Program Product

GC28-1151-4
File No. 8370-36

MVS/ Extended Architecture
\étem Programming

Library: System Macros

and Facmtles

Volume 2

MVS/System Product:
JES3 Version 2 5665-291

- JES2 Version 2 5740-XC6

|
||'

4'|II

||||||||

Fifth Edition (June, 1987)

This is a major revision of, and obsoletes, GC28-1151-3. See the Summary of
Amendments following the Contents for a summary of the changes made to this manual.
Technical changes or additions to the text and illustrations are indicated by a vertical line
to the left of the change.

This edition, with Technical Newsletter GN28-1096, applies to Version 2 Release 2, and
all subsequent releases of MVS/System Product 5665-291 or 5740-XC6 until otherwise
indicated in new editions or Technical Newsletters. Changes are made periodically to the
information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System(370 Bibliography, GC20-0001, for the editions that
are applicable and current.

References in this publication to IBM products or services do not state or imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product in this publication is not intended to state or imply that
only IBM’s product may be used. Any functionally equivalent product may be used
instead.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality. :

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Information
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982, 1987

Preface

This two-volume publication describes supervisor and scheduler facilities that the system
programmer can use. In this publication, a system programmer is defined as a programmer
whose programs run in supervisor state, system key 0-7 or access APF-authorized libraries.
The publication includes the macro instructions and parameters used to obtain the functions.
Volume 1, GC28-1150, contains descriptions of the supervisor and scheduler services available
to a system programmer. Most of the services described are supervisor services; however, the
scheduler functions available through the use of the DYNALLOC macro instruction are also
described. Volume 1 includes a description of the DYNALLOC macro instruction. Some of
the topics discussed in Volume 1 are also discussed in Supervisor Services and Macro
Instructions; however in Volume 1, these topics are extended to include functions that are
restricted to system programmers or used primarily by system programmers.
Volume 2 contains the formats and descriptions of the supervisor macro instructions. Volume 2
provides system programmers with the information necessary to code the macro instructions.
Each macro instruction is completely described, in Volume 2, but restrictions, requirements, and
environmental considerations for the effective use of each macro is explained in Volume 1.
Publications referenced:

Assembler H Version 2 Application Programming: Language Reference, GC26-4037

MVS/Extended Architecture Debugging Handbook Volume 1, LC28-1164

MVS/Extended Architecture Debugging Handbook Volume 2, LC28-1165

MYVS/Extended Architecture Debugging Handbook Volume 3, LC28-1166

MVS/Extended Architecture Debugging Handbook Volume 4, 1.C28-1167

MVS|Extended Architecture Debugging Handbook Volume 5, LC28-1168

MVS/Extended Architecture Interactive Problem Control System User's Guide and Reference,
GC28-1297

MVS/Extended Architecture Interactive Problem Control System Logic and Diagnosis,
GC28-1298

MVS/Extended Architecture Message Library: System Codes, GC28-1157
OS/VS2 Planning: Global Resource Serialization, GC28-1062

MVS/Extended Architecture Supervisor Services and Macro Instructions, GC28-1154

Preface 1il

MVS|Extended Architecture System Logic Library Volume 12, 1LY28-1250

MYVS|Extended Architecture Sysiem Programming Library: Initialization and Tuning,
GC28-1149

MV S|Extended Architecture System Programming Library: Service Aids, GC28-1159
System Programming Library: Resource Access Control Facility (RACF), SC28-1343
370-Extended Architecture: Principles of Operation, GA22-7085

Notes:

1. All references to RACF in this publication indicate the program prodiuct Resource Access
Control Facility Version 1 Release 7 (5740-XXH).

2. All references to Assembler H in this publication indicate the program product Assembler H
Version 2 (5668-962).

1V SPL: System Macros and Facilities Volume 2

Contents

Using the Supervisor Macro Instructions 2-1

Selecting the Macro Level 2-1

Addressing Mode and the Macro Instructions 2-2

Cross Memory Restrictions for Macro Instructions 2-4
Macro Instruction Forms 2-6

Coding the Macro Instructions 2-7

ATSET - Set Authorization Table 2-10

ATTACH - Create a New Task 2-12

ATTACH (List Form) 2-21

ATTACH (Execute Form) 2-24

AXEXT - Extract Authorization Index 2-27

AXFRE - Free Authorization Index 2-29

AXRES - Reserve Authorization Index 2-31

AXSET - Set Authorization Index 2-33

BLSABDPL - Map the Exit Parameter List BLSABDPL 2-35
BLSQMDEF - Define a Control Block Format 2-39
BLSQMFLD - Specifying a Control Block Format Field 2-43
BLSQSHDR - Generate Model Subheader 2-53

BLSRESSY - Map IPCS Symbol Table Record 2-55
CALLDISP - Force Dispatcher Entry 2-56

CALLRTM - Call Recovery Termination Manager 2-59
CBPZDIAG - Build Diagnostic Stack Entry 2-62
CBPZLOG - Log an MVS Configuration Program Message 2-65

CBPZPPDS - Push/Pop Diagnostic Stack Entry 2-67

CHANGKEY - Change Virtual Storage Protection Key 2-69

Contents V

CIRB - Create Interruption Request Block 2-71
Branch Entry Interface 2-71

CPOOL - Perform Cell Pool Services 2-75
CPOOL (List Form) 2-81
CPOOL (Execute Form) 2-82
DATOFF - DAT-OFF Linkage. 2-83
DEQ - Release a Serially Reusable Resource 2-85
DEQ (List Fbrm) 2-91
DEQ (Execute Form) 2-92
DOM - Delete Operator Message 2-94
DSGNL - Issue Direct Signal 2-98
DYNALLOC - Dynamic Allocation 2-101
ENQ - Request Control of a Serially Reusable Resource 2-102
ENQ (List Form) 2-110
ENQ (Execute Form) 2-112
ESPIE - Extended SPIE 2-114
SET Option 2-114
RESET Option 2-116
TEST Option 2-117
ESPIE (List Form) 2-119
ESPIE (Execute Form) 2-120
ESTAE - Specify Task Abnormal Exit Extended 2-122
ESTAE (List Form) 2-128
ESTAE (Execute Form) 2-129
ETCON - Connect Entry Table 2-131
ETCON (List Form) 2-133
ETCON (Execute Form) 2-134
ETCRE - Create Entry Table 2-135

ETDES - Destroy Entry Table 2-138

Vi SPL: System Macros and Facilities Volume 2

ETDES (List Form) 2-140

ETDES (Execute Form) 2-141

ETDIS - Disconnect Entry Table 2-142

EVENTS - Wait for One or More Events to Complete 2-143
EXTRACT - Extract TCB Information 2-147

EXTRACT (List Form) 2-150

EXTRACT (Execute Form) 2-151

FESTAE - Fast Extended STAE = 2-152

FREEMAIN - Free Virtual Storage 2-155

FREEMAIN (List Form) 2-160

FREEMAIN (Execute Form) 2-161

GETMAIN - Allocate Virtual Storage 2-162

GETMAIN (List Form) 2-169

GETMAIN (Execute Form) 2-170

GQSCAN - Extract Information From Global Resource Serialization Queue 2-171
GQSCAN (List Form) 2-176

GQSCAN (Execute Form) 2-178

IEFQMREQ - Invoke SWA Manager in Move Mode 2-180
INTSECT - Intersect With the Dispatcher 2-181

IOSDDT - Device Descriptor Table Build Macro 2-183
IOSDMLT - Module Lists Table Macro 2-186

IOSINFO - Obtain Information From the Input/Output Supervisor (I0S) 2-188
IOSLOOK - Locate Unit Control Block 2-191

LOAD - Bring a Load Module into Virtual Storage 2-193
LOAD (List Form) 2-197

LOAD (Execute Form) 2-198

LOCASCB - Locate ASCB 2-199

Contents Vil

viil

LXFRE - Free a Linkage Index 2-200
LXFRE (List Form) 2-202

LXFRE (Execute Form) 2-203

"LXRES - Reserve a Linkage Index 2-204

LXRES (List Form) 2-206
LXRES (Execute Form) 2-207
MGCR - Internal START or REPLY Command 2-208
MODESET - Change System Status 2-210
Inline Code Generation 2-211
SVC Generation 2-213
MODESET (List Form) ~ 2-214
MODESET (Execute Form) 2-215
NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 2-216
NUCLKUP - Nucleus Map Lookup Service 2-218
OIL - Prdvide a Lock Via an OR IMMEDIATE (OI) Instruction 2-220
PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-222
STACK Option of PCLINK 2-222
UNSTACK Option of PCLINK 2-224
EXTRACT Option of PCLINK 2-227
PGANY - Page Anywhere 2-229
PGFIX - Fix Virtual Storage Conténts 2-231
PGFIXA - Fix Virtual Storage Contents 2-234
PGFREE - Free Virtual Storage Contents 2-236
PGFREEA - Free Virtual Storage Contents 2-239
PGSER - Page Services 2-240
PGSER - Fast Path Page Services 2-247
POST - Signal Event Completion 2-250

POST (List Form) 2-254

POST (Execute Form) 2-255

SPL: System Macros and Facilities Volume 2

PROTPSA - Disable, Enable Low Address Protection 2-256
PTRACE - Processor Trace 2-258

PURGEDQ - Purge SRB Activity 2-260
PURGEDQ (List Form) 2-262

PURGEDQ (Execute Form) 2-263

QEDIT - Command Input Buffer Manipulation 2-264
RACDEF - Define a Resource to RACF 2-266
RACDEF (List Form) ~ 2-279

RACDEF (Execute Form) 2-281

RACHECK - Check RACF Authorization 2-284
RACHECK (List Form) 2-294

RACHECK (Execute Form) 2-296

RACINIT - Identify a RACF-Defined User 2-298
RACINIT (List Form) 2-306

RACINIT (Execute Form) 2-308

RACLIST - Build In-Storage Profiles 2-310
RACLIST (List Form) 2-315

RACLIST (Execute Form) 2-316

RACROUTE - MVS Router Interface 2-318
RACROUTE (List Form) 2-323

RACROUTE (Execute Form) 2-324

RACXTRT - RACF Extraction or Encryption 2-325
RACXTRT (List Form) 2-329

RACXTRT (Execute Form) 2-330

RESERVE - Reserve a Device (Shared DASD) 2-332
RESERVE (List Form) 2-337

RESERVE (Execute Form) 2-338

Contents 1X

RESUME - Resume Execution of a Suspended Request Block 2-340
RISGNL - Issue Remote Immediate Signal ~ 2-343
RPSGNL - Issue Remote Pendable Signal 2345
SCHEDULE - Schedule System Services for Asynchronous Execution 2-347
SDUMP - Dump Virtual Storage = 2-349
SDUMP (List Form) 2-364
SDUMP. (Execute Form) 2-366
SETFRR - Set Up Functional Recovery Routines 2-369
SETLOCK - Control Access to Serially Reusable Resources 2-373
OBTAIN Option 2-374
Release Option 2-379
TEST Option. 2-383
SETRP - Set Return Parameters 2-387
SPIE - Specify Program Interruption Exit 2-395
SPIE (List Form) 2-397
SPIE (Execute Form) 2-398
SPLEVEL - Set and Test Macro Level 2-399
SPOST - Synchronize POST 2-401
SRBSTAT - Save, Restore, or Modify SRB Status 2-402
SRBTIMER - Establish Time Limit for System Service 2-404
STAE - Specify Task Abnormal Exit 2-406
STAE (List Form) 2-409
STAE (Execute Form) 2-410

STATUS - Change Subtask Status 2-412
SET/RESET Options 2-414

SUSPEND - Suspend Execution of a Request Block 2-416
SVCUPDTE - SVC Update 2-417
SVCUPDTE (List Form) 2-422

SVCUPDTE (Execute Form) 2-424

X SPL: System Macros and Facilities Volume 2

SWAREQ - Invoke SWA Manager in Locate Mode 2-425
SWAREQ (Execute Form) 2-427
SWAREQ (Modify Form) 2-428
SYMREC - Process Symptom Record 2-429
SYMREC (List Form) 2-430
SYMREC (Execute Form) 2-431
SYNCH - Take a Synchronous Exit to a Processing Program 2-432
SYNCH (List Form) 2-435
SYNCH (Execute Form) 2-436
SYSEVENT - System Event 2-438
SYSEVENT mnemonics 2-440
Notify SRM of Transaction Compietion 2-440
Control Swapping 2-444
Obtain System Measurement Information 2-446
TCTL - Transfer Control from an SRB Process 2-449
TESTAUTH - Test Authorization of Caller 2-450
T6EXIT - Type 6 Exit 2-452
VRADATA - Update Variable Recording Area Data 2-454
VSMLIST - List Virtual Storage Map 2-458
VSMLOC - Verify Virtual Storage Allocation 2-463
VSMREGN - Obtain Private Area Region Size 2-467
WTL — Write To Log 2-469
WTL (List Form) 2-472
WTL (Execute Form) 2-473
WTO - Write to Operator 2-474
WTO (List Form) 2-482
WTO (Execute Form) 2-485

WTOR - Write to Operator with Reply 2-487

WTOR (List Form) 2-494

Contents Xi

WTOR (Execute Form) 2-496

Index X-1

Xil SPL: System Macros and Facilities Volume 2

Figures

._.
CORXIn kL

— e b e e e
N h WD =

Macro Level Selected at Execution Time 2-2

Sample Macro Instruction 2-7

Continuation Coding 2-9

Return Code Area Used by DEQ 2-89

Return Code Area Used by ENQ 2-107

IHAETD Mapping Macro 2-136

RACDEF Parameters for RELEASE=1.6 and Later 2-276
Types of Profile Checking Performed by RACHECK 2-290
RACHECK Parameters for RELEASE =1.6 and Later 2-292
RACINIT Parameters for RELEASE=1.6 and Later 2-304
RACLIST Parameters for RELEASE=1.6 and Later 2-314
RACXTRT Parameters for RELEASE=1.6 and Later 2-327
Return Code Area Used by RESERVE 2-335

List of Storage Ranges Specified by LISTA 2-357
Characters Printed or Displayed on an MCS Console 2-470
MCSFLAG Fields (WTO) 2-478

MCSFLAG Fields (WTOR) 2-491

Figures

Xiil

Xiv SPL: System Macros and Facilities Volume 2

Summary of Amendments

Summary of Amendments
for GC28-1151-4
MVS/System Product Version 2 Release 2

This major revision describes the new BLSQSHDR, IEFQMREQ, 10SDDT, IOSDMLT,
SWAREQ, and SYMREC macros, and changes in the BLSQMFLD, DOM, SDUMP, SETRP,
SVCUPDTE, VSMLOC, WTO, and WTOR, macros. It also describes changes that affect:

e The DATOFF index entry, INDCDS.
o The GSPV and GSPL parameters of the ATTACH macro.

Summary of Amendments
for GC28-1151-3
for the following:
- MVS/System Product Version 2
Release 1.3 Vector Facility Enhancement
- MVS/System Product Version 2
Release 1.3 Availability Enhancement
- RACF Version 1 Release 7

In support of MVS/System Product Version 2, Release 1.3 Vector Facility Enhancement, this
revision contains changes to the BLSQMFLD, CALLDISP, ESPIE, SNAP, and SPIE macro
instructions for the Vector Facility.

In support of both MVS/System Product Version 2 Release 1.3 Availability Enhancement and
MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement, this revision contains
changes to the CALLDISP macro instruction.

In support of RACF Version 1 Release 7, this revision contains changes to the RACDEF,
RACHECK, RACINIT, RACLIST, RACROUTE, and RACXTRT macro instructions.

This revision also contains minor technical and editorial updates.

Summary of Amendments
for GC28-1151-2
for MVS/System Product Version 2 Release 1.3

This revision documents the new IOSINFO macro in support of MVS/System Product Version
2, Release 1.3 and maintenance changes to numerous other macros.

Summary of Amendments XV

XVl SPL: System Macros and Facilities Volume 2

Using the Supervisor Macro Instructions

You can communicate service requests to the control program using a set of macro instructions
provided by IBM. The users of most of the macro instructions described in this publication
must be in supervisor state or PSW key 0-7 or APF-authorized or PKM 0-7; that is, MVS
restricts their use. MVS does not restrict some of the macro instructions described in this
publication, but because of the functions of the macro instructions, the installation might want
to restrict them.

This volume describes those supervisor macro instructions that should be installation-controlled.
The supervisor macro instructions intended for the application programmer are described in
Supervisor Services and Macro Instructions. Some macro instructions are totally restricted in
use; others are not restricted in use, but do contain some restricted parameters. For each macro
instruction, any restrictions are described first, followed by the macro syntax and a complete
description.

The macro instructions are available only when programming in the assembler language, and
are processed by the assembler program using macro definitions supplied by IBM and placed
in the macro library when the system was generated. The processing of the macro instruction
by the assembler program results in a macro expansion, generally consisting of data and
executable instructions in the form of assembler language statements. The data fields are the
parameters to be passed to the requested control program routine. The executable instructions
generally consist of a branch around the data, instructions to load registers, and either a branch
instruction, a supervisor call (SVC), or a PC instruction to give control to the proper program.
The exact macro expansion appears as part of the assembler output listing.

Selecting the Macro Level

Certain MVS/XA macro expansions cannot execute on an MVS/370 system. These macros are
downward incompatible. Parameters that are new for MVS/XA are not supported by the
MVS/370 versions of the downward incompatible macros. In some cases the new parameters
are ignored, in other cases they cause assembly errors. The following macro instructions are the
downward incompatible macros described in this book:

ATTACH

ESTAE

EVENTS

FESTAE

INTSECT

SCHEDULE SCOPE=GLOBAL
SDUMP

SETLOCK RELEASE,TYPE=REG|ALL
WTOR

Using the Supervisor Macro Instructions 2-1

The SPLEVEL macro instruction solves the problems associated with downward incompatible
macros. The SPLEVEL macro instruction allows an installation to assemble programs using
the MVS/XA macro library and to select either the MVS/370 System Product Version | Release
3 or the MVS/XA expansion of the downward incompatible macros. .

Before issuing a downward incompatible macro, assembler language users can specify the macro
level that they want. They do this by issuing the SPLEVEL macro using the SET =n option,
with n=1 or 2. If n=1, the MVS/370 System Product Version 1 Release 3 expansion of the
macro code is generated and if n=2, the MVS/XA expansion of the macro code is generated.

If the user does not specify the value of n, the SPLEVEL routine uses the default value of 2.
See SPL: System Modifications for information concerning the way in which an installation can
set this default.

A user can also select the level of the macro at execution time, based on the system that is
operating. The example in Figure 1 shows one method of selecting the macro level at
execution time. The example uses the WTOR macro instruction, but any downward
incompatible macro instruction could be substituted. The code makes use of the fact that the
CVTMYVSE bit in byte CVTDCB (located at offset 116 or X‘74” of the communications vector
table (CVT)) is set to 1 when MVS System Product Version 2 is operating. The CVTMVSE
field of the CVT is defined in System Product Version 2.

* DETERMINE WHICH SYSTEM IS EXECUTING
™ CVTDCB,CVTMVSE
BO Sp2
* INVOKE MVS/370 VERSION OF THE MACRO
SPLEVEL SET=1
WTOR ..
B CONTINUE
* INVOKE MVS/XA VERSION OF THE MACRO
SP2 SPLEVEL SET=2
WTOR e
* RESET TO SYSTEM DEFAULT

CONTINUE SPLEVEL SET

Figure 1. Macro Level Selected at Execution Time

Addressing Mode and the Macro Instructions

Callers in either 24-bit or 31-bit addressing mode can invoke most of the macros described in
this book. The following is a list of the macro instructions, documented in this book, that
require the caller to be executing in 24-bit addressing mode and require that the parameters be
located in 24-bit addressable storage:

RACDEF
RACHECK
RACINIT
RACLIST
SPIE

STAE

2-2 SPL: System Macros and Facilities Volume 2

Note: RACEF services are also available through the RACROUTE macro, which can execute in
either 24-bit or 31-bit addressing mode.

In general, a program executing in 24-bit addressing mode cannot pass parameters located
above 16 megabytes in virtual storage to a system service. There are exceptions to this general
rule. For example, a program executing in 24-bit addressing mode can:

o Free storage above 16 megabytes using the FREEMAIN macro instruction
® Allocate storage above 16 megabytes using the GETMAIN macro instruction

e Perform cell pool services for cell pools located in storage above 16 megabytes using the
CPOOL macro instruction

e Perform page services for storage locations above 16 megabytes using the PGSER macro
instruction

See the descriptions of the individual macro instructions for details.

If a program is executing in 31-bit addressing mode, the addresses specified as parameters for
the macro instructions in this book can be located above or below the 16 megabytes line unless
otherwise stated. If a parameter passed by a program executing in 31-bit addressing mode must
be located below the 16 megabytes line in virtual storage, the restriction is stated in the
description of the parameter of the macro instruction.

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of the
following macro instructions:

ATTACH
CALLDISP
ESTAE
EVENTS
FESTAE
INTSECT
MODESET
SETRP
SNYCH
WTOR

Using the Supervisor Macro Instructions 2-3

Cross Memory Restrictions for Macro Instructions

The topic “Cross Memory” in Volume 1 describes the general restrictions pertaining to cross
memory and the general functions available to callers in cross memory mode. Unless stated, a
macro service is not available in cross memory mode. A brief description of how specific macro
instructions can be used in cross memory is given here.

The following macro instructions are available to callers in cross memory mode without
restrictions:

ABEND

DSGNL

INTSECT (global intersect)

LOCASCB (locate an ASCB from an ASID)
RISGNL

RPSGNL

PTRACE

SCHEDULE

SETLOCK (for global locks)

SUSPEND

VSMREGN (provides addresses in the current address space)

The following services have special options or restrictions for cross memory mode programs:
ATSET - The issuer of this macro instruction must be executing in primary mode.
ATEXT - The issuer of this macro instruction must be executing in primary mode.
AXFRE - The issuer of this macro instruction must be executing in primary mode.
AXRES - The issuer of this macro instruction must be executing in primary mode.

AXSET - The issuer of this macro instruction must be executing in primary mode.

CALLDISP - This macro instruction is available if the caller uses the BRANCH=YES
option.

CALLRTM - This macro instruction has options and restrictions related to cross memory.

CPOOL - This macro instruction is available to all cross memory callers, except for callers
in secondary mode, who specify LINKAGE=SYSTEM.

CPUTIMER - This macro instruction can be invoked in primary cross memory mode.
ETCON - The issuer of this macro instruction must be executing in primary mode.
ETCRE - The issuer of this macro instruction must be executing in primary mode.
ETDES - The issuer of this macro instruction must be executing in primary mode.
ETDIS - The issuer of this macro instruction must be executing in primary mode.

GETMAIN/FREEMAIN (private storage) - The GETMAIN/FREEMAIN macro
instructions with the BRANCH =YES option can be used in cross memory mode to obtain

2-4 SPL: System Macros and Facilities Volume 2

private storage if the caller has current addressability to the address space and holds the
address space’s local lock as a CML lock.

GETMAIN/FREEMAIN (common storage) - The GETMAIN/FREEMAIN macro
instruction with the BRANCH = (YES,GLOBAL) option is available in cross memory
mode to obtain common storage.

GQSCAN - The issuer of this macro instruction must be executing in primary mode.
LXFRE - The issuer of this macro instruction must be executing in primary mode.
LXRES - The issuer of this macro instruction must be executing in primary mode.

MODESET - The inline form of the MODESET macro instruction can by used by any
callers in cross memory mode.

PCLINK - The STACK and UNSTACK options are available to issuers in primary mode.
The EXTRACT option is available to a caller with addressability to the same address space
as when PCLINK STACK was issued for the stack element from which data is being
extracted. :

PGFIX/PGFREE - These macro instructions have restrictions related to cross memory. See
the description of the individual macro instruction for details.

PGSER - The ANYWHER, FIX, FREE, LOAD, OUT, and RELEASE options of this
macro are available to an enabled caller in supervisor state, key zero, who specifies branch
entry. To use the LOAD and the ANYWHER options, the issuer of PGSER must not be
running in secondary mode.

RESUME - To issue RESUME, the requestor must have current addressability to the
address space of the task being resumed. That is, the address space must be the current
address space.

SDUMP - MVS/XA dumping services format additional data required by cross memory.
The SDUMP macro instruction with the BRANCH =YES option is supported in cross
memory mode, and other options dump address spaces related to the failing address space.

SETFRR - The SETFRR macro instruction can set up a recovery environment in cross
memory mode and provides predictable entry and re-try environments in case of error.

SETLOCK (CML lock) - Programs can call the MVS/XA lock manager using the
SETLOCK macro instruction. The program can request the local lock of another address
space (the CML lock) in order to serialize resources in the other address space. The
requestor must have an active addressing bind to the address space whose local lock he is
requesting.

SETRP - This macro instruction supports the freeing of the CML lock when a functional
recovery routine requests that termination processing continue, and it also has an improved
mechanism to get from SRB recovery to related task recovery. SETRP also supports a
cross memory mode re-try environment.

SLIP - The operator can set SLIP traps to intercept an event in cross memory mode.

Using the Supervisor Macro Instructions 2-5

SRBSTAT - Callers must have the authority to issue a SSAR to the home address space.
The save area must be addressable from the home address space. Control returns from the
SRBSTAT macro instruction in primary mode.

SSAFF - TCB subsystem affinity - This macro instruction, described in SPL: System
Modifications, has restrictions associated with cross memory.

WAIT/POST - The WAIT and cross address space POST branch entry services provide
restricted support.

VSMLIST and VSMLOC - Callers who specify LINKAGE =SYSTEM cannot be in
secondary mode. All address returned by these macro instructions are associated with the
current address space.

See the topic “Summary of MVS/XA Facilities Available in Cross Memory Mode” in Volume 1
for other functions that are available to callers in cross memory mode.

Macro Instruction Forms

When written in the standard form, some of the macro instructions result in instructions that
store into an inline parameter list. The option of storing into an out-of-line parameter list is
provided to allow the use of these macro instructions in a reenterable program. You can
request this option through the use of list and execute forms. When list and execute forms exist
for a macro instruction, their descriptions follow the description of the standard form.

Use the list form of a macro instruction to provide a parameter list to be passed either to the
control program or to a problem program, depending on the macro instruction. The expansion
of the list form contains no executable instructions; therefore you cannot use registers in the
list form.

Use the execute form of a macro instruction in conjunction with one or two parameter lists
established using the list form. The expansion of the execute form provides the executable
instructions required to modify the parameter lists and to pass control to the required program.
If you do not generate the control program parameter list using the list form of the macro, you
must provide the list yourself, initialize it, then update it directly or by explicitly specifying
keywords on the execute form.

Some macros also provide a modify form. Use the modify form of a macro instruction to
modify a parameter list created with the list form of the macro instruction.

The descriptions of the following macro instructions assume that the standard begin, end, and
continue columns are used -- for example, column 1 is assumed as the begin column. To
change the begin, end, and continue columns, code the ICTL instruction to establish the coding
format you wish to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see Assembler H Version 2 Application Programming:
Language Reference.

2-6 SPL: System Macros and Facilities Volume 2

Coding the Macro Instructions

The table appearing near the beginning of each macro instruction indicates how to code the
macro instruction. The table does not explain the meanings of the parameters; the parameters
are explained following the table.

Figure 2 shows a sample macro instruction, TEST, and summarizes all the coding information
that is available for it. The table is divided into three columns, A, B, and C.

Pt

name name: symbol. Begin name in column 1.
b One or more blanks must precede TEST.
TEST
b One or more blanks must follow TEST.
MATH
HIST
GEOG
,DATA=data addr data addr: RX-type address, or register (2) - (12)
———————» LNG=data length data length: symbol or decimal digit, with a maximum value of 256.
JFMT=HEX Default: FMT=HEX
,FMT=DEC
,FMT=BIN
,PASS=value value: symbol, decimal digit, or register (1) or (2) - (12).

Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

Figure 2. Sample Macro Instruction

e The first column, A , contains those parameters that are required for that macro
instruction. If a single line appears in that column, Al , the parameter on that line is
required and you must code it. If two or more lines appear together, A2 , you must code
the parameter appearing on one and only one of the lines.

e The second column, B, contains those parameters that are optional for that macro
instruction. If a single line appears in that column, Bl , the parameter on that line is
optional. If two or more lines appear together, B2, although the entire parameter is
optional, if you elect to make an entry, code one and only one of the lines.

e The third column, C, provides additional information for coding the macro instruction.
When substitution of a variable is required, the following classifications are used:

symbol: any symbol valid in the assembler language. That is, an alphabetic character followed
by 0-7 alphameric characters, with no special characters and no blanks.

Using the Supervisor Macro Instructions 2-7

decimal digit: any decimal digit up to the value indicated in the parameter description. If both
symbol and decimal digit are indicated, an absolute expression is also allowed.

register (2) - (12): one of general registers 2 through 12, specified within parentheses,
previously loaded with the right-adjusted value or address indicated in the parameter
description. You must set the unused high-order bits to zero. You can designate the register
symbolically or with an absolute expression.

register (0): general register 0, previously loaded as indicated under register (2) - (12) above.
Designate the register as (0) only.

register (1): general register 1, previously loaded as indicated under register (2) - (12) above.
Designate the register as (1) only.

RX-type address: any address that is valid in an RX-type instruction (for example, LA).
A-type address: any address that can be written in an A-type address constant.

default: a value that is used in default of a specified value; that is, the value that is assumed if
the parameter is not coded. Use the parameters to specify the services and options to be

performed, and write them according to the following general rules:

o If the selected parameter is written in all capital letters (for example, MATH, HIST, or
FMT =HEX), code the parameter exactly as shown.

e If the selected parameter is written in italics (for example, grade), substitute the indicated
value, address, or name.

e If the selected parameter is a combination of capital letters and italics separated by an
equal sign (for example, DATA =data addr), code the capital letters and equal sign as
shown, and then make the indicated substitution for the italics.

e Read the table from top to bottom.

'@ Code commas and parentheses exactly as shown.

e DPositional parameters (parameters without equal signs) appear first and must be coded in
the order shown. Keyword parameters (parameters with equal signs) may be coded in any
order.

e If a parameter is selected, read the third column before proceeding to the next parameter.
The third column often contains coding restrictions for the parameter.

Continuation Lines

2-8

You can continue the parameter field of a macro instruction on one or more additional lines
according to the following rules:

1. Enter a continuation character (not blank, and not part of the parameter coding) in column
72 of the line.

2. Continue the parameter field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

SPL: System Macros and Facilities Volume 2

You can code the parameter field being continued in one of two ways. Code the parameter
field through column 71, with no blanks, and continue in column 16 of the next line; or
truncate the parameter field by a comma, where a comma normally falls, with at least one
blank before column 71, and then continue in column 16 of the next line. Figure 3 shows an
example of each method.

1 10 16 b4 12

vV oy oy v

NAME1 OP1 OPERAND1, OPERANDZ, OPERAND3, OPERAND4, OPERANDS, OPERANDG, OPX

ERAND7 THIS 1S ONE WAY
NAME2 ~ 0OP2 OPERAND1, OPERANDZ, THIS 1S ANOTHER WAY X
OPERAND3, OPERAND4, X

OPERANDS, OPERANDS , OPERAND7

Figure 3. Continuation Coding

Using the Supervisor Macro Instructions 2-9 ‘

ATSET - Set Authorization Table

The ATSET macro instruction sets both the PT and SSAR authority in the home address
space’s authorization table entry that corresponds to the specified authorization index (AX)
value. This action sets up authority for address spaces with the specified AX to issue a PT
instruction (PT=YES) or SSAR instruction (SSAR =YES) into the home address space.

The caller must be either in supervisor state or PKM 0-7, executing in primary mode enabled
and unlocked.

Before entry to this macro, register 13 must point to a standard register save area addressable in
primary mode. Register 2, which is modified by the macro after the registers are saved, should
not be used as the base register.

After completion, the registers contain the following information:

® Registers 0 and 1 are unpredictable.

e Registers 2 - 14 are preserved.

e Register 15 contains the return code.

The ATSET macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATSET.
ATSET
b One or mére blanks must follow ATSET.
AX=AX value AX value: RX-type addressvor general’register 0) - (12).
,PT=NO Default: PT=NO
LPT=YES
,SSAR=NO Default: SSAR=NO
SSAR=YES
,RELATED =value value: any valid macro instruction keyword specification.

2-10 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

AX = AX value
specifies the AX value for which the PT and SSAR authority are to be set. If the
RX-type address is used, it points to the address of a half word, addressable in primary
mode, that contains the AX value. If the register form is used, the AX value must be in
bits 16-31; bits 0-15 are ignored.

LT=NO

LPT=YES
specifies whether (YES) or not (NO) a program transfer (PT) into the home address space
by routines executing with the specified AX is to be allowed.

SSAR=NO

SSAR=YES
specifies whether (YES) or not (NO) routines executing with the specified AX are to be
allowed to establish secondary addressability to the home address space.

SRELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

Note: Both the PT and SSAR authority are set every time you invoke the ATSET macro
instruction. If you do not specify PT, for example, the PT authority is set off. If you
want the PT authority to remain on, you must specify PT =YES.

When control returns, register contains the following return code:

Hexadecimal
Code Meaning
0 The selected authorization table entry has been

set

ATSET - Set Authorization Table 2-11

ATTACH - Create a New Task

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The ATTACH macro instruction causes the control program to create a new task and indicates
the entry point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a directory of a
partitioned data set, or must have been specified in an IDENTIFY macro instruction. If the
specified entry point cannot be located, the new subtask is abnormally terminated.

On entry to the attached routine, the high order bit, bit 0, of register 14 is set to indicate the
addressing mode of the issuer of the ATTACH macro. If bit 0 is 0, the issuer is executing in
24-bit addressing mode; if bit 0 is 1, the issuer is executing in 31-bit addressing mode.

The address of the task control block for the new task is returned in register 1. The new task is
a subtask of the originating task; the originating task is the task that was active when the
ATTACH macro instruction was issued. The limit and dispatching priorities of the new task
are the same as those of the originating task unless modified in the ATTACH macro
instruction.

The load module containing the program to be given control is brought into virtual storage if a
usable copy is not available in virtual storage. The issuing program can provide an event
control block, in which termination of the new task is posted, an exit routine to be given
control when the new task is terminated, and a parameter list whose address is passed in
register 1 to the new task. If you code neither the ECB nor ETXR parameter, the subtask is
automatically removed from the system upon completion of its execution. If you specify the
ECB parameter in the ATTACH macro instruction, the ECB must be in storage so that you
can wait on it (using the WAIT macro instruction) and the control program can post it on
behalf of the terminating task. You can also use the ATTACH macro instruction to specify
that ownership of virtual subpools is to be assigned to the new task, or that the subpools are to
be shared by the originating task and the new task.

Except for DCB and JSCB, all input parameters to the ATTACH macro instruction can reside
in storage above 16 megabytes if the issuer is executing in 31-bit addressing mode.

The description of the ATTACH macro instruction follows. The ATTACH macro instruction
is also described in Supervisor Services and Macro Instructions with the exception of the JSTCB,
SM, SVAREA, KEY, DISP, JSCB, TID, NSHSPV, NSHSPL, and RSAPF parameters. These
parameters are restricted in use to supervisor state or PSW key 0-7 programs and, therefore, are
only described here.

2-12 spL: System Macros and Facilities Volume 2

The standard form of the ATTACH macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ATTACH.
ATTACH
b One or more blanks must follow ATTACH.

EP =entry name
EPLOC =entry name addr
DE =list entry addr

entry name: symbol.
entry name addr: A-type address, or register (2) - (12).

,DCB=dcbh addr
,LPMOD = limit prior nmbr
,DPMOD =disp prior nmbr

,PARAM = (addr)
JPARAM = (addr),VL=1

L,ECB =ech addr
LJETXR = exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpool list addr

,SHSPV =subpool nmbr
,SHSPL = subpool list addr

,SZERO = YES
,SZERO=NO

,TASKLIB =dcb addr
STAI= (exit addr)

STAI= (exit addr.parm addr)

L,ESTAIY= (exit addr)

,ESTAI = (exit addr.,parm addr)

,PURGE =QUIESCE
,PURGE=NONE
,PURGE=HALT

LASYNCH=NO
LASYNCH=YES

list entry addr: A-type address, or register (2) - (12).

dcb addr: A-type address, or register (2) - (12).

limit prior nmbr: symbol, decimal digit, or register (2) - (12).
disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: A-type address, or register (2) - (12).
Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

ech addr: A-type address, or register (2) - (12).

exit rin addr: A-type address, or register (2) - (12).
subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).
subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

Default: SZERO=YES

dcb addr: A-type address, or register (2) - (12).

exit addr: A-type address, or register (2) - (12).
parm addr: A-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for STAI: PURGE = QUIESCE
Default for ESTAI: PURGE=NONE

Note: ASYNCH may be coded only if STAI or ESTAI is specified.
Default for STAI: ASYNCH=NO
Default for ESTAI: ASYNCH=YES

,TERM =NO Note: TERM may be specified only if ESTALI is specified.
,TERM=YES Default: TERM =NO
JSTCB=NO Default: JISTCB=NO
LJSTCB=YES

,SM =PROB Default: SM =PROB
,SM =SUPV

,SVAREA =YES Default: SVAREA =YES
,SVAREA =NO

LKEY =PROP Default: KEY =PROP
LKEY=ZERO

,DISP=YES Default: DISP=YES
,DISP=NO

JSCB=jsch addr
,TID = task id

JNSHSPV = subpool nmbr
,NSHSPL = subpool list addr

_RSAPF=NO
,RSAPF = YES

,RELATED =value

Jscb addr: A-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID=0

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: A-type address, or register (2) - (12).

Default: RSAPF =NO

value: any valid macro keyword specification.

ATTACH - Create a New Task

2-13

The parameters are explained below:

EP =entry name

EPLOC =entry name addr

DE =list entry addr
specifies the entry name, the address of the entry name, or the address of the name field
of a 60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Notes:

1. ATTACH processing can attach a load module in 24-bit or 31-bit addressing mode
physically resident above or below 16 megabytes virtual. The AMODE and RMODE,
which are load module attributes located in the directory entry for the load module,
provide this information. The RMODE indicates where the module is to be placed; the
AMODE indicates the addressing mode of the module. If the AMODE of the entry
point being attached is ANY, it will be attached with the same addressing mode as the
caller.

2. The task structure must not be changed via an ATTACH or DETACH between the
issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

,DCB=dcb addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

,LPMOD = [imit prior nmbr
specifies the number (255 or less) to be subtracted from the current limit priority of the
originating task. The result is the limit priority of the new task. If this parameter is
omitted, the current limit priority of the originating task is ass1gned as the limit priority of
the new task.

,DPMOD =disp prior nmbr
specifies the signed number (255 or less) to be algebraically added to the current
dispatching priority of the originating task. The result is assigned as the dispatching
priority of the new task, unless it is greater than the limit priority of the new task. If the
result is greater, the limit priority is assigned as the dispatching priority.

If a register is designated, a negative number must be in two’s complement form in the
register. If this parameter is omitted, the dispatching priority assigned is the smaller of
either the new task’s limit priority or the originating task’s dispatching priority.

,LPARAM = (addr)

,LPARAM = (addr), VL=1
specifies the address(es) to be passed to the attached program. Each address is expanded
inline to a fullword on a fullword boundary, in the order designated. Reglster 1 contains
the address of the first word when the program is given control.

2-14 SPL: System Macros and Facilities Volume 2

VL =1 should be designated only if the called program can be passed a variable number
of parameters. VL =1 causes the high-order bit of the last address to be set to 1; the bit
can be checked to find the end of the list.

JECB=ech addr
specifies the address of an event control block for the new task to be used by the control
program to indicate the termination of the new task. The ECB must be in storage so that
the issuer of the attach can wait on it (using the WAIT macro instruction) and the control
program can post it on behalf of the terminating task. The return code (if the task is
terminated normally) or the completion code (if the task is terminated abnormally) is also
placed in the event control block. If this parameter is coded, a DETACH macro
instruction must be issued to remove the subtask from the system after the subtask has
been terminated.

SJETXR =exit rtn addr
specifies the address of the end-of-task exit routine to be given control after the new task
is normally or abnormally terminated. The exit routine is given control when the
originating task becomes active after the subtask is terminated, and must be in virtual
storage when required. If this parameter is coded, a DETACH macro instruction must be
issued to remove the subtask from the system after the subtask has been terminated.

The exit routine receives control in the addressing mode of the caller of the ATTACH
macro instruction. ATTACH processing issues an ABEND with completion code X‘72A°
if a caller attempts to create two subtasks with the same exit routine in different
addressing modes.

1

The contents of the registers when the exit routine is given control are as follows:

Register Contents

0 Control Program Information

1 Address of the task control block for the task that was
terminated

2-12 Unpredictable

13 Address of a save area provided by the control program

14 Return address (to the control program)

15 Address of the exit routine

The exit routine is responsible for saving and restoring the registers.

»GSPYV = subpool nmbr

yGSPL = subpool list addr
specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each of which less than 128. Except for subpool 0, ownership of
each of the specified subpools is assigned to the new task. Although you can specify
subpool zero, it cannot be transferred. When a task transfers ownership of a subpool, it
can no longer GETMAIN or FREEMALIN the associated virtual storage areas.

If GSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

ySHSPYV = subpool nmbr

,SHSPL = subpool list addr
specifies a virtual storage subpool number less than 128 or the address of a list of virtual
storage subpool numbers each less than 128. Programs of both originating task and the
new task can use the associated virtual storage areas.

ATTACH - Create a New Task 2-15

If SHSPL is specified, the first byte of the list contains the number of remaining bytes in
the list; each of the following bytes contains a virtual storage subpool number.

SZERO=YES

,SZERO=NO
specifies whether subpool 0 is to be shared with the subtask. YES specifies that subpool 0
is to be shared; NO specifies that subpool 0 is not to be shared.

»TASKLIB =dcbh addr
specifies that a task library DCB address has been supplied and is to be stored in
TCBJLB. Otherwise, TCBJLB is propagated from the originating task. If the DCB
address specifies LINKLIB, no other library is searched because searching LINKLIB
indicates the end of the search.

Note: The DCB must be opened before the ATTACH macro instruction is executed and
must reside in storage below 16 megabytes.

STAI = (exit addr)

STAI = (exit addr,parm addr)

LESTAI = (exit addr)

JESTAIL = (exit addr,parm addr)
specifies whether a STAI or ESTAI SCB is to be created; any STAI/ESTAI SCBs queued
to the originating task are propagated to the new task.

The exit addr specifies the address of the STAI or ESTAI exit routine which is to receive
control if the subtask abnormally terminates; the exit routine must be in virtual storage at
the time of abnormal termination. The parm addr is the address of a parameter list that
can be used by the STAI or ESTAI exit routine.

ATTACH processing passes control to the ESTAI exit routine in the addressing mode of
the caller of the ATTACH service routine. Therefore, the ESTAI exit routine can execute
in either 24-bit or 31-bit addressing mode. A STAI exit routine can execute only in 24-bit
addressing mode. If a caller in 31-bit addressing mode specifies the STAI parameter on
the ATTACH macro instruction, the caller is abended with an X°52A’ completion code.

,PURGE = QUIESCE

JPURGE =NONE

,PURGE =HALT
specifies what action is to be taken with regard to I/O operations when the subtask is
abnormally terminated. No action may be specified (NONE), a halting of I/O operations
may be requested (HALT), or a quiescing of I/O operations may be indicated
(QUIESCE).

,2ASYNCH=NO

LASYNCH=YES
specifies whether asynchronous exits are to be allowed when a subtask abnormal
termination occurs.

ASYNCH =YES must be coded if:

° Aﬁy supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAI exit routine.

E 2-16 SPL: System Macros and Facilities Volume 2

e PURGE=QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

e PURGE=NONE is specified and the CHECK macro instruction is issued in the
ESTALI exit routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: 1If ASYNCH =YES is specified and the ABEND was originally scheduled because
of an error in asynchronous exit handling, an ABEND recursion will develop.

,TERM=NO

,TERM =YES
specifies whether the exit routine associated with the ESTAI request is also to be
scheduled in the following situations:

e CANCEL

e Forced LOGOFF

e Job step timer expirations

® Wait time limit for job step exceeded

o ABEND condition because incomplete task detached when STAE option not specified
on DETACH

e Attaching task abnormally terminates

JSTCB=NO

JSTCB=YES
specifies whether the attached task is a new job step (YES) or a task in the present job
step (NO). If YES is specified, the address of the TCB of the newly created task is placed
in the TCBJSTCB field of the TCB; if NO is specified, the TCBJ STCB field of the task
using ATTACH is propagated to the new task.

Note: The JSTCB=YES option causes a néw job pack area to be established for the
attached task. Any modules within the job pack area of the task issuing the ATTACH
are therefore not implicitly known to the newly attached task.

SM=PROB

SM =SUPV
specifies that the system is to run in problem program mode (PROB) or in supervisor
mode (SUPV) when executing the attached task.

,SVAREA =YES

SVAREA =NO
specifies whether a save area is needed for the attaching task. If YES is specified, the
ATTACH routine obtains a 72-byte save area. If both attaching and attached task share
subpool zero, the save area is obtained there; otherwise, it is obtained from a new 4K-byte
block.

ATTACH - Create a New Task 2-17

2-18

,JKEY=PROP
JKEY =ZERO

specifies whether the protection key of the newly created task should be zero (ZERO) or
copied from the TCBPKF field of the TCB for the task using ATTACH (PROP).

,DISP=YES
,DISP=NO

specifies whether the subtask is to be dispatchable (YES) or nondispatchable (NO).

‘Note: If DISP=NO is specified, the attaching task must use the STATUS macro
instruction to reset the TCBANDSP nondispatchability bit to 0, before the ATTACH
processing can be completed for the new task.

+JSCB =jschb addr

specifies the address of the job step control block. If specified, the JSCB is used for the
new task. Otherwise, the JSCB of the attaching task is also used for the new task.

Note: The JSCB parameter must specify a storage location below 16 megabytes.

STID = task id

specifies the task identifier to be placed in the TCBTID field of the attached task.

,NSHSPYV = subpool ninbr

,NSHSPL = subpool list addr
specifies the virtual storage subpool number 236 or 237, or the address of a list of virtual
storage subpool numbers 236 and 237. The subpools spemﬁed will not be shared with the
subtask.

If NSHSPL is specified, the first byte of the list contains the number of bytes remaining in
the list; each of the following bytes contains a virtual storage subpool numb-r.

,RSAPF =YES

specifies that the attached subtask may come from an unauthorized library. If, however.
it comes from an APF-authorized library and is link-edited with the APF-authorized
attribute, the step begins execution with APF authorization.

RSAPF=YES applies when all of the following conditions are met:

o The caller is running in supervisor state, system key (0-7), or both.

® The caller is running non-APF authorized.

o The task is attached in the problem program state and with a non-system key.

,RELATED = (value)

specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

When control is returned, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

00 Successful completion.

04 ATTACH was issued in a STAE exit; processing not completed.

08 Insufficient storage available for control block
for STAI/ESTAI request; processing not completed.

oC Invalid exit routine address or invalid parameter
list address specified with STAI parameter;
processing not completed.

14 Authorized task specifying JSTCB=YES was not itself a job
step task; processing not completed.

18 Attempt to create a new subtask would result in both
job step tasks and non-job step tasks being subtasks of
current task; processing not completed.

Notes:

1. For any return code other than 00, register 1 is set to zero upon return.

2. The program manager processing for ATTACH is performed under the new subtask after
control has been returned to the originating task. Therefore, it is possible for the originating
task to obtain return code 00, and still not have the subtask successfully created (for example,
if the entry name could not be found by the program manager). In such cases, the new
subtask is abnormally terminated.

Operation: Attach program SYSPROGM, which will run with protection key 0 and in
supervisor mode. Subpool 0 is not to be shared, and the new task is not to have a save area
provided.

ATTACH EP=SYSPROGM,KEY=ZERO, SM=SUPV,SZERO=NO, SVAREA=NO

Operation: Attach as a new job step the program name addressed in register 7. The new task
is to run in problem program mode, a save area is to be provided, a job step control block is
provided, subpool 0 is not to be shared, a task library DCB is provided, and the new task is to
be nondispatchable.

ATTACH EPLOC=(7),SM=PROB,JSTCB=YES,SVAREA=YES, SZERO=NO, X
JSCB=(5) ,DISP=NO,TASKLIB=(8)

Operation: Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

ATTACH - Create a New Task 2-19

Example 4

Operation: Cause PROGRAMI1 to be attached, share subpool 5, supply WORDI so the
originating task can know when the subtask is complete, and establish EXIT1 as an ESTAI
exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

2-20 SPL: System Macfos and Facilities Volume 2

ATTACH (List Form)

Two parameter lists are used in an ATTACH macro instruction: a control program parameter
list and a problem program parameter list. You can construct only the control program
parameter list in the list form of ATTACH. Address parameters to be passed in a parameter
list to the problem program can be provided using the list form of the CALL macro instruction.
This parameter list can be referred to in the execute form of ATTACH.

ATTACH (List Form) 2-21

The list form of the ATTACH macro instruction is written as follows:

name
b
ATTACH
b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks follow ATTACH.

EP=entry name
EPLOC = entry name addr
DE =list entry addr

,DCB=dcb addr

,LPMOD ==limit prior nmbr
,DPMOD =disp prior nmbr
LECB=ech addr

L,ETXR =exit rtn addr

,GSPV =subpool nmbr
,GSPL = subpool list addr

,SHSPV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

JZTASKLIB =dcb addr

,STAI = (exit addr)

,STAI = (exit addr.parm addr)
LESTAI = (exit addr)

LESTAI = (exit addr,parm addr)

,PURGE =QUIESCE
,PURGE=NONE
,PURGE=HALT

LASYNCH=NO
L,ASYNCH=YES

,TERM=NO
_-TERM=YES

LJSTCB=NO
JSTCB=YES

,SM=PROB
,SM =SUPV

,SVAREA =YES
,SVAREA =NO

JKEY =PROP
JKEY=ZERO

,DISP=YES
,DISP=NO

LJSCB=jscbh addr
,TID =task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr

,RSAPF=NO
JRSAPF =YES

,RELATED =value
SF=L

entry name: symbol.
entry name addr: A-type address.
list entry addr: A-type address.

deb addr: A-type address.

limit prior nmbr: symbol or decimal digit.
disp prior nmbr: symbol or decimal digit.
ech addr: A-type address.

exit rtn addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

subpool nmbr: symbol or decimal digit.
subpool list addr: A-type address.

Default: SZERO=YES .

dcb addr: A-type address.

exit addr: A-type address.
parm addr: A-type address.

Note: PURGE may be specified only if STAI or ESTAI is specified.
Default for STAI: PURGE =QUIESCE
Default for ESTAI: PURGE =NONE

Note: ASYNCH may be specified only if STAI or ESTAT
is specified.

Default for STAI: ASYNCH=NO

Default for ESTAI: ASYNCH =YES

Note: TERM may be specified only if ESTAI is specified.
Default: TERM =NO

Default: JSTCB=NO

Default: SM =PROB

Default: SVAREA =YES
Default: KEY =PROP

Default: DISP=YES

Jjscb addr: A-type address.

task id: decimal digits 0-255.
Defauilt: TID =0

subpool nmbr: symbol, decimal digit.
subpool list addr: A-type address.
Default: RSAPF =NO

value: any valid macro keyword specification.

2-22 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exception:

SF=L
specifies the list form of the ATTACH macro instruction.

Note: If RSAPF parameter is not specified on the list form of the ATTACH macro
instruction, the default is RSAPF=NO. If RSAPF=YES is specified on the list form or on a
previous execute form using the same SF = list, RSAPF =NO is ignored for any subsequent
execute forms of the ATTACH macro instruction.

Ohce RSAPF is specified, it is in effect for all users of that list.

ATTACH (List Form) 2-23

ATTACH (Execute Form)

Two parameter lists are used in ATTACH: - a control program parameter list and an optional
problem program parameter list. Either or both of these parameter lists can be remote and can
be referred to and modified by the execute form of ATTACH. If only the problem program
parameter list is remote, parameters that require use of the control program parameter list .
cause that list to be constructed inline as part of the macro expansion.

2-24 SPL: System Macros and Facilities Volume 2

The execute form of the ATTACH macro instruction is written as follows:

name
b
ATTACH
b

name: symbol. Begin name in column 1.

One or more blanks must precede ATTACH.

One or more blanks must follow ATTACH.

EP=entry name
EPLOC =entry name addr
DE =list entry addr

,DCB=dcb addr
,LPMOD = limit prior nmbr

,DPMOD =disp prior nmbr
JPARAM = (addr)
,PARAM = (addr),VL=1

L,ECB =ecb addr
,ETXR =exit rtn addr

,GSPV = subpool nmbr
,GSPL = subpool list addr
'SHSPYV = subpool nmbr
,SHSPL = subpool list addr

,SZERO=YES
,SZERO=NO

,TASKLIB =dcb addr

,STAI= (exit addr)

,STAI= (exit addr,parm addr)
L,ESTAI= (exit addr)

LJESTAI = (exit addr.parm addr)

,PURGE =QUIESCE
,PURGE=NONE
,PURGE=HALT

LASYNCH=NO
,ASYNCH=YES

,TERM =NO
- TERM=YES

JSTCB=NO
JSTCB=YES

,SM=PROB
,SM =SUPV

,SVAREA =YES
,SVAREA =NO

JKEY =PROP
JKEY=ZERO

,DISP=YES
,DISP=NO

,JSCB =jsch addr
,TID = task id

,NSHSPV = subpool nmbr
,NSHSPL = subpool list addr
,RSAPF=NO
,RSAPF=YES
,RELATED =value

,MF = (E,prob addr)

SF=(E,ctrl addr)

,MF = (E,prob addr),SF= (E ctrl addr)

entry name: symbol.
entry name addr: RX-type address, or register (2) - (12).
list entry addr: RX-type address, or register (2) - (12).

deb addr: RX-type address, or register (2) - (12).
limit prior nmbr: symbol, decimal digit , or register (2) - (12).

disp prior nmbr: symbol, decimal digit, or register (2) - (12).

addr: RX-type address, or register (2) - (12).

Note: addr is one or more addresses, separated by commas. For example,
PARAM = (addr,addr,addr)

ech addr: RX-type address, or register (2) - (12).

exit rtn addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

dcb addr: RX-type address, or register (2) - (12).

exit addr: RX-type address, or register (2) - (12).
parm addr: RX-type address, or register (2) - (12).

Note: PURGE may be specified only if STAI or ESTALI is specified.

Note: ASYNCH may be specified only if STAI or ESTAI is specified.
Note: TERM may be specified only if ESTAI is specified.
Default: JISTCB=NO

Default: SM =PROB

Default: SVAREA =YES
Default: KEY =PROP

Default: DISP=YES

Jseb addr: RX-type address, or register (2) - (12).

task id: decimal digits 0-255, or register (2) - (12).
Default: TID =0

subpool nmbr: symbol, decimal digit, or register (2) - (12).
subpool list addr: RX-type address, or register (2) - (12).

Default: RSAPF =NO

value: any valid macro keyword specification.

prob addr: RX-type address, or register (1) or (2) - (12).
ctrl addr: RX-type address, or register (2) - (12) or (15).

ATTACH (Execute Form)

2-25

‘The parameters are explained under the standard form of the ATTACH macro instruction, with
the following exceptions: ‘

JMF =(E, prob addr)

SF=(E, ctrl addr)

JMF =(E, prob addr) ,SF = (E, ctrl addr)
specifies the execute form of the ATTACH macro instruction using a remote problem
program parameter list or a remote control program parameter list or both. If a
parameter list is not provided, any problem program or control program parameters are
provided in parameter lists expanded inline.

Notes:

1. If STAI is specified on the execute form, the following fields are overlaid in the control
program parameter list: exit addr, parm addr, PURGE, and ASYNCH. If parm addr is not
specified, zero is used; if PURGE or ASYNCH are not specified, defaults are used.

2. If ESTAI is specified on the execute form, the following fields are overlaid; exit addr, parm
addr, PURGE, ASYNCH, and TERM. If parm addr is not specified, zero is used, if
PURGE, ASYNCH, or TERM are not specified, defaults are used.

3. If the STAI or ESTAI is to be specified, it must be completely specified on either the list or
execute form, but not on both forms.

4. If SZERO is not specified on the list or execute form, the default is SZERO=YES. If
SZERO = NO is specified on either the list form or a previous execute form using the same
SF=list, then SZERO = YES is ignored for any following execute forms of the macro. Once
SZERO= NO is specified, it is in effect for all users of that list.

5. If RSAPF=YES is specified on the list form of the ATTACH macro instruction or on a

previous execute form of the ATTACH macro instruction using the same SF= list,
RSAPF=NO is ignored for any subsequent execute forms of the ATTACH macro instruction.

2-26 SPL: System Macros and Facilities Volume 2

AXEXT - Extract Authorization Index -

The AXEXT macro instruction returns to the caller the authorization index (AX) value of the
specified address space.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
extracted AX is placed in bits 16-31 of register 0 and bits 0-15 are set to zero. The contents of
register 1 are unpredictable.

The AXEXT macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXEXT.
AXEXT
b One or more blanks must follow AXEXT.
ASID = asid value asid value: RX-type address or register (0) - (12).

Default: current PASID.

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

ASID = asid value
specifies the ASID of the address space whose AX is to be extracted. If the RX-type
address is used, it points to a halfword containing the ASID. If the register form is used,
the register must contain the ASID in bits 16-31 with bits 0-15 set to zero. If ASID is not
specified, the current PASID is assumed. '

,RELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user and can be any valid coding values.

AXEXT - Extract Authorization Index 2-27

When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The AX value of the specified address space was successfully obtained.

2-28 SPL: System Macros and Facilities Volume 2

AXFRE - Free Authorization Index

The AXFRE macro instruction returns one or more authorization index (AX) values to the
system. The caller must ensure that the AXs to be returned are no longer being used by any
address space or else the caller is abnormally terminated. On completion of the AXFRE macro
instruction, all authorization of the freed AX values in authorization tables for the entire system
will be purged. The caller must be dispatched in the address space that owns the AX.

The caller must be in supervisor state or PSW mask 0-7, executing in primary mode enabled
and unlocked.

Register 13 must point to a standard register save area that must be addressable in primary
mode. The list of AX values passed to the AXFRE macro instruction must also be addressable
in primary mode at the time the macro instruction is issued.

Registers 2-12 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The

contents of registers 0 and 1 are unpredictable.

The AXFRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One ore more blanks must precede AXFRE.
AXFRE
b One or more blanks must follow AXFRE.
AXLIST =list addr list addr: RX-type address or r‘egister) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST =list addr ;
specifies the address of a variable length list of halfword entries that contain the AX
values to be freed. The first halfword must contain the number of values in the list.

,RELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXFRE - Free Authorization Index 2-29

When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
0 The specified authorization index or indexes were successfully freed.
4 The specified authorization index or indexes were not successfully freed. One or more of the

indexes could be unavailable for use.

2-30 SPL: System Macros and Facilities Volume 2

AXRES - Reserve Authorization Index

The AXRES macro instruction reserves one or more authorization index (AX) values for the
caller’s use. The AX values are then owned by the current home address space.

The caller must be in supervisor state or PKM 0-7, executing in primary mode enabled and
unlocked. The parameter list passed to the AXRES macro instruction must be addressable in
primary mode at the time the macro expansion is executed. Register 13 must point to a
standard register save area that must be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The AXRES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXRES.
AXRES
b One or more blanks must follow AXRES.
AXLIST =list addr list addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AXLIST =ist addr
specifies the address of a variable length list, addressable in primary mode, of halfword
entries in which the requested AX values are to be returned. The first halfword must
contain the number of values to be returned. Enough halfwords must follow the first
entry to contain the requested number of values. If the requested number of AX values is
not available, the caller is abnormally terminated.

,LRELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXRES - Reserve Authorization Index 2-31

When control returns, register 15 contains the following return code.

Hexadecimal
Code Meaning
0 The AX value or values were successfully reserved.

2-32 SPL: System Macros and Facilities Volume 2

AXSET - Set Authorization Index

The AXSET macro instruction sets the authorization index (AX) of the home address space to
the value specified by the caller. The AX must have been previously reserved and the address
space whose AX is being changed cannot own connected space switch entry tables. All routines
that subsequently execute with a PASID of the address space whose AX was changed execute
with the new AX.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode.

Registers 2-14 are preserved. Register two, which is modified by the macro after the registers
are saved, should not be used as the base register. Register 0 contains the original AX value in
bits 16-31 with bits 0-15 set to zero. Register 15 contains the return code. The contents of
register 1 are unpredictable.

The AXSET macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede AXSET.
AXSET
b One or more blanks must follow AXSET.
AX=AX value AX value: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

AX =AX value
specifies the new AX value. The RX-type address specifies a halfword containing the new
AX. If the register form is used, the register must contain the new AX in bits 16-31 and
bits 0-15 must be zero.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

AXSET - Set Authorization Index 2-33

When control returns, register 15 contains the following return code:

Hexadecimal

Code Meaning
0 The AX of the home address space was set to the value specified by the caller.

2-34 SPL: System Macros and Facilities Volume 2

BLSABDPL - Map the Exit Parameter List BLSABDPL

The BLSABDPL macro instruction maps the exit parameter list (BLSABDPL), which is a data
area that enables IPCS, PRDMP, SNAP, and user-written exit routines to tailor dumps.

Using this macro, you can map the following areas within the BLSABDPL exit parameter list:
e The processor status record

e The storage access parameter list

e The select ASID parameter list

e The control block and format model processor parameter list

e The ECT parameter list

By accessing any one of these parameter lists, the exit routine can then use the data in the
parameter list to invoke the corresponding exit service routine. For information about using

the exit service routines, see MVS/XA Interactive Problem Control System User’s Guide and
Reference.

BLSABDPL - Map the Exit Parameter List BLSABDPL 2-35

The BLSABDPL macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b | One or more blanks must precede BLSABDPL.
BLSABDPL

b

One or more blanks must follow BLSABDPL.

AMDCPST = YES Default: AMDCPST =NO
AMDCPST=NO

LAMDEXIT = YES Default: AMDEXIT = YES
LAMDEXIT =NO

,LAMDOSEL =YES Default: AMDOSEL = YES
LAMDOSEL = NO

LAMDPACC=YES Default: AMDPACC =YES
LAMDPACC =NO

LAMDPECT = YES Default: AMDPECT = YES
LAMDPECT =NO

,AMDPFMT = YES Default: AMDPFMT = YES
,AMDPFMT =NO

,AMDPSEL = YES Default: AMDPSEL = YES
LAMDPSEL =NO

,DSECT=YES Default: DSECT = YES
,DSECT=NO

The parameters are explained as follows:

AMDCPST =YES
AMDCPST=NO

specifies whether the format of the CPU status data available through the IPCS and
PRDMP storage access services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is NO.

Because the system uses DSECT AMDCPMAP to map the format of CPU status data

(when AMDCPST = YES), the system ignores the DSECT = NO option if it is
specified.

AMDEXIT =YES
AMDEXIT =NO

specifies whether the common exit parameter list (BLSABDPL) is to be mapped (YES) or
suppressed (NO).
If this parameter is not specified, the default is YES.

The common exit parameter list contains two parts: ABDPL and

2-36 SPL: System Macros and Facilities Volume 2

ADPLEXTN. DSECT=YES causes DSECT statements to be generated for both.
DSECT =NO suppresses the DSECT statements and causes ABDPL and ADPLEXTN
to be defined as the labels associated with the first bytes described in the ABDPL
and ADPLEXTN exit parameter lists, respectively.

AMDOSEL =YES
AMDOSEL =NO
specifies whether the select ASID service output data available under IPCS and PRDMP
is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

If the DSECT =NO option is specified, it is ignored. The select ASID parameter list is
always mapped using DSECT ADPLPSEL.

Because the system uses DSECT ADPLPSEL to map the select ASID parameter list
(when AMDOSEL = YES), the system ignores the DSECT = NO option if it is
specified.

AMDPACC=YES
AMDPACC=NO

specifies whether the storage access service parameter list is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The storage access service parameter list is described as ADPLPACC. DSECT=YES
causes DSECT statements to be generated for ADPLPACC. DSECT =NO suppresses the
DSECT statements and causes ADPLPACC to be defined as the label associated with the
first byte described in the storage access service parameter list.

AMDPECT =YES

AMDPECT =NO
specifies whether the ECT service parameter list is to be mapped (YES) or suppressed
(NO).

If this parameter is not specified, the default is YES.

The ECT service parameter list is described as ADPLPECT. DSECT=YES causes
DSECT statements to be generated for ADPLPECT. DSECT =NO suppresses the
DSECT statements and causes ADPLPECT to be defined as the label associated with the
first byte described in the ECT service parameter list.

AMDPFMT =YES

AMDPFMT =NO
specifies whether the parameter list used by both the control block formatter and the
format model processor services is to be mapped (YES) or suppressed (NO).

If this parameter is not specified, the default is YES.

The parameter list used by both the control block formatter and the format model
processor services is described as ADPLPFMT. DSECT =YES causes DSECT statements
to be generated for ADPLPFMT. DSECT =NO suppresses the DSECT statements and
causes ADPLPFMT to be defined as the label associated with the first byte described in
the parameter list.

BLSABDPL - Map the Exit Parameter List BLSABDPL ~ 2-37

Example

AMDPSEL =YES
AMDPSEL =NO

specifies whether the select ASID service parameter list is to be mapped (YES) or
suppressed (NO).

If this parameter is not specified, the default is YES.

The ASID service parameter list is described as ADPLPSEL. DSECT =YES causes
DSECT statements to be generated for ADPLPSEL. DSECT =NO suppresses the
DSECT statements and causes ADPLPSEL to be defined as the label assoc1ated with the
first byte described in the ASID service parameter list.

DSECT=YES
DSECT=NO

specifies whether parameter lists mapped by BLSABDPL are to be mapped as DSECTs
(YES) or not (NO).

If this parameter is not specified, the default is YES.

NOTE: Output data from services can also be mapped by BLSABDPL. Output data are
always mapped as DSECTs. These DSECTs cannot be suppressed by DSECT=NO. To
determine whether DSECT =NO can suppress a specific DSECT, see the above
parameters.

Operation: Code the macro instructions to invoke the select ASID service routine (that
generates a list of selected address spaces within a dump) by reserving space for an initialized
select ASID service parameter list and defining the mapping of the ABDPL for the user-written
exit routine.

BLSADPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO,AMDPACC=NO,
AMDPFMT=NO , AMDPECT=NO, AMDPSEL=YES
BLSADPL AMDPACC=NO,AMDPFMT=NO, AMDPECT=NO, AMDPSEL=NO

2-38 SPL: System Macros and Facilities Volume 2

BLSQMDEF - Define a Control Block Format

The BLSQMDEF macro instruction is used to start and end the formatting model of a control
block from a dump. A control block model must begin with the BLSQMDEF macro
instruction, specifying the appropriate parameters. The end of the model is indicated by a
BLSQMDEF macro instruction with only the END keyword specified.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model. A control block model has the following structure:

® One BLSQMDEF macro instruction to begin the model definition.

e At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

e One BLSQMDEF macro instruction to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order the
fields printed in the dump. No object code producing assembler statements other than the
BLSQMFLD macro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition. The BLSQSHDR macro instruction,
which associates text strings with dumped data fields, can be used to clarify the dump for the
user.

Through the implementation of BLSQMDEF, BLSQOMFLD, and BLSQSHDR users of IPCS,

PRDMP, and SNAP can control their dump output within user-written formatting routines.
For additional information, refer to MVS/XA Interactive Problem Control System User’s Guide.

BLSQMDEF - Define a Control Block Format 2-39

The BLSQMDEF macro instruction is written as follows:

name name: symbol. Begin rame in column 1.
b One or more blanks must precede BLSQMDEF.
BLSQMDEF
b One or more blanks must follow BLSQMDEF.
END Note: END is required if this BLSQMDEF macro is terminating the
current

,CBLEN = value

.BASELBL = label

,MAINTLYV = name

LACRONYM = name

,ACROLEN = value
,ACROLBL = label

,ACROFF = value

,JPREFIX = value
L,OFFSETS =PRINT
,OFFSETS = NOPRINT
STRTCOL = value

,LBLSPC =value

LHEADER = name

format model definition. This is the exclusive use of the END parameter;
when END is specified, no other options are allowed.

label: symbol.

value: decimal constant, hexadecimal constant, or an absolute value.
Note: CBLEN is required except when the END parameter is specified.
name: 1 to 8 byte character string.

name: 1 to 8 byte character string

Note: If ACRONYM is specified, the ACROLBL or ACROFF parameters

should also be specified. If neither are, a default offset of zero is assumed.

value: decimal constant, hexadecimal constant, or absolute expression

of a number from 1 to 8, inclusive.

label: symbol.

Note: Use ACROLBL only if BASELBL is specified.

value: decimal constant, hexadecimal constant, or absolute value.

Note: 1. Use ACROFF if acronym is not at offset zero and BASELBL is
not specified

2. The ACROFF value is used when both ACROFF and
ACROLBL are specified.
value: integer constant 0 - 8 inclusive.
Default: PREFIX =3
Default: OFFSETS = PRINT

value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: STRTCOL =0
value: decimal constant, hexadecimal constant, or an absolute
expression.
Default: LBLSPC=0
name: one to eight byte character string.
Note: 1. If HEADER is not specified, ACRONYM value is used.
2. If neither HEADER nor ACRONYM is specified, the control
block will not contain a heading.

The parameters are explained as followed:

END

specifies the termination of the control block model. This parameter is required ONLY
when the BLSQMDEF macro instruction is used to end the control block format. All
other parameters are ignored if this parameter is specified.

BASELBL = label

specifies the label of an assembler statement, which is to be used to calculate field offsets.
If specified, all field offsets calculated by the BLSQMFLD macro instruction will be
relative to this label. If not specified, all field offsets must be explicitly specified on the
BLSQMFLD macro instruction via the ACROFF parameter.

2-40 SPL: System Macros and Facilities Volume 2

CBLEN =value
specifies the total length of the control block. Value may be a decimal constant,
hexadecimal constant, or an absolute expression. This parameter is required except when
the END parameter is specified.

MAINTLYV =name
specifies the maintenance level of the control block. The maintenance level name may be a
1 to 8 byte character string that contains no blanks.

ACRONYM = name
specifies the contents of the control block acronym field. Name may be a one to eight
byte character string that contains no blanks. If this field is specified, the ACROLBL or
ACROFF parameter should also be specified in order to define the offset of the acronym
field within the control block. If neither the ACROLBL nor the ACROFF parameter is
specified, an offset of zero is assumed.

ACROLEN =value
specifies the length of the acronym name specified by the ACRONYM parameter in the
event that the acronym name requires blanks. If omitted, the length used is the actual
length of the name specified in the ACRONYM parameter (without any blanks). Value
may be a decimal constant, hexadecimal constant, or absolute expression of a humber
from zero to eight, inclusive.

ACROLBL = [abel
specifies the label on the assembler statement that defines the acronym field. The label
specified here is used with the label provided by BASELBL to calculate the acronym field
offset. Use this parameter only if BASELBL is specified. The ACROLBL parameter is
ignored if ACROFTF is specified.

ACROFF =value
specifies the offset of the field containing the control block acronym within the control
block. Use this parameter if the acronym is not at offset zero and BASELBL is not
specified. Value may be a decimal constant, hexadecimal constant, or absolute
expression.

PREFIX = value
specifies the number of characters to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter of the
BLSQMFLD macro. Value must be an integer constant (0 - 8, inclusive). When
PREFIX =28 is specified, the fields will have no label. mode. If not specified, the default
is PREFIX =3. PREFIX may be re-specified on a succeeding BLSQMFLD macro.

OFFSETS =PRINT

OFFSETS = NOPRINT
specifies whether or not the field offset information should be printed at the beginning of
each output line of the formatted control block. PRIMT specifies that offset information
should be included on the formatted line; NOPRINT causes the offset information to be
suppressed. If this parameter is not specified, a default of PRINT is used.

STRTCOL =value
specifies a left margin for each line of the formatted control block. Value may be a
decimal constant, a hexadecimal constant, or an absolute expression. If not specified, or
specified as zero, the format model processor uses the value specified by IPCS or
printdump.

BLSQMDEF - Define a Control Block Format 2-41

LBLSPC =value
specifies the spacing between label fields in the formatted output. Value may be a
decimal constant, hexadecimal constant, or an absolute expression. If not specified, or
specified as zero, this indicates to the format model processor that the value specified by
IPCS, SNAP, or PRDMP should be used. This value is initially set to 20.

Note: If value is 18, the output is condensed.

HEADER =name
specifies the heading that will precede the formatted control block. Name may be any
one to eight byte character string that contains no blanks. If HEADER is omitted, the
ACRONYM value is used for the heading. If neither the ACRONYM parameter nor the
HEADER parameter is specified, the formatted control block will not have a heading.

2-42 SPL: System Macros and Facilities Volume 2

BLSQMFLD - Specifying a Control Block Format Field

The BLSQMFLD macro instruction is used to identify the fields within the dumped control
block that are to be formatted. A BLSQMFLD macro must be coded for each requested field
that will be formatted.

The BLSQMDEF and BLSQMFLD macro instructions work together to create a dump
formatting model for a control block, the model has the following structure:

e One BLSQMDEF macro instruction to begin the model definition.

e At least one BLSQMFLD macro instruction to define the attributes of a desired control
block field.

e One BLSQMDEF macro instruction to end the model definition.

The order of the BLSQMFLD statements in the formatting model determines the order the
fields are printed in the dump. No object code producing assembler statements other than the
BLSQMFLD miacro instruction should be placed between the BLSQMDEF macro instructions
that delimit the start and end of the model definition.

Through the implementation of BLSQMDEF and BLSQMFLD, users of IPCS, PRDMP, and
SNAP can control their dump output within user-written formatting routines. The BLSQSHDR
macro instruction, which associates text strings with dumped data fields, can be used to clarify
the dump for the user. For additional information, refer to MVS/XA Interactive Problem
Control System User's Guide and Reference.

BLSQMFLD - Specifying a Control Block Format Field 2-43

2-44

The BLSQMFLD macro instruction is written as follows:

name . name: symbol. Begin name in column 1.
b One or more blanks must precede BLSQMFLD.
BLSQMFLD
b One or more blanks must follow BLSQMFLD.
NAME = label label: symbol.
NAME=*
,SHDR = addr addr: A-type address.
Note: If SHDR is specified, only CALLRTN, NEWLINE,
NOSPLIT, and VIEW are allowed.
,OFF = value value: decimal constant, hexadecimal constant, or absolute
value.
Note: OFF is required if BASELBL is not specified on the
BLSQMDEF macro or if NAME =* is specified on the
BLSQMFLD macro.
,LEN =value value: decimal constant, hexadecimal constant, or absolute

LVIEW = (list)
L,VIEW =value

JARRAY = ((DL1,DU1),(DL2,DU2))
LARRAY =value

LARRAY =*

,LARRAY =END

,DTYPE=HEX
,DTYPE=EBCDIC
,NEWLINE
,NOLABEL
,CALLRTN
,PREFIX =value

,NOSPLIT
,NUMDEC
JNOCOLNM
STRTCOL = value

,COLNUM =value

,COLSEP =value

JTEMSEP =value

,ORDER =(1,2)
,ORDER=(2,1)

,JHEXONLY

expression.
Note: LEN is required if name parameter label is
unresolved.

(list). integers between 1 and 16, inclusive.

value: decimal constant, hexadecimal constant, or absolute
value.

Default: VIEW =X‘0200

DL1,DU1,DL2,DU2: decimal constants,

hexadecimal constants, or absolute values.

value: decimal constant, hexadecimal constant, or absolute

value.

Note: LEN and OFF are ignored when you code any specification
of ARRAY = other than ARRAY =END.

END terminates an array definition.

Default: DTYPE =HEX

value: integers between 0 and 8
Note: If omitted, value specified in the last preceding
BLSQMDEF or BLSQMFLD macro is used.

Default: Hexadecimal.
Default: Number the columns.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: value specified by SNAP, IPCS, or PRDMP.

value: decimal constant, hexadecimal constant, or absolute
value.)
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

value: decimal constant, hexadecimal constant, or absolute
value.
Default: A value is calculated.

Default: ORDER =(1,2)

SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

NAME = label

NAME = *
specifies the name of the control block field described by this BLSQMFLD macro. If
BASELBL is specified on the BLSQMDEF macro, the NAME label will be used with the
BASELBL label to calculate the offset of this field from the start of the control block. If
BASELBL was not specified on the BLSQMDEF macro, then OFF becomes required on
the BLSQMFLD macro.

A single asterisk specifies an unnamed, reserved field. Use of the single asterisk for the
name of a control block field requires that the OFF and LEN parameters be specified.
The dump formatter replaces the asterisk with a “reserved” label.

SHDR = addr
specifies the address of a character string used as a subheading in the control block
format. The address must be valid in an assembler A-type DC instruction. This
parameter should point to a one-byte length field followed by the actual heading character
string. The length byte indicates the length of the heading string only and should not
include the length of the length byte.

If this parameter is specified, only CALLRTN, NEWLINE, NOSPLIT, and VIEW can be
specified. Other parameters will be ignored.

OFF =value
specifies the offset of this field from the beginning of the control block. The value may be
a decimal constant, a hexadecimal constant, or an absolute expression. If this parameter
is specified, the value defined overrides the default field offset generated by the NAME
label on this macro and the BASELBL label on the BLSQMDEF macro.

OFF is ignored if you code any specification of ARRAY = other than ARRAY =END.

This parameter is required if the BASELBL parameter is not specified on the
BLSQMDEF macro or if NAME =* is specified on the BLSQMFLD macro.

LEN =value
specifies the length of the control block field. The value is a decimal constant,
hexadecimal constant, or absolute expression that defines the length of the control block
field. This parameter is required if no data constants with a label exist in the assembly
program as defined by the NAME parameter, or if use of the assembler length attribute
would not result in a correct length determination for the data constant representing the
field. ‘

LEN is ignored if you code any specification of ARRAY = other than ARRAY=END.

An assembly error occurs if LEN is not specified and there is no assembler statement with
a label matching the one specified by NAME.

BLSQMFLD - Specifying a Control Block Format Field 2-45

VIEW = (list)

VIEW =value
specifies up to sixteen different views of the control block fields. Any combination of one
to sixteen view attributes can be specified for each field. The last four bits of the view
pattern of 16 are reserved for the control program. The caller of the dump formatter
provides a view pattern defining those views to .be formatted.

When an attribute in the view pattern supplied by the dump formatter’s caller (in
ADPLPFMT) matches an attribute in the field view pattern, the field is selected for
formatting.

The list is an unordered list of attributes; each attribute can be a decimal integer between
1 and 16, inclusive (as in VIEW =1,2,...,16), binary constant (as in VIEW =B‘0010"), or
hexadecimal constant (as in VIEW =X‘0080").

The following chart illustrates the view parameter’s control block field options provided
through the specification of a 4-digit hexadecimal number. Any combination of the view
fields listed may be specified.

Hexadecimal User-defined fields to be displayed
Code

x‘8000° keyfield

x‘4000° summary field
x2000° register save area
x‘1000° linkage field

x0800° error fields

x0400° hexadecimal dump
x‘0200° all non-reserved fields
x0100° reserved fields

x‘0080° static array

x0040° dynamic array
x0020° input field

x‘0010° output field

\\
If this parameter is not specified, the defauit value of VIEW =X‘0200’ is used. See IPCS
User’s Guide and Reference for more information about ADPLPFMT.

ARRAY = ((DL1,DU1),(DL2,DU2))

ARRAY =value

ARRAY =*#

ARRAY =END
specifies that the succeeding BLSQMFLD statements define a set of fields that are
repeated in the control block.

Using the ARRAY parameter on the BLSQMFLD macro indicates that this particular
BLSQMFLD macro instruction is the beginning or the end of an array definition.

The LEN and OFF parameters are ignored when you code any specification of
ARRAY = other than ARRAY =END.

The VIEW specified applies to all fields within the array; therefore, the VIEW specified

on the BLSQMFLD macro that starts an array should be the composite of the VIEW on
all fields within the array.

2-46 SPL: System Macros and Facilities Volume 2

If ARRAY=((DL1,DUI),(DL2,DU2)) is coded, a two dimensional array is specified.
DLI is the lower limit of the first dimension, DU is the upper limit of the first
dimension, and similarly for DL2 and DU2 for the second dimension. If a lower limit for
a dimension is not specified, a default of 1 is provided. There is no default for the upper
limit of a dimension. However, an asterisk (*) may be coded for either the upper limit or
lower limit of the dimension to indicate that the dimension is to be provided by the
calling program at execution time.

Notes:

1. The correspondence of a dimension to either row or column is determined by the
ORDER keyword.

2. If the array is larger than 65,535 bytes, the calling program must process the array in
sections. The formatter will equate the lower limit for each dimension to the value one
for the purpose of addressing the array entries in a buffer, but will use the specified
values for the purpose of numbering rows and columns in the formatted output.

If ARRAY =value is coded, a one dimensional array (list) is specified. Value defines how
many array entries are contained in the control block.

If ARRAY =* is coded, the number of entries in the one-dimensional array (list) is to be
be provided by the calling program at execution time.

If ARRAY =END is coded, the array definition is terminated.

NEWLINE
specifies that this field must start on a new line of formatted output.

DTYPE =HEX

DTYPE =EBCDIC
specifies the type of data contained in the area to be dumped. DTYPE =HEX indicates
that the area to be dumped contains four-bit hexadecimal digits. DTYPE = EBCDIC
indicates that the area to be dumped contains eight-bit EBCDIC characters. When you
specify DTYPE =HEX, the dumped area includes the actual hexadecimal digits in the
range 0-F, plus any EBCDIC characters that are equivalent to 2-digit combinations of
those digits. The equivalent EBCDIC appears within vertical bars. When you specify
DTYPE =EBCDIC, the dumped area includes only the EBCDIC characters, with nothing
between the vertical bars.

NOLABEL
specifies that the field label is not to be printed: NAME is still required for offset
calculation. '

CALLRTN
specifies that the dump formatter calls the output line processing exit after the output line
containing this field has been formatted but before it is printed. The output line
processing exit entry point address is specified by the caller in the parameter list when the
dump formatter is invoked.

PREFIX =value
specifies how many characters are to be removed from the front of a field name to
produce the field label. The field name is defined by the NAME parameter. Value must
be an integer constant greater than or equal to zero and less than or equal to eight. If
PREFIX is omitted from the current BLSQMFLD macro, the value specified on the last

BLSQMFLD - Specifying a Control Block Format Field 2-47

preceding BLSQMFLD or BLSQMDEF macro is used. The BLSQMDEF macro used to
start a model definition may be used to set the value of PREFIX.

NOSPLIT
specifies that the dump formatter attempts to print all the field data on the same output
line. If the data does not fit on the current output line but fits on a single output line, the
dump formatter skips to a new line prior to printing this data field.

NUMDEC
specifies that the columns and rows of a two-dimensional array be numbered in decxmal
The default is hexadecimal.

NOCOLNM
specifies that column numbers (headers) of a two-dimensional array be suppressed. The
default is to number the columns. (The NUMDEC parameter controls the numbering
system used for numbering the columns.)

STRTCOL =value
specifies the left margin of the formatted output. Value indicates the number of blanks
before the first character. STRTCOL applies only to two-dimensional arrays. This
specification overrides the value defined by the STRTCOL keyword in the BLSQMDEF
macro, or by the host (IPCS, SNAP, or PRDMP), for the duration of displaying the
array. If not specified, a default of zero is provided and the formatter will use the value
specified by the host.

COLNUM =value
specifies the number of columns of a two dimensional array that are to be displayed as a
group. If not specified, or if the specified number of columns will not fit in the currently
available print buffer, the formatter will calculate a value consistent with, and not
exceeding, the maximum line length specified by IPCS, SNAP, or PRDMP.

COLSEP =value
specifies the number of blanks to be placed between the columns of a two-dimensional
array. The default is zero, and the formatter uses a calculated value.

ITEMSEP = vaiue
specifies the number of blanks to be placed between items within an array entry. An
array entry may be a structure, and each element of the structure is referred to as an
“item”. If the array entry is a single item, value will be ignored. If ITEMSEP is not
specified, a default of zero is provided and the formatter will use a calculated value when
needed.

ORDER=(1,2)

ORDER =(2,1)
specifies the order in which the data of a two-dimensional array are to be processed. If
ORDER =(1,2) is specified, the data is processed in consecutive rows. If ORDER =(2,1)
is specified, the data is processed in consecutive columns. The default is ORDER =(1,2).

HEXONLY
specifies that the data is to be displayed in hex only. If you omit HEXONLY, the data is
displayed in both hex and EBCDIC, on the same line, with vertical bars bounding the
EBCDIC portion of the display. HEXONLY is valid only if the view parameter specifies
X‘0400°, which requests a hexadecimal dump.

2-48 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format functional recovery routines (FRRs).

IEAVTRP3 CSECT
BLSQMDEF CBLEN=X'0320',MAINTLV=HBB2102,PREFIX=4,0FFSETS=PRINT,X
HEADER=FRRS
BLSQMFLD NAME=FRRSEMP,OFF=X'0000"',LEN=4,VIEW=X'0202"
BLSQMFLD NAME=FRRSLAST,OFF=X'0004"',LEN=4,VIEW=X'0202"'
BLSQMFLD NAME=FRRSELEN,OFF=X'0008',6LEN=4,VIEW=X'0202"
BLSQMFLD NAME=FRRSCURR,OFF=X'000C' ,LEN=4,VIEW=X'0200"
BLSQMFLD NAME=FRRSRSA,OFF=X'0010',LEN=24,VIEW=X'0200'
BLSQMFLD SHDR=RTM1WA,VIEW=X'0200',6 NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',6 NEWLINE
BLSQMFLD SHDR=ENTEXT,VIEW=X'0200',6 NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',6 NEWLINE
BLSQMFLD NAME=FRRSXSTK,VIEW=X'0200',ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSKM,OFF=X'0OOAQO',LEN=2,VIEW=X'0200',6 NEWLINE
BLSQMFLD NAME=FRRSSAS,OFF=X'00A2',LEN=2,VIEW=X'0200"'
BLSQMFLD NAME=FRRSAX,OFF=X'00A4',LEN=2,VIEW=X'0200"
BLSQMFLD NAME=FRRSPAS,OFF=X'00A6',LEN=2,VIEW=X'0200',6ARRAY=END
BLSQMFLD SHDR=BLANK,VIEW=X'0200', NEWLINE
BLSQMFLD SHDR=ENTS,VIEW=X'0200',NEWLINE
BLSQMFLD SHDR=BLANK,VIEW=X'0200',6 NEWLINE
BLSQMFLD NAME=FRRSENTS,VIEW=X'0200"',ARRAY=16,NOLABEL
BLSQMFLD NAME=FRRSFRRA,OFF=X'0120"',LEN=4,VIEW=X'0200' 6 NEWLINE
BLSQMFLD NAME=FRRSFLGS,OFF=X'0124',LEN=4,VIEW=X'0200"
BLSQMFLD NAME=FRRSPARM,OFF=X'0128',LEN=24,VIEW=X'0200", X
ARRAY=END
BLSQMDEF END
BLANK BLSQSHDR ' '
ENTEXT BLSQSHDR 'FRR ENTRY EXTENSIONS'

ENTS BLSQSHDR 'FRR ENTRIES'
RTM1WA BLSQSHDR 'RTM1 WORK AREA FOLLOWS FRR ENTRIES'
END

Example 2

Operation: Code the macro instructions that will establish a control block formatting model to
be used by the dump formatter to format a STAE control block (SCB).

IEAVTRP4 CSECT

BLSQMDEF CBLEN=X'0018',6MAINTLV=JBB2125,PREFIX=3,0FFSETS=PRINT, X
HEADER=SCB

BLSQMFLD NAME=SCBCHAIN,OFF=X'0000',LEN=4,VIEW=X'0200"'
BLSQMFLD NAME=SCBEXIT,OFF=X'0004',6LEN=4,VIEW=X'0200"
BLSQMFLD NAME=SCBFLGS1,0FF=X'0008',LEN=1,VIEW=X'0200'
BLSQMFLD NAME=SCBPARMA,OFF=X'0009',LEN=3,VIEW=X'0200"
BLSQMFLD NAME=SCBFLGS2,0FF=X'000C' ,LEN=1,VIEW=X'0200"'
BLSQMFLD NAME=SCBOWNRA,OFF=X'000D',LEN=3,VIEW=X'0200'
BLSQMFLD NAME=SCBFLGS3,0FF=X'0010"',LEN=1,VIEW=X'0200"
BLSQMFLD NAME=SCBPKEY,OFF=X'0011',6LEN=1,VIEW=X'0200"'
BLSOMFLD NAME=SCBID,OFF=X'0012"',LEN=1,VIEW=X'0200"'
BLSQMFLD NAME=SCBRSVRE,OFF=X'0013',LEN=1,VIEW=X'0200"'
BLSQMFLD NAME=SCBXPTR,OFF=X'0014',LEN=4,VIEW=X'0200"
BLSQMFLD NAME=* ,0FF=X'0000',LEN=X'0018',VIEW=X'0400"' , NOLABEL
BLSQMDEF END
End

BLSQMFLD - Specifying a Control Block Format Field 2-49

Example 3

Operation: Define the format of a very simple control block. Note that this could be done by
using a macro-invocation.

MYBLK

MYBLKAEC
MYBLKDEF
MYBLKDS80O
MYBLKD40
MYBLKGHI
MYBLKEND

DSECT , My simplest control block ever
DC C'ABC' Identifier

DC X'00' Flags

EQU X's80' 1st flag bit

EQU X'40° 2nd flag bit

DC V(MYENTRY) Address of my program

EQU * End of my control block

Define enough storage to get the block displayed. Note that no ENTRY
statement is required for access to CBMODEL1l from other CSECTs
since CBMODEL1 lies at the origin of the CSECT.

CBMODEL
CBMODEL1

TITLE ‘'CBMODELl1--Basic Control Block Model'!

CSECT , Start definition of simple model
BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5
BLSQMFLD NAME=MYBLKABC

BLSQMFLD NAME=MYBLKDEF

BLSQMFLD NAME=MYBLKGHI

BLSQMDEF END End definition of simple model

Add acronym checking, the display of the acronym in EBCDIC,
and descriptive header for the display in the dump.

CBMODEL2

TITLE 'CBMODEL2--More Elaborate Than 1lst Model'

ENTRY CBMODEL2 Permit access from other CSECTs

BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5, X
ACRONYM=ABC,ACROLBL=MYBLKABC, Acronym field data
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKABC,DTYPE=EBCDIC Show it as EBCDIC data

BLSQMFLD NAME=MYBLKDEF

BLSQMFLD NAME=MYBLKGHI

BLSQMDEF END End definition of alternate model

END CBMODEL1 End definition of formatting model

2-50 SPL: System Macros and Facilities Volume 2

Example 4

Operation: Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

001 00010001 00010002 00010003 00010004
002 00020001 00020002 00020003 00020004
003 00030001 00030002 00030003 00030004
004 00040001 00040002 00040003 00040004
005 00050001 00050002 00050003 00050004
006 00060001 00060002 00060003 00060004
007 00070001 00070002 00070003 00070004
008 00080001 00080002 00080003 00080004
009 00090001 00090002 00090003 00090004
010 00100001 00100002 00100003 00100004

Therefore, code the macro instruction that will create a formatting model to do the following:

Number rows 1 through 10.

Number columns 1 through 4.

Use the decimal numbering system for numbering rows and columns.
Place data in to the array row by row.

Put one blank between each column.

Display 4 columns in each group.

Start printing in the second column from the left margin.

View all non-reserved fields.

Print the field label ARRENTRY.

One way to code the macro:
BLSQMFLD NAME=ARRAYX,ARRAY=((1,10),(1,4)),VIEW=X'0200"', X

STRTCOL=1,COLSEP=1,COLNUM=4 ,NUMDEC ,NOLABEL
BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200"'

BLSQMFLD - Specifying a Control Block Format Field 2-51

Example 5

Operation: Assume the data is stored in this sequence:

00010001
00010002
00010003
00010004
00020001
00020002
00020003
00020004
00030001
00030002
00030003
00030004

00090001
00090002
00090003
00090004
00100001
00100002
00100003
00100004

And you want the data to be formatted as follows:

000 00010001 00020001 00030001 00040001 00050001
001 00010002 00020002 00030002 00040002 00050002
002 00010003 00020003 00030003 00040003 00050003
003 00010004 00020004 00030004 00040004 00050004

ARRENTRY ARRENTRY ARRENTRY ARRENTRY ARRENTRY

000 00060001 00070001 00080001 00090001 00100001
001 00060002 00070002 00080002 00090002 00100002
002 00060003 00070003 00080003 00090003 00100003
003 00060004 00070004 00080004 00090004 00100004

Therefore, code the macro instruction that will create a formatting model to do the following:

‘Number rows 0 through 3.

Number columns 5 through 14.

Use the hexadecimal numbering system for numbering rows and columns.
Put two blanks between each column.

Display 5 columns in each group.

Start printing in the fourth column from the left margin.

View all non-reserved fields.

Print the field label ARRENTRY.

One way to code the macro:
BLSQMFLD NAME=ARRAYX,ARRAY=((5,14),(0,3)),VIEW=X'0200", X

STRTCOL=3,COLSEP=2, COLNUM=5,NOLABEL ,ORDER=(2,1)
BLSQMFLD NAME=ARRENTRY,OFF=0,LEN=4,ARRAY=END,VIEW=X'0200"'

2-52 SPL: System Macros and Facilities Volume 2

. BLSQSHDR - Generate Model Subheader

The BLSQSHDR macro instruction lets you define a text string, called a subheader, and
associate it with a particular data field in a dump format. Whenever the dump occurs, the text
string appears in the dump as an aid in spotting the associated data field.

BLSQSHDR, with its text string, should be placed after the end of the format model definition.
You create a format model definition by coding two BLSQMDEF macros, one at the beginning
of the definition and another at the end. The BLSQMFLD macros, which define the data fields
of the format model, are included between these two BLSQMDEF macros. The SHDR fields
of the included BLSQMFLD macros reference text strings (subheaders) that you have placed
after the end of the model definition. The order of the macros is:

BLSQMDEF
BLSQMFLD

BLSQMFLD
BLSQMDEF
BLSQSHDR

Thus, each BLSQSHDR macro placed after the end of the model must have a label that can be
referenced by the BLSQMFLD macros within the model. The text string of the BLSQSHDR
macro is enclosed in single quotation marks. L(x) may also be coded if the length of the string
is different than the length of the enclosed text string.

The BLSQSHDR macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede BLSQSHDR.
BLSQSHDR
b One or more blanks must follow BLSQSHDR.
Lx) x: Length of subheader - if other than
length of actual text
‘text’ text: text of subheader

BLSQSHDR - Generate Model Subheader 2-53

L(x)
specifies the length of the subheader. Only necessary if the length is to be different from
the length of the enclosed text string.

Example

SHDRO1 BLSQSHDR 'This is a subheader'

SHDRO2 BLSQSHDR L(6)' '

2-54 SPL: System Macros and Facilities Volume 2

BLSRESSY - Map IPCS Symbol Table Record

Example

The BLSRESSY macro instruction maps the symbol table record that a user-written exit
routine (operating under IPCS) passes to the get symbol and equate symbol services.

With the BLSRESSY macro instruction, users of the get symbol and equate symbol services can
retrieve definitions described in the IPCS symbol table and create definitions for later use by the
IPCS user or by other routines. For information about the get symbol and equate symbol
services, see MVS/XA Interactive Problem Control System User's Guide and Reference.

The BLSRESSY macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede BLSRESSY.
BLSRESSY
b One or more blanks must follow BLSRESSY.
DSECT =YES Default: DSECT =YES
DSECT=NO

NOTE: Users must supply a label (name), and start it in column 1 of the BLSRESSY macro
instruction. When the BLSRESSY macro is executed, the label becomes the record name and
the prefix to the name of each field in the record.

The parameters are explained as followed:
DSECT =YES
DSECT =NO

specifies whether the record mapped by BLSRESSY is to be mapped as a DSECT (YES)
or not (NO).

Operation: Map the IPCS symbol table record but not as a DSECT.

ESSY BLSRESSY DSECT=NO

BLSRESSY - Map IPCS Symbol Table Record 2-55

CALLDISP - Force Dispatcher Entry

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of this
macro instruction.

The CALLDISP macro instruction expands into an SVC or branch that results in the caller’s
status being saved in the current TCB/RB and then the dispatcher is entered. The dispatcher
then searches for the highest priority ready work to dispatch. When this task is redispatched,
control is returned to the next sequential instruction.

When control returns to the caller:

® The cross memory mode is unchanged.

e Registers 14-1 are destroyed if FIXED =NO is specified; otherwise registers are unchanged.
e No locks are held.

e Control returns enabled.

e PCLINK status is saved and restored.

The CALLDISP macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CALLDISP.
CALLDISP
b One or more blanks must follow CALLDISP.
BRANCH=NO Default: BRANCH =NO
BRANCH=YES
,JFIXED =YES Default: (Available only if BRANCH=YES is coded)
LJFIXED=NO FIXED = YES
,JFRRSTK =SAVE Default: (Available only if BRANCH =YES is coded)
,FRRSTK =NOSAVE FRRSTK =NOSAVE

2-56 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

BRANCH=NO

BRANCH =YES
specifies whether the branch entry (BRANCH =YES) or the SVC entry
(BRANCH =NO)to the dispatcher is to be used. BRANCH =YES is restricted to key 0
supervisor state callers. The default is BRANCH=NO. Routines that are unlocked,
have no enabled unlocked task FRRs on the stack, and are in home mode can use
BRANCH=NO. “Using the BRANCH =YES Option of the CALLDISP Macro
Instruction” in Volume 1 lists requirements for routines that use BRANCH=YES.

L,FIXED =YES

JFIXED=NO
specifies that the code invoking branch entry CALLDISP is in fixed storage
(FIXED =YES) or in pageable storage (FIXED =NO). For FIXED =NO, registers 14-1
are altered.

JRRSTK =SAVE

JRRSTK =NOSAVE
specifies that the current FRR stack be saved and restored (FRRSTK =SAVE), if at least
one of the FRRs is an enabled unlocked task (EUT) FRR, or not saved
(FRRSTK =NOSAVE).

When FRRSTK =SAVE is specified:
o The caller must not hold any locks or an abend results.

Note: For MVS/System Product Version 2 Release 1.3 Vector Facility Enhancement
or MVS/System Product Version 2 Release 1.3 Availability Enhancement and later
releases:

— If any EUT FRRs exist, the current FRR stack is saved and the caller may hold
either the LOCAL or CML lock. CALLDISP releases the lock before going to
the dispatcher.

— If no EUT FRR exists, the caller cannot hold any locks. Otherwise, an abend
occurs.

e Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs have
been deleted.

For more information, see “Suspension and Resumption of Request Blocks” in Volume 1
for an explanation of the CALLDISP function used with SUSPEND/RESUME
processing.

Specifying FRRSTK =NOSAVE causes the FRR stack to be purged and the LOCAL or
CML lock to be released before entering the dispatcher.

Note: 1If there are any EUT FRRs on the stack, the SVC interface to CALLDISP cannot be
used; the BRANCH =YES option must be used.

CALLDISP - Force Dispatcher Entry 2-57

Example 1

Operation: Pass control to another ready task.

CALLDISP

Example 2

Operation: A non-page-fixed task with an enabled, unlocked task FRR gives control to the
dispatcher. When the task regains control, the contents of registers 14, 15, 0 and 1 will have
changed.

CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

2-58 spL: Systém Macros and Facilities Volume 2

CALLRTM - Call Recovery Termination Manager

The CALLRTM macro instruction is usually used to direct the services of the recovery
termination manager to a task or address space other than itself or its caller. The recovery
termination manager selects the appropriate recovery or termination process according to the
status of the system and the requests of its invokers.

Only key zero supervisor state routines can use CALLRTM. If the current address space is
terminated (MEMTERM), control might or might not return to the caller before the
MEMTERM takes effect. See “Invoking the Recovery Termination Manager” in Volume 1 for
the complete recovery termination interface.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

The CALLRTM macro instruction is written as follows:

name name. symbol. Begin name in column 1.
b One or more blanks must precede CALLRTM.
CALLRTM
b One or more blanks must follow CALLRTM.

TYPE=ABTERM
TYPE=MEMTERM

,COMPCOD = comp code comp code: symbol, decimal digit, or register (2) - (12).

,REASON = code code: a symbol, decimal or hexadecimal number, or register (2) - (12).
LASID = asid asid: decimal digits 0-32,765 or register (2) - (15).
,TCB=tch addr teb addr: 0, or register (2) - (12).

Note: This parameter may only be specified with TYPE = ABTERM.
,DUMP=YES Default: DUMP=YES
,DUMP=NO Note: This parameter may only be specified with TYPE=ABTERM.
STEP=NO Default: STEP =NO
STEP=YES Note: This parameter may only be specified with TYPE=ABTERM.
,DUMPOPT = parm list addr parm list addr: register (3)-(15).

CALLRTM - Call Recovery Termination Manager 2-59

2-60

The parameters are explained as follows:

TYPE =ABTERM
TYPE = MEMTERM

specifies whether the services of the recovery termination manager are being directed
towards task termination (ABTERM) or address space termination (MEMTERM). For
MEMTERM, all recovery processing in the address space is skipped.

Unless ASID is also specified, TYPE=ABTERM is supported in home mode only. In a
cross memory environment, if ASID is not specified, the TCB must reside in the home
address space; if ASID is specified, the TCB must be in the same address space as the
ASCB. :

,COMPCOD = compcode

specifies the system completion code associated with the abnormal termination. This
parameter can be specified as a hexadecimal code (x‘80A”), a decimal code (2058), or a
register containing a hexadecimal code; in all cases, the result is hexadecimal.

,REASON = code

specifies additional information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is any 32-bit hexadecimal
number or 31-bit decimal number. In all cases the result is hexadecimal.

If the reason code is explicitly specified using the REASON parameter, the hexadecimal
representation of the code is passed to RTM in register 6 and a flag (X‘04’) is set in byte
0 in general register 1. If the REASON code is not specified, this flag is set to 0.

The reason code value is passed to recovery exits in the SDWACRC field of the SDWA.
This value can be altered by the SETRP macro instruction. If altered, the altered value is
sent to the next recovery exit. ‘

LASID = asid

specifies the address space identifier of the address space to be terminated (for
MEMTERM) or the address space identifier of the address space containing the TCB of
the task to be terminated (for ABTERM). If you omit this parameter or specify zero, the
current address space is assumed. If you specify this parameter, you must supply an
18-word work area and pass its address in register 13.

Note: The contents of register 2 is destroyed if this parameter is used.

»TCB = tch addr

specifies the TCB address of the task to be terminated. In a cross memory environment,
if ASID is not specified, the TCB must reside in the home address space; if ASID is
specified, the TCB must be in the same address space as the ASCB.

Note: The TCB resides in storage below 16 megabytes.

,DUMP=YES
,DUMP=NO

specifies that a dump is (YES) or is not (NO) to be taken. If the DUMPOPT parameter
is not also specified, the contents of the dump are defined by the //SYSABEND,
//ISYSMDUMP, or //SYS/UDUMP DD statement and the system or user-defined defaults.

SPL: System Macros and Facilities Volume 2

Example 1

Example 2

STEP=NO
STEP=YES
specifies that the entire job step is (YES) or is not (NO) to be abnormally terminated.

,LDUMPOPT = parm list addr
specifies the address of a parameter list valid for the SNAP macro instruction. The
parameter list is used to produce a tailored dump, and can be created using the list form
of the SNAP macro instruction, or a compatible list can be created. The system dump
options specified by the CHNGDUMP operator command can add to or override this
parameter list. All recovery routines entered for the failure can also add to the list of
dump options. The TCB, DCB, and STRHDR options available on SNAP are ignored if
they appear in the parameter list; the TCB used is for the task that received the ABEND
and the DCB used is provided by the ABDUMP routine. If a //SYSABEND,
//SYSMDUMP, or //SYSUDUMP DD statement is not provided, the DUMPOPT
parameter is ignored.

Note: The contents of register 3 is destroyed if this parameter is used.

Register 15 contains one of the following return codes for TYPE=MEMTERM only:

Hexadecimal
Code Meaning
0 The MEMTERM request was processed successfully.
4 MEMTERM processing was not performed. The address space was marked as not suitable for

MEMTERM processing. RTM writes an entry to SYSI.LOGREC if it rejected the
MEMTERM request due to a damaged ASCB, if the address space must not be terminated, or
if ASID exceeds ASVTMAX.

Operation: Terminate the current address space with a completion code of 123.

CALLRTM TYPE=MEMTERM, COMPCOD=123,ASID=0

Operation: Schedule the TCB whose address is specified in register 8 for abnormal termination.
The abnormal termination of this TCB takes place in the address space identified by the ASID
specified in register 5, and has a completion code of 123.

CALLRTM TYPE=ABTERM, COMPCOD=123,ASID=(5),TCB=(8)

CALLRTM - Call Recovery Termination Manager 2-61

| CBPZDIAG - Build Diagnostic Stack Entry

The CBPZDIAG macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZDIAG macro builds a diagnostic stack entry. The diagnostic stack entry contains
debugging information that is placed in the system diagnostic work area (SDWA) if an ABEND
occurs in the UIM. The diagnostic stack entry is contained within the UIM.

Note: A UIM must not establish an ESTAE to provide diagnostic information in the event that it
ABENDs. Rather, it must:

1. Specify the diagnostic information in a diagnostic stack entry, using the CBPZDIAG macro.
2. Use the CBPZPPDS macro to put the entry on the diagnostic stack in its entry logic.

3. Use the CBPZPPDS macro to remove the entry from the diagnostic stack in its exit logic.
The ESTAE routine in the control routine for the MVS configuration program (CBPMVSCP)
uses the information in the active diagnostic stack entry to fill in the SDWA. Also, the ESTAE
routine builds a symptom string in the variable recording area (VRA) consisting of all the

CSECT names in the entries on the diagnostic stack.

The CBPZDIAG macro is written as follows:

name name: symbol. Begin name in column 1.

b . One or more blanks must precede CBPZDIAG.
CBPZDIAG

b One or more blanks must follow CBPZDIAG.
MODNAME = modname modname: CBPUCnnn

n is a decimal digit.

CSECT = csectname csectname: CBPUCnnn
' n is a decimal digit.

COMP=id id: component identifier, 5 byteslong.
DESC = text text: character string in quotes.

VRADATA = label label: symbolic label

,RELATED = value value. any valid macro keyword specification.

2-62 SPL: System Macros and Facilities Volume 2

name
specifies the label on the diagnostic stack entry. The labels on the fields generated in the
diagnostic stack entry will start with the same characters as name does. (If name exceeds
four characters, only the first four characters will be used in building the labels on the
generated fields.) This name is required.

MODNAME = modname
specifies the name of the load module that contains the diagnostic stack entry. If an
ABEND occurs, this value will be placed in SDWA field SDWAMODN. The module
name is eight characters long and is in the form of CBPUCnnn, where nnn is a decimal
number from 001 to 256, inclusive, for customer-written UIMs. This parameter is
required.

CSECT = csectname
specifies the name of the CSECT that contains the diagnostic stack entry. If an ABEND
occurs, this value will be placed in SDWA field SDWACSCT. This parameter is optional.
The default for this parameter is the assembler symbol, &SYSECT.

COMP =id
specifies the component identifier of the UIM. If an ABEND occurs, this value will be
placed in SDWA field SDWACID. The component identifier should be five bytes long.
This parameter is required.

DESC = text
specifies the UIM description, which should contain the unit names of the device(s) that
the UIM supports. If an ABEND occurs, this value will be placed in SDWA field
SDWASC. The UIM description can be a maximum of 23 bytes long. This parameter is
required.

VRADATA = label
specifies the name of an array that contains the addresses of data to be placed in the
VRA, if an ABEND occurs. The array contains the VRA keys and data lengths, in
addition to the data addresses. This parameter is optional. If it is not specified, no
specific control blocks or data areas for the UIM will be placed in the VRA. (On
IODEVICE calls, the diagnostic stack entry for CBPICBBR, which is the routine that
invokes UIMs on IODEVICE calls, causes the IODV to be placed in the VRA.)

Each entry in the VRA array contains eight bytes. The format of an entry is as follows:

Offset Length Function
0 2 Reserved, must be set to zero in all but the last entry in the array.
2 1 Key of VRA data, as specified in IHAVRA.
3 1 Length of VRA data.
4 4 Address of VRA data. If this field is set to zero, the ESTAE routine will skip

this entry when moving data into the VRA. UIMs are permitted to
dynamically update this field while the diagnostic entry is on the diagnostic
stack.

The last entry in the VRA array must be set to X'FFFFFFFFFFFFFFFF’.

CBPZDIAG - Build Diagnostic Stack Entry 2-63

SRELATED = value
specifies information used to self-document macro instructions by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-64 SPL: System Macros and Facilities Volume 2

| CBPZLOG - Log an MVS Configuration Program Message

The CBPZLOG macro can be used only in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZLOG macro is used to issue a message to the MVS configuration program log file. A
UIM must have addressability to the CPVT when it issues the CBPZLOG macro. It must also
invoke the CBPZLOGR mapping macro. (CBPZLOGR maps the parameter list that is built by
the CBPZLOG macro.)

The CBPZLOG macro is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede CBPZLOG.

CBPZLOG

b One or more blanks must follow CBPZLOG.

MID=id id: CBPnnnl. n is a decimal digit.
,SEV =value value: LOGRINFO, LOGRWARN, LOGRERR, or LOGRTERM.
STMT=ITRHSNBR must be coded as shown.

,TEXT = label label: symbolic label.

name

specifies the label to be generated on the first instruction in the macro expansion. The
name is optional.

MID =id
specifies the message identifier. The message identifier is seven characters long and is in
the form of CBPnnnl, where nnn is a decimal number from 900 to 999 inclusive for
user-written UIMs. This parameter is required.

SEV =value »
specifies the message severity. The following severities are supported:

LOGRINFO
informational message. This message has no effect on MVS configuration
processing or its return code.

CBPZLOG - Log an MVS Configuration Program Message 2-65

LOGRWARN
warning message. This message has no effect on MVS configuration program
processing but will cause a return code of 4 to be issued (unless a higher severity
message is issued.)

LOGRERR
error message. This message will prevent the MVS configuration program from
building any I/O configuration members, and will cause a return code of 8 to be
issued (unless a higher severity message is issued.)

LOGRTERM
~ terminating message. This message causes the MVS configuration program to
terminate its processing and issue a retum code of 16. A UIM must never issue a
terminating’ message.

This parameter, which is optional, defaults to LOGRERR.

| Note The equates LOGRINFO LOGRWARN, LOGRERR and LOGRTERM are
generated by the CBPZLOGR macro.

STMT =ITRHSNBR 4 o
specifies the number of the statement in the MVS configuration program input stream
that the message refers to. Field ITRHSNBR in the internal text record header (mapped
by CBPZITRH) contains the statement number. This parameter is optional. If it is
omitted, no statement number will be associated with the message.

TEXT =label
specifies the label of the message text. This text contains up to 255 bytes of data. The
length of the text is determined by the length attribute of this field. This parameter is
required.

Note: The message service will compress multiple blanks in the text and will split the text
across multiple lines if necessary.

: 2_1-66 SPL:;‘System Macros and Fgci_lities,Vol}lme 2

| CBPZPPDS - Push/Pop Diagnostic Stack Entry

The CBPZPPDS macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. See SPL: System Modifications for a complete description of coding a UIM.

The CBPZPPDS macro is used to push an entry on (put an entry on) or pop an entry from
(remove an entry from) the diagnostic stack. A UIM must have addressability to the CPVT
when it issues the CBPZPPDS macro. It must also invoke the CBPZDIAG macro to build the
diagnostic stack entry that is to be pushed on or popped from the diagnostic stack.

The CBPZPPDS macro is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CBPZPPDS.
CBPZPPDS
b One or more blanks must follow CBPZPPDS.
PUSH
POP
DIAG =label label: symbolic label.

,RELATED = value value: any valid macro keyword specification.
name

specifies the name on the first instruction in the macro expansion. The name is optional.

PUSH
specifies that the designated diagnostic entry is to be put on the diagnostic stack. Either
PUSH or POP must be specified.

POP
specifies that the designated diagnostic entry is to be removed from the diagnostic stack.
Either PUSH or POP must be specified. '

DIAG = label

identifies the diagnostic entry. This name must be specified on the label field of the
CBPZDIAG macro invocation.

CBPZPPDS - Push/Pop Diagnostic Stack Entry ~ 2-67

,RELATED =value
specifies information used to self-document macro instructions by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

See the CBPZDIAG macro description for more information about diagnostic entries.

\

y
2-68 SPL: System Macros and Facilities Volume 2

CHANGKEY - Change Virtual Storage Protection Key

The CHANGKEY macro instruction changes the protection key and fetch protection status of
one or more pages of virtual storage. The CHANGKEY function is available only for use by
system components that execute in supervisor state and key zero. Callers can be enabled or
disabled and cannot hold any lock that would prevent RSM from obtaining any RSM lock.

The CHANGKEY function is valid for virtual storage obtained by GETMAIN in page
multiples from problem program subpools. Callers must provide an 18-word save area and
place the address of the save area in register 13. If the caller is disabled, the save area must be

in fixed storage.

The CHANGKEY macro instruction is written as follows:

name
b
CHANGKEY
b

name: symbol. Begin name in column 1.

One or more blanks must precede CHANGKEY.

One or more blanks must follow CHANGKEY.

R,BA =page addr,EA =page addr
L,LISTAD =list addr

JKEY =stor key

,BRANCH=YES

page addr: A-type address or register (1) - (12).

Note: The R-type macro expansion alters the contents of register 2. EA
should not be specified as (1).

list addr: A-type address or register (1) - (12).

stor key: Decimal digit 1-15 or register (0) or register (3) - (12).

Required.

The parameters are explained as follows:

R,BA = page addr
EA =page addr
L,LISTAD = [ist addr

specifies the type of CHANGKEY request:

R indicates a request to change the key of a single area of virtual

storage.

L indicates a request to change the key of one or more areas of virtual

storage.

BA specifies the address of the first byte of the first page of the
© virtual storage area whose key is to be changed.

EA specifies the address of the first byte of the last page of the
virtual storage area whose key is to be changed.

CHANGKEY - Change Virtual Storage Protection Key 2-69

Notes:
1. BA<EA

2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the addressing
mode of the issuer of the macro. :

LISTAD specifies the address of the first double-word of a variable length parameter list
in fixed storage. The first word of each element is defined as BA above and the second
word of each element as EA above. If the high-order bit of the second word is one that
element is the last element in the parameter list.

JKEY =stor key
specifies the new storage key and fetch protection status for the virtual storage areas
specified. If the stor key specification is a decimal digit, then the supervisor assumes the
user wants fetch protection. If the user does not want fetch protection, he should specify
the protection key he wants in bits 24-27 of a register and leave bit 28 at zero to indicate
that he doesn’t want fetch protection.

,BRANCH = YES
The only entry available into the CHANGKEY service routine is branch entry.

Note: The requestor must have addressability to the CVT.

Upon completion of the CHANGKEY macro instruction, register 15 contains a zero return
code. If a caller requested that the key be changed to key 0, the caller is abended with a code

X08F°.
Example 1
Operation: Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.
CHANGKEY R,BA=(REG5),EA=(REG5) ,KEY=8,BRANCH=YES
Example 2

Operation: Change the storage key and ensure fetch protection of two noncontiguous pages of
virtual storage addressed by PAGE1 and PAGE2 respectively.

CHANGKEY L,LISTAD=PLIST,KEY=10,BRANCH=YES

PLIST DC 2A(PAGE1l) FIRST ELEMENT IN LIST
DC A(PAGE2) BA PART OF SECOND ELEMENT
DC AL1(X'80') INDICATES LAST ELEMENT IN LIST

DC AL3(PAGE2) EA PART OF SECOND ELEMENT

2-70 SPL: System Macros and Facilities Volume 2

CIRB - Create Interruption Request Block

The CIRB macro instruction causes a supervisor routine (called the exit effector routine) to
create an interruption request block (IRB). In addition, other parameters of this macro
instruction may specify the building of a register save area and/or a work area to contain
interruption queue elements, which are used by supervisor routines in scheduling the execution
of user exit routines.

Branch Entry Interface
For BRANCH =YES, the branch entry interface is as follows:

e The caller must be in supervisor state, key zero, and own the LOCAL lock and no locks
above the SALLOC lock in the locking hierarchy.

e The caller must pass a TCB address in register 4 to be used by GETMAIN when allocating
space for the IRB and for the problem program save area. Also, if a problem key is
specified in the KEY = parameter of the CIRB, the TCBPKF field of that TCB is used.

o The caller must include the CVT mapping macro.

e Upon return, register 1 contains the address of the created IRB, registers 0, and 2-14 are
unchanged, and register 15 is unpredictable.

e Control is returned in supervisor state, key zero, with the same locks held as on entry.

Note: The IRB address is returned in register 1.

CIRB - Create Interruption Request Block 2-71

The CIRB macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CIRB.
CIRB
b One or more blanks must follow CIRB.
EP=entry point addr entry point addr: RX-type address, or register (0) or (2) - (12).
,LKEY =PP Default: KEY = PP
,JKEY =SUPR
,MODE =PP Default: MODE = PP
,MODE =SUPR
,SVAREA =NO Default: SVAREA =NO
,SVAREA =YES
,RETIQE =YES Default: RETIQE = YES
,RETIQE=NO
,STAB=(DYN)
,WKAREA =workarea size workarea size: Decimal digit, or register (2) - (12).
Default: zero
,BRANCH=NO Default: BRANCH = NO
,BRANCH =YES
,RETRN =NO Default: RETRN =NO
,RETRN =YES Note: This parameter has meaning only if RETIQE =NO is specified above.
,AMODE = CALLER Default: AMODE = CALLER

,LAMODE =DEFINED

The parameters are explained as follows:

EP =entry point addr
specifies the address of the entry point of the user’s asynchronous exit routine.

LKEY =PP

JKEY =SUPR
specifies whether the asynchronous exit routine operates with a key of zero (SUPR) or
with a key obtained from the TCB of the task issuing the CIRB macro instruction (PP).

,MODE =PP

,MODE =SUPR
specifies whether the asynchronous exit routine executes in problem program (PP) or
supervisor (SUPR) mode.

2-72 SPL: System Macros and Facilities Volume 2

WSYAREA=NO

,SYAREA =YES
specifies whether to obtain a 72-byte register save area from the virtual storage assigned
to the problem program. If a save area is requested, CIRB places the save area address in
the IRB. The address of this area is passed to the user routine via register 13.

,RETIQE =YES

,RETIQE=NO
specifies whether the associated queue elements are request queue elements (YES) or
interruption queue elements (NO).

,STAB=(DYN)
specifies that the IRB (including the work area) is to be freed by EXIT.

Note: 1f the STAB parameter is omitted from the CIRB macro instruction, the IRB
remains available for later use by the task issuing the macro.

,WKAREA = workarea size
specifies the size, in doublewords, of the work area to be included in the IRB. The area
may be used to build IQEs. The first four bytes of the work area that is obtained
contains the address of the next available IQE (RBNEXAYV field). The maximum size is
255 double words.

,BRANCH=NO
,JBRANCH=YES
specifies that branch linkage (YES) or SVC linkage (NO) to CIRB will be provided.

,RETRN=NO

,RETRN =YES
specifies that the IQE is (YES) or is not (NO) returned to the available queue when the
asynchronous exit terminates.

,2AMODE = CALLER
,AMODE =DEFINED
specifies the addressing mode in which the exit routine is to be given control.

If CALLER is specified, the exit routine receives control in the same addressing mode as
the caller.

If DEFINED is specified, the addressing mode of the exit routine is pointer defined. This
means that the addressing mode is determined by the setting of the high order bit of the
entry point address for the exit routine. If the bit is set, the addressing mode is 31-bit; if
the bit is not set, the addressing mode is 24-bit.

CIRB - Create Interruption Request Block 2-73

Example 1

Operation: Create an IRB to be used in scheduling an asynchronous exit. The exit is scheduled
via the IQE interface to stage 2 exit effector, and receives control in the supervisor state. The
IRB is to be freed when it terminates. The exit receives control at the IQERTN label.

CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=(DYN),BRANCH=NO
Example 2 " ‘ E

Operation: Create an IRB to be used in scheduling an asynchronous exit. The RQE interface
to stage 2 exit effector is used to schedule the routine. The exit gets control at the RQETEST
label.

CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=(DYN),BRANCH=NO

2-74 SPL: System Macros and Facilities Volume 2

CPOOL - Perform Cell Pool Services

The CPOOL macro instruction creates a cell pool, obtains or returns a cell to the cell pool, or
deletes the previously built cell pool, according to the function requested.

The CPOOL macro instruction is also described in Supervisor Services and Macro Instructions
with the exception of the KEY, TCB, and LINKAGE =BRANCH parameters.

LINKAGE =BRANCH can be used only by callers in supervisor state and key 0. TCB and
KEY can be used only by supervisor state, key 0-7, or APF-authorized callers. Problem
programs cannot create cell pools in subpools greater than 127. In order to create a cell pool in
a subpool greater than 127, the user must be in system key, supervisor state, or be
APF-authorized. On entry to this macro, users who specify the parameters: BUILD, DELETE,
or REGS=SAVE must pass the address of a 72-byte save area in register 13.

The caller’s secondary ASID is preserved when a PC instruction is issued; however, the caller
cannot be in secondary addressing mode when issuing this macro instruction.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

CPOOL - Perform Cell Pool Services 2-75

The CPOOL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD
GET
FREE
DELETE
,UNCOND Default: UNCOND
,U Note: This parameter can be specified only with the
,COND GET keyword.
,C

JLPCELLCT =primary cell count
LSCELLCT =secondary cell count
,CSIZE = cell size

,SP = subpool number

,LOC=BELOW
,LOC=(BELOW,ANY)
JLOC=ANY
,LOC=RES
,LOC=(RES,ANY)

,CPID =pool id

,CELL =cell addr

JKEY =key number

,TCB=tcb addr

JHDR = hdr

LJLINKAGE =SYSTEM
,LINKAGE =BRANCH
,REGS=8SAVE
,REGS=USE

cell count: symbol, decimal digit, or register (0), (2) - (12).
Note: This parameter can be specified only with the BUILD keyword.

Default: PCELLCT
Note: This parameter can be specified only with the BUILD keyword.

cell size: symbol, decimal digit, or register (0), (2) - (12).

Note: This parameter can be specified only with the BUILD keyword.
subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP=0

Note: This parameter can be specified only with the BUILD keyword.

Default: LOC=RES
Note: This parameter can be specified only with the BUILD keyword.

pool id: RX-type address or register (0), (2) - (12).
Note: This parameter must be specified with the GET, FREE, and DELETE
keywords but is optional with the BUILD keyword.

cell addr: RX-type address or register (0), (2) - (12).

Note: This parameter is required with the FREE keyword, is optional with the
GET keyword, and cannot be specified with the BUILD and DELETE keywords.
key number: decimal digits 0-15 or register (0), (2) - (12).

Note: This parameter can be specified only with the BUILD keyword.

teh addr: RX-type address or register (0), (2) - (12).

Default: TCB address in PSATOLD.

Note: This parameter can be specified only with the BUILD keyword.

hdr: character string enclosed in single quotes, RX-type address, or register (0), (2)
-(12).

Default: ‘CPOOL CELL POOL’

Note: This parameter can be specified only with the BUILD keyword.™.

Default: LINKAGE =SYSTEM
Note: This parameter cannot be specified with FREE or GET conditionally.

Default: REGS =SAVE
Note: This parameter can be specified only with the GET or FREE keywords.

2-76 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

BUILD
GET
FREE
DELETE
specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocaﬁng storage and chaining the
cells together.

GET attempts to obtain a cell from the previously built cell pool. This request can be
conditional or unconditional as described under the UNCOND/COND keyword.

FREE returns ﬁ cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial extent, all
secondary extents, and all pool control blocks.

,UNCON

U '

,COND

,C
when used with GET specifies whether the request for a cell is conditional or
unconditional. If COND or C is specified and the cell pool is empty, the CPOOL service
routine returns to the caller without a cell and places a zero in the cell address. If
UNCOND or U is specified and the cell pool is empty, the CPOOL service routine
extends the pool in order to obtain a cell for the caller.

,LPCELLCT =primary cell count
specifies the number of cells expected to be needed in the initial extent of the cell pool.
The CPOOL service module uses PCELLCT and cell size (CSIZE) to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

SCELLCT = secondary cell count
specifies the number of cells expected to be in each secondary or non-initial extent of the
cell pool. The CPOOL service routine uses SCELLCT and CSIZE to determine the
optimum number of cells to provide in order to make effective use of virtual and real
storage.

,CSIZE = cell size
specifies the number of bytes in each cell of the cell pool. If CSIZE is a muitiple of 8, the
cell resides on doubleword boundaries. If CSIZE is a multiple of 4, the cell resides on
word boundaries. The minimum value of CSIZE is 4 bytes.

sSSP = subpool number

specifies the subpool from which the cell pool is to be obtained. If a register or variable is
specified, the subpool number is taken from bits 24-31.

CPOOL - Perform Cell Pool Services 2-77

,LOC=BELOW

,LOC =(BELOW,ANY)

,LOC=ANY

,LOC=(ANY,ANY)

,LOC=RES

,JLOC =(RES,ANY)
specifies the location of virtual storage and real storage for the cell pool. This is helpful
for users with 24-bit dependencies. The location of real storage specified in this
parameter is the location of the storage after it is fixed, either by definition or by
PGFIX, PGFIXA, or PGSER. The specification of the LOC parameter, which applies to
the location of real storage, is only guaranteed when the area is fixed. '

LOC=BELOW indicates that virtual and real storage are to be allocated below 16
megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be allocated below 16
megabytes and real storage can be anywhere.

LOC=ANY and LOC=(ANY,ANY) indicate that both virtual and real storage can be
located anywhere.

LOC=RES indicates that the location of virtual and real storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual and real
storage are allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual
and real storage can be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends on the location
of the issuer of the macro. If the issuer resides below 16 megabytes, virtual storage is
allocated below 16 megabytes; if the issuer resides above 16 megabytes, virtual storage is
allocated anywhere. Real storage can be located anywhere.

Note: Callers executing in 24-bit addressing mode could perform services for cell pools
located in storage above 16 megabytes by specifying LOC=ANY or LOC=(ANY,ANY).

,CPID = pool id ~
specifies the address or register containing the cell pool identifier that is returned to the
caller after the pool is created using CPOOL BUILD. The issuer must specify CPID on
all subsequent CPOOL requests containing the keywords GET, FREE, or DELETE.

,CELL = cell addr
specifies the address or register where the cell address is returned to the user by a GET or
a FREE request.

JKEY =key number
specifies the key in which storage is to be obtained. If a register is specified, the key is
taken from bits 28-31. This parameter is valid for subpools 227, 228, 229, 230, 231, and
241.

sTCB = tch addr

specifies the TCB address for task related storage requests. The TCB must be within the
currently addressable address space. If the caller specifies zero as the TCB address, the

2-78 SPL: System Macros and Facilities Volume 2

Example 1

CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL request is
for private area storage and the caller does not specify TCB, the default is the TCB
address in PSATOLD.

Note: The TCB resides in storage below 16 megabytes.

,HDR = hdr
specifies a 24-byte header, which is placed in the header of each initial and secondary
extent. The header can contain user-supplied information that would be useful in a
dump.

,LINKAGE =SYSTEM

,LINKAGE =BRANCH
specifies the type of linkage used in CPOOL processing. LINKAGE =SYSTEM indicates
that the linkage is via a PC instruction, LINKAGE =BRANCH indicates branch entry.
For BUILD and DELETE this processing is between the caller and CPOOL processing;
for GET UNCOND, the linkage is within CPOOL processing (that is, between the
modules IGVCPOOL and IGVCPEXT).

,REGS =SAVE
,REGS =USE
indicates whether or not registers 2-12 are to be saved. If REGS=SAVE is specified, the

registers are saved in a 72-byte user-supplied save area pointed to by register 13. If
REGS = USE is specified, the registers are not saved.

Notes:

1. 'If GET U,LINKAGE=SYSTEM,REGS = USE is specified, the secondary ASID will not be
preserved. In all other cases the secondary ASID is unchanged.

2. A program in secondary mode cannot use LINKAGE=SYSTEM.

The contents of the registers on return from this macro depends on the parameters specified.

Register(s) Comment
0 ‘ Contains the cell pool identification
1 Contains the address of the cell that was obtained if GET unconditional was specified; contains zero

if GET conditional was specified and fails

2-12 Saved for BUILD and DELETE requests or if REGS =SAVE is specified
5-13 Saved if GET conditional or FREE is specified with REGS = USE
13 Saved if GET unconditional and REGS = USE is specified or if BUILD or DELETE is specified

with either LINKAGE =SYSTEM or LINKAGE =BRANCH

Operation: Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent an_d 20 cells in all subsequent extents of the cell pool.

CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=2

CPOOL - Perform Cell Pool Services 2-79

Example 2

Operation: Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.

CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM
Example 3

Operation: - Free a cell specifying the pool ID in register 2 and the cell address in register 3.

CPOOL FREE,CPID=(2),CELL=(3)
Example 4

Operation: Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage.

CPOOL DELETE,CPID=(2) ,LINKAGE=SYSTEM

2-80 SPL: System Macros and Facilities Volume 2

CPOOL (List Form)

The list form of the CPOOL macro instruction builds a non-executable parameter list that can
be referred to by the execute form of the CPOOL macro.

The list form of the CPOOL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD

,LPCELLCT =primary cell count

,SCELLCT = secondary cell count
,CSIZE = cell size

,SP = subpool number

,LOC=BELOW
,LOC =(BELOW,ANY)
LOC=ANY
,LOC=RES
,LOC=(RES,ANY)

,CPID =pool id
,JKEY = key number
,YCB=1tch addr

,JHDR = hdr
JMF=L

cell count: symbol, decimal.
Note: PCELLCT must be specified on either the list or the execute form
of the macro.

Default: PCELLCT

cell size: symbol, decimal digit.
Note: CSIZE must be specified on either the list or the execute form of the
macro.

subpool number: symbol, decimal digit.
Default: SP=0

Default: LOC=RES

pool id: A-type address.
key number: decimal digits 0 - 15.

tch addr: A-type address or register.
Default: TCB address in PSATOLD.

hdr: character string enclosed in single quotes, A-type address.

The parameters are explained under the standard form of the CPOOL macro instruction with

the following exception:

JMF=L

specifies the list form of the CPOOL macro instruction.

CPOOL (List Form) 2-81

CPOOL (Execute Form)

The execute form of the CPOOL macro instruction is written as follows:

4

name name: symbol. Begin name in column 1.
b ~ One or more blanks must precede CPOOL.
CPOOL
b One or more blanks must follow CPOOL.
BUILD
LPCELLCT =primary cell count cell count: symbol, decimal digit, or register (0), (2) - (12).

Note: PCELLCT must be specified on either the list or the execute format
of the macro.

SCELLCT = secondary cell count Default: PCELLCT
,CSIZE = cell size cell size: syinbol, decimal digit, or register (0), (2) - (12).

Note: CSIZE must be specified on either the list or the execute form of the
macro. '

,SP=subpooI number subpool number: symbol, decimal digit, or register (0), (2) - (12).
Default: SP=0

,LOC=BELOW Default: LOC =RES

,LOC=(BELOW,ANY)

,LOC=ANY

,LOC=RES

,LOC=(RES,ANY)

,CPID = pool id pool id: RX-type address or register (0), (2) - (12).

JKEY = key number key number: decimal digits 0 - 15 or register (0), (2) - (12).

,TCB=tch addr teh addr: RX-type address or register (0), (2) - (12).
Default: TCB address in PSATOLD.

,HDR = hdr hdr: character string enclosed in single qﬁotes, RX-type address, or
register (0), (2) - (12).

,LINKAGE=SYSTEM Default: LINKAGE =SYSTEM

,LINKAGE =BRANCH
LME = (E, ctrl prog) ctrl prog: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the CPOOL macro instruction with
the following exception:

JMF =(E,ctrl prog)
specifies the execute form of the CPOOL macro instruction.

2-82 SPL: System Macros and Facilities Volume 2

DATOFF - DAT-OFF Linkage

The DATOFF macro transfers control to a specified routine in the DAT-OFF section of the
nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT. Users must
include the IHAPSA mapping macro with the DATOFF macro instruction. The macro

destroys the contents of general registers 0, 14, and 15.

The DATOFF macro instruction is written as follows:

name name. symbol. Begin name in column 1.

b One or more blanks must precede DATOFF.

DATOFF

b One or more blanks must follow DATOFF.

index Note: See the description of the parameters for the valid options.
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

index
specifies the routine that is to be given control in the DAT-OFF section of the nucleus.
The possible values for index along with the entry point in the routine and the purpose of
the routine follow.

Index Entry Point Purpose

INDCDS IEAVCDS DAT-OFF Compare Double and Swap routine

INDMVCLO IEAVMVCO General DAT-OFF move character
long function

INDMVCLK IEAVMVKY General DAT-OFF move character
long in user key function

INDXCO IEAVXCO General DAT-OFF exclusive
OR character function

INDUSRI1 IEAVEURI1 User written function

INDUSR2 IEAVEUR2 User written function

INDUSR3 IEAVEUR3 User written function

INDUSR4 IEAVEUR4 User written function

Note: See SPL: System Modifications for information about how to insert a user-written
function in the nucleus.

DATOFF - DAT-OFF Linkage 2-83

,RELATED = value
specifies information used to document the macro instruction and to relate the service
performed to some corresponding service or function. The format of the information
specified can be any valid coding values that the user chooses.

Example 1
Operation: Invoke the general DAT-OFF move character long function. The user must supply
the following information in the registers specified: '
Registers Information
2 Location into which the characters are to be moved
3 Length of the area into which the characters are to be moved
4 Location of the area from which the characters are to be moved
5 Length of the area from which the characters are to be moved
Note: Registers 2 and 4 contain real addresses.
DATOFF INDMVCLO
Example 2
Operation: Invoke the general DAT-OfY exclusive OR character function. The user must
supply the following information in the registers specified:
Registers Information
2 Location of the results of exclusive OR character processing
3 Bits 24-31 contain one less than the number of bytes on which the exclusive OR is to be performed.
4 Location of the operand on which the exclusive OR is to be performed
Note: Registers 2 and 4 contain real addresses.
DATOFF INDXCO
Example 3

Operation: Invoke the general DAT-OFF move character long in user key function. The user
must supply the following information in the registers specified:

Registers Information

2 Location into which the characters are to be moved

3 L?:ngth of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

6 Bits 24-27 contain the PSW key in which the MVCL is to be executed.

Note: Registers 2 and 4 contain real addresses.

DATOFF INDMVCLK

2-84 SPL: System Macros and Facilities Volume 2

DEQ - Release a Serially Reusable Resource

DEQ removes control of one or more serially reusable resources from the active task. Register
15 is set to 0 if the request is satisfied. An unconditional request to release a resource from a
task that is not in control of the resource or a request that contains invalid parameters results in
abnormal termination of the task.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(See Planning: Global Resource Serialization for additional information about global resource
serialization.)

The description of the entire DEQ macro instruction follows. The DEQ macro instruction also
appears in Supervisor Services and Macro Instructions with the exception of the RMC,
GENERIC, TCB, and UCB parameters. These parameters are restricted in use to programs
that run in supervisor state, key 0-7, or with APF authorization, and are, therefore, described
only here.

Except for the TCB and UCB, all input parameters to this macro instruction can reside in
storage above 16 megabytes for callers executing in 31-bit addressing mode.

DEQ - Release a Serially Reusable Resource 2-85

The standard form of the DEQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DEQ.
DEQ
b) One or more blanks must follow DEQ.
(
qname addr gqname addr: A-type address, or register (2) - (12).
,rname addr ' rname addr: A-type address, or register (2) - (12).
s rname length: symbol, decimal digit, or register (2) - (12).
,rname length Note: rname length must coded if a register is specified for rname addr.
> Default: STEP
,STEP
,SYSTEM
,SYSTEMS
)
,RET=HAVE
,RET=NONE
,RMC=NONE Defaunlt: RMC = NONE
,RMC=STEP
,GENERIC=NO Defalult: GENERIC=NO
,GENERIC=YES Note: If GENERIC = YES is specified, you must also specify RET=HAVE
above.
,<TCB=tcb addr teb addr: A-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above.
L,UCB=uch addr uch addr: RX-type address, or register (2) - (12).
,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows.

(

specifies the beginning of the resource description.

gname addr
specifies the address in virtual storage of an 8-character name. The gname must be the
same name specified for the resource in an ENQ macro instruction.

Jrname addr
specifies the address in virtual storage of the name used in conjunction with gname and
scope to represent the resource acquired by a previous ENQ macro instruction. The name
can be qualified and must be from 1 to 255 bytes long. The rname must be the same
name specified for the resource in an ENQ macro instruction.

2-86 SPL: System Macros and Facilities Volume 2

b

Jname length
specifies the length of the rname described above. The length must have the same value
as specified in the previous ENQ macro instruction. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length, or you may specify a value of 0. If 0 is specified, the
length of the rname must be contained in the first byte at the rname addr specified above.

STEP

,SYSTEM

SYSTEMS
specifies the scope of the resource. You must specify the same STEP, SYSTEM, or
SYSTEMS option as you used in the ENQ macro instruction requesting the resource.

specifies the end of the resource description.

Note: Multiple resources can be specified with the DEQ macro instruction. You can repeat
qname addr, rname addr, rname length, and the scope until there is a maximum of 255
characters including the parentheses.

,RET=HAVE

,RET=NONE
HAVE specifies that the request for releasing the resources named in DEQ is to be
honored only if the active task has been assigned control of the resources or if ENQ was
executed with ECB. A return code is set if the resource is not held. NONE specifies an
unconditional request to release all the resources. RET=NONE is the default. The
active task is abnormally terminated if it has not been assigned control of the resources.

In either case, if the resources requested for release were originally queued with the ECB
parameter specified, they are released with return code 0.

,RMC=NONE

,LRMC=STEP

,GENERIC=NO

,GENERIC=YES
RMC specifies that the reset must-complete function is not to be used (NONE) or that
the requesting task is to release the resources and terminate the must complete function
(STEP). The NONE or STEP subparameter must agree with the subparameter specified
in the SMC parameter of the corresponding ENQ macro instruction.

GENERIC specifies whether or not (YES or NO) all resources with the specified gname

are to be released. In order for the resource to be released, the task must have control of
or be in ECB wait for the resource. (ECB was specified on the original ENQ.) If the task
is waiting for a resource, but is not in an ECB wait, the task remains queued and waiting.

DEQ - Release a Serially Reusable Resource 2-87

The following return codes are associated with a GENERIC DEQ:

Hexadecimal

Code Meaning

0 One or more resources which the task had control of or was in ECB wait for have been
released.

4 One or more resources were unconditionally requested by the task, but the task was not
assigned control. The task is not removed from the wait condition. However, other
resources with the same gname might have been released.

8 No resources were found for the specified gname.

,TCB=tch addr
specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the DEQ is to be done. The
caller (not the directed task) is abnormally terminated if the RET parameter is omitted
and an attempt is made to DEQ a resource not requested or not owned by the directed
task, except when ECB was specified on the original ENQ. If ECB was specified on the
ENQ and the resource is not owned by the directed task, the TCB DEQ request releases
the resources with a zero return code.

Note: The TCB resides in storage below 16 megabytes.

SUCB = uch addr
specifies the address of a fullword that contains the address of a UCB for a reserved
device that is now being released. This parameter is used to release a device reserved with
the RESERVE macro instruction. The UCB parameter is optional.

Note: The UCB resides in storage below 16 megabytes.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid coding values.

Return codes are provided by the control program only if RET=HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If any of the
return codes are not 0, register 15 contains the address of a virtual storage area containing the
return codes as shown in Figure 4.

2-88 SPL: System Macros and Facilities Volume 2

Return codes are

12 bytes apart,
starting 3 bytes
from the address
in register 15.

Address Return
Returned in Codes
Register 15
¢ 1 2 4 12
°)
RC 1
12
RC 2
24 q
RC 3 {
36
RC N %

Figure 4. Return Code Area Used by DEQ

The return codes are placed in the parameter list resulting from the macro expansion in the

same sequence as the resource names in the DEQ macro instruction. The return codes are

shown below.

Hexadecimal

Code Meaning

0 The resource has been released.

4 The resource has been requested for the task, but the task has not been assigned control. The
task is not removed from the wait condition. (This return code could result if DEQ is issued
within an exit routine which was given control because of an interruption.)

8 Control of the resource has not been requested by the active task, or the resource has already

been released.

DEQ - Release a Serially Reusable Resource

2-89

Example 1

Example 2

Example 3

Example 4

Operation: Unconditionally release control of the resource in Example 1 of ENQ, and reset the
“must-complete” state.

DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Operation: Conditionally release control of the resource in Example 2 of ENQ.

DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Operation: Unconditionally release control of the resource (device) in Example 1 of
RESERVE.

DEQ (MAJOR3,MINOR3,,SYSTEMS),UCB=(R3)

Operation: Release control of the resource in Example 1 of ENQ, if it has been assigned to the
current TCB. The length of the rname is explicitly defined as 8 characters.

DEQ (MAJOR1,MINOR1,8,STEP),RET=HAVE

2-90 SPL: System Macros and Facilities Volume 2

DEQ (List Form)

Use the list form of the DEQ macro instruction to construct a control program parameter list.
The number of gname, rname, and scope combinations in the list form of DEQ must be equal
to the maximum number of gname, rname, and scope combinations in any execute form of
DEQ that refers to that list form. The list form of the DEQ macro instruction is written as

follows:

name name: symbol. Begin name in column_ 1.
b One or more blanks must precede DEQ.
DEQ
b One ore more blanks must follow DEQ.
(

gname addr qname addr: A-type address.

N rname addr: A-type address.

;rname addr

3

Jrname length

'STEP
'SYSTEM
'SYSTEMS

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=0

L2UCB =uch addr
,RELATED = value
JMF=L

rname length: symbol or decimal digit.

Default; STEP

Default: RET =NONE

Default: RMC=NONE

Default: GENERIC=NO
Note: If GENERIC=YES is specified, you must also specify RET=HAVE
above.

Note: TCB cannot be specified with RMC above, and must be specified on
the list form if used on the execute form.

uch addr: A-type address.

value: any valid macro keyword specification.

The parameters are explained under the standard form of the DEQ macro instruction, with the

following exception:

JMF=L

specifies the list form of the DEQ macro instruction.

DEQ (List Form) 2-91

DEQ (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form

of the DEQ macro. The parameter
the ENQ macro instruction.

The execute form of the DEQ macr

list can be generated by the list form of either the DEQ or

o instruction is written as follows:

name

DEQ

name: symbol. Begin name in column 1.

One or more blanks must precede DEQ.

One or more blanks must follow DEQ.

qname addr

,
Jrname addr
,

Jrname length

,STEP
,SYSTEM
.SYSTEMS

)

,RET=HAVE
,RET=NONE

,RMC=NONE
,RMC=STEP
,GENERIC=NO
,GENERIC=YES

,TCB=tch addr

LUCB = uch addr
,RELATED = value
MFE = (E,ctrl addr)

Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
then (,), and all parameters in the list should be specified as indicated at
the left.

gname addr: RX-type address, or register (2) - (12).

rname addr: RX-type address, or register (2) - (12).

rname length: symbol, decimal digits, or register (2) - (12).

Note: See note opposite (above.

Note: If GENERIC=YES is specified, you must also
specify RET =HAVE above.

teb addr: RX-type address, or register (2) - (12).
Note: TCB cannot be specified with RMC above, and must be specified on
the execute form if used on the list form.

uch addr: RX-type address, or register (2) - (12).
value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-92 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the DEQ macro instruction, with the
following exception:

,MF = (E,ctrl addr)

specifies the execute form of the DEQ macro instruction using a remote control program
parameter list.

DEQ (Execute Form) 2-93

DOM - Delete Operator Message

The DOM macro instruction is used to delete an operator message or group of messages from
the display screen of the operator’s console. It can also prevent messages from ever appearing
on any operator’s console. When a program no longer requires that a message be displayed, it
can issue the DOM macro instruction to delete the message.

Depending on the timing of the DOM relative to the WTO(R), the message may or may not be
displayed. If the message is being displayed, it is removed when space is required for other
messages. If the message is not yet displayed, it is removed before it gets displayed.

When a WTO or WTOR macro instruction is issued, the system assigns an identification
number to the message and returns this number (32 bits right-justified) to the issuing program
in register 1. When the display of this message is no longer needed, the issuing program can
issue the DOM macro instruction using the identification number that was returned in general
register 1.

The DOM macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede DOM.
DOM
b One or more blanks must follow DOM.
MSG = addr addr: register (1) - (12), or an address.
MSGLIST = list addr list addr: symbol, RX-type address, or register (1) - (12).
TOKEN = addr addr: register (1) - (12), or an address.
DOMCBLK = addr addr: register (1) - (12), or an address
,COUNT = addr addr: register (2) - (12), or an address.
,SYSID = addr addr: register (2) - (12), or an address.
,REPLY = YES

,SCOPE=SYSTEM

,SCOPE =SYSTEMS

The parameters are explained as follows:

2-94 SPL: System Macros and Facilities Volume 2

MSG=
The field or register contains the message id of a message to be deleted.

MSGLIST =
specifies the address of a list of one or more fullwords, each word containing the
message id of a message to be deleted.

REPLY =
specifies that one or more WTOR messages are to be deleted. REPLY is not required,
and is invalid with DOMCBLK, TOKEN, SYSID, COUNT and SCOPE.

DOMCBILK =
specifies the address of a DOM control block that is to be used as input for the DOM
macro. Only authorized programs can issue DOMCBLK, which is mutually exclusive with
all keywords except for SCOPE.,

TOKEN =
specifies a field or register containing a 4-byte token that is associated with messages to be
deleted. When you issue WTO or WTOR to write a message, you can choose a token
value, and specify it as an input parameter to WTO(R) via the TOKEN keyword.
WTO(R) returns control to the application with a message id in register 1. To delete the
message by the TOKEN method, ignore the message id returned by WTO(R) in register 1,
and specify the token value instead, using the TOKEN keyword when you issue DOM.
TOKEN is an alternate method for identifying messages, which is independent of the
register 1 message id.

Authorized users may delete any messages originally issued under the same ASID and
system id with this keyword. Unauthorized users may delete only those messages that
were originally issued under the same jobstep TCB, ASID, and system id. The value of
the token may not be the same as the id that was returned in register 1 after a WTO or
WTOR. TOKEN is mutually exclusive with MSG, MSGLIST, COUNT, DOMCBLK,
and REPLY.

SYSID=
specifies a field or register containing the 1-byte id of the system on which the message
was issued. If no message ids are specified, (that is, MSG or MSGLIST is not specified)
all messages issued from the specified system are deleted. If message ids are specified, (i.c.,
MSG or MSGLIST has been specified), messages indicated by the MSG or MSGLIST
keyword issued from the specified system are deleted.

SYSID is invaliid with DOMCBLK, COUNT, and REPLY. SYSID can be used with the
TOKEN keyword to delete all messages originally issued from a particular system with
the specified TOKEN. Authorized users may delete any messages originally issued under
the same ASID when TOKEN and SYSID are specified. Unauthorized users may delete
only those messages that were originally issued under the same jobstep TCB and ASID
when TOKEN and SYSID are specified. If an address is used, the address points to a
1-byte field which contains the system id.

‘COUNT =
specifies a field or register containing the one-byte count of 4-byte message ids associated
with this request. The count must be from 1 to 60. If COUNT is specified, the issuer must
not set the high order bit on in the last entry of the DOM parameter list (DOMPL). If
COUNT is not specified, the message ids are treated as 3-byte ids. If an address is used,
the address points to a 1-byte field that contains the count. COUNT is invalid with
DOMCBLK, SYSID, TOKEN, and REPLY. ‘

DOM - Delete Operator Message 2-95

Example 1

Example 2

Example 3

Example 4

Example 5

l‘;)
\O
N

SCOPE =SYSTEM

SCOPE =SYSTEMS ,
specifies how to process the DOM request. If SCOPE=SYSTEMS is specified, the
DOM request is to be communicated to other processors. If SCOPE=SYSTEM is
specified, the DOM request is not to be communicated to other processors. If
SCOPE is not specified, the DOM request defaults to SCOPE=SYSTEMS.

Notes:

1. For any DOM keywords that allow a register specification, the value must be
" right-justified in the register and the remaining bytes within the register must be zero.

2. Any authorized DOM keywords that are specified by an unauthorized program will
cause a 157 ABEND.

Operation: Delete an operator message. The message id is in register 1.

DOM MSG=(1)

Operation: . Delete a list of operator messages.

DOM MSGLIST=ID2

Operation: Delete four operator messages. The number of messages to be deleted is stored in
the field named FOUR, and ID3 is the address of the list of message ids for the four messages.

DOM MSGLIST=ID3,COUNT=FOUR

Operation: Delete a single message issued on a particular system. The message ID is in register
1, and the one-byte system id is stored in the field named TWO.

DOM MSG=(1),SYSID=TWO

Operation: Delete all messages issued on a particular system. The one-byte system id is stored
in the field named SYSNAME.

DOM SYSID=SYSNAME

SPL: System Macros and Facilities Volume 2

|
|

Example 6

Operation: Delete all messages issued with a particular token on a particular system. The

four-byte token is stored in TOKENI1, and the one-byte system id is in TWO.

DOM TOKEN=TOKEN1,SYSID=TWO

DOM - Delete Operator Message

2-97

DSGNL - Issue Direct Signal

The DSGNL macro instruction uses the signal processor (SIGP) instruction to modify or sense
the physical state of a specific processor in a multiprocessing configuration. The SIGP
instruction order codes specified on the DSGNL macro instruction are defined as direct
services. Additional SIGP order codes defined as remote services are available through the
RISGNL and RPSGNL macro instructions. See Principles of Operations for an explanation of
the order codes.

Programs executing in cross memory mode can issue this macro instruction.

The DSGNL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b . One or more blanks must precede DSGNL.
DSGNL

b One or more blanks must follow DSGNL.

SENSE
START
STOP
RESTART
SSS
ICPUR
CPUR
STATUS
PREFIX
©) :

,CPU=PCCA addr PCCA addr: RX-type address, or register (1).
,PARAM = addr) addr: RX-type address, or register (2).

,LPARAM =(2) Note: This parameter is required with PREFIX and STATUS only. It
cannot be specified with any of the other parameters.

2-98 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

SENSE

START

STOP

RESTART

SSS

ICPUR

CPUR

PREFIX

STATUS

)
specifies the action to be performed. If (0) is specified, the code indicating the desired
function has already been loaded into bits 24-31 of register 0. (Only the direct class
functions are valid.) The actions and codes are:

Order Code Action
SENSE ()] State of specified processor is to be sensed
START 04 Start function
STOP 05 Stop function
RESTART 06 Restart function
SSS 09 Stop and store status function
ICPUR OB Initial processor reset function
CPUR 0C Processor reset function
PREFIX oD Set prefix from address
STATUS OE Store status at address

,CPU=PCCA addr

specifies the address of the physical configuration communication area (PCCA) of the
processor on which the function is to be executed.

Note: The PCCA resides in storage below 16 megabytes.

;SPARAM = addr

JLPARAM=(2)
allows an address to be passed to the specified processor. If addr is coded, the word at
that location is loaded into register 2 and passed to the specified processor. The contents
of that location must contain a real address. If (2) is coded, the contents of register 2 is
passed to the processor. Register 2 must also contain a real address.

When this parameter is used with PREFIX, the word passed to the spemﬁed processor is
the address to which the processor’s prefix register is to be set.

When this parameter is used with STATUS, the word passed to the specified processor is
the real address at which the processor’s status is to be stored.

DSGNL - Issue Direct Signal 2-99

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

08

oC

14

Meaning

Function successfully initiated, but not necessarily completed.

Function not completed because the access path to the addressed processor was busy or
the addressed processor was in a state where it could not accept and respond to the
order code.

Function unsuccessfully initiated or successful SIGP SENSE request. Status is returned
in register 0.

Specified processor is either not installed, not configured into the system, or powered
off.

MSSF is currently inoperative.

With a return code of 8, register 0 contains status information from the SIGP macro
instruction. The bit settings and meanings follow:

Bits Meaning

0 Equipment check

1-21 Unassigned, contains zeros
22 Incorrect state

23 Invalid parameter

24 External call pending

25 Stopped

26 Operator intervening

27 Check stop

28 Not ready

29 MSSF currently inoperative
30 Invalid order code

31 Receiver check

Example 1

Operation: The processor whose PCCA address is in register 1 will be placed in the STOP

state.

DSGNL STOP,CPU=(1)

2-100 SPL: System Macros and Facilities Volume 2

DYNALLOC - Dynamic Allocation

See Volume 1 for the description of this macro instruction.

DYNALLOC - Dynamic Allocation 2-101 ¢

ENQ - Request Control of a Serially Reusable Resource

2-102

ENQ requests the control program to assign control of one or more serially reusable resources
to a task. If any of the resources are not available, the task might be placed in a wait condition
until all of the requested resources are available. Once control of a resource has been assigned
to a task, it remains with that task until one of the programs of the same task issues a DEQ
macro instruction specifying the same resource. Register 15 is set to 0 if the request is satisfied.

You can also use ENQ to determine the status of the resource; whether it is immediately
available or in use, and whether control of the resource has been previously requested by the
active task in another ENQ macro instruction.

You can request either shared or exclusive use of a resource. The resource is represented in the
ENQ by a pair of names, the gname and the rname, and a scope value. The scope value
determines the scope of serialization; that is, what other tasks, address spaces, or systems can
use the resource. The control program does not correlate the names with the actual resources.
ENQ simply coordinates access to whatever it is the names represent. The names may be given
meaning within a job step or across job steps. In either case, all programs for which
coordination of the resource is provided must refer to it by the same name and scope value.
You must ensure that the name and scope value are used consistently.

Issuing two ENQ macro instructions for the same resource without an intervening DEQ macro
instruction results in abnormal termination of the task, unless the second ENQ designates
RET=TEST, USE, CHNG, or HAVE. If normal termination of a task is attempted while the
task still has control of any serially reusable resources, all requests made by this task will be
automatically dequeued. If resource input addresses are incorrect, the task is abnormally
terminated.

Global resource serialization counts and limits the number of concurrent resource requests in an
address space. If an unconditional ENQ (an ENQ that uses the RET =NONE option) causes
the count of global resource serialization requests to exceed the sum of a threshold value plus a
tolerance value, an authorized caller is abended with a system code of X‘538’. See “Limiting
Global Resource Serialization Requests” in Volume 1.

Note: When global resource serialization is active, the SYSTEM inclusion resource name list
and the SYSTEMS exclusion resource name list are searched for every resource specified with a
scope of SYSTEM or SYSTEMS. A resource whose name appears on one of these resource
name lists might have its scope changed from the scope that appears on the macro instruction.
(Refer to Planning: Global Resource Serialization for additional information.)

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

An ENQ used with the MASID and MTCB operands provides a special form of the ENQ
macro instruction that allows a further conditional control of a resource. One task, called the

SPL: System Macros and Facilities Volume 2

“issuing task” can issue an ENQ macro for a resource specifying the ASID and TCB of another
task, called the “matching task.” The MTCB and MASID operands are specified with
RET=HAVE, RET=TEST, and/or ECB= to provide additional return codes. If the issuing
task does not acquire control of the resource, it may receive a return code indicating that the
resource is controlled by the matching task. Upon receiving this return code, the issuing task
could use the resource, if serialization between itself and the matching task has been
accomplished by some pre-arranged protocol known to both the issuing and matching tasks.

The description of the ENQ macro instruction follows. The ENQ macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the SMC, ECB,
and TCB parameters. These parameters are restricted in use to programs that run in supervisor
state, PSW key 0-7, or APF authorized and are therefore only described here.

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
qname addr gname addr: A-type address, or register (2) - (12).
Jrname addr rname addr: A-type address, or register (2) - (12).
s Default: E
E
S

5!

;rname length

STEP
SYSTEM
,SYSTEMS

)

,RET=CHNG
,RET=HAVE
L,RET=TEST
,RET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP
L,ECB = ecbh addr
JTCB=tcb addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value

rname length: symbol, decimal digit, or register (2) - (12).
Default: assembled length of rrame
Note: rname length must be coded if a register is specified for rname addr.

Default: STEP

Default: RET =NONE

ech addr: A-type address, or register (2) - (12).

tch addr: A-type address, or register (2) - (12).

Default: SMC=NONE

Note: ECB cannot be specified with RET above. ECB and TCB can be
specified together. If TCB is specified but not ECB, then RET =CHNG,
TEST or USE must be specified above.

matching-asid addr: A-type address, or register (2)-(12).

matching-tch addr: A-type address, or register (2)-(12).

value: any valid macro keyword specification.

ENQ - Request Control of a Serially Reusable Resource 2-103

The parameters are explained as follows:

(

specifies the beginning of the resource description.

gname addr
specifies the address in virtual storage of an 8-character name. Every program issuing a
request for a serially reusable resource must use the same gname, rname, and scope to
represent the resource.

Jrmame addr
specifies the address in virtual storage of the name used in conjunction with grname to
represent a single resource. The name can be qualified and must be from 1 to 255 bytes
~ long. If the name specified as rname is defined by an EQU assembler instruction, rname
length must be specified.

specifies whether the request is for exclusive (E) or shared (S) control of the resource. If
the resource is modified while under control of the task, the request must be for exclusive
control; if the resource is not modified, the request should be for shared control.

,sname length .
specifies the length of the rname described above. If this parameter is omitted, the
assembled length of the rname is used. You can specify a value between 1 and 255 to
override the assembled length. If the name specified as rname, is defined by an EQU
assembler instruction, rname length must be specified. ' v

9
STEP
»SYSTEM
SYSTEMS
specifies the scope of the resource.

STEP specifies that the resource can be used only within an address space. If STEP is
specified, a request for the same gname and rname from a program in another address
space denotes a different resource.

SYSTEM specifies that the resource can be used by more than one address space.
SYSTEMS specifies that the resource can be shared between systems.

STEP, SYSTEM, and SYSTEMS are mutually exclusive and do not refer to the same
resource. If two macro instructions specify the same gname and rname, but one specifies
STEP and the other specifies SYSTEM or SYSTEMS, they are treated as requests for

different resources.

When global resource serialization is active, scope conversion can occur. This could result
in two requests with different scopes referring to the same resource. See Planning: Global
Resource Serialization for details.

2-104 SPL: System Macros and Facilities Volume 2

specifies the end of the resource description.

Note: Multiple resources can be specified in the ENQ macro instruction. You can repeat the
gname addr, rname addr, type of control, rname length, and scope until there is a maximum of
255 characters including the parentheses.

,RET =CHNG
,RET=HAVE
,RET =TEST
,RET =USE
,RET=NONE
specifies the type of request for all of the resources named above.

CHNG - the status of the resource specified is changed from shared to exclusive control.

HAVE - control of the resources is requested conditionally; that is, control is requested
only if a request has not been made previously for the same task.

TEST - the availability of the resources is to be tested, but control of the resources is
not requested.

USE - control of the resources is to be assigned to the active task only if the resources
are immediately available. If any of the resources are not available, the active
task is not placed in a wait condition.

NONE - control of all the resources is unconditionally requested.

SMC=NONE
SMC=STEP
,ECB =ech addr
s<TCB=tch addr
specifies optional parameters available to the system programmer:

SMC specifies that the set must-complete function is not to be used (NONE) or that it is
to place other tasks for the step nondispatchable until the requesting task has completed
its operations on the resource (STEP).

When SMC=STEP is specified with RET =HAVE and the requesting task already has
control of the resource, the SMC function is turned on and the task continues to control
the resource.

SMC= and TCB= are mutually exclusive with the MASID parameter, therefore,

hexadecimal return codes 20, 24, 28, and 44 will not be given by an ENQ using the SMC
or TCB operands.

ENQ - Request Control of a Serially Reusable Resource 2-105

The return codes and status of the set must-complete function for the various RET =
specifications are as follows:

Hexadecimal Code SMC Status
RET=CHNG 0 on
4 off
8 off
14 off
RET=HAVE 0 on
8 on
14 off
RET=TEST 0 off
4 off
8 off
14 off
RET=USE 0 on
4 off
8 off
14 off
18 off

ECB specifies the address of an ECB, and conditionally requests all of the resources
named in the macro instruction. If the return code for one or more requested resources is
hexadecimal 4 or 24 and the request is not nullified by a corresponding DEQ, the ECB is
posted when all the requested resources (specifically, those that initially received a return
code of 4 or 24) are assigned to the requesting task.

If the ECB parameter is an A-type address, the address is the name of the fullword that is
used as an ECB. If the operand is a register, then the register contains the address of the
ECB.

TCB specifies a register that points to a TCB or specifies the address of a fullword on a
fullword boundary that points to a TCB on whose behalf the ENQ is to be done.

Note: The TCB resides in storage below 16 megabytes.

'JMASID =matching-asid addr
specifies the matching task (by defining a matching ASID) for the ENQ, if used in
conjunction with the MTCB parameter. MASID defines the ASID of a task that may be
using a resource desired by the issuer of the ENQ macro instruction. If the MASID
parameter is an A-type address, the address is the name of a fullword containing the
ASID. If the operand is a register, then the register contains the ASID.

Note: MASID can only be specified if MTCB is also specified.

JMTCB = matching-tcb addr
specifies the matching task (by defining a matching TCB) for the ENQ, if used in
conjunction with the MASID parameter. MTCB defines the TCB of a task that may be
using a resource desired by the issuer of the ENQ macro instruction.

If the task specified by the MASID and MTCB parameters is not using the resource,
global resource serialization gives control to the issuer of the ENQ and returns a return
code indicating whether the resource can be used. If the task specified by MASID and
MTCB parameters is using the resource, global resource serialization records a request for
the resource, suspends the issuing task until the resource is available, or optionally returns
a return code indicating that an ECB will be posted when the resource can be used.

2-106 SPL: System Macros and Facilities Volume 2

The MASID and MTCB parameters are specified with RET=HAVE, RET =TEST,
and/or ECB = parameters to elicit additional return codes that provide information about
the owner of the resource. If the MTCB parameter is an A-type address, the address is
the name of a fullword containing the TCB. If the operand is a register, then the register
contains the TCB.

Note: MTCB can only be specified if MASID is also specified.

,RELATED = value
specifies information used to self-document macro instructions by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

Return codes are provided by the control program only if you specify RET =TEST,
RET=USE, RET=CHNG, RET=HAVE, or ECB=; otherwise return of the task to the
active condition indicates that control of the resource has been assigned to the task. If all
return codes for the resources named in the ENQ macro instruction are 0, register 15 contains
0. If any of the return codes are not 0, register 15 contains the address of a storage area
containing the return codes, as shown in Figure 5.

Address Return
Returned in Codes
Register 15
¢ 1 2 3 4 12
°)
RC 1
12
RC 2

{ Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

24

RC 3

RC N

| :
, %

Figure 5. Return Code Area Used by ENQ

ENQ - Request Control of a Serially Reusable Resource 2-107

The return codes are placed in the parameter list resulting from the macro expansion in the
same sequence as the resource names in the ENQ macro instruction. The return codes are

shown below.

Hexadecimal
Code

0

14

18

20

24

28

44

Meaning

For RET =TEST, the resource is immediately available. For RET=USE, RET=HAVE, or
ECB =, control of the resource has been assigned to the active task. For RET = CHNG, the
status of the resource has been changed to exclusive. The ECB is not posted..

For RET=TEST or RET=USE, the resource is not immediately available. For
RET =CHNG, the status cannot be changed to exclusive. For ECB=, the ECB will be posted
when available.

For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request for control of
the same resource has been made for the same task. The task has control of resource. For
RET = CHNG, the resource has not been enqueued. If bit 3 is on -- shared control of
resource; if bit 3 of the first byte of the ENQ parameter list is off -- exclusive control. The
ECB is not posted.

A previous request for control of the same resource has been made for the same task. The
task does not have control of resource. The ECB is not posted.)

For RET=HAVE, RET = USE, or ECB =, the limit for the number of concurrent resource
requests has been reached. The task does not have control of the resource unless some
previous ENQ or RESERVE request caused the task to obtain control of the resource. The
ECB is not posted.

The matching task (the task specified in the MASID/MTCB parameters) owns the resource.
The issuer of the ENQ macro instruction may use the resource but it must ensure that the
owning task does not terminate while the issuer of the ENQ macro is using the resource. If
the issuer of the ENQ requested exclusive control, then this return code indicates that the
matching task is the only task that currently owns the resource. If the issuer of the ENQ
requested shared control and the owning task had requested shared control, this return code
may indicate that a previous task had requested exclusive control. The issuing task must issue
a DEQ to cancel this ENQ. The ECB will not be posted.

The issuing task will have exclusive control after the ECB is posted. The issuing task may use
the resource but must ensure that the matching task does not terminate while the issuing task
is using the resource. The issuing task must issue a DEQ to cancel the ENQ.

The issuing task cannot obtain exclusive control of the resource using the MASID/MTCB
ENQ. The matching task’s involvement with other tasks precludes control by the issuing task.
This task must not issue a DEQ to cancel the ENQ. The ECB will not be posted.

The issuing task is violating a restriction of the MASID/MTCB ENQ in one or more of the
following ways:

® Anpother task has already issued this ENQ for this resource specifying the same
MASID/MTCB.

® The MASID/MTCB parameters specify a task that acquired control of the resource by
using the MASID/MTCB ENQ.

'® The matching task requested ownership of the resource but has not yet been

granted ownership.

The ECB will not be posted. Return code 44 is never given by an ENQ RET=TEST, return
code 4 is given instead.

2-108 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Unconditionally request exclusive control of a serially reusable resource that is
known only within the address space (STEP), and place other tasks for the step nondispatchable
until the requesting task has completed its operations on the resource.

ENQ (MAJOR1,MINOR1,E,8,STEP),SMC=STEP
Example 2

Operation: Conditionally request control of a sharable resource in behalf of another task. The
resource is known by more than one address space, and is only wanted if immediately available.

ENQ (MAJOR2,MINOR2,S,4,SYSTEM),TCB=(R2),RET=USE

ENQ - Request Controi of a Serially Reusable Resource 2-109

ENQ (List Form)

Use the list form of ENQ to construct a control program parameter list. Any number of
resources can be specified in the ENQ macro instruction, therefore, the number of gname,
rname, and scope combinations in the list form of the ENQ macro instruction must be equal to

~ the maximum number of gname, rname, and scope combinations in any execute form of the
macro instruction that refers to that list form.

The list form of the ENQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.
(
gqname addr gname addr: A-type address.
Jrname addr rname addr: A-type address.
, Default: E
,E
S
,rname length rname length: symbol or decimal digit.
Default: assembled length of rname
s Default: STEP
,STEP
SYSTEM
SYSTEMS
)
,RET=CHNG Default: RET=NONE
,RET=HAVE
,RET=TEST
,RET=USE
,RET =NONE
,SMC=NONE
,SMC=STEP
LECB =ech addr . ech addr: A-type address.
,TCB=0 Default: SMC =NONE
Note: ECB cannot be specified with RET above.
Note: TCB or ECB must be specified on the list form if it is used on the
execute form. ECB and TCB can be specified together. If TCB is specified
but not ECB, then RET=CHNG, TEST or USE must be specified above.
,MASID =0 :
,MTCB=0
,RELATED = value value: any valid macro keyword specification.
JMF=L

2-110 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exception:

MF=L
specifies the list form of the ENQ macro instruction.

The list form of this macro generates a prefix followed by the parameter list, however the label

specified in MF =L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (List Form) 2-111

ENQ (Execute Form)

A remote control program parameter list is used in and can be modified by the execute form of
the ENQ macro instruction. The parameter list can be generated by the list form of ENQ.

The execute form of the ENQ macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ENQ.
ENQ
b One or more blanks must follow ENQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
the (,), and all parameters in the list should be specified as indicated at the
left.

qrame addr gname addr: RX-type address, or register (2) - (12).

Jname addr rname addr: RX-type address, or register (2) - (12).

E

S

,rname length

'STEP
SYSTEM
SYSTEMS

)

_RET=CHNG
,RET=HAVE
JRET=TEST
LRET=USE
,RET=NONE

,SMC=NONE
,SMC=STEP

LECB=ecb addr
,TCB=tch addr

,MASID = matching-asid addr
,MTCB = matching-tcb addr

,RELATED = value
JMF = (E,ctrl addr)

rname length: symbol, decimal digit, or register (2) - (12).

Note: See note opposite (above.

ech addr: RX-type address, or register (2) - (12).

tch addr: RX-type address, or register (2) - (12).

Note: ECB cannot be specified with RET above.

Note: ECB and TCB can be specified together. If TCB is specified but not
ECB, then RET=CHNG, TEST or USE must be specified above.
matching-asid addr: Rx-type address, or register (2)-(12).

matching-tch addr: Rx-type address, or register (2)-(12).

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) - (12).

2-112 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the ENQ macro instruction, with the
following exceptions:

JMF =(E,ctrl addr)
specifies the execute form of the ENQ macro instruction using a remote control program
parameter list.

Note: If ECB (or TCB) is specified in the execute form, ECB (or TCB=0) must be specified in -
the list form. If MASID and MTCB are specified, MASID =0 and MTCB =0 must be
specified in the list form.

The list form of this macro generates a prefix followed by the pardmeter list, however the label

specified in MF =L does not include an offset prefix area. If MASID, MTCB, TCB, or ECB is
specified, these labels are offset; allowance must be made for the parameter list prefix.

ENQ (Execute Form) 2-113

ESPIE - Extended SPIE

The ESPIE macro instruction extends the function of the SPIE (specify program interruption
exits) macro instruction to callers in 31-bit addressing mode. Callers in either 24-bit or 31-bit
addressing mode can issue the ESPIE macro instruction. Only callers in 24-bit addressing mode
can issue the SPIE macro instruction. For additional information concerning the relationship
between the SPIE and the ESPIE macro instructions, see the section “Interruption Services” in
Volume 1.

The ESPIE macro instruction performs the following functions using the options specified:
e [Establishes an ESPIE environment (that is, identifies the interruption types that are to
cause entry to the ESPIE exit routine) by executing the SET option of the ESPIE macro

instruction.

e Deletes an ESPIE environment (that is, cancels the current SPIE/ESPIE environment) by
executing the RESET option of the ESPIE macro instruction

® Determines the current SPIE/ESPIE environment by executing the TEST option of the
ESPIE macro instruction

The following description of the ESPIE macro instruction also appears in Supervisor Services

and Macro Instructions with the exception of interruption type 17. This interruption type
designates page faults and its use is restricted to an installation-authorized system programmer.

SET Option

The SET option of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b v One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
,exit addr exit addr: A-type address or register (2) - (12).
,(interruptions) interruptions.: decimal numbers 1 - 15 or 17 expressed as

single values: (2, 3, 4,7, 8, 9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))

,LPARAM = list addr list addr: A-type address or register (2) - (12).

2-114 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

SET
indicates that an ESPIE environment is to be established.

,exit addr
specifies the address of the exit routine to be given control when program interruptions of
the type specified by interruptions occur. The exit routine will receive control in the same
addressing mode as the issuer of the ESPIE macro instruction.

,(interruptions)
indicates the interruption types that are being trapped. The interruption types are:

Number Interruption Type

1 Operation

2 Privileged operation

3 Execute

4 Protection

5 Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)
9 Fixed-point divide

10 Decimal overflow (maskable)

11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)
14 Significance (maskable)

15 Floating-point divide

17 Page fault

These interruption types can be designated as one or more single numbers, as one or more
pairs of numbers (designating ranges of values), or as any combination of the two forms.
For example, (4,8) indicates interruption types 4 and 8; ((4,8)) indicates interruption types
4 through 8.

If a program interruption type is maskable, the corresponding program mask bit in the
PSW is set to 1. If a maskable interruption is not specified, the corresponding bit in the
PSW is set to 0. Interruption types not specified above (except for type 17) are handled
by the control program. The control program forces an abend with the program check as
the completion code. If an ESTAE-type recovery routine is also active, the SDWA
indicates a system-forced abnormal termination. The registers at the time of the error are
those of the control program. ’

Note: For both ESPIE and SPIE — If you are using vector instructions and an
interruption of 8, 12, 13, 14, or 15 occurs, your recovery routine can check the exception
extension code (the first byte of the two-byte interruption code in the EPIE or PIE) to
determine whether the exception was a vector or scalar type of exception.

,PARAM =list addr

specifies the fullword address of a parameter list that is to be passed by the caller to the
exit routine. ’

ESPIE - Extended SPIE 2-115

'

Example 1

Example 2

On return from the SET option of the ESPIE macro instruction, the registers contain the
following information:

Register Content

0 Unpredictable

1 Token representing the previously active SPIE/ESPIE environment
2-13 : Unchanged

14 Unpredictable

15 Return code of 0

Operation: Give control to an exit routine for interruption types 1 and 4. EXIT is the location
of the exit routine to be given control and PARMLIST is the location of the user-parameter list
to be used by the exit routine.

ESPIE SET,EXIT,(1,4),PARAM=PARMLIST

Operation: Give control to the exit routine located at EXIT when a page fault occurs.

ESPIE SET,EXIT,(17)

RESET Option

The RESET option of the ESPIE routine cancels the active SPIE/ESPIE environment and
restores the SPIE/ESPIE environment specified by token.

The RESET option of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
RESET
Jtoken token: RX-type address or register (1) or (2) - (12).

2-116 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

RESET

indicates that the current ESPIE environment is to be deleted and the previously active
SPIE/ESPIE environment specified by foken is to be re-established.

,<token

specifies a fullword that contains a token representing the previously active SPIE/ESPIE
environment. This is the same token that ESPIE processing returned to the caller when
the ESPIE trap was established using the SET option of the ESPIE macro instruction.

If the token is zero, all SPIEs and ESPIEs are deleted.

On return from ESPIE RESET, the contents of the registers are as follows:

Register
0

1

2-13

14

15

Example 1

Contents

Unpredictable

Token identifying the new active SPIE/ESPIE environment
Unchanged

Unpredictable

Return code of 0

Operation: Cancel the current SPIE/ESPIE environment and restore the SPIE/ESPIE
environment represented by the contents of TOKEN.

ESPIE RESET,TOKEN

TEST Option

The TEST option of the ESPIE macro instruction determines the active SPIE/ESPIE
environment and returns the information in a four-byte parameter list.

The TEST option of the ESPIE macro instruction is written as follows:

name

ESPIE

name: symbol. Begin name in column 1.

One or more blanks must precede ESPIE.

One or more blanks must follow ESPIE.

TEST

parm addr

parm addr: RX-type address, or register (1) or (2) - (12).

ESPIE - Extended SPIE

2-117

The parameters are explained as follows:

TEST
indicates a request for information concerning the active or current SPIE/ESPIE
environment. ESPIE processing returns this information to the caller in a four-word
parameter list located at parm addr.

Jparm addr
specifies the address of a four-word parameter list aligned on a fullword boundary. The
parameter list has the following form:

Word Content

0 Address of the user-exit routine (31-bit address with the high-order bit set to 0)
1 Address of the user-defined parameter list

2 Mask of program interruption types

3 Zero

On return from ESPIE TEST, the registers contain the following information:

Register Contents

0 Unpredictable

1-13 Unchanged

14 Unpredictable

15 Return code as follows:

Code Meaning

0 An ESPIE exit is active and the four-word parameter list contains the the information
specified in the description of the parm addr parameter.

4 A SPIE exit is active. Word 1 of the parameter list described under parm addr contains
the address of the current PICA. Words 0, 2, and 3 of the parameter list are
unpredictable.

8 No SPIE or ESPIE is active. The contents of the four-word parameter list are
unpredictable.

Example 1

Operation: lIdentify the active SPIE/ESPIE environment. Return the information about the exit
routine in the four-word parameter list, PARMLIST. Also return, in register 15, an indication
of whether a SPIE, ESPIE, or neither is active.

ESPIE TEST,PARMLIST

2-118 SPL: System Macros and Facilities Volume 2

ESPIE (List Form)

The list form of the ESPIE macro instruction builds a non-executable problem program
parameter list that can be referred to or modified by the execute form of the ESPIE macro
instruction.

The list form of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
.exit addr exit addr: A-type address.
Note: This parameter must be specified on either the list or the execute form
of the macro instruction.
J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4,7, 8,9, 10)
ranges of values: ((2, 4), (7, 10))
combinations: (2, 3, 4, (7, 10))
,PARAM = list addr list addr: A-type address.
MF=L

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

MFEF=L
specifies the list form of the ESPIE macro instruction.
Example 1
Operation: Build a non-executable problem program parameter list that will cause control to

be transferred to the exit routine, EXIT, for the interruption types specified in the execute form
of the macro instruction. Provide the address of the user parameter list, PARMLIST.

LIST1 ESPIE SET,EXIT,,PARAM=PARMLIST, MF=L

ESPIE (List Form) 2-119

ESPIE (Execute Form)

The execute form of the ESPIE macro instruction can refer to and modify the parameter list
constructed by the list form of the ESPIE macro instruction.

The execute form of the ESPIE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESPIE.
ESPIE
b One or more blanks must follow ESPIE.
SET
Jexit addr exit addr: RX-type address or register (2) - (12).

Note: This parameter must be specified on either the list or the execute form
of the macro instruction.

J(interruptions) interruptions: decimal number 1 - 15 or 17 expressed as
single values: (2, 3, 4, 7, 8,9, 10)
ranges of values: ((2, 4), (7, 10)
combinations: (2, 3, 4, (7, 10))

,PARAM = list addr list addr: RX-type address or register (1) or (2) - (12).

;MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the ESPIE macro instruction with the
following exception:

MF = (E,ctrl addr)

specifies the execute form of the ESPIE macro instruction using a remote control program
parameter list.

2-120 SPL: System Macros and Facilities Volume 2

Example 1

Operation: Give control to a user-exit routine for interruption types 1, 4, 6, 7, and 8. The exit
routine address and the address of a user-parameter list for the exit routine are provided in a
remote control program parameter list at LIST1.

ESPIE SET,,(1,4,(6,8)),MF=(E,LIST1)

ESPIE (Execute Form) 2-121

ESTAE - Specify Task Abnormal Exit Extended

This macro can be assembled compatible between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The ESTAE macro instruction allows the user to intercept a scheduled ABEND. Control is
given to a user-specified recovery routine in which the user can, for example, perform
pre-termination processing, diagnose the cause of ABEND, and specify a retry address if he
wishes to avoid the termination. These recovery routines operate in both problem program and
supervisor modes. ‘

The addressing mode in which the ESTAE macro expansion executes becomes the addressing
mode in which the ESTAE exits and retry routines execute (that is, the ESTAE exits and retry
routines execute in the same addressing mode as the issuer of the ESTAE macro instruction.)

Note: The ESTAE macro instruction is not supported in cross memory mode.

‘The description of the ESTAE macro instruction follows. The ESTAE macro instruction is also
described in Supervisor Services and Macro Instructions with the exception of the BRANCH,
SVEAREA, KEY, RECORD, AND TOKEN parameters. These parameters are restricted in

use, and, therefore, are described only in here.

“ESTAE-Type Recovery Routines” in Volume 1 describes the complete interface to the ESTAE
exit routine.

2-122 SPL: System Macros and Facilities Volume 2

The standard form of the ESTAE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
gxit addr exit addr: A-type address, or register (2) - (12).
,CT Default: CT
,OV
JLPARAM = list addr list addr: A-type address, or register (2) - (12).
XCTL=NO Default: XCTL =NO
,XCTL=YES

,PURGE=NONE
,PURGE = QUIESCE
,PURGE=HALT

LASYNCH=YES
LASYNCH=NO

,TERM=NO
,TERM=YES

,BRANCH =NO
,BRANCH =YES,
SVEAREA =save addr

JKEY =SAVE
LJKEY = storage key

,RECORD =NO
,RECORD=YES

,TOKEN = token addr
,RELATED =value

Default: PURGE =NONE

Default: ASYNCH =YES

Default: TERM =NO

Default: BRANCH=NO

save addr: A-type address, or register (2) - (12) or (13).

storage key: any numeral in the range 0-15.
Default: RECORD =NO

token addr: A-type address, or register (2) - (12).

value: any valid macro keyword specification.

The parameters are explained as follows.

exit

0

,CT

addr

specifies the 31-bit address of an ESTAE recovery routine to be entered if the task issuing
this macro instruction terminates abnormally. The recovery routine executes in the
addressing mode of the issuer of the ESTAE. If 0 is specified, the most recent ESTAE
routine is canceled. '

specifies the creation of a new ESTAE exit (CT) or indicates that parameters passed in
this ESTAE macro instruction are to overlay the data contained in the previous ESTAE

routine (OV).

,LPARAM = [ist addr

specifies the 31-bit address of a user-defined list containing data to be used by the ESTAE

routine when it is scheduled for execution.

ESTAE - Specify Task Abnormal Exit Extended 2-123

XCTL=NO

XCTL=YES
specifies that the ESTAE macro instruction will be canceled (NO) or will not be canceled
(YES) if an XCTL macro instruction is issued by this program.

,PURGE =NONE

,LPURGE =QUIESCE

,PURGE =HALT
specifies that all outstanding requests for I/O operations are not to be saved when the
ESTAE routine gets control (HALT) or that I/O processing is to be allowed to continue
normally when the ESTAE routine gets control (NONE) or that all outstanding requests
for 1/O operations are to be saved when the ESTAE routine is taken (QUIESCE). If
QUIESCE is specified, the user’s retry routine can restore the outstanding I/O requests.

PURGE=NONE specifies that all control blocks affected by input/output processing can
continue to change during ESTAE routine processing. If you specify PURGE =NONE,
and the ABEND was originally scheduled because of an error in input/output processing,
an ABEND recursion develops when an input/output interruption occurs, even if the
ESTAE routine is in progress. Thus, it will appear that the ESTAE routine failed when,
in reality, input/output processing caused the failure.

Note: If you specify PURGE=HALT while using ISAM:

e Only the input/output event on which the purge is done will be posted. Subsequent
event control blocks (ECBs) will not be posted.

o The ISAM check routine will treat purged I/O as normal I/O.

e Part of the data set might be destroyed if the data set is being updated or added to
when the failure occurred.

LASYNCH =YES

LASYNCH=NO
specifies that asynchronous exit processing will be allowed (YES) or prohibited (NO)
while the user’s ESTAE routine is executing.

ASYNCH =YES must be coded if:

e Any supervisor services that require asynchronous interruptions to complete their
normal processing are going to be requested by the ESTAE routine.

e PURGE =QUIESCE is specified for any access method that requires asynchronous
interruptions to complete normal input/output processing.

e PURGE=NONE is specified and the ESTAE routine issues the CHECK macro
instruction for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH = YES is specified and the ABEND was originally scheduled because

of an error in asynchronous exit handling, an ABEND recursion will develop when an
asynchronous exit handling was the cause of the failure.

2-124 spL: System Macros and Facilities Volume 2

,TERM =NO

,TERM=YES
specifies that the ESTAE routine will be scheduled (YES) or will not be scheduled (NO)
in the following situations:

e Cancel by operator

o Forced logoff

e Expiration of job step timer

o Exceeding of wait time limit for job step

e ABEND condition because of DETACH of an incomplete subtask when the STAE
option was not specified on the DETACH

e ABEND of the attaching task when the ESTAE macro instruction was issued by a
subtask

e ABEND of job step task when a non-job step task requested ABEND with the STEP
option.

When the ESTAE routine is entered because of one of the preceding reasons, re-try is not
permitted. If a dump is requested at the time of ABEND, it is taken before entry into the
ESTAE routine.

Note: If DETACH was issued with the STAE parameter, the following occurs for the
task to be detached:

o All ESTAE routines are entered.
o The most recently established STAE routine is entered.

o All STAI/ESTALI routines are entered unless one of the STAI routines issues return
code 16.

In these cases, entry to the routine occurs before dumping and re-try is not permitted.

,BRANCH=NO

,BRANCH =YES ,SVEAREA = save addr
specifies that an SVC 60 entry to the ESTAE service routine is to be performed (NO) or
that a branch entry is to be performed (YES). The save area is a 72-byte area used to
save the general registers. If the caller is not in key zero, the KEY parameter must be
specified.

,KEY =SAVE

,JKEY =storage key
specifies that supervisor state users who are not in key zero can use the branch entry
interface to the ESTAE service routine.

If the user specifies KEY =SAVE, the system saves the current PSW protection key in
register 2 and issues a set protection key instruction (SPKA) to change to protection key
zero. When the ESTAE service routine returns control, it restores the original PSW key
from register 2. Therefore, the user should save register 2 before the macro expansion

ESTAE - Specify Task Abnormal Exit Extended 2-125

and restore it afterwards. Specifying KEY =SAVE destroys the contents of register 2
during the macro expansion.

On the other hand, if the user knows the current PSW protection key, he may specify it
directly in the form KEY =(0-15) to eliminate saving and restoring the original protection
key. This procedure eliminates an IPK instruction and prevents the use of register 2 in
the macro expansion.

,LRECORD=NO

,RECORD =YES
specifies that the system diagnostic work area (SDWA) is not to be written to
SYS1.LOGREC (NO) or that the entire SDWA (including the fixed length base, the
variable length recording area, and the recordable extensions) is to be written to
SYS1.LOGREC (YES).

,TOKEN = token addr
specifies that a four-byte token is to be associated with the ESTAE routine.
Unauthorized or accidental destruction of the ESTAE routine is prevented because the
ESTAE cannot be canceled or overlaid unless the same token is specified.

With CT (create): ESTAE processing places the token created for this request in the
location specified by foken addr as well as in the ESTAE parameter list.

With OV (overlay): ESTAE processing locates the specified ESTAE routine for the
current RB and replaces the routine information. If there are any newer ESTAE routines
for the RB, they are deleted.

With 0 (cancel): ESTAE processing locates the specified ESTAE routine for the current
RB and deletes the routine. Any newer ESTAE routines for the RB are deleted.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and content of the
information specified are at the discretion of the user, and may be any valid coding
values.

Control returns to the instruction following the ESTAE macro instruction. When control
returns, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

00 Successful completion of ESTAE request.

04 ESTAE OV was specified with a valid exit address, but the current exit is either
nonexistent, not owned by the user’s RB, or is not an ESTAE exit.

oC Cancel or an exit address equal to zero was specified, and either there are no exits
for this TCB, the most recent exit is not owned by the caller, the most
recent exit is not an ESTAE exit, or the ESTAE was created with the TOKEN parameter
and on a delete request, either the token was not specified or does not match.

10 An unexpected error was encountered while processing this request.

14 ESTAE was unable to obtain storage for an SCB.

18 The ESTAE was created with the TOKEN parameter and on an

overlay request, either the token was not specified or does not match.

2-126 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Example 4

Example 5

Operation: If an error occurs, pass control to the ESTAE routine specified by register 4, allow
asynchronous exit processing, do not allow special error processing, do not branch enter SVC
60, and default to CT (create) and PURGE =NONE.

ESTAE (4),ASYNCH=YES, TERM=NO, BRANCH=NO

Operation: If an error occurs, pass control to the ESTAE routine specified by register 4. The
address of the ESTAE parameter list is in register 2. Place the token associated with this
ESTAE routine in TOKENFLD.

ESTAE (4),PARM=(2),TOKEN=TOKENFLD

Operation: If an error occurs, pass control to the ESTAE routine labeled ADDR, allow
synchronous exit processing, halt I/O, allow special error processing, branch enter SVC 60, use
the 72-byte save area at SADDR, and execute the execute form of the macro instruction.
EXEC is the label of the ESTAE parameter list built by a list form of the macro instruction
elsewhere in this program.

ESTAE ADDR,ASYNCH=YES,PURGE=HALT, TERM=YES,BRANCH=YES, X
SVEAREA=SADDR,MF=(E,EXEC)

Operation: Request an overlay of the existing ESTAE recovery routine with the following
options: the address of the parameter list is at PLIST, I/O will be halted, no asynchronous exits
will be taken, ownership will be transferred to the new request block resulting from any XCTL
macro instructions.

ESTAE ADDR,OV,PARAM=PLIST,XCTL=YES ,PURGE=HALT ,ASYNCH=NO

Operation: Provide the pointer to the recovery code in the register called EXITPTR, place the
address of the ESTAE parameter list in register 9. Register 8 points to the area where the
ESTAE parameter list (created with the MF =L option) was moved.

ESTAE (EXITPTR) ,PARAM=(9) ,MF=(E, (8))

ESTAE - Specify Task Abnormal Exit Extended 2-127

ESTAE (List Form)

The list form of the ESTAE macro instruction is used to construct a remote control program
parameter list.

The list form of the ESTAE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b ' One or more blanks must follow ESTAE.

exit addr exit addr: A-type address.

,JLPARAM = list addr list addr: A-type address.

,PURGE=NONE - Default: PURGE=NONE

,PURGE = QUIESCE

,PURGE=HALT

LASYNCH =YES Default: ASYNCH = YES

LASYNCH =NO

, TERM=NO Default: TERM =NO

,TERM =YES '

,RECORD =NO : Default: RECORD =NO

,RECORD =YES '

,RELATED = value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ESTAE macro instruction, with
the following exception:

MF=L
specifies the list form of the ESTAE macro instruction.

2-128 SPL: System Macros and Facilities Volume 2

ESTAE (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the ESTAE macro instruction. The control program parameter list can be generated by the
list form of the ESTAE macro instruction. Any combination of exit addr, PARAM =,
XCTL=, PURGE=, ASYNCH=, TERM =, RECORD =, and TOKEN = can be specified to

dynamically change the contents of the remote ESTAE parameter list. If TOKEN was

previously specified and is to be used again without change, TKNPASS =YES must be coded.

Any fields not specified on the macro instruction remain as they were before the current

ESTAE request was made.

The execute form of the ESTAE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ESTAE.
ESTAE
b One or more blanks must follow ESTAE.
gxit addr exit addr: RX-type address, or register (2) - (12).
,CT
,OV
,PARAM = list addr list addr: RX-type address, or register (2) - (12).
,XCTL=NO
,XCTL=YES

,PURGE=NONE
,PURGE =QUIESCE
,PURGE=HALT

LASYNCH=YES
LASYNCH=NO

,TERM =NO
,TERM=YES

,BRANCH =NO
,BRANCH =YES,
SVEAREA = save addr

,RECORD=NO
,RECORD =YES

,TOKEN = token addr

,TKNPASS=NO
,TKNPASS=YES

,RELATED =value
MF = (E,ctrl addr)

save addr: RX-type address, or register (2) - (12) or (13).

token addr: RX-type address, or register (2) - (12).
Default: TKNPASS =NO

value: any valid macro keyword specification.

ctrl addr: RX-type address, or register (1) or (2) - (12).

ESTAE (Execute Form)

2-129

The parameters are explained under the standard form of the ESTAE macro instruction, with
the following exceptions:

,TKNPASS=NO

,TJKNPASS=YES
specifies that a previously-specified token, indicated in the parameter list, should be
ignored (NO), or should remain part of the specification (YES).

JMF = (E,ctrl addr)

specifies the execute form of the ESTAE macro instruction using a remote control
program parameter list.

2-130 SPL: System Macros and Facilities Volume 2

ETCON - Connect Entry Table

The ETCON macro instruction connects one or more previously created entry tables to the
specified linkage table indexes in the current home address space. If an entry table is connected
to a system linkage index (an index reserved with the SYSTEM =YES option of the LXRES
macro instruction), the entry table is connected to the linkage table of every address space, both
present and future.

The restrictions on the use of the ETCON macro instruction are as follows:

e If an entry table contains entries that cause address space switches, the entry table owner
must have previously established authorization to issue PT and SSAR instructions to the
home address space.

e An entry table can be connected only once to a single linkage table.

e The linkage index and the entry table being connected must be under the same ownership.

Any violation of these restrictions causes the caller to be abnormally terminated.

The connection created by the ETCON macro instruction remains in effect until one of the
following occurs:

e The ETDIS macro instruction removes the connection.
e The entry table owner terminates.

e The address space to which the table is connected terminates unless the connection was to a
system linkage index.

e The system is re-IPLed.

The caller must be in supervisor state or PKM 0-7, executing in primary mode, enabled, and
unlocked. The parameter list passed to the ETCON macro instruction must be addressable in
primary mode at the time the macro instruction is issued. Register 13 must point to a standard
register save area that must also be addressable in primary mode.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are

saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

ETCON - Connect Entry Table 2-131

The ETCON macro instruction is written as follows:

name name.: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: RX-type address or register (0) - (12).
,LXLIST = addr addr: RX-type address or register (0) - (12).
,RELATED =value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = address
specifies the address of a list of fullword tokens representing the entry tables to be
connected to the linkage table. The first entry in the list must be the number of tokens
that follow (from 1 to 32). The tokens are the values returned in register 0 when the
ETCRE macro instruction is issued.

SJLXLIST = addr
specifies the address of a list of linkage index values to which the specified entry tables are
to be connected. The list contains fullword entries, the first of which must be the number
of linkage index values that follow (from 1 to 32). The number of linkage indexes must
be the same as the number of tokens. The first entry table is connected to the first
linkage index; the second entry table is connected to the second linkage index, and so on.

,RELATED =value
specifies information used to self document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 -The specified connections were successfully made.

2-132 SPL: System Macros and Facilities Volume 2

ETCON (List Form)

The list form of the ETCON macro instruction constructs a non- executable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form of the macro
instruction.

The list form of the ETCON macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: A-type address.
L,LXLIST = addr addr: A-type address.
,RELATED = value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ETCON macro instruction, with
the following exception:

MF=L ‘
specifies the list form of the ETCON macro instruction.

ETCON (List Form) 2-133

ETCON (Execute Form)

The execute form of the ETCON macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the ETCON macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCON.
ETCON
b One or more blanks must follow ETCON.
TKLIST = addr addr: RX-type address or register (0) - (12).
,LXLIST = addr addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.
MF = (E,cntl addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETCON macro instruction with
the following exception:

MF = (E,cntl addr)

specifies the execute form of the ETCON macro instruction. This form uses a remote
parameter list.

N\

2-134 SPL: System Macros and Facilities Volume 2

ETCRE - Create Entry Table

The ETCRE macro instruction causes a program call entry table to be built based upon
descriptions of each entry. A token representing the created entry table is returned to the
requestor. This token must be used in all subsequent references to the entry table.

The created entry table is owned by the cross memory resource ownership task in the current
home address space. When the cross memory resource ownership task terminates, entry tables
are disconnected and freed.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The list of descriptions specified by ENTRIES must also be addressable in
primary mode when the macro instruction is issued.

Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. On return,
register 0 contains the 32-bit token associated with the new entry table. The contents of register
1 are unpredictable.

The ETCRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETCRE.
ETCRE
b One or more blanks must follow ETCRE.
ENTRIES = addr addr: RX-type address of register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

ENTRIES = addr
specifies the address of the description of the entry table to be built. The entry table
description is a table consisting of a single 4 byte table header followed by one 20 byte
description element for each entry table entry to be built. The description elements must
appear in ascending sequence based on the entry index number. The ITHAETD mapping
macro defines the format to which the entry table description must conform as shown in
Figure 6.

ETCRE - Create Entry Table 2-135

An entry index value that does not have a description results in an invalid entry in the
entry table. If the program name field in an entry table description entry contains zeroes,
an invalid entry is created for that entry index. A program call to an invalid entry causes
the caller to be abnormally terminated. The ETCRE caller is abnormally terminated if
any of the reserved fields are nonzero or if the system cannot locate the specified program

name.

,RELATED =value

specifies information used to self-document macro instructions by relating functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

DESCRIPTION

ENTRY TABLE DESCRIPTION LIST
DESCRIBES THE INPUT LIST TO
THE ETCRE MACRO.

FORMAT NUMBER MUST BE ZERO
RESERVED MUST BE ZERO

NUMBER OF ENTRY DESCRIPTIONS
THAT FOLLOW (MAX OF 256)
ELEMENT DESCRIPTION. ONE

FOR EACH ENTRY TO BE ASSIGNED

INDEX FOR THIS ENTRY (O ORIGIN)
FLAG BYTE

IF ONE, THE PROGRAM IS TO
EXECUTE IN SUPERVISOR STATE,
IF ZERO, PROBLEM STATE

CROSS MEMORY SPACE SWITCH. IF
ZERO THE ENTRY WILL NOT CAUSE
A SPACE SWITCH. IF ONE, THE
PROGRAM WILL EXECUTE IN THE
ADDRESS SPACE OF THE CREATOR
OF THE ENTRY TABLE WITH THE
AUTHORIZATION OF THAT ADDRESS
SPACE.

RESERVED. MUST BE ZERO -
RESERVED. MUST BE ZERO

PROGRAM NAME OR THE VIRTUAL
ADDRESS TO BE GIVEN CONTROL.

IF A PROGRAM NAME, THE NAMED
PROGRAM MUST BE ON THE ACTIVE
LPA QUEUE (FLPA OR MLPA) OR

BE IN THE PLPA. IF AN ADDRESS,
ETDPRO1 MUST BE ZERO AND

ETPRO2 MUST BE THE ADDRESS.

BIT O OF THE ADDRESS FIELD
SPECIFIES THE ADDRESSING MODE

IN WHICH THE ROUTINE IS TO RECEIVE
CONTROL. (IF SET TO 1, THE
ADDRESSING MODE IS 31-BIT; IF
SET TO 0, THE ADDRESSING MODE IS
24-BIT.

OFFSETS TYPE LENGTH NAME
0 (0) STRUCTURE 4 ETD
0 (0) UNSIGNED 1 ETDFMT
1 (1) UNSIGNED 1 ETDRSV1
2 (2) UNSIGNED 2 ETDNUM
0 (0) STRUCTURE 20 ETDELE
0 (0) UNSIGNED 1 ETDEX
1 (1) BITSTRING 1 ETDFLG
loee eune ETDSUP
B A ETDXM
.11 1111 ETDRSV2
2 (2) UNSIGNED 2 ETDRSV3
4 (4) CHARACTER 8 ETDPRO
4 (4) UNSIGNED 4 ETDPRO1
8 (8) A-ADDRESS 4 ETDPRO2

Figure 6 (Part 1 of 2).

2-136

IHAETD Mapping Macro

SPL: System Macros and Facilities Volume 2

SECOND WORD OF ETDPRO

OFFSETS

12 (C)

14 (E)

15 (F)

16 (10)

TYPE

BITSTRING

DT e s e

ceew o1,
B
B &
BITSTRING

CHARACTER

LENGTH

NAME

2 ETDAKM

ETDAKO
ETDAK1
ETDAK2
ETDAK3
ETDAK4
ETDAKS5
ETDAKG6
ETDAK7

ETDAKS
ETDAKY
ETDAKA
ETDAKB
ETKAKC
ETDAKD
ETDAKE
ETDAKF
2 ETDEKM

ETDEKO
ETDEK1
ETDEK2
ETDEK3
ETDEK4
ETDEK5
ETDEK6
ETDEK7
ETDEKS
ETDEK9
ETDEKA
ETDEKB
ETDEKC
ETDEKD
ETDEKE
ETDEKF

4 ETDPAR

Figure 6 (Part 2 of 2). IHAETD Mapping Macro

When control returns, register 15 contains the following return code:

Hexadecimal
Code

0

Meaning

DESCRIPTION

16 BIT AUTHORIZED KEY MASK.
BIT O REPRESENTS KEY O,

IF A BIT IS ON, THE
CORRESPONDING KEY IS

AUTHORIZED TO CALL THIS ENTRY

BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING

REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING

16 BIT EXECUTION

BIT O REPRESENTING KEY O, ETC.
IF A BIT IS ON, THE CALLED

KEY
KEY
KEY
KEY
KEY
KEY

KEY
KEY
KEY
KEY

NOUTAWNRO

MASK.

PROGRAM IS AUTHORIZED TO

USE
BIT
BIT
BIT
BIT
BIT
BIT
BIT

THE KEY.

REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING
REPRESENTING

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY

oo oUulbdbwihEFLO

PARAMETER TO BE PASSED
TO THE CALLED PROGRAM.

The entry table is successfully created.

ETCRE - Create Entry Table

ETC.

2-137

ETDES - Destroy Entry Table

The ETDES macro instruction destroys a previously-created entry table. Only the address
space that owns the entry table can destroy it. At the time ETDES is issued, the entry table
must not be connected to any linkage tables unless PURGE = YES is coded. If any outstanding
connections still exist and PURGE = YES is not coded, the entry table is not destroyed and the
caller is abnormally terminated.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area the must be addressable in
primary mode. The parameter list passed to ETDES must also be addressable in primary mode
at the time ETDES is issued.

Registers 2 - 14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The

contents of registers 0 and 1 are unpredictable.

The ETDES macro instruction is written as follows:

name name. symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: RX-type address or register (0) - (12).
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:
TOKEN = addr

specifies the address of the fullword token (returned by the ETCRE macro instruction)
associated with the entry table to be destroyed.

2-138 SPL: System Macros and Facilities Volume 2

JLURGE=NO
,PURGE=YES

specifies whether (YES) or not (NO) the entry table is to be disconnected from all linkage
tables and then destroyed.

,RELATED =value

specifies information used to self-document macro instructions by “relating” functions or

services to corresponding services. The format and contents of the information specified
can be any valid coding values.

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
0 The specified entry table was destroyed.
There were no connections to linkage indexes.
4 The specified entry table was destroyed. There

were connections to linkage indexes, PURGE = YES was
specified, and the entry table was disconnected.

ETDES - Destroy Entry Table 2-139

ETDES (List Form)

The list form of the ETDES macro instruction constructs a non-executable parameter list. The

execute form of the macro can refer to this parameter list, or a copy of it for reentrant
programs.

The list form of the ETDES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: A-type address.
,PURGE=NO Default: PURGE=NO
,PURGE=YES
,RELATED =value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the ETDES macro instruction with
the following exception:

\JMF =L
specifies the list form of the ETDES macro instruction.

2-140 SPL: System Macros and Facilities Volume 2

ETDES (Execute Form)

The execute form of the ETDES macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the ETDES macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDES.
ETDES
b One or more blanks must follow ETDES.
TOKEN = addr addr: RX-type address or register (0) - (12).
LPURGE=NO Default: PURGE =NO
,PURGE=YES ’
,RELATED =value value: any valid macro keyword specification.
,MF = (E,cntl addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the ETDES macro instruction with
the following exception:

MF =(E,cntl addr)

specifies the execute form of the ETDES macro instruction. This form uses a remote
parameter list.

ETDES (Execute Form) 2-141

ETDIS - Disconnect Entry Table

The ETDIS macro instruction disconnects one or more entry tables from the home address
space’s linkage table.

The caller must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed by the requestor must also be addressable in primary
mode at the time the macro is issued.

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the return code. The
contents of registers 0 and 1 are unpredictable.

The ETDIS macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede ETDIS.
ETDIS
b One or more blanks must follow ETDIS.
TKLIST = addr addr: RX-type address or register (0) - (12).
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

TKLIST = addr
specifies the address of a list of 1 to 32 fullword tokens, returned by the ETCRE macro
instruction, identifying the entry tables to be disconnected from the home address space’s
linkage table. The first entry of the list must be a fullword count of the number of tokens
(1 to 32) in the list.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding services performed elsewhere. The format and contents of the
. information specified can be any valid coding values.

When control returns, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The entry table is successfully disconnected.

2-142 SPL: System Macros and Facilities Volume 2

EVENTS - Wait for One or More Events to Complete

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The EVENTS macro instruction is a functional specialization of the WAIT ECBLIST = macro
facility with the advantages of notifying the program that events have completed and the order
in which they completed.

The macro performs the following functions:

® Creates and deletes EVENTS tables.

e Initializes and maintains a list of completed event control blocks.

e Provides for single or multiple ECB processing.

The description of the EVENTS macro instruction follows. The EVENTS macro instruction is
also described in Supervisor Services and Macro Instructions with the exception of the
BRANCH parameter. This parameter is restricted to programs that run in supervisor state, key
0, and own the LOCAL lock.

Note: CML (cross memory local) lock means the local lock of an address space other than the

home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

EVENTS - Wait for One or More Events to Complete 2-143

The EVENTS macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede EVENTS.
EVENTS
b : One or more blanks must follow EVENTS.
ENTRIES = nmbr nmbr: decimal digits 1-32767.
ENTRIES = DEL,TABLE = tab addr tab addr: symbol, RX-type address, or register (2) - (12).
TABLE = tab addr Note: If the ENTRIES parameter is specified as indicated in the first two
formats, no other parameters may be specified.
L,ECB=ecb addr ech addr: symbol, RX-type address, or register (2) - (12).
,LAST = last addr last addr: symbol, RX-type address, or register (2) - (12).
Note: If LAST is specified, WAIT must also be specified.
,WAIT=YES
,WAIT=NO
,BRANCH =NO Default: BRANCH=NO
,BRANCH =YES

The parameters are explained below:

ENTRIES =n _
n is a decimal number from 1 to 32,767 which specifies the maximum number of
completed ECB addresses that can be processed in an EVENTS table concurrently.

Note: When this parameter is specified, no other parameter should be specified.
ENTRIES = DEL, TABLE = tab addr
specifies that the EVENTS table whose address is specified by TABLE = tab addr is to be
deleted. The user is responsible for deleting all of the tables he creates; however, all
existing tables are automatically freed at task termination.
Notes:
1. When this parameter is specified, no other parameter should be specified.
2. TABLE resides in 24-bit addressable storage.
TABLE = tab addr , »
specifies either a register number or the address of a word containing the address of the
EVENTS table associated with the request. The address specified with the operand
TABLE must be that of an EVENTS table created by this task.

Note: TABLE resides in 24-bit addressable storage.

2-144 SPL: System Macros and Facilities Volume 2

SWAIT=NO

,WAIT =YES _
specifies whether or not to put the issuing program in a wait state when there are no
completed events in the EVENTS TABLE (specified by the TABLE = parameter).

LECB=ech addr
specifies either a register number or the address of a word containing the address of an
event control block. The EVENTS macro instruction should be used to initialize any
event-type ECB. To avoid the accidental destruction of bit settings by a system service
such as an access method, the ECB should be initialized after the system service that will
post the ECB has been initiated (thus making the ECB eligible for posting) and before the
EVENTS macro is issued to wait on the EVENTS table.
Notes:
1. Register 1 should not be specified for the ECB address.
2. This parameter may not be specified with the LAST = parameter.
3. The ECB can reside above or below 16 megabytes.

4. If only ECB initialization is being requested, neither WAIT= NO nor WAIT=YES
should be specified, to prevent any unnecessary WAIT processing from occurring.

LJLAST = last addr
specifies either a register number or the address of a word containing the address of the
last EVENT parameter list entry processed.
Notes:
1. Register 1 should not be specified for the LAST address.
2. This parameter should not be specified with the ECB= parameter.
3. The WAIT macro must also be specified.
4. LAST resides in 24-bit addressable storage.
,BRANCH =NO
,BRANCH=YES

specifies that an SVC entry (BRANCH =NO) or a branch entry (BRANCH=YES) is to
be performed.

EVENTS - Wait for One or More Events to Complete 2-145

Exami)le 1

The following shows total processing via EVENTS

EVENTS and ECB Initialization

EVENTS ENTRIES=1000

ST R1,TABADD

WRITE ECBA

LA R2,ECBA...

EVENTS TABLE=TABADD,ECB=(R2)

Parameter List Processing

EVENTS TABLE=TABADD, WAIT=YES
LR R3,R1 PARMLIST ADDR
B LOOP2 GO TO PROCESS ECB
LOOP1 EVENTS TABLE=TABADD,WAIT=YES,LAST=(R3)
LR R3,R1 ' SAVE POINTER
LOOP2 EQU * PROCESS COMPLETED EVENTS
™ O0(R3),X'80' TEST FOR MORE EVENTS
BO LOOP1 IF NONE, GO WAIT
LA R3,4(,R3) GET NEXT ENTRY
B LOOP2 GO PROCESS NEXT ENTRY

Deleting EVENTS Table

EVENTS TABLE=TABADD, ENTRIES=DEL

TABADD DS F
Example 2

Processing One ECB at a Time.

EVENTS
ST

NEXTREC GET
ENQ
READ
LA
EVENTS

WRITE

LA
RETEST EVENTS

LTR

BNZ

B

TABLE DS

2-146 SPL: System Macros and Facilities Volume 2

ENTRIES=10
1,TABLE

TPDATA,KEY
(RESOURCE , ELEMENT,E, , SYSTEM)
DECBRW,KU,,'S',MF=E

3,DECBRW

TABLE=TABLE,ECB=(3) ,WAIT=YES

DECBRW, K, MF=E

3,DECBRW
TABLE=TABLE,ECB=(3) ,WAIT=NO
1,1

NEXTREC

RETEST

F

EXTRACT - Extract TCB Information

The EXTRACT macro instruction causes the control program to provide information from
specified fields of the task control block or a subsidiary control block for either the active task
or one of its subtasks. The control program places the information in an area that the problem
program provides. For a description of this area see “Providing an EXTRACT Answer Area”
in the Subtask Creation and Control section in Volume 1. When the extract macro is issued, its
parameter list must reside in 24-bit addressable storage.

Notes:

1. If the EXTRACT macro is used to obtain the TIOT in order to find the UCB, it is the user’s
responsibility to ensure that the TIOT contains the UCB address. To find the UCB address,
refer to the topic “Finding the UCB Address” in Volume 1.

2. Because the parameter list for EXTRACT must be in 24-bit addressable storage, the standard
form of the EXTRACT macro can only be issued by programs residing in 24-bit addressable

storage

The standard form of the EXTRACT macro instruction is written as follows:

name name: symbol. Begin rname in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: A-type address, or register (2) - (12).
87 tch addr: A-type address, or register (2) - (12).
Jteb addr Default: ‘S’
LJFIELDS = (tcb info) teb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT - TID
AETX COMM ASID

The parameters are explained as follows:

answer addr
specifies the address of the answer area to contain the requested information. The area is
one or more fullwords, starting on a fullword boundary. The number of fullwords must
be the same as the number of fields specified in the FIELDS parameter, unless ALL is
coded. If ALL is coded, seven fullwords are required.

Note: answer addr resides in 24-bit addressable storage.

EXTRACT - Extract TCB Information 2-147

,GS’
,tch addr

specifies the address of a fullword on a fullword boundary containing the address of a
task control block for a subtask of the active task. If ‘S’ is coded or is the default, no
address is specified and the active task is assumed.

Note: The TCB address resides in 24-bit addressable storage.

LJFIELDS = (tch info)

specifies the task control block information requested:

ALL

GRS

FRS

AETX

PRI

CMC
TIOT

COMM

TSO

PSB

TJID

ASID

Example 1

requests information from the GRS, FRS, reserved, AETX, PRI, CMC, and TIOT fields. (If
ALL is specified, 7 words are required just for ALL.)

is the address of the save area used by the control program to save the general registers 0-15
when the task is not active.

is the address of the save area used by the control program to save the floating point registers
0, 2, 4, and 6 when the task is not active.

is the address of the end of task exit routine specified in the ETXR parameter of the
ATTACH macro instruction used to create the task.

is the current limit (third byte) and dispatching (fourth byte) priorities of the task. The two
high-order bytes are set to zero.

is the task completion code. If the task is not complete, the field is set to zero.

is the address of the task input/output table.

is the address of the command scheduler communications list. The list consists of a pointer to
the communications event control block and a pointer to the command input buffer, and a
token. (If a token exists, the high order bit of the token field is set to one). The token is used
only with internal START commands. See “Issuing an Internal Start Command” in Volume
1.

is the address of a byte in which a high bit of 1 indicates a TSO address space, and a high bit
of 0 indicates a non-TSO address space.

is the address of the TSO protected step block, which is extracted from the job step control
block.

is the address space identifier (ASID) for a TSO address space, and zero for a non-TSO
address space.

is the address space identifier.

Operation: Provide information from all the fields of the indicated TCB except ASID.
WHERE is the label of the answer area, ADDRESS is the label of a fullword that contains the
address of the subtask TCB for which information is to be extracted.

EXTRACT WHERE,ADDRESS,FIELDS=(ALL,TSO,COMM,PSB,TJID)

2-148 = SPL: System Macros and Facilities Volume 2

Example 2

Operation: Provide information from the current TCB, as above.

EXTRACT WHERE,'S',FIELDS=(ALL,TSO,COMM,PSB,TJID)

Example 3

Operation: Provide information from the command scheduler communications list. ANSWER
is the label of the answer area and TCBADDR is the label of a fullword that contains the
address of the subtask TCB from which information is to be extracted.

EXTRACT ANSWER,TCBADDR,FIELDS=(COMM)

EXTRACT - Extract TCB Information 2-149

EXTRACT (List Form)

The list form of the EXTRACT macro instruction is used to construct a remote control
program parameter list.

The list form of the EXTRACT macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: A-type address.
,'S? teb addr: A-type address.
,teb addr Default: ‘S’
LJIELDS = (tcb info) teb info: any combination of the following, sepéu'ated by commas:
ALL PRI TSO '
GRS CMC PSB
FRS TIOT TIID
AETX COMM ASID
JMF=L

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exception:

JMF=L
specifies the list form of the EXTRACT macro instruction.

2-150 SPL: System Macros and Facilities Volume 2

EXTRACT (Execute Form)

The execute form of the EXTRACT macro instruction uses, and can modify, a remote control
program parameter list. If the FIELDS parameter, restricted in use, is coded in the execute
form, any TCB information specified in a previous FIELDS parameter is canceled and must be
respecified if required for this execution of the macro instruction.

The execute form of the EXTRACT macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede EXTRACT.
EXTRACT
b One or more blanks must follow EXTRACT.
answer addr answer addr: RX-type address, or register (2) - (12).
S) tch addr: RX-type address, or register (2) - (12).
,tcb addr ’
LJFIELDS = (tcb info) teb info: any combination of the following, separated by commas:
ALL PRI TSO
GRS CMC PSB
FRS TIOT TJID
AETX COMM ASID
JMF = (E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the EXTRACT macro instruction,
with the following exception:

JMF =(E, ctrl addr)
specifies the execute form of the EXTRACT macro instruction using a remote control

program parameter list.

Note: The parameter list must reside in 24-bit addressable storage.

EXTRACT (Execute Form) 2-151

FESTAE - Fast Extended STAE

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the issuer is executing in 31-bit addressing mode.

FESTAE users executing in 31-bit addressing mode (the A bit in the PSW is on) must recompile
using the MVS/XA FESTAE macro expansion so that the exit routine gets control in 31-bit
addressing mode.

The FESTAE macro instruction allows an SVC to establish an ESTAE recovery routine with
minimal overhead and no locking requirements. The ESTAE routine activated by FESTAE
receives control in the same sequence and under the same conditions as though created by the
ESTAE macro instruction. The FESTAE macro instruction can be issued in cross memory
mode as long as the currently addressable address space is the home address space. The
interface to the FESTAE exit is described in Volume 1 under “Using the FESTAE Macro
Instruction.”

2-152 SPL: System Macros and Facilities Volume 2

The FESTAE macro expansion has no external linkage. The macro instruction is written as

follows:
name name: symbol. Begin name in column 1.
b One or more blanks must precede FESTAE.
FESTAE
b One or more blanks must follow FESTAE.

0,WRKREG =work reg addr
EXITADR =exit addr

,RBADDR = svrb addr

,TCBADDR =tcb addr

work reg addr: Register (1) - (14).
exit addr: Register (1) - (14).

svrb addr: Register (1) - (14).

teb addr: Register (1) - (14).

,LPARAM =list addr list addr: Register (1) - (14).
XCTL=NO Default: XCTL =NO
,XCTL=YES

,PURGE=NONE Default: PURGE =NONE
,LURGE=HALT

,PURGE = QUIESCE

,LASYNCH =YES Default: ASYNCH=YES
LASYNCH=NO

,TERM=NO Default: TERM =NO
,TERM=YES

,RECORD =NO Default: RECORD=NO
,RECORD =YES

LERRET = label label: any valid assembler name.

The parameters are explained as follows:

0,WRKREG =work reg addr

specifies that the current ESTAE routine be canceled if it was created by FESTAE. An
error occurs if the current ESTAE routine was not created by FESTAE. A work register
must be specified for use by the FESTAE macro expansion.

LEXITADR = exit addr

specifies a register that contains the address of an ESTAE routine to be entered if the task
terminates abnormally. This register is used subsequently as a work register.

,RBADDR = svrb addr

specifies a register that contains the address of the current SVRB prefix (RBPRFX).
RBADDR must be specified if EXITADR has also been specified. The specified register

is not altered.

FESTAE - Fast Extended STAE 2-153

,TCBADDR = tcb addr
specifies the register containing the current TCB address. This register is not altered, and
its specification results in the generation of more efficient code.

Note: The TCB resides in storage below 16 megabytes.

JPARAM = [ist addr
specifies the register containing the address of a user-defined parameter list that contains
data to be used by the ESTAE routine. The routine receives this address when it is
scheduled for execution.

The use of this parameter list is optional, but the user should zero out any spurious data
it might contain whether or not he intends to use it. If the user does not select the
PARAM option, the routine receives instead the 24-byte parameter area in the SVRB. In
this case, the user must locate this SVRB parameter area and initialize it with appropriate
data.

L,ERRET = label
specifies a label within the CSECT issuing the FESTAE for which addressability has been
established. The FESTAE macro instruction branches to this label if it is returning a
code other than zero. This option saves the user the instructions necessary to check the
return code. If the user does not specify the ERRET option, control returns instead to
the instruction immediately following the FESTAE macro instruction. The return code is
in register 15.

All the other FESTAE parameters have the same meanfng as their ESTAE counterparts. -

Upon conclusion of FESTAE processing, control resumes at the instruction following the
FESTAE macro instruction. Register 15 then contains one of the following return codes:

Hexadecimal
Code Meaning
00 Successful completion of the FESTAE request.
08 A previous create has been issued with FESTAE for
this SVRB; the request has been ignored.
oC Cancel has been specified under one of the following
conditions:

1) There is no exit for this TCB.
2) The most recent exit is not owned by the caller.
3) The most recent exit was not created by FESTAE.

Example 1

Operation: In case of an abnormal termination, execute the ESTAE routine specified by
register 2, allow asynchronous processing, do not allow special error processing, default to
PURGE=NONE, and pass the parameter list pointed to by register 7 to the ESTAE routine.

FESTAE EXITADR=(REG2),RBADDR=(REG3),TCBADDR=(REG6), X
PARAM=(REG7) ,ASYNCH=YES, TERM=NO

2-154 SPL: System Macros and Facilities Volume 2

FREEMAIN - Free Virtual Storage

The FREEMAIN macro instruction releases one or more areas of virtual storage, or an entire
virtual storage subpool, previously assigned to the active task as a result of a GETMAIN
macro instruction. FREEMAIN is supported in a cross memory environment. The active task
is abnormally terminated if the specified virtual storage does not start on a doubleword
boundary or, for an unconditional request, if the specified area or subpool is not currently
allocated to the active task. Register 15 is set to 0 to indicate successful completion. For a
conditional FREEMAIN, register 15 is set to 4 if the specified area or subpool is not currently
allocated to the active task.

In the parameters discussed below, EU, LU, and VU specify unconditional requests and result
in the same processing as E, L, and V, respectively. The two formats for these requests are
available to maintain compatibility with the GETMAIN formats. Users of the FREEMAIN
macro instruction who are freeing virtual storage with addresses greater than 16 megabytes
must use either the RC or RU form of the macro instruction. All addresses specified with the
RC or RU form of the macro are treated as 31-bit addresses.

The description of the FREEMAIN macro instruction follows. The FREEMAIN macro
instruction is also described in Supervisor Services and Macro Instructions with the exception of
the BRANCH and KEY parameters. These parameters are restricted to programs running
supervisor state, key 0 and, therefore, are only described here.

FREEMAIN - Free Virtual Storage 2-155

The standard form of the FREEMAIN macro instruction is written as follows:

name
b
FREEMAIN
b

name: symbol. Begin name in column 1.

One or more blanks must precede FREEMAIN.

One or more blanks must follow FREEMAIN:

LC,LA = length addr
LU,LA =length addr
L,LA =length addr
vC

VU

\Y%

EC,LV = length value
EU,LV = length value
E,LV =length value
RC,LV =length value
RC,SP = subpool nmbr
RU,LV =length value
RU,SP = subpool nmbr
R,LV =length value
R,SP = subpool nmbr

A= addr

,SP = subpool nmbr

,BRANCH=YES

,BRANCH =(YES,GLOBAL)

JKEY =nmbr

,RELATED = value

length addr: A-type address, or register (2) - (12).
length value: symbol, decimal digit, or register (2) - (12). If R is
specified, register (0) may also be specified.
subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12).
Notes: 1. If R,SP=(0) is specified with no other parameters, the high
order byte of register 0 must contain the subpool number
and the low order 3 bytes must contain zero.
2. For a subpool FREEMAIN, if RC,SP = subpool numbr or
RU,SP = subpool nmbr or R,SP = subpool nmbr is specified,
no other parameters except RELATED can be specified.
3. RC and RU are the only parameters that can be
used to free storage above 16 megabytes.

addr: A-type address, or register (2) - (12).
Note: If R, RC, or RU is coded, register (1) can also be specified.

subpool nmbr: symbol, decimal digit, or register (2) - (12).
If R,SP=(0) is specified, the high order byte of register 0 must contain the
subpool number and the low order 3 bytes must contain the length value.

Note: BRANCH =(YES,GLOBAL) may be specified with

RC or RU above. Also, the macro expansion uses register 4 for

the address of the global save area pointed to by the CVT. The previous
contents of register 4 is overridden.

nmbr: decimal digits 0-15, or register (2) - (12).

Note: This parameter may be specified only with BRANCH and RC or RU

above.

value: any valid macro keyword specification.

2-156 SPL: System Macros and Facilities Volume 2

The parameters are explained below:

LC,LA = length addr
LU,LA =/length addr
L,LA =length addr
vC

\48)

\Y

EC,LV =length value
EU,LYV =length value
E,LV = length value
RC,LV = length value
RC,SP = subpool nmbr
RU,LYV =length value
RU,SP = subpool nmbr
R,LV =length value
R,SP = subpool nmbr

specifies the type of FREEMAIN request:

LC, LU, and L indicate conditional (LC) and unconditional (LU and L) list requests and
specify release of one or more areas of virtual storage. The length of each virtual storage
area is indicated by the values in a list beginning at the address specified in the LA
parameter. The address of each of the virtual storage areas must be provided in a
corresponding list whose address is specified in the A parameter. All virtual storage areas
must start on a doubleword boundary.

VC, VU, and V indicate conditional (VC) and unconditional (VU and V) variable
requests and specify release of single areas of virtual storage. The address and length of
the virtual storage area are provided at the address specified in the A parameter.

EC, EU, and E indicate conditional (EC) and unconditional (EU and E) element requests
and specify release of single areas of virtual storage. The length of the single virtual
storage area is indicated in the LV parameter. The address of the virtual storage area is
provided at the address indicated in the A parameter.

RC, RU, and R indicate conditional (RC) and unconditional (RU and R) register
requests and specify release of single areas of virtual storage from the subpool indicated,
or specifies release of the entire subpool indicated. If the release is not for the entire
subpool, the address of the virtual storage area is indicated in the A parameter. The
length of the area is indicated in the LV parameter. The virtual storage area must start
on a doubleword boundary. '

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if the
virtual storage being freed is not allocated to the active task. However some abends
cannot be prevented. An unconditional request indicates that the task is to be

abnormally terminated in this situation.

2. Callers in either 24-bit or 31-bit addressing mode can use RC or RU to free storage
above 16 megabytes.

3. If the address of the area to be freed is greater than 16 megabytes, you must use RC or
RU.

FREEMAIN - Free Virtual Storage -. 2-157

LA specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. One word is required for each virtual storage area to be released; the
high-order bit in the last word must be set to 1 to indicate the end of the list. Each word
must contain the required length in the low-order three bytes. The fullwords in this list
must correspond with the fullwords in the associated list specified in the A parameter.

The words must not be in the area to be released. If this rule is violated and if the words
are the last allocated items on a virtual page, the whole page is returned to storage and
the FREEMAIN abends with an 0C4.

LV specifies the length, in bytes, of the virtual storage area being released. The value
should be a multiple of 8; if it is not, the control program uses the next high multiple of
8. If R is coded, LV=(0) may be designated; the high-order byte of register 0 must
contain the subpool number, and the low-order three bytes must contain the length (in
this case, the SP parameter is invalid).

= addr
specifies the virtual storage address of one or more consecutive fullwords starting on a
fullword boundary. The input should not reside within the area to be released. If this
rule is violated and if the input is within the area and is the last allocated item on a
virtual page, the whole page is returned to storage and the FREEMAIN abends with an
0C4. If E, EC, EU, R, RC, or RU is designated, one word, which contains the address of
the virtual storage area to be released, is required. If V, VC, or VU is coded, two words
are required; the first word contains the address of the virtual storage area to be released,
and the second word contains the length of the area to be released. If L, LC, or LU is
coded, one word is required for each virtual storage area to be released; each word
contains the address of one virtual storage area. If R, RC, or RU is coded, any of the
registers 1 through 12 can be designated, in which case the address of the virtual storage
area, not the address of the fullword, must have previously been loaded into the register.

»SP =subpool nmbr
specifies the subpool number of the virtual area to be released. The subpool number can
be between 0 and 255. The SP parameter is optional and if omitted, subpool 0 is
assumed. If R is coded, SP=(0) can be designated, in which case the subpool number
must be previously loaded into the low-order byte of register 0.

For subpool freemains, the SP parameter specifies the number of the subpool to be
released. Subpool freemains can be issued only for the following subpools: 1-127, 229,
230, 233, 236, 237, 240, and 250-253; and if the caller is in key 0, subpool 0. Any attempt
to issue a subpool freemain for any other subpool causes a 478 or 40A abend. (See
Volume 1 for a list of the characteristics of the valid subpools.) If R,SP=(0) is specified
with no other parameters, the high-order byte byte of register 0 must contain the subpool
number and the low-order 3 bytes must contain zero.

,BRANCH=YES

,BRANCH =(YES,GLOBAL)
specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is
specified, the entry point to service global storage requests without the need for the local
address space lock will be used. However, the caller must not hold any lock higher than
the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG lock (for
subpools 231 and 241) and the caller must be disabled.

If BRANCH =YES is specified, the caller must pre-load register 4 with the TCB address,
pre-load register 7 with the ASCB address, and hold the local address space lock of the

2-158 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

ASCB address specified in register 7 prior to entry. Register 3 will be destroyed if RC or
RU was specified.

Callers in cross memory mode can use the BRANCH = YES parameter of the
FREEMAIN macro instruction. If the caller is in cross memory mode, the storage is freed
in the currently addressable address space. The caller must hold the CML lock for the
currently addressable address space; load register 7 with the address of the ASCB of the
currently addressable address space; and load register 4 with zero or the address of a TCB
in the currently addressable address space. If register 4 contains a zero, the storage that is
freed is associated with the current job step task that owns the cross memory resources in
the currently addressable address space (that is, the TCB anchored in ASCBXTCB).

If BRANCH = (YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control is returned to the
caller. Additionally, the SP parameter may only designate subpools 226,227, 228, 231,
239, 241, or 245.

JKEY =key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage was
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be freed in the specified storage protection key.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid coding values.

When control is returned, register 15 contains one of the following return codes. A code
other than 0 is possible only for conditional forms.

Hexadecimal

Code Meaning

00 Virtual storage was freed.

04 Not all virtual storage was freed.

08 Part of area being freed is still fixed.
This condition causes an A78, A0S, or AOA abend unless
the TCBEOTFM indicator is on.

12 Page table is paged out.

Operation: Free 400 bytes of storage addressed by register 2 via a branch entry. If the storage
is successfully freed, register 15 contains 0; otherwise, register 15 contains a nonzero value.

FREEMAIN EC,LV=400,A=(2),BRANCH=YES

Operation: Free 48 bytes of the storage (addressed by register 5) in subpool 231. Register 3
has been preset to contain the storage key of the storage to be released. If the request is
unsuccessful, the caller is abnormally terminated.

FREEMAIN RU,LV=48,A=(5),SP=231,KEY=(3) ,BRANCH=(YES,GLOBAL)

FREEMAIN - Free Virtual Storage 2-159

FREEMAIN (List Form)

Use the list form of the FREEMAIN macro instruction to construct a nonexecutable control
program parameter list.

The list form of the FREEMAIN macro instruction is written as follows:

name . name: symbol. Begin name in column 1.

b A One or more blanks must precede FREEMAIN.
FREEMAIN

b . One or more blanks must follow FREEMAIN.

LC
LU
L
vC
\'48)
v
EC
EU
E

,LA =length addr length addr: A-type address.
,LV =length value length value: symbol or decimal digit.
Notes: 1. LA may only be specified with LC, LU, or L above.
2. LV-may only be specified with EC, EU, or E above.

LA =addr addr: A-type address.

SP = subpool nmbr subpool nmbr: symbol or decimal digit.

,RELATED =value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions:

MF=L :
specifies the list form of the FREEMAIN macro instruction.

2-160 SPL: System Macros and Facilities Volume 2

FREEMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the FREEMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN.

The execute form of the FREEMAIN macro instruction is written as follows:

name name: symbol. Begin name in column 1.

b One or more blanks must precede FREEMAIN.
FREEMAIN

b One or more blanks must follow FREEMAIN.

1C
LU
L
vC
vu
v
EC
EU
E

,LA=length addr length addr: RX-type address or register (2) - (12).
,LV = length value length value: symbol, decimal digit, or register (2) - (12).
Notes: 1. LA may only be specified with LC, LU, or L above.
2. LV may only be specified with EC, EU, or E above.

LA =addr addr: RX-type address, or register (2) - (12).
,SP=subpobl nmbr subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12).
,BRANCH =YES
,RELATED =value value: any valid macro keyword specification.
JMF = (E,ctrl prog) ctrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the FREEMAIN macro instruction,
with the following exceptions: ’

JMF =(E,ctrl prog)

specifies the execute form of the FREEMAIN macro instruction using a remote control
program parameter list.

FREEMAIN (Execute Form) 2-161

GETMAIN - Allocate Virtual Storage

The GETMAIN macro instruction requests the control program to allocate one or more areas
of virtual storage to the active task. For task related subpools, the virtual storage areas are
allocated from the specified subpool in the virtual storage area assigned to the associated job
step. The virtual storage areas each begin on a doubleword or page boundary and are not
cleared to 0 when allocated. (The storage is zeroed for the first allocation of a page.) The total
of the lengths specified must not exceed the length available. For most subpools, the storage
will be released when the task assigned ownership terminates, or through the use of the
FREEMAIN macro instruction. For information on when storage that is obtained with a
GETMAIN macro is released, see MVS/XA System Logic Library: Virtual Storage
Management, LY28-1790.

The options R, LC, LU, VC, VU, EC, or EU can be used by callers in either 24-bit or 31-bit
addressing mode. If one of these options is specified, storage area addresses and lengths will be
treated as 24-bit'addresses and values. The parameter list addresses and the pointers to the
length and address lists in the parameter lists (if present) will be treated as 31-bit addresses if
the caller’s addressing mode is 31-bit; otherwise, they will be treated as 24-bit addresses.

The options RU, RC, VRU, and VRC can be used by callers in either 24-bit or 31-bit
addressing mode. However, all values and addresses will be treated as 31-bit values and
addresses. The GETMAIN macro is also described in Supervisor Service and Macro Instructions
with the exception of the BRANCH and KEY parameters. These parameters are restricted in
use to programs running supervisor state, key 0.

2-162 spL: Sy‘stem Macros and Facilities Volume 2

The description of the GETMAIN macro instruction follows.

name
b
GETMAIN
b

name: symbol. Begin name in column 1.

One or more blanks must precede GETMAIN.

One or more blanks must follow GETMAIN.

LC,LA = length addr,A = addr
LU,LA = length addr,A = addr
VC,LA =length addr,A = addr
VU,LA = length addr,A = addr
EC,LV =length value,A = addr
EU,LV =length value, A = addr
RC,LV =length value

RU,LV =length value

R,LV =length value

VRC,LV = (maximum length value,
minimum length value)

VRU,LV = (maximum length value,
minimum length value)

,SP = subpool nmbr

,BNDRY =DBLWD
,BNDRY =PAGE

,BRANCH = YES
,BRANCH = (YES,GLOBAL)

JKEY =key number

,LOC=BELOW
,LOC=(BELOW,ANY)
,LOC=(ANY)
,LOC=(ANY,ANY)
,LOC=RES

,LOC = (RES,ANY)

,RELATED = value

length addr: A-type address, or register (2) - (12).

length value: symbol, decimal digit, or register (2) - (12). If R,
RC, or RU is specified, register (0) may also be specified.
addr: A-type address, or register (2) - (12).

Note: RC, RU, VRC, or VRU must be used for addresses
greater than 16 megabytes.

maximum length value: symbol, decimal, digit, or register (2) - (12).
minimum length value: symbol, decimal, digit, or register (2) - (12).

subpool nmbr: symbol, decimal digit, or register (2) - (12).
Note: If R, LV =(0) is specified above, SP may not be specified.

Default: BNDRY =DBLWD ‘
Note: This parameter may not be specified with R above.

Note: BRANCH =(YES,GLOBAL) may only be specified with RC, RU,
VRC, or VRU above. Also, the macro expansion uses register 4 for the
address of the global save area pointed to by the CVT. The previous
contents of register 4 is overridden. The macro expansion also uses register
3.

key number: decimal digits 0-15, or register (2) - (12).

Default: KEY =0

Note: This parameter may be specified only with BRANCH and RC, RU,
VRC, or VRU; and subpools 226, 227, 228, 229, 230, 231, and 241.

Default: LOC=RES

Note: This parameter can only be used with RC, RU, VRC, or VRU.
On all other forms, LOC=BELOW is used.

value: any valid macro keyword specification.

GETMAIN - Allocate Virtual Storage 2-163

i

The parameters are explained below:

LC,LA =length addr, A= addr

LU,LA =length addr, A= addr

VC,LA =length addr, A= addr

VU,LA =length addr, A =addr

EC,LV =length value, A= addr

EU,LV =/ength value, A =addr

RC,LV =length value

RU,LV =length value

R,LV =length value

VRC,LV = (maximum length value minimum length value)

VRU,LV = (maximum length value minimum length value)
specifies the type of GETMAIN request:

LC and LU indicate conditional (LC) and unconditional (LU) list requests, and specify
requests for one or more areas of virtual storage. The length of each virtual storage area
is indicated by the values in a list beginning at the address specified in the LA parameter.
The address of each of the virtual storage areas is returned in a list beginning at the
address specified in the A parameter. No virtual storage is allocated unless all of the
requests in the list can be satisfied.

VC and VU indicate conditional (VC) and unconditional (VU) variable requests, and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is between the two values at the address specified in the LA parameter. The address
and actual length of the allocated virtual storage area are returned by the control program
at the address indicated in the A parameter.

EC and EU indicate conditional (EC) and unconditional (EU) element requests, and
specify requests for single areas of virtual storage. The length of the single virtual storage
area is indicated by the parameter, LV =length value. The address of the allocated virtual
storage area is returned at the address indicated in the A parameter.

RC indicates a conditional register request, and RU and R indicate unconditional register
requests. RC, RU, and R specify requests for single areas of virtual storage. The length

of the single virtual area is indicated by the parameter, LV = length value. The address of
the allocated virtual storage area is returned in register 1.

VRC and VRU indicate variable register conditional (VRC) and unconditional (VRU)
requests for a single area of virtual storage. The length returned will be between the
maximum and minimum lengths specified by the parameter LV = (maximum length value,
minimum length value). The address of the allocated virtual storage is returned in register
1 and the length in register 0.

Notes:

1. A conditional request indicates that the task is not to be abnormally terminated if virtual
storage is not allocated to the active task. An unconditional request indicates that the
task is to be abnormally terminated in this situation.

2. The LC, LU, VC, VU, EC, EU, and R forms of the GETMAIN macro instruction can
only be used to obtain virtual storage with addresses below 16 megabytes. The RC, RU,
VRC, and VRU forms of the GETMAIN macro instruction can be used to obtain
virtual storage with addresses above 16 megabytes.

2-164 SPL: System Macros and Facilities Volume 2

LA specifies the virtual storage address of consecutive fullwords starting on a fullword
boundary. Each fullword must contain the required length in the low-order three bytes,
with the high-order byte set to 0. The lengths should be multiples of 8; if they are not,
the control program uses the next higher multiple of 8. If VC or VU was coded, two
words are required. The first word contains the minimum length required, the second
word contains the maximum length. If LC or LU was coded, one word is required for
each virtual storage area requested; the high-order bit of the last word must be set to 1 to
indicate the end of the list. The list must not overlap the virtual storage area specified in
the A parameter.

LV =length value specifies the length, in bytes, of the requested virtual storage. The
number should be a multiple of 8; if it is not, the control program uses the next higher
multiple of 8. If R is specified, LV =(0) may be coded; the low-order three bytes of
register 0 must contain the length, and the high-order byte must contain the subpool
number. LV =(maximum length value, minimum length value) specifies the maximum and
minimum values of the length of the storage request.

The A parameter specifies the virtual storage address of consecutive fullwords, starting on
a fullword boundary. The control program places the address of the virtual storage area
allocated in one or more words. If E was coded, one word is required. If LC or LU was
coded, one word is required for each entry in the LA list. If VC or VU was coded, two
words are required. The first word contains the address of the virtual storage area, and
the second word contains the length actually allocated. The list must not overlap the
virtual storage area specified in the LA parameter.

sSSP =subpool nmbr
specifies the number of the subpool from which the virtual storage area is to be allocated.
The subpool number must be a valid subpool number between 0 and 255. See “Virtual
Storage Management” in Volume 1 for a list of the valid subpools. If this parameter is
omitted, subpool 0 is assumed. ‘

Note: Callers executing in supervisor state and key zero, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of this storage via
the SDUMP macro instruction, they must specify subpool 252 rather than 0.

,BNDRY =DBLWD

,BNDRY =PAGE
specifies that alignment on a doubleword boundary (DBLWD) or alignment with the start
of a virtual page on a 4K boundary (PAGE) is required for the start of a requested area.

The BNDRY =PAGE keyword is ignored if the request specifies one of the following
subpools 226, 233-235, 239,245, or 253-255. Requests for storage from these subpools are
fulfilled from a single page, unless the request is greater than a page.

,BRANCH =YES

,BRANCH =(YES,GLOBAL)
specifies that a branch entry is to be used instead of an SVC entry. If (YES,GLOBAL) is
specified, the entry point to service global storage requests without the need for the local
lock is used. The caller must be disabled by obtaining the CPU lock to provide
system-recognized disablement and must not hold any lock that would prevent VSM from
obtaining the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG
lock (for subpools 231 and 241). If BRANCH =YES is specified, the caller must pre-load
register 4 with the TCB address, pre-load register 7 with the ASCB address, and hold the
local lock prior to entry. The contents of register 3 is destroyed if RC, RU, VRC, or
VRU is specified. . \

GETMAIN - Allocate Virtual Storage 2-165

Callers in cross memory mode can use the BRANCH = YES parameter of the GETMAIN
macro instruction. If the caller is in cross memory mode, the storage is allocated in the
currently addressable address space. The caller must hold the CML lock for the currently
addressable address space; load register 7 with the address of the ASCB of the currently
addressable address space; and load register 4 with zero or the address of a TCB in the
currently addressable address space. If register 4 contains a zero, the allocated storage is
associated with the current job step task that owns the cross memory resources in the
currently addressable address space (that is, the TCB anchored in ASCBXTCB).

If BRANCH =(YES,GLOBAL) is specified, registers 4 and 7 need not contain the TCB
and ASCB addresses; and registers 3 and 4 are changed when control returns to the caller.
The caller must be disabled and must not hold any locks that would prevent VSM from
obtaining the VSMFIX lock (for subpools 226, 227, 228, 239, and 245) or the VSMPAG
lock (for subpools 231 and 241). Additionally, the SP parameter may only designate
subpools 226, 227, 228, 231, 239, 241, or 245.

JKEY =key nmbr
specifies the key (in bits 24-27 of the register) in which the requested storage is to be
obtained. This parameter applies to subpools 227, 228, 229, 230, 231, and 241, and
allows both global and local storage to be obtained in the specified storage protection
key. The KEY parameter cannot be specified unless the BRANCH parameter is also
specified.

,LOC=BELOW
. ,LOC=(BELOW,ANY)

,LOC=ANY

,LOC=(ANY,ANY)

,LOC=RES

,LOC=(RES,ANY)
specifies the location of virtual storage and real storage. This is especially helpful for
callers with 24-bit dependencies. When LOC is specified, real storage is allocated
anywhere until the storage is fixed (by the PGFIX, PGFIXA, or PGSER macro
instructions). After the storage is fixed, virtual and real storage are located in the
following manner.

LOC=BELOW indicates that real and virtual storage are to be located below 16
megabytes.

LOC=(BELOW,ANY) indicates that virtual storage is to be located below 16 megabytes
and real storage can be located anywhere.

LOC=ANY and LOC= (ANY,ANY) indicate that virtual and real storage can be located
anywhere.

Note: The LOC parameter is not valid for fixed subpools. For fixed subpools the actual
location of the virtual storage area depends on the subpool specified. If the subpool is
supported (backed) above 16 megabytes, GETMAIN attempts to locate the virtual
storage area above 16 megabytes. If this is not possible, GETMAIN locates the virtual
storage below 16 megabytes. If the subpool is not supported above 16 megabytes,
GETMAIN also locates the virtual storage below 16 megabytes. See “Virtual Storage
Management” in Volume 1 for a list of valid subpools and their characteristics. For
example, LSQA subpools will be backed anywhere regardless of the LOC parameter
specified.

2-166 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

LOC=RES indicates that the location of virtual and real storage depends on the location
of the caller. If tke caller resides below 16 megabytes, virtual and real storage are to be
located below 16 megabytes; if the caller resides above 16 megabytes, virtual and real
storage are to be located anywhere.

LOC=(RES,ANY) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is to be
located below 16 megabytes; if the caller resides above 16 megabytes, virtual storage can
be located anywhere. In either case, real storage can be located anywhere.

,RELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

When control is returned on conditional type requests (LC, EC, VC, RC, VRC), register 15
contains one of the following return codes:

Hexadecimal
Code Meaning
00 Virtual storage requested was allocated
04 No virtual storage was allocated
08 Real storage was not available for backing the request

or internal storage management control blocks.

The contents of registers 0, 1, and 15 are not preserved when the GETMAIN macro instruction
is issued.

Operation: Obtain 248 bytes of storage from the user’s region via a branch entry. If the
routine is in supervisor state, subpool 252 is used; otherwise, subpool 0 is used. If the storage
cannot be obtained, the caller is abnormally terminated.

GETMAIN EU,LV=248,A=AREAADDR,BRANCH=YES

Operation: Obtain one page of storage from the common service area, and cause the acquired
storage to be initialized with a storage key of 9. A return code of 0 (if successful) or 4 (if
unsuccessful) is returned.

GETMAIN RC,LV=4096,SP=231,BRANCH=(YES,GLOBAL) ,BNDRY=PAGE ,KEY=9

Operation: Obtain 400 bytes of storage from subpool 10. If the storage is available, the
address will be returned in register 1 and register 15 will contain 0; if storage is not available,
register 15 will contain 4.

GETMAIN RC,LV=400,SP=10

GETMAIN - Allocate Virtual Storage 2-167

Example 4

Operation: Obtain 48 bytes of storage from defauit subpool 0. If the storage is available, the
address will be stored in the word at AREAADDR; if the storage is not available, the task will
be abnormally terminated. ‘

GETMAIN EU,LV=48,A=AREAADDR

AREAADDR DS F
Example 5

Operation: Obtain a maximum of 4096 or a minimum of 1024 bytes of virtual storage, with
addresses above or below 16 megabytes. Indicate that if the real storage is fixed, it should also
be located above or below 16 megabytes. If the storage is available, the address will be
returned in register 1 and the length of the storage allocated will be returned in register 0; if the
storage is not available, the task will be terminated.

GETMAIN VRU,LV=(4096,1024) ,LOC=ANY

2-168 SPL: System Macros and Facilities Volume 2

GETMAIN (List Form)

Use the list form of the GETMAIN macro instruction to construct a control program
parameter list. The list form of the GETMAIN macro instruction cannot be used to allocate
virtual storage with addresses greater than 16 megabytes.

The list form of the GETMAIN macro instruction is written as follows:

name name: Begin name in column 1.
b One or more blanks must precede GETMAIN.
GETMAIN
b ’ " One or more blanks must follow GETMAIN.
LC
LU
vC
vU
EC
EU
,LA = length addr length addr: A-type address.
, LV =length value length value: symbol or decimal digit.

Notes: 1. LA may be specified with EC or EU above.
2. LV may not be specified with LC, LU, VC or VU above.

LA=aqddr addr: A-type address.

,SP = subpool nmbr subpool nmbr: symbol or decimal digit.

,BNDRY=DBLWD Defauit: BNDRY =DBLWD

,BNDRY =PAGE

L,RELATED = value value: any valid macro keyword specification.
JMFE=L -

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

MF=L
specifies the list form of the GETMAIN macro instruction.

GETMAIN (List Form) 2-169

GETMAIN (Execute Form)

A remote control program parameter list is used in, and can be modified by, the execute form
of the GETMAIN macro instruction. The parameter list can be generated by the list form of
either a GETMAIN or a FREEMAIN. The execute form of the GETMAIN macro instruction
cannot be used to allocate virtual storage with addresses greater than 16 megabytes.

The execute form of the GETMAIN macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede GETMAIN.
GETMAIN
b One or more blanks must follow GETMAIN.
LC
LU
vC
vU
EC
EU
,LA = length addr length addr: RX-type address or register (2) - (12).
,LV = length value length value: symbol, decimal digit, or register (2) - (12).

Note: LA may not be specified with EC or EU above.
Note: LV may not be specified with LC, LU, VC, or VU above.

LA = addr addr: RX-type address, or register (2) - (12).
,SP=subpool nmbr subpool nmbr: symbol, decimal digit, or register (0) or (2) - (12).
,BNDRY =DBLWD Default: BNDRY =DBLWD
,BNDRY =PAGE
,BRANCH =YES
,RELATED = value value: any valid macro keyword specification.
,MF = (E,ctrl prog) ctrl prog: RX-type address, or register (1) or (2) - (12).

The parameters are explained under the standard form of the GETMAIN macro instruction,
with the following exception:

,MF = (E,ctrl prog)

specifies the execute form of the GETMAIN macro instruction using a remote control
program parameter list.

2-170 SPL: System Macros and Facilities Volume 2

GQSCAN - Extract Information From Global Resource Serialization
Queue

Use the GQSCAN macro instruction to obtain the status of resources and requestors of those
resources. The GQSCAN macro instruction, in conjunction with the ISGRIB mapping macro,
enables you to obtain resource information from system control blocks without knowing the
exact structure or location of the control blocks.

The issuer of the GQSCAN macro instruction must be executing in primary mode. To use
SCOPE =GLOBAL and SCOPE =LOCAL, you must be in supervisor state or key 0 and you
should be aware that improper use of these parameters degrades system performance.

Global resource serialization counts and limits the number of outstanding global resource
serialization requests. A global resource serialization request is any ENQ, RESERVE, or
GQSCAN that causes an element to be inserted into a queue in the global resource serialization
request queue area. See “Limiting Global Resource Serialization Requests” in Volume 1.

Register 13 must contain the address of an 18-word save area, which can be provided through
the use of standard linkage conventions.

On return, register 0 contains two halfword values. The first (high order) halfword contains the
length of the fixed portion of each RIB returned; the second (low order) halfword contains the
length of each RIBE returned. Register 1 contains the number of RIBs that were copied into
the area provided. Register 15 contains the return code. In order to interpret the data that the
GQSCAN service routine returns in the user-specified area, you must include the ISGRIB
mapping macro as a DSECT in your program. ISGRIB maps the resource information block
(RIB) and the resource information block extent (RIBE) as shown in the Debugging Handbook.

GQSCAN - Extract Information From Global Resource Serialization Queue 2-171

2-172

The standard form of the GQSCAN macro instruction is written as follows:

name
b
GQSCAN
b

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

AREA = (area addr,area size)

,REQLIM = value
,REQLIM =MAX

SCOPE=ALL
,SCOPE =STEP
,SCOPE=SYSTEM
,SCOPE=SYSTEMS
,SCOPE =LOCAL
,SCOPE=GLOBAL

,RESERVE=YES
,RESERVE=NO

,RESNAME = (gname addr[,rname
addr, rname length],
[GENERIC|SPECIFIC],

gname length)

SYSNAME = (sysname addr [,asid
value])

,QUIT=YES
,QUIT=NO

,REQCNT = value

,OWNERCT = value, WAITCNT =
value

LOWNERCT = value

,WAITCNT =value

,TOKEN = addr

area addr: RX-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Note: AREA cannot be specified with QUIT=YES.

value: symbol, decimal digit, register (2) - (12), or the word MAX.
Default: REQLIM = MAX

Default: SCOPE =STEP

Default: All resources requested with RESERVE and all resources
requested with ENQ.

gname addr: RX-type address or register (2) - (12).

rname addr: RX-type address or register (2) - (12).

rname length: decimal digit, register (2) - (12).

Default: assembled length of rname.

Default: gname length of eight.

sysname addr: RX-type address or register (2) - (12).

asid value: symbol, decimal digit, or register (2) - (12).

Notes: rname addr can be provided only when gname addr is used. rname
length must be coded if a register is specified for rname addr. An asid value
can be coded only when the sysname addr is used.

Default: QUIT=NO
Note: QUIT = YES is mutually exclusive with all parameters but TOKEN.

value: decimal digit or register (2) - (12).
Default: REQCNT =0

addr: RX-type address or register (2) - (12).

The parameters are explained as follows:

AREA = (area addr, area size)

specifies the location and size of the area where information extracted from the global

resource serialization resource queues is to be placed. The minimum size is the amount
needed to describe a single resource, approximately 296 bytes, which is the length of the
fixed portions of the RIB and the maximum size rname rounded up to a fullword value.

SPL: System Macros and Facilities Volume 2

,LREQLIM = value

,REQLIM =MAX
specifies the maximum number of owners and waiters to be returned for each resource,
which can be any value between 0 and 21%-1. MAX specifies 2!°-1.

,SCOPE =ALL

,SCOPE =STEP

,SCOPE=SYSTEM

,SCOPE =SYSTEMS

,SCOPE=LOCAL

,SCOPE =GLOBAL
specifies that you want information only for resources having the indicated scope. STEP,
SYSTEM, or SYSTEMS is the scope specified on the resource request. If you specify
SCOPE =ALL (meaning STEP, SYSTEM, and SYSTEMS), the system returns
information for all resources the system recognizes that have the specified RESNAME,
RESERVE, or SYSNAME characteristics. If you specify SCOPE=LOCAL, information
is returned about this system’s resources that are not being shared with other systems in
the ring. If you specify SCOPE=GLOBAL, information is returned about resources that
are being shared with other systems in the ring. Remember that entries in the resource
name lists can cause the scope to change.

,RESERVE = YES

,RESERVE =NO

,RESNAME = (gname addr(,rname addr,rname length],[GENERIC|SPECIFIC], qname length)

SYSNAME = (sysname addr [,asid value])
For most requests, RESERVE = YES specifies that information is to be returned for
resources requested with the RESERVE macro instruction. If a RESERVE macro
instruction is issued for a device that is not shared, global resource serialization treats the
RESERVE request as an ENQ and the GQSCAN macro instruction does not return
information for the resource request when RESERVE =YES.

RESERVE=NO specifies that information is to be returned for resources requested with
the ENQ macro instruction.

RESNAME (with rname) indicates the name of one resource.

The gname addr specifies the virtual storage address of the 8-character major name of the
requested resource.

The rname addr specifies the virtual storage address of a 1 to 255-byte minor name used
in conjunction with the major name to represent a single resource. Information returned
is for a single resource unless you specify SCOPE=ALL, in which case it could be for
three resources (STEP, SYSTEM, and SYSTEMS) or SCOPE=LOCAL in which case it
could be for two resources (STEP and SYSTEM) if there is a matching name in each of
these categories. If the name specified by rname is defined by an EQU assembler
instruction, the rname length must be specified.

The rname length specifies the length of the minor name. If you use the register form, the
low-order (rightmost) byte contains the length. The length must match the rname length
specified on ENQ or RESERVE.

GENERIC specifies that the rname of the requested resource must match but only for the

length specified. For example, an ENQ for SYS1.PROCLIB would match the GQSCAN
rname specified as SYS1 for an rname length of 4.

GQSCAN - Extract Information From Global Resource Serialization Queue 2-173

SPECIFIC specifies that the rname of the requested resource must exactly match the
GQSCAN rname.

Note: GENERIC and SPECIFIC are mutually exclusive.

The qname length specifies the length of the qname in the resource name that must match
the GQSCAN name.

SYSNAME specifies that information is to be returned for resources requested by tasks
running on an MVS system whose system name matches the one specified by SYSNAME,
where sysname addr is the address of an 8-byte field that contains the system name, and
asid value specifies a 4-byte address space identifier, right justified. - Information returned
includes only those resources whose sysname addr and asid value match the ones specified.
SYSNAME =0 or SYSNAME = (0,asid value), spec:lﬁes that the system name is that of
the system on which GQSCAN is issued.

,QUIT =YES

,QUIT=NO
indicates whether or not you want to terminate the current global resource serialization
queue scan. If QUIT=YES is specified with TOKEN, GQSCAN processing terminates
the current GRS queue scan and releases the storage allocated to accumulate the
information specified in the token.

,LREQCNT = value

yOWNERCT =value, WAITCNT = value

;SOWNERCT =value

yWAITCNT =value
specifies that you only want information about resources that fall into the following
categories:

e The total number of requestors (that is, owners plus waiters) is greater than or equal
to REQCNT.

o The total number of owners is greater than or equal to OWNERCT.
e The total number of waiters is greater than or equal to WAITCNT.

If you do not specify REQCNT, you can specify both OWNERCT and WAITCNT. If
you specify REQCNT, you cannot specify either OWNERCT or WAITCNT.

»+TOKEN = addr
specifies the address of a fullword of storage that the GQSCAN service routine can use in
subsequent invocation to provide you with any remaining information. If the token is
zero, the scan starts at the beginning of the resource queue. You must zero the token
each time you want the scan to start over. If the token is not zero, the scan resumes at
the point indicated by the token.

2-174 SPL: System Macros and Facilities Volume 2

When GQSCAN returns control, register 15 contains one of the following return codes:

Hexadecimal
Code

0

10

14

Meaning

Queue scan processing is complete. Data is now in the area you specified.
On a resumed GQSCAN, the code signifies that there are no more
resources to match your request.

Queue scan processing is complete. No resources matched your request.

The area you specified was filled before queue scan processing completed.
If you specified TOKEN, process the information in the area and issue
GQSCAN again specifying the TOKEN returned to you. If you did not
specify TOKEN, you must begin again and either specify a larger area or
specify a TOKEN.

Queue scan encountered an abnormal situation while processing. The information
in your area is not meaningful. The values in registers 0 and 1 are
also meaningless.

An invalid SYSNAME was specified as input to queue scan. The information
in your area is not meaningful.

The area you specified was filled before queue scan processing completed.

Your request specified TOKEN =, but you have too many outstanding ENQ or
RESERVE and GQSCAN requests. The information in your area is valid but
incomplete. The scan cannot be resumed.

GQSCAN - Extract Information From Global Resource Serialization Queue

2-175

GQSCAN (List Form)

The list form of the GQSCAN macro instruction is used to construct a non-executable
parameter list. This parameter list, or a copy of it for reentrant programs, can be referred to by
the execute form of the GQSCAN macro instruction.

The list form of the GQSCAN macro instruction is written as follows:

name
b
GQSCAN
b

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

AREA = (area addr, area size)

,REQLIM = value
,REQLIM = MAX

,SCOPE=ALL
,SCOPE =STEP
,SCOPE=SYSTEM
SCOPE=SYSTEMS

,RESERVE=YES
,RESERVE=NO

,RESNAME = (gname addr [,rname
addr, rname length],
[GENERIC|SPECIFIC],

gname length)

SYSNAME = (sysname addr[asid
value])

,QUIT=YES
,QUIT=NO

,REQCNT =value

LOWNERCT = value
,WAITCNT =value

,TOKEN = addr
,MF=L

area addr: A-type address.
area size: symbol, decimal digit.
Notes: 1. This parameter cannot be specified with QUIT =YES.
2. AREA is required on either the list or the execute form of the
macro instruction.

value: symbol, decimal digit or the word MAX.
Default: REQLIM = MAX

Default: SCOPE =STEP

Default: All resources requested with RESERVE and all

resources requested with ENQ.

gname addr: A-type address.

rname addr: A-type address.

rname length: decimal digit.

Default: assembled length of rname.

Default: gname length of eight.

sysname addr: A-type address.

asid value: symbol, decimal digit.

Notes: rname addr can be provided only when gname addr is used. rname
length must be provided if a register is specified for rname addr. An asid
value can be coded only when the sysname addr is used.

Default: QUIT=NO
Note: Only TOKEN and MF =L can be specified with QUIT=YES.

value: decimal digit.
Default: REQCNT =0

addr: RX-type address.

2-176 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the GQSCAN macro instruction with
the following exception:

,MF=L ‘ ‘
specifies the list form of the GQSCAN macro instruction.

GQSCAN (List Form) 2-177

GQSCAN (Execute Form)

The execute form of the GQSCAN macro instruction can refer to and modify a remote
parameter list built by the list form of the macro. There are no defaults for any of the
parameters in the execute form of the macro instruction.

The execute form of the GQSCAN macro instruction is written as follows:

hame
b
GQSCAN
b

name: symbol. Begin name in column 1.

One or more blanks must precede GQSCAN.

One or more blanks must follow GQSCAN.

AREA = (area addr,area size)

,REQLIM = value
,REQLIM =MAX

,SCOPE=ALL
SCOPE=STEP
,SCOPE=SYSTEM
SCOPE=SYSTEMS
,SCOPE=LOCAL
SCOPE=GLOBAL

,RESERVE =YES
,RESERVE=NO

,RESNAME = (qname addr[,rname
addr,rname length],
[GENERIC|SPECIFIC],

gname length)

SYSNAME = (sysname addr[,asid
value])

,QUIT=YES
,QUIT=NO

L,REQCNT = value

,OWNERCT = value
SWAITCNT = value

,TOKEN = addr
JMEFE = (E,parm list addr)

area addr: RX-type address or register (2) - (12).
area size: symbol, decimal digit, or register (2) - (12).
Notes: 1. AREA cannot be specified with QUIT=YES.
2. AREA is required on either the list or the execute form of the
macro instruction.

value: symbol, decimal digit, register (2) - (12), or the word MAX.

Note: SCOPE=LOCAL and SCOPE=GLOBAL cannot be
coded on the list form of this macro.

Default: All resources requested with RESERVE

and all resources requested with ENQ.

gname addr: RX-type address or register (2) - (12).

rname addr: RX-type address or register (2) - (12).

rname length: decimal digit, register (2) - (12).

Default: assembled length of rname.

sysname addr: RX-type address or register (2) - (12).

asid value: symbol, decimal digit, or register (2) - (12).

Note: rname addr can be provided only when gname addr is used. rname
length must be provided if a register is specified for rname addr. An asid
value can be coded only when the sysname addr is used.

Defanlt: QUIT=NO
Note: Only TOKEN and MF = (E, parm list addr) can be specified with
QUIT=YES.

value: decimal digit or register (2) - (12).

addr: RX-type address of register (2) - (12).
parm list addr: RX-type address or register (2) - (12).

2-178 SPL: System Macros and Facilities Volume 2

The parameters are explained under the standard form of the GQSCAN macro instruction with
the following exception:

JF = (E,parm list addr)

specifies the execute form of the GQSCAN macro instruction. This form uses a remote
parameter list defined by parm list addr.

GQSCAN (Execute Form) 2-179

. IEFQMREQ - Invoke SWA Manager in Move Mode

| This macro is used to invoke the Move SWA manager in move mode. The IEFQMREQ macro
l instruction, which has no parameters, is written as follows:

[name name:

| b . One or more blanks must precede IEFQMREQ.
| IEFQMREQ
b One or more blanks must follow IEFQMREQ.

2-180 SPL: System Macros and Facilities Volume 2

INTSECT - Intersect With the Dispatcher

This macro can be assembled compatibly between MVS/XA and MVS/370 through the use of
the SPLEVEL macro instruction. Default processing will result in an expansion of the macro
that operates only with MVS/XA. See the topic “Selecting the Macro Level” for additional
information. If you are executing in 31-bit addressing mode, you must use the MVS/XA
version of this macro instruction.

The INTSECT macro instruction is used to serialize processing with the dispatcher (specifically,
when altering the dispatching queues or TCB/ASCB dispatchability). The only routines that
may use the INTSECT macro are those in supervisor state, key 0.

There are two levels of intersect, local and global. The LOCAL lock must be held before
requesting the local intersect. The dispatcher lock must be held before requesting the global
intersect. After the operation that required serialization has completed, the intersect must be
released by issuing the INTSECT macro instruction with the RESET option before freeing the
appropriate lock. Programs executing in cross memory mode can use INTSECT with the
TYPE=GLOBAL option.

Note: CML (cross memory local) lock means the local lock of an address space other than the
home address space. LOCAL lock means the local lock of the home address space. When
written in lower case, local lock means any local-level lock, either the LOCAL or a CML lock.

The INTSECT macro instruction is written as follows:

name name:
5 One or more blanks must precede INTSECT.
INTSECT
b One or more blanks must follow INTSECT.
SET
RESET
,TYPE=GLOBAL
,TYPE=LOCAL

D = symbol

,RELATED = value value: any valid macro keyword specification.

INTSECT - Intersect With the Dispatcher 2-181

The parameters are explained as follows:

SET
RESET
specifies whether to obtain or release the intersect.

,TYPE = GLOBAL
,TYPE=LOCAL
specifies the level of intersect to be used.

JD = symbol
specifies an identifier that indicates the function name of the intersecting routine.

Note: Specific ids are defined only for the control program. Other users should omit this
keyword. Routines omitting the ID keyword should release the INTSECT before calling
any other routine.

,RELATED =value
specifies information used to self-document macro instructions. This is done by “relating”
functions or services to corresponding functions or services. The format and content of
the information specified are at the discretion of the user, and may be any valid coding
values.

Example 1

Operation: The LOCAL lock has already been obtained. Request to hold the local intersect.

INTSECT SET,TYPE=LOCAL

2-182 SPL: System Macros and Facilities Volume 2

| IOSDDT - Device Descriptor Table Build Macro

| The IOSDDT macro must be included in the unit information module (UIM) that an

| installation provides for any device that the MVS configuration program (MVSCP) does not
| support. The IOSDDT macro builds a device descriptor table (DDT). The DDT, which must
| reside in SYS1.NUCLEUS, is the vector table to the device dependent exits for a device. The
| IOSDDT macro is located in SYSI.AMODGEN. See SPL.: System Modifications for a

[complete description of coding a UIM.

| A device descriptor table (DDT) is a vector table that IOS uses to locate the device support

[routines. The system requires one of these tables for each device in the I/O configuration,

| although similar devices may share the same DDT. When conditions arise during I/O

| operations for which specific device dependent processing is required, IOS gives control to the
| exit routines through the vector entries in the DDT.

| To build the DDT, you use the IOSDDT macro. With this macro, you specify the module

| names of the DDT exit routines for the devices supported by that DDT. These exit routines

| perform the processing for various system functions that occur when the system performs I/O

| operations. The parameters of the IOSDDT macro allow you to specify the following kinds of
| routines, which receive control from IOS when the appropriate condition arises:

The start I/O exit routine

The trap exit routine

The translate CCW table

The ERP message routine

The DDR exit routine

The unsolicited interrupt exit routine
The sense exit routine

The end of sense exit routine

The MIH exit routine

The device initialization exit routine
The channel program scan exit routine
The subsystem ID

The information in the DDT is created from the parameters of the IOSDDT macro. The label
that you specify on the IOSDDT macro is required because it is used as the CSECT name for
the DDT being generated. When the system is IPLed, the DDT for each device in the I/O
configuration becomes part of the nucleus. Each use of the IOSDDT macro generates one
DDT.

I0SDDT - Device Descriptor Table Build Macro 2-183

2-184

The IOSDDT macro instruction is written as follows:

name : name:
b One or more blanks must precede IOSDDT.
10SDDT
b One or more blanks must follow IOSDDT.
SIOEXIT = epname entry point name
TRPEXIT = epname entry point name
,"TCCWTAB = epname entry point name
LERPEXIT = (epname,type) entry point name
,DDREXIT = (epname,type) entry point name
L,UNSEXIT = epname entry point name
,SNSEXIT = epname entry point name
,EOSEXIT = epname entry point name
MIHEXIT = epname entry point name
,DSEXIT = epname entry point name
LCPSEXIT = epname entry point name
,SSYSID = ssname subsystem name

The parameters are explained as follows:

name ~
specifies name of the DDT. IOSDDT uses this name on the CSECT statement that it
generates for the DDT. The name parameter is required.

SIOEXIT = epname
specifies the name of the start I/O exit entry point.

TRPEXIT = eprame
specifies the name of the trap exit entry point.

TCCWTAB = epname
specifies the name of the translate CCW table entry point.

SPL: System Macros and Facilities Volume 2

ERPEXIT = (epname,type)
specifies the name of the ERP message entry point. Type describes whether the entry
point name is to be treated as an entry point name address or a module name. Type can
be specifed as A for address or N for EBCDIC name. If A is specified, the module is
loaded into the nucleus region from SYSI.NUCLEUS. . If N is specified, the module is
loaded into the LPA from the LINK LIST concatenation. If neither is specified, N is the
default.

DDREXIT = (epname,type)
specifies the name of the DDR exit entry point Type describes whether the entry point
name is to be treated as an entry point name address or a module name. Type can be
specifed as A for address or N for EBCDIC name. If A is specified, the module is loaded
into the nucleus region from SYSI.NUCLEUS. . If N is specified, the module is loaded
into the LPA from the LINK LIST concatenation. If neither is specified, N is the default.

UNSEXIT = epname
specifies the name of the unsolicited interrupt exit entry point.

SNSEXIT =epname
specifies the name of the sense exit entry point.

EOSEXIT = epname
specifies the name of the end of sense exit entry point.

MIHEXIT = epname
specifies the name of the MIH exit entry point.

DSEXIT =epname
specifies the name of the device service exit entry point.

CPSEXIT = epname
specifies the name of the channel program scan exit entry point.

SSYSID = ssname
specifies the name of the subsystem ID, which can be one to four characters.

Note: When both ERPEXIT and DDREXIT are specified as EBCDIC module names,

IOSDDT verifies that both specified module names have the same 4-character prefix. If the
prefixes are not the same, IOSDDT issues an MNOTE and not does generate a DDT.

10SDDT - Device Descriptor Table Build Macro 2-185

i TOSDMLT - Module Lists Table Macro

The IOSDMLT macro must be included in the unit information module (UIM) that an
installation provides for any device that the MVS configuration program (MVSCP) does not
support. The IOSDMLT macro builds a module list table (MLT). See SPL: System
Modifications for a complete description of coding a UIM.

The Module Lists Table (MLT) must reside in SYSI.NUCLEUS. It identifies the nucleus and
LPA modules required to support the device you are defining, and that need to be loaded
during the IPL process. For example, the MLT for an unsupported printer would designate all
the modules that must be loaded into the nucleus and the LPA to support that printer. Note
that the MLT must list all the nucleus and LPA device support modules for the device
regardless of whether the modules are provided by you or by IBM.

To build a module lists table, use the IOSDMLT macro. Each IOSDMLT macro that you code
creates an MLT CSECT. The label specified on the IOSDMLT macro, which is required, is
used as the CSECT name. As parameters of the IOSDMLT macro, you specify a set of
nucleus-resident module names and a set of LPA-resident module names. Each use of the
IOSDMLT macro generates one MLT, which resides in a separate module. The IOSDMLT
macro resides in SYSI.AMODGEN.

The IOSDMLT macro instruction is written as follows:

name name:
b One or more blanks must precede IOSDMLT.
IOSDMLT
b One or more blanks must follow IOSDMLT.
NUCL = (nucid < ,nucid> ...) nucid: name of nucleus module
L,LPAL = (Ipaid < Ipaid> ...) Ipaid: name of LPA module

The parameters are explained as follows:

name
specifies the name of the MLT. IOSDMLT uses this name on the CSECT statement that
it generates for the MLT. The name parameter is required. Note that IOSDMLT
generates an END statement at the end of its expansion.

2-186 SPL: System Macros and Facilities Volume 2

NUCL = (nucid < ,nucid > ...)
specifies the names of the nucleus modules that are to be loaded from SYS1.NUCLEUS
into the nucleus region if the device associated with this MLT is defined in the 1/O
configuration.

JLPAL= (Ipaid< lpaid>...)
specifies the names of the LPA modules to be included in the module list table CSECT.

IOSDMLT - Module Lists Table Macro 2-187

IOSINFO - Obtain Information From the Input/Output Supervisor
Ios)

The IOSINFO macro instruction obtains the subchannel number for a specified unit control
block (UCB) from the input/output supervisor (I0S). The macro returns the subsystem
identification word (SID), which identifies the subchannel number of the UCB, in a
user-specified location. The SID is a fullword value whose first halfword contains X‘0001” and
ending halfword contains the subchannel number.

A subchannel is associated with a UCB at NIP time. If the subchannel and the UCB become
disassociated during system operation, the subchannel number in the SID might not be valid. If
the UCB is disassociated from the subchannel at the time that the IOSINFO service routine is
invoked, IOSINFO can detect the situation and notify the user via a return code. If the UCB is
disassociated from the subchannel after the service routine is invoked, IOSINFO can give no
notification of this to the caller.

The issuer of IOSINFO must be executing:
e In 31-bit addressing mode
e In either task mode or SRB mode

e Locked or unlocked

Additionally, the issuing program uses the CVT and PSA control blocks. All addresses must be
31-bit addresses.

Before entry to this macro, register 13 must contain the address of a standard 18-word save
area.

The IOSINFO macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede IOSINFO.
10SINFO
b One or more blanks must follow IOSINFO.

FUNCTN =SUBCHNO

,UCB=uch addr uch addr: A-type address or register (0) - (15).
,OUTPUT = outpur addr output addr: A-type address or register (0) - (14).
RTNCDE = retcde addr retcde addr: A-type address or register (0) - (15).

2-188 sPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

FUNCTN =SUBCHNO
specifies that a subchannel number is to be obtained.

J2UCB = uch addr
specifies the address of a fullword on a fullword boundary containing the address of a
unit control block (UCB).

,OUTPUT = output addr
specifies the address of a fullword on a fullword boundary that will contain the subsystem
identification word (SID) upon completion.

The SID is a fullword value that identifies the subchannel. The first halfword is X‘0001°,
and the last halfword contains the subchannel number.

The output address must reside in 31-bit addressable storage.

,RETCDE = retcde addr
specifies the address of a fullword on a fullword boundary that will contain the return
code upon completion.

The return code address must reside in 31-bit addressable storage.
After completion, the contents of the registers are as follows:

Register 0 is unpredictable.

Register 1 (unless the return code is 4) contains the SID.
Registers 2-13 are preserved.

Register 14 is unpredictable.

Register 15 contains a return code.

When control returns, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
00 The address specified on the OUTPUT parameter contains the SID.*
04 The UCB was disassociated from the subchannel at the

time of the IOSINFO service routine invocation.

* In some cases, the subchannel number in the SID might not be valid. Any disassociation of
the UCB and the subchannel means the subchannel number in the SID is not valid. If the UCB
is disassociated from the subchannel after the IOSINFO service routine invocation, no
notification can be given.

IOSINFO - Obtain Information From the Input/Output Supervisor (I0S) 2-189

Example 1

Operation: Obtain the subchannel number for a UCB whose address is in register 1. Specify
the SID output to be placed in register 2 and the return code to be placed in register 3.

IOSINFO FUNCTN=SUBCHNO,UCB=(1),0UTPUT=(2),RTNCODE={(3)

Example 2
Operation: Obtain the subchannel number for a UCB whose address is in location ADDR.
Specify the SID output to be placed in location ADDX and the return code to be placed in
register 3.
IOSINFO FUNCTN=SUBCHNO,UCB=ADDR,OUTPUT=ADDX,RTNCODE=(3)

Example 3

Operation: Obtain the subchannel number for a UCB whose address is in register 2. Specify
the SID output to be placed in register 3 and the return code to be placed in location ADDR.

IOSINFO FUNCTN=SUBCHNO,UCB=(2) ,0UTPUT=(3),RTNCODE=ADDR

2-190 SPL: System Macros and Facilities Volume 2

IOSLOOK - Locate Unit Control Block

The IOSLOOK macro instruction locates the unit control block (UCB) associated with a device
address. To use IOSLOOK, you must be executing in supervisor state. Register 13 must point
to a 16-word save area where the macro instruction stores registers 0 through 15 at offset 0.
You must also include a DSECT for both the CVT (using the CVT mapping macro) and the
IOCOM (using the IECDIOCM mapping macro).

The IOSLOOK macro instruction is written as follows:

name name. symbol. Begin name in column 1.
b One or more blanks must precede IOSLOOK.
IOSLOOK
b One or more blanks must follow IOSLOOK.
DEV = (reg) reg: Register (0) - (12), (14), (15).

Default: DEV = (6).

LJUCB=(reg) reg: Register (0) - (12).
Default: UCB=(7).

The parameters are explained as follows:

DEV = (reg)
specifies a general purpose register, symbolic or absolute, that contains the hexadecimal
device number, right justified. If this parameter is omitted, register 6 is assumed.

JUCB = (reg)
specifies a general purpose register, symbolic or absolute, that will be used to return the
address of the UCB common segment. If this parameter is omitted, register 7 is assumed.

If the UCB address cannot be found, then the contents of this register are unpredictable.

Note: The UCB must reside in 24-bit addressable storage.

IOSLOOK - Locate Unit Control Block 2-191

When control returns, register 15 contains one of the following return codes.

Hexadecimal

Code - Meaning
0 - ' UCB address was found

04 - Device number was invalid or io UCB exists.
Example 1

Operation.° Find the UCB address for device 250. Register 2 contains the value X‘00000250".
The UCB address is to be returned in register 5 and UCBPTR is equated to 5.

‘TOSLOOK DEV=(2) ,UCB=(UCBPTR) -

0 2-192 spL: System‘Macros_ and Facilities Volume 2

LOAD - Bring a Load Module into Virtual Storage

The LOAD macro instruction is used to bring the load module containing the specified entry
name into virtual storage, if a usable copy is not available in virtual storage. Load services
places the load module in storage above or below the 16 megabytes line depending on the
RMODE of the module, which is specified in the directory entry for the module.

The responsibility count for the load module is increased by one. On output, the high-order
byte of register 1 contains the authorization code of the loaded module and the low-order three
bytes contain the module’s length in doublewords. Control is not passed to the load module;
instead, the virtual storage address and the addressing mode of the designated entry point is
returned in register 0. The load module remains in virtual storage until the responsibility count
is reduced to 0 through task terminations or until the effects of all outstanding LOAD requests
for the module have been canceled (using the DELETE macro instruction described in
Supervisor Services and Macro Instructions), and there is no other requirement for the module.

Load sets the high-order bit of the entry point address in register 0 to indicate the module’s
AMODE, which is obtained from the directory entry for the module. If the module’s AMODE
is 31-bit, it sets the indicator to 1; if the module’s AMODE is 24-bit, it sets the indicator to 0;
and if the module’s AMODE is ANY, it sets the indicator to correspond to the caller’s
AMODE. '

The GLOBAL,EOM, and ADDR parameters are restricted to authorized users
(APF-authorized, in PSW key 0-7, or in supervisor state).

The entry name in the load module must be a member name or an alias in a directory of a
partitioned data set or must have been specified in an IDENTIFY macro instruction. If the
entry name was previously specified in an IDENTIFY macro instruction, no attempt is made to
bring in an additional copy of the module. If the specified entry name cannot be located, the
task is abnormally terminated.

LOAD - Bring a Load Module into Virtual Storage 2-193

The LOAD macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede LOAD.
LOAD
b One or more blanks must follow LOAD.
EP =entry name entry name: symbol.
EPLOC =entry name addr *entry name addr: RX-type address or register (2) - (12); A-type
DE =list entry addr address or register (2) - (12).

*list entry addr: RX-type address, or register (2) - (12); A-type address or
register (2) - (12).

,DCB=dcb addr *dcb addr: RX-type address, or register (1) or (2) - (12); A-type address or
register (2) - (12).

,ERRET =err rtn addr err rtn addr: RX-type address, or register (2) - (12).

,LSEARCH =NO Default: LSEARCH=NO

,LSEARCH =YES

,ADDR = load addr load addr: A-type address or register (2) - (12).

,GLOBAL =YES

,GLOBAL =(YES,P) Default: GLOBAL =NO

,GLOBAL =(YES,F) If GLOBAL =YES is specified, the default is GLOBAL = (YES,P).

,GLOBAL=NO

,EOM=NO Default: EOM =NO)

,EOM =YES Note: GLOBAL must be specified with EOM = YES.

,LOADPT = addr addr: A-type address or register (2) - (12).

Note: ADDR cannot be specified with LOADPT.
,RELATED =value value: any valid macro keyword specification.
* If you code any of the parameters: LSEARCH, ADDR, GLOBAL, EOM, or LOADPT, you will obtain a

macro-generated parameter list. Therefore, except for the error routine address, all addresses must be specified
as A-type addresses or registers (2) - (12).

The parameters are explained below:

EP =entry name

EPLOC =entry name addr

DE =[ist entry addr
specifies the entry name, the address of the name, or the address of the name field in a
60-byte list entry for the entry name that was constructed using the BLDL macro
instruction. If EPLOC is coded, the name must be padded to eight bytes, if necessary.

Note: The task structure must not be changed via an ATTACH or DETACH between

the issuance of the BLDL and the issuance of the ATTACH for the module, or an abend
106 with a return code of 15 might result.

2-194 SPL: System Macros and Facilities Volume 2

,DCB=dch addr
specifies the address of the data control block for the partitioned data set containing the
entry name described above. This parameter must indicate the same DCB used in the
BLDL mentioned above.

If the DCB parameter is omitted or if DCB =0 is specified when the LOAD macro
instruction is issued by the job step task, the data sets referred to by either the STEPLIB
or JOBLIB DD statement are first searched for the entry name. If the entry name is not
found, the link library is searched.

If the DCB parameter is omitted or if DCB=0 is specified when the LOAD macro
instruction is issued by a subtask, the data sets associated with one or more data control
blocks referred to by the TASKLIB operand of previous ATTACH macro instructions in
the subtask chain are first searched for the entry name. If the entry name is not found,
the search is continued as if the LOAD had been issued by the job step task.

Note: DCB must reside in 24-bit addressable storage.

,LERRET =err rtn addr
specifies the address of a routine to receive control when an error condition that would
cause an abnormal termination of the task is detected. Register 1 contains the abend
code that would have resulted had the task abended, and register 15 contains the reason
code that is associated with the abend. The routine does not receive control when input
parameter errors are detected.

,LSEARCH =NO

,LSEARCH=YES
specifies whether (YES) or not (NO) you want the library search limited to the job pack
area and to the first library in the normal search sequence.

LADDR = load addr
specifies that the module is to be loaded beginning at the designated address. The address
must specify a doubleword boundary. Storage for the module must have been previously
allocated in the requestor’s key. The system does not search for the module and does not
maintain a record of the module once it is loaded. If you code the ADDR parameter,
you must also code the DCB parameter (not DCB=0) and you must not code GLOBAL
or LOADPT.

Note: The RMODE of the load module must agree with this address. If the user
specifies an address above 16 megabytes in virtual, the load module must have an
RMODE of ANY.

,GLOBAL=YES

,GLOBAL =(YES,P)

,GLOBAL =(YES,F)

,GLOBAL=NO
specifies whether the module is to be loaded into the pageable common service area (CSA)
(GLOBAL =(YES,P) or GLOBAL =YES), loaded into fixed CSA (GLOBAL =(YES,F)),
or not loaded into CSA (GLOBAL =NO). (The module must not have been previously
loaded into CSA with different attributes by the same job step, the module must also be
reentrant and must reside in an APF-authorized library.) For GLOBAL =(YES,F), the
module must not be marked as requiring alignment on a page boundary. If you code the
GLOBAL parameter, you cannot code the ADDR parameter.

LOAD - Bring a Load Module into Virtual Storage 2-195

Example 1

Example 2

If the requested module resides in the link pack area, the LOAD request performs as
though the GLOBAL parameter was omitted. The LOAD request locates the module in
the link pack area, allows access to it, but does not load a copy of the desired module
into the common service area.

Note: A load request with the GLOBAL option does not cause the loaded module to be
implicitly known to other address spaces. The loaded module can be accessed by other
address spaces, however, only the requesting task is accountable for it (and may therefore
delete it).

,EOM =YES

,LEOM=NO
indicates whether a module in global storage is to be deleted when the address space
terminates (EOM = YES) or when the task terminates (EOM = NO) If you code EOM,
you must also code GLOBAL.

,LOADPT =addr
specifies that the starting address at which the module was loaded is to be returned to the
caller at the indicated address. If you code LOADPT, you cannot code ADDR.

,LRELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any vahd coding
values.

Operation: Bring a load module with entry name PGMLKRUS into virtual storage. Let the
system find the module from available libraries.

LOAD EP=PGMLKRUS

Operation: Bring a load module with entry name PGMEOM into pageable CSA storage and
return the load address at location PGMLPT.

LDPGM LOAD EP=PGMEOM,EOM=YES, LOADPT=PGMLPT,GLOBAL=(YES,P)

PGMLPT DS A LOAD ADDRESS RETURNED HERE

2-196 spL: System Macros and Facilities Volume 2

LOAD (List Form)

The list form of the LOAD macro instruction builds a non-executable parameter list that can be
referred to by the execute form of the LOAD macro.

The list form of the LOAD macro instruction is written as follows:

name name. symbol. Begin name in column 1.
b One or more blanks must precede LOAD.
LOAD
b One or more blanks must follow LOAD.
EP =entry name entry name: symbol.
EPLOC = entry name addr entry name addr: A-type address.
DE=list entry addr list entry addr: A-type address.
,DCB =dcbh addr dcb addr: A-type address.
,LSEARCH=NO Default: LSEARCH =NO
,LSEARCH =YES
LADDR = load addr load addr: A-type address.
,GLOBAL=YES Default: GLOBAL =NO
,GLOBAL =(YES,P) If GLOBAL =YES is specified, the default is GLOBAL = (YES,P).
,GLOBAL =(YES,F)
,GLOBAL=NO
,LEOM =NO Default: EOM =NO
Note: GLOBAL must be specified with EOM = YES.
,EOM =YES
,LOADPT = addr addr: A-type address.
Note: ADDR cannot be specified with LOADPT.
,RELATED = value value: any valid macro keyword specification.
SF=L

The parameters are explained under the standard form of LOAD macro instruction with the
following exception:

SF=L
specifies the list form of the LOAD macro instruction.

LOAD (List Form) 2-197

LOAD (Execute Form)

The execute form of the LOAD macro instruction can refer to and modify the parameter list
constructed by the list form of the macro.

The execute form of the LOAD macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede LOAD.
LOAD
b One or more blanks must follow LOAD.
EP = entry name entry name: symbol.

EPLOC = entry name addr entry name addr: RX-type address or register (2) - (12).
DE =list entry addr list entry addr: RX-type address, or register (2) - (12).
,DCB =dcb addr dcb addr: RX-type address, or register (2) - (12).
,ERRET =err rtn addr err rin addr: RX-type address, or register (2) - (12).

,LSEARCH=NO Default: LSEARCH =NO
,LSEARCH =YES
,LADDR = load addr load addr: RX-type address or register (2) - (12).

Note: For an RX-type address, the operand is treated
as the address of a field that contains the actual load address.

,GLOBAL=YES Default: GLOBAL =NO
,GLOBAL = (YES,P) Note: If GLOBAL = YES is specified, the default is GLOBAL=(YES,P).
,GLOBAL =(YES,F)
,GLOBAL=NO
LEOM =NO Default: EOM =NO
,EOM =YES Note: GLOBAL must also be specified with EOM =YES.
,LLOADPT = addr addr: RX-type address or register (2) - (12).
Note: ADDR cannot be specified with LOADPT.
,RELATED = value value: any valid macro keyword specification.
SF = (E,list addr) list addr: RX-type address or register (2) - (12) or (15).

The parameters are explained under the standard form of LOAD macro instruction with the
following exception:

,SF = (E,list addr)
specifies the execute form of the LOAD macro instruction.

2-198 spPL: System Macros and Facilities Volume 2

LOCASCB - Locate ASCB
The LOCASCB macro instruction is used to locate the ASCB address associated with a
specified ASID.
The LOCASCB macro instruction uses registers 0, 1, 14, and 15.
If the caller is concerned that the ASCB might terminate while being referenced, the caller
should provide some serialization to prevent ASCB termination by holding either the CMS lock
or the dispatcher lock.

Programs executing in cross memory mode can invoke the LOCASCB macro instruction.

The LOCASCB macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede LOCASCB.
LOCASCB
b One or more blanks must follow LOCASCB.
ASID = asid addr asid addr: RX-type address or register (0) - (15).

The parameter is explained as follows:

ASID = asid addr
specifies the RX-type address of a halfword that contains the ASID whose ASCB is to be
located or the register that contains the ASID in bits 16-31. (Bits 0-15 of the register are

ignored.) If the caller specifies (1), the ASID need not be copied into register 1 by the
macro expansion.

When LOCASCB returns control, register 1 contains the results of the locate operation as
follows:

o If register 1 is positive, it contains the ASCB address.

e If register 1 is negative or zero, the specified ASID is invalid.

. LOCASCB - Locate ASCB 2-199

LXFRE - Free a Linkage Index

The LXFRE macro instruction frees one or more linkage indexes. You cannot free a linkage
index that was reserved with the SYSTEM option. (See the LXRES macro instruction). Before
issuing the LXFRE macro instruction, disconnect all entry tables associated with the linkage
index, unless you specify FORCE=YES. If you do not disconnect the entry tables and do not
specify FORCE =YES, linkage indexes are not freed and the routine is abnormally terminated.

The requestor must be in supervisor state or PKM 0-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed to this macro instruction must also be addressable in
primary mode when the macro instruction is issued. :

Registers 2-14 are preserved. Register 2, which is modified by the macro after the registers are
saved, should not be used as the base register. Register 15 contains the retum code. The
contents of registers 0 and 1 are unpredictable.

The standard form of the LXFRE macro instruction is writteh as follows} v

name . name: symbol. Begin name in column 1.
b One or more blanks must precede LXFRE.
LXFRE
b One or more blanks must follow LXFRE.
LXLIST = list addr . list addr: RX-type address or register (0) - (12).
,FORCE=NO : Default: FORCE=NO
,FORCE=YES
,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

LXLIST =list addr ,
specifies the address of a variable length list of fullword entries. The first word in the list
must contain the number (I to 32) of linkage indexes to be freed. Each entry following
the first must contain a linkage index value specified in the form returned by the LXRES
macro instruction. '

2-200 SPL: System Macros and Facilities Volume 2

JFORCE=NO

,JFORCE =YES
specifies whether (YES) or not (NO) the linkage index is to be freed even if entry tables
are currently connected to it. Any connected entry tables are disconnected before the
linkage index is freed. FORCE=NO is the default.

JRELATED = value :
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified can be any valid coding values.

When LXFRE returns control, register 15 contains contains one of the following return codes:

Hexadecimal

Code ' Meaning

0 The specified linkage indexes were freed.
No entry tables were connected.

4 The specified linkage indexes were freed.
Entry tables were connected, but FORCE was
specified and was successfully executed.

8 Some of the specified linkage indexes were freed.

Entry tables were connected. FORCE was
specified but one or more of the necessary
disconnects failed. No action by the issuer
of LXFRE is required in this situation.

LXFRE - Free a Linkage Index 2-201

LXFRE (List Form)

The list form of the LXFRE macro instruction is used to construct a non-executable parameter

list. The execute form of the LXFRE macro instruction can refer to or modify the parameter
list.

The list form of the LXFRE macro instruction is written as follows:

name name.: symbol. Begin rame in column 1.
b One or more blanks must precede LXFRE.
LXFRE
b One or more blanks must follow LXFRE.
LXLIST = list addr list addr: A-type address.
,FORCE=NO Default: FORCE=NO
,FORCE=YES
,RELATED = value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the LXFRE macro instruction with
the following exception:

MF=L
specifies the list form of the LXFRE macro instruction.

2-202 SPL: System Macros and Facilities Volume 2

LXFRE (Execute Form)

The execute form of the LXFRE macro instruction can refer to and modify a remote parameter
list created by the list form of the macro.

The execute form of the LXFRE macro instruction is written as follows:

name name: symbol. Begin name in column 1.

One or more blanks must precede LXFRE.
LXFRE

One or more blanks must follow LXFRE.

LXLIST = list addr list addr: RX-type address or register (0) - (12).

,FORCE=NO Default: FORCE=NO
,FORCE=YES

,RELATED = vaiue value: any valid macro keyword specification.

»MF = (E,cnil addr) cntl addr: RX-type address or register (0) - (12).

The parameters are explained under the standard form of the LXFRE macro instruction with
the following exception:

MF = (E,cntl addr)

specifies the execute form of the LXFRE macro instruction. This form uses a remote
parameter list.

LXFRE (Execute Form) 2-203

LXRES

2-204 SPL:

- Reserve a Linkage Index

The LXRES macro instruction reserves one or more linkage indexes for the caller’s use. The
reserved linkage indexes are owned by the cross memory resource ownership task of the current
home address space. The linkage index reservation applies across all linkage tables in the
system and remains in effect until one of the following happens:

e An LXFRE macro instruction explicitly frees a reserved linkage index.

e The cross memory resource ownership task terminates.

e The operator re-IPLs the system.

The requestor must be in supervisor state or PKM (-7 executing in primary mode enabled and
unlocked. Register 13 must point to a standard register save area that must be addressable in
primary mode. The parameter list passed to the LXRES macro instruction must also be
addressable in primary mode at the time the macro instruction is issued.

On return registers 3-14 are preserved, register 15 contains the return code, and the contents of
registers 0 and 1 are unpredictable. Register 2, because it is modified by the macro after the

registers are saved, should not be used as the base register.

The standard form of the LXRES macro instruction is written as follows:

name . name: symbol. Begin name in column 1.
b One or more blanks must precede LXRES.
LXRES
b One or more blanks must follow LXRES.
LXLIST =list addr list addr: RX-type address or register (0) - (12).
SYSTEM =NO Default: SYSTEM =NO
,SYSTEM = YES
,RELATED =value value: any valid macro keyword specification.

System Macros and Facilities Volume 2

The parameters are explained as follows:

LXLIST =list addr
specifies the address of a variable-length list of fullword entries. The first fullword in the
list must contain the number (1 to 32) of linkage index values to be returned. The list
must be long enough to contain the requested number of values. The linkage index values
are returned in the list entries in the proper position for ORing with the entry index to
form a PC number.

SYSTEM =NO

SYSTEM =YES
specifies whether (YES) or not (NO) the linkage indexes are being reserved for system
connections. If YES is specified, a subsequent ETCON macro instruction specifying the
linkage index causes all address spaces to be connected to the entry table.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On return, register 15 contains the following return code:

Hexadecimal
Code Meaning
0 The specified linkage indexes were successfully

reserved.

LXRES - Reserve a Linkage Index 2-205

LXRES (List Form)

The list form of the LXRES macro instruction is used to construct a non-executable parameter

list. The execute form of the macro instruction can then refer to this list or a copy of it for
reentrant programs.

The list form of the LXRES macro instruction is written as follows:

name i name: symbol. Begin name in column 1.
b One or more blanks must precede LXRES.
LXRES
b : One or more blanks must follow LXRES.
LXLIST = list addr list addr: A-type address.
,SYSTEM =NO Default: SYSTEM =NO
,SYSTEM =YES
,RELATED =value value: any valid macro keyword specification.
MF=L

The parameters are explained under the standard form of the LXRES macro instruction with
the following exception:

WMF=L
specifies the list form of the LXRES macro instruction.

2-206 SPL: System Macros and Facilities Volume 2

LXRES (Execute Form)

The execute form of the LXRES macro instruction can refer to and modify a remote parameter
list constructed by the list form of the macro instruction.

The execute form of the LXRES macro instruction is written as follows:

name name:symbol. Begin name in column 1.
b One or more blanks must precede LXRES.
LXRES
b One or more blanks must follow LXRES.
LXLIST =list addr list addr: RX-type address or register (0) - (12).
SYSTEM=NO Default: SYSTEM =NO
SYSTEM =YES
,RELATED = value value: any valid macro keyword specification.
MF = (E cntl addr) . cntl addr: RX-type address or register (0) - (12).

The parameters are explained as under the standard form of the LXRES macro instruction with
the following exception:

"MF = (E,cntl addr)

specifies the execute form of the LXRES macro instruction and cnt/ addr is the name or
address of the list form of the macro.

LXRES (Execute Form) 2-207

MGCR - Internal START or REPLY Command

The MGCR macro instruction can be used to start a program or subsystem from within your
program and to pass 31 bits of information to the started program in the form of a token. The
MGCR macro instruction can also be used to issue a reply to a WTOR macro instruction.

The issuer must be in supervisor state, PSW key 0-7.

The MGCR macro instruction is written as follows:

name name. symbol. Begin name in column 1.
b One or more blanks must precede MGCR.
MGCR
b One or more blanks must follow MGCR.
command-buffer-address command-buffer-address: RX-type address or register (1) or (2) - (12).

The parameters are explained as follows:

command-buffer-address
specifies the address of a command buffer that contains the following information.

Name Length Contents
flagsl 1 byte If bit 0 is one, then flags2 must contain
meaningful information. Bits 1-7 must be zero.
length 1 byte Length of the buffer up to but not
including the 4-byte token field.
flags2 2 bytes X'0800' - token is present.
X'0000' - token is not present.
text up to Command, operands, and optional comments
126 bytes as follows: command operands comments
token 31 bits An optional field containing any desired
right- information, such as an identifier that

justified indicates the issuing program.
Notes:
1. Register 0 must contain zero.

2. The command buffer must be located in 24-bit addressable storage.
3. A token is meaningful only with the START command.

2-208 SPL: System Macros and Facilities Volume 2

Register 15 contains one of the following return codes as the result of a START command. No
return codes result from the REPLY command.

Hexadecimal
Code Meaning
00 Start command processed successfully.
Register 0 contains the right justified ASID
of the started address space.

08 Start command failed.
Example 1

Operation: Issue an internal start command for the catalogued procedure labeled PROG.

SR 0,0
MGCR INPUT

.

INPUT DC X'80"
DC ALl (TOKEN-INPUT)
DC X'0800"'
DC C'S PROG'

TOKEN DC AL4 (DATA)

For further examples of the internal REPLY command, refer to User Exits.

MGCR - Internal START or REPLY Command 2-209

MODESET - Change System Status

If you are executing in 31-bit addressing mode, you must use the MVS/XA version of this
macro instruction.

The MODESET macro instruction is used to change system status by altering the PSW key
and/or PSW problem state indicator. It causes a supervisor routine (IEAVMODE) to alter the
RB old program status word (RBOPSW) so that the desired PSW is loaded when MODESET
returns to the caller. MODESET also generates inline code that saves and/or changes the
protection key in the current PSW. The MODESET macro instruction has two forms: the
form that generates an SVC and the form that generates inline code.

The form that generates inline code uses the SPKA instruction (see Principles of Operation) and
can execute in supervisor or problem program state. If a problem state caller’s key is marked
as authorized in the PSW-key mask in control register 3, the inline form can execute in problem
state. The inline form can be used by programs executing in cross memory mode. If the key
you specify is TCB, RBT1, or RBT234, you must also ensure that current addressability is to
the home address space.

The form that generates an SVC is executable by users in supervisor state, under PSW key 0-7,
or APF-authorized. The SVC form cannot be used in cross memory mode.

The macro instruction does not generate any return codes.

2-210 SPL: System Macros and Facilities Volume 2

Inline Code Generation

The standard form of the MODESET macro instruction that generates inline code is written as

follows:
name name. symbol. Begin name in column 1.
b One or more blanks must precede MODESET.
MODESET
b One or more blanks must follow MODESET.
EXTKEY =key key: one of the following:
KEYADDR = new key addr SCHED SRM ZERO KEY2
KEYREG =new key reg JES SUPR TCB KEY3
RSM DATAMGT RBTI KEY4
VSM TCAM RBT234 KEY7
new key addr: A-type address or register (2).
Notes:
1. WORKREG is required if the following are specified:
EXTKEY=TCB EXTKEY=RBT234
EXTKEY=RBT1 KEYADDR = A-type address
2. The WORKREG parameter should be register 1-15 if one of these four
parameters is specified because WORKREG is used as a base register on
the SPKA instruction. WORKREG =0 sets the PSW key to zero.
new key reg: register 1-15 without parentheses; may be symbolic.
SAVEKEY = oid key addr old key addr: A-type address or register (2).
Notes:
1. If KEYADDR =(2) is specified above, then SAVEKEY = (2) cannot be
specified.
2. The WORKREG parameter is required if SAVEKEY = A-type address is
specified.
3. If WORKREG and SAVEKEY are specified with KEYREG, the
KEYREG register should be different from the WORKREG register.
Also, if SAVEKEY is specified with KEYREG, the KEYREG register
should not be register 2.
,WORKREG = work reg work reg: decimal digits 0-15 without parentheses.
L,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

EXTKEY =key
specifies the key to be set in the current PSW or the address of the key.

SCHED - Scheduler key.

JES - Job entry subsystem key.

RSM - Real storage management key.
VSM - Virtual storage management key.
SRM - System resource management key.

SUPR - Supervisor key.

MODESET - Change System Status 2-211

DATAMGT - Data management key.

TCAM - Telecommunications access method key.
ZERO - Key of zero is to be set.

TCB - Key is to be obtained from TCB field TCBPKF.

RBT1 - Key is to be obtained from the RBOPSW field of the active RB of type 1
SVC routine issuing MODESET.

RBT234 - Key is to be obtained from the RBOPSW field of the active RB preceding
SVRB of type 2, 3, or 4 SVC routine issuing MODESET.

KEY?2 - Key of 2 is to be set.
KEY3 - Key of 3 is to be set.
KEY4 - Key of 4 is to be set.
KEY7 - Key of 7 is to be set.

KEYADDR = new key addr :
specifies a location 1 byte in length which contains the key in bit positions 0-3. If register
(2) is specified, the key is contained in bit positions 24-27 (bits 28-31 are ignored). This
parameter permits a previously saved key to be restored. If TCB, RBT1 or RBT234 is
specified as the key address, the TCB mapping macro IKJTCB is required. The user is
expected to establish addressability to the TCB with a USING statement.

KEYREG =new key reg
specifies a register that contains a key value in bit positions 24-27.

SAVEKEY =0ld key addr
specifies a location | byte in length where the current PSW key is to be saved, in bit
positions 0-3. If register (2) is specified, the key is left in register 2.

»WORKREG = work reg
specifies the register into which the contents of register 2 are to be saved while performing
the SAVEKEY function, or the working register to be used by the EXTKEY or
KEYADDR function. If WORKREG =2 is specified, no register saving takes place.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

2-212 SPL: System Macros and Facilities Volume 2

- SVC Generation

The standard form of the MODESET macro instruction that generates an SVC is written as

follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede MODESET.
MODESET
b One or more blanks must follow MODESET.
KEY =ZERO Note: KEY is required if MODE is not specified.
KEY =NZERO
,MODE=PROB Note: MODE is required if KEY is not specified.
,MODE=SUP

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

KEY=ZERO

KEY =NZERO
specifies that the PSW key (bits 8-11) is to be either set to zero (ZERO) or set to the
value in the caller’s TCB (NZERO).

,MODE =PROB

,MODE =SUP
specifies that the PSW problem state indicator (bit 15) is to be either turned on (PROB)
or turned off (SUP). If the MODESET operation completes with a problem state PSW,
the PSW-key mask in control register 3 is changed to authorize only the key specified by
the problem state PSW.

Example 1
Operation: Save the current PSW key, and change the key to that of the scheduler.
MODESET EXTKEY=SCHED,SAVEKEY=KEYSAVE ,WORKREG=1
Example 2
Operation: Change to supervisor mode and key zero.
MODESET KEY=ZERO,MODE=SUP
Example 3

Operation: Save the current key at location KEY and set the key to the value contained in bits
24-27 of register 3.

MODESET KEYREG=REG3,SAVEKEY=KEY,WORKREG=4

MODESET - Change System Status 2-213

MODESET (List Form)

The list form of /the MODESET macro instruction that generates an SVC is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede MODESET.
MODESET
b One or more blanks must follow MODESET.
KEY =ZERO Note: KEY is required if MODE is not specified.
KEY =NZERO
,MODE =PROB Note: MODE is required if KEY is not specified.
,MODE =SUP

,RELATED = value value: any valid macro keyword specification.
JMF=L

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exception:

MFEF =L
' specifies the list form of the MODESET macro instruction.

2-214 SPL: System Macros and Facilities Volume 2

MODESET (Execute Form)

The execute form of the MODESET macro instruction that generates an SVC is written as

follows:
name name: symbol. Begin name in column 1.
b One or more blanks must precede MODESET.
MODESET
b One or more blanks must follow MODESET.
RELATED = value, value: any valid macro keyword specification.
MF = (E list addr) list addr: RX-type address, or register (1).

The parameters are explained under the standard form of the MODESET macro instruction,
with the following exception: ’

MF = (E,list addr)

specifies the execute form of the MODESET macro instruction, using a parameter list
address.

MODESET (Execute Form) 2-215

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction

The NIL macro instruction is used to provide a lock on a byte of storage on which an and
immediate (NI) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed by another
processor at the same time. Storage modification during NIL processing is accomplished by
using the compare and swap (CS) instruction.

For details on the and immediate and compare and swap instructions, see Principles of

Operation.

The NIL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede NIL.
NIL |
b - One or more blanks must follow NIL.
byte addr byte addr: RX-type address.
mask mask: symbol or self defining term.

,REF=stor addr

,WREGS = (regl,reg2,reg3
,WREGS = (regl,reg2)
,WREGS = (regl,,reg3)
,WREGS = (,reg2,reg3)
SWREGS = (regl)
,WREGS =(reg2)
,WREGS = (,,reg3)

stor addr: RX-type address.

regl: symbol, or decimal digits 0-15.
reg2: symbol, or decimal digits 1-15.
reg3: symbol, or decimal digits 0-15.
Default for regl: 0
Default for reg2: 1
Default for reg3: 2

2-216 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the AND function is to be applied.

;mask
specifies the value to be ANDed to the byte at the address specified above.

,REF = stor addr
specifies the address of a storage location on a fullword boundary. This address provides
the means by which the compare and swap instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4095. The two addresses must be addressable via the
same base register.

SWREGS = (regl,reg2,reg3)

SWREGS = (regl,reg2)

SWREGS = (regl, reg3)

sWREGS = (,reg2,reg3)

JWREGS = (regl)

SWREGS = (,reg2)

SWREGS = (,,reg3)
specifies the work registers to be used to perform the compare and swap instruction. regl
is used to contain the “old” byte; reg2 is used to contain the “updated” byte; and reg3 is
used to contain the mask.

Example 1

Operation: Turn off bit ASCBXMET in byte ASCBCSI1. The reference field, ASCBFW3,
specifies the word being updated.

NIL ASCBCS1,X'FF'-ASCBXMET,REF=ASCBFW3

NIL - Provide a Lock Via an AND IMMEDIATE (NI) Instruction 2-217

NUCLKUP - Nucleus Map Lookup Service

The NUCLKUP macro instruction can be used either to retrieve the address and AMODE of a
nucleus CSECT or ENTRY or to retrieve the name and address of the nucleus CSECT, which
is pointed to by a given address within the CSECT.

This macro runs in the key and state of the caller. On entry to this macro, register 13 must
point to a 72-byte register save area.

The NUCLKUP macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede NUCLKUP.
NUCLKUP
b One or more blanks must follow NUCLKUP.
BYNAME,NAME = name id name id. 8-byte literal (enclosed in apostrophes), or the address of the
BYADDR,NAME = name loc ?igifte literal which can be either ap RX-type address, or register (1) -

name loc: RX-type address or register (1) - (12).

LADDR = addr addr: RX-type address, or register (0) or (2) - (12).

The parameters are explained as follows.

BYNAME

BYADDR , :
specifies the function to be performed. If BYNAME is specified, the user supplies the
name of a CSECT or ENTRY and receives the address and AMODE of that CSECT or
ENTRY. If BYADDR is specified, the user supplies an address within a CSECT and
receives the name and address of the CSECT.

,NAME = name id

,NAME = name loc
specifies the name or the location of the name of the CSECT depending on the option
requested. If the user specifies BYNAME, name id contains. the 8-character name to be
searched for or the address of that name. If the user specifies BYADDR, name loc will
contain the address of the 8-byte area in which the CSECT name is to be returned.

2-218 SPL: System Macros and Facilities Volume 2

LADDR = addr
contains the address to be searched for if BYADDR is specified; contains the address of
the CSECT or ENTRY that is returned if BYNAME is specified.

The NUCLKUP service routine sets bit 0 of the word containing the address returned on
a BYNAME request to indicate the AMODE. For example, if the requestor’s AMODE
is 31-bit and the AMODE of the CSECT is ANY, the NUCLKUP service routine sets bit
0 to 1. The setting of bit 0 is summarized in the following table:

Requestor’'s AMODE AMODE of CSECT

24 31 ANY

24 0 i 0
31 0 1 1

When control is returned, the registers contain the following information:
Register Meaning

0 For a BYNAME request, the address and AMODE of the CSECT or ENTRY; for a BYADDR
request, the 31-bit address of the CSECT

1 For a BYNAME request, the high-order byte is zero and the low-order three bytes contain the
length from the entry point to the end of the CSECT; for a BYADDR request, unchanged

2-14 Unchanged

15 Return code

The return codes in register 15 are as follows:

Hexadecimal

Code Meaning

0 The request was satisfied.

4 The request was not satisfied.
For a BYNAME request, the name was not found and the location containing the address w:
set to zero.
For a BYADDR request, the address was not found in the nucleus and the location containi
the name was set to zero.

8 The request was not satisfied because the type of request was not specified correctly. The

locations containing the name and address were set to zero.

Example 1

Operation: Place the address and AMODE of entry point IEAVESTU in register 0.

NUCLKUP BYNAME ,NAME='IEAVESTU',ADDR=(0)

\ NUCLKUP - Nucleus Map Lookup Service 2-219

OIL - Provide a Lock Via an OR IMMEDIATE (OI) Instruction

The OIL macro instruction is used to provide a lock on a byte of storage on which an or
immediate (OI) instruction is to be executed. Because the byte of storage exists in a
multiprocessing environment, the possibility exists that the byte might be changed by another
processor at the same time. Storage modification during OIL processing is accomplished by
using the compare and swap (CS) instruction.

For details on the or immediate and compare and swap instructions, see Principles of Operation.

The OIL macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede OIL.
OIL
b One or more blanks must follow OIL.
byte addr byte addr: RX-type address.
,mask mask: symbol or self defining term.
,REF = stor addr stor addr: RX-type address.
SWREGS = (regl reg2,reg3) regl: symbol, or decimal digits 0-15.
,WREGS = (regl,reg2) reg2: symbol, or decimal digits 0-15.
SWREGS = (regl,reg3) reg3: symbol, or decimal digits 0-15.
SWREGS = (,reg2,reg3) Default for regl: 0
,WREGS = (regl) Default for reg2: 1
SWREGS = (,reg2) Default for reg3: 2

JWREGS = (, reg3)

2-220 SPL: System Macros and Facilities Volume 2

Example 1

The parameters are explained as follows:

byte addr
specifies the address of the byte to which the OR function is to be applied.

;mask
specifies the value to be ORed to the byte at the address specified above.

,REF = stor addr : : -
specifies the address of a storage location on a fullword boundary. This address provides
the means by which the compare and swap instruction may be executed. The address
must be less than or equal to the byte address specified above, and the difference between
the addresses must be less than 4095. The two addresses must be addressable via the
same base register.

"WREGS = (regl,reg2,reg3)

TWREGS = (regl,reg2)

SWREGS = (regl,,reg3)

SWREGS = (,reg2,reg3)

sWREGS = (regl)

SWREGS = (,reg2)

sWREGS=(,,reg3)
specifies the work registers to be used to perform the compare and swap instruction. regl
is used to contain the “old” byte; reg2 is used to contain the “updated” byte; and reg3 is
used to contain the mask.

Operation: Turn on bit ASCBXMET in byte ASCBCS1. The reference field ASCB specifies
the area containing the word being updated.

OIL ASCBCS1,ASCBXMET,REF=ASCB

OIL - Provide a Lock Via an OR IMMEDIATE (OI). Instruction 2-221

PCLINK - Stack, Unstack, or Extract Program Call Linkage
Information

Routines that receive control as a result of a PC instruction use the PCLINK macro instruction
to provide a standardized method of maintaining PC linkage information. PCLINK has three
forms:

e PCLINK STACK saves some of the environment when a routine gets control as a result of
a PC instruction.

e PCLINK UNSTACK restores that environment before the routine issues a PT instruction
to return control to the calling routine.

e PCLINK EXTRACT retrieves information from the saved environment.

STACK Option of PCLINK

To use PCLINK STACK you must be in primary mode and supervisor state. You must not
change registers 13-4 between the time you get control and the time you issue PCLINK
STACK.

The STACK option of the PCLINK macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede PCLINK.
PCLINK
b One or more blanks must follow PCLINK.
STACK

LJINKEY =ZERO

,OUTKEY =CALLER Default: OUTKEY =CALLER

,OUTKEY =ZERO KEYn: Any valid PSW key value where n = 0-F.

LOUTKEY =KEYn

SAVE=YES Default: SAVE=YES

SAVE=NO

,RELATED = value value: any valid macro keyword specification.

2-222 SpL: System Macros and Facilities Volume 2

STACK,INKEY =ZERO
specifies that the PSW key is zero upon entry to PCLINK. If this parameter is not
specified, the macro expansion temporarily changes the PSW key to zero.

,OUTKEY =CALLER

,OUTKEY =ZERO

,OUTKEY =KEYn where n is 0-F
specifies the setting of the PSW key after the PCLINK macro instruction has completed.
Specifying CALLER causes the PSW key to be restored to the value it had on entry.
Specifying ZERO sets the PSW key to zero. Specifying a key value indicates a specific
value for the key.

,SAVE =YES

SAVE=NO
specifies whether (YES) or not (NO) to preserve registers 8 - 12. The save area used is
different from the area addressed by register 13. SAVE=YES is the default. Processing
is more efficient if you code SAVE=NO.

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

On completion of PCLINK STACK,, the registers are as follows:

RO, R1 Unchanged
R2 Bits 0-23 contain bits 8-31 from register 2 at the time the
macro was issued. Bits 24-31 contain the PCLINK caller’'s PSW key.
R3, R4 Unchanged
RS Linkage register to return from PCLINK STACK
R6, R7 Unchanged
R8-R12 Unchanged if SAVE=YES
Unpredictable if SAVE=NO
R13 0, to ensure that the first save area created after the PC
does not point to a previous save area.
R14 Stack token to uniquely identify the stack entry created.
This token is required for the UNSTACK and EXTRACT forms
of PCLINK.
R15 Unchanged

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-223

UNSTACK Option of PCLINK

To use PCLINK UNSTACK, you must be in supervisor state. In addition, if you specify
PCLINK UNSTACK,THRU and the token contained in the specified register indicates the
stack element most recently queued for that unit of work, you must be in primary mode and the
PASID must be the same as when the stack element was created.

- The UNSTACK option of the PCLINK macro instruction is written as follows:

name . name: symbol. Begin name in column 1.
b One or more blanks must precede PCLINK.
PCLINK ;
b One or more blanks must follow PCLINK.
UNSTACK ‘
,THRU = (reg) reg: Register (0) - (15).
;TO=(reg)
,PURGE=YES
~ JINKEY =ZERO
L,OUTKEY =STACK Default; OUTKEY =STACK
L,OUTKEY =ZERO }
,SAVE=YES Default: SAVE =YES
SAVE=NO v
,ERRET = addr © addr: RX-type address or register (0) - (13) or (15).
,RELATED =value ° value: any valid macro keyword specification.

The parameters are explained as follows:

UNSTACK,THRU = (reg) -
specifies that the stack element identified by the token contained in the specified register,
as well as all more recently stacked elements, are to be removed from the requestor’s
stack. The stack element specified by the token is used to restore registers. If the system
cannot process the request, the routine specified by the ERRET parameter gets control; if
the ERRET parameter is not specified, the requestor is abnormally terminated.

Processing is more efficient if you issue a separate PCLINK UNSTACK,THRU for each
stack element you want to dequeue rather than unstacking several elements at a time.

If the token you specify represents the most recently enqueued stack element, the PASID

when UNSTACK,THRU is issued must be the same as the PASID when PCLINK
STACK was issued for that element. ' '

2-224 SPL: System Macros and Facilities Volume 2

When a PCLINK UNSTACK, THRU is completed, the PSW program mask is restored
from the stack element identified by the token and the registers are as follows:

RO-R1 Unchanged

R2 Bits 24-27 contain the PSW key from the
stack element identified by the token

R3 As saved by PCLINK STACK

R4-R7 Unchanged

R8-R12 Unchanged if SAVE = YES is specified
Unpredictable if SAVE=NO is specified

R13,R14 As saved by PCLINK STACK

R15 Unchanged

s TO=(reg)
specifies that all stack elements stacked more recently than the element identified by the
token contained in the specified register are to be removed from the stack. The element
identified by the token remains on the stack. If the system cannot process the request, the
routine specified by the ERRET parameter gets control; if the ERRET parameter is not
specified, the requestor is abnormally terminated.

Use the TO parameter for stack cleanup in an FRR or ESTAE retry routine or in an
FRR that is going to retry.

When a PCLINK UNSTACK,TO is completed, the registers are as follows:

RO,R1 Unpredictable :

R2 Unchanged if INKEY =ZERO is specified and ERRET is not
specified, otherwise, PSW key of PCLINK caller

R3-R7 Unchanged

R8-R12 Unchanged if SAVE = YES is specified
Unpredictable if SAVE=NO is specified

R13 Unchanged

R14-R15 Unpredictable

,JPURGE=YES
specifies that each stack element is to be freed until no more exist on the requestor’s
stack. Any element that resides in a terminated address space as well as elements stacked
prior to it are not freed, but the stack pointer indicates an empty stack and the PCLINK
request returns normally to the caller.

The ERRET parameter cannot be used with PURGE.

When the PCLINK UNSTACK,PURGE is completed, the registers are as follows:

RO,R1 . Unpredictable

R2 Unchanged if INKEY =ZERO is specified, otherwise PSW key of
PCLINK caller

R3-R7 Unchanged

R8-R12 Unchanged if SAVE=YES is specified
Unpredictable if SAVE=NO is specified

RI3 Unchanged

R14-R15 Unpredictable

JNKEY =ZERO

specifies that the PSW key is zero on entry to PCLINK. If this parameter is not
specified, the macro expansion temporarily changes the key to zero.

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-225

y,OUTKEY =STACK
,OUTKEY =ZERO

specifies the setting of the PSW key after the PCLINK request is completed. Specifying
OUTKEY =ZERO returns to the caller in key zero. Specifying OUTKEY =STACK
restores the key to the value contained in the stack element identified by token.
OUTKEY =STACK is the default.

This parameter is valid only with PCLINK UNSTACK,THRU.

SAVE=YES
»SAVE=NO

specifies whether (YES) or not (NO) registers 8 - 12 are to be preserved. The save area
used for these registers is not the area pointed to by register 13.

L,ERRET = addr

specifies the address of an exit routine to be given control if PCLINK UNSTACK
encounters an error. ERRET is valid only with the TO and THRU parameters.

The ERRET exit routine receives control in the addressing mode of the caller of
PCLINK. When an ERRET exit routine gets control, the cross memory state is the same
as when the PCLINK macro instruction was issued. The registers are as follows:

RO,R1,R3,R13
R2

R4-R7
R8-R12

R14
R15

,RELATED = value

specifies information us

Unpredictable

PSW key of PCLINK caller

Unchanged

Unchanged if SAVE=YES is specified
Unpredictable if SAVE =NO is specified

The token passed as input

4 - stack was empty

8 - input token is invalid

12 - ~an address on the STKE queue is invalid
16 - An*ASID on the STKE queue is invalid
20 - Unknown error

ed to self-document macro instructions by “relating” functions or

services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

2-226 SPL: System Macros and Facilities Volume 2

EXTRACT Option of PCLINK

To use PCLINK EXTRACT, you must either be in PSW key 0, supervisor state, or have a
PSW key mask authorized for key 0.

In addition, you must have addressability to the same address space as when PCLINK STACK
was issued for the stack element from which you are extracting data.

PCLINK EXTRACT modifies registers 0, 1, 14, and 15. If ALL=YES is specified, registers
13-4 are also modified.

The EXTRACT option of the PCLINK macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede PCLINK.
PCLINK
b One or more blanks must follow PCLINK.
EXTRACT
,TOKEN = (reg) reg: Register (0) - (15).
,ALL=YES

SVAREA = (reg)
,RETADR = (reg)
LPARMIS5 = (reg)
LPARMO= (reg)
,PARMI1 = (reg)
JKEY = (reg)
LASID = (reg)
,LP=(reg)
LENTRY = (reg)

,RELATED = value value: any valid macro keyword specification.

The parameters are explained as follows:

EXTRACT,TOKEN = (reg) :

specifies a register that contains a 32-bit stack token identifying the most recently stacked
element.

LALL=YES
specifies that all information stored in the stack element identified by the token is to be
extracted. The stored information is placed into the same registers (registers 13, 15, and
0-4) it was in when PCLINK STACK was issned. Registers 5 and 14 are not restored.

SVAREA =(reg)

specifies a register into which the address of the program call issuer’s save area is to be
placed.

PCLINK - Stack, Unstack, or Extract Program Call Linkage Information 2-227

,RETADR = (reg)
specifies a register into which the AMODE (in which control is to be returned), the return
address, and PSW problem state bit are to be placed. These occupy bits 0,1-30, and 31,
respectively.

,LPARMI5 = (reg)

JLPARMI1 = (reg)

,LPARMO = (reg)
specifies a register into which the contents of register 15 (PARM15), register 1 (PARM1),
or register 0 (PARMO) at the time PCLINK STACK was issued are to be placed.

JKEY = (reg)
specifies a register into which the PC issuer’s PSW key is to be placed. The key occupies
bit positions 24-27, which are the same positions as those used by the IPK instruction.

LASID = (reg) ,
specifies a register into which the PC issuer’s PSW key mask (bits 0-15) and ASID (bits
16-42) are to be placed.

JLP=(reg)
specifies a register into which the latent parameter pointer is to be placed.

LENTRY = (reg)
specifies a register into which the contents of register 5 as established by the PCLINK
STACK macro instruction are to be placed. Bit 0 of the register used by the ENTRY
parameter specifies the addressing mode of the program call routine that issued the
PCLINK macro instruction.

LRELATED = value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding services performed elsewhere. The format and contents of the
information specified can be any valid coding values.

2-228 SPL: System Macros and Facilities Volume 2

PGANY - Page Anywhere

Some fixed pages are assigned within the first 16 megabytes of storage. The real storage
manager (RSM) assumes that once a page has been fixed, it is likely to be fixed again.
Therefore, RSM sets a bit to indicate that a page was previously fixed and required storage in
the first 16 megabytes of real storage. The next time that page is loaded, RSM tries to put it in
the first 16 megabytes in anticipation of a fix. Use the PGANY macro instruction to indicate to
RSM that no further page fixes are planned for a particular page and that the next time the
page is loaded, RSM can put it anywhere.

Entry is by means of an SVC. The caller can be in either problem or supervisor state and must
not hold any locks. On entry, register contents are as follows:

Register 0 - Zero
Register 1 - If bit 0 of byte 0 is 1, register 1 contains
a pointer to the virtual subarea list,

If bit 0 of byte 0 is 0, registers 1 and 15
contain a virtual subarea list entry.

On return, register contents are as follows:

Registers 0-1 Unpredictable
Registers 2-14 Unchanged
Registers 15 Return code

The PGANY macro instruction is written as follows:

name name: symbol. Begin rame in column 1.
b One or more blanks must precede PGANY.
PGANY
b One or more blanks must follow PGANY.
L,LA =list addr list addr: RX-type address or register (1) or (2) - (12).
R,A =start addr start addr: RX-type address or register (1), (2) - (12).
JEBA = end addr end addr: RX-type address or register (15), (2) - (12).

Note: Cannot be specified unless R is specified.
Default: EA =start addr + 1.

PGANY - Page Anywhere 2-229

The parameters are explained as follows:

L

specifies that the virtual subarea list (VSL) is being supplied with this request. (See the
topic “Input to Page Services” in Volume 1 for a description of the virtual subarea list.)

JLA = list addr
specifies the address of the virtual subarea list.

specifies that the necessary parameters will be passed in registers. A virtual subarea list is

not being supplied.

LA = start addr
specifies the address of the start of the virtual area.

JEA =end addr

specifies the end + 1 byte of the virtual area. If this parameter is not coded, the

default is the start address + 1.

Note:

start addr and end addr must be located in 24-bit addressable storage.

Upon completion, register 15 contains one of the following return codes:

Hexadecimal
Code

00

04

10

14

Meaning

Operation completed normally.
Parameter error, X‘171° abend, operation
terminated because of invalid address

in VSL entry.

Parameter error, X‘171° abend, operation
terminated abnormally because the VSL

list was invalid.

Environmental error, X‘028” abend.

For return codes 04 and 10, registers are loaded before the abend as follows:

RO

R1
R2-R10
Rl

RI2
R13-R14
R15

Unpredictable

Abend code

Unpredictable

Address of input VSL list or 0 for R-form
0 (ECB address =0)

Current VSL entry being processed
Return code

2-230 SPL: System Macros and Facilities Volume 2

PGFIX - Fix Virtual Storage Contents

The PGFIX macro instruction makes virtual storage areas, below 16 megabytes, resident in real
storage and ineligible for page-out while the requesting task’s address space occupies real
storage. The PGSER macro instruction performs this function for addresses either above or
below 16 megabytes. PGFIX (and PGSER) ignore requests to fix storage in a system area that
has the fixed attribute (for example, the LSQA and SQA). A FIX request for a page in the
LSQA or SQA will not cause the page to be backed by real storage below 16 megabytes. A
subsequent PGFREE is effective only if issued by the same task. The PGFIX function is
available only to authorized system functions and users.

PGFIX does not prevent pages from being paged out when an entire address space is swapped
out of real storage. Consequently, when using the PGFIX macro instruction, you can not

assume a constant real address mapping for fixed pages that are susceptible to swapping.

The standard form of the PGFIX macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede PGFIX.
PGFIX
b One or more blanks must follow PGFIX.
R
L
,LA = list addr list addr: A-type address, or register (1) or (2) - (12).
LA =start addr start addr: A-type address, or register (1) or (2) - (12).
L,ECB= ecb addr ech addr: A-type address, or register (0) or (2) - (12).
JEA =end addr end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1
,LLONG=Y Default: LONG=Y
,LONG=N
,RELEASE=N Default: RELEASE=N
,RELEASE=Y Note: RELEASE =Y may only be specified with EA above.
,RELATED = value value: any valid macro keyword specification.

PGFIX - Fix Virtual Storage Contents 2-231

The parameters are explained as follows:

R 4
specifies that no parameter list is being supplied with this request.

specifies that a parameter list is being supplied with this request.

,LA =list addr o
specifies the address of the first entry of a virtual subarea list (VSL). Sce the topic “Input-
to Page Services” in Volume 1 for a description of the VSL.

LA = start addr :
specifies the start address of the virtual area to be fixed.

Note: start addr must be located in 24-bit addressable storage.

LJLECB=ech addr
specifies the address of the ECB that is used to signal event completion. If the ECB
address specified is zero, (ECB=0 or ECB = (register) where the contents of the register
specified is 0), the fix request is completely satisfied before control is returned.

Note: If the user intends to wait on the ECB as part of an ECB list, he must ensure that
the list and associated ECBs are fixed in real storage before issuing the WAIT The i
PGFIX service routine ensures that the specified ECB i is fixed

JEA =end addr ‘
specifies the end address + 1 of the virtual area to be fixed.

" Note: end addr must be located in 24-bit addressable storage.

,LONG=Y
,LONG=N
specifies that the relative real time duration anticipated for the fix is long (Y) or short

N).

,RELEASE =

,RELEASE = Y
specifies that the contents of the virtual area is to remain intact (N) or be released)
before the fix is done.

,LRELATED = value : , .
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified.are at the discretion of the user, and may be any valld codmg
values. :

2-232 SPL: System Macros and Facilities Volume 2

Example 1

Example 2

Example 3

Upon completion, register 15 contains one of the following return codes:

Hexadecimal

Code Meaning

00 Operation completed normally; ECB posted complete.

04 Operation abnormally terminated with a X‘171” abend. Operation incomplete because of
invalid address virtual subarea list entry; ECB posted complete. See Message Library.: System
Codes for a complete description of the register contents after a X‘171° abend.

08 Operation proceeding; ECB will be posted when all requested pages are fixed in real storage.

10 Operation abnormally terminated with a X‘171° abend. Virtual subarea list entry or ECB

address invalid; no ECB is posted. See Message Library: System Codes for a complete
description of the register contents after a X‘171” abend.

The ECB is unchanged if the request was initiated but not complete (return code 8), or if an
ABEND was issued with return code 10. Otherwise, the ECB is posted complete with code:

0 - _Qperation‘ completed successfully.
4 - operation incomplete because of invalid address in VSL entry.

If the return code issued is 8, the ECB is posted asynchronously when paging I/O has
completed, with code:

0 - operation completed successfully.
4 - operation incomplete because of paging error; requesting TCB
will be abnormally terminated.

- The ECB code is posted in the low-order 3 bytes of the ECB, and is right-justified.

Operation: Fix a single byte of virtual storage addressed by register 3. Note that the full

4096-byte page containing the specified byte is actually fixed. The storage is long fixed.

PGFIX R,A=(R3) ,ECB=(R5)

Operation: Fix virtual storage without using a virtual subarea list. Storage is long fixed.

PGFIX R,A=(R3),EA=(R4),ECB=ECB1

Oj)erati'on.' Fix, but not long-fix, virtual storagé, and ensure that the pages fully included in the
address range are forfeited before fixing the area specified by registers 3 and 4.

PGFIX R,A=(R3),EA=(R4) ,ECB=(R5),LONG=N,RELEASE=Y

PGFIX - Fix Virtual Storage Contents 2-233

PGFIXA - Fix Virtual Storage Contents

Output

Restrictions

The PGFIXA macro instruction makes virtual storage areas, below 16 megabytes, resident in
real storage and ineligible for page-out while the requesting task’s address space occupies real
storage. The PGSER macro instruction performs this function for addresses either above or
below 16 megabytes. The PGFIXA function is available only to key zero and supervisor state
users. The PGFIXA macro instruction executes short-term, synchronous page fixes. The
preferred area(s) of storage are intended for long term page fixes. A long term page fix in the
V=R or non-preferred areas may delay V=R functions or CONFIG STORAGE commands.
All fix processing is assumed to be short-term and is complete when control is returned to the
issuer of the macro.

PGFIXA does not prevent pages from being paged out when an entire address space is swapped
out of real storage. Consequently, when using the PGFIXA macro instruction, you cannot
assume a constant real address mapping for fixed pages that are susceptible to swapping.

If the PGFIXA is successful, control is returned enabled to the user, all pages are fixed, and
register 15 contains a return code of zero.

If the PGFIXA is unsuccessful, the user will be abended with a system completion code of
X*171” or a system complete code of 028. For X‘171” abends, all pages processed up to, but not

including the page causing the error, will be fixed. Register 10 will contain the address of the
pages in error when the abend is issued. No pages will be fixed in the event of a X028’ abend.

Use of the PGFIXA macro instruction is subject to the following restrictions:
e Can be used only for short term synchronous fixes.

o The user must be in supervisor state with a protection key of zero.

o The user must not hold any spin locks.

o The program mask byte in the PSW is zero and interrupts are enabled upon return from
the PGFIXA.

o The user is responsible for freeing any pages fixed via the PGFIXA. A corresponding
PGFREEA macro instruction should be issued. In addition, an FRR should be established
during the period where fixes are outstanding. The FRR should free the frames in case
there is an unexpected error.

o DSECTs for the IHAPSA, CVT, and IHAPVT must be provided.

2-234 SPL: System Macros and Facilities Volume 2

o The user must ensure that the end address is greater than or equal to the start aadress.
o The SAVE keyword can only be used with TYPE=R.

The standard form of the PGFIXA macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede PGFIXA.
PGFIXA
b One or more blanks must follow PGFIXA.
,TYPE=L
,TYPE=R Default: TYPE=R
SAVE=YES Default: SAVE=YES
SAVE=NO

The parameters are explained as follows:

TYPE=L

TYPE=R
specifies the type of input. When L is specified, register 1 is to contain the address of a
virtual subarea list (VSL) fixed in storage. (See the topic “Input to Page Services” in
Volume 1 for a description of the VSL.) By specifying TYPE =L, registers 1 through 13
are saved. If TYPE =R is specified, then register 1 contains the address of the first byte
to be fixed in a contiguous range and register 2 contains the address of the last byte to be
fixed (actual end address). When TYPE =R is specified, the registers saved depend upon
what is specified on the SAVE parameter.

Note: All other users of the PGFIX, PGFIXA (TYPE=L), and PGFREEA macro
instructions must specify the actual end address plus one.

SAVE=YES

SAVE=NO
specifies the registers to be saved for TYPE=R. Registers 1 through 13 are saved if
SAVE=YES is specified or if the default is taken. Registers 2 through 10 are saved if
SAVE =NO is specified.

Example 1
Operation: Use PGFIXA to fix virtual storage without using a virtual subarea list. Registers 2
through 10 will be saved.
FIX1 PGFIXA TYPE=R, SAVE=NO
Example 2

Operation: Use PGFIXA to fix virtual storage using a virtual subarea list. Registers 1 through
13 will be saved.

FIX2 PGFIXA TYPE=L

PGFIXA - Fix Virtual Storage Contents 2-235

PGFREE - Free Virtual Storage Contents

The PGFREE macro instruction makes virtual storage pages, below 16 megabytes, that were
fixed via the PGFIX macro instruction eligible for page-out. The PGSER macro instruction
performs this function for addresses either above or below 16 megabytes. The PGFREE
function is available only to authorized system functions and users. PGFREE must be issued
by the same task that issued the PGFIX, otherwise PGFREE has no effect.

Note: A fixed page is not considered pageable until the number of PGFREEs issued for the
page is equal to the number of PGFIXes previously issued for that page. That is, a page is not

automatically made pageable as the result of issuing a PGFREE macro instruction.

The standard form of the PGFREE macro instruction is written as follows:

name name: symbol. Begin rame in column 1.
b One or more blanks must precede PGFREE.
PGFREE
b One or more blanks must follow PGFREE.
L
,LA = list addr list addr: A-type address, or register (1) or (2) - (12).
R
JA = gstart addr start addr: A-type address, or register (1) or (2) - (12).
,ECB=-ecb addr ech addr: A-type address, or register (0) or (2) - (12).
,EA = end addr end addr: A-type address, or register (2) - (12) or (15).
Default: start addr + 1
LANYWHER =N Default: ANYWHER =N
LANYWHER =Y
,RELEASE=N Default: RELEASE=N
,RELEASE=Y Note: RELEASE =Y may only be specified with EA above.
,RELATED = value value: any valid macro keyword specification.

2-236 SPL: System Macros and Facilities Volume 2

The parameters are explained as follows:

L
specifies that a parameter list is being supplied with this request.

,LA = list addr
specifies the address of the first entry of a virtual subarea list (VSL). See the topic “Input
to Page Services” in Volume 1 for a description of the VSL.

R
specifies that no parameter list is being supplied with this request.

,A = start addr
specifies the start address of the virtual area to be freed.

Note: start addr must be located in 24-bit addressable storage.

LECB =ech addr
specifies the address of the ECB that was used in a prior PGFIX request. This parameter
is used if there is any possibility that the ECB for the previously issued PGFIX was not
posted complete.

JEA = end addr
specifies the end address + 1 of the virtual area to be freed.

Note: end addr must be located in 24-bit addressable storage.

ZANYWHER =N

LANYWHER =Y
On subsequent page-ins, assign real storage frames below 16 megabytes in anticipation of
a page fix (N) or on subsequent page-ins, assign real storage frames anywhere (Y). The
ANYWHER option takes effect only when the page fix count goes to zero. The default is
ANYWHER=N.

,RELEASE=N
,RELEASE=Y
specifies that the contents of the virtual area is to remain intact (N) or be released (Y).

,RELATED =value
specifies information used to self-document macro instructions by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid coding
values.

PGFREE - Free Virtual Storage Contents 2-237

When control is returned, register 15 contains one of the following return codes:

Hexadecimal
Code Meaning
00 Operation completed normally.
04 Operation abnormally terminated. Operation incomplete because of invalid address in virtual .
subarea list entry.
10 Operation abnormally terminated. Virtual subarea list entry or ECB address invalid.
Example 1
Operation: Free the storage in Example 1 of standard-form PGFIX.
PGFREE R,A=(R3)
Example 2
Operation: Free the storage in Example 2 of standard-form PGFIX.
PGFREE R,A=(R3) ,EA=(R4)
Example 3

Operation: Free the storage in Example 3 of standard-form PGFIX, and forfeit the pages fully
included in the address range. ‘

PGFREE R,A=(R3),EA=(R4) ,ECB=(R5) ,RELEASE=Y

2-238 SPL: System Macros and Facilities Volume 2

PGFREEA - Free Virtual Storage Contents

Restrictions

Output

The PGFREEA macro instruction makes virtual storage areas, below 16 megabytes, that were
fixed by the PGFIXA macro instruction eligible for page-out. The PGSER macro instruction
performs this function for pages either above or below 16 megabytes. The PGFREEA function
is available only to key zero and supervisor state users. ’

The standard form of the PGFREEA macro instruction is written as follows:

name name: symbol. Begin name in column 1.
b One or more blanks must precede PGFREEA.
PGFREEA
b One or more blanks must follow PGFREEA.

No additional parameters are specified.

Use of the PGFREEA macro instruction is subject to the following restrictions:

e The issuer of the PGFREEA must provide a fixed virtual subarea list (VSL) or chain of
them, pointed to by register 1.

o The user must be in supervisor state, protection key 0.

® The user must provide DSECTs for IHAPSA, CVT, and IHAPVT.

If the PGFREEA is successful, all pages will be freed and register 15 will contain a return code
of zero. If unsuccessful, all pages up to, but not including the one that caused the abend will be
freed. The user will be abended with a system completion code of X‘171°.

N PGFREEA - Free Virtual Storage Contents 2-239

PGSER - Page Services

The PGSER macro instruction and its fast path version perform the same paging services that
PGANY, PGFIX, PGFIXA, PGFREE, PGFREEA, PGLOAD, PGOUT, and PGRLSE
perform for addresses below 16 megabytes. PGSER performs these services for addresses either
above or below 16 megabytes.

Except for the TCB, all input parameters to this macro instruction can reside in storage above
16 megabytes if the caller is executing in 31-bit addressing mode.

The services are:

Page fix equivalent to PGFIX

Fast path to fix virtual storage

Page free equivalent to PGFREE
Fast path to free virtual storage

Page load equivalent to PGLOAD
Page out equivalent to PGOUT

Page release equivalent to PGRLSE
Page anywhere equivalent to PGANY

This macro is also described in Supervisor Services and Macro Instructions with the exception
of the restricted parameters. The parameters FIX and FREE are restricted to APF-authorized,
key zero, or supervisor state callers. The parameters BRANCH =SPECIAL and BRANCH=Y
are restricted to enabled, supervisor state, key zero callers; users of these options must provide
the address of an 18-word save area in register 13. (See the section “Branch Entry to the
PGSER Routine” in volume 1 for more information about branch entry.) The RELEASE
option of the macro is restricted to supervisor state key zero users if the common area is being
released. Non-authorized users can release only the private area.

Regardless of the addressing mode, all addresses passed in registers are used as 31-bit addresses.
All RX-type addresses are assumed to be in the addressing mode of the caller.

2-240 SPL: System Macros and Facilities Volume 2

The syntax of the fast path version of PGSER is presented separately following this standard
description. The standard form of the PGSER macro instruction is written as follows:

hame

PGSER

name: symbol. Begin rname in column 1.

One or more blanks must precede PGSER.

One or more blanks must follow PGSER.

R
L

JFIX

JFREE
,LOAD
,OUT
,RELEASE
LANYWHER

LA =list addr

A= start addr

JEA =end addr

,TCB = tcb addr

,ECB=ecb addr

,RELEASE=Y
,RELEASE=N

LONG=Y
L,LONG=N

,BACKOUT=Y
,BACKOUT=N

LJKEEPREL=Y
JKEEPREL =N

LANYWHER =Y
LANYWHER=N

,BRANCH=Y
,BRANCH=N

RELATED = value

list addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.
Note: This parameter is valid only with L.

start addr: RX-type address or register (1), (5) - (12) for branch entry; or
register (1), (2) - (12) for SVC entry.
Note: This parameter is valid only with R.

Default: EA = start addr

end addr: RX-type address or register (2), (5) - (12) for branch entry; or
register (15), (2) - (12) for SVC entry.

Note: This parameter is valid only with R.

Default: TCB=0

teb addr: RX-type address or register (4), (5) - (12).

Note: This parameter can be specified only if FIX; FREE, LOAD, or
OUT and BRANCH =Y are specified.

Default: If FREE or LOAD is specified, ECB=0.

ecb addr: RX-type address or register (0), (5) - (12) for branch entry;

or register (0), (2) - (12) for SVC entry.

Note: This parameter is required if FIX is specified; is optional if FREE
or LOAD is specified; and is invalid for OUT, RELEASE, or
ANYWHER. For synchronous page fix the ECB address must be 0.

Default: RELEASE=N
Note: This parameter may be specified only if FIX, FREE, or LOAD is
specified.

Defauit: LONG=Y
Note: This parameter may be specified only if FIX is specified.

Default: BACKOUT=Y
Note: This parameter may be specified only if FIX is specified.

Default: KEEPREL =N
Note: This parameter may be specified only if OUT is specified.

Default: ANYWHER =N
Note: This parameter may be specified only if FREE is specified.

Default: BRANCH=N

value: any valid macro keyword speciﬁcatibn.

PGSER - Page Services 2-241

specifies the manner in which the input is supplied. If R is specified, the user supplies the
starting and ending addresses of the virtual area for which the service needs to be
performed. Before processing the request, page services puts these addresses in registers 1
and 15, respectively. If L is specified, the user supplies the address of the page services
list (PSL), which specifies the virtual area for which the service is to be performed. Before
processing the request, page services puts the address of the PSL in register 1. See the
topic “Input to Page Services” in Volume 1 for a description of the PSL.

LJFIX
,FREE
,LOAD
,OUT
,RELEASE
LANYWHER
indicates the function to be performed.

FIX specifies that the virtual storage areas are to reside in real storage and are ineligible
for page-out while the address space is swapped in. This parameter does not prevent
pages from being paged out when the entire address space is swapped out of real storage.
FIX will ignore a request to fix storage in a system area that has the fixed attribute (for
example, the LSQA and SQA). A FIX request for a page in the LSQA or SQA will not
cause the page to be backed by real storage below 16 megabytes.

FREE specifies that the virtual storage areas that were previously fixed via the FIX
option are eligible for page-out. A fixed page is not considered pageable until the number’
of FREE and FIX requests for the page are equal.

LOAD specifies that a page-in operation is to be initiated for the virtual storage area
specified, in anticipation of future needs.

OUT specifies that a page-out operation is to be initiated for the virtual storage area
specified.

RELEASE specifies that all real and auxiliary storage, associated with the virtual storage
area specified, is to be released.

ANYWHER applies to virtual storage areas that did not specify LOC=(BELOW,ANY)
or LOC=(ANY,ANY) or LOC=ANY on a GETMAIN request, that have been
previously fixed, and probably will not need to be fixed again. ANYWHER specifies that
the virtual storage area specified can be placed either above or below 16 megabytes real
on future page-ins.

LA = list addr
specifies the address of the page services list (PSL) for L requests.

,A = start addr
specifies the address of the start of the virtual area for R requests.

JEA =end addr
specifies the address of the end of the virtual area for R requests.

2-242 SPL: System Macros and Facilities Volume 2

,TCB=1tch addr
specifies either zero or the address of the TCB to be assigned ownership of fixes for a FIX
request or fixes for a FREE request. If zero is specified, no TCB is assigned ownership of
the request. Cross memory callers must specify zero.

For OUT and LOAD requests, the PGSER routine associates the request with a
particular TCB so that the request can be purged if the task terminates before the request
is complete. For SVC entry (BRANCH = N), the PGSER routine uses the current TCB.

Note: The TCB resides in storage below 16 megabytes.

LECB=ecbh addr
specifies the address of the ECB that is used to signal event completion for an
asynchronous FIX or LOAD request. If the caller is in cross memory mode or if the
caller requests a synchronous page fix (a FIX for which the caller is suspended until the
entire FIX request is complete), the ECB must be zero (ECB=0 or ECB=(r), where (1)
represents a register that contains zero).

For a FREE request, ECB specifies the address of the ECB that was used in a previous
FIX request. If this parameter is specified, any pages in the previous FIX request that are
not yet fixed, will not be fixed. If L is specified, the PSL chain must contain the
addresses of the virtual pages in the same order in both the FREE and the previous FIX
request. Also, the ECB for the FIX request will not be posted if it was not yet posted at
the time of the FREE request.

If the ECB parameter is not specified on a FREE request, only the fix counts for the valid
pages in storage at the time of the FREE request are decreased. This will not affect the
paging activity and the posting of the ECB associated with the original FIX request.

If an ECB is supplied on a FIX or LOAD request, the caller must check the return code
because the ECB will not be posted if the return code is zero. If an ECB is not supplied,
it is not necessary to check the return code because control returns to the caller only if the
request was successfully completed; if unsuccessful, page services abnormally terminates
the caller.

For all callers that supply an ECB, page services verifies that the ECB address is in an
area allocated via GETMAIN and if the caller is not in key 0, page services also verifies
that the ECB is in the caller’s protect key. Before posting the ECB, page services again
verifies that the ECB is located in an allocated area and that the ECB is in the caller’s
protect key. (This is to check that the allocated area has not been freed via FREEMAIN
and the protect key has not been changed.) It is the user’s responsibility to ensure that
the page containing the ECB is not freed and that the key is not altered. If either test
fails, page services does not post the ECB.

,RELEASE=Y

,RELEASE =N
specifies that all the real and auxiliary storage associated with the virtual storage areas is
to be released to the system (Y) or that all the real and auxiliary storage associated with
the virtual storage areas is not to be released to the system (N).

PGSER - Page Services 2-243

,LKEEPREL =Y

JLKEEPREL=N
specifies that the virtual pages should be validated again after the page-out completes (Y);
or that the virtual pages will be marked invalid and the real storage frames freed for reuse

N).

LONG=Y

,LONG=N
specifies that the relative real time anticipated for the FIX is long (Y); or that the relative
real time anticipated for the FIX is short (N). (In general, the duration of a fix is long if
it can be measured in seconds.)

,BACKOUT =Y

,BACKOUT =N
specifies the procedure to follow when a non-allocated page is encountered during the
processing of a FIX request. If BACKOUT =Y, all pages fixed as part of the request are
freed before returning to the caller. If BACKOUT =N, the pages previously fixed as part
of the request are not freed and no further processing is done before returning to the
caller.

LANYWHER =N

LANYWHER=Y
specifies that on subsequent page-ins, page services is to assign real storage frames below
16 megabytes in anticipation of a page-fix (N); or on subsequent page-ins, page services is
to assign real storage frames anywhere (Y). The ANYWHER option takes effect only
when the page-fix count goes to zero.

,BRANCH=Y
,BRANCH=N
- specifies whether or not this is a branch entry.

If BRANCH =Y is specified, it is a branch entry; and users of this option must provide
the address of an 18-word save area in register 13. Register 2 contains the ending
address.

If BRANCH=N is specified, it is an SVC entry. Register 15 contains the ending address.
Cross memory callers must use BRANCH=Y.

JLRELATED =value
provides information to document the macro by relating the service performed to some
corresponding function or service. The format can be any valid coding value that the user

chooses.

- On.return the register contents are as follows:

Regiéter ' Contents

0-4 The contents are destroyed and unpredictable.
5-13 The contents are unchanged.

14 The contents are destroyed and unpredictable.
15 This register contains the return code.

2-244 SPL: System Macros and Facilities Volume 2

The return codes, given in register 15, along with the option used and the meaning follow:

Option

FIX

FIX

FREE

LOAD

LOAD

ouT

RELEASE

ANYWHER

Code Meaning

The operation completed normally
and the ECB will not be posted.

The operation is proceeding,

the ECB (if available) will be posted
with X‘00° when the requested
pages are fixed.

The operation completed normally.

The operation completed normally
and the ECB will not be posted.

If no ECB is supplied, the operation
is completed or proceeding.

The operation is proceeding.
The ECB will

be posted with X‘00° when all
page-ins are complete.

The operation completed normally.
At least one page in the requested range
was not paged out.

The operation completed normally.

The operation completed normally.

If a error is found in one of the parameters, the requestor is abnormally terminated with a
system abend code of X‘18A” and one of the following hexadecimal reason codes is provided in

register 15:

Hexadecimal
Code

4

10

Meaning

A page-fix operation abnormally terminated
cause of an invalid address in a PSL

entry. The ECB will not be posted.

A page-release operation abnormally terminated
because either a page release was attempted

for permanently backed storage or a non-system
key caller attempted to release storage

in a different key.

A page-fix, page-free, or a page-load

operation abnormally terminated because the
PSL or ECB address was invalid.

Callers not authorized to use a specific service are abnormally terminated with a system abend
code of X‘28A” and a hexadecimal error code of X‘10’ in register 15. If an environmental error
is encountered while processing the page-services request, the caller is abnormally terminated
with a system abend code of X028 and a hexadecimal error code of X‘14’ in register 15. A
unique reason code is also provided in register 0 for these errors.

PGSER - Page Services 2-245

Example 1

Example 2

Example 3

Example 4

Example 5

Operation: Synchronously fix the page that starts at the address given in register 1 and ends at
the address given in LOADWORD. Use br