.

parm list addr: A-type address.

applname addr: A-type address.

sub#1,sub#2: decimal digit 0-255.
Default: 255.

Default: ENVIR = CREATE

Default: OWNER = NO

number: 1.6 or 1.7
Default: RELEASE = 1.6

The parameters are explained under the standard form of the RACLIST macro instruction with
the following exception:

,MF=L
specifies the list form of the RACLIST macro instruction.

RACLIST (List Form) 2-315

RACLIST (Execute Form)

The execute form of the RACLIST macro instruction is written as follows:

name

b

RACLIST

b

CLASS = classname addr

,LIST = list addr

,ACEE = acee addr

,INSTLN = parm list addr

,APPL = applname addr

,SUBPOOL = (sub#1,sub#2)

,ENVIR = CREATE
,ENVIR = DELETE

,OWNER=YES
,OWNER=NO

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,MF = (E"ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACLIST.

One or more blanks must follow RACLIST.

classname addr: RX-type address or register (2) - (12).

list addr: RX-type address or register (2) - (12).

acee addr: RX-type address or register (2) - (12).

parm list addr: A-type address or register (2) - (12).

applname addr: RX-type address or register (2) - (12).

sub#1,sub#2: decimal digit 0-255.

number: 1.6 or 1.7
Default: RELEASE = 1.6

ctrl addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the RACLIST macro instruction with
the following exception:

,MF = (E,ctri addr)
specifies the execute form of the RACLIST macro instruction using a remote control
program parameter list.

2-316 SPL: System Macros and Facilities Volume 2

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 11 on page 2-314.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACLIST macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code of X'64' will be generated.

RACLIST (Execute Form) 2-317

RACROUTE - MVS Router Interface

The RACROUTE macro instruction is used to invoke the System Authorization Facility (SAF)
MVS router, which conditionally directs control to the Resource Access Control Facility
(RACF) when RACF is present.

You can use RACROUTE to access the functions that are provided by the following RACF
macros: RACDEF, RACINIT, RACXTRT, RACLIST, RACHECK, and FRACHECK./ In
coding the RACROUTE macro instruction to access a particular RACF macro function, you
must also use the necessary parameters from that macro on the RACROUTE macro
instruction. For example, if you code RACROUTE to access the RACHECK function, you
must code REQUEST = AUTH and any other required parameters and any optional ones you
need from the RACHECK macro. RACROUTE validates that only the parameters applicable
to the RACHECK macro have been coded.

This macro is also described in Supervisor Services and Macro Instructions with the exception of
the REQUEST = DEFINE, REQUEST=VERIFY, REQUEST = LIST, and
REQUEST = EXTRACT parameters, which are restricted in use to programs that are
authorized (AFP authorized, in system key 0-7, or in supervisor state).

Notes:

1. For RACF Version 1 Release 6, all parameters and parameter lists must reside below 16
megabytes.

2. For RACF Version 1 Release 7:
If a caller is executing in 24-bit addressing mode, all parameters and parameter lists are
assumed to reside below 16 megabytes. If a caller, however, is executing in 31-bit addressing
mode, and is calling RACF via the RACROUTE macro instruction, RACF will assume that
all parameters and parameter lists may reside above the 16 megabytes (that is, that all
parameter addresses are true 31-bit addresses).

All parameter lists generated by the RACROUTE macro instruction are in a format that
allows compiled code to be moved above 16 megabytes without recompilation.

This 31-bit support is available only when RACF is called via the RACROUTE,
FRACHECK, or RACSTAT macro instructions. Any caller that uses the RACINIT,
RACDEF, RACLIST or RACHECK macro instructions may be in 24-bit addressing mode
only. RACF does not support those callers in 31-bit mode. RACHECK macro instruction
may be in 24-bit addressing mode only. RACF does not support this caller in 31-bit mode.

2-318 SPL: System Macros and Facilities Volume 2

The standard form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST = FASTAUTH
REQUEST = DEFINE
REQUEST = VERIFY
REQUEST = LIST
REQUEST = EXTRACT

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA= work area addr

,RELATED = value

,ENVIR = VERIFY

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address or register (2) - (12).
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: A-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: A-type address. or register (2) - (12).

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if
REQUEST = VERIFY is coded.

Default: See parameter description.
Note: LOC can be coded only if
REQUEST = VERIFY or REQUEST = LIST is coded.

In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST, RACINIT,
RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro. Depending on the
parameter REQUEST =, some of these are required, some optional, and some are invalid.

The parameters are explained as follows:

REQUEST = AUTH
REQUEST=FASTAUTH
REQUEST = DEFINE
REQUEST = VERIFY
REQUEST = LIST
REQUEST = EXTRACT

specifies a code that determines the RACF parameter list to be issued internally as well as
the RACF routine to receive control. The permissible codes and their associated RACF
macros are as follows:

AUTH--RACHECK
FASTAUTH--FRACHECK
DEFINE -- RACDEF
VERIFY -- RACINIT
LIST -- RACLIST
EXTRACT--RACXTRT

For RACROUTE to work correctly, once you have chosen a REQUEST code you must
also code (on the RACROUTE macro) the parameters that belong to the associated
macro instruction. Please see the associated macro for the necessary parameters.

RACROUTE - MVS Router Interface 2-319

Notes:

1. Data areas returned by RACF to the caller will be either above or below the 16-megabyte line,
depending upon the caller's addressing mode and the data area in question.

2. Unless the caller specifies the ACEE= parameter on a HRACROUTE
REQUEST= VERIFY,ENVIR = CREATE" macro instruction, the ACEE will always be
placed below the 16-megabyte line.

3. If the caller specifies the ACEE= parameter, and is executing in 31-bit addressing mode and
does not specify LOC=BELOW on the RACROUTE macro instruction, the ACEE will be
placed, if possible, above the 16-megabyte line.

4. If the ACEE is below the 16-megabyte line, any area chained off an ACEE (for example,
RACLIST profiles, list-of-groups table) will be placed below the 16-megabyte line.
Otherwise, the area will be placed above the line. However, a caller executing in 31-bit mode
may issue a REQUEST=LISTwith LOC=ABOVE, and the profiles will be placed above the
line, if possible, even' if the ACEE is below the line.

5. If the caller requests that RACF return an in-storage profile in CSA as part of a
HRACROUTE REQUEST=AUTH," the profile will be returned in storage below the
16-megabyte line if the related ACEE is located below the line. Otherwise, the area will be
located above the line. .

6. The area returned by a "RACROUTE REQ UEST = EXTRACT" request will be located
below the 16-megabyte line if the related ACEE is located below the line. Otherwise, the area
will be located above the line.

,REQSTOR= reqstor 'addr
specifies the address of an 8-byte character field containing the control point name (this
address identifies a unique control point within a set of control points that exists in a
subsystem). If this operand is coded and RACF is installed, the RACF router table must
be changed to match the operand~ If the table is not updated, the default to bypass
RACF processing is taken. For a description of the RACF router table and the macro
used to update it, see SPL: Resource Access Control Facility (RACF).

If this operand is omitted, a string of eight blanks is assumed.

,SUBSYS = subsys addr
specifies the address of an 8-byte character field containing' the calling subsystem's name,
version, and release level. If this operand is coded and RACF is installed, the RACF
router table must be changed to match the operand. If the table is not updated, the
default to bypassRACF processing is taken. For a description of the RACF router table
and the macro used to update it, see SPL: Resource Access Control Facility (RACF).

If this operand is omitted, a string of eight blanks is assumed.

,WORKA=work area addr
specifies the address of a 512-byte work area for use by the MVS router and the RACF
front end routine.

2-320 SPL: System Macros and Facilities Volume 2

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified is at the discretion of the user, and can be any valid coding value.

,ENVIR = VERIFY
specifies that only a user verification is to be made optionally combined with updating the
user's password .. The installation may handle this request through a System
Authorization Facility (SAF) installation exit. If this is not done, the RACROUTE caller
receives a return code of 4 with RACF return and reason codes of zero (the request is not
processed by the RACF SVC).

,LOC=BELOW
,LOC=ANY
,LOC=ABOVE

LOC can be coded only if REQUEST = VERIFY or REQUEST=LIST is coded.

For REQUEST = VERIFY:
specifies whether the ACEE and related data areas are to be allocated storage below 16
megabytes (LOC = BELOW), or anywhere (LOC = ANY).

If any of the following is true, LOC = BELOW is the default, and LOC = ANY is ignored
if specified:

• The ACEE = parameter is not coded.
• The caller is executing in 24-bit mode.

In all other cases, the default is LOC = ANY.

Note: LOC=ABOVE is invalid for REQUEST = VERIFY.

For REQUEST = LIST:
specifies whether the RACLIST proOles are to reside where the ACEE is located, above
or below 16 megabytes (LOC = ANY), or whether the RACLIST profiles are to reside
above 16 megabytes (LOC = ABOVE), if possible, even if the ACEE is below 16
megabytes.

Notes:

1. LOC=BELOW is invalidfor REQUEST=LIST.

2. LOC = ANY does not guarantee that storage is allocated above 16 megabytes. If any
installation SAF or RACF exit routines execute in 24-bit mode, the storage will be
below 16 megabytes.

RACROUTE - MVS Router Interface 2-321

Return Codes and Reason Codes

Example 1

Example 2

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Code Meaning

00

04

08

The requested security function has completed successfully. In addition, if the requested
function was 'AUTH', the authorization request was accepted.

The requested function has not been processed. In addition, if the request was 'AUTH',
the MVS router could neither accept nor fail the request. The following are possible
reasons for a request not being processed.

- The MVS router is not active.
- The RACF front end routine detected that a null action was requested for the

specified reque~t type, resource type, and subsystem ID.
- The request/resource/subsystem combination could not be found in the router table.
- RACF is not active on the system, and RACFIND = YES was not specified, and

there is no RACROUTE installation exit routine (or an exit originated a return code
of 4).

- RACF is active on the system, but no profile exists for the specified resource.

The requested function was processed by RACF, the MVS router, or the router exit
(I CH RTXOO) and failed. If the requested function was 'AUTH', the authorization
request has been failed. If RACF is inactive for an 'AUTH' request with
RACFIND = YES, then the MVS router fails the request. The RACF or router exit
return code and reason codes are returned in the first two words of the RACROUTE
input parameter list.

Operation: Invoke the MVS router to perform authorization checking using the standard form,
for a non-VSAM data set residing on the volume pointed to by register 8. Register 7 points to
the data set name and the RACF user is requesting the highest level of control over the data
set. The "RACF-indicated" bit in the data set's DSCB is on.

RACROUTE REQUEST=AUTH,WORKA=RACWK,ENTITY=((R7)),
VOLSER=(R8),CLASS='DATASET' ,ATTR=ALTER,
RACFIND=YES

RACWK DS CLS12

x
X

Operation: Invoke the MVS router to perform authorization checking using the standard form,
for an IMS/VS transaction pointed to by register 5. The user requests only read access. The
request is issued on behalf of the IMS/VS subsystem.

RACROUTE REQUEST=FASTAUTH,SUBSYS=SUBIMS,
WORKA=RACWK,ENTITY=(RS) ,
CLASS='TIMS' ,WKAREA=FRACWK,
ATTR=READ

SUBIMS
FRACWK
RACWK

DC CL8'IMS'
DS 16F
DS CLS12

X
X
X

2-322 SPL: System Macros and Facilities Volume 2

RACROUTE (List Form)

The list form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST = FASTAUTH
REQUEST = DEFINE
REQUEST = VERIFY
REQUEST = LIST
REQUEST = EXTRACT

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA = work area addr

,RELATED = value

,ENVIR = VERIFY

,LOC = BELOW
,LOC=ANY
,LOC=ABOVE

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: A-type address.
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: A-type address.
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: A-type address or register (2) - (12).

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if
REQUEST = VERIFY is coded.

Default: See parameter description.
Note: LOC can be coded only if
REQUEST = VERIFY or REQUEST = LIST is coded.

In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST, RACINIT,
RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro. Depending on the
parameter REQUEST =, some of these are required, some optional, and some are invalid.

The parameters are explained under the standard form of the RACROUTE macro instruction
with the following exception:

,MF=L
specifies the list form of the RACROUTE macro instruction.

RACROUTE (List Form) 2-323

RACROUTE (Execute Form)

The execute form of the RACROUTE macro instruction is written as follows:

name

b

RACROUTE

b

REQUEST = AUTH
REQUEST=FASTAUTH
REQUEST = DEFINE
REQUEST = VERIFY
REQUEST = LIST
REQUEST = EXTRACT

,REQSTOR = reqstor addr

,SUBSYS = subsys addr

,WORKA=work area addr

,RELATED = value

,ENVIR = VERIFY

,LOC = BELOW
,LOC=ANY
,LOC=ABOVE

,MF = (E,etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RACROUTE.

One or more blanks must follow RACROUTE.

reqstor addr: RX-type address or register (2) - (12).
Default: zero.
Note: If REQSTOR = is coded and RACF is installed, the RACF router
table must be updated to match the operand.

subsys addr: RX-type address or register (2) - (12).
Note: If SUBSYS = is coded and RACF is installed, the RACF router table
must be updated to match the operand.

work area addr: RX-type address or register (2) - (12).

value: Any valid macro keyword specified.

Note: ENVIR can be coded only if
REQUEST = VERIFY is coded.

Default: See parameter description.
Note: LOC can be coded only if
REQUEST = VERIFY or REQUEST = LIST is coded.

etrl addr: RX-type address or register (1).

In addition to the parameters described above, all parameters valid on the RACDEF, RACLIST, RACINIT,
RACXTRT, RACHECK, and FRACHECK macros are permitted on the RACROUTE macro. Depending on the
parameter REQUEST =, some of these are required, some optional, and some are invalid.

The parameters are explained under the standard form of the RACROUTE macro instruction
with the following exception:

,MF = (E, ctrl addr)
specifies the execute form of the RACROUTE macro where ctrl addr is the address of the
associated parameter list.

2-324 SPL: System Macros and Facilities Volume 2

RACXTRT - RACF Extraction or Encryption

The RACXTR T macro instruction is used to retrieve certain specified fields from a RACF user
profile or to encrypt certain clear-text (readable) data.

This macro instruction is only available to authorized callers (APF-authorized, in system key
0-7, or in supervisor state).

Note: Encryption and extraction are mutually exclusive.

Note: Only callers in 24-bit addressing mode can issue this macro. Callers executing in 3l-bit
addressing mode, who want to use the RACXTRT function, can code the RACROUTE macro.

The standard form of the RACXTRT macro instruction is written as follows:

name

b

RACXTRT

b

TYPE = EXTRACT
TYPE = ENCRYPT

,ENTITY = resource name addr

,RELEASE = number

If TYPE = EXTRACT is specified:

,SUBPOOL = subpool number

,FIELDS = field addr

If TYPE = ENCRYPT is specified:

,ENCRYPT = (data address,DES)
,ENCRYPT = (data address,HASH)
,ENCRYPT = (data address,lNST)

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

resource name addr: A-type address,
or register (2) - (12)

number: 1.6 or 1.7
Default: RELEASE = 1.6

subpool number: decimal digit, 0-255
Default: SUBPOOL = 229

field addr: A-type address
or register (2) - (12)

data address: A-type address or register (2) - (12)

Note: If TYPE = ENCRYPT is specified, the, only other allowable parameters are ENTITY and ENCRYPT, with
ENCRYPT being required.

RACXTRT - RACF Extraction or Encryption 2-325

The parameters are explained as follows:

TYPE = EXTRACT
specifies the function to be performed by the extract function routine.

Note: If TYPE = EXTRACT is specified, ENCRYPT = must not be coded.

If EXTRACT is specified, the operation performed is extraction of the userid, connect
group and optionally, the encrypted password. The specified fields are retrieved from the
profile whose name is given as the ENTITY value, in the USER class. If ENTITY is not
specified, the current user's profile is used. Upon return, Register 1 contains the address
of a result area that begins with a fullword containing the area's subpool and length.

The fields in the result area are in the order below:

Offset Data Length

0 subpool of area 1
1 length of area 3
4 offset to start of optional field to contain 2

the encrypted password
6 reserved 18
24 specified or current user's default userid 8
32 specified user's default connect group 8

or current user's current connect group 8

,SUBPOOL = subpool number
specifies the storage subpool from which the extract function routine will obtain an area
needed for the extraction. If this parameter is not specified, it defaults to 229.

,FIELDS = address
specifies the address of a fullword with a value of binary 1 followed by an 8-byte
character string, 'PASSWORD'. Use this parameter when the user's encrypted password
is to be extracted in addition to the userid and user connect group. If FIELDS is
specified, the encrypted password will be returned in the result area at an offset from the
start of the area specified by the half word at offset four.

TYPE = ENCRYPT
specifies the function to be performed by the extract function routine.

If TYPE = ENCRYPT is specified, the operation performed is data encryption. The
ENCRYPT keyword specifies the data to be encrypted and the encryption method used.
The first eight bytes of the area pointed to by the ENTITY operand will be used by the
DES (Data Encryption Standard) encryption routine. If ENTITY is not specified, the
userid from the current ACEE will be used instead. If TYPE = ENCRYPT is specified,
no work area will be returned.

,ENCRYPT = (data address, DES)
,ENCRYPT = (data address, HASH)
,ENCRYPT = (data address, INST)

specifies the data to be encrypted, and a method of encryption. The address points to a
one-byte length field followed by from 1 to 255 bytes of clear-text data to be encrypted.
The second subparameter specifies the encryption method: the DES algorithm, the
RACF hashing algorithm, or whatever scheme the installation uses (INST value). Upon
return to the macro issuer, the first subparameter will now contain the address of an area

2-326 SPL: System Macros and Facilities Volume 2

that contains a one-byte length followed by the encrypted version of the data. Neither the
address itself nor the length is changed.

Note: When the DES algorithm is used RACF actually encrypts the data pointed to by
the ENTITY profile, the userid, using the data as the encryption key. Data is one-way
encrypted, that is, no facility is provided to recover the data in readable form. If HASH
is specified, then the RACF hashing algorithm is used and data is masked instead of
encrypted.

,ENTITY = resource name address
specifies the address of an eight-byte area containing the userid for which profile data is
to be extracted, or the data to be used when encrypting. The data must be the RACF
userid associated with the password or OlD card data to be encrypted. The name must
be left-justified in the field and padded with blanks. If this parameter is not specified, a
default value of zero will indicate to RACF that the userid from the current ACEE will be
used.

,RELEASE = number
specifies the RACF release level of the parameter list to be generated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 12.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACXTR T macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

Parameters For RELEASE = 1.6 and Later

The RELEA~E values for which a specific parameter is valid are marked with an 'X'.

Parameter RELEASE = RELEASE =
1.6 1.7

ENCRYPT = X X

ENTITY = X X

FIELDS = X X

SUBPOOL= X X

RELEASE = X X

TYPE = X X

Figure 12. RACXTRT Parameters for RELEASE = 1.6 and Later

RACXTRT - RACF Extraction or Encryption 2-327

Reason Codes and Return Codes

When control is returned, register 15 contains one of the following return codes and register 0
may contain a reason code.

Hexadecimal Code

00

04

08

12

16

20

24

64

Meaning

The extraction or encryption completed
successfully.

An ESTAE environment was not able to be
established, or if Register 0 contains a reason
code of 1, neither EXTRACT nor ENCRYPT
was specified for TYPE = .

For the extract function, the RACF user profile
could not be found.

For TYPE = EXTRACT, RACF is inactive.

The extract operation failed. Register 0
contains the RACF manager return code which
caused termination.
This return code is not used for the
encrypt function.

An ACEE address' was not found when required,
or if found,
was not for a defined user.

A parameter list error was encountered.

Indicates that the CHECK subparameter of the RELEASE
keyword was specified on the execute form of the RACXTRT macro;
however, the list form of the macro does not have the proper
RELEASE parameter. It also indicates that the TYPE parameters
specified on the list and execute forms may not be the same TYPE.
Macro processing terminates.

2-328 SPL: System Macros and Facilities Volume 2

RACXTRT (List Form)

The list form of the RACXTRT macro instruction is written as follows:

name

b

RACXTRT

b

TYPE = EXTRACT
TYPE = ENCRYPT

,ENTITY = resource name addr

,RELEASE = number

,MF=L

If TYPE = EXTRACT is specified:

,SUBPOOL = sub pool number

,FIELDS = field addr

If TYPE = ENCRYPT is specified:

,ENCRYPT = (data address,DES)
,ENCRYPT = (data address,HASH)
,ENCRYPT = (data address,INST)

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

resource name addr: A-type address.

number: 1.6 or 1.7
Default: RELEASE = 1.6

subpool number: decimal digit, 0-255
Default: SUBPOOL = 229

field addr: A-type address

data address: A-type address

The parameters are explained under the standard form of the RACXTRT macro instruction
with the following exception:

,MF=L
specifies the list form of the RACXTRT macro instruction.

RACXTRT (List Form) 2-329

RACXTRT (Execute Form)

The execute form of the RACXTR T macro instruction is written as follows:

name

b

RACXTRT

b

TYPE = EXTRACT
TYPE = ENCRYPT

,ENTITY = resource name addr

,RELEASE = (number ,CHECK)
,RELEASE = number
,RELEASE = (,CHECK)

,MF = (E,ctrladdr)

If TYPE = EXTRACT is specified:

,SUBPOOL = subpool number

,FIELDS = field addr

If TYPE = ENCRYPT is specified:

,ENCRYPT = (data address,DES)
,ENCRYPT = (data address,HASH)
,ENCRYPT = (data address,/NST)

name: symbol. Begin name in column 1.

One or more blanks must precede RACXTRT.

One or more blanks must follow RACXTRT.

resource name addr: RX-type address
or register (2)-(12)

number: 1.6 or 1.7
Default: RELEASE = 1.6

crt! addr:RX-type address, register (1),
or register (2)-(12)

subpool number: decimal digit, 0-255
Default: SUBPOOL = 229

field addr: RX-type address or register (2)-(12)

data address: A-type address or register (2)-(12)

2-330 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the RACXTRT macro instruction
with the following exception:

,RELEASE = (number,CHECK)
,RELEASE = number
,RELEASE = (,CHECK) .

specifies the RACF release level of the parameter list to b~nerated by this macro.

Certain parameters can be specified only with particular releases. If you specify a
parameter with an incompatible release level, the parameter will not be accepted by the
macro processing. An error message will be issued at assembly time. For the parameters
that are valid for RELEASE = 1.6 and later, see Figure 12 on page 2-327.

The default is RELEASE = 1.6.

When you specify the RELEASE keyword, checking is done at assembly time.
Execution-time validation of the compatibility between the list and execute forms of the
RACXTRT macro can be done by your specifying the CHECK subparameter on the
execute form of the macro.

When CHECK processing is requested, if the size of the list-form expansion is not large
enough to accommodate all parameters defined by the RELEASE keyword on the execute
form of the macro, the execute form of the macro will not be done. Instead, a return
code X'64' will be generated.

,MF = (E,ctrl addr)
specifies the execute form of the RACXTRT macro instruction using a remote control
program parameter list.

RACXTRT (Execute Form) 2-331

RESERVE - Reserve a Device (Sbared DASD)

The RESERVE macro instruction reserves a device for use by a particular system; it must be
issued by each task needing device reservation. The RESERVE macro instruction protects the
issuing task from interference by other tasks in the system and locks out other systems. The
reserve actually occurs when the first I/O is done to the device after the RESERVE macro is
issued. When the reserving program no longer needs the reserved device, it should issue a DEQ
macro instruction to release the resource. For information about how to obtain the UCB
address for a device, see the section "Finding the UCB Address for the RESERVE Macro" in
Volume 1.

If a task issues two RESERVE instructions for the same device without an intervening DEQ, an
abnormal termination results unless the second RESERVE specifies the keyword parameter
RET = or ECB =. (If a restart occurs when a RESERVE is in effect for resources, the system
does not restore the RESERVE; the user's program must reissue the RESERVE.) If a DEQ is
not issued for a particular resource, termination routines release resources reserved by a
terminating task.

If global resource serialization is active, the hardware RESERVE can be suppressed leaving a
SYSTEMS ENQ depending on the contents of the resource name lists. See Planning: Global
Resource Serialization for information on resource name lists.

Global tesource serialization counts and limits the number of concurrent resource requests in an
address space. If an unconditional RESERVE (a RESERVE that uses the RET = NONE
option) causes the count of global resource serialization requests to exceed the sum of a
threshold value plus a tolerance value, an authorized caller is abended with a system code of
X'538'. See "Limiting Global Resource Serialization Requests" in Volume 1.

To use shared DASD in higher level languages, write an assembler language subroutine to issue
the RESERVE macro instruction. Pass the following information to this routine: ddname,
qnameaddress, rnameaddress, rnamelength, and RET parameter. Refer to Figure "Example of
Subroutine Issuing RESERVE and DEQ" in Volume I for additional information.

The ECB parameter is restricted in use to callers in supervisor state, PSW key 0-7, or with APF
authorization. Except for the UCB, all input parameters to this macro instruction can reside in
storage above 16 megabytes if the issuer is executing in 31-bit addressing mode.

A RESERVE used with the MASID and MTCB operands provides a special form of the
RESERVE macro instruction that allows a further conditional control of a resource. One task,
called the "issuing task" can issue a RESERVE macro instruction for a resource specifying the
ASID and TCB of another task, called the "matching task." The MTCB and MASID operands
are specified with RET = HA VE and ECB = to provide additional return codes. If the issuing
task does not acquire control of the resource, it may receive a return code indicating that the
resource is controlled by the matching task. Upon receiving this return code, the issuing task

2-332 SPL: System Macros and Facilities Volume 2

could use the resource, if serialization between itself and the matching task has been
accomplished by some pre-arranged protocol known to both the issuing and matching tasks.

The standard form of the RESERVE macro instruction is written as follows:

name

b

RESERVE

b

qname addr

,rname addr

,E
,S

,rname length

,SYSTEMS
)

,RET = TEST
,RET=USE
,RET = HAVE

,ECB = ecb addr

,UCB= ucb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

qname addr: A-type address, or register (2) - (12).

rname addr: A-type address, or register (2) - (12).

Default: E

rname length: symbol, decimal digit, or register (2) - (12).

ecb addr: A-type address, or register (2) - (12).

ucb addr: A-type address, or register (2) - (12).

matching-asid addr: A-type address, or register (2) - (12).
matching-tcb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows:

(
specifies the beginning of the resource description.

qnarne addr
specifies the address in virtual storage of an 8-character name. The name should not start
with SYS, so that it will not conflict with system names. Every task issuing RESERVE
against the same resource must use the same qname and marne to represent the resource.

,rnarne addr
specifies the address in virtual storage of the name used in conjunction with qname to
represent a single resource. The name can be qualified, and must be from 1 to 255 bytes
long.

RESERVE - Reserve a Device (Shared DASD) 2-333

,E
,S

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

,rname length
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 to 255 to
override the assembled length, or you may specify a value of O. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.

,SYSTEMS
specifies that the resource is shared among systems.

)
specifies the end of the resource description.

,RET = TEST
,RET = USE
,RET = HAVE

specifies a conditional request for all the resources named above.

RET = TEST - the availability of the resources is to be tested, but control of the resources
is not requested.

RET = USE - control of the resources is to be assigned to the active task only if the
resources are immediately available.

RET = HAVE - control of the resources is requested only if a request has not been made
previously for the same task.

,ECB = ecb addr
specifies the address of an ECB, and conditionally requests the resource named in the
macro instruction. If the return code for one or more requested resources is 4 and the
request is not nullified by"a corresponding DEQ, the ECB is posted when all the requested
resources (specifically, those that initially received a return code of 4) are assigned to the
requesting task.

,UCB= ucb addr
specifies the address of a fullword that contains the address of the UCB for the device to
be reserved. The UCB must be allocated to the job step before RESERVE is issued
unless the issuer is in supervisor state, system key, or APF-authorized.

Note: The UCB resides in storage below 16 megabytes.

2-334 SPL: System Macros and Facilities Volume 2

,MASID = matching-asid addr
specifies the matching task (by defining a matching ASID) for the RESERVE, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the RESERVE macro instruction.

Note: MASID can only be specified if MTCB is also specified.

,MTCB = matching-tcb addr
specifies the matching task (by defining a matching TCB) for the RESERVE, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the RESERVE macro instruction.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the RESERVE and returns a
return code indicating whether the resource can be used. If the task specified by MASID
and MTCB parameters is using the resource, global resource serialization records a
request for the resource, suspends the issuing task until the resource is available, or
optionally returns a return code indicating that an ECB will be posted when the resource
can be used.

The MASID and MTCB parameters are specified with RET = HAVE, RET = TEST,
and/or ECB = parameters to elicit additional return codes that provide information about
the owner of the resource.

Note: MTCB can only be specified if MASID is also specified.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Return codes are provided by the control program only if you specify RET = TEST,
RET = USE, RET = HAVE, or ECB =; otherwise, return of the task to the active condition
indicates that control of the resource has been assigned to the task. If return code for the
resource named in the RESERVE macro instruction is 0, register 15 contains 0. If the return
code is not 0, register 15 contains the address of a storage area containing the return code, as
shown in Figure 13.

Address
Returned in
Register 15

~ 2 3

Return
Code

~ 4
O~--------~--------~r---------~---------.

RC 1

12~--------~--------~~--------~--------~

Figure 13. Return Code Area Used by RESERVE

RESERVE - Reserve a Device (Shared DASD) 2-335

Example 1

The return code is placed in the parameter list resulting from the macro expansion. The return
codes are shown below.

Hexadecimal
Code

o

4

8

14

18

20

24

28

44

Meaning

For RET = TEST, the resource was immediately available. For RET = USE, RET = HAVE, or
ECB = , control of the resource has been assigned to the active task.

For RET = TEST or RET = USE, the resource is not immediately available. For ECB =, the
ECB will be posted when available.

A previous request for control of the same resource has been made for the same task. Task
has control of resource.
If bit 3 is on - shared control of resource; if bit 3 is off - exclusive control.

A previous request for control of the same resource has been made for the same task. Task
does not have control of resource.

For RET = HAVE, RET = USE, or ECB =, the limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless some
previous ENQ or RESERVE request caused the task to obtain control of the resource. The
ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the resource.
The issuer of the RESERVE macro instruction may use the resource but it must ensure that
the owning task does not terminate while the issuing task is using the resource. If the issuing
task requested exclusive control then this return code indicates that the matching task is the
only task that currently owns the resource. If the issuer of the RESERVE requested shared
control and the owning task had requested shared control, this return code may indicate that a
previous task had requested exclusive control. The issuing task must issue a DEQ to cancel
this RESERVE. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing task may use
the resource but must ensure that the matching task does not terminate while the issuing task
is using the resource. The issuing task must issue a DEQ to cancel the RESERVE.

The issuing task cannot obtain exclusive control of the resource using the MASID/MTCB
RESERVE. The matching task's involvement with other tasks precludes control by the issuing
task. This task must not issue a DEQ to cancel the RESERVE. The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB RESERVE in one or more of
the following ways:

• Another task has already issued this RESERVE for this resource
specifying the same MASID /MTCB.

• The MASID/MTCB parameters specify a task that acquired control
of the resource by using the MASID/MTCB RESERVE.

• The matching task requested ownership of the resource but has
not yet been granted ownership.

The ECB will not be posted. Return code 44 is never given by a RESERVE RET = TEST,
return code 4 is given instead.

Operation: Unconditionally reserve exclusive control of a device. The length of the rname is
allowed to default.

RESERVE (MAJOR3,MINOR3,E"SYSTEMS),UCB=(R3)

2-336 SPL: System Macros and Facilities Volume 2

RESERVE (List Form)

The list form of the RESERVE macro is written as follows:

name

b

RESERVE

b

qname addr

,
,rname addr

,E
,S

,rname length

,
,SYSTEMS

,RET = TEST
,RET=USE
,RET = HAVE

,ECB = ecb addr

,UCB=ucb addr

,MASID=O
,MTCB=O

,RELATED = value

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

qname addr: A-type address.

rname addr: A-type address.

rname length: symbol or decimal digit.

ecb addr: A-type address.

ucb addr: A-type address or O.

value: A-type address.

The parameters are explained under the standard form of the RESERVE macro instruction,
with the following exception:

,MF=L
specifies the list form of the RESERVE macro instruction.

Note: If the ECB parameter is specified on the execute form of the macro, it must also be
specified on the list from of the macro.· The list form of this macro generates a prefix followed
by the parameter list, however the label specified in MF = L does not include an offset prefix
area. If MASID, MTCB, TCB, or ECB are specified, these labels are offset; allowance must be
made for the parameter list prefix.

RESERVE (List Form) 2-337

RESERVE (Execute Form)

The execute form of the RESERVE macro instruction is written as follows:

name

b

RESERVE

b

qname addr

,rname addr

,E
,S

,rname length

,SYSTEMS

,RET = TEST
,RET = USE
,RET = HAVE

,ECB = eeb addr

,UCB= ueb addr
,MASID = matehing-asid addr
,MTCB = matehing-teb addr

,RELATED = value

,MF = (E, etrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede RESERVE.

One or more blanks must follow RESERVE.

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, the (,), and all parameters
between (and) should not be specified. If something in the list is desired,
then (,), and all parameters in the list should be specified as indicated at
the left.

qname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digit, or register (2) - (12).
Note: rname length must be coded if a register is specified for rname addr
above.

eeb addr: RX-type address, or register (2) - (12).

ueb addr: RX-type address, or register (2) - (12).
matehing-asid addr: A-type address, or register (2) - (12).
matehing-teb addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

elrl addr: RX-type address, or register (1) - (12).

2-338 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the RESERVE macro instruction,
with the following exception:

,MF = (E,ctrl addr)
specifies the execute form of the RESERVE macro instruction using a remote control
program parameter list.

Note: If the ECB parameter is specified on the execute form of the macro, it must also be
specified on the list form of the macro. If MASID and MTCB are specified, MASID = 0 and
MTCB = 0 must be specified in the list form.

The list form of this macro generates a prefix followed by the parameter list, however the label
specified in MF = L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB
are specified, these labels are offset; allowance must be made for the parameter list prefix.

RESERVE (Execute Form) 2-339

RESUME - Resume Execution of a Suspended Request Block

The RESUME macro instruction causes suspended RBs to resume execution. RESUME is
supported in cross memory mode. For restrictions on using the RESUME macro instruction,
see. "Resuming Execution of a Suspended Request Block" in Volume 1.

The RESUME macro instruction is coded as follows:

name

b

RESUME

b

TCB=(4)
TCB = tcbaddr

,RB=(5)
,RB=rbaddr

,RETURN=Y
,RETURN=N

,MODE = UNCOND
,MODE=COND

,ASYNC=Y
,ASYNC=N

,ASCB = ascbaddr

name: symbol. Begin name in column 1.

One or more blanks must precede RESUME.

One or more blanks must follow RESUME.

Default: TCB address contents of register (4).
tcbaddr: A-type address or registers (2) - (12).

Default: RB address contents of register (5).
rbaddr: A-type address or registers (2) - (12).

Default: RETURN = Y

Default: MODE=UNCOND.

Default: ASYNC = N

Default: ASCB address of the home address space.
ascbaddr: RX-type address or registers (1) or (2) - (3) or (6) - (12).

The parameters are explained as follows:

TCB=(4)
TCB = tchaddr

specifies the TCB address of the task to be resumed. Register (4) is the default; it is
assumed to contain the TCB address.

Note: The TCB resides in storage below 16 megabytes.

2-340 SPL: System Macros and Facilities Volume 2

,RB = (5)
,RB=rbaddr

specifies the address of the RB to be resumed. Register (5) is the default; it is assumed to
contain the address of the RB to be resumed. The specification of the RB operand
determines which RB will have its suspend count decremented (which RB will be made
ready for resumption of execution).

Note: The RB resides in storage below 16 megabytes.

,RETURN=Y
,RETURN=N

'specifies whether control is to be returned to the caller (RETURN = Y) or to the TCTL
routine (RETURN = N). RETURN = N can only be issued if the caller is an SRB
running in home mode that specifies MODE=UNCOND and ASYNC=N, and does not
specify the ASCB option. The TCTL routine passes control directly from the SRB to a
TCB.

,MODE=UNCOND
,MODE=COND

If MODE = COND is specified, the action RESUME takes if the function cannot be
completed synchronously depends on the ASYNC option. If ASYNC = Y is specified,
RESUME makes a conditional attempt to acquire an SRB from the supervisor SRB pool.
If an SRB is available, it is scheduled to complete the RESUME function asynchronously.
If ASYNC = N is specified explicitly or as a default, and the RESUME cannot
immediately complete the function, it places return code 04 in register 15 and returns to
the caller.

If MODE = UNCOND is specified, the action RESUME takes also depends on the
ASYNC option. If ASYNC = Y is specified, RESUME makes an unconditional request
for an SRB from the supervisor SRB pool, and completes the RESUME function
asynchronously. If ASYNC = N is specified explicitly or as a default, RESUME
unconditionally obtains the CML lock of the ASCB whose TCB or RB is to be resumed.
The TCB or RB is resumed before control returns to the caller.

,ASYNC=Y
,ASYNC=N

specifies whether the RESUME is to be completed asynchronously (Y) or not (N).

Note: The ASYNC parameter for the RESUME macro instruction is spelled differently
from similar parameters on other macro instructions.

,ASCB = ascbaddr
specifies the address of the ASCB whose TCB or RB is to htl.Lesumed. The caller must
establish current addressability to the address space before calling RESUME. If this
option is not specified, the home address space is assumed. This option must be specified
if ASYNC = Y is specified.

Note: The ASCB resides in storage below 16 megabytes.

RESUME - Resume Execution of a Suspended Request Block 2-341

Example 1

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

08

Meaning

A normal, synchronous RESUME completed the function.
For MODE = COND and ASYNC=N, the RESUME cannot complete
the function.
For MODE=COND or MODE=UNCOND and ASYNC=Y, an SRB is
completing the function asynchronously.
For MODE=COND and ASYNC=Y the SRB pool is empty and
RESUME cannot complete the function.

The RESUME macro instruction uses registers as follows:

Register

0-1
2-3
4
5
6-10
11-13
14
15

Use

Work registers
Unchanged
TCB address *
RB address *
Unchanged
Work registers
Return point
EPA of the RESUME routine, or return code, if
RETURN = Y was specified.

* May be changed by the RESUME service.

Operation: Resume execution of the task specified in the address labeled CURRTCB. Use the
request block address in register 5. Pass control back to the task (the issuer is currently in SRB
mode, and this step terminates SRB mode processing).

RESUME TCB=CURRTCB,RB=(5),RETURN=N

2-342 SPL: System Macros and Facilities Volume 2

RISGNL - Issue Remote Immediate Signal

The RISGNL macro instruction uses the emergency signal (EMS) order code of the signal
processor (SIGP) instruction to invoke the execution of a specified software program on a
specific processor in a multiprocessing configuration. The program may be requested to execute
in parallel or serially with the function requesting the program. The specified software program
(receiving routine) gets control disabled, in key 0, and supervisor state. If the routine that
issues the RISGNL macro instruction holds the SALLOe lock, the receiving routine can enable
for a malfunction alert or an emergency signal. Otherwise, the receiving routine cannot enable,
request locks, or issue SVCs. In addition, the receiving routine must return via the address in
register 14. The RISGNL macro instruction can be invoked by programs executing in cross
memory mode.

Additional SIGP order codes are available via the DSGNL and RPSGNL macro instructions.
See Principles of Operation for an explanation of the order codes.

The RISGNL macro instruction is written as follows:

name

b

RISGNL

b

PARALLEL
SERIAL

,CPU = PCCA addr

,EP = entry name addr

,PARM = parm addr

name: symbol. Begin name in column 1.

One or more blanks must precede RISGNL.

One or more blanks must follow RISGNL.

PCCA addr: RX-type address, or register (1).

entry name addr: RX-type address, or register (12).

parm addr: RX-type address, or register (11).

The parameters are explained as follows:

PARALLEL
SERIAL

specifies that control is to be returned to the caller when the specified receiving routine
has been given control (PARALLEL) or has completed execution (SERIAL) on the
designated processor.

RISGNL - Issue Remote Immediate Signal 2-343

Example 1

Example 2

,CPU == PCCA addr
specifies the address of the physical configuration tcommunication area (PCCA) of the
processor on which the function is to be performed.

Note: The PCCA must reside in 24-bit addressable storage.

,EP = entry name addr
specifies the address of the receiving routine to be executed on the specified processor.
The receiving routine will get control in the same addressing mode as the macro issuer.

,PARM = parm addr
specifies the address of a user-defined full word parameter to be passed to the receiving
routine.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

14

Meaning

Specified receiving routine has been given control
or has completed execution, as requested.
Function not initiated because addressed processor
not online. If it appeared to be online, it is
no longer in the configuration.
Processor alive bit was turned off during the
remote immediate window spin routine.

Operation: The routine whose address is in register 12 is to be given control on the processor
whose PCCA address is in register 1. Return control to the caller when the specified receiving
routine has been given control.

RISGNL PARALLEL,CPU=(1),EP=(12)

Operation: The routine whose address is in register 12 is to be given control on the processor
whose PCCA address is in register 1. The routine will complete before the caller of RISGNL
receives control again. Register 11 contains the address of a parameter to be passed to the
receiving routine.

RISGNL SERIAL,CPU=(1),EP=(12),PARM=(11)

2-344 SPL: System Macros and Facilities Volume 2

RPSGNL - Issue Remote Pend able Signal

The RPSGNL macro instruction uses the external call (Be) order code of the signal processor
(SIGP) instruction to invoke the execution of one of five software programs on a specific
processor in a multiprocessing configuration.

Additional SIGP order codes are available via the DSGNL and RISGNL macro instructions.
See Principles of Operation for an explanation of the order codes.

The RPSGNL macro instruction can be used by programs executing in cross memory mode.

The RPSGNL macro instruction is written as follows:

name

b

RPSGNL

b

SWITCH
RQCHECK
GTFCRM
MODE
MEMSWT

,CPU = PCCA addr

name: symbol. Begin name in column 1.

One or more blanks must precede RPSGNL.

One or more blanks must follow RSPGNL.

PCCA addr: RX-type address, or register (1).

RPSGNL - Issue Remote Pendable Signal 2-345

Example 1

Example 2

The parameters are explained as follows:

SWITCH
RQCHECK
GTFCRM
MODE
MEMSWT

specifies the action to b~ performed:

SWITCH

RQCHECK

GTFCRM

MODE

MEMSWT

,CPU = PCCA addr

Memory/task switch function

Timer supervision TQE check function, to ensure that TQE in real time queue is being timed.

GTF function, to modify monitor call control registers

Machine check handler (MCH) function, to modify MCH-oriented control registers

Memory switch function, to update the PSAANEW on the specified processor.

specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA must reside in 24-bit addressable storage

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

Meaning

Specified processor is online and has been notified
that the specified service is to be executed.
Function not initiated because addressed processor
not online. If it appeared to be online, it is no
longer in the configuration.

Operation: Interrupt the work running on the processor whose PCCA address is given in
register 1. If the work is preemptable, pass control to the dispatcher.

RPSGNL SWITCH,CPU=(l)

Operation: Pass control to the memory switch function on the processor whose PCCA address
is given in register 1.

RPSGNL MEMSWT,CPU=(l)

2-346 SPL: System Macros and Facilities Volume 2

SCHEDULE - Schedule System Services for Asynchronous
Execution

If SCOPE = GLOBAL is coded, this macro can be assembled compatibly between MVS/XA and
MVS/370 through the use of the SPLEVEL macro instruction. Default processing will result in
an expansion of the macro that operates only with MVS/XA. The expansion of SCHEDULE
with SCOPE = LOCAL will operate on both MVS/370 and MVS/XA. See the topic "Selecting
the Macro Level" for additional information.

The SCHEDULE macro instruction schedules system services for asynchronous execution.
These services may be scheduled for execution in any address space and may be scheduled at
either global or local priorities.

Services scheduled at a global priority have a priority that is greater than, and independent of,
any address space priority. Services scheduled at a local priority have the priority of the
specific address space they execute in, but still have a priority greater than that of any task
within the address space. To use SCHEDULE you must be in supervisor state, PSW key zero.

The addressing mode of the SRB routine is specified in the SRBEP field of the SRB control
block. The user is required to set the correct AMODE. If bit 0 of the SRBEP field is set to 1,
the SRB. gets control in 31-bit addressing mode; if bit 0 is set to 0, the SRB routine gets control
in 24-bit addressing mode. The addressing mode of the SRB's FRR is specified in the
SRBFRRA field of the SRB control block. The user is required to set the correct AMODE. If
bit 0 of the SRBFRRA field is set to 1, the FRR (and its retry routine) get control in 31-bit
addressing mode. If bit 0 of the SRBFRRA field is set to 0, the FRR (and its retry routine) get
control in 24-bit addressing mode.

The SCHEDULE macro instruction can be used by programs executing in cross memory mode.
The SCHEDULE macro instruction is written as follows:

name

b

SCHEDULE

b

SRB = SRB addr

,SCOPE = LOCAL
,SCOPE = GLOBAL

,LLOCK=YES
,LLOCK=NO

,FRR=YES
,FRR=NO

,DISABLED

name: symbol. Begin name in column 1.

One or more blanks must precede SCHEDULE.

One or more blanks must follow SCHEDULE.

SRB addr: RX-type address, or register (1) or (2) - (12).

Default: SCOPE = LOCAL

Default: LLOCK = NO

Default: FRR = NO

SCHEDULE - Schedule System Services for Asynchronous Execution 2-347

Example 1

Example 2

Example 3

The parameters are explained as follows:

SRB = SRB addr
specifies the address of the service request block (SRB).

,SCOPE = LOCAL
,SCOPE = GLOBAL

specifies whether the service is to be scheduled at a local or global priority.

,LLOCK=YES
,LLOCK=NO

specifies whether the SRB is to receive control with the LOCAL lock held.

Note: CML (cross memory local) lock means the local lock of an address space other
than the home address space. LOCAL lock means the local lock of the home address
space. When written in lower case, local lock means any local-level lock, either the
LOCAL or a CML lock.

,FRR=YES
,FRR=NO

specifies whether the SRB is to receive control with recovery established. If FRR = YES
is specified, the user must include in the SRB field (SRBFRRA) the FRR exit address.
When the SRB receives control, the FRR will have been added to the FRR stack. When
FRR = YES is specified, the 24 byte FRR parameter area address will be passed to the
SRB routine in register 2.

,DISABLED
specifies the mode of the issuer (if known) when the SCHEDULE macro is executed.
DISABLED should be specified only when the invoker is physically disabled for
interrupts.

Operation: Schedule an SRB at a global priority.

SCHEDULE SRB=(l),SCOPE=GLOBAL

Operation: Schedule an SRB at a local priority.

SQHEOULE SRB=(l),SCOPE=LOCAL

Operation: Schedule an SRB at a global priority specifying that the SRB is to receive control
with the LOCAL lock held and recovery established. The issuer of the SCHEDULE macro
instruction is disabled.

SCHEDULE SRB=(l),SCOPE=GLOBAL,LLOCK=YES,FRR=YES,DISABLED

2-348 SPL: System Macros and Facilities Volume 2

SDUMP - Dump Virtual Storage

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing and the use of one of the new MVS/XA
parameters will result in an expansion of the macro that operates only with MVS/XA. The
expansion of SDUMP without new parameters will operate on both an MVS/XA and MVS/370
systems. See the topic "Selecting the Macro Level" for additional information.

Except for the DCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the caller is executing in 31-bit addressing mode.

The SDUMP macro instruction provides a dumping capability for the system routines. It
invokes SVC Dump to provide a fast unformatted dump of virtual storage to a data set. It is
intended to be used by system routines that suffer errors.

SVC Dump is available only to authorized programs. Issuers of SDUMP with entry by SVC
must be authorized via APF or have a control program key. Branch entry callers must be key
zero, supervisor state, and must be in SRB mode, or own a lock, or be disabled (with supervisor
bit on) or be in enabled unlocked task FRR mode with the corresponding PSA bit on.

The issuer of SDUMP can be in any cross memory mode.

The service of initiating an SVC Dump in any address space is provided for callers who need to
dump address spaces other than the one in which they are running. A branch entry to this
service is also provided for callers who wish a dump of their own or another address space but
cannot issue an SVC.

When SVC dump is entered, the specified parameter list and all areas the list points to (except
the DCB and ECB) must be currently addressable. Both the DCB and ECB, if specified, are
assumed to be addressable in the home address space.

The system operator can take SVC Dumps by issuing the DUMP command. For more
information see Operations: System Commands.

If options requiring address constants (ACONs) are not specified, the standard form of the
SDUMP macro instruction produces reentrant code for routines that reside in the link pack
area. The following parameters do not require ACONs and produce reentrant code for routines
that reside in the link pack area:

HDRAD
SDATA
TYPE
HDR
BRANCH
SUSPEND
QUIESCE
BUFFER

SDUMP - Dump Virtual Storage 2-349

SVC dump allows programs in page-protected storage (such as the nucleus, PLPA, and MLPA)
to issue the standard form of the SDUMP macro instruction without causing a protection
exception.

The standard form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

b

HDR= 'dump title'
HDRAD = dump title addr

,DCB = dcb addr

,ASID = A SID addr

,ASIDLST = list addr

,TYPE = (type code)

,ECB = ecb addr

,SDA T A = (data code)

,STORAGE = (str! addr,end addr)
,LIST = list addr

,LIST A = list addr

,SUBPLST = subpool id list addr

,KEYLIST = storage key list addr

,BUFFER=NO
,BUFFER = YES

,QUIESCE = YES
,QUIESCE = NO

,BRANCH=NO
,BRANCH=YES

,SUSPEND = NO
,sUSPEND = YES

,SUM LIST = list addr

,SUMLST A = list addr

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: A-type address, or register (2) - (12).

dcb addr: A-type address, or register (2) - (12).

ASID addr: A-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

type code: any of the following, separated by commas: XMEM, XMEME,
NOLOCAL, FAILRC
Note: XMEM and XMEME are mutually exclusive codes.

ecb addr: A-type address, or register (2) - (12).
Note: If ECB is specified, ASID or ASIDLST must also be specified.

data code: any combination of the following, separated by commas:
ALLNUC NOSUMDUMPjNOSUM
ALLPSA NUC
CSA PSA
GRSQ RGN
LPA SQA
LSQA SUMDUMP/SUM
NOALLPSAjNOALL SWA
NOSQA TRT

Notes:
1. Executing the SDUMP macro results in the ALLPSA, SQA, and SUMDUMP

storage areas being dumped unless excluded by the NOALLPSA, NOSQA, or
NOSUMDUMP parameter.

2. The PSA option is not required because it is dumped as a default in all SVC
dumps.

strt addr: A-type address, or register (2) - (12).
end addr: A-type address, or register (2) - (12).
list addr: A-type address, or register (2) - (12).
Note: One or more pairs of addresses may be specified, separated by commas. For
example:
,STORAGE = (strt addr,end addr,strt addr,end addr)

list addr: A-type address or register (2) - (12).

subpool id list addr: RX-type address, or register (2) - (12).

storage key list addr: RX-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Default: BUFFER = NO

Default: QUIESCE = YES

Default: BRANCH=NO
Note: If BRANCH = YES is specified, ASID or ASIDLST must also be
specified.

Default: SUSPEND = NO

list addr: RX-type address, or register (2) - (12).

list addr: RX-type address or register (2) - (12).

2-350 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

HDR = (dump title'
HDRAD = dump title addr

specifies the title or address of the title to be used for the dump. If HDR is specified, the
title must be 1-100 characters enclosed in apostrophes, although the apostrophes do not
appear in the actual title. If HDRAD is specified, the first byte at the indicated address
specifies the length of the title in bytes.

If these keywords are specified with BRANCH = YES or ASID/ASIDLST (that is, causing
a scheduled dump), the title is moved to SVC dump storage before control returns to the
caller. There is no requirement to synchronize with the completion of the dump.

,DCB = deb addr
specifies the address of a previously opened data control block for the data set that is to
contain the dump. If this parameter is omitted, one of the SYSl.DUMP data sets is used.
The data control block must be addressable from all the address spaces in which the SVC
Dump routine executes. The control blocks built by OPEN must also be addressable
from the address spaces. The DCB must support EXCP.

The DCB must reference device types supported by SVC dump. Eligible device types are
unlabeled 9-track 2400-series tap~ devices (or tape devices compatible with the 2400-series)
and any direct access devices supported by the system that have a track size of at least
4104 bytes. (4104 bytes equals 1 SVC dump output record.) The IBM 3850 Mass Storage
System is not supported as a dump data set.

SVC dump does not close the dump data set. The caller should use the CLOSE macro to
close the data set and cause an end-of-file mark or a tape mark to be placed after the
dump data. SVC dump sets up the DCB so that CLOSE works correctly and positions
the end-of-file mark or tape mark at the correct place on the data set. For tape data sets,
the caller can write a tape mark to separate multiple dumps without using the CLOSE
macro.

Note: The DCB resides in storage below 16 megabytes.

,ASID = A SID addr
,ASIDLST = list addr

specifies the address of a halfword or a list of halfwords containing the hexadecimal
address space identifier of an address space to be dumped. If register notation is used, the
low order halfword of the register contains the address space identifier of the address
space to be dumped. If both parameters are omitted, the current address space will be
dumped. If 0 is specified for the address space identifier, a dump is scheduled for the
home address space of the issuer of the SDUMP macro instruction. No private area
storage will be included in the dump for the specified address space(s) if either of the
following events occurred:

• No SDATA parameters were specified that apply to the private area of the requested
address space(s).

• The CHNGDUMP operator command was used to set an overriding parameter in the
system dump options list that limits SVC dumps to areas outside of the private area.

The ASID list can contain a maximum of 15 address space identifiers. The high order bit
of the halfword containing the last identifier of the list must be set to I, and all other high
order bits must be set to O.

SDUMP - Dump Virtual Storage 2-351

,TYPE=XMEM
,TYPE=XMEME
,TYPE = NOLOCAL
,TYPE=FAILRC

specifies that the caller's cross memory mode is to be used to decide the address spaces to
dump' (XMEM or XMEME) or that the caller cannot allow SDUMP to obtain a local
lock (NOLOCAL) or that SVC DUMP should return a reason code with the return code
to the DUMP command processor when the requested dump was not taken (FAILRC).

XMEM requests SVC dump.to use the caner's cross memory mode at the time the
SDUMP macro instruction is executed.

XMEME requests SVC dump to use the caller's cross memory mode at the time of the
error for which the dump is being taken.

The home address space is dumped for both keywords. The relevant primary and
secondary address spaces are also dumped if they are unique. If a cross memory local
lock was held, the address space whose local lock is held is also dumped.

NOLOCAL indicates that the caller is in an environment that cannot tolerate SDUMP
obtaining a local lock. This option has meaning only when BRANCH = YES is specified
and the caller is enabled and unlocked (for example, in an enabled unlocked task FRR or
in SRB or cross memory mode).

F AILRC requests the system to return the explanation for any failures in the dump
function. When you specify this parameter, SVC DUMP passes back a return code in
register 15 and places the reason code in the SDW A. The reason code explains why the
dump failed.

,ECB == ecb addr
If an A-type operand is specified, ecb addr specifies the address of a fullword containing
the address of an event control block that is posted on completion of a scheduled dump.
If a register operand is used, the register must contain the actual address of the event
control block. If this parameter is omitted, the caller is not notified of the completion of
the scheduled dump. The fullword and the event control block must be addressable from
the home address space. The fullword address that points to the event control block must
be a valid 24-bit or 3l-bit address.

Note: The ECB will be posted only if the return code from SDUMP is O.

,SDATA == (data code)
specifies the system control program infonnation to be dumped:

ALLNUC -

ALLPSA -

CSA­

GRSQ­

LPA-

LSQA-

The DAT-ON and DAT-OFF nuclei. The read only (page-protected) area of the
nucleus and the DAT-OFF nucleus will not be included in the dump unless this
keyword is specified.

All of the prefixed storage areas in the system.

The common service area subpools (subpools 231 and 241).

Global resource serialization control blocks are included in the dump.

The active link pack area modules and SVCs for each address space being
dumped.

The local system queue area for each address space being dumped (subpools 229,
230, 233-235, and 253-255).

2-352 SPL: System Macros and Facilities Volume 2

NOALLPSA(NOALL) -

NOSQA­

NOSUMDUMP(NOSUM) -

NUC-

PSA -

RGN-

SQA­

SUMDUMP(SUM) -

SWA-

TRT-

The prefixed storage area for one processor is dumped. This is either the
processor at the time of the error or the processor at the time of the dump.

The system queue area is not dumped.

A summary dump is not included in the SVC Dump.

The non-page protected areas of the DAT-ON nucleus. (The ALLNUC
parameter must be specified to obtain the entire nucleus, including the
page-protected areas of the DAT -ON nucleus and the DA T -OFF nucleus.)

The prefixed storage area for one processor is dumped. This is either the
processor at the time of the error or the processor at the time of the dump.

The allocated pages in the private area of each address space being dumped.
This includes the following areas:

Subpools

0-127, 251, 252

229, 230, 253-255

236 and 237

Storage

All virtual storage in the address space allocated to these
subpools, that resides below and above the 16 megabytes
line

All virtual storage allocated to the LSQA and ELSQA

All virtual storage allocated to the SW A and ESW A

SVC DUMP does not dump all the obtained storage in an address space if the
RGN option of SDATA is specified. This reduces the number of page faults
that occur during SVC DUMP processing, decreases the time required to take a
dump, and reduces the size of dumps on tape or DASD.

For storage that is not related to data-in-virtual, only obtained pages that have
something stored into them are dumped. This eliminates the pages of storage
that are in a freshly obtained state.

For storage that is related to data-in-virtual, pages that are in real storage are
dumped, as well as pages that have been changed since the last DIV macro (that
specified the SAVE service) executed.

When the RGN option of SDAT A is coded on the SDUMP macro, SVC
DUMP uses the RSM facility, IARQDUMP, to determine which category a
page returned by VSMLIST belongs to. The categories are:

1. A copy of the page cannot be found in virtual storage.

2. All copies in virtual storage are at the same level as the copy on permanent
storage.

3. At least one copy of the page has been found in virtual storage that is at a
later level than the copy on permanent storage.

4. RSM cannot determine the status of the page.

SVC DUMP does not dump pages in the first category. It dumps pages in
category 2 that are in real storage and all of category 3. If the page is in category
4, SVC DUMP references the page and then calls IARQDUMP again. if the
page is still in category 4, it is not dumped. If the page is no longer in category
4, it is treated like any other page in its category.

The entire system queue area.

A summary dump is to be included with the SVC dump output. The trace table
is included in the non-summary portion of the dump if this option is specified or
used as a default.

The scheduler work area subpools for each address space being dumped
(subpools 236 and 237). This includes all virtual storage allocated above and
below the 16 megabytes line.

The system trace table, the GTF trace records, and MASTER TRACE DATA
if these types of traces are active.

SDUMP - Dump Virtual Storage 2-353

If the BRANCH = YES and the SUSPEND = NO parameters are specified, the following
system areas are included in the summary dump output:

• A cross memory status record indicating the home, primary, and secondary address
spaces at the. time SVC dump is entered. If the caller held a cross memory local lock,
the ASCB address of the address space whose local lock is held is also displayed.

• Any storage areas specified with the SUMLIST or SUMLST A parameters.

• The physical configuration communication area (PCCA), the logical configuration
communication area (LCCA), and the prefixed storage area (PSA) for each
functioning processor.

• The current PCLINK stack elements pointed to by PSASEL.

• The relevant interrupt handler save area (IHSA). If no local lock is held or the local
lock of the home address space is held, the relevant IHSA is located in the home
address space. If a cross memory local lock is held, the relevant IHSA is located in
the address space whose local lock is held.

• 4K of storage before and 4K after the address in the PSW and every valid unique
address in the registers that are saved in the relevant IHSA. this storage is dumped
using the primary and secondary address space addressability of the unit of work
whose status is saved in the relevant IHSA.

• The XSB associated with the relevant IHSA and the PCLINK stack elements pointed
to by this XSB.

• The system diagnostic work area (SDW A) associated with the failure of the system
routine.

• 4K of storage before and 4K after every valid unique address in the registers that are
saved in this SDW A. This storage is dumped using the primary and secondary
address space addressability of the process encountering the error.

• The global, CPU, and local work/save area vector tables (WSAVTG, WSAVTC,
WSAVTL) and the work/save areas pointed to by the addresses in these vector tables.

• 4K of storage before and 4K after the instruction counter values of the external old
PSW, program check old PSW, I/O old PSW, and restart old PSW saved in the PSA
of all active processors.

• The functional recovery routine (FRR) stack for the current processor.

If the BRANCH = YES and SUSPEND = YES parameters are specified, the following
system areas are included in the summary dump output:

• A cross memory status record indicating the home, primary, and secondary address
spaces at the time SVC dump is entered. If a cross memory local lock is held, the
ASCB of the address space whose local lock is held is also displayed.

• Any storage areas specified with the SUMLIST or SUMLSTA parameters.

2-354 SPL: System Macros and Facilities Volume 2

• The physical configuration communication area (PCCA), the logical configuration
communication area (LCCA), and the prefixed storage area (PSA) for each
functioning processor.

• The interrupt handler save area relevant to the suspended SDUMP caller. If no local
lock is held or the local lock of the home address space is held, the relevant IHSA is
located in the home address space. If a cross memory local lock is held, the relevant
IHSA is located in the address space whose local lock is held.

• The XSB pointed to by the relevant IHSA.

• The PCLINK stack elements pointed to by this XSB.

• The ASCB of the SVC dump caller.

• The suspended unit of work: the TCB/RB/XSB for task mode callers and the
SSRB/XSB for SRB mode callers.

• The PC LINK stack elements associated with the suspended unit of work.

• For task mode SVC dump callers, the following areas are also dumped:

All RTM2WAs associated with the suspended caller's TCB.
All SDWAs pointed to by the located RTM2WAs.

• For SRB mode callers, the following areas are also dumped:

The PCLINK stack elements pointed to by the SSRB/XSB.
The SDW A located as the one for which the dump is being taken.

• The SVC dump caller's register save area.

• 4K of storage before and 4K after the unique register values found in all located
SDWAs and the caller's register save area. This storage is dumped using the primary
and secondary addressability of the program whose registers were saved in these
system areas.

• 4K of storage before and 4K after the address portion of the PSWs in all located
SDWAs.

If the BRANCH = NO parameter is in effect, the following system areas are included in
the summary dump output:

• The ASID record for the address space in which the dump task is executing.

• Any storage areas specified with the SUMLIST or SUMLST A parameter.

• Every RTM2 work area (RTM2WA) associated with every TCB in a dumped address
space.

• 4K of storage before and 4K after all valid, unique PSW and register addresses saved
in each RTM2WA. This storage is dumped using the primary and secondary
addressability saved in the RTM2WA containing the PSW and register values.

SDUMP - Dump Virtual Storage 2-355

In addition to a total of three pages around the PSW address at the time of the error, the
LP A directory and the nucleus map, the following system control blocks are dumped in
all SVC Dumps:

• The communications vector table (CVT), the CVT prefix, and the secondary CVT
(SCVT)

• The global data area (GDA)

• The prefixed storage area (PSA) for the current processor

• Unit control blocks (UCBs)

• The address space vector table (ASVT)

• The address space control block (ASCB) for each address space being dumped

• The linkage table, authorization table, and entry tables for each requested address
space

• The PCCA vector table and all PCCAs

• The trace option block (TOB)

• The trace vector table (TRVT)

Executing the SDUMP macro results in the ALLPSA, SQA, and SUMDUMP storage
areas being dumped unless excluded by the NOALLPSA, NOSQA, or NOSUMDUMP
parameter.

The system dump options specified by the CHNGDUMP operator command can add to
or override the SDAT A options specified with the SDUMP macro instruction.

,STORAGE = (strt addr,end addr)
,LIST = list addr
,LISTA = listaddr

specifies one or more pairs of starting and ending addresses (STORAGE), a list of starting
and ending addresses (LIST), or a list of ASIDs and storage ranges (LIST A).

(Each starting address must be less than its corresponding ending address.) The storage
list must contain an even number of addresses, and each address must occupy one
fullword. In the list, the high order bit of the fullword containing the last ending address
of the list must be set to 1; all other high order bits must be set to O.

2-356 SPL: System Macros and Facilities Volume 2

LIST A specifies a list of storage ranges as follows:

..... ~E--------- 4 bytes ------------'~.

Length of the I ist (~ 484 bytes)

First ASID I Number of ranges \0 be
dumped - this ASID

Range 1 starting address

Range 1 ending address

Range 2 starting address

Range 2 ending address

Last ASID I Number of ranges \0 be
dumped - this ASID

Range 1 starting address

Range 1 ending address

Figure 14. List of Storage Ranges Specified by LISTA

Note: If LISTA or SUBPLST is specified for a scheduled dump request and if the list
does not exceed 484 bytes in size, SVC dump will move the list to SVC dump storage.
The caller can free or reuse this space on return from SVC dump. No synchronization
with SVC dump completion is required. If the list exceeds 484 bytes, SVC dump will not
move the list and synchronization with SVC dump completion is required.

,SUBPLST = subpool id list address
specifies a list of ASIDs with associated subpool ids corresponding to subpools of virtual
storage that are to be included in the SVC dump.

The first fullword of the list contains the number of bytes (including the first word) in the
list. The list can contain a maximum of 200 bytes consisting of unique ASIDs and
subpool ids. If the list contains duplicate ASIDs or subpool ids, the length can exceed
200 bytes because SDUMP stores the unique subpool ids in a 200-byte work area.

The structure of the list for each ASID follows:

• The first word contains the ASID in bits 0-15 and the number of subpools associated
with this ASID (n) in bits 16-31. If 0 is specified as the ASID, the caller's home
ASID is used.

SDUMP - Dump Virtual Storage 2-357

• The next n half words contain the subpool ids (right justified) corresponding to the
virtual storage to be included in the SVC dump. The manner in which these subpools
are dumped depends on whether they are private or common area subpools.

If a private area subpool (related to a TCB) is specified, all virtual storage
associated with this subpool, for all TCBs in the specified address space, is
dumped.

If a common area subpool is specified, all of the virtual storage allocated in the
subpool is dumped.

SVC DUMP does not dump all the obtained storage in an address space if the SUBPLST
list keyword for private subpools is coded. This reduces the number of page faults that
occur during SVC DUMP processing and the time required to take a dump. It also
reduces the size of dumps on tape or DASD.

For storage that is not related to data-in-virtual, only obtained pages that have something
stored into them are dumped. This eliminates the pages of storage that are in a freshly
obtained state.

For storage that is related to data-in-virtual, only pages that are in real storage are
dumped, as well as pages that have been changed since the last data-in-virtual SAVE
operation.

When SUBPLST for private subpools is coded, SVC DUMP uses the RSM facility,
IARQDUMP, to determine which category a page returned by VSMLIST belongs to. The
categories are:

1. A copy of the page cannot be found in virtual storage.

2. All copies in virtual storage are at the same level as the copy on permanent storage.

3. At least one copy of the page has been found in virtual storage that is at a later level
than the copy on permanent storage.

4. RSM cannot determine the status of the page.

SVC DUMP does not dump pages in the 'first category. It dumps pages in category 2 that
are in real storage and all of category 3. If the page falls into category 4, SVC DUMP
references the page and then calls IARQDUMP again. If the page is still in category 4, it
is not dumped. If the page is no longer in category 4, it is treated like other page in its
category.

Notes:

1. If the KEYLIST option is specified, only the storage with keys matching the keys in the
list is dumped.

2. Unassigned subpool ids and ASJDs are skipped.

3. ff' an invalid subpool or ASID (ASJD greater than ASVTMAX) is specified, the caller
receives a 233 ABEND and SDUMP processing terminates the dump.

2-358 SPL: System Macros and Facilities Volume 2

4. If all ASIDs specified in SUBPLST are the current ASID, SUBPLST does not force a
scheduled dump. However, if any of the ASIDs are different, a scheduled (or
asynchronous) dump results.

5. SDUMP callers executing in key 0 and supervisor state, who request storage from
subpoolO via GETMAIN obtain that storage from subpool 252 instead. Therefore, when
these callers want to dump this storage, they must specify subpool 252 rather than
subpoolO.

,KEYLIST = storage key list addr
specifies the address of a list of storage keys associated with the virtual storage to be
dumped. If the key of a subpool specified in SUBPLST does not match a key in this list,
the data in the supbool is not dumped. SUBPLST must be specified if the KEYLIST
option is used. If KEYLIST is not specified, all virtual storage (regardless of key)
associated with the requested subpools will be included in the dump.

The list contains one-byte entries and starts on a halfword boundary. The first byte
indicates the length of the list (including this byte). The list has a maximum length of
16 bytes so that up to 15 keys can be specified. Callers should specify each key in the
leftmost four bits of each byte, except the length byte.

Callers who want to dump the storage corresponding to all 16 keys should not specify this
parameter.

,BUFFER=NO
,BUFFER = YES

specifies that the contents of the SQA buffer is (YES) or is not (NO) to be included in the
dump. (The SQA buffer does not include the SDUMP parameter list or any data pointed
to by the parameter list.) Using BUFFER = YES requires special serialization. Refer to
the topic "SQA Buffer Option" in Volume 1.

,QUIESCE = YES
,QUIESCE=NO

specifies that the system is to be set non-dispatchable until the contents of the SQA and
the CSA are dumped (yES), or that the system is to be left dispatchable (NO). If the
SDAT A parameter does not specify SQA or CSA, the QUIESCE = YES request is
ignored.

Note: Summary dumps (SUMDUMP) for branch entries (BRANCH = YES) always
cause the system to be set non-dispatchable until the summary dump is written.

,BRANCH=NO
,BRANCH = YES

specifies that a branch entry is to be used for interfacing with SVC DUMP to schedule a
dump (YES), or that an SVC 51 instruction is to be generated for interfacing with SVC
DUMP (NO). For BRANCH=NO, the caller cannot be in cross memory mode. For
BRANCH = YES, the caller can be in either cross memory mode or non-cross memory
mode and must be in PSW key 0, supervisor state, and one of the following:.

SRB mode
Holding any lock
Disabled with a PSASUPER bit on
Enabled unlocked task FRR mode with the corresponding PSA bit on

SDUMP - Dump Virtual Storage 2-359

If BRANCH = YES is specified and the caller has not specified at least one of the
following keywords: ASID, ASIDLST, TYPE = XMEM, TYPE = XMEME, or LIST A,
the dump is scheduled to the current home address space.

Routines that issue SDUMP with BRANCH = YES must provide a 72-byte save area
pointed to by register 13.

For BRANCH = YES entry by reentrant recovery routines, SDUMP processing moves the
data supplied by the following parameters to a system area:

HDR
HDRAD
ASIDLIST
STORAGE
LIST
LISTA
SUBPLST
KEYLIST

This enables the recovery routine to free its storage on return from SDUMP although the
dump has not completed.

,SUSPEND = NO
,SUSPEND = YES

specifies that a suspend summary dump is requested (YES) or not requested (NO).
SUSPEND = YES must be used together with the BRANCH = YES and
SDAT A = SUMD UMP parameters. This keyword should be used by system routines that
can experience page faults but that want to save volatile system dump informatioJ.? in a
virtual storage buffer.

,SUMLIST = list addr
,SUMLSTA = list addr

specifies a list of starting and ending addresses of areas to be included in a summary
dump (SUM LIST) or specifies a combined list of ASIDs and storage ranges (SUMLST A).
For SUMLIST, SUMDUMP must be specified as an SDATA parameter and each
starting address must be less than its corresponding ending address when either keyword
is specified.

For SUM LIST, the storage list must contain an even number of addresses, and each
address must occupy one fullword. In the list, the high order bit of the fullword
containing the last ending address of the list must be set to 1, and all other high order bits
must be set to O.

2-360 SPL: System Macros and Facilities Volume 2

For SUMLST A, the list of storage ranges is as follows:

....... r------- 4- bytes ---------' ... ~

Length of the list

First ASID INumber of ranges to be
dumped - this ASID

Range 1 starting address --
Range 1 ending address

Range 2 starting address

Range 2 ending address

Last ASID I Number of ronges to be
dumped - this ASID

Range 1 starting address

Range 1 ending address

Resttiction:

• The maximum number of ASIDs that the combined TYPE=XMEM, TYPE=XMEME,·
LISTA, ASIDLST, ASID, and SUBPLST ·parameters can specify is fifteen.

Note: There is no restriction on the number of ASIDs that the SUMLSTA can specify.

When BRANCH = YES and SUSPEND = NO are also specified, the list must be addressable
using the addressability established when SVC dump was entered. The lists themselves and all
ranges specified must reference paged-in data. Paged-out data is not dumped by summary
dump.

When BRANCH = YES and SUSPEND = YES are also specified, the lists must be addressable
using the addressability established when SVC dump was entered. The lists and referenced data
can either be in paged in or paged out areas. The maximum amount of summary dump data
with this type of dump is 1M.

When BRANCH = NO is also specified, the lists must be addressable in all address spaces in
which the dump will be taken (those address spaces specified by ASID, ASIDLST, LISTA, or
TYPE = XMEM, TYPE = XMEME, or SUBPLST). The lists and referenced data can be in
paged-in or paged-out areas. The maximum amount of summary dump data possible with this
type of dump is dependent only on the size of the dump data set.

Each ASID specified with SUMLST A must represent a valid, swapped-in address space in
order for the data to be dumped.

SDUMP - Dump Virtual Storage 2-361

Programming Notes:

Example 1

The total number of distinct ASIDs that can be specified by TYPE = XMEM,
TYPE=XMEME, LISTA, ASID, SUBPLST and ASIDLST is fifteen. If more than fifteen are
requested, only the first fifteen are processed. There is no restriction on the number of ASIDs
specified by the SUMLSTA paramete'r, nor do SUMLSTA ASIDs contribute toward the fifteen
ASID limit.

If BRANCH = NO was specified and no ASIDs other than the current ASID were requested,
register 15 contains one of the following return codes when control is returned:

Hexadecimal
Code

00
04

08

Meaning

A complete dump was taken.
A partial dump was taken because the dump data
set did not have sufficient space.
The system was unable to take a dump.

If BRANCH = YES or any ASID other than the current ASrD was requested, register 15
contains one of the following return codes when control is returned:

Hexadecimal
Code

00

08

Meaning

A dump was scheduled. If an ECB was supplied,
it will be posted on completion of the dump.
The system was unable to schedule a dump.

If an ECB was supplied, one of the following codes is returned in the ECB:

Hexadecimal
Code

00
04
08

Notes:

Meaning

A complete dump was taken.
A partial dump was taken.
The system was unable to take a dump.

1. When a return code of 8 is received, the SD W A (SD W ASDRC) contains the reason why no
dump was taken. See "Determining the Initial Status of an SVC Dump Request" in Volume 1
for a list of reasons.

2. The ECB will not be posted unless the return code from SDUMP is O.

Operation: This example shows how SVC DUMP can be branch entered to initiate a dump in
an address space by callers who cannot issue an SVC. Areas to be dumped are requested via
three parameters (BUFFER, SDATA, and STORAGE). The dump has the title indicated in
the HDR parameter, the caller requests to be notified of the completion of the scheduled dump
via the ECB parameter, and the dump is going to a private data set (indicated by the DCB
option).

SDUMP HDR=IUSER DATA FOR TEST AI , DCB=TESTADCB,BUFFER=YES, X
ASID=TSTAASID,ECB=(8),QUIESCE=YES,BRANCH=YES, X
STORAGE=(A,B,C,D,(9) ,E) ,SDATA=(ALLPSA,SQA,LSQA)

2-362 SPL: System Macros and Facilities Volume 2

Example 2

Operation: This example shows how SVC DUMP can be invoked via a branch entry to initiate
a dump of several address spaces by callers who cannot issue an SVC. Areas to be dumped are
requested via four parameters (BUFFER, SDATA, LIST, and SUMLIST). The address spaces
to be dumped are described by the ASIDLST parameter. Note that areas specified by
SUMLIST only apply to the current address space. The LIST addressed by the LIST keyword
must be addressable from any address space. The dump has the title indicated in the HDR
parameter, and the caller requests to be notified of the completion of the scheduled dump via
the ECB parameter.

SDUMP HDR='USER DATA FOR TEST B',
BUFFER=YES,ASIDLST=TSTALIST,ECB=(8) ,
QUIESCE=YES,BRANCH=YES,LIST=(9),
SDATA= (ALLPSA,NUC ,SQA,SUMDUMP) ,
SUMLIST=TSTSLIST

TSTALIST DC X'OOOOOOOA800B'
TSTSLIST DC X'0000000080400000'

x
X
X
X

SDUMP - Dump Virtual Storage 2-363

SDUMP (List Form)

Use the list form of the SDUMP macro instruction to construct a control program parameter
list. You can specify any number of storage addresses using the STORAGE parameter.
Therefore, the number of starting and ending address pairs in the list form of SDUMP must be
equal to the maximum number of addresses specified in the execute form of the macro
instruction.

The list form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

b

HDR= 'dump title'
HDRAD = dump title addr

,DCB = dcb addr

,SDATA= (data code)

,STORAGE = (strt addr,end addr)
,LIST = list addr
,LIST A = list addr

,SUBPLST = subpool id list addr

,KEYLIST = storage key list addr

,BUFFER=NO
,BUFFER = YES

,QUIESCE=YES
,QUIESCE = NO

,SUSPEND = NO
,SUSPEND = YES

,TYPE = (type code)

,MF=L

name: symbol. Begin name in column l.

One or more blanks must precede SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: A-type address.

dcb addr: A-type address.

data code: any combination of the following, separated by commas:
ALLNUC NOSUMDUMP/NOSUM
ALLPSA NUC
CSA PSA
GRSQ RGN
LPA SQA
LSQA SUMDUMP/SUM
NOALLPSA/NOALL SWA
NOSQA TRT

Default: SDATA = (ALLPSA,SQA,SUMDUMP)
ALLPSA, SQA, and SUMDUMP are the defaults even if other parameters are
specified for SDATA. NOALLPSA, NOSQA, and NOSUMDUMP must be
specified to suppress these defaults.

Note: The PSA option is not required because it is dumped as a default in all
SVC dumps.

strt addr: A-type address.
end addr: A-type address.
list addr: A-type address.
Note: One or more pairs of addresses may be specified,
separated by commas. For example:
,STORAGE = (strt addr,end addr,strt addr,end addr)

subpool id list addr: A-type address, or register (2) - (12).

storage key list addr: A-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Default: BUFFER = NO

Default: QUIESCE=YES

Default: SUSPEND = NO

type code: any combination of the following, separated by commas: XMEM or
XMEME, NOLOCAL

2-364 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the SDUMP macro instruction, with
the following exception:

,MF=L
specifies the list form of the SD UMP macro instruction.

SDUMP (List Form) 2-365

SDUMP (Execute Form)

A remote control program parameter list is referred to and can be modified by the execute form
of the SDUMP macro instruction.

If you code one or more of the SDAT A parameters on the execute form of the macro
instruction, any SDAT A parameters coded on the list form are lost.

2-366 SPL: System Macros and Facilities Volume 2

The execute form of the SDUMP macro instruction is written as follows:

name

b

SDUMP

b

HDR = 'dump title'
HDRAD=dump title addr

,DCB = dcb addr

,ASIO = A SID addr

,ASIDLST = list addr

,TYPE = (type code)

,ECB = ecb addr

,SDATA= (data code)

,STORAGE = (strt addr,end addr)
,LIST = list addr
,LIST A = list addr

,SUBPLST = subpool id list addr

,KEYLIST = storage key list addr

,BUFFER = NO
,BUFFER = YES

,QUlESCE=YES
,QUIESCE=NO

,BRANCH=NO
,BRANCH=YES

,SUSPEND = NO
,SUSPEND = YES

,SUMLIST = list addr

,SUMLST A = list addr

,MF = (E, ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SDUMP.

One or more blanks must follow SDUMP.

dump title: from 1 to 100 characters.
dump title addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

ASID addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

type code: anyone of the following, separated by commas:
XMEM or XMEME, NOLOCAL

ecb addr: RX-type address, or register (2) - (12).

data code: any combination of the following, separated by commas:
ALLNUC NOSUMDUMP/NOSUM
ALLPSA NUC
CSA PSA
GRSQ RGN
LPA SQA
LSQA SUMDUMP/SUM
NOALLPSA/NOALL SWA
NOSQA TRT

Default: SDATA=(ALLPSA,SQA,SUMDUMP) ALLPSA, SQA, and SUMDUMP
are the defaults even if other parameters are specified for SDATA. NOALLPSA,
NOSQA, and NOSUMDUMP must be specified to suppress these defaults.

Note: The PSA option is not required because it is dumped as a default in all
SVC dumps.

strt addr: RX-type address, or register (2) - (12).
end addr: RX-type address, registers (2) - (12).
list addr: RX-type address, or register (2) - (12).
Default: One or more pairs of addresses may be specified, separated by commas.
For example:
,STORAGE = (strt addr,end addr,strt addr,end addr)

subpool id list addr: RX-type address or register (2) - (12).

storage key list addr: RX-type address, or register (2) - (12).
Note: KEYLIST cannot be specified without SUBPLST.

Note: If BRANCH = YES is specified, ASIO or ASIOLST must also
be specified.

Default: SUSPEND = NO

list addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

ctrl addr: RX-type address, or register (1) or (2) - (12).

SDUMP (Execute Form) 2-367

Example 1

The parameters are explained under the standard form of the SDUMP macro instruction, with
the following exception:

,MF = (E, c trl addr)
specifies the execute form of the SDUMP macro instruction using a remote control
program parameter list.

Operation: The execute form is used to change SDAT A areas, BUFFER, and QUIESCE
options in the SDUMP parameter list. The list form of SDUMP was previously used to create
the basic SDUMP parameter list located by register 1.

SDUMP SDATA=(SQA,LPA),BUFFER=NO,QUIESCE=NO,MF=(E,(l»

2-368 SPL: System Macros and Facilities Volume 2

SETFRR - Set Up Functional Recovery Routines

The SETFRR macro instruction gives control program functions the ability to define their
recovery in the FRR (functional recovery routine) LIFO stack, which is used during processing
of the system recovery manager. Any program function can use SETFRR to define its own
unique recovery environment.

The SETFRR macro instruction can be used to add, delete, or replace FRRs in the LIFO
stack, or to purge all FRRs in the stack. The macro instruction also optionally returns to the
user the address of a parameter area that is eventually passed to the FRR when an error occurs.
The parameter area can be used to keep information that might be useful to the FRR. The exit
and retry routines execute in the same addressing mode as the SETFRR macro expansion and
service routine (for MVSjXA). This is the addressing mode of the issuer of the macro
instruction.

The issuer of the SETFRR macro instruction can be in any cross memory mode but must be in
supervisor state key zero.

All SETFRR users must include the DSECTs for the FRR stack (via the IHAFRRS mapping
macro instruction) and the PSA (via the IHAPSA mapping macro instruction) before using the
SETFRR macro instruction.

The MVSjXA support of the SETFRR macro instruction sets the high-order bit of the recovery
exit routine address to the addressing mode of the issuer. This bit setting determines the
addressing mode of both the recovery exit routine and the retry routine.

The interface to an FRR is described in Volume I under "System Environment." Guidelines for
writing an FRR appear in Volume I under "Recovery Routine Guidelines."

Note: FRRs need not restore registers upon return.

SETFRR - Set Up Functional Recovery Routines 2-369

The SETFRR macro instruction is written as follows:

name: symbol. Begin name in column 1.

h One or more blanks must precede SETFRR.

SETFRR

b One or more blanks must follow SETFRR.

A,FRRAD = FRR addr
R,FRRAD=FRR add,.
D

FRR addr: A-type address, or register (2) - (12).

P

,WRKREGS = (reg 1 ,reg2) regl: decimal digits 1-15.
reg2: decimal digits 1-15.

,PARMAD = pal'm area add,.

,EUT=YES

,MODE=
(
FULLXM
PRIMARY
HOME

GLOBAL
LOCAL
GLOBAL,LOCAL
LOCAL,GLOBAL
)

,RELATED = value

parm area add,.: A-type address, or register (2) - (12).
Note: This parameter may only be specified with A or R above.

Default: MODE=HOME

value: any valid macro keyword specification.

The explanation of the parameter is as follows:

A,FRRAD = FRRAD addr
R,FRRAD=FRRAD addr
D
p

specifies the operation to be performed on the FRR LIFO stack:

A - an FRR address is to be added to the stack.
R - the FRR address last added to the stack is to be

replaced by another FRR address.
D - the FRR address last added to the stack is to be deleted.
P - all entries in the stack are to be purged.

FRRAD specifies the address of a fullword containing the FRR address that is to be
added or replaced. The parameter specifies the FRR address in a register or specifies the
address of a storage location containing the FRR address.

,WRKREGS= (regJ,reg2)
specifies two unique general purpose registers to be used as work registers in the code
generated by the SETFRR macro expansion.

2-370 SPL: System Macros and Facilities Volume 2

,PARMAD = parm area addr
specifies the address of a fullword to receive the address of the 24-byte parameter area
provided by the system to the issuer of SETFRR. If a register is specified, the address of
the 24-byte parameter area is placed in the register. This parameter area is associated
with the FRR address that has either been added to or has replaced an FRR address on
the stack. This parameter area is passed to the FRR when an error occurs.

,EUT=YES
used only with A and R, specifies that the new FRR can be used in any environment.
EUT = YES is used by routines that are not certain of their environment; for example, a
routine that can be called by an SRB or by a task that is executing enabled and might not
hold any locks. While the FRR remains in effect, no SVCs can be issued and no new
asynchronous exits are dispatched.

,MODE = options
specifies the environment in which the FRR is to get control and also, optionally,
identifies the FRRs that free critical resources. The normal or expected addressing
environment is identified by FULLXM, PRIMARY, or HOME. The restricted or critical
resource freeing addressing environment is identified by LOCAL, GLOBAL, or both.
Parentheses are not needed if only one option is chosen.

FULLXM
specifies that the FRR exit must be entered in the same cross memory environment
that existed when the SETFRR was issued.

PRIMARY
specifies that the FRR exit must be entered in primary addressing mode with both
the P ASID and SASID the same as the PASID that existed when the SETFRR was
issued, the home address space must be unchanged, and the PSW key mask must be
the same as when the SETFRR was issued.

HOME
specifies that the FRR exit must be entered in primary addressing mode with
PASID = SASID = HASID, and the PSW key mask either the same as that at the
time of the error for SRB mode, or TCBPKF for TCB mode.

If neither FULLXM, PRIMARY, nor HOME is coded, HOME is the default.

GLOBAL
specifies that the FRR frees a critical global resource. If the FRR cannot be
entered in its normal addressing environment (for example, if the secondary address
space is no longer valid), it must be entered in GLOBAL restricted addressing
environment to free critical resources. To enter the FRR, the system mode must be
one of the following:

• A global spin lock is held.

• The processor is disabled and the current FRR stack is a super stack.

• The processor is disabled and a PSA super bit is on.

If it cannot be entered either as an FRR or as a resource manager, the FRR is
skipped.

SETFRR - Set Up Functional Recovery Routines 2-371

Example 1

Example 2

I-,OCAL
specifies that the FRR frees a critical local resource. If the FRR cannot be entered
in its normal addressing environment then it must be entered in LOCAL restricted
addressing environment to free resources.

In order for the FRR to be entered in LOCAL restricted addressing environment, a
local lock must be held.

If it cannot be entered either as an FRR or as a resource manager, the FRR is
skipped.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Operation: Add an FRR to the FRR stack and return the address of the parameter list to the
issuer of the SETFRR. The FRR address contained in register (R5) is placed on the FRR stack
in the next available FRR entry. On return, register (R2) contains the address of the parameter
list associated with this FRR entry. Registers R3 and R4 are work registers used in the code
generated by SETFRR in performing its operations.

SETFRR A,FRRAD=(R5),PARMAD=(R2),WRKREGS=(R3,R4)

Operation: Delete the last FRR added to the FRR stack.

SETFRR D,WRKREGS=(1,6)

2-372 SPL: System Macros and Facilities Volume 2

SETLOCK - Control Access to Serially Reusable Resources

If RELEASE, TYPE = ALL or RELEASE, TYPE = (reg) is coded, this macro can be assembled
compatibly between MVS/XA and MVS/370 through the use of the SPLEVEL macro
instruction. Default processing will result in an expansion of the macro that operates only with
MVS/XA. The expansion of SETLOCK without RELEASE, TYPE = ALL or RELEASE,
TYPE = (reg) will operate on both MVS/XA and MVS/370. See the topic "Selecting the Macro
Level" for additional information.

The SETLOCK macro instruction is used to control access to serially reusable resources. Each
kind of serially reusable resource is assigned a separate lock. To use SETLOCK, you must be
executing in supervisor state with PSW key zero. The SETLOCK macro instruction can be
used by programs executing in cross memory mode. A DSECT for the PSA (via the IHAPSA
mapping macro) must be included in the CSECT using the SETLOCK macro instruction.

SETLOCK can be used to:

• Obtain a specified lock

• Release a specified lock

• Test a specified lock or to determine if the lock is held on the requestor's processor

• Test whether any user holds a lock higher in the locking hierarchy than a user-specified
lock

There are two classes of locks: global and local. In addition to the CPU lock, there are two
types of locks: spin and suspend. The CPU lock is not a spin lock or a suspend lock; it is a
pseudo spin lock. The descriptions of these locks and the hierarchy structure in which these
locks are arranged are described under "Locking" in Volume 1. CML (cross memory local)
lock means the local lock of an address space other than the home address space. LOCAL lock
means the local lock of the home address space. When written in lower case, local lock means
any local-level lock, either the LOCAL or a CML lock.

Notes:

1. In MVS/XA a locked routine is not allowed to issue an SVC, or invoke a routine that would
issue an SVC on the locked routine's beha?f

2. Caution should be used if SETLOC K is invoked and register 11, 12, 13 or 14 is used as the
program's base register. Some options of the SETLOCK macro cause branch instructions to
be generated after setting registers 11-14 to the required values.

3. MVS/XA does not support either the IOSCAT or the IOSLCH lock. The assembly willfail ~f
a user requests the 10SCAT lock or the IOSLCH lock.

SETLOCK - Control Access to Serially Reusable Resources 2-373

()BT AIN Option

The OBTAIN option of SETLOCK macro instruction is written as follows:

name

b

SETLOCK

b

OBTAIN

,TYPE = RSMGL,ADDR = (11)
,TYPE = VSMFIX
,TYPE = ASM,ADDR = (11)
,TYPE = ASMGL,ADDR=(II)
,TYPE = RSMST,ADDR = (11)
,TYPE = RSMCM,ADDR = (11)
,TYPE = RSMXM,ADDR = (11)
,TYPE = RSMAD,ADDR = (11)
,TYPE = RSM,SCOPE = SHR
,TYPE = RSM,SCOPE = EXCL
,TYPE = VSMPAG
,TYPE=DISP
,TYPE = SALLOC
,TYPE = IOSYNCH,ADDR = (11)
,TYPE = IOSUCB,ADDR= (1 1)
,TYPE=SRM
,TYPE = TRACE, SCOPE = SHR
,TYPE = TRACE,SCOPE = EXCL
,TYPE=CPU
,TYPE=CMS
,TYPE = CMSEQDQ
,TYPE = CMSSMF
,TYPE = CMSALL
,TYPE = CML,ASCB = (11)
,TYPE = LOCAL

,MODE=COND
,MODE = UNCOND
,MODE = UNCOND,DISABLED

,REGS = SAVE
,REGS=USE

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

Note: SCOPE is valid only with TYPE = RSM or TYPE = TRACE.

Note: MODE cannot be specified with TYPE = CPU.

DISABLED must not be specified with
TYPE = CPU, TYPE=CMS, TYPE=CMSEQDQ,
TYPE=CMSSMF, TYPE=CMSALL, TYPE=CML,
or TYPE = LOCAL.

Note: Registers 11-14 will be destroyed if this parameter is
omitted.

value: any valid macro keyword specification.

The parameters are explained as follows:

OBTAIN
specifies that the designated lock is to be obtained on the caller's behalf.

2-374 SPL: System Macros and Facilities Volume 2

,TYPE = RSMGL ,ADDR=(ll)
,TYPE=VSMFIX
,TYPE=ASM ,ADDR=(11)
,TYPE = ASMGL ,ADDR=(ll)
,TYPE = RSMST ,ADDR=(ll)
,TYPE = RSMCM ,ADDR=(11)
,TYPE = RSMXM ,ADDR=(ll)
,TYPE = RSMAD ,ADDR=(ll)
,TYPE=RSM ,SCOPE=SHR
,TYPE=RSM ,SCOPE = EXCL
,TYPE=VSMPAG
,TYPE=DISP
,TYPE=SALLOC
,TYPE = IOSYNCH ,ADDR=(11)
,TYPE = IOSUCB ,ADDR=(ll)
,TYPE=SRM
,TYPE = TRACE ,SCOPE=SHR
,TYPE = TRACE ,SCOPE = EXCL
,TYPE = CPU
,TYPE = CMS
,TYPE = CMSEQDQ
,TYPE = CMSSMF
,TYPE = CMSALL
,TYPE = CML, ASCB = (11)
,TYPE = LOCAL

specifies the type of lock that is to be obtained on the caller's behalf.

The types available are:

RSMGL

VSMFIX

ASM

ASMGL

RSMST

RSMCM

RSMXM

RSMAD

RSM

VSMPAG

is the real storage management global lock. It is a global spin lock used to serialize RSM
global control blocks.

is the virtual storage management fixed subpoollock. It is a global spin lock used to
serialize fixed subpool storage.

is the auxiliary storage management lock. It is a global spin lock used to serialize use of the
ASM control blocks on an address space level.

is the auxiliary storage management global lock. It is a global spin lock used to serialize
ASM resources on a global level.

is the real storage management steal lock. It is used to serialize the stealing of unchanged
pages.

is the real storage management common lock. It is used to serialize RSM resources in the
common area. This includes page frames and PCB queues.

is the real storage management cross memory lock. It is a global spin lock used to serialize
RSM resources on an address space level during cross memory processing.

is the real storage management address space lock. It is a global spin lock used to serialize
resources on an address space level.

is the real storage management lock. It is a global shared/exclusive spin lock used to
serialize RSM resources during recovery and the processing of global functions (such as
reading and writing RSM control blocks).

is the virtual storage management pageable subpools lock. It is a global spin lock used to
serialize the use of pageable common subpools.

SETLOCK - Control Access to Serially Reusable Resources 2-375

DISP

SALLOC

IOSYNCH

IOSUCB

SRM

TRACE

CPU

CMS

CMSEQDQ

CMSSMF

CMSALL

CML

LOCAL

ADDR=(11)

is the global dispatcher lock. It is a global spin lock used to serialize dispatcher functions
(such as updating the address space vector table and changing the address space control
block dispatching queue) on a global level.

is the space allocation lock. It is a global spin lock used to serialize external receiving
routines that enable a processor for either an emergency signal or a malfunction alert.

is the lOS synchronization lock. It is a global spin lock used to serialize the global lOS
functions.

indicates an lOS unit control block lock. These locks (one per UCB) are global spin locks
used to serialize access and updates to UCBs.

is the system resource manager lock. It is a global spin lock used to serialize SRM control
algorithms and associated data.

is the trace lock. It is a global shared/exclusive spin lock used to serialize the system trace
buffer structure.

is the processor lock. It is a pseudo spin lock providing system recognized disablement (that
is logical disablement). There is one CPU lock per processor and no processor can request
another processor's lock. The lock is always available. Users not holding a spin lock can
obtain the CPU lock to become disabled for I/O and external interruptions.

is the cross memory services lock. It is a global suspend lock used to serialize functions
between address spaces where this serialization is not provided by one or more of the global
spin locks.

is the ENQ/DEQ cross memory services lock. It is a global suspend lock used to serialize
ENQ/DEQ functions and the use of ENQ/DEQ control blocks.

is the SMF cross memory services lock. It is a global suspend lock used to serialize SMF
functions and the use of SMF control blocks.

indicates that all the cross memory services locks (CMS, CMSEQDQ, and CMSSMF) are to
be obtained.

is the cross memory local lock. It is a local level suspend type lock used to serialize
resources in an address space other than the home address space.

The requestor of a CML lock must have authority to access the specified address space
before requesting the lock. To establish authority, the requestor sets the primary or
secondary address space to the one specified by the ASCB = (11) parameter. This address
space must be non-swappable before the SETLOCK request.

is the lock that serializes resources in the home address space pointed to by PSAAOLD. It
is a local level suspend lock.

specifies that the address of the lockword has been loaded into register 11 before the
SETLOCK request. This parameter is required for multiple spin type locks and cannot be
specified for single locks.

,SCOPE=SHR
,SCOPE = EXCL

indicates the manner in which the lock is held. If SHR is specified, the lock can be held
by more than one processor at a time. If EXCL is specified, only one processor can hold
the lock.

2-376 SPL: System Macros and Facilities Volume 2

ASCB=(ll)
specifies that the address of the ASCB whose local lock is requested has been loaded into
register 11 before the SETLOCK request. This parameter must be specified if
TYPE = CML is specified and is valid only for CML lock requests

Note: If the requestor specifies OBTAIN, TYPE = CML and the ASCB = (11) parameter
points to the home address space, the request is treated as though the LOCAL lock were
being obtained.

The return registers are:

11 Unchanged if ADDR or ASCB is specified, otherwise unpredictable.
12 Unpredictable.
13 Return code.
14 Return address.

,MODE=COND
,MODE=UNCOND
,MODE = UNCOND,DISABLED

specifies whether the lock is to be conditionally or unconditionally obtained.

COND specifies that the lock is to be conditionally obtained. That is, if the lock is
not owned on another processor, it is acquired on the caller's behalf. If the
lock is already held, control is returned indicating that the caller holds the
lock or that another unit of work on another processor owns the lock.

UNCOND specifies that the lock is to be unconditionally obtained. That is, if the lock
is not owned on another processor, it is acquired on the caller's behalf. If
the lock is already held by the caller, control is returned to the caller
indicating that he already owns the lock. If the lock is held on another
processor, the caller's processor spins on the lock until it is released or
suspends the SETLOCK caller until the lock is available.

DISABLED specifies that the caller is already disabled for I/O and external
interruptions.

,REGS = SAVE
,REGS = USE

specifies the use of registers 11 through 14.

SAVE specifies that register contents are to be saved. Registers 11 through 14 are
saved in the area pointed to by register 13, and are restored upon completion of
the SETLOCK request. The save area consists of at least 5 words (These words
hold the contents of the four registers and the return code that is to be placed in
register 15).

Note: The save area used for the REGS = SAVE parameter must be a different
area than the standard linkage save area used by the program.

SETLOCK - Control Access to Serially Reusable Resources 2-377

Example 1

USE specifies that registers 14, 15, 0, and 1 are available for use. Registers 11, 12,
and 13 are saved in registers 15,0, and 1, respectively, and are restored upon
completion of the SETLOCK request. Register 14 is used as a link register;
register 15 contains the return code.

Note: If neither SAVE nor USE is specified, registers 11-14 are destroyed and
register 13 contains the return code.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to Gorresponding functions or services. The format and contents of the _
information specified are at the discretion of the user, and may be any valid coding
values.

When control is returned, register 15 (register 13, if neither SAVE nor USE is specified)
contains one of the following return codes:

Notes:

Hexadecimal
Code

00

04

08

10

Meaning

The lock was successfully obtained.

The lock was already held by the caller. The lockword id matches the caller's id.

The conditional obtain process was unsuccessful. The lockword id does not match the
caller's id. This means that the lock is owned by another processor. In the case of a
shared/exclusive lock, this return code means that the lock was not immediately
available with the scope requested.

A level error was detected. This return code is supplied on a conditional obtain only. A
level error detected on an unconditional obtain results in an abnormal termination.

1. See the topic "Locking" in Volume 1 for a description of the types of level errors that the lock
manager can and cannot detect.

2. For an unconditional request, if the caller holds the lockword on a different level, the lock
manager abnormally terminates the caller with a 073 ABEND.

3. If the RSM lock or the TRACE lock is held shared and requested exclusive on the same
processor, or held exclusive and requested shared on the same processor, the lock manager
issues a 073 ABEND with reason code of X'24'.

Operation: The global dispatcher lock, DISP, is to be conditionally requested. The
RELATED parameter indicates that the DISP lock serializes the ASCB resource, and the lock
is either freed at the location represented by NAME or SYMI in module MODABE or by
SYMZ in module MODABC.

SETLOCK OBTAIN,TYPE=DISP,MODE=COND,RELATED=(ASCB,
MODABE(NAME,SYM1) ,MODABC(SYMZ))

x

2-378 SPL: System Macros and Facilities Volume 2

Release Option

The RELEASE option of the SETLOCK macro instruction is written as follows:

name

b

SETLOCK

b

RELEASE

,TYPE = RSMGL,ADDR = (11)
,TYPE=VSMFIX
,TYPE = ASM,ADDR= (1 1)
,TYPE = ASMGL,ADDR = (11)
,TYPE = RSMST,ADDR = (11)
,TYPE = RSMCM,ADDR = (11)
,TYPE = RSMXM,ADDR = (11)
,TYPE = RSMAD,ADDR= (11)
,TYPE = RSM,SCOPE = SHR
,TYPE = RSM,SCOPE = EXCL
,TYPE = VSMPAG
,TYPE=DISP
,TYPE = SALLOC
,TYPE = IOSYNCH,ADDR = (1)
,TYPE = IOSUCB,ADDR = (11)
,TYPE=SRM
,TYPE = TRACE,SCOPE = SHR
,TYPE = TRACE,SCOPE = EXCL
,TYPE = CPU
,TYPE=CMS
,TYPE = CMSEQDQ
,TYPE = CMSSMF
,TYPE = CMSALL
,TYPE = LOCAL
,TYPE = SPIN
,TYPE=ALL
,TYPE = (reg)
,TYPE = CML,ASCB = (11)

,DISABLED

,REGS = SAVE
,REGS=USE

,RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

reg: decimal digit 2 - 10.
Note: SCOPE is valid only for TYPE = RSM or TYPE = TRACE.

Note: DISABLED cannot be specified with TYPE = CMS.
TYPE = CMSEQDQ, TYPE = CMSSMF, TYPE = CMSALL,
TYPE = CML, TYPE = LOCAL, or TYPE = CPU

value: any valid macro keyword specification.

The parameters are explained under the OBTAIN option of the SETLOCK macro instruction.
with the following exceptions:

REI~EASE

specifies that the lock is to be released.

SETLOCK - Control Access to Serially Reusable Resources 2-379

,TYPE = SPIN
,TYPE = ALL
,TYPE = (reg)

specifies the type of lock that is to be released.

SPIN

ALL

(reg)

Notes:

indicates that all spin locks currently held on the processor are to be released.

indicates that all locks currently held on the processor are to be released.

indicates that the specified register contains a bit string identifying the locks to be released.
A value of 1 indicates that the lock held is to be released; a value of 0 indicates that the
status of the lock will not change. The bit meanings are:

Bit Lock

00 CPU
01 Reserved
02 Reserved
03 Reserved
04 RSM
05 TRACE
06 Reserved
07 Reserved
08 Reserved
09 Reserved
10 Reserved
11 RSMCM
12 RSMGL
13 VSMFIX
14 ASMGL
15 RSMST
16 RSMXM
17 RSMAD
18 VSMPAG
19 DISP
20 ASM
21 SALLOC
22 IOSYNCH
23 Reserved (previously I OSCA T)
24 IOSUCB
25 Reserved (previously IOSLCH)
26 Reserved
27 Reserved
28 Reserved
29 SRM
30 Any cross memory services lock held
31 LOCAL or CML lock

I. It is highly recommended that users who specify TYPE = ALL or TYPE = (reg) recompile.
Such users must recompile if they hold a lock that is new to MVSjXA at the time of the
SETLOCK RELEASE request.

2. .You must specify TYPE= CMSALL to obtain all the CMS locks. To release all CMS locks,
you must spec(fv RELEASE, TYPE= CMSALL. You cannot specify RELEASE,
TYPE = C}JS if you own all of the CMS locks.

3. '(you spec(fy RELEASE. T.YPE= CML and the ASCB= (11) parameter specifies the home
address space and the lock you are holding is home's local lock, then SETLOCK processing
treats the CML release request as a RELEASE. TYPE = LOCAL.

2-380 SPL: System Macros and Facilities Volume 2

4. If the CPU lockword is held on a processor, RELEASE,TYPE= ALL and
RELEASE,TYPE= SPIN cause the lockword to be set to zero; RELEASE,TYPE= (reg)
causes the lockword to be decreased by one.

5. The SCOPE keyword cannot be spec~fled with the following options:

RELEASE,TYPE=ALL
RELEASE,TYPE=SPIN
RELEASE, TYPE= (reg)

rr a shared/exclusive lock is to be released via one of these invocations, the shared/exclusive
lock will be released with the scope currently in effect on the processor.

,DISABLED
specifies that control is to be returned to the caller with the processor physically disabled
for I/O and external interruptions when a lock is successfully released. This form should
be used only by those routines which do not have the disabled supervisor indicator on
when they are executing and which, upon release of a global spin lock, must remain
physically disabled due to noninterruptibility or have recursion constraints. When control
is returned, register 15 (register 13 if neither SAVE nor USE is specified) contains one of
the following return codes:

Hexadecimal
Code

00

04

08

OC

Meaning

The lock was successfully released.

The lock was not owned. The lock was free when the release request was issued.

The release process was unsuccessful. The lockword id does not match the caller's id. This
means that the lock was owned by a different processor.

The release process was unsuccessful. The caller does not own the specified local or CML
lock. This return code applies to LOCAL or CML release only.

The following return codes refer to multiple locks:

• If TYPE = CMSALL is specified, the return code will be as described above as long as the
caller owns either both of the cross memory services locks, or none at all. Users, who own
only one of the cross memory services locks, but specify CMSALL on the release, will be
abended.

• If TYPE = ALL or TYPE = (reg) is specified, the return code is X'OO'.

• If TYPE = SPIN is specified, the return code is X'OO' for success or X'04' if no spin locks
were held at entry to the service routine.

SETLOCK - Control Access to Serially Reusable Resources 2-381

Example 1

Example 2

Operation: Release the local lock.

SETLOCK RELEASE ,TYPE=LOCAL ,RELATED= (TCBRQ,MODI (NAMEl) , X
MOD2 (NAME2))

Operation: Release the IOSUCB lock whose address is in register 11.

SETLOCK RELEASE,TYPE=IOSUCB,ADDR=(ll) ,RELATED=(AXYZ,MODl(LABEL))

2-382 SPL: System Macros and Facilities Volume 2

TEST Option

The TEST option of the SETLOCK macro instruction is written as follows:

name

b

SETLOCK

b

TEST

,TYPE = RSMGL
,TYPE = VSMFIX
,TYPE=ASM
,TYPE = ASMGL
,TYPE = RSMST
,TYPE = RSMCM
,TYPE = RSMXM
,TYPE = RSMAD
,TYPE = RSM,SCOPE = SHR
,TYPE = RSM,SCOPE = EXCL
,TYPE=VSMPAG
,TYPE = DISP
,TYPE = SALLOC
,TYPE = IOSYNCH
,TYPE=IOSUCB
,TYPE=SRM
,TYPE =TRACE,SCOPE = SHR
,TYPE = TRACE,SCOPE = EXCL
,TYPE=CPU
,TYPE=CMS
,TYPE = LOCAL
,TYPE = SPIN
.TYPE=ALL
,TYPE = (reg)
,TYPE=CML
,TYPE = ALOCAL
,TYPE=HIER

,ADDR = (reg)

,ASCB= (11)

,LOCKHLD = (reg)

,LOCK = lockname

,BRANCH = (HELD,addr)
,BRANCH = (NOTHELD,addr)
,BRANCH = (HELD.label)
,BRA NCH = (NOTHELD,label)

,REGS = (reg)
.REGS= fregi,reg2)

,RELATED = va/ue

name: symbol. Begin name in column I.

One or more blanks must precede SETLOCK.

One or more blanks must follow SETLOCK.

reg: any valid register value

Note: ADDR = (reg) can only be specified with:

TYPE ~~ RSMGL
TYPE=ASM
TYPE=ASMGL
TYPE=RSMST
TYPE=RSMCM

TYPE=RSMXM
TYPE=RSMAD
TYPE = IOSYNCH
TYPE = IOSCUCB

Note: ASCB can only be specified with TYPE=CML.

Note: LOCKHLD can only be specified with TYPE=CML, TYPE=-~ALOCAL.
TYPE=CPU

Note: LOCK = lockname is required and can only be specified with TYPE~" HIER.
lockname: any lock except:

LOCAL ALOCAL CMSSMF
CML CPU
CMS CMSEQDQ

addr: RX-address. addr cannot be specified with TYPE=HIER.

label: symbol. label can only be specilied with TYPE = BIER.

reg: decimal digit 2-12.
Note: (reg) can only be specified with
TYPE =SPIN, TYPE =ALL. or TYPE = (reg)
reg 1: any valid register value except O.
reg2: any valid register value.
Default: If (reg J .reg2 j is not speciiied, the default is (I LJ 2).
Note: (regJ.reg2) can only be specified with TYPE=HIER.

vallie: any valid macro keyword specification.

SETLOCK - Control Access to Seriaily Reusable Resources 2-383

The parameters are explained under the OBTAIN or RELEASE option of the SETLOCK
macro instruction, with the following exceptions:

TEST
specifies that the designated lock is to be checked to determine if it is currently held on
the requesting processor.

,TYPE = SPIN
specifies that the caller wants to determine whether he holds any spin locks or the CPU
lock.

,TYPE = ALL
specifies that the caller wants to determine whether he holds any locks.

,TYPE = (reg)
specifies that the caller wants to determine whether he owns the locks indicated by the bit
setting in the specified register.

,TYPE=CML
specifies that the requestor wishes to determine whether a CML lock is held. The
ASCB = (11) parameter or the LOCKHLD = (reg) parameter must be specified with
TYPE=CML. '

,TYPE = ALOCAL
specifies that the requestor wishes to determine whether a local lock is held, either home's
LOCAL or a CML. The LOCKHLD = (reg) parameter may be specified with
TYPE == ALOCAL. ASCB may not be specified with TYPE = ALOCAL.

,TYPE=HIER
indicates that a check is to be made to determine whether the requesting processor owns
any locks higher in the locking hierarchy than that specified by the parameter,
LOCK = lockname.

,ADDR= (reg)
specifies that the designated register contains the lockword address to be used to
determine if the specified lock is owned by the caller. This parameter is only valid for
multiple spin type locks but is not a required parameter.

,ASCB=(ll)
specifies that the register 11 contains the ASCB address that is to be checked to determine
if the requestor owns its local lock as a CML lock. This parameter is only valid with
TYPE=CML.

,LOCKHLD = (r~g)
specifies that the a designated register is to be used as a work register by the macro. This
parameter is valid only for TYPE = CML, TYPE = ALOCAL, and TYPE = CPU.

If TYPE = CML is specified, this register is loaded with the contents of PSALOCAL. If a
CML lock is held, this register will contain the ASCB address of the CML locked address
space.

If TYPE = ALOCAL is specified, this register is loaded with the contents of PSALOCAL.
If the LOCAL lock is held, this register will contain zero.

2-384 SPL: System Macros and Facilities Volume 2

If TYPE = CPU is specified, this register will be loaded with the current CPU lock use
count for this processor.

,LOCK = lockname
is used with TYPE = HIER to determine whether the processor holds any locks higher
than lockname.

,BRANCH = (HELD,addr)
,BRANCH = (NOTHELD,addr)
,BRANCH = (HELD,label)
,BRANCH = (NOTHELD,label)

specifies that the return code setting of the macro instruction is to be suppressed and
replaced by a direct branch to the specified address or the specified label.

If (HELD,addr) is specified, the address is branched to if the specified lock, or at least
one lock for TYPE = ALL or TYPE = SPIN, or all the specified locks for TYPE = (reg)
are held on the requesting processor.

If (NOTHELD,addr) is specified, the address is branched to if the specified lock is not
currently held on the requesting processor, or if not all the locks specified for
TYPE = (reg) are held, or if no lock for TYPE = ALL or TYPE = SPIN is held.

(HELD,label) indicates that program execution will continue at the label specified if any
higher locks are held. This can be specified only with TYPE = HIER.

(NOTHELD,label) indicates that program execution will continue at the label specified if
no locks higher than the lock specified are held. This can be specified only with
TYPE = HIER.

,REGS = (reg)
,REGS = (reg 1 ,reg2)

(reg) is used only with TYPE = SPIN, TYPE = ALL, and TYPE = (reg). After the macro
executes, the register specified contains a bit string identifying which locks are held. If the
bit string is partially correct (that is, one of the locks specified is not held), the input
string is combined with the PSACLHS field by an AND instruction and the results are
returned in the register specified.

(reg 1 ,reg2) is used with TYPE = HIER. The registers specified are two unique general
purpose registers to be used as work registers in the code generated by the SETLOCK
TEST expansion. If REGS is not specified, the default is (11,12). -*

SETLOCK - Control Access to Serially Reusable Resources 2-385

Example 1

Example 2

Example 3

When control is returned, register 15 contains one of the following return codes (if the
BRANCH = parameter was omitted):

Hexadecimal
Code

00

04

Notes:

Meaning

The lock was held by the requestor, all the locks were held (if the request was for several locks
via a register), at least one lock was held (if TYPE = CMS, TYPE = ALL, or TYPE = SPIN was
specified), or no locks higher in the hierarchy than a user-supplied lock were held.

The lock was not held by anybody, not all the locks were held (if the request was for several
locks via a register), no lock was held (if TYPE = CMS, TYPE = ALL, or TYPE = SPIN was
specified), or at least one lock higher in the hierarchy than a user-specified lock was held.

1. TYPE = CMS is used to determine ~f at least one cross memory services lock is held, but
cannot be used to determine which one or if all are held.

2. If you specify the ADDR = (reg) parameter for a multiple spin type lock, then the designated
register contents are compared to the appropriate current lock held table slot (PSACLHT).

3. /fyou do not spec(fy the ADDR= (reg) parameter, then only the appropriate PSACLHS bit
is used to determine whether the lock is currently owned by the requestor.

4. If you specify TYPE=ALOCAL without the ASCB or LOCKHLD parameter, then only the
PSACLHS bit for the local lock is used to determine whether you currently own any local
lock. The LOCKHLD parameter permits you to extract the CML lock indicator from the
PSALOCALfield and load it into a designated register. PSALOCAL, in conjunction with
the local lock bit in PSACLHS, indicates whether you hold any local lock as well as whether
it is a CML lock or the LOCAL lock.

Operation: If a local lock is not held, branch to DSRLLINT, otherwise, execute the next
sequential instruction.

SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT)

Operation: Put the current CPU lock use count for this processor into register 3.

SETLOCK TEST,TYPE=CPU,LOCKHLD=(3)

Operation: Branch to the label HERE if the processor does not own any locks higher in the
locking hierarchy than the RSM lock; otherwise execute the next sequential instruction.

SETLOCK TEST,TYPE=HIER,LOCK=RSM,BRANCH=(NOTHELD,HERE)

2-386 SPL: System Macros and Facilities Volume 2

SETRP - Set Return Parameters

If you are executing in 31-bit addressing mode, you must use the MVSjXA version of this
macro instruction.

The SETRP macro instruction is used to indicate the various requests that a recovery routine
can make. It may be used only if a system diagnostic work area (SDW A) was passed to the
recovery routine. The macro instruction is valid only for FRRS and EST AE type recovery
routines.

The description of the SETRP macro instruction follows. The SETRP macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the RECORD,
RECPARM, FRELOCK, CPU, SERIAL, and RETRY parameters. These parameters are
restricted in use to programs executing as functional recovery routines in supervisor state or key
0-7 and, therefore, are only described here.

Note: This macro instruction requires that the IHASDWA mapping macro be assembled as a
DSECT in the caller's program. The SDWA is addressable when the recovery routine is
entered; when the SETRP macro instruction is issued, the same address space must be
addressable.

SETRP - Set Return Parameters 2-387

The SETRP macro instruction is written as follows:

name

b

SETRP

b

WI(AREA = (reg)

,REGS = (reg))
,REGS = (reg) ,reg 2)

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

,DUMPOPT=parm list addr

,RC=O
,RC=4
,RC=16

,RETADDR = retry addr

,RETREGS = NO
,RETREGS = YES
,RETREGS = YES,RUB = info addr

,FRESDWA = NO
,FRESDW A = YES

,COMPCOD = code
,COMPCOD = (code, USER)
,COMPCOD= (code,SYSTEM)

,FRELOCK= (locks)

name: symboL Begin name in column I.

One or more blanks must precede SETRP.

One or more blanks must follow SETRP.

reg: decimal digits 1-12.
Default: WKAREA = (1)

reg}: decimal digits 0-12, 14, 15.
reg2: decimal digits 0-12, 14, 15.
Note: If reg} and reg2 are both specified, order is 14, 15,0-12.

Default: DUMP=IGNORE

parm list addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if DUMP=YES is specified above.

Default: RC=O

retry addr: RX-type address, or register (2) - (12).
Note: This parameter may be specified only if RC = 4 is specified above.

info addr: RX-type address, or register (2) - (12).
Default: RETREGS = NO
Note: This parameter may be specified only if RC = 4 is specified above. If
RET REGS = YES is specified for a FRR, all registers are restored from
SDW ASRSV with the exception of register 15. Register 15 always contains the

. entry point of the retry routine.

Default: FRESDW A = NO
Note: This parameter may be specified only jf RC = 4 is specified above.

code: symbol, decimal digit, or register (2) - (12).
Default: COMPCOD = (code,USER)

locks: any combination of the following, separated by commas:

RMS(lockword) SRM
VSMFIX TRACE
ASMGL(lockword) CPU
RSMST(lockword) SALLOC
RSMCM(lockword) CMS
RSMXM(lockword) LOCAL
RSMAD(lockword) IOSUCB(lockword)
RSM IOSYNCH(lockword)
VSMPAG ASM(lockword)
DISP CML(cmlasch)

cmlascb: RX-type address or register (2) - (12).
lockword: RX-type address.
Note: This parameter may be specified only if RC = 0 is specified above.

2-388 SPL: System Macros and Facilities Volume 2

,REASON = code

,CPU = reg

,RECORD = IGNORE
,RECORD=YES
,RECORD=NO

,RECPARM = record list addr

,SERIAL = YES
,SERIAL=NO

,RETRY=FRR
,RETRY = ERROR

,RETRYI5=NO
,RETRY15=YES

,REMREC=NO
,REMREC = YES

,FRLKRTY = NO
,FRLKRTY=YES

code: symbol. decimal or hexadecimal number, or register (2) - (12).

reg: decimal digits 2-12.

Default: RECORD = IGNORE

record list addr: RX = type address, or register (2) - (12).
Note: This parameter may be specified only if RECORD = IGNORE or
RECORD = YES is specified above.

Default: RETRY = FRR

Default: RETRYI5=NO

Default: REMREC = NO

Default: FRLKRTY = NO

The parameters are explained below:

,WKAREA = (reg)
specifies the address of the SDWA passed to the recovery exit. If this parameter is
omitted, the address of the SDW A must be in register 1.

,REGS = (reg 1)
,REGS = (reg 2)

specifies the register or range of registers to be restored from the save area pointed to by
the address in register 13. If REGS is specified, a branch on register 14 instruction will
also be generated to return control to the control program. If REGS is not specified, the
user must code his own return.

,DUMP = IGNORE
,DUMP = YES
,DUMP=NO

specifies that the dump option fields will not be changed (IGNORE), will be zeroed (NO),
or will be merged with dump options specified in previous dump requests, if any (YES).
If IGNORE is specified, a previous exit had requested a dump or a dump had been
requested via the ABEND macro instruction, and the previous request will remain intact.
If NO is specified, no dump will be taken.

,DUMPOPT = parm list addr
specifies the address of a parameter list that is valid for the SNAP macro instruction. The
parameter list can be created by using the list form of the SNAP macro instruction, or a
compatible list can be created. If the specified dump options include subpools for storage
areas to be dumped, up to seven subpools can be dumped. Subpool areas are accumulated
and wrapped, so that the eighth subpool area specified replaces the first. The TCB, DCB,
and STRHDR options available on SNAP are ignored if they appear in the parameter
list. The TCB used will be the one for the task that suffered the error. The DCB used
will be one created by the control program, and either SYSABEND, SYSMDUMP, or
SYSUDUMP will be used as a DDNAME.

SETRP - Set Return Parameters 2-389

,REASON = code
specifies the reason code that the user wishes to pass to subsequent recovery exits. The
value range fo~ code is any 32-bit hexadecimal number or 31-bit decimal number. See
Supervisor Services and Macro Instructions for information about how a user can change
this code.

,RC=O
,RC=4
,RC=16

specifies the return code the recovery routine sends to RTM to indicate what further
action is required:

a Continue with termination, causes entry into
previously-specified recovery routine, if any.

4 Retry using the retry address specified.
16 - Suppress further ESTAljSTAI processing

(for ESTAI only)

,RETADDR=retryaddr
specifies the address of the retry routine to which control is to be given.

,RETREGS = NO
,RETREGS = YES
,RETREGS = YES ,RUB = reg info addr

specifies the contents of the registers on entry to the retry routine. If NO is specified,
explicitly or as a default, only parameter registers (14-2) are passed; all others are
unpredictable. If YES is specified, the contents of the SDW ASRSV field will be used to
initialize registers 0-14 when an FRR requests retry and registers 0-15 when an ESTAE
requests retry. For ESTAE exits, this field contains the registers at the last interruption
of the RB level at which retry will occur. For ESTAI exits, the contents of SDWASRSV
must be set by the user either before SETRP is issued or by use of the RUB parameter;
any field not set will cause the corresponding register to contain 0 on entry to the retry
routine.

RUB specifies the address of an area (register update block) that contains register update
information. RTM will move the data specified in this area into the'SDWA and into the
general purpose registers before entry to the retry routine.

The maximum length of the RUB is 66 bytes:

• The first two bytes represent the registers to be updated, register 0 corresponding to
bit 0, register 1 corresponding to bit 1, and so on. The user indicates which of the
registers are to be stored in the SDWA by setting the corresponding bits in these two
bytes.

• The remaining 64 bytes contain the update information for the registers, in the order
0-15. If all 16 registers are being updated, this field consists of 64 bytes. If only one
register is being updated, this field consists of only 4 bytes for that one register.

For example, if only registers 4, 6, and 9 are being updated:

• Bits 4, 6, and 9 of the first two bytes are set.

• The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4 bytes are
for register 4, followed by 4 bytes for register 6, and 4 final bytes for register 9.

2-390 SPL: System Macros and Facilities Volume 2

,FRESDWA=NO
,FRESDWA = YES

specifies that the entire SDW A be freed (YES) or not be freed (NO) before entry into the
retry routine.

,COMPCOD = comp code
,COMPCOD = (comp code,USER)
,COMPCOD = (comp code,SYSTEM)

specifies the user or system completion code that the user wants to pass to subsequent
recovery exits.

,FRELOCK = (locks)
specifies the locks to be freed and the corresponding lockwords that are placed in the
SDWA:

RSMGL(lockword)
VSMFIX
AS M G L(lockword)
RSMST(lockword)
RSMCM(lockword)
RSMXM(lockword)
RSMAD(lockword)
RSM
VSMPAG
DISP
SRM
TRACE
CPU
SALLOC
CMS
LOCAL
IOSUCB(lockword)
IOSYNCH(lockword) -
ASM(lockword)
CML(cmlascb)

Real storage management global lock
Virtual storage management fixed subpoollock
Auxiliary storage management global lock
Real storage management steal lock
Real storage management common lock
Real storage management cross memory lock
Real storage management address space lock
Real storage management lock
Virtual storage management subpoollock
Global dispatcher lock
Systems resource manager lock
Trace lock
Processor lock
Space allocation lock
Cross memory services lock
Storage lock of the storage the caller is executing in
lOS unit control block lock
lOS synchronization lock
Auxiliary storage management lock
Cross memory local lock, where cmlascb indicates
the ASCB address of the address space for which
the local lock is to be freed

Note: If FRLKRTY = NO is specified or taken as a default, the specified locks are freed
only on percolation, not on retry. Specifying FRLKRTY = YES allows the locks listed in
FRELOCK to be freed on retry.

,CPU = (reg)
specifies the register that contains the logical processor identification of the processor
holding the resource that this processor is waiting for.

,RECORD = IGNORE
,RECORD = YES
,RECORD=NO

specifies that the entire SDWA (fixed, base, variable areas, and extensions) is to be
written on SYS.l.LOGREC (YES), is not to be written on SYS1.LOGREC (NO), or is to
be written as indicated prior to the SETRP macro instruction (IGNORE).

,RECP ARM = record list addr
specifies the address of a user-supplied record parameter list used to update the SDW A
with recording information. The parameter list consists of three 8-byte fields:

• The first field contains the load module name.

SETRP - Set Return Parameters 2-391

• The second field contains the CSECT name (assembly module name).

• The third field contains the recovery routine name (assembly module name). If the
recovery routine label is not the same as the assembly module name, the label can be
placed in the SDW ARRL field.

The three fields are left-justified, and padded with blanks.

,SERIAL = YES
,SERIAL=NO

specifies whether the percolation from an SRB mode FRR to a related task recovery
routine (EST AE or FRR) is to be serialized (YES) or not serialized (NO) with respect to
unlocked task recovery. See "SRB to Task Percolation" in Volume 1.

If the task is already in recovery for another error when SERIAL = YES is specified, the
percolation request is deferred pending a requested task retry from any recovery routine
covering mainline code. If such a retry is not requested, the task is terminated and all
deferred percolations are purged. Only the last FRR to receive control when an error
occurs can specify SERIAL = YES.

,RETRY=FRR
,RETRY = ERROR

specifies the cross memory environment in which the retry routine gets control.

RETRY = FRR, the default, specifies that the retry routine gets control in the cross
memory environment that exists at the time of entry to the FRR.

RETRY = ERROR specifies that the retry routine gets control in the cross memory
environment that existed at the time of the error. Do not specify RETRY = ERROR if
the cross memory status at the time of the error is not available, that is, if SDWARPIV is
set to one. (Be careful not to create a loop by retrying to an erroneous cross memory
state with RETRY = ERROR.)

,RETRY15 = YES
,RETRY15 = NO

In an FRR environment only, specifies that register 15 is restored from SDWASRSV if
RETRY15 = YES. Otherwise, it contains the entry point address of the retry routine.

This parameter may be specified only when RC=4 is specified. IfRETRYI5=YES is
not coded on any SETRP invocation prior to returning to RTM, the effect is that of
specifying RETRY15=NO.

,REMREC = YES
,REMREC=NO

In an FRR or EST AE environment, specifies that the FRRjEST AE entry for the
currently running FRRjEST AE routine be removed (REMREC = YES) or not removed
(REMREC = NO). This parameter may be specified only when RC = 4 is specified,
indicating a retry request.

The entry is removed before control returns to the retry point. If REMREC = YES is
not coded on any SETRP invocation before RTM receives control, the effect is that of
specifying REMREC = NO. The REMREC parameter may be used to remove a recovery
routine that has been established with a token, although the token cannot be specified
when you code the SETRP macro.

2-392 SPL: System Macros and Facilities Volume 2

,FRLKRTY = YES
,FRLKRTY = NO

In an FRR environment only, specifies that the locks specified on FRELOCK be freed
(FRLKRTY=YES) or not be freed (FRLKRTY = NO) on retry.

This parameter may be specified only when RC = 4 is specified. If FRLKRTY = YES is
not coded on any SETRP invocation prior to returning to RTM, the effect is that of
specifying FRLKRTY = NO.

Notes:

1. The variable recording area (SD W A V RA) contains the variable information that is supplied
by the user. This consists of footprints or other information about the execution environment
at the time of the failure. The execute form of the VRADATA macro and the IHAVRA
mapping macro can be used to supply this data in a key-length-data format to simplify later
decoding. The variable recording area is preceded by the following control information:

• A two-byte length field (SD W A VRAL) , filled in by the system, specifying the total length
available to the user. This is 255 bytes, the length of the SDWAVRA field.

• A one-byte flag field (SD W ADPV A), filled in by the user, specifying the format of the
data to be dumped. The flags used to specify the format are:

SD W A HEX for hexadecimal format
SDWAEBC for EBCDIC format
SDWAVRAM for key-length-data

More than one of these flags can be set. If the SDWAEBC flag is set, the EREP
programformats the SDWAVRA in EBCDIC and hexadecimalfor SYS1.LOGREC
output.

• A one-byte length field (SDWA URAL) , filled in by the user, specifying the actual length
of the data.

2. The FRESD W A parameter cannot be specified or defaulted for a functional recovery routine
(FRR). The SDWA is always released before an FRR's retry routine gets control.

3. The SERIAL parameter is relevant only for FRRs established for SRBs that have a related
task.

4. The SERIAL and RETRY parameters are mutually exclusive.

5. SETRP does the following in response to requests to alter the completion code and/or reason
code:

• If the COMPCOD parameter is altered, SETRP places the new completion code in the
SDWACMPC field of the SDWA and sets the SDWACCF flag to indicate that a
recovery exit altered the completion code.

• If the REASON parameter is specified, SETRP places the new reason code in
SDWACRC and sets the SDWAREAF flag to indicate that a recovery exit altered the
reason code.

SETRP - Set Return Parameters 2-3 9 3

Example 1

Example 2

Example 3

The following table indicates which parameters are available to functional recovery routines
(FRRs) and which parameters are available to ESTAE-type recovery routines.

Parameter FRR EST AE-type recovery routines
WKAREA x x
REGS x x
DUMP x x
REASON x x
RC=O x x
RC==4 x x
RC=16 x
RETADDR x x
RETREGS x x
RUB x x
FRESDWA x
COMPCOD x x
FRELOCK x
CPU x
RECORD x x
RECPARM x x
SERIAL x
RETRY x

Operation: Cause a restart interruption on the processor identified by the contents of register
7. In this example, the interrupted function is spinning on a lock currently being held by the
processor identified in register 7.

SETRP CPU=(7)

Operation: The first FRR established for an SRB routine requests percolation, freeing of the
CML lock (the ASCB address is in register 2), and serialization of percolation to the related
task.

SETRP RC=O,FRELOCK=(CML(2)),SERIAL=YES

Operation: An FRR requests retry with the retry routine getting control in the same cross
memory mode as the time of FRR entry. The retry address is in register 3.

SETRP RC=4,RETADDR=(3),RETRY=FRR

2-394 SPL: System Macros and Facilities Volume 2

SPIE - Specify Program Interruption Exit

The SPIE macro instruction specifies the address of an interruption exit routine and the
program interruption types that are to cause the exit routine to get control. If the program
interruption types specified can be masked, the corresponding program mask bit in the PSW
(program status word) is set to 1.

Only callers in 24-bit addressing mode can issue the SPIE macro instruction. If a caller in
31-bit addressing mode issues a SPIE macro, the caller is abended with a system completion
code of X'30E'. Callers in 31-bit addressing mode must use the ESPIE macro instruction,
which performs the same function as the SPIE macro instruction for callers in both 24-bit and
3l-bit addressing mode. For additional information concerning the relationship between the
SPIE and the ESPIE macro instructions, see the section on program interruption processing in
Volume 1.

Note: In MVS/370 the SPIE environment existed for the life of the task. In MVSjXA, the
SPIE environment is deleted when the request block that created it is deleted. That is, when a
program running under MVSjXA completes, any SPIE environments created by the program
are deleted. This might create an incompatibility with MVS/370 for programs that depend on
the SPIE environment remaining in effect for the life of the task rather than the request block.

The SPIE macro instruction is not supported in cross memory mode.

The following description of the SPIEmacro instruction also appears in Supervisor Services and
Macro Instructions with the exception of interruption type 17. This interruption type designates
page faults and its use is restricted to an installation-authorized system programmer. For more
information about the SPIE macro instruction, see the section on "Processing Program
Interruptions" in Volume 1.

The standard form of the SPIE macro instruction is written as follows:

b

SPIE

b

name

exit addr

,(interrup ts)

name: symboL Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: A-type address, or register (2) - (12).

interrupts: decimal numbers 1-15, or 17 expressed as

single values: (2,3,4,7,8,9,10)

ranges of values: «2,4),(7,10»

combinations: (2,3,4,(7,10»

SPIE - Specify Program Interruption Exit 2-395

Example 1

The parameters are explained as follows:

exit addr
specifies the address of the exit routine to be given control when a specific program
interruption occurs. The exit routine receives control in 24-bit addressing mode.

,(interrupts)
indicates the type of interruption for which the exit routine is to be given control. The
interruption types are as follows:

Notes:

Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17

Interruption Type

Operation
Privileged operation
Execute
Protection
Addressing
S pecifica tion
Data
Fixed-point overflow (maskable)
Fixed-point divide
Decimal overflow (maskable)
Decimal divide
Exponen t overflow
Exponent underflow (maskable)
Significance (maskable)
Floating-point divide
Page fault

1. If a specified program interruption type is maskable, the corresponding bit is set to 1.
Interruption types not specified above are handled by the control program.

2. The control program returns the address of the previous PICA or fake PICA in register 1. If
no previous SP IE environment existed, the control program returns zeros in register 1.

3. If an exit address is zero or no parameters are specified, the SPIE environment is canceled.

4. For both ESPIE and SPIE - !{you are using vector instructions and an interruption of8, 12,
13, 14, or 15 occurs, your recovery routine can check the exception extension code (the first
byte of the two-byte interruption code in the EPIE or PIE) to determine whether the
exception was a vector or scalar type of exception.

Operation: Give control to an exit routine for interruption 17. DOITSPIE is the address of the
SPIE exit routine.

SPIE DOITSPIE,(17)

2-396 SPL: System Macros and Facilities Volume 2

SPIE (List Form)

Use the list form of the SPIE macro instruction to construct a control program parameter list in
the form of a program interruption control area.

The list form of the SPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SPlE.

SPlE

b One or more blanks must follow SPIE.

exit addr exit addr: A-type address.

,(interrupts) interrupts: decimal numbers 1-15, or 17, expressed as

,MF=L

single values: (2,3,4,7,8,9;10)

ranges of values: «2,4),(7,10»

combinations: (2,3,4,(7,10»

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exception:

,MF=L
specifies the list form of the SPIE macro instruction.

SPIE (List Form) 2-397

SPIE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the SPIE macro instruction. The PICA (program interruptions control area) can be
generated by the list form of SPIE, or you can use the address of the PICA returned in register
1 following a previous SPIE macro instruction. If this macro instruction is being issued to
reestablish a previous SPIE environment, code only the MF parameter.

The address of the remote control program parameter list associated with any previous SPIE
environment is returned by the SPIE macro instruction.

The execute form of the SPIE macro instruction is written as follows:

name

b

SPIE

b

exit addr

,(interrupts)

,MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SPIE.

One or more blanks must follow SPIE.

exit addr: RX-type address, or register (2) - (12).

interrupts: decimal numbers 1-15, or 17, expressed as

single values: (2,3,4,7,8,9,10)

ranges of values: «2,4),(7,10))

combinations: (2,3,4,(7,10))

clrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the SPIE macro instruction, with the
following exception:

,MF = (E,ctrl,addr)
specifies the execute form of the SPIE macro instruction using a remote control program
parameter list.

Note: If SPIE is coded with a 0 as the control address, the SPIE environment is canceled.

2-398 SPL: System Macros and Facilities Volume 2

SPLEVEL - Set and Test Macro Level

Specific macro instructions supplied in the MVS/XA macro library are identified as downward
incompatible (to MVS/370). Unless the user takes specific action, these macros generate
downward incompatible statements. It is possible to cause the generation of downward
compatible expansions of these macro instructions by using the SPLEVEL macro instruction.
The downward incompatible macro instructions interrogate a global set symbol (set by
SPLEVEL) during assembly to determine the type of expansion to be generated. See the topic
"Selecting the Macro Level" for additional information concerning the downward incompatible
macro instructions, and Assembler H Version 2 Application Programming: Language Reference
for information about global set symbols.

The SPLEVEL macro instruction is written as follows:

name

b

SPLEVEL

b

SET=n
SET
TEST

name: symbol. Begin name in column 1.

One or more blanks must precede SPLEVEL.

One or more blanks must follow SPLEVEL.

n: 1 or 2
Default: SET = 2

SPLEVEL - Set and Test Macro Level 2-399

Example 1

Example 2

The parameters are explained as follows:

SET=n
SET
TEST

specifies whether the macro level is being set or t~sted.

If SET = n is specified, the SPLEVEL routine sets a global set symbol equal to n, where n
must be 1 or 2. If a user codes one of the downward incompatible macros, one of the
following macro expansions is generated:

• the MVSj370 (MVS System Products Version 1 Release 3 level) macro expansion if
n=l

• the MVSjXA macro expansion if n = 2

If SET is specified without n, the SPLEVEL routine uses the default value, which is 2.

The TEST option is used to determine the macro level that is in effect. The results of the
test request are returned to the user in the global set symbol, &SYSSPLV. If TEST is
specified and if SPLEVEL SET has not been issued during this assembly, the SPLEVEL
routine puts the default value into the global set symbol. If SPLEVEL SET has been
issued, the previous value of n or the default value is already in the global set symbol.

Operation: Select the MVSj370 version of a specific downward incompatible macro instruction.

SPLEVEL SET=l

Operation: Select the MVSjXA version of a specific downward incompatible macro'instruction.

SPLEVEL SET=2

2-400 SPL: System Macros and Facilities Volume 2

SPOST - Synchronize POST

Example 1

The SPOST macro instruction is used in a cross-memory post environment to ensure that all
outstanding cross-memory post requests to the current address space have completed. SPOST
resolves a synchronization problem that arises when it becomes necessary to free an ECB that
is a potential target for a cross-memory post request. Before issuing SPOST, you must stop any
new posts from being initiated.

For explanation of the parameters in a cross-memory post request, see the POST macro
instruction.

SPOST invokes the PURGEDQ SVC. For details, see the PURGEDQ macro instruction.

The SPOST macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SPOST.

SPOST

Note: SPOST contains no optional or required parameters.

Operation: Execute the SPOST macro instruction, with a comment.

SPOST ,ISSUE SPOST

SPOST - Synchronize POST 2-401

SRBST AT - Save, Restore, or Modify SRB Status

The SRBSTAT.macro instruction allows the caller to save, restore, and modify the status of an
SRB in a caller-supplied save area. The caller must be running in SRB mode to use the SAVE
or RESTORE option. The caller can be running either in SRB or TCB mode to use the
MODIFY option. The caller must be in supervisor state, key 0, have authority to issue a SSAR
to the home address space, and must be enabled and unlocked. Register 13 must point to a
72-byte save area addressable in the primary address space. Control returns from the
SRBST A T macro instruction in primary mode.

The SRBST AT macro instruction is written as follows:

name

b

SRBSTAT

b

SAVE
RESTORE
MODIFY

,STSV = stsv addr
,STSV=O

,NEWFRR = addr

,PRGAT=pat addr

name: symbol. Begin name in column 1.

One or more blanks must precede SRBSTAT.

One or more blanks must follow SRBSTAT.

stsvaddr: RX-type address or register (1) - (12), register (1) preferred.

addr: RX-type address or register (0) or (2) - (12), register (0) preferred.

pat addr: RX-type address or register (2) - (12), register (2)
preferred.

The parameters are explained as follows:

SAVE
RESTORE
MODIFY

specifies whether a save, restore, or modify operation is requested. For SAVE or
RESTORE, the following status is saved or restored:

• General and floating point registers
• Control registers 3 and 4
• CPU affinity mask
• Related ASID/TCB
• Timing information
• FRR stack
• PC LINK stack header

2-402 SPL: System Macros and Facilities Volume 2

If SAVE is specified, only caller's registers 1 and 15 are destroyed. Register 1 is used to
hold an FRR parameter area address if NEWFRR is also specified and register 15 is used
for a return code. The PCLINK stack header is saved and zeroed.

If RESTORE is specified, registers 0-13 are restored. The contents of register 14 are the
same as when RESTORE was entered. The current PCLINK stack header must be zero:
the saved one is restored.

On entry to RESTORE, the PC LINK stack header must be zero. RESTORE cannot be
used by RTMI or in an FRR. Note that RESTORE returns to its caller and not to the
caller of SAVE.

,STSV = stsv addr
specifies the address of the save area to be used for the SAVE, RESTORE, or MODIFY
operation. The save area can be in private pageable storage, but it must be addressable
from the home address space and it must begin on a double word boundary. The SVT
field SVTSSTSV contains the length of the save area. For RESTORE or MODIFY, the
save area must contain valid status.

,STSV=O
specifies that the current status in the LCCA is to be modified. This parameter is valid
only with MODIFY.

For MODIFY, an existing SRB status save area or the current status in the LCCA is
modified. Only the purge ASIDjTCB information can be modified. All registers are
saved and restored except register 15, which contains a return code.

Hexadecimal
Code

00

,NEWFRR = addr

Meaning

The modify function was successfully completed.

specifies the address of an FRR established with MODE = FULLXM. For SAVE, the
address of the FRR parameter area is returned to the caller in register 1. The first word
of the parameter area contains the address of the SRB status save area being used.

For RESTORE, the FRR address is used only if the saved status cannot be reinstated on
the current processor. An SRB with the FRR option is scheduled specifying this FRR.

For MODIFY, this parameter is invalid.

,PRGAT=pat addr
specifies the address of a 6-byte area of storage, currently addressable in the primary
address space, that contains the new purge ASIDjTCB. Bytes 1 and 2 contain the ASID;
bytes 3-6 contain the TCB address. This parameter is required with MODIFY but is
invalid with SAVE or RESTORE.

SRBSTAT - Save, Restore, or Modify SRB Status 2-403

SRBTIMER - Establish Time Limit for System Service

The SRBTIMER macro instruction is used to establish a time limit for a system service running
in SRB mode. Time accumulates while the service is running; when the time limit expires, the
service abends with a system completion code of 05B. The service can retry following the 05B
ABEND.

The caller can cancel an established time limit by reissuing the macro instruction and specifying
a time limit of zero. The caller can also override the established time limit with a subsequent
SRBTIMER macro instruction.

The caller must be in supervisor state, SRB mode, and key O. Register 13 must point to a
72-byte save area. The SRBTIMER macro instruction can be issued in any addressing mode.
The save area must be addressable in the addressing mode in which the macro is issued.

The SRBTIMER macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SRBTIMER.

SRBTIMER

b One or more blanks must follow SRBTIMER.

LIMIT = stor addr stor addr: RX-type address or register (0) or (2) - (12).

,ERRET = err rtn addr err rtn addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

LIMIT = store addr
specifies the virtual storage address of a doubleword field on a doubleword boundary that
contains the time limit. The time limit is in the form of a signed 64-bit binary number
and must be positive in order for time to elapse. A negative number causes immediate
expiration of the time limit. Bit 51 of the binary number is approximately equivalent to
one microsecond. If you specify a value greater than 208 days, the control program
changes the value to 208 days. The resolution of the timer is model dependent. See
Principles of Operation for details concerning the timer facility.

2 .. ,404 SPL: System Macros and Facilities Volume 2

,ERRET = err rtn addr
specifies the address of the routine to be given control when the SRBTIMER function
encounters damaged clocks.

Register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

10

Meaning

The time limit was successfully established.

The current processor has an operative CPU timer, but not all processors have an operative
CPU timer.

The current processor has an inoperative CPU timer, but not all processors have an
inoperative CPU timer.

All processors in the system have an inoperative CPU timer.

The issuer is not in SRB mode. No timing is performed.

SRBTIMER - Establish Time Limit for System Service 2-405

ST AE - Specify Task Abnormal Exit

The STAE macro instruction enables the user to intercept a scheduled ABEND and to have
control returned to him at a specified exit routine address. The STAE macro instruction
operates in both problem program and supervisor modes.

Note: The ST AE macro instruction is available for compatibility with release 1 of VS2 and
with OS/360 MFT and OS/360 MVT. However, it is recommended that ESTAE be used. The
STAE macro instruction is not supported for users executing in 31-bit addressing mode. Such
users will be abended.

The standard form of the ST AE macro instruction is written as follows:

name

b

STAE

b

o
exit addr

,CT
,OV

,PARAM = list addr

,XCTL=NO
,XCTL=YES

,PURGE = QUIESCE
,PURGE = HALT
,PURGE = NONE

,ASYNCH=NO
,ASYNCH = YES

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STAE.

One or more blanks must follow ST AE.

exit addr: A-type address, or register (2) - (12).

Default: CT

list addr: A-type address, or register (2) - (12).

Default: XCTL=NO

Default: PURGE = QUIESCE

Default: ASYNCH = NO

value: any valid macro keyword specification.

2-406 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

o
exit addr

,CT
,OV

specifies the address of a ST AE exit routine to be entered if the task issuing this macro
instruction terminates abnormally. If 0 is specified, the most recent STAE request is
canceled.

specifies the creation of a new STAE exit (CT) or indicates that the parameters passed in
this STAE macro instruction are to overlay the data contained in the previous STAE exit
(OV).

,P ARAM = list addr
specifies the address of a user-defined parameter list containing data to be used by the
ST AE exit routine when it is scheduled for execution.

,XCTL=NO
,XCTL=YES

specifies that the STAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE = QUIESCE
,PURGE = HALT
,PURGE = NONE

specifies that all outstanding requests for I/O operations are not saved when the STAE
exit is taken (HALT), that I/O processing is allowed to continue normally when the ST AE
exit is taken (NONE), or that all outstanding requests for I/O operations are saved when
the STAE exit is taken (QUIESCE). For QUIESCE, at the end of the STAE exit routine,
the user can code a retry routine to handle the outstanding I/O requests.

Note: If any IBM-supplied access method, except EXCP, is being used, the PURGE = NONE
option is recommended. If you use PURGE = NONE, all control blocks affected by
input/output processing can continue to change during STAE exit routine processing.

If PURGE = NONE is specified and the ABEND was originally scheduled because of an error
in input/output processing, an ABEND recursion develops when an input/output interruption
occurs, even if the exit routine is in progress. Thus, it appears that the exit routine failed when,
in reality, input/output processing caused the failure.

ISAM Notes: If ISAM is being used and PURGE = HALT is specified or
PURGE = QUIESCE is specified but I/O is not restored:

• Only the input/output event on which the purge is done is posted. Subsequent event
control blocks (ECBs) are not posted.

• The ISAM check routine treats purged I/O as normal I/O.

• Part of the data set may be destroyed if the data set is being updated or added to when the
failure occurred.

ST AE - Specify Task Abnormal Exit 2-407

Example 1

,ASYNCH=NO
,ASYNCH = YES

specifies that asynchronous exit processing is allowed (YES) or is not allowed (NO) while
the STAE exit is executing.

ASYNCH = YES must be coded if:

• The ST AE exit routine requests any supervisor services that require asynchronous
interruptions to complete their normal processing.

• PURGE = QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

• PURGE = NONE is specified and the CHECK macro instruction is issued in the STAE exit
routine for any access method that requires asynchronous interruptions to complete normal
input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because of an
error in asynchronous exit handling, an ABEND recursion develops when an asynchronous
interruption occurs. Thus, it appears that the exit routine failed when, in reality, asynchronous
exit handling caused the failure.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Control returns to the instruction following the ST AE macro instruction; register 15
contains one of the following return codes:

Hexadecimal
Code

00

04

08

OC

10

Meaning

Successful completion of STAE request.

STAE was unable to obtain storage for ST AE request.

Attempt was made to cancel or overlay a nonexistent ST AE request.

Exit routine or parameter list address was invalid, or STAI request was missing a TCB
address.

Attempt was made to cancel or overlay a STAE request of another user, or an
unexpected error was encountered while processing this request.

Operation: Request an overlay of the existing ST AE recovery exit with the following options:
new exit address is ADDR, parameter list is at PLIST, halt I/O, do not take asynchronous
exits, transfer ownership to the new request block resulting from any XCTL macro instructions.

STAE ADDR,OV,PARAM=PLIST,XCTL=YES,PURGE=HALT,ASYNCH=NO

2-408 SPL: System Macros and Facilities Volume 2

ST AE (List Form)

The list form of the ST AE macro instruction is used to construct a remote control program
parameter list.

The list form of the ST AE macro instruction is written as follows:

name

b

STAE

b

exit addr

,PARAM = list addr

,PURGE = QUIESCE
,PURGE = HALT
,PURGE=NONE

,ASYNCH=NO
,ASYNCH = YES

name: symbol. Begin name in column 1.

One or more blanks must precede STAE.

One or more blanks must follow STAE.

exit addr: A-type address.

list addr: A-type address.

Default: PURGE=QUIESCE

Default: ASYNCH = NO

,RELATED = value value: any valid macro keyword specification.

,MF=L

The parameters are explained under the standard form of the ST AE macro instruction, with the
following exception:

,MF=L
specifies the list form of the ST AE macro instruction.

STAE (List Form) 2-409

ST AE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ST AE macro instruction. The control program parameter list can be genera ted by the
list form of the ST AE macro instruction. If you want to dynamically change the contents of
the remote STAE parameter list, you can do so by coding a new exit address and/or a new
parameter list address. If exit address or PARM = is coded, only the associated field in the
remote STAE parameter list is changed. The other field remains as it was before the current
STAE request was made.

The execute form of the ST AE macro instruction is written as follows:

name

b

STAE

b

exit addr
o

,CT
,OV

,P ARAM = list addr

,XCTL=NO
,XCTL=YES

,PURGE = QUIESCE
,PURGE = HALT
,PURGE = NONE

,ASYNCH=NO
,ASYNCH = YES

,RELATED = value

,MF = (Refrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede STAE.

One or more blanks must follow ST AE.

exit addr: RX-type address, or register (2) - (12).

list addr: RX-type address, or register (2) - (12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

2-410 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained under the standard form of the ST AE macro instruction, with the
following exception:

,MF = (E, etrl addr)
specifies the execute form of the ST AE macro instruction using a remote control program
parameter list.

Operation: Provide the pointer to the recovery code in the register called EXITPTR, and the
address of the STAE exit parameter list in register 9. Register 8 points to the area where the
STAE parameter list (created with the MF=L option) was moved.

STAE (EXITPTR) ,PARAM=(9),MF=(E,(8))

STAE (Execute Form) 2-411

STATUS - Change Subtask Status

You can use the STATUS macro instruction to change the dispatchability status of one of your
program's subtasks.

The STATUS macro instruction is also described in the Supervisor Services and Macro
Instructions, with the exception of the SRB, ASID, and TASK parameters, which are restricted
in use and available only to supervisor state, key zero callers. These restricted parameters allow
the caller to manipulated the dispatchability of TCBs, SRBs, ASCBs, a STEP, or the SYSTEM.

The SYNCH operand of STATUS STOP is not supported in MVS/XA. Programs that issue
STATUS STOP, SYNCH should be changed to issue STATUS STOP without the SYNCH
operand. Users who specify the SYNCH operand with STATUS STOP will receive an
MNOTE of severity 12 at assembly time.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 mega bytes if the issuer is executing in 31-bit addressing mode.

The description of the STATUS macro instruction is divided into two parts: the ST ART/STOP
option, and the SET/RESET option.

The START/STOP options of the STATUS macro instruction are written as follows:

name

b

STATUS

b

START
STOP

,TeB::;:: teb addr
,SRB
,SRB, ASID:= A SID addr
,SRB,TASK=YES
,SRB,TASK =NO
.SRB,TASK = YES,ASID = A SID addr
,SRB,TASK=NO,ASID=ASID addr

. RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

feb addr: RX-type address, or register (2) - (12), or O.
ASID addr: RX-type address, or register (2) - (12).
Note: ASID may only be specified with START.
Default: TASK = YES

value: any valid macro keyword specification .

2-412 SPL: System Macros and Facilities Volume 2

The parameters are described as follows:

START
STOP

specifies that the appropriate START/STOP count is to be adjusted and the
dispatchability bits are to be set/reset.

,TeB = teb addr
,SRB
,SRB,ASID = A SID addr

specifies the status of the stop/start function:

TCB

SRB

TASK =

,RELATED = value

specifies the address of a fullword on a fullword boundary containing the address of the TCB
that is to have its START/STOP count adjusted.

Note: The TCB resides in storage below 16 megabytes.

specifies that the STOP function affects the dispatchability of system-level SRBs only; all other
tasks in the address space are set/reset nondispatchable. For START, the ASID addr specifies
the address of a halfword containing the address space identifier.

specifies whether the STATUS, STOP, and START functions affect the dispatchability of all
other tasks in the address space. TASK = YES is the default. If TASK = YES is specified or
defaulted, STATUS sets or resets task dispatchability in the address space. TASK = NO
requests STATUS to ignore setting or resetting task dispatchability. TASK = NO modifies only
system level SRB dispatch ability and not TCB dispatchability. TASK=NO has the following
restrictions:

• Issuers of STATUS must ensure that the dispatchability of all other tasks in the address
space need not be modified.

• Issuers must be in key O.

• Issuing programs must assemble the IHAASCB mapping macro into the user's program.

specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

STATUS - Change Suhtask Status 2-413

SET lRESET Options

The SET jRESET options of the STATUS macro instruction are written as follows:

name

b

STATUS

b

SET
RESET

,MC
,MC,STEP
,SD
,ND

,SYSTEM
,STEP
,STEP,(mask)
,feb addr,(mask)
" (mask)

,E

,ASID = A SID addr

,RELATED = value

name: symbol. Begin name in column 1.

One or more blanks must precede STATUS.

One or more blanks must follow STATUS.

Note: If MC or MC,STEP is specified, no other parameters can
be specified.

mask: for SD, any of decimal digits 1-32 (except 18), separated
by commas; for ND, any of decimal digits 1-16 (except 14),
separated by commas.
feb addr: RX-type address, or register (2) - (12).
Default: STEP

Note: This parameter can only be specified with feb addr.(mask).

ASID addr: RX-type address, or register (2) - (12).
Note: For SET, this parameter can only be specified with feb addr,(mask).
For RESET, this parameter may not be specified with SYSTEM.

value: any valid macro keyword specification.

The parameters are explained as follows:

SET
RESET

specifies that the TCBs or ASCBs are to be set or reset nondispatchable.

,MC
,MC,STEP
,SD
,ND

specifies the nondispatchability status:

ND specifies that the primary nondispatchability bits are affected by this request.

SD specifies that the secondary nondispatchability bits are affected by this request.

Me and MC,STEP specifies that the initiator and all TCBs in the job step TCBs (except
the issuer's TCB) are to be set/reset nondispatchable.

2-414 SPL: System Macros and Facilities Volume 2

Example 1

,SYSTEM
,STEP
,STEP, (mask)
,teb addr,(mask)
,,(mask)

,E

specifies more information on the nondispatchability status:

SYSTEM specifies that all ASCBs are to be set/reset nondispatchable except for certain
exempt ones (for examples, the master scheduler or the issuer). An address space that is
exempt from system nondispatchability has bits ASCBXMPT or ASCBPXMT set to one.
If you set the system ND or SD, you must not unconditionally request the CML lock of a
non-exempt address space; if you do, a system deadlock could result.

STEP specifies that all job step TCBs (except the issuer's TCB) are to be set/reset
nondispatchable.

teb addr indicates that the specified TCB (except the issuer's TCB) and all its subtasks are
to be set/reset nondispatchable.

(mask) specifies the nondispatchability bits that are to be set/reset.

specifies that only the specified TCB is to be set/reset nondispatchable.

,ASID = ASID addr
specifies the address of a halfword containing the address space identifier.

,RELATED = value
specifies information used to self-document macro instructions by "relating" functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Operation: Set primary nondispatchability bit 3 for the specified TCB and all its subtasks.

STATUS SET,ND,TCBADDR,(3)

STATUS - Change Subtask Status 2-415

SUSPEND ... Suspend Execution of a Request Block

Example 1.

The SUSPEND macro instruction places a request block (RB) in a suspended state until an
expected event occurs, causing the task to resume processing.

The SUSPEND macro instruction is written as follows:

name

b

SUSPEND

b

RB == PREVIOUS
RB=CURRENT

name: symbol. Begin name in column 1.

One or more blanks must precede SUSPEND.

One or more blanks must follow SUSPEND.

Default: PREVIOUS

The parameters are explained as follows:

RB = PREVIOUS
RB = CURRENT

specifies which RB on the TCB to suspend. The previous RB is the caller's RB. The
current RB is the first RB on the TCB chain.

The SUSPEND macro instruction uses registers as follows:

Register

o
I
2-10
11-13
14
15

Use

TCB pointer
RB pointer
Unllsed
Work registers
Return address
Work register

Contents after SUSPEND

TCB address suspended
RB address suspended
Unchanged
Unpredictable
Return address after SUSPEND
Unpredictable

Operation: Suspend the execution of the most recently chained request block of the current
task.

SUSPEND RB=CURRENT

2-416 SPL: System Macros and Facilities Volume 2

SVCUPDTE - SVC Update

The SVCUPDTE macro instruction provides a means to dynamically replace or delete SVC
table entries. Callers who use this service are responsible for providing recovery. Improper
deletion or replacement of MVSjXA provided SVC routines will cause unpredictable results and
will probably cause a termination of the system.

The resource name, SYSVSVC TABLE, is available as the operand of an ENQ or DEQ macro,
to be used when you must serialize the execution of a program that uses the SVCUPDTE
macro. For information on using SYSVSVC TABLE, see Volume 1.

Users of this macro must be in supervisor state and key O. Register 13 must contain the
address of a 72-byte save area. Users of this macro must ensure that the code for the SVC
routine added to the SVC table has the correct attributes for the type of SVC specified. See the
topic "Modifying the SVC Table" in Volume 1 for additional information.

SVCUPDTE ~ SVC Update 2-417

The SVCUPDTE macro is written as follows:

name

b

SVCUPDTE

b

num

,REPLACE
,DELETE
,EXTRACT

,TYPE = 1
,TYPE = 2
,TYPE = 3
,TYPE ==4
,TYPE = 5
,TYPE =6

,EP=addr

,EPNAME = entry-name

,LOCKS = ([name, [name, .. .)

,APF=YES
,APF=NO

,NPRMPT = YES
,NPRMPT=NO

. RELA TED = value

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

num: symbol, decimal number, hexadecimal number (for example, X'02'),
or register (2) - (12). Do not specify num with extract.

Note: This parameter is not valid with DELETE or EXTRACT.

addr: A-type address, decimal number,
Hexadecimal number (for example, X'FFECOO');
or register (2) - (12).

entry-name:symbol
Note: EP and EPNAME are not valid with TYPE = 5 and are not needed
with the DELETE option.

lname: CMS, DISP, SRM, LOCAL, or SALLOC.
Note: LOCKS is invalid with DELETE and EXTRACT,
and cannot be specified with TYPE = 6.

Default: APF = NO
Note: APF is not valid with DELETE.

Default: NPRMPT = NO
Note: NPRMPT is not valid with DELETE.

value: any valid macro keyword specification .

The parameters are explained as follows:

num
specifies the number of the SVC that is being inserted or deleted.

,REPLACE
,DELETE .

specifies the function to be performed. REPLACE indicates that a SVC table entry is to
be inserted in the SVC table. This could be a new SVCor a replacement for an existing
SVC. DELETE indicates that the specified SVC number is to be deleted from the SVC
table. The SVCUPDTE routine deletes the number by placing the address of the SVC
error routine into the table entry. When you execute an SVC instruction with a deleted
SVC number, the result is an abnormal termination with an X'Fxx' abend. (xx is the

2-418 SPL: System Macros and Facilities Volume 2

hexadecimal representation of the number specified.) However, if you issue an
SVCUPDTE macro with a deleted SVC number, no abend results.

,TYPE = 1
,TYPE =2
,TYPE =3
,TYPE =4
,TYPE =5
,TYPE =6

specifies the SVC type for a REPLACE request. See the topic "Program Conventions for
SVC Routines" for information concerning the characteristics and restrictions for each
type of SVC.

,EXTRACT
indicates that the user has supplied an EP or EPNAME and wishes to have the SVC
number of that routine returned in register O. The num parameter is not valid with this
option.

,EP= addr
specifies the entry point address of the SVC routine. The addressing mode of the entry
point is defined by bit 0 of the entry point address of the SVC routine. If bit 0 = 1, the
SVC routine will be entered in 31-bit addressing mode; if bit 0 =0, the SVC routine will
be entered in 24-bit addressing mode.

,EPNAME = entry-name
specifies the entry name of the SVC routine. The entry name must be the load module
name or alias of a module in LPA or the entry name of a module link edited into the
nucleus.

Note: The service routine must obtain a 72-byte work area to support this option. The
requestor of this service must not hold any lock higher than the VSMFIX lock.

,LOCKS = (lname ,lname , ...)
specifies the lock(s) required when the SVC routine executes. The lock(s) specified can be
anyone or a combination of the following locks:

• CMS
• DISP
• SRM
• LOCAL
• SALLOC

Notes:

I. TYPE = 6 cannot spec(f}' any locks.

2. TYPE = 1 must not specW' LOCAL.

3. TYPE=3 and TYPE=4 must 110t spectl.i' SALLOC, and must not request Global Spin
locks .

• APF=YES
.API<'=NO

specifies whether or not the SVC is to be APF-authorized.

SVCUPDTE - SVC Update 2-419

,NPRMPT = YES
,NPRMPT=NO

indicates whether or not the SVC can be preempted for I/O interruptions.

,RELATED = value
provides information to document the macro by relating the function performed to
another service or function. The format can be any valid coding value that the user
chooses.

When control is returned, register 15 contains one of the following return codes:

o

4.

8

OC

10

14

18

IC

20

24

28

The macro completed successfully.

The macro instruction was coded incorrectly. For example, the user requested REPLACE without
specifying an SVC number.

The DELETE parameter was not specified correctly.

A REPLACE request contained incorrect information. For example, the user specified an SVC type that
was not 1 through 6.

A REPLACE request contained illogical information. For example:

• A type 5 SVC specified an entry point.
• A type 6 SVC specified a lock.
• A type 3 or type 4 SVC specified the DISP lock.
• Neither an entry point nor an EPNAME was provided for a REPLACE request that is not a type 5.
• Both an entry point and an EPNAME are provided.
• The entry point provided is zero.
• The CMS lock was requested without the LOCAL lock.

The function specified was not REPLACE, DELETE, or EXTRACT.

The user has attempted to update an extended SVC router entry in the SVC table.

Unable to locate the entry point address for an EPNAME specification.

An EXTRACT request contains illogical information. For example:

• Neither an entry point address nor an EPNAME is specified.
• Both an entry point address and an EPNAME are specified.
• An SVC number is specified.
• The entry point address specified is zero.

Unable to locate the SVC routine for the EXTRACT request.

An error occurred while updating theSVC table.

2-420 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Operation: Delete SVC 200 from the SVC table.

SVCUPDTE 200,DELETE

Operation: Insert SVC 201 in the SVC table. This is a type 2 SVC, with entry point at
location SVCADDR. The SVC cannot be preempted for I/O interruptions.

SVCUPDTE 201,REPLACE,NPRMPT=NO,TYPE=2,EP=SVCADDR

Operation: Replace SVC 202 in the SVC table. This is a type 1 SVC with entry point at the
location in register 2.

SVCUPDTE 202,REPLACE,TYPE=1,EP=(2)

Operation: Replace SVC 203 in the SVC table. SVC 203 is a type 4 SVC requiring the
LOCAL lock. The routine has been loaded into LPA with the name MYSVC.

SVCUPDTE 203,REPLACE,TYPE=4,LOCKS=LOCAL,EPNAME=MYSVC

Operation: Determine the SVC number associated with the name IGC062. The SVC number
is to be returned in register O.

SVCUPDTE ,EXTRACT,EPNAME=IGC062

Operation: Replace SVC 202 in the SVC table. This is a type 3 SVC with entry point at
explicit location X'FFECOO'. Note that this example uses a symbol as the SVC number.

SVCUPDTE SVCNUM,REPLACE,TYPE=3,EP=X'FFECOO'

SVCNUM EQU 202

SVClJPDTE - SVC Update 2-421

SVCUPDTE (List Form)

The list form of theSVCUPDTE macro instruction builds a non-executable parameter list that
can be referred to by the execute form of the SVCUPDTE macro.

The list form of the SVCUPDTE macro instruction is written as follows:

name

b

SVCUPDTE

b

num

,REPLACE
,DELETE
,EXTRACT

,TYPE = 1
,TYPE=2
,TYPE = 3
,TYPE=4
,TYPE = 5
,TYPE = 6

,EP=addr

,EPNAME = entry-name

,LOCKS = (lname, lname)

,NPRMPT = YES
.NPRMPT=NO

, RELA TED = value

,MF=L

2-422 SPL: System Macros and I':"acilities Volume 2

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

num: symbol, decimal number, hexadecimal number (for example X'02').
Note: This parameter must be specified on the execute and the list form of
the macro. Do not specify num with EXTRACT.

Note: This parameter is not valid with DELETE.

addr: A-type address, decimal number, or
hexadecimal number (for example, X'FFECOO').

entry-name:symbol
Note: EP and EPNAME are not valid with TYPE = 5 and are not needed
with the DELETE option. This parameter must be supplied on either the
execute or the list form.

{name: CMS, DISP, SRM, LOCAL, or SALLOC.
Note: This option is not valid with DELETE or EXTRACT and must not
be specitied with TYPE = 6.

Default: NPRMPT = NO
Note: NPRMPT is not valid with DELETE.

value: any valid macro keyword speci.fication.

Example 1

Example 2

The parameters are explained under the standard form of the SVCUPDTE macro with the
following exception:

,MF=L
specifies the list form of the SVCUPDTE instruction.

Operation: Use the list form of the macro to replace SVC 202 in the SVC table. It is a type 2
SVC with entry point at location SVCADDR. The SVC routine needs the local lock.

SVCUPDTE 202,REPLACE,TYPE=2,LOCKS=LOCAL,MF=L,EP=SVCADDR

Operation: Use the list form of the macro to replace SVC 201 in the SVC table. The routine is
a type 2 SVC.

SVCUPDTE 201,REPLACE,TYPE=2,MF=L

SVCUPDTE (List Form) 2-423

SVCUPDTE (Execute Form)

Example 1

The execute form of the SVCUPDTE macro instruction is written as follows:

name

b

SVCUPDTE

b

num

,EP=addr

,RELA TED = value

,MF= (E, addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SVCUPDTE.

One or more blanks must follow SVCUPDTE.

register (2) - (12).
Note: This parameter must be supplied on either the execute or the list form
of the macro with REPLACE or DELETE, and it must not be specified with
EXTRACT.

addr: register (2) - (12).
Note: This parameter is not valid with TYPE = 5 and must be supplied Oil

either the execute or the list form of the macro. This parameter is not
needed with the delete option.

value: any valid macro keyword spec(fication.

addr: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the SVCUPDTE macro instruction
with the following exception:

,MF = (E,addr)
specifies the execute form of the SVCUPDTE instruction.

Operation: Use the execute form of the SVCUPDTE macro instruction to perform the function
specified by the remote control parameter list whose address is given in register 2.

SVCUPDTE MF=(E,(2))

2-424 SPL: System Macros and Facilities Volume 2

SW AREQ - Invoke SW A Manager in Locate Mode

The SW AREQ macro has no standard form. It only has a list, an execute, and a modify form.
The MF parameter, which indicates the form of the macro, is required.

When you invoke this macro in execute form, it uses the two parameters, FCODE and EPA, to
modify the parameter list, which is at the location you specify by the addr value in the
MF = (E,addr) parameter. After ensuring the validity of the parameters, it invokes the SWA
manager in locate mode. The SWA manager obtains its input from the parameter list, and
performs the function accociated with the specified FCODE. If you do not specify any
parameters, the macro assumes the parameter list already exists, and it simply invokes the SW A
manager.

The modify form of SWAREQ is functionally the same as the execute form, except that the
macro only modifies the parameter list without invoking the SW A manager. The list form of
SWAREQ generates the parameter list that is modified by the other two forms of the macro,
and it does not invoke the SWA manager.

The list form of the SW AREQ macro is written as follows:

name

b

SWAREQ

b

,FCODE = fncde

. EPA=addr

,MF=L

name: symbol. Begin name in column I.

One or more blanks must precede SWAREQ.

One or more blanks must follow SW AREQ.

fncde: function code

addr: external parameter area pointer address .
In the list form, this address may only be specified
symbolically.

SWAREQ - Invoke SWA Manager in Locate Mode 2-425

The parameters are explained as follows:

,:FCODE =fncde
specifies the function code for the locate mode request. Valid codes are:

AC Assign/Conditional
AL Assign/Locate
DB Delete block
LA Locate/All
RL Read/Locate
WL Write/Locate

For more information about the meaning of each code, see volume 1 of this book.

,EPA=addr
specifies the address of the EPA pointer.

,MI<"'=L
specifies the list form of the SW AREQ macro instruction.

2-426 SPL: System Macros and Facilities Volume 2

SW AREQ (Execute Form)

The execute form of the SW AREQ macro is written as follows:

name

b

SWAREQ

b

,FCODE = fncde

,EPA=addr

,MF= (E, addr)

name: symbol. Begin name in column I.

One or more blanks must precede SWAREQ.

One or more blanks must follow SW AREQ.

fncde: function code

add,.: external parameter area pointer address.
It may be specifed symbolically, as a register
enclosed in parentheses, or as a symbol
equated to a register enclosed in parentheses.

addr: RX-type address or register (1) - (12).

The parameters are explained under the list form of the SW AREQ macro instruction, with the
following exceptions:

,MF = (E,addr)
E specifies the execute form of the SW AREQ macro instruction, and addr specifies the
address of the parameter list.

/

SW AREQ (Execute Form) 2-427

SW AREQ (Modify Form)

The modify form of the SW AREQ macro is written as follows:

name

b

SWAREQ

b

,FCODE = fncde

,EPA=addr

,MF = (M,addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SWAREQ.

One or more blanks must follow SW AREQ.

ff/cde: function code

addr: external parameter area pointer address.
It may be specifed symbolically, as a register
enclosed in parentheses, or as a symbol
equated to a register enclosed in parentheses.

addr: RX-type address or register (1) - (12) .

The parameters are explained under the list form of the SW AREQ macro instruction, with the
following exceptions:

,MF=(M,addr)
M specifies the modify form of the SWAREQ macro instruction, and addr specifies the
address of the parameter list.

2-428 SPL: System Macros and Facilities Volume 2

SYMREC - Process Symptom Record

The SYMREC macro updates the symptom record with system environment information and
then logs the symptom record in the SYSl.LOGREC data set. The symptom record is a data
area in the user's application that has been mapped by the ADSR macro and that is referenced
by a parameter of the SYMREC macro. The data in the symptom record is a description of a
programming failure and a description of the environment in which the failure occurred. As the
application detects errors during execution, it stores diagnostic information into the symptom
record and issues SYMREC to log the information.

The caller must be enabled for interrupts. Suspend locks may be held, but spin locks cannot be
held. If the SYMREC request is issued in disabled mode, the record is not written and a return
code of X'OC' and a reason code of X'144' are provided.

The caller must not be executing in secondary addressing mode. That is, bit 16 of the PSW
must be zero. The SYMREC service routine is invoked via the PC (Program Call) instruction.
If the SYMREC request is issued in secondary addressing mode, the request abnormally
terminates when the PC instruction is executed. This abend occurs before the SYMREC service
can establish recovery to intercept the PC failure. While the SYMREC macro can be issued in
24-bit or 31-bit addressing mode, the addresses passed to the SYMREC service must be 31-bit
addresses. The service routine uses the addresses as passed.

When SYMREC is invoked, it checks that all the required input fields of the ADSR symptom
record are set by the caller. If the required input fields are not set, SYMREC issues
appropriate return and reason codes (described in SPL: System Macros and Facilities, Volume
1).

The SYMREC macro instruction is written as follows:

name

b

SYMREC

b

SR=addr

name: symbol. Begin name in column 1.

One or more blanks must precede SYMREC.

One or more blanks must follow SYMREC.

addr: A-type address or register (2) - (12).

The parameters are explained as follows:

SR=addr
specifies the address of the symptom record. The SR keyword is required.

SYMREC - Process Symptom Record 2-429

I

SYMREC (List Form)

/

The list form of the SYMREC macro instruction is written as follows:

name name: symbol. Begin name in column i.

b One or more blanks must precede SYMREC.

SYMREC

b One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit).

,MF=(L)

The parameters are explained under the standard form of the SYMREC macro instruction with
the following exception:

,MF=L
specifies the list form of the SYMREC macro instruction.

2-430 SPL: System Macros and Facilities Volume 2

SYMREC (Execute .Form)

The execute form of the SYMREC macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede SYMREC.

SYMREC

b One or more blanks must follow SYMREC.

SR=addr addr: A-type address (31 bit) or register (2) - (12).

,MF = (E.list addr) list add,.: RX-type address or register (2) - (12).

The parameters are explained under the standard form of the SYMREC macro instruction with
the following exception:

,MF = (E,list addr)
specifies the execute form of the SYMREC macro instruction. This form uses a remote
parameter list.

SYMREC (Execute Form) 2-431

SYNCH - Take a Synchronous Exit to a Processing Program

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of this
macro instruction.

The SYNCH macro instruction makes it possible for a supervisor routine to take a synchronous
exit to a processing program. The SYNCH routine initializes a PRB (program request block)
and schedules execution of the requested program. After the processing program has been
executed, the supervisor routine that issued the SYNCH macro instruction regains control. The
SYNCH macro instruction is also described in Supervisor Services and Macro instructions with
the exception of the KEYADDR, STATE, and KEYMASK parameters. These parameters are
restricted in use to programs in supervisor state, key 0-7, or APF -authorized.

On entry to the processing program, the high order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the SYNCH macro. If bit ° is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The SYNCH macro instruction is written as follows:

name

b

SYNCH

b

entry point addr

,RESTORE = NO
,RESTORE = YES

,KEY ADDR = addr
,KEY ADDR = NOKEY ADDR

,STATE=PROB
,STATE=SUPV

,KEYMASK = addr

,AM ODE =24
,AMODE=31
,AMODE = DEFINED
,AM ODE = CALLER

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE = NO

addr: RX-type address, or register (2) - (12)
Default: KEY ADDR = NOKEY ADDR
(The key in the TCB is used.)

Default: STATE = PROB

addr: RX-type address, or register (0) - (12).

Default: AMODE = CALLER
Note: AMODE=DEFINED can only be specified if the
entry point is provided in a register.

2-432 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

enfl}' point addr
specifies the address of the entry point of the processing program to receive control.

,RESTORE = NO
,RESTORE = YES

specifies whether registers 2-13 are to be restored when control is returned to the issuer of
SYNCH.

,KEYADDR=addr
,KEYADDR = NOKEYADDR

addr specifies the address of a one-byte area that contains the key in which the exit is to
receive control. The key must be in bits 0-3; bits 4-7 must be zero. If KEY ADDR = addr
is not specified, the key in the TCB is used as the default.

,STATE=PROB
,STATE = SUPV

specifies the state in which the requested program receives control. PROB specifies
problem state and SUPV specifics supervisor state.

,KEYMASK = addr
specifies the address of a halfword to be ORed with the TCBPKM (which already might
have been modified by KEYADDR) to produce the PKM of the routine to which the
synchronous exit is to be taken.

,AMODE=24
,AMODE=31
,AMODE = DEFINED
,AMODE = CALLER

specifies the addressing mode in which the requested program is to receive control.

If AMODE = 24 is specified, the requested program will receive control in 24-bit
addressing mode.

If AMODE=31 is specified, the requested program will receive control in 31 bit
addressing mode.

If AMODE == DEFINED is specified, the user must provide the entry point using a
register and not an RX-type address. The requested program will receive control in the
addressing mode indicated by the high order bit of the entry point address. If the bit is
off, the requested program will receive control in 24-bit addressing mode~ if the bit is set,
the requested program will receive control in 31-bit addressing mode.

If AMODE = CALLER is specified, the requested program will receive control in the
addressing mode of the caller.

SYNCH - Take a Synchronous Exit to a Processing Program 2-433

Example 1

Example 2

Example 3

Example 4

Operation: Take a synchronous exit to a processing program whose entry point address is
specified in register 8.

SYNCH (8)

Operation: Take a synchronous exit to a processing program labeled SUBRTN and restore
registers 2-13 when control is returned.

SYNCH SUBRTN,RESTORE=YES

Operation: Take a synchronous exit to a processing program whose entry point address is
specified in register 5, modify the program's TCBPKM by the KEYADDR and KEYMASK
values, and restore registers 2-13 when control returns.

SYNCH (5) ,RESTORE=YES,KEYADDR=KEYBYTE,KEYMASK=MSKADDR

KEYBYTE DC X'80'
MSKADDR DC X'0080'

Operation: Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to execute in
24-bit addressing mode.

SYNCH (8),RESTORE=YES,AMODE=24

2-434 SPL: System Macros and Facilities Volume 2

SYNCH (List Form)

Example 1

The list form of the SYNCH macro instruction is used to construct a control program
parameter list.

The list form of the SYNCH macro instruction is written as follows:

11ame

b

SYNCH

b

,RESTORE=NO
,RESTORE = YES

,STATE = PROB
,STATE = SUPV

.KEYMASK = addr

,AMODE=24
,AMODE=31
,AMODE=DEFINED
,AMODE = CALLER

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

Default: RESTORE=NO

Default: STATE=PROB

addr: A-type address .

Default: AMODE = CALLER

The parameters are explained under the standard form of the SYNCH macro instruction with
the following exception:

,MF=L
specifies the list form of the SYNCH macro instructions.

Operation: Use the list form of the SYNCH macro instruction to specify that registers 2-13 are
to be restored when control returns from executing the SYNCH macro instruction and that the
addressing mode of the program is to be defined by the high-order bit of the entry point
address. Assume that the execute form of the macro instruction specifies the program address.

SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

SYNCH (List Form) 2-435

SYNCH (Execute Form)

The execute form of the SYNCH macro instruction uses a remote control program parameter
list that can be generated by the list form of SYNCH.

The execute form of the macro instruction is written as follows:

name

b

SYNCH

b

entry point addr

,RESTORE = NO
,RESTORE=YES

,KEY ADDR = addr
,KEYADDR = NOKEY ADDR

,STATE = PROB
,STATE = SUPV

,KEYMASK = addr

,AMODE=24
,AMODE=31
,AM ODE = DEFINED
,AMODE = CALLER

,MF = (E, clrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede SYNCH.

One or more blanks must follow SYNCH.

entry point addr: RX-type address, or register (2) - (12) or (15).

Default: RESTORE=NO

addr: RX-type address, or register (2) - (12).

Default: STATE=PROB

addr: RX-type address, or register (0) - (12).

Default: AMODE=CALLER
Note: AMODE = DEFINED can only be specified if
the entry point is provided in a register.

clrl addr: RX-type address or register (1), (2) - (12)

The parameters are explained under the standard form of the SYNCH macro instruction with
the following exceptions:

,KEYADDR = NOKEYADDR
indicates that the default(the key in the TCB) should be used instead of the key in the
parameter list defined by a list form of the macro instruction.

,MF = (E,ctrl addr)
specifies the execute form of the SYNCH macro instruction using a list generated by the
list form of SYNCH.

2-436 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Use the execute form of the SYNCH macro instruction to take a synchronous exit
to the program located at the address given in register 8 and restore registers 2-13 when control
returns. Indicate that the program is to receive control in the same addressing mode as the
caller and that the parameter list is located at SYNCHL2.

SYNCH (8) ,RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

SYNCH (Execute Form) 2-437

SYSEVENT - System Event

The SYSEVENT macro instruction provides the interface to the system resource manager
(SRM). Through the use of SYSEVENT mnemonics, you can notify SRM of an event or
request SRM to perform a specific function.

You must include the CVT mapping macro as a DSECT in the calling program. If a specific
SYSEVENT requires additional parameters, you must load register 1 with the address of a

, parameter list before issuing the macro instruction.

Callers who use ENTRY = BRANCH must:

• Be in supervisor state, key 0

• Hold no locks higher than the SRM lock

• Provide the address of a serialized 72-byte save are in register 13

Callers who use ENTRY = SVC must:

• Be APF authorized, supervisor state, or key 0

Note: You do not require any authorization to issue SYSEVENT REQSERVC.

Additional restrictions concerning the use of each SYSEVENT, including input and output
requirements, are given following the description of the parameters.

Only the SYSEVENTs that are commonly used by subsystems or other external users are
documented here. The other SYSEVENTs are used internally by the MVS system and are not
included in this documentation. Refer to the "System Resource Manager" section of the
System Logic Library for a complete list of the SYSEVENTs along with information concerning
the internal interfaces for the mnemonics. System Programming Library: Initialization and
Tuning provides additional information concerning the input, output, and environment for
issuing the SYSEVENTs. The Debugging Handbook contains a summary of the SYSEVENTs.

2-438 SPL: System Macros and Facilities Volume 2

The SYSEVENT macro instruction is written as follows:

name /lame: symbol. Begin name in column I.

b On(' or more blanks must precede SYSEVENT.

SYSEVENT

b One or more blanks must follow SYSEVENT.

sysevent mnemonic :!>J'sevent mnemonic: symbol.

,ENTRY=SVC
,ENTRY = BRANCH

,TYPE = INTERVAL

Note: See the description of the parameters for the valid options.

Defaults:
ENTRY = BRANCH for the following SYSEVENTs:

TRAXERPT
TRAXFRPT
TRAXRPT
HOLD
NOH OLD

ENTRY = SVC for the following SYSEVENTs:
COPYDMDT DONTSWAP
REQPGDAT OKSWAP
REQSERVC TRANSWAP

Note: The TYPE parameter is valid and required only for SYSEVENT
REQPGDAT.

The parameters are explained as follows:

sysevent mnemonic
identifies the SYSEVENT being requested. The SYSEVENT service routine inserts the
code corresponding to the mnemonic into byte 3 of register O.

,ENTRY=SVC
,ENTRY = BRANCH

specifies the type of interface to SRM (SVC or branch).

Only users who do not hold a lock can specify ENTRY = SVC. This is the default for
DONTSWAP, OKSWAP, TRANSWAP, COPYDMDT, REQPGDAT, and REQSERVC.

ENTRY = BRANCH is required if the caller holds a lock and for all '"fast path"
SYSEVENTs. The "fast path" SYSEVENTs include HOLD, NOHOLD, TRAXERPT,
TRAXFRPT, and TRAXRPT. ENTRY = BRANCH is the default for these "fast path"
SYSEVENTs. For branch entry, callers must provide a 72-byte save area and place the
address of the save area in register 13.

,TYPE = INTERV AL
indicates that this is an interim measurement and the paging data is not to be reset. This
keyword is required and can be used only with the REQPGDAT SYSEVENT.

SYSEVENT - System Event 2-439

SYSEVENT mnemonics

A description of the SYSEVENTs available for restricted use follows. These mnemonics are
grouped according to the basic function that they perform.

Notify SRM of Transaction Completion

The SYSEVENTs TRAXRPT, TRAXFRPT. and TRAXERPT notify SRM that a subsystem
transaction has completed and provide the transaction's starting time or elapsed time and,
optionally, its resource utilization. This performance data can be reported using the resource
management facility (RMF).

To obtain reports~ an IEAICSxx parmlib member must be in effect and RMF workload activity
reporting must be active. See System Programming Library: Initialization and Tuning for
additional information concerning the IEAICSxx parmlib member.

In addition to the general requirements for SYSEVENTs, TRAXRPT, TRAXFRPT, and
TRAXERPT require the user to:

• Provide a parameter list

• If the issuing program is disabled, ensure that the parameter list and save area are fixed

• Provide error recovery

A description of the individual mnemonics follows:

TRAXRPT
notifies SRM that a transaction has completed and provides its start time. Register 1
must point to a serialized parameter list with the following format:

Offset in Hex

00

08
10
18
20

Length

8

8
8
8
8

Field Description

Transaction start time in
store clock instruction
(STCK) format
Subsystem name
Transaction name or blanks
User identification or blanks
Transaction class or blanks

Note: You can obtain this parameter list by using the IHATRBPL mapping macro in
your program.

The names must be in ECBDIC format, left-justified, and padded with blanks. Note that
the subsystem name is restricted to four characters in length.

2-440 SPL: System Macros and Facilities Volume 2

TRAXFRPT
notifies SRM that a transaction has completed and provides the elapsed time. Because
the issuer calculates the elapsed time before issuing the macro instruction, this path is
shorter than the path for TRAXRPT. Register 1 must point to a serialized parameter list
with the following format:

Offset in Hex Length Field Description

00 4 Transaction elapsed time
(1.024 milliseconds units)

04 4 Reserved - must be zero
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification or blanks
20 8 Transaction class or blanks

Note: You can obtain this parameter list by including the mapping macro IHATRBPL
in your program. The names must be in EBCDIC format, left-justified, and padded with
blanks. Note that the subsystem name is restricted to four characters in length.

TRAXERPT
notifies SRM that a transaction has completed, provides its start time, and includes
resource utilization data for determining service consumption. Register 1 must point to a
serialized parameter list in the following format:

Offset in Hex

00

08
10
18
20
28

30

38

40
44

45

Length

8

8
8
8
8
8

8

8

4
I

3

Field Description

Transaction start time in store clock
assembler instruction (STCK) format
Subsystem name
Transaction name or blanks
User identification or blanks
Transaction class or blanks
Task (TCB) time in store clock
assembler instruction (STCK)
format or zeros
SRB time in store clock
instruction (STCK) format
or zeros
Main storage occupancy in page
seconds (pages times msec,
where msec is task (TCB)
time in 1.024 millisecond units)
Logical I/O count or zeros
X'OO' if the previous field
contains the logical I/O count
X'80' if the previous field
contains the device connect
time interval (nCT!)
Reserved must be zero

Note: You can obtain this parameter list by including the mapping macro IHATREPL
in your program.

The names must be in EBCDIC format, left-justified, and padded with blanks. Note that
the subsystem name is restricted to four characters in length.

SYSEVENT - System Event 2-441

Example 1

When SYSEVENT processing is completed, the subsystem regains control at the
instruction following the SYSEVENT macro instruction. Register 15 contains one of the
following return codes:

Hexadecimal
Code

00

08

OC

10

Meaning

Data for the transaction has been reported successfully to the SRM.

Processing could not be completed at this time. No queue elements are available for
recording the data. No data is reported to the SRM, but an immediate reissue could be
successful.

Reporting is temporarily suspended for one of the following reasons:

RMF workload activity reporting is not active.

- There is no installation control specification (IEAICSxx parmlib member with
RPGN specified for some subsystem other than TSO) in effect. The TOD clock is
stopped. No data is reported, but a later reissue could be successful.

Reporting is inoperative. The TOD clock is in error or the reporting interface is not
installed. No data is reported.

Operation: Use the SYSEVENT TRAXRPT to report transaction data providing transaction
identifiers and the transaction start time.

Transaction begins
(TRAXDES)

STCK INITTIME

Process transaction
Transaction completes

LA R13,SVAREA
LA Rl,PARMS
MVC O(8,Rl),INITTIME
MVC 8(32,Rl),TRAXDESC

SYSEVENT TRAXRPT

INITTIME DS D
PARMS DS 5D
SVAREA DS 18F
TRAXDESC DS CL32

Initialize transaction identifiers

Save start time

Provide 72-byte save area
Point to parameter area
Move in start time
Get subsystem name, transaction
name, userid, and class

2-442 SPL: System Macros and Facilities Volume 2

Example 2

Example 3

Operation: Use the SYSEVENT TRAXERPT to report transaction data, providing transaction
identifiers, start time and resource utilization data.

Transaction begins
(TRAXDESC)

STCK INITTIME

Process transaction
(TRAXDESC)

Transaction completes
LA R13,SVAREA
LA Rl,PARMS
MVC O(8,Rl),INITTIME
MVC 8(64,Rl) ,TRAXDESC

SYSEVENT TRAXERPT

INITTIME DS D
PARMS DS 9D
SVAREA DS l8F
TRAXDESC DS CL64

Initialize transaction identifiers

Save start time

Accumulate resource utilization data

Provide 72-byte save area
Point to parameter area
Move in start time
Get subsystem name, transaction
name, user id, class, and
resource utilization data

Operation: Use the SYSEVENT TRAXFRPT to report transaction data, providing transaction
identifiers and calculating the elapsed time.

Transaction begins
(TRAXDESC)

Process transaction

Transaction completes
LA R13,SVAREA
LA Rl,PARMS
MVC O(4,Rl),TOTLTIME
XC 4(4,Rl),4(Rl)
MVC 8(32,Rl) ,TRAXDESC

SYSEVENT TRAXFRPT

TOTLTIME DS F
PARMS DS 5D
SVAREA DS l8F
TRAXDESC DS CL32

Initialize transaction identifiers

Calculate elapsed time (TOTLTIME)

Calculate elapsed time (TOTLTIME)
Provide 72-byte save area
Point to parameter area
Move in elapsed time
Clear reserved field
Get subsystem name, transaction name,
user id, and class

SYSEVENT - System Event 2-443

Control Swapping

The SYSEVENTs HOLD, NOHOLD, DONTSWAP, OKSWAP, and TRANSWAP control
swapping. The choice of mnemonic depends on the period of time for which the address space
is to be non-swappable.

For a very short period of time (a path length of less than 200 instructions with no waits, SVCs,
or I/O between the HOLD and NOHOLD SYSEVENTs), use HOLD to make the address
space non-swappable and NOH OLD to make it swappable.

For a short period of time (less than one minute), use DONTSWAP to make it non-swappable
and OK SWAP to make it swappable.

For an extended period of time (indefinite time span), use TRANSWAP to make the address
space non-swappable and OKSW AP to make it swappable.

A description of the individual mnemonics follows:

HOLD
notifies SRM that the address space that issued this SYSEVENT cannot be swapped out
until the address space issues a NOHOLD SYSEVENT and the HOLD count in the SRM
user control block (OUCB) is zero. SRM increases the HOLD count in the OUCB each
time a program in the address space issues SYSEVENT HOLD.

You should use this SYSEVENT to prevent a swap out while holding a critical resource
for a very short period of time. If you are in SRB mode, you must issue SYSEVENT
NOH OLD before SRB processing completes. SYSEVENT HOLD does not require any
input parameters.

NOHOLD
notifies SRM that the current address space, from which a program has issued
SYSEVENT HOLD, will be considered for swapping when the HOLD count in the
OUCB reaches zero. SRM decreases this HOLD count when a program in the address
space issues SYSEVENT NOHOLD.

DONTSWAP
notifies SRM that the address space from which this SYSEVENT is issued cannot be
swapped out until a program issues SYSEVENT OKSW AP from the address space or
MVS issues INITATT or INITDET.

No input parameters are required. One of the following codes will be returned in register
1, byte 3:

Hexadecimal
Code

00

04

08

Meaning

The request was honored.

The request was not honored because it was not for the current address
space.

The request was not honored because the issuer was not authorized or the
outstanding count of DONTSW AP requests had reached its maximum.

2-444 SPL: System Macros and Facilities Volume 2

Example 1

OKSWAP
notifies SRM that the address space from which the SYSEVENT was issued can be
considered for swapping.

No input parameters are required. One of the following codes will be returned in register
1, byte 3:

TRANSWAP

Hexadecimal
Code

00

04

08

Meaning

The request was honored.

The request was not honored because it was not for the current address
space.

The request was not honored because the issuer was not authorized.

forces a swap out. After the subsequent swap-in, frames are allocated from preferred
storage and the address space is marked non-swappable. TRANSW AP prevents programs
from allocating frames in reconfigurable storage. If the request is for the current address
space and a dependency on the completion of the transaction exists, register 1 can contain
the address of an ECB to be posted when the address space is swapped out.

One of the following codes will be returned in register 1, byte 3:

Hexadecimal
Code

00

04

Meaning

The request was honored.

The transition was previously done.

If an ECB was specified, the following POST codes may occur:

Hexadecimal
Code

00

04

Meaning

The transition is complete.

The address space became non-swappable before it could be swapped out.

Operation: Make the current address space non-swappable for a path length of less than 200
instructions that contains no waits, SVCs or I/O.

LA R13,SVAREA
SYSEVENT HOLD

LA R13,SVAREA
SYSEVENT NOHOLD

SVAREA DS 18F

SYSEVENT - System Event 2-445

Example 2

Example 3

Operation: Make the current address space non-swappable for a time period of less than one
minute.

SYSEVENT DONTSWAP

SYSEVENT OKSWAP

Operation: Make the current address space non-swappable for an indefinite period of time.

SYSEVENT TRANSWAP

Obtain System Measurement Information

SYSEVENTs REQPGDAT, REQSERVC, and COPYDMDT are used to obtain system
measurement information. REQPGDAT and REQSERVC provide information about a
particular address space; COPYDMDT provides infomlation about the entire system.

The user must supply the address of a data area large enough to store the requested data.

A description of the individual mnemonics follows:

REQPGDAT
indicates a request for user-paging data. Callers must specify TYPE = INTERVAL when
using this SYSEVENT. If you do not specify TYPE = INTERVAL with REQPGDAT,
the accounting information is reset to zero.

On entry, register 1 must contain the address of a fixed sixteen-word area where the
service data is to be stored. On return, this area contains:

Offset in Hex Length Field Description

00 4 Count of non-VIO page-ins
04 4 Count of non-VIO page-outs
08 4 Count of non-VIO reclaims
OC 4 Count of VIO page-ins
10 4 Count of VIO page-outs
14 4 Count of VIO reclaims
18 4 Count of pages swapped in
IC 4 Count of pages swapped out
20 4 Count of swap-outs
24 4 Count of common area page-ins
28 4 Count of common area reclaims
2C 4 Count of pages stolen
30 4 Count of LPA page-ins
34 4 Count of LPA reclaims
38 8 Count of CPU page-seconds

2-446 SPL: Syslern Macros :tnd Facditics Volume :2

On return, register 15, byte 3 contains the following information:

REQSERVC

Hexadecimal
Code

00
04

Meaning

Successful return
Unsuccessful return

obtains service-related data from SRM for a given address space. SYSEVENT
REQSERVC must be issued before the address space data is reset at job termination.

Register 1 must contain the address of a three-word area where the service data is to be
stored. When the SYSEVENT completes, this area contains the information specified
according to whether the address space is or is not a TSO address space.

For a TSO address space:

Word Contents

Total service for the job

2 Total transaction active time in 1.024 millisecond units of time

3 (Bytes 0-1) Performance group number last assigned to the address space

3 (Bytes 2-3) Total number of transactions

In the case of a non-TSO address space:

Word Contents

Total service for the session

2 Total active time for all transactions in 1.024 millisecond units of time

3 (Bytes 0-1) Performance group number last assigned to the address space

3 (Bytes 2-3) Zeros

On return register 15, byte 3 contains:

COPYDMDT

Hexadecimal
Code

00
04

Meaning

Data obtained
Data lost because of an accumulation control block error

requests the list of SRM related pa:rmlib members that are currently in eiTect. The user
can also request a copy of SRM's domain table (DMDT).

On entry, register 1 must contain the address of a fixed data area. If the user requested a
copy of the DMDT, the caller must enter X'40' in the first byte of the fixed data area

SYSEVENT - System Event 2-447

Example 1

Example 2

Example 3

(parameter list). The data area must be large enough to contain the following
information:

Offset in Hex Length

00

04 4
08 8
10 8
18 8
20 8
28 2
2A Variable

Field Description

X'80' indicates that non~swappable address
spaces were counted in the CMPLs of domains
X'40' indicates that the domain
table is to be included.
Reserved
The time when the displayed values were in effect
IPS parmlib member name
OPT parmlib member name
Installation control specification parmlib member name
Count of domains
Domain table

Operation: Obtain user-paging data for the current address space.

LA 1, PAGDATA
SYSEVENT REQPGDAT,TYPE=INTERVAL

PAGDATA DS 16F

Operation: Obtain service-related data for the current address space.

LA 1,SERVDATA
SYSEVENT REQSERVC

SERVDATA DS 3F

Operation: List SRM's related parmlib members that are in effect. Do not list the domain
table.

LA 1 , DOMP ARM
SYSEVENT COPYDMDT

DOMPARM DS lOF

2-448 SPL: System Macros and Facilities Volume 2

TCTL - Transfer Control from an SRB Process

Example 1

The TCTL (transfer control) macro instruction allows an SRB process to exit from its
processing and to pass control directly to a task without going through the dispatcher.

The TCTL macro instruction is coded as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede TCTL.

TCTL

b

TCB = (4)
TCB == tcbaddr

One or more blanks must follow TCTL.

Default: TCB address contents of register (4)
tcbaddr: A-type address or registers (2) - (12).

The parameters are explained as follows:

TCB=(4)
TCB = tchaddr

specifies the task designated for dispatching. Register (4) is the default; it is assumed to
contain the appropriate TCB address.

Note: The TCB resides in storage below 16 megabytes.

The TCTL macro instruction uses registers as follows:

Register
0-3
4
5-14
15

Use
Work registers
TCB address
Work registers
EPA of the TCTL routine

Operation: From SRB mode processing, terminate the SRB and give control to the task
specified in register 4.

TCTL TCB=(4)

TCTL - Tran~fer Control from an SRB Process 2-449

TESTAUTH - Test Authorization of Caller

The TESTAUTH macro instruction is used on behalf of a privileged or sensitive function to
verify that its caller is appropriately authorized.

TESTAUTH supports the authorized program facility (APF) - a facility that permits the
identification of programs that are authorized to use restricted functions. In addition,
TESTAUTH provides the capability for testing for system key 0-7 and supervisor state.

The TESTAUTH macro instruction is written as follows:

name

b

TESTAUTH

b

FCTN=fetn
FCTN = fetn,AUTH = auth

,STATE=NO
,STATE=YES

,KEY=NO
,KEY=YES

,RBLEVEL=2
,RBLEVEL=l

,BRANCH=NO
,BRANCH = YES

name: symbol. Begin name in column I.

One or more blanks must precede TESTAUTH.

One or more blanks must follow TESTAUTH.

fetn: decimal digit 0 or 1 or register (2) - (12).
auth: decimal digit 0 or 1, or register (2) - (12).
Default: FCTN = 0

Default: STATE = NO

Default: KEY = NO

Default: RBLEVEL = 2

Default: BRANCH = NO

The parameters are explained as follows:

FCTN=fctn
FCTN =fctn ,AUTH = auth

specifies the authorization (via APF) of a program,

FCTN = 0 specifies that APF -authorization is not checked.

FCTN = 1 specifies that APF-authorization is checked.

AUTH=O specifies that the job step is not authorized to perform any restricted function.

AUTH = 1 specifies that the job step is authorized to perform restricted functions.

2-450 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Note: If FCTN = 1 is specified by itself (that is. without the AUTH parameter), the JSCB is
used to check for authorization. AUTH should only be coded when it is not possible for
TESTAUTH to acquire the code from the JSCB. In MVS/XA, AUTH is generally not coded
except in a testing environment.

,STATE=NO
,STATE=YES

specifies whether or not (YES or NO) a check is to be made for supervisor/problem
program state. (Supervisor state is authorized, problem program state is not authorized.)

,KEY=NO
,KEY=YES

specifies whether or not (YES or NO) a check is to be made of the protection keys.
(Protection keys 0-7 are authorized, protection keys 8-15 are not authorized.)

Note: TESTAUTH is used to test one or more of three conditions FCTN,STATE, or KEY. If
any of the requested conditions are tested favorably, a return code of 0 is returned in register
15. If all of the requested conditions are tested unfavorably, the return code is set to 4.

,RBLEVEL=2
,RBLEVEL=l

specifies whether the TESTAUTH caller is a type 2,3, or 4 SVC (RBLEVEL=2), or a
type 1 SVC (RBLEVEL = 1).

,BRANCH=NO
,BRANCH = YES

specifies a branch entry (YES) or an SVC entry (NO). If BRANCH = YES is specified,
registers 2 and 3 are modified by the TESTAUTH routine.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00
04

Meaning

Task is authorized.
Task is not authorized.

Operation: Test jobstep for APF authorization.

TESTAUTH FCTN=l

Operation: Test for APF authorization and supervisor state, and do not check protection keys.

TESTAUTH STATE=YES,KEY=NO,FCTN=l

TESTA UTH - Test Authorization of Caller 2-451

T6EXIT - Type 6 Exit

The T6EXIT macro instruction returns control from a Type 6 SVC routine to the SVC first
level interrupt handler (FLIH). This exit macro can only be used in a Type 6 SVC.

The T6EXIT macro instruction is written as follows:

name

b

T6EXIT

b

RETURN = CALLER

RETURN = DISPATCH

RETURN=SRB

name: symbol. Begin name in column 1.

One or more blanks must precede T6EXIT.

One or more blanks must follow T6EXIT.

Default: RETURN = CALLER

The explanation of the RETURN parameter is as follows:

RETURN =
specifies how the Type 6 SVC has chosen to exit.

CALLER specifies that the return is directly to the caller or issuer of the SVC without
going through the dispatcher. CALLER is the default return option.

DISPATCH specifies that the return should be through the dispatcher. This function is
for the use of routines that have suspended the current task.

No registers are returned to the caller.

SRB specifies that the SVC FLIH should immediately dispatch an SRB. This SRB must:

• Be initialized by the Type 6 SV C

• Be pointed to by register 1

• Execute in the same address space as the SVC. The SRB has the same format as the
SCHEDULE SRB.

Note: No registers are returned to the caller.

2-452 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Terminate Type 6 SVC processing and return control from the Type 6 SVC to the
caller of the SVC.

T6EXIT RETURN=CALLER

T6EXIT - Type 6 Exit 2-453

VRADATA - Update Variable Recording Area Data

The VRADATA macro instruction copies service information into a variable recording area
(VRA), usually the system diagnostic work area (SDW A VRA). This information can later be
written to the SYSl.LOGREC data set if software errors occur. (See the SETRP macro
instruction, RECORD = YES keyword description, for more information on recording the
SDWA control block.) The information copied into the VRA using this macro instruction is in
a key, length, data format defined by the IHAVRA mapping macro instruction. The key and
length are one byte fields; the data can vary in length. The IHA VRA mapping macro is shown
in the Debugging Handbook.

The VRADAT A macro instruction is written as follows:

name

b

VRADATA

b

VRAINIT = vra addr

,VRACLEN = curr len addr or (curr
len addr,O)
, VRAMLEN = max len addr

,KEY = key nmbr

,LENADDR = data len addr
,LEN = data len value

,DATA = data addr

,SDWAREG = (reg, descr)

,VRAREG = (reg,descr)

,WORKREG=reg

,TYPE = (lentype,testt;pe)

name: symbol. Begin name in column 1.

One or more blanks must precede VRADATA.

One or more blanks must follow VRADA T A.

vra addr: RX-typeaddress, or the symbol 'SDWAVRA'.
Default: address of SDW A VRA

curr len addr: RX-type address.
Default: address of SDW AURAL.
max len addr: RX-type address.
Default: address of SDWAVRAL.

key nmbr: symbol or decimal digit.

data len addr: RX-type address.
data len value: symbol or decimal digit.
Default: length of DATA storage.

data addr: RX-type address, or register (1) - (15).

reg: symbol or decimal digits 1-15.
Default: 1
desc/': SET or NOTSET

reg: symbol or decimal digits 1-15.
Default: 14
descr: SET or NOTSET
Default: NOTSET if VRAINIT is specified.
otherwise SET.

reg: symbol or decimal digits 1-15.
Default: IS

ten type: LEN or NOLEN or NOL
testtype: TEST or NOTEST or NOT
Default: LEN, TEST

2-454 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

,VRAINIT = vra add,.
specifies the address of the variable recording area to be initialized and updated. The
value in the register specified by the VRAREG keyword is also initialized unless
VRAREG = (,SET) is specified. If VRAINIT = SDW A VRA is specified, the SOW A
control block is also updated to indicate that the VRA contains hexadecimal data, and
data in key-length-data format. If VRAINIT is not specified, VRAINIT = SOWAVRA is
assumed.

All subsequent VRAOATA macro instructions use the specified VRAINIT value until
you specify another VRAINIT value.

,VRACLEN = curr len addr
specifies the address of a one-byte field that contains the length of the current VRA. This
value changes as information is added in the VRA. If you do not specify VRACLEN,
you can obtain the current length of the VRA from the SOW AURAL field of the SDW A.

,VRACLEN = (curr len addr, 0)
specifies that the area containing the length is to be zeroed.

All subsequent VRAOATA macro instructions use the specified VRACLEN value until
you specify another VRACLEN value.

,VRAMLEN = max len addr
specifies the address of a two-byte field that contains the maximum length of the VRA. If
you do not specify VRAMLEN, the maximum length is obtained from SOW AVRAL.

All subsequent VRADAT A macro instructions use the specified VRAMLEN value until
you specify another VRAMLEN value.

,KEY = key number
specifies the key value to be placed in the VRAKEYfield of the current VRA entry. The
IHA VRA mapping macro defines the valid key values.

,LENADDR = data len addr
,LEN = data len

specifies the length of the data for'the VRA entry. The maximum length is 255 bytes.
Omit this keyword unless the OAT A keyword is a register value or a displacement plus a
register, or if the defined data length must be overridden because it is larger than 255
bytes. For bit string data, use this keyword to indicate how many bytes the bit string
occupies. The data length field pointed to by LENAOOR must be a two-byte area with
the length right-justified in the area.

,DATA = data addr
. specifies the address of the data to be copied into the VRA. The data must correspond to
the key specified by the KEY parameter. If you specify OAT A, you must specify KEY.
You must also specify LEN or LENADOR if DATA has a register value or if the data
length is greater than 255 bytes.

VRADATA - Update Variable Recording Area Data 2-455

,SDWAREG = reg
specifies a register containing the address of the SDW A control block. You must place
the address in this register before invoking VRADATA. THE VRADATA macro
instruction preserves the contents of this register. If you do not specify SDW AREG,
register 1 is the default.

,VRAREG = (reg ,descr)
specifies a register to contain the address of the next available space in the VRA and a
description of whether or not the register value is already set (SET) or not set (NOTSET).
If VRAINIT is specified, the default is NOTSET. If VRAINIT is not specified, the
default is SET. If you specify NOTSET or default to it, the control program places the
address of the VRA plus the current length in the register· before updating the VRA.

After updating the VRA, the control program updates the register to point to the next
available space in the VRA. If you do not specify VRAREG, register 14 is the default.

,WORKREG = reg
specifies a work register. Each time you invoke the VRADATA macro instruction, the
contents of this register are destroyed. If you do not specify WORKREG, register 15 is
the default.

,TYPE= I LEN,
NOLEN,

TEST I
NOTEST '

specifies whether (LEN) or not (NOLEN) you want the current length of the VRA stored
in the VRALEN area and also specifies whether (TEST) or not (NOTEST) you want the,
VRA tested to see if it is full before adding the new entry. If you specify TEST, the
current length of the VRA must already be in the VRACLEN area. '

If you do not need to store the length or test to see if the new entry fits, specify NOLEN
and NOTEST. These specifications considerably reduce the amount of code gener~tedby
the VRADATA macro instruction. If you do not specify TYPE, the value LEN, TEST is
the default.

Notes:

1. You must include the IHASDWA mapping macro instruction as a DSECTin your program if
you accept the default for VRAINIT, VRACLEN, or VRAMLENor if you specify
VRAINIT=SDWAVRA. You must also place the address of the SDWA control block into
the SD W AREG register (or default register 1) if you accept the default for any of these three
keywords.

2. You must include the IHAVRA mapping macro as a DSECT in your program. If you include
the IH ASD W A mapping macro. IH A V RA is automatical~y included.

3. You can issue VRADATA more than once in a module. but you need to specifi' VRAINIf,
VRACLEN, and VRAMLEN only once for a particular series of updates to the VRA.

4. !l.vou specify a key but no data .. the lengthfieldfor the VRA entry is zero.

2-456 SPL: Sy'stem Macros and Facilities Volume 2

Example 1

Example 2

Operation: Initialize the SDW A control block to indicate that the VRA contains hexadecimal
data, in key, length, data format. Also~ move two pieces of data into the SDWA VRA, and
indicate that no test of the length of the VRA is needed, (because the data fits in the VRA).
The second request indicates that the length used is to be stored in the VRA current length
field. The pieces of data are the IRA VRA mapping macro name and the contents of a control
block.

VRADATA VRAINIT=SDWAVRA,KEY=VRACBM,DATA=MYCBNAME, X
TYPE=(NOLEN,NOTEST)

VRADATA KEY=VRACB,DATA=MYCB,TYPE=(LEN,NOTEST)

Operation: Initialize a variable recording area that is not the SDWA. Move in a piece of data,
specifying its length. (The piece of data is an ASID.)

VRADATA VRAINIT=LRBTUSR,VRACLEN=LRBTCLEN,
VRAMLEN=LBRTMLEN

VRADATA KEY=VRAAID,DATA=(REGA)~LEN=ASIDLEN

X

DATA - Update Variable Recording Area Data 2-457

VSMLIST - List Virtual Storage Map

The VSMLIST macro instruction provides information about the allocation of virtual storage.
All addresses returned by the macro are 31-bit addresses. The information is returned in a
work area that you specify. You must set bytes 0-3 of the work area to zero before the first
invocation of this macro instruction for a specific request. The format of the work area is
described in the "Virtual Storage Management" section in Volume 1.

This macro instruction can be used in cross memory mode. All addresses are associated with
the current address space.

The following information can be requested:

• The ranges of virtual storage allocated to the SQA, by subpool, and the free space within
those ranges

• The ranges of virtual storage allocated to the CSA, by subpool, and the free space within
those ranges

• The ranges of CSA space that are unallocated

• The ranges of virtual storage allocated to the LSQA in the current address space, by
subpool, and the free space within those ranges

• The ranges of virtual storage allocated to private area subpools, by TCB, and the free space
within those ranges

• The ranges of private area that are unallocated

• On entry to this macro instruction, register 13 must contain the address of a 72-byte save
area. VSMLIST preserves registers 2-13.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

2-458 SPL: System Macros and Facilities Volume 2

The VSMLIST macro instruction is written as follows:

IilJme

b

VSMLIST

b

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP = sp lisl addr

,WKAREA = (addr,length)

,TCB= (teb add/')
,TCB= (teb addr,ALL)
,TCB=(, ALL)

,SPACE = ALLOC
,SPACE = FREE
,SPACE=UNALLOC

,LOC=ANY
,LOC = BELOW

,REAL

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

/lame: symbol. Begin nmne in column I.

One or more blanks must precede VSMLIST.

One or more blanks must follow VSMLIST.

sp list add/': RX-type address or register (0), (2

add/': RX-type address or register (0), (2)
length: symbol, decimal digit, or register (0), (2) - (12).

Default: TCB address in PSATOLD.
teb add,.: RX-type address or regi
Note: The TCB parameter is required only for SRB routines, if SP = PVT
or SP=sp list addr and the list contains private area subpools.

Default: SPACE = ALLOC
Note: SPACE = UNALLOC can be specified only for
SP=CSA or SP=PVT.

Default: LOC = ANY

Default: LINKAGE = SYSTEM

The parameters are explained as follows:

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP = Sp list addr

specify the storage areas for which information is requested. The following subpools are
listed for the specified storage areas:

• SQA: 226, 239, 245

• CSA: 227, 228, 231, 241

• LSQA: 255

• PVT: 0, 1-127, 229, 230, 236, 237, 251, 252

VSMLIST - List Virtual Storage Map 2-459

GETMAIN/fREEMAIN processing translates subpool numbers 233, 234, 235, 253, and
254, in the LSQA, to subpool number 255 and subpool numbers 240 and 250, in the
private area, to subpool number O. VSMLIST reports the translated subpool numbers,
not the original subpool numbers. In addition,VSMLIST does not report invalid subpool
numbers (subpool numbers greater than 255) or undefined subpool numbers (for example,
128).

If SP = sp list addr is specified, the user must supply the address of a subpool list. The
first halfword of the list contains the number of entries in the list. Each of the following
halfwords in the list contains a subpool number. If a valid subpool number appears more
than once in the subpoollist, it is reported only once.

,WKAREA = (addr, length)
indicates the address and length of a user-supplied work area. VSM uses this work area
to hold the parameter list, control information, and data that is to be returned to the
caller. The work area should begin on a word boundary and be a minimum of 4K bytes
in length.

You must set bytes 0-3 of this work area to zero before the first invocation of VSMLIST
for a specific request. See "Virtual Storage Management" in Volume 1 for a description
of the work area.

,TCB= (tcb addr)
,TCB=(tcb addr,ALL)
,TCB = (,ALL)

specify the TCB associated with the virtual storage allocated to the private area subpools.
The TCB must be located in the currently addressable address space. If ALL is specified,
the storage associated with the TCB and all of its subtasks is reported.

Notes:

1. If ALL is specified and the TeB is high in the task structure (for example, the TeBfor
ReT) , more than one region could be listed. The regions in the private area are the
ReT region, the V= V region, and the V=R region (for V=Rjobs).

2. The TeB resides in storage below 16 megabytes.

,SPACE=ALLOC
,SPACE = FREE
,SPACE = UNALLOC

specify whether allocated, allocated and free, or unallocated storage is to be reported.

ALLOC indicates that the virtual addresses and lengths of blocks of storage allocated to
the specific area are to be listed.

FREE indicates that in addition to the information supplied by ALLOC, the virtual
addresses and lengths of free space within the allocated blocks are to be listed.

2-460 SPL: System Macros and Facilities Volume 2

UNALLOC indicates that the virtual addresses and lengths of unallocated blocks of
storage are to be listed. Both TCB and REAL are ignored when UNALLOC is specified.

Note: An allocated block of storage is a block that is a multiple of 4K in size and
contains some storage that has been allocated via a GETMAIN macro instruction. The
free storage is the storage within an allocated block that has not been allocated via a
GETMAIN macro instruction. An unallocated block of storage is a block that is a
multiple of 4K in size and contains no allocated storage.

,LOC=ANY
,LOC=BELOW

indicate which VSM queues are to be searched. If LOC = ANY is specified, all of the
VSM queues are searched. If LOC = BELOW is specified, only those queues with virtual
storage below 16 megabytes are searched.

,REAL
indicates that the high order bit of the address field of the allocated block descriptor is to
be set. If the storage block was allocated using any LOC specification of GETMAIN but
LOC = (,BELOW), the indicator is turned on; if the storage block was allocated using the
LOC = (,BELOW) parameter of the GETMAIN macro instruction, the indicator is turned
off. If REAL is not specified the indicator remains zero.

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

indicate whether the VSMLIST routine uses a PC instruction (LINKAGE = SYSTEM) or
branch entry (LINKAGE = BRANCH) for linkage and whether the VSMLIST routine
provides serialization and recovery.

If LINKAGE = SYSTEM is specified, the VSMLIST routine provides linkage using a PC
instruction and also provides recovery and serialization. The user cannot hold a lock
higher than the local lock.

The caller's secondary ASID is preserved when a PC is issued; however, the caller cannot
be in secondary addressing mode when issuing the macro instruction.

Note: Serialization is not provided across calls to VSMLIST.

If LINKAGE = BRANCH is specified, the VSMLIST routine uses branch entry for
linkage and does not provide recovery or serialization. The user must hold the following
locks for requests in specific areas.

• VSMFIX lock for SQA requests

• VSMFIX lock for CSA requests

• Local lock for LSQA requests

• Local lock for PVT requests

VSMLIST - List Virtual Storage Map 2-461

Example 1

Example 2

Example 3

Example 4

vVhen control is returned. register 15 contains one of the following return codes:

Hexadecimal
Code

o

4

8

c

Meaning

The macro executed successfully and all the information has been placed in the data portion of
the work area.

The macro executed successfully, but additional information has not been reported because
there was not enough room in the data portion of the work area. To obtain the missing
information, the user can continue to issue the macro, with the same options, until the return
code in register 15 is O.

An error occurred in scanning VSM control blocks. The information in the data area is valid,
but incomplete. This return code is obtained only by users who specify
LINKAGE = SYSTEM because it is detected during recovery.

The work area was too small or either invalid parameters or invalid control information was
detected. This return code is obtained only by users who specify LINKAGE = BRANCH.
Users who specify LINKAGE = SYSTEM will receive aC78 abend.

Note: Bytes 0-3 of the work area also contain the return code. Prior to the first invocation of
the VSMLIST macro instruction, the user must set these bytes to zero. If the return code is 4
and the user wants to re-invoke the VSMLIST macro instruction, these bytes must not be
changed.

Operation: List the ranges of the allocated and free storage in the SQA. Specify the address of
the VSM work area in register 2 and the length of the work area in register 3.

VSMLIST SP=SQA,SPACE=FREE,WKAREA=((2) ,(3»

Operation: List the ranges of the allocated storage in the CSA. Specify the address of the
work area in register 2 and the length of the work area in register 3. Provide branch entry
linkage.

VSMLIST SP=CSA,SPACE=ALLOC,WKAREA=((2) ,(3» ,LINKAGE=BRANCH

Operation: List the ranges of unalloc9-ted storage in the private area. The variable X contains
the address of the work area, which has a length of 4096 bytes.

VSMLIST SP=PVT,SPACE=UNALLOC,WKAREA=(X,4096)

Operation: List the ranges of allocated storage, below 16 megabytes, in each of the subpools
specified in the subpool list at location Y. The variable X contains the address of the work
area. which has a length of 4096 bytes.

VSMLIST SP=Y,SPACE=ALLOC,WKAREA=(X,4096),LOC=BELOW

2-462 SPL: System Macros and Facilities Volume 2

VSMLOC - Verify Virtual Storage Allocation

The VSMLOC macro instruction verifies that a given storage area has been allocated using the
GETMAIN macro instruction. All addresses communicated between the caller and the
VSMLOC routine must be 31-bit addresses. You can use VSMLOC in cross memory mode.
All addresses are associated with the current address space.

The VSMLOC macro instruction is written as follows:

name

b

VSMLOC

b

SQA
CSA
LSQA
PVT
CPOOLFIX
CPOOLPAG
CPOOLLCL

,AREA = (addr,length)

,AREA=addr

TCB=addr

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

name: symbol. Begin name in column 1.

One or more blanks must precede VSMLOC.

One or more blanks must follow VSMLOC.

addr: RX-type address or register (0) - (12
length: symbol, decimal digit or register (0), (2) - (12).
Use only with SQA, CSA, LSQA, and PVT.

addr: RX-type address or register (0) - (12).
Use only with CPOOLFIX, CPOOLPAG,
and CPOO LLCL.

addr: RX-type address or register (0) - (12).
Can only be specified with PVT.

Default: LINKAGE = SYSTEM

The parameters are explained as follows:

SQA
CSA
LSQA
PVT

used to velify that storage for SQA, CSA, LSQA, or PVT (private area storage) has
been allocated in the current address space.

VSMLOC - Verify Virtual Storage Allocation 2-463

,AREA = (addr,length)
indicates the start of the virtual storage area (addr) and the length of the virtual storage
area (length) to be verified.

,AREA = (addr)
indicates the start. of the virtual storage area (addr) to be verified.

CPOOLFIX
used to verify that storage for a global fixed cell pool has been allocated. Users who
obtain their storage from subpools 226, 227, 228, 239, or 245 should specify this keyword.

CPOOLPAG
used to verify that storage for a global pageable cell pool has been allocated. Users who
obtain their storage from subpools 231 and 241 should specify this keyword.

CPOOLLCL

TCB

used to verify that storage for a local cell pool has been allocated. Users who obtain their
storage from subpools 0-127, 229, 230, 233-237, 240, 250-255 should specify this keyword.

indicates that VSMLOC is to place the address of the TCB associated with the verified
storage in the register or storage area specified by the TCB parameter. If the return code
from VSMLOC is not zero, the register or storage area specified by the TCB parameter is
set to zero. The TCB parameter can only be specified with PVT.

,LINKAGE = SYSTEM
,LINKAGE = BRANCH

indicates the type of linkage that VSMLOC is to use and also indicates whether the
VSMLOC routine is to provide recovery and serialization.

If LINKAGE = SYSTEM is specified, the VSMLOC routine uses a PC instruction for
linkage and provides recovery and serialization. The following restrictions apply:

• If LSQA, PVT, or CPOOLLCL is specified, the user cannot hold a lock higher than
the local lock.

• If CPOOLPAG is specified, the user cannot hold a lock higher than the VSMP AG
lock.

• If CSA, SQA, or CPOOLFIX is specified, the user cannot hold a lock higher than the
VSMFIX lock.

The caller's secondary ASID is preserved when a PC is issued; however, the caller cannot
be in secondary addressing mode when issuing the macro.

If LINKAGE = BRANCH is specified, the VSMLOC routine uses branch entry linkage
and does not provide recovery or serialization. The user must provide serialization by
holding the following locks:

• The VSMFIX lock for CSA, SQA, and CPOOLFIX requests

• The VSMPAG lock for CPOOLP AG requests

• The local lock for LSQA, CPOOLLCL, and private area storage requests.

2-464 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Example 4

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning

o

4

8

12

The virtual storage specified has been allocated in the given storage area.

The virtual storage is not in the specified area or overlaps free space or different subpools in
the given area.

An error occurred in processing VSM control blocks. This return code is obtained only by
users who specify LINKAGE = SYSTEM because the error condition is detected during
recovery.

The input is invalid. This return code is obtained only by users who specify
LINKAGE = BRANCH. Users who specify LINKAGE = SYSTEM will receive a C78 abend.

Register 0 contains the following information:

Byte(s)

o
1-2
3

Meaning

Storage type indicator set by the macro (irrelevant to user, but can be non-zero)
Reserved
Subpool ID if the return code in register 15 is 0; 0 if the return code in register 15 is not 0

Note: Users should mask off bytes 0-2 before attempting to use the subpool ID returned in
register O.

Operation: Verify that the virtual storage, starting at the address given in register 2 and having
a length specified in register 3, has been allocated in the SQA.

VSMLOC SQA,AREA=(2),(3))

Operation: Verify that the 8-bytes of virtual storage starting at X have been allocated in the
CSA. Use a PC instruction for linkage and let VSMLOC provide recovery and serialization.

VSMLOC CSA,AREA=(X,8),LINKAGE=SYSTEM

Operation: Verify that the 8-bytes of virtual storage starting at the address specified in register
2 have been allocated in the LSQA. Use branch entry for linkage.

VSMLOC LSQA,AREA=«2),8),LINKAGE=BRANCH

Operation: Verify that the virtual storage, starting at X and having a length specified in
register 3, has been allocated in private area storage. Use branch entry for linkage.

VSMLOC PVT,AREA=(X,(3)),LINKAGE=BRANCH

VSMLOC - Verify Virtual Storage Allocation 2-465

Example 5

Operation: Verify that the 100 bytes of virtual storage starting at the address specified in
register 1 have been allocated in private area storage. The address of the TCB associated with
the storage verified is returned in register 4.

VSMLOC PVT,AREA=((l) ,100) ,TCB=(4) ,LINKAGE=BRANCH

2-466 SPL: System Macros and Facilities Volume 2

VSMREGN - Obtain Private Area Region Size

The VSMREGN macro instruction provides the virtual starting address and sizes of the private
area regions associated with a given TCB in the current address space.

VSMREGN runs in the state and key of the caller. You can use VSMREGN in cross memory
mode. All addresses communicated between VSMREGNand the caller are 31-bit addresses,
associated with the current address space. If the TCB default is not used, the caller must hold
the local lock.

Except for the TeB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

The VSMREGN macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede VSMREGN.

VSMREGN

b One or more blanks must follow VSMREGN.

WKAREA=addr addr: RX-type address or register (0) - (12).

,TCB = fcb addr Default: (except for SRB routines) TCB
tcb addr: RX-type address or register (0), (2) - (12).

The parameters are written as follows:

WKAREA = addr
indicates the virtual address of a 16-byte work area, which is used by VSMREGN to
return the requested information. The format of the work area is:

Bytes Meaning

0-3 Virtual address of the region below 16 megabytes

4-7 Length of the region below 16 megabytes

8-11 Virtual address of the region above 16 megabytes

12-15 Length of the region above 16 megabytes

VSMREGN - Obtain Private Area Region Size 2-467

Example 1

Example 2

Example 3

Example 4

,TeB = teb addr
indicates the virtual address of the TCB to be used to identify the region (the region
control task (RCT) region, the V = V region, or the V = R region). SRB routines and
routines whose currently addressable address space is not the home address space must
specify the TCB operand. They cannot use the default value.

Note: The TCB resides in storage below 16 megabytes.

When control returns from the VSMREGN routine, register 15 contains the following return
code:

Hexadecimal
Code

o

Meaning

Successful completion

Operation: Find the virtual address and length of the private area of the TCB whose address is
in PSATOLD. Return the information in the work area whose address is given in register 2.

VSMREGN WKAREA=(2)

Operation: Find the virtual address and length of the private area of the TCB specified in
register 3. Return this information in the work area whose address is given in register 2.

VSMREGN WKAREA=(2) ,TCB=(3)

Operation: Find the virtual address and length of the private area of the TCB whose address is
X. Return this information in the work area whose address is given in register 2.

VSMREGN WKAREA=(2),TCB=X

Operation: Find the virtual address and length of the private area of the TCB whose address
is given in register 3. Return this information in the work area whose address is X.

VSMREGN WKAREA=X,TCB=(3)

2-468 SPL: System Macros and Facilities Volume 2

WTL - Write To Log

The WTL macro instruction causes a message to be written to the system log. The message can
include any character that can be used in a C-type (character) DC statement, and is assembled
as a variable-length record. If the OPTION keyword is used by a non-authorized user, it is
ignored.

The description of the WTL macro instruction follows. The WTL macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the OPTION
parameter. The use of the OPTION parameter is restricted to users who are authorized
(APF-authorized, in system key 0-7, or in supervisor state).

Note: The exact format of the output of the WTLmacro instruction varies depending on the
job entry subsystem (JES2 or JES3) that is being used, the output class that is assigned to the
log at system initialization, and whether DLOG is in effect for JES3. In JES3, system log
entries are preceded by a 23-character prefix that includes a time stamp and routing
information. If the combined prefix and message exceeds 126 characters, the log entry is
truncated at the first blank or comma encountered when scanning backward from the 126th
character of the combined prefix and message. See Operations: J ES3 Commands for
information about the format of the log entry when using JES3.

The standard form of the WTL macro instruction is written as follows:

name

b

WTL

b

'msg'

,OPTION = PREFIX
,OPTION = NOPREFIX

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

msg: Up to 126 characters if OPTION = NOPREFIX is specified. Up to 128
characters if OPTION = PREFIX is specified.

Default: OPTION = NOPREFIX

The parameters are explained as follows:

'msg'
specifies the message to be written to the system log. The message must be enclosed in
apostrophes, which will not appear in the system log. See Figure 15 for a list of the
printable EBCDIC characters passed to display devices or printers.

WTL --~ Write To Log 2-469

,OPTION = PREFIX
,OPTION = NOPREFIX

specifies whether the WTL text contains a prefix identifying the system log record. If
PREFIX is specified, the text already contains a prefix. If NOPREFIX is specified or if
tillS parameter is omitted, a 2-character prefix will be added by the control program. The
OPTION keyword is ignored by any program running in the JES3 primary address space.

Note: If the msg text exceeds 126 characters, truncation occurs at the last embedded blank
before the 126th character; when there are no embedded blanks, truncation occurs after the
126th character.

Hex EBCDIC Hex EBCDIC Hex EBCDIC Hex EBCDIC
Code Character Code Character Code Character Code Character

40 (space) 7B # 99 r D5 N
4A ¢ 7C ~ A2 D6 0
4B 7D A3 D7 P
4C < 7E A4 u D8 Q
4D (7F A5 v D9 R
4E + 81 a A6 w E2 S
4F I 82 b A7 x E3 T
50 & 83 c A8 y E4 U
5A 84 d A9 z E5 V
5B $ 85 e C1 A E6 W
5C * 86 f C2 B E7 X
5D 87 g C3 C E8 Y
5E 88 h C4 D E9 Z
5F -, 89 i C5 E FO 0
60 91 j C6 F F1 1
61 92 k C7 G F2 2
6B 93 1 C8 H F3 3
6C % 94 m C9 I F4 4
6D 95 n D1 J F5 5
6E > 96 0 D2 K F6 6
6F ? 97 P D3 L F7 7
7A 98 q D4 M F8 8

F9 9

Figure 15. Characters Printed or Displayed on an MCS Console

Notes:

1. If the display service or printer is defined to J ES3, the following characters are translated to
blanks:

I! ; I . "

2. The system recognizes the following hexadecimal representations of the U.S. national
characters: @ as X'7C'; $ as X'SB'; and # as X'7 B'. In countries other than the U. S., the
U.S. national characters represented on terminal keyboards might generate a different
hexadecimal representation and cause an error. For example, in some countries the $
character generates a X'4A'.

2-470 SPL: System Macros and Facilities Volume 2

\

Example 1

Example 2

Operation: Write a message to the system log.

WTL 'THIS IS THE STANDARD FORMAT FOR THE WTL MACRO'

Operation: Write a message to the system log specifying a prefix to identify the system log
record.

WTL 'QL THIS FORMAT OF THE WTL USES THE OPTION KEYWORD' ,OPTION=PREFIX

WTL ._-- Write To Log 2-471

WTL (List Form)

Example 1

The list form of the WTL macro instruction is used to construct a control program parameter
list. The message parameter must be provided in the list form of the macro instruction.

The list form of the WTL macro instruction is written as follows:

name

b

WTL

b

'msg'

,MF=L

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

msg: Up to 126 characters.

The 'msg' parameter is explained under the standard form of the WTL macro instruction. The
OPTION keyword is not permitted on the list form of the WTL macro. A description of the
MF parameter follows:

,MF=L
specifies the list form of the WTL macro instruction.

Note: If msg text exceeds 126 characters, truncation occurs at the last embedded blank before
the 126th character; when there are no embedded blanks, truncation occurs after the 126th
character.

Operation: Build a parameter list for a message to be written to the system log.

LOGMSG WTL 'FUNCTION XXX COMPLETE' ,MF=L

2-472 SPL: System Macros and Facilities Volume 2

WTL (Execute Form)

Example 1

The execute form of the WTL macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTL. You cannot modify the message
in the execute form.

The execute form of the WTL macro instruction is written as follows:

name

b

WTL

b

MF = (E,elrl addr)

,OPTION = PREFIX
,OPTION = NOPREFIX

name: symbol. Begin name in column 1.

One or more blanks must precede WTL.

One or more blanks must follow WTL.

etrl addr: RX-type address, or register (1) or (2) - (12).

Default: OPTION = NOPREFIX

The OPTION parameter is explained under the standard form of the WTL macro instruction;
this parameter is explained as follows:

MF == (E,ctri addr)
specifies the execute form of the WTL macro instruction. This form uses a remote
control program parameter list.

Operation: Write a message constructed in the list form of WTL.

WTL MF=(E,LOGMSG)

WTL (Execute Form) 2-473

WTO - Write to Operator

The WTO macro instruction causes a message to be written to one or more operator
consoles.

An authorized user (supervisor state with protection key 0-7) can issue a multiple line WTO
message of up to 255 lines with one WTO macro instruction. If you are coding a multiple line
message, you must ensure that the left-most three bytes of register 0 are set correctly. For the
first request (of up to 255 lines), these three bytes must be zero. For subsequent requests, the
first three bytes of register 0 may contain the message identifier that the WTO service routine
returns in register 1 after the first request. The CONNECT keyword provides another way to
connect WTO messages.

Use of the MSGTYP and MCSFLAG parameters should only be attempted by system
programmers familiar with MCS, because using these parameters improperly might interfere
with the message routing scheme.

2-474 SPL: System Macros and Facilities Volume 2

The standard form of the WTO macro instruction is written as follows:

b

WTO

b

name

'msg'
('text')
('text ',line type)

,ROUTCDE= (routing code)

,DESC= (desc code)

,AREAID = id char

,MSGTYP= (msg type)

,MCSFLAG= ((lag name)

,CONNECT = addr

,CON SID = addr

,KEY=addr

,TOKEN = addr

,JOBID = add/'

.JOBNAME=addr

,SYSNAME = addr

,WQEBLK =addr

,PRTY=add,.

,SUBSMOD = YES
,SUBSMOD = NO

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 125 characters.
text: Up to 125 characters.
The pemlissible line types, text lengths, and maximum numbers are shown below:

line type text maximum number
C 34 char I C type
L 70 char 2 L type
D 70 char 255 D type

(authorized programs)
10 D type
(unauthorized programs)

DE 70 char 1 DE type
or

E None I E type

The maximum total number of line types that can be
coded in one instruction is 255.

routing code: decimal digit from I to 128. The routing code
is one or more codes, separated by commas,
or a hyphen to indicate a range.

desc code: decimal digit from I to 16. The desc code
is one or more codes, separated by commas.

id char: alphabetic character A - Z.

msg type: any of the following

N
Y
SESS
JOBNAMES
STATUS

SESS,JOBN AMES
SESS,STATUS
JOBNAMES,STATUS
SESS,JOBNAMES,STATUS

flag name: any combination of the following,
separated by commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

add/': RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

add/': RX-type address or register

add,.: RX-type address or register

Default: YES

CMD
BUSYEXIT

WTO - Write to Operator 2-475

The parameters are explained as follows:

'msg'
('tex!')
('tex!',line type)

c

L

specifies the message or multiple-line message to be written to one or more operator
consoles. '

The first format is used to write a single-line message to the operator. In the format, the
message must be enclosed in apostrophes, which do not appear on the console. It can
include any character that can be used in a character (C-type) DC instruction. When a
program issues a WTO macro instruction, the control program translates the text; only
standard printable EBCDIC characters, shown in Volume I under the topic "Writing
Operator Messages." are passed to the display devices. All other characters are replaced
by blanks. If the terminal does not have dual-case capability, it prints lowercase
characters as uppercase. The message is assembled as a variable-length record.

The second and third formats are used to write a multiple-line message to the operator.
For a problem program the message can be up' to ten lines long; the system truncates the
message at the end of the tenth line. The ten-line limit does not include the control line
(message IEE9321), as explained under line type C below. The message can be up to 255
lines long for an authorized program~

Note: If the second format is coded without repetition, for example, ('tex!'), the message
appears as a single-line message.

The text is one line of the multiple-Irne message. A line consists of a character string
enclosed in apostrophes (which do not appear on the operator console). Any character
valid in a C-type DC instruction can be coded. The maximum number of characters
depends on which line type is specified.

The line type defines the type of information contained in the 'text' field of each line of
the message:

indicates that the 'text' parameter is the text to be contained in the control line of the
message. The control line normally contains a message title. C may only be coded for
the first line of a multiple-line message. If this parameter is omitted and descriptor code 9
is coded, the system generates a control line (message lEE932I) containing only a message
identification number. The control line remains static during framing operations on a
display console (provided that the message is displayed in an out-of-line display area).
Control lines. are optional.

indicates that the 'text' parameter is a label line. Label lines contain message heading
information; they remain static during framing operations on a display console (provided
that the message is displayed in an out-of-line display area). Label lines are optional. If
coded, lines must either immediately follow the control line or another label line or be the
first line of the multiple-line message if there is no control line. Only two label lines may
be coded per message. See the topic "Embedding Label Lines in a Multiline Message" in
Volume I for additional information concerning how to include multiple label lines (more
than two) within a message.

2-476 SPL: System Macros and Facilities Volume 2

D

DE

E

indicates that the 'text' parameter contains the information to be conveyed to the
operator by the multiple-line message. During framing operations on a display console,
the da ta lines are paged.

indicates that the 'text' parameter contains the last line of information to be passed to
the opera tor.

indicates that the previous line of text was the last line of text to be passed to the
operator. The 'text' parameter, if any, coded with a line type of E is ignored.

,ROUTCDE = routing code
specifies the routing code(s) to be assigned to the message.

The routing codes are:

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control

9 System security
10 System error/maintenance
11 Programmer information
12 Emulators

Note: The values for this operand can be from 1 to 128. Routing codes 13 through 20
are reserved for customer use. Routing codes 29 through 41 are reserved, and are ignored
if specified. Routing codes 42 through 128 are available to authorized programs only.
Routing codes 1, 2, 3, 4, 7, 8, 10 and 42 cause hard copy of the message when display
consoles are used or more than one console is active. All other routing codes may go to
hard copy as an initialization option or as a result of a VARY HARDCPY command.

,DESC = (desc code)
specifies the message descriptor code(s) to be assigned to the message. Descriptor codes 1
through 6 and descriptor code 11 are mutually exclusive. Codes 7 through 10 can be
assigned in combination with any other code.

The descriptor codes are:

1 System failure
2 Immediate action required
3 Eventual action required
4 System Status
5 Immediate command response
6 Job status
7 Application program/processor;

message is to be deleted when
issuing task is terminated

8 Out-of-line message
9 Operator request
10 Dynamic status displays
11 Critical eventual action requested
12-16 Reserved for future use

All WTO messages with descriptor codes 1, 2, or 11 are action messages that have an @ or *
sign displayed before the first character of the message. This indicates a need for operator
action. On operator consoles that support color, descriptor codes determine the color in which
a message should be displayed. The colors used for different descriptor codes are described in
Operations: System Commands.

WTO - Write to Operator 2-477

,AREAID = id char
specifies a display area of the console screen on which a multiple-line message is to be
written. This parameter is meaningful only for out-of-line (descriptor code 8 and 9)
MLWTO messages that are to be sent to display consoles.

The character Z designates the message area (the screen's general message area, rather
than a defined display area); it is assumed nothing is specified.

Note: You must be an authorized (supervisor state, key 0-7, or APF-authorized) user to
use this parameter. Otherwise, Z is used. Also, if this parameter specifies an area, the
area could be overlaid by a currently running dynamic display. Support for queuing
messages with descriptor code 8 is by console id only.

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and
TSO terminal in operator mode that issued the MONITOR SESS, MONITOR
JOBNAMES, or MONITOR STATUS command, respectively. When the message type is
identified by the operating system, the message is routed only to those consoles that
requested the information.

For Y or N, the message type specifies whether flags are to be set in the WTO macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates
that the message is to be routed as specified in the ROUTCDE parameter.

,MCSFLAG= (flag name)
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by
each name coded.

The flag names and meanings are shown in Figure 16.

Flag Name

REGO

RESP
REPLY
BRDCST
HRDCPY
QREGO

NOTIME
NOCPY

CMD

BUSYEXIT

Meaning

Queue the message to the console whose source
ID is passed in register O.
The WTO is an immediate command response.
This WTO is a reply to a WTOR.
Broadcast the message to all active consoles.
Queue the message for hard copy only.
Queue the message unconditionally to the
console whose source ID is passed
in Register O.
Do not append time to the message.
If the WTO or WTOR macro instruction is issued
by a program in the supervisor state, do not
queue the message for hard copy. Otherwise,
this parameter is ignored. ,
The WTO is a recording of a system command
issued for hardcopy log purposes.
If there are no message or
console buffers for either MCS or JES3,
or there is a JES3 WTO staging area excess, the WTO is terminated
with a x'20' return code.
If BUSYEXIT is not specified, the WTO will go into
a wait state if WTO buffers are not available.

Figure 16. MCSFLAG Fields (WTO)

2 .. 478 SPL: System Macros and Facilities Volume 2

CONNECT = addr
specifies a field containing the 4-byte message number of the previous WTO that this
WTO is to be connected to. This message number is obtained as an output parameter
(returned in register 1) from the previous WTO. This keyword is mutually exclusive with
the CONSJD and SYSNAME keywords, and it is valid only for continuation of
multiple-line messages. When this keyword is specified in the list form, it must be coded
as CONNECT = with nothing after the =.

Note: You can still use the register interface, mentioned at the beginning of the WTO
macro description, to connect WTO messages. If you specify both, however, the system
uses the CONNECT keyword. It is recommended that new users use the CONNECT
keyword.

CONSID = addr
specifies a field containing the 4-byte id of the console to receive a message. This id is
used in place of a console id in register O. This keyword is mutually exclusive with the
CONNECT keyword. Note that you can still specify the console ID via the register zero
interface. If you use both the CONSID keyword and the register zero interface to specify
the console ID, the system uses the console ID specified by CONSID. When this keyword
is specified in the list form, it must be coded as CONSID = with nothing after the =.

KEY=addr
specifies a field containing an 8-byte key to be associated with this message. The key
should be EBCDIC if used with the D R command for retrieval purposes, but it must not
be '*'. If a register is used, it contains the address of the key. When this keyword is
specified in the list form, it must be coded as KEY = with nothing after the =.

TOKEN=addr
specifies a field containing a 4-byte token to be associated with this message. This field is
used to identify a group of messages that can be deleted by a DOM macro that includes
TOKEN. The token should be unique within an address space. When this keyword is
specified in the list form, it must be coded as TOKEN = with nothing after the =.

WQEBLK= addr
specifies a field containing a WQE control block to be used as input for the WTO. If a
register is used, the register contains the address of the WQE control block to be used as
input for the WTO. This keyword is mutually exclusive with all other keywords and
reserved for authorized users. It is valid only on the standard form of the macro. When
this keyword is specified in the list form, it must be coded as WQEBLK = with nothing
after the =.

JOBNAME=addr
specifies a field containing the 8-byte job name with which the JES identifies the issuer of
this WTO. If the value of the job name is less than 8 characters, it must be left-justified
and padded with blanks. If a register is used, the register contains the address of the
8-byte job name. This keyword is reserved for authorized users. When this keyword is
specified in the list form, it must be coded as JOBNAME = with nothing after the =.

JOBID=addr
specifies a field containing the 8-byte EBCDIC job identifier (number) with which JES
identifies the issuer of this WTO. If the value of the job id is less than 8 characters, it
should be right-justified although this is not absolutely necessary. If a register is used, the
register contains the address of the R-byte job id. When this keyword is specified in the list
form, it must be coded as JOBID = with nothing after the =. This keyword is reserved
for authorized users.

WTO - Write to Operator 2-479

SUBSMOD=YES
SUBSMOD=NO

specifies whether the characteristics of the message may be modified by the primary
subsystem. YES, which is the default value, indicates that the message may be modified
by the primary subsystem. NO indicates that the message may not be modified by the
primary subsystem. This keyword is reserved for authorized users.

PRTY=addr
specifies a field containing the two-byte priority to be assigned to this message. If used,
the register contains a 2-byte priority. When this keyword is specified in the list form, it
must be coded as PRTY = with nothing after the =. This keyword is reserved for
authorized users.

SYSNAME = addr
specifies a field containing an 8-byte system name to be associated with this message. If a
register is used, the register contains the address of the 8-byte system name. This keyword
is mutually exclusive with CONNECT and it is reserved for authorized users. When
specified in the list form, it must be coded as SYSNAME = with nothing after the =.

When control is returned, general register 1 contains the identification number (24 bits and
right-justified) assigned to the message. If you are usi:Qg the CONNECT keyword to connect
WTO messages, store this value in the four-byte CONNECT field and set register 1 to zero.

Return codes from execution of a WTO are as follows:

Hexadecimal
Code

00

04

08

OC

20

30

Notes:

Meaning

1'l0 errors encountered.

Number of lines passed was 0; request is ignored. Number of lines passed was greater than 10;
only 10 lines are processed. Message text length for a line was less than 1; all lines up to error
line are processed.

Connecting message ID passed in register 0 does not match any on queue. Request is ignored.

Invalid line type. An end has been forced at the point of the error except if the first line is an
E line, in which case the request is ignored.

WTO processing has been terminated since it would have caused a wait state, and BUSYEXIT
was specified.

Required resource for routing code 11 was not available. Request is ignored for routing code
11; if any other routing code is specified, the request is processed.

1. If the list and execute forms of the WTO macro are in separate modules, both routines must
be assembled or compiled with the same level of WTO.

2. If the execute form of the macro specifies CONNECT, CONS/D, KEY, TOKEN, JOB/D,
JOBNAME, SYSJt{AME, or PRTY, then the list form, to ensure that the parameter list is
generated correctly~ must specify the same keyword(s) without data. For example:

WTO 'text' ,SYSNAME=,CONSID=,MF=L

If data is specified, the system issues an MNOTE and ignores the data.

2·480 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

3. For any rVTO ke.vwords that allow a register spec(ficatiol1. the value must be right-justified in
the register.

4. Use caution when coding a program that uses any of the r"VTO keywords reserved for
authorized users.

Operation: Issue a WTO that describes a situation that must be resolved immediately. The
message must appear on the master console and the system maintenance console as an
immediate action message.

WTO 'THIS IS AN IMMEDIATE ACTION MESSAGE' ,RODTCDE=(l,lO) ,DESC=(2)

Operation: Issue a message that is the response to a command. The message must appear only
on the console that entered the command. Prior to issuing the WTO, the issuing console's
identifier must be placed in register O.

WTO 'THIS IS A COMMAND RESPONSE' ,DESC=(5),MCSFLAG=(REGO,RESP)

WTO - Write to Operator 2-481

WTO (List Form)

The list form of the WTO macro instruction is used to construct a control program parameter
list.

2-482 SPL: System Macros and Facilities Volume 2

The list form of the WTO macro instruction is written as follows:

name

b

WTO

b

'msg'
{'text'}
('text',line type)

,ROUTCDE= (routing code)

,DESC = (desc code)

,AREAID = id char

,MSGTYP= (msg type)

,MCSFLAG= (flag name)

,MF=L

,CONNECT =

,CON SID =

,KEY =

,TOKEN =

,JOBID=

,JOBNAME=

,SYSNAME=

,PRTY=

,SUBSMOD=YES
,SUBSMOD = NO

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

msg: Up to 125 characters.
text: Up to 125 characters.
The permissible line types, text lengths, and maximum numbers are shown below:

line type text milximum number
C 34 char I C type
L 70 char 2 L type
D 70 char 255 D type

(authorized programs)
10 D type
(unauthorized programs)

DE 70 char I DE type
or

E None 1 E type

The maximum total number of line types that can be
coded in one instruction is 255.

routing code: decimal digit from 1 to 128. The routing code
is one or more codes, separated by commas.

desc code: decimal digit from 1 to 16. The desc code
is one or more codes, separated by commas.

id char: alphabetic character A - Z.

msg type: any of the following

N SESS,JOBNAMES
Y SESS,STATUS
SESS JOBNAMES,ST A TUS
JOBNAMES SESS,JOBNAMES,ST ATUS
STATUS

.flag name: any combination of the following,
separated by commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

CMD
BUSYEXIT

WTO (List Form) 2-483

The parameters are explained under the standard form of the WTO macro instruction, with the
following exception:

,MF=L
specifies the list form of the WTO macro instruction.

Notes:

1. If the list and execute forms of the WTO macro are in separate modules, both routines must
be assembled or compiled with the same level of WTO.

2. fr the execute form of the macro specifies CONNECT, CONS/D, KEY, TOKEN, JOB/D,
JOBNAME, SYSNAME, or PRTY, then the list form, to ensure that the parameter list is
generated correctly, must 5pecify the same keyword(s) without data. For example:

WTO 'text' ,SYSNAME=,CONSID=,MF=L

If data is specified, the system issues an MNOTE and ignores the data.

3. For any WTO keywords that allow a register specification, the value must be right-justified in
the register.

2-484 SPL: System Macros and Facilities Volume 2

WTO (Execute Form)

The execute form of the WTO macro instruction uses a remote control program parameter list.
The parameter list can be generated by the list form of WTO. The message text cannot be
modified in the execute form of the macro instruction.

The execute form of the WTO macro instruction is written as follows:

name

b

WTO

b

,CONNECT = addr

,CONSID = addr

,KEY = addr

,TOKEN = addr

,JOBID = addr

,JOBNAME=addr

,sYSNAME = addr

,WQEBLK= addr

,PRTY= addr

MF = (E,ctrl addr)

name: symbol. Begin name in column 1.

One or more blanks must precede WTO.

One or more blanks must follow WTO.

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

elr! addr: RX-type address, or register (1) or (2) - (12).

WTO (Execute Form) 2-485

Example

This parameter is explained under the standard form of the WTO macro instruction, with the
following exceptions:

MF = (E, ctrl addr)
specifies the execute form of the WTO macro instruction using a remote control program
parameter list.

Notes:

1. If the list and execute forms of the WTO macro are in separate modules, both routines
must be assembled or compiled with the same level of WTO.

2. If the execute form of the macro specifies CONNECT, CONSID, KEY, TOKEN,
JOBID, JOBNAME, SYSNAME, or PRTY, then the list form, to ensure that the
parameter list is generated correctly, must specify the same keyword(s) without data.
For example:

WTO 'text' ,SYSNAME=,CONSID=,MF=L

If data is specified, the system issues an MNOTE and ignores the data.

3. For any WTO keywords that allow a register specification, the value must be
right-justified in the register.

Operation: Write a message with a pre-built parameter list pointed to by register 1.

WTO MF=(E,(l))

2-486 SPL: System Macros and Facilities Volume 2

WTOR - Write to Operator with Reply

The WTOR macro instruction causes a message requiring a reply to be written to one or more
operator consoles and the hardcopy log. The macro instruction also provides the information
required by the control program to return the reply to the issuing program.

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVSjXA. See the topic "Selecting the Macro Level" for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

Use of the MSGTYP and MCSFLAG parameters should only be attempted by system
programmers familiar with MCS, because using these parameters improperly could impede the
entire message routing scheme.

WTOR - Write to Operator with Reply 2-487

The standard form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

rnsg

,replyaddr

,reply length

,ecb addr

,ROUTCDE = (routing code)

,D ESC = (desc code)

,MSGTYP= (msg type)

,MCSFLAG= (flag name)

,CONSID = addr

,KEY = addr

,TOKEN = addr

,JOBID = addr

,JOBNAME=addr

,SYSNAME = addr

,WQEBLK = addr

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: up to 122 characters.

reply addr: A-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The minimum
length is 1; the maximum length is 115 when the operator enters REPLY id,
'reply' and 119 when the operator enters Rid, 'reply'.

ecb addr: A-type address, or register (2) - (12).

routing c04e: decimal digit from 1 to 128.
The routing code is one or more codes,
separated by commas.

desc code: decimal digit from 1 to 16. The desc code
is one or more codes, separated by commas.

msg type: any combination of the following,
separated by commas:

N
Y
SESS
JOBNAMES
STATUS

flag name: any combination of the following,
separated by commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

CMD

2-488 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

'msg'

specifies the message to be written to the operator's console. The message must be
enclosed in apostrophes, which do not appear on the console. It can include any
character that can be used in a character (C-type) DC instruction. When a program
issues a WTOR macro instruction, the control program translates the text; only standard
printable EBCDIC characters are passed to the display devices. See the figure "EBCDIC
Characters Printed or Displayed on an MCS Console" in Volume 1 for a list of the
printable EBCDIC characters. All other characters are replaced by blanks. If the
terminal does not have dual-case capability, it prints lowercase characters as uppercase.
The message is assembled as a variable-length record.

Note: All WTOR messages are action messages. An indicator appears before the first
character of an action message to indicate a need for operator action.

,replyaddr
specifies the address in virtual storage of the area into which the control program is to
place the reply. The reply is left-justified at this address.

,reply length
specifies the length, in bytes, of the reply message.

,ecb addr
specifies the address of the event control block (ECB) to be used by the control program
to indicate the completion of the reply and the id of the replying console. After the
control program receives the reply, the ECB appears as follows:

Offset

o
1
3

Length(bytes)

2
1

,ROUTCDE = routing code

Contents

Completion code
Reserved
Console id in hexadecimal

specifies the routing code(s) to be assigned to the message.

The routing codes are:

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control

9 System security
10 System error/maintenance
11 Programmer information
12 Emulators

Note: The values for this operand can be from 1 to 128. Routing codes 13 through 20
are reserved for customer use. Routing codes 29 through 41 are reserved, and are ignored
if specified. Routing codes 42 through 128 are available to authorized programs only.
Routing codes 1,2,3,4,7,8, 10, and 42 cause hard copy of the message when display
consoles are used or more than one console is active. All other routing codes may go to
hard copy as an initialization option or as a result of a VARY HARDCPY command.

\VTOR - Write to Operator with Reply 2-489
-~

,DESC = (desc code)
specifies the message descriptor code(s) to be assigned to the message. Descriptor codes 1
through 6 and descriptor code 11 are mutually exclusive. Codes 7 through 10 can be
assigned in combination with any other code.

The descriptor codes are:

System failure
2 Immediate action required
3 Eventual action required
4 System Status
5 Immediate command response
6 Job status
7 Application program/processor;

message is to be deleted when
issuing task is terminated

8 Out-of-line message
9 Operator request
10 Dynamic status displays
11 Critical eventual action requested
12-16 Reserved for future use

All WTOR messages with descriptor codes 1, 2, or 11 are action messages that have an @ or *
character displayed before the first character of the message. This character indicates a need for
operator action. On operator consoles that support color, descriptor codes determine the color
in which a message should be displayed. The colors used for different descriptor codes are
described in Operations: System Commands.

,MSGTYP = (msg type)
specifies how the message is to be routed.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console and
TSO terminal in operator mode that issued the MONITOR SESS, MONITOR
JOBNAMES, or MONITOR STATUS command, respectively. When the message type is
identified by the operating system, the message is routed only to those consoles that
requested the information.

For Y or N, the message type specifies whether flags are to be set in the WTOR macro
expansion to describe what functions (MONITOR SESS, MONITOR JOBNAMES, and
MONITOR STATUS) are desired. N, or omission of the MSGTYP parameter, indicates
that the message is to be routed as specified in the ROUTCDE parameter.

,MCSFLAG= (flag name)
specifies that the macro expansion should set bits in the MCSFLAG field as indicated by
each name coded.

The flag names and meanings are shown in Figure 17.

2-490 SPL: System Macros and Facilities Volume 2

Flag Name

REGO

RESP
REPLY
BRDCST
HRDCPY
QREGO

NOTIME
NOCPY

CMD

Meaning

Queue the message to the console whose source
ID is passed in register O.
The WTOR is an immediate command response.
This is a reply to a WTOR.
Broadcast the message to all active consoles.
Queue the message for hard copy only.
Queue the message unconditionally to the
console whose source ID is passed
in Register O.
Do not append time to the message.
If the WTOR macro instruction is issued
by a program in the supervisor state, do not
queue the message for hard copy. Otherwise,
this parameter is ignored.
The WTOR is a recording of a system command
issued for hardcopy log purposes.

Figure 17. MCSFLAG Fields (WTOR)

CONSID = addr
specifies a field containing the 4-byte id of the console to receive a message. This id is
used in place of a console id in register O. Note that you can still specify the console ID
via the register zero interface. If you use both the CONSID keyword and the register zero
interface to specify the console ID, the system uses the console ID specified by CONSID.
When this keyword is specified in the list form, it must be coded as CONSID = with
nothing after the

KEY = addr
specifies a field containing an 8-byte key to be associated with this message. The key
should be EBCDIC if used with the D R command for retrieval purposes, but it must not
be '*'. If a register is used, it contains the address of the key. When this keyword is
specified in the list form, it must be coded as KEY = with nothing after the

TOKEN=addr
specifies a field containing a 4-byte token to be associated with this message. This field is
used to identify a group of messages that can be deleted by a DOM macro that includes
TOKEN. The token should be unique within an address space. When this keyword is
specified in the list form, it must be coded as TOKEN = with nothing after the

WQEBLK= addr
specifies a field containing a WQE control block to be used as input for the WTOR. If a
register is used, the register contains the address of the WQE control block to be used as
input for the WTOR. This keyword is mutually exclusive with all other keywords and
reserved for authorized users. It is valid only on the standard form of the macro. When
this keyword is specified in the list form, it must be coded as WQEBLK = with nothing
after the =.

JOBNAME=addr
specifies a field containing the 8-byte job name with which the JES identifies the issuer of
this WTOR. If the value of the job name is less than 8 characters, it must be left-justified
and padded with blanks. If a register is used, the register contains the address of the
8-byte job name. This keyword is reserved for authorized users. When this keyword is
specified in the list form, it must be coded as JOBNAME = with nothing after the

WTOR - Write to Operator with Reply 2-491

1

JOBID= addr
specifies a field containing the 8-byte EBCDIC job identifier (number) with which JES
identifies the issuer of this WTOR. If the value of the job id is less than 8 characters, it
should be right-justified although this is not absolutely necessary. If a register is used, the
register contains the addres~ of the 8-byte job id. When this keyword is specified in the list
form, it must be coded as JOBID = with nothing after the =. This keyword is reserved
for authorized users.

SYSNAME = addr
specifies a field containing an 8-byte system name to be associated with this message. If a
register is used, the register contains the address of the 8-byte system name. This keyword
is reserved for authorized users. When specified in the list form, it must be coded as
SYSNAME = with nothing after the =.

When control is returned, general register 1 contains the identification number (4 bytes or 32
bits and right-justified) assigned to the message.

Return codes from execution of a WTOR are as follows:

Hexadecimal
Code

00

04

08

OC

30

Notes:

Meaning

No errors encountered.

Number of lines passed was 0; request is ignored. Number of lines passed was greater than 10;
only 10 lines are processed. Message text length for a line was less than 1; all lines up to error
line are processed.

Connecting message ID passed in register 0 does not match any on queue. Request is ignored.

Invalid line type. An end has been forced at the point of the error except if the first line is an
E line, in which case the request is ignored.

Required resource for routing code 11 was not available. Request is ignored for routing code
11; if any other routing code is specified, the request is processed.

I. If the list and execute forms of the WTOR macro are in separate modules, both routines must
'be assembled or compiled with the same level of WTOR.

2. For any WTOR keywords that allow a register specification, the value must be right-justified
in the register.

3 . Use caution when coding a program that uses any of the WTO R keywords reserved for
authorized users.

2-492 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Operation: Issue a WTOR that describes a situation that must be resolved immediately. The
message must appear on the master console and the system maintenance console as an
immediate action message.

WTOR 'THIS IS AN IMMEDIATE ACTION MESSAGE' ,ROUTCDE=(l,lO) ,DESC=(2)

Operation: Issue a message that is the response to a command. The message must appear only
on the console that entered the command. Prior to issuing the WTOR, the issuing console's
identifier must be placed in register O.

WTOR 'THIS IS A COMMAND RESPONSE' ,DESC=(5),MCSFLAG=(REGO,RESP)

WTOR - Write to Operator with Reply 2-493 r

WTOR (List Form)

The list form of the WTOR macro instruction is used to construct a control program parameter
list.

The list form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

msg

,replyaddr

,reply length

,ecb addr

,MF=L

jROUTCDE= (routing code)

,DESC= (desc code)

,MSGTYP= (msg type)

,MCSFLAG= (flag name)

,CONSID=

.KEY =

,TOKEN =

.JOBID=

,JOBNAME=

,SYSNAME=

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

msg: up to 122 characters.

reply addr: A-type address, or register (2) - (12).

reply length: symbol, decimal digit, or register (2) - (12). The minimum
length is 1; the maximum length is 115 when the operator enters REPLY id,
'reply' and 119 when the operator enters Rid, 'reply'.

ecb addr: A-type address, or register (2) - (12).

routing code: decimal digit from 1 to 128.
The routing code is one or more codes,
separated by commas.

desc code: decimal digit from 1 to 16. The desc code'
is one or more codes, separated by commas.

msg type: any combination of the following,
separated by commas:

N
Y
SESS
JOBNAMES
STATUS

flag name: any combination of the following,
separated by commas:

REGO
RESP
REPLY
BRDCST

HRDCPY
QREGO
NOTIME
NOCPY

CMD

2-494 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the WTOR macro instruction, with
the following exception:

,MF=L
specifies the list form of the WTOR macro instruction.

Notes:

1. If the list and execute forms of the WTOR macro are in separate modules, both routines must
be assembled or compiled with the same level of WTOR.

2. If the execute form of the macro specifies CONNECT, CONSID, KEY, TOKEN, JOBID,
JOBNAME, SYSNAME, DOMID, or PRTY, then the list form, to ensure that the parameter
list is generated correctly, must specify the same keyword(s) without data. For example:

WTO 'text' ,SYSNAME=,CONSID=,MF=L

If data is specified, the system issues an MNOTE and ignores the data.

3. For any WTOR keywords that allow a register specification, the value must be right-justified
in' the register.

WTOR (List Form) 2-495

WTOR (Execute Form)

The execute form of the WTOR macro instruction uses a remote control program parameter
list. The parameter list can be generated by the list form of WTOR. The message cannot be
modified in the execute form of the macro instruction.

The execute form of the WTOR macro instruction is written as follows:

name

b

WTOR

b

,CONSID = addr

,KEY=addr

,TOKEN = addr

,JOBID = addr

,JOBNAME = addr

,SYSN AME = addr

MF = (E,etrl addr)
addr,EXTENDED)

name: symbol. Begin name in column 1.

One or more blanks must precede WTOR.

One or more blanks must follow WTOR.

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

addr: RX-type address or register

etrl addr: RX-type address, or register (1) or (2) - (12). MF= (E,etrl

2-496 SPL: System Macros and Facilities Volume 2

Example

This parameter is explained under the standard form of the WTO macro instruction, with the
following exception:

MF = (E, ctrl addr) MF = (E, ctrl addr , EXTENDED)
specifies the execute form of the WTOR macro instruction using a remote control
program parameter list. EXTENDED must be specified with any of the keywords listed in
note 2.

Notes:

1. If the list and execute forms of the WTOR macro are in separate modules, both routines
must be assembled or compiled with the same level of WTOR.

2. If the execute form of the macro specifies CONSID, KEY, TOKEN, JOBID,
JOBNAME, or SYSNAME then the list form, to ensure that the parameter list is
generated correctly, must specify the same keyword(s) without data. For example:

WTOR 'text' ,SYSNAME=,CONSID=,MF=L

If data is specified, the system issues an MNOTE and ignores the data.

3. For any WTOR keywords that allow a register specification, the value must be
right-justified in the register.

Operation: Write a message with a pre-built parameter list pointed to by register 1.

WTOR MF= (E, (1))

WTOR (Execute Form) 2-497

2-498 SPL: System Macros and Facilities Volume 2

Index

addressing mode and the macro instructions 2-2
allocate virtual storage 2-162
ASCB

locate 2-199
A TSET macro instruction

description 2-lO
return code 2-11
syntax 2-lO

ATT ACH macro instruction
description 2-12
examples 2-19
execute form 2-24
list form 2-21
return codes 2-18
standard form 2-13
syntax 2-13, 2-22, 2-25

authorization index
extract 2-27
free 2-29
reserve 2-3 1
set 2-33

authorization table
set 2-10

AXEXT macro instruction
description 2-27
return code 2-28
syntax 2-27

AXFRE macro instruction
description 2-29
return codes 2-30
syntax 2-29

AXRES macro instruction
description 2-31
return code 2-32
syntax 2-31

AXSET macro instruction
description 2-33
return code 2-34
syntax 2-33

bit string
indicating locks held 2-380

BLSABDPL macro instruction
description 2-35
example 2-38
syntax 2-36

BLSQMDEF macro instruction
examples 2-48, 2-49, 2-50
standard form 2-40

syntax 2-40
BLSQMFLD macro instruction

description 2-43
examples 2-48, 2-49, 2-50
standard form 2-44
syntax 2-44

BLSQSHDR macro instruction
description 2-53
example 2-54
syntax 2-53

BLSRESSY macro instruction
description 2-55
example 2-55
syntax 2-55

bring a load module into virtual storage 2-193
build in-storage profiles 2-310

call recovery termination manager 2-59
CALLDISP macro instruction

description 2-56
examples 2-57
syntax 2-56

CALLRTM macro instruction
description 2-59
examples 2-61
return codes 2-61
syntax 2-59

change
sub task status 2-412
system status 2-210
virtual storage protection key 2-69

CHANGKEY macro instruction
description 2-69
examples 2-70
syntax of macro 2-69

check RACF authorization 2-284
CIRB macro instruction

branch entry interface 2-71
description 2-71
examples 2-74
syntax 2-72

coding the macro instructions 2-7
command input buffer manipUlation 2-264
connect en try table 2-131
continuation coding

example 2-9
continuation lines 2-8
control access to serially reusable resources 2-373
control block formatting

defining a control block format 2-39
specifying a control block format field 2-43

COPYDMDT 2-447

Index X-I

CPOOL macro instruction
description 2-75
examples 2-79, 2-80
execute form 2-82
list form 2-81
standard form 2-76
syntax 2-76, 2-81, 2-82

create
a new task 2-12
entry table 2-135
interruption request block 2-71

cross memory restrictions for macro instructions 2-4

DAT-OFF linkage 2-83
DATOFF macro instruction

description 2-83
examples 2-84
syntax 2-83

define a control block format 2-39
description 2-39

define a resource to RACF 2-266
DEQ macro instruction

description 2-85
examples 2-89, 2-90
execute form 2-92
list form 2-91
return codes 2-88, 2-89
standard form 2-86
syntax 2-86, 2-91, 2-92

destroy entry table 2-138
disconnect entry table 2-142
DOM macro instruction

description 2-94
syntax 2-94

DONTSW AP 2-444
DSGNL macro instruction

description 2-98
example 2-100
return codes 2-100
syntax 2-98

dump virtual storage 2-349
dumping services

defining a control block format 2-39
formatting routine parameters 2-35, 2-55
specifying a control block format field 2-43

DYNALLOC macro instruction (see Volume 1) 2-101

X-2 SPL: System Macros and Facilities Volume 2

ENQ macro instruction
description 2-102
examples 2-109
execute form 2-112
list form 2-110
return codes 2-107, 2-108
standard form 2-103
syntax 2-103,2-110,2-112

entry table
connect 2-131
create 2-135
destroy 2-138
disconnect 2;..142

ESPIE macro instruction
description 2-114
examples 2-116, 2-117, 2-118, 2-119, 2-120
execute form 2-120
list form 2-119
RESET option 2-116
return codes 2-116, 2-117, 2-118
SET option 2-114
syntax 2-114, 2-116, 2-117, 2-119, 2-120
TEST option 2-117
types of interruptions 2-115

establish time limit
for system service 2-404

EST AE macro instruction
description 2-122
examples 2-127
execute form 2-129
list form 2-128
return codes 2-126
standard form 2-123
syntax 2-123, 2-128, 2-129

ETCON macro instruction
description 2-131
execute form 2-134
list form 2-133
restrictions on use 2-131
return code 2-132
standard form 2-131
syntax 2-131,2-133, 2-134

ETCRE macro instruction
description 2-135
syntax 2-135

ETD ES macro instruction
description 2-138
execute form 2-141
list form 2-140
return codes 2-139
standard form 2-138
syntax 2-138, 2-140, 2-141

ETDIS macro instruction
description 2-142
syntax 2-142

EVENTS macro instruction

description 2-143
examples 2-146
syntax 2-144

example
of continuation coding 2-9

extended SPIE 2-] 14
extract authorization index 2-27
extract information from global serialization

queue 2-171
EXTRACT macro instruction

description 2-147
examples 2-148
execute form 2-151
list form 2-150
standard form 2-147
syntax 2-147,2-150,2-151

extract TCB information 2-147

fast extended EST AE 2-152
fast path page services 2-247
FEST AE macro instruction

description 2-152
example 2-154
return codes 2-154
syntax 2-153

fix virtual storage contents 2-231, 2-234
force dispatcher entry 2-56
free a linkage index 2-200
free authorization index 2-29
free virtual storage 2-155
free virtual storage contents 2-236
FREEMAIN macro instruction

description 2-155
examples 2-159
execute form 2-161
list form 2-160
return codes 2-159
standard form 2-155
syntax 2-155,2-160,2-161

functional recovery routines
set up 2-369

GETMAIN macro instruction
description 2-162
examples 2-167, 2-168
execute form 2-170
list form 2-169

return codes 2-167
standard form 2-163
syntax 2-163,2-169,2-170

GQSCAN macro instruction
description 2-171
execute form 2-178
list form 2-176
return codes 2-175
standard form 2-172
syntax 2-172,2-176,2-178

HOLD 2-444

identify a RACF user 2-298
IEFQMREQ macro instruction

description 2-180
syntax 2-180

IHAETD mapping macro 2-135
IHATRBPL mapping macro 2-440, 2-441
IHA TREPL mapping macro 2-441
internal START command 2-208
intersect with the dispatcher 2-181
INTSECT macro instruction

description 2-181
example 2-182
syntax 2-181

Invoke SWA manager in Move Mode 2-180
lOS

obtaining information from 2-188
IOSDDT macro instruction

syntax 2-184
IOSDMLT macro instruction

syntax 2-186
IOSINFO macro instruction

description 2-188
examples 2-190
return codes 2-189
syntax 2-188

lOS LOOK macro instruction
description 2-191
example 2-192
return codes 2-192
syntax 2-191

issue
direct signal 2-98
remote immediate signal 2-343
remote pend able signal 2-345

Index X-3

linkage index
free 2-200
reserve 2-204 I

list virtual storage map 2-458
LOAD macro instruction

description 2-193
examples 2-196
execute form 2-198
list form 2-197
standard form 2-194
syntax 2-194, 2-197, 2-198

LOCASCB macro instruction
description 2-199
syntax 2-199

locate ASCB 2-199
locate unit control block 2-191
locks

type indicated by bit string 2-380
low address protection

disable 2-256
enable 2-256

LXFRE macro instruction
description 2-200
execute form 2-203
list form 2-202
return codes 2-201
standard form 2-200
syntax 2-200, 2-202, 2-203

LXRES macro instruction
description 2-204
execute form 2-207
list form 2-206
return code 2-205
standard form 2-204
syntax 2-204, 2-206, 2-207

macro instructions
addressing mode 2-2
coding 2-7
cross memory restrictions for 2-4
forms 2-6
sample 2-7
selecting level 2-1
using 2-1

macro level
set and test 2-399

mapping macros
BLSABDPL 2-35
BLSQSHDR 2-53
BLSRESSY 2-55
IHAETD 2-135
IHATRBPL 2-440, 2-441

X-4 SPL: System Macros and Facilities Volume 2

IRA TREPL 2-441
M GCR macro instruction

description 2-208
example 2-209
return codes 2-209
syntax 2-208

MODESET macro instruction
description 2-2lO
examples 2-213
execute form 2-215
inUne code 2-211
list form 2-214
standard form 2-211, 2-213
SVC 2-213
syntax 2-211, 2-213, 2-214, 2-215

MODIFY SRB status 2-402
MVS router interface 2-318

NIL macro instruction
description 2-216
example 2-217
syntax 2-216

NOROLD 2-444
nucleus map lookup service 2-218
NUCLKUP macro instruction

description 2-218
example 2-219
return codes 2-219
syntax 2-218

obtain private area region size 2-467
OIL macro instruction

description 2-220
example 2-221
syntax 2-220

OKSW AP 2-445
order codes

of SrGP instruction 2-99

page anywhere 2-229
page services 2-240

fast path 2-247
parameters

available to ESTAE recovery routines 2-389
available to FRRs 2-389
set return 2-387

PCLINK macro instruction
EXTRACT option 2-227
STACK option 2-222
syntax 2-222, 2-224, 2-227
UNST ACK option 2-224

perform cell pool services 2-75
PGANY macro instruction

description 2-229
return codes 2-230
syntax 2-229

PGFIX macro instruction
description 2-231
examples 2-233
return code 2-233
standard form 2-231
syntax 2-231

PGFIXA macro instruction
description 2-234
examp~es 2-235
standard form 2-235
syntax 2-235

PGFREE macro instruction
description 2-236
examples 2-238
return codes 2-238
standard form 2-236
syntax 2-236

PG FREEA macro instruction
description 2-239
standard form 2-239
syntax 2-239

PGSER macro instruction
description 2-240, 2-247
examples 2-246, 2-249
return codes 2-245
syntax 2-241, 2-248

POST macro instruction
description 2-250
examples 2-253
execute form 2-255
list form 2-254
standard form 2-251
syntax 2-251, 2-254, 2-255

process symptom record 2-429
symptom record 2-429

processor trace 2-258
profile checking 2-296
program call linkage information

EXTRACT 2-227
STACK 2-222
UNST ACK 2-224

PROTPSA macro instruction
description 2-256
example 2-257
syntax 2-256

provide a lock via
an NI instruction 2-216
an 01 instruction 2-220

PTRACE macro instruction
description 2-258
examples 2-259

return code 2-259
syntax 2-258

purge SRB activity 2-260
PURGEDQ macro instruction

description 2-260
examples 2-26], 2-262, 2-263
execute form 2-263
list form 2-262
standard form 2-260
syntax 2-260, 2-262, 2-263

QEDIT macro instruction
description 2-264
examples 2-265
return codes 2-265
syntax 2-264

RACDEF macro instruction
chart of parameters by release 2-276
description 2-266
example 2-278
execute form 2-281
list form 2-279
return codes 2-277
standard form 2-266
syntax 2-266, 2-279, 2-281

RACF
check authorization 2-284
define a resource to 2-266

RACHECK macro instruction
chart of parameters by release 2-292
description 2-284
example 2-293
execute form 2-296
list form 2-294
profile checking 2-296
return codes 2-293
standard form 2-285
syntax 2-285, 2-294, 2-296

RACINIT macro instruction
chart of parameters by release 2-304
description 2-298
execute form 2-308
list form 2-306
return codes 2-305
standard form 2-299
syntax 2-299, 2-306, 2-308

RACLIST macro instruction
chart of parameters by release 2-314
description 2-310
execute form 2-3] 6

Index X-5

list form 2-315
return codes 2-314
standard form 2-311
syntax 2-311

RACROUTE macro instruction
description 2-318
examples 2-322
execute form 2-324
list form 2-323
return codes 2-322
standard form 2-319
syntax 2-319

RACXTRT macro instruction
chart of parameters by release 2-327
description 2-325, 2-329, 2-330
execute form 2-330
list form 2-329
return codes 2-328
standard form 2-325
syntax 2-325, 2-329, 2-330

release a serially reusable resource 2-85
REQPGDAT 2-446
REQSERVC 2-447
request control of a serially reusable resource 2-102
reserve

a device (shared DASD) 2-332
a linkage index 2-204
authorization index 2-31

RESERVE macro instruction
description 2-332
example 2-336
execute form 2-338
list form 2-337
return codes 2-336
standard form 2-333
syntax 2-333, 2-337, 2-338

resource
profiles for RACF 2-310

RESTORE SRB status 2-402
resume execution of a suspended request block 2-340
RESUME macro instruction

description 2-340
example 2-342
return codes 2-342
syntax 2-340

RISGNL macro instruction
description 2-343
examples 2-344
return codes 2-344
syntax 2-343

RPSGNL macro instruction
description 2-345
examples 2-346
return codes 2-346
syntax 2-345

X-6 SPL: System Macros and Facilities Volume 2

SAVE SRB status 2-402
SCHEDULE macro instruction

description 2-347
examples 2-348
syntax 2-347

schedule system services for asynchronous
execution 2-347

SDUMP macro instruction
description 2-349
examples 2-362, 2-363, 2-368
execute form 2-366
list form 2-364
restrictions 2-349
return codes 2-362
standard form 2-350
syntax 2-350, 2-364, 2-367

selecting the macro level 2-1
set

authorization index 2-33
authorization table 2-10
macro level 2-399
return parameters 2-387
up functional recovery routines 2-369

set and test macro level 2-399
SETFRR macro instruction

description 2-369
examples 2-372
syntax 2-370

SETLOCK macro instruction
description 2-373
examples 2-378, 2-382, 2-386
OBTAIN option 2-374
RELEASE option 2-379
return codes 2-378, 2-381, 2-386
syntax 2-374, 2-379, 2-383
TEST option 2-383

SETRP macro instruction
description 2-387
examples 2-394
syntax 2-388

shared DASD
reserve a device 2-332

signal event completion 2-250
SlOP instruction

order codes 2-99
status information 2-100

specify a control block format field 2-43
specify program interruption exit 2-395
specify task abnormal exit 2-406

extended 2-122
SPIE macro instruction

description 2-395
example 2-396
execute form 2-398
interruption types 2-396
list form 2-397

standard form 2-395
syntax 2-395, 2-397, 2-398

SPLEVEL macro instruction
description 2-399
examples 2-400
syntax 2-399

SPOST macro instruction
description 2-401
example 2-401
syntax 2-401

SRB
transfer control from 2-449

SRBSTAT macro instruction
description 2-402
return codes 2-403
syntax 2-402

SRBTIMER macro instruction
description 2-404
return codes 2-405
syntax 2-404

ST AE macro instruction
description 2-406
examples 2-408, 2-411
execute form 2-410
list form 2-409
return codes 2-408
standard form 2-406
syntax 2-406, 2-409, 2-410

START command
internal 2-208

status information
of SlOP instruction 2-100

STATUS macro instruction
description 2-412
example 2-415
SET/RESET option 2-414
START/STOP option 2-412
syntax 2-412, 2-414

subchannel number
obtaining for a UCB 2-188

suspend execution of a request block 2-416
SUSPEND macro instruction

description 2-416
example 2-416
syntax 2-416

SVC update 2-417
SVCUPDTE macro instruction

description 2-417
examples 2-421, 2-423, 2-424
execute form 2-424
list form 2-422
return codes 2-420
standard form 2-418
syntax 2-418, 2-422, 2-424

SW AREQ macro instruction
description 2-425
execute form 2-427, 2-428
syntax 2-425

SYMREC macro instruction
description 2-429

execute form 2-43 J

list form 2-430
standard form 2-429
syntax 2-429, 2-430, 2-431

SYNCH macro instruction
description 2-432
examples 2-434, 2-435, 2-437
execute form 2-436
list form 2-435
standard form 2-432
syntax 2-432, 2-435, 2-436

synchronous exit 2-432
SYSEVENT

COPYDMDT 2-447
DONTSW AP 2-444
HOLD 2-444
NOHOLD 2-444
OKSW AP 2-445
REQPODAT 2-446
REQSERVC 2-447
TRANSW AP 2-445
TRAXERPT 2-441
TRAXFRPT 2-441
TRAXRPT 2-440

SYSEVENT macro instruction
control swapping 2-444
description 2-438
examples 2-442, 2-443, 2-445, 2-448
notify SRM of transaction completion 2-440
obtain system measurement information 2-446
return codes 2-442, 2-444, 2-445, 2-447
syntax 2-439

SYSTEM event 2-438
system log 2-469

take a synchronous exit 2-432
TCTL macro instruction

description 2-449

test

example 2-449
syntax 2-449

authorization of caller 2-450
macro level 2-399

TESTA UTH macro instruction
description 2-450
examples 2-451
return codes 2-451
syntax 2-450

time limit
establish for system service 2-404

transfer control from an SRB process 2-449
TRANSW AP 2-445
TRAXERPT 2-441
TRAXFRPT 2-441
TRAXRPT 2-440
type 6 SVC exit 2-452

Index X-7

T6EXIT macro instruction
description 2-452
example 2-453
syntax 2-452

unit control block
locate 2-191

update variable recording area data 2-454
using macro instructions 2-1

verify virtual storage allocation 2-463
virtual storage

contents
fix 2-231, 2-234
free 2-236, 2-239

dump 2-349
list map 2-458
obtain private area region size 2-467
verify allocation 2-463

VRADAT A macro instruction
description 2-454
examples 2-457
syntax 2-454

VSMLIST macro instruction
description 2-458
examples 2-462
return codes 2-462
syntax 2-459

VSMLOC macro instruction
description 2-463
examples 2-465
return codes 2-465

X -8 SPL: System Macros and Facilities Volume 2

syntax 2-463
VSMREGN macro instruction

description 2-467
examples 2-468
return code 2-468
syntax 2-467

wait
for one or more events to complete 2-143

write to log 2-469
write to operator 2-474

with reply 2-487
WTL macro instruction

desription 2-469
example 2-470, 2-472, 2-473
execute form 2-473
list form 2-472
standard form 2-469
syntax 2-469, 2-472, 2-473

WTO macro instruction
description 2-474
examples 2-481, 2-486
execute form 2-485
list form 2-482
return codes

using multiple-line feature 2-480
standard form 2-475
syntax 2-475, 2-483, 2-485

WTOR macro instruction
description 2-487
examples 2-493, 2-497
execute form 2-496
list form 2-494
return codes

using multiple-line feature 2-492
standard form 2-488
syntax 2-488, 2-494, 2-496

MVS/Extended Architecture System Programming Library: System Macros and Facilities Volume 2

GC28-1151 -4 5370-36

Printed in U.S.A.
-~ -----. --- ----_ _---. -~-- ---------------- - • -®

M V~/Extcndcd Architecture
System Programming
Library: System Macros
and Facilities
Volun1e 2

GC28-1l51-4

" READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance ii, using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

MVS/Extended Architecture System Programming Library: System Macros and Facilities Volume 2

GC28-1151-4

Reader's Comment Form

Fold and tape I

--.. - .------ ----- ----- - ----- ---~----------- - ~ -®

BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 058, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

S370-36

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I1III1I111

Please Do Not Staple Fold and tape

Printed in U.S.A.

MVS/Extended Architecture
System Programming
Library: System Macros
and Facilities
Volun1e 2

GC28-1151-4

READER1S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers,
and operators of IBM systems. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or fOl' assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

How do you use this publication?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail directly to the
address in the Edition Notice on the back of the title page.)

MVS/Extended Architecture System Programming Library: System Macros and Facilities Volume 2

GC28-1151-4

Reader's Comment Form

Fold and tape

--.. ~ .----.-. .-- -----.-- -----.- ------- _ ----...,-
----- - ... -®

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department D58, Building 921 -2
PO Box 390
Poughkeepsie, New York 12602

5370-36

II11

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Printed in U.S.A.

GC28-1151-04

I

