
Program Product 

GC28-1143-6 
File No. S370-34 

MVS/Extended Architecture 
Conversion Notebook 
Volume 1 

MVS/SP Version 2 Release 2 
and Related Products 

J ES3 Version 2 5665-291 
J ES2 Version 2 5740-XC6 

-~~ ----..-. .... - ---..-- -- ------ -.. -~-- -- -----_ .... -
-~-.-



Seventh Edition (June, 1987) 

This is a major revision of GC28-1l43-5. See the Summary of Amendments following the 
Contents for a summary of the changes made to this manual. 

This edition applies to the following program products until otherwise indicated in new 
editions or technical newsletters: 

Assembler H Version 2 (5668-962) 
MVSjXA Data Facility Product (MVS/XA DFP) Version 2 Release 3 (5665-XA2) 
MVS/System Product - JES2 (MVS/SP) Version 2 Release 2 (5740-XC6) 
MVS/System Product - JES3 (MVS/SP) Version 2 Release 2 (5665-291) 

The previous edition may now be ordered using the temporary number, GTOO-2111. It 
still applies to: 

Assembler H Version 2 (5668-962) 
MVS/XA Data Facility Product (MVS/XA DFP) Version 2 Releases 1,2 (5665-XA2) 
MVS/System Product - JES2 (MVS/SP) Version 2 Release 1 (5740-XC6) 
MVS/System Product - JES3 (MVS/SP) Version 2 Release 1 (5665-291) 

Changes are continually made to the information herein; before using this publication in 
connection with the operation of IBM systems, consult the latest IBM System 
Bibliography, GC20-0001, for the editions and technical newsletters that are applicable 
and current. 

References in this publication to IBM products or services do not imply that IBM intends 
to make these available in all countries in which IBM operates. Any reference to an IBM 
product in this publication is not intended to state or imply that only IBM's product may 
be used. Any functionally equivalent product may be used instead. 

Publications are not stocked at the address given below; requests for copies of IBM 
publications should be made to your IBM representative or to the IBM branch office 
serving your country. 

A form for reader's comments is provided at the back of this publication. If the form has 
been removed, comments may be addressed to IBM Corporation, Publications 
Development, Department D58, Building 921, PO Box 390, Poughkeepsie, New York 
12602 .. IBM may use or distribute any of the information you supply in anyway it 
believes appropriate without incurring any obligation whatever. You may, of course, 
continue to use the information you supply. 

© Copyright International Business Machines Corporation 1982, 1987 

c 



( 

ABOUT THIS BOOK 

This book, the MVS/XA Conversion Notebook, Volume 1 contains very little new 
information. Rather, it focuses on the history of those changes to MVS/XA that 
occurred with each level of MVS/SP Version 2 Release 1 that are still relevant for 
users of MVS/SP Version 2 Release 2. 

Installations currently running the last level of Release 1, MVS/SP Version 2 
Release 1.7, only need to read the passages marked by change bars in the left 
margin. Installations currently running an early level of MVS or MVS/XA and 
planning to convert to MVS/SP Version 2 Release 2 must read the passages that 
are new to them. 

The companion to this book, the MVS/XA Conversion Notebook, Volume 2 
(GC28-1411), describes the updates and enhancements that are new with Release 
2. All installations planning to convert to MVS/SP Version 2 Release 2, 
regardless of which release they are currently running, must read Volume 2. 

Even though this book contains little new technical information, it differs from 
previous editions of the MVS/XA Conversion Notebook. Information that no 
longer applies because of Release 2 updates and enhancements has been deleted. 
For example, because Releases 2 replaces the 10GEN process with a new 
procedure for defining I/O devices, the history of changes to 10GEN has been 
removed from this book. On the other hand, the information about extended 
storage, included as of Release 2.1.3, remains in the book because it still applies. 
This information is for installations that are converting from a pre-Release 2.1.3 
level of MVS who have not yet learned about extended storage. 

Installations that are not converting to a level of MVS/SP Version 2 Release 2, 
but to an earlier level of MVS/XA, need a previous edition of the MVS/XA 
Conversion Notebook. 

Use the following chart to determine which book you need. 

Level of the target 
Base Cootrol Program Appropriate Conversion Publications 

MVS/SP Versioo 2 MVS/XA Conversion Notebook GC28-1143-3 
Release 1.3 (orderable as GTOO-I785) 

MVS/SP Version 2 MVS/XA Conversion Notebook GC28-U43-S 
Release 1.7 (orderable as GTOO-2111) 

MVS/SP Version 2 MVS/XA Conversion Notebook. Volume J GC28-1143-6 
Release 2.0 and 

. MVS/XA Conversion Notebook. Volume 2 GC28-1411 

MVS/SP Version 2 MVS/XA Conversion Notebook. Volume J GC28-1143-6 
Release 2.1 and 

MVS/XA Conversion Notebook. Volume 2 GC28-1411 

111 



IV MVSXA Conversion Notebook, Volume 1 



Preface 

(~ 

This book is intended for experienced system programmers responsible for 
converting to any level of MVSjSP Version 2 Release 2 from: 

• OSjVS2 MVS Release 3.8 system with at least one of the following installed: 

For JES2 users, MVSjSP Version 1 Release 3.0 or a later release 
For JES3 users, MVSjSP Version I Release 3.1 or a later release 

Although it is possible to convert other releases of MVSj370 to MVSfXA, this 
book does not describe how to do so. 

• Earlier releases of MVSfXA that include: 

MVSjSP Version 2 Releases 1.0 through 1.7 and 
MVSjXA Data Facility Product (MVSfXA DFP) Version 1 or 2 

If you are converting from MVSj370, all of this book applies to you. If you are 
converting from an early release of MVS/XA, read the portions that are new to 
you. If you are converting from MVSjSP Version 2 Release 1. 7, read the 
Summary of Amendments and the passages marked by a vertical line in the left 
margin. Such lines indicate areas that have been updated since the last edition of 
the book. 

Regardless of the release from which you are converting, you also need to read 
the MVSjXA Conversion Notebook, Volume 2. This second volume describes the 
enhancements and updates included in MVS/SP Version 2 Release 2, your target 
system. 

Readers are expected to have an in-depth knowledge of MVSj370, the 
configuration and procedures of the current installation, and the configuration of 
the target installation. You also need to be familiar with the MVS/XA overview 
information in the Licensed Programming Announcement letters and General 
Information Manuals for MVSjSP Version 2 and MVSjXA DFP Version 2. 
Reading the MVSjXA Overview is also helpful. 

Preface V 



Required Program Products 

Naming Conventions 

This book contains conversion infonnation related to the program products 
required for MVS/XA: 

• MVS/System Product - JES2 (MVS/SP) Version 2 (5740-XC6) 
• MVS/System Product - JES3 (MVS/SP) Version 2 (5665-291) 
• MVS/XA Data Facility Product (MVS/XA DFP) Version 2 (5665-XA2) 
• Assembler H Version 2 (5668-962) 

Frequently, the book refers to different levels of MVS/SP Version 2 Release I and 
MVS/XA DFP by the MVS/SP version/release/level number only. Figure I-Ion 
page vii explains these references. 

VI MVSXA Conversion Notebook, Volume 1 



( 
Reference Meaning 

Release 2.1.0 MVSjSP Version 2 Release 1.0 and 
MVSjXA DFP Version I Release 1.0 

Release 2.1.1 MVSjSP Version 2 Release 1.1 and 
MVSjXA DFP Version I Release 1.1 

Release 2.1.2 MVSjSP Version 2 Release 1.2 and 
MVSjXA DFP Version I Release 1.2 or 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Release 2.1.3 MVSjSP Version 2 Release 1.3 and 
MVSjXA DFP Version I Release 1.2 or 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Release 2.1.3VFE MVSjSP Version 2 Release I.3VFE and 
MVSjXA DFP Version I Release 1.2 or 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Release 2.1.3AE MVSjSP Version 2 Release 1.3AE and 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Release 2.1.5 MVSjSP Version 2 Release 1.5 and 
MVSjXA DFP Version I Release 1.2 or 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Release 2.1.7 MVSjSP Version 2 Release 1.7 and 
MVSjXA DFP Version I Release 1.2 or 
MVSjXA DFP Version 2 Release 1.0 or 
MVSjXA DFP Version 2 Release 2.0 

Figure 1-1. References to MVS/SP Version 2 and MVS/XA DFP Version 1 and 2 
Releases 

Additionally, this book uses the term MVSjXA interchangeably with MVSjSP 
Version 2. It uses the term MVSj370 to refer to OSjVS2 MVS Release 3.8 or any 
level of MVSjSP Version 1. In discussions that pertain to all levels of a release the 
book uses an x in place of a level number. Thus, Release 2.l.x refers to any level 
of MVSjSP Version 2 Release 1; for example, Release 2.1.7 or Release 2.1.3. 
Release 2.2.x refers to any level of MVSjSP Version 2 Release 2 such as Release 
2.2.0. 

How this Book is Organized 

The information in this book is organized as follows: 

"Chapter 1: Introduction" summarizes the work required to convert to 
MVSjXA and lists conversion tasks you can do on your MVSj370 system 
before receiving MVSjXA. 

"Chapter 2: Installation and Initialization" includes information related to 
installing and initializing an MVSjXA system and generating the stand-alone 
dump program. 

Preface vii 



"Chapter 3: Programming Considerations" describes changes that might 
affect user-written code, including changes to assembler language instructions 
and macros. It also describes new function available to programmers. 

"Chapter 4: Operating Considerations" describes new and changed 
commands and operational procedures. 

"Chapter 5: System Modifications" describes new and changed user exits and 
ways of tailoring the system. 

"Chapter 6: Problem Determination" describes new and changed ways of 
tailoring and suppressing dumps, new and changed dump fonnats, trace 
facilities, and debugging considerations. 

"Chapter 7: Accounting" describes changes that might affect your accounting 
procedures. 

"Chapter 8: Measurement and Tuning" describes changes related to 
perfonnance. 

"Chapter 9: Coexistence Considerations" contains considerations for running 
both MVS/370 and MVSjXA in a single installation. 

"Appendix A: Parameter Changes in Incompatible Macros" describes 
differences between the MVS/370 and MVSjXA parameters lists that 
downwardly incompatible macros pass to their service routines. 

"Appendix B: Control Block Updates" lists control blocks that are new, 
updated, or deleted or that can reside anywhere in virtual storage (above or 
below 16 megabytes). 

This MVS/XA Conversion Notebook, Volume 1 does not describe: 

• How to install the program products. The Program Directory shipped with 
the product describes the installation procedure. 

• JES conversion information. The MVS/XA Conversion Notebook, Volume 2, 
however, contains charts that list which JES releases run with which releases 
of MVS/SP Version 2 Release 2. 

• How to write programs that execute in 31-bit addressing mode. SPL: 31-bit 
Addressing contains that information. This MVS/XA Conversion Notebook, 
Volume 1 does, however, describe Release 2.l.x system changes that take 
advantage of or support 31-bit addressing and the impact the changes have on 
user-written programs. For example, this volume of the MVS/XA Conversion 
Notebook lists control blocks that have been moved to the extended area of 
virtual storage in the various levels of MVS/SP Version 2 Release 1 and gives 
an example of how you can change programs to access them. 

Vlll MVSXA Conversion Notebook, Volume 1 

o 

c 



The phrase 'published external interfaces' refers to interfaces documented in the 

(- following publications: 

• OSjVS2 MVS JCL, GC28-0692 

• OSjVS2 Supervisor Services and Macro Instructions, GC28-1114 

• OSjVS2 TSO Command Language Reference, GC28-0646 

• OSjVS2 Guide to Writing a Command Processor or Terminal Monitor 
Program, GC28-0648 

• OSjVS2 Data Management Macro Instructions, GC26-3873 

• OSjVS2 Access Method Services, GC26-3841 

• OSjVS2 Virtual Storage Access Method (VSAM) Programmer's Guide, 
GC26-3838 

• OSjVS2 MVS Data Management Service Guide, GC26-3875 

• OSjVS2 System Programming Library: Data Management, GC26-3830 

• MVSj370 Data Administration: Macro Instruction Reference, GC26-4057 

• MVSj370 Integrated Catalog Administration: Access Method Services 
Reference, GC26-4051 

( • MVSj370 VSAM Catalog Administration: Access Method Services Reference, 
GC26-4059 

• MVSj370 VSAM Administration Guide, GC26-4066 

• MVSjXA Data Administration Guide, GC26-4140 

• MVSjXA System-Data Administration, GC26-4150 

• MVSjXA Data Administration: Macro Instruction Reference, Version 1 
GC26-4014 

• MVSjXA Data Administration: Macro Instruction Reference, Version 2 
GC26-4141 

• MVSjXA VSAM Administration Guide, Version 1 GC26-4015 

• MVSjXA VSAM Administration Guide, Version 2 GC26-4151 

• MVSjXA Integrated Catalog Administration: Access Method Services 
Reference, Version 1 GC26-4019 

• MVSjXA Integrated Catalog Administration: Access Method Services 
Reference, Version 2 GC26-4135 

(-. 
• MVSjXA VSAM Catalog Administration: Access Method Services Reference, 

Version 1 GC26-4075 

Preface IX 



• MVS/XA VSAM Catalog Administration: Access Method Services Reference, 
Version 2 GC26-4136 

• MVSjXA VSAM Administration: Macro Instruction Reference, Version 1 ' 
GC26-40l6 

• MVSjXA VSAM Administration: Macro Instruction Reference, Version 2 
GC26-4l52 

Submitting Conversion Hints 

Related Publications 

This book will be updated as more information becomes available. You can 
submit conversion hints for possible publication in this book. Use the reader's 
comment form or the conversion notebook input form at the back of this book or 
send your information to: 

IBM Corporation 
Publications Department 
Department D58 
PO Box 390 
Poughkeepsie, New York 12602 
ATTN: MVS/Extended Architecture Conversion Notebook 

It is understood that IBM and its affiliated companies shall have the nonexclusive 
right, in their discretion, to use, copy, and distribute all submitted information or 
material, in any form, for any and all purposes, without any obligation to the 
submitter. 

When submitting conversion hints, please indicate from what system you are 
converting, the program products installed on it, and the program products being 
installed on the MVSjXA system. 

The MVSjXA Conversion Notebook, Volume 1 highlights differences in MVSjXA 
to help you identify changes you need to make to existing procedures, programs, 
and system modifications. You will, however, need other books in the MVS/XA 
library to make any required changes to your procedures and programs. The 
following table lists all the books referred to in the MVSjXA Conversion 
Notebook, Volume 1. The table shows the topic used in the reference, the 
corresponding full title, and the order number of the book. For a complete list of 
the publications that support MVSjXA, see the general information manuals. 

X MVSXA Conversion Notebook, Volume 1 

o 

(. -'\ 
'j 



Topic Title Order No. 

eommands MVS/Extended Architecture 
Operations: System Commands GC28-1206 

eonversion, MVS/Extended Architecture 
( 

JES3 JES3 Conversion Notebook SC28-ISOI 

data MVS/ Extended Architecture 
management System Programming Library: 

Data Management GC26-40IO 

devices Device Support Facilities 
User's Guide and Reference GC35-0033 

DFP MVS/Extended Architecture 
version I Data Facility Product Version 1: 

Planning Guide GC26-4040 

DFP MVS/Extended Architecture 
version 2 Data Facility Product Version 2: 

Planning Guide GC26-4147 

diagnosis MVS/Extended Architecture 
Diagnostic Techniques LY28-1l99 

G1M for MVS/System Product Version 2 
theBCP General Information Manual GC28-1l18 

GIM for Data Facility Data Set Services: 
DFDSS Generalltiformation GC26-1423 

GIM for MVS/Extended Architecture 
DFP Version I Data Facility Product Version 1: 

Generalltiformation Ge26-4007 

G1M for MVS/Extended Architecture 
DFP Version 2 Data Facility Product Version 2: 

General Information GC26-4142 

( G1M for Resource Measurement Facility 
RMF Generalltiformation Manual Ge28-1l15 

G1M for TSO Extensions (TSO/E) 
TSO/E General Information GC28-1061 

initialization and MVS/Extended Architecture 
tuning System Programming Library: 

Initialization and Tuning GC28-1l49 

instruction set, IBM System/370 Extended 
System/370 Architecture Principles of 

Operation SA22-7085 

IOCP for Input/Output Configuration 
the 308x Program User's Guide and 

Reference (IBM 3081.3083.3084. 
9081.9083 Processor Complexes) GC28-I027 

IOCPfor Input/Output Cotifiguration Program 
the 3090 User's Guide and Reference 

(lBM 3090 Processor Complex) SC38-0038 

IOCP for 4381 Processor Input/Output 
the 4381 Configuration Program User's 

Guide and Reference GC24-3964 

IPCS MVS/Extended Architecture 
Interactive Problem Control 
System User's Guide and Reference GC28-1297 

JES2 MVS/Extended Architecture 
System Programming Library: 
JES2 Initialization and Tuning SC23-0065 

Preface Xl 



Topic 
Title Order No. 

JES2 System Programming Library: 
(MVS/370) JES2 User Modifications c 

and Macros LC23-0067 

,JES2 MVS/Extended Architecture 
System Programming Library: 
JES2 User Modification and Macros LC23-0069 

JES3 MVS/Extended Architecture 
System Programming Library: 
JES3 Initialization and Tuning SC23-0059 

JES3 MVS/Extended Architecture 
System Programming Library: 
JES3 User Modification and Macros LC28-1372 

linkage editor and MVS/Extended Architecture 
loader Linkage Editor and Loader 

User's Guide. Version 1 GC26-4011 

macros MVS/Extended Architecture 
Supervisor Services and Macro 
Instructions GC28-11S4 

macros MVS/Extended Architecture 
System Programming Library: 
System Macros and Facilities GC28-1150 
Volumes 1 and 2 GC28-ll51 

messages MVS/Extended Architecture 
System Message Library: 
System Messages Vol. 1 GC28-1376 

messages MVS/Extended Architecture 
System Message Library: 
System Messages Vol. 2 GC28-1377 

MSS OS/VS Mass Storage Subsystem 
( MSS) Installation Planning 
and Table Create GC35-0028 

MVSCP MVS/Extended Architecture: 
MVS Configuration Program Guide 
Guide and Reference GC28-1335 

MVS/XA overview MVS/Extended Architecture Overview GC28-1348 

operations IBM 3081 Operator's Guide 
for the System Console GC38-0034 

operations IBM 3083 Operator's Guide 
for the System Console GC38-0036 

operations IBM 3084 Operator's Guide 
for the System Console GC38-0037 

operations IBM 4381 Processor 
Operations Manual GA24-3949 

operations IBM 3090 Processor 
Complex Operator Controls 
for the System Console SC38-0040 

operations IBM 3090 ModeilO0 Processor 
Complex Operator Tasks 
for the System Console SC38-0041 

operations IBM 3090 Model 150 and 180 
.Processor Complex Operator Tasks 
for the System Console SC38-0049 

xii MVSXA Conversion Notebook, Volume 1 



Topic 
Title Order No. 

operations IBM 3090 Model 400 Processor 
Complex Operator Tasks for the 
System Console SC38-0050 

RACF Resource Access Control 
Facility (RACF) Command 
Language Reference SC28-0733 

RACF Resource Access Control 
Facility (RACF) Security 
Administrator's Guide SC28-1340 

RACF System Programming Library: 
Resource Access Control Facility SC28-1343 

recovery and MVS/Extended Architecture 
reconfiguration Planning: Recovery 

and Reconfiguration GC28-1l60 

RMF MVS/Extended Architecture 
Resource Measurement Facility (RMF) 
Monitor I and Monitor II 
Reference and User's Guide LC28-1556 

RMF MVS/Extended Architecture 
Resource Measurement Facility (RM F) 
Monitor III Reference and 
User's Guide LC28-1557 

serialization OSjVS2 MVS Planning: Global 
Resource Planning GC28-1062 

service aids MVS/Extended Architecture 
System Programming Library: 
Service Aids GC28-1159 

SMF MVS/Extended Architecture 
System Programming Library: 
System Management Facilities GC28-1153 

SMP/E System Modification Program 
Extended (SMP/E) User's Guide SC28-1302 

system generation MVS/Extended Architecture 
MVS/SP Version I Installation: System Generation 

Version 1 GC26-4009 

system generation MVS/Extended Architecture 
MVS/SP Version 2 Release 1 Installation: System Generation GC26-4148 

system MVS/Extended Architecture 
modifications System Programming Library: 

System Modifications GC28-1l52 

user exits MVS/Extended Architecture 
System Programming Library: 
User Exits GC28-1l47 

utilities MVS/Extended Architecture 
Data Administration: Utilities, Version 1 GC26-4018 

vector processing IBM System/370 Vector Operations SA22-7125 

XRF, introduction MVS/Extended Architecture 
Introduction to Extended Recovery 
Facility (XRF) GC28-1l35 

XRF, planning MVS/Extended Architecture Planning: 
Extended Recovery Facility (XRF) GC28-1l39 

31-Bit MVS/Extended Architecture 
addressing System Programming Library: 

31-Bit Addressing GC28-1l58 

Preface Xlll 

-------~--~-.-.-. 



o 

xiv MVSXA Conversion Notebook, Volume I 



Contents 

Chapter 1. Introduction 1-1 
Conversion Tasks You Can Do Before Installing MVS/XA 1-2 
Publications Changes 1-3 

Chapter 2. Installation and Initialization 2-1 
System Generation 2-2 

Required Environment for Generating MVS/XA 2-2 
Providing a Backup Copy of the Existing System 2-2 

Defining Devices 2-3 
When to Use the I/O Configuration Program (IOCP) 2-3 
Selecting the Correct I/O Configuration Program (IOCP) 2-4 
Creating or Modifying an IOCDS Using the MVS Version of IOCP 2-4 
Processor Complexes That Have System/370 and 370-XA Modes 2-5 
I/O Configuration Requirements 2-6 

Coding Macros Used for SYSGEN with MVS/370 2-6 
Rebuilding Alternate Eligible Device Tables (EDTs) 2-8 
Changes to the Program Properties Table (PPT) 2-8 

The Vector Facility Enhancement and the PPT 2-8 
Defining System Data Sets 2-8 

Initializing D ASD 2-11 
Activating the Resource Access Control Facility (RACF) 2-11 

Loading Programs 2-11 
Loading the Microcode EC Tapes for Mass Storage Subsystems 2-12 

System Parameter and SYS1.PARMLIB Considerations 2-13 
Fixed Storage for SLIP Command Processors (IEASLPxx) 2-13 
Specifying the Reconfigurable Storage Unit (RSU) Parameter 

(IEASYSxx) 2-13 
Increasing the Minimum SQA Allocation (IEASYSxx) 2-14 
Specifying the Size of Extended CSA and Extended SQA 2-14 

Minimizing Private Area Storage Lost Because of Rounding 
(IEASYSxx) 2-16 

Specifying Dump Data Sets (IEASYSxx) 2-17 
Requesting Storage for RMF I/O Measurements (IEASYSxx) 2-17 
Controlling the Number of Available ASVT Entries (IEASYSxx) 2-17 
Removing TRACE Commands from COMMNDxx PARMLIB 

Members 2-18 
Updating the IEAFIXxx PARMLIB Member 2-18 
Removing References to Device Allocation Tables (IEALPAxx) 2-18 
Keeping RNLs in GRSRNLxx PARMLIB Members 2-18 
Specifying Missing Interrupt Handler (MIH) Intervals (IECIOSxx) 2-19 
New, Updated, or Deleted PARMLIB Members 2-19 

SYS1.PROCLIB Changes 2-26 
A VM Procedure 2-26 
DUMPSRV Procedure 2-26 

Contents XV 



IEESYSAS Procedure 2-26 
LNKLST Lookaside (LLA) Procedure 2-26 
PRDMP Procedure 2-26 
RMF Procedure 2-27 

Duration of the RMF Initialization Process 2-28 
Using Default RNLs 2-28 

Generating Stand-Alone Dump 2-29 
Stand-Alone Dump Macro (AMDSADMP) Changes 2-29 

Chapter 3. Programming Considerations 3-1 
Programming Considerations Subsequent to Release 2.1.2 3·1 
Changes that Might Affect Unauthorized Programs 3-1 
Changes that Might Affect Authorized Programs 3·2 
31-bit Addressing Considerations 3-3 
New Function 3-4 
Macro Instructions Mentioned in This Publication 3·4 
CHKPT Macro Instruction 3·8 
IOHALT Macro Instruction (SVC 33) 3·9 
IOSGEN UCBLOOK Macro Instruction 3-9 
RESETPL (BTAM) Macro Instruction 3-10 
Differences in Set Program Interruption Element (SPIE) Processing 3-10 
STATUS STOP,SYNCH Macro Instruction 3-11 
System Diagnostic Work Area (SDW A) Changes 3·11 
Differences in GETMAIN Processing 3-11 
TSO TEST Command 3-12 
TSO/E Considerations 3-13 
Deleted Instructions 3-13 
Macro Expansions in JES Modifications 3-13 
Limiting Concurrent Global Resource Serialization Requests 3-13 
Format Changes to Hard-Copy Log Records 3-14 
Link Editing Allocation User Routines 3-15 
Entry Points in IEFW21SD 3-15 
Removal of the Interval Timer 3-16 
Checklist for Determining if Authorized Programs Must be Changed 3-16 
Changes to the SVC Table 3-20 
Changes to the Locking Structure 3-20 
Determining Which Locks a Processor Holds 3-20 
Page Protection 3-21 
PSA Low Address Protection 3-22 
Fetch-Protected PSA Areas 3-22 
Patch Areas in the PSA 3-22 
Real Addressing Considerations 3-23 

Using the EXCPVR Macro Instruction 3-23 
Changes in the Way RSM Backs Virtual Storage 3-24 
DAT-off Restrictions 3-25 

Cross-Memory Entry Table Entries 3-26 
Interfaces to System Services 3-26 

Services Independent of Addressing Mode 3-27 
Services with Some Restrictions on the Address Parameter Values 3-27 
Services that Do Not Support 31-bit Addressing 3-28 

31-bit Addressing Considerations 3-28 
Impact of 31-bit Addressing on Programmers 3-28 
Changing Addressing Mode 3-30 
Establishing a Program's Addressing Mode 3·31 

XVI MVSXA Conversion Notebook, Volume 1 

~~~~-"---- --



Linkage Editor Interpretation of AMODE = ANY,RMODE = ANY 3-32 
Restrictions on Using a Linkage Editor Overlay Structure 3-33 

( Changed Instructions 3-33 
BAL and BALR (Branch and Link) Instructions 3-33 
BAS and BASR (Branch and Save) Instructions 3-34 
CLCL, EDMK, MVCL, and TRT Instructions 3-34 
LA (Load Address) Instruction 3-34 
LRA (Load Real Address) Instruction 3-35 

New Instructions 3-35 
BSM (Branch and Set Mode) Instruction 3-35 
BASSM (Branch and Save and Set Mode) Instruction 3-36 

Modifying Programs that Invoke Modules Above 16 Megabytes 3-37 
Using BASSM and BSM Instructions 3-37 
Using Linkage-Assist Routines 3-38 

Retrieving Data from a Control Block Above 16 Megabytes 3-40 
Performing I/O in 31-bit Addressing Mode 3-40 
Using the EXCP Macro 3-41 
Summary of New and Updated Macros 3-42 
Parameters on the GETMAIN Macro Instruction 3-48 

VRC and VRU Parameters 3-48 
LOC Parameter 3-48 

SDUMP Macro Instruction 3-49 
SETLOCK RELEASE, TYPE = (reg)IALL Macro Instruction 3-49 
Using GTF to Trace User Events 3-49 
Unit Verification 3-50 

IEFAB4UV and IEFGB4UV 3-50 
IEFEB4UV 3-51 

Programs Using the Vector Facility Enhancement (VFE) 3-51 
IMS Applications and the Extended Recovery Facility (XRF) 3-52 ( 

Chapter 4. Operating Considerations 4-1 
Processor Complexes with the Extended Recovery Facility (XRF) 4-2 
Jobs Waiting for the Vector Facility 4-3 
Loading 370-XA Microcode 4-3 
SYSCTL (SCP Manual CNTL) Console Frame 4-3 
Storing Status Before Taking a Stand-Alone Dump 4-4 
Using Labeled Tapes for Stand-Alone Dumps 4-5 
JCL Changes to Jobs that Allocate SYSl.DUMP Data Sets 4-5 
Processing Hot I/O Interrupts 4-5 
Extended Color Support on 3279 Multiple Console Support (MCS) 

Consoles 4-6 
Controlling Message Traffic on Operator Consoles 4-7 
Response to Message IOS20lE 4-8 
Numbering Conventions for Processor Complexes 4-8 
Summary of New, Updated, or Deleted Commands 4-10 

Chapter 5. System Modifications 5-1 
Dynamically Updating the SVC Table 5-1 
Updating SYSTEMS Exclusion RNLs 5-1 
Serializing VSAM Data Sets 5-2 
Limiting User Region Size Using IEFUSI Instead of IEALIMIT 5-3 
Using the REGION Parameter 5-3 
Bypassing the Storage Availability Check Before a Job Executes 5-4 
Changing the Hot I/O Threshold and Recovery Actions 5-4 

Contents XVll 



Pre-dump Exits 5-5 
Post-dump Exits 5-5 
RMF Exits 5-5 
JES2 User Exits and Interfaces 5-5 
, . 
JES3 Dynamic Support Programs (DSPs) and User Exits 5-5 
PRDMPjIPCS Exit Control Table (ECT) Modifications 5-6 
PRDMP Exits 5-6 

"';'PRriMP!Header Exits 5-6 
SMF EXi:fs 5-6 

''';Ente'ringlEECVXIT into the Control Program 5-7 
New WTOjWTOR User Exits 5-7 
New Services for Dump Processing Exits 5-8 

. )i Extt'Se'rvices Router 5-9 
.j;"j':: . Fortnat Model Processor Service 5-9 

;I: ... , Corttidl :BIock Formatter Service 5-10 
ECT Service 5-10 

.,y · GET 'Symbol Service 5-10 
EQUATE Symbol Service 5-10 

.;.; Setee'f1ASID Service 5-11 
Expanded (Extended) Storage Criteria 5-11 

}";':~; ;, :; (' .;': . 
Chapter 6. Problem Determination 6-1 

New and Updated Dump Options 6-2 
.. 'New Symptom Dumps for Task-Mode Abends 6-3 

User Summary Dumps 6-4 

, l 
Dump Format Changes 6-5 

Cfi~nges to User Dump Headers 6-5 
; . tJ ser Dump Indexes 6-6 
; Changes to SYSMDUMP and SVC Dump Formats 6-6 
Vector Registers in Dumps 6-7 
Formatting the Contents of Vector Registers 6-7 
Suppressing Dumps 6-7 

New Operands on the SLIP Command for Suppressing Dumps 6-7 
. ~ " . 

MVSjXA's Use of SLIP Commands 6-8 
Dump Analysis and Elimination (DAE) 6-8 

New and Updated PRDMP Control Statements 6-11 
Print Dump Index 6-13 
Print Dump Requirements for Printers 6-13 
New and Changed IPCS Subcommands 6-13 
Accessing Additional Sources of Dump Data Using IPCS 6-15 
New IPCS Panels 6-16 
Changes to the IPCS BROWSE Panels 6-16 
Changes to the Titles of IPCS Print Files 6-17 
Using the MVS/XA Versions ofIPCS and PRDMP on Other Systems 6-18 

Copying IPCS and PRDMP Modules and Data Sets 6-18 
Copying Release 2.1.0 and 2.1.1 IPCS and PRDMP Modules and Data 

Sets 6-19 
Debugging Considerations 6-20 

Changes to the System Trace Facility 6-20 
SDW A Changes 6-22 
Addressing Mode Reflected in Dumps 6-22 
Specifying Reason Codes 6-23 
System Termination Facility Wait State Codes 6-23 
Exceeding the Region Limit 6-23 

XVlll MVSXA Conversion Notebook, Volume 1 

-~- --- ---- --------



( 

( 

Diagnosing Checkpoint/Restart Errors 6-24 

Chapter 7. Accounting 7-1 
Device Connect Time 7-2 
New Fields Measuring Virtual Storage Use 7-2 
SMF30PRVand SMF30SYS Fields 7-2 
Type 22 SMF Record Updates 7-3 
Increases in EXCP Counts for Program Fetch Activity 7-3 
Summary of SMF Record Updates 7-4 
SMF Compatibility Between Release 2.1.0 and Later Releases 7-8 

Chapter 8. Measurement and Tuning 8-1 
Ensuring Optimal Program Fetch Performance 8-1 

Performance Related Changes to the Linkage Editor and IEBCOPY 8-3 
Performance Related Changes to Program Fetch 8-3 
Recommended Actions 8-3 
Maintaining Count Values and Optimal Block Sizes 8-4 
Factors Affecting Text Block Sizes 8-6 

Using a New Directory for LNKLST Data Sets 8-7 
Starting the LLA Function 8-8 
Including Data Sets that Are Not APF Authorized 8-8 
Updating the LLA Directory 8-8 

SMF Data Set Placement 8-9 
Using Residency Time to Calculate the Page-in Rate of an Address 

Space 8-9 
Changes to ASM's Paging Algorithms 8-9 

Changes to the Data Set Selection Algorithm 8-9 
Changes to the Slot Selection Algorithm 8-10 

Resource Access Control Facility (RACF) Considerations 8-10 
Managing Contention for Processors with the Vector Facility 8-10 
Automatic Priority Group (APG) Specifications 8-11 

Chapter 9. Coexistence Considerations 9-1 
Maintaining Programs that Can Run on Both MVS/370 and MVS/XA 

Systems 9-2 
Assembling and Link Editing Programs 9-2 
Guidelines for Ensuring Program Compatibility 9-3 
Guidelines for Developing New Programs 9-4 
Programs that Run in System 370, 370-XA 31-Bit, Of 370-XA 24-Bit 

Addressing Modes 9-4 
Handling Downward Incompatible Macros 9-7 
OPEN and CLOSE Requirement for Assembler H Version 2 9-10 
OPEN and CLOSE and MODE=31 9-10 
EOV and MODE=31 9-10 
Downward Incompatible SYNCH Macros 9-10 

Backup Considerations 9-11 
Routing Jobs in a Mixed JES2 or JES3 Complex 9-12 
Using Global Resource Serialization 9-12 
System Data Sets that Cannot be Shared 9-13 
Using SYSl.PROCLIB in a Loosely-Coupled JES3 Configuration 9-13 
DSI Procedures in a Loosely Coupled JES3 Configuration 9-14 
Resource Access Control Facility (RACF) Always-Call 9-14 
Resource Access Control Facility (RACF) and VSAM Clusters 9-14 

Contents XIX 



Appendix A. Parameter Changes in Incompatible Macros A-I 
ATTACH Parameter List Changes A-2 
ESTAE Parameter List Changes A-3 
EVENTS Parameter Changes A-3 
SMFEXIT Parameter List Changes A-3 

C) 
ST AX Parameter List Changes A-4 
STIMER Parameter Changes· A-4 
SYNCH Parameter List Changes A-4 
WTOR Parameter List Changes A-5 

Appendix B. Control Block Updates B-1 

Index X-I 

XX MVSXA Conversion Notebook, Volume 1 



Figures 

1-1. References to MVS/SP Version 2 and MVS/XA DFP Version 1 and 2 
Releases vii 

2-1. IBM Processor Complexes and Versions ofIOCP 2-4 
2-2. Obsolete/Updated SYSGEN Macros, Keywords, and Options 2-7 
2-3. New, Updated, or Deleted PARMLIB Members 2-20 
2-4. Stand-Alone Dump Macro Instruction Changes 2-29 
3-1. Unauthorized Macro Instructions Mentioned in This Publication 3-6 
3-2. Authorized Macro Instructions Mentioned in This Publication 3-8 
3-3. Example of Using BSM and BASSM 3-37 
3-4. Example of a Linkage-Assist Routine 3-39 
3-5. Retrieving Data from Above 16 Megabytes 3-40 
3-6. Summary of New and Updated Macros 3-43 
4-1. Default Hot I/O Recovery Actions 4-6 
4-2. Numbering Conventions for Processor Complexes 4-9 
4-3. Summary of New, Updated, or Deleted Commands 4-11 
6-1. New, Updated, or Deleted Dump Options 6-2 
6-2. New, Updated, or Deleted Print Dump Control Statements 6-11 
6-3. New and Changed IPCS Subcommands 6-14 
7-1. SMF Record Updates 7-5 
8-1. Processing Load Modules 8-5 
B-1. Control Block Updates B-2 

Figures XXl 



XXll MVSXA Conversion Notebook, Volume 1 



(-

Summary of Amendments 

Summary (If Arm.:mln'i' 

for GC28-114.l·Cl 
MVS/Extc!1dl~rcJ !~. "'d,, 

Except for the tor)!'> i 

of the informawlrl';, 
Conversion NO/t!n!;,";, :; '., 

because informElti,.", 
has been rC1'101.'(>], 

new informalioi1, ,Ir-:: 
the MVSjSF V:n""i 

Topics with neh/ Ul;i,,,,, 

e How this 
• HandlingL "';, ',;" 

• OPEN a"d 
• OPEN a:);:: ," 
• EOV and h,i'i-'~ 
• Checklicit for Tlc; 
.. Service5 

• 
Topics that luvc-: 

• Convcrsi03·'. T:, 
.. Provic;j,-;g ., 
.. Creating 
.. Coding l\fl 

" ;.-

.. Rebuildir;,\ /~ ',\0:.; H> i .. .. 

.. Loading 

.. Services wit!, SCHle· 

.. Performing 1/0 in },.,I}!, 

.. Using the ,<\$f\.I1' ?'\i:.) 

.. Appendix R CC;I:il.,l 



The topics that have been completely deleted are: 

.: Installing and MVSjXA System 
• Deleting Display Control Modules (DCMs) from SYSl.LPALIB 
• Resource Measurement Facility (RMF) Releases 
• The JES2 Component of MVSjSP JES2 Version 2 
• The JES3 Component of MVSjSP JES2 Version 2 
• Devices Not Supported When Running MVSjXA 

Summary of Amendments 
for GC28-1143-5 
MVS/Extended Architecture 

This major revision contains conversion information for MVSjSP Version 2 
Release 1.7. It also includes some technical changes not specifically related to this 
release as well as minor editorial changes. Bars (I) in the left-hand margin 
highlight the new information. Editorial changes are not barred. 

Generally speaking, Release 1.7 includes support for the IBM 3090 model 400 
processor complex and reconfiguration of expanded (also known as extended) 
storage. Release 1. 7 also incorporates Release 1.3VFE and Release 1.3AE into 
the base control program. 

With respect to conversion, Release 1.7 affects the following areas within 
MVSjXA: 

• CONFIGxx member of SYS1.PARMLIB 
• CONFIG command 
• DISPLAY M command 
• RMF Version 3 Release 4.1 
• Rotate priority 
• SMF records 
• Updated control blocks 

Summary of Amendments 
for GC28-1143-4 
MVS/Extended Architecture 

This major revision contains conversion information for: 

• MVSjSP Version 2 Release 1.3 Vector Facility Enhancement (Release 
1.3VFE) 

This enhancement supports the Vector Facility available in IBM 3090 
processor complexes. Users can make use of the Vector Facility by means of 
Vector FORTRAN and Assembler H Version 2.1. 

XXIV MVSXA Conversion Notebook, Volume 1 

0"'" , - \ 

(~) 



( 

• MVSjSP Version 2 Release 1.3 Availability Enhancement (Release 1.3AE) 

The availability enhancement represents changes in MVSjXA to support the 
extended recovery facility (XRF). Through enhancements to five software 
products, XRF improves the availability of interactive transaction processing 
to Information Management SystemjVirtual Storage (IMSjVS) end users. 
XRF provides an alternate processing environment that continually tracks the 
progress of the active environment and stands ready to carryon with current 
transaction processing if the active environment fails. 

In addition to MVSjSP Version 2 Release 1.3AE, the products that make up 
XRF are: 

IMSjVS Version 2 Release I 
ACFjVTAM Version 3 for MVSjXA 
ACFjNetwork Control Program Version 4 
MVSjXA DFP Version 2 Release 1.0 

• MVSjSP Version 2 Release 1.5 

Because this release represents changes to JES2 and JES3 components only, 
the only references to the release are charts in Chapter Two that show all the 
previous MVSjSP Version 2 releases that can run with the JES2 or JES3 
shipped with Release 1.5. 

JES2 conversion information is available in: 

MVSjXA SPL: JES2 User Modifications and Macros LC23-0069 
SPL: JES2 User Modifications and Macros LC23-0067 
JES2 Program Directory 

JES3 conversion information is available in: 

MVSjXA JES3 Conversion Notebook SC28-1501 
JES3 Program Directory 

• MVSjXA DFP Version 2 Release 1.0 

This revision also includes some technical changes not specifically related to these 
releases as well as minor editorial changes. Bars (I) in the left-hand margin 
highlight the new information. Editorial changes are not barred. 

Note: Release 1.3VFE and Release 1.3AE are mutually exclusive releases of 
MVSjSP Version 2. This means you can install either one, but not both, in a 
processor complex running in a single-system image or on one side of a 
partitioned processor complex. Similarly, information in this book specifically 
related to one enhancement does not apply to the other. Be sure to note the 
paragraph and chart headings to determine which enhancement is being described. 

The areas in MVSjXA and related products affected by the releases documented 
in this edition are: 

• Assembler H Version 2.1 
• AVM member of SYS1.PROCLIB 
• CALLDISP macro 

Summary of Amendments XXV 



"~I'. 

Address Space 
(SI\]AP, ABDUMP, and stand-alone) 

(~ontrol statement, A VMDAT A 

, 

table (PPT) 

DISPLAY, MODE and START commands 
arid updated control blocks 

chunges in the book affect the following topics: 

> ,.: CI~ T<) }~~. pa nnneter 
E(·j m~t/\'rE function 

for price quotations (RPQ)s 

I".' 

,t~W' c:onversion information for Release 1.3 of MVSjSP 
F:dcas( 1.2. It also includes some technical 
io this rel.::ase as well as minor editorial changes. 
highlight the new information. Editorial changes 

:,CL.1St; 1.3 updates support the IBM 3090 model 200 
:.>\(1 expanded (also known as extended) storage. For 

, ;j,i:' reJ.el.'.se affects the following areas within MVSjXA: 

of 3)(::';] ,PARMLlB 
i,::rnenL, SADMPMSG 

control blocks 

tec!:'Jicai changes in the book affect the following topics: 

XXVI ]Vi VSXA Conversion fJoteilooL vniurne I 

o 

--._--------------



( 

Chapter 1. Introduction 

Conversion to MVS/Extended Architecture (MVSfXA) is the process of installing 
the program products that will comprise your MVS/XA system, making any 
required changes to existing programs and procedures, and running and testing 
the new system as the production system. 

The work required to convert to MVSfXA varies greatly from one installation to 
another and depends on: 

• The level of the MVS/370 system to be converted. The more your current 
system resembles your target system, the less work you have to do at the same 
time you install the MVS/XA components. The next topic describes several 
ways you can prepare your MVS/370 system for conversion to MVS/XA. 

• The number of programs that must be modified. Early installers reported 
that none of their high-level language programs had to be changed. About 
fifteen percent of their authorized assembler language programs required 
modification. 

With few exceptions, user-written assembler language programs that use only 
unauthorized services and published external interfaces will run unchanged. 
Many programs that use authorized services or undocumented interfaces will 
also work unchanged, but you might have to modify some. Specifically, you 
need to modify programs that depend on the structure and content of system 
control blocks or interfaces that are changed. The changed interfaces are 
almost exclusively authorized, internal interfaces. 

• The number and type of modifications your installation has made to 
MVS/370 that must be adapted to MVS/XA, and which components your 
installation has modified. Some components are changed more than others. 

In general, for the DCP, there is a high degree of compatibility between MVS/370 
and MVS/XA: 

• Exit interfaces, in general, are unchanged or compatibly expanded. 

• You do not have to recompile or relink edit existing application programs, 
unless yOu change them. ' 

Chapter 1. Introduction 1-1 



• MVS/370 JCL and JES control statements will work in MVS/XA. In some 
instances, however, you might have to change JCL specifications, including: 

DD statements for SYSl.DUMPnn data sets. The DD statements must 
specify DISP = SHR. 

The REGION parameter on a linkage editor job. 

JCL that specifies programs not supported in MVS/XA (for example, 
IEHDASDR). 

JCL that specifies unsupported devices. 

• MVS/XA uses the same system data sets as MVS/370. Changes have been 
made to SYSl.PARMLIB members. 

Conversion Tasks You Can Do Before Installing MVS/XA 

You can stage the conversion to MVS/XA by performing many of the conversion 
tasks on your MVS/370 system before installing the MVS/XA components. 
Moving in the direction of MVS/XA as early as possible has several advantages. 
The most obvious is that it minimizes the activities you must perform at the same 
time you install MVS/SP Version 2 and MVS/XA DFP. In addition, you become 
familiar with the new environment gradually and have less to learn all at once. 
Finally, the MVS/370 system will be in the best position for coexistence and 
back-up. MVS/370 and MVS/XA can operate and share data in the same 
installation. 

To prepare for MVS/XA, you can: 

• Upgrade your system to at least MVS/SP - JES3 Version 1 Release 3.4 or 
MVS/SP - JES2 Version I Release 3.4. If the JES component of your 
MVS/370 system is already at one of these levels, you may not have to install 
the JES component included with Release 2.2.x. Refer to the MVS/XA 
Conversion Notebook, Volume 2, for an explanation of which JES releases 
work with the various levels of MVS/SP Version 2 Release 2. 

• Install the MVS/XA-compatible levels of other program products that your 
installation needs in MVS/XA. The IBM Announcement letter (285-347), 
"Programs Supported in a Multiple Virtual Storage/ Extended Architecture 
(MVS/XA) Environment," lists the program products, IBM Field Developed 
Programs (FDPs), Installed User Programs (IUPs), and Program Offerings 
that can be installed on and will operate with both MVS/370 and MVS/XA. 
Volume 2 lists program products specifically required for Release 2.2.x. 

When initially installing an MVS/XA-compatible program product on 
MVS/370, have your IBM representative check the RETAIN Preventive 
Service Planning (PSP) bucket for that product. Some products might require 
PTFs to ensure compatibility with MVS/XA. Have RETAIN checked again 
just before testing the product under MVS/XA. Volume 2 lists program 
products which must have PTFs in order to take advantage of all of the 
Release 2.2.x enhancements and updates. 

1-2 MVSXA Conversion Notebook, Volume 1 

,~. 

~j 



Publications Changes 

(/' 

• Install products whose functions are included in MVSjXA such as MVSj370 
Data Facility Product (MVSj370 DFP). 

• Review the devices and functions that are not supported in MVSfXA. If you 
are currently using any of them, migrate to the successor product or function. 

• Check the RPQ devices or features you have on your system to determine if 
they will work in MVSjXA. Volume 2 lists devices not supported by Release 
2.2.x along with devices for which RPQs have been approved. 

• Install compatibility PTFs on your MVSj370 system and reassemble the 
affected programs. See the following topics in Chapter 3: 

"IOHALT Macro Instruction (SVC 33)" on page 3-9 
"IOSGEN UCBLOOK Macro Instruction" on page 3-9 

• Identify and make required programming changes that can be made on your 
MVSj370 system. 

For the most part, the MVSjXA publications are technically updated versions of 
their MVS/370 counterparts, reissued with new order numbers. The title pages of 
most MVSjSP Version 2 and MVSjXA DFP publications include "MVSjExtended 
Architecture" to allow you to easily distinguish between MVSj370 and MVSjXA 
publications. The MVSjXA library also adds new books, deletes others, and 
reorganizes some books. All component-level diagnostic techniques, for example, 
move from the MVSjXA Diagnostic Techniques manual to appropriate volumes of 
the System Logic Library 

Chapter 1. Introduction 1-3 



I 0, ~\ 

/' 

C."" , I 

1-4 MVSXA Conversion Notebook, Volume 1 



( 

Chapter 2. Installation and Initialization 

This chapter contains information related to installing an MVSjXA system, 
initializing it, and generating the stand-alone dump program. Topics related to 
installing MVS/XA are: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

"Required Environment for Generating MVS/XA" on page 2-2 
"Providing a Backup Copy of the Existing System" on page 2-2 
"Defining Devices" on page 2-3 
"Creating or Modifying an 10CDS Using the MVS Version of 10CP" on 
page 2-4 
"I/O Configuration Requirements" on page 2-6 
"Coding Macros Used for SYSGEN with MVS/370" on page 2-6 
"Rebuilding Alternate Eligible Device Tables (EDTs)" on page 2-8 
"Changes to the Program Properties Table (PPT)" on page 2-8 
"Defining System Data Sets" on page 2-8 
"Initializing DASD" on page 2-11 
"Loading Programs" on page 2-11 
"Loading the Microcode EC Tapes for Mass Storage Subsystems" on 
page 2-12 

Topics related to initializing MVS/XA are: 

• "The Vector Facility Enhancement and the PPT" on page 2-8 
• "System Parameter and SYSl.PARMLIB Considerations" on page 2-13 
• "SYSl.PROCLIB Changes" on page 2-26 
• "Using Default RNLs" on page 2-28 
• "Duration of the RMF Initialization Process" on page 2-28 

Topics related to generating stand-alone dump include: 

• "Generating Stand-Alone Dump" on page 2-29 
• "Stand-Alone Dump Macro (AMDSADMP) Changes" on page 2-29 

Chapter 2. Installation and Initialization 2-1 



System Generation 

You can generate an MVS/XA system on either: 

• An MVS/370 system that is at least at the OS/VS2 Release 3.8 level. The 
MVS/370 system must also support the device types on which the MVS/XA 
system libraries are to reside. 

• An MVS/XA system. 

Required Environment for Generating MVS/XA 

The following program products must be installed on the system used to build the 
MVS/XA system: 

• Assembler H Version 2 
• The linkage editor in MVS/XA DFP or MVS/370 DFP 
• SMP Release 4 or SMP /E 
• Device Support Facilities Release 6 or a subsequent release 

The Device Support Facilities product is required to write the IPL text and to 
initialize the DASD volumes on which the new system will reside. 

In addition, DFDSS (Data Facility Data Set Services) or an equivalent 
dump/restore product is recommended to make a backup copy of the new system. 
IEHDASDR does not work in MVS/XA. Furthermore, DFDSS cannot restore 
data dumped using IEHDASDR. 

Beginning with Release 2.1.2, DFDSS runs on both MVS/370 and MVS/XA. 
Using DFDSS you can dump data on one system and restore it on the other. 

Providing a Backup Copy of the Existing System 

Before using the SMP ACCEPT function to incorporate the MVS/XA products 
into your DLIBs, copy the DLIBs using DFDSS or an equivalent product. 
MVS/SP Version 2 completely replaces (and, therefore, deletes from the existing 
DLIBs), the base control program (BCP) in MVS Release 3.8. MVS/XA DFP 
completely replaces all MVS/370 modules containing the functions that MVS/XA 
DFP provides. The ACCEPT function also deletes: 

• System Activity Measurement Facility (MF/l) 
• Display Exception Monitor Facility (DEMF) 
• The External Writer 
• TSO TEST 
• The TSO command package. The functions in that package are: 

Support for running terminal sessions as batch jobs 
Automatic saving of data 
Accounting facilities enhancements 
Defaults for the user attribute data set 
ATTRIB and FREE subcommands 
ALL keyword for the FREE command and subcommand 
Eight-character station ID 

2-2 MVSXA Conversion Notebook, Volume 1 



(-

(-

Defining Devices 

• TSO/E for MVS/370, which includes the TSO command package 
• All service information for the deleted modules 

MF/I and DEMF are not replaced. With MVS/XA, the MF/I functions are 
provided by RMF Version 3 and the DEMF functions are provided by NPDA 
Version 2 or subsequent releases. TSO TEST, the TSO command package, and 
the TSO/E functions are included in TSO/E with the MVS/XA feature (5665-285). 
If your installation requires these functions, install TSO/E with the MVS/XA 
feature. The External Writer function is incorporated into the MVS/SP Version 2 
BCP. The program directories for MVS/XA DFP and MVS/SP Version 2 list the 
FMIDs that MVS/XA replaces. 

Once the DUBs are updated, there is no simple way to restore them to the 
MVS/370 level unless you have a backup copy. The SMP RESTORE function 
cannot restore DUBs. 

MVS/XA supports a maximum of 4096 devices. However, the number that your 
installation can actually connect depends on the processor model and is given in 
the IOCP User's Guide and Reference for your type of processor complex. The 
MVSCP User's Guide and Reference explains how to define devices to the 
MVS/XA system. 

MVS/370 allows no more than 1917 devices because UCB pointers are only 
2-bytes long. MVS/XA removes that limitation by using 3-byte UCB pointers. 

When to Use the I/O Configuration Program (IOCP) 

You need to use IOCP to create a new I/O configuration data set (lOCDS) in 
four situations: 

• Whenever you are migrating from MVS/370 to MVS/XA. 

• When you are altering the I/O configuration in the processor complex. 

(For example, when you are adding I/O devices, adding channel paths, or 
moving an I/O device from one channel path to another.) 

• When you are migrating to a processor complex with a different type of 
channel subsystem. 

• When a new level of IOCP for your processor becomes available. 

Migrating from one release of MVS/XA to another does not always require a new 
IOCDS. 

Chapter 2. Installation and Initialization 2-3 



Selecting the Correct 1/0 Configuration Program (IOCP) 

Each processor complex comes with the stand-alone version of IOCP that you can 
use to define the I/O configuration before JPL.For some processor complexes, 
there is also a version of IOCP that runs under MVS. 

More than one MVS version of JOCP may be packaged with a particular 
MVS/SP Version 2 release. Figure 2-1 shows which MVS versions of IOCP are 
compatible with the various IBM processor complexes. The chart also lists the 
publications that explain how to use each MVS version of JOCP. 

mM Processor MVSIOCP 
Complex Program Publications 

4381 none 4381 IOCP User's Guide and Reference 
GC24-3964 

308x, 908x ICPIOCP IOCP User's Guide and Reference 
GC28-1027 

3090,9190 IOPIOCP IOCP User's Guide and Reference 
SC38-0038 

Figure 2-1. IBM Processor Complexes and Versions of IOCP 

Even though different MVS versions of IOCP programs exist, you can use either 
one on any processor for testing your JOCP input data. However, regardless of 
where it runs, you must use the MVS version of JOCP compatible with your 
target processor complex to produce an JOCDS compatible with your target 
processor complex. Furthermore, the MVS version of JOCP compatible with your 
target processor complex must be running on the target processor complex when 
it writes the IOCDS you intend to use. 

Note: The IOCP User's Guide and Reference for the IBM 3090 processor 
complex includes a preface with introductory information for installations 
migrating from a 308x processor complex to an IBM 3090 processor complex. 

Creating or Modifying an 10CDS Using the MVS Version of 10CP 

The procedure for creating or modifying an 10CDS depends upon the type of 
processor that will run the newly installed release of MVS/XA. The IOCP User's 
Guide and Reference for the target processor explains the appropriate procedure 
for creating a new JOCDS. 

Installations running an IBM 3090 model 400 processor complex can use the 
model 400 JOCP to generate an IOCDS on a model 200 . However, to do so you 
must first apply MEC # 225615 to your IBM 3090 model 200 processor complex. 

2-4 MVSXA Conversion Notebook, Volume 1 

o 



(/ 

Proeeuor CODlplexes That Have SysteDl/370 and 370-XA Modes 

~uring the migration period, it is important to create an lOCOS that can be used 
in both System/370 and 370-XA modes. Therefore, you must run the 370/370-XA 
IOCP to create the lOCOS. In addition, to ensure that the lOCOS works for 
both System/370 and 370-XA, use the same IOCP macro specifications to create it 
as you use to create a System/370 lOCOS. However, be aware that although the 
macro instructions are upward compatible between System/370 and 370-XA 
modes, there are differences in the way 10CP treats the macro specifications when 
defining a 370-XA I/O configuration. Most of the differences support the new I/O 
architecture: 

Macro 

CHPID 

IODEVICE 

MVS/XA Differences 

10CP requires channel numbers and channel sets only for devices to be used in 
System/370 mode. The 370-XA architecture does not use channel numbers and 
channel sets. 

ADDRESS keyword. 10CP treats the ADDRESS keyword value as a device address 
in System/370 mode and as a device number in 370-XA mode. During the conversion 
period, specify the device numbers exactly the way you specify System/370 device 
addresses. 

From a users point of view, MVSjXA device numbers are equivalent to MVS/370 
device addresses (sometimes referred to as CUAs in MVS/370). Both uniquely 
identify a device. In some publications and messages, you might still see device 
numbers referred to as device addresses. 

UNlTADD keyword. UNITADD is a an optional keyword that has meaning only in 
370-XA mode. It specifies the two-digit physical unit address of the device being 
described. UNITADD provides an alternative to specifying the unit address on the 
ADDRESS keyword (the last two digits of ADDRESS = xxx). If you specify 
UNITADD, the last two digits of ADDRESS = xxx need not be the device's actual 
physical unit address, as previously required. Instead, they can be any value that: (a) 
makes the device number unique, and (b) follows the rules listed in the IOCP User's 
Guide and Reference for your processor complex. 

UNITADD allows you to assign the same unit address to as many devices as the 
number of channel paths. Without UNITADD, the limit is sixteen because the first 
digit of ADDRESS = xxx must be O-F, the last two digits must be the device's unit 
address, and the three-digit combination must be unique. The first two restrictions 
allow only sixteen unique combinations (for example, OFF-FFF for devices having 
unit address FF). 

You cannot use UNITADD on 10DEVICE macros used to generate an MVS/370 
system. The MVS/370 SYSGEN program does not recognize UNITADD on the 
IODEVICE macro, and fails. 

PAm keyword. PATH is an optional keyword that has meaning only in 370-XA 
mode. It specifies a preferred path, which the channel subsystem tries first when 
initiating I/O to the device. You cannot include PATH on IODEVICE macros used 
to generate an MVS/370 system. As with UNITADD, the MVS/370 SYSGEN 
program does not recognize the PATH keyword on the 10DEVICE macro, and fails. 

STADET keyword. New for Release 2.1.3, this optional keyword can be used in both 
System/370 and 370-XA modes. However, it only has meaning in 370-XA mode in an 
IBM 3090 processor complex. STADET provides input for IOPIOCP. 

Note. As of Release 2.1.7, regardless of how they are actually written, the system 
interprets all uses of the STADET keyword as STADET=N. Contact the Systems 
Engineer in your IBM branch office for details on the STADET keyword. 

WARNING: When coding the CNTLUNIT macro, remember to specify on the 
UNITAOO parameter all unit addresses that the control unit can address, 
regardless of whether a device is actually attached. This rule is not new. 

Chapter 2. Installation and Initialization 2-5 



I/O Configuration Requirements 

Review your current I/O configuration to ensure that it is valid in 370-XA mode, 
if you ever plan to run only in System/370 mode. The 370/370-XA IOCP imposes 
restrictions on the I/O configuration (for example, no physical control unit can 
share devices with more than three other physical control units). Current I/O 
configurations might violate the restrictions, in which case the 370/370-XA IOCP 
issues error messages. The IOCP User's Guide and Reference for your type of 
processor complex describes the I/O configuration requirements you must satisfy. 

Coding Macros Used for SYSGEN with MVS/370 

Many of the MVS/370 SYSGEN macros are obsolete as of Release 2.2.0; others 
are used as input to the MVS configuration program (MVSCP), and four remain 
as input to system generation: DATAMGT, DATASET, GENERATE and JES. 

Figure 2-2 summarizes the changes to SYSGEN macros that occurred during 
Release 2.l.x. The MVS/XA Conversion Notebook, Volume 2 summarizes the 
Release 2.2.x changes to system generation macros. 

Most of the changes are compatible. The system generation process generally 
ignores MVS/370 macros, keywords, and options that have no meaning. In some 
cases, it accepts them and issues an informational or warning message. However, 
you do need to check for macros that specify unsupported device types. (See the 
Volume 2 for a list of such devices.) The macros you need to check include 
DATASET, GENERATE, and IODEVICE. 

2-6 MVSXA Conversion Notebook, Volume 1 

C) 



Macro Description of Updates 

CHANNEL Obsolete. If SYSGEN processing encounters a CHANNEL macro, it issues an 
informational message and continues. ( 

CTRLPROG The CHR keywords is obsolete as are the following keywords and options. 
However, when these are encountered the system produces an explanatory 
MNOTE: 

-ACRCODE 
-STORAGE 
-WARN 

DATASET A new DUMPDSN keyword specifies the suffixes or ranges of suffixes for dump 
data set names. You can define up to 100 dump data sets. Earlier releases allow a 
maximum of 10. 

You can specify secondary extents for the PARMLIB data set. 

GENERATE The default name for the INDEX keyword is SYSX, instead of SYSI. 

IODEVICE The AP and OPTCHAN keywords are ignored. GCU is obsolete. 

The 2-CHANSW option on the FEATURE keyword is ignored. The following 
options are obsolete: 

- ABSLTVEC 
- BUFFER4K 
- BUFFER8K 
-CHARGNTR 
- DATACONV 
- DEKYB2260 
- DESIGNFEAT 
- LIGHTPEN 
- LINEADDR 
-MDECOMPAT 
- NMKEYB2260 
-NODESCUR 
- READWRITE 

SCHEDULR TAVR=200 is obsolete. 

( 
UNITNAME The maximum number of unique groups allowed is increased from 100 to 256. 

The maximum number of device numbers allowed is 4112 minus the number of 
unique groups. Earlier releases allow 2056. You can include a maximum of 4111 
device numbers in one group. 

Figure 2-2. Obsolete/Updated SYSGEN Macros, Keywords, and Options 

Chapter 2. Installation and Initialization 2-7 



Rebuilding Alternate Eligible Device Tables (EDTs) 

EDTs are not compatible between MVS/370 and MVSjXA. Neither an MVS/XA 
nor an MVS/370 system can use EDTs verified on the other system. If your 
installation uses alternate EDTs, you must rebuild them using the MVS 
configuration program (MVSCP). You can build the EDTs on either an 
MVS/370 or an MVSjXA system, but you must verify them on an MVSjXA 
system. 

Changes to the Program Properties Table (PPT) 

Listed below are two situations that require a new PPT. When one occurs, if your 
installation has added entries to the existing PPT, either copy the installation 
entries from the existing PPT into the new PPT or copy the entries in the new 
PPT into the existing PPT. MVS/XA SPL: Initialization and Tuning describes 
how to update the PPT. MVS/XA SPL: System Modifications has details on the 
PPT format. 

1. Installing Release 2.1.1 

With Release 2.1.1, the updated PPT contains two new entries: one for 
IF ASMF and one for CSVLLCRE. IF ASMF is a new SMF module that is 
required to start the new SMF address space. CSVLLCRE creates and 
maintains a new directory of modules in the LNKLST concatenation. (See 
"Using a New Directory for LNKLST Data Sets" for more information.) 

2. Installing Release 2.1.3AE 

Release 2.1.3AE adds the load module, AVFMNBLD, that starts the 
availability manager address space. 

The Vector Facility Enhancement and the PPT 

Installations with processor complexes that include the Vector Facility should not 
specify processor affinity for programs in the PPT. MVS/XA dynamically 
manages processor affinity to insure that the programs using vector instructions 
run on a processor with the Vector Facility when necessary. Setting processor 
affinity in the PPT may interfere with this process. 

Defining System Data Sets 

An MVSjXA system requires data sets with the same names and characteristics as 
an MVS/370 system. Additional information related to defining system data sets 
is described below. 

Device Types Allowed 

Except for page data sets, you can place system data sets on all devices that were 
previously allowed, provided MVS/XA supports those device types. The next 
paragraph describes the page data set exception. You must move data sets on 
unsupported devices to supported devices. See the MVS/XA Conversion 
Notebook, Volume 2 for a list of such devices. 

2-8 MVSXA Conversion Notebook, Volume I 

o 

( 
""",- . ./ 

o 



Swap Data Sets 

You need to evaluate the number and size of swap data sets defined. As virtual 
storage requirements increase, you might need to define additional swap space. 

Dump Data Sets 

Installations can now define up to 100 SYSl.DUMPnn data sets. A maximum of 
10 dump data sets are allowed in MVSj370. 

Your installation might want to increase the number and size of dump data sets 
defined during the migration period. Allocate dump data sets large enough to 
contain the maximum size SVC dump expected. 

The size of the dump depends on the dump options and the size of your 
application programs. If these programs are the same size on your MVSj370 and 
MVSjXA systems, your MVSj370 SYS1.DUMPnn data sets may be large enough 
for the MVSJXA system. Once your MVSjXA system is running you can, if you 
need to, reallocate SYS1.DUMPnn data sets so that there is a closer match 
between them and the size of the SVC dumps that occur. 

A new command, DUMPDS, allows installations to add and delete 
SYS1.DUMPnn data sets after IPLJNIP time. See "Summary of New, Updated, 
or Deleted Commands" in Chapter 4. Also, SYS1.DUMPnn data sets must be 
allocated DISP=SHR instead ofDISP=OLD. See "JCL Changes to Jobs that 
Allocate SYS1.DUMP Data Sets" in Chapter 4. 

SYSl.DAE Data Set 

Beginning with Release 2.1.1, you must allocate a system data set, SYS1.DAE, at 
IPL time in order to use dump analysis and elimination (DAE). DAE stores 
symptom information from dumps it identifies as unique in SYS1.DAE and uses 
that information when determining if subsequent dumps are duplicates. "Dump 
Analysis and Elimination (DAE)" in Chapter 6 gives an overview of DAE and 
describes in more detail how and when SYS1.DAE is used. 

You can create SYS1.DAE using JCL in the DAEALLOC member of 
SYSl.SAMPLIB. (The DATASET system generation macro does not support 
SYSl.DAE.) For instructions, see MVSjXA SPL: System Modifications. 

MST JCLxx Members in the SYSl.LINKLm Data Set 

As of Release 2.1.1, the JCL for starting the master scheduler address space is 
contained in MSTJCLxx members of SYS1.LINKLIB. MSTRJCL, the 
SYSl.LINKLIB member that earlier releases use, is deleted. Instead, IBM 
supplies default JCL in member MSTJCLOO. 

Concatenating Data Sets to the SYS1.LP ALm Data Set 

Beginning with Release 2.1.1, you can concatenate data sets to the SYS1.LPALIB 
data set. The system uses the modules in the concatenated data sets, as well as 
the SYSl.LPALIB data set, to build the PLPA, the MLPA, and the FLPA. 
Earlier releases of MVS use only the modules in the SYS1.LPALIB. 
SYS1.LPALIB concatenation allows you to share a single SYSl.LPALIB data set 

Chapter 2. Installation and Initialization 2-9 



among several systems, yet still tailor the PLPA, MLPA, and FLPA of each 
system by varying the concatenation. 

To concatenate data sets: 

• List in the LPALSTxx PARMLIB member which data sets are to be 
concatenated. The data sets must be included in the master catalog and must 
be APF authorized. 

• Specify on the LPA system parameter which LPALSTxx members are to be 
processed. You can include the LP A parameter in IEASYSxx, or an operator 
can specify it when prompted for system parameters. If you omit the LPA 
parameter, the system uses SYSl.LPALIB only, as in previous releases of 
MVS. 

See MVSjXA SPL: Initialization and Tuning for more detail on creating 
LPALSTxx members and specifying the LPA system parameter. 

SYS1.LOGREC Data Sets 

Beginning with Release 2.1.1, you can place SYSl.LOGREC data sets on a 
volume other than the SYSRES volume. Several systems can then share a 
SYSRES volume and still have separate SYSl.LOGREC data sets. To use an 
alternate SYSl.LOGREC data set, simply include a data set named 
SYSl.LOGREC in the master catalog. The system searches for a data set of that 
name first in the master catalog, then in the SYSRES volume. 

You might want to increase the size of your SYSl.LOGREC data set because 
MVS/XA can produce more diagnostic information. 

SYSl.NUCLEUS Data Set 

As in MVSj370, the MVS/XA SYSl.NUCLEUS must be a single extent. If you 
attempt to allocate a multiple extent data set, MVS/XA enters a restartable wait 
state (wait state code x'OSl '). MVSj370 takes different actions. 

SYSl.PARMLm Data Set 

In MVS/XA, the SYSl.PARMLIB data set can be blocked and can have multiple 
extents. In MVSj370, the PARMLIB has to be unblocked and a single extent. 
Also see "New, Updated, or Deleted PARMLIB Members" on page 2-19. 

System Data Set Qualifiers 

You cannot specify a system data set qualifier of SYSl on the INDEX parameter 
of the GENERATE macro. You can either specify some other high level qualifier 
or let system generation processing assign the default (SYSX). Stage II system 
generation processing changes the high level qualifiers to SYSI. This restriction is 
not new. It always applies when using a system other than a starter system to do 
a complete system generation. Note that the default high level qualifier is 
changed from SYSl to SYSx. 

2-10 MVSXA Conversion Notebook, Volume I 

'~ 

() 



( 

Initializing DASD 

You must use Device Support Facilities to initialize DASD volumes. 
IEHDASDR is no longer supported. See the Device Support Facilities User's 
Guide and Reference for directions. 

Activating the Resource Access Control Facility (RACF) 

If you intend to install RACF on your new system you should activate it (even 
before any data sets are protected) before testing your new system. MVS/XA 
systems with Release 2.1.2 or later (and MVS/370 systems with MVS/370 DFP 1.1 
or later) support the always-call function. This function invokes the system 
authorization facility (SAF) which, in tum, invokes RACF each time a request to 
access a data set occurs. 

If RACF is installed but not active, it processes authorization checking in RACF 
failsoft mode which prompts the operator for permission to access each data set. 
These queries can make testing new systems intolerably slow. Refer to the SPL: 
RACF for details on RACF failsoft processing. 

Loading Programs 

To IPL MVS/XA, you must use the IPL text distributed with MVS/SP Version 2 
and follow the directions in the Program Directory for the release. The MVS/370 
and MVS/XA IPL programs are not compatible. You must use Release 6 or a 
subsequent release of the Device Support Facilities to write the MVS/XA IPL text 
to DASD. 

The Initial Program Load process loads the second MVS/XA bootstrap record 
into the frame at main storage absolute address 8 K. It loads the IPL text into 
main storage frame O. 

If you write your own bootstrap programs, (for example, to invoke SADMP) 
make sure that the addresses used to load the bootstrap records are in storage 
that will not be taken offiine. 

For MVS/XA, running on IBM 308x or IBM 3090 processor complexes that can 
be partitioned your choices are: 

• Main storage frame 0, 2, 4, 6, and so on, throughout the first 2 megabytes of 
main storage. 

• The low end of the highest storage range specified on the CONFIG frame on 
the system console. That storage range always remains online. 

For MVS/XA running non-partitionable IBM 3090s and IBM 438ls, load your 
bootstrap programs beginning with main storage frame 0 and continuing through 
any frames in the first megabyte of main storage. 

Chapter 2. Installation and Initialization 2-11 



Loading the Microcode EC Tapes for Mass Storage Subsystems 

To load MSS microcode in an MVS/XA environment, use the MSC Table Create 
(MSCTC) utility with PTF UZ09020 installed, instead of IEHDASDR. 
IEHDASDR does not work in MVS/XA. 

The MSCTC control statement to use is CREATE, the required parameter is 
RESTOREC. For more information, see MSS Installation Planning and Table 
Create. 

2-12 MVSXA Conversion Notebook, Volume I 

() 



( 

System Parameter and SYSl.P ARMLIB Considerations 

The topics in this section contain information related to specifying system 
parameters. "New, Updated, or Deleted PARMLIB Members" on page 2-19 
summarizes Release 2.1.x changes to SYS1.PARMLIB members. 

Many parameters affect virtual storage address space areas. MVS/XA SPL: 
Initialization and Tuning and the MVS/XA Overview give background information 
on each portion of an MVS/XA address space. 

Fixed Storage for SLIP Command Processors (IEASLPxx) 

When the system processes SLIP commands at IPL time, it allocates fixed storage 
for the SLIP action processors and the control blocks they use. If your 
installation does not use SLIP commands in MVS/370, the fixed storage 
requirement is new. If your installation does use SLIP commands in MVS/370, 
because the fixed storage is allocated in virtual storage above 16 megabytes, you 
may gain approximately 31 K bytes of real storage below 16 megabytes. 

Specifying the Reconfigurable Storage Unit (RSU) Parameter (IEASYSxx) 

If you specified an RSU parameter in the past, when initializing Release 2.1.1 you 
need to review that specification. Release 2.1.1 satisfies the RSU request in a 
different way than previous releases do. The same RSU value might result in less 
reconfigurable storage. 

Beginning with Release 2.1.1, the RSU parameter specifies the total number of 
storage units MVS is to mark reconfigurable. The system attempts to satisfy the 
request using offiine storage units. It marks online storage reconfigurable only if 
there is not enough offiine storage. After satisfying the RSU request, the system 
marks all remaining storage units (both online and offiine) as preferred. If the 
system cannot satisfy the RSU request, the operator receives message IAR004I, as 
in previous releases. 

In Release 2.1.0 and in MVS/370, the RSU parameter specifies the number of 
online storage units to be marked reconfigurable when initializing the system. Those 
releases use only online storage to satisfy the request. However, they also 
automatically mark storage that is offiine at IPL time as reconfigurable when 
bringing it online. Thus, the total amount of reconfigurable storage is the amount 
marked reconfigurable when satisfying the RSU parameter, plus the amount 
brought online after the IPL. As a result, the RSU parameter in these releases can 
be less than the resulting amount of reconfigurable storage. 

For processor complexes that can be partitioned to support independent operating 
systems, or that support removable storage elements, the RSU value needs to be 
equivalent to at least the amount of storage you plan to take offline before the 
next IPL. Some installations specify one additional storage unit to increase the 
probability that storage can be taken offiine later. Remember that you can lose 
reconfigurable storage during normal processing in two ways: 

• If the system runs out of preferred storage frames, it dynamically converts 
some reconfigurable storage to preferred storage. 

Chapter 2. Installation and Initialization 2-13 



• The system might not be able to reconfigure storage that contains storage 
errors that cannot be corrected. 

Do not, however, specify more reconfigurable storage than you anticipate 
needing. Specifying too much can negatively affect performance. 

If performing an IPL on a processor complex that cannot be partitioned to 
support independent operating systems, or does not support removal of storage 
elements, you do not need to specify an RSU value. The default RSU value of 
zero takes effect. 

MVS/XA Recovery and Reconfiguration and MVS/XA SPL: Initialization and 
Tuning contain more detail on the RSU parameter . 

. ! Increasing the Minimum SQA Allocation (IEASYSxx) 

If in MVS/370 you changed the NVTNVSQA field in module IEA VNIPO to 
increase the minimum SQA allocation during previous system initializations, you 
need to read this topic. During system initialization, if the PAGE parameter 
specifies a large number of page data sets or if several 2305 Model 2 page data 
sets are active, the system's minimum allocation for SQA and extended SQA 
(seven 64 K blocks) might be depleted before the system processes the SQA 
parameter. In MVS/370, you can solve that problem by changing the contents of 
the NVTNVSQA field. That method does not work in MVS/XA. You can, 
however, increase the minimum allocations by changing the half words NVSQA 
and/or NVESQA in module IEAIPL04. Consult microfiche for the locations of 
these, fields. If you increase the minimum SQA and/or extended SQA allocations 
and you want the total SQA size to remain the same, decrease the corresponding 
value on the SQA parameter. 

Beginning with Release 2.1.2, more SQA and extended SQA are available earlier 
in the initialization process. As a result, you might not need to change the 
minimum SQA allocation: 

• The minimum SQA allocation is increased to four 64 K blocks. In earlier 
releases, it is three. 

• The system processes the SQA parameter earlier during system initialization. 

Specifying the Size of Extended CSA and Extended SQA 

You can use the CSA and SQA parameters in the IEASYSxx member of 
SYSl.PARMLIB to specify the size of CSA and SQA in virtual storage below, 
but not above, 16 megabytes. MVSjXA assigns default sizes for extended CSA 
and extended SQA (CSA and SQA in virtual storage above 16 megabytes). To 
override those defaults, use new options on the CSA and SQA system parameters. 

The default CSA sizes are: 

CSA -
extended CSA -

2-14 MVSXA Conversion Notebook, Volume 1 

100 K 
lOOK 

o 

() 



The CSA parameter has an additional option for specifying the size of extended 
CSA: 

CSA = (a,b) where "a" specifies the size of CSA 
and "bOO specifies the size of extended CSA 

The CSA values indicate the number of 1 K units to be reserved. The values 
override the default specifications. For example: 

CSA = (100,200) results in: 

Reserved CSA = 100 K 
Reserved extended CSA = 200 K 

The default SQA sizes are: 

SQA - 256 K 
extended SQA - 256 K plus approximately 8 megabytes 

The SQA parameter has an additional option for specifying the size of extended 
SQA: 

SQA = (a,b) where "a" specifies the size of SQA 
and "bOO specifies the size of extended SQA 

The SQA values specify the number of 64 K blocks MVS/XA is to reserve in 
addition to the minimum amount of storage it allocates for SQA and extended 
SQA. The minimum amounts are 256 K for SQA and 256 K plus approximately 
8 megabytes for extended SQA. For example: 

SQA = (3,5) results in: 

Reserved SQA = 3 x 64 K + 256 K 
Reserved extended SQA = 5 x 64 K + 256 K + approximately 

8 megabytes 

The default SQA values are SQA = (1,0). 

If your system includes the Resource Measurement Facility (RMF), you can use 
the virtual storage report provided to compare your settings for CSA and SQA 
with the amount of these storage areas actually in use. 

See MVS/XA SPL: Initialization and Tuning for more information on virtual 
storage areas. 

Chapter 2. Installation and Initialization 2-15 



Minimizing Private Area Storage Lost Because of Rounding (IEASYSxx) 

Because the segment size in MVSJXA increases from 64 K to 1 megabyte, you 
need to pay closer attention to the amount of private area storage below 16 
megabytes potentially lost to eSA at initialization time because of rounding. 
During IPL processing, MVS/XA builds the common area below 16 megabytes 
beginning at the 16 megabyte address and working down. 

Extended 
Private 

Extended 

Common 

Common 

Private 

Common 
I 
{ 

2Gb 

Extended LSQA/SWA/229/230 

Extended user region 

Extended CSA 

Extended PLPA/FLPA/MLPA 

Extended SQA 

Extended nucleus 16Mb 

Nucleus 

SQA 

PLPA/FLPA/MLPA 

CSA 

LSQA/SWA/229/230 

User region 
20Kb 

System region 4Kb 

PSA 0 

To determine the lower boundary of the common area (which is the upper 
boundary of the private area), MVS/XA rounds the bottom eSA address to the 
the next lowest megabyte. Thus, as much as 1020 K bytes (1 megabyte minus 4 
K) of virtual storage can be added to the eSA, and consequently lost from the 
private area, because of rounding. Although it is not expected that your 
installation will lose that much private area, choose your eSA and SQA 
parameters carefully. If the size of the private area falls below 8 megabytes, 
MVS/XA informs the operator. You can keep track of rounding with the program 
product, Resource Measurement Facility (RMF). The virtual storage report 
provides a storage map showing the boundaries of the major system areas. 

MVS/XA also builds a common area above 16 megabytes. Private area storage 
above 16 megabytes can also be lost because of rounding. However, users are not 
expected to have virtual storage constraint problems above 16 megabytes. 

2-16 MVSXA Conversion Notebook, Volume 1 

o 



( 

Specifying Dump Data Sets (IEASYSxx) 

An additional operand of the DUMP parameter in IEASYSxx, 'DASD,xx-yy', 
allows an installation to request that the system being initialized use a specific 
range of DASD dump data sets. The DASD operand was redesigned specifically 
for systems that use SYS1.DUMP data sets that can be accessed by other systems. 
An installation can specify unique dump data sets for each system, which prevents 
SDUMP routines from using a dump data set concurrently for different systems. 

The DASD operand also shortens dump data set catalog processing at 
initialization time. When specific dump data sets are indicated, the initialization 
routines do not have to issue all 100 locates to determine which dump data sets 
are cataloged. 

Requesting Storage for RMF I/O Measurements (IEASYSxx) 

If your installation wants RMF I/O data for device classes other than tape or 
DASD, you must request storage at initialization time for the control blocks in 
which the data is to be collected. SRM collects the I/O data that RMF uses in 
new control blocks, one per device. To request control block storage, specify on 
the new CMB parameter in IEASYSxx the non-tape and non-DASD device 
classes for which I/O data is to be collected. 

Controlling the Number of Available ASVT Entries (lEASYSxx) 

A system with Release 2.1.2 installed, creates and manages the address space 
vector table (ASVT) differently. The changes are designed to prevent the system 
from running out of ASVT entries. 

When creating the ASVT, the system adds extra entries and reserves them for use 
when no unreserved entries are available. It uses one group of reserved entries 
only for address spaces being created in response to a START command. It uses 
a second group as replacements for entries that are not reusable because of latent 
cross-memory binds. 

Two new system parameters allow your installation to specify the number of 
entries to be reserved for each purpose: 

RSVSTRT Specifies the number of entries to be reserved for address spaces created in response to a 
START command. The default is five. 

RSVNONR Specifies the number of entries to be used as replacements for entries that are not 
reusable. The default is also five. 

The system still uses the MAXUSER parameter to limit the number of jobs and 
STARTed tasks that can execute concurrently under normal conditions. 
However, MAXUSER no longer specifies the maximum number of jobs or started 
tasks the system allows. That number is usually the MAXUSER value plus the 
RSVSTRT value. If supervisor recovery reconstructs the ASVT, the maximum 
number might be the sum of the MAXUSER, RSVSTRT, and RSVNONR 
values. The default MAXUSER value is still 256. 

Chapter 2. Installation and Initialization 2-17 



Removing TRACE Commands from COMMNDxx PARMLm Members 

You might want to remove or update any TRACE operator commands in the 
COMMNDxx PARMLIB member. The syntax of the TRACE command is 
changed. MVS/370 TRACE commands do not work in MVS/XA. Also, the 
MVS/XA system trace remains active after system initialization. No TRACE ON 
command is required to keep it active, as in MVS/370. Issuing MVS/370 TRACE 
commands, however, does not prevent MVS/XA system trace from being 
initialized or activated. "Summary of New, Updated, or Deleted Commands" in 
Chapter 4 describes the TRACE command changes. 

Updating the IEAFIXxx PARMLIB Member 

Remove from IEAFIXxx the names of modules that have been moved from LPA 
to the nucleus. Module names to be removed include: 

• IGC0004F (the TTIMER service routine, renamed IGC046 in MVS/XA) 
• . IGC0004G (the STIMER service routine, renamed IGC047 in MVS/XA) 
• IEWFETCH (program fetch, aliases IEWMBOSV and IEWMSEPT) 
• IGCOOOIF (the PURGE service routine) 

If those modules are in IEAFIXxx, the operator receives a message indicating that 
the modules could not be found. The PARMLIB member is not rejected. 

Removing References to Device Allocation Tables (IEALPAxx) 

The DEVNAMET, IEFDEVPT, and DEVMASKT device allocation tables are 
deleted in MVS/XA. Remove any references to these tables in PARMLIB 
members (for example, in the MLPA list). 

Keeping RNLs in GRSRNLxx PARMLm Members 

Beginning with Release 2.1.2, you can keep global resource serialization resource 
name lists (RNLs) in new GRSRNLxx PARMLIB members instead of in the 
ISGGRNLO load module in SYS1.LINKLIB. RNLs are easier to update when 
kept in PARMLIB members. You may, however, continue using the RNLs in 
SYSl.LINKLIB. 

Regardless of where the RNLs are located, if your system is to be part of a global 
resource serialization complex (GRS=START or GRS=JOIN), you must have at 
least one GRSRNLxx member. Use the new system parameter, GRSRNL=, to 
specify which members the system is to use. 

If you keep RNLs in SYS1.LINKLIB, the GRSRNLxx member must begin with 
a statement that tells the system to use the RNLs in SYSl.LINKLIB (and ignore 
the rest of the statements in the member). That statement is: 

RNLDEF LINKLIB(YES). 

To keep RNLs in a GRSRNLxx member, you need to include in the member one 
statement for each RNL entry. Each statement begins with RNLDEF, specifies 
the resource name, and indicates the RNL to which it belongs. MVS/XA SPL: 
Initialization and Tuning describes how to write RNLDEF statements. 

2-18 MVSXA Conversion Notebook, Volume 1 

o 



Beginning with Release 2.1.2, one member, GRSRNLOO, is shipped with the 
release. IEASYSOO contains the parameter GRSRNL=OO, so the system uses 
GRSRNLOO by default. 

GRSRNLOO contains entries for the same resources that are in the default RNLs 
in SYS1.LINKLIB (which are also shipped with the release). In addition, it 
begins with the statement RNLDEF LINKLIB(YES), which causes the system to 
use the RNLs in SYSl.LINKLIB. 

Because of the defaults, if you are using RNLs in SYS1.LINKLIB, you need not 
do anything. To use the RNLs in GRSRNLOO, you need to: 

• Remove the first statement: RNLDEF LINKLIB(YES) 
• Add, delete, or modify RNLDEF statements to match your installation's 

resource serialization requirements. 

You can also create and use other GRSRNLxx members. 

Systems in the same global resource serialization complex can use different 
methods of defining RNLs (either statements in GRSRNLxx PARMLIB members 
or the ISGGRNLO LINKLIB module). However, as before, the RNLs for all 
systems in the complex must be identical. The resources identified in the RNLs 
must be the same and they must appear in the same order. 

Specifying Missing Interrupt Handler (MIH) Intervals (IECIOSxx) 

Installations can specify by device the time intervals at which MIH scans for 
missing interrupts. A new MIH statement in the IECIOSxx PARMLIB member 
allows installations to specify separate time intervals for: 

• All DASD except 3330V devices. The default is 15 seconds. 

• 3330V devices (MSS virtual DASD). The default is 12 minutes. 

• 3851 devices (mass storage controller). The default is 12 minutes. 

• Specific devices identified by device number. There is no default. 
Installations can bypass MIH processing for specific devices by setting a time 
interval of zero. 

• All other devices. The default is 3 minutes. 

New, Updated, or Deleted PARMLIB Members 

Figure 2-3 summarizes SYS1.PARMLIB members that are new, updated, or 
deleted in Release 2.1.x. See the MVSjXA Conversion Notebook, Volume 2 for a 
summary of the Release 2.2.x SYSl.PARMLIB updates. 

Some of the updates are compatible, some are not. For example, if the MVSj370 
version of IEASYSxx specifies the AL T parameter, you cannot use it in place of 
the MVSjXA version of IEASYSxx. (See the entry for IEASYSxx.) In other 
cases, MVSjXA ignores parameters that it no longer supports and uses defaults 
for new parameters. If you use the MVSj370 IEAIPSxx member, you need to 
review the specifications to ensure optimal performance. 

MVSjXA SPL: Initialization and Tuning describes the PARMLIB members in 
more detail. 

Chapter 2. Installation and Initialization 2-19 



Release 
Member 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Deseription of Update 

VFE AE 
ADYSETxx x A new member. It contains records that control dump analysis and 

elimination (DAE). Each record can specify: 

- Whether or not DAE is to be active 
- The functions DAE is to perform 
- The number of symptom records to be kept in the SYSl.DAE 

data set 

See "Dump Analysis and Elimination (DAE)" in Chapter 6 for more 
information about DAE processing. 

CONFIGxx x New and changed parameters: 

- CHAN and CHANNEL are deleted. MVS/XA does not use 
channel set information. If CHAN and CHANNEL are specified, 
the operator receives a message indicating that they are ignored. 
MVS/XA continues processing CONFIGxx. 

- CHP specifies the configuration of channel paths. It replaces 
CHAN and CHANNEL. 

- CPU specifies a processor and can be used in place of CPUAD. 
You can continue to specify the CPUAD parameter, however. 

- The syntax of the DEV parameter is changed. It specifies channel 
path identifiers instead of channel set IDs. 

The operator can use the CONFIGxx member when reconfiguring 
the system. The new CONFIG command has an operand, 
MEMBER, which specifies a CONFIGxx member. In response to a 
CONFIG MEMBER command, the system logically and physically 
reconfigures processors, storage, and channel paths as defmed by the 
CPU. STOR. and CHP parameters in the specified CONFIGxx 
member. 

x The VF parameter and VFON and VFOFF operands on the CPU 
parameter can be used in the CONFIGxx member to reconfigure the 
Vector Facility. 

x The ESTOR parameter can be used in the CONFIGxx member to 
reconfigure extended storage elements. As of Release 2.1.7 the order 

/ 

of processing for CONFIG commands specified in the CONFIGxx 
PARMLIB member changes to become: 

ONLINE: real storage, extended storage, VFs, CPUs, CHPs 
OFFLINE: CHPs, VFs, CPUs, extended storage, real storage 

Note: The convention used for numbering resources in the IBM 3090 
model 400 processor complex differs from the convention used for 
numbering resources in the IBM 3084 processor complex. Use the 
DISPLAY M = SIDE command or refer to Figure 4-2 on page 4-9 to 
see which processors are on which side of a partitioned processor 
complex. 

GRSRNLxx x A new member that contains either global resource serialization 
resource name lists (RNLs). or a statement indicating the system is to 
use the RNLs in SYSl.LINKLIB. (Beginning with Release 2.1.2, you 
can keep RNLs in GRSRNLxx members or in SYS1.LINKLIB.) 
IBM provides one default member, GRSRNLOO. See "Keeping 
RNLs in GRSRNLxx PARMLIB Members" earlier in this chapter 
for more information. 

GTFPARM x Contains new options for requesting I/O event recording. USRP is 
also a new option. which prompts for specific USR events to be 
recorded. 

Figure 2-3 (Part 1 of 6). New, Updated, or Deleted PARMLIB Members 

( ..... ,., '.,' " 
"j 

2-20 MVSXA Conversion Notebook, Volume 1 



Release 

Member 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

IEAABDOO x New and changed options on the SDATA keyword: 
(SYSABEND) 

- ALLSDATA includes all of the SDATA options except 
ALL VNUC and NOSYM. 

- ALLVNUC requests the PSA, CVT, and DAT-on nucleus. 

- NOSYM requests that symptom dumps be suppressed. Unless 
NOSYM is specified, the system produces a symptom dump each 
time a task abends, even if the user did not specify a dump DD 
statement. 

- NUC requests only the DAT-on, non-page protected section of 
the nucleus and the PSA and CVT. In MVS/370, NUC causes 
the entire nucleus to be dumped. 

- SUM requests a summary dump. 

- TRT requests trace data from the active trace facilities, as in 
MVS/370. However, only an MVS/XA dump can include both 
system trace and GTF data. Both trace facilities can be active at 
the same time in MVS/XA, but not in MVS/370. 

SUBTASKS, a new option on the PDATA keyword, specifies that 
the requested PDATA information be dumped for all subtasks of the 
abending task. When a task receives ABEND code 'x22', the system 
dumps SUBTASKS data, regardless of whether the SUBTASKS 
option is specified. 

The PDATA default options specified in the IBM-supplied member 
are changed. The MVS/XA default options are all of the PDATA 
options except SUBTASKS. In MVS/370, ALLPDATA is the 
default. 

The IBM-supplied member includes an additional SDATA default 
option, SUM. It also includes the options specified in the MVS/370 
member (LSQA, CB, ENQ, TRT, ERR, DM, and 10). 

IEABLDxx x Systems with Release 2.1.0 installed process any IEABLDxx member 
you supply, but provide no default members. Before using existing 
BLDL lists, ensure their accuracy. Some system modules are moved 
to different libraries in MVS/XA. 

x Systems with Release 2.1.1 installed do not process IEABLDxx 
members. The LNKLST lookaside (LLA) function in Release 2.1.1 
or subsequent releases provides a directory of modules in the 
LNKLST concatenation. The new directory eliminates the need for 
the BLDL table and, thus, the need for IEABLDxx members. The 
system ignores the BLDL and BLDLF system parameters. For more 
information about the LLA function, see "Using a New Directory for 
LNKLST Data Sets" in Chapter 8. 

IEACMDOO x A new member that contains IBM-supplied commands. Except for 
one CHNGDUMP command, all of the commands in the Release 
2.1.0 member are SLIP commands. The CHNGDUMP command 
adds trace table and LSQA information to SVC dumps. The SLIP 
commands suppress dumps that are normally not required for 
problem determination. See "Suppressing Dumps" in Chapter 6. 

x Release 2.1.1 adds two new commands: 

- SET DAE = 00, which causes the system to process the 
ADYSETOO PARMLIB member. ADYSETOO starts DAE 
processing. For more information, see "Dump Analysis and 
Elimination (DAE)" in Chapter 6. 

- START LLA, which starts the LLA procedure in 
SYS I.PROCLIB. The LLA procedure in turn starts the 
LNKLST lookaside (LLA) function. See "Using a New Directory 
for LNKLST Data Sets" for a description of the LLA function. 

IEADMPOO x The new and changed parameters for IEADMPOO are the same as 
(SYSUDUMP) those for IEAABDOO. See the IEAABDOO entry in this table. 

The only default option specified in the IBM-supplied member is 
SUM. In most cases, the summary dump will be sufficient to debug 
user program checks and ABEND dumps. 

() Figure 2-3 (Part 2 of 6). New, Updated, or Deleted PARMLIB Members 

Chapter 2. Installation and Initialization 2-21 



Release 

Member 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE o 

IEADMROO x New and changed SDATA options are: 
(SYSMDUMP) 

- ALLNUC, which requests that the entire nucleus be included in 
the dump. 

Note: You can also request that the entire nucleus be included in 
SYSMDUMPs via the SNAP parameter list and the 
CHNGDUMP command. The required SNAP parameter list 
option is ALLVNUC, not ALLNUC. The CHNGDUMP option 
isALLNUC. 

- ALLSDATA includes all of the SDATA options except 
ALLNUC and NOSYM. 

- NOSYM, NUC, and TRT request the same data as when 
specified in IEAABDOO. See the IEAABDOO entry in this table. 

- SUM requests summary dump information like that included in 
SVCdumps. 

The default options specified in the IBM-supplied member include 
SUM, in addition to the SDATA options specified in the MVS/370 
default member (NUC, SQA, LSQA, SWA, TRT, and RGN). 

IEAFIXxx x Unless the NOPROT option is specified on the FIX parameter in the 
IEASYSxx member, the system page-protects the modules listed in 
IEAFIXxx. See "Page Protection" in Chapter 3. 

IEAIPSxx x A new parameter, 10SRVC, specifies whether SRM is to base I/O 
service on EXCP counts or device connect time. The default is 
EXCP counts. 

x A new parameter, PPGRTR, requests that SRM use residency time 
instead of execution time when it calculates the page-in rate for 
address spaces in the specified performance group. PPGRTR 
specifies the high or low limit the rate must exceed before SRM 
adjusts the address space's working set size. See "Using Residency 
Time to Calculate the Page-in Rate of an Address Space" in Chapter 
8 for more detail. 

x The Rx parameter in the DP keyword has no meaning. When it is 
encountered, the system accepts it as Fx, the new first fixed priority. 
As "Automatic Priority Group (APG) Specifications" on page 8-11 
explains, the fixed priority specifications are now: Fx, FxO, Fxl, Fx2, 
Fx3, and Fx4. 

IEALPAxx x Unless the new NOPROT option is specified on the MLPA 
parameter in the IEASYSxx member, the system page-protects the 
modules listed in IEALPAxx. See "Page Protection" in Chapter 3. 

IEALODOO x If IEALODOO is specified, MVS/XA ignores it. Unlike MVS/370, 
MVS/XA does not build contents directory entries (CDEs) for PLPA 
modules. It uses the LPA directory entries (LPDEs) instead. 

Figure 2-3 (Part 3 of 6). New, Updated, or Deleted PARMLIB Members 

2-22 MVSXA Conversion Notebook, Volume 1 



Release 

( 
Member 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 

VFE AE 
IEAOPTxx x New parameters: 

- CPENABLE specifies upper and lower thresholds for the 
percentage of I/O interrupts that occur while the channel 
subsystem is processing another I/O interrupt. SRM uses the 
thresholds to control I/O interrupt processing. 

- ICCLPB(TAPE), ICCLPB(NDPSDASD), and 
ICCLPB(DPSDASD) specify logical path utilization thresholds 
for tape, DASD without the dynamic path selection feature, and 
DASD with the dynamic path selection feature, respectively. 
SRM uses the thresholds for I/O load balancing and for 
non-specific device allocation. 

x Release 2.1.3 adds eight new SRM parameter keywords that represent 
criteria table values SRM uses to determine whether or not a page is 
placed on extended storage. Only in rare instances is there a need to 
change these values. See "Expanded (Extended) Storage Criteria" in 
Chapter 5. 

IEAPAKxx x x MVS/SP Version 2 does not provide PAK lists. However, it 
processes IEAPAKxx members that you supply. Release 2.1.0 and 
earlier releases recognize only IEAPAKOO. Release 2.1.1 and later 
releases allow multiple IEAPAKxx members. 

By using more than one member, you can vary the LPALST 
concatenation from system to system or from IPL to IPL without 
changing IEAPAKOO. The PAK=xx system parameter specifies 
which members the system is to use. IEAPAKOO is the default, 
which is consistent with earlier releases. 

Do not use existing PAK lists without first reevaluating their 
usefulness. Unless all modules in a group have the same RMODE 
(that is, they all reside in virtual storage either above or below 16 
megabytes), IPL/NIP ignores the PAK list. 

IEASYSxx x New, changed, and deleted parameters: 

- CMB specifies the I/O device classes for which measurement data 
is to be collected. The CMB specifications are in addition to 
DASD and tape device classes, for which measurement data is ( 
always collected. 

- The ALT parameter is no longer supported. Have operators use 
the SYSCTL console frame to specify an alternate nucleus. If 
AL T is specified, MVSjXA truncates processing and asks the 
operator for another member. Because some system parameters 
might already have been processed, have operators re-IPL and 
request an IEASYSxx member that does not contain the ALT 
parameter. 

- The MLPA and FIX parameters have an additional option, 
NOPROT. NOPROT indicates that the LPA modules listed in 
the IEALPAxx or IEAFIXxx PARMLIB member are not to be 
page-protected. Unless the NOPROT option is specified, the 
system page-protects those modules. See "Page Protection" in 
Chapter 3. 

- A new option on the DUMP parameter, 'DASD,xx-yy', specifies 
which currently cataloged SYS1.DUMPnn data sets the system is 
to use. If none are specified, the system uses any that are 
cataloged. See "Specifying Dump Data Sets (IEASYSxx)" for 
more information. 

- CSA has an additional option that specifies the size of CSA above 
16 megabytes. 

- SQA has an additional option that specifies the size of SQA 
above 16 megabytes. 

For more information about the CSA and SQA parameters, see" 
Specifying the Size of Extended CSA and Extended SQA." 

Figure 2-3 (Part 4 of 6). New, Updated, or Deleted PARMLIB Members 

Chapter 2. Installation and Initialization 2-23 



Release 

Member 2.1.0 2.U 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

IEASYSxx x New parameters: 
(continued) 

o 
- LNKAUTH specifies whether all data sets in the LNKLST 

concatenation are to be treated as APF authorized or only those 
named in the APF table. The default is to treat all of the data 
sets as APF authorized, as do previous releases of MVS. See 
"Using a New Directory for LNKLST Data Sets" for more 
information. 

- LPA identifies the LPALSTxx member to be processed. See the 
LPALSTxx entry in this table for more information. 

- MSTRJCL specifies which MSTJCLxx member in 
SYS1.LINKLIB the system is to use. If you omit the MSTRJCL 
parameter, the system uses the JCL in the IBM-supplied default, 
MSTJCLOO. 

MSTJCLxx members are new in Release 2.1.1. For more 
information, see "MSTJCLxx Members in the SYS1.LINKLIB 
Data Set," under "Defining System Data Sets" on page 2-8. 

- PAK identifies the IEAPAKxx member to be processed. See the 
, IEAPAKxx entry in this table for more information. 

The BLDL and BLDF parameters are obsolete. If specified, the 
operator receives warning message IEA240I. The LNKLST 
lookaside (LLA) function provides a directory of modules in the 
LNKLST concatenation. The new directory eliminates the need for 
an IEABLDxx member, and consequently, the BLDL and BLDF 
parameters. For more information, see "Using a New Directory for 
LNKLST Data Sets" in Chapter 8. 

x New and changed parameters: 

- GRSRNL specifies which GRSRNLxx member the system is to 
process. If your system is to be part of a global resource 
serialization complex, you must specify a value for GRSRNL. It 
has no default. 

Beginning with Release 2.1.2, the IEASYSOO member includes the 
statement GRSRNL=OO. However, unless your installation 
performs a system generation to install Release 2.1.2, your copy 
ofIEASYSOO is not updated. You need to add the GRSRNL 
statement yourselves. (The system generation process creates 
IEASYSOO. No other methods of installation modify it.) See 
"Keeping RNLs in GRSRNLxx PARMLIB Members" for more 
information. 

- RSVSTRT specifies the number of ASVT entries ASM is to 
reserve for address spaces created in response to a START 
command. ASM uses these reserve entries only if no unreserved 
ASVT entries are available. The default value is five. 

- RSVNONR specifies the number of ASVT entries ASM is to 
reserve as replacements for entries it cannot reuse. ASM uses the 
replacements only if it runs out of unreserved ASVT entries. The 
default is five. 

- MAXUSER still limits the number of jobs and started tasks that 
can execute concurrently under normal conditions. However, it 
no longer specifies the maximum number of jobs or started tasks 
the system allows. Beginning with Release 2.1.2, that n'lmber is 
normally the MAXUSER value plus the RSVSTRT value. The 
default MAXUSER value is still 256. 

The last three parameters are related to changes described in 
"Controlling the Number of Available ASVT Entries (IEASYSxx)." 

Figure 2-3 (Part 5 of 6). New, Updated, or Deleted PARMLIB Members 

() 
2-24 MVSXA Conversion Notebook, Volume I 



Release 

( Member 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

IECIOSxx x The LCH parameter is no longer supported. 

A new MIH control statement specifies intervals at which MIH is to 
scan for MIH conditions. MIH allows installations to specify 
different time intervals for different devices and/or types. See 
"Specifying Missing Interrupt Handler (MIH) Int.ervals (IECIOSxx)." 

x A new statement, HOTIO, aJlows you to change: 

- The threshold lOS uses to detect hot I/O conditions 
- The recovery actions lOS takes when it detects a hot I/O 

condition 

See "Processing Hot I/O Interrupts" in Chapter 4 for more 
information. 

LNKLSTxx x The data sets in the LNKLST concatenation no longer have to be 
APF authorized. Also, you can concatenate up to 123 data sets. 
Earlier releases allow no more than 16. See "Using a New Directory 
for LNKLST Data Sets" in Chapter 8 for more information. 

LPALSTxx x A new member that lists data sets to be concatenated to the 
SYS1.LPALIB data set. See "Concatenating Data Sets to the 
SYS1.LPALIB Data Set" under "Defining System Data Sets" for 
more information. 

MPFLSTxx x Release 2.1.0 adds two new keywords: 

- .MSGCOLR specifies how messages are to be displayed on MCS 
color consoles that can use seven colors and other forms of 
highlighting. An MPFLSTxx member can also include the 
statement .MSGCOLR NOCHANGE, which maintains the color 
and highlighting attributes in effect when the member became 
active . 

- . MSGIDS NOCHANGE requests that the system not change the 
message IDs already in effect. 

x Release 2.1.2 adds new options on.MSGCOLR statements and on 
message suppression records. 

The new option on .MSGCOLR specifies whether the message area is 
to be displayed in normal or high intensity. 

( 
On message suppression records, you can specify: 

- SUP(YESINO) to control whether or not the messages are 
suppressed. The default is SUP(YES) to maintain compatibility 
with previous releases. 

- RETAlN(YESINO) to control whether or not the messages are to 
be retained via the action message retention facility. 
RETAIN(YES) is the default. 

- USEREXIT(NAME) specifies the name of a WTO/WTOR user 
exit the system is to call each time it issues the messages. 
WTO/WTOR user exits are new in Release 2.1.2. For more 
information, see "New WTO/WTOR User Exits" in Chapter 5. 

SMFPRMxx x Release 2.1.1 and subsequent releases ignore the BUFNUM 
parameter. The SMF buffers are moved to the new SMF address 
space. Consequently, the number of buffers SMF can obtain is 
limited only by the amount of virtual storage in the SMF address 
space. SMF initially obtains to buffers and requests more as needed. 
If the number of buffers in use exceeds 125, SMF informs the 
operator via message IEE978E. 

Figure 2-3 (Part 6 of 6). New, Updated, or Deleted PARMLIB Members 

Chapter 2. Installation and Initialization 2-25. 



SYS1.PROCLIB Changes 

A VM Procedure 

DUMPSRV Procedure 

IEESYSAS Procedure 

The SYS1.PROCLIB data set in Release 2.1.0 contains a new DUMPSRV 
procedure and a new statement in the PRDMP procedure. The RMF procedure 
in RMF Version 3 is also changed. Release 2.1.1 adds two new procedures, 
LNKLST Lookaside (LLA) and IEESYSAS. Release 2.1.2 changes the PRDMP 
procedure. Release 2.1.3AE adds the A VM procedure. Either use the 
SYS1.PROCLIB shipped with the product, or copy the new and changed 
procedures into your version of SYS1.PROCLIB. 

Following are descriptions of the new and changed procedures. If your MVS/XA 
system is part of a loosely-coupled JES3 configuration that includes MVS/370 
systems, also read "Using SYS1.PROCLIB in a Loosely-Coupled JES3 
Configuration" in Chapter 9. 

The A VM procedure starts the availability manager address space as an MVSjXA 
started task: 

//AVM EXEC PGM=AVFMNBLD,MODE=OPERATOR 

The DUMPSRV procedure starts the dump service (DUMPSRV) address space: 

I/DUMPSRV EXEC PGM=IEAVTDSV 

IEESYSAS is a new procedure in Release 2.1.1 that starts full-function system 
address spaces, which include the SMF address space. 

//IEESYSAS PROC PROG=IEFBR14 
II EXEC PGM=&PROG 

LNKLST Lookaside (LLA) Procedure 

PRDMP Procedure 

The LLA procedure starts the LNKLST lookaside (LLA) function: 

IILLA EXEC PGM=CSVLLCRE 

Beginning with Release 2.1.1, IEACMDOO PARMLIB member contains a START 
LLA command, which starts the LLA procedure. See "Using a New Directory 
for LNKLST Data Sets" in Chapter 8 for more information about the LLA 
function. 

Releases 2.1.0 and 2.1.2 change the PRDMP procedure: 

In Release 2.1.0 there is a new INDEX DD statement. This statement requests 
that PRDMP write the dump index to a sequential data set other than the 
PRINTER data set. If the INDEX DD statement precedes the PRINTER DD 
statement, the index is printed before the dump. If the INDEX DD statement is 
missing, PRDMP prints the index on the PRINTER data set after the dump. 

2-26 MVSXA Conversion Notebook, Volume 1 

( 
.

.. "'. 
" ~j 



RMF Procedure 

In Release 2.1.2 PRDMP runs as a command processor under TSO. As a result, 
the EXEC statement has been changed and three DD statements, SYSPRINT, 
SYSTSIN, and SYSTSPRT, are now required. You can, however, specify dummy 
DD statements for any of the three. The INDEX DD statement is new in Release 
2.1.0. 

As of Release 2.1.2 the PRDMP procedure is: 

IIPRDMP PROC DUMP=DUMPOO 
IIDMP EXEC PGM=IKJEFT01,PARM=AMDPRDMP 
IISYSTSIN DD DUMMY,DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 
IISYSTSPRT DD DUMMY 
IISYSPRINT DD SYSOUT=A 
IITAPE DD DSN=SYS1.&DUMP,DISP=SHR 
II INDEX DD SYSOUT=A 
IIPRINTER DD SYSOUT=A 
IISYSUTl DD UNIT=SYSDA,SPACE=(4104,(1027,191» 

The EXEC statement must invoke IKJEFT01, the TSO terminal monitor 
program. Specifying PARM=AMDPRDMP on the EXEC statement causes 
IKJEFTOI to invoke PRDMP. You can also specify on PARM additional 
parameters for AMDPRDMP, as in previous PRDMP procedures. The valid 
parameters are described in SP L: Service Aids. 

SYSPRINT, which previously was optional, directs system messages (except those 
IKJEFTOI issues) to the specified data set. If you use a dummy statement, the 
system does not log those messages. 

SYSTSIN and SYSTSPRT are both DD statements that IKJEFTOI uses. 
SYSTSIN specifies a data set that contains commands or subcommands 
IKJEFTOI is to execute. SYSTSPRT identifies the data set in which the system is 
to log messages that IKJEFTOI issues. If you specify a dummy SYSTSPRT DD 
statement, the system does not log the messages. 

RMF Version 3 contains a new procedure for starting RMF. The new procedure 
adds one statement: 

RMF Version 3 procedure: 

II .. . 
II .. . 
II .. . 
IIIEFPARM DD 
IIIEFRDER DD 

DDNAME=IEFRDER (new statement) 
DSN=SYS1.PARMLIB,DISP=SHR 

The IEFPARM statement must come before IEFRDER. 

The new statement is required because RMF Version 3 opens IEFPARM, not 
IEFRDER, as does RMF Version 2. The IEFRDER statement is necessary to 
allow operators to override or specify additional options on IEFRDER via the 
START command. (See the RMF Reference and User's Guide for details.) 

The RMF Version 3 procedure cannot start RMF Version 2 because the Version 
2 procedure opens IEFRDER. When processing the Version 3 procedure, the 
system associates the data set information on the IEFRDER statement with the 
IEFPARM ddname, then deletes the IEFRDER name. Therefore, if MVS/370 

Chapter 2. Installation and Initialization 2-27 



executes the Version 3 procedure, RMF cannot find the IEFRDER statement 
when it attempts to open SYSl.PARMLIB. 

You can, however, modify the IEFPARM statement in the Version 3 procedure to 
obtain a procedure that can start either RMF Version 2 or 3. Replace the 
IBM-supplied IEFPARM statement with the following one: 

II .. . 
I I .. . 
I I .. . 
IIIEFRDER DD DSN=SYS1.PARMLIB,DISP=SHR 
IIIEFPARM DD DSN=*.IEFRDER,DCB=*.IEFRDER, 

VOLUME=REF=*.IEFRDER,DISP=SHR 

Notice that, unlike the original IEFPARM statement, the modified statement 
must come after the IEFRDER statement. You can specify additional data set 
information on IEFRDER. However, you must also specify the same keywords 
and values on IEFPARM or the system ignores the information. 

Duration of the RMF Initialization Process 

Using Default RNLs 

The first RMF initialization following an IPL takes up to a minute longer in 
MVS/XA than in MVS/370. The increase represents the time required for the 
initialization routines to obtain configuration information from the IOCDS. The 
MVS/370 initialization routines do not use comparable information. 

Beginning with Release 2.1.2, you can IPL a system without modifying the 
IBM-supplied resource name lists (RNLs). Previously, if you specified 
GRS=JOIN or GRS = START, you had to include entries in the SYSTEMS 
exclusion RNL for global RESERVE requests that the system issues during IPL 
processing (for example, the RESERVE request for the system master catalog). If 
earlier releases encounter a global RESERVE request before global resource 
serialization is initialized, and the request is not in the SYSTEMS exclusion RNL, 
the system stops. (Global ENQs are not mentioned here because the system issues 
none before resource serialization is initialized.) 

Release 2.1.2 IPL processing treats global RESERVE requests as local requests 
until global resource serialization is initialized. For each global RESERVE 
processed, the system issues message ISG066I, which states that the resource is 
temporarily excluded from global processing. 

In the following situations, however, you still need to add entries to the default 
SYSTEMS exclusion RNL: 

• Other systems in the global resource serialization complex have additional 
entries in the RNL (for example, systems at earlier levels of MVS, which 
require entries in the SYSTEMS exclusion RNL). The RNLs of all systems 
in the complex must be identical. 

• Some global RESERVE requests are to be treated as local requests after 
global resource serialization is initialized. 

2-28 MVSXA Conversion Notebook, Volume 1 

\ 



( 

( 

Generating Stand-Alone Dump 

You can generate the stand-alone dump program (SADMP) and initialize the 
volumes on which it resides in one batch job instead of two, as required in 
MVS/370. The old two-step procedure still works. SPL: Service Aids describes 
how to perform the same functions in one step. You must use Assembler H 
Version 2 to generate MVS/XA SADMP. 

MVS/SP Version 2 introduces several other improvements to stand-alone dump 
that might affect how you code the AMDSADMP macro instruction. For 
example, to ensure that you successfully load stand-alone dump, you must specify 
usable addresses for loading the real storage dump module. The new LOADPT 
keyword makes this possible. 

The section below describes the changes to the AMDSADMP macro. The SPL: 
Service Aids describes how to code them. 

Stand-Alone Dump Macro (AMDSADMP) Changes 

Beginning with MVS/SP Version 2, the stand-alone dump macro (AMDSADMP) 
has several new and changed keywords that improve its usefulness. The following 
figure summarizes the changes: 

Keyword Status Description of Change 

CONSOLE Changed Accepts 2 to 21 device addresses and device types in MVS/XA. The 
default device type is also changed. The MVS/XA default is 3278, the 
MVS/370 default is 3215. The default device address (OIP) remains the 
same. 

In MVS/XA, CONSOLE must include the addresses of all consoles that 
SADMP can use. Also, after performing an SADMP IPL, the MVS/XA 
operator must press the ENTER or ATTN key on the console which 
SADMP is to use. 

DUMP New Allows the user to select storage areas to be dumped in an unformatted 
dump. The areas specified are in addition to the areas that a stand-alone 
dump normally includes. DUMP is valid only for high speed 
stand-alone dumps. 

LOADPT New Specifies an absolute address where the stand-alone dump real storage 
dump module (AMDSARDM) is to be loaded. LOADPT allows users 
to avoid bad or offline storage. 

MSG New Specify MSG=ACTION to request that SADMP display only messages 
that require action. If MSG=ACTION is not coded, SADMP displays 
both information and action messages. Suppressing information 
messages speeds up dump processing. 

PROMPT New Requests that SADMP prompt the operator at execution time for 
additional storage areas to be dumped. PROMPT provides the same 
function as the DUMP keyword, but allows the operator to make 
storage requests at the time a dump is taken instead of when SADMP is 
generated. You can specify PROMPT on the same macro as DUMP. 
Like DUMP, PROMPT is valid only for high speed stand-alone dumps. 

Figure 2-4. Stand-Alone Dump Macro Instruction Changes 

Chapter 2. Installation and Initialization 2-29 



2-30 MVSXA Conversion Notebook, Volume 1 



Chapter 3. Programming Considerations 

This chapter describes differences that might affect user-written assembler 
programs, including user modifications to the system. For Releases 2.1.0, 2.1.1, 
and 2.1.2, the updates are grouped according to the type of programs each might 
affect. For subsequent releases, there are few conversion issues that affect 
programming. They are summarized in the following section. 

Programming Considerations Subsequent to Release 2.1.2 

• For Release 2.1.3, there are two programming considerations: 

• 

• 

1. The ADDFRR instruction is no longer supported. 
2. The SRM control block, OUCB (IRAOUCB), is updated incompatibly. 

Release 2.1.3VFE and Release 2.1.3AE are mutually exclusive. 

See Chapter 7, "Accounting" for an explanation of the restructure of the 
SMF type 6 record that is included in Release 2.1.3VFE. 

For Release 2.1.7 there are four programming considerations: 

1. The Release 2.1. 7 base control program (BCP) incorporates both Release 
2.1.3VFE and Release 2.1.3AE. 

2. The ASCBs on the dispatching queue (which is called the swapped-in 
queue as of Release 2.1.7) are no longer in dispatching-priority order. 

3. The sequence number field (ASCBSEQN) is deleted from the ASCB. As 
a result, RMF Version 3 Release 4.1 places a zero in the dispatching 
queue field of the Type 79 subtype 1 record. 

4. The Installation Channel Path Table (ICHPT) resides above the 16 
megabyte virtual address. 

Changes that Might Affect Unauthorized Programs 

With few exceptions, programs that use only unauthorized services and published 
external interfaces will work unchanged in MVSjXA. The exceptions include 
programs that use the following macro instructions: 

• IOHALT 
• IOSGEN UCBLOOK 
• RESETPL 
• SPIE (in two circumstances only) 
• STATUS with the STOP,SYNCH option specified 

Chapter 3. Programming Considerations 3-1 



You can modify the affected programs before installing MVS/SP Version 2. See 
the topics describing each macro. 

Some unauthorized programs might also require modification because of changes 
described in "System Diagnostic Work Area (SDWA) Changes" on page 3-11 and 
"Differences in GETMAIN Processing" on page 3-11. 

Topics describing changes that apply to all programs are: 

• "CHKPT Macro Instruction" on page 3-8 
• "TSO TEST Command" on page 3-12 
• "Deleted Instructions" on page 3-13 
• "Macro Expansions in JES Modifications" on page 3-13 
• "Limiting Concurrent Global Resource Serialization Requests" on page 3-13 
• "Format Changes to Hard-Copy Log Records" on page 3-14 
• "Link Editing Allocation User Routines" on page 3-15 
• "Removal of the Interval Timer" on page 3-16 
• "Changed Instructions" on page 3-33 
• "Summary of New and Updated Macros" on page 3-42 

Changes that Might Affect Authorized Programs 

Authorized programs are those that execute either in: 

• Supervisor state (bit 15 in the PSW is zero) 
• A system key (bits 8-11 in the PSW are in the range 0-7) 
• As part of an APF-authorized job step task (bit JSCBAUTH in the JSCB is 

1) 

Although many authorized programs will work unchanged in MVSjXA, you 
might have to modify some. Those most likely to require modification are 
programs that: 

• Use system interfaces that are not documented externally. 

• Communicate directly with system modules (for example, via branch entry) 

• Access system control blocks that are changed or that have been moved to 
virtual storage above 16 megabytes 

• Modify the system 

• Have dependencies on the names or virtual storage locations of system 
modules 

3-2 MVSXA Conversion Notebook, Volume 1 

c 



( 

(-

In addition to topics already mentioned, the following describe changes that might 
affect authorized programs: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

"Checklist for Determining if Authorized Programs Must be Changed" on 
page .3-16 
"Changes to the SVC Table" on page 3-20 
"Changes to the Locking Structure" on page 3-20 
"Determining Which Locks a Processor Holds" on page 3-20 
"Page Protection" on page 3-21 
"PSA Low Address Protection" on page 3-22 
"Fetch-Protected PSA Areas" on page 3-22 
"Patch Areas in the PSA" on page 3-22 
"Real Addressing Considerations" on page 3-23 
"Cross-Memory Entry Table Entries" on page 3-26 
"Interfaces to System Services" on page 3-26 

31-bit Addressing Considerations 

During the migration period, most users do not need to be concerned with 
addressing mode. The information in this section is for installations with 
programs that have any of the following characteristics: 

• Access system control blocks that have been moved to virtual storage above 
16 megabytes. 

• Use unpublished internal interfaces to communicate with system programs 
that must be entered in 3 I-bit addressing mode. 

• Use RMF Version 3 exits 

The following topics describe changes that support 31-bit addressing: 

• "Using the EXCPVR Macro Instruction" on page 3-23 
• "Interfaces to System Services" on page 3-26 
• "31-bit Addressing Considerations" on page 3-28 
• "Changed Instructions" on page 3-33 
• "New Instructions" on page 3-35 
• "Modifying Programs that Invoke Modules Above 16 Megabytes" on 

page 3-37 
• "Retrieving Data from a Control Block Above 16 Megabytes" on page 3-40 
• "Performing I/O in 31-bit Addressing Mode" on page 3-40 
• "Using the EXCP Macro" on page 3-41 
• "Entry Points in IEFW21SD" on page 3-15 

Chapter 3. Programming Considerations 3-3 



New Function 

The information in this section affects only new programs. The topics describe 
new functions available to both authorized and unauthorized users: 

• "Using the EXCPVR Macro Instruction" on page 3-23 
• "New Instructions" on page 3-35 
• "Using the EXCP Macro" on page 3-41 
• "Summary of New and Updated Macros" on page 3-42 
• "Parameters on the GETMAIN Macro Instruction" on page 3-48 
• "SDUMP Macro Instruction" on page 3-49 
• "SETLOCK RELEASE,TYPE=(reg)IALL Macro Instruction" on page 3-49 
• "Using GTF to Trace User Events" on page 3-49 
• "Unit Verification" on page 3-50 
• "Programs Using the Vector Facility Enhancement (VFE)" on page 3-51 
• "IMS Applications and the Extended Recovery Facility (XRF)" on page 3-52 

"Chapter 9: Coexistence Considerations" contains additional considerations for 
maintaining programs that must run in both MVS/XA and MVS/370. 

The following topic, "Macro Instructions Mentioned in This Publication," lists 
the executable macros that might require attention and indicates why. 

Macro Instructions Mentioned in This Publication 

Figure 3-1 lists the executable macros that might require attention when 
converting to MVS/XA. The macros are included in the list for one or more of 
the following reasons: 

1. The MVS/XA expansion of the macro will not work in MVS/370 (that is, the 
macro is downward incompatible). The downward incompatibility affects 
only programs that must run on both MVS/370 and MVS/XA systems. If 
such a program uses one of these macros, ensure that the program either: 

• Includes the MVS/370 expansion of the macro 

• Has two paths, one that MVS/370 executes, the other that MVS/XA 
executes 

For more information, see "Handling Downward Incompatible Macros" in 
Chapter 9. 

2. The MVS/370 macro expansion does not work in MVS/XA. You must 
reassemble, using the MVS/XA MACLIB, all programs that use these macros. 
For most of the macros, you can install compatibility PTFs or compatible 
program products on an MVS/370 system and reassemble the affected 
programs before installing MVS/XA. See the references in the notes column. 

3. The macro expansion passes different parameters to the associated service 
routine. The parameter changes affect only programs that generate, test, or 
alter the parameters. You must change those programs. "Appendix A. 
Parameter Changes in Incompatible Macros" describes the differences 
between the MVS/370 and MVS/XA parameter lists. 

3-4 MVSXA Conversion Notebook, Volume 1 

o 

c 



4. The MVS/XA expansion is required if used in programs that execute in 31-bit 
addressing mode. Thus, you must assemble such programs using Assembler 
H Version 2 and the MVS/XA MACLIB. 

5. The macro provides new function. The list includes macros that are new or 
that have new parameters or new options on existing parameters. The added 
function does not affect existing programs. Figure 3-6 summarizes the new 
function that each macro provides. 

You must use the MVSjXA MACLIB to assemble programs that use new 
functions. With two exceptions, the programs will then not work on 
MVSj370 systems. New GETMAIN options are one exception. The new 
AMODE = 24 option on the SYNCH macro is the other. See "Parameters on 
the GETMAIN Macro Instruction" in this chapter and "Downward 
Incompatible SYNCH Macros" in Chapter 9 for more detail. 

6. The macro requires attention for another reason. The notes column refers to 
the topic that describes the reason. 

System Macros and Facilities documents authorized macros. Supervisor Services 
and Macro Instructions documents unauthorized macros. Some of the macros 
listed as unauthorized have parameters that only authorized users can specify. 
Those macros are documented in both publications. 

Chapter 3. Programming Considerations 3-5 



Incompatible Incompatible 
MVS/XA MVS/370 Parameter 31-Bit Mode New 

Unauthorized Expansion Expansion Chauges Requirement Function Other 
Macros 1. 2. 3. 4. 5. 6. Notes 

ABEND x o 
ATTACH x x x The MVSjXA expansion is required 

only if parameter addresses are 
greater than 16 megabytes. 

BLSABDPL x 

BLSQMDEF x 

BLSQMFLD x 

BLSRESSY x 

BTAM RESETPL x x See "RESETPL (BTAM) Macro 
Instruction. " 

CALL x The MVSjXA expansion is required 
only if parameter addresses are 
greater than 16 megabytes. 

CHKPT x x x See "CHKPT Macro Instruction." 

CPOOL x 

CPUTIMER x 

ENQ x x See "Limiting Concurrent Global 
Resource Serialization Requests." 

ESPIE x 

ESTAE x x x 

EVENTS x x x 

EXCP x See "Using the EXCP Macro." 

GETMAIN x See "Parameters on the GETMAIN 
Macro Instruction." 

GQSCAN x See "Limiting Concurrent Global 
Resource Serialization Requests." 

GTRACE x 

LINK x The MVSjXA expansion is required 
only if parameter addresses are 
greater than 16 megabytes. 

IOHALT x x See "IOHALT Macro Instruction 
(SVC 33)." 

IOSGEN UCBLOOK x Deleted. See "IOSGEN 
UCBLOOK Macro Instruction." 

LOAD x 

PGSER x 

RACROUTE x Becomes authorized if used to 
invoke authorized RACF services. 

RESERVE x x See "Limiting Concurrent Global 
Resource Serialization Requests." 

Figure 3-1 (Part 1 of 2). Unautborized Macro Instructions Mentioned in This Publication 

c 
3-6 MVSXA Conversion Notebook, Volume 1 



Incompatible Incompatible 
MVS/XA MVS/370 Parameter 31-Bit Mode New 

Unauthorized Expansion Expansion Changes Requirement Function Other 
Macros I. 2. 3. 4. 5. 6. Notes 

RETURN x See the entry for RETURN in 
"Summary of New and Updated 
Macros" 

SETRP x 

SMFEXIT x x x 

SMFIOCNT x 

SNAP x 

SPIE x Works differently in some 
situations. See "Differences in Set 
Program Interruption Element 
(SPIE) Processing." 

SPLEVEL x See "Handling Downward 
Incompatible Macros" in Chapter 9. 

STATUS STOP,SYNCH x See "STATUS STOP,SYNCH 
Macro Instruction." 

STAX x x x The MVS/XA expansion is required 
only if parameter addresses are 
greater than 16 megabytes. 

STIMER x x x 

STIMERM x 

SYNCH x x x See "Downward Incompatible 
SYNCH Macros" in Chapter 9. 

WTL x 

WTO x See the entry for WTO in 
"Summary of New and Updated 
Macros." 

WTOR x x x x 

( 
XCTL x The MVS/XA expansion is required 

only if parameter addresses are 
greater than 16 megabytes. 

Figure 3-1 (Part 2 of 2). Unauthorized Macro Instructions Mentioned in This Publication 

Chapter 3. Programming Considerations 3-7 



Incompatible Incompatible 
MVS/XA MVS/370 Parameter 31-Bit Mode New 

Authorized Expansion Expansion Changes Requirement Function Other 
Macros 1. 2. 3. 4. S. 6. Notes 

CALLDISP x 

CALLRTM x 

CHANGKEY x 

CIRB x 

DATOFF x 

EXCPVR x See "Using the EXCPVR Macro 
Instruction. " 

FESTAE x x 

IOSINFO x x 

lOS LOOK x Locates the UCB associated with a 
device address. See "IOSGEN 
UCBLOOK Macro Instruction." 

INTSECT x x 

MODESET x The MVS/XA expansion is required 
only if EXTKEY = RBT234 is 
specified. 

MGCR x 

NUCLKUP x 

PTRACE x 

SCHEDULE x Downward incompatible only if 
SCOPE = GLOBAL is specified. 

SDUMP x x x x Downward incompatible only if 
new parameters are specified. See 
"SDUMP Macro Instruction." 
See also the entry for SDUMP in 
"Summary of Macros that Provide 
New Function." 

SETFRR x Downward incompatible only if 
INLINE = YES is specified. 

SETLOCK x x x Downward incompatible only if 
RELEASE TYPE = (reg)IALL is 
specified. See "Determining Which 
Locks a Processor Holds" for an 
example of new SETLOCK 
function. 

SVCUPDTE x 

VSMLIST x 

VSMLOC x 
VSMREGN x 

Figure 3-2. Authorized Macro Instructions Mentioned in This Publication 

CHKPT Macro Instruction 

User programs that successfully take checkpoints in MVSj370 can take 
checkpoints in MVS/XA. However, a program that has taken a checkpoint must 
restart on the same operating system (either MVS/370 or MVSjXA). 

3-8 MVSXA Conversion Notebook, Volume 1 

o 

c······" , ) 



IOHALT Macro Instruction (SVe 33) 

You must recompile modules that use the IOHALT macro and modify programs 
that issue SVC 33 directly (without using IOHALT). The SVC 33 service routine 
requires different input in registers 0 and 1: 

MVS/370 Input 

Register 0 

Offset from IOB to eew to 
be modified, or 0 

Register 1 

Options UeB address 
byte 

7 15 

Options: X'OO' - Halt I/O 
X'80' - Modify the eew 

31 

MVS/XA Input 

Register 0 

ueB address 

Register 1 

Offset from 
IOB to eew 
to be modified, 
or 0 

15 23 

Options: X'Ol' - Halt I/O 

Options 
byte 

X'81' - Modify the eew 

31 

PTF UZ29156 provides the new version ofIOHALT and the new SVC 33 
interface that are compatible with MVS/XA. You can install the PTF on an 
MVS/370 system and reassemble and modify the affected programs before 
installing MVS/SP Version 2. (You do not have to reassemble programs that will 
not be run on an MVS/XA system.) The reassembled programs will work on 
both MVS/370 and MVS/XA systems. 

If you use GTF to trace modules that use IOHALT or SVC 33 and you install the 
IOHALT compatibility PTF, you might need to install an additional PTF on 
MVS/370. Unless you have installed MVS/SP Version 1 Release 1 or a later 
release, install either: 

PTF UZ32985 for systems with SE2 installed 
PTF UZ32984 for systems with SEt installed 
PTF UZ32983 for MVS 3.8 systems with neither SEI nor SE2 installed 

The PTFs allow GTF to trace programs that use either the old or the new SVC 
33 interface. MVS/SP Version 1 Release 1 and later releases incorporate the PTF 
changes. 

IOSGEN UCBLOOK Macro Instruction 

You must change programs that use the IOSGEN UCBLOOK macro or that 
directly access the UCB look-up table. Neither the IOSGEN UCBLOOK function 
nor the UCB look-up table is supported in MVS/XA. 

To obtain UCB addresses in MVS/XA, use either: 

• The UCB scan routine (IOSVSUCB) 
• The IOSLOOK macro 

IOSVSUCB allows you to scan each UCB in the system or in a specified device 
class. Each time it is invoked, IOSVSUCB returns the address of one UCB's 
common segment. To scan several UCBs, invoke IOSVSUCB repeatedly. Both 
authorized and unauthorized programs can use IOSVSUCB. 

Chapter 3. Programming Considerations 3-9 



IOSLOOK returns the address of the common segment of the UCB associated 
with a given device number. Unlike IOSVSUCB, IOSLOOK requires that users be 
in supervisor state. 

Both IOSVSUCB and IOSLOOK are documented in System Macros and 
Facilities. 

Both services are also available in MVS/370. MVS/SP Version I Release 3 and 
later releases include IOSVSUCB. PTF UZ28392 includes IOSLOOK. Therefore, 
you can change the affected programs before installing MVS/XA. The changed 
programs will run on both MVS/370 and MVS/XA. 

RESETPL (BTAM) Macro Instruction 

Programs, including CICS and IMS BT AM modules, that use the OSjVS BT AM 
expansion of RESETPL will not work in MVS/XA. You must reassemble them 
using the RESETPL macro included in BTAM/SP (5665-279). (BTAM/SP is 
required to run BTAM application programs and subsystems in MVSjXA.) 

You can install BT AM/SP on MVS/370 and reassemble the affected programs 
before installing MVS/XA. The reassembled programs will work on both 
MVS/370 and MVS/XA systems. 

Note: Because the RESETPL expansion issues an IOHALT macro, you must 
also install the IOHALT compatibility PTF on MVS/370 before reassembling the 
programs. See "IOHALT Macro Instruction (SVC 33)" for more detail. 

Differences in Set Program Interruption Element (SPIE) Processing 

Most programs using SPIE macros will continue to work correctly in MVS/XA. 
However, you need to modify programs that create a SPIE to protect a program 
running under a different RB. 

MVS/XA terminates the SPIE when the program that created it completes, 
whether normally or abnormally. In MVS/370, the SPIE usually remains in effect 
until all programs in the step complete (task termination time). The exception 
occurs when the program that creates the SPIE abends. If that happens, 
MVS/370 terminates the SPIE also. 

Following are two examples of programs that do not work the same in MVS/XA 
as in MVS/370: 

• Program A links to Program B, which issues a SPIE macro and returns. In 
MVS/XA, the SPIE is deleted. In MVS/370, it remains in effect. 

• Program A issues a SPIE macro, followed by an XCTL macro to invoke 
Program B. In MVS/XA, the SPIE is deleted. In MVS/370. the SPIE is in 
effect for Program B. 

You can change affected programs before installing MVS/XA. 

3-10 MVSXA Conversion Notebook, Volume 1 

o 



( 

(~ 

STATUS STOP,SYNCH Macro Instruction 

The SYNCH operand on the STATUS STOP macro is no longer supported. 
Change programs that issue STATUS STOP,SYNCH to issue STATUS STOP 
without the SYNCH operand. You can make the changes before installing 
MVS/XA. 

System Diagnostic Work Area (SDWA) Changes 

The SDW A is increased in size. The additional storage is included in previously 
existing or new SDW A extensions. The sizes of the FRR work area and the 
EST AE save area remain the same. 

Programs that use indirect pointers into the SDW A work unchanged in MVS/XA. 
However, you must modify programs that: 

• Depend on the 72-byte save area passed to ESTAE exits being located at a 
given offset into the SDW A. MVS/XA uses register 13 to pass to EST AEs 
the address of the user save area, as does MVS/370. 

• Depend on the 200-byte FRR work area that is passed to FRR routines being 
located at a given offset into the SDW A. MVS/XA uses Register 0 to pass to 
FRRs the address of that work area, as does MVS/370. 

• Use explicit length values to free the SDW A. Modify the programs to use the 
value in the SDW ALNTH field. 

• Depend on the order of the SDW A and its extensions. Modify the programs 
to use indirect pointers. 

• Place data in the SDW A variable recording area (VRA) without updating the 
SDW AURAL field. Programs must maintain an accurate count in the 
SDW AURAL field to prevent data from being overlaid. 

• Assume that the unused section of the SDW A contains zeros. Programs need 
to ignore data in the unused area. 

Differences in GETMAIN Processing 

Two differences in GETMAIN processing might cause programs to fail in isolated 
instances: 

• Although the MVS/XA GETMAIN service routine does not introduce any 
new parameter restrictions, it does enforce some restrictions that were 
documented but not enforced in MVS/370. With one exception, the 
GETMAIN routine no longer allows the parameter list, address list, or length 
list specified on the LC, LU, VU, EC, or EU forms of GETMAIN to 
overlap. If the request is for a single element, MVS/XA allows the pointer to 
the address list to point to itself. All other overlaps cause the program to fail 
with ABEND code x'504'. 

Chapter 3. Programming Considerations 3-11 



TSO TEST Command 

Because programs seldom use the forms of GETMAIN mentioned or overlap 
parameters, you probably will not want to spend time looking for programs 
that have to be changed. Instead, keep in mind the parameter restrictions. If 
a program fails with ABEND code x'504', you can change it then. 

• GETMAIN routines obtain storage differently in MVS/XA. If your 
programs expect that additional virtual storage will be contiguous with 
currently owned virtual storage, you need to modify them. Additional storage 
might not be contiguous. 

To use TSO TEST on an MVS/XA system, you must install the MVS/XA feature 
of TSO/E (5665-285). TSO TEST is not part of the MVS/XA base control 
program. If you issue TSO TEST and have not installed TSO/E for MVSjXA, 
you receive message IKJ56500I stating that the TEST command is not found. In 
addition, unless TSO/E for MVS/XA is installed, user programs that issue either 
SVC 61 or SVC 97 receive a return code of 4. 

Following are TSO TEST compatibility considerations: 

• You can test programs created in MVS/XA on MVS/370 as long as the 
programs do not use any MVS/XA instructions, new macros, new parameters 
or options on existing macros, downward incompatible macros, or addresses 
above 16 megabytes. 

• When executing TSO TEST on an MVS/XA system, AT subcommands and 
LIST subcommands that specify the instruction data type support only 
MVSjXA instructions. 

• User-written TEST subcommands that do any of the following will not work 
with the MVS/XA version of TSO TEST: 

Use IKJEGSTA as an ESTAE exit. The parameter list that IKJEGSTA 
requires is incompatible. 

Use the TCOMT AB mapping macro to access fields in the TCOMT AB 
control block. Many labels on the TCOMT AB macro are deleted because 
TSO TEST no longer uses the corresponding fields. 

Use labels and equates in TSO TEST mapping macros to determine the 
length of the corresponding TEST control blocks. The names of the 
equates used to define the lengths of control blocks are changed. 

• Installations that altered the TSO TEST subcommand table (IKJEGSCD) 
must rebuild their changes in the new table. To update the table: 

Copy the IKJEGSCD CSECT of assembly module IKJEGMNL in the 
TEST load module into a separate data set. 

Make the required changes. 

Assemble and again link edit IKJEGSCD into TEST. 

3-,.12 MVSXA Conversion Notebook, Volume 1 

/ '\ 

c 



TSO IE Considerations 

Deleted Instructions 

The IKJEGSUB macro that generates IKJEGSCD in MVS/370 is deleted 
from TSO/E for MVS/XA. 

• UNALLOC is now an alias for the TSO FREE command. AND and OR are 
new subcommands of TEST. In type 32 SMF records, the UNALLOC 
command and the AND and OR subcommands of TSO TEST are recorded 
as *OTHER, unless your installation adds those names to CSECT 
IEEMB846. 

When converting to MVSjXA, you may have to change certain TSOjE 
application programs. The changes you need depend upon the release of TSOjE 
to which you are converting. Consult the TSO/Extensions (TSO/E) General 
Information (GC28-1061) for details on the various TSOjE releases. 

The following instructions are deleted from the standard 370-XA instruction set: 

ISK (Insert Storage Key) 
SSK (Set Storage Key) 
All 370 I/O instructions 

Macro Expansions in JES Modifications 

The MVSjXA expansions of 14 macros are downward incompatible. That is, the 
MVSjXA expansions will not work in MVSj370. As "Handling Downward 
Incompatible Macros" on page 9-7 explains, the MVS/XA MACLIB contains 
both the MVSj370 and MVSjXA expansions of those macros. 

If you modify JES2 or JES3 system programs, you must take into account the 
level of macro expansions you need and how to obtain them. Depending on the 
JES you are working with, consult either MVS/XA JES2 User Modifications and 
Macros or MVSjXA JES3 User Modifications and Macros 
for relevant programming information. 

Limiting Concurrent Global Resource Serialization Requests 

Beginning with Release 2.1.1, global resource serialization limits the number of 
ENQ, RESERVE, and certain types of GQSCAN requests a single job, started 
task, or TSO user can have outstanding at a given time. The GQSCAN requests 
it limits are those that specify the TOKEN parameter. The change is designed to 
prevent one address space from using up all of GRS virtual storage, which causes 
subsequent GRS requests to fail. 

Generally, the new processing does not require any action on your part. 
However, you need to be aware of the changes. Users might receive new ABEND 
or return codes indicating their programs failed because of too many concurrent 
global resource serialization requests. Also, you might want to change the limits 
global resource serialization enforces, although the default values are satisfactory 
for most installations. 

Chapter 3. Programming Considerations 3-13 



To enforce the limit, as of Release 2.1.1 global resource serialization uses a 
threshold for each address space. The thresholds are in the GVTCREQ fields of 
the GVTs. If the number of outstanding ENQ, RESERVE, or specific types of 
GQSCAN requests reaches the threshold (the default is 4096), global resource 
serialization: 

• Rejects subsequent ENQ and RESERVE requests from unauthorized callers in 
the address space. The system terminates unconditional requests with 
ABEND code x'538', and rejects conditional requests with a return code of 
x'014'. In earlier releases, if GRS virtual storage is depleted, users receive a 
return code of x'08'. 

• Allows authorized callers in the address space to issue a limited number of 
additional ENQ and RESERVE requests. The number cannot exceed the 
tolerance value specified in the GVTCREQA field of the GVT. The tolerance 
value is also new as of Release 2.1.1. Its default value is 4111. Global 
resource serialization allows authorized callers the additional ENQ and 
RESERVE requests to enable recovery and normal termination routines to 
obtain the resources required to finish processing. 

• Rejects with a return code of x'14' GQSCAN requests that specify the 
TOKEN option and request more information than can fit into the caller's 
buffers. Global resource serialization returns the buffers of information but 
does not continue the scan as it normally would. (If the threshold had not 
been reached, global resource serialization would have queued the request for 
continuation, returned the full buffers to the caller, and, after the caller 
cleared the buffers, resumed the scan.) 

If you find the threshold and tolerance values in the GVT are too high or low, 
you can change them for your installation using the SPZAP service aid program. 
For details, see SPL: Service Aids. 

Format Changes to Hard-Copy Log Records 

Beginning with Release 2.1.2, the formats of all hard-copy log records except 
those written using JES3 are changed to provide additional machine-readable 
information. As a result, you need to modify most programs that scan the 
SYSLOG data set. Scan programs that run on a JES3 system might work 
unchanged. However, be aware that records logged before JES3 is initialized and 
all records written via the LOG command or the WTL macro have the new 
format. If your installation keeps the hard-copy log on a JES2 multi-access spool 
that systems at earlier levels can access, the scan programs must be sensitive to 
which system wrote the record. 

The new log format includes the following additional information: 

• A record ID, which identifies the type of record written (for example, a 
WTOR, label line, or command response). The record ID appears only in 
SYSLOG and not in printed output. 

• The system ID. 

• The date the message was issued. 

3-14 MVSXA Conversion Notebook, Volume 1 



( 

c/ 

• The ID of the console from which the command or command response was 
issued. 

• User exit and message suppression flags. 

• The full text of the message. If the text requires more than one line, one or 
more WTL entries might be interspersed among the continuation lines. If 
printed, however, the text appears on consecutive lines. 

The text of entries written using the LOG command begin with the prefix '0'. 
The text of entries written using the WTL macro begin with either a 
user-specified prefix or an 'X'. 

A new macro, IHAHCLOG, maps the new record format. When modifying your 
programs, use the mapping macro instead of offsets to access the data. 

Link Editing Allocation User Routines 

Release 2.1.1 removes the following routines from the device allocation load 
module, IEFW21SD. Therefore, you need to link edit them differently: 

IEFDB401 - Dynamic allocation user exit, now a single CSECT 
IEFXVNSL - Non-standard tape label routine, now a single CSECT 
IEFAB445 - Allocation space defaults CSECT, now a single CSECT 
IKJEFDOO - Now an alias for the IKJDAIR dynamic allocation interface 

routine within the IEFGB400 load module. 

IEFDB401 and IEFXVNSL can reside above or below 16 megabytes. Specify 
their RMODEs on the link edit statements for each. The system generation link 
edit control statements omit the RMODE specification. IEFAB445 resides below 
16 megabytes. IKJDAIR also resides below 16 megabytes and can be invoked in 
either 24- or 31-bit addressing mode. 

Release 2.1.1 changes some of the entry points in IEFW21SD. Programs to be 
executed in 31-bit addressing mode must use the new rather than old entry points. 
See "Entry Points in IEFW21SD" below for more information. 

Entry Points in IEFW21SD 

The following entry points in the device allocation load module, IEFW21SD, are 
changed in Release 2.1.1. When writing programs to be executed in 31-bit 
addressing mode, use the new entry points. Programs that run in 24-bit 
addressing mode can continue to use the old entry points. 

Release 2.1.0 
Entry Point 

IEFAB4DC 
IEFAB445 
IEFAB4UV 

Release 2.1.1 
Entry Point 

IEFGB4DC 
IEFAB445 (single CSECT) 
IEFGB4UV 

Chapter 3. Programming Considerations 3-15 



Removal of the Interval Timer 

370-XA deletes the interval timer. Modify programs that use the interval timer to 
use the CPU timer instead. Although the CPU timer works like a stopwatch, you 
can use it like an interval timer. Use the STIMER macro to set the CPU timer, 
the CPUTIMER or TTIMER macro to obtain its current value, and the 
SRBTIMER macro to set a time limit for SRB processing. Although you can use 
either the CPUTIMER or TTIMER macro, CPUTIMER is faster and you can 
use it in SRB or task mode. You can use TTIMER in task mode only. 

Checklist for Determining if Authorized Programs Must be Changed 

The following checklist is for use in examining authorized assembler programs for 
incompatibilities and is not applicable to other programs. Programs written in 
high level (non-assembler) languages are compatible and require no change. Most 
unauthorized assembler programs also work unchanged. The few exceptions are 
noted in the introduction to this chapter. 

Most of the following programs require modification and/or reassembly: 

• Programs that issue any of the following macros: 

RESETPL (a BTAM macro) 
IOHALT (or SVC 33) 
IOSGEN UCBLOOK 
STATUS STOP,SYNCH 

In all cases, you can change programs that use these macros before installing 
MVS/XA. For details, see the topics describing the macros. 

• Programs that access system control blocks that are changed or that now 
reside in virtual storage above 16 megabytes. "Appendix B. Control Block 
Changes" lists the control blocks requiring attention. 

• Programs that directly invoke system modules that now require entry in 31-bit 
addressing mode, or that require parameter addresses to be 3 I-bit values. 

Programs using SVCs or published macros to invoke service routines that 
now execute in 31-bit addressing mode generally work unchanged in 
MVS/XA. In most cases, the macro invokes a routine that changes modes, if 
necessary, before entering the service routine. 

The MVS/XA components having a large percentage of modules that execute 
in 31-bit addressing mode or reside above 16 megabytes include: 

In Release 2.1.0 

BLDL/FIND 
checkpoint/restart (runs in 31-bit addressing mode) 
contents supervision (CSV) 
some device error recovery procedures (ERPs) 
GTF 
lOS 

3-16 MVSXA Conversion Notebook, Volume 1 

o 

/' 

, I 0··", 



( 

media manager 
program fetch 
RSM 
RTM 
SRM 
system trace 
VSM 

In Release 2.1.1 

- ALLOCATE 

In Release 2.1.2 

SVCDUMP in APAR OZ78216 
VSAM record management load modules 

In Release 2.1.3AE 

- availability manager 

In MVS/XA DFP Version 2 Release 1.0 

checkpoint/restart (resides above the 16 megabytes address) 
common volume table of contents access facility (CV AF) 

In MVS/XA DFP Version 2 Release 3.0 

- VSAM 

RMF Version 3 modules also execute in 31-bit addressing mode. 

See "Interfaces to System Services" for more detail. 

• Programs that use the high-order byte of address fields for flags. When 
running in 31-bit addressing mode, MVS/XA treats addresses as 31-bit values 
and, if applicable, uses the high-order bit to set the PSW A-mode bit. 

Specific examples of programs that will fail include those that use the 
high-order byte of: 

Address fields they pass to IARUTRV (translate real to virtual routine). 
IARUTRV, which replaces IEAVTRV in MVS/XA, treats the real 
addresses as 31-bit values. 

The SRBEP or SRBRMTR field in the SRB. MVS/XA treats each field 
as a 31-bit value, and uses the high-order bit to set the PSW A-mode bit. 

The SVC screening table address in the TCB (the TCBSVCA2 field). 
MVS/XA also treats that address as a 31-bit value and uses the 
high-order bit to set the PSW A-mode bit. 

• Programs that treat UCB addresses as 2-byte values. In MVS/XA, UCB 
addresses are three bytes instead of two. 

Chapter 3. Programming Considerations 3-17 



• Programs that directly access the UCB look-up routine. It does not exist in 
MVS/XA. "IOSGEN UCBLOOK Macro Instruction" describes alternate 
ways of obtaining the same information. 

• Programs that depend on the structure of the nucleus and the FLPA. In 
MVSjXA, the FLPA no longer resides in the nucleus buffer. Also, neither the 
nucleus nor the FLP A is mapped V = R, and modules in those areas might 
not be loaded into contiguous real frames. 

Examples of programs that must be modified are: 

v = R programs that use EXCP to perform I/O into or out of the FLP A. 

Programs in the nucleus or FLPA that run DAT-off. "DAT-off 
Restrictions" describes how to change the programs. 

Programs that use the CVTNUCB field to determine if they have been 
loaded into the FLP A. Change the programs to test the CVTFLPAS and 
CVTFLPAE fields to determine residency in the FLPA below 16 
megabytes and the CVTEFLPS and CVTEFLPE fields for residency 
above 16 megabytes. Each pair of fields indicates the beginning and 
ending addresses of the FLPA areas. 

• Programs sensitive to virtual storage location changes; for example, programs 
that treat parameter addresses below 64 K as invalid. 

• Programs sensitive to changes in the locking structure. Programs requiring 
modification are those that: 

Use the 10SCAT or the 10SLCH lock. Those locks are deleted in 
MVSjXA. 

Obtain the DISP lock in order to hold the highest lock in the system. 

Request the DISP lock after obtaining the ASM lock. 

Use the PSAHLHI field to determine locking hierarchy. 

For more information, see "Changes to the Locking Structure" and 
"Determining Which Locks a Processor Holds." 

• Programs that use the following system-created data: 

GTF, system trace, or LOGREC records. The record formats are 
different. Also, the structure of the system trace table is changed. 

Beginning in Release 2.1.2 programs that scan the SYSLOG data set must 
be updated as a result of changes in the format of the hard-copy log 
records. See "Format Changes to Hard-Copy Log Records." 

Dump data. Dump contents and formats have changed. See Chapter 6 
for more information. 

3-18 MVSXA Conversion Notebook, Volume 1 

o 

- -----~-- - - -----~-------



, (" 
SMF data that is updated. Chapter 7 identifies which SMF records are 
updated and briefly describes the differences. 

• Programs that examine the PSW field in MVS/XA control blocks (for 
example, programs that use trace data or print reports). The PSW format is 
changed. Among other differences, the instruction addresses are contained in 
4-byte, instead of 3-byte, fields. 

• Programs that use the LRA instruction. LRA always returns a 31-bit address 
in MVS/XA, even when executed in 24-bit addressing mode. 

• Programs that call IEFSCAN or that directly access MVS/370 device 
allocation tables (DEVNAMET, IEFDEVPT, and DEVMASKT). IEFSCAN 
and the tables are deleted in MVSjXA. "Unit Verification" describes how 
both authorized and unauthorized programs can perform unit verification in 
MVSjXA. 

• Programs that use extended ECBs for POST exits. The programs must be 
authorized to fetch from the ECB extension, as well as to fetch and store the 
extended ECB. 

• Programs that specify an ACON length other than 4 (for example, 
AL3(location», if the location in parentheses is above 16 megabytes. 

• Programs that examine the SVTDACTV or SVTPW AIT fields in the SVT 
(usually programs that code their own expansions of SCHEDULE or 
INTSECT, respectively). The offsets of these fields in the SVT have changed. 
Their previous locations are initialized to x'FFFFFFFF'. 

• Programs that depend on CPU (processor) addresses being 0, 1, or 2. A CPU 
address can be any number from O-F. 

• I/O drivers that call IEASMFEX to record EXCP counts. Change the drivers 
to use a new SMF macro, SMFIOCNT. 

• If your installation includes data sets in the LNKLST concatenation that are 
not APF authorized, programs that depend on the data sets being APF 
authorized. 

The DEBAPFIN bit in the LNKLST DEB indicates whether or not all data 
sets in the LNKLST concatenation are APF authorized. The LLTAPFIN 
field in a data set's LLT APFTB entry indicates whether the data set is APF 
authorized. The LL T APFTB is a new extension to the LLT that contains one 
entry for each data set in the LNKLST concatenation. See "Using a New 
Directory for LNKLST Data Sets" in Chapter 8, "Measurement and 
Tuning" for more information. 

• Programs that access SMF BQEs (buffer queue elements). Release 1.1 moves 
the BQEs from common storage to the new SMF address space. 

• Programs that read SMF data sets directly instead of via SMF dump 
programs. Release 2.1.1 initializes SMF data sets with dummy records that 
are shorter than valid SMF records. They contain the characters 
'SMFEOFMARK.' See "SMF Compatibility Between Release 2.1.0 and 
Later Releases" in Chapter 7 for more information. 

Chapter 3. Programming Considerations 3-19 



• Programs that obtain storage for data extent blocks (DEBs) from 
fetch-protected areas (subpools 0-172). If called to add a DEB table entry for 
a DEB that is in fetch-protected storage, the MVS/XA DEBCHK service 
routine issues ABEND x'16E' with reason code x'iC'. MVS/370 does not 
impose the same restriction. 

Changes to the SVC Table 

The following changes have been made to the SVC table: 

SVC 

SVC 16 (PURGE) 
SVC 46 (TTIMER) 
SVC 47 (STIMER) 
SVC 82 (DASDR) 
SVC 88 (MOD88) 
SVC 109 (Extended 

SVC Router) 

SVC 138 (PGSER) 

Changes to the Locking Structure 

Description of Change 

Changed from type 3 to type 2 
Changed from type 3 to type 2 
Changed from type 3 to type 2 
Deleted 
Deleted 
A new entry has been added: 

28 - ESPIE, a type 3 SVC 

A new type 2 SVC 

The locking structure has changed in MVSjXA: 

• MVS/XA uses nine new locks instead of the SALLOC lock for storage 
management serialization. 

• A new TRACE lock serializes the system trace buffer structure. 

• A new CPU lock causes the requestor to be physically disabled for I/O and 
external interrupts. It provides system-recognized disablement. 

• The IOSCA T and IOSLCH locks have been deleted. 

• The hierarchy of the ASM and DISP locks is reversed. In MVS/XA, the 
ASM lock's position is above the DISP lock's position in the locking 
hierarchy. 

You must change programs that: 

• Use the IOSCAT or IOSLCH locks. 
• Use the SALLOC lock to serialize storage management. 
• Obtain the DISP lock in order to hold the highest lock in the system. 
• Request the DISP lock after obtaining the ASM lock. 

Determining Which Locks a Processor Holds 

You must change programs that use the PSAHLHI (highest lock held) field to 
determine locking hierarchy. The PSAHLHI field is now referred to as 
PSACLHS (current locks held string), although the old name is retained for 
compatibility. The bit positions in the PSACLHS field indicate which locks the 
processor owns. They no longer represent the hierarchy of locks. 

3-20 MVSXA Conversion Notebook, Volume 1 

o 



( 

Page Protection 

( 

MVSjXA provides a new SETLOCK service that indicates whether the processor 
owns any locks at a higher position in the hierarchy than the one specified as 
input. For example, the following SETLOCK macro tests whether the processor 
owns any locks at a higher position than the dispatcher lock: 

SETLOCK TEST,TYPE=HIER,LOCK=DISP,REGS=(11,12) 

MVSjXA uses a new page-protection facility to enforce read-only access to the: 

• Read-only nucleus (above and below 16 megabytes) 
• Resident BLDL list in Release 2.1.0 
• PLPA (above and below 16 megabytes) 
• MLPA (above and below 16 megabytes) 
• FLPA (above and below 16 megabytes) 
• NUCMAP (an area in the non-page-protected nucleus that maps the nucleus) 

Page protection is optional only for the MLPA or FLP A. Installations can tum 
off page protection for those areas by specifying a new subparameter, NOPROT, 
on the MLPA and FIX system parameters, respectively, in the IEASYSxx 
PARMLIB member. When NOPROT is specified, none of the MLPA or FLPA 
is page-protected. The system default is to page protect those areas. 

You cannot include in page-protected areas any module that stores into itself. If 
any program running DAT -on attempts to store into a page that is 
page-protected, the processor generates a program interrupt, regardless of the 
program's state or protect key. 

Modules that modify themselves might include: 

• Modules that use macros which create parameter lists, but do not use the 
LIST jEXECUTE forms of the macros to eliminate stores into the module 

• Modules marked reentrant that page-fix, serialize, and modify themselves 

If you have any such modules in the PLPA, either: 

1. Modify the module so that it stores the data somewhere else; for example, in 
dynamically-acquired storage. 

2. Include the module in another library; for example, in SYS1.LINKLIB. 

3. Include the module in the MLPA or FLPA and specify NOPROT for that 
area. 

Unless you tum off page protection in the MLPA or FLPA, handle 
self-modifying modules in those areas as described in 1 or 2. 

The page protect facility replaces MVSj370 segment protection, which enforces 
read-only access to segments (64 K blocks) of storage fully occupied by PLPA 
pages. MVSj370 installations can override the segment protection using the 
AMASPZAP service aid program. Installations do not have that capability in 
MVSjXA. 

Chapter 3. Programming Considerations 3-21 



PSA Low Address Protection 

PSA low address protection prevents user programs from storing into PSA 
locations 0 through 511. The only way to turn off PSA low address protection in 
MVS/XA is by using the PROTPSA macro. The CVTPRON bit in the CVT is 
deleted. 

To disable low address protection in MVSj370, programs can either use the 
PROTPSA macro or change the CVTPRON bit. 

Fetch-Protected PSA Areas 

You might have to change some programs that fetch data from the PSA. In 
MVS/XA, some PSA locations are key 0 fetch-protected. That is, only programs 
in key 0 can fetch data from those areas: 

• The last 2 K of the PSA (2 K through 4 K minus 1) are always key 0 
fetch-protected. 

• The first 2 K are key 0 fetch-protected from programs running on a different 
central processor. However, programs require no authorization to fetch data 
from the first 2 K of the PSA of the central processor on which they are 
running. The programs must still be in key 0 to store data into the first 2 K, 
however. 

The PSA work/save areas have been moved into the fetch-protected area to 
improve integrity. Therefore, you must also modify programs that access the 
moved data while not in key 0 and programs (usually FRRs) that fetch data from 
the FRR six-word parameter area while not in key O. 

Fetch-protection of PSA locations is new in MVS/XA. In MVS/370, programs 
have to be in key 0 to store into the PSA, but no authorization is required to 
reference data there. 

Patch Areas in the PSA 

MVS/XA uses some PSA locations that are available for system patches in 
MVS/370. If you use areas of the PSA for system patches, ensure that your patch 
applications use only areas that are not system-defined. Otherwise, normal system 
processing might overlay the patch. 

To determine which areas are safe to use, patch applications can check whether 
the storage contains zeros. When initializing the PSA,MVSjXA puts non-zero 
values in the system-defined areas within the range most commonly used as a 
patch area (x'600' to x'COO'). Available areas contain zeros. 

3-22 MVSXA Conversion Notebook, Volume 1 

c 



Real Addressing Considerations 

You might need to change programs that: 

• Use the EXCPVR macro instruction 
• Depend on RSM backing virtual pages with real storage below 16 megabytes 
• Execute DAT-off code 

Using the EXCPVR Macro Instruction 

EXCPVR users need to be aware of two changes: 

• The list of data areas that the page fix (pGFX) appendage passes to the I/O 
supervisor must contain 3 I-bit addresses. The high-order bit of each address 
must be zero. 

• Using EXCPVR, CCWs (channel command words), and IDAWs (indirect 
address words), programmers can perform I/O to any location in real storage 
(above or below 16 megabytes). The channel programs must use IDAWs to 
specify the address of buffers in real storage above 16 megabytes 

CCW (format 0, the CCW format used in MVS/370l 

IDAL (indirect address list) 

IDAW I/O buffer 
address 

IDAW 

IDAW 

Because the EXCP service routine (which processes both EXCP and EXCPVR 
macros) supports only Format 0 CCWs, CCWs and IDA Ws used with EXCPVR 
must reside in virtual storage below 16 megabytes. 

As in all cases where IDAWs are used with real addresses, an IDAW is required 
for each 2 K real storage boundary that the data transfer operation will cross. 

, 
Unless a program uses IDA Ws, EXCPVR users must ensure that all buffers are 
backed by real storage below 16 megabytes. EXCPVR users must assume that 
buffers obtained via data management access methods have real addresses above 
16 megabytes because data management access methods specify 
LOC = (BELOW,ANY) on the GETMAIN request for buffer storage. 
LOC = (BELOW,ANy) indicates that virtual storage can be backed with real 
storage above 16 megabytes. (See "Parameters on the GETMAIN Macro 
Instruction.") The following situation can happen: 

1. A program uses an access method to open a data set. The access method 
obtains buffer storage that might be backed by real storage above 16 
megabytes. 

Chapter 3. Programming Considerations 3-23 



2. The program uses the access method to read data into the buffer. 

3. The program attempts to write data from the buffer using EXCPVR. If the 
buffer is in real storage above 16 megabytes, the program does not work 
unless it uses IDAWs to specify the real addresses above 16 megabytes. 

Change the program to either obtain its own buffer or use IDA Ws. 

MVS/Extended Architecture- System Programming Library: System Data 
Administration describes how to use EXCPVR. 

Changes in the Way RSM Backs Virtual Storage 

RSM uses different algorithms to determine whether to back a virtual page with 
real storage above or below 16 megabytes. Generally, only users who have 
programs with real address dependencies need to be aware of the changes. RSM: 

• Attempts to back all virtual storage above 16 megabytes with real storage 
above 16 megabytes. 

• Attempts to back the following virtual storage areas below 16 megabytes with 
real storage above 16 megabytes: 

SQA (except subpool 226) 
LSQA 
Nucleus 
Pageable private areas 
Pageable eSA 
PLPA 
MLPA 
Resident BLDL (in Release 2.1.0 only) 

• Always backs the following virtual storage areas below 16 megabytes with real 
storage below 16 megabytes: 

V=R regions 
FLPA 
Subpool 226 (a new subpool in SQA) 

• Backs subpools 227 and 228 (fixed CSA) in virtual storage below 16 
megabytes with real storage below 16 megabytes, except when GETMAIN 
requests specify LOC = (BELOW,ANY). 

• When satisfying a page-fix request, RSM generally backs pageable virtual 
pages that reside below 16 megabytes with real storage below 16 megabytes. 
(Pageable virtual pages are pages in CSA, PLPA, MLPA, or the pageable 
private area.) However, in the following situations, RSM attempts to use real 
storage above 16 megabytes: 

The GETMAIN request to obtain the storage specified either 
LOC = (BELOW,ANY), LOC = (RES,ANY), or LOC = (ANY,ANY). 

The PGSER macro specified ANYWHERE 

3-24 MVSXA Conversion Notebook, Volume 1 

------_ ... _--

c 



DAT-off Restrictions 

(-

Note: EXCPVR users need to be aware that MVS/XA DFP access methods 
use LOC = (BELOW,ANY) on GETMAIN requests for buffer storage. 

Impact on Programmers: 

RSM's page backing rules are, for the most part, compatible with the way real 
storage is backed in MVS/370. Because programs that have real address 
dependencies work with fixed storage, it is expected that most existing programs 
will continue to receive real addresses that are less than 16 megabytes. However, 
you must change programs that run in 24-bit addressing mode and have real 
address dependencies on the nucleus, SQA, or LSQA. RSM ignores requests to 
fix storage in the nucleus, SQA, or LSQA because those areas are already fixed. 
Therefore, real addresses in those areas might be greater than 16 megabytes. 
Modify the programs to correctly handle 31-bit addresses. 

You must modify programs in the nucleus or FLPA that run with dynamic 
address translation (DAT) turned off. In MVS/370, programs can turn DAT on 
or off by manipulating the system mask (using the STNSM and STOSM 
instructions). However, because the nucleus and FLPA are not mapped V=R in 
MVSjXA, modules in those areas can no longer use the STNSM and STOSM 
instructions to control DAT. (Programs executing as V = R jobs can use STNSM 
and STOSM instructions in MVSjXA and do not have to be modified unless they 
refer to data outside the V = R region.) 

To modify modules containing DAT-off code: 

1. Move the DAT-off code to a separate module. Give the module 
AMODE=31 and RMODE = ANY attributes. Use as its entry point, 
IEA VEURn, where n is a number from 1 to 4. (MVS/XA reserves four entry 
points in the DAT-off nucleus for users.) Use BSM 0,14 as the return 
instruction. 

2. In the origin.al module (which executes DAT-on), code a DATOFF macro to 
invoke the DAT -off module created in the previous step. DATOFF is new in 
MVS/XA: 

DATOFF INDEX=INDUSRn 

The suffix ofINDUSRn must be the same as the suffix of the DAT-off 
module's entry point, IEAVEURn. See System Macros and Facilities for 
more detail on coding DATOFF macros. 

3. Link edit the DAT-offmodule (IEAVEURn) into the IEAVEDAT member of 
SYS1.NUCLEUS (the DAT-offnucleus). 

When the DATOFF macro executes, it branches to a routine in the PSA. The 
routine turns DAT off and branches to entry point IEAVEURn in IEAVEDAT. 
The DAT -off module returns via a PSA routine that turns DAT back on. 

Chapter 3. Programming Considerations 3-25 



Cross-Memory Entry Table Entries 

You might have to change entry table entries that your installation created. 
MVS/XA uses a previously reserved bit in cross-memory entry table entries to 
determine the addressing mode in which to enter the program. Entries that 
require modification are those that specify program addresses and either: 

• Use bits in the entry description that are reserved in MVSj370 
• Specify programs to be entered in 31-bit addressing mode. 

Interfaces to System Services 

Some system services are changed to execute in 31-bit addressing mode. Some 
can now accept callers in either mode, but have restrictions on the length or value 
of parameter addresses. Others are restricted to using MVSj370-supported 
interfaces. During the migration phase, most programmers do not have to be 
concerned about changes to system service interfaces. Most programs that 
execute in 24-bit addressing mode and invoke system services via an SVC or a 
macro instruction continue to work unchanged in MVS/XA. (Exceptions are 
noted in the introduction to this chapter.) Interface changes might, however, 
affect existing programs that invoke service routines directly instead of via an 
SVC or macro instruction. 

When modifying or developing programs that invoke system services directly or 
that execute in 31-bit addressing mode, programmers must now consider: 

• The mode of the caller. 

• The desired mode of the routine being called. 

• The location of data areas passed to the service routines. Some data areas, 
such as the DCB, cannot reside in virtual storage above 16 megabytes. 

• The location of routines whose addresses are passed as parameters. 

• The length of the address parameter fields. Some services expect parameter 
address fields to be 31 bits long even though the addresses contained in the 
fields might point to locations in virtual storage below 16 megabytes. Other 
services use parameter fields that must be 24 bits long (for example the DCB 
address in an OPEN parameter list). 

Programmers need to refer to the publications documenting the macros and SVC 
interfaces when using system services in 31-bit addressing mode or when invoking 
them directly. 

System services can be categorized according to their interface requirements. 
Following are descriptions of the categories and examples of service routines in 
each. The list is not comprehensive. 

3-26 MVSXA Conversion Notebook, Volume 1 



(-

Services Independent of Addressing Mode 

Service routines in this category: 

• Accept callers in either 24- or 31-bit addressing mode. 

• Use 31-bit parameter address fields or the 3l-bit MODE parameter and, for 
callers in 31-bit mode, allow the addresses contained in those fields to point 
to any location. 

EXAMPLES: 

ABEND EVENTS PUT· 
ATTACH·· EXIT RESERVE 
BLDVRP* FESTAE RESTORE 
CALLRTM FREEMAIN (SVC 120) SCHEDULE 
CHAP GENCB* SDUMP 
CIRB GET* SETFRR 
CLOSE GETMAIN (SVC 120) SETLOCK 
CMSET GETSRB SETRP 
CPOOL GTRACE SNAP·· 
DATOFF GQSCAN STATUS 
DELETE HOOK STIMER 
DEQ IDENTIFY SYNCH 
DETACH LINK*· SYSEVENT 
DLVRP* LOAD· * TESTAUTH 
DOM MODCB* TESTCB· 
DYNALLOC OPEN TTIMER 
ENQ PGSER WAIT 
ESPIE POST WTO 
ESTAE PTRACE WTOR 

XTCL·· 

**When a DeB parameter is specified, the DeB must reside in 24-bit addressable 
storage. 

*VSAM macros 

Services with Some Restrictions on the Address Parameter Values 

Services in this category: 

• Accept sve callers in either 24- or 3l-bit addressing mode. 

• Might require that branch entry callers be in 24-bit addressing mode. 

• Require that one or more parameter addresses point to locations below 16 
megabytes. In some cases, the length of an address field must be 24 bits. In 
other cases, the length of an address field must be 31 bits long, but the 
address contained in the field must be a 24-bit value. 

Chapter 3. Programming Considerations 3-27 



EXAMPLES: 

BLDCPOOL 
EVENTS 
EXCP 
EXCPVR 
EXTRACT 
FRACHECK 
FREECELL 
FREEMAIN (SVC 5 and 10) 
GETLINE 
GETCELL 

GETMAIN (SVC 4 and 10) 
MGCR 
PGFIX 
PGFREE 
PGLOAD 
PGOUT 
PGRLSE 
PURGE 
PUTLINE 
QEDIT 

RACDEF 
RACLIST 
RACHECK 
RACINIT 
RACROUTE 
SHOWCM 
SMFWTM 
SMFEWTM 
STACK 

Note: The fullword value passed as an address must be appropriate to its 
subsequent use by the system service. 

Services that Do Not Support 31-bit Addressing 

Services in this category: 

• Accept callers in 24-bit addressing mode only. 

• Require that all parameter addresses point to storage below 16 megabytes. 
Parameter lists (both in-line and remote), control blocks, buffers, and user 
exit routines must reside in virtual storage below 16 megabytes. 

EXAMPLES: 

SPIE 
STAE 
SEGLD 
SEGWT 

Data management macro instructions for all DFP access methods except VSAM 
(specifically, SAM, PAM, DAM, and ISAM) 

31-bit Addressing Considerations 

A 370-XA system can treat instruction and data addresses as 24- or 31-bit values. 
A new concept, addressing mode, describes the size of addresses being used. The 
value of a bit in the PSW (the PSW A-mode bit) determines the addressing mode. 
If the bit is 0, the system treats addresses (except those returned from the LRA 
instruction) as 24-bit values. If the bit is 1, the system treats them as 31-bit 
values. Programs executing while the system is in 24-bit addressing mode can 
address up to 16 megabytes of virtual storage. Programs executing in 31-bit mode 
can address up to two gigabytes (approximately 2 billion bytes) of virtual storage. 

Impact of 31-bit Addressing on Programmers 

During the migration phase, most programmers do not have to be concerned with 
addressing mode. Most existing user-written programs that use standard system 
interfaces run unchanged on an MVS/XA system in 24-bit mode. 

3-28 MVSXA Conversion Notebook, Volume 1 

c 



( 

Programmers need to be concerned about addressing mode only if they: 

• Have existing user-written programs that access system control blocks that 
have been moved to virtual storage above 16 megabytes. 
(Appendix B, "Control Block Updates" lists those control blocks.) Programs 
that run in 24-bit addressing mode must switch modes to access data above 16 
megabytes. The next topic describes ways of changing the addressing mode. 
"Retrieving Data from a Control Block Above 16 Megabytes" illustrates how 
24-bit mode programs can be changed to reference virtual storage above 16 
megabytes. 

• Have existing user-written programs that use non-standard interfaces to 
invoke system programs (for example, programs that branch enter system 
programs rather than use macros, SVCs, or documented entry points). Some 
system programs must now be entered in 31-bit addressing mode or using a 
BASSM instruction. 

Also, some system programs now expect input addresses to be 31-bit values. 
Modules that run in 24-bit mode must ensure that the addresses they pass to 
programs in 31-bit mode do not contain flags or other data in the high-order 
byte, unless the 31-bit mode program ignores the first byte or sets it to zero. 

See "Modifying Programs that Invoke Modules Above 16 Megabytes" for 
examples of how you can make affected programs work in MVS/XA. 

• Develop application programs, exit routines, or system modifications that 
execute in 31-bit addressing mode. Developing new programs to execute in 
31-bit addressing mode is not described in this publication. See SPL: 31-Bit 
Addressing. 

The following address mode related topics give programmers an introduction to 
how mode setting is performed so they can assess the work required to modify 
existing programs: 

• "Changing Addressing Mode" 
• "Establishing a Program's Addressing Mode" 
• "BSM (Branch and Set Mode) Instruction" 
• "BASSM (Branch and Save and Set Mode) Instruction" 
• "Modifying Programs that Invoke Modules Above 16 Megabytes" 
• "Retrieving Data from a Control Block Above 16 Megabytes" 
• "Performing I/O in 31-bit Addressing Mode" 
• "Using the EXCP Macro" 

See SPL: 31-bit Addressing for more detail. 

Chapter 3. Programming Considerations 3-29 



Changing Addressing Mode 

The only way to change the addressing mode is to change the value of the PSW 
A-mode bit. Following are ways of changing the A-mode bit: 

• New 370-XA instructions: 

BSM (branch and set mode) 
BASSM (branch and save and set mode) 

Both BSM and BASSM can save the current addressing mode, set a new 
addressing mode, and branch to an address. BASSM also saves a return 
address. The instructions allow problem programs in different addressing 
modes to communicate. See "New Instructions" for more detail. 

• Supervisor assisted linkages (XCTL, LINK, and A TT ACH). When a module 
uses XCTL, LINK, or ATTACH to invoke another routine, MVS/XA 
ensures that the called routine receives control in the correct addressing mode. 
(The way programs establish an addressing mode is described in the next 
topic.) Programs issuing XCTL, LINK, or ATTACH macros do not have to 
be aware of the addressing mode of the called routines except to ensure that 
the parameter requirements are met. When the routine called using LINK or 
ATTACH returns, the supervisor restores the addressing mode of the caller. 

• Supervisor calls (SVCs). The supervisor saves and restores the issuer's 
addressing mode and ensures that the service routine receives control in the 
correct mode. 

Programs that reside below 16 megabytes and pass parameters located in 
virtual storage below 16 megabytes can issue SVCs without being aware of 
the service routine's addressing mode or input requirements. However, before 
using SVCs in programs that will execute in 31-bit mode and/or use 
parameters located above 16 megabytes, consult documentation on the SVC 
interface. Some SVCs require that input parameters be located below 16 
megabytes. See "Interfaces to System Services" for more detail. 

• SYNCH macro. A new parameter, AMODE, allows programs to specify the 
addressing mode in which the called routine is to get control. 

• SRB dispatch. When the SRB is dispatched, MVS/XA replaces the PSW 
A-mode bit with the high-order bit of the SRBEP or SRBRMTR field. 

• PC and PT instructions, which establish the identified addressing mode. 

• LPSW instruction. 

3-30 MVSXAConversion Notebook, Volume 1 

o 



( 

Establishing a Program's Addressing Mode 

Every program that executes in MVS/XA is assigned two new attributes, an 
AMODE (addressing mode) and an RMODE (residency mode). (Existing 
programs are assigned default AMODE/RMODE attributes, which are described 
below.) AMODE specifies the addressing mode in which the program is designed 
to receive control. Generally, the program is also designed to execute in that 
mode, although a program can switch modes and can have different AMODE 
attributes for different entry points within a load module. The RMODE indicates 
where in virtual storage the program can reside. 

Valid AMODE and RMODE specifications are: 

AMODE=24 

AMODE=31 

AMODE = ANY 

RMODE=24 

RMODE = ANY 

Specifies 24-bit addressing mode 

Specifies 3 I-bit addressing mode 

Specifies either 24- or 31-bit addressing mode 

Indicates that the module must reside in virtual storage below 16 megabytes. 
You can use the RMODE=24 specification for 31-bit programs that have 
24-bit dependencies. 

Indicates that the module can reside anywhere in virtual storage 

You do not have to specify AMODE and RMODE attributes for a program. 
When none are specified, the system assigns the following defaults: AMODE = 24, 
RMODE = 24. To override the defaults, specify AMODE and/or RMODE on 
one or more of the following: 

• AMODE and RMODE statements within the assembler source code for a 
program. Only Assembler H Version 2 recognizes AMODE and RMODE 
statements. 

XYZ CSECT 
XYZ AMODE xxx 
XYZ RMODE xxx 

• The EXEC statement of a linkage editor step: 

//LKED EXEC PGM=HEWLH096,PARM='AMODE=xxX,RMODE=xxx, 

• The LINK TSO command: 

LINK AMODE(xxx) ,RMODE(xxx) 

Giving this command causes processing equivalent to that of the EXEC 
statement on a linkage editor step. 

• The EXEC statement of a loader step: 

//LOAD EXEC PGM=LOADER,PARM='AMODE=xxx,RMODE=xxx, 

• The LOADGO TSO command: 

LOADGO AMODE(xxx),RMODE(xxx) 

Giving this command causes processing equivalent to that of the EXEC 
statement on a loader step. 

Chapter 3. Programming Considerations 3-31 



• The linkage editor MODE control statement (one per load module): 

MODE AMODE(xxx),RMODE(xxx) 

AMODE/RMODE specifications given in EXEC statements or TSO commands 
override specifications in the program code. AMODE/RMODE specifications in 
the linkage editor MODE control statement override specifications in the linkage 
editor EXEC statement, the TSO LINK command, and the program code. 

MVS/XA uses a program's AMODE attribute to determine whether a program 
invoked using ATTACH, LINK, or XCTL is to receive control in 24- or 31-bit 
addressing mode. MVS/XA uses the RMODE attribute to determine whether a 
program must be loaded into virtual storage below 16 megabytes or can reside 
anywhere in virtual storage (above or below 16 megabytes). 

Assembler H Version 2 establishes flags in the external symbol dictionary (ESD) 
to indicate the specified (or default) AMODE and RMODE of each CSECT. The 
MVS/XA linkage editor retains these flags in the composite external symbol 
dictionary (CESD). The linkage editor also inserts AMODE and RMODE flags 
in the partitioned data set (PDS) directory entry for each load module. The 
linkage editor by default uses the AMODE and RMODE indicators from the 
ESD entries. As noted earlier, the linkage editor also accepts AMODE and 
RMODE specifications in the EXEC statement and in the MODE control 
statement. If either of these is used to specify AMODE or RMODE, they are 
reflected in the PDS directory entry, but do not affect the information in the 
CESD. 

You can use the MVS/XA version of AMBLIST to print the directory entry and 
the CESD to determine a program's AM ODE and RMODE. You can also use 
the LOAD macro to determine the addressing mode in which a module expects to 
receive control. The high order bit of the entry point address that LOAD returns 
indicates the addressing mode. 

Note: Do not confuse AMODE with the current addressing mode. Specifying an 
AMODE attribute guarantees that the module will receive control in the specified 
mode only when invoked using one of the methods defined in this topic. 
Specifying an AMODEdoes not, for example, prevent a program in 24-bit 
addressing mode from issuing a BALR to a program with an AMODE of 31, 
although the program may not execute as expected. Also, there is nothing to 
prevent a programmer from specifying an AMODE of 31 on a program designed 
to execute in 24-bit mode, although doing so is incorrect. 

Linkage Editor Interpretation of AMODE =ANY,RMODE = ANY 

With MVS/370 DFP and MVS/XA DFP Version 1, the linkage editor interprets 
load module entry points with external symbols marked AMODE = ANY and 
RMODE = ANY as AMODE=31, RMODE=ANY. With MVS/XA DFP 
Version 2, the way the linkage editor interprets AM ODE = ANY, 
RMODE = ANY specifications depends upon the characteristics of the load 
module. There are three possibilities: 

1. If the load module contains at least one CSECT marked AMODE = 24, the 
linkage editor interprets AMODE = ANY,RMODE = ANY as AMODE=24, 
RMODE=-24. 

3-32 MVSXA Conversion Notebook, Volume 1 

----- ----- -



( 

2. If the load module contains no CSECTS marked AMODE = 24 and the load 
module RMODE is 24, the linkage editor interprets AMODE = ANY, 
RMODE=ANY as AMODE = ANY, RMODE=24. 

3. If the load contains no CSECTS marked AMODE = 24 and the load module 
is RMODE = ANY, the linkage editor interprets AMODE = ANY, 
RMODE=ANY as AMODE=31, RMODE=ANY. 

You can incorporate this MVSjXA DFP Version 2 linkage editor function into 
the MVS/370 DFP linkage editor by means of APAR OZ83849 (PTF UZ78097). 
You can incorporate this function into the MVSjXA DFP Version 1 linkage 
editor by means of APAR OZ82513 (PTF UZ78096). 

Restrictions on Using a Linkage Editor Overlay Structure 

Changed Instructions 

Programs executing in 31-bit addressing mode cannot use a linkage editor overlay 
structure. 

The following instructions work differently either when executed in 31-bit 
addressing mode or when executed on a 370-XA processor: BAL, BALR, BAS, 
BASR, CLCL, EDMK, LA, LRA, MVCL, and TRT. The following topics 
describe the differences. 

Also remember that when executing in 31-bit addressing mode, 370-XA processors 
treat all virtual addresses as 31-bit values. When executing in 24-bit addressing 
mode, they treat virtual addresses as 24-bit values. 

BAL and BALR (Branch and Link) Instructions 

The way BAL and BALR work depends on the addressing mode. In 24-bit 
addressing mode, BAL and BALR work the same way as they do when executed 
on a 370 processor. BAL and BALR put information from the PSW into the 
high-order byte of the first operand register and put the return address into the 
remaining 3 bytes before branching: 

o 

next sequential instruction address 

ILC - instruction length code 
CC - condition code 
PGM MASK - program mask 

31 

In 31-bit addressing mode, BAL and BALR put the return address into hits 1 
through 31 of the first operand and save the current addressing mode in the 
high-order bit. Because the addressing mode is 31-hit, the high-order bit is always 
al. 

First operand register 

I 1 I next sequential instruction address 

o 1 31 

Chapter 3. Programming Considerations 3-33 



Note that when executed in 3 I-bit addressing mode, BAL and BALR do not save 
the instruction length code, the condition code, or the program mask. A new 
370-XA instruction, IPM (INSERT PROGRAM MASK), saves the program 
mask and the condition code. 

BAS and BASR (Branch and Save) Instructions 

BAS and BASR instructions execute in either System/370 or 370-XA mode. 
They: 

• Save the return address and the current addressing mode in the first operand. 
• Replace the PSW instruction address with the branch address. 

The high-order bit of the return register indicates the addressing mode. 

Note that BAS and BASR perform the same function that BAL and BALR 
perform when BAL and BALR execute in 31-bit addressing mode. 

CLCL, EDMK, MVCL, and TRT Instructions 

When executed in 31-bit addressing mode, the following four instructions load 
31-bit values into return registers and leave bit 0 unchanged. When executed in 
24-bit addressing mode, they load 24-bit addresses and leave bits 0-7 unchanged: 

CLCL (Compare Logical Long) 
EDMK (Edit And Mark) 
MVCL (Move Long) 
TRT (Translate And Test.) 

Most programs using these instructions will run unchanged in 31-bit addressing 
mode. You need to change only programs that depend on bits 1-7 remaining 
unchanged. 

Return Registers in 24-bit Addressing Mode 

I / / / / / /II I 24-bit address I 
o n 

Return Registers in 31-bit Addressing Mode 

31-bit address 

o 31 

LA (Load Address) Instruction 

The LA instruction works differently when executed in 31-bit addressing mode. It 
loads a 31-bit value and clears the high-order bit instead of the entire high-order 
byte. 

3-34 MVSXA Conversion Notebook, Volume 1 

() 



LRA (Load Real Address) Instruction 

New Instructions 

The LRA instruction performs the same functions as in System/370 mode. 
However, it always returns a 31-bit address regardless of the issuing program's 
addressing mode. Also, the meaning of condition code 1 (CC= 1) from an LRA 
instruction might be different. Because some page tables for the user region 
above 16 megabytes are themselves pageable in MVS/XA, a condition code of 1 
can mean either that: 

• The page table does not exist because the virtual space has not been obtained. 
• The page table is paged out or has not yet been built. 

In MVS/XA, neither situation is necessarily an error. Users issuing a page-fix 
before the LRA avoid the first possibility. For them, condition code X'OI' means 
the page table is paged out or not yet built. Users that do not page-fix and 
receive a condition code of I can access the page in question to determine which 
condition exists. Accessing the page causes either an x'OC4' program check or 
segment faUlt/page fault resolution. 

Standard instructions that are new in 370-XA mode include: 

BASSM (BRANCH AND SAVE AND SET MODE) 
BSM (BRANCH AND SET MODE) 
CFC (COMPARE AND FORM CODEWORD) 
DXR (DIVIDE, extended operand) 
IPM (INSERT PROGRAM MASK) 
TRACE 
UPT (UPDATE TREE) 
All I/O instructions 

The following topics describe BSM and BASSM in more detail. For more 
information on the other instructions see Principles of Operation. 

As of Release 2.13VFE, there are 63 vector instructions with 171 operation codes. 
These are documented in Vector Operations. 

BSM (Branch and Set Mode) Instruction 

BSM is a branch instruction that also sets the addressing mode. 

The BSM instruction: 

• Saves the current addressing mode. BSM puts into the high-order bit of the 
first operand the value of the current PSW A-mode bit. The rest of the 
operand is unchanged. 

• Sets a new addressing mode. BSM replaces the PSW A-mode bit with the 
high-order bit of the second operand. 

Chapter 3. Programming Considerations 3-35 



• Replaces the PSW instruction address with the branch address. Note that 
BSM sets the new addressing mode before computing the branch address. 
Thus, a program executing in 24-bit addressing mode can use BSM to branch 
to a program in virtual storage above 16 megabytes. 

Uses for BSM 

Programs called via a BASSM instruction (described in the next topic) can use 
BSM to return to the caller in the caller's addressing mode. 

When the first operand is 0 (for example, BSM 0,14), BSM: 

• Does NOT save the current addressing mode 
• Sets the PSW AMODE bit 
• Executes a branch 

When the second operand is 0 (for example, BSM 14,0), BSM: 

• Saves the current addressing mode 
• Does NOT change the PSW AMODE bit 
• Does NOT execute a branch 

BASSM (Branch and Save and Set Mode) Instruction 

The BASSM instruction works like BSM, except that it saves the return address 
as well as the current addressing mode in the first operand. 

BASSM: 

• Saves the next instruction address in bits 1 through 31 of the first operand. 

• Saves the current addressing mode in the high-order bit of the first operand. 

• Replaces the PSW A-mode bit with the high-order bit of the second operand. 

• Replaces the PSW instruction address with a branch address. Like BSM, 
BASSM sets the new addressing mode before computing the branch address. 
Thus, programs executing in 24-bit addressing mode can use BASSM to call 
programs in virtual storage above 16 megabytes. 

Uses of BASSM 

Programs can use BASSM when branching to modules that might have different 
addressing modes. In addition, a program called via BASSM can return to its 
caller in the caller's addressing mode using either BSM or BASSM, provided the 
called program saves the full contents of the linkage register. 

When the second operand is 0 (for example, BASSM 14,0), BASSM: 

• Saves the current addressing mode 
• Saves the next instruction address 
• Does NOT change the PSW AMODE bit 
• Does NOT execute a branch 

3-36 MVSXA Conversion Notebook, Volume 1 



(-

( -" 

/ 

When the first operand is 0 (for example, BASSM 0,14), BASSM does not 
suppress the saving operation. 

Modifying Programs that Invoke Modules Above 16 Megabytes 

You must change existing user-written programs that branch to MVSjXA system 
programs that must be entered in 31-bit addressing mode or via a BASSM 
instruction. Following are two examples of how you can adapt such programs 
work in MVSjXA. One method requires that you change user-written programs 
to use BASSM and BSM instructions. The other method uses a linkage assist 
routine, which does not require that you change your program. 

To understand the following examples, you need to know: 

• How BASSM and BSM work. Both are described in "New Branch 
Instructions ... 

• That the LOAD macro returns the addressing mode in which the module 
expects to receive control in the high order bit of register O. 

The modified program in the first example uses LOAD to determine not only the 
entry point address of the SYSRTN module, but also its addressing mode. The 
linkage assist routine in the second example uses LOAD to determine the same 
information for XYZNEW. 

Using BASSM and BSM Instructions 

SYSRTN CSECT 
SYSRTN AMODE 31 
SYSRTN RMODE ANY 

BSM 0,14 
END 

/\ 16Mb 
I \ 
I \ 

/ \ 
I \ 

I \ 

/ \ 
EXISTING PROGRAM: I \ 

/ ~ 
AMODE=24 RMODE=24 (by default) I 

USER CSECT / 

LOAD EP=SYSRTN / 
ST O,EPSYSRTN 

L 15,EPSYSRTN 
BALR 14,15 

Figure 3-3. Example of Using BSM and BASSM 

.. 
SYSRTN CSECT 
SYSRTN AMODE 31 
SYSRTN RMODE ANY 

BSM 0,14 
END 

1 6Mb 
.i -

'I' 
MODIFIED PROGRAM: 

AMODE=24 RMODE=24 

USER CSECT 

LOAD EP=SYSRTN 
ST O,EPSYSRTN -

L 15,EPSYSRTN 
BASSM 14,15 

Chapter 3. Programming Considerations 3-37 



Using Linkage-Assist Routines 

Linkage-assist routines, also known as glue modules, are programs that handle the 
mode setting required to pass control between programs in 24- and 31-bit 
addressing mode: 

..310. 

XYZ CSECT 

16Mb 

~ .... 

USER CSECT H 

... r-- LINKAGE 
.i ASSIST ROUTINE 

~ .... 

The linkage assist routine should: 

• Save registers. 

• Ensure that all parameter addresses and linkage registers contain 31-bit 
address values. 

• Obtain a new save area. 

• Branch to the target module using a BASSM instruction. 

• Receive control from the target module after it executes. 

• Free the new save area. 

• Restore registers. 

• Return to the caller. 

SPL: 31-bit Addressing provides guidelines for using linkage assist routines. 
Linkage assist routines are mentioned in this publication for two reasons: 

• You can use linkage-assist routines to make user-written programs work in 
MVS/XA without change. Using a linkage-assist routine is practical when: 

A 24-bit mode program repeatedly calls a program that now executes in 
31-bit mode. 

Several 24-bit mode programs call the same program that now executes in 
31-bit mode. 

3-38 MVSXA Conversion Notebook, Volume 1 

o 



( 

( 
USER ROUTINE: 

• 

If a user-written program invokes a 31-bit mode program only once, other 
methods of mode switching might be preferable to using a linkage-assist 
routine. 

Linkage assist routines invoke system programs that have been moved above 
16 megabytes. This change is transparent to most users. Programmers might, 
however, notice linkage assist routines when tracing control flow during 
problem determination. Some addresses in the CVT now point to 
linkage-assist routines instead of to the target module itself. 

Following is one example of a linkage-assist routine that passes control between a 
24-bit mode user program and a 31-bit mode system program. Using the routine 
requires renaming the target routine and giving the linkage-assist routine the 
original name of the target module. 

TARGET MODULE (formerly named XYZ): 

-
XYZNEW CSECT 
XYZNEW AMODE 31 
XYZNEW RMODE ANY 

BSM 0,14 
END 

16Mb 

• 
"' 

LINKAGE ASSIST ROUTINE: 
(Named XYZ) 

AMODE=24, RMODE=24 (by default> 

USER CSECT XYZ CSECT 
XYZ AMODE 24 
XYZ RMODE 24 

LOAD EP=XYZ 
ST O,EPXYZ (Save registers) 

LOAD EP=XYZNEW 
L 15,EPXYZ ST O,EPXYZNEW 
BALR 14,15 

~ (Prepare for entry 
to target module) 

(Provide new save area) 

L 15,EPXYZNEW 
BASSM 14,15 -

(Restore registers) -RETURN 

Figure 3-4. Example of a Linkage-Assist Routine 

Chapter 3. Programming Considerations 3-39 



Retrieving Data from a Control Block Above 16 Megabytes 

OUXB 

D 

You must change existing user-written programs that access system control blocks 
that have been moved to virtual storage above 16 megabytes. The following 
example is one way you can modify those programs. The example requires that 
you insert mode-setting code before and after the instruction that must be 
executed in 31-bit addressing mode (L 2,0(,15». 

OUXB 

"-1 1 

---------------------.-K 16Mb 
1\ 
I \ 

16Mb 
... 

EXISTING PROGRAM: 

/ \ 
1 \ 
I ~ 
I 

~ 

I~ 

MODIFIED PROGRAM: 

USER CSECT I USER CSECT 

I 
. 1 

L 15,ASCBOUXB 1 
L 2,0(,15) 

LABEL1 
LABEL2 

'---

LABEL3 

L 
L 

BSM 

DC 
OS 

L 
LA 

BSM 
OS 

15,ASCBOUXB 
1,LABEL1 

0,1 

A(LABEL2+ X' 80000000 ') 
OH 

2,0(,15) 
1,LABEL3 

0,1 
OH 

(P ut a 1 into the high-order 
of Register 1 .) bit 

(S 

(R 
(P 

witch to 31-bit addressing mode.) 

etrieve the data from above 16Mb.) 
ut a 0 into the high order 

bit of Register 1 .) 
(S witch to 24-bit addressing mode.) 

Figure 3-5. Retrieving Data from Above 16 Megabytes 

Performing 1/0 in 31-bit Addressing Mode. 

To perform I/O, a program executing in 31-bit addressing mode must either: 

• Use VSAM services, which accept callers in either 24- or 31-bit addressing 
mode. (See "Services with Some Restrictions on Address Parameter Values.") 
Programs using VSAM can access buffers that reside above 16 megabytes. 

• Use the EXCP macro. All parameter lists, control blocks, and EXCP 
appendage routines must reside in virtual storage below 16 megabytes. See 
"Using the EXCP Macro." 

• Use the EXCPVR macro. All parameter lists, control blocks, and appendage 
routines must reside in virtual storage below 16 megabytes. See "Using the 
EXCPVR Macro Instruction." 

• Use an intermediate routine that executes in 24-bit addressing mode as an 
interface to non-VSAM access methods, which accept callers executing in 
24-bit addressing mode only. 

3-40 MVSXA Conversion Notebook, Volume 1 

/ "'. 



(' 

( 

To perform I/O to buffers located in virtual storage above 16 megabytes programs 
must use either: 

• VSAM. Specify on the access method control block (ACB) at OPEN time 
that I/O buffers are to reside above 16 megabytes. 

• The EXCP macro and new virtual IDAW support, which "Using the EXCP 
Macro" describes. 

• The EXCPVR macro. IDAWs can contain real addresses above 16 
megabytes, as described in "Using the EXCPVR Macro Instruction." 

Using the EXCP Macro 

EXCP users can now: 

• 

• 

Back all I/O buffers with real storage above 16 megabytes. To back I/O 
buffers below 16 megabytes with real storage above 16 megabytes, callers 
must specify LOC=(BELOW,ANy) on the GETMAIN request. (See 
"Parameters on the GETMAIN Macro Instruction.") 

Perform I/O to virtual storage areas above 16 megabytes. CCWs in the 
channel program that EXCP initiates can point to a virtual IDAW. The 
virtual IDAW contains the 31-bit virtual address of an I/O buffer, which can 
be anywhere in virtual storage. The EXCP service routine supports only 
Format 0 CCWs, the CCW format used in MVS/370. 

CCW (Format 0) 

IDAW 

Virtual address of 
an I/O buffer 

Any CCW that causes data to be transferred can point to a virtual IDA W. 
Virtual IDA W support is limited to non-VIO data sets. Programmers must 
be aware of this fact when coding the JCL to execute a program that uses 
virtual IDA Ws. 

Although the I/O buffer can be in virtual storage above 16 megabytes, the 
virtual IDA W that contains the pointer to the I/O buffer and all other areas 
related to the I/O operation (CCWs, lOBs, DEBs, DCBs, and appendages) 
must have 24-bit virtual addresses. 

See MVS/Extended Architecture System Programming Library; Data Management 
for information on using the EXCP macro. 

Chapter 3. Programming Considerations 3-41 



Summary of New and Updated Macros 

Figure 3-6 lists macros that were new or that had new or updated options during 
Release 2.1.x. Because updates may also have been made to macros in the list 
during Release 2.2.x, be sure to consult the corresponding chart in the MVS/XA 
Conversion Notebook, Volume 2. When assembling programs that use any of the 
new function, use the MVS/XA MACLIB. With the following exceptions, the 
object code generated will be downward incompatible: 

• The new LOC, VRC, and VRU options on the GETMAIN macro are 
downward compatible, as described in "Parameters on the GETMAIN Macro 
Instruction. " 

• The MVS/XA MACLIB expansions of SYNCH macros that specify 
AMODE = 24 are downward compatible. However, if the AMODE 
parameter is omitted or if it specifies any option other than 24, the MVS/XA 
expansion of SYNCH will not run on an MVS/370 system. See "Downward 
Incompatible SYNCH Macros" in Chapter 9 for more information. 

3-42 MVSXA Conversion Notebook, Volume 1 



Release 

Macro 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

ABEND x A new keyword, REASON, specifies a reason code that supplements 
the completion code for abnormal termination. 

The list form of the SNAP macro to which the DUMPOPT 
parameter points can specify all of the new SNAP dump options. 

BLSABDPL x A new macro that maps the BLSABDPL exit parameter list. Dump 
analysis and formatting exit routines that run under IPCS, PRDMP, 
or SNAP can use BLSABDPL when invoking the new services 
described in "New Services for Dump Processing Exits" in Chapter 5. 

BLSQMDEF x A pair of macros that when used together define the structure of a 
and control block. BLSQMDEF marks the beginning of the control 
BLSQMFLD block and defines the header. Several BLSQMFLD macros follow, 

each of which defines a single field in the control block. A second 
BLSQMDEF macro denotes the end of the control block. 

The definition is called a control block model. Dump analysis and 
formatting routines can use the models instead of format patterns for 
formatting control blocks. See "Format Model Processor Service" in 
Chapter 5 for more information. 

BLSRESSY x A new macro that maps one IPCS symbol table record. Dump 
analysis and formatting routines that run under IPCS and use either 
the new GET or EQUATE service can use BLSRESSY to describe 
the record to be retrieved or stored in the symbol table. See "New 
Services for Dump Processing Exits" in Chapter 5 for more 
information about the GET and EQUATE services. 

CALLDISP x x As long as there is an enabled unlocked task (EUT) FRR in effect, 
you can use CALLDISP while the LOCAL or CML lock is held. See 
the discussion of CALLDISP in System Macros and Facilities. 

CALLRTM x A new keyword, REASON, specifies a reason code that supplements 
the completion code for abnormal termination. 

The list form of the SNAP macro to which the DUMPOPT 
parameter points can specify all of the new SNAP dump options. 

( 
CHANGKEY x Changed to support 3 I-bit addresses. Addresses given as parameters 

must be 3 I-bit addresses regardless of the addressing mode of the 
CHANGKEY macro user. 

CHKPT x New keywords: 

- IDADDR specifies the address of a checkpoint ID 
- IDLNG specifies the length of the checkpoint ID field 
- DDNADDR specifies the address of a DDNAME 

You can use IDADDR and IDLNG instead of the ID and LNG 
parameters. 

CIRB x A new parameter, AMODE, specifies the addressing mode in which 
the specified asynchronous exit routine is to get control. If the 
AMODE parameter is not specified, the exit routine gets control in 
the issuer's addressing mode. 

CPOOL x A new macro that: 

- Creates a cell pool as described by the requestor 
- Obtains or returns a cell to a previously constructed cell pool 
- Deletes a previously constructed cell pool 

Requestors require authorization only when the storage to be 
obtained is in an authorized GETMAIN subpool. 

CPUTIMER x A new macro that obtains the current CPU (processor) timer clock 
value. CPUTIMER allows users to determine the amount of time 
remaining in a time interval established by an SRBTIMER or 
STIMER macro. CPUTIMER uses a PC instruction instead of an 
SVC. Therefore, it is faster than using TTIMER. Also, users can 
issue CPUTIMER in task or SRB mode. Issuers of TTIMER must 
be in task mode. 

Figure 3-6 (Part 1 of 5). Summary of New and Updated Macros 

Chapter 3. Programming Considerations 3-43 



Release 

Macro 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

DATOFF x A new macro that provides linkage to DAT-offroutines. See 
"DAT-off Restrictions." 

c 
ENQ x Users might receive a new return or abend code. In Release 2.1.1, 

global resource serialization limits the number of ENQ, RESERVE, 
and certain GQSCAN requests a single job, started task, or TSO user 
can have outstanding at a given time. If an address space reaches the 
limit, the system terminates unconditional ENQ requests with abend 
code x'538' and rejects conditional requests with a return code of 
x'014'. See "Limiting Concurrent Global Resource Serialization 
Requests" for more detail. 

x ENQ has two new keywords, MASID and MTCB, which are 
designed for internal use. They are mentioned here only because you 
might see them in dumps or source code. 

MASID and MTCB specify the ASID and TCB address of a task, 
respectively. They are useful in situations where one task is 
performing work for another and might require resources that task 
owns. If an ENQ specifying MASID and MTCB fails because 
another task owns the resource, the task issuing the ENQ can 
determine whether the identified task is the owner. New return codes 
provide that information. If the specified task owns the resource, the 
issuing task can choose to use the resource anyway. Both tasks, 
however, must have previously established an alternate method of 
serialization. 

ESPIE x A new macro that provides services similar to the SPIE macro for 
callers in either 24- or 3 I-bit addressing mode. SPIE users must be in 
24-bit addressing mode. 

EXCP x Changed to support the use of real and virtual storage above 16 Mb. 
See the section, "Using the EXCP Macro," in this Chapter. 

EXCPVR x Changed to support 3 I-bit addressing and the use of real storage 
above 16Mb. See "Using the EXCPVR Macro Instruction" in this 
Chapter. 

GETMAIN x Three new parameters: VRC, VRU, and LOC. See "Parameters on 
the GETMAIN Macro Instruction." 

GQSCAN x Users might receive a new return code. In Release 2.1.1, global 
resource serialization limits the number of ENQ, RESERVE, and 
certain GQSCAN requests a single job, started task, or TSO user can 
have outstanding at a given time. If an address space reaches the 
limit, global resource serialization rejects subsequent GQSCAN 
requests that specify the TOKEN option and request more 
information than can fit into the caller's buffers. The issuer receives 
a return code of x'14.' Global resource serialization returns the 
buffers of information, but does not continue the scan. For more 
information, see "Limiting Concurrent Global Resource Serialization 
Requests." 

x Beginning with Release 2.1.2 you can specify generic (partial) rnaroes 
and qnaroes on the RESNAME keyword. GQSCAN attempts to 
obtain information about any resource that matches the specified 
part. 

The keywords and parameters that provide the new support are 
GENERIC, SPECIFIC, rname length, and qname length. 
GENERIC indicates that the qname and rnaroe on GQSCAN are 
generic names. The qname and rname lengths specify the number of 
characters in the qnaroe or rname that must match the qnaroe and 
rname specified on GQSCAN. SPECIFIC indicates that the 
complete qname and rnaroe must match. It is the default. 

GTRACE x A new parameter, TEST, determines whether data gathering and 
tracing are to be done. See "Using GTF to Trace User Events." 
SPL: Service Aids describes GTRACE. 

Figure 3-6 (Part 2 of 5). Summary of New and Updated Macros 

3-44 MVSXA Conversion Notebook, Volume 1 



Release 

Macro 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

IOSINFO x A new macro that obtains the subchannel number for a specified unit 
control block (UCB). The macro returns the subsystem identification 
word (SID) which identifies the subchannel number of the UCB in a 
user-specified location. 

IOSLOOK x A new macro that replaces other methods of locating UCBs. See 
"IOSGEN UCBLOOK Macro Instruction" in this Chapter. 

LOAD x New keywords: 

- EOM = NOIYES specifies whether a module in global storage is 
to be deleted at address space termination (YES) or end-of-task 
time (NO). The default is NO. Previously, the system deleted the 
modules at end-of-task time. 

- LOADPT requests that the virtual address of the first byte of the 
load module be returned at the location indicated on the 
LOADPT keyword. 

The high-order bit of the entry point address that LOAD returns 
indicates the addressing mode in which the routine expects to receive 
control. 

MGCR x Beginning with Release 2.1.2, you can use MGCR to issue internal 
REPLY commands, as well as internal START commands. This new 
function enables you to write WTOjWTOR exits that respond to 
particular WTOR macros. SPL: User Exits shows an example of 
such an exit. (WTOjWTOR exits are also new in Release 2.1.2. See 
"New WTOjWTOR User Exits" for more information.) 

NUCLKUP x A new macro that retrieves either: (a) the address and addressing 
mode ofa CSECT or entry point in the DAT-on nucleus, or (b) the 
name and address of a CSECT that resides at a given address in the 
DAT-on nucleus. 

PGSER x A new macro that performs the same services as PGANY, PGFIX, 
PGFIXA, PGFREE, PGFREEA, PGLOAD, PGOUT, and 
PGRLSE. PGSER can use 31-bit addresses, the other services listed 
cannot. 

PTRACE x A new macro that creates system trace table entries. 

RACROUTE x A new macro that requests the RACF services that FRACHECK, 
RACDEF, RACLIST, RACHECK, and RACINIT invoke. The 
REQUEST parameter on RACROUTE indicates which service is to 
be performed. 

Any of the parameters that are valid on the other RACF macros are 
also valid on RACROUTE. Thus, using RACROUTE is very similar 
to using the other macros. Note one difference, however. 
RACROUTE requires a 512-byte work area, while the other RACF 
macros do not. 

RESERVE x Users might receive a new return or abend code. In Release 2.1.1, 
global resource serialization limits the number of ENQ, RESERVE, 
and certain GQSCAN requests a single job, started task, or TSO user 
can have outstanding at a given time. If an address space reaches the 
limit, the system terminates unconditional RESERVE requests with 
abend code x'538', and rejects conditional requests with a return code 
of x'OI4'. See "Limiting Concurrent Global Resource Serialization 
Requests" for more detail. 

x Release 2.1.2 adds two new keywords, MASID and MTCB. See the 
ENQ entry for more information. 

RETURN x Release 2.1.1 changes the flag that the T parameter requests the 
system to set. The new flag is the low-order bit of the fourth word in 
the called program's save area. The system sets that bit to one after 
the called program has returned to its caller. In previous releases, the 
same flag is the high order byte of the fourth word in the save area. 

Figure 3-6 (Part 3 of 5). Summary of New and Updated Macros 

Chapter 3. Programming Considerations 3-45 



Release 

Macro :U.O 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

SDUMP x New parameters: o 
- ALLNUC, a new option on the SDATA keyword, requests that 

the DAT-off nucleus and the entire DAT-on nucleus be dumped. 

- SUBPLST and KEYLIST specify the subpool and key of storage 
to be dumped. 

- TYPE = NOLOCAL indicates that SDUMP is not to obtain a ." 
local lock. 

Changed parameters: 

- NUC requests that the DAT-on,non-page-protected section of 
the nucleus be dumped. In MVS/370, NUC causes the entire 
nucleus to be dumped. The ALLNUC option requests the entire 
MVS/XA nucleus. 

- TRT requests trace data from the active.trace facilities, as in 
MVS/370. However, in MVS/XA, if the caller is unauthorized, 
the dump includes system trace data for the caller's address space 
only. MVS/XA dumps for authorized requestors and all 
MVS/370 dumps include the entire system trace table. 
Also, unlike MVS/370, MVS/XA dumps can include both system 
trace and GTF data, because both trace facilities can be active at 
the same time. 

If SDUMP specifies any new parameters, the macro must be 
assembled using the MVS/XA macro expansion. If it is not, the 
system ignores the new parameters and flags the others as errors. 

x As of Release 2.1.1 SDUMP dumps 4 K of storage before and 4 K 
after the addresses in the PSWs and registers stored in the IHSA, 
SDWA, and PSA. Earlier releases dump only 2 K of storage before 
and 2 K after those addresses. 

SETLOCK x New parameters support the new lock types. 
Programs that issue SETLOCK RELEASE,TYPE= (reg)IALL must 
use the MVS/XA expansion of SETLOCK in some situations. See 
"SETLOCK RELEASE,TYPE = (reg)IALL Macro Instruction." 

SETRP x A new keyword, REASON, specifies a reason code that supplements 
the completion code for abnormal termination. 
The list form of the SNAP macro to which DUMPOPT points can 
specify all of the new SNAP dump options. 

SMFIOCNT x A new macro that supplies to SMF either the EXCP count, the 
device connect time, or both. 

SNAP x New parameters: 

- SUM, a new option on the SDATA keyword, requests a new 
summary dump. See "User Summary Dumps" in Chapter 6. 

- SUBPLST requests individual subpools. When SNAP specifies 
the SUBPLST option, the length of the list and standard forms of 
the macro expansion increase. The object code generated is 
downward incompatible. 

- ALLVNUC, a new option on the SDATA keyword, requests that 
the entire DAT-on nucleus be dumped. In SYSMDUMPs, 
ALLVNUC causes the entire nucleus to be dumped. 

- SUBTASKS, a new option on the PDATA keyword, requests that 
program data for all subtasks of a designated task be dumped. 

Changed parameters: 

- NUC requests that the DAT-on, non-page-protected section of 
the nucleus be dumped. SYSABEND dumps also include the 
PSA and CVT. In MVS/370, NUC causes the entire nucleus to 
be dumped. 

- TRT requests trace data from the active trace facilities, as in 
MVS/370. In MVS/XA, the dump can include system trace data 
and GTF data. In MVS/370, system trace and GTF cannot be 
active at the same time. Therefore, MVS/370 dumps never 
include both system trace and GTF data. 

- SDATA=ALL requests all of the SDATAoptions except 
ALLVNUC. In MVS/370, it includes all SDATA options. 

Figure 3-6 (Part 4 of 5). Summary of New and Updated Macros () 
3-46 MVSXA Conversion Notebook, Volume 1 



Release 

( 
Macro 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 

VFE AE 

SPLEVEL x A new macro that controls which expansion of a macro the assembler 
generates. The MVSfXA MACLIB contains both MVS/XA and 
MVS/370 expansions of macros whose MVS/XA expansions do not 
work in MVS/370. See "Handling Downward Incompatible Macros" 
in Chapter 9. 

STIMERM x A new macro that sets a timer for a real time interval, as does the 
existing STIMER macro. STIMERM is different from STIMER, 
however, in that: 

- Each task can have up to 16 STIMERM intervals in effect at the 
same time. Only one STIMER interval is allowed. 

- STIMERM sets only real time intervals; STIMER sets both task 
and real time intervals. 

- STIMERM can also test how much time remains in the interval 
and cancel the interval. TTIMER provides those functions for 
STIMER intervals. 

- STIMERM can pass a 4-byte parameter to the exit routine that 
receives control when the interval expires. STIMER cannot. 

STIMERM is provided so that a task can easily have a task 
interval and one or more real time intervals in effect at the same 
time. A task can, for example, set an STIMER interval to 
measure task time and an STIMERM interval to simultaneously 
measure real time. 

SVCUPDTE x A new macro that allows authorized programs to dynamically update 
the SVC table. In MVS/370, defining an SVC after SYSGEN 
requires an IPL of the system. 

SYNCH x A new parameter, AMODE, indicates the addressing mode in which 
the specified program is to get control. If the AMODE parameter is 
not specified, the program gets control in the issuer's addressing 
mode. 

Unless SYNCH specifies the AMODE=24 parameter, programs that 
use SYNCH and are assembled using the MVS/XA MACLIB will 
not run on MVS/370 systems. See "Downward Incompatible 
SYNCH Macros" in Chapter 9 for more information. 

VSMLIST x A new macro that returns information about virtual storage 
allocation within an address space. 

VSMLOC x A new macro that verifies a given virtual storage area has been 
allocated to satisfy a GETMAIN request. 

VSMREGN x A new macro that returns the starting addresses and sizes of the 
private area regions associated with a given TCB in the current 
address space. 

WTL x A new keyword, OPTION = PREFIX or OPTION = NOPREFIX, 
indicates whether the WTL text contains a prefix to identify the log 
record. If the text already contains a prefix, specify the PREFIX 
option. If you specify NOPREFIX or omit the OPTION keyword 
altogether, the system inserts a two-character prefix. ('X' is the 
default prefix.) 

WTO x You can specify routing code 11 (programmer information) on 
multiline WTO messages, an option earlier releases do not allow. If, 
because of that restriction, you have programs that issue a series of 
single line WTOs with the same message ID, you can improve 
performance by combining the messages into one multiline message. 

You can also use the HRDCOPY option when writing multiline 
WTOs. In earlier releases you cannot write multiline messages to 
hardcopy only. 

x A new CMD option on the MCSFLAG keyword enables you to 
record system commands in the system log. MCSFLAG=CMD 
indicates that the text is a system command and requests that it be 
entered in the system log. 

WTOR x Release 2.1.2 adds the CMD option on the MCSFLAG keyword. 
See the WTO entry. 

( . 
" 

Figure 3-6 (Part 5 of 5). Summary of New and Updated Macros 

Chapter 3. Programming Considerations 3-47 



Parameters on the GETMAIN Macro Instruction 

VRC and VRU Parameters 

LOC Parameter 

MVS/XA provides three parameters on GETMAIN: VRC, VRU, and LOC. 

VRC (variable request conditional) and VRU (variable request unconditional) are 
two new forms of GETMAIN. Both issue SVC 120. 

GETMAIN VRC,LV=(maximum length,minimum length) 
GETMAIN VRU,LV=(maximum length,minimum length) 

VRC and VRU request a single area of virtual storage having a length between 
the maximum and minimum lengths specified. MVS/XA returns the address of 
the allocated virtual storage in Register 1 and the length of the storage in Register 
O. 

Callers in 24- or 31-bit addressing mode can use VRC or VRU. However, 
MVS/XA treats all parameter lengths and addresses as 3 I-bit values. 

VRU and VRC are exceptions to the general ru1e that programs using new 
MVS/XA function are not downward compatible. Both generate object code that 
runs on MVS/370 systems. MVS/370 treats VRC and VRU parameters as RC 
and RU, respectively, and obtains the maximum length of storage specified on the 
LV operand. MVS/370, of course, also uses 24-bit parameter values. 

The LOC parameter has two subparameters for specifying whether virtual storage 
is to be obtained above or below 16 megabytes and how it is to be backed if fixed 
(below 16 megabytes or anywhere). (RSM always allocates real storage anywhere 
until the storage is fixed.) Possible LOC specifications are: 

LOC = (BELOW) VSM must allocate virtual storage below 16 megabytes. 

LOC = (ANY) VSM can allocate virtual storage anywhere. 

LOC = (RES) VSM allocates storage according to the requestor's residence. If the requestor 
resides in virtual storage below 16 megabytes, VSM allocates storage below 16 
megabytes. If the requestor resides above 16 megabytes, VSM allocates storage 
anywhere. 

LOC=(parml,ANY) RSM attempts to back the page with real storage above 16 megabytes. If 
unsuccessful, RSM backs the page with real storage below 16 megabyrtes. 
Note that, regardless of the LOC specification, RSM backs virtual storage with 
real storage anywhere until the storage is fixed (either by defmition or by a 
PGFIX or PGSER macro). 

The first subparameter (parmi) can be BELOW, ANY, or RES. 

LOC is especially useful in programs with 24-bit dependencies. Programs that 
reside above 16 megabytes must specify LOC=(BELOW) on requests for storage 
that has 24-bit dependencies. 

You can specify LOC only on the RU, RC, VRU, and VRC forms of GETMAIN 
(SVC 120). VSM satisfies all other forms with virtual storage below 16 
megabytes, which RSM backs with real storage below 16 megabytes. 

3-48 MVSXA Conversion Notebook, Volume 1 

o 

,/ '\ 



( 

(/ 

Like VRU and VRC, LOC is downward compatible. Regardless of the LOC 
specification, however, MVS/370 always obtains storage below 16 megabytes. 

SDUMP Macro Instruction 

If you use any new SDUMP keywords, be aware that SDUMP generates a longer 
parameter list. In addition, once the longer list is assembled in a module, the 
assembler generates the long form of all subsequent SDUMP parameter lists in 
the module, regardless of which keywords the SDUMP macros specify. The long 
list is similar to the short list, except that it has additional bytes appended to the 
end. 

If you do not want the long form to be generated on subsequent macros, use the 
SPLEVEL macro to request the MVS/370 expansion. See "Handling Downward 
Incompatible Macros" in Chapter 9. 

SETLOCK RELEASE, TYPE = (reg) I ALL Macro Instruction 

If any new locks are held when the SETLOCK RELEASE, TYPE = ALL macro is 
issued, you must use the MVS/XA expansion. The MVS/370 expansion does not 
recognize the new locks and, therefore, does not release them. Likewise, if the 
SETLOCK RELEASE,TYPE=(reg) macro is issued and the bit string in the 
register specifies a new lock, you must use the MVSjXA expansion. If you use 
the MVS/370 expansion, the system does not release the new locks. You can use 
an SPLEVEL macro to request either expansion. See "Handling Downward 
Incompatible Macros" in Chapter 9. 

Using GTF to Trace User Events 

MVS/XA provides an alternate way of using GTF to trace USR events. Using 
the new method: 

• Applications no longer need to supply and support an external interface that 
requests tracing. Starting GTF with the appropriate USRP options specified 
is sufficient to allow applications to trace their own USR events. (The USRP 
option is new in MVS/XA. See the TRACE entry in Figure 4-3 in Chapter 
4.) 

In MVS/370, applications have to provide their own interface for requesting 
USR event tracing. One example of an interface is the DIAGNS = TRACE 
subparameter of the DCB parameter on a DD statement, which requests 
module flow tracing through OPEN, CLOSE, and EOV. Also, any program 
can support and request tracing of their own USR events by specifying a trace 
keyword in the PARM field of the EXEC statement. 

• Applications can use the new TEST keyword on the GTRACE macro to 
determine whether or not GTF tracing is active for their USR events. 
Depending on the return code from GTRACE, applications can either gather 
the trace data and have it written or bypass tracing. 

Chapter 3. Programming Considerations 3-49 



Unit Verification 

In MVSj370, applications have to make two tests before issuing GTRACE, 
one to determine if the application has requested tracing, and another to 
determine if GTF is active for USR tracing. 

The MVSj370 method of establishing tracing capability continues to work in 
MVSjXA. GTRACE TEST offers an alternate method for MVSjXA users. 

The way that applications build the data records to be traced and issue the 
GTRACE macro to write them to the SYSl.TRACE data set has not changed. 

See SPL: Service Aids for more information on using GTRACE. 

Three modules in MVSjXA provide unit verification: 

1. IEFAB4UV for authorized (key 0 - 7) 24-bit callers 
2. IEFGB4UV for authorized (key 0 - 7) 31·bit callers 
3. IEFEB4UV for all unauthorized (key 8-15 and task mode) callers 

The MVSj370 device allocation tables (DEVNAMET, IEFDEVPT, and 
DEVMASKT) and module IEFSCAN have been deleted. You must change 
programs that call IEFSCAN or that directly access the device allocation tables to 
use any of the three MVSjXA modules that provide unit verification. 

IEFAB4UV and IEFGB4UV 

Beginning with Release 2.1.1, module IEFGB4UV contains the unit verification 
function and resides above the 16 megabyte address. IEFAB4UV is a 
linkage-assist routine that enables programs executing in 24-bit mode to access 
IEFGB4UV. 

The MVSjXA version of IEFGB4UV provides all of the services that the 
MVSj370 version of IEFAB4UV provides, all of the IEFSCAN services, and 
some new functions. Specifically, IEFGB4UV can: 

1. Check whether the device numbers supplied as input are all associated with 
the same group. 

2. Check whether the device numbers supplied as input are associated with the 
unit name specified in the eligible device table (EDT). 

3. Return the unit name associated with an input value such as a device type. 
The unit name is the EBCDIC representation of the IBM generic device name 
(for example, 2305) or the user-defined esoteric name (for example, TAPE). 

4. Return the UCB addresses associated with a specified unit name. 

5. Return group identification for each input UCB. 

6. Indicate whether a specified unit name is an internal representation of the unit 
name (that is, whether the unit name is an index into the EDT). This service 
is used with 2 and 4. 

3-50 MVSXA Conversion Notebook, Volume 1 

c 



(' 

IEFEB4UV 

7. 

8. 

9. 

Return the internal representation of a specified unit name, which can then be 
used as an indt'x into the EDT. 

Convert a four-byte UCB device type to an internal representation of a unit 
name, which can then be used as an index into the EDT. 

Return general information about a specified unit name, including: 

• Whether the unit name is esoteric, VIO eligible, contains 3330V units, or 
contains teleprocessing class devices 

• The number of device classes in the unit name 

• The number of generic device types in the unit name 

10. Indicate that the parameter list should not be altered, thereby allowing the 
parameter list to be in storage that is not protected by key 1. This service is 
used with 2. 

IEFEB4UV performs the functions described in 3, 4,6, 7, 8, and 9 of the 
IEFGB4UV description for programs in user key and task mode. 

See SPL: System Modifications for information on using IEFAB4UV or 
IEFEB4UV. 

Programs Using the Vector Facility Enhancement (VFE) 

Programs compiled by the Vector FORTRAN compiler or assembled by 
Assembler H Version 2.1 can make use of the IBM 3090 Vector Facility. The 
following restrictions apply to programs issuing a vector instruction: 

• They must be running in task mode. 
• They must run with the processor unlocked and enabled for I/O and external 

interrupts. 

Even if these restrictions are satisfied, the program issuing vector instructions may 
abnormally terminate if: 

• No processor with the Vector Facility has ever been online during an IPL. 

• None of the online processors with the Vector Facility installed meets the 
processor affinity requirements of the task specified in the program properties 
table (PPT). For this reason, installations with processor complexes that 
include the Vector Facility should not specify processor affinity for programs 
in the PPT. 

• The required resource environment cannot be created. (For example, it is not 
possible to issue a GETMAIN macro and acquire enough storage for the 
necessary vector save areas.) 

Chapter 3. Programming Considerations 3-51 



IMS Applications and the Extended Recovery Facility (XRF) 

When you install XRF, there is no need to rewrite IMS user-application programs 
if they conform to IMS standards. You must be sure, however, that all required 
data is duplicated on the active and alternate systems and that the required data 
bases and log files reside on DASD shared by both systems. XRF Planning has a 
detailed description of what to do when installing XRF. 

3-52 MVSXA Conversion Notebook, Volume 1 

c 



( 

Chapter 4. Operating Considerations 

This chapter contains information that pertains to operators and operational 
procedures. System programmers might also be interested in some of the 
command changes it describes (for example, SLIP, DISPLAY DUMP, and 
DUMP). The topics included in this chapter are: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

"Loading 370-XA Microcode" on page 4-3 
"SYSCTL (SCP Manual CNTL) Console Frame" on page 4-3 
"Storing Status Before Taking a Stand-Alone Dump" on page 4-4 
"Using Labeled Tapes for Stand-Alone Dumps" on page 4-5 
"JCL Changes to Jobs that Allocate SYSl.DUMP Data Sets" on page 4-5 
"Processing Hot I/O Interrupts" on page 4-5 
"Processor Complexes with the Extended Recovery Facility (XRF)" on 
page 4-2 
"Extended Color Support on 3279 Multiple Console Support (MCS) 
Consoles" on page 4-6 
"Controlling Message Traffic on Operator Consoles" on page 4-7 
"Response to Message IOS20lE" on page 4-8 
"Summary of New, Updated, or Deleted Commands" on page 4-10 

Note: Throughout this chapter you will see references to the "Operator's Guide for 
your type of processor complex." The full title of the Operator's Guide depends 
upon the type of processor you have. The complete titles are listed below: 

• For the 308x processor complexes: 

IBM 3081 Operator's Guide for the System Console (GC38-0034) 
IBM 3083 Operator's Guide for the System Console (GC38-0036) 
IBM 3084 Operator's Guide for the System Console (GC38-0037) 

• For the IBM 3090 processor complex: 

IBM 3090 Processor Complex Operator Controls for the System Console 
(SC38-0040) 

IBM 3090 Model 200 Processor Complex Operator Tasksfor the System 
Console (SC38-0041) 

IBM 3090 Model 150 and 180 Processor Complex Operator Tasksfor the 
System Console (SC38-0049) 

IBM 3090 Model 400 Processor Complex Operator Tasks for the System 
Console (SC38-0050) 

Chapter 4. Operating Considerations 4-1 



• For the 4381 processor complex: 

- IBM4381 Processor Operations Manual (GA24-3949) 

Processor Complexes with the Extended Recovery Facility (XRF) 

Operator awareness is the key to successful management of a processor complex 
using XRF. These installations function with an active environment (including a 
processor, Release 2.1.3AE or Release 2.1.7, VTAM, and IMS) that processes 
IMS transactions. If the active fails, a duplicate, alternate, environment takes 
over. During a takeover, MVS/XA (through the availability manager 
component), and IMS send messages to the system operator concerning the 
progress of the takeover. The MVS/XA, IMS, and network operators perform 
some tasks and must be ready to communicate with one another. 

Aside from planned takeovers initiated by the operator, XRF takeovers occur in 
response to IMS abends, or failures in MVS/XA, XRF processors, VT AM, or the 
IMS resource lock manager (IRLM). However, other events might also cause 
XRF takeovers and require operator actions. An XRF takeover might occur: 

1. When the operator stops or suspends a processor 

Any actions that stop or suspend a processor can cause an XRF takeover. If 
the takeover is not desired, the IMS master terminal operator (MTO) should 
first suspend surveillance. 

Operator actions that stop a processor include: 

• Issuing a SWITCH SYSTEM command 
• Issuing a STOP to a processor 
• Taking an SVC dump of the address space of the active IMS subsystem 
• Setting a SLIP trap that causes suspension of the system 

2. When the system stops or suspends a processor 

System-initiated suspensions can cause an XRF takeover even if the resulting 
system-initiated recovery is successful. The operator does not control these 
occurrences but will need to take some action such as re-starting the former 
active as the new alternate IMS system. 

Examples of system-initiated suspensions are: 

• Restartable WAITs (or disabled console interactions) 
• System-initiated SVC dump of the IMS subsystem address space 
• Processor or operating system recovery actions that take longer than the 

installation-specified threshold 

4-2 MVSXA Conversion Notebook, Volume 1 

c 



(--

( 

(~/ 

XRF Planning gives an overview of installing and operating the XRF system. 
This book also provides references to books with specific instructions for using 
the components of XRF. The components include: 

• Release 2.1.3AE or Release 2.1.7 
• IMSjVS Version 2 
• ACF/VTAM Version 3 
• MVSjXA DFP Version 2 
• ACF/NCP Version 4 

Jobs Waiting for the Vector Facility 

When jobs issue a vector instruction and a processor with the Vector Facility is 
not available, the system swaps them out and sends an informational message 
(IRA 7001) to the operator console. You can find out if a job is in such a "vector 
wait" by giving the DISPLAY system activity, ALL command (DISPLAY A, A). 
The AFF field contains *VF* if the job is waiting for a processor with the Vector 
Facility. 

Loading 370-XA Microcode 

Before you can run MVSjXA you must load the 370-XA microcode. The 
procedure for doing this depends upon which processor complex you have. Refer 
to the Operator's Guide for your type of processor complex to find appropriate 
370-XA load procedures. 

SYSCTL (SCP Manual CNTL) Console Frame 

A SYSCTL console frame comes with 370-XA processors. The SYSCTL frame is 
very similar to the SC frame available on 3036 consoles attached to 3033 
processors. The frame allows the operator to request some of the functions 
offered on the existing OPRCTL (operator control) frame, as well as some 
additional functions. 

Depending upon the type of 370-XA processor you have, your processor supports 
some or all of the SYSCTL console frame functions described below. Consult the 
Operator's Guide for your type of processor complex to find out exactly which 
ones are supported on your processor complex. The SYSCTL frame allows the 
operator to: 

• Specify an alternate nucleus. Operators should use the SYSCTL frame 
instead of previous methods for specifying an alternate nucleus. Previous 
methods include: 

Using the OPRCTL frame or the SC frame. 

Storing an alternate nucleus identifier in absolute location 8 after the 
hardware IPL completes and while the processor is in instruction step 
mode. VM users must still use this method. 

Specifying 'ALT=xx' when asked to specify system parameters at IPL 
time. MVS/XA does not support the ALT parameter. 

Chapter 4. Operating Considerations 4-3 



• Specify the device number from which to IPL the operating system. 

• Specify the device number from which to IPL the stand-alone dump program. 
Having the stand-alone dump IPL option separate from the operating system 
IPL option prevents the operator from inadvertently loading the wrong 
program. In addition, issuing the stand-alone dump IPL command from an 
SYSCTL frame causes the hardware to automatically store status if the 
auto-store-status indicator is on. 

• Specify how MVS/XA is to perform restart processing. The operator can 
request that MVSjXA: 

Option 0 - Display information about the work in progress. The operator can then choose to 
either terminate the interrupted work and invoke the necessary recovery routines, or 
return to the point of interruption. 

Option 1 - Attempt to diagnose and repair the problem. In response, the system takes several 
corrective actions. 

With an OPRCTL frame, the operator does not have an option. MVS 
performs restart processing as described in option 0 for the SYSCTL frame. 

When performing restart processing, operators should use the SYSCTL frame. 
If the system is in a restartable wait state, operators should either: 

Select option 0 on the SYSCTL frame. Operators must not select any 
other option. 

Use the restart button. Using the restart button is a valid option only if 
the operator knows which processor is the target of the restart. The 
current frame might not identify the target processor, in which case the 
hardware uses a previously-established target. 

Use a bottom line command. The bottom line command allows the user 
to specify a target processor and can be used with any frame. 

Use the OPRCTL frame. 

• Request instruction recording. The operator can have the hardware record 
instruction addresses on a disk in the service processor. The operator can 
obtain a hard copy using stand-alone dump or SVC dump formatted by print 
dump. Previously, when a program was looping, the operator had to record 
by hand the instruction counter addresses before taking a dump. 

• Allow instruction stepping on both processors. 

Storing Status Before Taking a Stand-Alone Dump 

For the first IPL of stand-alone dump after an MVSjXA IPL, if the operator 
initiates the IPL from a hardware display frame, the hardware automatically 
stores status. The operator is not required to store status manually. 

4-4 MVSXA Conversion Notebook, Volume 1 

c 

C" :~l __ ; 



Using Labeled Tapes for Stand-Alone Dumps 

Stand-alone dump (SADMP) can use labeled tapes that are not 
password-protected. If the operator mounts such a tape, SADMP displays the 
VOLSER and asks the operator if the tape is to be used. Note, however, that 
SADMP writes over the label. If used again as a labeled tape, the tape has to be 
re-labeled. 

In MVS/370, SADMP rejects all labeled tapes. 

JCL Changes to Jobs that Allocate SYS1.DUMP Data Sets 

Jobs that allocate SYS1.DUMPnn data sets (for example, AMDPRDMP or 
IEBGENER to unload dump data sets) must specify DISP=SHR on the JCL. 
You must change DISP = OLD to DISP = SHR on any DD statements that 
allocate SYS1.DUMPnn data sets. 

MVS/XA now allocates dump data sets to the DUMPSRV address space to 
improve integrity. The data sets are allocated with DISP = SHR and DUMPSRV 
does not free them after taking a dump. Thus, jobs that request SYS1.DUMPnn 
data sets with DISP = OLD cannot access them. 

Processing Hot 1/0 Interrupts 

Hot I/O interrupt processing is changed. (Hot I/O interrupts are consecutive, 
unsolicited interrupts on a subchannel. They are caused by hardware 
malfunctions.) In MVS/XA: 

• lOS uses a single criterion for detecting hot I/O conditions. Because of the 
new I/O architecture, no other thresholds are necessary. In MVS/370, lOS 
uses separate thresholds to detect excessive time-outs and hot I/O conditions 
on channels, devices, and control units. 

• Installations can specify hot I/O recovery actions that lOS performs 
automatically. Unlike MVS/370, recovery does not have to involve the 
operator. 

You can specify recovery actions for the following device categories: 

• Reserved DASD 
• Non-reserved DASD 
• All other devices 

Valid recovery actions are: 

• Asking the operator to direct recovery (as in MVS/370). 

• Boxing the hot device (forcing the device offline in such a way that future I/O 
.. requests for the device are returned to the I/O driver as permanent errors). 

• Performing channel path recovery. 

• Forcing the channel path offline. 

Chapter 4. Operating Considerations 4-5 



The following figure shows the IBM-supplied recovery actions: 

Device Non-recursive Recursive 
Category Condition Condition 

RESERVED DASD Request direction from the Request direction from the operator 
operator 

NON-RESERVED DASD Perform channel path Request direction from the operator 
recovery 

ALL OTHER Request direction from the Request direction from the operator 
operator 

Figure 4-1. Default Hot 1/0 Recovery Actions 

The hot I/O threshold and recovery actions are contained in a new module, 
10SRHIDT, which replaces IECVHIDT. If Release 2.1.1 or a later release is 
installed, you can change the defaults using the new HOTIO keyword in the 
IECIOSxx PARMLIB member. If the system is at the Release 2.1.0 level, use the 
AMASPZAP service aid instead. SP L: System Modifications describes how to 
change the defaults in more detail. 

Extended Color Support on 3279 Multiple Console Support (MCS) Consoles 

MVS/XA provides additional ways of highlighting messages on 3279 MCS color 
consoles, Models 2B and 3B. You can: 

• Display message types or console fields in up to seven different colors. 
(MVS/SP Version 1 Release 3 provides four-color support for 3279 MCS 
color consoles. Four-color support is still available on Models 2A, 2C, and 
3A.) 

• Highlight messages with underscoring, blinking, or reverse video display 
(black characters on a colored background). 

Color-coding and other highlighting techniques help operators distinguish the 
importance of messages. As such, highlighting can be an effective way of 
controlling message traffic. 

You can specify highlighting attributes for your installation in an MPFLSTxx 
PARMLIB member. If none are specified, the system uses default values. The 
same highlighting attributes are in effect for all 3279 consoles, Models 2B and 3B. 
A SET MPF=xx command, where xx identifies an MPFLSTxx PARMLIB 
member, causes the system to use the attributes in the specified MPFLSTxx 
member. When highlighting attributes are changed, the system puts the nllme of 
the old MPFLSTxx member in the SET MPF command section of a type 90 SMF 
record. The DISPLAY MPF command displays the current specifications. SPL: 
Initialization and Tuning describes how to use MPFLSTxx. 

4-6 MVSXA Conversion Notebook, Volume 1 



( 

c' 

Controlling Message Traffic on Operator Consoles 

In general, as the system workload increases, messages appear on the operator 
console at a faster rate. To keep the message rate manageable, your installation 
needs to evaluate its current methods of tailoring message output. Methods of 
controlling message traffic include using: 

• The WTO/WTOR user exits, which are new in Release 2.1.2, or the existing 
WTO user exit (IEECVXIT). The new WTO/WTOR exits can modify 
processing for any message. They can also alter processing in more ways than 
IEECVXIT can. See "New WTO/WTOR User Exits" in Chapter 5 for more 
information. 

• Additional operator consoles with multiple console support (MCS). System 
Commands describes how to use MCS consoles. 

• The message processing facility, which suppresses nonessential messages from 
the operator console. SP L: Initialization and Tuning describes how to use the 
message processing facility. 

• Console clusters, which reduce message traffic on a single console. System 
Commands describes how to use console clusters. 

• The TRACK command to display system status, instead of having JOB 
STARTED/ENDED messages displayed on the console. System Commands 
describes the TRACK command. 

• Message routing codes to direct application messages to the appropriate 
console. System Commands describes how to assign routing codes. 

• Color displays to help operators distinguish important messages. Four-color 
message coding is available on 3279 consoles, Models 2A, 2C, and 3A; 
seven-color message coding is available on 3279 consoles, Models 2B and 3B. 
System Commands and SP L: Initialization and Tuning describe how to assign 
color attributes. 

• Precise inquiries. By requesting only pertinent data, operators can reduce 
message volume. For example, by using D U",l30,! instead of D U to display 
the status of device 130, the operator generates 3 lines of output instead of 52 
(a default maximum). System Commands documents these techniques. 

• A console other than the master console to start tasks, such as VT AM, that 
communicate with the console on which they are started. VT AM retains the 
ID of the console from which the START VTAM command is issued and 
directs all messages to that console. Therefore, if possible, start VT AM on a 
console defined to receive TP messages to reduce traffic on the master 
console. 

• A terminal dedicated to RMF. Use RMF Monitor II reports to determine 
what the system is doing. See RMF Reference and User's Guide for more 
infonnation. 

Chapter 4. Operating Considerations 4-7 



Response to Message IOS201E 

MVS/XA issues message IOS20lE after it recovers from an error condition that 
required it to stop processors that shared a resource. The message indicates 
whether or not the resource was lost (that is, whether a task was in the process of 
updating the resource and lost its reserve before the update was finished). After 
Release 2.1.1 is installed, operators must reply U to message IOS20lE before the 
system restarts the processors that have been stopped. If the system cannot 
communicate with the operator console, it puts itself in restartable wait state 
X'114'. In earlier releases, the system displays the message for five seconds then 
automatically restarts all processors that were stopped. 

Requiring a response improves system integrity. It ensures that the operator is 
aware of the lost resource and allows the operator options for recovery. The 
operator might, for example, want to re-IPL instead of restart processors that 
depended on the update being completed. 

Numbering Conventions for Processor Complexes 

Figure 4-2 on page 4-9 illustrates the different numbering conventions used for 
central processing units (CPs) in the IBM 3084 and the IBM 3090 model 400 
processor complexes. You must be sure the CP numbers given in commands 
match the numbering system of your processor complex and your actual resource 
configuration. 

4-8 MVSXA Conversion Notebook, Volume 1 

--~--~~--

'\ 

j 



( 

CHP 
00 

07 
10 

17 
20 

27 

Key: 

Side 0 Side 1 

SE CP CP SE 

~ ~ GJGJ 

SE CP CP SE 

GJ Q 00 

IBM 3084 
Processor Complex 

CP = central processor 
CHP = channel path 
ESE = extended storage element 
SE = storage element 
VF = vector facility 

ESE 

G 
CHP CHP 
40 0 

47 
50 

57 
60 

67 2F 

Figure 4-2. Numbering Conventions for Processor Complexes 

Side 0 Side 1 

SE CPVF CP VF 

G rn rn 

SE CP VF CP VF Qrn rn 

IBM 3090 Model 400 
Processor Complex 

SE 

G 

SE 

Q 

ESE 

GJ 
CHP 

40 

6F 

Chapter 4. Operating Considerations 4-9 



Summary of New, Updated, or Deleted Commands 

Figure 4-3 summarizes the commands that are new, updated, or deleted in 
Release 2.1.x. Because updates to these and other commands may have occurred 
for Release 2.2.x, be sure to read the corresponding chart in the MVS/XA 
Conversion Notebook, Volume 2. Most of the updates are compatible (that is, 
commands that specify existing parameters, keywords, or options can be entered 
the same way in MVS/370 and MVS/XA). Exceptions are: 

• TRACE (except TRACE STATUS) 
• MODE El, E2, E3, and E4 
• VARY CHP, CPU, STOR, and PATH 
• REPLY id, ASID in response to a DUMP command 

These commands must be specified differently in MVS/XA. 

The syntax of the following commands is the same. However, they produce 
different output in MVS/XA: 

• DISPLAY M=DEV (With Release 2.1.3 the syntax of this command changes 
as well. See Figure 4-3 on page 4-11.) 

• DISPLAY MPF 

• REPLY SDAT A = (NUC) or (TRT) in response to a DUMP command 

System Commands describes the syntax of the commands and how to use them. 

4-10 MVSXA Conversion Notebook, Volume I 

o 

c 



Release 

( 
Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 

VFE AE 

CANCEL x Using the new A keyword, operators can terminate specified jobs, 
time-sharing users, or started processes that do not have unique 
names or have not yet been assigned job names. The A keyword 
identifies the task to be cancelled. 

If two tasks with the same name are both active when the operator 
issues a CANCEL command, the MVS/XA system rejects the 
command. The operator can then use A to specify the ASID of the 
task to be cancelled and reissue the command. In MVS/370, the 
system terminates the first task found. 

Operators can also use the A keyword to cancel partially-initiated 
tasks that have not yet been assigned names. The DISPLAY A,L 
command identifies those tasks as 'STARTING' or '*LOGON*.' 
The operator can cancel them by issuing a CANCEL command that 
specifies the A keyword and a job name of 'STARTING' or a user 
ID of'*LOGON*.' 

CHNGDUMP x Following are new or changed options for SYSABEND, 
SYSMDUMP, SYSUDUMP, and SVC dumps: ALLVNUC, 
ALLNUC, NOSYM, NUC, SUM, TRT, and SUBTASKS. 
Figure 6-1 in Chapter 6 describes each of the options. 

CONFIG x A new reconfiguration command that: 

- Physically and logically reconfigures channel paths, processors, 
and storage. The CONFIG CPU, CON FIG CHP, and CONFIG 
STOR commands, respectively, replace the MVS/370 VARY 
CPU, VARY CH, and VARY STOR commands. 

- Allows the operator to reconfigure the system as specified in a 
CONFIGxx PARMLIB member. The CONFIG MEMBER 
command requests this function. Note that the CONFIG 
MEMBER command does not reconfigure devices or DASD 
volumes. 

- Allows the operator to select elements to be reconfigured from a 
display of elements that are in the current configuration or that 
can be brought online. The operator issues either CONFIG 
ONLINE or CONFIG OFFLINE to request this function. 

- Allows the operator to determine the online or offiine status of all 
( 

available processors, channel paths, and storage in the 
configuration. 

x The VF keyword on the CONFIG command allows the operator to 
reconfigure one or more Vector Facilities attached to online 
processors. 

The VFON and VFOFF operands on the CONFIG CPU (x), 
ONLINE command also allow the operator to reconfigure Vector 
Facilities. 

x Using the ESTOR keyword you can reconfigure extended storage 
elements online or offiine. 

The CONFIG ONLINE or CONFIG OFFLINE commands result in 
a new display that includes side information for the IBM 3090 model 
400. 

Note. When using the CPU keyword the numbering convention for 
the IBM 3090 model 400 processors differs from the convention used 
for numbering the processors in the IBM 3084 processor complex. 
Use the DISPLAY M = SIDE command to see which processors are 
on which side of a partitioned processor complex. 

CONTROLM x A new keyword, UEXIT, activates and deactivates the IEAVMXIT 
user exit. If lEA VMXIT is in the LNKLST concatenation at IPL 
time, the system automatically activates it. Thereafter, you can use 
the UEXIT keyword to control IEAVMXIT's status. 

IEAVMXIT is new in Release 2.1.2. See "New WTO/WTOR User 
Exits" in Chapter 5 for more information. 

Figure 4-3 (Part 1 of 8). Summary of New, Updated, or Deleted Commands 

Chapter 4. Operating Considerations 4-11 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

CONTROLS x Two new keywords: 

- L = cc specifies which console the CONTROL S command is to 
affect. In earlier releases, you can change the console 
specifications for only the console on which the CONTROL 
command is issued. 

- MFORM specifies the form in which messages are to be 
displayed. The choices are: (1) the message text alone, (2) the 
message text with the issuer's job name or the job ID, or (3) the 
message text with either the issuer's job name or the job ID and a 
timestamp. 

CONTROL V x When processing a CONTROL V command that switches a console 
between full-capability and message stream modes, the system 
reestablishes the console specifications that were in effect the last time 
the console was in that mode during the IPL. Earlier releases 
reestablish the console specifications set during system generation. 

x A new LEVEL keyword specifies which type of messages a particular 
console will accept. You can use LEVEL in addition to routing 
codes to further control message traffic. 

The options on LEVEL are: 

ALL - All messages routed to the console. ALL is the default. 

R - WTORs. 

I - Immediate action messages (descriptor codes I and 2). 

CE - Critical eventual action messages (descriptor code 11). 

E - Eventual action messages (descriptor code 3). 

IN - Informational messages, excluding broadcast and action 
messages. 

NB - No broadcast messages, regardless of the descriptor code. 

UNCOND is also an option on LEVEL. It indicates the system is to 
perform the LEVEL request unconditionally, even if some broadcast 
or informational messages are sent only to the hardcopy log as a 
result. (The system sends WTORs and action messages that are 
suppressed from all consoles to the master console as well as to the 
hardcopy log.) 

If you specify LEVEL = UNCOND and messages are sent to 
hardcopy only, you receive a warning message. To identify which 
messages are sent only to hardcopy, use a DISPLAY CONSOLES 
command with the HCONL Y keyword specified. 

If you omit the UNCOND option on a cQmmand that would cause 
some messages to go to hardcopy only, the system rejects the 
command. 

DISPLAY A x When you give the DISPLAY A, A (display system activity, all) 
command, you may see a *VF* in the AFF, processor affinity, field. 
This means that the job requires a processor with the Vector Facility 
and is swapped out waitiug for one to become available. 

Figure 4-3 (Part 2 of 8). Summary of New, Updated, or Deleted Commands 

c 
4-12 MVSXA Conversion Notebook, Volume 1 



Release 

( Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

DISPLAY x Several new keywords request status information about specific 
CONSOLES consoles. They are useful for limiting the display to information that 

is pertinent. Previously, DISPLAY CONSOLES always produced 
the status of all consoles in the system. 

The new keywords and the consoles they specify are: 

ACTIVE - Active consoles, including the master console and 
the hardcopy console. ACTIVE is the default. 

NACTIVE - Consoles that are not active. 

SS - Consoles that subsystems can use. 

CN(xx) - Consoles whose IDs are listed on CN. 

U(aaa) - Consoles identified by the device numbers on U. 

ROUT(rr) - Consoles that receive messages with the routing 
codes specified on ROUT. 

BACKLOG - Consoles with a message backlog. 

MASTER - The master console and any pseudo-master 
consoles. 

* - The console from which the DISPLAY command is 
issued. 

LIST - All consoles defined to the system. Thus, the 
output from LIST is equivalent to the output from 
previous DISPLAY CONSOLES commands. 

You can now route the DISPLAY CONSOLES command. A new L 
keyword specifies the display area, console, or both where the system 
is to display the output. 

The HCONL Y keyword is also new. It requests information about 
messages that are recorded only on the hardcopy log and not sent to 
any console. The display lists routing codes not assigned to any 
console. If any broadcast messages are being sent to hardcopy only, 
the display also includes the word BROADCAST. 

The HCONLY keyword is introduced in Release 2.1.2 because of 
changes to the CONTROL V command. You can now use 
CONTROL V to specify which type of messages a console does or 
does not accept. Thus, it is possible that some broadcast and 
informational messages are routed to hardcopy only. For more 
detail, see the entry for the CONTROL V command. 

DISPLAY x Two new keywords, TITLE and ERRDATA, display information 
DUMP stored in the header record of DASD SYS1.DUMP data sets that are 

full. The TITLE keyword lists the dump titles; the ERRDATA 
keyword displays error data from the dump header. TITLE and 
ERRDATA are valid options for displaying DASD dump data set 
information only. You can specify the DSN operand with the 
TITLE and ERRDATA keywords to restrict the display to a specific 
group of DASD dump data sets. 

The OPTIONS parameter supports the new SYSABEND, 
SYSUDUMP, SYSMDUMP, and SVC dump keywords. Fignre 6-1 
describes the new keywords. 

The information displayed when the STATUS operand is specified 
has changed. The display lists the full and available dump data sets 
grouped by device (DASD and tape). It does not provide any titles. 
Users must specify the TITLE operand to display dump titles. 
Previously, the display gave the status (full or available) of each 
dump data set on a separate line and included the titles of full dump 
data sets. 

Figure 4-3 (Part 3 of 8). Summary of New, Updated, or Deleted Commands 

Chapter 4. Operating Considerations 4-13 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

DISPLAY x Release 2.1.2 provides new keywords for displaying additional global 
c 

GRS resource serialization information: 

- CONTENTION displays information about all resources for 
which at least one task is waiting. For a description of the 
information shown, see the RES keyword entry. 

· RES displays information about every resource that is currently 
allocated. The display includes the resource's marne, qnarne, and 
scope, and the following information about each task that owns 
or is waiting for the resource: the sysnarne, jobname, ASID, TCB 
address, type of request (shared or exclusive), and the task's status 
(owner or waiting). 

- RNL displays one or more RNLs, depending on which options 
RNL specifies. 

· HEX displays CONTENTION, RES, and RNL information in 
hexadecimal as well as regular format. 

· ALL displays the information that CONTENTION, RNL, 
SYSTEM, and LINK request. (SYSTEM and LINK are old 
keywords.) 

If you specify DISPLAY GRS with no keywords, you see SYSTEM 
and LINK information, which is consistent with earlier releases. 
Note: You can display CONTENTION, RES, and ALL information 
even if the system is not part of an active global resource serialization 
complex. 

DISPLAYM x New and changed parameters: 

· ddd requests the online or omine status of all channel paths to 
device ddd. 

- DO requests the status of each device on channel path nn. 

· CHP requests the status of all channel paths in the system. 

· DEV displays the number of online channel paths to each device. 
In MVS/370, DEV displays the online or omine status of all 
devices and the channel sets to which the online devices are 
connected. 

x The CHP and CPU keywords now allow operands. ) 
The DEV keyword format is updated to DISPLAY M = DEV(xxx) to 
match the format of the CONFIG keyword and the DEV output has 
been enhanced. 
The new ESTOR keyword displays the status of extended storage 
frames. 
See System Commands for complete descriptions of these updates. 

x The CPU keyword gives a report on Vector Facility status. 

x Message ID IEE490I has been replaced with message ID IEE174I for 
all displays produced by DISPLAY M commands. 
The SIDE and I/O keywords result in the same display which 
supports the IBM 3084 and the the IBM 3090 model 400 
environments. The display is produced by the new message IEEl74I 
and is described in detail in System Messages Volume 2. The SIDE 
display continues to be a part of the default DISPLAY M processing 
but the I/O display does not since it produces the same information. 

DISPLAY x The display now also includes the color and highlighting defaults for 
MPF 3279 MCS consoles. 

x DISPLAY MPF displays additional information in Release 2.1.2. It 
has two new keywords for limiting the output, MSG and COLOR. 
MSG displays: 
· The IDs of messages MPF is to suppress 
· The IDs of action messages that the action message retention 

facility does not retain 
· Which WTOjWTOR user exits are associated with which 

messages 
· Whether or not the general WTO/WTOR exit (lEA VMXIT) is 

active 
COLOR displays the color, intensity, and highlighting options in 
effect for 3279 consoles. 
If you specify no keywords, you see all of the information. 

Figure 4-3 (Part 4 of 8). Summary of New, Updated, or Deleted Commands 

4-14 MVSXA Conversion Notebook, Volume 1 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

DUMP x The syntax of the DUMP command is the same; the content of the 
reply to the command is different. 

The NUC option on the SDATA keyword requests only the 
non-page-protected DAT -on section of the nucleus. Previously, it 
requested the entire nucleus. 

ALLNUC, a new option on the SDATA parameter, requests a dump 
of the DAT-off nucleus and the entire DAT -on nucleus, including the 
page-protected section. 

Users must specify the ASID list in hexadecimal rather than decimal 
values. Thus, the ASID specifications in the dump request are 
consistent with the message describing its completion and the internal 
description of the dump contents. 

DUMPDS x Using the DUMPDS command operators can: 

- Add or delete SYSI.DUMP data sets after IPL/NIP time without 
having to re-IPL. Before adding a data set, it must be allocated 
and cataloged. In MVS/370, installations can only add and delete 
dump data sets at IPL/NIP time. 

Be aware that if the DUMPSRV address space terminates, you must 
again add dump data sets that were added using the DUMPDS 
command. When DUMPSRV restarts, the system adds the dump 
data sets that were added at IPL/NIP time. 

- Clear SYSI.DUMP data sets on DASD or tape. The DUMPDS 
CLEAR command avoids having to either run a utility job 
(AMDPRDMP or IEBGENER) or reset, load, and ready a tape 
drive to clear a DASD dump data set. 

Operators can issue the DUMPDS command only from consoles that 
have system authority. 

FORCE x Using new A and ARM options on the FORCE command, operators 
can terminate specified jobs, time-sharing users, or started processes 
that: 

( - Do not have unique names 
- Have not yet been assigned job names. 

- Are not eligible for cancellation via the CANCEL command. 
If two tasks with the same name are both active when the operator 
issues a FORCE command, the MVS/XA system rejects the 
command. The operator can then use A to specify the ASID of the 
task to be cancelled and reissue the command. In MVS/370, the 
system terminates the first task found. 

Operators can also use the A keyword to cancel partially-initiated 
tasks that have not yet been assigned names. The DISPLAY A,L 
command identifies those tasks as 'STARTING' or '*LOGON*.' 
The operator can cancel them by issuing a FORCE command that 
specifies the A keyword and a job name of 'STARTING' or a user 
ID of '*LOGON'".' 

The ARM keyword requests that the. specified job, time-sharing user, 
or started process be terminated, even if it is not eligible for 
cancellation via the CANCEL command. Operators can use ARM to 
cancel any address space except one that is not eligible for 
termination (ASCBNOMT = I). 

MODE x ENABLE, EI, E2, E3, and E4 are no longer valid parameters and 
cause the MODE command to be rejected. 

x When machine check interruptions caused by a Vector Facility reach 
a certain threshold, the Vector Facility is disconnected. The VS 
keyword on the MODE command allows the operator to change the 
default threshold. 

MODIFY x New keywords, LLA, REFRESH, cause the system to rebuild the 
LNKLST lookaside (LLA) directory. The LLA directory is new in 
Release 2.1.1. See "Using a New Directory for LNKLST Data Sets" 
in Chapter 8 for more information. 

Figure 4-3 (Part S of 8). Summary of New, Updated, or Deleted Commands 

Chapter 4. Operating Considerations 4-15 

I' I 
I! 
!I 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

MONITOR x You can now route the MONITOR command. In earlier releases,. c 
the output is always displayed at the console from which MONITOR 
is issued. To route MONITOR, either: 

- Include the L=cc keyword on MONITOR. L=cc specifies the 
ID of the console on which the output is to be displayed. 

- Issue an MSGRT command that specifies the new MN keyword. 

MSGRT x A new keyword, CF, specifies to which MCS console the system is to 
route CONFIG commands. 

x You can now issue the MSGRT K command from display, as well as 
non-display, consoles. Earlier releases restrict its use to non-display 
consoles only. 

x A new MN keyword routes MONITOR and STOPMN commands. 
MN specifies the console to which the commands are to be routed. 
Neither of those commands can be routed in earlier releases. 

SET x DAE = xx is a new keyword that specifies which ADYSETxx 
PARMLIB member the system is to process. ADYSETxx contains 
options for controlling dump analysis and elimination (DAE). 
Issuing SET DAE = xx causes the system to begin using the options 
in the specified member. See "Dump Analysis and Elimination 
(DAE)" in Chapter 6 for more information. 

You can now use SET SMF to restart SMF after it is terminated. 
Because SMF runs in its own address space, you no longer need to 
perform an IPL to restart it. 

SLIP MOD x You can now enable or disable several SLIP traps with one 
command. Release 2.1.2 allows asterisks in place of any or all of the 
four characters of the ID keyword. The system enables or disables 
all traps having identifiers that match the characters you do specify. 
For example, SLIP MOD,ENABLE,ID=O··· causes the system to 
enable all SLIP traps that have identifiers beginning with O. 

SLIP SET x New options and keywords in Release 2.1.0: 

- NOSYSA, NOSYSM, NOSYSU, and NOSVCD are new options 
on the ACTION keyword. They suppress respectively 
SYSABEND, SYSMDUMP, SYSUDUMP, and SVC dumps for 
specified abend conditions. See "Suppressing Dumps" in Chapter 
6 for more information. 

- ALLNUC on the SDATA keyword requests the entire nucleus 
(both the DAT-on and DAT-off sections). 

Indirect addresses on SLIP command keywords (DATA, LIST, 
SUMLIST, and TRDATA) can be 31-bit values. To indicate that an 
indirect address is to be treated as a 3 I-bit value, use a '?' instead of a 
'%' as the indirect address indicator. When a keyword specifies '%', 
the system treats the indirect address as a 24-bit value. 

x New options and keywords in Release 2.l.l: 

- NUCMOD specifies a nucleus module or an address range within 
a nucleus module. When specified on an error event trap, 
NUCMOD indicates the range within which the error must occur. 
On IF or SB PER traps, it establishes the range of addresses to be 
monitored. On SA PER traps, NUCMOD specifies boundaries 
for the instruction causing the storage alteration. 

- NOSUP, a new parameter on the ACTION keyword of error 
event traps, indicates that the system is to take dumps for the 
trapped event, regardless of any attempts to suppress the dumps. 
Thus, NOSUP overrides dump suppression via dump analysis and 
elimination (DAE) or the ABDUMP pre-dump exit routine. 

- AND (&) or OR (I) on the DATA keyword logically compare 
triplets of target locations, operators, and values. You can specify 
AND and OR together with any number of triplets. You can 
also group triplets using parentheses. If you specify no logical 
operator, AND is the default, which is consistent with earlier 
releases. In earlier releases, AND is the implied logical operator. 

Figure 4-3 (Part 6 of 8). Summary of New, Updated, or Deleted Commands 

4-16 MVSXA Conversion Notebook, Volume 1 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 

( VFE AE 

SLIP SET - REASON, a new keyword on error event traps, specifies a reason 
(continued) code for filtering errors. It is valid only with the COMP 

(completion code) keyword. 

x New keywords and options in Release 2.1.2 are: 

- RECORD, a new option on the ACTION keyword of error event 
traps causes recovery routines to record the trapped error in 
SYS1.LOGREC. 

- STRACE, a new option on the ACTION keyword of PER traps, 
causes the system to write a system trace table entry for each 
trapped event. Thus, you can use PER to isolate problems 
without stopping the system when the program event occurs. 

- PVTMOD is now valid on all PER and non-PER traps. 
Previously, it was an option only on non-PER and storage 
alteration PER traps. Thus, for the first time you can monitor 
instruction fetch and successful branch events in the private area. 

- PVTEP, LPAEP, and NUCEP specify entry points in modules 
that reside in the private area, LPA, and nucleus, respectively. 
They cause monitoring to begin at the address associated with the 
entry point or at the specified offset from that address. PVTEP 
and LPAEP are particularly useful for monitoring the section of a 
module that begins at an alternate entry point. NUCEP is 
equivalent to NUCMOD. 

You can now monitor events in modules whose names end in x'CO' 
(SVC load modules). Because x'CO' is not alphanumeric, the system 
does not accept it on the LPAMOD, LPAEP, NUCMOD, NUCEP, 
PVTMOD, or PVTEP keywords. However, you can now use an 
asterisk in place ofx'CO'. The system interprets the asterisk as x'CO'. 

START x A new keyword, SUB, directs the JCL for a started task to the 
internal reader of a secondary JES or to the master subsystem. By 
routing started tasks to a secondary JES or to the master subsystem, 
operators can: 

- Run started tasks independently of the primary JES. 

- Start certain tasks before the primary JES initialization is 
completed. 

See SPL: System Modifications for more information. 

x The procedure name, LLA, is used as a keyword to start the LLA 
procedure, which in turn starts the LNKLST lookaside (LLA) 
function. The LLA function builds and maintains a new directory of 
modules in the LNKLST concatenation. BLDL then searches that 
directory instead of the PDS directories for LNKLST modules. For 
more information about the LLA function, see "Using a New 
Directory for LNKLST Data Sets" in Chapter 8. 

x The procedure name, A VM, is used as a keyword to start the A VM 
procedure, which in turn starts availability manager address space. 
This is the first step in using XRF. For more details see XRF 
Planning. 

STOP x The procedure name, LLA, is used as a keyword to stop the 
LNKLST lookaside (LLA) function. The system then searches PDS 
directories instead of the LLA directory to locate modules in the 
LNKLST concatenation. For more information, see "Using a New 
Directory for LNKLST Data Sets" in Chapter 8. 

STOPMN x You can now use STOPMN to suppress MONITOR command 
output from any console except the one from which STOPMN is 
issued. A new keyword, L=cc, identifies the console on which the 
output is to be suppressed. 

Figure 4-3 (part 7 of 8). Summary of New, Updated, or Deleted Commands 

Chapter 4. Operating Considerations 4-17 



Release 

Command 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

TRACE x The syntax of the TRACE command has changed. Except for 
TRACE STATUS, MVS/370 TRACE commands do not work in 
MVS/XA. In addition, the TRACE command controls system 
tracing differently: 

- MVS/XA continues system tracing after system initialization, 
unless an installation requests that tracing be stopped. Thus, no 
TRACE command is required in the COMMNDxx PARMLID 
member to request system tracing. In MVS/370, to continue 
system tracing after system initialization, you have to issue a 
TRACE ON command. 

0 The MVS/XA trace facility performs branch tracing, address 
space tracing, or explicit tracing. ("Changes to the System Trace 
Facility" in Chapter 5 lists the system events in each category.) A 
new TRACE operand, DR, allows installations to start and stop 
branch tracing independently of address space and explicit 
tracing. Options are: 

--Explicit and ASID tracing on, branch tracing off 
--All tracing on 
--All tracing off 

The system can perform branch tracing only when the other trace 
options are active. 
0 TRACE can start or stop system tracing or change the TRACE 

options at any time after system initialization is completed. To 
start system tracing in MVS/370, you have to issue a TRACE ON 
command before the system starts JES2 or JES3. Also, in 
MVS/370 you cannot use the TRACE command to stop system 
tracing after subsystem initialization is completed. 

0 TRACE allows you to dynamically change the size of the system 
trace table using a new option on the ST keyword. The default 
size is 16 K per processor. In MVS/370, the trace table size is 
fIxed at IPL time. 

The master trace (MT) and display trace status (STATUS) functions 
of the TRACE command are not changed. However, you must use 
the new syntax of the TRACE command to start or stop master 
trace, as well as system trace. The order in which you specify the 
parameters is changed. System Commands describes the new syntax. 

VARY CPU, x The VARY CPU, VARY CH, and VARY STOR commands are 
VARYCH, deleted. The new CONFIG CPU, CONFIG CHP, and CONFIG 
VARYSTOR STOR commands perform equivalent functions in MVS/XA. See the 

CONFIG entry in this table. 

VARY devnum, x In JES2 environments the SHR keyword allows more 
ONLINE than one processor to share the 3480 magnetic tape subsystem. 

VARY x The syntax is changed to support the new 1/0 architecture. 
PATH MVS/370 VARY PATH commands do not work in MVSfXA. Also, 

the VARY PATH,OFFLINE command might take longer to process. 
The system will not vary a device path offiine until 1/0 activity to the 
target device has completed. If I/O is not completed after 150 
seconds, the system issues message IEE717D, which gives the 
operator a chance to cancel the command. 

Figure 4-3 (Part 8 of 8). Summary of New, Updated, or Deleted Commands 

C"" 
;~ --

4-18 MVSXA Conversion Notebook, Volume 1 



( 

Chapter 5. System Modifications 

This chapter contains information related to modifying the system. The topics it 
includes are: 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

"Dynamically Updating the SVC Table" on page 5-1 
"Updating SYSTEMS Exclusion RNLs" on page 5-1 
"Serializing VSAM Data Sets" on page 5-2 
"Limiting User Region Size using IEFUSI Instead of IEALIMIT" on 
page 5-3 
"Using the REGION Parameter" on page 5-3 
"Bypassing the Storage Availability Check Before a Job Executes" on 
page 5-4 
"Changing the Hot I/O Threshold and Recovery Actions" on page 5-4 
"Pre-dump Exits" on page 5-5 
"Post-dump Exits" on page 5-5 
"RMF Exits" on page 5-5 
"JES2 User Exits and Interfaces" on page 5-5 
"JES3 Dynamic Support Programs (DSPs) and User Exits" on page 5-5 
"PRDMP/IPCS Exit Control Table (ECT) Modifications" on page 5-6 
"PRDMP Exits" on page 5-6 
"PRDMP Header Exits" on page 5-6 
"SMF Exits" on page 5-6 
"New WTO/WTOR User Exits" on page 5-7 
"New Services for Dump Processing Exits" on page 5-8 
"Expanded (Extended) Storage Criteria" on page 5-11 

Dynamically Updating the SVC Table 

The SVCUPDTE macro, provided in Release 2.1.0, allows authorized programs 
to dynamically update the SVC table. These updates take effect without an IPL. 

Updating SYSTEMS Exclusion RNLs 

Beginnilfg with Release 2.1.1, if your system is part of a global resource 
serialization complex, you might have to add the resource name for the 
SYSI.DAE data set (SYSDSN, SYSI.DAE) to the SYSTEMS exclusion RNLs of 
other systems in the complex. Because SYSl.DAE cannot be shared among 
systems, the SYSTEMS exclusion RNL shipped in Release 2.1.1 includes an entry 
for SYSl.DAE. Global resource serialization requires that all systems in a 
complex have identical RNLs. Therefore, you need to add the same entry to the 
SYSTEMS exclusion RNLs of any system in the complex that is not at Release 
2.1.1 or a later level. 

Chapter 5. System Modifications 5-1 



Serializing VSAM Data Sets 

If your installation has a global resource serialization complex that includes both 
systems with MVSjXA DFP 1.1 or later, MVSjXA DFP 2.1.0 or later, or 
MVS/370 DFP installed and systems with neither, you need to take certain 
actions to ensure that VSAM data sets are serialized correctly. These releases of 
DFP include an updated VSAM. The ENQs that the new VSAM OPEN 
processing issues to enforce VSAM cross-region share options 1 and 2 are 
different. The scopes of the ENQs are changed to SYSTEMS, and their rnames 
(minor names) include catalog names. Only the qnames (major names) remain 
the same. 

A catalog name is system-independent information. Therefore, if all systems in 
the complex include the new level of VSAM and all systems accessing the data set 
belong to the complex, you can use the VSAM ENQ to serialize access to the data 
set as a global resource. The scope of SYSTEMS causes global resource 
serialization to treat the data set as a global resource by default. 

The old level of VSAM uses ENQs with scopes of SYSTEM and rnames that 
include catalog ACB addresses. Because catalog ACB addresses vary from system 
to system, you cannot use these ENQs to serialize access to data sets as global 
resources. The scope of SYSTEM causes global resource serialization to treat the 
data set as a local resource by default. 

The following figure summarizes the differences in the ENQs: 

Old VSAM ENQs New VSAM ENQs 

QNAME SYSVSAM SYSVSAM 

RNAME system-dependent system-independent 

SCOPE SYSTEM (local resource) SYSTEMS (global resource) 

Because of the differences, systems in complexes that include both levels of 
VSAM cannot share the VSAM data sets globally. Therefore, place a generic 
entry for SYSVSAM in the SYSTEMS exclusion RNL of each system. Also 
ensure that the SYSTEM inclusion RNLs do NOT include an entry for 
SYSVSAM. 

After all systems in the complex have the new level of VSAM installed, remove 
the SYSVSAM entry from the SYSTEMS exclusion RNLs. The VSAM OPEN 
processing then enforces share options 1 and 2 as follows: 

• If a data set assigned share option 1 is opened for output, no other user in the 
complex can open it for output or input. 

• If a data set assigned share option 2 is opened for output, other users in the 
complex can open it for input but not output. 

5-2 MVSXA Conversion Notebook, Volume 1 



( 

( 

Limiting User Region Size Using IEFUSI Instead of IEALIMIT 

Installations can now use the SMF step initiation exit (IEFUSI) to limit the sizes 
of user regions above and below 16 megabytes. The methods available in 
MVS/370 continue to work in MVS/XA: 

• Specifying the REGION parameter on JCL statements 
• Assigning default values through JES2 or JES3 
• Using the IEALIMIT installation exit 

However, using IEFUSI has the following advantages: 

• IEFUSI is a separate load module in the LPA. IEALIMIT must reside in the 
nucleus. Thus, you must link edit the nucleus every time you replace 
IEALIMIT with a new version. 

• IEFUSI users can readily obtain information required to set a region size and 
region limit. IEALIMIT must scan system control blocks to gather that 
information. Thus, IEFUSI is easier to write and less susceptible to system 
changes. 

• IEALIMIT requires that the local lock be held and, therefore, cannot issue 
SVCs. IEFUSI has neither of those restrictions. 

• IEFUSI can control the region size and region limit of both the area above 
and the area below 16 megabytes. IEALIMIT can set values for the area 
below 16 megabytes only; VSM uses defaults defined in the code for the area 
above 16 megabytes. 

• IEFUSI can lower the extended limit and extended region size from the 32 
megabyte minimum when the fix for APAR OY04728 is installed. 

To indicate that VSM is to use IEFUSI instead of IEALIMIT for controlling the 
user region area, you must set a flag in the IEFUSI parameter list. VSM then 
bypasses the IEALIMIT exit and limits the user area as IEFUSI requests. 
IEFUSI does not have to set new limits. It can, for example, request that VSM 
set limits identical to the IEALIMIT defaults. 

SPL: User Exits describes how to use IEALIMIT. SPL: SMF describes how to 
use IEFUSI. SPL: System Modifications provides general information on limiting 
the user region. 

Using the REGION Parameter 

VSM changes in Release 2.1.2 make it easier for a job to obtain an extended 
region size greater than 32 megabytes: 

• You can now specify values greater than 16 megabytes on the JCL REGION 
parameter. The values can be expressed in K or Mb units and can be as high 
as 2096128 K or 2047 Mb. 

• VSM now uses the REGION parameter (if nonzero) to calculate the extended 
region size and the limit for GETMAIN requests above 16 megabytes. VSM 
sets both to the smaller of: (1) the size of the extended private area, or (2) the 

Chapter 5. System Modifications 5-3 



REGION parameter value or 32 megabytes, whichever is greater. In earlier 
releases, VSM sets both to 32 megabytes. 

If the REGION parameter is greater than 16 megabytes, the only limits on 
GETMAIN requests below 16 megabytes and the region size below 16 megabytes 
are the limits that IEALIMIT or IEFUSI set, or the size of the private area. 
SPL: System Modifications contains more information about limiting the user 
region size. Also, as of Release 2.1.2, jobs that use the OSjVSl form of the JCL 
REGION parameter (with two arguments: REGION = (xxK,yyyK)) abnormally 
terminate. Previously, the system ignored this form of the REGION parameter 
when it was used by MVSjXA jobs. 

Bypassing the Storage Availability Check Before a Job Executes 

If Release 2.1.2 or a subsequent release is installed, you can control whether or 
not the virtual storage manager (VSM) checks that the amount of storage 
requested on the REGION parameter is available before permitting a job to 
execute. (Earlier levels of MVSjXA did not allow you to control this check.) The 
change is intended to prevent jobs from failing simply because programmers 
specify REGION values that are unnecessarily large. 

Even though you can control whether or not VSM makes the availability check, it 
is not required that you do so. If you choose not to exercise any control, VSM 
processing, by default, will be the same as in pre-Release 2.1.2 versions of 
MVSjXA. The following default actions occur: 

• If the value specified on the REGION parameter is less than 16 megabytes, 
VSM ensures that there is at least that much storage below 16 megabytes. 

• If the value specified on the REGION parameter is greater than 16 
megabytes, VSM does not make any storage availability check. 

To change the default, use IEFUSI. Bits 1 and 2 in the first word of the VSM 
parameter list passed to IEFUSI control checking. Bit 1 indicates whether VSM 
is to check for available storage below 16 megabytes. Bit 2 controls checking 
above 16 megabytes. See SPL: System Modifications and SPL: SMF for more 
detail. 

Changing the Hot 1/0 Threshold and Recovery Actions 

A new HOTIO statement in the Release 2.1.2 IECIOSxx PARMLIB member 
makes it easier to change: (1) the threshold lOS uses for detecting hot I/O 
conditions, and (2) the recovery actions lOS performs when it detects a hot I/O 
condition. Module IOSRHIDT contains the threshold and recovery actions. It 
replaces the MVS/370 IECVHIDT module. Previously, you had to use the 
AMASPZAP service aid to update IOSRHIDT (or IECVHIDT). 

The first release of MVS/SP Version 2 changes hot I/O processing. "Processing 
Hot I/O Interrupts" in Chapter 4 briefly describes the changes. SP L: System 
Modifications contains more detail. SPL: Initialization and Tuning describes how 
to write the HOTIO statement. 

5-4 MVSXA Conversion Notebook, Volume 1 

/ ...... " 
\ 



Pre-dump Exits 

Post-dump Exits 

RMF Exits 

Installations can now provide exit routines that get control before the ABDUMP 
routine takes a dump. The exits can analyze the requested dump and either: 

• Continue with the dump as requested 
• Modify the dump options and continue with the dump 
• Terminate the dump request. 

IBM supplies a load module, IEAVT ABX, that contains blank entries for the 
pre-dump exit routine names. SPL: System Modifications describes pre-dump 
exits. SPL: User Exits provides coding information. 

Installations can now provide exit routines that get control after each 
SYSMDUMP and SVC dump is taken. The post-dump exit routines can examine 
dumps in dump data sets, evaluate the dump and the dump symptoms, and take 
appropriate action (for example, tell the operator to clear the dump data set using 
the new DUMPDS command or to start a PROC to offload the dump data set). 
IBM supplies a new load module, lEA VTSEL, that contains an SDUMP exit list 
with blank entries. 

SPL: System Modifications describes post-dump exits in more detail. SPL: User 
Exits provides coding information. 

RMF exits require modification. RMF invokes all user exits in 31-bit addressing 
mode and expects return in that mode. In addition, most RMF user exits need to 
access control blocks that have been moved to virtual storage above 16 
megabytes. The RMF Reference and User's Guide explains how to write RMF 
exits. 

JES2 User Exits and Interfaces 

A JES2 user exit that uses the downward incompatible macros listed in "Handling 
Downward Incompatible Macros" on page 9-7 needs to ensure that the exit (the 
part of it that uses JES2 interfaces) contains the MVS/370 macro expansions. See 
MVS/XA JES2 User Modifications and Macros for details on which macro 
expansions you need and how to obtain them. 

JES3 Dynamic Support Programs (DSPs) and User Exits 

Beginning with Release 2.1.5, JES3 invokes DSPs and most user exits in 31-bit 
addressing mode and expects return in that mode. Thus, JES3 user-written 
programs can usually reside anywhere in virtual storage and use JES3 interfaces 
while in 31-bit addressing mode. See the JES3 Conversion Notebook for details on 
user exits not invoked in 31-bit addressing mode. If your user exit needs the 
downward incompatible macros described in "Handling Downward Incompatible 
Macros" on page 9-7, see MVS/XA JES3 User Modifications and Macros for 
programming details. 

Chapter 5. System Modifications 5-5 



PRDMP/IPCS Exit Control Table (ECT) Modifications 

PRDMP Exits 

PRDMP Header Exits 

SMF Exits 

For Release 2.1.x., the system uses some previously-empty ECT entries for new 
PRDMP exits. If your installation added ECT entries, you must add them to the 
new ECT at different offsets. The ECT is in module AMDPRECT. See the 
MVS/XA Conversion Notebook, Volume 2 for a description of Release 2.2.x 
changes to the ECT and AMDPRECT. 

You need to change PRDMP exit routines that use the print service and supply 
their own output buffers. In MVS/XA, the print service routine expects a 
l32-byte output buffer. It prints 132 bytes, beginning at the output buffer address 
specified in the ADPLBUF field of the exit parameter list (BLSABDPL). In 
MVS/370, the output buffer is 121 bytes, but only 120 bytes are printed. 

PRDMP exits that use the PRDMP-supplied output buffer continue to work 
unchanged in MVSfXA. The buffer is set to blanks after each use. However, if 
you modify the ADPLBUF field to point to a 121-byte output buffer, either: 

• Each printed line will contain 12 bytes of unexpected data. 
• The PRDMP exit will fail with an x'OC4' ABEND. 

The Release 2.1.1 level of PRDMP allows a new type of user exit, header exits. 
Using header exits you can add information to the title pages of dumps. PRDMP 
calls header exits when processing title pages. 

Dump analysis and elimination (DAE) supplies one header exit, ADYHDFMT, 
which formats and prints DAE symptom data. You can supply additional header 
exits, but do not change the ECT (exit control table) entry for ADYHDFMT 
(entry 21). PRDMP also calls that entry when processing the new DAEDATA 
PRDMP verb. 

You might have to modify two SMF exits, IEFU29 and IEFU84, beginning with 
Release 2.1.1. IEFU29 and sometimes IEFU84 run in the new SMF address space 
instead of the master scheduler address space. (IEFU84 runs in the SMF address 
space when SMF calls it during system initialization to write record types 0, 8, 19, 
22, and 90.) If either exit requires data located in the private area of the master 
scheduler address space, you need to change the exit. Use cross memory 
instructions (SSAR, MVCP, and MVCS) to move data between the two address 
spaces. 

Other SMF exits continue to run unchanged in the same address spaces as in 
previous releases of MVS/XA. You can, however, write SMF exits that run in 
3l-bit addressing mode, reside above 16 megabytes, or address data above 16 
megabytes. Exits that run in 31-bit addressing mode must return control to SMF 
using a BSM instruction. In addition, SMF records that IEFU83 or IEFU84 

5-6 MVSXA Conversion Notebook, Volume 1 

if" 
'~~ 



(/ 

passes to SMF must reside below 16 megabytes. See SPL: 31-bit Addressing for 
help in writing programs that use 31-bit addresses. 

Entering IEECVXIT into the Control Program 

Beginning with Release 2.1.2 IEECVXIT, the IBM-supplied WTO/WTOR exit 
routine, is no longer a part of module IGC0003E. IGC0003E has moved above 
the 16 megabyte virtual storage address, and IEECVXIT now resides in its own 
load module, also called IEECVXIT, as part of SYS1.LPALIB. Use the linkage 
editor to replace the IBM-supplied dummy routine with your own routine. The 
SPL: User Exits provides further information on IEECVXIT. 

New WTO/WTOR User Exits 

Installations with Release 2.1.2 or subsequent releases installed can use new 
WTO/WTOR exits to modify message processing. The new exits are in addition 
to IEECVXIT. Unlike IEECVXIT, they can modify processing for any message. 
They can also alter processing in more ways than IEECVXIT can. The new exits 
can: 

• Alter routing and descriptor codes. 

• Change the message text. 

• Change the console on which the message is displayed. 

• Queue messages to a particular active console; queue them unconditionally to 
any console, regardless of whether it is active; or queue messages by routing 
codes only. 

• Direct messages to the hardcopy log only, to consoles only, or to both the 
hardcopy log and consoles. 

• Delete messages, except WTORs. 

• Control whether or not messages are broadcast to active consoles. 

• Override MPF suppression. 

• Issue SVCs (for example, SVC 34 and SVC 35). 

• Reply to or suppress WTORs. 

• Control whether or not the action message retention facility retains a 
message. 

You can find examples of coding these user exits in the SPL: User Exits. 

The system invokes WTO/WTOR exits after IEECVXIT and MPF processing is 
completed and before calling the subsystem interface (SSI). It can invoke only 
one WTOjWTOR exit for each message processed. However, you can provide 
several exits and specify which the system is to call for particular messages. You 
can also write one general exit that the system invokes for all messages not 

Chapter 5. System Modifications 5-7 



associated with a specific exit. You must name the general exit IEAVMXIT. 
Both the general and specific WTOjWTOR exits must executein31-bit addressing 
mode and reside in an authorized data set that is included in the LNKLST 

. coticatenatidn. 

To associate a specific exit with a message or group of messages, include 
statements like the following in the MPFLSTxx PARMLIB member: 

message ID USEREXIT(name of exit routine) 

The message 10 can identify either a particular message or a class of messages, 
for example, IEF404I or IEF*. The system then calls the specified exit when 
processing those messages. (You can also put the new RETAIN and SUP 
keywords on the same statement as USEREXIT. See "New, Updated, or Deleted 
PARMLIB Members" in Chapter 2 for more information.) Use multiple 
MPFLSTxx members and the SET MPF = xx or SET MPF = NO command to 
control which specific exits are active. 

If the system is to call IEA VMXIT when processing a message, you need not do 
anything except make that exit available and possibly activate it. If IEA VMXIT 
is in the LNKLIST concatenation at IPL time, the system automatically activates 
it. Thereafter, you can activate and deactivate it using a new UEXIT=YIN 
keyword in the CONTROL M command. 

New Services for Dump Processing Exits 

Beginning with Release 2.1.2 two new services are provided for dump processing 
exits that are invoked from IPCS, PROMP, and SNAP: 

• Format model processor service 
• Control block formatter service 

Beginning with Release 2.1.2 two new services are provided for dump processing 
exits that are invoked from IPCS and PROMP: 

• ECT service 
• Select ASIO service 

Beginning with Release 2.1.2 two new services are provided for dump processing 
exits that are on:ly invoked from IPCS: 

• GET symbol service 
• EQUATE symbol service 

In addition, as of Release 2.1.2 there is a new exit services router that serves as an 
interface between dump exits and new and existing exit services. However, both 
Release 2.1.2 and 2.1.3 continue to support existing interfaces between dump exits 
and the services available to them. Thus, existing dump exits will run unchanged 
in Releases 2.1.2 and 2.1.3. 

5-8 MVSXA Conversion Notebook, Volume 1 



( 
Exit Senices Router 

Dump exits can use the exit services router to invoke the following services: 

• Storage access service 
• Print service 
• Format model processor service 
• Control block formatter service 
• Index service (exits invoked by PRDMP only) 
• ECT service 
• GET symbol service (exits invoked by IPCS only) 
• EQUATE symbol service (exits invoked by IPCS only) 
• Select ASID service 

The storage access, print, and index services are not new. The service router 
simply provides a new method of invoking them. 

Dump exits can invoke any of the services listed by calling the exit service router 
and passing it three parameters: 

• The address of the user exit parameter list, ABDPL, which is mapped by 
BLSABDPL. 

• A service code indicating which service the router is to invoke. 

• The address of the parameter list that the requested service expects (except 
when invoking the print or index service, which use no parameter list). 
ABDPL includes mappings of the parameter lists for each service except 
EQUATE and GET. The BLSRESSY macro maps the parameter lists for 
these two services. 

Most services also require some additional information in fields of the ABDPL. 
IPCS User's Guide and Reference describes those requirements. It also describes 
in more detail how to invoke services using the exit services router. 

Format Model Processor Semce 

The format model processor service formats and prints a control block or other 
data area using a format model. The exit routine supplies the model and the 
virtual address or buffer address of the storage to be formatted. The format 
model processor returns the formatted control block. 

In addition to formatting control blocks, you can use format models and the 
format model processor to: 

• Decode flag bytes 
• Summarize dump data 
• Present data in hexadecimal representation 
• Display 2-dimensional arrays 

The IPCS User's Guide and Reference describes each of these uses in more detail. 

Using format models is an alternative to using format patterns. A format model 
consists of several BLSQMDEF and BLSQMFLD macros. The BLSQMDEF 
mllcro begins the model and describes the header. A series of BLSQMFLD 

Chapter 5. System Modifications 5-9 



macros follow, one for each field to be formatted. A second BLSQMDEF macro 
denotes the end of the model. The models can be part of a program load module 
or separate load modules. System Macros and Facilities describes how to write 
BLSQMDEF and BLSQMFLD macros. The [PCS User's Guide and Reference 
shows how to write format models. 

Format models are flexible. Programs that use models can call a user-supplied 
exit routine to examine or modify a formatted line before printing it. They can 
also vary which fields of the model are printed. Thus, programs can use the same 
model to format different levels of the control block. Models can format arrays 
within a control block. They are also independent of the line length, starting 
column, and column spacing. PRDMP, IPCS, or SNAP modules determine that 
information. 

Control Block Formatter Service 

ECT Service 

GET Symbol Service 

EQUATE Symbol Service 

The control block formatter service formats and prints a control block, given a 
control block acronym and the virtual or buffer address of the control block. The 
[PCS User's Guide and Reference (GC28-1297) gives a complete list of the control 
blocks you can format using this service. 

Using the control block formatter has several advantages over using format 
patterns: 

• You need to know nothing about the control block structure. 

• You can invoke the service once and format the entire control block. 

• If the control block format changes, only the control block model that the 
control block formatter service uses needs to be modified. 

• You can request multiple levels of detail using only one control block model. 

The ECT service searches the ECT (exit control table) for the requested exit, then 
links to it. This service allows one dump exit to invoke another. 

The GET symbol service returns a specified symbol from the IPCS symbol table. 
Thus, it performs the same function as the GET subcommand of IPCS and is 
meaningful only during IPCS processing. PRDMP and SNAP modules ignore 
requests for this service. 

The EQUATE symbol service adds a symbol to the IPCS symbol table, as does 
the EQUATE subcommand of IPCS. Like the GET symbol service, it is 
meaningful only during IPCS processing. PRDMP and SNAP modules ignore 
requests for this service. 

5-10 MVSXA Conversion Notebook, Volume 1 



( 

( 

Select ASID Service 

The select ASID service returns a list of pointers to ASCBs in a dump. The exit 
routine specifies which ASCB pointers are to be returned using one or more of the 
following keywords: 

ALL All ASCBs in the dump 

CURRENT ASCBs for address spaces that were active at the time the dump was taken 

ERROR ASCBs for all address spaces that terminated abnormally (ASCBCC,=O) or that 
contain TCBs representing tasks that completed abnormally (TCBCMP,=O or 
TCBRTWA,=O) 

TCBERROR ASCBs for all address spaces that contain TCBs representing tasks that completed 
abnormally (TCBCMP,=O or TCBRTWA,=O). TCBERROR specifies a subset of the 
ASCBs that ERROR selects. 

ASIDLIST ASCBs corresponding to the ASIDs listed on ASIDLIST. 

JOBLIST ASCBs corresponding to the jobs listed on JOBLIST. 

SNAP dumps ignore requests for the ASID service. 

Expanded (Extended) Storage Criteria 

As of Release 2.1.3 your processor complex may include expanded storage as well 
as real and auxiliary storage. Expanded storage is an electronic extension of real 
storage provided to take advantage of the high speed of the processors and 
improve system responsiveness. 

Expanded storage is also known as extended storage, and the terms are used 
interchangeably throughout the MVS/XA library. This MVS/XA Conversion 
Notebook, for example, uses the term extended storage in the discussion that 
follows and in other sections to refer to this form of storage. 

Extended storage is most advantageous for processor complexes that include 
applications that depend upon extremely rapid system response. When the 
demand for real storage is high, the system transfers some code and data not 
currently in use to either extended or auxiliary storage. The system moves 
information that is most likely to be needed soon, that is most response sensitive, 
to extended storage and information that is not as response sensitive to auxiliary 
storage. 

Transfer of information between extended and real storage occurs quickly because 
it takes place synchronously with processor operations, requiring no I/O. 
Transfer of information between auxiliary and real storage is slower; it requires 
asynchronous I/O processing. 

There is no need to modify any MVS/XA system parameters to take advantage of 
extended storage. As of Release 2.1.3 there are fields in the IEAOPTxx member 
of SYS1.PARMLIB containing values that represent the priority of various 
categories of code and data. SRM storage management routines consider 
IBM-supplied defaults for these values when making recommendations to the real 
storage manager as to whether or not a page should be moved to extended 
storage. 

Chapter 5. System Modifications 5-11 



However, an installation that chooses to modify the MVS/XA system and affect 
system responsiveness can change the values for each category by using 
IEAOPTxx SRM parameter keywords. SP L: Initialization and Tuning lists the 
keywords and explains how to use them. 

5-12 MVSXA Conversion Notebook, Volume 1 

c 

r(" 
~=J 



( 

("/ 

Chapter 6. Problem Determination 

This chapter includes information related to dumping services, trace facilities, and 
debugging. 

The following topics describe differences in dump content and format: 

• "New and Updated Dump Options" on page 6-2 
• "New Symptom Dumps for Task-Mode Abends" on page 6-3 
• "User Summary Dumps" on page 6-4 
• "Dump Format Changes" on page 6-5 
• "Vector Registers in Dumps" on page 6-7 
• "Formatting the Contents of Vector Registers" on page 6-7 

Topics describing new ways of suppressing dumps include: 

• "New Operands on the SLIP Command for Suppressing Dumps" on page 6-7 
• "MVS/XA's Use of SLIP Commands" on page 6-8 
• "Dump Analysis and Elimination (DAE)" on page 6-8 

Print dump (PRDMP) changes are described in: 

• "New and Updated PRDMP Control Statements" on page 6-11 
• "Print Dump Index" on page 6-13 
• "Print Dump Requirements for Printers" on page 6-13 

The topics below describe IPCS changes introduced in Release 2.1.2. Note that to 
use Release 2.1.2 IPCS dialogs, you must also have ISPF Version 2 installed. 

• "New and Changed IPCS Subcommands" on page 6-13 
• "Accessing Additional Sources of Dump Data Using IPCS" on page 6-15 
• "New IPCS Panels" on page 6-16 
• "Changes to the IPCS BROWSE Panels" on page 6-16 
• "Changes to the Titles of IPCS Print Files" on page 6-17 

"Using the MVS/XA Versions of IPCS and PRDMP on Other Systems" on 
page 6-18 describes how to obtain MVSjXA versions of IPCS and PRDMP on 
earlier systems. 

Debugging considerations include: 

• 
• 
• 
• 
• 

"Changes to the System Trace Facility" on page 6-20 
"SDW A Changes" on page 6-22 
"Addressing Mode Reflected in Dumps" on page 6-22 
"Specifying Reason Codes" on page 6-23 
"System Termination Facility Wait State Codes" on page 6-23 

Chapter 6. Problem Determination 6-1 



• "Exceeding the Region Limit" on page 6-23 
• "Diagnosing Checkpoint/Restart Errors" on page 6-24 

New and Updated Dump Options 

Figure 6-1 summarizes the new and updated dump options for user and system 
dumps that occurred during Release 2.l.x. It indicates whether the option is valid 
on the SNAP macro, the SDUMP macro, and/or the DUMP command. None of 
the updates are incompatible. However, the following MVS/370 options produce 
different dump data in MVSjXA: NUC, TRT, CB, SPLS, and SQA. Some 
options (for example, NUC and SUBPLST) are designed or updated to eliminate 
unnecessary dump data. Other options (such as SUM) improve the usefulness of 
dump data. 

The new and updated dump options also occur in the following PARMLIB 
members: IEAABDOO (SYSABEND), IEADMPOO (SYSUDUMP), and 
IEADMROO (SYSMDUMP). See Figure 2-3 on page 2-20 in Chapter 2. 

Dump Option SNAP SDUMI DUMP Data Included in the Dump 

ALLNUC x x The entire nucleus, both the DAT-on nucleus 
(new) and the DAT-ofTnucleus. (NUC no longer requests 

the entire nucleus.) Although ALLNUC is an SDATA 
keyword, specifying SDATA = ALL does not cause the 
ALLNUC information to be dumped. You must 
explicitly specify the ALLNUC option to obtain the 
entire nucleus. 

Your installation might want to keep one copy of a 
dump of the page-protected nucleus to use with other 
dumps. To obtain a dump of only the nucleus, use a 
DUMP command with the ALLNUC, NOSQA, and 
NOSUM SDATA options specified. 

ALLVNUC x The entire DAT-on nucleus. Users cannot 
(new) obtain the DAT-ofTnucleus in a formatted dump. 

However, ALL VNUC causes the system to dump both 
the DAT-on nucleus and the DAT-ofTnucleus in 
SYSMDUMPs. Although ALLVNUC is an SDATA 
option, specifying SDATA=ALL does not cause the 
ALLVNUC information to be dumped. 

When ALLVNUC is specified, dumps also include the 
PSA and the CVT. Unauthorized users receive only 
the section of the PSA that is not fetch-protected 
(locations 0 through 2 K minus I). Authorized (key 0) 
users receive the entire PSA. 

CB x In SYSABEND, SYSUDUMP, and SNAP dumps, 
(changed) a storage map that contains: 

- The starting storage address 
- The subpool number 
- The length of the storage allocated to the task 
- The storage key 
- Flag information pertaining to the storage and the 

owning TCB, if the storage is shared 

In MVSj370, the CB option causes formatted VSM 
control blocks to be dumped. 

CSA and x x x The specified area below and above 16 Mb. 
LSQA No additional SDATA options are required to 
(changed) include extended virtual storage areas in a dump. 

KEYLIST x Areas in the subpools listed on the SUBPLIST 
(new) keyword that have the specified key(s). KEYLIST is 

only valid when specified with SUBPLST. It allows 
users to obtain a subset of the specified subpool 
storage. 

Figure 6-1 (Part 1 of 2). New, Updated, or Deleted Dump Options 

6-2 MVSXA Conversion Notebook, Volume 1 
., 

---~---~-, ---- -- ~,--, - ,. ,--""-------~~-"~--~'- -, -- '-------~- - ---------------

C) 



( 

( 

Dump Option SNAP SDUMF DUMP Data Included in the Dump 

NUC x x x The DAT-on, non-page-protected section of 
(changed) the nucleus, the PSA, and the CVT. Authorized (key 

0) users receive the entire PSA. Unauthorized users 
receive only the section of the PSA that is not 
fetch-protected (locations 0 through 2 K minus 1). 
Users that need the page-protected section must specify 
either the ALLVNUC or ALLNUC option. 

In MVS/370, NUC requests the entire nucleus. The 
change in NUC output is designed to eliminate from 
dumps those areas of the nucleus that are not expected 
to change (the page-protected areas). Those areas are 
normally not required to debug problems. The change 
was made in such a way that most installations can 
suppress the page-protected areas without having to 
respecify dump options. 

SPLS x Subpool storage printed in ascending address 
(changed) order, instead of by ascending subpool number as in 

MVS/370. To obtain storage by subpool ID, specify the 
new SUBPLST parameter. 

SQA x x x No system trace entries are included because 
(changed) the trace buffers have been moved to the TRACE 

address space. SUM and TRT are the only dump 
options for including the system trace table in a 
SNAP/ABDUMP dump. SUMDUMP and TRT are 
the only options for including it in a system dump. 

The SQA option requests both the SQA area above and 
below 16 Mb. 

SUBPLST x x Specified subpools, which appear in ascending 
(new) order, as does the storage contained in each subpool. 

Another parameter for requesting subpool storage 
already exists, SPLS. However, SPLS causes all user 
subpools to be dumped. Also, the storage is printed in 
ascending address order instead of by subpool number. 

SUBTASKS x Program data (PDAT A) information for 
(new) subtasks. 

SUM x x Summary dumps for abending tasks. 
(new) See "User Summary Dumps." 

TRT x x x The trace data included in dumps is changed. 
(changed) See "Changes to the System Trace Facility." The trace 

output is formatted the same in SNAP dumps, 
stand-alone dumps, and dumps printed via print dump. 
It is different from MVS/370 trace output. 

As in MVS/370, TRT causes trace data from the active 
trace facilities to be dumped. In MVS/XA, the dump 
can include master trace data, system trace data, and 
GTF data. In MVS/370, system trace and GTF cannot 
be active at the same time. Therefore, MVS/370 dumps 
never include both system and GTF trace data. 

Figure 6-1 (Part 2 of 2). New, Updated, or Deleted Dump Options 

New Symptom Dumps for Task-Mode Abends 

When an ABEND, or program check, occurs and the ABDUMP module gets 
control, the system automatically issues a ten-line symptom dump. The symptom 
dump, which appears in the job listing, includes: 

• The ABEND code and error ID 

• The PSW at the time of the error, the instruction length code, and the 
interrupt code 

Chapter 6. Problem Determination 6-3 



I 

User Summary Dumps 

• The name and address of the active load module, if the PSW points to an 
active load module 

• The offset into the module where the error occurred, if the PSW points to an 
active load module 

• Six bytes of storage before and six bytes after the PSW address at the time of 
the error 

• The register contents at the time of the error 

Unless the NOSYM parameter is specified in the appropriate PARMLIB member 
(IEAABDOO, IEADMPOO, or IEADMROO), all users get the symptom dump 
regardless of whether or not they supply a dump DD statement. However, TSO 
users must specify the WTPMSG parameter on the PROFILE command to see 
the symptom dump output. Installations that do not want symptom dumps can 
suppress them by specifying the NOSYM option in the appropriate PARMLIB 
member or by using the CHNGDUMP command. Specifying NOSYM in the 
IEADMPOO PARMLIB member also suppresses symptom dumps for users who 
do not specify dump DD statements. 

The symptom dump is designed to help users identify duplicate problems and, in 
some cases, solve the problems without a full dump. Thus, symptom dumps can 
reduce the time required for problem determination. Note that symptom dumps 
are only issued for task-mode ABENDs. 

Users can now obtain a summary dump for abending tasks. A new SDATA 
keyword, SUM, requests a summary dump. Summary dumps show information 
that can help identify duplicate problems, followed by control blocks and storage 
areas. In many cases, the summary dump is sufficient to debug user program 
checks and ABEND dumps. 

If SUM is the only dump option specified, the summary data for SYSUDUMP 
and SYSABEND dumps has the following format: 

1. The dump title. 

2. The ABEND code and PSW at the time of error. 

3. The name and address of the load module in error. 

4. The offset into the load module where the error occurred. 

5. Control blocks (the same as if the CB option were specified). 

6. Error control blocks (RTM2W As and SCBs). 

7. Save areas. 

8. The general purpose registers at the time of error (from the RTM2WA). 

6-4 MVSXA Conversion Notebook, Volume 1 

• 



( 
• 

! ( Dump Format Changes 

9. The contents of the active load module and the load module associated with 
the last PRB. 

10. One K of storage before and after the addresses pointed to by the PSW and 
registers at the time of error. The summary dump includes only storage areas 
for which the caller is authorized . 

11. System trace table entries for the dumped ASID. (GTF records are not 
dumped.) 

If SUM is not the only SDATA option, the summary data might be dispersed 
throughout the dump, depending on the other options specified. 

The summary output produced for SYSMDUMP dumps is different from the 
summary output produced for other user dumps. You must use PRDMP and 
specify the SUMDUMP verb to get summary output. The output contains the 
same information and is in the same format as the summary information in SVC 
dumps. 

SUM is a default option in the IEAABDOO, IEADMPOO, and IEADMROO 
PARMLIB members. Unless installations delete the SUM options from those 
PARMLIB members or suppress them using the CHNGDUMP command, 
MVSjXA automatically produces a summary dump. In MVSjXA, SUM is the 
only default option in IEADMPOO. Therefore, unless users that specify 
SYSUDUMP DD statements request additional data, they receive only summary 
data. 

The dump headers in user, SVC, and SYSMDUMP dumps contain additional 
information to aid in problem determination. Information in user dump indexes 
is presented differently. The SYSMDUMP and SVC printed summary dumps are 
restructured. 

Changes to User Dump Headers 

In MVSjXA, the dump headers in SNAP dumps caused by errors, SYSUDUMP, 
and SYSABEND dumps contain: 

• The name of the load module that was executing at the time of the error. 

• The offset into the load module, indicated by the PSW. The offset points the 
user to the failing instruction or to the next sequential instruction at the time 
of the error. 

The SYSMDUMP dump header contains a new symptom buffer to help users 
identify duplicate problems or solve problems without a full dump. "New 
Symptom Dumps for Task-Mode Abends" describes the information contained in 
the symptom buffer. 

Chapter 6. Problem Determination 6-5 



User Dump Indexes 

The indexes of SYSUDUMP, SYSABEND, and SNAP dumps list alphabetically 
the name of each active load module and the page number in the dump where it 
starts. 

Changes to SYSMDUMP and SVC Dump Formats 

The printed summary dump is restructured to make it easier to use. Following is 
a summary of the changes: 

• Individual control blocks are formatted and dumped as separate logical 
records with unique IDs. 

• The general, unformatted storage areas are printed in ascending address order 
within an address space. 

• The dump index gives the starting page number of all formatted storage 
areas. It also has entries for each storage area requested. 

• Trace data is no longer included in the formatted summary output. The trace 
table appears in the main body of the dump and can be formatted using IPCS 
or the TRACE verb ofPRDMP. 

The dump header records of SVC dumps and SYSMDUMP dumps contain the 
following additional information to aid in problem determination: 

• The name of the active load module at the time of the error, if that 
information is available in the SDW A. 

• The offset into the active load module of the instruction that caused the 
ABEND (in SYSMDUMP headers only). 

• The PSW at the time of the error (in SYSMDUMP headers only). 

• Six bytes of storage preceding the PSW address at the time of the error and 
six bytes following the address (in SYSMDUMP headers only). The failing 
instruction \\rill be in one of those six-byte areas. 

• The current SDWA control block, if available. 

• Flags indicating whether SYSMDUMP or SVC dump produced the dump. 

• The ID of the processor on which the dump was initiated. 

• The name of the dump data set. 

Note that the SYSMDUMP dump header record contains all of the information 
available in user symptom dumps, but in a different format. 

6-6 MVSXA Conversion Notebook, Volume I 



f 

(/ 

Vector Registers in Dumps 

If the Vector Facility is installed and functioning, the contents of the vector 
registers appear in SNAP, ABDUMP, and stand-alone dumps. For SNAP and 
ABDUMP dumps, the contents of the vector registers appear in the listing along 
with the contents of the other registers associated with the processor running the 
job. 

When tasks using the Vector Facility are interrupted, the contents of the vector 
registers are saved in a control block known as the vector status save area 
(VSSA). 

Formatting the Contents of Vector Registers 

Suppressing Dumps 

There are four ways to format the contents of the vector registers: 

1. The PRDMP CPUDATA control statement formats the vector registers in 
dumps taken by stand-alone dump (SADMP). 

2. The interactive problem control system (IPCS) STATUS subcommand 
formats the vector registers in dumps taken by stand-alone dump (SADMP). 

3. The FORMAT keyword of the IPCS SUMMARY subcommand and the 
FORMAT parameter of the PRDMP SUMMARY control statement detect 
the presence of saved vector registers and invoke the vector formatter so that 
saved vector information is formatted with other TCB information. 

4. The SNAP macro produces a dump listing that includes the formatted 
contents of the vector registers. 

The SLIP command has new operands for selectively suppressing dumps. 
MVS/XA uses SLIP commands to suppress user and system dumps that are 
normally not required for problem determination. Release 2.1.1 introduces dump 
analysis and elimination (DAE), a new SDUMP function that suppresses 
duplicate dumps. 

New Operands on the SLIP Command for Suppressing Dumps 

The SLIP ACTION keyword has new operands, NOSYSA, NOSYSU, NOSYSM, 
and NOSVCD, that separately suppress SYSABEND, SYSUDUMP, 
SYSMDUMP, and SVC dumps, respectively. The new operands make the 
command more versatile. Installations can suppress specific types of dumps for 
ABENDs without suppressing all types. 

Chapter 6. Problem Determination 6-7 



MVS/XA's Use of SLIP Commands 

MVS/XA uses SLIP commands to automatically suppress user and system dumps 
for ABEND codes that normally do not require a dump for problem 
determination. Examples are ABEND codes x'B37', x'D37', x'E37' and x'80A' 
(out-of-space ABENDs). The SLIP commands that suppress those dumps are in 
a new PARMLIB member, IEACMDOO. 

When a system dump is suppressed, the system puts the SVC dump status code in 
the appropriate LOGREC entry, as it does in MVSj370. When a user dump is 
suppressed because of a SLIP command, the system issues a write-to-programmer 
(WTP) message to inform the user. 

If your installation already uses SLIP commands to suppress dumps, compare 
your list with the SLIP commands in IEACMDOO. Delete all unnecessary 
commands to conserve SQA space. SLIP commands in your PARMLIB member 
(COMMNDxx) override commands in IEACMDOO. Therefore, if any commands 
in IEACMDOO are undesirable, delete them or add SLIP commands to override 
them in COMMNDxx. Keep in mind that IEACMDOO might be refreshed with 
subsequent system updates. 

When the system processes IEACMDOO at IPL time, it allocates fixed storage for 
the SLIP action processors and the control blocks they use. "Fixed Storage for 
SLIP Command Processors (IEASLPxx)" describes the fixed storage requirements. 

Dump Analysis and Elimination (DAE) 

Dump analysis and elimination (DAE) is a new SDUMP function in Release 2.1.1 
that collects symptom data before taking SYSMDUMP or SVC dumps. DAE 
uses that data to identify and suppress duplicate dumps. If DAE does not 
suppress a dump, you see the symptom data in the dump header record. 

By means of the SET DAE = xx operator command and appropriate code in 
recovery routines, you can request that DAE do one or more of the following for 
each dump type (SYSMDUMP and SVC): 

• MATCH - Determine if the symptom data matches data already collected for 
the same dump type. Depending on other criteria described later, the system 
either suppresses duplicate dumps or reports matches in dump header records. 

• UPDATE - Record the symptom data in the SYS1.DAE data set. Using 
UPDATE implies MATCH. If the data already appears in SYS1.DAE (that 
is, a problem with the same symptoms has already occurred), instead of 
creating an identical entry, DAE adds one to the incidence count in the 
existing entry. Incidence counts thus indicate the number of times particular 
problems have occurred. They appear in dump header records along with the 
symptom data. 

If you do not request updating, the system keeps the symptom data in storage 
elsewhere, but only until DAE processing is stopped. Consequently, DAE 
cannot use that data for comparison the next time it is active. 

6-8 MVSXA Conversion Notebook, Volume I 

------------ -- --- ---------- ---~-~---------.. ---

/' '\ 

j 



( 

( 

• SUPPRESS - Suppress dumps having symptom data that matches data 
already collected for the same dump type. Using SUPPRESS also implies 
MATCH. Instead of duplicate SYSMDUMPs, users receive message 
IEA838I, which contains the symptom data. DAE does not issue a message 
for suppression of SVC dumps. If you request dump suppression, the dump 
header records of dumps that are NOT suppressed indicate why. 

Note: DAE will not suppress a duplicate dump, even when SUPPRESS is 
requested, when one of the following occurs: 

When you use the following parameters on the SLIP command to prevent 
DAE from suppressing dumps: SVCD (SVC dump), TRDUMP (trace 
dump), and NOSUP (no suppression). NOSUP is new in Release 2.1.1. 
See the SLIP entry in Figure 4-3 for more detail. 

When the recovery routine that calls RTM to take the dump fails to: 

1. provide the symptom information that DAE requires in the 
ABDUMP symptom area, SDW A, SDW AVRA, or SDWA 
extensions 

2. supply the VRADAE key (via the VRADATA macro) in the 
SDWAVRA. 

• 
As of the releases indicated below, the following components' recovery 
routines allow DAE to suppress dumps they produce: 

Releases Components Using DAE 

Release 2.1.1 DAE, allocation, converter/interpreter, display dump command processor, 
DUMPDS command processor, and scheduler JCL facility. 

Release 2.1.2 contents supervision, global resource serialization, SRM, TRACE, and 
VSM. 

Release 2.1.3AE availability manager 

Controlling DAE Processing 

You control DAE processing via records in the new ADYSETxx PARMLIB 
members. Each record can specify: 

• Whether DAE is to be started or stopped 

• The type of processing DAE is to perform for each dump type (UPDATE, 
MATCH, SUPPRESS, or a combination) 

• How many dump entries DAE can store in the SYS1.DAE data set 

Chapter 6. Problem Determination 6-9 



IBM supplies three ADYSETxx members in Release 2.1.1: ADYSETOO, 
ADYSET01, and ADYSET02. ADYSETOO and ADYSET02 are the same. Both: 

• Start DAE processing. 

• Request UPDATE, MATCH, and SUPPRESS processing for SYSMDUMPs 
and UPDATE and MATCH processing for SVC dumps. 

• Allow DAE to store up to 400 entries in SYSI.DAE. 

ADYSETOI stops DAE processing. If you require different options, create 
additional ADYSETxx members or modify ADYSET02. 

A new SET DAE = xx command specifies which ADYSETxx member MVSjXA is 
to use. Only one member can be in effect at a time. However, you can issue a 
SET DAE command at any time to change DAE processing. 

The IEACMDOO PARMLIB member shipped with Release 2.1.1 includes the 
command SET DAE=OO. Thus, unless you change the defaults, during 
initialization, the system automatically starts DAE processing with the options 
specified in ADYSETOO. 

You also have some control over: 

• The symptoms DAE collects for each dump type 

• The minimum number of symptoms that must match before DAE considers 
the dump a duplicate 

• The minimum number of bytes of meaningful data each symptom must 
contain before DAE can use it 

A new non-executable load module, ADYDFLT, contains default symptoms and 
specifies which symptoms are required and which are optional. It also establishes 
the minimum number of bytes the symptoms must contain. SP L: System 
Modifications describes how to add to those defaults using the VRADATA 
macro. 

Actions to be Taken 

Before performing an IPL: 

• Create a SYSl.DAE data set. If SYS1.DAE is not cataloged at IPL time, the 
operator receives a message stating that attempts to start DAE processing 
failed.: SPL: System Modifications describes how to create SYS1.DAE using 
JCL in the DAEALLOC member of SYSl.SAMPLIB. Consider allocating 
SYSl.DAE with DISP=SHR so you can browse, add, or delete records in the 
data set. You might, for examl'le, want to delete information related to a 
problem after applying service to fix it. Note, also that you cannot share 
SYS1.DAE among systems. 

• Ensure that an ADYSETxx member specifies the desired DAE options. 

6-10 MVSXA Conversion Notebook, Volume 1 

\ 

"-



(-

(:: 

• Either ensure that the IEACMDxx member MVS/XA uses contains the 
appropriate SET DAE = xx command, or instruct the operator to issue that 
command. 

New and Updated PRDMP Control Statements 

Statement 2.1.0 2.1.1 

ASMDATA x 

AVMDATA 

DAEDATA x 

DISPLAY x 

FORMAT x 

IOSDATA x 

JES2 

JES3 

LPAMAP x 

MTRACE x 

NUCMAP x 

The following figure describes the print dump (PRDMP) control statements that 
Release 2.l.x adds, updates, or deletes. For more information, see SPL: Service 
Aids. 

Release 

2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

Requests auxiliary storage management (ASM) control blocks. 
ASMDATA no longer formats RSM control blocks, as it did in 
MVSj370. 

x Formats and prints availability manager control blocks. 

Formats and prints the error data (symptoms) that dump analysis and 
elimination (DAE) collects. A new DAE header exit, ADYHDFMT, 
puts the same information on the title page. DAEDATA causes 
PRDMP to repeat the DAE symptoms later in the dump. It is 
designed mainly for use at the terminal. 

DISPLAY is deleted in MVSjXA. Interactive Problem Control 
System (IPCS) provides equivalent interactive dump scanning 
functions. See the IPCS information in this chapter for more 
information. 

Has new operands to limit formatting and printing to selected address 
spaces. The new operands are ASID, JOBNAME, CURRENT, 
ERROR, and ALL. The CURRENT address spaces are the primary, 
secondary, home, and CML lock holder's address spaces. When 
FORMAT is specified without operands, PRDMP formats and prints 
control blocks from the CURRENT and ERROR address spaces only. 

In MVSj370, the FORMAT statement has no operands. PRDMP 
formats and prints control blocks from all address spaces contained in 
the dump. To get that same output in MVSjXA, you must specify the 
ALL operand. 

x Beginning with Release 2.1.2 the FORMAT control statement works 
as though it were a SUMMARY FORMAT statement. It formats 
major system control blocks and data associated with each address 
space in the dumped system. 

Requests lOS control blocks. 

x Formats the contents of specific control blocks within the JES2 
address space. 

x Formats the contents of specific control blocks within the JES3 
address space. 

Requests the names of all modules in the link pack area of the 
dumped system or on the LPA active queue at the time of the dump. 
In MVSj370, PRDMP lists only the names of modules on the LPA 
active queue at the time of the dump. 

LPAMAP also has new operands, EPA and MODNAME, to indicate 
how lists are to be ordered. The EPA operand requests sorting by 
entry point address. MODNAME requests alphabetical sorting by 
module name. If neither is specified, the printed output includes lists 
sorted both ways. 

Formats and prints the master trace table for the dumped system. The 
console messages appear in the order in which they were issued. 

Requests the names of system modules in the nucleus when the dump 
was taken. The list includes the name, entry point, entry point 
attributes, and length of each module. Note that the NUCMAP 
statement does not produce a map of storage in the nucleus. To get a 
map of storage, use either the PRINT STORAGE = control statement 
or the AMBLIST utility. 

Figure 6-2 (Part 1 of 2). New, Updated, or Deleted Print Dump Control Statements 

Chapter 6. Problem Determination 6-11 



Release 

Statement 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

RSMDATA x 

SADMPMSG x 

SUMMARY x 

TCAMMAP x 

TRACE x 

VSMDATA x 

x 

Requests real storage management (RSM) control blocks. 

Formats and prints all the messages written by the SADMP virtual 
storage dump program including some that do not appear on the 
operator console. These messages appear in the message log even if 
you specified 

MSG = ACTION 

when you generated the SADMP program. The meSsage log does not 
contain any of the messages produced by the SADMP real storage 
dump program. 

Release 2.1.2 adds keywords that specify: (1) for which address spaces 
the system is to collect information, and (2) the information to be 
collected. The new keywords are the same as the keywords on the 
IPCS SUMMARY subcommand, which is also changed. See "New 
and Changed IPCS Subcommands." 

Formats and prints the contents of selected ACF/TCAM control 
blocks included in dumps produced by the SADMP and SVC dump 
programs. 

Requests trace data. Programmers must specify the new TRACE verb 
to obtain the system trace table in PRDMP output. TRACE also 
allows users to limit the trace data printed. See SPL: Service Aids for 
a description of trace operands. 

A new verb that requests virtual storage management (VSM) control 
blocks. 

Release 2.1.2 provides keywords for limiting the output. 

The following keywords request the VSM control blocks in the private 
areas of specific address spaces: 

ASIDLIST - Address spaces whose ASIDs are listed on the 
ASIDLIST keyword. 

JOBLIST - Jobs listed on the JOBLIST keyword. You can use 
JOBNAME as an alias for JOBLIST. 

CURRENT - Address spaces that were active when the dump 
was taken. 

ERROR - Address spaces that terminated abnormally 
(ACSBCC~O) or that contain TCBs representing 
tasks that completed abnormally (TCBCMP~O or 
TCBRTWA~O). 

TCBERROR - Address spaces that include TCBs representing 
tasks that terminated abnormally (TCBCMP~O or 
TCBRTWA~O). TCBERROR specifies a subset of 
the informaticn requested USing tlie ERROR 
keyword. 

ALL 

NOASIDS 

- All address spaces in the system. 

- Prevents the system from including VSM control 
blocks from the private areas of any address spaces. 

You can also limit output using: 

GLOBAL - Requests the VSM control blocks in the SQA and 
CSA. 

NOGLOBAL - Prevents the system from including VSM control 
blocks in the SQA and CSA. 

In previous releases, VSMDATA has no keywords. It requests VSM 
control blocks from the private areas of all address spaces, the SQA, 
and the CSA. To get that same information in Release 2.1.2, you 
must specify the ALL and GLOBAL keywords. If VSMDATA is 
specified alone, you get only the VSM control blocks that the 
ERROR, CURRENT, and GLOBAL keywords request. 

Figure 6-2 (Part 2 of 2). New, Updated, or Deleted Print Dump Control Statements 

6-12 MVSXA Conversion Notebook, Volume 1 

c:'.···.·'. " 

.------~~-------



( 
Print Dump Index 

The MVS/XA version of PRDMP writes a dump index and allows user exits to 
insert their own entries into the index. See SPL: Service Aids. 

The MVS/XA PRDMP procedure in SYSl.PROCLIB includes a new DD 
statement requesting that PRDMP write the dump index to a sequential data set 
other than the PRINTER data set. Using a separate index data set allows you to 
print the index before the dump. 

To have the index printed at the beginning of the dump, either use the PRDMP 
procedure in the MVS/XA PROCLIB, or add a DD statement in your own 
PRDMP procedure in PROCLIB. For example: 

//INDEX DD SYSQUT=A 

To obtain the index in front of the dump, the INDEX DD statement must 
precede the PRINTER DD statement. Unless the INDEX DD statement is 
specified, PRDMP prints the index on the PRINTER dataset after the dump. 

Print Dump Requirements for Printers 

Print dump (PRDMP) output lines are 132 characters long. If your installation 
uses a printer with a line length of less than 132 characters, you might lose 
information. 

New and Changed IPCS Subcommands 

The IPCS subcommands listed in the following figure were added or changed 
during Release 2.l.x. See the MVS/XA Conversion Notebook, Volume 2 for a 
similar chart of Release 2.2.x changes. Only the changed EV ALDUMP 
subcommand is incompatible with previous releases of IPCS. 

Chapter 6. Problem Determination 6-13 



Subcommand Description of Change 

EVALDEF The variable list on the CLIST and DIALOG keywords can include SOURCE(variable name). The new term is 
an alternative to using DATASET(variable name) and DSNAME(variable name). 

EVALDUMP You must use one of the following keywords to specify the dump source: 

ACTIVEIMAINISTORAGE 
DSNAME(dsname)I DATASET(dsname) 
FILE(ddname)IDDNAME(ddname) 

Previous IPCS releases expect the second positional parameter to be the data set name.' Therefore, you need to 
change programs that use the EV ALDUMP subcommand. 

The formatted output from EV ALDUMP now includes the keyword ACTIVE, DSNAME, or FILE before the 
dump source. Previous IPCS releases formatted the data set name without the keyword and surrounding 
parentheses. You might have to modify programs because of this change as well. 

The variable list on the CLIST and DIALOG keywords can include SOURCE(variable name). The new term is 
an alternative to using DATASET(variable name) and DSNAME(variable name). 

LISTDUMP The format of the output is changed to display the dump source. 

OPEN You can now designate on the TITLE keyword the timestamp IPCS is to include on the top of every print file 
page. The default timestamp is the time problem analysis started. You might want change it to the time the 
dump was taken. 

RENUM A new subcommand that renumbers the symbols in the symbol stack so that every numeric suffix between the 
first and the last symbol is used. 

RUNCHAIN A new EXEC keyword specifies a CLIST statement or an IPCS subcommand that IPCS executes each time it 
processes a control block in the chain. That is, IPCS locates a control block, processes it as requested, then 
executes the statement or subcommand on the EXEC keyword before continuing to the next control block. 
Thus, you can use the EXEC keyword on RUNCHAIN for iterative processing that previously required several 
statements. 

You can, for example, use RUNCHAIN to look at the RBs queued from a chain of TCBs. On the 
RUNCHAIN command that searches the TCB chain, use an EXEC keyword that specifies another 
RUNCHAIN command, one that searches the RB chain. The system then displays the first TCB, all of the RBs 
chained to it, the second TCB and its RBs, and so on. 

SETDEF The format of the output is changed to display the dump source. 

STACK A new subcommand that creates a symbol in the symbol stack. It is similar to EQUATE, except that you need 
not specify the symbol to be created. IPCS always creates the symbol using the next suffix after the largest one 
used. 

STATUS As of Release 2.1.3VFE, the STATUS subcommand formats the vector registers taken by stand-alone dump 
(SADMP). 

Subcommands Except for ADDDSN, DELDSN, LISTDSN, and MODDSN, all 
that specify IPCS subcommands that accept dump data set names are changed 
the dump to accept these additional dump source keywords: 
source 

ACTIVEIMAINISTORAGE 
FILE(ddn am p.) ! DDNAME(ddname) 

The existing keywords, DSNAME(dsname) and DATASET(dsname), are still valid. For more information, see 
"Accessing Additional Sources of Dump Data Using IPCS." 

Figure 6-3 (Part 1 of 2). New and Changed IPCS Subcommands 

c 
6-14 MVSXA Conversion Notebook, Volume 1 



(~-

(/ 

Subcommand 

SUMMARY 

Description of Change 

Several new keywords provide additional options that specify: (1) for which address spaces the system is to 
collect information, and (2) the information to be extracted. Also, some old keywords have been replaced by 
similar ones that request the same information. These changes are to make the IPCS SUMMARY subcommand 
like the PRDMP FORMAT and SUMMARY FORMAT verbs, which are also changed. Following are the 
keyword changes: 

ALL - Requests information from all address spaces in the system. In previous IPCS releases, if you 
do not specify from which address spaces IPCS is to take information, the default is all address 
spaces. In this release, the default is the ERROR and CURRENT address spaces. 

ASIDLIST -

JOBLIST -

CURRENT­

ERROR-

Replaces the ASIO keyword. Like ASIO, it specifies a list of ASIOs to be processed. The list 
can include a range of ASIOs, which is not allowed in earlier releases. The system accepts ASIO 
as an abbreviation of ASIDLIST, so the change is compatible. 

Replaces the JOB keyword. Like JOB, it specifies a list of job names whose associated address 
spaces are to be processed. To distinguish JOBLIST from the new JOBSUMMARY keyword, 
the minimum abbreviation for JOBLIST is JOBL. JOBNAME is also an acceptable substitute. 
You need to change any programs that specify JOB or J to request JOBLIST information. 

Requests information from all address spaces that were active when the dump was taken. 

Requests information from address spaces that terminated abnormally (ASCBCC;60) or that 
contain TCBs representing tasks that completed abnormally (TCBCMP;60 or TCBRTWA;60.) 

TCBERROR - Requests information from all address spaces that contain TCBs representing tasks that 
completed abnormally (TCBCMP;60 or TCBRTWA;60). TCBERROR specifies a subset of the 
address spaces that ERROR selects. 

ANOMALY - Requests different information in Release 2.1.2 than in previous releases ofIPCS. In Release 
2.1.2, ANOMALY requests the same information as TCBERROR. In previous IPCS releases, it 
requests a subset of the TCBSUMMARY information. 

FORMAT - A new keyword that requests major system control blocks and data associated with each address 
space in the dumped system. FORMAT produces the same output as the PROMP FORMAT 
and SUMMARY FORMAT verbs. 

KEYFIELO - Requests key fields in the ASCBs, TCBs, and RBs of the specified address spaces. The output 
matches the output from the PROMP SUMMARY verb. If you do not request specific 
information on the SUMMARY subcommand, IPCS gives you the information that 
KEYFIELO requests. 

JOBSUMMARY - Requests the following summary information: 

- A list of active CPUs 

- Scheduled services 

- For each address space specified: the jobname, ACSB location, ASIO, status of the 
address space, local service manager queue, local service priority queue, TCB locations, 
completion codes, and whether or not the TCBs were active at the time of the dump 

TCBSUMMARY - Produces the same output, but in a different format. 

Figure 6-3 (Part 2 of 2). New and Cbanged IPCS Subcommands 

Accessing Additional Sources of Dump Data Using IPCS 

The IPeS component of Release 2.1.2 can access: (1) data sets stored on tape as 
well as direct access devices, and (2) main storage of the MVSjXA address space 
in which IPes is executing. Also, multi-volume data sets no longer need to 
contain fixed-length records. Earlier releases of IPes can access only cataloged 
data sets on direct access devices. Multi-volume data sets previously had to 
contain fixed-length records. 

To access the additional sources of dump data, you can now specify the keywords 
listed below on most IPes subcommands that specify the dump source. The only 
subcommands that do not accept the keywords are ADDDSN, DELDSN, 
LISTDSN, and MODDSN: 

ACTIVE, MAIN, or STORAGE 

FILE (ddname) or DDNAME(ddname) 

Chapter 6. Problem Determination 6-15 



New IPCS Panels 

ACTIVE, MAIN and STORAGE all request that information be taken from 
main storage. FILE and DDNAME both specify ddnames currently associated 
with a dump data set. Three subcommands, CLOSE, DROPDUMP, and OPEN, 
allow more than one ddname in parenthesis. 

Four other subcommands, LISTDUMP, SETDEF, EVALDEF, and 
EVALDUMP, are also changed to support new dump sources. Only the change 
to EVALDUMP is incompatible. See "New and Changed IPCS Subcommands" 
for descriptions of the changes. 

Support for additional dump sources calls for new rules regarding which dump 
data sets you can move without invalidating the data set's dump directory entry. 
You can safely move: 

• Data sets containing fixed length records to direct access devices 
• Any data set to a single reel of tape 

Release 2.1.2 includes two new IPCS panels, BLSPDISE and BLSPDSLE. 
BLSPDISE is a top selection panel that, when hooked into the ISPF primary 
option menu, provides a convenient way of initiating IPCS dialogs. The two 
selections on BLSPDISE are: 

• BROWSE, which invokes BLSLDISP, the full-screen dump viewing dialog 
program. 

• IPCS, which displays the other new panel, BLSPDSLE. BLSDPSLE allows 
you to enter IPCS subcommands. 

Your installation might have created similar panels in the past using instructions 
in the [pes User's Guide and Reference. BLSPDISE is similar to the IPSELCT 
panel described in the guide. BLSPDSLE is identical to IPCMD, which is also 
described. 

Changes to the IPCS BROWSE Panels 

Following are several changes in the way you use the Release 2.1.2 BLSLDISP 
panels. Most of the changes are to make BLSLDISP more like the ISPF 
BROWSE and EDIT panels. 

• To identify on entry panels the storage IPCS is to display, use one of the 
following keywords: 

ACTIVE, MAIN, or STORAGE 
DSNAME(dsname) or DATASET (dsname) 
FILE (ddname) or DDNAME(ddname) 

Because IPCS can now access main storage or data sets using a ddname, you 
can no longer simply specify a data set name. 

6-16 MVSXA Conversion Notebook, Volume 1 

/ .\ 

\" / 

o 



<. 

( 

( - ••.. 
. -" 

• Instead of displaying on storage panels repetitive data or blanks for storage 
that cannot be obtained, IPCS inserts a one-line summary, either: 

LENGTH(xxxxx)==> 
LENGTH(xxxxx)==> 
LENGTH(xxxxx)==> 

Storage not available 
All bytes contain X'xx' (or C'c') 
Same as above 

• On pointer and storage panels, you can now use the following primary 
commands: 

STACK Adds a symbol to the symbol stack. 

RENUM Renumbers the symbol stack so that every numeric suffix between the first and last 
symbol is used. 

FIND Locates and displays storage containing specified data. 

RFIND Repeats the last FIND command. RFIND is disabled in Release 2.1.2. You can 
enable it by creating a command table for IPCS, as described in the IPCS User's 
Guide and Reference. 

• You can use two new operands, CURSOR and X, on the primary commands 
you enter on storage panels. CURSOR represents the fullword that the 
cursor precedes or is under. IPCS treats that fullword as the target address of 
a command. For example, LOCATE CURSOR% displays the storage 
beginning at the 24-bit address in the byte the cursor precedes or is under 
when the command is executed. 

X represents the first byte of the displayed storage. IPCS treats the contents 
of that byte as the target address of the command. 

• You can put address space keywords on STACK and LOCATE 
subcommands. Thus, you can display data from an address space other than 
the one currently displayed without leaving the storage panel. 

• IPCS displays the output from IPCS subcommands and dump processing exits 
in full-screen mode rather than line mode. 

• You can update the dump's symbol stack from more than one logical screen. 
Previously, if working in split-screen mode, you could update the stack from 
only one screen. 

For more information, see either the [pes User's Guide and Reference or the 
tutorial panels for the BLSLDISP dialog program. You can access the online 
tutorial by entering HELP on the command line of any BLSLDISP panel. 

Changes to the Titles of IPCS Print Files 

Beginning with Release 2.1.2 IPCS print files have different default titles. Also, 
instead of DATE and TIME headings, the first line of each page contains a 
17-character timestamp. 

The default title is the title in the default dump data set. If no title is available, 
IPCS uses the old default, "IPCS PRINT LOG FOR userid." As in previous 
releases, you can override the default by specifying a different title on the OPEN 
subcommand that opens the print file . 

Chapter 6. Problem Detennination 6-17 



Although the format of the date and time is changed, the default values are still 
the date and time problem analysis started. As of Release 2.1.2, however, you 
can specify a different value (for example, the time the dump was taken) on the 
TITLE keyword of the OPEN subcommand. 

Using the MVS/XA Versions of IPCS and PRDMP on Other Systems 

To aid in migrating to MVSjXA, IBM allows you to execute MVSjXA versions of 
IPCS and PRDMP on certain MVSjSP Version 1 systems. You need the 
MVSJXA versions to view and print MVSjXA dumps. The MVSj370 versions of 
IPCS and PRDMP can process only MVSj370 dumps; the MVSjXA versions can 
process only MVSJXA dumps. In fact, PRDMP erases dumps taken on different 
versions of MVS. 

IBM imposes some restrictions on running the MVSjXA modules on MVSj370 
systems. The MVSj370 processor must be in a location where MVSjSP Version 2 
and MVSjXA DFP are licensed. You can use IPCS and PRDMP on the 
MVSj370 system up to IS months after the first shipment of MVSjXA program 
products to that location. The Agreement for IBM Licensed Programs 
(Z120-2S00) defines the term "location." 

The remainder of this topic describes how to obtain the modules and data sets 
required to run MVSjXA PRDMP and IPCS on an MVS/370 system. You might 
also want to run the PRDMP and IPCS programs from one release of MVSjXA 
on an earlier release. Although you can use any MVSjXA release of PRDMP or 
IPCS to print or view dumps taken on another MVS/XA system, to format all 
control blocks correctly, the level of PRDMP or IPCS must match the level of the 
dump. 

IBM provides the job streams required to copy the MVS/XA IPCS and PRDMP 
modules (except those supporting the JES2, JES3, VTAM, and EREP PRDMP 
exits) into a data set you can use on another system. In addition to creating that 
data set, you need to ensure that the IPCS modules access the correct IPCS/ISPF 
panel and message libraries. The way you perform these tasks depends on 
whether you are copying Release 2.1.2 or earlier levels of IPCS and PRDMP. 
This topic describes each method separately. 

Finally, to obtain the EREP PRDMP exit, it is recommended that you have at 
least EREP Version 3 installed on your MVSj370 system. The EREP PRDMP 
exit which, as of EREP Version 2, is contained in EREP instead of in MVSjXA, 
is required to print MVS/XA LOGREC records. EREP Version 3 runs on both 
MVSJXA and MVS/370 and can process LOGREC records created on either. 

Copying IPCS and PRDMP Modules and Data Sets 

As of Release 2.1.2 the job streams for creating a data set containing PRDMP 
and IPCS modules are in several members of SYS1.ASAMPLIB and, after system 
generation, SYS1.SAMPLIB. 

1. Combine the job streams into one member by running the job stream in the 
MIGJOBOI member. MIGJOB02 will then contain the combined job 
streams. 

6-18 MVSXA Conversion Notebook, Volume 1 

r~\ 

'~j 



( 

( 

(~., 
/ 

2. Replace the data set specification on the SYSLMOD DD statement with the 
name of your target data set. The default name on the SYSLMOD statement 
is SYS1.MIGLIB. 

3. Edit the JOB statement in MIGJOB02 to reflect your account's requirements. 

4. Run the job stream in MIGJOB02 to create the target data set. 

As of Release 2.1.2 MIGJOB02 needs a region size of 256 Kb. 

As of Release 2.1.2 IPCS modules use panels and messages in two data sets, 
SYS1.SBLSPNLO and SYSl.SBLSMSGO, respectively. Earlier systems with IPCS 
installed might also have data sets with the same names. Therefore, to ensure 
that IPCS uses copies of those data sets from Release 2.1.2 or subsequent releases: 

I. Allocate two data sets in which to copy the panels and messages from Release 
2.1.2 or subsequent releases. Give the data sets names other than 
SYSI.SBLSPNLO or SYS1.SBLSMSGO. 

2. Copy SYS1.SBLSPNLO and SYS1.SBLSMSGO data sets from Release 2.1.2 
or later releases into the new data sets. 

3. When allocating the data sets required to run IPCS from Release 2.1.2 or 
later releases, concatenate the new data sets in front of the ISPF message and 
panel data sets and, if included, the SYS1.SBLSPNLO and SYS1.SBLSMSGO 
data sets. (You can omit SYSl.SBLSPNLO and SYS1.SBLSMSGO from the 
concatenation.) 

Note: As of Release 2.1.2 you must have ISPF Version 2 installed on the system 
in order to use the IPCS dialogs on your MVS/370 system .. 

Beginning with Release 2.1.2 the PRDMP procedure for starting PRDMP on 
either an MVSjXA or an MVSj370 system is different from the one for starting 
earlier PRDMP releases. As of Release 2.1.2, PRDMP runs as a command 
processor under TSO. Therefore, the EXEC and DD statements in the procedure 
are changed. See "SYS1.PROCLIB Changes" for a listing of the procedure to use 
beginning with Release 2.1.2. 

Copying Release 2.1.0 and 2.1.1 IPCS and PRDMP Modules and Data Sets 

The job streams for creating a data set that contains Release 2.1.0 or 2.1.1 
PRDMP modules and compatible IPCS modules are in the PRDMPXA and 
BLSAMPLE members of SYS1.ASAMPLIB and, after system generation, 
SYS1. SAMPLIB: 

1. Replace the data set specification on the SYSLMOD DD statement with the 
name of your target data set. 

2. Edit the JOB statements in each member to reflect your account's 
requirements. 

3. Run both job streams to create the target data set. (The PRDMP job stream 
copies component analysis routines that IPCS also uses into the target data 
set. Therefore, to use the MVSjXA level of IPCS on MVSj370, you must run 
both job streams.) 

Chapter 6. Problem Determination 6-19 



The Release 2.1.0 and 2.1.1 levels ofIPCS use panels and messages contained in 
the SYSl.ABLSPNLO and SYS1.ABLSMSGO data sets, respectively. To 
guarantee access to the panels and messages: 

1. Allocate two data sets in which to copy SYS1.ABLSPNLO and 
SYS1.ABLSMSGO. Give the data sets names other than SYSl.SBLSPNLO or 
SYS1.SBLSMSGO, because systems with IPCS installed might already have 
data sets with those names. 

2. Copy SYS1.ABLSPNLO and SYS1.ABLSMSGO into the new data sets. 

3. When allocating the data sets required to run MVS/XA IPCS, concatenate the 
new data sets in front of the ISPF message and panel data sets, and if 
included, the SYSl.SBLSPNLO and SYS1.SBLSMSGO data sets. (You can 
omit SYS1.SBLSPNLO and SYS1.SBLSMSGO from the concatenation.) 

Debugging Considerations 

Changes to the System Trace Facility 

The MVS/XA system trace facility is significantly different from the MVS/370 
version. The following list summarizes the differences: 

• Flexibility in selecting events to be traced 

The MVS/XA system trace facility can perform explicit tracing, address space 
tracing, and branch tracing. Explicit tracing records all of the normal system 
interrupt and dispatch events traced in MVS/370, plus the following: 

Alternate CPU recovery interrupt (ACR) 
Lock suspension (SUSP) 
Machine check interrupt (MCH) 
New I/O instructions 
Restart interrupt (RST) 
Trace options alteration (ALTR) 
User-defined event trace (USRn) 

Address space tracing records successfully-executed PC, PT, and SSAR 
instructions. Branch tracing records successfully executed BALR, BASR, and 
BASSM instructions. (The system does not, however, trace branch 
instructions that do not branch out of line, for example, BALR x,O.) 

The TRACE command is changed to allow installations to dynamically 
control which type of tracing is performed. Options are: 

Explicit and address space tracing on, branch tracing off 
All tracing on 
All tracing off 

The system treats explicit and address space tracing as a single option. Also, 
the system can perform branch tracing only when the other trace options are 
active. 

6-20 MVSXA Conversion Notebook, Volume I 

C) 

.-~--.------



( 

• 

• 

System trace is automatically activated 

The system automatically activates explicit and address space (but not branch) 
tracing at system initialization time. If you prefer other trace options, put an 
appropriate TRACE command in a COMMNDxx PARMLIB member or 
issue the command from the master operator console. In MVS/370, 
installations must use a TRACE command to keep system trace active after 
system initialization time. 

Concurrent system and GTF tracing 

System and GTF tracing can be active at the same time on an MVS/XA 
system. Activating GTF trace no longer turns off system trace, as it does in 
MVS/370. 

Explicit system tracing and GTF tracing record some of the same events. 
Therefore, if you activate both, you might want to tailor GTF trace to record 
only events that explicit system tracing does not record. Diagnostic 
Techniques lists the events that system trace records. SPL: Service Aids 
describes the events that GTF trace records and how to tailor GTF trace. 

• The structure, location, and format of the system trace table is changed 

The system trace table consists of queues of trace buffers, one queue for each 
processor sharing the operating system. The system trace table formatter 
merges the entries from the separate trace buffers into a single logical table. 
In MVS/370, the system trace table is a single buffer. 

The trace buffers are located in the LSQA of a new TRACE address space. In 
MVS/370, the system trace table is located in SQA. Moving the trace data 
reduces the system's use of common virtual storage. It also isolates the trace 
data from the rest of the system, which provides a greater degree of data 
integrity. 

System trace entries vary in length. MVS/370 entries have fixed length. 

• Installations can control the size of the trace table 

The TRACE command is changed to allow installations to dynamically 
change the size of the trace table. The default size is 16 K of trace buffers per 
online processor. The size of the MVS/370 trace table is fixed at IPL time. 

• Installations can create and format their own trace entries 

• 

Installations can use a new macro, PTRACE, to create their own trace table 
entries. System Macros and Facilities describes PTRACE. Diagnostic 
Techniques describes how to create and format user entries. 

Dumping trace data 

TRT, SUM, and SUMDUMP are the only dump options for including the 
system trace data in dumps. The SQA option no longer dumps system trace 
entries because the trace buffers have been moved to the TRACE address 
space. The system trace data printed in user dumps depends on the 
requestor's authorization. If the requestor is authorized, the dump includes 

Chapter 6. Problem Determination 6-21 



SDWA Changes 

the system trace table entries for all address spaces. If the requestor is 
unauthorized, the dump includes only system trace entries from the current 
address space that were made after the job started. Dumping only job-related 
trace entries for unauthorized users improves system integrity and makes 
debugging problem programs easier. 

SVC dumps include trace entries for all address spaces. The trace data always 
appears in the non-summary part of the dump, even when dumped in 
response to a SUM or SUM DUMP request. 

Because the MVS/XA trace data is in separate buffers and the trace entries 
vary in length, it is not feasible to read unformatted dumps of the trace table. 
Installations need to use print dump (pRDMP) or SNAP/ABDUMP dump to 
format trace table entries. The system trace table formatter merges the entries 
from the separate trace buffers into a single logical table. The formatter 
merges timestamped entries (explicit trace events) from oldest to newest. It 
merges branch and address space trace entries, which are not timestamped, in 
relative order to the timestamped entries. 

Note: To obtain formatted trace table entries you must include the new 
TRACE verb in the PRDMP procedure. The TRACE verb has operands that 
allow installations to limit the trace information printed. See "New and 
Updated PRDMP Control Statements." 

The SDW A has increased in size. All of the additional storage is included in 
SDW A extensions. The additional storage contains data for I/O machine checks, 
new locks, new dump tailoring options that specify storage subpoollists, and new 
service data. The information is contained in the following extensions: 

• The previously-existing recordable extension 1 (SDWARCl) contains 
additional service data. 

• The new recordable extension (SDW ARC2) contains I/O machine check data. 

• The new recordable extension (SDW ARC3) contains new lock and lockword 
information that can be speeiut:u in ihe FRELOCK keyword of the SETRP 
macro. 

• A new non-recordable extension (SDWANRC2) contains the SNAP dump 
tailoring information for storage subpools. 

Addressing Mode Reflected in Dumps 

When producing summary (SUM or SUMDUMP) dumps, dump routines use the 
addressing mode at the time of the error to determine whether the addresses in 
registers are 24-bit or 31-bit values. If a program is running in 31-bit addressing 
mode when an error occurs, the system treats addresses as 31-bit values. If a 
program is running in 24-bit addressing mode, the system treats them as 24-bit 
values. If a program has 31-bit addresses in some registers and changes to 24-bit 
addressing mode just before an error occurs, the dump routines consider the 
addresses to be 24-bit values. As a result, dumps at times might include the 
contents of incorrect storage locations. 

6-22 MVSXA Conversion Notebook, Volume 1 

C·.: J 

/." 

\'_-7) 

c 



I (-

Specifying Reason Codes 

Users can specify their own reason code on ABEND, CALLRTM, and SETRP 
macros. The user-supplied reason code supplements the completion code 
associated with abnormal termination. It allows users to uniquely identify the 
causes of abnormal termination that have meaning for their programs. RTM 
propagates the reason code to each recovery exit and to the TCB and ASCB 
control blocks so that the user-supplied reason code appears in system messages. 

System Termination Facility Wait State Codes 

Exceeding the Region Limit 

In MVS/370, the system termination facility (IGFPTERM and IGFPTREC) 
issues wait state code X'024' when IGFPTREC fails to receive an I/O interrupt 
while attempting either to write a SYS1.LOGREC record or to issue a WTO 
message. Users are prevented from seeing the wait state code of interest, namely 
the wait state code indicating the error condition that caused system termination 
processing to begin (the wait state code in the LRB passed to IGFPTERM). 

In MVS/XA, the system termination facility puts into the PSW the wait state code 
and the optional reason code found in the LRB, and a reason code indicating why 
IGFPEMER is in a wait state. (In MVS/XA, IGFPEMER replaces IGFPTREC.) 

PSW 

rrrrwwww 

Wait state code (wwww) and 
optional reason code (rrrr) found in 
the LRB passed to IGFPTERM 

The reason IGFPEMER is in a wait 
state. IGFPEMER is either waiting for: 

1 - an interrupt indicating that the 
channel path is cleared. or 

3 - an interrupt indicating that I/O 
is completed 

Programmers seeing a wait state code in a PSW with this format can locate the 
message that was to be displayed at the operator's console and the LOGREC 
record that was to be written to SYSl.LOGREC. At the time the wait state code 
is loaded, Register 1 points to a 2-word parameter list. The first word contains 
the address of the WTO message, the second word contains the address of the 
LOGREC record. 

With MVS/XA, installations can use the SMF step initiation exit (IEFUSI) to 
specify region size and region limits. When IEFUSI changes the VSM region size 
and region limits, MVS/XA records the change in an SMF type 30 record. 
Therefore, if a job is cancelled for exceeding the limit when the JCL specified 
adequate space, check for an SMF record indicating that IEFUSI changed the 
limit. See "Limiting User Region Size using IEFUSI Instead of IEALIMIT" in 
Chapter 5 for a description of the IEFUSI enhancements. 

Chapter 6. Problem Determination 6-23 



Diagnosing Checkpoint/Restart Errors 

If an internal error occurs in Release 2.1.2 and subsequent releases, 
checkpoint/restart puts diagnostic information into the SDW A for recording in 
SYSl.LOGREC. Checkpoint/restart also issues an SVC dump to store selected 
dump information in a SYSl.DUMPxx data set. The dump information includes: 

• All storage currently allocated to checkpoint/restart 
• 4 Kb of storage on each side of each register 
• Load modules 
• The SDWA 

Dumps obtained using SYSUDUMP or SYSABEND DD statements are not 
useful for solving problems in checkpoint/restart. Use PRDMP or IPCS to print 
dumps that checkpoint/restart creates. 

6-24 MVSXA Conversion Notebook, Volume 1 

c 



( 

(/ 

Chapter 7. Accounting 

This chapter contains information pertaining to accounting procedures. In 
general, converting to MVS/XA does not require that you change your accounting 
programs significantly, if at all. You do, however, need to examine accounting 
programs to determine whether they will: 

• 

• 

Execute successfully in MVSjXA. Most SMF records are the same or 
compatibly expanded in MVSjXA. Therefore, in many cases, accounting 
programs will work unchanged. 

Bill jobs the same whether executed on MVSjXA or MVS/370 or on different 
releases of MVS/XA. After MVS/XA is installed and operating, you can 
perform comparison runs between your present system and MVSjXA. 
Depending on the results, you might need to adjust your accounting or billing 
algorithms. 

Although SMF reports additional measures of I/O activity and virtual storage 
use, it continues to report the old data as well. In most instances, the data is 
also derived the same way. Processor or CPU utilization times and EXCP 
counts of the number of physical blocks of data transferred for application 
data sets are calculated as in MVS/370. EXCP counts for program libraries, 
however, are slightly different. "Increases in EXCP Counts for Program 
Fetch Activity" describes the differences. 

With MVSjXA DFP Version 2 Release 1.0 a new address space, the catalog 
address space, is created. Catalog activity such as CPU and SRB time and 
EXCP counts are charged to this address space and not to the requesting 
address spaces as in previous releases. The accounting figures for a job may 
be affected depending on the amount of catalog activity required by the job. 
Catalog address space accounting information is recorded as an SMF type 30 
subtype 6 record. 

The topics in this chapter describe some changes that might affect existing 
accounting programs. Most of the information, however, describes new 
measurements you will want to use in the future, after your MVSjXA system is 
stabilized. The topics included are: 

• 
• 
• 
• 
• 
• 
• 

"Device Connect Time" on page 7-2 
"New Fields Measuring Virtual Storage Use" on page 7-2 
"SMF30PRVand SMF30SYS Fields" on page 7-2 
"Type 22 SMF Record Updates" on page 7-3 
"Increases in EXCP Counts for Program Fetch Activity" on page 7-3 
"Summary of SMF Record Updates" on page 7-4 
"SMF Compatibility Between Release 2.1.0 and Later Releases" on page 7-8 

Chapter 7. Accounting 7-1 



Device Connect Time 

In addition to the EXCP counts available in MVS/370, SMF accumulates device 
connect time for each data set defined by a DD statement, for each address space, 
and for each command issued during a TSO session. Device connect time is 
similar to channel busy time in MVS/370. It measures the amount of time during 
an I/O operation that the channel subsystem is transferring data or control 
commands (such as SEEK) on the channel path. Device connect time is a more 
accurate measure of actual device use than the number of physical blocks 
transferred (the EXCP count). 

Type 30 and 32 SMF records include new fields for reporting device connect time. 
In type 30 records, the SMF30DCT field in the EXCP section indicates the device 
connect time for a data set. The SMF30TCN field shows the total device connect 
time for the address space. The SMF32TCT field in type 32 records reports the 
total device connect time used while executing a command during a TSO session. 

If you currently obtain EXCP counts from type 4, 5, 34, or 35 records and plan to 
use device connect time in MVS/XA, consider modifying those programs to 
obtain EXCP counts from type 30 and 32 records instead. Changing the 
programs now might ease the transition later. Device connect time is not reported 
in the other records mentioned. 

New Fields Measuring Virtual Storage Use 

The storage and paging section of type 30 SMF records includes new fields that 
report virtual storage use above and below 16 megabytes. Eventually, you might 
want to modify accounting routines that measure virtual storage to use the new 
data. Many system control blocks have moved to virtual storage above 16 
megabytes. Also, user programs will begin using storage above 16 megabytes. 

The new fields report: 

• The region size below and above 16 megabytes (SMF30RGB and 
SMF30ERG) 

• The m3)rirrlll!!!. amount of virtual storage allocated fWIIl the LSQA and SW A 
subpools below and above 16 megabytes (SMF30ARB and SMF30EAR) 

• The maximum amount of virtual storage allocated from the user subpools 
below and above 16 megabytes (SMF30URB and SMF30EUR) 

SMF30PRV and SMF30SYS Fields 

The SMF30PRV and SMF30SYS fields continue to report private area use below 
16 megabytes. However, MVSjXA calculates the source for the fields differently 
than MVS/370. In MVSjXA, SMF30SYS and SMF30PRV show the total 
number of bytes (in I K units) allocated from subpools in the high and low ends 
of the private area, respectively. The amounts do not include imbedded free 
blocks. 

The MVS/370 values report the total number of bytes between the highest and 
lowest addresses allocated from subpools in the high and low ends, respectively. 

7-2 MVSXA Conversion Notebook, Volume 1 

, " , \ 

c 



( 

The amounts include any free blocks imbedded in the respective ranges. 
Therefore, the MVSjXA values might be lower than the MVS/370 values for the 
same job. 

The following picture illustrates the differences between the MVS/XA and 
MVS/370 values. 

High end 

allocations 

Low end 

allocations 

Field 

SMF30SYS 
SMF30PRV 

Private Area Below 16 Mb 

/ / / / / / / Free Block / / / / / / / / 

/ / / / / / / Free Block / / / / / / / / 

MVS/XA Value 

128K 
552K 

MVS/370 Value 

208K 
568K 

8192K 

8092K 

8012K 

7984K 

588K 

240K 

224K 

20K 

Two new fields in the type 30 record (SMF30ARB and SMF30URB) report the 
same data as the MVS/XA SMF30SYS and SMF30PRV fields, but in bytes 
instead of 1 K units. SMF30ARB is equivalent to SMF30SYS. SMF30URB is 
equivalent to SMF30PRV. 

Type 22 SMF Record Updates 

MVSjXA replaces the channel section of type 22 records with channel path 
information. Therefore, you must at least reassemble existing programs that use 
type 22 records. You might also want to modify the programs to use the new 
channel path data. 

Increases in EXCP Counts (or Program Fetch Activity 

The EXCP counts that SMF records for program fetch activity are likely to be 
higher in MVSjXA than in MVS/370. In both systems, SMF records EXCP 
counts in either the SMF30TEP field or, if a STEPLIB is used, in the 
SMF30BLK field or the equivalent SMF4EXCP field. (SMF30TEP and 
SMF30BLK are type 30 SMF records; SMF4EXCP is a type 4 record.) If your 
installation uses any of these fields to measure program fetch activity, you need to 
determine if the increase affects your accounting programs. 

The higher counts result from program fetch changes described in "Ensuring 
Optimal Program Fetch Performance" in Chapter 8. MVSjXA records all fetch 
I/O activity, whereas MVS/370 misses some. (For example, it appears that 
MVS/370 does not count redrives caused by the need to fix additional storage.) 

Chapter 7. Accounting 7 -3 



The Release 2.1.0 and 2.1.1 versions of program fetch count actual EXCPs. In 
systems with Release 2.1.2 program fetch or its equivalent (the version obtained 
by installing the PTF for APAR OZ75713 on Release 2.1.1), the EXCP counts for 
non-overlay modules with correct relocation dictionary (RLD) count values report 
the number of text blocks transferred instead of actual EXCPs. These counts are 
likely to be the same as the actual EXCP counts obtained in earlier MVS/XA 
releases. For overlay modules the SMF counts in Release 2.1.2 and its equivalent 
are likely to be less than in earlier MVS/XA releases, but more than in MVS/370. 

Summary of SMF Record Updates 

The following chart summarizes the SMF record updates for Release 2.l.x. Be 
sure to consult the corresponding chart in the MVS/XA Conversion Notebook, 
Volume 2 for information on SMF record updates for Release 2.2.x. For more 
detail, see SPL: SMF. 

7-4 MVSXA Conversion Notebook, Volume 1 



Release 

SMF Record 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

Type 4 x In Release 2.1.2, the SMF4RSHO field is increased from 2 
( 

(Step Termination) bytes to 4 bytes to accommodate a region size greater than 
16 megabytes. It is moved from the beginning to the end of 
the storage and paging section to avoid changing the offsets 
of other fields in the record. You must recompile programs 
that use the SMF4RSHO field. 

Type 6 (JES2) x Includes several new fields at the end of the 3800 Printing 
Subsystem section. The new fields are meaningful only if 
the 3800 Printing Subsystem Model 3 is running under a 
functional subsystem (FSS). 

Type 6 (JES2,JES3,PSF) x By installing Release 2.1.3VFE or by applying the PTFs for 
the APARs listed below to previous releases, installations 
have a restructured type 6 record. It has three extensions 
(3800, Routing, and 3800-3), any combination of which will 
be present depending on your level of MVS and JES2 or 
JES3. The header section of the restructured record 
includes bits that indicate when the 3800-3 extension is 
present (SMF6PADI, bit 2 = I) and when PSF has 
generated the type 6 record. (SMF6SBS, PSF = X'OOOT). A 
record-level indicator field (SMF6INDC) has been created 
and is set to X'OI' to indicate the type 6 record is a 
restructured record. In subsequent releases, each time a 
subsystem changes the type 6 record, it will also increment 
the record-level indicator. see SPL: SMF for details on the 
restructured type 6 record, and contact your IBM 
representative for information on the PTFs. 

For JES3 and PSF subsystems, the restructured type 6 
record is incompatible with previous type 6 records. If you 
install the PTFs or Release 2.1.3VFE and use these 
subsystems, you must recompile all post-processing 
programs that use type 6 records. 

JES2 support for the type 6 restructure is incorporated in 

f Release 2.1.5. Prior releases of JES2 use their own copy of 
the type 6 record and are not affected by the restructure. 
The only difference between the old and the new, 
restructured, JES2 type 6 record is the record-level indicator 
in the header. Therefore, the restructured SMF type 6 
record can be used to map both the old and the new JES2 
type 6 records. 

The AP ARs which apply to the restructure are: 

SMF OZ85601 or OZ85602 
JES3 OZ84504 
PSF OZ85790 
SLR PP41106 

Figure 7-1 (Part 1 of 3). SMF Record Updates 

Chapter 7. Accounting 7-5 



Release 

SMF Record 2.1.0 2.1.1 2.1.2 2 .• 1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

Type 22 x The channel section of the configuration record is replaced 
(Configuration Record) by a channel path section. Also, the format of the storage 

section is changed to report 31-bit counters and addresses. 

x A new extended storage section has been added to include 
the amount of extended storage on line at IPL time. 
Programs that use the mapping macro for this record only 
need to be recompiled if they need to access the extended 
storage data in the type 22 record. 

x The CPU element section includes a new Vector Facility 
indicator flag to show which processors have a Vector 
Facility online. You need to recompile programs using the 
type 22 record only if you want to use the Vector Facility 
online status information. 

x A type 22 record is written each time the ESTOR(E=id) 
keyword is used on the CONFIG command to configure 
extended storage online or offiine. Field SMF22IND is set 
to 3 when the storage is taken omine and set to 2 when the 
storage is brought online. 

Type 24 (JES2) x By installing Release 2.1.3VFE, or applying the PTFs for 
APAR OZ85828 to Releases 2.1.2 and 2.1.3, installations 
have this new record. It is used only by JES2 to record 
spool offioad activity to offioad data sets. 

Type 30 (Common x Includes additional fields described in 
Address Space Work "Device Connect Time" and 
Record) "New Fields Measuring Virtual Storage Use." One other 

new field in the completion section, SMF30ARC, reports 
the abend reason code. 

Also, MVS/XA calculates the values in the SMF30PRV and 
SMF30SYS fields differently. See "SMF30PRV and 
SMF30SYS Fields." 

x In Release 2.1.2, the SMF30RGN field is increased from 2 
bytes to 4 bytes to accommodate a region size greater than 
16 megabytes. It is moved from the beginning to the end of 
the storage and paging section to avoid changing the offsets 
of other fields in the record. You must recompile programs 
that use the SMF30RGN field. 

x The processor accounting section includes the Vector 
Facility usage and Vector Facility affinity time. 

The processor accounting section also includes, for type 30 
interval processing, the start time and date for the subtype 2 
and 3 records. 

You need to recompile programs using the type 30 record 
only if you want to make use of the Vector Facility 
information or the subtype 2 or 3 interval start time and 
date. 

Type 32 (TSO User x Includes the device connect time per TSO user, in addition 
Work Accounting to the existing data. 
Record) 

Type 34 (TSO x In Release 2.1.2, the TIVEFRGN field is increased from 2 
Step Termination) bytes to 4 bytes to accommodate a region size greater than 

16 megabytes. It is moved from offset 74 to offset 82 to 
avoid changing the offsets of other fields in the record. You 
must recompile programs that use the TIVEFRGN field. 

Types 4, 14, IS, 19, 30, x The adjacent fields containing channel addresses and unit 
34, 40, 64, and 69 addresses are combined to form a single field for a device 

number. 

Figure 7-1 (Part 2 of 3). SMF Record Updates 

7-6 MVSXA Conversion Notebook, Volume 1 



Release 

(- SMF Record 2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Description of Update 
VFE AE 

Type 4, 30, 34 and 40 x VIO data sets are designated by the value X'7FFF' in the 
device address field. MVS/370 uses the value X'OFFF', 
which is a valid device number in MVS/XA. 

Type 70-79 x The formats of these records have changed. As a result: 

- Installations must use the post processor and report 
writers shipped with RMF Version 3 to process 
Version 3 SMF records. 

- Installations must modify user programs that process 
SMF records 70-79. RMF Reference and User's 
Guide describes the new format. Most fields contain 
the same information in Version 3 as they did in 
Version 2. 

- The RMF Version 3 post processor can process SMF 
records written by RMF Version 2 Release 2.2 (SE2 
support) or later levels. The post processor converts 
the old records to the new format before processing 
them. Installations cannot assume that all data in 
the old records appears in the converted records. 
Because the contents of some records are changed 
(particularly those dealing with I/O operations), the 
post processor omits some data from the old records. 
The meanings of other fields have changed. 

- Installations that require data in SMF records 
written by an earlier level of RMF than RMF 
Version 2 Release 2.2 need to keep both the records 
and the earlier level of the post processor. 

x In RMF Version 3 Release 3 that supports Release 2.1.3, 
SMF record types 71,78, and 79 have been updated 
incompatibly. Programs that use these records must be 
modified and recompiled: 

- Type 71 includes a new swap placement data section. 
The old swap count fields remain, but they are now 
filled with zeroes. 

- Types 78 and 79 include new subtypes (subtype 3 
and subtype 14, respectively) for I/O queuing activity. 

- Type 79 also includes two new range fields for larger 
domain numbers. 

x RMF provides three new fields in the type 70 CPU data 
section. Two support the Vector Facility and one is reserved 
for future use. SMF70VFS is useful for calculating vector 
affinity time. SMF70V is useful for ensuring that the 
affinity time in the post processor CPU duration report is 
valid. You need to recompile programs using the type 70 
record only if you need to use the Vector Facility 
information. See SPL: SMF for more details on these 
changes to the type 70 record. 

x RMF Version 3 Release 4.1 places a zero in field 
R791SEQN of the type 79 subtype 1 record. 

Type 90 x All of the fields in subtype 3 have increased from I to 2 
bytes because Release 2.1.3 includes an increase in the 
maximum MPL from 256 to 999. Any programs using SMF 
type 90 subtype 3 records must be recompiled. 

Programs that need to handle subtype 3 records from both 
Release 2.1.3 and earlier releases can look at field 
SMF90RVN to determine which lengths and offsets to use. 
SMF90RVN contains X'02' if the subtype 3 record was 
produced by Release 2.1.3 and X'OI' if it was produced by 
an earlier release. 

All records x Bit 5 in the header is set to I. The flag allows users to 
distinguish MVSjXA records from MVS/370 records. 

Figure 7-1 (Part 3 of 3). SMF Record Updates 

(/ 

Chapter 7. Accounting 7 -7 



SMF Compatibility Between Release 2.1.0 and Later Releases 

As of Release 2.1.1, to improve performance SMF changes data set handling in 
two ways: 

• When formatting an SMF data set, SMF fills it with dummy records instead 
of binary zeros, as before. The dummy records are shorter than any valid 
SMF record and contain the characters 'SMFEOFMARK'. The SMF dump 
program, IFASMFDP, recognizes dummy records and terminates processing 
when it encounters one. Thus, IFASMFDP no longer reads to the physical 
end of file when processing partially filled data sets. 

• SMF uses a binary search rather than a linear search to find where to start 
recording in a partially full data set. A binary search reduces the number of 
control intervals read before finding the starting point. 

The Release 2.1.1 changes are compatible. Release 2.1.0 and later versions of 
IF ASMFDP can read data sets with or without the SMF EOF marks. Although 
you can use the same SMF data sets for all levels of the system, you need to 
consider the following points: 

• If you use the CLEAR or ALL options when running IFASMFDP, SMF 
formats the SMF data sets according to the release level ofIFASMFDP. 

• When processing data sets that contain SMF EOF marks, the Release 2.1.0 
level of IF ASMFDP ignores the marks and reads every control interval to the 
end of the data set. There is no performance gain. The Release 2.1.1 and 
later levels of IF ASMFDP recognize the SMF EOF marks and terminate 
processing. You see the most significant performance gain when processing a 
large data set that contains SMF EOF marks and is almost empty. 

• When processing data sets that do not contain SMF EOF marks, all levels of 
IF ASMFDP read every control interval to the end of the data set. There is 
no performance gain. 

• If you IPL a Release 2.1.0 system using SMF data sets that contain SMF 
EOF marks, the data sets appear full during normal data set selection. The 
operator must dump and clear at least one data set before SMF can begin 
recording. 

• To find where to begin recording, the Release 2.1.1 level of SMF performs a 
binary search, regardless of the data set's format. The Release 2.1.0 level 
always performs a linear search. In neither case are -any records lost. 

• SMF initialization does not reformat any data set unless: 

The data set has a bad control interval that caused an I/O error during 
the previous IPL. The data set was taken out of service after the error 
occurred, but the control interval is still bad. 

The data set hasjust been allocated and has not been formatted. 

7-8 MVSXA Conversion Notebook, Volume 1 

~-" 

~ 



(-
In summary, you probably want to use the Release 2.1.0 level ofIFASMFDP 
until your more current system is in production. You thereby avoid the situation 
where all SMF data sets appear full and, when running Release 2.1.1 or 
subsequent releases, you still have the advantage of a binary search. 

Chapter 7. Accounting 7-9 



7-10 MVSXA Conversion Notebook, Volume 1 

if 

\~~j 



,( .. 

( 

Chapter 8. Measurement and Tuning 

This chapter includes topics related to performance: 

• "Ensuring Optimal Program Fetch Performance" on page 8-1 
• "Using a New Directory for LNKLST Data Sets" on page 8-7 
• "SMF Data Set Placement" on page 8-9 
• "Using Residency Time to Calculate the Page-in Rate of an Address Space" 

on page 8-9 
• "Changes to ASM's Paging Algorithms" on page 8-9 
• "Resource Access Control Facility (RACF) Considerations" on page 8-10 
• "Automatic Priority Group (APG) Specifications" on page 8-11 

Ensuring Optimal Program Fetch Performance 

Program fetch was rewritten in MVSJXA DFP Version I Release 1.0, modified in 
MVSjXA DFP Version I Release 1.2, and further modified in MVSjXA DFP 
Version 2 Release 1.0. These modifications improve program fetch performance 
and reduce the differences in handling overlay and non-overlay modules. 

Installations with MVSjXA DFP Version 1 Release 1.1 obtain function equivalent 
to MVSJXA Version I Release 1.2 improvements by installing the PTFs for the 
following APARs: 

OZ75713 - Replaces program fetch 

OZ75717 - Changes the ALTERMOD and COPYMOD functions 

OZ76136 - Changes a SYSGEN macro to ensure that future SYSGENs 
correctly include the new version of program fetch 

Installations at the MVSjXA DFP Version 1 Release 1.2 level obtain functions 
equivalent to MVSjXA DFP Version 2 Release 1.0 by installing fixes for the 
following AP ARs: 

OZ82525 - Replaces program fetch 

OZ82530 - Changes IEBCOPY 

OZ82528 - Linkage editor 

Chapter 8. Measurement and Tuning 8-1 



All MVSjXA versions of program fetch can fetch the same modules as the 
MVSj370 version. However, for optimal performance, the MVSjXA DFP 
Version 2 Release 1.0 level of program fetch requires: 

• A count value for each text block. The count value is the number of 
relocation dictionary (RLD), control, and RLDjcontrol records associated 
with the text block. 

• A count value of the number of text blocks in each overlay segment. 

• Text blocks as large as the linkage editor allows for the output device. 

"Recommended Actions" later in this topic describes how to modify program 
libraries to attain optimal fetch performance. The changes have no effect on the 
MVSj370 fetch process. The programs you can use to insert count values and 
reblock modules are: 

• The linkage editors supplied with MVSjXA DFpl, MVS/370 DFP, and 
DFDS 1.42• 

• The ALTERMOD and COPYMOD functions of MVSjXA DFP and 
MVSj370 DFP versions of IEBCOPY. These functions of IEBCOPY in both 
MVS/370 DFP Release 2.1.1 and MVS/XA DFP Version I Release 1.1 can 
insert count values in and reblock only non-overlay modules (modules that are 
not in an overlay structure). These functions of IEBCOPY in MVSjXA DFP 
Version 2 Release 1.0 (and in MVS/XA DFP Version 1 Release 1.1 with the 
fix for APAR OZ75717 installed and MVSjXA DFP Version 1 Release 1.2) 
will insert count values in and can reblock both overlay and non-overlay 
modules. 

The linkage editor supplied with MVS/XA DFP supplies the count of text blocks in 
an overlay segment. This function is included in MVS/XA DFP Version 2 and can 
be added to MVS/XA DFP Version I by means of APAR OZ82528 
(PTF UZ78282). 

2 You need to install the fix for APAR OZ57635 on DFDS 1.4 to obtain correct 
counts. Modules link edited using the DFDS 1.4 linkage editor without the 
required PTF installed might contain incorrect counts. Incorrect counts have no 
effect on the MVS/370 fetch process. However, they degrade fetch performance in 
MVSjXA. If MVS/XA program fetch encounters an incorrect count value, it issues 
message CSV300I and continues without using count values. 

The steps described in "Recommended Actions" correct any incorrect counts. If 
you take those actions, you need not separately search for and link edit modules 
with incorrect counts. 

8-2 MVSXA Conversion Notebook, Volume 1 



( 

(: 

Performance Related Changes to the Linkage Editor and IEBCOPY 

The linkage editor and IEBCOPY programs identified earlier record the number 
of relocation dictionary (RLD), control, and RLD/control records following each 
text block. They put the record count following the first text block in the load 
module's PDS directory entry. They record the counts for subsequent text blocks 
in the RLD/control or control record immediately preceding the text block. They 
also record the count of text blocks for each overlay segment in the corresponding 
note list entry. 

Because the count values are located in existing fields that neither MVS/370 
program fetch nor previous linkage editors use, load modules containing count 
values are downward compatible. 

Performance Related Changes to Program Fetch 

Recommended Actions 

If valid counts are available, MVS/XA DFP Version 2 Release 1.0 program fetch 
reads one text record and up to 48 associated RLD, control, or RLD/control 
records using a single I/O operation. Program fetch uses program controlled 
interruptions (PCls) to dynamically chain additional read operations to the 
channel program whenever possible. The PCI processing in MVS/XA DFP 
Version 2 Release 1.0 involves less disabled time than the PCI processing in 
MVS/370. 

When the count values are invalid or missing, program fetch issues one I/O 
request for each text record and the first RLD or control record that follows, and 
one I/O request for each additional RLD, control, or RLD/control record. 
Therefore, fetch performance in MVS/XA depends on: 

• Whether or not valid count values are present. 

• The size of each text block. It is best to have block sizes as large as the 
linkage editor allows for the device type. The larger the block size, the more 
time program fetch has to chain additional read requests to the currently 
executing channel program. Chaining read requests improves performance by 
eliminating the need to: 

Initiate separate I/O requests. 
Perform SEEK operations if the access mechanism has been repositioned. 
Re-establish the rotational position required to begin the read operation. 

You can significantly improve fetch performance by inserting count values in 
modules that lack them, and by reblocking modules. 

You can update modules using new operations that the MVS/XA DFP or 
MVS/370 DFP versions of IEBCOPY provide: 

• ALTERMOD simply inserts count values. 

• COPYMOD copies modules from one library to another. In the process, it 
inserts count values and reblocks the modules. 

Chapter 8. Measurement and Tuning 8-3 



Using IEBCOPY with the COPYMOD parameter produces a new data set. 
Therefore, after copying the modules, you need to scratch the original data set 
and rename the new one. 

The primary candidates for reblocking are: 

• SYS1.LINKLIB 
• SYS1.CMDLIB 
• Program libraries used by interactive applications (for example, CICS and 

IMS, provided those programs us~ the standard program fetch) 

Reblock the system libraries after constructing the system. 

When using the IEBCOPY COPYMOD statement, you need to consider two 
parameters, MAXBLK and MINBLK, which specify the maximum and minimum 
block sizes IEBCOPY can create. 

• Take the 'default MAXBLK value to obtain the largest block sizes the linkage 
editor supports for the device type. 

• Use a MINBLK value of 1K. The initial default value for MINBLK is 1K; 
however, your installation might have changed it. Utilities describes how to 
reset MINBLK. 

Setting a small MINBLK default value might seem like a contradiction. 
However, the MINBLK value affects only the size of the last data record on 
a track. Because of the way program fetch chains read requests across tracks, 
that record can be small without negatively affecting program fetch 
performance. 

You can also update modules by link editing them using any of the linkage 
editors identified on page 8-2. Unless you need to link edit a module for other 
reasons, however, using IEBCOPY is easier and faster. 

Increasing the Size of the Page-fixed Area 

Some MVSj370 installations improve fetch performance by increasing the amount 
of virtual storage program fetch fixes at one time. They make the change by 
adjusting a constant value within the page fix program. Because MVSjXA 
program fetch fixes 96K at one time, the equivalent modification is not required 
in MVSjXA. (MVSj370 program fetch fixes 18K. MVSj370 DFP program fetch 
fixes 64K. If you apply PTF UZ243577 to the MVSj370 program fetch, it fixes 
18K for all input records up to 18K and an appropriate amount of storage for all 
input records greater than 18K and up to 32K.) 

Maintaining Count Values and Optimal Block Sizes 

To maintain count values and optimal block sizes when link editing the modules 
you modify, always use one of the linkage editors listed earlier. In addition, 
ensure that the linkage editor constructs the largest possible block size for the 
device being used. The linkage editor in MVSjXA DFP Version 2 allows 
maximum block sizes up to 32K. "Assembling and Link Editing Programs" on 
page 9-2 describes additional maintenance considerations. The following figure 

8-4 MVSXA Conversion Notebook, Volume 1 

o 

If '-. 
~! 



summarizes how different versions of program fetch, IEBCOPY, and the linkage 
editor handle modules with and without count values. 

INPUT PROGRAM OUTPUT/COMMENTS 

A load module MVSjXA DFP linkage editor A load module with count values 
without count inserted. Depending on the JCL used 
values MVSj370 DFP linkage editor and other linkage editor constraints, 

the text records might also be 
DFDS 1.4 linkage editor with reblocked. 
the required PTF installed 

Earlier versions of the linkage A load module without count values. 
editor Depending on the JCL used and other 

linkage editor constraints, 
the text records might also be 
reblocked. 

The ALTERMOD or COPYMOD A load module with count values 
functions of the IEBCOPY inserted. If COPYMOD is used, 
program in MVSjXA DFP the module will also 
Version 1 Releases 1.1 and 1.2 be reblocked. 
with the required PTF or MVSjXA 
DFP Version 2 Release 1.0 

The ALTERMOD or COPYMOD A non-overlay load module has 
functions of the IEBCOPY count values inserted; an 
program in MVSj370 DFP overlay module does not. If 
Release 1.1 COPYMOD is used, a non-overlay 

module will also be reblocked. 

Earlier versions of IEBCOPY A load module without count values. 
The module is not reblocked. 

MVSjXA program fetch In some cases, you might observe 
program fetch performance 
degradation. 

MVSj370 program fetch No change. 

A load module MVSjXA DFP linkage editor A load module with count values 
with count inserted. Depending on the JCL used 
values MVSj370 DFP linkage editor and other linkage editor constraints, 

the text records might also be 
DFDS 1.4 linkage editor with reblocked. 
the required PTF installed 

Earlier versions of the linkage A load module without count values. 
editor Depending on the JCL used and other 

linkage editor constraints, 
the text records might also be 
reblocked. 

The ALTERMOD or COPYMOD A load module with count values 
functions of the IEBCOPY inserted. If COPYMOD is used, 
program in MVSfXA DFP a module will also 
Version I Releases 1.1 and 1.2 be reblocked. 
with the required PTF or MVSjXA 
DFP Version 2 Release 1.0 

The ALTERMOD or COPYMOD A non-overlay load module has 
functions of the IEBCOPY count values inserted; an 
program in MVSj370 DFP overlay module does not. If 
Release 1.1 COPYMOD is used, a non-overlay 

module will also be reblocked. 

Earlier versions of IEBCOPY The count values remain. The 
module is not reblocked. 

MVSjXA program fetch Depending on the text record lengths, 
program fetch might perform at its 
best. 

MVSj370 program fetch No change. 

Figure 8-1. Processing Load Modules 

Chapter 8. Measurement and Tuning 8-5 



Factors Affecting Text Block Sizes 

Several factors affect how the linkage editor determines text block sizes: 

• The REGION parameter on the JOB and EXEC JCL statements and on the 
EXEC statements in SYSl.PROCLIB. The default REGION values defined 
for the installation can also affect the text block size. 

• The values specified for the 'SIZE = (valuel,value2), parameter on the LKED 
EXEC statement. The SIZE values specify the amount of virtual storage the 
linkage editor is to use. 

• The block size of the previously allocated output library identified on the 
SYSLMOD DD statement. 

• The DCBS option on the PARM parameter of the LKED EXEC statement. 
Using DCBS allows you to override the block size originally specified for the 
output data set. 

• The block size of the intermediate data set (the data set named on the 
SYSUTl DD statement). The linkage editor determines the intermediate data 
set's block size based on several factors, including the device type. 

• The block size of the: 

Primary input data set (named on the SYSLIN DD statement) 
Automatic call1ibrary (named on the SYSLIB DD statement) 
The diagnostic output data set (named on the SYSPRINT DD statement) 

• The DC option on the LKED EXEC statement. DC causes the linkage editor 
to construct text blocks of lK or less. 

• The sizes of the control sections (CSECTs) and named common areas being 
combined into one load module. When building a text record, the linkage 
editor puts multiple CSECTs and named common areas into the same record, 
until it runs into a CSECT or named common area that does not completely 
fit. The linkage editor then truncates that text record and begins a new one. 
It flt:vt:r splits CSECTs or named common areas across text records that 
contain other CSECTs or named common areas. 

That restriction also applies if a CSECT or named common area is larger 
than the maximum text block allowed. The linkage editor does not put any 
other CSECT or named common area in the last text record occupied by the 
large CSECT or named common area. Because of this restriction, text 
records are not always uniform in size or as large as the linkage editor allows 
for the output device. 

The linkage editor uses all of these controls to determine the maximum block size. 
Poorly chosen values can force the linkage editor to build text blocks smaller than 
necessary. Therefore, you need to carefully consider any that you specify. The 
Linkage Editor and Loader User's Guide describes how the linkage editor 
determines block size and how you can control it. 

8-6 MVSXA Conversion Notebook, Volume 1 



( 

( 

Following are some of the more common reasons less-than-optimal block sizes are 
produced: 

• The REGION value is too small. Unlike the MVS/370 linkage editor, the 
MVSjXA version does not execute in an overlay environment. Therefore, it 
requires 32K more virtual storage than the MVS/370 linkage editor. Because 
of the additional storage requirement, the link edit step might fail or the 
linkage editor might be forced to build smaller text blocks than would the 
MVS/370 linkage editor. 

• The values specified on the SIZE parameter cause an inadequate output 
buffer length. 

• The intermediate data set (SYSUTl) supports a smaller maximum record 
length than the output data set (SYSLMOD). 

• The data set was copied from a different type of device and not link edited 
again. For example, a data set was copied from a 3330 device to a 3350 
device. (Text records cannot exceed 12 K on 3330 devices; 3350 devices allow 
18 K records.) 

• The SYSLMOD DD statement specifies a less-than-optimal BLKSIZE value. 

Using a New Directory for LNKLST Data Sets 

A new LNKLST lookaside (LLA) function in Release 2.1.1 creates and maintains 
a directory of modules in the LNKLST concatenation. BLDL can use the new 
directory instead of the PDS directories or the BLDL table to locate modules in 
the LNKLST concatenation. Because the new directory is hashed and resides in 
the new LLA address space, using it has several advantages: 

• You no longer need to tune the LNKLST concatenation for optimal 
performance, nor do you need to maintain BLDL lists. The order in which 
data sets are concatenated does not affect the time required to search hashed 
directories. Because the new directory is in storage, BLDL lists are 
unnecessary . 

• The new directory eliminates the channel and device contention that occurs 
when searching PDS directories. 

• Data sets in the LNKLST concatenation no longer have to be APF 
authorized. Consequently, you can include unauthorized data sets formerly 
included in STEP, JOB, and TASK libraries. The procedure for including 
unauthorized data sets is described later. 

• The LNKLST concatenation can include up to 123 data sets. Earlier MVS 
releases allow a maximum of 16. 

• You can update the LLA directory without performing an IPL. Adding or 
changing entries in the BLDL table requires an IPL. New commands for 
updating the directory are described later. 

Chapter 8. Measurement and Tuning 8-7 



Starting the LLA Function 

• You can control the amount of paging done for the LLA directory by putting 
the LLA address space in a separate SRM performance group and adjusting 
its working set size. 

You might not have to do anything to start the LLA function. The IEACMDOO 
PARMLIB member shipped with Release 2.1.1 contains a new command, START 
LLA, which starts a new LLA procedure in SYSl.PROCLIB. The new 
procedure, in turn, causes the system to build and begin using the LLA directory. 

If you use an IEACMDxx member other than IEACMDOO, ensure that it includes 
a START LLA command. Also ensure that the SYSl.PROCLIB data set you use 
includes the LLA procedure. In addition, if you want to include unauthorized 
data sets in the LNKLST concatenation, you must specify the new LNKAUTH 
system parameter, as described in the following topic. The default is to treat all 
modules fetched via the LNKLST concatenation as APF authorized, which is 
consistent with earlier releases. 

Including Data Sets that Are Not APF Authorized 

The new LNKAUTH system parameter has two values: 

LNKAUTH=APFTAB - The system treats only those data sets named in the APF table as APF 
authorized. 

LNKAUTH= LNKLST - The system treats all data sets in the LNKLST concatenation as APF 
authorized, regardless of whether their names are in the APF table. 
LNKLST is the default. 

To include data sets that are not APF authorized in the LNKLST concatenation: 

• Either include LNKAUTH= APFTAB in the appropriate IEASYSxx 
PARMLIB member or have the operator specify it when prompted for system 
parameters. 

• Include in the APF table all LNKLST data sets to be APF authorized. 

Note that the APF authorization established at IPL time remains in effect for the 
duration of the IPL, even if the LLA function is stopped. 

Updating the LLA Directory 

To add or change an entry in the new directory, either: 

• Issue a MODIFY LLA,REFRESH command to refresh the directory. 

• Stop the LLA function by issuing the STOP LLA command, then build a new 
directory by issuing a START LLA command. 

Unless your installation shares LNKLST data sets among multiple systems, the 
first method is preferable. The system can refresh the directory without 
interrupting its use. Stopping the LLA function causes BLDL to search the PDS 
directories instead of the LI"A directory, which can degrade performance. 

8-8 MVSXA Conversion Notebook, Volume I 

---- ------ ------ -- ---

/ '\ 



" ( 

( 

If more than one system shares the LNKLST data sets, the second method might 
be better. It allows you to synchronize directory updates. Operators stop the 
LLA function on all systems, then restart it via the LLA START command. 

SMF Data Set Placement 

If the device on which an SMF data set resides requires intervention, SMF can 
generate a large backlog of records while the device is unavailable. Changes in 
Release 1.1 can alleviate the backlog, provided you do not put all SMF data sets 
on the same device. If a system with Release 2.1.1 installed detects that SMF is 
not writing from buffers, it attempts to use another SMF data set. However, 
moving to another data set solves the problem only if that data set is on another 
device. 

Using Residency Time to Calculate the Page-in Rate of an Address Space 

If your installation is at the Release 2.1.2 level, you can request that SRM use 
residency time instead of execution time when calculating the page-in rate for 
address spaces in a specified performance group. However, SRM continues to 
base the page-in rate for cross memory address spaces on elapsed time. 
Previously, the system used execution time only, except in the case of cross 
memory address spaces. 

Basing the rate on residency time allows the system to decrease the target working 
set size of an address space while the address space is inactive. Because most 
installations prefer to maintain minimum working sets for swappable address 
spaces, requesting residency time calculations is an option mainly for address 
spaces that are non-swappable. 

Basing the rate on execution time protects the frames in the working set while the 
address space is inactive. The system adjusts the target working set size only 
while the address space is active. While the address space is inactive, the target 
size remains the same as when last calculated. 

To request that SRM use residency time, use the new IPS parameter, PPGRTR. 
PPGRTR specifies the high or low limit the rate must exceed before SRM adjusts 
the address space's working set size. Previously, PPGRT and CPGRT were the 
only parameters for specifying page-in thresholds. 

Changes to ASM's Paging Algorithms 

The Release 2.1.2 level of ASM uses different algorithms for selecting local page 
data sets and slots on page data sets. The changes are designed to make the 
paging process more efficient and might result in less tuning effort on your part. 

Changes to the Data Set Selection Algorithm 

The new data set selection algorithm distributes paging I/O more evenly among 
local page data sets. ASM continues to maintain the same three circular queues 
of control blocks representing local page data sets: one for local page data sets 
on cached auxiliary storage subsystems, one for data sets on fixed-head devices, 
and one for data sets on movable-head devices. As before, ASM tries to write 
first to a data set on a cached auxiliary storage subsystem. However, instead of 

Chapter 8. Measurement and Tuning 8-9 



picking the next available data set that contains free space, ASM now also 
considers the responsiveness of the device and might avoid unresponsive data sets. 

ASM begins searching at the data set following the one last selected from the 
queue. ASM considers each data set on one queue before continuing to the next 
queue. 

Changes to the Slot Selection Algorithm 

The new slot selection algorithm tries to reduce device arm movement and seek 
time by concentrating paging I/O toward the front of the data set. 

Resource Access Control Facility (RACF) Considerations 

The Resource Access Control Facility (RACF), beginning with Version I Release 
6, includes features to improve performance on systems using RACF. Some of 
the most useful are: 

• Global access checking (GAC) 
• The resident index and data blocks options 
• Generic profiles 

Global access checking bypasses normal RACHECK processing and provides a 
fast path to specific levels of access to data sets by means of generic naming 
conventions. For example, with global access checking, an entry in the RACF 
Global Access Checking Table like 

SYSl.*/read 

permits reading of all data sets with names that begin with SYSI. 

With the resident index and data blocks options a portion of the common service 
area (CSA) of the virtual address space is reserved for heavily used portions 
(blocks) of the RACF data set(s). Depending upon RACF activity, the most 
recently used RACF index and data blocks can reside in storage. Similarly, the 
generic profile checking facility allows RACF SVCs to build resident profiles 
within the local system queue area (LSQA) that each protect several resources. 
Having these security data resident, reduces the number of I/O requests to RACF 
data set(s) and speeds access to RACF protected resources. 

The RACF Security Administrator's Guide and the SPL: RACF give details on 
using global access checking, generic profiles, and, resident data blocks. 

Managing Contention for Processors with the Vector Facility 

A processor complex with the Vector Facility installed on a subset of the 
processors can function as an asymmetric processing complex. Some jobs run 
only on the processors with the Vector Facility and other jobs run on any 
processor. The operating system manages the Vector Facility resource to ensure 
that jobs assigned to the Vector Facility have access to it. It divides the workload 
for other jobs among all of the processors in the complex. 

8-10 MVSXA Conversion Notebook, Volume 1 



( 

In such an asymmetric environment, the queue for the Vector Facility may need 
to be controlled. Because the system resources manager (SRM) manages the 
multiprogramming level so that the total processor resource is not overutilized, it 
may consider a complex to be in balance even though the processors with the 
Vector Facility is overutilized and the other processors are underutilized. When 
this imbalance occurs, the installation can manage contention for the Vector 
Facility by using the normal tuning controls, such as setting initiator limits and 
limits on the multiprogramming level for the domain in which the Vector Facility 
jobs execute. 

Automatic Priority Group (APG) Specifications 

As of Release 2.1.7 it is no longer necessary to use a rotate priority group 
specification (Rx) to ensure that equal priority address spaces will get their fair 
share of the processor resource. Instead, the system dispatches address spaces of 
equal priority in the order in which they become ready. This dispatching 
technique means that, as of Release 2.1.7, existing rotate priority specifications 
have no significance. When the system encounters an Rx specification in the 
IEAIPSxx member of SYS1.PARMLIB, the system accepts it as Fx, the first fixed 
priority. 

In the past, each set of sixteen priorities in the APG was divided into three groups 
corresponding to each of the three priority control algorithms. The first 10 
priorities (0 - 9) were assigned to the mean-time-to-wait algorithm, the eleventh 
(A) was assigned to the rotate algorithm, and the last 5 (B - F) were assigned to 
the fixed algorithm. 

Release 2.1. 7 removes the rotate algorithm and adds the eleventh priority to the 
fixed priorities. There are now 6 fixed priorities (A - F) specified as Fx, FxO, Fxl, 
Fx2, Fx3, and Fx4, respectively. 

Chapter 8. Measurement and Tuning 8-11 



/ 

8-12 MVSXA Conversion Notebook, Volume I 



(-

( 

( 

Chapter 9. Coexistence Considerations 

Running both MVS/370 and MVS/XA in the same installation is referred to as 
coexistence. Installations maintain coexistence because they: 

• Have processors that support only MVS/370 
• Must use one type of operating system as backup for the other 

Most installations will maintain some form of coexistence during the migration 
period. Many will continue to run both operating systems for some time after 
MVS/XA is established as a production system. 

MVS/370 and MVS/XA can coexist either as independent operating systems 
running on different processors, as independent operating systems that alternately 
run on the same processor, or as loosely-coupled operating systems. 

In all types of coexistence, the major objectives are to: 

• Maintain programs that can run on either system. 

• In some cases, ensure that MVS/370 can run the MVS/XA workload or that 
MVS/XA can run the MVS/370 workload in backup situations. 

When MVS/XA and MVS/370 systems are loosely-coupled, installations have 
some additional considerations, including: 

• Ensuring that jobs that must run on a particular system are routed to that 
system 

• Determining which data sets can be shared 

• Reviewing dynamic system interchange (DSI) procedures 

This chapter includes information related to these topics. 

Note: Further coexistence considerations exist for installations running more 
than one release of JES2 or JES3 in the same processor complex. See the JES3 
Conversion Notebook and the MVS/XA JES2 User Modifications and Macros for 
an explanation of JES coexistence considerations. 

Chapter 9. Coexistence Considerations 9-1 



Maintaining Programs that Can Run on Both MVS/370 and MVS/XA Systems 

Topics in this section describe: 

• Instructions for assembling and link editing programs that must run on both 
MVSj370 and MVSjXA systems 

• Criteria for ensuring that programs can run on both systems 

• Ways to avoid unnecessary 24-bit dependencies in new programs 

• Instructions for using the SPLEVEL macro to generate compatible expansions 
of fourteen downward incompatible macros 

• Two methods of ensuring that programs using the SYNCH macro can run on 
both MVSj370 and MVSjXA systems 

Assembling and Link Editing Programs 

In a mixed installation, use Assembler H Version 2 to assemble all programs that 
use new 370-XA instructions or that are to be run in 31-bit addressing mode. Use 
the linkage editor in either DFDS Release 1.4 (with the PTF for APAR OZ57635 
installed), MVS/XA DFP, or MVSj370 DFP to link edit programs that will be 
run on the MVSjXA system in 24-bit addressing mode. Using one of those 
linkage editors is important for fetch performance reasons, as described in 
Chapter 8. Use the MVSjXA DFP or MVSj370 DFP linkage editors to link edit 
programs that are to be run in 31-bit addressing mode. 

The MVSjXA DFP and MVS/370 DFP linkage editors are the only ones that 
insert AMODE and RMODE indicators in CESD entries for load module 
CSECTs and in the partitioned data set (PDS) entries for load modules. The 
linkage editors in OS/VS2 MVS and DFDS do not support AMODE and 
RMODE indicators. 

• They do not insert or retain the AMODE and RMODE indicators in the PDS 
directory entry. If a load module is link edited using one of those linkage 
editors, any AMODE or RMODE indicatorl'l already in the PDS directorj 
entry are deleted. 

• The same linkage editors ignore any AMODE or RMODE indicators in the 
ESD or CESD. Indicators already present remain unchanged. New ones are 
not inserted. (Assembler H Version 2 and selected HLL compilers, not the 
linkage editor, insert AMODE and RMODE indicators in the ESD entries of 
object modules.) 

"Establishing a Program's Addressing Mode" in Chapter 3 describes how 
AMODE and RMODE indicators are inserted and used in more detail. 

9-2 MVSXA Conversion Notebook, Volume 1 

----- ._--_._._. -.-~ ~.---~ 

/ "'\ 



( 

GaideUnes for Ensuring Program CompatibiUty 

If a program is to run on both MVS/370 and MVS/XA systems, the program 
must: 

• Perform the desired function on both systems. A program might execute 
without error on both systems, but not produce the desired results (for 
example, an SMF post processor that analyzes data that has different formats 
in MVS/XA and MVSj370). 

• Use the MVSj370 expansion of macros whose MVS/XA expansions do not 
work on MVSj370 systems. There are fourteen such macros. "Handling 
Downward Incompatible Macros" lists them and describes ways of obtaining 
the appropriate expansion. In some cases, the SYNCH macro is also 
downward incompatible. See "Downward Incompatible SYNCH Macros" for 
details. 

• Not use new MVS/XA function. New function includes new instructions, new 
macros, and new parameters, keywords, or options on existing macros. 
Exceptions are the new LOC, VRC, and VRU parameters on the GETMAIN 
macro and the AM ODE = 24 parameter on SYNCH. Those parameters 
generate object code that works on MVS/370 systems. See "Parameters on 
the GETMAIN Macro Instruction" in Chapter 3. 

• Use only system services that are supported in both MVS/370 and MVS/XA. 
Chapter 3 identifies functions not supported in MVSjXA. 

• Provide dual paths for functions that are not compatible between MVSj370 
and MVSjXA and dynamically select the proper path at execution time. Bit 0 
in the CVTDCB field of the CVT indicates whether MVSjXA is executing. 
(If it is, bit 0 equals 1.) The MVS/XA CVT map defines the bit as 
CVTMVSE. Method 3 in "Handling Downward Incompatible Macros" 
shows the dual path section of a sample program. 

If the program uses non-standard interfaces to system modules or uses system 
control blocks, you must also ensure that: 

• Methods of invoking system services work in both MVSj370 and MVS/XA. 
• Control block references can be used in both MVSj370 and MVSjXA. 

Some programs require different versions to run in MVSj370 and MVS/XA (for 
example, RMF analysis routines). Installations can either: 

• Keep each version of the program in a separate library. 

• Keep both versions of the program in the same library, but give each a 
different name. 

• Rewrite the program so that it has dual paths and dynamically selects the 
proper path at execution time, as mentioned earlier. 

Chapter 9. Coexistence Considerations 9-3 



Guidelines for Developing New Programs 

When designing new programs that must run on both MVS/370 and MVS/XA 
systems, avoid unnecessary 24-bit dependencies in programs that might be 
executed in 3l-bit addressing mode: 

• Use fullword address fields, even if the value in the field is below 16 
megabytes. 

• Avoid using the load address (LA) instruction to clear the high-order byte. In 
3 I-bit addressing mode, the LA instruction clears only the high-order bit, not 
the entire byte, as it does in 24-bit addressing mode. 

• When coding BAL or BALR, avoid using the information saved in the 
high-order byte of the first operand (the instruction length code, program 
mask, and condition code). When executed in 3l-bit addressing mode, BAL 
and BALR do not save that information. 370-XA processors provide a new 
instruction, IPM (Insert Program Mask), which saves the program mask and 
condition code when executing in 370-XA mode. 

• Use ESTAE instead of STAE. STAE is not changed to support 3l-bit 
addressing. 

• When obtaining large amounts of storage, use the VRU, VRC, RU, and RC 
forms of GETMAIN and FREEMAIN. These forms support a new LOC 
parameter, which allows users to specify from where virtual storage is to be 
obtained and how it is to be backed when fixed. See "Parameters on the 
GETMAIN Macro Instruction" in Chapter 3. 

In contrast, VSM satisfies the LC, LU, VC, VU, EC, EU, and R forms of 
GETMAIN requests with virtual storage below 16 megabytes. Also, when 
fixing storage obtained via those forms of GETMAIN, RSM always uses real 
storage below 16 megabytes. 

The following macros are not changed to provide full 3 I-bit support. MVS/XA 
provides new services instead. You might want to use dual paths when using any 
of these services: 

• PGFLX, PGFREE, PGRLSE, PGLOAD, and PGOUT. A new PGSER. 
macro provides the equivalent services and supports 3 I-bit addresses. 

• SPIE. ESPIE is the MVSjXA counterpart. 

Programs that Run in System 370, 370-XA 31-Bit, or 370-XA 24-Bit Addressing Modes 

There are two recommended methods for writing programs that will run in 
System 370 mode, 370-XA 3 I-bit addressing mode, and 370-XA 24-bit addressing 
mode. They each allow you to save and restore the program mask and condition 
code. Note that these methods assume the programs will run under Assembler H 
which is required for executing the IPM instruction. 

Method 1 - For systems running MVS/SP Version 1 Release 3.0 with the fix for 
APAR OZ62229 installed or for a later release: 

At initialization time your application can interrogate the CVTOCB field of the 
CVT control block to determine what level system it is running under. If it is 

9-4 MVSXA Conversion Notebook, Volume 1 

-------



( 

370-XA (24 or 31-bit addressing mode), you can move a predefined IPM 
instruction to an area that can be "globally" accessed by tasks in the application's 
address space and execute the IPM instruction by means of the EX instruction. If 
the system is running in 370 mode, you can move a BALR instruction to this 
area. Both IPM and BALR return the condition code in bit positions 2 and 3 and 
the program mask in bit positions 4 through 7 of the user-specified register. See 
the example program segment that follows. 

1 IN IT 
2 * 
3 * 
4 
5 
6 * 
7 
8 
9 

10 

11 * 
12 * 
13 * 
14 

15 * 
16 * 
17 

Using Predefined IPM and BALR Instructions 

CSECT 

BALR 3,0 
USING *,3 

USING 
LA 
TM 

BO 

CVT,2 
2,16 
CVTDCB,CVTMVSE 

*Running 
XA 

under MVS/XA 

*Perform MVS/XA processing 

NOT RUNNING UNDER MVS/XA 

MVC 

B 

EXAREA(BALRLN),BALRINST 

BYPASSXA 

*Move BALR instruction 
*to commonly addressable 
*execute area 
*Bypass MVS/XA processing 

18 * 
19 * 
20 * 
21 XA 
22 

MVS/XA PROCESSING 

* EQU 
MVC EXAREA(IPMLN),IPMINST 

23 * 
24 * 
25 BYPASSXA EQU * 
26 * 
27 * 
28 * 
29 BALRINST EQU * 
30 BALR 5,0 

31 BALRLN 

32 * 
33 IPMINST 
34 
35 IPMLN 

36 * 
37 EXAREA 
38 * 
39 

EQU *-BALRINST 

EQU * 
IPM 5 
EQU *-IPMINST 

DS XL4 

CVT DSECT=YES 

*Move IPM instruction 
*to commonly addressable 
*execute area 

*Execution continues 

*BALR using R5 

*Length of data to move 

*IPM using Reg 5 

*Length of data to move 

Code executed after iuitiaJization 

LA 6,0 
EX 6,EXAREA 

*Clear work register 
*Execute correct instruction 
*Program mask/cc returned 
*in register 5 

Chapter 9. Coexistence Considerations 9-5 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Method 2 -For any MVS System: 

You can use the facts that the BALR instruction is a halfword in length (ILC is 
b'01 '), that in 370 and 370-XA 24-bit addressing modes, BALR sets the high 
order bit of the return register to 0, and that in 370-XA 31-bit addressing mode, 
BALR sets this bit to 1. First, you can retrieve and save the condition code. Then 
you can issue a BALR instruction and check the high order bit of the return 
register. If it is 1, the system is running in 31-bit addressing mode and you must 
send control along a programming path that uses the IPM instruction. If the bit is 
0, the system is not in 31-bit addressing mode and you can isolate and retrieve the 
program mask made available by the BALR. See the example program segment 
that follows: 

Using BALR/IPM to Save the Condition Code and Program Mask 
INIT CSECT 
* 

USING * ,15 
* 

LA 6,0 *Clear a work reg to zero 
* *Note: CC not changed 

BC O,CONTINUE *Is condition code = O? 
BC 1,CC1 *Is condition code 1? 
BC 2,CC2 *Is condition code 2? 

* *Default is CC = 3 
* 

ICM 6,B'1000',MASKCC3 *Mask for CC=3 in 
* *bit positions 2 through 3 

B CONTINUE 
15 * 
16 CC1 EQU * 
17 ICM 6,B'1000',MASKCC1 *Insert mask for CC=l in 
18 *bit positions 2 through 3 
19 * 
20 B CONTINUE 
21 * 
22 CC2 EQU * 
23 ICM 6,B'1000' ,MASKCC2 *Insert mask for CC=2 in 
24 *bit positions 2 through 3 
25 * 
26CONTINUE EQU * 
27 BALR 5,0 
28 LTR 5,5 *Determine addressing mode 
29 on rn"A~"'''''' *If pOSitive, 24-bit • .u; ""'''''D.LT 

30 *addressing mode 
31 IPM 5 *Get program mask, CC 
32 * 
33T24BIT EQU * 
34 N 5,=X'OFOOOOOO' *Isolate program mask 
35 OR 6,5 *Reg 6 now has condition code 
36 *and program mask 

*Execution continues 
MASKCC1 DC B'OOO10000' 
MASKCC2 DC B'OO100000' 
MASKCC3 DC B'OO110000' 

LTORG 
=X'OFOOOOOO' 

END 

9-6 MVSXA Conversion Notebook, Volume 1 

, " '\ 

.. '-~~ 

I;(~\ 

\l/' 



( 

( 

Handling Downward Incompatible Macros 

Most of the MVSjXA expansions of previously existing macro instructions run on 
both MVSj370 and MVS/XA systems (that is, the macro instructions are 
downward compatible). The following macro instructions are exceptions. The 
MVSjXA expansions of these macros will not run on an MVSj370 system. 

ATTACH 
CHKPT 
CLOSE* 
ESTAE 
EVENTS 
FESTAE 
INTSECT 
OPEN* 
SCHEDULE SCOPE = GLOBAL 

SDUMP if it specifies new parameters 
SETFRR INLINE = YES 
SETLOCK RELEASE,TYPE = (reg)/ALL 
SMFEXIT 
STAX 
STIMER 
SYNCH, unless it specifies the parameter AMODE=24 
WTOR 

* Refer also to "OPEN and CLOSE Requirement for Assembler H Version 2" on 
page 9-10 and "OPEN and CLOSE and MODE =31" on page 9-10 for further 
information on the use of these macros. 

To share user-written programs among MVS/370 and MVSjXA systems and to 
have backup capability while migrating to MVS/XA, users must be able to 
override the downward incompatible macro expansions with macro expansions 
that will run on both MVS/370 and MVS/XA systems. MVSjXA provides that 
capability for all of the macros listed, except SYNCH. (See "Downward 
Incompatible SYNCH Macros" for instructions on maintaining SYNCH 
compatibility.) 

The MVSjXA MACLIB contains two different expansions for all of the above 
macros, except SYNCH: an MVS/SP Version 1 Release 3 expansion and an 
MVSjXA expansion. Note that the source statements that invoke the macro 
instructions remain the same, only the expansions are different for the two 
environments. The Version 1 expansions run on both MVSj370 systems and 
MVS/XA systems executing programs in 24-bit addressing mode. The MVS/XA 
expansion is required when using any new parameters or options on the above 
macros. In most cases, the MVSjXA expansion is also required when executing in 
31-bit addressing mode. (SCHEDULE, SDUMP, and SETLOCK are 
exceptions.) 

The level of the macro expansion (MVS/370 or MVSjXA) that is generated during 
assembly depends on the value of an assembler language global SET symbol. 
When the SET symbol value is 1, the system generates MVSj370 expansions. 
When the SET symbol value is 2, the system generates MVSjXA expansions. 

MVSjSP Version 2 includes a new macro, SPLEVEL, which allows programmers 
to change the value of the SET symbol. When SPLEVEL itself is assembled, it 
assigns a value to the SET symbol. That value becomes the default value for the 
entire installation. 

The SPLEVEL macro shipped with MVS/SP Version 2 assigns a SET value of 2. 
Therefore, unless a program specifically changes the SET value, the assembler 
generates MVS/XA macro expansions. 

Chapter 9. Coexistence Considerations 9-7 



Your installation can change the SET value shipped with MVS/SP Version 2, or 
individual programmers can override the SET value in particular programs: 

• To change the SET value for the entire installation, after system generation, 
modify the SPLEVEL source code in SYSl.MACLIB. Change the statement 
that assigns the SET value: '&DEFAULT SETC n', where 'n' is I or 2. 
Note that when assembling MVS/XA system programs, either at system 
generation or when applying service, the SET value must be 2. (MVS/XA 
expansions are required.) 

• Programmers can issue within a program the SPLEVEL SET = n macro, 
where n equals I to obtain MVS/370 expansions, or 2 to obtain MVSjXA 
expansions. The SPLEVEL macro sets the symbol to the specified value for 
that program's assembly only. Thus, issuing the SPLEVEL macro only 
affects expansions within the program being assembled. A single program can 
include multiple SPLEVEL macros to generate different macro expansions. 

Obtaining the Appropriate Macro Expansions 

Following are three ways programmers can use SPLEVEL to obtain the 
appropriate macro expansion within their programs. Methods I and 2 generate 
different expansions in different programs (for example, MVS/370 expansions in 
Program A and MVSjXA expansions in Program B). Method 3 generates 
different expansions within the same program: 

Method 1 - Obtaining different expansions in different programs 

Keep the SPLEVEL macro shipped with MVS/SP Version 2 in the 
SYSl.MACLIB macro library. Put a copy of SPLEVEL into another macro 
library by itself, and change the source code to establish SET = I as the 
installation default. When assembling programs, use JCL to access the 
appropriate macro library. 

In the following example, the SPLEVEL macro that establishes SET = I as the 
installation default is by itself in the SETlMACS macro library. 

To assemble the MVSjXA expansions in programs, use: 

IISYSLIB DD DSN=SYS1.MACLIB,DISP=SHR 

To assemble MVS/370 expansions, use: 

IISYSLIB DD DSN=SET1MACS,QISP=SHR 
II DD DSN=SYS1.MACLIB,DISP=SHR 

You can, of course, switch the SPLEVEL macros and put the one that establishes 
SET = I as the installation default in SYSl.MACLIB. 

9-8 MVSXA Conversion Notebook, Volume 1 



Method 2 - Obtaining different expansions in different programs 

Issue the SPLEVEL SET = n macro once at the beginning of the module to obtain 
the appropriate expansions: 

MODULE CSECT 
SPLEVEL SET=l 

Method 3 - Obtaining different expansions within the same program 

Assemble both levels of the macro and make an execution-time test to determine 
which level to execute. The following example invokes the correct level of the 
WTORmacro: 

* 

* 
* 

SP2 

* 
* 

* 

DETERMINE 

TM 
BO 

WHICH SYSTEM IS EXECUTING 
CVTDCB,CVTMVSE (CVTMVSE is bit 0 in 
SP2 the CVTDCB field. It 

indicates whether 
MVSjXA is executing.) 

INVOKE THE MVSj370 VERSION 
OF THE WTOR MACRO INSTRUCTION 

SPLEVEL SET=l 
WTOR 
B CONTINUE 
DS OH 

INVOKE THE MVSjXA VERSION 
OF THE WTOR MACRO INSTRUCTION 

SPLEVEL SET=2 

WTOR 
CONTINUE DS OH 

Determining Which Level 0/ the Macro Instruction to Use 

• You can use a SET value of 2 when you assemble programs that will be run 
only on MVSjXA systems, regardless of whether they will run in 24- or 31-bit 
addressing mode. 

• Programs that must run on both MVSj370 and MVS/XA systems must 
assemble at least MVS/370 macro expansions. (Programs with dual paths 
assemble the MVS/XA expansions as well.) 

• Programs that are designed to run on both MVSj370 and MVS/XA systems 
and that require MVS/XA expansions on the MVS/XA system must obtain 
both expansions and determine at execution time which level to execute. (See 
Method 3 in the previous examples.) 

• When assembling MVS/XA system programs, either at system generation or 
when applying maintenance, the SET value must be 2 (that is, MVSjXA 
expansions are required). 

Chapter 9. Coexistence Considerations 9-9 



• Programs that run on MVS/XA systems in 31-bit addressing mode must use 
the MVS/XA expansions of the following downward incompatible macros: 

ATTACH 
ESTAE 
EVENTS 

FESTAE 
INTSECT 
SMFEXIT 

STAX 
STIMER 
WTOR 

• Programs that specify any new parameters, keywords, or options on the 
macros must use the MVSjXA expansions. 

OPEN and CLOSE Requirement for Assembler H Version 2 

MVSjXA DFP Version 2 Release 3.0, introduces an additional situation requiring 
the use of Assembler H Version 2. As of this release, the use of either the OPEN 
or CLOSE macro requires, by default, the use of Assembler H Version 2. 

Beginning with MVSjXA DFP Version 2 Release 3.0, both OPEN and CLOSE 
test the SPLEVEL SET value when they are expanded: 

• If SPLEVEL SET = 2 is coded (which is the default for SPLEVEL), when 
both OPEN and CLOSE are expanded they generate a BAS instruction. This 
requires assembly with Assembler H Version 2. 

• IF SPLEVEL SET = 1 is coded, when both OPEN and CLOSE are expanded 
they generate a BAL instruction. This does not require assembly with 
Assembler H Version 2. 

Note: Some, but not all, of the processors that support MVS/370 also support the 
BAS instruction. 

OPEN and CLOSE and MODE = 31 

EOV and MODE = 31 

If MODE = 31 is coded on either the OPEN or CLOSE macros, the expansions of 
the macros will contain a new, long form of the parameter list passed to OPEN or 
CLOSE, and the programs will execute only on MVS/XA DFP Version 2 Release 
3.0 or a later release. In addition, MODE=31 is appropriate only when the SET 
value is 2. The system treats the combination of a SET value of 1 and either 
OPEN MODE=31 or CLOSE MODE=31 as an error_ 

IfMODE=31 is coded on the EOV macro, the program will execute only on 
MVS/XA DFP Version 2 Release 3.0 or later. Do not code MODE=31 on the 
EOV macro if the program must execute on earlier levels of MVSjXA DFP or in 
any other environment which has no support for EOV MODE = 31. 

Downward Incompatible SYNCH Macros 

In some cases, programs that use the SYNCH macro and are assembled using the 
MVSjXA MACLIB will not run on an MVSj370 system. The downward 
incompatible programs are those that do NOT specify the parameter 
AMODE = 24 on SYNCH (that is, programs that either omit the AMODE 
parameter or specify AMODE=31, AMODE=DEFINED, or 
AMODE = CALLER). 

9-10 MVSXA Conversion Notebook, Volume 1 

------- --- --_.-



( 

Backup Considerations 

( 

Unless SYNCH specifies AMODE=24, after assembly, the SYNCH macro 
expansion contains a nonzero value in a previously reserved field in the SYNCH 
parameter list. The MVSjXA expansion uses that field as an AMODE indicator. 
The MVSj370 SYNCH processor treats the nonzero field as an error and issues 
ABEND x'206'. 

If a program that issues SYNCH must run on both MVS/XA and MVS/370 
systems, you need to ensure that the AMODE indicator field in the SYNCH 
parameter list is zero. You can either: 

• Use the MVS/370 MACLIB when assembling the program. 

• Specify the parameter AMODE=24 on the SYNCH macro and use the 
MVS/XA MACLIB for assembly. 

Following are backup considerations for installations that must use an MVS/370 
system as backup for an MVSjXA system, or use an MVSjXA system as backup 
for an MVS/370 system: 

• For program products that have separate licenses for MVSj370 and 
MVSjXA, installations need both licenses for backup capability. Such 
programs include: 

RMF Version 2 and RMF Version 3 
MVS/SP Version I Release 3 or later releases and MVS/SP Version 2 

• User-written programs that access system control blocks or that use 
authorized services and interfaces might not run on both MVS/370 and 
MVS/XA systems. If such programs are not compatible between systems, the 
installation is without backup capability. 

• The size of the available private area increases in MVSjXA. Installations that 
use the additional private area will have to reevaluate the capability of using 
an MVSj370 system for backup. 

• When using a backup processor, installations need to ensure that the backup 
system can use the current system's IOCDS. The 370/370-XA IOCP can 
create an IOCDS that can be used in either System/370 or 370-XA mode. See 
"Creating or Modifying an IOCDS Using the MVS Version of IOCP" in 
Chapter 2 for more information. 

• Installations need to have a procedure defined for changing processor modes 
and for changing the IPL volume. 

• On the MVS/370 system, use DFDSS or an equivalent product instead of 
IEHDASDR or the DASDR licensed product to produce backup tapes that 
might need to be restored on an MVSjXA system. Neither IEHDASDR nor 
the DASDR licensed product are available in MVS/XA. You must use 
DFDSS or an equivalent function to perform dumpjrestore operations in 
MVS/XA. DFDSS does not support the dump format that IEHDASDR or 
the DASDR licensed product produces. 

Chapter 9. Coexistence Considerations 9-11 



DFDSS Version 2 (available for Release 2.1.2 and later systems) is upwardly 
compatible with DFDSS Version I functions, and also includes functions not 
available in DFDSS Version 1. The added functions create differences you 
may need to be aware of. 

DFDSS Version 2, for example, processes data sets as logical entities which 
allows them to be transferred from one type of device to a different device 
type. The system version of DFDSS Version 2 restores from logical data-set 
dumps, but no release of DFDSS Version I can restore from this dump 
format. Similarly, when a logical data-set dump tape has been created by the 
system version of DFDSS Version 2, the stand-alone version will not restore 
from that tape. Device Facility Data Set Services: General Information 
GC26-4123 describes the differences between the DFDSS versions. 

• MVS/XA can support a larger workload than MVS/370. An MVS/370 
system might not be able to support the MVS/XA workload. 

Routing Jobs in a Mixed JES2 or JES3 Complex 

When MVS/370 and MVSjXA systems are loosely-coupled, installations must 
ensure that JES routes jobs that must run on a particular system to that system 
(for example, jobs that use new MVSjXA function). 

If a job needs a device that is attached to only one processor, JES3 automatically 
routes the job to that processor. To ensure the proper job-system match in other 
situations, installations and programmers can use existing job routing procedures: 

• An installation can define specific execution job classes for jobs that must run 
on MVSjXA, for jobs that must run on MVS/370, and for jobs that can run 
on either system. The installation then associates each job class with the 
appropriate processor. Users ensure that their jobs run on the appropriate 
system by specifying the CLASS = parameter on the job's JCL. JES2 users 
specify the CLASS = parameter on the JOB statement. JES3 users specify it 
on the / /*MAIN or / /JOB statement. 

Note: Routing by job class works only in situations where processors are 
always running the same operating syste.ms when the job routing takeS place. 
For example, if Job A specifies CLASS=XA, the processor associated with 
class XA must always be running MVS/XA when Job A executes. 

• If a user knows which operating system is running on a processor, the user 
can specify on the job's JCL the processor on which the job is to run. JES2 
programmers use the SYSAFF parameter on the /*JOBPARM statement. 
JES3 programmers use the SYSTEM parameter on the I/*MAIN statement. 

TSO users that require a particular system must log on and submit started tasks 
to that system. 

See SPL: JES2 Initialization and Tuning or SPL: JES3 Initialization and Tuning 
for more information. 

9-12 MVSXA Conversion Notebook, Volume I 

rf" 
\lJ 



(- .. 

Using Global Resource Serialization 

The global resource serialization components of MVSjSP Version 2 and MVSjSP 
Version 1 Release 3 and later releases are compatible. Therefore, loosely-coupled 
MVSjXA and MVSj370 systems can use global resource serialization to control 
data sharing. The RESERVEjDEQ functions are also compatible. 

In general, the fact that a global resource serialization complex includes mixed 
systems does not impose additional restrictions on the types of data sets that can 
be shared. Depending on the level of the systems in the complex, you might need 
to modify the RNLs to ensure that VSAM data sets are shared properly. See 
"Serializing VSAM Data Sets" in Chapter 5 for more information. Also read 
"Updating SYSTEMS Exclusion RNLs" in the same chapter. Global Resource 
Serialization describes data set sharing in general. 

MVSjXA systems and MVSj370 systems that have MVSj370 DFP installed can 
share VSAM and CVOL catalogs. If Data Facility Extended Function 
(5740-XYQ) is also installed on the MVSj370 system, the systems can share ICF 
catalogs as well. 

Global Resource Serialization implemented the enhancements described in 
"Keeping RNLs in qRSRNLxx PARMLIB Members" on page 2-18 and "Using 
Default RNLs" on page 2-28 beginning with Release 2.1.2 and MVSjSP Version 
1 Release 3.5. Loosely-coupled processor complexes will have different start-up 
operations for Global Resource Serialization if they combine earlier versions with 
versions of Global Resource Serialization available with these or subsequent 
releases. 

System Data Sets that Cannot be Shared 

MVSjXA and MVS/370 systems cannot share the following system data sets: 
SYS1.LINKLIB, SYS1.LPALIB, SYS1.NUCLEUS, and SYS1.SVCLIB. 
MVS/370 systems cannot use the MVSjXA SYS1.PARMLIB data set as shipped. 
Installations also need two versions of SYS1.MACLIB. The MVSjXA system 
requires the MVSjXA expansions of downward incompatible macros. Also, some 
mapping macros are unique to MVSj370 or MVSjXA. 

Using SYSl.PROCLIB in a Loosely-Coupled JES3 Configuration 

Beginning with MVSjSP Version 2 Release 1.2, converter-interpreter (ClI) 
processing in a loosely-coupled JES3 configuration can take place on more than 
one processor. When converting jobs that execute procedures, the system 
performing ClI processing uses the procedures in its own PROCLIB, not 
necessarily those in the PROCLIB of the system that will run the job. 

In a loosely-coupled configuration that includes both MVSj370 and MVSjXA 
systems, you need to ensure that the processor performing the ell service uses the 
procedure appropriate for the system that will run the job. If the procedure for 
starting a task in MVS/370 is different from the equivalent MVSjXA procedure 
(as is the RMF procedure), you need to either: 

• Modify the procedure to work on both MVSj370 and MVSjXA systems. 
• Maintain two procedures and change the name of at least one of them. 

Chapter 9. Coexistence Considerations 9-13 



"RMF Procedure" in Chapter 2 describes how to create an RMF procedure that 
starts either RMF Version 2 or Version 3. 

DSI Procedures in a Loosely Coupled JES3 Configuration 

If one of the processors involved in dynamic system interchange (OSI) is running 
MVS/XA and the other processor is running MVS/370, you must ensure that: 

• The JES3 global function, including a JES3 console, has sufficient devices 
that are supported by both the MVS/370 and MVS/XA systems. MVS/XA 
Conversion Notebook, Volume 2 lists devices supported in MVS/370 but not in 
MVS/XA. 

• Any user-written JES3 routine that must run on a particular system (either 
MVS/370 or MVS/XA) is disabled before using OS!. 

The JES3 Conversion Notebook which is available as of MVS/SP Version 2 
Release 1. 5 has further OSI information. 

Resource Access Control Facility (RACF) Always-Call 

The always-call feature that is available beginning with MVS/XA OFP Version 1 
Release 2.0 and MVS/370 OFP Release 1.1, ensures that RACF is invoked each 
time a request to access a data set occurs. In order to provide complete 
protection, always-call must exist on all MVS systems in the complex that share 
the RACF protected data. If one system includes always-call and another does 
not, then RACF security may be bypassed by the users of the system that does 
not have always-call. The RACF Security Administrator's Guide describes 
always-call. 

Resource Access Control Facility (RACF) and VSAM Clusters 

Along with the introduction of always-call in MVS/370 OFP Release 1.1 and 
MVS/XA OFP Version 1 Release 2, RACF simplifies protection ofVSAM 
clusters. There is no longer a need for three RACF profiles (for the cluster name 
itself, the index component name, and ihe data component name) since RACF 
considers that the authority to access the cluster name itself is the same as the 
authority to access any of the VSAM cluster components. 

When sharing VSAM data between an earlier OFP system and a simplified, 
MVS/370 OFP Release 1.1 or Release 1.2 system, you must protect the data 
according to the procedure of the earlier system. VSAM data sets protected 
properly according to the earlier system will be protected on all systems sharing 
the data. (The additional RACF profiles are ignored and create no interference.) 
If you do not follow the three-profile procedure the VSAM data sets on the 
pre-MVS/370 Release 1.1 or Release 1.2 system will not have RACF protection. 

9-14 MVSXA Conversion Notebook, Volume I 

----------



j (-

(' 

Appendix A. Parameter Changes in Incompatible Macros 

This appendix describes changes to the parameters that the following macros pass 
to their service routines: 

• ATTACH 

• ESTAE 

• EVENTS 

• SMFEXIT 

• STAX 

• STIMER 

• SYNCH 

• WTOR 

You need to be concerned about the changes only if you have programs that 
invoke the associated service routines directly (for example, by branch entry) 
instead of using the macros. You need to modify the parameter lists that those 
programs build. 

To maintain compatibility, the MVSjXA service routines for all of macros listed 
except SYNCH accept MVSj370 or MVSjXA parameters. In most cases, the 
service routines check a flag bit (identified as FLAG BIT in the following figures) 
to determine which format (MVSj370 or MVSjXA) the input parameters are in. 
If the bit is 0, the parameters are in MVS/370 format. If the bit is 1, the 
parameters are either in MVS/XA format or in the format indicated by a format 
number somewhere in the parameter list. (The only defined format number is 1, 
which indicates MVSjXA format.) 

If you build your own parameters, ensure that the flag bit and, in some cases, the 
format number correctly specify which version of the parameters you are passing 
to the service routine. 

Note: In the following figures, blank fields represent fields that are not changed. 

Appendix A. Parameter Changes in Incompatible Macros A-I 



ATTACH Parameter List Changes 

The FLAG BIT is the high-order bit of byte 8. The FORMAT NUMBER is byte 
61. 

MVS/370 MVS/XA 

Flags Entry address Entry address 

DCB address DCB address 
or zeros or zeros 

Flags ECB address ECB address 

.--FLAG BIT 

Flags Give subpool Give subpool 
number or number or 
list address list address 

Flags Share subpool Share subpool 
number or number or 
list address list address 

Flags End-of-task End-of-task 
exit routine exit routi ne 
address address 

Resv. JSCB address JSCB address 

Task STAI or ESTAI STAI or ESTAI 
ID parameter list 

address 
parameter list 
address 

Flags STAI or ESTAI STAI or ESTAI 
routine address routine address 

Resv. TASKLIB DCB TASKLIB DCB 
address address 

Flags Resv. Length of 
parameter 
list 

Flags Task Length of 
ID parameter 

list 

Subpool number(s) Subpool number(s) 

Flags FORMAT Reserved 
NUMBER 

, I 

A-2 MVSXA Conversion Notebook, Volume 1 



( 

ESTAE Parameter List Changes 

The FLAG BIT is the low-order bit of byte 13. 

MVS/370 MVS/XA 

ESTAE routine 
address I 

Reserved 

Reserved Reserved 

~FLAG BIT 

ESTAE routine address 

EVENTS Parameter Changes 

The FLAG BIT is the fourth bit of byte 0 in Register O. The FORMAT 
NUMBER is the second byte of Register O. 

Register 0 

Flags 

MVS/370 

ECB address or 
address of last 
entry in EVENTS 
table 

SMFEXIT Parameter List Changes 

MVS/XA 

Register 0 

FORMAT 
NUMBER 

II 
FLAG BIT 

Register 15 

ECB address or 
address of last 
entry in EVENTS table 

Reserved 

If the user specifies a work register on the SMFEXIT macro, the macro sets bit 
six of the parameter list to 1. In MVS/370, the bit is reserved. SMF uses the 
work register to save and restore the caller's addressing mode. 

Appendix A. Parameter Changes in Incompatible Macros A-3 



STAX Parameter List Changes 

The FLAG BIT is the bit 6 of byte 16. The FORMAT NUMBER is byte 17. 

MVS/370 

Flags I Address of 
parameter list 

STIMER Parameter Changes 

The FLAG BIT is the high-order bit of byte O. 

MVS/370 

Register a 
Flags Exit routine 

oddress 

Register 15 

I Not Used 

SYNCH Parameter List Changes 

MVS/370 

MVS/XA 

FLr BIT 

Flags I I FORMAT 
I 

Reserved 
NUMBER 

Addre~s of parameter 
list 

MVS/XA, 

Reserved 

FLAG BIT 

Register 15 

Exit routine address 

MVS/XA 

I Reserved 

a 

I Reserved II 
4 o i1 

AMODE flog 

AMODE flogs: 

00 AMoDE=24 
01 AMoDE-DEFINED 
10 AMoDE-31 
11 AM ODE-CALLER 

For more information, see "Downward Incompatible SYNCH Macros" in 
Chapter 9. 

A-4 MVSXA Conversion Notebook, Volume 1 

4 



WTOR Parameter List Changes 

The FLAG BIT is the high-order bit of byte O. 

MVS/370 MVS/XA 

Reply 

I 
Address of reply 

length buffer 
Address of reply 
buffer 

FLAG BIT 

Zero 

I 
Reply 

I length 

( 

( 

Appendix A. Parameter Changes in Incompatible Macros A-5 



A-6 MVSXA Conversion Notebook, Volume 1 



( 

Appendix B. Control Block Updates 

Figure B-1 lists the Release 2.1.x control blocks that are new, updated, or deleted 
or that can reside anywhere in virtual storage (above or below 16 Mb). Because 
updates may have occurred to some of the control blocks listed, be sure to consult 
the corresponding list in the MVSjXA Conversion Notebook, Volume 2. It contains 
the control block updates that have occurred for Release 2.2.x. 

The figure that follows does not include control blocks that are not updated and 
that must reside below 16 Mb. The parentheses contain the name of the mapping 
macro that defines the structure of the associated control block. 

If a control block can reside anywhere, the figure indicates it might be above 16 
Mb. If a control block's virtual storage location depends on the caller, the notes 
column indicates that the location is specified by the user. Note that Release 
2.1. 7 combines releases 2.1.3VFE and 2.1.3AE. 

Appendix B. Control Block Updates B-1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

ABDPL (IHAABDPL) x x x 
x x x 

ABEPL (IHAABEPL) x x x 
AE(IHAAE) x x x 
AMDDATA x x x 

x x x 

x x x 

x x x 
AMRQ (IHACTM) x x x 
AQAT (IHAAQAT) x x x 
AQE (IHAAQE) x x Replaced by 

IHAAE 

ASCB (IHAASCB) x x ·x 
x x x 

x x x 

x x x 

x x x 

ASMHD (ILRASMHD) x x x 
ASMVT (ILRASMVT) x x x 

x x x 
x x x 

ASSB (IHAASSB) x x x 
ASTE (IHAASTE) x x x 

ASVT (IHAASVT) x x x 
x x x 

ASXB (IHAASXB) x x x 
ATECB (IEFZB432) x x x 
A TICH (IEZA TICH) x x x User-specified 

x x x 
AWA (IEFVMAWA) x x x 
BASEA (IEEBASEA) x x x Resides in the 

nucleus 

x x x 
REB (IECDREB) A x x 
BLSRDTDT x x x 
BLSRDUT x x x 
BLSRESSY x x x 

BLSRRDSY x x x 
BLSRSST x x x 
CAT (IECDCA T) x x 

CAW x x 
CBLS (IHACBLS) x x x 
CCT (IRACCT) x x x 

x x x 

x x x 

Figure B-1 (Part 1 of 13). Control Block Updates 

B-2 MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

CCW (IOSDCCW) x x x New Format I 
CCW. Format 0 
(the MVS/370 
format) is 
unchanged. 

CDA (IGFCDA) x x 

CDE (IHACDE) x x x 

x x x 

CHRB (IOSDCHRB) x x x 

CHT (IECDCHT) x x 

CIB (IEZCIB) x x x 

x x x 

CIFP (IEFCIFP) x x x 

CIMP (IEFVMMWA) x x x 

CLRATT (IEEVCI02) x x x 

CMCT (IRACMCT) x x x In the extended 
nucleus 

x x x 

COMMON x x x 

x x x 

x x x 

COMWA (IEFCOMWA) x x x 

CPT (IECDCPT) x x 

CQB (IHACTM) x x x 

CQE (IHACTM) x x x 

CRCA (IECDCRCA) x x 

CSCB (IEECHAIN) x x x 

x x x 

CSD (IHACSD) x x x 

x x x 

x x x 

x x x 

CST (IECDCST) x x 

CSWK (IECDCSWK) x x 

CTM (IHACTM) x x Only the XVSA V 
and CXSA maps 
have changed. 
The COMPL can 
be above 16 Mb. 
The others must 
be below 16 Mb. 

CTXT (IEZVXlOO) x x Mapping macro 

CVRWA (IEFCVRWA) x x x 

Figure B-1 (Part 2 of 13). Control Block Updates 

Appendix B. Control Block Updates B-3 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

CVT x x x 
x x x 

x x x 

x x x The previously 
reserved field, 
CVTOFNOO, is 
named 
CVTVPRM and 
contains two 
half words with 
Vector Facility 
information. 

x x x The previously 
reserved field, 
CVTRSV98, is 
named 
CVTAVVTand 
contains 
availability 
manager 
information. 

x x x The Release 2.1.7 
CVT combines 
the 2.1.3VFE and 
2.1.3AE changes. 

CXSA (IHACTM) x x x 

x x x 
DACB (IKJDACB) x x x 
DALDDNAM x x x 
(IEFZB4D2) 

DBOX (IOSDBOX) x x x 

x x x 
DCQ (IHADCQ) x x x 
DDP (IGFDDPRM) x x x 
DDR (IHADDR) x x x 
DDT (IECDDT) x x x 

x x x 
DEB (IEZDEB) x x x 
DEVTAB (IFDEVTAB) x x x 
npp lTD A. T"'\nrn 
~ ... ~ , ......... .l"'.,LJ.I. . .a..:.j X X X 

DFLM (ADYDFLM) x x x 
DMDT (IRADMDT) x x 

x x x 

DOMC (IHADOMC) x x x 

DOMPL (IHACTM) x x 
x x x 

DQE (IHADQE) x x x 

DSAB (IHADSAB) x x x 
x x x 

DSPD (ADYDSPD) x x x 

DSTAT (ADYDSTAT) x x x 

DSVCB (IHADSVCB) x x x 
x x x 

Figure B-1 (Part 3 of 13). Control Block Updates 

B-4 MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb' Notes ( 
DSX (ADYDSX) x x x 
ECB (IHAECB) x x x User-specified 

ECBE x x x User-specified 

ENFCT (IEFENFCT) x x x 
ENV (IGFENV) x x x 
EPAT (IRAEPAT) x x x 
EPCB (IECDEPCB) x x x 
EPDT (IRAEPDT) x x x 
EPIE (IHAEPIE) x x x 
ERPIB (IGFERPIB) x x 
ESPI (IHAESPI) x x x 

EST A (IHAESTA) x x x User-specified 

ESW (IHAESW) x x x 

x x x 
ETD (IHAETD) x x x User-specified 

ETE (IHAETE) x x x 

EVNT (IHAEVNT) x x x 
EWA (EWAMAP) x x x 

x x x 
FBQE (IHAFBQE) x x x 
FIX (IECDFIX) x x "x 
FQE (IHAFQE) x x x 
FRRS (IHAFRRS) x x x 

( FTPT (IHACTM) x x x 
GDA (IHAGDA) x x x 
GENX (IEEZBSl6) x x x 

GETPTWT (IEFZB600) x x Replaced by the 
VSM parameter 
list 

GTF records: 

CCW x x 
EOS x x 

10 x x 
I/O instructions x x 
PCI x x 

SIO x x Replaced by new 
I/O instructions 

UIO x x 
GSDA (IHAGSDA) x x x 

GVT (ISGGVT) x x x 

x x x 

x x x 
GWT (IHAGWT) x x x 

HCL (IHAHCLOG) x x Mapping macro 

Figure B-1 (Part 4 of 13). Control Block Updates 

( .... , 

./ 

Appendix B. Control Block Updates B-5 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

ICHPT (IHAICHPT) x x 
x x 

x x x 
ICSE (IRAICSE) x x 
ICSM (IRAICSM) x x 
ICSS (IRAICSS) x x 
ICT (IRAICT) x x x 

x x x 
IDAL (IECDIDAL) x x x 

IEAPMNIP x x x 
IEAPPNIP x x x 
IEAPQSR x x 

IEAPXNIP x x 

IEAVNPB x x 

IEAVSPSA x x x 
IECDCPT x x 
IEEMBBQE x x x 

IEEMBWKA x x x 
IEESMFID x x x 

IEEVCIOI x x x 

IEEVMENT x x x User-specified , 

IEEVMPRM x x x User-specified 

IEFVMSWA x x x 

IEFZB4D2 x x x 
IHAGSDA x x x 
IHARCT (IHARCT) x x x 

IHARRRA x x x 
IHASNAP x x x User-specified ' 

IHSA (IHAIHSA) x x x 
INTW A (IEFVMIWA) x x x 

x x x 
IOCX (IECDIOCX) x x x 
IOE (ILRIOE) x x 
IORB (ILRIORB) x x 

x x x 

IOSB x x x The lOS caller 
determines the 
location of the 
IOSB. 

x x x 

x x x 

x x x 
IQE (IHAIQE) x x x 

,x x x 

Figure B-1 (part 5 of 13). Control Block Updates 

B-6 MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Bloek VFE AE New Updated Deleted 16Mb 16Mb Notes 

IRB (IHARB) x x x See RB in this 
table. 

ITK (IEFVKEYS) x x x 
IVT (IHAIVT) x x x 

x x x 
JCTX (lEFJCTX) x x x 

x x x 

x x x 

x x x 
JESCT (lEFJESCT) x x x 

x x x 
x x x 

JFCB (lEFJFCBN) x x x 
x x x 

JMR (lEFJMR) x x x 
JSBVT (lEFJSBVT) x x x 

JSCB (lEZJSCB) x x x 
LCCA (IHALCCA) x x x Fetch-protected 

x x x 
x x x 

x x x 

LCH (lECDLCH) x x 
LDA (IHALDA) x x x 

( 
x x x 

LLCB (IHALLCB) x x x 

LLPM (lHALLPM) x x x 
LMSG (lECDLMSG) x x x 

LPBT (lRALPBT) x x x 
LPDE (lHALPDE) x x x 
LRB (lHALRB) x x x 

x x x 

x x x 

MCHTRACE x x x 
MCT(lRAMCT) x x x 

x x x 

x x x 
MIHW (lGFDMIHW) x x 
MPL (lHAMPL) x x x 
MSG (lGFMSG) x x 

MSRASDCA (lEEZBSOS) x x x 

x x x 
NEL (lEFNEL) x x x 
NVT (lHANVT) x 

... 
x x 

Figure B-1 (Part 6 of 13). Control Block Updates 

Appendix B. Control Block Updates B-7 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

OLST (lRAOLST) x x x 
ORB (lHAORB) x x x 
OUCB (lRAOUCB) x x x 

x x x Some fields have 
new offsets. The 
Release 2.1.3 
OUCBis 
incompatible witb 
the OUCBin 
previous releases. 

x x x 

x x x 
OUXB (IHAOUXB) x x x 
PCCA (lHAPCCA) x x x 

x x x 
PEL (lSGPEL) x x x 

x x x 

PEXB (ISGPEXB) x x x 
PIPL (lEZPIPL) x x x User-specified 

PQA x x 
PQE (lHAPQE) x x Replaced by 

IHARD 

PRULE (lEZPRULE) x x x User-specified 

PSA (lHAPSA) x x x The upper 2 K is 
fetch-protected. 

x x x 
x x x 

x x x 

x x x 

PTUD (IOSDPTUD) x x 
PVT (lHAPVT) x x x The old PVT is 

split among 
IHAPVT, 
IARRIT, and 
IARRCE. 

x x x 

X JI. x 
P25C (EWAP25C) x x x 
QCB (ISGQCB) x x x 
QEL (lSGQEL) x x x 
QHT (ISGQHT) x x x 
QRO (lHACTM) x x x 

QVOD (IHAQVOD) x x x User-specified 

QVPL x x x User-specified 

QVPLXVPL x x x User-specified 

QWA (lSGQWA) x x x 
QWB (ISGQWB) x x x 

QXB (lSGQXB) x x x 

Figure B-1 (part 7 of 13). Control Block Updates 

B-8 MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

RB(IHARB) x x x 

RCE (IARRCE) x x x 

x x x 

x x x 

RCT (IRARCT) x x x 

x x x 

RCTD (IEARCTD) x x x 

RD (IHARD) x x x 

RDCM (IEERDCM) x x x 

x x x 

RESV (IOSDRESV) x x x 

RGR (IHARGR) x x x 
RMCA (IRARMCA) x x x 

x x x 

x x x 
RMCT(IRARMCT) x x x 

x x x 

x x x 

x x x 

RMEP (IRARMEP) x x x 

RMEX (IRARMEX) x x x 
RMPL (IHARMPL) x x x 

RMPT (IRARMPT) x x x 

x x x 
RMQH (IRARMQH) x x 

RMSB (IRARMSB) x x x 

x x x 
RNLE (ISGRNLE) x x x 

RPT (ISGRPT) x x x 
RQE (IECDRQE) x x x 

x x x 
RQSV (IRARQSRV) x x 

x x x 
RRQ (IECDRRQ) x x x 
RSMHD (IHARSMHD) x x Replaced by 

IARRAB 

RTCT (IHARTCT) x x x 

x x x 
x x x 

RTSD (IHARTSD) x x x 

RVT (IHARVT) x x In the non-page 
protected nucleus 

SCA (IHASCA) x x x 
SCB (IHASCB) x x x 
SCCB (IHASCCB) x x x 

x x x 

Figure B-1 (Part 8 of 13). Control Block Updates 

Appendix B. Control Block Updates B-9 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes c 
SCD (IECDSCD) x x 
SCHIB (IHASCHIB) x x x 
SCL (IEEZBSI5) x x Mapping macro 

SCSR (IEZVGlOO) x x x 
SCT (IEFASCTB) x x x 

x x x 
SCVT (IHASCVT) x x x 

x x x 
SCWA (IHASCWA) x x x 

x x x 
x x x 

x x x 

x x x 
SDEPL (IHASDEPL) x x x 

x x x 
SDUMP (IHASDUMP) x x x User-specified 

SDWA (IHASDWA) x x x 

x x x 

x x x 
x x x 

SlAB (IECDSIAB) x x 

SlOT (IEFASIOT) x x x 
SJDFP (IEFSJDFP) x x x 

SJDLP (IEFSJDLP) x x x 

SJEXP (IEFSJEXP) x x x 

SJFNP (IEFSJFNP) x x x 
SJGEP (IEFSJGEP) x x x 

SJINP (IEFSJINP) x x x 
SJJDP (IEFSJJDP) x x x 
SJPRFX (IEFSJPFX) x x x 
SJPUP (IEFSJPUP) x x x 
SJREP (IEFSJREP) x x x 
SJRUP (IEFSJRUP) x x x 

SJWRP (IEFSJWRP) x x x 

SLCA (IFASLCA) x x x 

SMCA (IEESMCA) x x x 

x x x 

x x x 
SMDLR (IHASMDLR) x x x 

x x x x 

SPCT (IHASPCT) x x Replaced by 
IARSFTE 

SPQA (IHASPQA) x x x 

SPQE (IHASPQE) x x x 

SPT (IHASPT) x x x 

Figure B-1 (part 9 of 13). Control Block Updates 

B-IO MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

SQAT (IHASQAT) x x x 
( 

SRB (IHASRB) x x x User-specified 

SRCD (ADYSRCD) x x x 
SRIO (IOSDSRIO) x x x 
SRPL (IEEZB814) x x x 
SSAL (IEFSSAL) x x x 
SSCM (IEFSSCM) x x x 

SSCVT (IEFJSCVT) x x x 
SSDA (IEFSSDA) x x x 
SSJS (IEFSSJS) x x x 

x x x 
SSL (IHASSL) x x x User subpool 

and key 

SSOB (IEFJSSOB) x x x If the sub-
system(s) given 
control runs in 
31-bit addressing 
mode, the SSOB 
can be above 
16Mb. 

SSOBH (IEFSSOBH) x x x 
SSRB (IHASSRB) x x x 
SSSO (IEFSSSO) x x x 
SSVS (IEFSSVS) x x x 

SSWT (IEFSSWT) x x x 

( 
STCB (IHASTCB) x x x 
STKE (IHASTKE) x x x 
SUB (IEECSUB) x x x Resides in the 

nucleus 

SUPVT see SVT 

SVCTABLE (IHASVC) x x x 
SVT (IHASVT) x x x 

x x x 

x x x 

x x x 
SWB (IEFSWB) x x x 
SWCT (IRASWCT) x x x 
S99PARMS (IEFZB4DO) x x x 
T AXE (IKJT AXE) x x x 
TBUF (IHATBVT) x x x 
TBVT (IHATBVT) x x x 

x x x 
TCB (IKJTCB) x x x 

x x x 
x x x 

TCCW (IECDTCCW) x x x 

x x x 

Figure B-1 (Part 10 of 13). Control Block Updates 

Appendix B. Control Block Updates B-ll 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes C-" 
'./ 

TCT (lEFTCT) x x x 

x x x 

x x x 

x x x 

x x x 

TDCM (lEETDCM) x x x 

x x x 

x x x 

TFWA (lHATFWA) x x x 

TOB (lHATOB) x x x 

TOT (lHA, TOT) x x x 

TPC (lEA VVTPC) x x x 

TQE (IHATQE) x x x User-specified 

x x x 

Trace table entries: Mapped by 
IHATTE 

ACR x x x 
... 

ALTR .'> x x 

BRANCH TRACE x x x .. -
CALL x x x 

CLKC x x x 

DSP x .x. x 

EMS x x x 

EXT x x x ./ 

10 x x x 

I/O instructions .' x x 

MCH x" x x 

PC trace x x x 

PGM x x x 
PT trace x x x 

RST x x x 

SIO x x 

SRB x x x 
SS";~ )( x x 

SSAR trace x x x 

SSRB x x x 

SUSP x x x 

SVC x x x 

SVCR x x x 

SVCE x x x 

USRn x x x 

WAIT x x x 

TRBP (lHATRBPL) x x User-specified 

TREP (IHATREPL) x x User-specified 

TROB (IHATROB) x x x 
TRQE (IRATRQEL) x x User-specified 

Figure B-1 (Part 11 of 13). Control Block Updates 

B-12 MVSXA Conversion Notebook, Volume 1 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

TRVT (IHATRVT) x x x 

x x x 

TTCH (IHATTCH) x x x 

TTE (IHATTE) x x x See trace table 
en try in this 
table. 

x x x 
TXTFT (lEFTXTFT) x x x 

UCB (IEFUCBOB) x x x 

x x x 

x x x 

UCB look-up table x x 

UCDX (IEEUCDX) x x x 
UCM (IEECUCM) x x x Resides in the 

nucleus 

x x x 

x x x 
USECB (lOSUSECB) x x 

UXIR (IHACTM) x x x 

VCB (IHA VCB) x x x User subpool 
and key 

VFPM (IHA VFPM) x x User subpool 
and key 

VFQE x x x 

( 
VFVT (IHA VFVT) x x x 

VOID (lECDVOID) x x x 

x x x 

x x x 

VRAMAP (lHAVRA) x x x 

VSL (IHA VSL) x x User subpool 
and key 

VSRI (lEEZBS12) x x x 

VSSA (IHA VSSA) x x x 

VTPC (lEA VVTPC) x x x 

VTSP (IEFVTSPL) x x x 

WMST (IRA WMST) x x x 

x x x 

WPGT)T (IRA WPGDT) x x 

x x x 

x x x 

x x x 

WPL (IEZWPL) x x x User-specified 

x x x 

WQE (IHA WQE) x x x 

x x x 

Figure B-1 (Part 12 of 13). Control Block Updates 

Appendix B. Control Block Updates B-13 



Release 

Maybe Always 
2.1.0 2.1.1 2.1.2 2.1.3 2.1.3 2.1.3 2.1.7 Above Below 

Control Block VFE AE New Updated Deleted 16Mb 16Mb Notes 

WSA VTC (IHA WSAVT) x x x Component-
specified, 
fetch protected 

x x x 

x x x 

x x x 
x x x 

WSAVTG (IHAWSAVT) x x x Component-
specified, 
fetch protected 

x x x 
WSA VTL (IHA WSA VT) x x Unchanged 

x x x 
x x x 

WWB (IHACTM) x x x 

x x x 
XCPS (IECDXCPS) x x x 

x x x 
XDBA (IECDXDBA) x x x 

x x x 
XFRR (IECDXFRR) x x x 

XPTE (IARXPTE) x x x 
XSA (IEEXSA) x x x 

x x x 

XSB (IHAXSB) x x x User-specified 

XTLST (IHAXTLST) x x x 
XV (IHACTM) x x x 

XVSA V (IHACTM) x x x 

Figure B-1 (Part 13 of 13). Control Block Updates 

C,',,\, , , 

B-14 MVSXA Conversion Notebook, Volume 1 



( 

( 

(/ 

Index 

ABEND 
B37 6-8 
D37 6-8 
E37 6-8 
macro 3-6, 3-43, 6-23 
out-of-space 6-8 
16E 3-20 
504 3-11 
538 3-14 
80A 6-8 

access methods 3-28 
accessing control blocks above 16 megabytes 3-40 
accounting procedures 7-1 
ACONs 3-19 
action message retention facility 5-7 
ADDFRR instruction 3-1 
address 

constants 3-19 
space tracing 6-20 
space vector table (ASVT) 2-17,2-24 
spaces 

DUMPSRV 2-26 
full-function 2-26 
master scheduler 2-9 
page-in rate 2-22, 8-9 
SMF 2-25, 2-26 
working set size 2-22, 8-9 

addresses 
device 2-5 
in the PSW 3-19 
processor 3-19 
real 3-23 
size of 3-28 
UCB 3-17 

addressing mode 
changing 3-30 
definition of 3-28 
establishing 3-31 
parameter on CIRB 3-43 
parameter on SYNCH 3-47 
31-bit considerations 3-3 

ADYDFLT load module 6-10 
ADYHDFMT DAE header exit 5-6,6-11 
ADYSETxx PARMLIB member 2-20,6-9 
ADYSETOO PARMLIB member 6-10 
ADYSETOI PARMLIB member 6-10 
ADYSET02 PARMLIB member 6-10 
algorithms 

data set selection 8-9 
slot selection 8-10 

ALLNUC dump option 6-2 
ALLOCATE modules 3-17 
allocating SYSl.DUMPxx data sets 1-2 

allocation space defaults CSECT 3-15 
ALLVNUC dump option 6-2 
AL T system parameter 2-23 
alternate nucleus, specifying 4-3 
AMASPZAP service aid program 

changing global resource serialization 
thresholds 3-14 

changing hot I/O recovery actions 4-6, 5-4 
changing hot I/O thresholds 5-4 
overriding segment protection 3-21 

AMBLIST utility 3-32,6-11 
AMDPRDMP service aid 

See PRDMP 
AMDPRECT module 5-6 
AMDSADMP macro 2-29 
AMDSARDM module 2-29 
AMODE 

compared to current addressing mode 3-32 
description of 3-31 
determining 3-32 
flags in the CESD 3-32, 9-2 
flags in the ESD 3-32 
flags in the PDS directory entry 3-32, 9-2 
linkage editor interpretation 3-32 
parameter on CIRB 3-43 
parameter on SYNCH 3-5,3-47,9-10 
specifying 3-31 

APARs 
See also PTFs 
for DFDS 1.4 8-2 
for IEBCOPY 8-1 
for IEBCOPY ALTERMOD and COPYMOD 8-1, 

8-2 
for Linkage editor 8-1 
for program fetch 7-4,8-1 
for SVCDUMP 3-17 

APF authorization 2-24,2-25,3-19,8-7 
ASCB 

deletion of ASCBSEQN from 3-1 
on swapped-in queue 3-1 

ASM (auxiliary storage manager) 
control blocks in PRDMP output 6-11 
data set selection algorithm 8-9 
lock 3-20 
slot selection algorithm 8-10 

ASMDATA PRDMP statement 6-11 
Assembler H Version 2 

indicating AMODE/RMODE 3-32 
system generation requirement 2-2 
when to use 9-2,9-10 

assembler language global SET symbol 9-1 
assembling programs 

after installing BTAM/SP 3-10 
after installing compatibility PTFs 3-4, 3-9 
containing CLOSE macros 9-7,9-10 
containing OPEN macros 9-7,9-10 
containing SYNCH macros 9-11 

Index X-I 



MVSjXA system programs 9-9 
to run in MVSjXA 9-2 

ASVT (address space vector table) 2-17,2-24 
ATTACH macro 

changing the addressing mode 3-30 
differences 3-6 
incompatible MVSjXA expansion 9-7 
parameter list changes A-2 

authorized programs, changes affecting 3-2 
Automatic Priority Group (APG) specifications 8-11 
availability manager 

AVMDATA PRDMP control statement 6-11 
in Release 2.1.7 3-1 
procedure in SYS1.PROCLIB 2-26 
START command keyword 4-17 

AVMDATA PRDMP control statement 6-11 

backup considerations 
copying MVSj370 DLIBs 2-2 
producing backup tapes 9-11 
program incompatibilities 9-11 
program product licenses 9-11 
size of private area used 9-11 
switching between 370 and 370-XA 9-11 
using a common 10CDS 9-11 
workload 9-12 

BAL instruction 3-33, 9-4 
BALR instruction 3-33, 9-4 
BAS instruction 3-34 
BASR instruction 3-34 
BASSM instruction 

description of 3-36 
example of using 3-37, 3-39 

BLDL 
lists )-21,8-7 
system parameter 2-21,2-24 
using LLA directory 8-7 

BLDLjFIND modules 3-16 
BLDLF system parameter 2-21,2-24 
BLSABDPL mapping macro 3-6, 3-43, 5-6 
BLSAMPLE member of SYS1.SAMPLIB 6-19 
BLSPDISE IPCS panel 6-16 
BLSPDSLE IPCS panel 6-16 
BLSQMDEF macro 3-6, 3-43 
BLSQMFLD macro 3-6, 3-43 
BLSRESSY macro 3-6, 3-43 
BQEs for SMF 3-19 
branch 

instructions 3-33, 3-34, 3-35, 3-36 
tracing 6-20 

BROWSE IPCS panel 6-16 
BSM instruction 

description of 3-35 
example of using 3-37, 3-39, 3-40 

BT AM RESETPL macro 3-6, 3-10 
BTAM/SP program product 3-10 

X-2 MVSXA Conversion Notebook, Volume 1 

buffer queue elements for SMF 3-19 
buffers 

I/O 3-41 
obtained by access methods 3-23 
real addresses of 3-23 
SMF 2-25 
used with EXCP 3-41 
used with EXCPVR 3-23 
used with VSAM services 3-40 

bypassing VSM's storage availability check 5-4 
B37 ABEND code 6-8 

CJI (converter-interpreter) processing 9-13 
CALL macro 3-6 
CALLDISP macro 3-8, 3-43 
CALLRTM macro 3-8,3-43,6-23 
CANCEL command 4-11 
catalog address space 7-1 
catalogs 

CVOL 9-13 
ICF 9-13 
sharing 9-13 
VSAM 9-13 

CB dump option 6-2 
CCWs 

used with EXCP 3-41 
used with EXCPVR 3-23 

CDEs (contents directory entries) 2-22 
cell pool 3-43 
central processing unit 

See CPU (central processing unit) 
CESD (composite external symbol dictionary) 3-32, 

9-2 
CFC (COMPARE AND FORM CODEWORD) 
instruction 3-35 

CHANGKEY macro 3-8, 3-43 
channel 

command words 
See CCWs 

numbers 2-5 
sets 2-5 

CHANNEL macro 2-7 
checking for available storage 5-4 
checkpoint/restart 

diagnostic data 6-24 
modules 3-16 

CHKPT macro 3-6, 3-8, 3-43, 9-7 
CHNGDUMP command 4-11 
CHP parameter in CONFIGxx 2-20 
CHPID macro 2-5 
CIRB macro 3-8, 3-43 
CLCL (Compare Logical Long) instruction 3-34 
CLOSE macro 

incompatible MVSjXA expansion 9-7 
CMB system parameter 2-17, 2-23 



( 

CNTLUNIT macro 2-5 
coexistence 

considerations 9-1 
definition 9-1 
handling downward incompatible macros 9-7 
programming considerations 9-3 
routing jobs 9-12 
sharing data sets 9-13 

color consoles 
controlling message traffic 4-7 
display options 4-6 
specifying color attributes 2-25, 4-6 

commands 
CANCEL 4-11 
CHNGDUMP 4-11 
CONFIG 4-11,4-16, 7-6 
CONTROL 

M 4-11 
S 4-12 
V 4-12,5-8 

DISPLAY 
A 4-12 
CONSOLES 4-13 
DUMP 4-13 
GRS 4-14 
M 4-10,4-11,4-14 
MPF 4-14 

DUMP 4-15 
DUMPDS 4-15 
FORCE 4-15 
incompatible 4-10 
MODE 4-15 
MODIFY 4-15,8-8 
MONITOR 4-16,4-17 
MSGRT 4-16 
SET 

DAE 4-16, 6-10 
MPF 4-6,5-8 
SMF 4-16 

SLIP 4-16, 4-17 
START 4-17,8-8 
STOP 4-17,8-8 
STOPMN 4-16, 4-17 
summary of changes to 4-10 
TRACE 4-18 
TRACK 4-7 
VARY 

CH 4-18 
CPU 4-18 
devnum, ONLINE 4-18 
PATH 4-18 
STOR 4-18 

COMMNDxx PARMLIB member 2-18 
Compare Logical Long (CLCL) instruction 3-34 
composite external symbol dictionary (CESD) 3-32, 

9-2 
concatenating data sets 

to SYSl.LINKLIB 2-24,2-25,8-7 
to SYSl.LPALIB 2-9 

CONFIG 
command 4-11,4-16,7-6 

frame 4-3 
Configuration (CONFIG) frame 4-3 
CONFIGxx PARMLIB member 

order of processing 2-20 
summary of changes 2-20 
using with the CONFIG command 4-11 

console 
changing specifications for 4-12 
clusters 4-7 
color 4-7 
frames 

OPRCTL (operator control) 4-3 
SYSCTL (SCP manual CNTL) 4-3 

reestablishing console specifications 4-12 
requesting status information 4-13 
3279 4-6 

contents directory entries (CDEs) 2-22 
contents supervision (CSV) modules 3-17 
control blocks 

See also specific control block name 
formatter service 5-10 
in PRDMP output 6-11 
list of differences B-1 
retrieving data above 16 megabytes 3-40 

CONTROL command 
M 4-11 
S 4-12 
V 4-12, 5-8 

control records 8-3 
converter-interpreter (C/I) processing 9-13 
copying 

DLIBs 2-2 
IPCS modules 6-18, 6-19 
modules for fetch performance 8-3 
PRDMP modules 6-18,6-19 

count values in load modules 
how used 8-3 
inserting 8-3, 8-5 
maintaining 8-4, 8-5 

CPENABLE parameter in IEAOPTxx 2-23 
CPOOL macro 3-6, 3-43 
CPU (central processing unit) 

addresses 3-19 
lock 3-20 
resource numbering in 4-way processor 
complexes 4-8 

timer 3-16 
CPU parameter in CONFIGxx 2-20 
CPUTIMER macro 3-6,3-16,3-43 
cross memory entry table entries 3-26 
CSA 

dump option 6-2 
specifying the size of 2-15,2-16,2-23 
system parameter 2-15,2-16,2-23 

CSV (contents supervision) modules 3-17 
CSVLLCRE module 2-8 
CSV300I message 8-2 
CTRLPROG macro 

specifying ECSA and ESQA size 2-14 
unsupported parameters and options 2-7 

Index X-3 



CVOL catalogs 9-13 
CVT 

CVTDCB field 9-3,9-4,9-9 
CVTEFLPE field 3-18 
CVTEFLPS field 3-18 
CVTFLPAE field 3-18 
CVTFLPAS field 3-18 
CVTMVSE bit 9-3, 9-9 
CVTNUCB field 3-18 

DAE (dump analysis and elimination) 
command 2-21 
components using 6-9 
controlling 6-9 
description 6-8 
header exit, ADYHDFMT 6-11 
symptom data 5-6,6-8,6-11 
SYS1.DAE data set 2-9 . 

DAEALLOC member of SYS1.SAMPLIB 2-9,6-10 
DAEDATA PRDMP statement 5-6,6-11 
DAM 3-28 
DASD 

initializing 2-11 
operand on DUMP system parameter 2-17 
use of space 8-4 

DASDR licensed product 9-11 
DASDR service routine 3-20 
DAT-off 

modifying programs that run 3-25 
module 3-25 
nucleus 3-25 

data extent block 3-19 
Data Facility Data Set Services (DFDSS) 2-2,9-11 
Data Facility Extended Function (DFEF) 9-13 
data management services 3-28 
data sets 

See also system data sets 
selection algorithms 8-9 
SMF 8-9 

DATASET macro 2-6, 2-7, 2-9 
DATOFF macro 3-8 

example 3-25 
function of 3-44 

DC option on LKED EXEC statements 8-6 
DCBS option on LKED EXEC statements 8-6 
DD statements 

for SYS1.DUMPxx data sets 1-2 
in the PRDMP procedure 2-27 

DEB 
for fetch-protected areas 3-20 
for the LNKLST concatenation 3-19 

DEBAPFIN bit in the LNKLST DEB 3-19 
DEBCHK service routine 3-20 
debugging considerations 6-20 
deleting messages 5-7 
DEMF (Display Exception Monitor Facility) 2-2 

X-4 MVSXA Conversion Notebook, Volume 1 

descriptor codes for messages 5-7 
device 

See also devices 
address on IODEVICE 2-5 
addresses for stand-alone dump 2-29 
allocation load module 3-15 
allocation tables 

changing programs that access 3-19,3-50 
removing references to 2-18 

allocation, non-specific 2-23 
connect time 

definition of 7-2 
in calculating I/O service 2-22 
in SMF records 7-2,7-7 

ERP modules 3-16 
number 2-5 

Device Support Facilities 2-11 
devices 

See also device 
DASD, initializing 2-11 
for system data sets 2-8 
specifying MIH intervals for 2-19 

DEVMASKT table 2-18,3-50 
DEVNAMET table 2-18, 3-50 
DFDSS (Data Facility Data Set Services) 2-2,9-11 
DFEF (Data Facility Extended Function) 9-13 
DFP 

See MVS/XA DFP 
direct access storage devices 

See DASD 
DISP 

JCL parameter 4-5 
lock 3-20 

Dispatching queue 
See Swapped-in queue 

DISPLAY 
command 

A 4-12 
CONSOLES 4-13 
DUMP 4-13 
GRS 4-14 
M 4-10, 4-11, 4-14 
MPF 4-14 

PRDMP statement 6-11 
Display Exception Monitor Facility (DEMF) 2-2 
disposition of SYS1.DUMPxx data sets 1-2 
DIVIDE, extended operand (DXR) instruction 3-35 
DLIBs 2-2 
downward incompatible macros 9-7 
DSP (dynamic support program) 5-5 
dual paths in programs 

example 9-9 
selecting path 9-3 
when required 9-3 

dummy SMF records 7-8 
dump 

command 4-15 
data sets 

accessing via IPCS 6-15 
allocating 1-2, 4-5 



(" 

associating with a specific processor 2-17 
clearing 4-15 
defining 2-9, 4-15 
deleting 4-15 
eligible devices for 2-8 
location of 6-15 
moving 6-16 
number and size of 2-9 
scanning 6-11 

exit routines 5-5, 5-8 
format changes 6-5 
headers 

in formatted user dump 6-5 
in SVC dumps 6-6 
in SYSMDUMP 6-5, 6-6 

indexes 6-6 
options 

ALLNUC 6-2 
ALLVNUC 6-2 
in IEAABDOO 2-21 
in IEADMPOO 2-21 
in IEADMROO 2-22 
in SNAP parameter list 6-2 
NOSYM 6-4 
on SNAP macro 3-43, 3-46 
on the DUMP command 6-2 
on the SDUMP macro 3-46, 6-2 
on the SNAP macro 3-46 
SPLS 6-3 
SQA 6-3 
SUBPLST 6-3 
SUBT ASKS 6-3 
SUM 6-3,6-4 
summary of new and updated 6-2 
TRT 6-3 

stand-alone (See stand-alone dump) 
suppressing 6-7 
SVC (See SVC dumps) 
symptom 6-3 
SYSMDUMP (See SYSMDUMP) 
system parameter 2-17, 2-23 
SYSUDUMP (See SYSUDUMP) 
user summary 6-4 

dump analysis and elimination 
See DAE (dump analysis and elimination) 

DUMP system parameter 2-17 
DUMPDS command 4-15 
DUMPSRV 

address space 4-5 
procedure in SYS1.PROCLIB 2-26 

DXR (DIVIDE, extended operand) instruction 3-35 
dynamic address translation 

See DAT-off 
dynamic allocation interface routine 3-15 
dynamic allocation user exit 3-15 
dynamic support program (DSP) 5-5 
D37 ABEND code 6-8 

ECBs, extended 3-19 
ECT (print dump exit control table) 5-6 
ECT service 5-10 
Edit and Mark (EDMK) instruction 3-34 
EDMK (Edit and Mark) instruction 3-34 
EDTs (eligible device tables) 2-8 
eligible device tables (EDTs) 2-8 
ENQ macro 

for VSAM data sets 5-2 
limiting concurrent requests 3-13 
summary of changes 3-6, 3-44 

entry points in IEFW21SD 3-15 
Environmental Record Editing, and Printing Program 

See EREP 
EOV macro 

incompatible MVS/XA expansion 9-7 
EREP (Environmental Record Editing and Printing 

Program) 
PRDMP exit 6-18 
program produce co-requisite 6-18 

ERP (error recovery procedure) 3-16 
ESD (external symbol dictionary) 3-32 
ESPIE 

macro 3-6, 3-44, 9-4 
service routine 3-20 

ESTAE macro 3-6,9-4,9-7, A-3 
ESTOR parameter in CONFIGxx 2-20 
EVALDEF IPCS subcommano 6-14 
EVALDUMP IPCS subcommand 6-14 
EVENTS macro 3-6,9-7, A-3 
EXCP 

changes 3-44 
counts 2-22, 7-2, 7-3 
macro 

backing I/O buffers 3-41 
parameter requirements 3-40 
performing I/O above 16 megabytes 3-41 
performing I/O in 31-bit mode 3-40 
summary of changes 3-6 
using virtual IDAWs 3-41 

EXCPVR macro 3-8 
changes 3-44 
parameter requirements 3-40 
performing I/O above 16 megabytes 3-23,3-41 
performing I/O in 31-bit mode 3-40 
using the PGFX appendage 3-23 

EXEC statement 
in the PRDMP procedure 2-27 
LKED 3-31,8-6 
specifying AM ODE, RMODE 3-31 

execution time 2-22, 8-9 
exit routines 

See user exit routines 
exit services router 5-9 
expanded storage 

See extended storage 

Index X-5 



explicit tracing 6-20 
extended 

color support 4-6 
CSA 2-15,2-23 
ECBs 3-19 
region size, obtaining 5-3 
SQA 2-15,2-23 

extended recovery facility (XRF) 
See XRF (extended recovery facility) 

extended storage 
defined 5-11 
DISPLAY M command 4-14 
in IEAOPTxx member of SYSl.PARMLIB 2-23 
SMF type 22 record 7-6 

external symbol dictionary (ESD) 3-32 
External Writer 2-2 
E37 ABEND code 6-8 

FDPs (Field Developed Programs) 1-2 
FEST AE macro 3-8, 9-7 
fetch 

See also program fetch 
protection in PSA 3-22 

Field Developed Programs (FDPs) 1-2 
FIX system parameter 2-23 
Fixed priority 

specification 8-11 
specifying in IEAIPSxx PARMLIB member 2-22 

FLP A (fixed link pack area) 
building 2-10 
changes 3-18 
page protection 3-21 

FORCE command 4-15 
format model processor service 5-9 
FORMAT PRDMP statement 6-11 
frames 

See console frames and configuration frames 
full-function address spaces, starting 2-26 

generalized trace facility 
See GTF 

GENERATE function 
See installing MVS/XA 

GENERATE macro 2-6,2-7,2-10 
generating 

stand-alone dump 2-29 
GETMAIN macro 3-6 

differences in processing 3-11 
in summary of changes 3-44 
limit on requests 

determining 5-3 

X-6 MVSXA Conversion Notebook, Volume 1 

exceeding 6-23 
LOC parameter 3-48, 3-49 
overlapping parameters 3-11 
suggestions for using 9-4 
VRC parameter 3-48 
VRU parameter 3-48 

global RESERVE requests 2-28 
global resource serialization 

displaying information about 4-14 
in a mixed environment 9-13 
limiting concurrent requests 3-13 
RNLs (resource name lists) 2-18 
serializing VSAM data sets 5-2 

global SET symbol 9-1 
glue module 3-38 
GQSCAN macro 

limiting concurrent requests 3-13 
summary of changes 3-6, 3-44 

GRS 
See global resource serialization 

GRSRNL system parameter 2-18, 2-24 
GRSRNLxx PARMLIB members 2-18,2-20,2-24 
GRSRNLOO PARMLIB member 2-19 
GTF (generalized trace facility) 

modules 3-17 
records 3-18 
tracing USR events 3-49 

GTFPARM PARMLIB member 2-20 
GTRACE macro 3-6, 3-44, 3-49 
GVT 

GVTCREQ field 3-14 
GVTCREQA field 3-14 

hardcopy log records 3-14 
header exits for PRDMP 5-6 
highlighting messages 2-25 
hot I/O interrupts 

controlling processing 2-25, 4-5 
recovery actions 4-5, 5-4 
thresholds 4-5, 5-4 

HOTIO statement in IECIOSxx 2-25,5-4 

I/O 
above 16 megabytes 3-41 
configuration data set 

See IOCDS 
configuration requirements 2-6 
event recording 2-20 
hot 2-25, 4-5 
in 31-bit mode 3-40 

"'. 
\j 

--_._-_ .. _. ~-.-



instructions 3-13, 3-35 
interrupt processing 2-23, 4-5 
load balancing 2-23 
service, calculating 2-22 
to FLPA 3-18 
to real storage above 16 megabytes 3-23 
using access methods 3-28, 3-40 
using EXCP 3-40, 3-41 
using EXCPVR 3-40,3-41 

IARUTVR module 3-17 
IAR0041 message 2-13 
ICCLPB parameter in IEAOPTxx 2-23 
ICF catalogs 9-13 
IDAWs (indirect addressing words) 

used with EXCPVR 3-23 
virtual 3 -41 

IEAABDOO P ARMLIB member 2-21 
IEABLDxx PARMLIB member 2-21 
IEACMDOO PARMLIB member 

fixed storage allocations when executed 2-13 
SET DAE command 6-10 
START LLA command 2-26,8-8 
summary of changes 2-21 

IEADMPOO PARMLIB member 2-21 
IEADMROO PARMLIB member 2-22 
IEAFIXxx PARMLIB member 2-18, 2-22 
IEAIPL04 module 2-14 
IEAIPSxx PARMLIB member 2-22 
IEALIMIT exit 5-3 
IEALODOO PARMLIB member 2-22 
IEALPAxx PARMLIB member 2-18,2-22 
IEAOPTxx PARMLIB member 2-23 
IEAPAKxx PARMLIB members 2-23,2-24 
lEAP AKOO P ARMLIB member 2-23 
IEASMFEX module 3-19 
IEASYSxx PARMLIB member 

parameters 
ALT 2-23 
BLDL 2-21, 2-24 
BLDLF 2-21,2-24 
CMB 2-23 
CSA 2-15,2-16,2-23 
DUMP 2-17, 2-23 
FIX 2-23 
GRSRNL 2-18,2-24 
LNKAUTH 2-24,8-8 
LPA 2-10,2-24 
MAXUSER 2-17, 2-24 
MLPA 2-23 
MSTRJCL 2-24 
PAK 2-24 
RSU 2-13 
RSVNONR 2-17,2-24 
RSVSTRT 2-17,2-24 
SQA 2-14,2-15,2-23 

summary of changes to 2-23 
IEAVEDAT, DAT-off nucleus 3-25 
IEAVEURn, DAT-offmodule 3-25 
IEA VMXIT user exit 4-11, 5-8 
IEAVNIPO module 2-14 
IEA VT ABX module 5-5 

lEA VTR V module 3-17 
lEA VTSEL module 5-5 
IEA2401 message 2-24 
IEA8381 message 6-9 
IEBCOPY 

ALTERMOD parameter 8-3 
changes to 8-3 
COPYMOD parameter 8-3 

IECIOSxx P ARMLIB member 
HOTIO statement 5-4 
specifying MIH intervals 2-19 
summary of changes 2-25 

IECVHIDT module 5-4 
IEECVXIT user exit 4-7,5-7 
IEECVXIT WTO installation exit 5-7 
IEEMB846 module 3-13 
IEESYSAS procedure 2-26 
IEE978E message 2-25 
IEFAB4DC entry point in IEFW21SD 3-15 
IEFAB4UV entry point in IEFW21SD 3-15 
IEFAB4UV load module 3-50 
IEFAB445 entry point in IEFW21SD 3-15 
IEFAB445 load module 3-15 
IEFDB401 load module 3-15 
IEFDEVPT table 2-18, 3-50 
IEFEB4UV load module 3-50 
IEFGB4DS entry point in IEFW21SD 3-15 
IEFGB4UV entry point in IEFW21SD 3-15 
IEFGB400 load module 3-15 
IEFPARM statement in the RMF procedure 2-27 
IEFRDER statement in the RMF procedure 2-27 
IEFSCAN module 3-50 
IEFUSI exit 

bypassing the storage availability check 5-4 
changes recorded in SMF 6-23 
limiting user region size 5-3 

IEFW21SD load module 3-15 
IEFXVNSL lOad module 3-15 
IEHDASDR N, 2-11, 9-11 
IEWFETCH module 2-18 
IEWMBOSV, alias for IEWFETCH 2-18 
IEWMSEPT, alias for IEWFETCH 2-18 
IF ASMF module 2-8 
IFASMFDP module 7-8 
IGCOOOIF module 2-18 
IGC0004F module 2-18 
IGC0004G module 2-18 
IGC046 module 2-18 
IGC047 module 2-18 
IGFPEMER module 6-23 
IGFPTERM module 6-23 
IGFPTREC module 6-23 
IHAHCLOG macro 3-15 
IKJDAIR interface routine 3-15 
IKJEFDOO alias 3-15 
IKJEFTOI module 2-27 
IKJEGSCD table 3-12 
IKJEGSTA module 3-12 
IKJEGSUB macro 3-13 
IMPL 4-3 

Index X-7 



INDEX DD statement in PRDMP procedure 2-27 
indirect address notation on SLIP commands 4-16 
initializing 

DASD 2-11 
MVS/XA 2-13 

Insert Storage Key (ISK) instruction 3-13 
Installed User Programs (IUPs) 1-2 
installing MVS/XA 

IPCS modules on other systems 6-18 
PRDMP modules on other systems 6-18 

instructions 
changed 3-33 
deleted 3-13 
LPSW 3-30 
mode sensitive 9-4 
new 3-35 
recording 4-4 
stepping through 4-4 
STNSM 3-25 
STOSM 3-25 

Interactive Problem Control System 
See IPCS 

Interactive System Productivity Facility (ISPF) 6-1 
interface routines 

IKJDAIR 3-15 
IKJEFDOO 3-15 

interfaces 
to access methods 3-28 
to routines above 16 megabytes 3-38 
to system services 3-26 

interval timer 3-16 
INTSECT macro 3-8, 9-7 
IOCDS (I/O configuration data set) 

creating for MVS/XA 2-4 
10CP (I/O configuration program) 

creating an IOCDS 2-3, 2-4 
I/O configuration requirements 2-6 
macros 2-5 
MVS version 2-4 
selecting the correct 10CP program 2-4 
stand-alone version 2-4 
when to use 2-3 

IODEVICE macro 2-5,2-6,2-7 
10HAL T macro 3-6, 3-9 
lOS 

control blocks in PRDMP output 6-11 
modules 3-17 
unit control block 

See UCB 
IOSCAT lock 3-20 
10SDATA PRDMP statement 6-11 
10SGEN UCBLOOK macro 3-6,3-9,3-18 
IOSINFO macro 3-8, 3-45 
IOSLCH lock 3-20 
lOS LOOK macro 3-8,3-9,3-45 
IOSRHIDT module 5-4 
IOSRVC parameter in IEAIPSxx 2-22 
IOSVSUCB module 3-9 
IOS20lE message 4-8 

X-8 MVSXA Conversion Notebook, Volume 1 

IPCS (Interactive Problem Control System) 
BLSPDISE panel 6-16 
BLSPDSLE panel 6-16 
BROWSE panel 6-16 
dump processing exits 5-8 
installing the MVSjXA version on other 

systems 6-18 
ISPF co-requisite 6-1 
migration aid 6-18 
new panels 6-16 
specifying the dump source 6-15 
subcommands 6-13 
titles of print files 6-17 

IPL 
options on SYSCTL frame 4-4 
text 2-11 

IPM (INSERT PROGRAM MASK) instruction 3-34, 
3-35, 9-4, 9-5, 9-6 

IPS parameters 
Fx parameters in the DP keyword 2-22 
IOSRVC 2-22 
PPGRTR 2-22, 8-9 
Rx parameter in the DP keyword 2-22 

ISAM 3-28 
ISGGRNLO load module 2-18 
ISG0661 message 2-28 
ISK (Insert Storage Key) instruction 3-13 
ISPF (Interactive System Productivity Facility) 6-1 
IUPs (Installed User Programs) 1-2 

JCL 
allocating SYS1.DAE 2-9, 6-10 
allocating SYSI.DUMP data sets 4-5 
copying PRDMP and IPCS modules 6-18 
DISP parameter 4-5 
routing jobs 9-12 
starting the master scheduler address space 2-9 

JES2 
hard-copy log records 3-14 
in Conversion Notebook xxv 
in MVS/XA Conversion Notebook, Volume 2 viii 
user exits 5-5 

JES2 PRDMP control statement 6-11 
JES3 

converter-interpreter (C/I) processing 9-13 
DSPs (dynamic support programs) 5-5 
hard-copy log records 3-14 

. in Conversion Notebook xxv 
in MVSjXA Conversion Notebook, Volume 2 viii 
user exits 5-5 
using SYS1.PROCLIB 9-13 

JES3 PRDMP control statement 6-11 
job streams for copying PRDMP and IPCS 

modules 6-18 

./ , 

rf-'-, 
\(jl 



( 

(-

(. 

KEYLIST dump option 6-2 

LA instruction 3-34,9-4 
labeled tapes, using for stand-alone dumps 4-5 
LCH parameter in IECIOSxx 2-25 
library 

(See the Preface for a list of related pUblications) 
changes 1-3 

limiting 
dump output 6-11 
user region size 5-3 

link editing 
See also linkage editor 
allocation user routines 3-15 
overriding AMODE, RMODE defaults 3-31 
programs for optimal fetch performance 8-4 
programs to run in MVS/XA 9-2 

LINK macro 3-6, 3-30 
link pack area modules in PRDMP output 6-11 
linkage assist routine 

description of 3-38 
example of 3-39 

linkage editor 
See also link editing 
changes to 8-3 
in DFDS 1.4 8-3, 9-2 
in DFP 8-3, 8-4, 9-2 
indicating AMODE/RMODE 3-32 
interpreting 

AMODE=ANY,RMODE=ANY 3-32 
overlay structure 3-33 
performance related changes 8-3 
REGION parameter 8-6 
system generation requirement 2-2 
text block sizes 8-6 

LISTDUMP IPCS subcommand 6-14 
LKED EXEC statement 8-6 
LLA (LNKLST lookaside) 

directory 2-21,2-24,4-15,8-7,8-8 
function 8-7 
procedure 2-21, 2-26, 8-8 

LLT 
LLTAPFIN field 3-19 
LL T APFTB extension 3-19 

LNKAUTH system parameter 2-24,8-8 
LNKLST 

concatenation 2-24, 2-25, 5-8, 8-7 
100kaside function (See LLA) 

LOAD macro 
changes 3-6, 3-45 
using to determine addressing mode 3-32, 3-45 

load modules 

See also specify module names 
bootstrap programs 2-11 
copying 8-3 
count values 8-3, 8-5 
link editing 9-2 
program fetch considerations 8-2 
reblocking 8-3 
text block sizes 8-3, 8-6 

loading microcode 2-12,4-3 
LOC parameter on GETMAIN 3-48, 3-49 
locks 

changes to structure of 3-20 
determining hierarchy position 3-20 
determining locks held 3-20 

LOG command 3-14 
log records 

for system commands 3-47 
hard-copy 3-14 
in SYSLOG data sets 3-14 
in SYSl.LOGREC data sets 3-18, 6-18 
prefixes 3-47 

logical 
path utilization 2-23 

LOGREC records 
format changes 3-18 
in PRDMP output 6-18 

loosely-coupled configuration 
MVS/XA and MVS/370 9-1 
routing jobs 9-12 
sharing data sets 9-13 

low address protection 3-22 
LPA (link pack area) 

directory entries (LPDEs) 2-22 
system parameter 2-10,2-24 

LPALST concatenation 2-23,2-25 
LPALSTxx PARMLIB members 2-10,2-24,2-25 
LPAMAP PRDMP statement 6-11 
LPDEs (LPA directory entries) 2-22 
LPSW instruction, changing the addressing mode 3-30 
LRA instruction 3-35 
LSQA dump option 6-2 

macro instructions 
See also specific macro names 
BTAM RESETPL 3-10 
CHKPT 3-8 
CLOSE 9-10 
comprehensive list of 3-4 
downward incompatible 9-7 
EOV 9-10 
incompatible parameter changes A-I 
IOCP 

See IOCP, macros 
IOHALT 3-9 
IOSGEN UCBLOOK 3-9 

Index X-9 



lOS LOOK 3-9 
new downward compatible parameters 3-42 
OPEN 9-10 
RESETPL 3-10 
SPIE 3-10 
SPLEVEL 3-47,9-7,9-10 
STATUS STOP,SYNCH 3-11 
summary of new and updated 3-42 
SVCUPDTE 5-1 
SYNCH 3-5, 3-30, 3-42, 3-47,9-7,9-10 
sysgen 

See sysgen, macros 
when MVS/XA expansions are required 9-10 

Mass Storage Subsystems 2-12 
master catalog 

LP ALIB entries 2-10 
SYSl.LOGREC entry 2-10 

master scheduler address space 2-9 
MAXBLK parameter on IEBCOPY 8-4 
MAXUSER system parameter 2-17,2-24 
Mean-time-to-wait 

specification 8-11 
media manager modules 3-17 
message processing facility (MPF) 4-7, 5-7 
messages 

controlling traffic 4-7, 4-12, 5-7 
CSV300I 8-2 
displaying in color 4-6 
format of display 4-12 
from PRDMP processing 2-27 
highlighting 2-25,4-6 
IAR004I 2-13 
IEA240I 2-24 
IEA838I 6-9 
IEE978E 2-25 
IOS20lE 4-8 
ISG066I 2-28 
modifying processing of 5-7 
reporting suppressed dumps 6-8 
retaining 2-25 
routing 4-7,4-12 
suppressing 2-25 

MF/l (System Activity Measurement Facility) 2-2 
MGCR macro 3-8, 3-45 
microcode, loading 2-12,4-3 
migration aids 

IPCS 6-18 
PRDMP 6-18 

MIH (missing interrupt handler) 
intervals, specifying 2-19, 2-25 
parameter in IECIOSxx 2-19 

MINBLK parameter on IEBCOPY 8-4 
missing interrupt handler 

See MIH 
MLPA 

building 2-10 

X-IO MVSXA Conversion Notebook, Volume 1 

page protection 3-21 
system parameter 2-23 

MODE command 4-15 
MODESET macro 3-8 
MODIFY command 4-15,8-8 
modules 

See load modules and specific module names 
MOD88 service routine 3-20 
MONITOR command 4-16,4-17 
Move Long (MVCL) instruction 3-34 
MPF (message processing facility) 4-7,5-7 
MPFLSTxx PARMLIB member 2-25,4-6,5-8 
MSCTC (MSC table create) utility 2-12 
MSGRTcommand 4-16 
MSS, loading microcode EC tapes for 2-12 
MSTJCLxx member of SYS1.LINKLIB 2-9, 2-24 
MSTJCLOO member of SYS1.LINKLIB 2-9 
MSTRJCL system parameter 2-9,2-24 
MTRACE PRDMP statement 6-11 
MVCL (Move Long) instruction 3-34 
MVS/Extended Architecture Conversion Notebook, 
Volume 1 v 

MVS/Extended Architecture Conversion Notebook, 
Volume 2v 

MVS/XADFP 
and programs using OPEN or CLOSE macros 9-10 
catalog address space in Version 2 7-1 
program fetch 8-1 
publications xi 
relationship to MVS/SP Version 2 vi 

new function for programs 3-4 
non-specific device allocation 2-23 
non-standard tape label routine 3-15 
NOPROT option on system parameters 2-23,3-21 
NOSYM parameter in PARMLIB members 6-4 
NUC dump option 6-3 
nucleus 

dumping 2-21, 6-2, 6-3 
in PRDMP output 6-11 
read-only 3-21 

NUCLKUP macro 3-8, 3-45 
NUCMAP 

area in the nucleus 3-21 
PRDMP statement 6-11 

Numbering Conventions 
for IBM 3084 processor complexes 4-8 
for IBM 3090 model 400 processor complexes 4-8 
in CONFIG command keywords 4-11 

NVESQA fields 2-14 
NVSQA fields 2-14 
NVTNVSQA field 2-14 

c 



( 
OPEN 

IPCS subcommand 6-14 
processing, VSAM 5-2 

OPEN macro 
incompatible MVS/XA expansion 9-7 

operating system 
initializing 2-13 
IPL option 4-4 
restarting 4-4 

operator control (OPRCTL) console frame 4-3 
operator response to message IOS201E 4-8 
OPRCTL (operator control) console frame 4-3 
overlay modules 

restrictions on using 3-33 

page data sets 
eligible devices for 2-8 

page fix appendage 3-23 
page protection 

areas protected 3-21 
of IEAFIXxx modules 2-22, 2-23 
of IEALPAxx modules 2-22,2-23 
turning off 3-21 

page-in rate for address spaces 2-22, 8-9 
PAK 

lists 2-23 
system parameter 2-24 

PAM 3-28 
parameters 

See system parameters 
PARMLIB members 

See SYSl.PARMLIB data set 
patch area 3-22 
PC instruction, changing the addressing mode 3-30 
PDS directory entry, AMODE/RMODE specifications 
in 3-32,9-2 

performance considerations 
page-in rate of an address space 8-9 
paging algorithms 8-9 
program fetch processing 8-1 
RACF features 8-10 
SMF data set placement 8-9 
SMF data set processing 7-8 

performing 
I/O in 31-bit addressing mode 3-40 
IMPL 4-3 

PGFIX macro 9-4 
PGFREE macro 9-4 
PGFX (page fix appendage) 3-23 
PGLOAD macro 9-4 
PGOUT macro 9-4 
PGRLSE macro 9-4 

PGSER 
macro 3-6, 3-45, 9-4 
service routine 3-20 

PLPA 
building 2-10 
page protection 3-21 

POST exits 3-19 
post-dump exit routines 5-5 
power-on-reset function, performing 4-3 
PPGRTR parameter in IEAIPSxx 2-22,8-9 
PPT (programming properties table) 2-8 
PRDMP 

command processor 2-27 
control statements 6-11 
EREP exit 6-18 
exit control table 5-6 
exit routines 5-6, 5-8 
index 

inserting user entries 6-13 
obtaining before the dump 2-26, 6-13 

length of output lines 6-13 
migration aid 6-18 
output buffer 5-6 
procedure in SYSl.PROCLIB 2-26,6-19 

PRDMPXA member of SYSl.SAMPLIB 6-19 
pre-dump exit 5-5 
preferred path 2-5 
preparing for MVSfXA 1-2 
print dump 

See also PRDMP 
exit control table 5-6 
macro (PRDMP) 6-11 

printer requirements for PRDMP 6-13 
private area storage 

minimizing amount lost because of rounding 2-16 
reporting use of 7-2 

procedures 
See SYSl.PROCLIB data set 

processor addresses 3-19 
program fetch 

amount of virtual storage fixed 8-4 
differences 8-3 
modules 3-17 
performance 8-1 

program mask, obtaining 3-34 
Program Offerings 1-2 
program products 

BTAM/SP 3-10 
DEMF 2-2 
Device Support Facilities Release 6 2-11 
DFDSS 2-2 
DFEF 9-13 
EREP 6-18 
IPCS 6-1 
ISPF 6-1 
licenses 9-11 
MF/l 2-2 
RMF 

See RMF 
program status word 

Index X-ll 



See PSW (program status word) 
programming considerations 3-1 
programming properties table (PPT) 2-8 
programs requiring modification 

authorized 3-2 
unauthorized 3-1 

PSA 
changes to 3-22 
fetch protection 3-22 
low address protection 3-22 
patch area 3-22 
PSACLHS field 3-20 
PSAHLHI field 3-20 
work/save area locations 3-22 

PSACLHS field 3-20 
PSAHLHI field 3-20 
PSW (program status word) 

addresses in 3-19 
addressing mode bit 3-28 

PT instruction, changing the addressing mode 3-30 
PTFs 

See also APARs 
for Assembler H Version 2 3-51 
for GTF module AHL TSVC 3-9 
for 10HAL T 3-9 
for 10SGEN UCBLOOK 3-10 
for MVS/XA DFP Version 1 Release 1.1 8-1 
for MVSfXA DFP Version 1 Release 1.2 8-1 
for MVSj370 DFP 8-4 
for SVC 33 3-9 
for the DFDS 1.4 linkage editor 8-5, 9-2 
for the linkage editor in MVS/XA DFP Version 

1 8-2 
for the Type 6 SMF record 7-5 

PTRACE macro 3-8, 3-45 
publications 

(See the Preface for a list of related publications) 
changes 1-3 
published external interfaces ix 

PURGE service routine 2-18,3-20 

queuing messages 5-7 

RACF (Resource Access Control Facility) 
activating 2-11 
aids to system performance 8-10 
always-call 9-14 
protection of VSAM clusters 9-14 

RACROUTE macro 3-6, 3-45 
real addresses 

in IDA Ws 3-23 

X-12 MVSXA Conversion Notebook, Volume 1 

in LSQA 3-25 
in SQA 3-25 
in the nucleus 3-25 
topics related to using 3-23 
using with EXCPVR- 3-23 

real storage dump module (AMDSARDM) 2-29 
real time interval, setting 3-47 
reason codes 3-43, 6-23 
reblocking modules 8-3 
reconfigurable storage, specifying 2-13 
reconfiguring the system 2-20 
records 

control 8-3 
GTF 3-18 
hardcopy log 3-14 
in SYSLOG 3-14, 3-47 
LOGREC 3-18 
RLD 8-3 
RLD/control 8-3 
SMF 3-13, 7-7 
system trace 3-18 
text 8-2, 8-3, 8-6 

recovery actions for hot I/O 4-5 
recovery termination manager (RTM) 3-17 
REGION parameter 

compared to using IEFUSI 5-3 
on link edit jobs 8-6 
specifying more than 16 megabytes 5-3 
storage availability check 5-4 

region size 
exceeding 6-23 
extended 5-3 
specifying 5-3 

relocation dictionary (RLD) records 8-3 
RENUM IPCS subcommand 6-14 
reports, RMF 4-7 
RESERVE macro 

limiting concurrent requests 3-13 
summary of changes 3-6, 3-45 

RESERVE requests, global 2-28 
reserving ASVT entries 2-17,2-24 
RESETPL macro 3-1, 3-6, 3-10 
residency time 2-22, 8-9 
resident BLDL list 3-21 
Resource Measurement Facility 

See RMF 
resource name lists 

See RNLs 
restart processing 4-4 
restarting 

options 4-4 
processors 4-8 
SMF 4-16 

retaining messages 2-25, 5-7 
retrieving data above 16 megabytes 3-40 
RETURN macro 3-7, 3-45 
RLD (relocation dictionary) records 8-3 
RMF (Resource Measurement Facility) 

duration of initialization process 2-28 
modules 3-17 

- - ---------~---------------------------------- -------~-----~------~-----

c 



( 

(--

( 

Monitor II reports 4-7 
obtaining storage for I/O data 2-17 
post processors 7 -7 
procedure in SYS1.PROCLIB 2-27 
providing MF/1 functions 2-3· 
SMF records 70-79 7-7 
starting 2-27 
user exit routines 5-5 
virtual storage report 2-15 
31-bitaddressing 3-17 

RMODE 
description of 3-31 
determining 3-32 
flags in the CESD 3-32, 9-2 
flags in the ESD 3-32 
flags in the PDS directory entry 3-32, 9-2 
linkage editor interpretation 3-32 
specifying 3-31 

RNLDEF statements 2-18 
RNLs (resource name lists) 

defining 2-19 
in GRSRNLxx PARMLIB members 2-18 
SYSTEM inclusion 5-2 
SYSTEMS exclusion 2-28, 5-2 
using defaults 2-28 

Rotate priority 
meaning in IEAIPSxx PARMLIB member 2-22 
removal of rotate algorithm 8-11 

routing 
codes for messages 

altering 5-7 
using 4-7 

jobs 9-12 
messages 4-12 

RPQs for devices and features 1-3 
RSM 

backing virtual storage 3-24 
control blocks in PRDMP output 6-12 
modules 3-17 

RSMDATA PRDMP statement 6-12 
RSU system parameter 2-13 
RSVNONR system parameter 2-17, 2-24 
RSVSTRT system parameter 2-17,2-24 
RTM (recovery termination manager) 3-17 
RUNCHAIN IPCS subcommand 6-14 

SADMP 
See stand-alone dump 

SADMPMSG PRDMP statement 6-12 
SAF (System Authorization Facility) 2-11 
SALLOC lock 3-20 
SAM 3-28 
save areas in the PSA 3-22 
SCHEDULE macro 3-8,9-7 
SCHEDULR macro 2-7 
SCP manual CNTL (SYSCTL) console frame 4-3 

SDUMP 
DAE function 6-8 
macro 3-8, 3-46, 3-49, 9-7 

SDWA 
additional information in 6-22 
changes to structure 3-11 
checkpoint/restart data 6-24 

SDWAVRA 6-9 
segment protection in PLPA 3-21 
select ASID service 5-11 
serializing VSAM data sets 5-2 
SET 

command 
DAE 4-16, 6-10 
MPF 4-6,5-8 
SMF 4-16 

symbol 9-1 
Set Storage Key (SSK) instruction 3-13 
SETDEF IPCS subcommand 6-14 
SETFRR macro 3-8 
SETLOCK macro 3-8 

example of new function 3-21 
incompatible MVS/XA expansion 9-7 
new parameters 3-46 
specifying RELEASE,TYPE= (reg)IALL 3-49 

SETRP macro 3-7, 3-46, 6-23 
SIZE parameter for LKED EXEC 8-6 
SLIP command 

in IEACMDOO 2-21 
in summary of commands 4-17 
MOD 4-16 
SET 4-16 
suppressing dumps 6-7 
31-bit indirect address notation 4-16 

slot selection algorithm 8-10 
SMF 

address space 2-25, 2-26 
BQEs 3-19 
buffers 2-25 
compatibility between releases 7-8 
data set placement 8-9 
EOF marks 3-19, 7-8 
format of data sets 3-19 
recording IEFUSI changes 6-23 
recording TSO commands 3-13 
records 3-19,7-2,7-3,7-4,7-7,7-8 
reporting device connect time 7-2 
reporting virtual storage use 7-2 
step initiation exit 5-3 

SMFEOFMARKs in SMF records 3-19, 7-8 
SMFEXIT macro 3-7,9-7, A-3 
SMFIOCNT macro 3-7, 3-19, 3-46 
SMF30ARB field 7-2,7-3 
SMF30BLK field 7-3 
SMF30DCT field 7-2 
SMF30EAR field 7-2 
SMF30ERG field 7-2 
SMF30EUR field 7-2 
SMF30PRV field 7-2 
SMF30RGB field 7-2 

Index X-13 



SMF30RGN field 7-6 
SMF30SYS field 7-2 
SMF30TCN field 7-2 
SMF30TEP field 7-3 
SMF30URB field 7-2,7-3 
SMF32TCT field 7-2 
SMF4EXCP field 7-3 
SMF4RSHO field 7-5 
SMP Release 4 2-2 
SMP/E 2-2 
SNAP 

dump headers 6-5 
dump indexes 6-6 
dump processing exits 5-8 
macro 3-7,3-46 

SPIE macro 3-7,3-10,9-4 
SPLEVEL macro 3-7 

examples 9-8 
function of 3-47,9-7 

SPLS dump option 6-3 
SQA 

dump option 6-3 
increasing minimum allocation for 2-14 
specifying the size of 2-15,2-23 
system parameter 2-15,2-23 

SRB 
SRBEP field 3-17 
SRBRMTR field 3-17 

SRM (system resources manager) 
calculating I/O service 2-22 
calculating page-in rate 2-22, 8-9 
collecting I/O data 2-17 
I/O interrupt processing 2-23 
I/O load balancing 2-23 
IOSRVC parameter 2-22 
modules 3-17 
non-specific device allocation 2-23 
PPGRTR parameter 2-22, 8-9 

SSK (Set Storage Key) instruction 3-13 
STACK IPCS subcommand 6-14 
ST AE macro 9-4 
stand-alone dump 

generating 2-29 
invoking 2-11 
IPL option 4-4 
macro (AMDSADMP) 2-29 
real storage dump module (AMDSARDM) 2-29 
requesting 2-29 
storing status 4-4 
using labeled tapes 4-5 

START command 
A VM keyword 4-17 
LLA keyword 2-21,2-26,4-17,8-8 
SUB keyword 4-17 

starting 
DUMPSRV address space 2-26 
full-function address spaces 2-26 
LLA function 2-26, 8-8 
master scheduler address space 2-9 
PRDMP 2-26 

X-14 MVSXA Conversion Notebook, Volume 1 

RMF 2-27 
SMF address space 2·26 

STATUS IPCS subcommand 6-14 
STATUS STOP,SYNCH maCro 3-7,3·11 
STAX macro 3·7,9-7, A·4 
STIMER 

macro 3·7,3-16,3-47,9-7, A·4 
service routine 2·18, 3-20 

STIMERM macro 3-7, 3-47 
STNSM instruction 3·25 
STOP command 4·17,8·8 
STOPMN command 4-16,4-17 
STOR parameter in CONFIGxx 2-2( 
storage 

availability check 5-4 
management locks 3·20 
specifying reconfigurable 2-13 

storing status before taking a stand-alone dump 4·4 
STOSM instruction 3-25 
SUBPLST dump option 6-3 
subpools 3-20, 3-24 
SUBTASKS dump option 6-3 
SUM dump option 6-3 
SUMMARY IPCS subcommand 6-15· 
SUMMARY PRDMP statement 6·12 
suppressing 

dumps 
preventing 6-9 
using DAE 6·8 
using SLIP commands 6·7 

messages 2-25, 5-7 
SVC 

changing the addressing mode 3-30 
dumps 

checkpoint/restart data 6-24 
DAE options for 6·8 
format changes 6-6 
suppressing 6-7 

issued by WTO/WTOR user exits 5·7 
Router 3·20 
screening table addresses 3·17 
table 

changes 3·20 
updating 3·47 

109 3-20 
138 3-20 
16 3-20 
33 3-9 
46 3·20 
47 3-20 
61 3·12 
82 3-20 
88 3-20 
97 3-12 

SVCDUMP modules 3-17 
SVCUPDTE macro 3-8, 3-47, 5-1 
SVT 

SVTDACTV field 3-19 
SVTPWAIT field 3-19 

swap data sets 



defining 2-9 
eligible devices for 2-8 

Swapped-in queue 
order of ASCBs on 3-1 

symptom 
data from DAE 5-6, 6-8, 6-11 
dump 

description 6-3 
obtaining via TSO 6-4 
suppressing 6-4 

SYNCH macro 3-5,3-7,3-30,3-42,3-47,9-7,9-10, 
A-4 

SYSABEND dumps 
headers 6-5 
indexes 6-6 
options 2-21 
summary dump 6-4 
suppressing 6-7 

SYSCTL (SCP Manual CNTL) console frame 4-3 
SYSLIB DD statements 8-6 
SYSLIN DD statements 8-6 
SYSLMOD DD statements 8-6 
SYSLOG data set records 3-14, 3-47 
SYSMDUMP dumps 

DAE options for 6-8 
format changes 6-6 
headers 6-5 
options 2-22 
summary dump 6-5 
suppressing 6-7 
symptom dumps 6-4 

SYSPRINT DD statement 2-27,8-6 
system data sets 

defining during system generation 2-8 
dump data sets 2-9 
eligible device types for 2-8 
incompatible 9-13 
sharing 6-10 
SYSl.DAE 2-9,6-8 
SYSl.DUMPxx 1-2, 2-9, 2-17 
SYS1.LOGREC 2-10 
SYSl.PARMLIB 2-10 
SYSl.PROCLIB 2-26 
using the SYS 1 qualifier 2-10 

system generation 
creating an IOCDS 2-3, 2-4 
defining devices 2-3 
defining system data. sets 2-8 
DLIB changes 2-2 
functions deleted 2-2 
initializing DASD 2-11 
IPL text required 2-11 
requirements for 2-2 
SYSGEN macros 

CHANNEL 2-7 
CTRLPROG 2-7 
DATASET 2-6,2-7,2-9 
GENERATE 2-6,2-7,2-10 
incompatible differences 2-6 
IODEVICE 2-6,2-7 
SCHEDULR 2-7 

UNITNAME 2-7 
SYSl.LOGREC placement 2-10 

SYSTEM inclusion RNLs 5-2 
system log 3-47 
system parameters 

ALT 2-23 
BLDL 2-21,2-24 
BLDLF 2-21, 2-24 
CMB 2-17,2-23 
CSA 2-15, 2-16, 2-23 
DUMP 2-17,2-23 
FIX 2-23 
GRSRNL 2-18, 2-24 
LNKAUTH 2-24,8-8 
LPA 2-10, 2-24 
MAXUSER 2-17, 2-24 
MLPA 2-23 
MSTRJCL 2-9,2-24 
PAK 2-24 
RSU 2-13 
RSVNONR 2-17,2-24 
RSVSTRT 2-17,2-24 
SQA 2-15, 2-23 

system patch area 3-22 
system resources manager 

See SRM (system resources manager) 
system services 

interfaces to 3-26 
parameter list changes A-I 

system termination facility 6-23 
system trace 

activating 6-21 
buffers 6-21 
changes to 6-20 
creating entries 6-21 
data in dumps 2-21, 6-21 
modules 3-17 
records 3-18 
selecting events 6-20 
table 4-18, 6-12 
types of 6-20 

SYSTEMS exclusion RNLs 2-28,5-2 
SYSTSIN DD statement 2-27 
SYSTSPRT DD statement 2-27 
SYSUDUMP dumps 

headers 6-5 
indexes 6-6 
options 2-21 
summary dump 6-4 
suppressing 6-7 

SYSUTI DD statements 8-6 
SYSl.DAE data set 2-9, 6-8, 6-10 
SYSl.DUMPxx data sets 

See dump, data sets 
SYSl.LINKLIB data set 

location of RNLs 2-18, 2-24 
MSTJCLxx members 2-24 
sharing 9-13 

SYSl.LOGREC data sets 
checkpoint/restart data 6-24 

Index X-15 



increasing the size of 2-10 
placement 2-10 
recording suppressed dumps 6-8 

SYSl.LPALIB data set 
concatenation 2-9 
sharing 9-13 

SYSl.MACLIB data set 
different expansions of same macro 9-7 
sharing 9-13 

SYSl.NUCLEUS data set 
allocating 2-10 
sharing 9-13 

SYSl.PARMLIB data set 
characteristics 2-10 
members 

ADYSETxx 2-20, 6-9 
ADYSETOO 6-10 
ADYSETOI 6-10 
ADYSET02 6-10 
COMMNDxx 2-18 
CONFIGxx 2-20 
GRSRNLxx 2-18,2-20,2-24 
GRSRNLOO 2-19 
GTFPARM 2-20 
IEAABDOO 2-21 
IEABLDxx 2-21 
IEACMDOO 2-21, 8-8 
IEADMPOO 2-21 
IEADMROO 2-22 
IEAFIXxx 2-22 
IEAIPSxx 2-22 
IEALODOO 2-22 
IEALPAxx 2-18,2-22 
IEAOPTxx 2-23 
IEAPAKxx 2-23 
IEAPAKOO 2-23 
IEASYSxx 2-23 
IECIOSxx 2-25, 5-4 
LPALSTxx 2-10,2-25 
MPFLSTxx 2-25, 4-6, 5-8 

MSTJCLxx members 2-9 
sharing 9-13 
summary of updates to 2-19 

SYSl.PROCLIB data set 
A VM procedure 2-26 
DUMPSRV procedure 2-26 
IEESYSAS procedure 2-26 
in a JES3 configuration 9-13 
in converter-interpreter (Cjl) processing 9-13 
LLA procedure 2-26, 8-8 
PRDMP procedure 2-26 
RMF procedure 2-27 
summary of changes 2-26 

SYSl.SAMPLIB data set 
BLSAMPLE member 6-19 
DAEALLOC member 2-9,6-10 
MIGJOBOI and MIGJOB 02 members 6-18 
PRDMPXA member 6-19 

X-16 MVSXA Conversion Notebook, Volume 1 

SYSl.SBLSMGO data set 6-19, 6-20 
SYSl.SBLSPNLO data set 6-19,6-20 
SYSl.SVCLIB data set, sharing 9-13 

tapes, labeled 4-5 
TCAMMAP PRDMP control statement 6-12 
TCBSVCA2 field 3-17 
TCOMT AB control block 3-12 
termiriating 

jobs 4-11,4-15 
started processes 4-11, 4-15 
time-sharing users 4-11, 4-15 

text records, sizes of 8-2, 8-6 
thresholds 

for hot I/O interrupts 2-25 
for I/O interrupt processing 2-23 
for I/O load balancing 2-23 
for limiting concurrent global resource serialization 

requests 3-14 
for logical path utilization 2-23 

time 
execution 2-22, 8-9 
residency 2-22, 8-9 

time interval, real 3-47 
timer 

CPU 3-16 
interval 3-16 

titles of IPCS print files 6-17 
TIVEFRGN field in type 34 SMF records 7-6 
TRACE 

command 4-18, 6-20 
instruction 3-35 
lock 3-20 
PRDMP statement 6-12 

tracing 
See also system trace 
USR events via GTF 3-49 

TRACK command 4-7 
Translate and Test (TRT) instruction 3-34 
translating real addresses to virtual addresses 3-17 
TRT 

dump option 6-3 
instruction 3-34 

TSO 
command package 2-2 
obtaining symptom dump output in 6-4 
terminal monitor program 2-27 
TEST command 2-2, 3-12 
TEST subcommand table 3-12 

TSO/E with the MVS/XA feature 2-3,3-12, 3-13 
TTIMER 

macro 3-16,3-43 
service routine 2-18,3-20 

rr--\ 
~J 

/ 



( 

UCB 
addresses 3-17 
look-up routine 3-18 
scan routine (IOSVSUCB) 3-9 

UNALLOC command 3-13 
unauthorized programs, changes affecting 3-1 
unit control block 

See UCB 
unit verification 3-50 
UNITNAME macro 2-7 
UPT (UPDATE TREE) instruction 3-35 
user exit routines 

dump processing 5-8 
dynamic allocation 3-15 
EREP PRDMP 6-18 
IEALIMIT 5-3 
lEA VMXIT 4-11, 5-8 
IEECVXIT 4-7, 5-7 
IEFDB401 3-15 
IEFUSI 5-3 
JES2 5-5 
JES3 5-5 
post-dump 5-5 
PRDMP 5-6 
PRDMP header 5-6 
pre-dump 5-5 
RMF 5-5 
SMF step initiation exit 5-3 
using ECT entries 5-6 
WTO 4-7 
WTO/WTOR 2-25,4-7, 5-7 

V=Rprograms 3-18 
VARY command 

CH 4-18 
CPU 4-18 
devnum, ONLINE 4-18 
PATH 4-18 
STOR 4-18 

vector facility 
and the PPT 2-8 
in Release 2.1.7 3-1 
using 3-51 
vector registers in dumps 6-7 
vector wait 4-3 

versions r~quired for MVS/XA vi, vii 
virtual IDAWs 3-41 
virtual storage 

amount program fetch fixes 8-4 
changes in use of 7-2 
for RMF I/O measurements 2-17 
for the SLIP command processors 2-13 

map 2-16 
obtaining information about 3-47 
obtaining via GETMAIN 3-12 
reporting use of 7-2 
rules for backing 3-24 

virtual storage dump message log in PRDMP 
output 6-12 

VRADAE key in the SDW A VRA 6-9 
VRADATA macro 6-10 
VRC parameter on GETMAIN 3-48 
VRU parameter on GETMAIN 3-48 
VSAM 

catalogs 9-13 
data sets 5-2 
interfaces to 3-28 
OPEN processing 5-2 
performing I/O in 31-bit mode 3-40 
record management load modules 3-17 

VSM 
control blocks in PRDMP output 6-12 
GETMAIN limit 

calculating 5-3 
exceeding 6-23 
specifying 5-3 

modules, residence of 3-17 
region size limit 

calculating 5-3 
exceeding 6-23 
specifying 5-3 

storage availability check 5-4 
VSMDATA PRDMP statement 6-12 
VSMLIST macro 3-8,3-47 
VSMLOC macro 3-8, 3-47 
VSMREGN macro 3-8, 3-47 

wait state codes 
OC4 6-23 
081 2-10 
114 4-8 

work/save areas in the PSA 3-22 
working set size 2-22, 8-9 
WTL macro 3-7, 3-14, 3-47 
WTO macro 3-7, 3-47 
WTOjWTOR user exits 2-25, 4~7, 5-7 
WTOR macro 3-7,3-47,9-7, A-5 

XCTL macro 
changing the addressing mode 3-30 
differences 3-7 

XRF (extended recovery facility) 
components 4-3 

Index X-I7 



IMS applications 3-52 
managing processor complexes with 4-2 

I Numerics I 
OC4 wait state code 6-23 
081 wait state code 2-10 
114 wait state code 4-8 
16E ABEND code 3-20 
24-bit dependencies in programs 9-4 
31-bit addressing 

description of 3-28 

X-18 MVSXA Conversion Notebook, Volume 1 

impact on programmers 3-28 
indirect addresses on SLIP commands 4-16 
list of related topics 3-3 
modules using 3-17 

3279 MCS consoles 4-6 
370 I/O instructions 3-13 
370-XA mode 

initializing processor in 4-3 
instruction addresses 3-28 
IOCP differences 2-5 
switching to 4-3 

504 ABEND code 3-11 
538 ABEND code 3-14 
gOA ABEND code 6-8 

o 



( 

MVS/Extended Architecture 
Conversion Notebook 
Volume 1 

GC28-1143-6 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



MVS/Extended Architecture Conversion Notebook Volume 1 

GC28-1143-6 

Reader's Comment Form 

Fold and tape 

--.-. ... 
--.~ .-- --~..-. - ~-..--~-...... -- -- -------_ .. ---_ ... -® 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921 -2 
PO Box 390 
Poughkeepsie, New York 12602 

5370-34 

1111111111111111111111111111111111111111111111111111 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 

Printed in U.S.A. 

GC28-1143-96 

I . ; I 
I 

. I 
I 

I 
I 
I 

.(") 
c:: ... 
o ., 

() 



( 



MVS/Extended Architecture Conversion Notebook Volume 1 

GC28-1143-6 

--- --~~ ---- ---...------ ~-~---- ----~- .. ---- y-® 

5370-34 

Printed in U.S.A. 

/ '\ 
\~ j 

o 


